
TABLE OF
CONTENTS
Contents:

About This Document

1. Overview of Panther Web Applications
How the Internet Works .. 1-1

Components of a Panther Web Application .. 1-5

2. Web Application Setup
Web Application Components .. 2-1

Setting Up the Web Application Server .. 2-5

Creating a New Web Application.. 2-9

Setting Web Browser Options ... 2-12

Firewalls .. 2-12

3. Setting Properties for Web Applications
Screen Properties ... 3-1

Widget Types... 3-4

Widget Properties .. 3-5

Font Properties... 3-16

Application Properties ... 3-18

4. Opening Screens
Processing Screen Requests .. 4-2

Transmitting Screens Securely .. 4-6

5. Web Events
Web Event Hooks.. 5-1

Web Application Events.. 5-5

Controlling Entry Processing .. 5-7

6. Preserving Application State
Caching Data ... 6-2
Web Development Guide i

Saving State Data in Cookies .. 6-7

Unpreserved State Information.. 6-7

7. JPL Globals in Web Applications
Application Globals ... 7-1

Context Globals ... 7-2

Transient Global Variables .. 7-3

8. Customizing HTML Generation
Setting Custom HTML Properties ... 8-2

Using HTML Templates.. 8-4

Using Hyperlinks ... 8-11

Setting Target Windows .. 8-13

Specifying the Browser's Title Bar .. 8-14

Using Graphics .. 8-15

Using the FRAME Extension .. 8-18

Using Style Sheets ... 8-19

Creating Headings ... 8-20

Drawing Horizontal Rules ... 8-20

Using Cookies.. 8-21

Embedding Java Applets ... 8-22

Refreshing Screens in a Web Browser .. 8-24

Using ActiveX Controls .. 8-24

Embedding Sound.. 8-29

9. Using JavaScript and VBScript
Browser Events.. 9-2

10. Accessing Databases
Connecting to the Database ... 10-1

Initializing the Panther Client.. 10-2

Using Database Cursors... 10-3

Database Transactions ... 10-3

Fetching Multiple Rows .. 10-4
ii Web Development Guide

11. HTTP Variables
Definitions ... 11-2

12. Web Initialization Options
Setup Variables.. 12-1

Behavior Variables .. 12-4

Sample Initialization File .. 12-9

13. Deploying Web Applications
How to Configure a Panther Web Application.. 13-1

A. Web Application Utility

B. Web Setup Manager
Using the Web Setup Manager..B-2

C. Setting Up an NSAPI Web Server
Configuring Your NSAPI-Compliant Server ..C-1

Accessing the Panther Web Application ...C-2

A Sample Obj.conf File...C-3

D. Using Java Servlets
Installing Java Servlet Support... D-1

Accessing the Panther Web Application .. D-2

Panther's Java Servlet Classes .. D-3

E. Sample Web Applications
General Applications ...E-1

Feature-Specific Examples..E-3

Index
Web Development Guide iii

iv Web Development Guide

Panther
Web Development Guide

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
Documentation Website .. xi

How to Print the Document.. xii

Documentation Conventions .. xii

Contact Us! .. xiv

1. Overview of Panther Web Applications
How the Internet Works .. 1-1

Retrieving Documents with URLs ... 1-2

HTTP... 1-3

Formatting Documents With HTML.. 1-3

Viewing HTML in Web Browsers ... 1-4

Using the Internet and Intranets ... 1-4

Components of a Panther Web Application .. 1-5

Two-Tier Processing .. 1-6

Three-Tier Processing .. 1-6

Web Application Server Processes .. 1-7

2. Web Application Setup
Web Application Components .. 2-1

Requester Program ... 2-2

Application Directory... 2-3

Cache Directory.. 2-4

Configuration Directory ... 2-4
Web Development Guide iii

Log Files... 2-4

Logging Application Errors .. 2-5

Setting Up the Web Application Server .. 2-5

Configuring the Requester Program... 2-6

Using CGI ... 2-6

Using ISAPI .. 2-6

Using NSAPI... 2-6

Using Java Servlets ... 2-6

Configuring Middleware Access.. 2-7

Configuring Library Access ... 2-7

Using Remote Libraries .. 2-7

Configuring Database Access... 2-7

Configuring a Windows Server .. 2-8

Creating a New Web Application.. 2-9

Using the Web Setup Manager... 2-9

To run the Web setup manager: .. 2-9

Starting Your Panther Web Application... 2-10

Using monitor.. 2-10

Starting as a Service .. 2-10

Accessing Your Panther Web Application... 2-11

Setting Web Browser Options ... 2-12

Firewalls .. 2-12

3. Setting Properties for Web Applications
Screen Properties ... 3-1

Web Options Properties.. 3-3

Widget Types... 3-4

Widget Properties .. 3-5

Web Options Properties.. 3-5

Property Usage in Web Applications ... 3-7

Push Buttons... 3-9

Using push buttons to perform processing in the browser 3-10

Selection Groups .. 3-10

Grid Widgets .. 3-10

Dynamically Resizing Grids ... 3-11
iv Web Development Guide

Selecting and Modifying Grid Data .. 3-11

Scrolling Grids .. 3-13

Widget Positioning... 3-14

Overlapping Widgets .. 3-14

Horizontal and Vertical Anchors .. 3-14

Snap to Grid .. 3-15

Spacing of Widgets ... 3-15

Positioning Regions .. 3-15

Maximum Usage of Space .. 3-16

Fonts.. 3-16

Font Properties... 3-16

Font Name .. 3-16

Font Size... 3-17

Application Properties ... 3-18

4. Opening Screens
Processing Screen Requests .. 4-2

Specifying a URL... 4-2

Encoding Parameters in the URL... 4-3

Example .. 4-4

Encoding ASCII Characters.. 4-4

Transmitting Screens Securely .. 4-6

Setting Screen Properties ... 4-6

Determining Screen Sequence ... 4-6

Configuring Your Web Application... 4-7

5. Web Events
Web Event Hooks.. 5-1

Specifying Web Event Hooks .. 5-4

Web Application Events.. 5-5

Web Application Server Events ... 5-5

Screen Events ... 5-5

Controlling Entry Processing .. 5-7

Screen Entry Context Flag ... 5-7

Screen Entry Processing and Option Menus .. 5-8
Web Development Guide v

Web Entry Context Flags ... 5-9

6. Preserving Application State
Caching Data ... 6-2

Posting Screens Back to the Server .. 6-2

Getting Screens from the Server... 6-4

Cached Data.. 6-4

Saving State Data in Cookies .. 6-7

Unpreserved State Information.. 6-7

LDB .. 6-7

Window Stack .. 6-8

Property Changes.. 6-8

7. JPL Globals in Web Applications
Application Globals ... 7-1

Context Globals ... 7-2

Transient Global Variables .. 7-3

8. Customizing HTML Generation
Setting Custom HTML Properties ... 8-2

Screen Custom HTML Properties .. 8-2

Widget Custom HTML Properties ... 8-3

Using HTML Templates.. 8-4

HTML Template Tags.. 8-5

HTML Template Document ... 8-7

Conditional Processing.. 8-7

Passing Database Values .. 8-8

Submitting a Form.. 8-10

Using Hyperlinks ... 8-11

Creating Hyperlinks.. 8-11

Setting the Default Link Property ... 8-11

Setting the Item Link Property .. 8-11

Calling sm_web_invoke_url ... 8-12

Placing an Action List Box Inside a Grid .. 8-12

Using Hyperlinks in Reports .. 8-12

Setting Target Windows .. 8-13
vi Web Development Guide

Setting the Window for a Specific Hyperlink................................... 8-14

Setting the Default Window for All Screen Hyperlinks 8-14

Setting the Window for a Screen .. 8-14

Specifying the Browser's Title Bar.. 8-14

Using Graphics .. 8-15

Setting Graphics Size ... 8-16

Graph Widgets.. 8-16

Image Maps .. 8-16

Creating Image Maps in JPL... 8-17

Loading Graphics at Runtime .. 8-17

Using the FRAME Extension.. 8-18

Using Style Sheets... 8-19

Creating Headings ... 8-20

To create a heading: .. 8-20

Drawing Horizontal Rules... 8-20

To create a horizontal rule: ... 8-21

Using Cookies ... 8-21

Retrieving Cookie Values .. 8-22

Embedding Java Applets ... 8-22

To embed a Java applet into your Panther screen:............................ 8-23

Refreshing Screens in a Web Browser .. 8-24

To specify a META tag:.. 8-24

Using ActiveX Controls .. 8-24

Using ActiveX Controls in Web Browsers .. 8-25

Signing Your ActiveX Controls ... 8-26

Submitting Data to the Web Application Server...................................... 8-26

Submitting Data using JavaScript ... 8-27

Submitting Data using VBScript... 8-27

Generating HTML for ActiveX Controls... 8-27

Embedding Sound ... 8-29

To embed a sound file in your application:....................................... 8-30

9. Using JavaScript and VBScript
Browser Events.. 9-2

JavaScript Event Properties.. 9-2
Web Development Guide vii

Screens .. 9-2

Widgets.. 9-3

Setting Event Properties .. 9-4

Writing JavaScript and VBScript Functions .. 9-4

How to Define a JavaScript or VBScript Function 9-4

Accessing Widget Values.. 9-6

Accessing Widgets in JavaScript and VBScript... 9-6

Automatic JavaScript Generation... 9-7

10. Accessing Databases
Connecting to the Database ... 10-1

Initializing the Panther Client.. 10-2

Using Database Cursors... 10-3

Database Transactions ... 10-3

Fetching Multiple Rows .. 10-4

11. HTTP Variables
Definitions ... 11-2

12. Web Initialization Options
Setup Variables.. 12-1

Required Settings.. 12-2

Required for JetNet/Oracle Tuxedo Applications 12-2

Optional Settings .. 12-3

Database Information ... 12-4

Behavior Variables .. 12-4

Required Settings.. 12-4

Optional Settings .. 12-5

Sample Initialization File... 12-9

13. Deploying Web Applications
How to Configure a Panther Web Application.. 13-1

A. Web Application Utility
monitor .. A-2
viii Web Development Guide

B. Web Setup Manager
Using the Web Setup Manager..B-2

To create a new Panther Web application:..B-2

C. Setting Up an NSAPI Web Server
Configuring Your NSAPI-Compliant Server ..C-1

Accessing the Panther Web Application ...C-2

A Sample Obj.conf File...C-3

D. Using Java Servlets
Installing Java Servlet Support... D-1

To install Java servlet support:... D-2

Accessing the Panther Web Application .. D-2

To access the Panther web application using Java servlets: D-2

Panther's Java Servlet Classes .. D-3

Methods... D-3

E. Sample Web Applications
General Applications ...E-1

Feature-Specific Examples..E-3

Index
Web Development Guide ix

x Web Development Guide

PREFACE
About This
Document

The Web Development Guide contains information about developing and deploying
Panther web applications. Using Panther, you have two methods to use to deploy your
web applications:

! You can take an existing Panther GUI application and move it to the web
environment by generating HTML at runtime for your client screens.

! You can write HTML documents that call screens in your Panther application in
order to get and update data.

For an introduction to taking your Panther application to the web, refer to the Getting
Started 2-Tier manual.

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.
Web Development Guide xi

http://docs.prolifics.com/panther/

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.
xii About This Document

https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
Web Development Guide xiii

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xiv About This Document

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20Web%20Development%20Guide

CHAPTER
1 Overview of
Panther Web
Applications

Panther lets you easily build fully transactional, database-oriented applications to
deploy on the Internet or an intranet. To understand how Panther works, this chapter
presents:

! An introduction to the Internet: see page 1-1, “How the Internet Works.”

! How the Panther software components operate in a web environment: see
page 1-5, “Components of a Panther Web Application.”

How the Internet Works

The Internet is a global collection of computer networks. Because each computer on
this network is able to communicate with any other, any resource that is on one is
available to all. A resource can be a document, a picture, a sound file, a video clip—
any information that can be stored and presented electronically.

Computers on this global network can communicate for these reasons:
Web Development Guide 1-1

How the Internet Works
! They all use the same routing protocol, or language, called the Internet Protocol
(IP).

! Each computer has a unique 32-bit address, called the IP address.

The Internet's popularity vastly increased with the advent of the World Wide Web,
originally designed for scientists to share information online. This information is
deployed as hypertext documents that can contain hyperlinks (pointers) to other
documents on the system.

The World Wide Web system uses these conventions:

! URL (Uniform Resource Locator)—Specifies the location of an Internet
resource.

! HTTP (HyperText Transfer Protocol)—Specifies the protocol for
communication between the client and server. HTTPS (HTTP Secure) is similar
to HTTP but uses encoding to help make the communications more secure.

! HTML (HyperText Markup Language)—Defines the structure of information
within a web document.

Using a client/server model, information is stored on any of the computer servers that
make up the web. That information can be accessed by a variety of clients or
browsers—from an ASCII terminal to a PC running a graphical web browser.

In order to access documents on the web, a user starts a browser program. Every
browser program can perform these tasks:

! Specify a URL for a document, including the protocol that is used to retrieve
the document.

! Interpret HTML commands and display the document.

Retrieving Documents with URLs

Each document on the web has a unique URL, which allows other browsers to retrieve
it. A URL contains these components:

! The name of the protocol, or language, to use to retrieve the document. For
most documents, this is HTTP. Other common protocols which are also
accessible in a browser include HTTPS, FTP, WAIS, and Gopher.
1-2 Overview of Panther Web Applications

How the Internet Works
! The domain name of the HTTP server where the document is stored. The name
can include two or more levels.

! The port address for the HTTP server, if needed. Many servers use the default
port number, 80.

! The directory location of the document, including the document name.

The following example of a URL specifies that http is the protocol, the domain name
is docs.prolifics.com, and the document named overview.htm is located in the
panther/html/web_html subdirectory of the HTTP server's document directory:

http://docs.prolifics.com/panther/html/web_html/index.htm

HTTP

HTTP (HyperText Transfer Protocol) was developed specifically for transferring
hypertext documents. Computer servers on the Internet, because they have programs
installed to process HTTP requests, are called HTTP servers.

An HTTP server can also take data sent from the client and pass it on to programs on
the server for further processing. These server programs are called gateway programs
because they act as a bridge between the HTTP server and other local resources, such
as databases. The interaction between the HTTP server and these programs is part of
the CGI (Common Gateway Interface) specification.

Formatting Documents With HTML

HTML (HyperText Markup Language) is used to construct web documents. Each
HTML document contains a series of tags. These tags identify each element of
information in the document.

The web supports different types of clients, or browsers, to access the same
information. HTML tags indicate the logical structure of a document; the actual
implementation of these tags depends on the given browser, which has its own way to
display the various parts of the document structure. So, presentation of HTML
document data can differ in each browser. For example, on an ASCII terminal a
heading might be centered on the terminal and appear all in uppercase characters. The
same heading on a graphical web browser might start on the left side of the page and
appear in mixed case, bold characters.
Web Development Guide 1-3

How the Internet Works
Each HTML tag is enclosed in a set of angle brackets (< >). The first instance of the
tag is called the start tag. The second instance, in which a slash precedes the tag (</ >),
is called the end tag. For example, the start tag for the body of a document appears as
<BODY>. At the end of a document, the end tag appears as </BODY>. For some tags, the
matching end tag is optional and is often omitted.

Viewing HTML in Web Browsers

Different browser programs can have different physical capabilities–for example,
support for tables and graphic formats can vary. Furthermore, the browser program
itself might permit the user to customize presentation of HTML elements; so two users
who are using the same web browser program might see the same HTML document
appear differently.

Browser presentation is especially susceptible to the base font that is specified for the
browser program. A number of Panther widgets are resized according to the base font–
text fields, static labels, dynamic labels, and labels on push buttons, radio buttons, and
check boxes. Because text fields are also specified in HTML with a size property based
on the number of characters, the resulting field changes in length according to the font
size specifications in the browser.

Using the Internet and Intranets

If you have an Internet connection, you start your browser program and enter a URL.
The browser then displays the resource specified in the URL. At that time, you can
enter another URL; or, more typically, click on a hyperlink. A hyperlink's definition
includes the URL of another web resource, which can be located anywhere on the
Internet. When you click on a hyperlink, it opens that resource in your browser.

A web can be viewed as a collection of hyperlinked documents that exist either on the
Internet or an intranet. Intranets and the Internet are different only in the scope of the
network: an intranet only provides resources for a single company or organization.

The web is designed for easy access from one resource to another; it is not designed to
retain information from previous resources–that is, it is stateless. Neither client nor
server stores information about the other. After the server returns a resource to the
browser, the connection between them ends. Each new request requires a new
connection. The restrictions inherent in this stateless environment present a significant
challenge to deploying transactional database applications on the web.
1-4 Overview of Panther Web Applications

Components of a Panther Web Application
With Panther, however, you can build web applications that meet complex businesses
requirements quickly and easily.

Panther has built-in components to store the state information needed for your
application.

Components of a Panther Web
Application

For a Panther web application, like any Panther application, you first develop your
application screens and service components in the Panther editor. With its repository,
screen wizard, and graphical, drag and drop environment, you have the tools to build
your application quickly.

After the application's libraries are constructed, you can deploy the application on the
Panther web application server, which works with your HTTP server software. Popular
HTTP servers include Microsoft's Internet Information Server and Apache. The
screens in your application can be requested from the HTTP server by entering the
URL for the screen in a web browser.

When a browser request comes in for a Panther screen, the HTTP server passes the
requested screen name to the Panther web application server. This is called a GET in
the HTTP protocol. The web application server opens the screen, generates HTML for
the screen, and passes the HTML back to your HTTP server, which transmits the data
back to the browser that requested it.

In an HTML document, the Panther screen is translated into an HTML form.
Embedded in this form is the screen's URL. After the user interacts with the screen and
presses one of its push buttons, the screen is submitted back to the HTTP server. In the
HTTP protocol, this is called a POST. The embedded URL tells Panther which screen
to reopen. At that time, data from the HTML form is mapped into the Panther screen,
and any processing attached to the activated push button is performed.
Web Development Guide 1-5

Components of a Panther Web Application
When these steps are complete, Panther generates HTML for the current screen and
sends that data to the HTTP server, restarting the cycle. This cycle of browser requests
occurs for all Panther web applications. However, the role of the web application
server varies for two-tier and three-tier applications.

Two-Tier Processing

In traditional two-tier client/server processing, the web application server is
responsible for making the database connections, opening the screens, mapping the
browser and data cache values onto the screens, fetching data from the database, and
generating HTML.

Figure 1-1 When the HTTP server receives a request from a browser for a
Panther screen, the request is sent to Panther for processing.

Three-Tier Processing

In three-tier distributed processing, the Panther application server establishes and
maintains connections to the database. When the web application requires data, the
web application server, acting in the role of client, sends the service request to the
Panther application server. The Panther application server processes this request and
returns the desired data to the web application server.

In a three-tier environment, the web application server remains responsible for opening
screens, mapping browser and data cache values, generating HTML.
1-6 Overview of Panther Web Applications

Components of a Panther Web Application
Figure 1-2 In three-tier processing, the web application server is a Panther
client.

Web Application Server Processes

When a web browser requests a Panther screen, the HTTP server passes the screen
name to the web application server via the CGI, ISAPI, or NSAPI interface. The web
application server opens the screen, generates HTML, and passes the HTML back to
the HTTP server, which transmits the data back to the browser.

A web application server consists of three processes: requester, dispatcher, and jserver.
By dividing its work among these separate processes, a web application server
optimizes response time to each request and provides efficient service and options for
high-volume applications.

Requester
Accepts a request from the HTTP server, passes it to a jserver process, and
then waits for and transmits a response. There are three versions of the
requester program, one for each type of interface: CGI, ISAPI, and NSAPI.

jserver
After receiving the request, performs all application-specific processing and,
in three-tier applications, for routing service requests to the Panther
Web Development Guide 1-7

Components of a Panther Web Application
application server. Unlike the requester, which shuts down after servicing a
request, the jserver is always running. This allows Panther to provide prompt
service to concurrent requests.

Dispatcher
Manages the pool of jservers.

Figure 1-3 represents the interaction between the web application server processes:

Figure 1-3 The user request (URL) to the HTTP server initiates the startup of
the web application server processes.

Panther's web application server architecture efficiently allocates server processes on
a per-server basis, not a per-user basis, and reuses them for each request. This feature
significantly reduces the load on your server.
1-8 Overview of Panther Web Applications

CHAPTER
2 Web Application
Setup

This chapter describes:

! The components of a Panther web application.

! How to set up the web application server

! How to create a new web application.

Web Application Components

A complete Panther web application has these components:

! Libraries that contain the application's screens, service components, reports,
JPL modules, and graphics files.

! An initialization file that specifies the application's configuration settings.

! Server executables: requester, dispatcher, and jserver.

! Panther libraries and configuration files that are required by the web application
server.
Web Development Guide 2-1

Web Application Components
These components, created during installation and with the web setup manager, are
distributed among different directories. This section describes these components and
their location.

Requester Program

Each Panther web application needs a copy of, or link to, the distributed requester
executable in the HTTP server's program directory. Using the web setup manager to
create your web application automatically copies the requester executable for your
application.

There are three different versions of the requester program:

! CGI (Common Gateway Interface)—The default name is proweb or, for
Windows, proweb.exe; the application's version is application-name[.exe]. This
version uses the CGI protocol to pass the requester information to the jserver.

! ISAPI (Microsoft's Internet Information Server API)—The default name is
proweb.isa; the application's version is application-name.isa.

! NSAPI (Netscape's Web Server API)—The default name is proweb.nsa; the
application's version is application-name.nsa.

Common names for the program directory on the HTTP server are cgi-bin or scripts.

Notes: For the Apache HTTP server, use the directory specified for Standard CGI in
the Apache Administration dialog. Typically, this is cgi-bin or scripts, not
cgi-win.

The application name, which is used in the file name for the initialization file as well
as the requester executable, must be unique and follow the naming conventions for the
operating system.

The permissions on the requester program must allow the program to be executed by
the HTTP server.

Alternatively, the Panther web application can run as a Java servlet. For more
information, refer to Appendix D, “Using Java Servlets.”
2-2 Web Application Setup

Web Application Components
Each Panther web application must have an initialization file whose file name matches
the name of the requester executable in the format application-name.ini. The name of
the distributed initialization file is proweb.ini and the name of the requester executable
is proweb[.exe]. Using the web setup manager to create your web application will
automatically create the initialization file for your application.

The location of the initialization file is different for Windows and UNIX:

! The UNIX installation creates an ini subdirectory in the home directory of the
proweb user. The initialization files are located in that ini directory. Permissions
on the initialization file must allow it to be read by the HTTP server. The
permissions on the ini subdirectory and its parents must allow the directory to
be read and executed by the HTTP server.

! The Windows installation copies the default initialization file proweb.ini to
the %WINDDIR% directory where Windows is installed.

For more information about initialization file settings, refer to Chapter 12, “Web
Initialization Options.” For instructions on using the web setup manager, refer to
Appendix B, “Web Setup Manager.”

Application Directory

The application directory contains the files and libraries for Panther screens and
reports. All references to Panther files should be relative to this directory. This
directory can also contain JPL modules, graphics files, and other files referenced by
screens and reports. If these files are not in this directory, they must be in a directory
specified by the Panther environment variable SMPATH.

The AppDirectory variable in the initialization file specifies the location of the
application directory on your HTTP server. On startup, the jserver changes its working
directory to the application directory.

Panther opens files named in URLs relative to this directory and uses this directory as
the basis for any relative path name references in Panther. For security purposes,
Panther strips the parent directories from the path name. This means that CGI
variables, such as PATH_TRANSLATED, do not contain the absolute path specified in this
variable.
Web Development Guide 2-3

Web Application Components
Cache Directory

In order to preserve application values during a series of browser requests, Panther
caches data whenever it transmits a screen that can be posted back to the web
application server. Generally, the data is stored in a cache file on the web application
server. The CacheDirectory variable determines the cache directory location; other
variables determine how the cache files are removed.

On UNIX, the directory permissions must allow the HTTP server to read, write, and
execute this directory.

Warning: When you create this directory, make sure that the period character (.)
does not appear anywhere in the path name. (This restriction is imposed
by the Grafsman software that manages Panther graphs.)

Configuration Directory

The application must know the location of smvars.bin in the config directory of the
web application server distribution. Generally, the web application server determines
the location of this file by looking at the setting for SMBASE, one of the application
variables. If the directory specified in SMBASE contains the config subdirectory, this
is the only specification needed. Otherwise, the SMVARS, environment variable must
specify the location of smvars.bin.

The initialization file can contain application-specific settings for any of the
environment variables named in smvars.bin. The setting in the initialization file
takes precedence.

Log Files

Errors occurring on the web application server are written to the log file set by the
ErrorFile variable in the initialization file. Additional client and server information
is written to the files specified by the ClientLog and ServerLog variables. In order
to better track your web application server usage, you can specify that the ClientLog
and ServerLog variables write information to the same file. Client logs contain
information about the requester process. Server logs list configuration information and
jserver usage.
2-4 Web Application Setup

Setting Up the Web Application Server
Note: Application errors are displayed in the browser and are not logged to the error
file.

Using client and server logs does affect performance. You may choose to run client and
server logs to test your web application, but not use them during deployment.

In three-tier applications, the time entered in the error logs is based on the server clock
and will not correspond to the ULOG entries which are based on UTC (Coordinated
Universal Time).

Logging Application Errors

In a Panther web application, errors can be logged to the web application server by
calling sm_web_log_error in an error handler. The error messages are appended to
the file named in the ErrorFile variable. Since the error message is not displayed to
the user, you must make a separate call to sm_message_box, sm_femsg, or their JPL
msg equivalents for any user messages.

The following error handler displays a message to the user and logs a separate message
to the web error file:

proc error_def
msg emsg "Error: File not found"
call sm_web_log_error ("Unable to find file.")
return

Setting Up the Web Application Server

The Panther web application server must be installed on a machine that is running an
HTTP server. After installing the software, the web application server must be
configured.
Web Development Guide 2-5

Setting Up the Web Application Server
Configuring the Requester Program

As discussed in previous sections, the Panther web application server has three
components, requester, dispatcher, and jserver, and there are three different versions
of the requester program for the various protocols.

Since CGI uses a separate process for each request if the requests happen concurrently,
the performance is slower for the CGI version of an application. Using the HTTP
server's APIs, like ISAPI or NSAPI, will improve performance.

The requester executables distributed with the web application server are located at:

$SMBASE/util/proweb*

Copy the appropriate version to the HTTP server's program directory. Common names
for the program directory are cgi-bin or scripts.

Using CGI

To use the CGI (Common Gateway Interface) version of the requester executable,
copy proweb[.exe] to the program directory.

Using ISAPI

To use the ISAPI (Microsoft's Internet Information Server API) version of the
requester executable, copy proweb.isa to the program directory.

Using NSAPI

To use the NSAPI (Netscape's Web Server API) version of the requester executable,
you must configure the NSAPI server and copy proweb.nsa to the program directory.
For more information, refer to Appendix C, “Setting Up an NSAPI Web Server.”

Using Java Servlets

Alternatively, the Panther web application can run as a Java servlet. For more
information, refer to Appendix D, “Using Java Servlets.”
2-6 Web Application Setup

Setting Up the Web Application Server
Configuring Middleware Access

In a three-tier processing model, the web application server acts as a client of the
application server. The web application server can connect to the enterprise application
either as a local or remote client:

! As a local client that resides on either the master or non-master machine, the
web application server connects to the enterprise via the local environment's
SMRBCONFIG setting.

! As a remote client, the web application server's jserver component must use
jserver.ws as its executable, set in the Web initialization file's Server variable;
and the SMRBPORT and SMRBHOST variables, also in the Web initialization file,
must be set to the application server's machine.

Configuring Library Access

Using Remote Libraries

In JetNet and Oracle Tuxedo applications, you cannot open a remote library on startup
using SMFLIBS= server_id!lib_name. If a client library cannot be placed on a
shared file system, connect to the middleware on application startup using
client_init and execute the Panther library function sm_l_open to open a remote
library.

Configuring Database Access

For two-tier UNIX web applications, verify that:

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.

! The web application's initialization file contains the environment variables
needed for database access. (At runtime, the web application runs under an http
process.)

For two-tier Windows web applications, verify that:
Web Development Guide 2-7

Setting Up the Web Application Server
! The user that installs the web application as a service is configured for database
access. That user can be specified as part of the monitor—install command or
in the Services section of the Control Panel.

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.

! The PC has the database vendor's client program installed.

! The web application's initialization file contains the environment variables
needed for database access.

If the three-tier Windows application includes a web application client, the web
application can be installed as a service. Verify that:

! The user that installs the web application as a service is configured for database
access. That user can be specified as part of the monitor—install command or
in the Services section of the Control Panel.

Verify that the service has database access by:

! Logging into the machine as the user (owner) of the service.

! Starting a database vendor's program.

Some database engines have special installation instructions. For example, Informix
requires that you run setnet32 to add the service user and then run the demo login
program to check that the user was added correctly.

Configuring a Windows Server

HTTP servers on Windows can start a web application as a Windows service. For more
information, refer to page 2-10, “Starting as a Service.”
2-8 Web Application Setup

Creating a New Web Application
Creating a New Web Application

To create a new web application:

! Run the Web setup manager to create the initialization file and the requester
program.

! Start the application using the monitor utility.

! For Windows servers, start the application as a Windows service.

Using the Web Setup Manager

The Web setup manager utility creates the files necessary for a new web application
and allows you to modify the settings of existing web applications.

To run the Web setup manager:

Start your Web browser and enter the following URL:

http://serverName/programDirectory/websetup

The Web setup manager consists of a series of screens; enter the information needed
on each screen. You will need:

! The application name.

! The path of the application directory.

! The path of your Panther Web installation.

! The path of the HTTP server's program directory (usually called cgi-bin or
scripts).
Web Development Guide 2-9

Creating a New Web Application
If the Web Setup Manager utility is unable to write the files to the correct directories,
generally due to incorrect file permissions, it prompts for a temporary location, by
default /tmp. At the end, the utility prompts you to move the files to their correct
locations using provided script, application-name.cfg.

For step-by-step instructions in using the web setup manager, refer to Appendix B,
“Web Setup Manager.” For more information on web initialization options, refer to
Chapter 12, “Web Initialization Options.”

Starting Your Panther Web Application

Using monitor

You can start your web application (when it is not a service) with the monitor utility
using the syntax:

monitor -start appname [appname ...]

and stop the web application using the syntax:

monitor -stop appname [appname ...]

Starting as a Service

On Windows, it is recommended that the Panther web application be installed as a
service. Use the monitor command in conjunction with the -install option. The full
syntax for that option is:

monitor -install application-name
[-display display-name]
[-{automatic|manual|disabled}]
[-user {\\domain\user|.\user}]
[-password password]
[[-depend service-name]...]

Once an application is installed as a service, monitor -start and monitor -stop
must not be used to start and stop the web application. net start and net stop can
be used for manual control, or use the Services section of the Control Panel.

It is also recommended that the services needed by the Panther web application start in
a specific order:
2-10 Web Application Setup

Creating a New Web Application
! Database engine

! Oracle Tuxedo IPC Helper (for JetNet and Oracle Tuxedo applications)

! HTTP server

! Panther Web application

Accessing Your Panther Web Application

The type of requester program determines the syntax of the URL needed to access your
application. The general syntax is:

http://serverName/programDirectory/applicationName/screenName

In the following URLs, the application name is inventory and the screen is main.scr.

To use the CGI executable to access the application:

! For Windows, copy proweb.exe to inventory.exe, start the application, and
access the screen using the following URL:

http://myhost.com/cgi-bin/inventory.exe/main.scr

! For UNIX, copy proweb to inventory, start the application, and access the
screen using the following URL:

http://myhost.com/cgi-bin/inventory/main.scr

To use the ISAPI executable to access the application, copy proweb.isa to
inventory.isa, start the application, and access the screen using the following URL:

http://myhost.com/cgi-bin/inventory.isa/main.scr

To use the NSAPI executable to access the application, copy proweb.nsa to
inventory.nsa, start the application using monitor or net start, and access the screen
using the following URL:

http://myhost.com/panther/inventory.nsa/main.scr

Your HTTP server may support another syntax; refer to the HTTP server
documentation.

If the web application is installed as a Java servlet, access the screen using the
following URL:
Web Development Guide 2-11

Setting Web Browser Options
http://myhost.com/proweb/inventory/main.scr

For more information on using Java servlets, refer to Appendix D, “Using Java
Servlets.”

Setting Web Browser Options

Caching should be enabled in the browser program. In Microsoft Internet Explorer,
select Tools→Internet Options in the Browsing History Settings dialog, choose one of
the Automatically or the Every time I visit the web page options.

Firewalls

A firewall is the system that administers the access policy between two networks. The
firewall determines which data is allowed network access and which data is blocked.
A firewall lets users on your internal network access the global Internet, and prevents
Internet users from accessing your internal network.

Panther is designed to work within whatever firewalls that are on your network. The
security issues for Panther are the same issues encountered for all CGI programs. To
be sure that your application operates within your company's firewall policy, check
with your network or system administrator.

Your HTTP server vendor is the best source of information about how to set up the
HTTP server to operate within a firewall and what security precautions are advised for
CGI programs.

A Panther web application requires the CGI directory to contain the application's
requester program. The remaining files in your application have configuration
variables whose specifications are in the application's initialization file.
2-12 Web Application Setup

Firewalls
For example, the AppDirectory variable specifies the location of screens, reports, JPL
modules, and graphics files. When Panther embeds the URL for the screen, it uses the
relative path name based on the AppDirectory variable, not the absolute path name.
Web Development Guide 2-13

Firewalls
2-14 Web Application Setup

CHAPTER
3 Setting Properties
for Web
Applications

This chapter discusses screen and widget properties and behavior that are specific to
Web applications. In most respects, screens and widgets have the same properties and
behavior in Web applications as on other platforms. You use the same tools—screen
editor, screen wizard, debugger—to create and test Web screens. For information
about these tools and common properties, refer to the Using the Editors.

Screen Properties

Table 3-1 lists screen properties by category and describes their relevance in Web
applications.
Web Development Guide 3-1

Screen Properties
Table 3-1 Screen properties and Web applications

Property Category Behavior Ignored properties

Identity Same Dialog
3D
Mnemonic Position

Geometry n/a All

Positioning Same

Color Same

Font Same if browser supports font
specification. See page 3-16,
“Font Properties.”

Focus Same Menu Name
Menu Script File

Help If the browser is enabled for
JavaScript, the Status Line Text
entry displays in the browser's
status message area

Starting in Panther 5.50, if
@app()->web_use_tooltips
is set to PV_YES and @app()->
web_alt_as_tooltips is set
to PV_NO, the Tooltip Text
property is used for images.

All other help options

Display Same Style
Border*
Icon
Pointer
Title Bar*
System Menu*

Transaction Same Fetch Directions

Web Options Refer to Table 3-2
3-2 Setting Properties for Web Applications

Screen Properties
Web Options Properties

Table 3-2 lists the Web Options properties for screens that have property settings that
are relevant only to Web applications:

* Set to No in order to maximize usage of browser window space.

Table 3-1 Screen properties and Web applications

Property Category Behavior Ignored properties

Table 3-2 Web Options properties for Web application screens

Web Options property Purpose More information

Secure POST If set to Yes, enable secure transfer of
sensitive data.

“Transmitting Screens
Securely” (page 4-6)

Display Window Set the window or frame used to display the
screen.

“Setting the Window for a
Screen” (page 8-14)

Target Default Set the window or frame to use as the
default target for hyperlinks that are
contained by the screen.

“Setting the Window for a
Specific Hyperlink”
(page 8-14)

Stylesheet Source Set the type and location of the stylesheet
for the screen.

“Using Style Sheets”
(page 8-19)

Browser Options Each of these properties specifies the
JavaScript or VBScript function to execute
when the corresponding event occurs.

Chapter 9, “Using
JavaScript and VBScript”

HTML Options The properties under Custom HTML let
you add elements or attributes to the HTML
that Panther generates for the screen.

“Screen Custom HTML
Properties” (page 8-2)
Web Development Guide 3-3

Widget Types
Widget Types

Table 3-3 lists Panther widget types whose presentation or behavior is different in Web
applications:

Table 3-3 Widget-type conversions and behavior in a Web application

Widget type Description

Push Button Executes an action or procedure and submits the screen back to
the HTTP server.

Combo Box Converted to text widgets.

Toggle Button If part of a multiple selection group, converted to a check box
group. Single toggle buttons are converted to radio buttons.

Scales Converted to text widgets.

List Box Selection list boxes in grid widgets are automatically converted
to columns of radio buttons or check boxes.

Action list boxes in a grid widget submit the screen back to the
server. They may appear as either hyperlinks or push buttons.

Tab Cards

Tab Decks

Vertical Lines

Not supported in browser.
3-4 Setting Properties for Web Applications

Widget Properties
Widget Properties

Widgets have several properties that are relevant only to Web applications. A number
of other properties are implemented differently in Web applications or are ignored
altogether. Three widget types–push buttons, selection groups, and grid widgets–are
discussed individually; widget positioning in an HTML document is also discussed
separately.

Web Options Properties

Table 3-4 lists Web Options properties that can be set for widgets used in Web
applications.

Table 3-4 Web Options properties for Web application widgets

Web Options property Purpose

Auto Expand If set to Yes, specify that the grid size is sized
dynamically to match the number of returned
rows.

Custom HTML properties The properties under Custom HTML let you
add elements or attributes to the HTML tag that
Panther generates for the widget.

Export to HTML Generate an HTML tag for the widget even if
the widget is hidden at runtime to enable
scripting access in a Web browser.

Image Map Divide the image on a dynamic label into a
separate sections, each with its own hyperlink.

Ins/Del Buttons If set to Yes, Insert and Delete buttons appear
at the bottom of the grid widget if one of the
grid members is unprotected.
Web Development Guide 3-5

Widget Properties
JavaScript Write JavaScript functions that can be
specified for any of the widget's Browser Event
properties.

VBScript Write VBScript functions that can be specified
for any of the widget's Browser Event
properties.

Browser Options Each of these properties specifies the
JavaScript or VBScript to execute when the
corresponding event occurs.

Keep Image Size If set to Yes, the GUI dimensions of the
widget's image is used when it is positioned in
the generated HTML.

Default Link Designate a dynamic label or graph widget to
act as a hyperlink by specifying the desired
URL.

Item Link In an array, designate a separate hyperlink for
each occurrence.

Submit If set to No, clicking on the push button will
run the JavaScript or Java attached to the
button and not submit the document back to the
server.

Scroll Buttons If set to Yes, scroll buttons appear to the left of
the grid if the number of rows is greater than
the size of the grid widget.

Target Set the browser window or frame to use in
order to display the resource that is invoked by
a widget's hyperlink.

Table 3-4 Web Options properties for Web application widgets (Continued)

Web Options property Purpose
3-6 Setting Properties for Web Applications

Widget Properties
Property Usage in Web Applications

Table 3-5 shows which properties are implemented differently in a Web application.

Table 3-5 Properties and their behavior in Web applications

Property Widget type Behavior

Identity properties

Default/Cancel Push button Ignored.

Hidden Any If a widget's Hidden property is set to Yes or Al
ways, no HTML tag is generated for the widget
and it is stored in the cache file. If set to Always,
no space is reserved for unhiding the widget at
runtime.

To generate an HTML tag for hidden widgets,
set its Export to HTML property to Yes.

Label Dynamic/static label Displayed in the browser's default font and point
size.

Mnemonic Position Push button Ignored.

Name Any Use the widget name in JPL procedures and C
functions. For JavaScript, use the HTML tag.

Geometry properties

Length Dynamic/static label,
push button

Ignored; the browser uses the label's length to
determine the widget's size.

Max Data Length Multiline text Ignored.

Scrolling Multiline text Ignored.

Size to Contents Dynamic/static label,
push button

Ignored; the browser uses the label length to
determine the widget's size.

Positioning properties Any Same

Color properties Any Depends on browser.
Web Development Guide 3-7

Widget Properties
Font properties Any Same, if browser supports font specification.

Focus properties

Focus Protection Single line, multiline
text

If set to Yes, widget's contents are displayed in
bold text.

Option menu, list box Ignored.

Next/Prev Tab Stop Any Ignored.

Help properties Any Except for Status Line Text, help options are
ignored.

Status Line Text Any If JavaScript is enabled, status line text for a
widget displays in the browser's status message
area.

Input properties Single line, multiline
text

If JavaScript is enabled, Panther automatically
generates JavaScript functions when many input
properties are set.

Edit Mask Single line text Only with JavaScript; otherwise, ignored even
when the widget cannot receive focus.

Input Protection Single line, multiline
text

If set to Yes, widget's contents are displayed in
bold text.

Validation properties

Calculation Any Ignored.

Double Click Any Ignored.

Format/Display properties

Active Pixmap Push button If a pixmap is set, onClick JavaScript event is
not activated on the Web browser.

Border Multiline text

Table 3-5 Properties and their behavior in Web applications (Continued)

Property Widget type Behavior
3-8 Setting Properties for Web Applications

Widget Properties
Push Buttons

Push buttons are used in Web applications to submit the form back to the server and
perform the processing associated with that button. Inactive push buttons use the
Inactive Pixmap property setting; if it is not set, the push button is drawn as display
text with a border.

The size of a push button is controlled by the browser, which typically uses the label
length; the push button's Length and Size to Contents properties are ignored.

JavaScript or VBScript can be specified for push buttons using the onClick event;
however, do not specify pixmaps in this case. In the HTML specifications, the pixmap
specification takes precedence, and the JavaScript or VBScript function for the push
button is not activated.

Customer Drawn Push button Ignored.

Justification Any Ignored.

Password Field Single line text If set to Yes, text entered in the HTML form is
displayed as asterisks (*). The JavaScript
function that converts case cannot be specified
for pass word fields.

Password Char Single line text Ignored.

Word Wrap Multi line text Word wrapping varies in each browser. All
browsers honor hard returns and newline
characters. Browser programs that support the
WRAP attribute insert soft returns in the text
string.

Table 3-5 Properties and their behavior in Web applications (Continued)

Property Widget type Behavior
Web Development Guide 3-9

Widget Properties
Using push buttons to perform processing in the browser

To perform the processing attached to a push button without submitting the form back
to the server, set the Submit property on the push button to No. One use for this
property is when Java or JavaScript is specified for a push button. If the Submit
property is No, activating the push button runs the Java/JavaScript on the Web browser
without additional interaction with the HTTP server.

Warning: Do not use push buttons in Web applications to execute shell commands
whose output is displayed back to the user. If you execute a shell
command, redirect the output to a file, then display that file to the user.

Selection Groups

You can use either radio button or check box widgets in a Web application to record
the user's selection. If an application contains toggle buttons that are part of a multiple
selection group, Panther converts them to a check boxes. Single-selection toggle
buttons are converted to radio buttons.

If a selection group's member has its Active property set to No, the widget is removed;
however, its text remains displayed.

Grid Widgets

Three types of widgets can be included in grid widgets—dynamic labels, single line
text, and list boxes. A Web application displays these widget types as follows:

! Dynamic labels appear as display text to indicate that they do not allow user
data entry.

! Single line text widgets appear as input text fields if they are not protected;
otherwise, they appear as bold display text.

! List boxes are displayed according to the setting of the Listbox Type property.
If the Listbox Type is set to Action, the values appear as hyperlinks inside the
grid. If the Listbox Type is set to Select Any, the values are converted to
columns of radio buttons or check boxes—radio buttons if the group's Number
of Selections property is set to 0 or 1 or 1; check boxes if Number of Selections
is set to Any.
3-10 Setting Properties for Web Applications

Widget Properties
Figure 3-1 A grid widget that contains four members: dynamic label, single line
text, list box set to Select Any, and list box set to Action.

Dynamically Resizing Grids

By default, the grid widget is created with a fixed size that is calculated from its
Onscreen Rows property. If the number of rows in a grid is greater than this property,
Panther inserts a column of scrolling push buttons to enable access to the unseen data
(refer to page 3-13, “Scrolling Grids.”). You can specify that a grid's size be set
dynamically by setting its Auto Expand property (under Web Options) to Yes. When
data returns, the size of the grid matches the number of returned rows. The screen size
limit of 255 lines is not enforced with expandable grids.

When an expandable grid widget's size changes, all other widgets on a screen maintain
their position relative to its borders. For example, when the grid expands, the widgets
below it shift down. If widgets are aligned to the bottom of the grid, their positions
remain unchanged, and they stay aligned to the bottom of the grid.

For sample usage, refer to the Panther Web gallery example Expandable Grids.

Selecting and Modifying Grid Data

If one or more grid members is unprotected, Panther, by default, modifies the grid in
two ways:

! Includes push buttons at the bottom of the grid for inserting and deleting a row
(if the Ins/Del Buttons property is set to Yes).
Web Development Guide 3-11

Widget Properties
! Inserts a column of radio buttons in the leftmost position of the grid widget (if
the Radio Buttons property is set to Yes). These radio buttons visually indicate
the current row selection.

If all grid members are protected, you can allow users to select a row by setting the grid
widget's Stripe Current Row property to Yes. A grid thus set contains a column of radio
buttons that enable user selection.

When the screen is submitted back to the server, Panther sets the grid_current_occ
property to the selected row and performs all grid row entry and exit functions.

Figure 3-2 When the Radio Buttons property is set to Yes, radio buttons appear
in the left column of the grid if one of the grid members is unprotected or if the
grid's Stripe Current Row property is set to Yes.

If the Ins/Del Buttons property is set to No, the buttons to insert and delete rows are
not generated. If the Radio Buttons property is set to No, the radio buttons indicating
the current selection are not generated, even though the current selection is still
tracked.

When screens are submitted at runtime, Panther variables contain information about
the grid push button that was pressed and the grid's object ID and occurrence number.
For more information, refer to page 5-9, “Web Entry Context Flags.”

The grid push buttons derive their GIF images from a Panther library:

Push button GIF file

Insert Above gridsi.gif

Insert Below gridsa.gif
3-12 Setting Properties for Web Applications

Widget Properties
Scrolling Grids

If a grid widget's size is fixed and it contains more rows than its onscreen size allows,
a column of push buttons are inserted in the leftmost position of the grid widget to
enable scrolling:

Figure 3-3 A grid with unseen rows contains push buttons for scrolling all data
into view.

This default behavior can be changed by setting the Scroll Buttons property on the grid
widget to No.

When screens are submitted at runtime, Panther variables contain information about
the grid push button that was pressed and the grid's object ID and occurrence number.
For more information, refer to page 5-9, “Web Entry Context Flags.”

The grid push buttons derive their GIF images from a Panther library:

Delete Row gridsd.gif

Push button GIF file

Push button GIF file

Bottom gridbb.gif

Screen Down griddn.gif
Web Development Guide 3-13

Widget Properties
The Panther Gallery contains sample screens entitled Action & Selection in Grids and
Scrolling Grids, and is accessible from the Web application server:

http://server-name/cgi-bin/jwsamp/main

Widget Positioning

To maintain widget positions within an HTML document and maximize usage of
window space, the following position-specific properties and design options are
provided.

Overlapping Widgets

HTML does not support overlapping widgets. In order to quickly detect overlap ping
widgets, radio buttons, check boxes and labels have borders to indicate whether they
overlap another widget. These borders do not appear at runtime. Additionally, to check
for overlapping widgets while editing a screen, choose Edit→Find→Overlapping
Widgets. To check for overlapping widgets when a screen in saved, choose
Options→Check Overlap on Screen Save.

Horizontal and Vertical Anchors

Each widget has two anchor properties–Horizontal Anchor and Vertical Anchor—to
help align widgets. These properties can be set manually in the Properties window, but
they are also set automatically when the screen editor's alignment feature is used. Thus,
if you left-align a group of widgets, you are automatically setting their horizontal
anchor properties to be left. Panther uses these anchor properties to determine how
widgets are aligned with other widgets on the screen.

Screen Up gridup.gif

Top gridtt.gif

Push button GIF file
3-14 Setting Properties for Web Applications

Widget Properties
Each widget has one vertical and one horizontal anchor property, so you can control
alignment once in each direction. If you align a widget one direction and then realign
it the other way, only the latter setting of the anchor property is in effect. So, you can
align a large widget like a pixmap or a grid widget relative to a widget on the left or on
the right, but not both.

For example, a screen has a pixmap with several widgets to one side of it. The
pixmap’s Vertical Anchor property is set to middle.

Panther uses that middle point to determine where the pixmap lies relative to the
widgets to the side of it. With this setting, you cannot directly control whether the
topmost widget is above or below the upper border of the pixmap. To ensure that the
topmost widget lies below the upper border of the pixmap, specify the pixmap’s
Vertical Anchor to be top and make sure that the topmost widget's vertical anchor is
below the upper border of the pixmap.

Snap to Grid

In the screen editor, select Options→Snap to Grid. With this option enabled, a new
widget is automatically positioned at the nearest grid point. This makes it easier to
visually align widgets.

Spacing of Widgets

If you want a group of widgets to be spaced close together, select all these widgets;
then use Edit→Space→Custom to distance them at 0, either horizontally or vertically.

Positioning Regions

If you find that widgets are being pushed out further than expected in the generated
HTML, place repeated design elements together in a positioning region. Widgets
inside a positioning region keep the same relative distance to each other when the
HTML is generated. A positioning region is defined through a box widget (refer to
“Using Boxes as Positioning Regions” on page 22-6 in Using the Editors); a screen can
have multiple positioning regions.
Web Development Guide 3-15

Font Properties
Maximum Usage of Space

Three screen properties that are otherwise ignored can affect how closely widgets can
be positioned next to the browser window's borders: Border, Title Bar, and System
Menu. Set all three properties to No in order to allow widgets to abut on the browser
window's borders without any intermediate space.

Fonts

One browser may create its widgets using different font families and sizes than another
browser, or than the Panther screen editor. This results in screens that can appear
slightly different (more or less space between widgets) from browser to browser, or
from browser to screen editor. Specifying font sizes in the Panther screen editor results
in better positioning than using header tags, such as H1.

Font Properties

If the Font Name or Point Size property for a screen or widget is set to a value other
than Default, the generated HTML specifies fonts and sizes in this format: <div
style="font-size:relative-fontsize;font-family:font-family-names"

>

Font Name

If a screen has its Font Name property set, a style tag that specifies this setting is
generated for each widget whose Font Name property is set to Default. If a widget has
its own Font Name property setting, the HTML contains a style tag that specifies the
widget's font.

If font-name is supported by the browser, this setting overrides the browser's
proportional and fixed font settings.
3-16 Setting Properties for Web Applications

Font Properties
The font name must map to a font that the browser supports in order to have effect. For
maximum flexibility, set the Font Name property to a font alias whose definition in the
Web configuration map file webcmap specifies one or more fonts. For example, this
entry maps Prolifics Helvetica to three comma-delimited sans serif fonts:

Prolifics Helvetica=Helvetica,Arial,Geneva

When HTML is generated, all Font Property settings that specify Prolifics Helvetica
are mapped to Helvetica,Arial,Geneva in a style tag. Then the HTML is
rendered, the browser will use the first font in the list that it supports.

When HTML is being generated by prorun or prodev, if the Configuration Map file has
the [HTML Fonts] section, the font aliases specified are used instead of those in the
[Display Fonts] section.

Font Size

If a screen has its Point Size property set, a style tag that specifies this setting is
generated for each widget whose Point Size property is set to Default. If a widget has
its own Point Size property setting, the HTML contains a tag that specifies the widget's
relative size.

Point Size property settings for screens and widgets are converted into equivalent
HTML font sizes, as shown in Table 3-6:

Table 3-6 HTML Font Sizes

Point size Relative font size

6, 7, 8, 9 60%

10, 11, 12 80%

13, 14 100%

15, 16, 17 120%

18, 19, 20 150%

21, 22, 23 200%

24, 26, 28, 36, 48, 72 300%
Web Development Guide 3-17

Application Properties
Application Properties

Web applications also have access to the following runtime properties:

in_web

Determine whether the application is running as a Web application, so that
appropriate actions can be taken. It is possible to create screens and write
code that is common to two-tier, three-tier, and Web applications; this
property determines the current environment.

Values: PV_YES/, PV_NO

Constraints: Read-only.

The following section of a JPL procedure would hide the push buttons needed
for Web processing in other types of applications:

if (@app()->in_web=PV_NO)
{
pb_details->hidden=PV_YES
pb_back->hidden=PV_YES
}

The Panther Web Gallery contains a documentation sample entitled Web and
GUI Application which uses in_web. The Panther Web Gallery is accessible
from the Web Application Server at:

http://server-name/cgi-bin/jwsamp/main

previous_form

The current screen as specified in the cache file. (Refer to page 6-2, “Caching
Data.”)

webid

Determine the name of the next cache file to be generated by the web
application server. (Refer to page 6-2, “Caching Data.”)
3-18 Setting Properties for Web Applications

CHAPTER
4 Opening Screens

A Panther Web application can specify to open a screen in several ways:

! Enter the screen name in a URL.

! Create a hyperlink to the screen.

! Open the screen through application processing.

With the first two methods, the URL specified in the browser or hyperlink contains the
name of the HTTP server where the Panther screen is located. The HTTP server passes
the URL request to Panther using CGI's GET method.

Panther then performs any processing, generates the HTML for the screen, and sends
the data to the browser. If the user activates a push button on the screen, the browser
submits the screen back to the HTTP server. This time the HTTP server uses CGI's
POST method to relay the submitted screen.

The protocol used to send the screen data is determined by the URL. For many requests
on the Internet, the HTTP protocol is used, but to transfer data securely, the HTTPS
protocol must be specified.

This chapter describes how to open Panther screens with a URL and which protocol to
use in order to transfer the data.
Web Development Guide 4-1

Processing Screen Requests
Processing Screen Requests

When the URL reaches the HTTP server, the server passes information about the
request to the CGI program named in the URL. This information is contained in a
series of environment variables. Three variables facilitate data transfer:

! REQUEST_METHOD

! QUERY_STRING

! CONTENT_LENGTH

The value of REQUEST_METHOD indicates how data in your form is submitted back to
the server. Form data can be submitted with two methods: GET and POST. The FORM tag
in the HTML document contains a METHOD attribute that indicates which method is
used.

If the GET method is used, all form data is passed in the URL. Data input appears as a
name=value pairs, which are put into CGI's QUERY_STRING variable. The form's input
field name must match the Panther widget or variable name.

Because GET passes all data to the CGI program in a URL, the amount of data that can
be passed is limited. For this reason, most forms are submitted back to the server with
POST. With POST, the form data appears in standard input and CGI's CONTENT_LENGTH
variable determines the amount of data to process. This is the method that Panther uses.

A sample screen in the Panther Gallery uses the GET method to send data to a search
engine. This sample entitled Search Engine is accessible from the web application
server:

http://server-name/cgi-bin/jwsamp/main

Specifying a URL

After a Panther web application is started using the monitor command or started as a
Windows service, a screen in the application is typically opened by:

! Entering the screen name in a URL.
4-2 Opening Screens

Processing Screen Requests
! Creating a hyperlink to the screen.

Both methods require the screen's URL. URLs (Universal Resource Locator) use the
naming convention developed by the World Wide Web to uniquely identify Web
resources. The URL that opens a Panther screen contains this information:

! The protocol to use in accessing the server–for example, http or https.

! The Internet domain name for the HTTP server where the resource is stored.

! The port number of the HTTP server. If the port number is 80 (the default
value) the port number is not displayed in the URL.

! The programs directory that contains the Panther requester program.

! The name of the Panther requester program. The default name for the CGI
version is proweb (or proweb.exe).

! The name of the screen or report.

In the following URL, the HTTP protocol is used to access the server at
prolifics.com. The CGI directory, cgi-bin, contains Panther's CGI requester
program, vidbiz. This application directory contains the screen entitled main.scr:

http://prolifics.com/cgi-bin/vidbiz/main.scr

Encoding Parameters in the URL

The GET method lets you add information in a URL beyond the resource name.
Because certain ASCII characters have a specific use in a URL, you might need to
encode the additional information so that it is correctly interpreted.

To format the URL correctly, apply the following rules:

! A question mark (?) follows the resource name, before any additional
parameters.

! A space in the URL string is indicated by a plus sign (+).

! A percent sign (%) precedes any special characters encoded in hexadecimal
notation.

! An ampersand (&) delimits each name=value pair from the next.
Web Development Guide 4-3

Processing Screen Requests
! An equal sign (=) separates the input field name from its value in each
name=value pair. If nothing has been entered in the input field, the URL string
will contain the entry "name=".

Example

The following URL retrieves the vid.scr screen in the vidbiz application:

http://myserver.com/cgi-bin/vidbiz/vid.scr

To pass data values in the URL, use the GET method to submit the form. The data in
the form's input fields are included in the URL as name=value pairs. To map those
values to a screen, the name of the input field must match the widget name. The
following URL sends the values from the title_id and copy_id fields to the vid.scr
screen:

http://myserver.com/cgi-bin/vidbiz/vid.scr?title_id=9©_id=2

To specify the occurrence number of an input array, place the occurrence number
inside a pair of square brackets. The following URL sends the values to the fifth
occurrence from a widget of the same name:

http://myserver.com/cgi-bin/vidbiz/vid.scr?title_id[5]=9

Encoding ASCII Characters

If the characters used to format the URL appear in the URL for any other purpose, they
must be encoded. Table 4-1 lists common special characters and the hexadecimal
value for each character.

Table 4-1 Special characters in URLs

Special Characters Hexadecimal Representation

%23

/ %2F

? %3F

= %3D

& %26
4-4 Opening Screens

Processing Screen Requests
In addition to special characters, there are several ASCII characters that can only be
present in an encoded format. As with the special characters, the ASCII characters
must also be preceded by the percent sign (%). Table 4-2 lists these disallowed ASCII
characters along with their encoded format.

Table 4-2 ASCII characters that are disallowed in URLs

Character Hexadecimal representation

TAB %09

SPACE %20

" %22

< %3C

> %3E

%5C

^ %5E

{ %7B

} %7D

[%5B

] %5D

` %60

| %7C

~ %7E
Web Development Guide 4-5

Transmitting Screens Securely
Transmitting Screens Securely

Information over the Internet travels through a network of many computer systems,
each with the capacity of intercepting the information. In order to add a layer of
security to this system, the SSL (Secure Sockets Layer) protocol was developed. SSL
provides the features, such as server authentication and data encryption, that are
needed to transfer data securely.

Setting Screen Properties

To use SSL in a Panther Web application, you must have a secure HTTP server,
specify that HTTP server in the application's initialization file in the HTTPSHOST
variable, and set the Secure POST property in Panther screens.

When Panther finds the Secure POST property set to Yes, that screen is submitted using
the HTTPS protocol. Panther continues to use the HTTPS protocol until the
application opens a screen that has the Secure POST property set to No.

Determining Screen Sequence

Graphical browsers use an icon to indicate whether the HTTPS protocol is in use. For
example, Mozilla Firefox displays a lock icon in the address bar when the transmission
is secure. However, this icon does not tell how the current screen is to be submitted
back to the server; it only shows which protocol was used for the previous submission.

Given this limitation, you might want to build a certain screen sequence into your
application surrounding the transmission of secure information. For example, an order
entry application has a payment screen where the user enters their credit card
information. To transfer this data securely, you might create this screen sequence:

1. After making selections, the user presses a push button to enter payment
information.
4-6 Opening Screens

Transmitting Screens Securely
2. A screen opens explaining that the user is making a secure transmission. The
Secure POST property in this screen is set to Yes.

3. The push button on this screen opens the payment screen. The Secure POST
property in this screen is also set to Yes.

4. The user enters the payment information and submits this screen back to the
server.

By opening an introductory screen whose Secure POST property set to Yes, the user can
visually see the secure icon on the payment screen.

Configuring Your Web Application

A Panther application's initialization file must include the variables for screens that are
submitted with the HTTPS protocol, which transmits data to a secure server, and the
HTTP protocol, which transmits data to an unsecured server.

HTTPHOST

Specifies the server for the HTTP protocol. This variable must be set only if
both secure and unsecured servers are operational.

HTTPSHOST

Specifies the server for the HTTPS protocol. This variable must be set in
order for the HTTPS protocol to be available.

If the two types of servers are on different hosts, the entries in an .ini file might
appear as follows:

HTTPHOST=apphost.com
HTTPSHOST=safeserve.com

Note: Port numbers are not necessary if the default port is used–80 for http, 443 for
https.

If the two types of servers are on different domains of the same host, the entries in the
.ini file might appear as follows:

HTTPHOST=apphost.myserver.com
HTTPSHOST=safeserve.myserver.com

In order to use server caching, both servers must be able to access a common cache
directory. Otherwise, the application must use browser caching.
Web Development Guide 4-7

Transmitting Screens Securely
4-8 Opening Screens

CHAPTER
5 Web Events

Application processing in Panther occurs by executing a series of events. Panther
supports several event hooks that are specific to Web applications. This chapter
describes the following event types:

! Web Event Hooks (page 5-1)

! Web Application Events (page 5-5)

! Screen Entry Context Flag—K_WEBPOST (page 5-7)

! Web Entry Context Flags (page 5-9)

Web Event Hooks

Panther has four Web application event hooks where you can attach JPL procedures.
Four events are defined: web_startup, web_enter, web_exit, and web_shutdown.
When one of these events occurs, Panther searches for a JPL procedure that has the
corresponding event name.

web_startup

Called when the Panther Web application starts up. This event hook performs
start up processing or specifies application-wide settings. You can use a
web_startup procedure to create global variables, to establish database
connections for two-tier applications, or to establish request broker
connections for three-tier applications.
Web Development Guide 5-1

Web Event Hooks
proc web_startup //2-tier
DBMS ENGINE jdb
DBMS DECLARE jdb_conn1 CONNECTION FOR DATABASE "videobiz"
return

proc web_startup //3-tier
client_init
return

web_enter

Called after the Panther screen has been opened and the data from the browser
has been mapped into the screen. This hook can be used to validate the
contents of screens and to verify data before acting upon a request.

When a screen is submitted, values are written to Panther variables which can
be used in web_enter processing. These variables tell why the screen was
submitted, the object ID of the widget involved, and the occurrence number,
if applicable. For more information, refer to page 5-9, “Web Entry Context
Flags.”

The following web_enter procedure from the Panther Gallery specifies a
different graphic and hyperlink if the documents are displayed using frames.

proc web_enter
if frames=1
{
// If using frames, use jlogomin.gif.

 gallery->active_pixmap = "jlogomin.gif"
 gallery->default_link = ""
}
else
{
// If frames unavailable, use Gallicon.gif and set hyperlink.

 gallery->active_pixmap = "Gallicon.gif"
 gallery->default_link = "main"
}
return

web_exit

Called just before the HTML generation. This hook offers a last chance to
change a screen before

Panther generates the HTML for presentation in the browser. Screen exit
processing occurs after the HTML is generated; therefore, screen exit
processing cannot affect the generated HTML.
5-2 Web Events

Web Event Hooks
The following web_exit procedure unhides the grid containing the address
information if the JPL global variable show_details is set to PV_YES. This
variable is created during screen entry and is set to PV_YES on POST events.

proc screen_entry (data, flags)
if !(flags & K_WEBPOST)

// If this is a GET, create variable
// and set to No
{
 global show_details = PV_NO
}
else // If this is a POST, create variable and set to Yes
{
 global show_details = PV_YES
}
return

proc web_exit ()
if show_details = PV_YES // If show_details set to Yes for
 // a POST, grid is unhidden
{
 address_grid->hidden = PV_NO
}
else // hide grid
{
 address_grid->hidden = PV_YES
}
return

web_shutdown

Called when a Panther Web application shuts down. Use this hook to close
the database and request broker connections that are created in web_startup.
You can also use it to perform any other necessary clean up.

Note that this procedure is only called if the application shuts down cleanly,
such as with the monitor utility.

proc web_shutdown //2-tier
DBMS CLOSE CONNECTION jdb_conn1
return

proc web_shutdown //3-tier
client_exit
return
Web Development Guide 5-3

Web Event Hooks
Specifying Web Event Hooks

When a Web application event occurs, Panther searches for a JPL procedure with the
event name and, if found, executes it.

Panther executes the first JPL procedure that it finds with this name, using this search
algorithm:

1. If the call is issued from a JPL module, a named procedure in that module.

2. A named procedure in the current screen's module.

3. A named procedure in a public module. If the procedure name exists in more
than one public module, Panther uses the procedure in the most recently loaded
module.

4. A memory-resident module.

5. A named procedure in the JPL module named in the application variable,
SMINITJPL. Because Panther automatically publics this module as part of its
initialization, the default processing for each of the Web event hooks can be
defined here.

Given this search order, a Web application can have multiple JPL procedures for the
same event. For example, you can define the web_enter procedure and issue the
public command on it at application startup; this procedure performs default
processing for all screens. However, a specific screen can have its own web_enter
procedure; when this screen is open, Panther finds its web_enter procedure first and
executes it. The default web_enter procedure is executed when subsequent screens
open that lack their own web_enter procedure.
5-4 Web Events

Web Application Events
Web Application Events

Web Application Server Events

After Panther is installed and configured on your system, each Web application server
performs the following steps when it is initialized:

1. Loads any JPL modules specified by SMINITJPL in smvars.bin or in the Web
application's initialization file.

2. Calls the JPL procedure web_startup.

If the Web application server receives a request to terminate from the monitor utility,
it performs the following steps:

1. Executes the JPL procedure web_shutdown.

2. Performs normal Panther shutdown processing and exits.

Screen Events

For each screen request or submission, Panther performs these steps:

1. Restores any open bundles (created by the send command) and global JPL
variables that come back from the browser or have been cached on the server.

2. Opens the screen by calling sm_r_form. This causes the following screen entry
processing:

" Executes the unnamed JPL procedure.

" Initializes the transaction manager which issues a START command.

" Executes the default screen function.

" Executes the screen entry function.

" Merges with the LDB.
Web Development Guide 5-5

Web Application Events
" Executes the AUTO control string.

3. On a POST, restores the contents of fields as specified by data from the browser
and from the server cache.

4. On a GET, processes variable assignments from the QUERY_STRING.

5. If a button was pushed, calls sm_gofield for that button.

6. Calls the JPL procedure web_enter.

7. If a button was pushed, calls sm_ungetkey for the NL logical key.

8. Invokes the Panther executive to perform normal processing until key input is
required. This includes:

" Execution of the default field function.

" Execution of the field entry function for the first field.

" Processing the NL key from Step 7.

" Execution of the application processing defined in the screen.

Error messages, instead of requiring a user response, are processed by
automatically executing the processing assigned to the default push button.

9. Calls the JPL procedure web_exit.

10. Generates HTML for the screen and sends that data to the browser.

11. Closes all open windows, which executes normal screen exit processing. Note
that this cannot affect the already generated HTML.

12. Deletes appropriately marked JPL variables.

13. If a C web event hook finction was installed by calling sm_web_set_onevent,
this function is called.
5-6 Web Events

Controlling Entry Processing
Controlling Entry Processing

Screen Entry Context Flag

K_WEBPOST is a context bit flag that is set to true when Panther opens a screen because
of a browser's POST command. When you press a push button on a browser screen, the
data is sent back to the HTTP server with the POST method and the K_WEBPOST flag is
set. If part of that screen's processing is to open another screen on the Panther server,
K_WEBPOST flag is not set for the second screen. Only after you post the second screen
back to the server does the K_WEBPOST flag get set.

For example, your application screen selects data from the database on screen entry
and displays that data to the user so that the user can make a selection. At this point,
Panther performs these actions:

1. Receives the URL request for the screen (using the GET method).

2. Opens the screen.

3. Executes screen entry processing which selects the data.

4. Generates HTML for the screen.

5. Sends the data to the browser making the request.

The user then makes a selection and submits the screen back to the server where
Panther performs these actions:

1. Receives the screen data (using the POST method).

2. Reopens the screen.

3. Reexecutes screen entry processing which reselects the data, wiping out the
user's selection.

You can test the K_WEBPOST flag so that the screen entry procedure selects data only
when a user requests the screen, not when the user submits the screen back to the server
on a POST. For example:
Web Development Guide 5-7

Controlling Entry Processing
proc scr_entry(scr_name, flags)
if !(flags & K_WEBPOST)
{

DBMS QUERY SELECT title_id, name, pricecat FROM titles
}
return

In the Panther Gallery, HTTP Request Method illustrates a screen using K_WEBPOST.
The Panther Gallery is accessible from the Web application server:

http://server-name/cgi-bin/jwsamp/main

Screen Entry Processing and Option Menus

An option menu widget can have its Drop Down Source property set to External
Screen so that it gets its data from a database. When a Panther screen has an option
menu thus set, its screen entry event is processed twice—when the screen initially
opens, and again after it returns from populating the option menu. When the Panther
screen opens on a GET and then reopens on a POST, the additional screen entry event
that is triggered by the option menu occurs on both the GET and POST events.

You can control screen entry processing so that it occurs only on the desired event:

! Set the application variable EXPHIDE_OPTION to OFF_EXPHIDE so that screen
entry events only occur when the screen is explicitly opened.

! Test the K_EXPOSE flag. This flag is set to true only if the screen is exposed
after another screen is closed. This is what occurs with the option menu
initialization.

The following JPL procedure tests the K_EXPOSE and K_WEBPOST so that screen entry
processing occurs only on GET and POST events; this processing is avoided when
screen entry occurs after option menu initialization:

proc scr_entry (name, flags)
if (!(flags & K_WEBPOST) && !(flags & K_EXPOSE))
{
// Processing occurs only on a GET event.
}
if ((flags & K_WEBPOST) && !(flags & K_EXPOSE))
{
// Processing occurs only on a POST event.
}

5-8 Web Events

Controlling Entry Processing
Web Entry Context Flags

When a screen is submitted, values are written to the following variables for use in
web_enter procedures:

@web_action

This variable tells why the screen was submitted. The values are:

PV_SUBMIT

General submit (using JavaScript submit or by pressing Enter in a
text field).

PV_BUTTON_PRESS

Push button was pressed. PV_INSERT, PV_APPEND, PV_DELETE,

PV_SCROLL_UP, PV_SCROLL_DOWN, PV_SCROLL_TOP, PV_SCROLL_BOTTOM
The corresponding grid push button was pressed.

@web_action_widget

For PV_BUTTON_PRESS, this will contain the object ID of the button that was
pressed.

For the grid push buttons, this will contain the object ID of the grid being
operated on.

Otherwise, this will contain PR_NULL_OBJID.

@web_action_occurrence

For PV_BUTTON_PRESS, this will contain the occurrence number of the button
pressed.

For PV_INSERT, PV_APPEND and PV_DELETE, this will contain the occurrence
being operated upon.

For PV_SCROLL_UP, PV_SCROLL_DOWN, PV_SCROLL_TOP and
PV_SCROLL_BOTTOM, this will contain the occurrence number placed in the
first onscreen element of the grid being scrolled.
Web Development Guide 5-9

Controlling Entry Processing
5-10 Web Events

CHAPTER
6 Preserving
Application State

Unlike other platforms, a Panther application that is running on the Web does not
completely control the sequence of its own screens. The inherent Web behavior is for
an application to transmit a screen to the browser, break the connection and terminate.
The application restarts when the screen is submitted back to the HTTP server,
retaining no memory of the previous transmission. Also, the user can disrupt the
application's screen sequence by using browser controls, such as the Back push button,
to view screens outside the control of the Panther application. The user can also shut
down the browser program and never submit the screen back to the server.

However, a typical database application requires continuity across multiple ex changes
of data. For example, an application accepts a user name on the first HTML form. After
receiving the user name, the application selects database information for that user
name and returns it in another HTML form to the browser. When the browser submits
the second form with updated information, the application might need the user name
from the first form to save the changes. Because the HTTP server is stateless, it has no
information about the previous form.

The following sections discuss features and options that let you save the state of a
Panther Web application.
Web Development Guide 6-1

Caching Data
Caching Data

In order to pick up where it left off, Panther caches data for a screen before it generates
its HTML and transmits it to the browser. A screen's data needs to be cached
differently depending whether the METHOD attribute is set to POST or GET.

Posting Screens Back to the Server

By default, Panther generates screens with the METHOD attribute set to POST. With this
method, each screen in the application has a push button which submits the screen back
to the web application server.

If the screen is posted back to the server before the cache expires, Panther finds the
screen's data cache, restores it, and executes the next step in the application. An
application can cache screen data either on the browser or on the server; the application
specifies its caching method through the initialization option BrowserData, whose
default is set to enable server caching.

The user of a Web application can interact with the screen in the following ways. Your
data caching options determine the application's behavior in these situations:

The user fills in the screen and posts it without delay or side trips to other screens.
Between receiving and posting the screen, the user redisplays another Panther screen
through non-Panther controls such as the browser's Back and Forward push buttons.

The user posts the screen, then redisplays it through browser controls and posts it
again. (Some browsers detect this action and prompt the user for confirmation of the
repost.)The user posts the screen but its data cache has expired. The user quits the
browser program and never posts the screen.

If browser caching is enabled, cached data is encoded in the HTML document that is
generated for the Panther screen and sent to the browser. When the screen is posted,
the browser returns the encoded data cache along with user-entered data. Browser
caching must be used if the https server and the http server are unable to share a
common cache file directory.
6-2 Preserving Application State

Caching Data
Browser caching offers these benefits:

! The user can always post the screen. The post never expires and never fails.

! No server disk space is devoted to cache files.

However, browser caching can (depending on your application) greatly increase the
size of the HTML document and the amount of time it takes to download the screen.

If server caching is enabled, cached data is maintained in the cache file directory when
a screen is transmitted to the browser. The cache file directory is specified by the
initialization option CacheDirectory. When a screen is posted back to the server, the
data is retrieved from the cache file and mapped into the Panther screen along with user
entries.

If the initialization option RetainCacheFiles is set to 0 (no), Panther automatically
deletes cache files after the corresponding screen is posted back to the server.

If the initialization option RetainCacheFiles is set to 1 (yes), Panther retains the
cache files until its lifetime exceeds the time limit specified by the ExpireTime
initialization option. By default, ExpireTime is set to 120 (two hours). If a screen's
cache file is retained, the user can redisplay the screen with the browser's Back push
button and repost it.

All server cache files can be retained indefinitely if RetainCacheFiles is set to 1
(yes) and ExpireTime is set to a negative number.

You can also use the monitor utility to delete cache files manually.

If the application lets users go to other Web resources through action list boxes or calls
to sm_web_invoke_url, it must retain cache files so the user can return to the Panther
Web application.

If the cache file is unavailable when the screen is posted, Panther transmits the
smrepost.scr screen, which reports the error that the cache file is unavailable. This
behavior can be changed with global variable @web_posted_screen, which contains
the name of the most recently posted screen.

One use for this variable is in smrepost.scr. As part of the screen entry procedure for
this screen, you can test for the value of @web_posted_screen and specify the
application's behavior based on its value.
Web Development Guide 6-3

Caching Data
Getting Screens from the Server

Instead of submitting screens back to the server with a POST, you can use a GET if you
retain the current state information on the server and program the screen to store the
cache filename and ask for it on the GET as part of the URL.

This allows you to use hyperlinks to retrieve screens, to have state information
available in a series of HTML templates, and for all screens in a frameset to share the
same state information.

In order to use this method, the web initialization file must have EnableWebid set to
1. Just before the HTML is generated for the screen, obtain the name of the next cache
file to be generated using the webid application property and store it in a variable. The
following JPL command stores the name in a variable called my_cache.

my_cache=@app()->webid

To retrieve the next screen using a GET, use @webid in the URL:

http://myserver.com/cgi-bin/myapp/next.scr?@webid=my_cache

To use this feature, BrowserData must be set to 0, which allows cache files to be
generated. It is also recommended that RetainCacheFiles be set to 1, especially if
using multiple screens in a frameset.

Since there are security issues using @webid in the URL which would allow
non-application users to retrieve the state information, you can use the
previous_form application property to store the name of the last screen that was
accessed and then check it on screen entry. The following screen entry procedure calls
a security error screen if the previous screen value is not correct:

if (@app()->previous_form != "first.scr")
{
call sm_jform("security_error.scr")
}

Cached Data

Panther automatically caches the following data about an application's state:

! Scrolling widgets—If the user posts a screen by pressing one of the VCR scroll
buttons, the Web application server can get the next page of rows because it
6-4 Preserving Application State

Caching Data
remembers the scroll state of the widgets–that is, it remembers which
occurrences were visible when the HTML was generated.

! Transaction manager before-image data and mode—The transaction manager
can generate SQL statements properly by accessing the data's before image.
Also, Panther must preserve the transaction mode: if a screen in transaction
manager update mode is sent to a browser, Panther must recognize that the
screen is in update mode when it is posted. Otherwise, the transaction
manager's save command (sm_tm_command("SAVE")) cannot know what action
to perform.

If no cached data is available for a screen, Panther posts an error message. Regardless
of whether data is cached, Panther always updates the @web_posted_screen variable
after each screen posting to contain the name of the posted screen. A screen's entry
procedure can use this variable to find out which screen preceded it and thereby
determine the application's behavior.

Several objects that are cached can be used to save the application's state–hidden
widgets, send bundles, and context globals. These are discussed in the following
sections.

When Panther builds the cache file before HTML generation, it saves the values of all
hidden widgets on the active screen. When Panther reopens the screen on a subsequent
POST, it updates the screen's hidden widgets with their cache values. In fact, all widgets
are updated at once: visible widgets are updated with their browser-supplied values;
hidden widgets are updated with their cache values. This occurs after normal screen
entry processing and before the web_enter event executes.

When Panther builds the cache file before HTML generation, it saves the values of
bundles created by the send command. A bundle is accessible if no receive command
has been issued on it, or the receive command was issued with the keep option. When
Panther opens the cache on a subsequent POST, it restores all bundles before it opens
the screen. This occurs before the screen opens so that bundle data is available to the
screen's unnamed JPL procedure or any later event.

For example, an application's first screen might put the contents of an address array
into the addr bundle:

send bundle "addr" data address

When a subsequent request needs the address values, it executes this receive command
and puts the bundle into the whereami field:

receive bundle "addr" data whereami
Web Development Guide 6-5

Caching Data
User-specific information can be saved in JPL context global variables. Each context
global is private to a single user of a Web application server; to create one, call
sm_web_save_global on a JPL global variable previously created with the global
command. When Panther builds the cache file before HTML generation, it saves the
values of all context globals. On opening the cache on a later POST, Panther recreates
the context globals and initializes them to the cached values. This occurs before the
screen is opened, so all context globals are available to the screen's unnamed JPL
procedure or later events.

Panther saves context globals in subsequent cache files until the application calls
sm_web_unsave_global or sm_web_unsave_all_globals, which remove context
globals one at a time or all at once.

For example, the HTML form that accepts the user name might execute the following
during processing for the POST event:

proc enter (screen, status)
if (status & K_WEBPOST)
{
// Create a JPL global
global current_user(31)

// Set it to the value of the widget called user.
current_user = user

// Make current_user a context global so it is
// saved between transmissions.
call sm_web_save_global("current_user")

}

After this procedure executes, requests can refer to the current_user global. For
example, if a subsequent request selects database values and a later request saves
changes to them, the save screen might include the user name in its status messages:

proc save_changes
call sm_tm_command("save")
if (sm_tm_inquire(TM_STATUS) == 0)
{

message = "Thank you, " ## current_user \
". Your changes have been saved."

}

else
{

message = "Sorry, " ## current_user \
". Your changes could not be saved."

}

6-6 Preserving Application State

Saving State Data in Cookies
msg emsg message
return

For more about JPL variables, refer to “Variables” on page 19-24 in Application
Development Guide; also to the global command.

Saving State Data in Cookies

Cookies are pieces of information from the browser side of a connection. After a
cookie is set by an HTML document, it is stored on the browser and can be retrieved
when that browser contacts the same HTTP server.

Cookies are best used for simple, persistent, client state information, such as a user ID,
the date, or the number of times the client visits a specific URL. If the cookie
specification includes an expiration date, this information is saved on the browser and
is available in subsequent browser sessions by the same user.

Unpreserved State Information

Some information on an application's state is not automatically preserved. If the
application requires this information, it should save it with one of the methods
described earlier.

LDB

No LDB (local data block) data is stored in the cache. Any changes made to the LDB
are known to all users of the Web application server.
Web Development Guide 6-7

Unpreserved State Information
Window Stack

If other screens are on the window stack when HTML is generated, no information
about these screens is saved in the cache.

For example, consider an application where screen A's submit button opens screen B
and screen B contains the following screen entry function:

proc enter (screen, status)

// Add user name from screen a to title.
title = "Welcome " ## a!user_name

This entry procedure fails when screen B is submitted because screen A no longer
exists on the window stack. If the value is not actually needed on post, the problem is
corrected by testing for K_WEBPOST:

proc enter (screen, status)

if !(status & K_WEBPOST)
{

// Add user name from screen a to title.
title = "Welcome " ## a!user_name

}

If the value from screen A is actually needed during the post of screen B, the value
should be saved in a context global or as send data.

Property Changes

The cache does not save any property changes in by the application. For example, a
screen contains a grid with 200 onscreen rows and a push button that executes this
procedure:

proc get_data

call sm_tm_command("SELECT")
if (grid->num_occurrences < grid->onscreen_rows)
{

grid->onscreen_rows = grid->num_occurrences
}
return

The screen also has another push button that calls this procedure:
6-8 Preserving Application State

Unpreserved State Information
proc save_changes
call sm_tm_command("SAVE")

When the screen opens to execute the get_data button, it executes a select and sets
the number of grid rows to the number of rows found by transaction manager. For
example, assume that 50 rows are found. When the user later presses the
save_changes button, the screen opens and the save command executes. However,
when the HTML is generated the second time, the grid shows 200 rows, not 50. To
maintain the grid size for a subsequent post, apply the property change each time
HTML is generated: save the desired grid size between transmissions with a context
global or send bundle; or move the property change to an event that is processed for all
events:

proc web_enter
if (grid->num_occurrences < grid->onscreen_rows)
{

grid->onscreen_rows = grid->num_occurrences
}
return
Web Development Guide 6-9

Unpreserved State Information
6-10 Preserving Application State

CHAPTER
7 JPL Globals in Web
Applications

Web applications can set JPL global variables to store data at three levels: application,
individual users, and requests.

A sample screen in the Panther Gallery entitled JPL Globals demonstrates an
application using different types of global variables; it is accessible from the Web
application server:

http://server-name/cgi-bin/jwsamp/main

Application Globals

An application global is shared by all users of a jserver. To create an application
global, issue the JPL global command before the web_startup event completes. You
can declare application globals in the following areas:

! SMINITJPL file

! web_startup procedure
Web Development Guide 7-1

Context Globals
Because changes in an application global are visible to all users, it is unusual to change
an application global's value after web_startup. Instead, application globals are best
used to supply values that remain constant for the duration of the application. For
example, PV_YES and PV_NO are application globals whose values should remain
unchanged.

Context Globals

A context global variable is private to a single user of a jserver. Its value is preserved
between transmissions of the browser and HTTP server. A context global is created by
creating a JPL global variable with the global command, and then calling
sm_web_save_global on that variable. For example:

proc make_jpl_global
global my_global
call sm_web_save_global("my_global")
return

Panther automatically maintains a context global and its value in the application's
cache file. Because each set of context globals is specific to a given user, you can use
them to save user-specific information such as ID, preferences, or start time.

A context global is maintained until sm_web_unsave_global is called for that global,
or all context globals are removed by sm_web_unsave_all_globals.

If the global command executes a second time, it overwrites the global's previous
value. If you execute the global command in the unnamed JPL procedure or during
screen entry, also test whether the screen is being opened for a GET event, because the
screen is then reopened on a POST event. You can test this by using the K_WEBPOST flag
or the CGI variable @cgi_request_method.

For example, the following screen entry procedure creates a JPL global variable for the
current user on a GET event:

proc enter(screen, status)

if !(status & K_WEBPOST)
{

7-2 JPL Globals in Web Applications

Transient Global Variables
//Create a JPL global
global current_user(31)

//Make current_user a context global so it
//saved between transmissions

call sm_web_save_global("current_user")
}

Subsequent requests can refer to the current_user global. For example, if a later
request saves changes to previously selected values, the save screen can use the user
name in its status message:

proc save_changes

call sm_tm_command("SAVE")
if (sm_tm_inquire(TM_STATUS)==0)
{

message="Thank You, "##current_user\
##" Your changes have been saved."

}
else
{

message="Sorry, "##current_user\
##" Your changes could not be saved."

}
msg emsg message
return

Transient Global Variables

A transient global variable is one that is created after the web_startup event is
complete and is not added to the cache with sm_web_save_global. A transient global
exists for a single request and is destroyed during exit processing after HTML
generation. A transient global is useful when a POST event opens multiple screens that
need to share a data value among themselves but not with later requests.
Web Development Guide 7-3

Transient Global Variables
7-4 JPL Globals in Web Applications

CHAPTER
8 Customizing HTML
Generation

Application screens are stored in Panther's binary format. When an HTTP server
requests a screen, Panther opens that screen, performs the processing specified for it,
generates HTML or downloads Java for the screen, and returns the data to the HTTP
server. This chapter describes how the HTML for the screen can be customized for
your application.

A standard HTML document is composed of two main sections:

! The HEAD element containing information about the document itself.

! The BODY element containing the document content.

Each of these main elements can be composed of elements, each with its own use and
format. All elements are identified by a tag or pair of tags. Each tag is enclosed by
angle brackets–for example, <HR>. All elements begin with a start tag; and most
elements also have an end tag, which appears at the element's end. To differentiate the
two tags, the end tag is prepended with a slash–for example, </BODY>.

When Panther generates HTML for a screen, it creates an HTML FORM element to
contain the screen's content. FORM elements, according to HTML standards, are located
within a BODY element.

Within the FORM element, Panther creates a series of tables containing INPUT elements
corresponding to the widgets. The tables maintain widget positions in the HTML
document. Otherwise, the structure of the screen is lost because HTML has no other
method to define positioning information.
Web Development Guide 8-1

Setting Custom HTML Properties
Although Panther automatically translates each object in a Panther screen into its
appropriate HTML element, you can customize the HTML generation. This chapter
describes how to perform these tasks:

! Add HTML markup for screens and widgets in the Custom HTML properties.

! Use a pre-existing HTML document to provide the HTML structure.

In addition, some HTML elements have no Panther equivalent. This chapter describes
how to create those elements in a Web application.

! Create common HTML elements, such as hyperlinks and headings.

! Use graphics and image maps in your Web application.

! Use Panther screens within HTML frames.

! Use cookies to retrieve browser data.

! Embed Java applets in the HTML document.

Setting Custom HTML Properties

The properties under Custom HTML category let you add elements or attributes to the
HTML that Panther generates for your screen. Each of these properties allows
free-form text entry; their contents are not validated by Panther.

Screen Custom HTML Properties

A Panther screen has the following Custom HTML properties:

Head Markup
The Head Markup property specifies HTML to insert within the <HEAD>
section of the HTML document. Generally, this section includes information
about the document itself, and except for the document title, this information
is not displayed in the Web browser.
8-2 Customizing HTML Generation

Setting Custom HTML Properties
Body Attributes
The Body Attributes property allows you to add to, or modify, the attributes
within the BODY element that Panther generates for a screen. Within the BODY
element are the elements and tags containing the content of the HTML
document. You can specify either standalone attributes or name=value pairs.

There are attributes of the BODY element which allow you to specify the
background color for the display window (BGCOLOR), the color for text in the
document (TEXT), the color for unvisited hyperlinks (LINK), and the color for
visited hyperlinks (VLINK). To specify one of these attributes, include the
attribute name and its value. For example, the following entry displays blue
text:

TEXT=#00ff00

For reports, this property defines a background. The following entry uses the
image plaster.gif as a background:

BACKGROUND=plaster.gif

For screens, Panther automatically generates the BACKGROUND attribute using
the entry in the Wallpaper Pixmap property.

Form Attributes
The Form Attributes property lets you add to or modify the attributes within
the FORM element that Panther generates for a screen. The FORM element
contains the content of your Panther screen. You can specify either
standalone attributes or name=value pairs.

Panther automatically generates the METHOD and ACTION attributes for this
element. The METHOD attribute specifies which CGI method, GET or POST, is
used to send information to the server. The ACTION attribute specifies the
URL to receive the form content.

Stylesheet Source
Specify the style sheet to use for Dynamic HTML generation, if available. For
more information, refer to page 8-19, “Using Style Sheets.”

Widget Custom HTML Properties

A Panther widget can have the following Custom HTML properties:
Web Development Guide 8-3

Using HTML Templates
Attributes
Additions or changes to the HTML attributes within the INPUT element that
Panther generates for a widget. You can specify either standalone attributes
or name=value pairs. For example, the following entry for a dynamic label
which displays an image specifies the thickness of the border in pixels:

BORDER=2

Link Attributes
Additions or changes to the HTML attributes that Panther generates for a
hyperlink. You can specify either standalone attributes or name=value pairs.
This property is only displayed when there is a value in the Default Link
property.

Prefix Markup
HTML to insert immediately before Panther generates its HTML for the
widget. You can use this property to create HTML headings. For example, to
create a level 2 heading, set a label's Prefix Markup property to the start tag
<H2> and its Suffix Markup property to the end tag </H2>.

Suffix Markup
HTML to insert immediately after Panther generates its HTML for the
widget—typically, end tags for elements defined in the Prefix Markup
property.

Using HTML Templates

HTML templates behave as Panther screens, allowing you to have the flexibility of
how the HTML is created tied in with the power of the Panther backend. In the HTML
Template property, you specify the name of the HTML document to use in conjunction
with the Panther screen. The document provides the basic HTML structure instead of
using Panther to generate that structure.

In order to use an HTML template:

! Set the screen's HTML Template property to the path and name of the HTML
document.
8-4 Customizing HTML Generation

Using HTML Templates
! Insert HTML template tags into the HTML document as needed.

You can use HTML templates to perform these tasks:

! Add database values to a pre-existing HTML document.

! Convert a pre-existing static HTML document to a form.

! Submit a form using the GET method to a CGI program other than Panther.

HTML Template Tags

HTML template tags are specified by enclosing the tag in a set of double curly braces.
For example, the following tag places the value from the title_id widget in the
HTML element id:

<INPUT TYPE=text NAME=id VALUE="{{title_id}}" SIZE=10>

The following tags are available for use in a Web application:

{{emit:object}}

Generates the HTML that Panther would normally output for the specified
object. If object is a box or grid, all of its contents are generated. If object
is a field, only its first element is generated. To generate particular elements,
use {{emit:object[[n]]}}.

{{eval:statement}}

Process a simple JPL statement. statement in this context can contain
assignments.

{{form:info}}

Interpolates the hidden data which is needed to submit the form. Place this
value in the template after the <FORM> tag (or {{form:tag}}). In order to
cache the application data, this tag must be used in the HTML template.

{{form:messages}}

Outputs any messages in the generated HTML. If there are any messages,
they will be emitted within <div class="sm_message_text">..</div>
tags. New in Panther 5.40.

{{form:output}}

Outputs the entire form in the HTML format Panther would normally use.
The HTML is contained within a set of <TABLE>...</TABLE> tags.
Web Development Guide 8-5

Using HTML Templates
{{form:script}}

Generates the JavaScript procedures based on the edits and validations of the
widgets used on the form. Place this tag directly before the closing form tag
</FORM>, following any widgets using the JavaScript validation functions–
such as the functions for the Yes/No or Digits Only properties.

Note: The values for the onLoad and onUnload screen events, which must
be part of the <BODY> tag, must be specified in the HTML template.
These JavaScript event specifications are not generated with this tag.

{{form:tag}}

Generates the start <FORM> tag with ACTION and JavaScript attributes. You
must specify the corresponding end </FORM> tag in the HTML template.

{{if:condition}}
{{else:}}
{{elseif:condition}}
{{while:condition}}
{{break:}}
{{continue:}}
{{next:}}
{{end:}}

Perform conditional processing based on a JPL boolean expression.
Examples of conditions are i < 7 and i != 0.

{{break:}} exits a while block.

{{continue:}} and {{next:}} go to the next iteration of a while block.

{{end:}} terminates an if or a while block.

{{include:filename}}

Include the specified file. The search path is the same as for the HTML
template itself.

{{include:value:expression}}

Evaluate expression and use the value as the name of the file to include.
This would be used, for example, if a widget contains the name of the file.
The file search path is the same as for the HTML template itself.

{{raw:variable}}

Generates the value corresponding to the specified variable. This is similar to
{{value:variable}} except that characters like less than (<) that are part
of HTML syntax are not converted to escape sequences. New in Panther 4.29.
8-6 Customizing HTML Generation

Using HTML Templates
{{value:variable}}

Generates the value corresponding to the specified variable. This is the same
as {{variable}}. If variable has multiple occurrences, only the current
occurrence is output unless the occurrence is specified. The current
occurrence is the first one except for scrolling fields that have been scrolled.

{{ws:off}}
{{ws:on}}

Controls whether whitespace characters (spaces, tabs, newlines, etc.) from
the template are to be included in the generated HTML. {{ws:on}} is the
default.

HTML Template Document

The HTML template must contain a set of HTML tags, a set of BODY tags, and a set of
FORM tags. The start FORM tag can be specified using {{form:tag}} or <FORM>; the end
tag must be specified as </FORM>.

The following HTML template, which illustrates the order of the tags, outputs the
entire Panther screen in the generated HTML:

<HTML>
<BODY>
<H2>Film Titles</H2>
<HR>
{{form:tag}}
{{form:info}}
{{form:output}}
{{form:script}}
</FORM>
</BODY>
</HTML>

Conditional Processing

Conditional processing can be specified using the following tags:

{{while:condition}}
{{if:condition}}
{{else:}}
{{elseif:condition}}
{{end:}}
{{eval:statement}}
Web Development Guide 8-7

Using HTML Templates
Each block of processing must begin and end in the same file.

In order to prevent infinite loops on the jserver, two application properties are
provided, html_max_loop and html_max_nest:

! html_max_loop is a limit on the number of while loop iterations that will be
permitted before the template processor aborts; the default setting is 1000.

! html_max_nest is a limit on the number of nesting levels. Each if, while and
include counts as one level. The default setting is 20.

Setting html_max_loop or html_max_nest. to zero removes the limit.

As an example, if field myhtml contains HTML you want to put in the generated
HTML, you might include the following in your template file:

{{eval:@app()->html_max_loop = myhtml->num_occurrences}}
{{eval:vars i = 1}}
{{while:i <= myhtml->num_occurrences}}
{{raw:myhtml[i]}}
{{eval:i = i + 1}}
{{end:}}

Passing Database Values

To illustrate passing database values using an HTML template, Figure 8-1 shows a
Panther screen as it appears in the editor:
8-8 Customizing HTML Generation

Using HTML Templates
Figure 8-1 The widgets contain values fetched from the database.

This screen's HTML Template property is set to vidname.htm. This HTML document
contains the following tags:

<HTML>
<HEAD>
</HEAD>
<BODY onLoad="window.status =

('Displays film title information')">
{{form:tag}}
{{form:info}}
<HR>
<H2>Film Titles for {{value:username}}</H2>
{{emit:title_id[[1]]}}
{{emit:name[[1]]}}

{{emit:title_id[[2]]}}
{{emit:name[[2]]}}

{{emit:title_id[[3]]}}
{{emit:name[[3]]}}
{{form:script}}
</FORM>
<A HREF="http://myserver/cgi-bin/proweb/vidlist.scr"

Start a New Search
</BODY>
</HTML>
Web Development Guide 8-9

Using HTML Templates
For each of the elements inside a double set of curly braces, the value is inserted at
runtime. Consequently, the browser displays the HTML document as follows:

Figure 8-2 The HTML document in the Web browser contains the database
values.

Submitting a Form

The form can be submitted back to your Panther Web application or, if another GET
method is specified in the HTML template, to a non-Panther Web application.

To submit the form back to the Panther Web application, the HTML template must
contain the {{form:info}} tag. This maintains the cache data for a Panther screen
utilizing an HTML template and updates the template dynamically to associate the
cache file with it.

To submit the form to a non-Panther Web application, you must specify the <FORM>
tag with the appropriate GET method.

The HTML document receives two values from the Panther application:

! The value of search_str, used to initialize the HTML document’s search field:

<INPUT NAME=q SIZE=55 MAXLENGTH=200
VALUE="{{search_str}}">

! The value of @cgi_http_referer. This value is specified as the HREF
destination in an anchor on the HTML document; it lets the user return to the
Panther Web application. Of course, this can be replaced with a hard-coded
URL:

Film Info
8-10 Customizing HTML Generation

Using Hyperlinks
Using Hyperlinks

Hypertext links enable users to move from one HTML document to another. You can
set hyperlinks in a Panther Web application in several ways, as shown in following
sections.

To view different types of hyperlinks in Panther, refer to Hyperlinks in the Panther
Gallery accessible from the Web application server.

Creating Hyperlinks

Setting the Default Link Property

Designate a dynamic label or graph widget to act as a hyperlink by setting its Default
Link property to the desired URL, either in the editor or at runtime:

! In the editor, set the label's Default Link property (under Web Options) to the
desired hyperlink’s URL. For example:

http://prolifics.com

! Set the label's default_link property at runtime. For example:

home_lnk->link="http\://prolifics.com"

Note: To avoid JPL colon expansion, prefix any colon in the URL string with a
backslash.

To specify attributes for the hyperlink, use the Link Attributes property.

Setting the Item Link Property

For arrays, you can specify a different URL location for each occurrence of the array
using the Item Link property.
Web Development Guide 8-11

Using Hyperlinks
The following JPL procedure specifies the Item Link property for each occurrence in
an array by building on the value in the Default Link property and using the occurrence
number to make each value unique:

proc makelink()
{

vars i
for i = 1 while i <= arraydoc->max_occurrences
{
arraydoc[i]->item_link = \

arraydoc->default_link ## doc[i] ##".html"
}

}

Calling sm_web_invoke_url

Call sm_web_invoke_url to invoke a hyperlink without awaiting user action:

call sm_web_invoke_url("http\://prolifics.com")

sm_web_invoke_url immediately stops Panther processing and generates no HTML
for the screen. Instead, a request is sent to the browser to go to the specified URL.

Placing an Action List Box Inside a Grid

If a list box is in a grid widget and its Listbox Type property is set to Action, the values
appear as hyperlinks. The screen is submitted back to the server when the user selects
one of these hyperlinks.

If Listbox Type is set to Select Any, the values are converted to columns of radio
buttons or check boxes:

! Radio buttons if the group's Number of Selections property is set to 0 or 1 or 1

! Check boxes if the group's Number of Selections property is set to Any.

Using Hyperlinks in Reports

Since widgets in reports can have link and image properties, you can make the
web-deployed report interactive by using links to:

! Move within a report.
8-12 Customizing HTML Generation

Setting Target Windows
! Display another web-based document.

! Invoke another report.

By invoking another report, you can obtain a “drill down” effect, generating a detail
report for any item in the original report. For example, if a main report generates a list
of customers, each customer's last name can be a link to a detail report. This “drill
down” speeds access to report data by displaying only the detail data that the user
wishes to see.

To provide this functionality, a widget in the main report (in this example, last_name)
has its Link property set to the URL that invokes the detail report. By setting this
property at runtime through a JPL procedure called from the main report's Detail node,
the appropriate customer ID can be inserted for the detail report's invocation.

For more information on invoking reports using a URL, refer to “How to Invoke a
Report From a URL” on page 9-9 in Reports.

Setting Target Windows

When you invoke a document from a hyperlink, it typically appears in the same
browser window as the previous document. Several screen and widget properties are
available that let you assign names to browser windows—or targets—and specify
which one displays a document. If the window does not exist, the browser creates it
and loads the document in it.

Targets can also be used with framesets that let the user view multiple documents in
the same browser window. The frameset definition specifies the number of frames
inside a browser window and the target name for each frame.

You can specify target windows for individual hyperlinks, all hyperlinks on a screen,
or for a specific screen:
Web Development Guide 8-13

Specifying the Browser's Title Bar
Setting the Window for a Specific Hyperlink

Select the dynamic label that acts as a hyperlink and set its Target property to the name
of the browser window. For example, if the Target property is set to window2, the
hyperlink is displayed in the browser window window2. If this window does not exist,
the browser program creates it.

Note: The Target property is accessible only if the Default Link property is filled.

Setting the Default Window for All Screen Hyperlinks

Set the screen's Target Default property to a browser window name. This inserts the
<BASE TARGET> tag in the HEAD section of the generated HTML. All hyperlinks on the
screen whose Target property is empty use this window.

For example, if the screen test.scr has Target Default set to window2, then each of
the hyperlinks on that screen whose Target property is empty display in the same
browser window window2.

Setting the Window for a Screen

The screen's Display Window property determines which window displays this screen,
no matter where it is invoked. For example, if the screen test.scr has Display
Window set to content, the screen is always displayed in the browser window
content.

Note: If the screen is invoked by a hyperlink that has its target window set, either
through the Target Default or Target property, the hyperlink specification
overrules the screen's own Display Window property.

Specifying the Browser's Title Bar

Using a descriptive name in the browser's title bar provides users with an easy
reference for the current document:
8-14 Customizing HTML Generation

Using Graphics
1. Set focus to the screen. The Properties window will display the screen properties.

2. Under the Identity category, select the Title subproperty.

3. Enter the text that you want to appear in the browser's title bar.

Using Graphics

Most Web browsers can display graphics files that are in GIF or JPEG formats. Panther
supports both formats in a number of widget types. Graphics can be included for
illustrative purposes only; or they can be used as image maps that enable navigation to
other Web resources.

Web browsers vary in their support for graphic formats. You can test whether a
specific format is available with the CGI variable @cgi_http_accept.

The graphics files can be located in relation to the application directory or in the
directory named in the ImageDir setting in the application's initialization file.

To include graphics in a Web application:

1. Create a static label, dynamic label, push button, radio button, or check box widget
on your screen.

2. (Optional) Under Identity in the Label property, assign the widget a name.

3. Under Format/Display in the Active Pixmap property, enter the name of the
graphics file.

The default border setting for the graphic is BORDER=0 so that a border is not displayed.
To give a graphic a border, enter the border's pixel size in the Attributes property. In
this example, the Attributes property sets a border to 2 pixels:

BORDER=2
Web Development Guide 8-15

Using Graphics
Setting Graphics Size

If Keep Image Size is set to Yes (the default), Panther uses the GUI height and width
of the graphic when it positions widgets in the generated HTML. If set to No, it
positions the graphic on a single line in the HTML. You can usually leave this property
set to Yes.

If Panther cannot determine the graphic's size at runtime, it supplies a default size of
32 x 32 pixels to the browser. The size of the graphic can also be set in the Attributes
property.

Graph Widgets

Graphs and charts created with the graph widget are available in Web applications. The
graph can also be a hyperlink so the Link and Link Attribute properties are available
for this widget type.

Image Maps

An image map is a navigational tool that can take users from one location on the Web
to another, or to another location within the same site. The coordinates of a graphic are
used to divide the graphic into separate sections. Each section is assigned a hyperlink;
users can click on it in order to go to a Web resource.

A Web application can include server-side image map files. An image map file
contains the coordinates for each section and its hyperlink. Image map file formats
vary according to the program that is used to process the image map. The HTTP server
decides which program processes the image map and where the image map file must
be located.

To include a server-side image map:

1. Create a dynamic label widget.

2. Under Format/Display in the widget's Active Pixmap property, enter the name of
the graphics file to display in the browser.

3. In the widget's Image Map property (under Web Options), enter the URL of the
server-side image map file that contains the hyperlinks and coordinates.
8-16 Customizing HTML Generation

Using Graphics
In the Panther Gallery, Graphics illustrates different types of graphic formats and an
image map. The Panther Gallery is accessible from the Web application server:

http://server-name/cgi-bin/jwsamp/main

Creating Image Maps in JPL

You can create a client-side image map in JPL using the sm_web_invoke_url
function. Two JPL globals, @web_image_click_x and @web_image_click_y,
contain the X and Y coordinates of the user's mouse click.

To include a server-side image map:

1. Create a push button.

2. Under Format/Display in the widget's Active Pixmap property, enter the name of
the graphics file to display in the browser.

3. Under Validation in the JPL validation property, enter the name of the JPL
procedure. In this example, it is goto_dept.

4. With the screen having focus, under Focus in the JPL Procedures property, enter
a JPL procedure which finds and processes the coordinates. The following
sample procedure goes to a different URL based on the coordinates.

proc goto_dept
if (@web_image_click_x > 1 && < 125) && \

(@web_image_click_y > 1 && < 110)

call sm_web_invoke_url("http://myhost/top.html")
.
.
.

return

Loading Graphics at Runtime

Graphics can be fetched using the HTTP protocol, rather than the Panther Web
application server. In the Web application's initialization file, specify a sub-directory
of the HTTP server's document root directory in the ImageDir variable. When
development of the application is complete, copy the graphics to this sub-directory.
Web Development Guide 8-17

Using the FRAME Extension
For local intranets, only specify the sub-directory name; for the Internet, specify the
HTTP protocol, followed by the domain and the sub-directory name. For example, to
retrieve the graphic my_logo.gif, the following setting for a local intranet:

ImageDir=my_app

results in the following HTML, prepending the name of the current machine:

However, if the HTTP protocol is specified:

ImageDir=http://prolifics.com/my_app

results in the following HTML:

Using the FRAME Extension

Frames allow a browser window to be divided up into several independent
subwindows. Each subwindow can display a different Web resource. Each region, or
frame, has several features:

! An individual URL so it can load information independently of other frames on
the page.

! A NAME attribute so other URLs can target it.

! Dynamic resizing if the user changes the window's size. Resizing can also be
disabled, ensuring a constant frame size.

Frames are generated with extensions FRAMESET and FRAME. In the HTML document,
FRAMESET replaces the BODY tag. FRAMESET describes the frames to appear in the
browser window.

You can include frames in your Panther application by specifying the HTML
document or the HTML template that contains the FRAMESET element.
8-18 Customizing HTML Generation

Using Style Sheets
The Panther Gallery illustrates this in a sample screen entitled Frames which is
accessible from the Web application server:

http://server-name/cgi-bin/jwsamp/main

Using Style Sheets

You can define the look of your Panther web application using style sheets. The style
definitions can be included in the HTML document or be specified using a URL
location.

For each screen, change the Stylesheet Source property to indicate that style sheets will
be used.

Stylesheet Source (stylesheet_source)
Specify whether style sheets for the web application screen are included in the
screen's HTML (Inline) or specified in a URL (Link).

Stylesheet Type (stylesheet_type)
Specify the type of style sheet to be used for the web application screen: CSS
(cascading style sheet) or JavaScript.

Stylesheet Data (stylesheet_data)
For inline style sheets, enter the style specification.

Stylesheet Link (stylesheet_link)
Specify the URL location of the style sheet. The style sheet file must be
located in the HTTP server's primary document directory. A common name
for this directory is htdocs.

For example, the following cascading style sheet specification would change all H1
headings to be in a sans-serif font, Arial if it is available, and to be red in color.

H1 { font-family: "Arial", sans-serif; color: red }

To specify styles for widgets, use the HTML Attributes property to enter the setting,
as in:
Web Development Guide 8-19

Creating Headings
STYLE = "..."

W3C has issued a recommendation on the use of style sheets. For more information,
see their website at www.w3.org.

Creating Headings

Headings can be used to give order to an HTML document. Browsers apply distinctive
typefaces or styles to distinguish heading levels H1 through H6.

To create a heading:

1. Create a dynamic or static label.

2. In the Properties window under Web Options, expand the Custom HTML
properties. Select the Prefix Markup subproperty.

3. Enter the start tag for the heading level that you want–for example, <H1> for
heading level 1.

4. Select the Suffix Markup subproperty to close the markup tag.

5. Enter the end tag for the heading level that you created–for example, </H1> to
end a level 1 heading.

Drawing Horizontal Rules

A horizontal rule visually divides the contents of an HTML document. You can use it
to group together similar controls or to make the page easier to read.
8-20 Customizing HTML Generation

http://www.w3.org

Using Cookies
To create a horizontal rule:

1. Create a line widget.

2. To specify line thickness, expand the Web Options category, and select the
Attributes subproperty.

3. Enter the size attribute for the line. For example, entering SIZE=4 specifies a
line thickness of 4 pixels which results in the HTML output of <HR SIZE=4>.

Using Cookies

Cookies are pieces of information from the browser side of a connection. After a
cookie is set by an HTML document, it is stored on the browser and can be retrieved
when the browser contacts the same HTTP server.

Cookies are best used for simple, persistent, client state information, such as a user ID,
the date, or the number of times the client visits a specific URL. If the cookie
specification includes an expiration date, this information is saved on the browser and
is available in subsequent browser sessions by the same user.

The cookie must initially be set by an HTML document—in a Panther Web
application, by calling sm_web_set_cookie. For example, the following screen entry
function retrieves two cookie values, user and visit_num. visit_num is then
incremented by 1 and sm_web_set_cookie resets the corresponding cookie to its new
value:

proc entry
user=sm_web_get_cookie("user")
visit_num=sm_web_get_cookie("visit_num")
visit_num=visit_num+1
call sm_web_set_cookie("visit_num=:visit_num;\

expires=Monday, 03-Jan-2000 00::00::00 GMT; \
domain=.prolifics.com; path=/samples")
Web Development Guide 8-21

Embedding Java Applets
Retrieving Cookie Values

Cookies are retrieved when a browser requests a URL from an HTTP server. The
browser compares the value of the URL with the domain and path of any cookie values
stored on the browser. If any of them match, a line containing the name=value pairs of
all matching cookies is included in the HTTP request.

Cookie values can be retrieved in your Web application with sm_web_get_cookie, as
illustrated in the previous example. They are also available in the CGI variable
@cgi_http_cookie.

The Panther Gallery sets and retrieves cookie values in a documentation sample
entitled Client-side Cookies which is accessible from the Web application server:

http://server-name/cgi-bin/jwsamp/main

Embedding Java Applets

You can embed Java applets into your Panther Web application to create attractive and
interesting Web pages with animation, scrolling text, and banners. Java applets are
built with Java, an object-oriented programming language. A Java applet is not a
standalone program; it must be embedded within an HTML document and is triggered
by a JavaScript event. Java applets can run only in a Java-compatible browser.

If you include Java applets in an application, take into account these limitations:

! Java provides no method to transmit user input from the Java applet to the
HTML document. The Java applet can only be used to display information.

! You can not dynamically change a Java applet while a user is working on it. For
example, if a Java applet is a pie chart, you can not change the chart to reflect
new values while the user is entering data into the form.

To incorporate a Java applet into a Web application, you need this information:

! The applet’s name (Java is case sensitive).
8-22 Customizing HTML Generation

Embedding Java Applets
! The applet’s .class file location. This file can be stored in a Panther library.

! The arguments that the applet accepts.

To embed a Java applet into your Panther screen:

1. Create a dynamic label on your screen.

2. In the label's Label property, enter the text to display when a browser is not
Java-enabled.

3. In the label's Prefix Markup property (under Custom HTML), select the Prefix
Markup property and enter the APPLET tag and its argumnts.

For example, this entry specifies to call the TickerTape applet:

<APPLET CODE="TickerTape" WIDTH=300 HEIGHT=40 ALIGN=top>
<PARAM NAME=fontsize VALUE="20"> <PARAM NAME=message
VALUE="This is my sample Java applet!">

In this example, Panther looks for a file named TickerTape.class.

4. Select the label's Suffix Markup subproperty and enter the applet’s end tag.

For example, given the previous setting for Prefix Markup, the following entry
closes the TickerTape applet:

</APPLET>

In the Panther Gallery, the TickerTape applet is modified through Panther properties.
The sample screen JavaApplets is on the Web application server:

http://server-name/cgi-bin/jwsamp/main
Web Development Guide 8-23

Refreshing Screens in a Web Browser
Refreshing Screens in a Web Browser

If your screen contains information which needs to be updated frequently, you can
either have the user refresh the screen in the Web browser by pressing the Reload
button or have the screen automatically refresh itself using the META tag. For this
task, the META tag format is:

<META HTTP-EQUIV="refresh" CONTENT="seconds; URL=URL_location">

Another use for this tag would be for an online slide show with the URL for the next
screen in the META tag. This technique is known as client pull since reading the
HTML document into the Web browser activates the process.

To specify a META tag:

Under Web Options, enter the META tag in the Head Markup property. For example,
the following entry refreshes a screen each minute:

<META HTTP-EQUIV="refresh" CONTENT="60; URL=myapp.scr">

Using ActiveX Controls

For ActiveX controls to be available in your Web applications:

! The user must have a browser that supports ActiveX controls.

! The browser security settings must allow ActiveX controls to be downloaded.

! The Codebase property must specify the location on your Web application
server of the downloadable file containing the ActiveX control.
8-24 Customizing HTML Generation

Using ActiveX Controls
In Panther Web applications, the control's properties can be set using the JPL property
syntax or in JavaScript or VBScript functions. Methods can be called using JavaScript
or VBScript. Event control must be specified using VBScript in Microsoft’s Internet
Explorer 4. With Internet Explorer 3, JavaScript can also be used for event handling.

Using ActiveX Controls in Web Browsers

In the Web environment, only Microsoft’s Internet Explorer has native support for
ActiveX controls, although most browsers have plug-in support.

In Internet Explorer, if a user accesses a Web document containing an ActiveX control
not already registered on the user's system, Internet Explorer performs the following
steps:

! Internet Explorer checks to see if the control has been digitally signed.

" If digitally signed and security is set at high or medium, the certificate
appears in a dialog box asking the user if they want to download the
control.

" If not digitally signed and security is set at high, a dialog box tells the user
that the control may be unsafe. The Web document displays a placeholder
instead of the control.

" If not digitally signed and security is set at medium, a dialog box tells the
user that the control may be unsafe, giving the user the option of
downloading the control. If the user chooses not to download the control, a
placeholder, instead of the control, is displayed in the Web document.

" If security is set to low, the control is installed and registered on the user's
system and loaded and displayed in the Web document.

Once a control is registered on a user's system, the dialog boxes at high and
medium security levels no longer appear. Even if originally not signed, it is
considered safe.

! Before your Web document initializes the control, the browser checks the
control's properties to verify that it is marked safe for both initializing and
scripting.

" On a high security setting, if the control fails these checks, the control will
display and run but without initialization and scripting. Without
Web Development Guide 8-25

Using ActiveX Controls
initialization, default settings are used for the control's properties. Without
scripting, all scripts fail and display a dialog box stating that fact.

" On a medium security setting, a dialog box is displayed for each failed
check. The user can choose to allow initialization or scripting. As with the
high setting, without initialization, default settings are used for the control's
properties. Without scripting, all scripts fail and display a dialog box
stating that fact.

" On a low security setting, the ActiveX control is initialized and all scripts
are allowed to run.

For Mozilla Firefox, one plug-in for ActiveX controls is IE Tab V2 at
https://addons.mozilla.org/en-US/firefox/addon/ie-tab-2-ff-36.

Signing Your ActiveX Controls

When an ActiveX control is embedded in a Web application, it is suggested that you
digitally sign the control and set which licensing scheme (development or runtime) you
want implemented.

In order to digitally sign controls, you will have to obtain a Software Publisher's
certificate from a Certificate Authority, such as Verisign. It takes about a week to
obtain this certificate. For information about signing controls and the underlying
Authenticode technology, refer to Microsoft’s website, www.microsoft.com. The
VeriSign site, www.verisign.com, contains information about their certification
program.

Digitally signing the control places your company's guarantee for the control.
Therefore, you should check that the control only modifies the user's system as
described in the ActiveX specifications.

Submitting Data to the Web Application Server

In Web applications, any data submitted to the Web application server must be in an
input field. Since ActiveX controls have no input fields, data must be transferred from
the ActiveX control to Panther input variables using JavaScript or VBScript before the
screen is submitted back to the Web application server.
8-26 Customizing HTML Generation

https://www.microsoft.com
http://www.verisign.com/
https://addons.mozilla.org/en-US/firefox/addon/ie-tab-2-ff-36

Using ActiveX Controls
This is typically done by copying the relevant information to hidden fields in the
HTML. Such a hidden field is created by setting both the Identity→Hidden property

and the Web Options→Export To HTML property to Yes. This generates an HTML
<INPUT> element with the HIDDEN attribute.

Submitting Data using JavaScript

The following JavaScript onSubmit function, called when the screen is submitted
back to the Web application server, transfers data from the Value property of the
PrlSpinner Controls back to the Panther variables:

function onSubmit()
{

document.main.i_1_len1.value =
document.main.PrlSpinner1.value;

document.main.i_1_len2.value =
document.main.PrlSpinner2.value;

document.main.i_1_len3.value =
document.main.PrlSpinner3.value;

}

Submitting Data using VBScript

Here is the same function in VBScript. It is defined as the onClick function associated
with a push button.

Sub spo_1_button_onClick
document.main.i_1_len1.value =

document.main.i_1_PrlSpinner1.value
document.main.i_1_len2.value =

document.main.i_1_PrlSpinner2.value
document.main.i_1_len3.value =

document.main.i_1_PrlSpinner3.value
End Sub

Generating HTML for ActiveX Controls

In order for the Web application to download the control, you must set the Codebase
property (under Web Options) which lists either the URL for the ActiveX control file
from the document root directory or the location relative to the application directory.

For example, the following entry in the Codebase property:
Web Development Guide 8-27

Using ActiveX Controls
PrlSpinner.ocx

results in the following HTML, prepending the name of the current machine:

CODEBASE="http://currentMachine/my_app/PrlSpinner.ocx"

However, if the HTTP protocol is specified as part of the Codebase property:

http://prolifics.com/PrlSpinner.ocx

the following HTML is generated, which downloads the file from the Web application
server's documentation root directory:

CODEBASE="http://prolifics.com/PrlSpinner.ocx"

When an application screen contains an ActiveX control, an OBJECT tag is generated
for the control container with PARAMETER attributes for each of the ActiveX properties
and a CODEBASE attribute containing the URL for the ActiveX control. The following
example is the OBJECT tag for the PrlSpinner Control.

<OBJECT ID=i_1_spinner WIDTH=83 HEIGHT=30
CLASSID="CLSID:DA2599CE-F939-11D0-A19E-00A02481A2E9"
CODEBASE=""http://prolifics.com/src/PrlSpinner.ocx"">
<PARAM NAME="BlankIfZero" VALUE="0">
<PARAM NAME="Maximum" VALUE="100">
<PARAM NAME="Minimum" VALUE="0">
<PARAM NAME="Value" VALUE="25">
</OBJECT>

When the OBJECT tag is included in the HTML document, Internet Explorer performs
the following steps:

! Searches the registry for the CLSID. If not found, it performs the following
steps:

" Parses the OBJECT tag and searches for the CODEBASE attribute. If the
CODEBASE attribute is absent or is preceded by a URL-to-object index
server in the CodeBaseSearchPath, this index is used to retrieve the file.

" Locates the file identified by the CODEBASE attribute.

" Copies the files to the user's computer.

" Registers the objects and/or files that require registration.

! When the control is registered, calls the Component Object Model (COM)
function CoCreateInstance to create an instance of the specified object.
8-28 Customizing HTML Generation

Embedding Sound
A .cab file is one software distribution format for ActiveX controls. Part of the .cab
file is the binary and .inf file needed to run on the associated platform. An .inf file
contains information used by Microsoft Windows to load and register an ActiveX
control.

ActiveX controls can run on Intel x86 computers, on the Apple Macintosh, as well as
on any of several RISC machines. You need to create, test, and bundle your control's
binaries for all deployed platforms.

Embedding Sound

A Panther web application can incorporate multimedia elements, including sound.
Browsers such as Mozilla Firefox and Internet Explorer provide inline support for
audio. The browser can play audio files provided two conditions are true:

! The required auxiliary plug-in programs are available.

! The PC or workstation on which the browser is running has a sound card
installed.

Sounds are stored in different formats, known as MIME types (Multipurpose Internet
Mail Extensions). The following table lists some standard MIME types:

Note: To add MIME types such as Quick Time Movies, check your browser's
documentation.

Mime Type Filename Extension Description

audio/basic .au, .snd Sun MicroSystems 8
bit Audio

audio/x-aiff .aif, .aiff, .aifc Macintosh audio

audio/x-wav .wav Microsoft audio

audio/x-pn-realaudio-plugin .rpm Real Audio
Web Development Guide 8-29

Embedding Sound
To embed a sound file in your application:

1. Create a dynamic label widget on your screen.

2. In the Properties window under Web Options, select the Default Link property.

3. Enter the URL of the sound file. For example:

http://myserver.com/cgi-bin/proweb/sound1.au

To view a sound file in a Panther application, refer to the part of the Panther Gallery
entitled Sound Files on the Web application server:

http://server-name/cgi-bin/jwsamp/main
8-30 Customizing HTML Generation

CHAPTER
9 Using JavaScript
and VBScript

JavaScript and VBScript are interpreted, scripting languages that let you embed simple
programs into Web pages. JavaScript/VBScript programs are embedded directly
within the HTML document. When the browser loads the HTML document, the
programs are also loaded.

With minimal programming, you can use JavaScript/VBScript to create dynamic Web
pages that perform validation, and display popup prompts and dialogs to users.

Warning: Some browser programs do not support JavaScript or VBScript, while
those browser programs that offer support also allow users to disable it. If
support is unavailable, the Web application can be affected as follows:

! Data validation that Panther performs with JavaScript does not work.

! Action list box items located in grids are not displayed as hyperlinks.

! Custom JavaScript/VBScript that is embedded in an application does not
execute.

! Embedded Java applets do not execute.
Web Development Guide 9-1

Browser Events
Browser Events

The events that can occur when a user is viewing an HTML document provide places
for triggering a JavaScript or VBScript function. For example, the onSubmit event is
triggered when a user submits an HTML form back to the server.

Screens and widgets provide Browser Event properties as hooks for attaching
JavaScript or VBScript functions. Each event property corresponds to an event type.
For example, you can specify a unction for a screen's On Submit property; whenever
the form is submitted back to the server, the onSubmit event occurs and triggers
execution of the attached function. Similarly, you can specify a function for a text
widget's On Change property; the function executes whenever an onChange event
occurs to the widget.

A Browser Event property can specify one of the functions that are defined in the
screen's JavaScript or VBScript property; or it can contain a JavaScript or VBScript
statement.

Some events can cause automatic generation of JavaScript for certain property
settings. For example, if a widget's Convert Case property is set to Upper, Panther
generates the appropriate JavaScript in order to implement the desired conversion
when an onChange event occurs–for example, the user clicks out of the field. Panther
supports all JavaScript and VBScript events, associating them with screen and widget
properties under the Browser Events category.

JavaScript Event Properties

Screens

Screens have these browser event properties:

On Load
The HTML document is loaded in the browser.
9-2 Using JavaScript and VBScript

Browser Events
On Submit
The user clicks a push button that submits the document back to the server.
This event is triggered before the form is actually submitted.

On Unload
The user exits or unloads the HTML document from the browser.

Widgets

Browser event properties vary according to a widget's type. This section lists the
complete set of widget events:

On Blur
Focus is removed from a specific widget within a form.

On Change
The user switches focus away from the field and the field is modified. This
event is triggered only after the user completes entering or modifying
information.

On Click
The user clicks the mouse button on a hyperlink, a push button, a check box,
or any other selection widget.

Note: For push buttons, do not specify both a pixmap and an On Click event. In
HTML specifications, the image takes precedence, making the On Click
event unavailable.

On Focus
The user clicks the mouse or presses TAB to activate, or bring focus to, a
specific widget within the form.

On MouseOver
The mouse pointer moves over an area, such as a hyperlink. For example, this
event can be used to display a hyperlink's URL in the browser status line
when the mouse moves over it.

On MouseOut
The mouse pointer leaves an area (in client-side image maps) or a link. For
example, if the mouse moves from one area into another in a client-side image
map, the onMouseOut event occurs for the first area, followed by the
onMouse Over for the second area.
Web Development Guide 9-3

Browser Events
If the JavaScript program sets text on the status line, the program must return
true.

On Select
Text within a text widget is selected.

Setting Event Properties

For the events listed under Browser Options, specify any JavaScript or VBScript
function that is defined for the screen or one of its widgets in its JavaScript/ VBScript
property or include a JavaScript/VBScript statement. Simply select the desired event
property and enter either the name of the function and its parameters, or the text of the
statement.

Writing JavaScript and VBScript Functions

You can include your own JavaScript or VBScript function in the HTML document by
entering the function in the JavaScript/VBScript property for the screen or a widget.
After a function is entered into the property, you can specify that function for any
browser event property for the screen and its widgets.

Notes: The functions that you write for a screen and individual widgets is equally
accessible to all widget and screen event properties.

How to Define a JavaScript or VBScript Function

1. Select the JavaScript/VBScript property for the screen or one of its widgets.
The text dialog opens where you can write functions:
9-4 Using JavaScript and VBScript

Browser Events
2. Enter or edit data with these actions:

" Type the function directly into the dialog box window.

" Choose Editor to invoke your local editor and enter the desired data.

" Choose Read File to import an external file.

3. Choose OK to accept your changes.

Note: Panther does not check syntax in JavaScript statements and functions.

For example, the JavaScript property can contain the num_links function, which
displays the number of hyperlinks () in the HTML document:

function num_links()

msgtext="Number of links in document: " +
document.links.length;

return window.confirm(msgtext)
Web Development Guide 9-5

Browser Events
Accessing Widget Values

If a widget's Export to HTML property is set to Yes, an HTML tag is generated for the
widget, even if the widget is hidden at runtime. This ensures that a JavaScript or
VBScript function can reference the widget and access or manipulate its value in a
Web browser.

Accessing Widgets in JavaScript and VBScript

The naming conversion from Panther widget names to HTML field names prepends
text in order to uniquely identify each widget's occurrence and purpose. The
html_name property provides read-only access to the converted name. You can
include that value in JavaScript or VBScript functions using the
{{variable->html_name}} syntax.

If the html_name property cannot be used, the following table shows Panther's HTML
naming conventions for named and unnamed widget types. If a widget is unnamed,
Panther uses its field number in the HTML tag name. (For information about how
widgets are numbered, refer to “Field Numbers” on page 14-4 in Application
Development Guide).

Panther widget type HTML document name Example

Named widgets:

Text i_occurrence-num_widget-name i_1_title_id

Multitext mn_widget-name mn_descrip

List box sln_widget-name sln_lname

Option menu son_widget-name son_type

Push button spn_widget-name spn_select

Unnamed widgets:

Text o_occurrence-num_field-num o_1_2

Multitext mf_field-num mf_1
9-6 Using JavaScript and VBScript

Browser Events
The following section of a JavaScript function assigns time value to three widgets.
This is how the function appears in the editor using the html_name property:

function showtime
{
// Assigning the time values

document.forms[0].{{face_1->html_name}}.value=timeValue
document.forms[0].{{face_2->html_name}}.value=londonValue
document.forms[0].{{face_3->html_name}}.value=tokyoValue

}

In the generated HTML, the HTML name is substituted for the value inside the braces,
and the function is output as follows:

function showtime
{
// Assigning the time values

document.forms[0].i_1_face_1.value=timeValue
document.forms[0].i_1_face_2.value=londonValue
document.forms[0].i_1_face_3.value=tokyoValue

}

Automatic JavaScript Generation

Panther automatically generates JavaScript to implement the Status Line Text property
for widgets and screens, and to create hyperlinks for action list boxes in a grid widget.
JavaScript is also automatically generated when certain input properties are set as
shown in the following table, in order to validate or convert data:

List box slf_field-num slf_4

Option menu sof_field-num sof_3

Push button spf_field-num spf_2

Panther widget type HTML document name Example
Web Development Guide 9-7

Browser Events
When a widget has one of these properties set, the entry in that widget is validated
whenever an onChange or onBlur event occurs–for example, the user mouse clicks out
of the field. Invalid data causes an error message to display. If data is to be converted,
the conversion automatically takes place.

A widget that has JavaScript Event property settings might have two JavaScript
functions triggered for the same event. In this case, the automatic JavaScript executes
first, followed by the function or statement that the property specifies. For example, a
widget might have its Convert Case property set to Upper and its On Change property
set to a JavaScript function. In this case, the onChange event triggers two JavaScript
functions for the same widget–first, the function that Panther automatically generates
for Convert Case, then the On Change function.

Input property Value

Keystroke Filter Digits OnlyYes/No

AlphabeticNumeric

AlphanumericEdit Mask

Convert Case Upper/Lower

Required Yes

Must Fill Yes

Minimum Value Any non-null value

Maximum Value Any non-null value
9-8 Using JavaScript and VBScript

CHAPTER
10 Accessing
Databases

Part of a Panther application is its database interface. Due to the stateless nature of the
Web, the database processing in a Web application might not mirror the processing in
other two-tier, client/server models. This chapter briefly describes the following topics
that are necessary in building a database application:

! Connecting to the database.

! Initializing the Panther client.

! Using database cursors.

! Handling database transactions.

! Fetching multiple rows.

Connecting to the Database

Database connections are handled differently in two-tier and three-tier applications. In
two-tier client/server applications, the Web application server handles database
connections as part of its jserver startup. In three-tier applications, the Panther
application server maintains the database connections. This section describes the
procedures required by two-tier applications.
Web Development Guide 10-1

Initializing the Panther Client
In two-tier Panther Web applications, connections to the database are usually declared
in the web_startup procedure. Generally, the web_startup procedure is part of a
JPL module specified in the application variable SMINITJPL. When the Web
application server starts a jserver process, it initializes the JPL modules in that
procedure before calling the web_startup event.

By declaring the database connection for the jserver (and not for each client request),
you can reduce the overhead incurred by connecting to the database server for each
URL. Database connections are made using the command DBMS DECLARE
CONNECTION. For example, the following web_startup procedure makes a
connection to JDB’s videobiz database:

proc web_startup
DBMS ENGINE jdb
DBMS DECLARE jdbconn1 CONNECTION FOR DATABASE 'videobiz'
return

Database connections should be closed in the web_shutdown procedure. Before the
Web application server closes a jserver process, it calls the web_shutdown event.
Database connections are closed with the DBMS CLOSE CONNECTION command, as in
this example:

proc web_shutdown
DBMS CLOSE CONNECTION jdbconn1
return

Each database engine has its own syntax for database connections. For the command
syntax, refer to “Database Drivers.”

Initializing the Panther Client

In three-tier applications, the Web application server's startup procedure
web_startup must initialize the server as a Panther client. The web_startup
procedure is usually in a JPL module that is specified by the application variable
SMINITJPL. When the Web application server starts a jserver process, it initializes the
JPL modules in that procedure before calling the web_startup event. For example:
10-2 Accessing Databases

Using Database Cursors
proc web_startup
client_init

return

This connection to the request broker is closed in the web_shutdown procedure.
Before the Web application server closes a jserver process, it calls the web_shutdown
event.

proc web_shutdown
client_exit

return

Using Database Cursors

If you use the transaction manager, it automatically opens and closes the cursors it
needs to perform database processing. However, if you are writing your own SQL
statements, you also need to manage the database cursors.

For example, if you open a database cursor to execute a SQL statement or a stored
procedure, you also need to close that database cursor. The commands to open and
close the cursor should occur during a single URL request; otherwise, depending on
your database engine, a shared lock can be in effect until the jserver shuts down or the
cursor closes.

Database Transactions

If you are writing your own SQL statements, you should also complete the data base
transaction during a single request. The DBMS BEGIN and DBMS COMMIT (or DBMS
ROLLBACK) should both occur when the screen is posted back to the server.
Web Development Guide 10-3

Fetching Multiple Rows
By testing for K_WEBPOST–the event flag that is set for POST events—you can ensure
that the database transaction only starts when the screen is submitted back to the server.
For more information on K_WEBPOST, refer to page 5-7, “Screen Entry Context Flag.”

Some type of optimistic locking for the database should be in place so that the data
remains concurrent. Pessimistic locking schemes are not recommended for Web
applications. The transaction manager has a version field that can be used to perform
optimistic locking. You can also use engine-specific locking techniques, such as
timestamp columns.

Fetching Multiple Rows

To fetch multiple rows, use Panther scrolling events instead of DBMS CONTINUE
commands. With Panther scrolling, you set the number of occurrences in the screen to
exceed the number of rows in the select set.

For example, the screen has a grid with 10 onscreen rows and a maximum number of
500 occurrences. You execute a SQL SELECT statement that returns 600 rows. The first
10 rows of the select set are displayed in the browser. The first 500 rows of the select
set are cached on the Web application server. However, the remaining 100 occurrences
institute a shared lock on the database until the rows are flushed, the cursor is closed,
or the jserver is shut down.
10-4 Accessing Databases

CHAPTER
11 HTTP Variables

As HTTP servers and Web clients exchange data, the HTTP protocol sends a series of
header fields containing information about the data being transferred over the Web.
These header fields can, in turn, be passed to any program on your HTTP server.
Because the information in these variables can be useful in your Panther Web
application, Panther converts some of these header fields to global variables that can
be accessed through JPL procedures or C functions.

An HTTP header field has a corresponding Panther HTTP variable. The Panther
variable name begins with @cgi_ followed by the HTTP field name in lower case. The
Panther HTTP variables are read-only and are automatically reset on each GET or POST
of a Panther screen. Because Panther updates these variables automatically, copy their
values elsewhere if you need them for a subsequent POST.

Common uses of the HTTP variables include:

! Building a URL using @cgi_server_name and @cgi_script_name.

! Calling a screen from an HTML document using @cgi_http_referer.

! Testing for MIME types and image formats in @cgi_http_accept.

! Testing for the browser version using @cgi_http_user_agent.

For example, this JPL procedure builds a URL for a link with @cgi_server_name and
@cgi_script_name.

proc build_link
// This procedure sets dynamic label's
// default_link property

home->default_link = "http:://" ## \
@cgi_server_name ## \
@cgi_script_name ## "/home.scr"

return 0
Web Development Guide 11-1

Definitions
A Panther Gallery sample entitled HTTP Variables is accessible from the Web
application server at:

http://server-name/cgi-bin/jwsamp/main

Definitions

@cgi_auth_type

The authentication method required to authenticate a user who desires access
to a protected script.

@cgi_content_length

The length of the data message if POST is used to submit data back to the
server.

@cgi_content_type

The MIME Content-Type of the data if POST is used to submit data back to
the server. For Panther, this variable is set to:

application/x-www-form-urlencoded

The basic MIME types are listed in the following table:

MIME type Description

application Binary data that can be executed or used by another
application

audio Sound data

image Image data

message Encapsulated mail message

multipart Multiple parts possibly consisting of many data types

text Textual data
11-2 HTTP Variables

Definitions
@cgi_gateway_interface

The version of the CGI specification to which this server complies in the
following format:

CGI/version-number

A sample value would be:

CGI/1.1

@cgi_http_accept

A comma-separated list of MIME Content-Types that are acceptable to the
client. They are listed in the following format:

type/subtype

You can use the contents of this variable to determine which image formats a
browser can accept. For example, the following string indicates that the
browser can display PNG, JPEG and GIF images:

image/png,image/jpeg,image/gif

@cgi_http_cookie

A list of all the returned cookie values, separated by semi-colons. The cookie
values are returned when the browser requests a document from the same
HTTP server that set the cookie.

@cgi_http_referer

The URL of the document where the request originated. This can be a partial
URL, in which case it is interpreted relative to the URL of the document being
requested.

For Panther applications, this information is only useful on GET events. If the
user enters a Panther application from elsewhere, for example from another
website, this variable will specify that location, which can then be logged if
desired.

@cgi_http_user_agent

Information about the browser software making the request. This variable
identifies the browser type. Even though there is no standard format, this
information usually appears in the following format:

video Video data

MIME type Description
Web Development Guide 11-3

Definitions
software/version comments

You can determine the format for a particular browser only by
experimentation. For example, the value sent from 32 bit Microsoft Internet
Explorer 10.0 running on a 64 bit Windows 7 system might be:

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64;
Trident/6.0)

@cgi_path_info

Any extra path information found in the URL. Generally, this is the relative
path to a resource.

Panther uses this information to determine which Panther screen to open. For
the example, this variable would be:

/vbiz/vidlist.scr

@cgi_path_translated

The absolute path on the local system for a resource. This is done by
pre-pending the server's document root directory, or DOCROOT, to the path
specified in @cgi_path_info.

If the server's DOCROOT directory is /usr/local/htdocs, the variable would
have the following value for the screen listed in the example:

/usr/local/htdocs/vbiz/vidlist.scr

@cgi_query_string

A URL-encoded search string. This string is separated from the URL by a
question mark. For the example, this variable would be:

start=top

For more information on URL encoding, refer to page 4-3, “Encoding
Parameters in the URL.”

@cgi_remote_addr

The numeric IP address of the remote computer making the request. This is
not necessarily the address of the client, but could be the address of the host
machine where the browser is running.

@cgi_remote_host

The Internet domain name of the host machine making the request. This host
machine is where the browser is running. If the domain name is unavailable,
this field is left blank.
11-4 HTTP Variables

Definitions
@cgi_remote_ident

The remote user name retrieved by the server using the idntd identification
daemon.

@cgi_remote_user

The authenticated name of the user.

@cgi_request_method

The method associated with the request. For HTTP servers accessing Panther,
this will be either GET or POST. The GET method is used when the user enters
a specific URL or activates a hyperlink. The POST method is used when the
user submits a form. Using this variable, you can choose which portions of
your code to execute for each method.

@cgi_script_name

The path and name of the CGI script being accessed, as it is referenced in a
URL. Note that this is only the path that appears in the URL; it is not the
actual, complete path of the CGI program. For the example, this value is:
/cgi-bin/webdev

@cgi_server_name

The Internet domain name of the HTTP server. If the domain name is not
available, the numerical IP address is used. This is useful if the HTTP server
is acting as home for multiple domains, and they each call the same Panther
executable. In the example, the domain name is vbiz.com.

@cgi_server_port

The port number receiving the browser request.

This is 123 in the example. Port numbers are useful if there are multiple
servers running on the same machine, each calling the same Panther
executable.

@cgi_server_protocol

The name and version of the information protocol for the incoming request
using the following format:

protocol/version-number

A sample value for this variable would be:

HTTP/1.0

@cgi_server_software

The name and version of the HTTP server software invoking the external
program. The format is:

software-name/version
Web Development Guide 11-5

Definitions
The following examples are typical values:

Apache/1.3.14 (Unix) (Red-Hat/Linux) PHP/4.0.3pl1

Microsoft-IIS/7.5
11-6 HTTP Variables

CHAPTER
12 Web Initialization
Options

A Panther web application requires its own initialization file whose name is derived
from the name of the requester executable, using the format application-name.ini.

The default initialization file is named proweb.ini. On Windows, it is located in the
\WINDOWS directory or where Windows is installed. On UNIX, it is located in
~proweb/ini. Before you start development of a Panther web application, run the
Web Setup Manager utility in your browser. This tool creates the initialization file
from settings you specify. For more information on the Web Setup Manager, refer to
Appendix B, “Web Setup Manager.”

The following sections describe the different types of environment variables that can
be found in your application's initialization file. There are variables that determine the
behavior of the web application, the Panther environment used by the jserver program,
and the database environment.

Setup Variables

The web initialization file contains an [Environment] section where you set Panther
setup variables such as SMBASE and SMFLIBS. This section also sets the directory path
to use for Panther utilities and programs.
Web Development Guide 12-1

Setup Variables
Note: Panther variables are case sensitive.

Required Settings

Two variables must be set for two-tier and three-tier applications: SMBASE and
SMFLIBS. SMBASE specifies the location of the web application server installation on
the HTTP server.

Some typical settings for SMBASE are:

! UNIX: SMBASE=/usr/panther

! Windows: SMBASE=C:\Program Files\Prolifics\Panther

Required for JetNet/Oracle Tuxedo Applications

One or more of the following variables must be set in order for the web application
server to connect to the middleware as a client:

! SMRBCONFIG is required for a web application server that connects to the
middleware as a non-workstation client (one that resides on an master or
non-master machine). This variable is set to the location of the JetNet
configuration file; this setting must match the value specified for the machine's
local configuration file (refer to “Local JetNet Configuration File” on page 3-14
in JetNet/Oracle Tuxedo Guide).

UNIX: SMRBHOST=/home/myapps/broker.bin

Windows: SMRBHOST=Panther-appserver-location\broker.bin

! SMRBHOST and SMRBPORT are required for a web application server that
connects to the middleware as a workstation client (refer to “Workstation
Clients” on page 2-8 in JetNet/Oracle Tuxedo Guide). SMRBHOST provides the
middleware with the network addresses of the machines to which the client can
connect; SMRBPORT provides the port number associated with each machine that
the client can use to establish its connection.

! SMTPJIF specifies the JIF file to open for the web application.
12-2 Web Initialization Options

Setup Variables
Optional Settings

The following variables only need to be set under certain conditions, as noted in their
descriptions:

! LD_LIBRARY_PATH must be set to enable three-tier processing for a web
application server that resides on a UNIX machine. LD_LIBRARY_PATH (or its
equivalent) must be set to the location of shared Motif libraries. For example:

LD_LIBRARY_PATH=$SMBASE/lib

On HPUX, use SHLIB_PATH in place of LD_LIBRARY_PATH; on AIX, use
LIBPATH.

! PATH sets the application's PATH variable and overrides any existing PATH
settings. Set PATH to the Panther Web util subdirectory if the jserver
executable is not in it, and to the required database directories if two-tier
processing is implemented.

You must provide explicit path names; environment variables are not expanded:

UNIX: PATH=/home/proweb/util:$PATH

Windows: PATH=C:\proweb\util

! SMINITJPL specifies a JPL file to run on web application startup and shutdown.
This file must be in the web application server's client.lib library.

! JAVA_HOME specifies the location of the Java Virtual Machine program.

! SMJAVAFACTORY specifies the name of the Java class factory, if different from
the default, com.prolifics.jni.ClassTagFactory.

! CLASSPATH specifies the location of the Java class libraries. The Panther class
libraries are at $SMBASE/config/pro5.jar. You must also specify the location
of the Java class libraries that you add to your Panther application.

UNIX: CLASSPATH=$SMBASE/config/pro5.jar:$CLASSPATH

Windows: CLASSPATH=$SMBASE\config\pro5.jar;%CLASSPATH%
Web Development Guide 12-3

Behavior Variables
Database Information

For two-tier applications, the [Environment] section can contain variables needed for
your database configuration. For example, the following entry sets these variables for
Oracle on UNIX:

ORACLE_HOME=/u/home/oracle
ORACLE_SID=oracle

Under Windows, installing any Panther database driver except JDB automatically adds
a third section, [Database], to the initialization file. This section lists the DLLs that
Panther should load at startup.

Behavior Variables

The initialization file's [Prolifics Web] section contains variables that deter mine
the behavior of the web application server. The AppDirectory, Dispatcher,
LMLicenseFile, and Server variables are required; all others can be omitted. To
view a sample, refer to page 12-9, “Sample Initialization File.”

Note: Web option names are not case sensitive.

Required Settings

The following variables must be set:

AppDirectory

The path name of the application's working directory. This directory includes
common.lib and client.lib, which contains the application's screens,
reports, JPL modules, graphics, and other files needed by the application.

The path name must be complete. For example:

UNIX: AppDirectory=/home/webapps/vidorder

Windows: AppDirectory=C:\webapps\vidorder
12-4 Web Initialization Options

Behavior Variables
Dispatcher

The location of the dispatcher program. If the path has no leading /, the
location is relative to the location specified in AppDirectory.

UNIX: Dispatcher=/home/proweb/util/dispatcher

Windows: Dispatcher=C:\proweb\util\dispatch.exe

LMLicenseFile

The name and location of the license file. This entry is required.
LMLicenseFile is equivalent to LM_LICENSE_FILE.

UNIX: LMLicenseFile=/home/prolifics/licenses/license.dat

Windows: LMLicenseFile=C:\proweb\licenses\license.dat

NumServers

The number of jserver processes, or concurrent users, that the dispatcher can
run simultaneously. In order for the application to run, it must be set greater
than 0 (its default value).

NumServers=5

Server

The location of the jserver program. If the path has no leading /, the location
is relative to AppDirectory.

UNIX: Server=/home/proweb/util/jserver

Windows: Server=C:\proweb\util\jserver.exe

Optional Settings

The following variables are optional; if omitted, Panther supplies default values as
specified.

BrowserData

Determines whether the application uses server or browser caching. Server
caching puts the cached data in a temporary file on the HTTP server. Browser
caching includes the cached data in the HTML data that Panther sends to the
browser.

A value of null or 0 enables server caching; a value of 1 enables browser
caching. The default specifies server caching.

BrowserData=0
Web Development Guide 12-5

Behavior Variables
For more information about caching data, refer to Chapter 6, “Preserving
Application State.”

CacheDirectory

The path name on the HTTP server where a jserver creates and finds server
cache files. The default is the subdirectory procache in the system's tmp
directory. Panther creates this directory if it does not exist. If directory
creation fails, it enables browser side caching.

The cache files for each application are located in a separate subdirectory.
The subdirectory name matches the application name.

UNIX: CacheDirectory=/home/proweb/procache

Windows: CacheDirectory=C:\proweb\procache

For more information about caching data, refer to Chapter 6, “Preserving
Application State.”

ClientLog

The path name of the file to which the requester logs events.

UNIX: ClientLog=/home/proweb/logs/client.log

Windows: ClientLog=C:\proweb\logs\client.log

Note: All the logging variables–ServerLog, ClientLog, and
ErrorFile—can point to the same file if desired. The entries are
listed in chronological order.

EnableWebid

Enables the caching of state information on a GET using webid in the URL by
setting this variable to 1.

EnableWebid=1

ErrorFile

The path name of the file to which the dispatcher appends server error
messages. You can also write application errors to this file using
sm_web_log_error.

UNIX: ErrorFile=/home/proweb/logs/error.log

Windows: ErrorFile=C:\proweb\logs\error.log
12-6 Web Initialization Options

Behavior Variables
Note: All the logging variables–ServerLog, ClientLog, and
ErrorFile—can point to the same file if desired. The entries are
listed in chronological order.

ExpireTime

The amount of time in minutes that the application waits for the POST of a
screen before removing the screen's server cache file. The default value is 120
(two hours). Setting this variable to a negative number inhibits expiration of
any cache.

ExpireTime=120

HTTPHOST

If using SSL, the name of the host computer running the HTTP server. If the
default port number is not used, it must also be specified.

HTTPHOST=server-name

HTTPSHOST

If using SSL, the name of the host computer running the secure server. This
option can be set only if HTTPHOST is also set.

HTTPSHOST=server-name

IdleServerTimeOut

The number of seconds that a jserver will wait for an incoming request before
exiting. If unspecified, the process continues indefinitely.

Sybase users should set this variable to avoid timeouts in the database server.

IdleServerTimeOut=

ImageDir

The directory containing the graphics files for the web application. If
specified, the HTTP protocol is used to fetch the graphics files instead of the
web application server. This directory must be a sub-directory of the HTTP
server's document root directory. If unspecified, the Panther search path is
used to locate graphics files.

For intranets, enter the sub-directory; the machine name is prepended in the
HTML:

ImageDir=my_app

For the Internet, enter the protocol, domain name, and document root
sub-directory:

ImageDir=http://prolifics.com/my_app
Web Development Guide 12-7

Behavior Variables
Panther provides internal graphics for displays of scrolling grids, web reports
and wizard transaction pages. If you are using any of these graphics in your
application and you choose to use the ImageDir setting, you must copy these
internal graphics to that HTTP server directory as well. These graphics have
been provided separately in the graphics subdirectory of the Panther web
installation.

ListenQueueLength

Determines the length of the listen queue. This is the value passed to the listen
function, which is a standard socket call. It approximately represents the
number of web requests that can be waiting for an available server at any
given moment.

PadOptionMenus

For option menus, generates trailing and HTML spaces () in option
menus if set to Yes. To only pad the first occurrence, set this option to First.

PadOptionMenus=Yes
PadOptionMenus=First

RetainCacheFiles

Determines whether the application retains the server cache file for the screen
after the screen is submitted back to the HTTP server. In order to allow use
of the Back and Forward buttons in the browser program, the server cache
files need to be retained. The ExpireTime option determines how long to
retain them before they are deleted.

A value of null or 0 deletes cache files when a screen is submitted on a POST
event; a value of 1 retains the cache file. The default specifies to delete the
cache file.

RetainCacheFiles=0

ServerLog

The path name of the file to which the dispatcher and jserver logs events.

UNIX: ServerLog=/home/proweb/logs/server.log

Windows: ServerLog=C:\proweb\logs\server.log

Note: All the logging variables–ServerLog, ClientLog, and
ErrorFile—can point to the same file if desired. The entries are
listed in chronological order.
12-8 Web Initialization Options

Sample Initialization File
ServerTimeOut

The time in seconds after which the requester or dispatcher aborts its wait
response for a jserver. This traps infinite loops that may otherwise be hard to
interrupt. If this variable is not set, then it waits indefinitely.

ServerTimeOut=60

Sample Initialization File

A sample configuration file on UNIX might contain the following [Prolifics Web]
and [Environment]sections:

[Prolifics Web]

AppDirectory=/home/webapps/vidstore
ServerLog=logs/server.log
ClientLog=logs/client.log
ErrorFile=logs/error.log

ExpireTime=120
CacheDirectory=/tmp/procache
ServerTimeOut=60
MaxServers=10
Server=/usr/panther/util/jserver
Dispatcher=/usr/panther/util/dispatcher
LMLicenseFile=/usr/panther/licenses/license.dat

[Environment]

SMBASE=/usr/panther
SMFLIBS=client.lib
SMINITJPL=webapp.jpl
PATH=/usr/panther/util
LD_LIBRARY_PATH=/home/motif/usr/lib
SMRBHOST=aspen,willow
SMRBPORT=300,400
Web Development Guide 12-9

Sample Initialization File
12-10 Web Initialization Options

CHAPTER
13 Deploying Web
Applications

After you build an application, follow the instructions in this section to configure an
application to run on the Web.

How to Configure a Panther Web
Application

1. Create an application directory on the web application server.

2. Copy client.lib to the application directory. This library should contain the
files that belong to your application, including: Panther screens and reports,
image files, JPL modules, JavaScript files, and Java applet files.

3. For JetNet and Oracle Tuxedo applications, copy common.lib to the application
directory.

Note: The web setup manager can guide you through creating the requester and
initialization files needed by your application.

4. Create the application's requester executable:
Web Development Guide 13-1

How to Configure a Panther Web Application
" For CGI: In the CGI programs directory, copy proweb[.exe to
application-name[.exe].

" For ISAPI: In the ISAPI programs directory, copy proweb.isa to
application-name[.isa].

" For NSAPI: In the NSAPI programs directory, copy proweb.nsa to
application-name[.nsa].

Note: For NSAPI applications, NSAPI must be configured to run Panther web
applications. For more information, refer to Appendix C, “Setting Up an
NSAPI Web Server.”

5. Alternatively, the Panther web application can run as a Java servlet. For more
information, refer to Appendix D, “Using Java Servlets.”

6. Create the application initialization file by copying the proweb.ini file. Name
the copy application-name.ini. (For example, if the application name is vidorder,
the initialization file would be called vidorder.ini.)

The proweb.ini file is located in:

" UNIX: the ini subdirectory under the proweb user home directory.

" Windows: the Windows directory.

7. Edit the application's initialization file for the following settings. (For complete
information on initialization file settings, refer to Chapter 12, “Web Initialization
Options.”)

" Set the AppDirectory variable.

This variable specifies the name of your application directory (the directory
that contains all of your application files). Be sure the period character (.)
does not appear in the application directory path name.

" Set other variables that are specific to the application—for example,
ServerLog, ClientLog, and ErrorFile.

" Set NumServers to the number of concurrent users. The value must be
updated from its default value, which is 0.

" For better graphics performance, set ImageDir to the location of the
graphics files in the docroot directory of the HTTP server.

" Verify the location of the license file.

" Set SMBASE to the Panther distribution on the Web application server.
13-2 Deploying Web Applications

How to Configure a Panther Web Application
" Set SMFLIBS variable to the Panther libraries.

" Set SMINITJPL to specify the JPL file to load on startup of the Web
application in the variable. The JPL file should be in client.lib.

Typically, this JPL file contains the web_startup and web_shutdown
procedures which set global variables for the application, open and close your
database connections in two-tier applications, and open and close middleware
connections in JetNet and Oracle Tuxedo applications. By including the JPL
module in SMINITJPL, it is automatically initialized with the Web application
server.

" For JetNet and Oracle Tuxedo applications, set the variables required to
connect to the Panther application server: SMRBHOST, SMRBPORT, and/or
SMRBCONFIG and to access the JIF file SMTPJIF.

" For JetNet applications, specify the location of shared libraries through
LD_LIBRARY_PATH, LIBPATH, or SHLIB_PATH.

" For two-tier applications, set database environment information in the
initialization file's [Environment] section. Under Windows, you also need
to set the [Database] section. from proweb.ini.

8. For UNIX web applications, after the application is configured, start the
application by using the monitor command. At the command line, type:

monitor -start application-name[.exe]

9. For Windows web applications, after the application is configured, install the
application as a service using the monitor command. Refer to the monitor
command for more information.
Web Development Guide 13-3

How to Configure a Panther Web Application
13-4 Deploying Web Applications

APPENDIX
A Web Application
Utility

This chapter describes the command-line utility that can help you develop and manage
a Panther Web application. The utility description is organized into the following
components, as applicable:

! Utility name and brief description

! Syntax line and argument descriptions

! Description of the utility

To get a command-line description of a utility's available arguments and command
options, type the utility's name with the -h switch. For example:

monitor -h
Web Development Guide A-1

monitor
monitor

Administers Web applications

monitor -option [appName...]

option

Specifies the task to perform with one of these constants:

-clean appName ...
Deletes expired cache files. This option is also automatically
performed by the dispatcher while the application is running.

-configure appName ...
Directs the dispatcher to reread its configuration file and reset its
behavior and the behavior of its jservers, if necessary.

-findsvc serviceName
For Windows, finds matching entries for the specified service name.

-install appName [-display displayName]
[-description service-description]
[-{automatic|manual|disabled}]
[-user {domain\user|.\user}]

[-password password] [[-depend serviceName] ...]
For Windows, installs the application as a service using the display
name (if specified), service description (if specified), the user and
password, and starting any services specified as dependent first. The
automatic/manual/disabled option corresponds to the settings in
the Services section of the Control Panel. The Control Panel can also
be used to add installation options when they are not specified with
this command.

-log appName ...
Starts the event log request.

-list
Lists the applications that are currently running.

-listsvc
For Windows, lists all service names and service display names.

-remove appName
For Windows, removes the application as a service.
A-2 Web Application Utility

monitor
-restart appName
Runs the three following monitor options: -clean, -stop, -start.
On Windows, if the Web application has been registered as a
service, this option is obsolete.

-start appName ...
Starts the named application if it is not already running. On
Windows, if the Web application has been registered as a service,
this option is obsolete. In this case, use the Services section of the
Control Panel or type net start appName to start the application.

-status appName ...
Produces the same output as the -log option but sends it to standard
output (or to another convenient platform-specific place) for
immediate viewing.

-stop appName ...
Stops the application. This action causes a normal shutdown of
dispatchers and jservers. On Windows, if the Web application has
been registered as a service, this option is obsolete. In this case, use
the Services section of the Control Panel or type net stop appName
to stop the application.

appName

The name of the application's configuration file without its .ini extension.
This argument is identical to the name of the application's requester. You can
specify multiple applications with the same command. If you specify an
application that is not running, the utility returns an error message.

Description monitor is a command-line utility–monitor on UNIX, monitor.exe on Windows–
which lets you administer a running web application. Each invocation can perform a
single task on one or more applications. You can use monitor to start and stop a web
application server; you can also perform these maintenance tasks:

! Delete expired cache files.

! Start logging events, either to the event log file or to standard output.

! List the applications that are currently running.

! Modify the behavior of a dispatcher and its jservers by instructing them to
reread its configuration file.
Web Development Guide A-3

monitor
Installing an
Application

as a
Windows

Service

For Windows Web servers, you can install the Web application as a service using the
-install option. You can also specify the display name and description for the
Services window and the dependent services that must be started before this service.
For dependent services, the service name, not the display name, must be specified. If
more than one dependent service needs to be specified, the -depend keyword must be
specified before each service. If the name of the associated service contains a space,
that service should be surrounded in double quotes.

Use the monitor -listsvc or monitor -findsvc options to find the service name.

Once the application is installed as a service, you must start the application with the
net start command, in the Services dialog box in the Control Panel, or by having
the machine automatically start the application when it reboots. The monitor -start
command must not be used.

For example, if the application is named storeinven and needs database services
named DBProcess 1 and DBCheck, the following command line installs the
application as a service:

monitor -install storeinven -depend "DBProcess 1" -depend DBCheck

In addition, if the name of this application in the Services dialog box is Video Store
Inventory, the command line changes to the following:

monitor -install storeinven -display "Video Store Inventory"
-depend "DBProcess 1" -depend DBCheck

You must stop the application with the net stop command or in the Services dialog box.

Order of
Services

It is also recommended that the services needed by the Panther web application start in
a specific order:

! Database engine

! Oracle Tuxedo IPC Helper (for JetNet and Oracle Tuxedo applications)

! HTTP server

! Panther Web application

Full Syntax The full syntax of the command is:

monitor -start application-name [application-name ...]
monitor -stop application-name [application-name ...]
monitor -configure application-name [application-name ...]
monitor -log application-name [application-name ...]
monitor -clean application-name [application-name ...]
A-4 Web Application Utility

monitor
monitor -status [application-name ...]
monitor -list
monitor -install application-name
 [-display display-name]
 [-description service-description]
 [-{automatic|manual|disabled}]
 [-user {domain\user|.\user}]
 [-password password]
 [[-depend service-name]...]
monitor -remove application-name
monitor -restart application-name
monitor -listsvc
monitor -findsvc name

The -install; -remove; -listsvc and -findsvc options are only supported in
Windows.
Web Development Guide A-5

monitor
A-6 Web Application Utility

APPENDIX
B Web Setup Manager

The Web setup manager utility creates or updates the configuration files needed by
your Web application. After you install your Panther Web application server, you can
run this utility from any Web browser having access to the HTTP server's programs.

Running this utility creates or updates:

! The initialization file containing Web application settings.

! The requester program for your Web application.

The Panther Web application server supports three types of requester programs:

! CGI (Common Gateway Interface)—The default name is proweb or, for
Windows, proweb.exe.

! ISAPI (Microsoft's Internet Information Server API)—The default name is
proweb.isa.

! NSAPI (Netscape's Web Server API)—The default name is proweb.nsa.

For a description of the requester process, refer to page 2-2, “Requester Program.”

For more information about settings in your web initialization file, refer to Chapter 12,
“Web Initialization Options.”
Web Development Guide B-1

Using the Web Setup Manager
Using the Web Setup Manager

Each Panther web application must have an initialization file, which contains
configuration settings for the application. The Panther Web Setup Manager helps you
create a new initialization file or update an existing one. The steps in this chapter help
you create a new Panther web application.

Creating a
Web

Application

In order to use this utility, you must have completed the installation of the Panther web
application server and know the following information:

! The location of your Panther web installation.

! The location of your HTTP server's program directory (usually called cgi-bin or
scripts).

Note: For the O'Reilly HTTP server, use the directory specified for Standard
CGI in the O'Reilly Administration dialog. Typically, this is cgi-bin or
scripts, not cgi-win.

For information on setting up your web application server, refer to Chapter 2, “Web
Application Setup.”

To create a new Panther Web application:

1. Start your web browser (for example, MS Internet Explorer, Mozilla Firefox).

2. In the URL field, type the location of the Panther Web Setup Manager:

http://hostMachineName/webProgramDirectory/websetup

(For example, http://myhost.com/cgi-bin/websetup).
B-2 Web Setup Manager

Using the Web Setup Manager
By default, Create an Application is already selected

3. Choose Continue.

Enter
Program

Locations

You assign each Web application a unique name which is used to name the
application's requester program and the application's initialization (.ini) file.
Web Development Guide B-3

Using the Web Setup Manager
4. For Application Name, enter the unique name you are using to identify your
Web application.

5. For SMBASE, enter the full path pointing to the Panther Web installation.

6. For Program Directory, enter the path to your HTTP server's program directory.

Note: This should be a directory path, not a URL.

7. Select the web application type: CGI, NSAPI, ISAPI.

Note: All HTTP servers support CGI. Check with your HTTP server
administrator to find out if NSAPI or ISAPI support is available.

8. Choose Continue.
B-4 Web Setup Manager

Using the Web Setup Manager
The program creates both a .ini file and an executable specific to your
application—in the sample Windows screen, vidstore.ini and the
executable vidstore.exe). The next screen will tell you that both files have
been created.

9. Choose OK.
Web Development Guide B-5

Using the Web Setup Manager
Enter
Panther

Web
Settings

Each Panther web application can have its own settings which are stored in the
initialization file. In the left-hand frame, icons represent the different categories of
settings. In the right-hand frame, there are fields to enter your settings with an
accompanying explanation of each setting.
B-6 Web Setup Manager

Using the Web Setup Manager
10. Settings which you should set or double-check include:

" Under Directories, in Application Directory, enter the path where the
application libraries will be located.

" Under Server Executables, you can change the path to the jserver and
dispatcher executables if they are not in the util directory of the Panther
web application installation.

" Under Server Variables, set Number of Servers to the number of concurrent
users. Since this setting greatly affects performance, you need to set it for
each web application.

" Under Licensing, check the path of your license.dat file.

" Under Caching, a series of variables set the data caching options. If you do
not know which options will be used, leave the defaults when first creating
your web application and update them later.

" Under Secure Socket Layer, enter the host IDs needed for the HTTPS
protocol.
Web Development Guide B-7

Using the Web Setup Manager
11. Choose Continue.

Specify
Environment

Settings

Your Panther web application also needs its own environment settings.

12. Settings which you should set or double-check include:

" Under SMBASE, the location of the Panther web application server
installation (entered in the first screen) is automatically displayed.

" Under Initial JPL, enter the name of the JPL file that will be run when the
web application server starts. This JPL file should be in an application
library that is available to the web application server.

" Under Initial Development Libraries, in SMFLIBS, set or check the settings
for client libraries, for example client.lib|vidstore.lib.

" (UNIX only) Under Shared Library Path, the web application server's lib
directory should be added to the shared libraries.
B-8 Web Setup Manager

Using the Web Setup Manager
Configure
Three-Tier

Applications

(For JetNet and Oracle Tuxedo applications) Depending on whether you are running
the Panther web application server on a separate machine from your Panther
application server, your settings under 3 Tier Configuration will be different.

13. Choose 3 Tier Configuration from the left-hand menu.

(If running Panther application server and Panther web application server on
the same machine):

In JetNet Configuration File (SMRBCONFIG), type the directory location of your
broker.bin file. (It is generally located in the application directory.) Leave the
lines for SMRBHOST and SMRBPORT blank.

(If running the servers on different machines):

Leave the line for JetNet Configuration File (SMRBCONFIG) blank. Enter the
information for SMRBHOST and for SMRBPORT.
Under Work Station Device, check the platform list and enter the location of the
tcp directory if needed.

14. Choose Continue.
Web Development Guide B-9

Using the Web Setup Manager
Specify
Additional

Settings

Under Additional Environment Variables, you can enter settings for databases or other
optional web settings.

15. For database settings, use an Oracle database as an example. Enter the
environment variable name under the Setting column (for example,
ORACLE_HOME) and enter its value in the Value column (for example,
/usr/oracle).

16. For JetNet and Oracle Tuxedo applications, specify access to the JIF file on this
screen. Under Setting, enter the environment variable SMTPJIF; under Value,
enter the name of the JIF file located in an application library (for example,
jif.bin).

17. After completing any necessary information, choose Continue. A screen informs
you that your Panther Web application server file has been created.
B-10 Web Setup Manager

APPENDIX
C Setting Up an NSAPI
Web Server

Panther web applications support NSAPI for HTTP processes.

Configuring Your NSAPI-Compliant
Server

In the following instructions, the HTTP server is installed at /usr/netscape/suitespot,
and the cgi-bin directory is /usr/netscape/suitespot/cgi-bin/.

In order to install Panther NSAPI support:

1. Copy prlldr.nsa to /usr/netscape/suitespot/cgi-bin/.

2. Modify the file /usr/netscape/suitespot/http*/config/obj.conf as
follows:

3. At the top of the file, add:

Init fn="load-modules" \
shlib="/usr/netscape/suitespot/cgi-bin/prlldr.nsa" \
funcs="prolifics,prolifics-init"

Init fn="prolifics-init"
Web Development Guide C-1

Accessing the Panther Web Application
4. After the line <Object name=default>, add the following preceding any line
similar to NameTrans fn="pfx2dir" ... from="/":

NameTrans fn="pfx2dir" \
from="/prolifics"\
dir="/usr/netscape/suitespot/cgi-bin" \
name="prolifics"

5. After the line </Object>, add:

<Object name=prolifics>
ObjectType fn=force-type type=magnus-internal/prolifics
Service fn=prolifics
</Object>

6. The file /usr/netscape/suitespot/http*/config/mime.types must also
be modified. After the line type=magnus-internal/cgi
exts=cgi,exe,bat, add:

type=magnus-internal/prolifics exts=nsa

7. After the edits are complete, restart your Netscape server.

Accessing the Panther Web Application

To access the Panther web application using NSAPI:

! Copy proweb.nsa to the program directory (for example, cgi-bin).

! For each Panther web application, copy proweb.nsa to AppName.nsa.

! Start the application either as an service or with the monitor command. The
syntax for the monitor command is:

monitor -start AppName

The simplest service syntax is:

net start AppName

! Enter the application's URL:
C-2 Setting Up an NSAPI Web Server

A Sample Obj.conf File
http://HostName/prolifics/AppName.nsa/ScreenName

Note: For applications previously deployed using CGI, be sure to update the
URLs to access the Panther directory and the application's NSAPI
executable.

A Sample Obj.conf File

The following obj.conf file illustrates the edits detailed in the previous section.

Init fn="load-modules" \
shlib="/usr/netscape/suitespot/cgi-bin/prlldr.nsa" \
funcs="prolifics,prolifics-init"

Init fn="prolifics-init"

Init fn=flex-init
access="/usr/netscape/suitespot/https-myserver/logs/access"
format.access="%Ses->client.ip% - %Req->vars.auth-user%
[%SYSDATE%] \"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"
Init fn=load-types mime-types=mime.types

<Object name=default>
the following directive must precede any line similar to
NameTrans fn="pfx2dir" ... from="/"
NameTrans fn="pfx2dir" \
 from="/prolifics" \
 dir="/usr/netscape/suitespot/cgi-bin" \
 name="prolifics"

NameTrans fn=pfx2dir from=/ns-icons
dir="/usr/netscape/suitespot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons
dir="/usr/netscape/suitespot/ns-icons"
NameTrans fn="pfx2dir" from="/help"
dir="/usr/netscape/suitespot/manual/https/ug"

NameTrans fn=document-root root="/usr/netscape/suitespot/docs"
PathCheck fn=unix-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
Web Development Guide C-3

A Sample Obj.conf File
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap
fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory
fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

<Object name=prolifics>
ObjectType fn=force-type type=magnus-internal/prolifics
Service fn=prolifics
</Object>

<Object name=cgi>
ObjectType fn=force-type type=magnus-internal/cgi
Service fn=send-cgi
/Object>
C-4 Setting Up an NSAPI Web Server

APPENDIX
D Using Java Servlets

A Panther web application can run as a Java servlet. For this feature, you need a servlet
engine using Java Virtual Machine Version 1.1.5 or later with native thread support
enabled.

Java servlets extend the functionality of a Java-enabled HTTP servers. They are
server-side components which interact with servlet engines running on HTTP servers
through requests and responses. For example, a client program running on a web
browser sends a request to an HTTP server. This request is processed by the servlet
engine that runs with the HTTP server. The HTTP server returns a response to the
servlet which in turn sends a response in HTTP format to the client.

Java servlets are an alternative to CGI programs and to vendor-specific APIs, such as
NSAPI or ISAPI. By being both platform-independent and threaded, Java servlets
have advantages over other protocols.

Installing Java Servlet Support

The files for Java servlet support are located at WebInstallDir/servlet, as in
/usr/panther/servlet on UNIX or C:\Prolifics\Panther\Servlet on
Windows.

The servlet directory of your Panther web installation contains the following files:

! proweb.jar—servlet class files

! proweb.java—sample source code
Web Development Guide D-1

Accessing the Panther Web Application
! filtered.java—sample source code

! prowebjni.dll—servlet native code (Windows only)

! libprowebjni.so—servlet native code (UNIX only)

! *.html—HTML documentation of Java classes and usage instructions

To install Java servlet support:

1. Add the location of proweb.jar to the servlet engine's CLASSPATH. You must
specify the full path.

2. Add the directory containing the file prowebjni.dll (libprowebjni.so on
UNIX) to the servlet engine's PATH. Alternatively, on Windows you could copy
prowebjni.dll to the Windows directory.

3. Restart the servlet engine.

Accessing the Panther Web Application

To access the Panther web application using Java servlets:

1. Start the Panther web application.Access the application using the following
URL:

http://HostName/proweb/WebAppName/ScreenName

The following URL accesses the dstord.scr screen in the vidstore web
application:

http://myhost.com/proweb/vidstore/dstord.scr
D-2 Using Java Servlets

Panther's Java Servlet Classes
Panther's Java Servlet Classes

Panther's Java servlet implementation extends the javax.servlet and the
javax.servlet.http packages in the Java Servlet API.

The Java classes in proweb.jar include:

! ProlificsHttpServlet

! FilterHttpServletRequest

! FilterHttpServletResponse

! FilterServletInputStream

! FilterServletOutputStream

Methods

For more information on the following methods, refer to the Java Servlet API
documentation at http://java.sun.com and to the HTML version of the Java class
files.

Panther
HTTP

Servlet

The following methods are in ProlificsHttpServlet:

doGet

Passes the GET request to a Panther application.

public void doGet(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException;

public void doGet(HttpServletRequest req,
HttpServletResponse res, String appname,
Boolean chunked)
throws ServletException, IOException;

doPost

Passes the POST request to a Panther application.

public void doPost(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException;
Web Development Guide D-3

Panther's Java Servlet Classes
public void doPost(HttpServletRequest req,
HttpServletResponse res, String appname,
Boolean chunked)
throws ServletException, IOException;

getServletInfo

Describes the servlet.

public String getServletInfo();init

If specified, it overrides the init method in the GenericServlet class which
the servlet engine calls when the servlet is loaded.

public void init(ServletConfig config)

throws ServletException;

Servlet
Requests

The following methods in the HttpServletRequest interface are used by
ProlificsHttpServlet:

getAuthType

Gets the authentication scheme of this request. Same as the CGI variable
AUTH_TYPE.

public String getAuthType();

getContentLength

Returns the size of the request entity data, or -1 if not known. Same as the CGI
variable CONTENT_LENGTH.

public int getContentLength();

getContentType()
Returns the Internet Media Type of the request entity data, or null if not
known. Same as the CGI variable CONTENT_TYPE.

public String getContentType();

getCookies

Gets the array of cookies found in this request.

public Cookie[] getCookies();

getHeader

Gets the value of the requested header field of this request.

public String getHeader(String name);

getHeaderNames

Gets the header names for this request.

public Enumeration getHeaderNames();
D-4 Using Java Servlets

Panther's Java Servlet Classes
getInputStream

Returns an input stream for reading binary data in the request body.

public ServletInputStream getInputStream()

throws IOException;

getMethod

Gets the HTTP method (for example, GET, POST, PUT) with which this request
was made. Same as the CGI variable REQUEST_METHOD.

public String getMethod();

getPathInfo

Gets any optional extra path information following the servlet path of this
request's URI, but immediately preceding its query string. Same as the CGI
variable PATH_INFO.

public String getPathInfo();

getPathTranslated

Gets any optional extra path information following the servlet path of this
request's URI, but immediately preceding its query string, and translates it to
a real path. Similar to the CGI variable PATH_TRANSLATED.

public String getPathTranslated();

getProtocol
Returns the protocol and version of the request as a string in the form
protocol/major version.minor version. Same as the CGI variable
SERVER_PROTOCOL.

public String getProtocol();

getQueryString

Gets any query string that is part of the HTTP request URI. Same as the CGI
variable QUERY_STRING.

public String getQueryString();

getRemoteAddr

Returns the IP address of the agent that sent the request. Same as the CGI
variable REMOTE_ADDR.

public String getRemoteAddr();

getRemoteHost

Returns the fully qualified host name of the agent that sent the request. Same
as the CGI variable REMOTE_HOST.

public String getRemoteHost();
Web Development Guide D-5

Panther's Java Servlet Classes
getRemoteUser

Gets the name of the user making this request. The user name is set with
HTTP authentication. Whether the user name will continue to be sent with
each subsequent communication is browser-dependent. Same as the CGI
variable REMOTE_USER.

public String getRemoteUser();

getRequestURI
Gets, from the first line of the HTTP request, the part of this request's URI
that is to the left of any query string.

public String getRequestURI();

getServerName

Returns the host name of the server that received the request. Same as the CGI
variable SERVER_NAME.

public String getServerName();

getServerPort

Returns the port number on which this request was received. Same as the CGI
variable SERVER_PORT.

public int getServerPort();

getServletPath

Gets the part of this request's URI that refers to the servlet being invoked.
Analogous to the CGI variable SCRIPT_NAME.

public String getServletPath();

There are additional methods included in FilterHttpServletRequest that
are not called by ProlificsHttpServlet. See the HTML documentation for
more information.

Servlet
Responses

The following methods in the HttpServletResponse interface are used by
ProlificsHttpServlet:

addCookie

Adds the specified cookie to the response. It can be called multiple times to
set more than one cookie.

public void addCookie(Cookie cookie);

getOutputStream
Returns an output stream for writing binary response data.
D-6 Using Java Servlets

Panther's Java Servlet Classes
public ServletOutputStream getOutputStream()
throws IOException;

setContentLength

Sets the content length for this response.

public void setContentLength(int len);

setContentType

Sets the content type for this response.

public void setContentType(String type);

setHeader

Adds a field to the response header with the given name and value.

public void setHeader(String name, String value);

setStatus

Sets the status code, or the status code and message, for this response.

public void setStatus(int sc);
public void setStatus(int sc, String sm);

There are additional methods included in FilterHttpServletResponse that
are not called by ProlificsHttpServlet. See the HTML documentation for
more information.

Filter Servlet
Input Stream

The following methods, if specified, override the methods in InputStream:

available
public int available() throws IOException;

close
public void close() throws IOException;

mark
public synchronized void mark(int readlimit);

markSupported
public boolean markSupported();

read
public int read() throws IOException;
public int read(byte buf[]) throws IOException;
public int read(byte buf[], int off, int len)
throws IOException;

readLine
public int readLine(byte buf[], int off, int len)

throws IOException;
Web Development Guide D-7

Panther's Java Servlet Classes
reset
public synchronized void reset() throws IOException;

Filter Servlet
Output
Stream

The following methods, if specified, override the methods in OutputStream or
ServletOutputStream. See the HTML version of the class file for more information.

close

public void close() throws IOException;

flush
public void flush() throws IOException;

print
public void print(boolean bval) throws IOException;
public void print(char cval) throws IOException;
public void print(double dval) throws IOException;
public void print(float fval) throws IOException;
public void print(int ival) throws IOException;
public void print(long lval) throws IOException;
public void print(String sval) throws IOException;

println
public void println() throws IOException;
public void println(boolean bval) throws IOException;
public void println(char cval) throws IOException;
public void println(double dval) throws IOException;
public void println(float fval) throws IOException;
public void println(int ival) throws IOException;
public void println(long lval) throws IOException;

write
public void write(byte buf[]) throws IOException;
public void write(int val) throws IOException;
public void write(byte buf[], int off, int len)
throws IOException;
D-8 Using Java Servlets

APPENDIX
E Sample Web
Applications

The Panther Web Gallery contains sample applications that demonstrate a variety of
HTML and Panther features. You can view the applications in the Panther Web
Gallery or in the editor.

To visit the Panther Web Gallery, use the following URL:

http://server-name/cgi-directory/jwsamp[.exe]/main

You can view these applications in the editor to see how they were created. Locate the
sample application files in the appropriate subdirectory under your Panther samples
subdirectory (in the Web application server home directory). For example, the Java
applet application is located in ... web/samples/java, where ... web is the web
application server home directory. Full directory information for each application is
provided in the descriptions that follow.

General Applications

The following applications incorporate a variety of HTML and Panther features that
you might find in a typical application:
Web Development Guide E-1

General Applications
Tracker (package tracking)
Shows how easily the ease the world can be linked together on the World
Wide Web. This application lets you track a package that is shipped via a
popular carrier such as Federal Express or UPS.

For example, suppose your software company has deployed this package to
track its software shipments. To locate a package: first, select the customer to
whom the package is being shipped; a database query returns the shipping
information for the selected customer. Then click on the waybill number for
the package that you're interested in, and the application calls the carrier's
tracking program and passes the waybill number as a parameter.

Directory: ... web/samples/shipping

Search the world (search engine)
Pass values between Panther screens and HTML forms. You can use this
application to search the Internet for information by entering a search string.
To search the Internet, enter your search string and click the appropriate push
button; the application passes your search string to a second HTML form
which calls several popular search engines. The search string from the main
form is passed to the second form.

Directory: ... web/samples/search

Email of the famous (mailer)
Incorporate your existing database of URL addresses into an application
through sm_web_invoke_url You can use this application to query your
URL database and create a dynamic hyperlink to a selected address.

Directory: ... web/samples/dblinks

Fly by Web (airline reservations)
Web applications can use three-tier processing in order to off-load business
logic onto the Panther application server. This sample shows how your
browser and Web application server act as a client to the Panther application
server.

Directory: ... web/samples/3tier
E-2 Sample Web Applications

Feature-Specific Examples
Feature-Specific Examples

The following examples show how to use specific HTML or Panther features:

Action and selection in grids
Use list boxes to invoke an action or allow a selection. There are two types of
list boxes in a Panther Web application: Action and Selection. An Action List
Box has an action or event associated with each item in the list. The action is
triggered when the item is selected. A Selection List Box allows the user to
select any number of items from the list.

This example demonstrates both action and selection list boxes. Both types of
list boxes have been put into grids. The master grid uses the properties of an
action list box. When you select an item (a customer's name) in the master
grid, the detail grid is populated with the appropriate data (the film videos that
the customer has rented). The detail grid has the properties of a selection list
box. In this grid, you can select all of the film videos that are to be returned.
(Press the save button to update the database after your selection.)

Directory: ... web/samples/listbox

ActiveX and VBScript
You can embed ActiveX controls in your Panther screens and write VBScript
to manipulate them on the browser. This example contains JPL procedures
that dynamically generate VBScript to populate an ActiveX control. This
example also demonstrates how to write VBScript to get values from an
ActiveX control and copy them to hidden Panther fields in order to send them
back to the server.

Directory: ... web/samples/activex

Automatically generated JavaScript
Dynamically generate JavaScript to control field edits and validations in
order to make your Web application more intelligent. This example
demonstrates some of the dynamically generated JavaScript functions that are
used to valid field input.

Directory: ... web/samples/jamjavas
Web Development Guide E-3

Feature-Specific Examples
Business graphics
Generate a graphical representation of the data from your database or any
other source. You can display graphs and charts based on your data in the
following formats: pie chart, bar/line graph, XY plot, High/Low chart. In this
example, a graph widget is used to generate both a pie chart and a bar chart.

Directory: ... web/samples/busgraph

CGI variables
Access all available CGI variables in JPL. These values can be used to
determine which server or browser type is being used, whether a GET or a
POST has occurred, and other important information.

You can view the values of this application's CGI (Common Gateway
Interface) variables. (Press the Submit button to view the CGI variables after
a POST has occurred.)

Directory: ... web/samples/cgi

Client cookies
Store values in the browser using cookies.
The first time you access this sample, the user name and number of visits are
set as cookies in the browser. Each subsequent visit to this sample increments
the number of visits and displays the user name. You can reset the user name
which also resets the number of visits to 0.

Directory: ... web/samples/cookie

Custom JavaScript
Embed custom JavaScript into a Panther application. JavaScript allows you
to do field or screen processing on the client without going back to the server.
For instance, you can do calculations, give warnings, manipulate data, use
timer functions, or do field validations.

In this example, you can view asynchronously changing clocks that compute
the time in New York, London, and Tokyo.

Directory: ... web/samples/javascr

Data transfer (send and receive)
Use the JPL send and receive commands to easily pass data back and forth
between screens. The movie search criteria which you provide is passed to a
second screen, where the data is used for a query by example search on the
database.
E-4 Sample Web Applications

Feature-Specific Examples
Directory: ... web/samples/sendrec

Expandable grids
Display tabular data in expandable grids, which dynamically expand to the
number of rows selected from the database.

The grid in this sample expands according to the number of rows returned
from the database. You can select all video titles, titles beginning with a
certain letter, or the titles in a specific classification. If you want detailed data
about the video, click on the title_id, and the information is displayed at
the bottom of the screen.

Directory: ... web/samples/expgrid

Frames
Divide an HTML frameset into two frames: an index and contents display
window. The WEB application in the index frame controls the HTML
documents that are displayed in the contents window.
You can open a new Web page or HTML file in the contents (right-side)
window frame by selecting the topic name in the index (left-side) window.

Directory: ... web/samples/frames

Graphics
Use graphics to enhance your WEB applications. The application screen
includes a transparent image, an animated image, an image as hyperlink, and
an image map of the United States that allows you to select a region and jump
to a new site to view information about the selected region.
An image map is a single graphic with hot spots that link to other locations.
This example uses an NCSA standard image map. It assumes that the HTTP
server's image map CGI program is available in the CGI directory. (If your
server does not support this configuration, then this image map can not
function properly.) To enable the image map, copy
...web/samples/graphics/usa.map to your DOCROOT directory.

Directory: ... web/samples/graphics

HTTP request method (K_WEBPOST)
Use the two methods by which a Web browser can transfer data to an HTTP
server, GET and POST. GET is used when the browser is requesting data or
submitting a limited amount of data.
Web Development Guide E-5

Feature-Specific Examples
POST is used when the browser is submitting large amounts of data. The
Panther flag K_WEBPOST enables the Application Server program to
determine if the incoming request is a POST.

In the sample, the flag K_WEBPOST is queried to prevent a second connection
to the database after the initial connection has been established.

You can use this application to insert, update, or delete data from a database.
Directory: ... web/samples/kflag

Hyperlinks
Perform a variety of functions on your Web page using hyperlinks. They
bring up documents, target these documents for a new instance of the
browser, send mail to people, pass along input values, and perform other
activities. This example demonstrates several different types of hyperlinks.

Directory: ... web/samples/hyperlnk

Java applets
Build more robust applications using Java applets, and incorporate those Java
applets into your Web applications. This example contains an embedded Java
applet (the ticker-tape banner) that uses Panther's property API to
dynamically change the banner text being sent to the Java code.

Directory: ... web/samples/java

JPL global variables
Show Panther's power and flexibility by showing how to maintain global
information through JPL globals and the Panther function
sm_web_save_global. You can set your own user and application
preferences for a scheduler. (Note: this sample application is not connected to
a database.)

Directory: ... web/samples/globals

Master/Detail in frames
Use frames to make your master/detail applications user-friendly.
In this sample, the list of movie titles appears in one frame. Each movie title
is a hyperlink so that when a movie title is selected, specific information
about that title is displayed in an additional frame.

Directory: ... web/samples/mdframes
E-6 Sample Web Applications

Feature-Specific Examples
Reports
Generate a report based upon user input. You can enter search criteria (a film
name) and generate a movie cast report based upon the entered film name.
The generated report includes page navigation buttons. You can also generate
a movie cast report by selecting the film title from a list of the top ten films.
Panther automatically formats the report based upon the amount of data that
is being displayed.

Directory: ... web/samples/webwrite

Scrolling grids
Page through the entries in your database easily with scrolling grids. In this
example, you can insert or delete entries into the sample database of video
customers or scroll through the list of customers. (Use the vertical arrow
buttons at the left or the grid to scroll through the entries; the push buttons at
the bottom to insert and delete information.)

Directory: ... web/samples/scroll

Sound files
Embed sound, video, or other popular MIME file types easily into your Web
application. It uses graphic hyperlinks whose URLs are audio files.

If your PC has a sound card installed, you can listen to the sound files by
clicking on the appropriate graphics.

Directory: ... web/samples/sound

Templates
Demonstrates the use of the Panther Template property to present data from
a Panther screen using the format of a custom HTML file. This HTML file
can also be submitted back to Panther for normal processing.
By clicking on the scroll buttons of the grid, the custom representation of the
data is also updated at the bottom of the screen.

Directory: ... web/samples/template

Web and GUI applications
Run a single application in any environment–two-tier, three-tier, and Web.
The application property
in_web is used to determine whether the application is running in a Web or
non-Web environment, and the detail information is populated accordingly.

You can select a film from a grid and view detail information about the film.
Web Development Guide E-7

Feature-Specific Examples
Directory: ... web/samples/webflag
E-8 Sample Web Applications

INDEX
Index

Symbols

@cgi global variables 11-1
@web_action global variables 5-9
@web_image_click_x/y 8-17
@web_posted_screen 6-3
{{}}.HTML template tags 8-5

A

Active Pixmap property
in web applications 3-8

ActiveX controls
setting the Codebase property 8-27
using in Web applications 8-24

Aliasing
Web application fonts 3-17

Application directory
for web applications 2-3, 12-4

Application state
saving 6-1

Attributes property
for widgets 8-4

Auto Expand property 3-11

B

Body Attributes property
for web screens 8-3

BODY element 8-1

setting attributes 8-3
Browser

base font 1-4
cache settings 2-12
specifying events

using events 9-2
target window 8-13
title bar 8-14
viewing capabilities 1-4

Browser caching 6-2
BrowserData option 12-5

C

Cache files
deleting with monitor utility A-2

Cached data
CacheDirectory option 12-6
in HTML file 6-2
on HTTP server 6-3
retaining 6-3, 12-8

Calculation property
in web applications 3-8

Cascading stylesheets
setting stylesheet type 8-19

CGI (Common Gateway Interface)
directory 2-2
setting the type of requester executable 2-6
setting type of requester executable 2-2, B-1

Check box widget
Web Development Guide I-1

Index
Web application usage 3-10
Configuration

setting web application directory 2-3
web initialization file 12-1

Context global variables
saving Web application state 6-6

Context Web global variables 7-2
Control flow

in HTML templates 8-6
Cookies

in web applications 8-21
retrieving values 8-22, 11-3
saving Web application state 6-7

D

Data
caching

in web applications 6-2
Database

connecting to
Web application 10-1, 10-2

fetching multiple rows in Web application
10-4

optimistic locking
Web application 10-4

transaction processing
Web application 10-3

Database connections
setting in Web application 10-1, 10-2

Dispatcher executable 1-8
rereading configuration file A-2
setting location of 12-5

Display Window property 8-14
Double Click property

in web applications 3-8

E

Edit Mask
in web applications 3-8

Error messages
for Web applications 2-5
logging for Web application server 12-6

Events
web applications 5-1

Export to HTML property 9-6

F

Firewall 2-12
Font

browser base font 1-4
Web application 3-16

aliasing 3-17
name 3-16
point size 3-17

Form Attributes property 8-3
FORM element

attributes set by Prolifics properties 8-2
Frames

in web application 8-18
FRAMESET element 8-18

G

GET method
submitting a form to another program 8-10
using URL to send data 4-2

Global JPL variable
Web application usage 7-1

application globals 7-1
context globals 7-2
setting for user 7-2
transient globals 7-3

Graphics file
setting web server location 8-17
supported Web browser formats 8-15
Web application usage 8-15

Grid widgets
Web application 3-10

deleting data 3-11
I-2 Web Development Guide

Index
expanding 3-11
inserting data 3-11
scrolling in browser 3-13
selecting row 3-12

H

HEAD element 8-1
adding data for 8-2

Head Markup property 8-2
Headings

creating in HTML document 8-20
Hidden property

in web applications 3-7
Hidden widgets

generating HTML tag 9-6
saving Web application state 6-5

Horizontal Anchor property 3-14
in web applications 3-14

Horizontal lines
creating in HTML document 8-20

HR element 8-20
HTML

BODY element 8-1
components 8-1
FORM attributes 8-2
FORM element 8-1
format 1-3
FRAMESET element 8-18
generating from screen 8-1
generating tags for widgets 9-6
HEAD element 8-1
headings 8-20
horizontal lines 8-20
HR element 8-20
hyperlinks 8-11
modifying with Panther properties 8-2
tags 1-3
title bar 8-14

HTML Template property 8-4
HTML templates

for Web applications 8-4
HTTP

variables 11-1
HTTP server 1-3, 1-5
HTTPS protocol 4-6
Hyperlinks

creating 8-11
image map 8-16
in list box widget 8-12
target window 8-14
using in reports 8-12

I

Image map
including server-side map 8-16

Initialization file
for Web 12-1, B-2

Input Protection property
in web applications 3-8

Ins/Del Buttons property 3-12
Internet

about 1-1
ISAPI

setting type of requester executable B-1

J

Java
invoking Java applets 8-22
using Java servlets D-1

Java applets
invoking 8-22

Java servlets
configuring D-1

JavaScript
accessing HTML names 9-6
events 9-2
generating from editor properties 9-7
including function in web application 9-4
referencing screen widgets 9-6
Web Development Guide I-3

Index
JavaScript property 9-4
JPL variable

globals in Web application 6-6
HTTP variables

defined 11-1
jserver executable 1-7

setting location of 12-5
setting number of 12-5

K

K_WEBPOST
set on screen posting 5-7

Keep Image Size property 8-16

L

Length property
in web applications 3-7

License file
specifying 12-5

Link Attributes property
for hyperlinks 8-4

LMLicenseFile 12-5
Log file

setting for web applications A-2

M

Message
from web applications A-2
logging Web client events 12-6
logging Web server events 12-8

monitor utility
administering web applications A-2
cause dispatcher to reread configuration file

A-2
deleting expired cache files A-2
find Windows service names A-2
installing Windows service A-4
restarting a web application A-3

starting a web application A-3
stopping a web application A-3

N

NSAPI
setting type of requester executable B-1
setting up web applications C-1

O

Optimistic locking
Web application 10-4

Option menu widget
populating in Web application 5-8

P

Password Field property
in web applications 3-9

Positioning regions
in web applications 3-15

POST method
sending data to HTTP server 4-2

Posting screens
getting name of screen 6-3

Prefix Markup property 8-4, 8-20
Push button widget

Web application usage 3-9

R

Radio button widget
Web application usage 3-10

selecting a grid row 3-12
Reports

using hyperlinks
in web applications 8-12

Requester executable 1-7
location of 2-2
specifying type B-1
I-4 Web Development Guide

Index
Restarting
Web application A-3

Rows
retrieving multiple rows

Web application 10-4
Runtime properties

for web applications 3-18

S

Sample applications
Panther Gallery

web E-1
Screen

HTML generated from 8-1
HTML properties 8-2
specifying in a URL 4-2
submitting to HTTP server 4-1
submitting to secure server 4-6
target window 8-14

Screen properties
in web applications 3-1

Secure POST property 4-6
Secure server

submitting screens to 4-6
Selection group

Web application usage 3-10
Send data

saving Web application state 6-5
Server caching

BrowserData option 12-5
web applications 6-3

Size to Contents property
in web applications 3-7

Sound
associating file with widget 8-30
including in Web application 8-29

SSL (Secure Sockets Layer) 4-6
Starting

Web application A-3
Status line

displaying in web applications 9-3, 9-7
Status Line Text property 9-7

in web applications 3-8
Stopping

Web application A-3
Stripe Current Row property 3-12
Stylesheet Data property 8-19
Stylesheet Link property 8-19
Stylesheet Source property 8-3, 8-19
Stylesheet Type property 8-19
Stylesheets

setting for Web applications 8-19
Submitting screens

getting name of screen 6-3
Suffix Markup property 8-4, 8-20

T

Target Default property 8-14
Target property 8-14
Target window

for a screen 8-14
for hyperlinks 8-14

Template
HTML 8-4

conditional processing 8-7
passing database values 8-8
submitting a form 8-10
template tags 8-5

Title property 8-14
Transactions

in web applications 10-3
Transient Web global variables 7-3

U

URL
defining parts of 1-2, 4-2
encoding parameters 4-3

Utilities
monitor A-2
Web Development Guide I-5

Index
V

VBScript
accessing HTML names 9-6
events 9-2

VBScript property 9-4
Vertical Anchor property 3-14

in web applications 3-14

W

Web application server
administering A-2
components 1-7
dispatcher 1-8, 12-5
jserver 1-7, 12-5
licensing 12-5
requester 1-7, 2-2
setting number 12-5

Web applications
about 1-5
defining stylesheets 8-19
initialization file B-2

options 12-1
sample 12-9

installing as Windows service A-2
listing Windows services A-2
loading graphics 8-17
removing as Windows service A-2
runtime properties 3-18
samples E-1
setting browser events 9-2
setting up

Java servlets D-1
NSAPI C-1
using the Web Setup Manager B-1

starting with monitor utility A-3
stopping A-3
using ActiveX controls 8-24

setting the Codebase property 8-27
using HTML templates 8-4

writing error logs 2-5
Web events

application shutdown 5-3
application startup 5-1
context flags on web entry 5-9
hook procedures 5-1
in the browser 9-2
pre-HTML generation 5-2
screen posting 5-2
sequence 5-5

Web Options properties
screen 3-3
widgets 3-5

Widgets
accessing HTML names 9-6
exporting to HTML 9-6
HTML attribute properties 8-3
overlapping

in web applications 3-14
positioning properties 3-14

Windows
servers

configuring 2-8
installing as a service A-4

Windows service
finding service names A-2
installing Web application as A-2
removing Web application A-2

Word Wrap property
in web applications 3-9
I-6 Web Development Guide

	Contents:
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Overview of Panther Web Applications
	How the Internet Works
	Retrieving Documents with URLs
	HTTP

	Formatting Documents With HTML
	Viewing HTML in Web Browsers
	Using the Internet and Intranets

	Components of a Panther Web Application
	Two-Tier Processing
	Three-Tier Processing
	Web Application Server Processes

	2 Web Application Setup
	Web Application Components
	Requester Program
	Application Directory
	Cache Directory
	Configuration Directory
	Log Files
	Logging Application Errors

	Setting Up the Web Application Server
	Configuring the Requester Program
	Using CGI
	Using ISAPI
	Using NSAPI
	Using Java Servlets

	Configuring Middleware Access
	Configuring Library Access
	Using Remote Libraries

	Configuring Database Access
	Configuring a Windows Server

	Creating a New Web Application
	Using the Web Setup Manager
	To run the Web setup manager:

	Starting Your Panther Web Application
	Using monitor
	Starting as a Service

	Accessing Your Panther Web Application

	Setting Web Browser Options
	Firewalls

	3 Setting Properties for Web Applications
	Screen Properties
	Web Options Properties

	Widget Types
	Widget Properties
	Web Options Properties
	Property Usage in Web Applications
	Push Buttons
	Using push buttons to perform processing in the browser

	Selection Groups
	Grid Widgets
	Dynamically Resizing Grids
	Selecting and Modifying Grid Data
	Scrolling Grids

	Widget Positioning
	Overlapping Widgets
	Horizontal and Vertical Anchors
	Snap to Grid
	Spacing of Widgets
	Positioning Regions
	Maximum Usage of Space
	Fonts

	Font Properties
	Font Name
	Font Size

	Application Properties

	4 Opening Screens
	Processing Screen Requests
	Specifying a URL
	Encoding Parameters in the URL
	Example
	Encoding ASCII Characters

	Transmitting Screens Securely
	Setting Screen Properties
	Determining Screen Sequence
	Configuring Your Web Application

	5 Web Events
	Web Event Hooks
	Specifying Web Event Hooks

	Web Application Events
	Web Application Server Events
	Screen Events

	Controlling Entry Processing
	Screen Entry Context Flag
	Screen Entry Processing and Option Menus
	Web Entry Context Flags

	6 Preserving Application State
	Caching Data
	Posting Screens Back to the Server
	Getting Screens from the Server
	Cached Data

	Saving State Data in Cookies
	Unpreserved State Information
	LDB
	Window Stack
	Property Changes

	7 JPL Globals in Web Applications
	Application Globals
	Context Globals
	Transient Global Variables

	8 Customizing HTML Generation
	Setting Custom HTML Properties
	Screen Custom HTML Properties
	Widget Custom HTML Properties

	Using HTML Templates
	HTML Template Tags
	HTML Template Document
	Conditional Processing

	Passing Database Values
	Submitting a Form

	Using Hyperlinks
	Creating Hyperlinks
	Setting the Default Link Property
	Setting the Item Link Property
	Calling sm_web_invoke_url
	Placing an Action List Box Inside a Grid

	Using Hyperlinks in Reports

	Setting Target Windows
	Setting the Window for a Specific Hyperlink
	Setting the Default Window for All Screen Hyperlinks
	Setting the Window for a Screen

	Specifying the Browser's Title Bar
	Using Graphics
	Setting Graphics Size
	Graph Widgets
	Image Maps
	Creating Image Maps in JPL

	Loading Graphics at Runtime

	Using the FRAME Extension
	Using Style Sheets
	Creating Headings
	To create a heading:

	Drawing Horizontal Rules
	To create a horizontal rule:

	Using Cookies
	Retrieving Cookie Values

	Embedding Java Applets
	To embed a Java applet into your Panther screen:

	Refreshing Screens in a Web Browser
	To specify a META tag:

	Using ActiveX Controls
	Using ActiveX Controls in Web Browsers
	Signing Your ActiveX Controls
	Submitting Data to the Web Application Server
	Submitting Data using JavaScript
	Submitting Data using VBScript

	Generating HTML for ActiveX Controls

	Embedding Sound
	To embed a sound file in your application:

	9 Using JavaScript and VBScript
	Browser Events
	JavaScript Event Properties
	Screens
	Widgets
	Setting Event Properties

	Writing JavaScript and VBScript Functions
	How to Define a JavaScript or VBScript Function
	Accessing Widget Values

	Accessing Widgets in JavaScript and VBScript
	Automatic JavaScript Generation

	10 Accessing Databases
	Connecting to the Database
	Initializing the Panther Client
	Using Database Cursors
	Database Transactions
	Fetching Multiple Rows

	11 HTTP Variables
	Definitions

	12 Web Initialization Options
	Setup Variables
	Required Settings
	Required for JetNet/Oracle Tuxedo Applications
	Optional Settings
	Database Information

	Behavior Variables
	Required Settings
	Optional Settings

	Sample Initialization File

	13 Deploying Web Applications
	How to Configure a Panther Web Application

	A Web Application Utility
	monitor

	B Web Setup Manager
	Using the Web Setup Manager
	To create a new Panther Web application:

	C Setting Up an NSAPI Web Server
	Configuring Your NSAPI-Compliant Server
	Accessing the Panther Web Application
	A Sample Obj.conf File

	D Using Java Servlets
	Installing Java Servlet Support
	To install Java servlet support:

	Accessing the Panther Web Application
	To access the Panther web application using Java servlets:

	Panther's Java Servlet Classes
	Methods

	E Sample Web Applications
	General Applications
	Feature-Specific Examples

	Index

