
TABLE OF
CONTENTS
Contents

About This Document

1. Overview
Java Compliance.. 1-1

What Oracle Tuxedo Features Are Supported... 1-2

What Is In This Manual ... 1-3

2. Installing XMLink
Contents of the Installation Package ... 2-1

Hardware and Software Requirements.. 2-1

Installing XMLink on UNIX... 2-3

Installing XMLink on Windows.. 2-4

3. Configuring XMLink
Configuration Notes .. 3-1

Managed and Non-Managed Environments .. 3-2

Configuring the Environment.. 3-5

Setting XMLink Properties.. 3-8

Sample Configuration.. 3-12

4. Using Java to Call Services
Getting an Oracle Tuxedo Connection .. 4-3

Managing Oracle Tuxedo Transactions... 4-6

Calling Oracle Tuxedo Services.. 4-7

Working with Application Data .. 4-9

Example: Calling Services using Java... 4-14

5. Using XML to Call Services
Inputting Data Using XML ... 5-2

Returning Data in XML... 5-5
Using XMLink iii

Using an EJB to Input XML.. 5-8

A. Troubleshooting
Configuration Issues ... A-1

Tuxedo Error Messages .. A-2

Using XMLink with Tuxedo 6.5 .. A-5

B. New Features in XMLink
XMLink 3.1 .. B-1

XMLink 3.0 .. B-1

XMLink 2.6 .. B-4

XMLink 2.1 .. B-5

XMLink 2.0 .. B-5

Index
iv Using XMLink

Using

Tuxedo Edition

X M L i n k R e l e a s e 3 . 2
D o c u m e n t 1 2 0 5

F e b r u a r y 2 0 1 7

Copyright

This software manual is documentation for XMLink™ 3.2. It is as accurate as possible at this time;
however, both this manual and XMLink itself are subject to revision.

Prolifics and XMLink are trademarks of Prolifics, Inc.

Adobe and Adobe Reader are registered trademarks of Adobe Systems Incorporated.

Linux is a registered trademark of Linus Torvalds.

Tuxedo is a registered trademark of Oracle Corporation.

WebSphere is a registered trademarks of International Business Machines Corporation.

Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation in the United
States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their
respective owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 2000-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://www.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents

About This Document
What You Need to Know .. viii

Documentation Website .. viii

How to Print the Document... ix

Documentation Conventions ... ix

Contact Us! .. xi

1. Overview
Java Compliance.. 1-1

What Oracle Tuxedo Features Are Supported... 1-2

What Is In This Manual ... 1-3

2. Installing XMLink
Contents of the Installation Package ... 2-1

Hardware and Software Requirements.. 2-1

Installing XMLink on UNIX... 2-3

Implementing File Protection... 2-3

Determining File Location ... 2-3

How to Install from CD-ROM ... 2-4

Installing XMLink on Windows.. 2-4

How to Run the Setup Program.. 2-4

3. Configuring XMLink
Configuration Notes .. 3-1
Using XMLink iii

Managed and Non-Managed Environments .. 3-2

Managed Environment Settings ... 3-3

Installing Resource Adapter Archives.. 3-4

Deploying in a Non-Managed Environment .. 3-4

Configuring the Environment .. 3-5

Setting XMLink Properties.. 3-8

Setting JVM Properties... 3-8

Setting Properties on a Resource Adapter .. 3-8

Setting Properties on a Connection Factory ... 3-10

Sample Configuration.. 3-12

4. Using Java to Call Services
Getting an Oracle Tuxedo Connection .. 4-3

Example: Connecting with a Java Client.. 4-3

Understanding the ConnectionFactory Interface.. 4-3

Supplying Connection Parameters .. 4-4

Getting Information about XMLink.. 4-5

Calling getRecordFactory ... 4-6

Specifying Transaction Access ... 4-6

Managing Oracle Tuxedo Transactions... 4-6

Calling Oracle Tuxedo Services .. 4-7

Understanding the Interaction Interface ... 4-7

Understanding the TuxInteractionSpec Interface....................................... 4-8

Working with Application Data .. 4-9

Understanding the RecordFactory Interface... 4-10

Working with Record Objects .. 4-11

FMLRecord and FML32Record Objects .. 4-12

Sample: Getting FML Data ... 4-12

CArrayRecord and StringRecord Objects ... 4-13

Character Encoding Support ... 4-14

Example: Calling Services using Java... 4-14

5. Using XML to Call Services
Inputting Data Using XML.. 5-2

Elements in the XML Input DTD... 5-3
iv Using XMLink

Agenda Element .. 5-3

Connection Element .. 5-3

Transaction and Servicecall Elements .. 5-3

Field Elements... 5-4

Data Elements ... 5-4

Example: Using XML Input... 5-4

Returning Data in XML... 5-5

Elements in the XML Output DTD.. 5-6

Resultset Elements .. 5-6

Returndata Elements ... 5-6

Error Elements .. 5-7

Xactionmsg Elements ... 5-7

Examples: XML Return Data... 5-7

Using an EJB to Input XML.. 5-8

A. Troubleshooting
Configuration Issues... A-1

Tuxedo Error Messages.. A-2

Using the TuxedoException Class .. A-3

Using the TuxedoReturnCodeWarning Class ... A-4

Using XMLink with Tuxedo 6.5 .. A-5

B. New Features in XMLink
XMLink 3.1 ...B-1

XMLink 3.0 ...B-1

Changes to Connection Factory Properties ..B-2

No Default Setting for XMLink.tconn ...B-2

Improved XML support ...B-2

XMLink 2.6 ...B-4

Embedded FML..B-4

Character Encoding Support ..B-4

XMLink 2.1 ...B-5

XMLink 2.0 ...B-5

JNDI Lookup..B-5

Installation Issues ...B-6
Using XMLink v

Setting Properties for Connections and Connection Factories B-6

Deploying in a Non-managed Environment.. B-6

Index
vi Using XMLink

PREFACE
About This
Document

This document explains XMLink and describes how to use XMLink to call services in
an Oracle Tuxedo application.

This document covers the following topics:

! Chapter 1, “Overview,” gives an overview of XMLink.

! Chapter 2, “Installing XMLink,” describes how to install XMLink on Windows
and UNIX.

! Chapter 3, “Configuring XMLink,” describes how to configure XMLink.

! Chapter 4, “Using Java to Call Services,” describes how to write client code to
call services in an Oracle Tuxedo application.

! Chapter 5, “Using XML to Call Services,” describes how to use XML to
exchange data.

! In addition, there are appendices containing troubleshooting tips and an
explanation of new features.
Using XMLink vii

What You Need to Know
What You Need to Know

This document is intended for application developers interested in building Java
applications that access services in an Oracle Tuxedo application. It assumes a
familiarity with Oracle Tuxedo applications and Java programming.

Even though XMLink works with any J2C 1.5-compliant application server, this
document primarily describes how to use XMLink with IBM WebSphere application
server. For any information on other application servers, check the Release Notes area
of the XMLink documentation site at http://docs.prolifics.com/tconn/index.html.

! For more information in general about Java, refer to the Oracle Java site at
http://www.oracle.com/technetwork/java/index.html.

! For more information about J2EE Architecture, refer to
http://docs.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html.

! For more information about Oracle Tuxedo applications, refer to
http://www.oracle.com/technetwork/middleware/tuxedo/overview/index.html.

Documentation Website

The XMLink documentation website includes the Using XMLink manual in HTML
and PDF formats and the Java API documentation in Javadoc format. The website also
enables you to search the HTML files for both the manual and the Java API.

This documentation is also distributed with the product either in the docs directory or
on the product CD.

XMLink product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/tconn/index.html.
viii About This Document

http://docs.prolifics.com/tconn/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/middleware/tuxedo/overview/index.html
http://docs.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://docs.prolifics.com/tconn/index.html

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the documentation website. You can
open the PDF in Adobe Acrobat Reader and print the entire document (or a portion of
it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

boldface text Indicates terms defined in the glossary.
Using XMLink ix

https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

chmod u+w *

/usr/prolifics

tconn.jar

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Prolifics constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

java com.prolifics.tconn.TConnTool [-list]

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
x About This Document

Contact Us!
Contact Us!

Your feedback on the documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for XMLink 3.0.

If you have any questions about this version of XMLink, or if you have problems
installing and running XMLink, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using XMLink xi

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=Abour%20XMLink%203.0%20documentation

Contact Us!
xii About This Document

CHAPTER
1 Overview

XMLink provides Java programmers, specifically those developing EJBs (Enterprise
Java Beans), access to services developed as part of Oracle Tuxedo applications.
Typically, XMLink integrates existing services in an Oracle Tuxedo application with
a new application using Java and EJBs.

Java Compliance

XMLink adheres to the J2EE (Java 2 Platform, Enterprise Edition) Connector
Architecture (J2C) Specification, version 1.5. J2EE is designed to be used with
multitiered, enterprise applications which separate the business logic and presentation
aspects of applications from the system services provided by the J2EE platform. The
addition of J2EE Connector to the J2EE platform allows integration of existing
Enterprise Information Systems (EISs) to Java-based applications.

In the language of the J2C specification, XMLink is an outbound resource adapter and
supports two deployment scenarios needed for J2EE compliance. J2EE resource
adapters can either be run under the auspices of an application server (such as
WebSphere) in which case they rely on services provided by the application server's
framework, or they can be run in a non-managed environment, in which case they are
local to a Java client and do not need an application server. This non-managed
environment is conceptually similar to a two-tier application.
Using XMLink 1-1

What Oracle Tuxedo Features Are Supported
XMLink also implements an XML interface and the CCI (Common Client Interface)
layer. The XML interface allows for data exchange in an XML format. The CCI API
simplifies application access and development since developers can use the same set
of API calls to connect to any underlying EIS.

The latest J2C specification, API documentation, and class files can be found at
http://www.oracle.com/technetwork/java/javaee/index-138715.html.

Figure 1-1 XMLink in the J2EE Connector Architecture

What Oracle Tuxedo Features Are
Supported

The Oracle Tuxedo features to which XMLink provides access are:

! Service calls

! Asynchronous service calls that do not expect a reply (such as tpacall calls
with the flag TPNOREPLY)

XMLink also supports transaction demarcations using BEGIN, COMMIT, and ROLLBACK
for Tuxedo 7.1 and later.
1-2 Overview

http://www.oracle.com/technetwork/java/javaee/index-138715.html

What Is In This Manual
What Is In This Manual

The chapters in this manual describe the tasks needed to install and deploy XMLink.
Using XMLink 1-3

What Is In This Manual
1-4 Overview

CHAPTER
2 Installing XMLink

Contents of the Installation Package

! Java files compiled in Java archives

! DTDs used for exchanging data in XML

! Software libraries used to access your Oracle Tuxedo applications

! Online documentation in HTML and PDF formats

! Resource adapter archives

Hardware and Software Requirements

XMLink requires a maximum of 2.1 MB of disk space, of which 1.5 MB is for online
documentation.

In addition to XMLink, you need:

! J2EE-compliant application server, version 1.4 (The application server must
support the Connection Architecture 1.5 Specification.)
Using XMLink 2-1

Hardware and Software Requirements
! J2SE, version 1.4 (Latest versions of IBM WebSphere include this package.)

! JRE (Java Runtime Environment) installed on clients (Latest versions of IBM
WebSphere include this package.)

! Oracle Tuxedo Server and Client installed, version 6.5 or higher

! Connector architecture reference packages needed by your application server

! For the XML interface, which uses the XML Connector class, an XML parser is
required, such as Xerces.

Figure 2-1 General Installation Setup
2-2 Installing XMLink

Installing XMLink on UNIX
Installing XMLink on UNIX

Implementing File Protection

Once they are installed, the files distributed with XMLink should not be modified
except under special circumstances. To prevent inadvertent changes to the files, we
recommend that write-access to them be limited to a system administrator or a
specially created prolifics login, and that general users be allowed only read-access.

Two suggested ways of implementing the above recommendations are:

! (UNIX only) Login as root to install the files. After installation is complete,
set the permissions so that only root can modify the files but all others can
read and/or execute them. See chmod in your system manual, or type man
chmod for information on setting permissions.

! Create a dummy login ID (for example, prolifics), then log in as that user
and perform the installation. This allows whomever has access to the
prolifics login account to control ownership, permissions, and modifications.
This approach accommodates systems for which access to the root account is
tightly controlled.

Determining File Location

After deciding who is going to own the XMLink files (root or a dummy login ID),
determine where they will be installed. Do not change this directory once it is set up
because users are likely to embed the directory name in makefiles, shell scripts, and so
forth. The default installation directory on UNIX is /usr/prolifics. On Windows
the default directory is C:\Program Files\Prolifics\XMLink, where C is the letter
of the drive where you are installing XMLink.
Using XMLink 2-3

Installing XMLink on Windows
How to Install from CD-ROM

Installing XMLink on UNIX requires you to copy the distribution from the delivered
media.

1. Log in as root or with the login you are using for the installation.

2. At the command line, type the following.

mkdir /usr/prolifics

3. Go to the /usr/prolifics directory by typing the following.

cd /usr/prolifics

4. Mount the CD-ROM device as /cdrom.

5. In /usr/prolifics, to uncompress and extract the contents of the Panther
distribution, type the following.

zcat < /cdrom/CompressedTarFilename | tar -xvf -

For XMLink 3.0, the tar file name is tconn30.tar.Z.

When XMLink software is loaded, your regular prompt is displayed.

Installing XMLink on Windows

XMLink is supplied in compressed form on CD-ROM along with a Windows-based
setup program.

How to Run the Setup Program

1. Insert the CD-ROM in the appropriate drive.
2-4 Installing XMLink

Installing XMLink on Windows
2. If the setup program does not start automatically, choose Start→Run. In the Run
dialog box, type d:\setup (where d is the letter of the drive from which you are
installing).

3. Choose to install XMLink. The setup program guides you through the steps to
install the software.
Using XMLink 2-5

Installing XMLink on Windows
2-6 Installing XMLink

CHAPTER
3 Configuring XMLink

This chapter primarily focuses on how to configure XMLink to run in IBM
WebSphere, but since XMLink can be used with any J2C 1.5-compliant application
server, the environment section can be referenced by all XMLink configurations. If
there is additional information on configuring XMLink on other application servers,
you can find it in the Release Notes section at http://docs.prolifics.com/docs/tconn/.

Configuration Notes

Before configuring your installation of XMLink, check to see if any of the following
information applies to your system.

Libraries for Oracle Tuxedo interaction
There are native and workstation versions in both UNIX and Windows:

" For Oracle Tuxedo 6.5, TConn6.rar contains the libraries
libtconn6w.so (tconn6w.dll for Windows) and libtconn6n.so
(tconn6n.dll for Windows) for the workstation client and native
client, respectively.

For more information on using Oracle Tuxedo 6.5 with XMLink, see
page A-5, “Using XMLink with Tuxedo 6.5.”

" For Oracle Tuxedo 7.1 and later, TConn.rar contains the libraries
libtconnw.so (tconnw.dll for Windows) and libtconnn.so
(tconnn.dll for Windows) for the workstation client and native
client, respectively.
Using XMLink 3-1

http://docs.prolifics.com/docs/tconn/

Managed and Non-Managed Environments
Note: If you are using a managed environment, only install one of these
rar files. Since they contain duplicate classes, the CLASSPATH
setting needs to find the correct version.

Tuxedo Variables
If a Tuxedo variable is set in the environment, it affects all connections and
connection factories if not overridden by a corresponding connection factory
property.

Managed and Non-Managed
Environments

With J2C-compliant resource adapters like XMLink, you have the option of running
them in a managed environment or non-managed environment.

A managed environment would be in a J2EE-compliant application server, such as
WebSphere, which supports component-based applications and associated
technologies (like EJB, servlets, and JSPs). The application server also provides other
services that can be used in conjunction with the resource adapter, such as security,
transaction support, and connection pooling. Figure 3-1 (which is also found in
Chapter 1) illustrates the use of XMLink in a managed environment.
3-2 Configuring XMLink

Managed and Non-Managed Environments
Figure 3-1 Running XMLink in a Managed Environment

A non-managed environment is like a two-tier application where the application client
uses the resource adapter to directly access the EIS, as illustrated in Figure 3-2.

Figure 3-2 Running XMLink in a Non-managed Environment

Managed Environment Settings

For WebSphere application server, there are options for installing your resource
adapter archives so that your resource adapters are readily available to your
applications. However, problems can occur if local environment settings override the
WebSphere application server defaults.
Using XMLink 3-3

Managed and Non-Managed Environments
In a managed environment, it is recommended that you use the application servers’s
settings for any installed resource adapters, such as XMLink. This means that the
XMLink class files and libraries will not need to be added to CLASSPATH or PATH (for
UNIX and AIX, LD_LIBRARY_PATH or LIBPATH)

Installing Resource Adapter Archives

To install resource adapter archives in a WebSphere managed environment, refer to
your WebSphere documentation.

Deploying in a Non-Managed Environment

XMLink contains a utility, TConnTool, to facilitate deployment in non-managed
environments. It supports a set of methods that can be used to build a customized
deployment tool. It also includes a main() that supports a rudimentary command line
interface.

The following describes the command line usage of TConnTool:

java com.prolifics.tconn.TConnTool [-deploy] [-remove] [-info]
JndiName

java com.prolifics.tconn.TConnTool [-list]

-deploy

Deploys a Connection Factory with the JNDI name, JndiName, using the
properties provided in the file, JndiName.properties.

-remove

Removes a Connection Factory previously deployed by this tool, whose JNDI
name is JndiName.

-info

Displays the property settings for a Connection Factory previously deployed
by this tool, whose JNDI name is JndiName.

-list

Lists the JNDI names of Connection Factories previously deployed by this
tool.
3-4 Configuring XMLink

Configuring the Environment
For the -deploy option, it is expected that the properties file is located in the current
directory. This file should contain entries of the form name=value, such as
WSNADDR=//mymachine:12345. If the first character on a line is '#', it is a comment.
It is expected that components of any path given in JndiName for -deploy are
pre-existent. If a path is not given, the root of the context tree is used. For WebSphere
4.0, the eis subcontext is recommended.

Note that when the -list option is used, TConnTool may take several seconds to
complete the search. TConnTool performs an exhaustive search of the JNDI name
space on the local machine.

The following are public methods provided by TConnTool, which offer the same
functionality as the command line interface:

public void deploy(Context ctx, HashMap p, String JNDIname)

public void remove(Context ctx, String JNDIname) throws
NamingException

public HashMap info(Context ctx, String JNDIname) throws
NamingException, Exception

public String[] list(Context ctx, String ctxname)

For deploy(), the second parameter should contain valid connection factory
properties and their settings. Similarly, info() returns a HashMap which contains
connection factory properties and their settings.

For list(), the second parameter is the path for the Context at which to begin the
search for deployed connection factories. To begin at the root, pass in an empty string.
list() returns a String array containing the names of any deployed connection
factories that are found.

Configuring the Environment

The following environment variables need to be set in order to use XMLink. In
WebSphere, you have the option of specifying some of the environment variables
either as a property setting or in the environment.
Using XMLink 3-5

Configuring the Environment
Note: The configuration settings may differ if you are using Java on the command
line with XMLink vs. deploying XMLink in an application server.

Table 3-1 Environment Variables for XMLink with IBM WebSphere 6

Variable Description How to Configure

CLASSPATH Specify the location of the following Java files: environment

! tconn.jar XMLink classes needs to be set for
applications using
XMLink

! j2ee.jar From the J2EE distribution. Needed for compiling
user code. Contains necessary classes for JNDI lookup
and J2C reference implementation.

! j2cimpl.jar For Connection Factory lookup.

! webcontainer.jar This jar is required by WebSphere and contains the
following:

! A plug-in tool that allows debugging functionality

! Apache classes

! Event listeners and servlet actions
(requests/responses/filters)

! Debugger and compiler for JSPs

! XML Configuration

! xerces.jar

or equivalent
For the XML interface in XMLink, you need a XML
parser, such as Xerces. You can set this as a -d option
when using command-line Java.

WebSphere installs xerces.jar in the
WAS_HOME/lib directory

JAVA_HOME Specify the location of your Java JDK or JRE
installation.

environment
3-6 Configuring XMLink

Configuring the Environment
Set the following Tuxedo variables:

LD_LIBRARY_PATH
or
LIBPATH

On UNIX, specify the location of the following shared
libraries for non-managed environments:

! libtconn.so (or its equivalent) from the XMLink
distribution. For the names and uses of libraries, refer to
page 3-1, “Libraries for Oracle Tuxedo interaction.”

environment

PATH On Windows, specify the location of the following DLLs for
non-managed environments:

! tconn.dll (or its equivalent) from the XMLink
distribution. For the names and uses of DLLs, refer to
page 3-1, “Libraries for Oracle Tuxedo interaction.”

environment

Table 3-1 Environment Variables for XMLink with IBM WebSphere 6

Variable Description How to Configure

Table 3-2 Tuxedo Variables

Variable Description How to Configure

TUXCONFIG Specify the full path name of the binary TUXCONFIG file
for native clients.

! environment

! property of a
connection factory

TUXDIR Specify the location of the Oracle Tuxedo installation.

WSNADDR If your Oracle Tuxedo client is a workstation client (not native),
specify the list of one or more network addresses of the
workstation listeners the client wants to contact, matching the
addresses specified in the application configuration file. The
setting contains the host machine and port number, for example:

//myhost:3445

! environment

! property of a
connection factory
Using XMLink 3-7

Setting XMLink Properties
Setting XMLink Properties

In WebSphere, you set properties in the Administrative Console. Some of these
properties correspond to settings in an Oracle Tuxedo configuration.

Setting JVM Properties

XMLink.tconn

For XMLink 3.0, this JVM property has been supplanted by the
ConnectionType property on the resource adapter. However, this property
can still be specified either on the JVM or on the command line; however,
there is no longer a default setting.

Specify the version of the XMLink Tuxedo libraries. There are native and
workstation versions for Tuxedo 6.5 and Tuxedo 7.1+ in both UNIX and
Windows. Set the property to one of the following values:

" tconn6n (Tuxedo 6.5 native)

" tconn6w (Tuxedo 6.5 workstation)

" tconnn (Tuxedo 7.1+ native)

" tconnw (Tuxedo 7.1+ workstation)

To specify the library on the command line, the syntax is:

java -DXMLink.tconn=tconnw

Setting Properties on a Resource Adapter

Among the properties in this section, FIELDTBLS, FIELDTBLS32, FLDTBLDIR,
FLDTBLDIR32 and ConnectionType may only be set here, since the values for these
properties must remain the same for all XMLink Connection Factories of the current
JVM process. The other Resource Adapter properties may act as defaults for multiple
connection factories, and may be overridden for individual connection factories.
3-8 Configuring XMLink

Setting XMLink Properties
ClientName

Authentication information. See Tuxedo docs for tpinit(). Overridden by
ClientName connection factory property.

ConnectionRetries

The number of additional times XMLink will try to establish a connection to
the Tuxedo server after a failed initial attempt. Also, the number of times
XMLink will try to reestablish a lost connection to the Tuxedo server during
an attempted service call. Overridden by ConnectionRetries connection
factory property. Default is 0.

ConnectionRetryInterval

The delay in milliseconds between attempts to establish or reestablish a
connection to the Tuxedo server. Overridden by
ConnectionRetryInterval connection factory property. Default is 0, or as
brief a delay as possible.

ConnectionType

Either native or workstation are allowed values. Selects which of two
DLLs or shared libraries to use when the resource adapter is started, where
one is provided for a Tuxedo native connection and another is provided for a
Tuxedo workstation connection. Overridden by the setting for the
XMLink.tconn System property for the JVM, which may be assigned to a
specific shared library or DLL by name.

Data

Authentication information. See Tuxedo docs for tpinit(). Overridden by
Data connection factory property.

FIELDTBLS

Overrides FIELDTBLS Tuxedo environment variable. Must be unchanged for
all XMLink resource adapters running in the same JVM.

FIELDTBLS32

Overrides FIELDTBLS32 Tuxedo environment variable. Must be unchanged
for all XMLink resource adapters running in the same JVM.

FLDTBLDIR

Overrides FLDTBLDIR Tuxedo environment variable. Must be unchanged for
all XMLink resource adapters running in the same JVM.

FLDTBLDIR32

Overrides FLDTBLDIR32 Tuxedo environment variable. Must be unchanged
for all XMLink resource adapters running in the same JVM.
Using XMLink 3-9

Setting XMLink Properties
GroupName

Authentication information. See Tuxedo docs for tpinit(). Overridden by
GroupName connection factory property.

InteractionRetries

The number of additional times XMLink will try a Tuxedo service call during
Interaction.execute(), following an attempt that fails due to a connection error
or Tuxedo server system error. Overridden by InteractionRetries
connection factory property. Default is 0.

InteractionRetryInterval

The delay in milliseconds between Tuxedo service call attempts during
Interaction.execute(). Overridden by InteractionRetryInterval
connection factory property. Default is 0, or as brief a delay as possible.

Password

Authentication information. See Tuxedo docs for tpinit(). Overridden by
Password connection factory property.

TUXCONFIG

Overrides TUXCONFIG Tuxedo environment variable. Overridden by
TUXCONFIG connection factory property.

ULOGPFX

Overrides ULOGPFX Tuxedo environment variable. Overridden by ULOGPFX
connection factory property, when logging takes place after a connection is
established.

UserName

Authentication information. See Tuxedo docs for tpinit(). Overridden
by UserName connection factory property.

WSENVFILE

Overrides WSENVFILE Tuxedo environment variable. Overridden by
WSENVFILE connection factory property.

WSNADDR

Overrides WSNADDR Tuxedo environment variable. Overridden by WSNADDR
connection factory property.

Setting Properties on a Connection Factory

The following list of properties can be configured as needed for each connection
factory that is created.
3-10 Configuring XMLink

Setting XMLink Properties
ClientName

Authentication information. See Tuxedo docs for tpinit(). Overrides
ClientName property of resource adapter.

ConnectionRetries

The number of additional times XMLink will try to establish a connection to
the Tuxedo server after a failed initial attempt. Also, the number of times
XMLink will try to reestablish a lost connection to the Tuxedo server during
an attempted service call. Overrides ConnectionRetries property of
resource adapter. Default is 0.

ConnectionRetryInterval

The delay in milliseconds between attempts to establish or reestablish a
connection to the Tuxedo server. Overrides ConnectionRetryInterval
property of resource adapter. Default is 0, or as brief a delay as possible.

Data

Authentication information. See Tuxedo docs for tpinit(). Overrides
Data property of resource adapter.

GroupName

Authentication information. See Tuxedo docs for tpinit(). Overrides
GroupName property of resource adapter.

InteractionRetries

The number of additional times XMLink will try a Tuxedo service call during
Interaction.execute(), following an attempt that fails due to a
connection error or Tuxedo server system error. Overrides
InteractionRetries property of resource adapter. Default is 0.

InteractionRetryInterval

The delay in milliseconds between Tuxedo service call attempts during
Interaction.execute(). Overrides InteractionRetryInterval
property of resource adapter. Default is 0, or as brief a delay as possible.

Password

Authentication information. See Tuxedo docs for tpinit(). Overrides
Password property of resource adapter.

TUXCONFIG

Overrides TUXCONFIG Tuxedo environment variable and TUXCONFIG
property of resource adapter.

ULOGPFX

Overrides ULOGPFX Tuxedo environment variable and ULOGPFX property of
resource adapter, when logging takes place after a connection is established.
Using XMLink 3-11

Sample Configuration
UserName

Authentication information. See Tuxedo docs for tpinit(). Overrides
UserName property of resource adapter.

WSENVFILE

Overrides WSENVFILE Tuxedo environment variable and overrides
WSENVFILE property of resource adapter.

WSNADDR

Overrides WSNADDR Tuxedo environment variable and overrides WSNADDR
property of resource adapter.

Sample Configuration

The following screens from the WebSphere Administrative Console illustrate a sample
configuration. For more information about using the WebSphere Administrative
Console, refer to the IBM WebSphere documentation.

First, the resource adapter was installed and its properties set.
3-12 Configuring XMLink

Sample Configuration
Note: When configuring an XMLink resource adapter in WebSphere 6, make sure
that the native path is set to the same location as the archive path. The Class
Path should contain the path to tconn.jar. For TConn.rar, this would
typically be ${CONNECTOR_INSTALL_ROOT}/TConn.rar/tconn.jar.

Next, shared library settings were configured that can later be associated with an
application.
Using XMLink 3-13

Sample Configuration
Then, the application and its libraries and other settings were configured.
3-14 Configuring XMLink

CHAPTER
4 Using Java to Call
Services

This chapter describes how to write Java clients to call services in an Oracle Tuxedo
application. Alternatively, you can use XML to exchange data as described in
Chapter 5, “Using XML to Call Services.”

For Java documentation of the XMLink interfaces, refer to the Javadoc portion of the
online documentation.

The major topics in this chapter are:

! Getting an Oracle Tuxedo Connection

! Managing Oracle Tuxedo Transactions

! Calling Oracle Tuxedo Services

! Working with Application Data
Using XMLink 4-1

The following diagram illustrates the process described in this chapter for using the
CCI interface to execute a Tuxedo service which uses an FML buffer. There are
additional record types corresponding to the Oracle Tuxedo buffer types. For more
information on record types, refer to page 4-11, “Working with Record Objects.”

Figure 4-1 Overview of the steps to create an FML record in XMLink
4-2 Using Java to Call Services

Getting an Oracle Tuxedo Connection
Getting an Oracle Tuxedo Connection

To get a connection to your Oracle Tuxedo application, you need to create an instance
of ConnectionFactory. This is the starting point for all interactions with XMLink.
You then call the method getConnection on your ConnectionFactory instance,
which returns an object of type Connection.

Connection factories can have any JNDI binding name you choose. The JDNI binding
name is specified when you created the connection factory and can be the same as the
connection factory name.

Example: Connecting with a Java Client

In XMLink 2.0, the following example connects to a Java client and performs JNDI
lookup:

// get an initial JNDI naming context
javax.naming.Context initctx = new javax.naming.InitialContext();

// do JNDI lookup to get connection factory
// lookup doesn't return a ConnectionFactory object,
// so a cast is needed
javax.resource.ConnectionFactory cxf =

(javax.resource.ConnectionFactory)
initctx.lookup("ConnectionFactoryName");

// where "ConnectionFactoryName" is the JNDI binding path of a
// predeployed connection factory

// get a connection
Connection cx = cxf.getConnection();

Understanding the ConnectionFactory Interface

The following code shows the interface ConnectionFactory. XMLink’s
implementation class for ConnectionFactory is ConnectionFactoryImpl.
Using XMLink 4-3

Getting an Oracle Tuxedo Connection
public interface ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable

{
public Connection getConnection ()

throws ResourceException;
public Connection getConnection(ConnectionSpec properties)

throws ResourceException;

public RecordFactory getRecordFactory()
throws ResourceException;

public ResourceAdaptorMetadata getMetaData()
throws ResourceException;

}

Note that objects of class ConnectionFactory support the basic Java interfaces
Serializable and Referenceable. Refer to the Java SDK documentation for
descriptions of those interfaces.

Supplying Connection Parameters

Calling getConnection on an object of type ConnectionFactory returns an object
of class Connection, which represents a connection to the Oracle Tuxedo application.

Calling getConnection with the ConnectionSpec parameter allows a client to
provide log-in information needed to log in to Oracle Tuxedo. In XMLink, the
implementation class for ConnectionSpec is TuxConnectionSpec, which provides
set and get methods for the following properties:

! UserName

! ClientName

! Password

! GroupName

! Data

The above properties correspond to members of Oracle Tuxedo's TPINIT data
structure. Refer to Oracle Tuxedo documentation for tpinit(3c) for more
information.

For container-managed sign-on, use getConnection without any parameters. The
authentication information in this case is supplied by your application server.
4-4 Using Java to Call Services

Getting an Oracle Tuxedo Connection
The following code shows the interface Connection. XMLink’s implementation class
for Connection is ConnectionImpl.

public interface Connection
{

public Interaction createInteraction()
throws ResourceException;

public LocalTransaction getLocalTransaction()
throws ResourceException;

public ConnectionMetaData getMetaData()
throws ResourceException;

public ResultSetInfo getResultSetInfo()
throws ResourceException;

public void close()
throws ResourceException;

}

Calling createInteraction on a Connection instance creates an Interaction
instance associated with the Connection instance. A single Connection instance can
be associated with multiple Interaction instances. An Interaction instance is
what is used to access Oracle Tuxedo services. For a description of the methods
supported by Interaction instances, refer to page 4-7, “Calling Oracle Tuxedo
Services.”

Calling getMetaData on a Connection instance returns an object containing
information about the Oracle Tuxedo connection represented by that Connection
instance. Such an object supports the following methods:

public String getEISProductName()
public String getEISProductVersion()
public String getUserName()

Getting Information about XMLink

The method getMetaData provides information about the XMLink product. Calling
getMetaData returns an object of class ResourceAdapterMetadata. Such objects
support the following methods:

public String getAdapterName()
public String getAdapterShortDescription()
public String getAdapterVendorName()
public String getAdapterVersion()
public String getSpecVersion()
public String getInteractionSpecsSupported()
public boolean supportsExecuteWithInputAndOutputRecord()
public boolean supportsExecuteWithInputRecordOnly()
Using XMLink 4-5

Managing Oracle Tuxedo Transactions
public boolean supportsLocalTransactionDemarcation()

The return values for these methods provide the name and version information for
XMLink.

Calling getRecordFactory

The getRecordFactory method of the ConnectionFactory interface returns the
RecordFactory interface. This object can be used to generate Record instances that,
in turn, can be used to hold input data for Oracle Tuxedo services. For information
about working with Record instances, refer to page 4-9, “Working with Application
Data.”

Specifying Transaction Access

Calling the getLocalTransaction method of the ConnectionFactory interface
returns an object that allows access to Oracle Tuxedo transaction management
functions. Each Connection instance can be associated with only a single
LocalTransaction instance. For a description of the methods supported by the
LocalTransaction interface, refer to page 4-6, “Managing Oracle Tuxedo
Transactions.”

Managing Oracle Tuxedo Transactions

Access to Oracle Tuxedo transaction demarcation functions is achieved through
objects of type LocalTransaction. You get such an object by calling the
getLocalTransaction method on a Connection instance. A Connection instance
can only be associated with one LocalTransaction instance at a time.

A LocalTransaction instance supports the following methods:

public void begin()
public void commit()
public void rollback()
4-6 Using Java to Call Services

Calling Oracle Tuxedo Services
The method begin corresponds to the Oracle Tuxedo function tpbegin. The method
commit corresponds to the Oracle Tuxedo function tpcommit. The method rollback
corresponds to the Oracle Tuxedo function tpabort.

Warning: Transaction support is available in Oracle Tuxedo version 7.1 and higher.

Calling Oracle Tuxedo Services

Access to Oracle Tuxedo services is provided by objects of type Interaction. To
create Interaction instances, call the createInteraction method on a
Connection instance. Each Interaction instance retains an association with the
Connection instance it was created by.

Understanding the Interaction Interface

The following code defines the Interaction interface:

public interface Interaction
{

public void close() throws ResourceException;

public boolean execute(InteractionSpec ispec,
Record input,

 Record output) throws ResourceException;

public Record execute(InteractionSpec ispec,
Record input) throws ResourceException;

}

The getConnection method returns the Connection that the Interaction instance is
associated with.

The close method terminates the Interaction instance. Calling this method also
frees all Tuxedo record buffers used during the interaction. However, the Java record
still has a copy of the data, so it may in fact be used later for a different interaction.

There are two versions of the execute method:
Using XMLink 4-7

Calling Oracle Tuxedo Services
! One takes two Record instances as arguments: an input Record and an output
Record. It feeds the data in the input Record to Oracle Tuxedo and modifies
the output Record provided in the third argument to represent the return buffer
from the Oracle Tuxedo service.

! The other version of the execute method provides only an input Record as an
argument.

In either version of the execute method, the Oracle Tuxedo service being called is
specified by the first parameter, which takes an object of type InteractionSpec.

For a code example, see page 4-14, “Example: Calling Services using Java.”

Understanding the TuxInteractionSpec Interface

For XMLink, a class called TuxInteractionSpec implements InteractionSpec
and supports the property set needed by XMLink. So in order to call an Oracle Tuxedo
service, you must first create a TuxInteractionSpec object, and then set its
properties to determine which Oracle Tuxedo service it specifies.

TuxInteractionSpec objects support the following properties:

! FunctionName—Specifies the name of the Oracle Tuxedo service.

! InteractionVerb—Specifies whether the service is asynchronous or
synchronous using the following integer values:

" SYNC_SEND—Specify for asynchronous Oracle Tuxedo services (to be
called with tpacall and the TPNOREPLY flag set).

" SYNC_SEND_RECEIVE—Specify for synchronous Oracle Tuxedo services
(called with tpcall). This is the default setting.

(The InteractionSpec interface also defines a third possible value for
InteractionVerb: SYNC_RECEIVE. XMLink doesn't support
SYNC_RECEIVE. An execute method invoked with an InteractionSpec
parameter that has its InteractionVerb property set to SYNC_RECEIVE
throws an exception.)

! ExecutionTimeout—Not yet implemented.

The following methods work with these properties:
4-8 Using Java to Call Services

Working with Application Data
public void setFunctionName(string name)
public string getFunctionName()
public void setInteractionVerb(int mode)
public int getInteractionVerb()
public void setExecutionTimeout(int milliseconds)
public int getExecutionTimeout()

After creating a new InteractionSpec instance:

! Use its set methods to identify it as representing a particular Oracle Tuxedo
service.

! Provide the modified InteractionSpec instance as the first argument to a call
to an Interaction instance's execute method.

For a code example, see page 4-14, “Example: Calling Services using Java.”

Working with Application Data

Oracle Tuxedo applications send and receive data using typed buffers, which allows
the Oracle Tuxedo platform to transfer data between different operating systems.
XMLink automatically converts data provided to it in the form of a Java Record
instance to the appropriate Oracle Tuxedo buffer type for the service being called, and
then converts the return data into a Java Record instance.

XMLink defines four record classes corresponding to the Oracle Tuxedo buffer types
and one class for Prolifics’s Panther for JetNet buffer type.

Table 4-1

XMLink record types

Oracle Tuxedo buffer types

FML FMLRecord

FML32 FML32Record

STRING StringRecord
Using XMLink 4-9

Working with Application Data
To call a Tuxedo service, you must create a Record object of the type corresponding
to the buffer type the service takes as its argument. You get Record instances by
calling the methods of a RecordFactory interface.

Understanding the RecordFactory Interface

Calling getRecordFactory on a ConnectionFactoryImpl instance returns an
instance of RecordFactoryImpl. RecordFactoryImpl objects implement the
RecordFactory interface.

The following code defines the RecordFactory interface:

 public interface RecordFactory

 public MappedRecord createMappedRecord(String recordName)
 throws ResourceException;

 public IndexedRecord createIndexedRecord(String recordName)
 throws ResourceException;

XMLink's RecordFactoryImpl class also supports another method:

 public Record createRecord(String recordName)
 throws ResourceException;

To create an FMLRecord or FML32Record instance, use the createMappedRecord
method of a RecordFactory instance. The createMappedRecord method takes a
string argument used to identify what kind of record should be created. Use the strings
"FML", "FML32" or "JAMFLEX" as the argument to the createMappedRecord method
to create an FMLRecord, FML32Record or JAMFLEXRecord instance, respectively.

CARRAY CArrayRecord

Panther for JetNet buffer type

JAMFLEX JAMFLEXRecord

Table 4-1

XMLink record types
4-10 Using Java to Call Services

Working with Application Data
To create a StringRecord or CArrayRecord instance, use the createRecord
method of a RecordFactory interface. As with the createMappedRecord method,
the method's string argument is used to determine which type of record to return. Use
the strings "STRING" and "CARRAY" as the argument to the createRecord method to
create a StringRecord or CArrayRecord instance, respectively.

The createMappedRecord method returns a MappedRecord and the createRecord
returns a Record. Since what you actually want are instances of FMLRecord,
FML32Record, StringRecord, CArrayRecord or JAMFLEXRecord, you will have to
cast the return values from createMappedRecord and createRecord to the
appropriate types.

For example:

// create an FML32Record instance, using a previously
// acquired RecordFactory instance called rcf
FML32Record fml32r = (FML32Record)

rcf.createMappedRecord("FML32");

// create a StringRecord instance
StringRecord strr = (StringRecord) rcf.createRecord("STRING");

XMLink client code will not typically need to use the createIndexedRecord
method. RecordFactoryImpl objects do implement this method to create the
ArrayRecord objects returned by the getField method of FMLRecord and
FML32Record objects. For more information, see page 4-12, “FMLRecord and
FML32Record Objects.”

Working with Record Objects

The following code defines the Record interface:

public interface Record extends Cloneable
{

public String getRecordName();
public void setRecordName(String Name);

public void setRecordShortDescription(String description);
pubic String getRecordShortDescription();

public boolean equals(Object other);
public int hashcode();
Using XMLink 4-11

Working with Application Data
Public Object clone() throws CloneNotSupportedException;
}

The Record objects supported by XMLink, objects of class FMLRecord,
FML32Record, CArrayRecord, StringRecord and JAMFLEXRecord all support the
methods listed above. In addition they also support methods specific to themselves,
and client code that accesses them will primarily do so by means of those specific
methods.

FMLRecord and FML32Record Objects

FMLRecord and FML32Record objects are instances of MappedRecord, and therefore
implement the methods of the Map interface in addition to those of Record.
Specifically, these classes extend the standard Java class HashMap.

However, underlying each instance of FMLRecord or FML32Record is a Tuxedo FML
buffer or FML32 buffer. FML buffers are made up of "fields". Client code should NOT
use the methods of the Map interface to modify the contents of an FMLRecord or an
FML32Record, because to do so will put the Record out of sync with the Oracle
Tuxedo FML buffer that it represents. To update the contents of an FMLRecord or an
FML32Record, use the following method, that is specific to these classes, and define
interaction at the level of FML fields:

public void addIn(String name, String value)

The addIn method is used to populate the fields in an FML buffer. The name parameter
is the name of the field to which a value is to be added. The value is added as a new
occurrence to the field. To add multiple occurrences to a field, call addIn repeatedly
with a single field name.

Using the following addIn method allows you to create embedded FML for Oracle
Tuxedo versions 7.1+ which contain support for this feature:

public void addIn(String name, FML32Record value)

Note that the field values are all input as strings. The underlying FML buffer will be
populated with whatever data types are appropriate to the FML file definition, based on
the field names. If any conversion is needed, it is performed by Tuxedo.

Sample: Getting FML Data

The following sample illustrates one method of getting data after calling execute().
4-12 Using Java to Call Services

Working with Application Data
Warning: The getField method is for internal use only. Use this example as a basis
for getting data from FML buffers.

//Call tuxedo service

rcout = (FMLRecord)iact.execute(tuxl,rc);

//Get the fields from the Record object.

Iterator it = rcout.entrySet().iterator();
 while (it.hasNext()) {
 Map.Entry me = (Map.Entry)it.next();
 String fieldName = (String)me.getKey();
 IndexedRecord fieldValue = (IndexedRecord)me.getValue();
 Iterator it2 = fieldValue.iterator();
 System.out.println(fieldName);
 while (it2.hasNext())
 {
 System.out.println(" " + it2.next());
 }
 }

Note: In this example, if rcout were an FML32Record, it might contain embedded
FML. In that case, it2.next() might return an FML32Record, rather than a
string and different processing would be required.

CArrayRecord and StringRecord Objects

In addition to the basic methods of the Record interface, as listed above,
CArrayRecord and StringRecord objects support the following methods:

public String getContents()
public void addIn (String name, String value)

The getContents method returns the contents of the Record.

The addIn method takes two String arguments, the value of the second argument will
be appended to the Record's contents. The first argument is ignored. A Record can
be filled either by one single call to addIn or by a series of such calls.

For CArrayRecord, the output record used for InteractionImpl.execute() must
contain initial data. For example:

CArrayRecord out = (CArrayRecord)rcf.createRecord(“CARRAY”);

out.addIn("", "|");
Using XMLink 4-13

Example: Calling Services using Java
Character Encoding Support

Java strings are in Unicode. By default, XMLink passes to Tuxedo only the low order
byte of each Unicode character. For characters in English and other European
languages, this is sufficient since only the low order byte is significant.

Since other languages may need additional support, each of XMLink’s Record classes
offers setEncoding() and getEncoding() methods. The default encoding is
ISO-8859-1, which is a single byte per character encoding. A multibyte encoding,
such as UTF8, can be used for foreign characters. The Tuxedo server must be able to
support and decode/encode according to the specified encoding setting.

Example: Calling Services using Java

Here is an sample outline of client code combining the connection code from earlier in
the chapter with an example of interacting with a Connection instance to call a
Tuxedo service:

// get an initial JNDI naming context
javax.naming.Context initctx = new javax.naming.InitialContext();

// do JNDI lookup to get connection factory
// lookup doesn't return a ConnectionFactory object,
// so a cast is needed
javax.resource.ConnectionFactory cxf =

(javax.resource.ConnectionFactory)
initctx.lookup("ConnectionFactoryName");

// where "ConnectionFactoryName" is the JNDI binding path of a
// predeployed connection factory

// get a connection
Connection cx = cxf.getConnection();

// cxf represents previously acquired ConnectionFactory instance
// first get a LocalTransaction instance

LocalTransaction ltx = cx.getLocalTransaction();

// mark the beginning of a Tuxedo transaction
ltx.begin();
4-14 Using Java to Call Services

Example: Calling Services using Java
// get an Interaction instance
Interaction iact = cx.createInteraction();

// create a new InteractionSpec object
TuxInteractionSpec tux1 = new TuxInteractionSpec;

// set the properties of the InteractionSpec instance
// note that InteractionVerb defaults to SYNC_SEND_RECEIVE,
// so the second line below isn't really necessary

tux1.setFunctionName("TUXServiceName");
tux1.setInteractionVerb(SYNC_SEND_RECEIVE);
tux1.setExecutionTimeout(1000)

// get a RecordFactory instance
RecordFactory rcf = cxf.getRecordFactory()

// create a Record Instance to hold input data
FMLRecord rc = (FMLRecord) rcf.createMappedRecord("FML");

// Populate Record instance with data
rc.addIn ("FirstField", "value1");
rc.addIn ("FirstField", "value2");
rc.addIn ("FirstField", "value3");
rc.addIn ("SecondField", "anothervalue");
// and so forth

// call the TUXEDO service
MappedRecord ret = iact.execute(tux1, rc);

// call other services in the transaction by creating
// new InteractionSpec instances and input records
// and calling execute as needed

// mark the end of the TUXEDO transaction
ltx.commit();

//close the InteractionInstance
iact.close();
Using XMLink 4-15

Example: Calling Services using Java
4-16 Using Java to Call Services

CHAPTER
5 Using XML to Call
Services

To facilitate support for data exchange using XML, XMLink supports an alternate
style of access to Oracle Tuxedo services. In this case, XML input is received by an
instance of XMLConnector.

If you are writing server-side Java and want to use the XML invocation style, you can
create an instance of XMLConnector and directly call its process method. XMLink
also includes an EJB wrapper, called TConnXML, that acts as a facade to
XMLConnector. For more information, see page 5-8, “Using an EJB to Input XML.”
You will typically use the TConnXML EJB to invoke Oracle Tuxedo services from an
EJB client.

If you are using XMLink in a distributed server-side environment, using XMLink’s
TConnXML EJB allows you to easily access your Tuxedo services even when XMLink
is installed on a remote application server.

Both the input String to TConnXML.process and the InputStream argument to
XMLConnector.process must be in XML format and must conform to the tconn.dtd
document type definition.

For Java documentation of the XMLink interfaces, refer to the Javadoc portion of the
online documentation.
Using XMLink 5-1

Inputting Data Using XML
Inputting Data Using XML

XMLConnector objects support a method process that takes the following
parameters:

! A ConnectionFactory object as its first parameter

! An InputStream as its second parameter

! An OutputStream as its third parameter

The contents of the InputStream parameter must be in XML format and must
conform to the tconn.dtd document type definition.

The following is the document type definition for input to the process method:

<!-- DTD for TUXEDO service requests -->

<!-- Basic elements -->
<!ELEMENT agenda (connection?, (servicecall | transaction)*)>
<!ELEMENT transaction (servicecall*)>
<!ELEMENT connection EMPTY>
<!ELEMENT servicecall

(FMLRecord | FML32Record | STRINGRecord | CARRAYRecord |
JAMFLEXRecord)>

<!ELEMENT FMLRecord (field*)>
<!ELEMENT FML32Record (field*)>
<!ELEMENT STRINGRecord (data)>
<!ELEMENT CARRAYRecord (data)>
<!ELEMENT JAMFLEXRecord (field*)>
<!ELEMENT data (#PCDATA)>
<!ELEMENT field (#PCDATA)>

<!-- Attributes for connection element -->
<!ATTLIST connection username CDATA #REQUIRED>
<!ATTLIST connection clientname CDATA #REQUIRED>
<!ATTLIST connection password CDATA #REQUIRED>
<!ATTLIST connection groupname CDATA #REQUIRED>
<!ATTLIST connection data CDATA #REQUIRED>

<!-- Attributes for servicecall element -->
<!ATTLIST servicecall name CDATA #REQUIRED>
5-2 Using XML to Call Services

Inputting Data Using XML
<!ATTLIST servicecall mode (SYNCH | ASYNCH) "SYNCH">
<!ATTLIST servicecall mode timeout CDATA "0">

<!-- Attributes for records -->
<!ATTLIST FMLRecord encoding CDATA #IMPLIED>
<!ATTLIST FML32Record encoding CDATA #IMPLIED>
<!ATTLIST STRINGRecord encoding CDATA #IMPLIED>
<!ATTLIST CARRAYRecord encoding CDATA #IMPLIED>
<!ATTLIST JAMFLEXRecord encoding CDATA #IMPLIED>

<!-- Attributes for field element -->
<!ATTLIST field name CDATA #REQUIRED>

Elements in the XML Input DTD

Agenda Element

Each XML document is delimited by an agenda element. The agenda is a list of the
service requests to be made to the Oracle Tuxedo application. The agenda can
optionally contain a single connection element. If there is a connection element, it
must be the first element in the agenda.

Connection Element

A connection is an empty element with the attributes username, clientname,
password, groupname and data. If a connection element is included in an agenda,
the service requests in the agenda are made using a connection created according to
the information provided as the connection's attributes. If no connection element
is provided, the service requests use a "default" connection type.

Transaction and Servicecall Elements

Other than the connection element, an agenda can contain any number of
transaction elements and servicecall elements. transaction elements
themselves can contain any number of sevicecall elements. So an agenda can
contain service calls grouped into transactions, plus service calls that are independent
of any transaction.

transaction elements have no attributes. They merely serve to group servicecall
elements.
Using XMLink 5-3

Inputting Data Using XML
servicecall elements have the following attributes:

! name—Name of the service call being requested

! mode—One of the two values, SYNCH or ASYNCH, to indicate whether the service
is synchronous or asynchronous

! timeout—Not yet implemented

Each servicecall element (whether inside a transaction element or not) must
contain a single element. This can be either an FMLRecord, an FML32Record, a
JAMFLEXRecord, a STRINGRecord, or a CARRAYRecord element. This element
contains the input data for the service.

FMLRecord, FML32Record, and JAMFLEXRecord elements can contain any number
of field elements. STRINGRecord and CARRAYRecord elements must each contain a
single data element.

Field Elements

field records have a name attribute. This is the name of the field. More than one
field element can have the same name. If a field element has the same name as
another field element, then its contents will represent another occurrence of the field
in the FML buffer.

Data Elements

A data element has no attributes, it simply delimits the data to be packaged into a
STRING or CARRAY buffer.

Example: Using XML Input

The following is an example of a series of service calls invoked through the XML
interface:

<agenda>
<connection username="managerxml"
 clientname="manager"
 password="password1"
 groupname=""
 data=""/>
5-4 Using XML to Call Services

Returning Data in XML
<transaction>
 <servicecall name="FINDEMP">
 <FMLRecord>
 <field name=”employee_ssn”>111221111</field>
 <field name="last_name">Jones</field>
 <field name="first_name">Fred</field>
 <field name="dept_id">10</field>
 </FMLRecord>
 </servicecall>
</transaction>
</agenda>

When a request for Oracle Tuxedo services is received, the XML InputStream will
be parsed, and the servicecall requests will be issued in the order in which they
occur in the file. When a transaction element is encountered, a tpbegin is issued.
When the transaction end tag is encountered, a tpcommit is issued. If any of the
servicecall elements between the transaction demarcations returns an error, a
tpabort will be issued.

Returning Data in XML

The process method fills the OutputStream with the return data from the service
requests specified in the InputStream. The OutputStream's contents will also be in
XML format, and will correspond to the tconnoutput.dtd document type definition.

The following is the document type definition for the output from a process call.

<!-- DTD for output from TUXEDO service requests -->

<!-- Basic elements -->
<!ELEMENT resultset ((returndata | error | xactionmsg)*)>
<!ELEMENT returndata

(FMLRecord | FML32Record | STRINGRecord | CARRAYRecord |
 JAMFLEXRecord, UserReturnCode?)>

<!ELEMENT FMLRecord (field*)>
<!ELEMENT FML32Record (field*)>
<!ELEMENT STRINGRecord (data)>
<!ELEMENT CARRAYRecord (data)>
<!ELEMENT JAMFLEXRecord (field*)>
<!ELEMENT UserReturnCode (#PCDATA)>
Using XMLink 5-5

Returning Data in XML
<!ELEMENT error (#PCDATA)>
<!ELEMENT xactionmsg (EMPTY)>
<!ELEMENT field (#PCDATA)>
<!ELEMENT data (#PCDATA)>

<!-- Attributes for returndata element -->
<!ATTLIST returndata servicename CDATA #REQUIRED>

<!-- Attributes for error element -->
<!ATTLIST error servicename CDATA #REQUIRED>

<!-- Attributes for xactionmsg element -->
<!ATTLIST xactionmsg action (BEGIN | ABORT | COMMIT) #REQUIRED>

<!-- Attributes for records -->
<!ATTLIST FMLRecord encoding CDATA #IMPLIED>
<!ATTLIST FML32Record encoding CDATA #IMPLIED>
<!ATTLIST STRINGRecord encoding CDATA #IMPLIED>
<!ATTLIST CARRAYRecord encoding CDATA #IMPLIED>
<!ATTLIST JAMFLEXRecord encoding CDATA #IMPLIED>

<!-- Attributes for field element -->
<!ATTLIST field name CDATA #REQUIRED>

Elements in the XML Output DTD

Resultset Elements

Each such document will contain a single resultset element that can contain any
number of returndata elements, error elements, and xactionmsg elements.

Returndata Elements

Each returndata element represents the data returned from an Oracle Tuxedo service
call. A returndata element has a single attribute, servicename, that contains the
name of the service that the returndata element represents. Each returndata
element will contain a single element, either an FMLRecord element, an FML32Record
element, a STRINGRecord element, or a CARRAYRecord element.
5-6 Using XML to Call Services

Returning Data in XML
FMLRecord and FML32Record Elements

FMLRecord and FML32Record elements can each contain any number of field
elements. Each field element has a name attribute, and contains the field's value as
its data. If more than one of the field elements in a given FMLRecord or
FML32Record element share the same name value, they represent different
occurrences in a single field.

STRINGRecord and CARRAYRecord Elements

STRINGRecord and CARRAYRecord elements each contain a single data element,
which has no attributes, and merely contains the value of the buffer as its contents.

Error Elements

Each error element corresponds to an Oracle Tuxedo service request that returned an
error. An error message has a name attribute the value of which is the name of the
Oracle Tuxedo service that returned the error. The error element contains the text of
the error returned as its contents.

Xactionmsg Elements

Each xactionmsg element is empty and has a single attribute, called action. The
action attribute can have the following values: BEGIN, ABORT, COMMIT. The
xactionmsg elements are placed in the returndata elements to mark the boundaries
of the transactions that had been specified in the service request.

Examples: XML Return Data

The following are examples of XML text representing the return values of service
calls:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE resultset SYSTEM "tconnoutput.dtd">
<resultset>
 <returndata servicename="GetEmpData">
 <FML32Record>
 <field name=Fred>Fred occurrence one</field>
 <field name=Fred>Fred occurrence two</field>
 <field name=Fred>Fred occurrence three</field>
Using XMLink 5-7

Using an EJB to Input XML
 <field name=Barney>This is Barney</field>
 </FML32Record>
 </returndata>
</resultset>

<?xml version="1.0" standalone="no"?>
<!DOCTYPE resultset SYSTEM "tconnoutput.dtd">
<resultset>
 <returndata servicename="TOUPPER">
 <STRINGRecord>
 <data>TO BE OR NOT TO BE</data>
 </STRINGRecord>
 </returndata>
</resultset>

Using an EJB to Input XML

TConnXML, the EJB wrapper to XMLConnector, supports the following interface:

public interface TConnXML extends javax.ejb.EJBObject
{

String process(String xml)

String process(String xml, String cfName)
}

Use the second variant of process to access a ConnectionFactory that has been
deployed.

The first variant of process takes a single argument of type String and is like using
XMLink in a non-managed environment. This is the input to the service requests.

The second variant of process, which is the recommended version, also requires a
second String parameter. The value of the second parameter is used when doing a
JNDI lookup to get a ConnectionFactory that has been deployed.
5-8 Using XML to Call Services

Using an EJB to Input XML
The first variant should only be used in cases where JNDI deployment of a
ConnectionFactory is not desired. In this case, the ConnectionFactory is instantiated
with default properties. TUXCONFIG, WSNADDR (or WSENVFILE must be set in the
environment to specify the correct Tuxedo domain. Authentication in this case would
be specified in XMLink.

The input String to process must be in XML format and must conform to the
tconn.dtd document type definition. To see the DTD, refer to page 5-2, “Inputting
Data Using XML.”
Using XMLink 5-9

Using an EJB to Input XML
5-10 Using XML to Call Services

APPENDIX
A Troubleshooting

Configuration Issues

Older Versions of JAR Files
If you are upgrading from an older version of WebSphere, check that the
older versions of connector.jar, jca.jar, or
connector-1_0-pfd2-classes.jar are not in the CLASSPATH.

Tuxedo 7.1 for Windows
For Tuxedo 7.1 for Windows, XMLink needs the Tuxedo 7.1 Rolling Patch
from Oracle to work within WebSphere. The Rolling Patch must include the
fix for "CR034485 stack overflow when loading a DLL on NT (S-05377)."

Specifying the Native Path and Archive Path
When configuring an XMLink resource adapter in WebSphere 6, make sure
that the native path is set to the same location as the archive path. The Class
Path should contain the path to tconn.jar. For TConn.rar, this would
typically be ${CONNECTOR_INSTALL_ROOT}/TConn.rar/tconn.jar.

Starting WebSphere as a Windows Service
Windows users who install WebSphere so that it is started as a Windows
service (the default for WAS 6) should be aware this affects the use of
operating system environment variables that can be used with the Oracle
Tuxedo client within the WebSphere Application Server. If the operating
system environment is changed in the control panel application, it does not
effect the environment used by the process that starts Windows services. That
process continues to pass the old environment to services it starts, until
Windows is rebooted.
Using XMLink A-1

Tuxedo Error Messages
Determining Your XMLink Resource Adapter Version
As before, XMLink 3.0 provides two resource adapters TConn.rar and
TConn6.rar. It is intended that TConn.rar should support all version of
Oracle Tuxedo later than 6. However, on some platforms a version
incompatibility may exist. In such cases additional resource adapter archives
may be provided with XMLink for specific versions of Oracle Tuxedo. In
those cases, it may be necessary to use the System property XMLink.tconn,
rather than the new ConnectionType connection factory property setting.

XMLink Resource Adapter Files in a Managed Environment
As of WebSphere 4.0, using a resource adapter in a managed environment
installs its files in a central location. For XMLink, this is:

$WAS_HOME\InstalledConnectors\TConn.rar\...

System settings for CLASSPATH, PATH or LD_LIBRARY_PATH (LIBPATH)
should not reference alternate versions of these files.

A problem can occur if you previously ran XMLink in a non-managed
environment which would specify these variables.

For more information on managed environments, refer to page 3-2,
“Managed and Non-Managed Environments.”

Tuxedo Error Messages

Note: XMLink throws a Tuxedo exception and sets the Tuxedo error code to
TPEBLOCK when a transaction is attempted with Tuxedo 6 versions.
Transaction support is only available on Tuxedo 6.x when a Tuxedo 7.1
workstation client is used in conjunction with a Tuxedo 6.4+ server. In this
case, the patch for the Tuxedo 7.1 client is required.
A-2 Troubleshooting

Tuxedo Error Messages
Using the TuxedoException Class

CCI interface methods are often declared to throw a ResourceException. The
Connector Architecture specification defines several extensions of
ResourceException, which XMLink may use where appropriate. XMLink also defines
the TuxedoException class, which extends ResourceException, for use mainly with
Tuxedo generated errors.

The TuxedoException class defines five public methods that can be used to access
information about the error. They are:

public int getError()
public int getErrorDetail()
public String getStrError()
public String getStrErrorDetail()
public String toString()

! getError() returns the Tuxedo error code associated with tperrno.

! getErrorDetail() returns the code returned by tperrordetail().

! getStrError() returns the string returned by tpstrerror().

! getStrErrorDetail() returns the string returned by tpstrerrordetail().

! toString() returns a String containing an XMLink generated error message,
plus all of the information provided by the other methods. Its format is:

message: tpstrerror (tpstrerrordetail) : tperrno (tperrordetail)

The TuxedoException class defines several public static final variables whose
names correspond to the names of Tuxedo error codes associated with tperrno and
tperrordetail(). These may be used to test for specific errors. For example:

try {
outputRecord = interaction.execute(myTuxInteractionSpec,

inputRecord);
} catch (TuxedoException te) {

if (te.getError() == TuxedoException.TPESVCFAIL)
{

// handle the service failure
}
// handle additional error codes that may be returned

}

Using XMLink A-3

Tuxedo Error Messages
The application may write information to the Tuxedo client log file using the static
method Tuxedo.userlog(), which takes a single String parameter. XMLink
provides several native methods which correspond roughly to Tuxedo ATMI methods.
These methods should be used with caution. They are intended primarily for internal
use by XMLink. Tuxedo.tperrno(), for example, may not return the same error
code contained in the TuxedoException. That is because XMLink saves the error
code right after the error occurs. This code may be changed by other ATMI calls made
by XMLink before a CCI method returns to the application. Other methods of the
Tuxedo class may have names which match Tuxedo ATMI methods, but parameters
which do not.

In the managed environment, CCI methods may throw a ResourceException, which
contains a chain of linked exceptions. Often the root cause is at the end of the chain,
and may be a TuxedoException. The getLinkedException() method of
ResourceException may be used in a loop until it returns null. The
ReourceException at the end of the chain may then be tested to see if it is an instance
of TuxedoException. If it is, it may be handled as previously described.

In addition to Tuxedo generated errors, XMLink occasionally generates a
TuxedoException for other errors related to use of its native interface to access
Tuxedo ATMI functions. In such cases, only the message portion of the exception, as
returned by toString(), will be relevant. The getStrError() method of the
TuxedoException may return the String TPENONE, which does not represent a real
Tuxedo error code, and the getStrErrorDetail() method may return the String
"none", which does not come from Tuxedo. These strings are used when the
TuxedoException is not caused by a Tuxedo generated error.

Using the TuxedoReturnCodeWarning Class

XMLink provides the TuxedoReturnCodeWarning class to hold the user return code
returned by a Tuxedo service. TuxedoReturnCodeWarning extends the
ResourceWarning class provided by the connector architecture, which further
extends ResourceException. As such, several TuxedoReturnCodeWarning objects
may be chained, just like ResourceException objects, but they are not thrown as
exceptions. The application code uses standard CCI methods to access any
TuxedoReturnCodeWarning objects associated with an Interaction.

The user return code is the second argument to tpreturn(). Typically, it is used to
provide additional information to the Tuxedo client about a service that failed. In this
case, a Tuxedo client error code of TPESVCFAIL is associated with a Tuxedo service
A-4 Troubleshooting

Using XMLink with Tuxedo 6.5
that returns TPFAIL as its return value. The return value is specified by the service in
the first argument to tpreturn(). Even though this is a typical use, an application
may use the user return code for some other purpose, since the client can access it even
if the Tuxedo service returns TPSUCCESS as its return value.

Whenever a non-zero user return code is returned by a Tuxedo service, XMLink
generates a TuxedoReturnCodeWarning, and adds it to the head of a linked list of
them associated with the Interaction. (Note that if a user return code of zero has
some special meaning for the application, application client code may call
Tuxedo.tpurcode() directly.) The getWarnings() method of the Interaction
class may be used to retrieve the ResourceWarning at the head of the linked list,
typically a TuxedoReturnCodeWarning. Often there will be just one
ResourceWarning if the execute() method of the Interaction was called just once,
or if application code clears the list before successive calls to execute(). The
ResourceWarning list can be cleared by calling the clearWarnings() method of the
Interaction. The list is also cleared when the close() method of the Interaction is
called. When the list is cleared, the getWarning() method returns null.

TuxedoReturnCodeWarning implements getReturnCode(), which returns a long,
and getInteractionSpec(), which returns the InteractionSpec instance
associated with the service call that generated the return code. toString() can be
used to generate a String of the form "<function-name> returned <code>." Note
that a TuxedoReturnCodeWarning will be generated for a non-zero user return code,
regardless of whether TPSUCCESS or TPFAIL is returned by the service. Thus
getWarnings() can be used directly after execute() is called, as well as in an
exception handler block.

Using XMLink with Tuxedo 6.5

When using XMLink with Tuxedo 6.5, you need to be aware of the following issues:

! XMLink does not support transactions when used with Tuxedo 6.5. XMLink
throws a TPEBLOCK exception if an attempt is made to begin a transaction using
XMLink with Tuxedo 6.5.
Using XMLink A-5

Using XMLink with Tuxedo 6.5
Tuxedo 6.5 allows only one client/server association (connection) per client
process. If one client begins a transaction on the connection, and another client
makes a service call, that service call would become part of the transaction
begun by the first client. Since this cannot be permitted, an exception is thrown.

! XMLink used as a Tuxedo 7.1 /WS client can be used with a Tuxedo 6.5
server. This can work around the lack of transaction support when used with
Tuxedo 6.5. The Tuxedo 7.1 Rolling Patch is required for this to work.

! XMLink achieves support for its multithreaded client for Tuxedo 6.5 by
serializing calls to Tuxedo API functions. This is necessary since Tuxedo 6.5
libraries are not thread-safe. tpacall(), rather than tpcall(), is used to
reduce most of the overhead introduced by the serialization.

! XMLink does not support Tuxedo 6.5 CTS, a special "Client Threads
Supplement" version of Tuxedo in which partial support for multithreaded
native clients is provided.
A-6 Troubleshooting

APPENDIX
B New Features in
XMLink

This appendix discusses the changes in XMLink.

XMLink 3.1

! Ability to set FML properties independently for each Connection Factory

XMLink 3.0

! Changes in Connection Factory properties

! Setting XMLink.tconn

! Improved XML support

! Support for X_OCTET buffers
Using XMLink B-1

XMLink 3.0
Changes to Connection Factory Properties

J2C 1.5 supports the notion of resource adapter properties, in addition to connection
factory properties. For XMLink 3.0, several of XMLink 2.60's connection factory
properties (actually properties of ManagedConnectionFactoryImpl) were replaced
with resource adapter properties. These are properties of the new
ResourceAdapterImpl class.

For a current list of Connection Factory properties, refer to page 3-10, “Setting
Properties on a Connection Factory.”

No Default Setting for XMLink.tconn

The default setting for XMLink.tconn has been removed in XMLink 3.0, in favor of
specifying the ConnectionType connection factory property. However, support is
still available for setting this property either in the JVM or on the command line.

If XMLink.tconn is used, the native library is loaded when Tuxedo.class is loaded.
Otherwise, using ConnectionType, the resource adapter is loaded only when it is
started by the J2EE Application Server. For WebSphere 6, the administrative console
does not let the user control starting and stopping the resource adapter, but some J2EE
Application Servers support that.

Also, in the non-managed environment, ResourceAdapter.start is not called, so
XMLink.tconn must be used.

Improved XML support

XMLink 3.0 contains improved XML support:

! getXML() method is available on all Record classes.

This method returns a String containing the record contents in XML. The
String is suitable for use with XMLink's XMLConnector class.

! RecordFactoryImpl contains a new method:

public Record createRecordFromXML(String xml)

The String xml must be in the form supported by XMLConnector. Any type
of XMLink Record may be created this way and initialized with data.
B-2 New Features in XMLink

XMLink 3.0
! XMLConnector contains new methods:

" setOutputEncoding()

" getOutputEncoding()

" public Result processResult(InputStream in)
 throws ResourceException, SAXException, IOException

processResult processes the output from XMLConnector.process(), in
order to produce an instance of the new class, XMLConnector.Result.

! The new class XMLConnector.Result has the public properties serviceName,
tuxBuffer, error, userReturnCode, xaction and next. There are also set
and get methods for these properties. The get methods are as follows:

" public String getServiceName()

getServiceName() returns the value of a servicename attribute for either
a returndata or error tag.

" public TuxBuffer getTuxBuffer()

getTuxBuffer() returns the data within an FMLRecord, FML32Record,
STRINGRecord, CARRAYRecord, or JAMFLEXRecord tag as an instance of
TuxBuffer.

" public Throwable getError()

getError() returns the contents of an error tag as a throwable. The
throwable may actually be an instance of TuxedoException.

" public long getUserReturnCode()

getUserReturnCode() returns the data within a UserReturnCode tag as
a long. It is assumed that a return of 0 has no particular significance, and
is not indicative of the presence of a UserReturnCode tag in the input
stream.

" public int getXaction()

getXaction returns an int. If this int is 0, no xaction tag was read
from the input. Otherwise, it will have one of the following values:

XMLConnector.Result.BEGIN

XMLConnector.Result.COMMIT

XMLConnector.Result.ABORT

" public Result getNext()
Using XMLink B-3

XMLink 2.6
getNext() returns the next Result instance in a linked list. The head of
the list returned by the first returndata, xaction, or error tag encountered.
Additional such tags cause new Result instances to be appended to the
list.

XMLink 2.6

The features for XMLink 2.6 include:

! JAMFLEX buffers

! Embedded FML

! Character encoding support

Embedded FML

Using the new addIn method on FML32Record allows you to create embedded FML
for Oracle Tuxedo versions 7.1 and higher which contain support for this feature:

public void addIn(String name, FML32Record value)

Character Encoding Support

Java strings are in Unicode. By default, XMLink passes to Tuxedo only the low order
byte of each Unicode character. For characters in English and other European
languages, this is sufficient since only the low order byte is significant.

Since other languages may need additional support, each of XMLink’s Record classes
offers setEncoding() and getEncoding() methods. The default encoding is
ISO-8859-1, which is a single byte per character encoding. A multibyte encoding,
such as UTF8, can be used for foreign characters. The Tuxedo server must be able to
support and decode/encode according to the specified encoding setting.
B-4 New Features in XMLink

XMLink 2.1
XMLink 2.1

For XMLink 2.1, a new Resource Adapter archive was added for use specifically with
Tuxedo 6.5, Tconn6.rar.

XMLink 2.0

JNDI Lookup

For XMLink version 1.1, the documentation contained the following code to
demonstrate a connection to a Java client:

ManagedConnectionFactoryImpl mcf =
new ManagedConnectionFactoryImpl();

javax.resource.ConnectionFactory cxf =
 (javax.resource.ConnectionFactory)mcf.createConnectionFactory();

// get a connection
javax.resource.Connection cx = cxf.getConnection();

In XMLink 2.0, it is recommended to change the code as follows to incorporate the
changes made for JNDI lookups:

// get an initial JNDI naming context
javax.naming.Context initctx = new InitialContext();

// do JNDI lookup to get connection factory
// note that lookup doesn't return a ConnectionFactory,
// so a cast is needed
javax.resource.ConnectionFactory cxf =

(javax.resource.ConnectionFactory)initctx.lookup("TConn");
Using XMLink B-5

XMLink 2.0
// get a connection
Connection cx = cxf.getConnection();

Installation Issues

XMLink’s directory structure has changed in version 2.0, and a Resource Adapter
Archive (Tconn.rar) has been added for use with WebSphere.

Also tconnxmlout.jar is available, a WebSphere deployable JAR file which can be
imported into an Enterprise Application for XML connectivity to the resource adapter
from an EJB.

Setting Properties for Connections and Connection
Factories

More properties are available in XMLink 2.0 for connections and connection factories
which correspond to settings in an Oracle Tuxedo configuration. If you are using
WebSphere, you can set those properties in the WebSphere Administrative Console.
For an explanation of the each property, refer to Oracle Tuxedo documentation.

Deploying in a Non-managed Environment

To facilitate deployment in a non-managed environment, a new class was added,
TConnTool. The class supports a set of methods that can be used to build a customized
deployment tool. It also includes a main() that supports a rudimentary command line
interface. For more information, see page 3-4, “Deploying in a Non-managed
Environment.”
B-6 New Features in XMLink

INDEX
Index

C

CARRAYRecord
creating in Java 4-13
in XML input 5-2, 5-4
in XML output 5-5, 5-7

Character encoding 4-14
CLASSPATH

specifying 3-6
updating A-1

ConnectionFactory interface 4-3
Connections

to Tuxedo applications
specifying parameters 4-4
using Java 4-3
using XML 5-2

D

Deploying
in non-managed environment B-6

DTDs
tconn.dtd 5-2
tconnoutput.dtd 5-5

E

EJBs
calling Tuxedo services 5-8

Errors
in XML output 5-6, 5-7

F

Fields
in XML input 5-4

FML32Record
creating objects in Java 4-12
in XML input 5-2, 5-4
in XML output 5-5, 5-7

FMLRecord
creating objects in Java 4-12
in XML input 5-2, 5-4
in XML output 5-5, 5-7

I

Installing
XMLink 2-1

Interaction interface 4-7

J

J2EE Connector Architecture
specification 1-1

JAMFLEXRecord
in XML input 5-2, 5-4
in XML output 5-5
Using XMLink I-1

Index
JAVA_HOME
specifying 3-6

JNDI lookup B-5

L

LD_LIBRARY_PATH
specifying 3-7

M

Managed environment 3-2

N

Non-managed environment 3-3

O

Oracle Tuxedo features
supported in XMLink 1-2

P

PATH
specifying 3-7

R

RecordFactory interface 4-10
Resource adapter 1-1
Resource adapter archives

installing 3-4

S

Service calls
in XML input 5-2, 5-4
using XML 5-1
writing in Java 4-1

Software requirements 2-1
STRINGRecord

creating in Java 4-13
in XML input 5-2, 5-4
in XML output 5-5, 5-7

T

TConnTool class 3-4, B-6
Transactions

calling methods 4-6
in Tuxedo applications

defining commit mode 4-6
in XML input 5-2, 5-3

Troubleshooting
CLASSPATH settings A-1

TUXCONFIG
specifying 3-7

TUXDIR
specifying 3-7

TuxInteractionSpec interface 4-8

U

UserReturnCode
in XML output 5-5

W

Workstation client
configuring 3-7

WSNADDR
specifying 3-7

X

XML
using to call services 5-1

XMLConnector 5-1
I-2 Using XMLink

	Contents
	About This Document
	What You Need to Know
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Overview
	Java Compliance
	What Oracle Tuxedo Features Are Supported
	What Is In This Manual

	2 Installing XMLink
	Contents of the Installation Package
	Hardware and Software Requirements
	Installing XMLink on UNIX
	Implementing File Protection
	Determining File Location
	How to Install from CD-ROM

	Installing XMLink on Windows
	How to Run the Setup Program

	3 Configuring XMLink
	Configuration Notes
	Managed and Non-Managed Environments
	Managed Environment Settings
	Installing Resource Adapter Archives
	Deploying in a Non-Managed Environment

	Configuring the Environment
	Setting XMLink Properties
	Setting JVM Properties
	Setting Properties on a Resource Adapter
	Setting Properties on a Connection Factory

	Sample Configuration

	4 Using Java to Call Services
	Getting an Oracle Tuxedo Connection
	Example: Connecting with a Java Client
	Understanding the ConnectionFactory Interface
	Supplying Connection Parameters
	Getting Information about XMLink
	Calling getRecordFactory
	Specifying Transaction Access

	Managing Oracle Tuxedo Transactions
	Calling Oracle Tuxedo Services
	Understanding the Interaction Interface
	Understanding the TuxInteractionSpec Interface

	Working with Application Data
	Understanding the RecordFactory Interface
	Working with Record Objects
	FMLRecord and FML32Record Objects
	Sample: Getting FML Data
	CArrayRecord and StringRecord Objects
	Character Encoding Support

	Example: Calling Services using Java

	5 Using XML to Call Services
	Inputting Data Using XML
	Elements in the XML Input DTD
	Agenda Element
	Connection Element
	Transaction and Servicecall Elements
	Field Elements
	Data Elements

	Example: Using XML Input

	Returning Data in XML
	Elements in the XML Output DTD
	Resultset Elements
	Returndata Elements
	Error Elements
	Xactionmsg Elements

	Examples: XML Return Data

	Using an EJB to Input XML

	A Troubleshooting
	Configuration Issues
	Tuxedo Error Messages
	Using the TuxedoException Class
	Using the TuxedoReturnCodeWarning Class

	Using XMLink with Tuxedo 6.5

	B New Features in XMLink
	XMLink 3.1
	XMLink 3.0
	Changes to Connection Factory Properties
	No Default Setting for XMLink.tconn
	Improved XML support

	XMLink 2.6
	Embedded FML
	Character Encoding Support

	XMLink 2.1
	XMLink 2.0
	JNDI Lookup
	Installation Issues
	Setting Properties for Connections and Connection Factories
	Deploying in a Non-managed Environment

	Index

