
TABLE OF
CONTENTS
Contents:

About This Document

1. Upgrading to Panther from JAM 7
Installation ... 1-2

Program Startup... 1-2

Editor ... 1-3

Development and Deployment .. 1-10

Utilities .. 1-15

Configuration... 1-18

API Changes.. 1-20

Database Interface ... 1-42

Transaction Manager ... 1-44

Web Application Development ... 1-45

Reports... 1-52

Upgrading to JetNet... 1-53

Upgrading to Panther for IBM WebSphere... 1-64

Documentation .. 1-64

2. Using the JAM Upgrade Utility
Running JAM to Panther ... 2-1

3. Upgrading to Oracle Tuxedo from JetNet

4. Upgrading to Panther from JAM 5
Upgrading From JAM 5 .. 4-1

Upgrade Paths.. 4-2

Upgrading the Operating Environment ... 4-3

Converting an Application .. 4-8

The f5upg Utility ... 4-12

The dd5upg Utility .. 4-21
Upgrade Guide 1

The m2asc Utility .. 4-23

The dd2rec Utility.. 4-24

5. Conversion Summary from JAM 5 to Panther
All Applications... 5-2

GUI Applications... 5-10

Character Applications .. 5-13

A. JAM Documentation: Alternative Scrolling

B. JAM Documentation: Internal I/O Processing
Processing Keyboard Input... B-2

Processing Terminal Output ... B-5

C. Obsolete Functions

Index
2 Upgrade Guide

Panther
Upgrade Guide

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
Documentation Website .. xi

How to Print the Document.. xii

Documentation Conventions .. xii

Contact Us! .. xiv

1. Upgrading to Panther from JAM 7
Installation ... 1-2

Start-up License.. 1-2

Program Startup... 1-2

Editor ... 1-3

Menu Changes.. 1-3

File Menu .. 1-3

Edit Menu.. 1-3

Create Menu.. 1-4

View Menu.. 1-4

Options Menu.. 1-5

Tools Menu ... 1-6

Other Editor Changes ... 1-6

Properties .. 1-6

Library Member Access.. 1-7

JPL Modules ... 1-7

Non-modal Text Windows.. 1-7

Date/time Formats for Year 2000 Compliance 1-7
Upgrade Guide iii

Name Extensions... 1-8

Editor Toolbars.. 1-8

Screen Wizard ... 1-8

Grids .. 1-8

Menu Bar Editor ... 1-8

Docking Toolbars.. 1-9

Styles Editor ... 1-9

JIF Editor .. 1-9

Development and Deployment .. 1-10

New Executable Names.. 1-10

Universal Makefile ... 1-10

Libraries, not Files.. 1-10

Library Locking... 1-11

Source Control... 1-11

Libraries Names .. 1-11

References to Files Outside of Libraries .. 1-12

JPL Programming... 1-13

Declaring Variables... 1-13

Sending and Receiving Data ... 1-13

Variable Assignments ... 1-13

Application Properties... 1-13

New Commands .. 1-13

Java Interface.. 1-14

Internal File Locking Available on Windows .. 1-14

Opening Library Files in Windows .. 1-14

MSVC Project Files.. 1-15

Team Development .. 1-15

Utilities .. 1-15

File Extension Option... 1-15

Changed Utilities .. 1-15

New Utilities... 1-17

COM/MTS Utilities... 1-17

JetNet/Oracle Tuxedo Utilities.. 1-18

WebSphere Utilities .. 1-18

Configuration... 1-18
iv Upgrade Guide

JetNet/Oracle Tuxedo Variables ... 1-19

WebSphere Variables.. 1-19

API Changes.. 1-20

Specifying Application Properties ... 1-20

Additional Flags for Widget Functions .. 1-20

Properties Window... 1-20

Component API Changes ... 1-21

New Library Functions for Components .. 1-21

New Properties for Components ... 1-22

ActiveX Controls and COM Components ... 1-22

New Library Functions for COM Components 1-23

New MTS Functions ... 1-23

New Properties for COM Components... 1-23

Grid API Changes .. 1-24

New Library Functions for Grids.. 1-24

New Properties for Grids .. 1-24

Tab Control API Changes .. 1-25

New Properties for Tab Controls .. 1-25

New Logical Keys for Tab Controls ... 1-26

Database Interface API Changes.. 1-27

New Functions for the Database Interfaces 1-27

New Properties for the Database Interfaces 1-27

New Commands for Database Interfaces.. 1-28

Database Interface Command Changes .. 1-28

Transaction Manager API Changes.. 1-28

New Library Functions for the Transaction Manager....................... 1-28

New Properties for the Transaction Manager 1-29

Property Changes for the Transaction Manager 1-33

New Commands for the Transaction Manager 1-33

New Events in Transaction Manager Processing.............................. 1-34

Web Application API Changes .. 1-35

Browser Events ... 1-35

New Library Functions for Web Applications.................................. 1-35

New Properties for Web Applications .. 1-35

Property Changes for Web Applications .. 1-37
Upgrade Guide v

Dockable Toolbars.. 1-37

New Properties for Dockable Toolbars... 1-37

Other API Changes... 1-38

New Properties .. 1-38

Property Changes .. 1-39

Application Properties... 1-39

Text Selection.. 1-39

New Library Functions.. 1-40

Changed or Discontinued Functions ... 1-41

Database Interface ... 1-42

Improved SQL Processing.. 1-42

Specifying Variables in DECLARE CONNECTION.............................. 1-43

Support for Long Filenames... 1-43

Transaction Manager ... 1-44

Transaction Manager Common Model... 1-44

Web Application Development ... 1-45

Initialization File Changes.. 1-45

Initialization File Settings ... 1-45

One Initialization File.. 1-46

New Web Applications... 1-46

HTML Template Changes.. 1-46

New Syntax for Specifying Variables .. 1-48

Web Entry Processing .. 1-48

Caching Application State.. 1-48

Requester Executables.. 1-49

Windows Servers.. 1-49

Running Java Servlets .. 1-49

Determining Mouse Location... 1-50

Widget Positioning in Web Applications ... 1-50

Errors in Web Applications .. 1-51

Web Gallery Samples ... 1-51

Web Wizard Defaults ... 1-51

Naming Conventions .. 1-51

Reports... 1-52

Converting ReportWriter 6 Reports ... 1-52
vi Upgrade Guide

Modifying Reports from Previous Versions .. 1-52

Setting Widget Size.. 1-53

Printing PostScript.. 1-53

Report Utilities ... 1-53

Upgrading to JetNet... 1-53

Editor .. 1-54

Screen Wizard .. 1-54

Menu Bar Editor... 1-55

Styles Editor ... 1-55

JIF Editor.. 1-55

Debugger .. 1-56

Service Components... 1-57

JIF... 1-57

Administration Utilities.. 1-57

Environment Variables... 1-58

Database Error Handling.. 1-58

Team Development .. 1-58

Transaction Model.. 1-59

progserv... 1-59

JetNet and Oracle Tuxedo Event Handling.. 1-59

API Changes for JetNet and Oracle Tuxedo Applications....................... 1-59

JPL Commands ... 1-59

Library Functions.. 1-60

Properties .. 1-61

Migrating a JAM Transaction Manager Application 1-62

Upgrading an Existing Application.. 1-63

Upgrading to Panther for IBM WebSphere... 1-64

Documentation .. 1-64

Documentation Titles ... 1-64

Online Documentation ... 1-65

Documentation Changes and Corrections .. 1-65

Quick Reference Changes and Corrections.. 1-66

Configuration .. 1-67

Functions ... 1-67

Properties .. 1-68
Upgrade Guide vii

Utilities .. 1-69

2. Using the JAM Upgrade Utility
Running JAM to Panther ... 2-1

3. Upgrading to Oracle Tuxedo from JetNet

4. Upgrading to Panther from JAM 5
Upgrading From JAM 5 .. 4-1

Upgrade Paths.. 4-2

Migration .. 4-2

Utility Conversion .. 4-2

Full Upgrade... 4-3

Which Path is Best for My Application?.. 4-3

Upgrading the Operating Environment ... 4-3

Update Your Configuration Files ... 4-3

Update Your GUI Resource and Initialization Files 4-4

Color Aliases ... 4-5

Update Your Data Dictionary into a Repository and LDB 4-5

LDB Initialization ... 4-5

Update Your Main Routines... 4-6

Update Your Function List... 4-6

Automatic Dereferencing .. 4-6

Eliminate the Use of Release 4 Library Functions..................................... 4-6

Converting an Application... 4-8

The Conversion Toolkit.. 4-8

When a Feature is Missing... .. 4-9

Screens and Related Topics.. 4-9

Biting the Bullet ... 4-10

Running Your Application for the First Time.. 4-11

The Bottom Line... 4-12

The f5upg Utility ... 4-12

Invoking f5upg ... 4-13

Arguments and Options... 4-13

General Behavior.. 4-14

Verbosity Level .. 4-16
viii Upgrade Guide

Graphics Conversion .. 4-16

Keep JPL Extensions Around .. 4-16

Allow Output File to Overwrite an Existing File 4-17

Assuming System Colors or Scheme by Default 4-17

Conversion of Menu Arrays to List Boxes... 4-18

Conversion of Borders ... 4-18

Conversion of Onscreen Control Fields ... 4-18

Conversion of Keyset Designations ... 4-20

Protected Field Heuristics .. 4-20

Release 5 Widgets .. 4-21

The dd5upg Utility .. 4-21

Arguments and Options .. 4-21

Description .. 4-22

The m2asc Utility .. 4-23

Arguments and Options .. 4-23

Description .. 4-23

The dd2rec Utility.. 4-24

Arguments and Options .. 4-24

Description .. 4-24

5. Conversion Summary from JAM 5 to Panther
All Applications... 5-2

GUI Applications... 5-10

Character Applications .. 5-13

A. JAM Documentation: Alternative Scrolling
Panther Interaction with Scrolling Drivers.. A-1

Installation... A-2

Scroll Driver Interface... A-3

The altsc_t Structure .. A-3

Return Values... A-5

Scroll Driver Action Codes.. A-5

Scrolling Driver Example.. A-9

B. JAM Documentation: Internal I/O Processing
Processing Keyboard Input..B-2
Upgrade Guide ix

Logical Keys.. B-2

Key Translation ... B-3

With Timing Interval Set.. B-4

Key Routing... B-4

Value Greater Than 0x1ff .. B-4

Value Between 0x01 and 0x1ff .. B-4

Changing Key Actions at Runtime... B-5

Processing Terminal Output ... B-5

How Panther Handles Output.. B-6

Graphics Characters and Alternate Character Sets.................................... B-6

C. Obsolete Functions
sm_com_call_method.. C-4

sm_com_get_prop ... C-7

sm_com_log .. C-8

sm_com_obj_create... C-9

sm_com_obj_destroy... C-10

sm_com_onerror.. C-12

sm_com_raise_exception .. C-14

sm_com_receive_args ... C-15

sm_com_return_args ... C-16

sm_com_set_prop.. C-17

Index
x Upgrade Guide

PREFACE
About This
Document

The Upgrade Guide contains information for current users of JAM 7 on what has
changed in the product, what is new, and how to migrate existing applications to the
new environment.

This guide is composed of several chapters. The first chapter contains information for
users who are upgrading from JAM 7. Other chapters include information on
upgrading from JAM 5 to JAM 7 and JAM documentation.

If you are a first-time customer, the information in this guide may be useful, but is not
necessary. Starting with Getting Started and the overview chapter in Application
Development Guide is a more appropriate reading path.

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.
Upgrade Guide xi

http://docs.prolifics.com/panther/

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.
xii About This Document

https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
Upgrade Guide xiii

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xiv About This Document

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20Upgrade%20Guide

CHAPTER
1 Upgrading to
Panther from JAM 7

This chapter lists features that are new and changed since JAM 7 for customers
upgrading to Panther.

Additional upgrade information is available in the following chapters:

! For information about a utility to help in the Panther upgrade process, refer to
Chapter 2, “Using the JAM Upgrade Utility.”

! For information about upgrading JAM 5 applications, refer to Chapter 4,
“Upgrading to Panther from JAM 5.”

! For upgrades from the JetNet middleware adapter to Oracle Tuxedo, refer to
Chapter 3, “Upgrading to Oracle Tuxedo from JetNet.”

A major development change is that application files are now stored in libraries. Refer
to page 1-10, “Libraries, not Files” for more information about this feature.
Upgrade Guide 1-1

Installation
Installation

Start-up License

A start-up license is included in all Panther products. This temporary license allows
you to start using Panther immediately. The license expires in 45 days, during which
time you should have contacted the Prolifics License Desk to receive your permanent
license, as arranged by your salesperson. The start-up license does not preclude or
eliminate the need to obtain a permanent license.

When a temporary license is in use, a warning message is issued when you start the
Panther editor. This warning is issued once a week until the last week, at which point
it is issued daily.

Program Startup

By default, Java is initialized on program startup. You can change this initialization
using the new behavior variable JAVA_USE.

Windows clients having an old version of the Java DLLs display an error message,
“Java Not Supported”. To update the Java DLLs, run the executable in %SMBASE%\jvm.
1-2 Upgrading to Panther from JAM 7

Editor
Editor

Menu Changes

File Menu

! Open and Save recognize local and remote libraries and repositories, not
standalone files or screens. A library must be opened, and all objects must be
saved in a library. Once opened, objects in the library can be opened
individually.

The New, Open and Save options have the following new options:

! Service Component—Creates or opens a service component for use in
distributed application processing.

! JPL—Opens a JPL file in a library for editing (in an external editor if set) so
that it can be saved back to the library or to disk.

! Java—Opens an external editor for writing or editing a Java file.

The Import Database Objects option is now on the Tools menu.

Edit Menu

! (Web applications) Find→Overlapping Widgets selects every overlapping pair
of widgets. All other widgets are deselected. HTML does not support
overlapping widgets, and as a result, Web browsers can render widgets in
positions that differ from the appearance in the screen editor workspace.

! Includes the following new options, as well as corresponding toolbar buttons,
which are available when a JPL library module is open or when the screen- or
report-level JPL Procedures, JavaScript or VBScript properties are being
written/edited:

" Insert From Library—Includes a JPL, JavaScript or VBScript file from
another open library.
Upgrade Guide 1-3

Editor
" Read File—Includes a JPL, JavaScript, or VBScript file from disk.

" External Editor—Invokes the editor you specify (via the SMEDITOR
variable).

Create Menu

! With the Extended Widgets category, the Create menu indicates
dual-deployment widgets versus environment-specific widgets. Widgets listed
in the Extended Widgets category cannot be deployed on every platform. The
widgets currently found in this category are:

" Graph widgets—available for Motif, Windows and Web (on certain
platforms)

" ActiveX control containers—available for Web and Windows

" Tab decks and tab cards—available for Motif and Windows

" Toggle button, combo box and scale widgets—available for Motif and
Windows

Note: Even though toggle buttons, combo boxes and scale widgets do not have
HTML equivalents in Web applications, they are converted to appropriate
widget types.

! The Create menu has new widget types:

" ActiveX control containers (Web and Windows applications)—In your
Panther screen, create a container and then specify through the container's
properties the ActiveX control to appear in that container. (Refer to
Chapter 19, “ActiveX Controls,” in Using the Editors.)

" Tab decks and tab cards (Motif and Windows applications)—The tab
control allows widgets to be grouped onto individual display “cards.” The
tab control or “deck” contains a series of tab cards; these cards are
accessed by means of index tabs, which are analogous to the dividers in a
notebook or the labels on a group of file folders. (Refer to Chapter 17, “Tab
Controls,” in Using the Editors.)

View Menu

! Library TOC—A new option on the View menu. The library table of contents
provides access to all libraries and their members. You can use it to open, add
1-4 Upgrading to Panther from JAM 7

Editor
files to, and extract files from libraries. For more information, refer to “Viewing
the Library Table of Contents” on page 2-5 in Using the Editors.

! Component Interface—For service components, allows you to define the public
interface–the properties and methods—of COM components and Enterprise
JavaBeans.

! Report Structure—Displays the report structure view of a report. (Panther, by
definition, incorporates report and web options.)

Options Menu

The Options menu is now a subset of the Tools menu and includes the following new
options:

! Check Overlap on Screen Save—(Web applications) When active, any save
operation (Save, Save As, Save All) forces the editor to check for overlapping
widgets before actually saving the screen or screens affected by the save
request. HTML does not support overlapping widgets, and as a result, Web
browsers can render widgets in positions that differ from the appearance in the
editor workspace.

! Direct to External Editor—When active, invokes your preferred text editor
(specified via the SMEDITOR variable) when you open the JPL, JavaScript, or
VBScript window; or edit properties that allow input of multiple lines of text,
such as the Control Strings property and the Initial Text property (when it is
associated with a widget having an array size greater than one).

! Configure Toolbars—For Windows executables, allows you to specify which
toolbars to display in the editor.

! Editor Tabs—Works in conjunction with the Direct to External Editor menu
options to allow you to specify the number of spaces that defines a TAB
character.

! Service Alias—For developing JetNet and Oracle Tuxedo applications, specify
a user identifier to use when testing services. For more information, refer to
“Using Service Aliases to Test Services” on page 5-8 in JetNet/Oracle Tuxedo
Guide.

! Reload Java Classes—When active, reloads the Java classes when entering test
mode or exiting the editor.
Upgrade Guide 1-5

Editor
Tools Menu

This new menu bar item contains the Import Database Objects that was located on the
File menu in previous releases, and gives editor access to the styles editor, menu bar
editor, and JIF editor (in JetNet and Oracle Tuxedo). There are also the following new
options in Panther:

! Generate TM SQL—For the current screen, writes the SQL statements that the
transaction manager generates for the screen to a file. These SQL statements
could then be used to construct stored procedures or invoke DBMS QUERY or
DBMS RUN directly.

! Generate Component—For COM components, generate a type lib file after
changing the component interface without having to save the Panther service
component. For Enterprise JavaBeans, generate and/or compile the bean's Java
files.

! Compile Java—Compiles the specified Java class.

! IBM VisualAge for Java—(WebSphere only) Starts IBM's Visual Age for Java
program.

! IBM WebSphere Administrative Console—(WebSphere only) Starts IBM's
WebSphere Administrative Console where you install and deploy Enterprise
JavaBeans.

Other Editor Changes

Other editor changes are:

Properties

For descriptions of new properties and information about changes in the Properties
window, refer to page 1-20, “API Changes.”
1-6 Upgrading to Panther from JAM 7

Editor
Library Member Access

Access to library members is provided by the Select Library Member dialog box. This
dialog is available from the Properties window when properties requiring filenames
are selected, and wherever else access to libraries is required. Both local and remote
libraries can be accessed.

JPL Modules

JPL modules can be created in the editor. Access to the JPL window is provided from
the File menu. JPL can be read into the window from a library or from a file on disk.
The JPL can be saved to a library or to an external text file on disk. The JPL is
automatically compiled when it is saved to a library, eliminating the need to do any
file/library manipulation outside of the editor.

Non-modal Text Windows

The JPL Program Text window, JavaScript window, and VBScript window are no
longer modal when writing screen- or report-level JPL procedures or JavaScript/
VBScript functions. This allows you to edit multiple files as well as move freely
between script files and the editor workspace. The buttons have also changed for these
windows.

Date/time Formats for Year 2000 Compliance

Date/time formats have two new Format Type property specifications in the Properties
window for assigning date/time formats that display a four-digit year: MON/DATE/YR4
HR:MIN2 and MON/DATE/YR4. These are associated with the DEFAULT3 and DEFAULT4
mnemonics, respectively. In addition, DEFAULT3 is set as the default type in the
Properties window.

Alternatively, you can use the behavior variable, DA_CENTBREAK, to set the behavior
for applications using two-digit years. The default value of DA_CENTBREAK is 50.
Therefore, if the year setting is equal to or greater than 50, the year is processed as
19xx; if the year is less than 50, the year is processed as 20xx. You can change the
setting of DA_CENTBREAK by setting its value in the smvars file or at runtime by using
sm_option.
Upgrade Guide 1-7

Editor
Name Extensions

Screen names no longer have a default value is set for the application variable
SMFEXTENSION. If you do not explicitly set this variable in a setup file or the
environment, Panther no longer adds an extension to names during file searches; and
all filenames must be fully qualified; for example, supplied a screen name of
myscreen, Panther searches only for myscreen and not myscreen.ext also.

The recommended file extension for binary screen files is .scr. For binary report files,
the recommended extension is .rpt. The file extension for temporary file names has
been changed from .jam to .pro.

Editor Toolbars

A new menu option, Options→Configure Toolbars, determines which toolbars are
available in the editor.

Screen Wizard

When constructing screens in the screen wizard, columns defined as being NOT NULL
in the database are automatically selected to be part of the screen and are designated
with the number symbol (#).

For JetNet and Oracle Tuxedo, refer to page 1-54, “Screen Wizard” for information
about changes to the screen wizard in those executables.

Grids

There are new properties and functions pertaining to grids which control the amount
of space between grid rows and which sort the data appearing in grids. For more
information, refer to page 1-24, “New Properties for Grids.”

Menu Bar Editor

The menu bar editor is now located on the Tools menu in the editor workspace.

For JetNet and Oracle Tuxedo, refer to page 1-55, “Menu Bar Editor” for information
about changes to the menu bar editor in those executables.
1-8 Upgrading to Panther from JAM 7

Editor
Docking Toolbars

For Windows applications, toolbars can dock to the MDI frame or float within the MDI
frame. A new menu pixmap property, Hot Pixmap, controls the appearance of the item
when a mouse moves over an active toolbar item. In addition, pixmaps can be specified
for the Inactive Pixmap property.

In previous releases, an Inactive Pixmap was a grayed version of the Active Pixmap in
Windows applications. That capability is still there, but you can also specify a separate
inactive pixmap. For each toolbar state that you want to indicate in your application–
active, inactive and hot–you must supply a pixmap for each toolbar item. The size of
the pixmaps for the entire toolbar is taken from the size of the first pixmap.

At runtime, application properties control the appearance and position of the toolbar;
refer to “Dockable Toolbar Properties” on page 15-10 in Application Development
Guide.

Styles Editor

The styles editor is now located on the Tools menu in the editor workspace.

JIF Editor

For JetNet and Oracle Tuxedo applications, refer to page 1-55, “JIF Editor” for
information about the JIF editor, a graphical utility used to create and edit a JIF file that
contains information about your application's services.
Upgrade Guide 1-9

Development and Deployment
Development and Deployment

New Executable Names

The development executable name has been changed from jamdev to prodev. The
runtime executable name has been changed from jam to prorun.

Universal Makefile

A single, universal makefile is provided. In prior releases, different pieces of JAM
required their own individual makefiles, and it was sometimes necessary to merge the
individual makefiles for your specific needs. With the new makefile, you can build
either two-tier or three-tier executables:

! With or without Motif

! With JDB and/or one or more database engines

For more information, refer to the Installation Guide.

Libraries, not Files

To facilitate deployment, all application components (screens, JPL modules, bitmaps,
and so on) are now required to reside in libraries. In the screen editor, the components
are opened as library members by default, or as repository entries by request. The
notion of an independent disk file no longer exists. Refer to Chapter 2, “Using the JAM
Upgrade Utility,” for information about a utility which groups your disk files into
libraries.

Panther cannot write to libraries created by versions of JAM. To upgrade and make
writable a preexisting library, use formlib with the -w flag. In the screen editor, if an
attempt is made to access a library that has not been upgraded, a warning instructs you
to upgrade the library. Note that Panther can still read preexisting libraries.
1-10 Upgrading to Panther from JAM 7

Development and Deployment
During development, libraries can exist anyplace on your network. If your
development environment includes shared libraries on a server (remote libraries), your
clients can have access to those libraries via a (provided) development server
(devserv) configured to access remote libraries. With Panther, access is provided to
both local and remote libraries from the screen editor, the menu bar editor, the styles
editor, and the JIF editor.

For more information on opening libraries, refer to “Opening and Creating a Library”
on page 2-7 in Using the Editors.

Library Locking

Libraries now automatically reuse space as part of normal processing. Because of this,
libraries now require read locks as well as write locks. Two methods of library file
locking are used, internal and external, depending on the platform. By default, the
internal (native OS) file locking system is used on UNIX and Windows. If an external
file locking method is used, lock files must be created in the directory where the library
exists; make sure the directory where the libraries reside is writable.

During deployment, it is advantageous to make all your libraries read-only, so that no
file locking is required. However, if you decide to make an application library writable,
make sure that if external locking is used, lock files can be created in the directory
where the library resides.

For more information, refer to Chapter 10, “Accessing Libraries,” in Application
Development Guide.

Source Control

Source control is now available (SCCS, PVCS) for JPL, menus, and styles–in addition
to screens—that are in libraries under source control.

Libraries Names

A Panther application can consist of a set of libraries, depending on the product and
architecture.

All Panther applications are installed with a library named client.lib in the config
directory. When you start Panther, this library will be opened unless different libraries
are specified in the environment or initialization file using SMFLIBS. It contains:
Upgrade Guide 1-11

Development and Deployment
! client.lib—smwizard.bin, smwzmenu, styles.sty, and numerous
graphics files.

JetNet and Oracle Tuxedo Applications

A Panther JetNet/Oracle Tuxedo application consists of a set of libraries:

! A client library that contains client screens, JPL files, styles, bitmaps, menus,
and any other objects that define the user interface.

! A server library that contains service components, JPL files, styles, etc., for
defining the server in three-tier architecture.

! A common library that contains the JIF, configuration files, JPL files, and any
application objects used.

client.lib, server.lib, and common.lib are three libraries distributed with
Panther. You can use these libraries as a starting point to build your application. The
contents of these libraries are:

! client.lib—smwizard.bin, smwzmenu, styles.sty, and numerous
graphics files

! server.lib—smwizsrv.bin and styles.sty

! common.lib—jif.bin

The Library Table of Contents window gives you access to library members, and
permits you to add external files, such as bitmaps, into open libraries.

References to Files Outside of Libraries

Although it is recommended and documented that all application files (for example,
screens, JPL modules, graphics, and menus) be stored in libraries, this release of
Panther will continue to support applications that reference files outside of Panther
libraries. To ensure compatibility with future releases, it is recommended that newly
developed applications store files in libraries.
1-12 Upgrading to Panther from JAM 7

Development and Deployment
JPL Programming

Declaring Variables

Use commas to delimit initial values in global and vars declarations.

Sending and Receiving Data

The send and receive commands have changed for word-wrapped fields.
Word-wrapped fields are now sent as a single item; the receive command should
specify a word-wrapped field which permits it to use sm_ww_write to place the text.

Another change is that the number of available bundles can be set with the
max_bundles application property. It defaults to ten bundles (including the unnamed
bundle) if unspecified.

Variable Assignments

In previous versions of the product, an expression which mixed numeric with string
variable assignments yielded inconsistent results. It is illegal to mix these assignments
within one expression. For example, the following assignment previously yielded
either 0 or an empty string, depending on which version is being used:

%.0 a='' // Assigned '' to a

Now, this assignment generates a syntax error.

Application Properties

The @jam property shortcut for the application name has been replaced with @app().
@jam will continue to work for backward compatibility.

New Commands

COM and WebSphere applications can call the following JPL commands:

! log—Writes a message to the server log file.

! receive_args—Receives a method's parameters from a client.
Upgrade Guide 1-13

Development and Deployment
! return_args—Returns a method's parameters back to the client.

! raise_exception—Sends an error code back to the client.

JetNet and Oracle Tuxedo applications also have additional commands (see page 1-59,
“JPL Commands.”

Java Interface

In addition to C and JPL, you can program your application behavior in Java. In the
editor, Panther objects (screens, service components, widgets) can be assigned a Java
tag, which defines a Java class to act as an event handler for that object.

At runtime, when a given object has an event handler associated with it, Panther will
invoke the methods supported by the event handler in response to application events.

The event handler classes must provide methods that correspond to the various kinds
of events supported by the object with which it is associated. To this end, predefined
interfaces, that the event handler classes must implement, have been provided.

For more information on Java programming in Panther, refer to Chapter 21, “Java
Event Handlers and Objects,” in Application Development Guide.

Internal File Locking Available on Windows

Internal (native) file locking is now the default for Windows, and you will need to run
formlib -e on a library in order to continue using external lock files. Once a library
is set to external file locking with formlib -e, you must run formlib -i on that
library in order to use internal file locking.

Opening Library Files in Windows

In Windows executables, double clicking on the name of any file in a library will open
the file in the program associated with it according to the Windows File Type setting.
1-14 Upgrading to Panther from JAM 7

Utilities
MSVC Project Files

MSVC project files are now available for rebuilding your Panther executables.

Team Development

In JetNet and Oracle Tuxedo executables, developers can have personal copies of
screens in library files and services in the JIF in order to make and test changes during
development.

Utilities

File Extension Option

A change has been made to the way the -e file extension option is implemented on
UNIX in the utilities cmap2bin, jpl2bin, key2bin, msg2bin, msg2hdr, var2bin,
and vid2bin. Formerly, in UNIX, file extensions were appended to existing
extensions. In DOS, using -e replaced an existing file extension. Now, use of the -e
option works the same on both platforms—any existing file extensions are replaced.

Changed Utilities

Changes were made to the following utilities:

binherit

In addition to updating screens with inherited values from the repository,
binherit also updates reports.

The following changes were implemented for the -u option:

" The -u option will be ignored for members of libraries that can only be
opened read-only.
Upgrade Guide 1-15

Utilities
" If the -u option is not selected, libraries will be opened read-only.

dd5upg

(JAM 5 updates only) The dd5to6 utility has been renamed as dd5upg.

f2asc

In addition to converting screens between binary and ASCII format, f2asc
also converts reports and service components. ASCII files for screens and
service components start with a S: output area containing screen/component
properties; ASCII files for reports start with a R: output area. The output area
for static labels has changed from S: to L:. The output area for the service
component's interface starts with I:.

f5upg

(JAM 5 updates only) In addition to being renamed f5upg (previously
f5to6), a new -p option includes the GUI interface values for the hmargin,
vmargin, hbuffer, vbuffer properties in the converted screens.

formlib

Panther cannot write to libraries created by any version of JAM. To upgrade
and make writable a preexisting library, use formlib with the -w flag. In the
editor, if an attempt is made to access a library that has not been upgraded, a
warning instructs you to upgrade the library. Note that Panther can still read
preexisting libraries.

The -m flag now compacts the library by removing unused space. Using this
option before making the library read-only will allow the read-only operation
to be reversible. (This option is only available for Panther libraries.)

The -o option makes a library read-only. Be aware that once this is done, the
library cannot be made writable again unless the library is first compacted
with the -m flag.

The -s flag now synchronizes a library with the source code management
directory. This used to be accomplished with the -m flag, along with library
compacting.

monitor

In Panther, you must start the web application by using monitor or by
installing the application as an Windows service which uses Services
properties in the Control Panel to start the application.

monitor has new options: -restart which combines the clean, stop, and start
options and -install for installing the application as an service.
1-16 Upgrading to Panther from JAM 7

Utilities
r2asc

The r2asc utility has been superseded by f2asc; therefore, to convert a
report between binary and ASCII output, use f2asc.

rinherit

The rinherit utility has been superseded by binherit; therefore, to batch
update all reports with inherited values from your application's repository,
use binherit.

rw6toprl

rw6to7 has been renamed as rw6toprl.

New Utilities

Jam to Panther
A utility to help you upgrade your JAM application to Panther by packaging
the application files into libraries. (Refer to Chapter 2, “Using the JAM
Upgrade Utility.”)

AxView
In the Windows development environment, COM components, including
ActiveX controls, are displayed by AxView, the ActiveX and COM Control
Viewer. With this utility, you can view a component's methods, properties,
CLSID number, and installation location.

Web Setup Manager
A Web-based utility is available for creating and updating the files needed on
your Web application server: the requester executable and the Web
initialization file.

For step-by-step instructions, refer to Appendix B, “Web Setup Manager,” in
Web Development Guide.

COM/MTS Utilities

MakeDLLs

In COM/MTS applications, a utility to generate the service components's
DLLs for the specified libraries.
Upgrade Guide 1-17

Configuration
JetNet/Oracle Tuxedo Utilities

Refer to page 1-57, “Administration Utilities” for information on utilities to
administer your JetNet or Oracle Tuxedo application.

WebSphere Utilities

makeejb

In Panther/WebSphere applications, a utility to generate the Java files for the
service components in the specified libraries.

Configuration

Name extensions
Screen names no longer have a default value set for the application variable
SMFEXTENSION which, in previous releases, specified the default file
extension for screens.

Video files
Video files are no longer needed on GUI platforms. The SMVIDEO
environment variable is only required for character-mode Panther users.

Opening multiple libraries
A single declaration of SMFLIBS can now point to multiple libraries. Separate
directories with a vertical bar (|) or use the convention used by your operating
system for listing multiple directories in path. (For UNIX, this is a colon, and
for Windows, it is a semi-colon.) For the JetNet/Oracle Tuxedo middleware
adapter, the default setting automatically opens client.lib, server.lib, and
common.lib.

Java
The behavior variable JAVA_USE specifies whether Java is initialized. This
variable can also be used to control the opening Java support message.If you
are using Java event handlers, four optional environment variables are
available. SMJAVAEDITOR specifies a different text editor than SMEDITOR.
1-18 Upgrading to Panther from JAM 7

Configuration
SMJAVALIBRARY specifies the location of Java libraries, if the default location
needs to be changed. SMJAVAFACTORY specifies the location of the class
factory if the default class factory is not used. SMJAVACOMPILE specifies the
command used to compile Java using Tools→Compile Java.

Motif resources
A new Motif resource has been added to the Prolifics resource file,
Prolifics*positionIsFrame. When placing a window at a specific
position on the display, the requested position can be for the placement of the
frame or for the placement of the client window inside the frame. If the
position is for the frame, set this resource to true (the default setting).The
window manager can have a resource of the same name. The value of the
Prolifics resource should match the value of the window manager. The
distributed resource files are in the config directory.

JetNet/Oracle Tuxedo Variables

The following variables were developed specifically for the JetNet/Oracle
Tuxedo middleware adapters:

Connecting to the middleware
For the JetNet/Oracle Tuxedo executables, variables are used to connect to
the middleware: SMRBCONFIG, SMRBHOST, and SMRBPORT. For more
information on middleware connections, refer to Chapter 9, “Connecting to
the Middleware,” in Application Development Guide.

WebSphere Variables

The following variables were developed specifically for the
Panther/WebSphere environment:

IBM WebSphere Administrative Console
For Panther/WebSphere applications, you can specify the command to launch
IBM's WebSphere Administrative Console program with SMWSADMIN.

Oracle Tuxedo support in Panther/WebSphere
In Panther/WebSphere applications, the initialization file (Panther.ini) can set
SMTPCLIENT to specify whether Oracle Tuxedo connectivity is enabled and
what type of client is needed (native or workstation). Set SMTPINIT to specify
the default arguments to the client_init command.
Upgrade Guide 1-19

API Changes
WebSphere Application Server
In Panther/WebSphere applications, specify URL of the machine running
WebSphere Application Server in SMPROVIDERURL.

API Changes

The Panther API has been significantly expanded to accommodate the middleware
API and to incorporate other product changes.

Specifying Application Properties

The @jam property shortcut for the application name has been replaced with @app().
@jam will continue to work for backward compatibility.

Additional Flags for Widget Functions

Two additional flags are now documented for widget functions:

K_EXTEND

The widget is an extended selection list box.

K_EXTEND_LAST

For extended selection list boxes, the widget is the last item in the list box.

Properties Window

Database property category
The properties listed under Database have been reorganized under new
subheadings for text widgets:

" Fetch Data includes Select-related properties (for example Use In
Select and Use In Where).
1-20 Upgrading to Panther from JAM 7

API Changes
" New Data includes Insert-related properties (such as Use In Insert).

" Change Data includes Update-related properties (such as Use In
Update).

" Remove Data includes the In Delete Where property.

Database, Transaction and Server View property categories
The properties listed under Database and Transaction for table views have
been reorganized. In addition, a new category, Server View, contains all the
properties having to do with select processing.

Service property category in JetNet and Oracle Tuxedo executables
Table view and link widgets have a Service property category. With the
JetNet and Oracle Tuxedo middleware adapters, service names can be
specified to implement database access operations. Table views can have the
Insert, Update, Delete, and Select service properties set. Link widgets can
have the Validation Service property set. If you create your client screens
with the screen wizard, these properties are set automatically.

For more information, refer to “Creating Services with the Screen Wizard” on
page 5-5 in JetNet/Oracle Tuxedo Guide.

Component API Changes

New Library Functions for Components

As of Panther 4.2, you can use the same programming interface for both COM
components and Enterprise JavaBeans in a Panther application:

sm_log

Write a message to a server log.

sm_obj_call

Call a service component's method.

sm_obj_create

Instantiate a service component. Before calling this function, the application
must specify the type of components currently in use with
current_component_system.

sm_obj_delete_id

Remove a service component.
Upgrade Guide 1-21

API Changes
sm_obj_get_property

Get the value of a service component's property.

sm_obj_onerror

Install an error handler for a service component.

sm_obj_set_property

Set the value of a service component's property.

sm_raise_exception

Send an error code back to the client.

sm_receive_args

Receive the method's parameters from the client.

sm_return_args

Return a list of parameters back to the client.

New Properties for Components

There are new properties associated with service components:

Current Component System (current_component_system)
A runtime-only application property that specifies the type of component
system currently in use: PV_SERVER_COM for COM components or
PV_SERVER_EJB for Enterprise JavaBeans deployed under WebSphere
Application Server.

In Server (in_server)
An application property which specifies which server is in use for a service
component: PV_SERVER_COM, PV_SERVER_MTS or PV_SERVER_EJB.

Provider URL (provider_url)
For WebSphere applications, a runtime-only application property specifying
the location of the WebSphere application server machine. If
SMPROVIDERURL is set in the environment, the property is initially set to this
value.

ActiveX Controls and COM Components

Web and Windows applications can create and deploy ActiveX controls in client
screens. Windows 32-bit applications can create COM components and deploy them
under COM, DCOM, and MTS.
1-22 Upgrading to Panther from JAM 7

API Changes
New Library Functions for COM Components

There are new library functions associated only with use of ActiveX controls and other
COM objects. Additional functions are documented on page 1-21 in “Component API
Changes.”

sm_com_load_picture

Get the object ID for the specified picture.

sm_com_QueryInterface

Access the QueryInterface method for the specified COM component.

sm_com_result

Get the error code returned by the last call to a COM component.

sm_com_result_msg

Get the error message returned by the last call to a COM component.

sm_com_set_handler

Set an event handler for the specified event on a COM component.

New MTS Functions

For COM components running under MTS, there is a set of wrapper functions to the
associated MTS methods.

sm_mts_CreateInstance
sm_mts_CreateProperty
sm_mts_CreatePropertyGroup
sm_mts_DisableCommit
sm_mts_EnableCommit

sm_mts_GetPropertyValue
sm_mts_IsCallerInRole
sm_mts_IsInTransaction
sm_mts_IsSecurityEnabled
sm_mts_PutPropertyValue
sm_mts_SetAbort
sm_mts_SetComplete

New Properties for COM Components

In addition to the properties for ActiveX controls listed here, refer to page 1-22, “New
Properties for Components.”
Upgrade Guide 1-23

API Changes
ActiveX Controls
For ActiveX Controls, there is a new property category with three Panther
properties: Control Name (control_name), CLSID (clsid), and Runtime
License (runtime_license). ActiveX controls are available in Web and
Windows applications.

" To select an ActiveX control registered on your workstation:

Under Active X, select the Control Name from the option menu. The
CLSID property is automatically filled.

" To use an ActiveX control unavailable on your workstation:

Under Active X, enter the CLSID for the ActiveX control.

An ActiveX control can have its own set of properties which you can access
at runtime using the syntax ax_property_name, which prevents naming
conflicts between Panther properties and ActiveX control properties.

For more information about ActiveX controls, refer to Chapter 19, “ActiveX
Controls,” in Using the Editors.

Grid API Changes

New Library Functions for Grids

There are new library functions associated with sorting data in arrays and grids:

sm_obj_sort

Sort the object's occurrences according to the rules specified in the object's
Sort Order property.

sm_obj_sort_auto

Sort the object's occurrences according to the conventions for grids in
Windows.

New Properties for Grids

There are new properties associated with the use of grids:

Column Click Action (column_click_action)
For widgets in grids, under Format/Display, specify the action–sort or custom
function–that occurs when a user clicks on the grid column header.
1-24 Upgrading to Panther from JAM 7

API Changes
Column Click Function (column_click_func)
For widgets in grids, under Format/Display, specify the custom function to
invoke when a user clicks on the grid column header. For this property to be
available, Column Click Action must be set to Custom.

Default Row Margin (default_row_margin)
Use this application property to control the grid row height if the Row Margin
property is not set for the grid widget.

Row Margin (row_margin)
For grid widgets, under Geometry, adjust the space between the text and row
dividers to control the row height.

Sort Order (sort_order)
Under Format/Display, specify the sort order to be used when the widget is in
an array or in a grid. If the widget is in a grid, the Column Click Action
property must also be set to Sort.

Sort Order Function (sort_order_func)
Under Format/Display, specify the custom function to be invoked when Sort
Order is set to Custom. The function can be either a JPL procedure or
prototyped C function.

Tab Control API Changes

New Properties for Tab Controls

There are new properties associated with use of the tab controls in Windows
applications:

Card (card)
For widgets on tab cards, a runtime, read-only property returning the object
id of the tab card of which the widget is a member.

Card Entry Function (card_entry_func)
For tab cards, under Focus, the name of the function to be called when the tab
card is entered.

Card Exit Function (card_exit_func)
For tab cards, under Focus, the name of the function to be called when the tab
card is exited.
Upgrade Guide 1-25

API Changes
Card Expose Function (expose_function)
For tab cards, under Focus, the name of the function to be called when the tab
card is made the topmost card in the deck.

Card Hide Function (hide_function)
For tab cards, under Focus, the name of the function to be called when the tab
card ceases to be the topmost card in the deck.

Card Number (card_number)
For tab cards, under Identity, specify the number location of the card in the
deck.

Conceal Tabs (conceal_tabs)
For tab decks, under Identity, determines whether the index tabs for the cards
in the deck are visible.

Deck (deck)
For tab cards, a runtime-only, read-only property returning the object id of the
tab deck of which the tab card is a member.

Number of Cards (number_of_cards)
For a tab deck, a runtime-only, read-only property specifying the number of
cards in a tab deck, including hidden cards.

Tab Entry Function (tab_entry_func)
For the index tab field on tab cards, under Focus, the name of the function to
be called when the tab card is topmost and its index tab gains focus.

Tab Exit Function (tab_exit_func)
For the index tab field on tab cards, under Focus, the name of the function to
be called when the tab card is topmost and its index tab loses focus.

New Logical Keys for Tab Controls

New logical keys, NCARD and PCARD, move to the next card and previous card
respectively.
1-26 Upgrading to Panther from JAM 7

API Changes
Database Interface API Changes

New Functions for the Database Interfaces

The new library functions associated with the database interfaces are:

dm_convert_empty

Determine if empty numeric fields should be replaced with a 0. This setting
is database-specific since some databases do not allow NULL values in
numeric columns.

dm_cursor_connection

Return the database connection for the specified cursor.

dm_cursor_consistent

Determine if the specified cursor is on the default connection.

dm_cursor_engine

Return the database engine for the specified cursor.

dm_get_db_conn_handle

Return a handle to the database connection's structure.

dm_get_db_cursor_handle

Return a handle to the database cursor's structure.

dm_get_driver_option

Return the value of a database driver option.

dm_odb_preserves_cursor

Check to see whether the ODBC datasource preserves the cursor on a commit
or a rollback.

dm_set_driver_option

Set the value of a database driver option.

dm_set_max_fetches

Set the maximum number of rows in a select set.

dm_set_max_rows_per_fetch

Set the maximum number of rows per fetch.

New Properties for the Database Interfaces

There is a new property associated with database connections:
Upgrade Guide 1-27

API Changes
Connection Pooling (conn_pool_size)
In Panther/WebSphere applications specify the number of concurrent
database connections.

New Commands for Database Interfaces

The new database interface commands are:

Database Interface Command Changes

The following commands used in conjunction with the database interface have
changed:

Transaction Manager API Changes

New Library Functions for the Transaction Manager

The new library functions associated with the transaction manager are:

dm_disable_styles

Suppress the enforcement of styles in the transaction manager.

dm_enable_styles

Enable enforcement of styles in the transaction manager.

dm_set_tm_clear_fast

Clear all fields in a server view.

sm_get_tv_bi_data

Get before-image data.

DBMS QUERY

DBMS RUN

DBMS CATQUERY

DBMS DECLARE CONNECTION
1-28 Upgrading to Panther from JAM 7

API Changes
sm_tm_handling

Process the specified transaction manger functions for special insert, update,
select and delete handling.

sm_tm_old_bi_context

Specify the method of before-image processing.

The following library functions used in conjunction with the transaction manager have
changed:

dm_gen_change_select_list

For this function, do not use a local JPL variable as the target of a transaction
manager fetch.

sm_tm_inquire

A new argument, TM_SV_SEL_COUNT determines if an initial query will be
performed in order to determine the number of rows in the select set. Five new
arguments are available: TM_CANCEL_ON_DISCARD, TM_CURRENT_COMMAND,
TM_SAVE_COUNT, TM_SV_SEL_COUNT, TM_XA_TRANSACTION_BEGUN.

sm_tm_iset

Three new arguments are available: TM_CANCEL_ON_DISCARD,
TM_SV_SEL_COUNT, TM_XA_TRANSACTION_BEGUN.

sm_tm_pinquire

A new argument, TM_COMMAND_ROOT, identifies the root table view of the
current command.

New Properties for the Transaction Manager

There are several new properties associated with the transaction manager. Some are
settable via the Properties window and others are readable and/or writable only at
runtime. They are:

Before Image Rows (bi_string[iter])
A widget, runtime-only, property. Provides access to the before image values
of rows in the transaction manager as strings. The iter specification lets you
walk through the list of rows.

Continue Function Name (continue_func_name)
For table views in two-tier applications, specify the function for handling
CONTINUE operations in the transaction manager for the specified server/table
view. The Select Handling property must be set to Function Name.
Upgrade Guide 1-29

API Changes
Count Result (count_result)
A table view, runtime-only, property. This readable/writable property holds
the value returned from a count query (from a TM_SELECT_COUNT event), that
is, the total number of rows in the result set. The value is examined to
determine whether to query the user about proceeding with the normal
SELECT statement.

Count Select (count_select)
A table view property, located under Transaction, takes a value of Yes or No.
Instructs the transaction manager whether or not to count the number of rows
in a result set and compare it (stored in the server view's count_result
property) to a specified threshold (Count Threshold property) value before
actually fetching data. This property is readable and writable.

Default Transaction (default_tran)
A runtime-only, read-only screen property that provides the name of the
default transaction manager transaction. This property always contains the
name, even if the transaction is not currently open, and can be used to stop
and then re-start the default transaction when making runtime property
changes.

Delete Function Name (del_func_name)
For table views, specify the function for handling delete statements in the
transaction manager for the specified table view. The Delete Handling
property must be set to Function Name.

Delete Handling (delete_handling)
For table views, select the method for handling delete statements in the
transaction manager for the specified table view: SQL Statement Generation
(PV_HANDLING_SQL), Function Call (PV_HANDLING_FUNC), or Nothing
(PV_HANDLING_NOTHING).

Deleted Rows (di_string[iter])
A widget, runtime-only, property. Provides access to the values of deleted
rows in the transaction manager as strings. The iter specification lets you
walk through the list of deleted rows. Use in conjunction with the
num_del_images property.

Insert Function Name (ins_func_name)
For table views, specify the function for handling insert statements in the
transaction manager for the specified table view. The Insert Handling
property must be set to Function Name.
1-30 Upgrading to Panther from JAM 7

API Changes
Insert Handling (insert_handling)
For table views, select the method for handling insert statements in the
transaction manager for the specified table view: SQL Statement Generation
(PV_HANDLING_SQL), Function Call (PV_HANDLING_FUNC), or Nothing
(PV_HANDLING_NOTHING).

Join Type (join_type)
For link widgets, under Transaction, a subproperty of Type. When the link is
identified as a server link, that is if the link's Type (type) property is set to
Server (PV_LNK_SERVER), the Join Type property is available. It can be set to:
Inner (PV_INNER) (default), Left Outer (PV_LEFT_OUTER), Right Outer
(PV_RIGHT_OUTER), or Full Outer (PV_FULL_OUTER). This property lets you
take advantage of SQL join facilities, whereby you can control the join
operation of a SELECT statement that combines information from two
database tables.

Number of Columns (num_columns)
A read-only and runtime-only property associated with table view widgets.
This property returns the number of columns belonging to a specific table
view, or more specifically, the number of occurrences defined in the Columns
(columns) property.

Number of Deleted Rows (num_del_images)
A widget, read-only and runtime-only, property that returns the number of
deleted rows in the transaction manager.

Primary Key Update (primary_key_update)
A runtime-only application property determining how primary key changes
are processed in the transaction manager: whether the row is updated or
whether it is deleted and then inserted.

Regenerate SQL (regenerate_ins_sql, regenerate_upd_sql)
If the transaction manager generates SQL statements, as determined by the
Method property, specify if the SQL statement should be regenerated for each
row in the table.

Save Function Name (save_func_name)
For table views, specify the function for handling SAVE operations in the
transaction manager for the specified server/table view. The Delete Handling,
Insert Handling, or Update Handling properties must be set to Function
Name.
Upgrade Guide 1-31

API Changes
Select Function Name (sel_func_name)
For table views, specify the function for handling select statements in the
transaction manager for the specified server/table view. The Select Handling
property must be set to Function Name.

Select Handling (select_handling)
For table views, select the method for handling select statements in the
transaction manager for the specified server/table view: SQL Statement
Generation (PV_HANDLING_SQL), Function Call (PV_HANDLING_FUNC), or
Nothing (PV_HANDLING_NOTHING).

Service Transaction (tm_transaction)
A runtime-only application property in JetNet and Oracle Tuxedo
executables that determines whether a service is transaction-manager enabled
and, if so, which transaction manager operation is to be performed.

Threshold (count_threshold)
For table view widgets, this property is a subproperty of the Count Warning
property when Count Select and Count Warning are set to Yes. Use to specify
the maximum number of rows to fetch in a result set. If a result set (stored in
the server view's count_result property) exceeds this value, the user is
prompted before the data is actually fetched.

Update Function Name (upd_func_name)
For table views, specify the function for handling update statements in the
transaction manager for the specified table view. The Update Handling
property must be set to Function Name.

Update Handling (update_handling)
For table views, select the method for handling update statements in the
transaction manager for the specified table view: SQL Statement Generation
(PV_HANDLING_SQL), Function Call (PV_HANDLING_FUNC), or Nothing
(PV_HANDLING_NOTHING).

Warning (count_warning)
For table view widgets, this property is a subproperty of the Count Select
property when Count Select is set to Yes. Use to specify whether the user
is prompted, before the data is actually fetched, when the size of a result set
(stored in the server view's count_result property) exceeds the value in the
Count Threshold property.
1-32 Upgrading to Panther from JAM 7

API Changes
Property Changes for the Transaction Manager

The property changes associated with the transaction manager are:

Fetch Directions/Directions (fetch_directions)
The table view Fetch Directions property has been renamed to Directions and
is located in the new Server View category.

Both the table view Directions property and the screen Fetch Directions
property have an additional value, none, which when set eliminates the
possibility of doing CONTINUE command processing on a server view.
CONTINUE functionality can consume system resources, therefore, using this
property value can allow you to better control how a SELECT is issued against
the table view.

Memo Text (memo1...memo9) properties for table views and links
Under Identity, both table view and link widgets can now have Memo Text
properties assignments.

Relations (relations)
This property, which describes the relationship between two table views, has
been refined into three sub-properties: rel_child (database column in child
table view), rel_parent (database column in parent table view), and rel_op
(type of relationship–join or lookup).

Other property changes for the transaction manager are:

Readable transaction properties
Prior to Panther, almost all transaction properties were readable at runtime;
only five were not. All transaction properties are now readable via the
property API. They include widget properties (under Column Edits): Length
(column_length), Precision (column_precision), Scale
(column_scale), and Type (column_type).

Writable transaction manager properties
If a transaction manager transaction is not in effect, all transaction manager
properties are writable.

New Commands for the Transaction Manager

The new transaction manager commands are:
Upgrade Guide 1-33

API Changes
RELEASE

The transaction manager has a new command, RELEASE, which releases the
database cursors when the transaction manager is active.

WALK commands
The WALK commands direct the transaction manager to traverse the
transaction tree of an application screen. These commands have no
processing attached to them in the transaction models so the traversal can be
used to fire any transaction event functions.

New Events in Transaction Manager Processing

If you write your own transaction manager event functions, three new slices were
added to the TM_SELECT and TM_VIEW request events in order to check the size of the
select set:

For database transactions, the following slices were added to the SAVE command:

WALK_DELETE Traverses the tree in delete order.

WALK_INSERT Traverses the tree in insert order.

WALK_SELECT Traverses the tree in select order.

WALK_UPDATE Traverses the tree in update order.

TM_SET_SEL_COUNT_FLAG

TM_SEL_COUNT_CHECK

TM_CLEAR_SEL_COUNT_FLAG

TM_SAVE_BEGIN

TM_SAVE_COMMIT

TM_SAVE_ROLLBACK

TM_SAVE_SET_MODE
1-34 Upgrading to Panther from JAM 7

API Changes
Web Application API Changes

Browser Events

In conjunction with VBScript support, the JavaScript Events category in the Properties
window was renamed Browser Events. A new event is also available:

OnMouseOut event
For JavaScript and VBScript, the OnMouseOut event for widgets is now
available. This property lets you specify a JavaScript or VBScript function to
execute when the mouse pointer leaves an area (in client-side image maps) or
a link.

New Library Functions for Web Applications

There is a new library function associated with Web applications:

sm_web_log_error

Write Web application errors to a log file.

New Properties for Web Applications

There are several new properties associated with Web applications:

Default Link (default_link)
For Web applications, specify the URL location for this hyperlink. (This
replaces the link property in previous releases.) If the property is specified for
an array, it is the hyperlink location for every occurrence in the array. (See
Item Link.)

HTML Max Loop (html_max_loop)
For HTML templates using condition processing, specify the number of loop
iterations to perform before terminating the process. The default setting is
1000.

HTML Max Nest (html_max_nest)
For HTML templates using condition processing, specify the number of
nesting levels. Each if, while, or include constitutes one level. The default
setting is 20.
Upgrade Guide 1-35

API Changes
HTML Name (html_name)
Read-only access to the converted HTML name, which is based on the
Panther variable name, using the syntax {{variable->html_name}}.

Insert/Delete Buttons property (ins_del_buttons)
For grid widgets in Web applications, if set to Yes (default), Insert (Insert
Above and Insert Below) and Delete buttons are generated in the HTML
representation of the grid widget. If set to No, the buttons are not generated
under any circumstances.

OnMouseOut (on_mouse_out)
For Web applications, under Browser Events, this property lets you specify a
JavaScript or VBScript function to execute when the mouse pointer leaves an
area (in client-side image maps) or a link.

Previous Form (previous_form)
For Web applications, get the screen name as stored in the current cache file.
Typically, this would be the name of the last screen that was accessed.

Stylesheet Data (stylesheet_data)
Under Web Options, for inline style sheets, enter the style sheet specification.

Stylesheet Link (stylesheet_link)
Under Web Options, specify the URL location of the style sheet. On the
HTTP server, the style sheet should be located in the public documents
directory.

Stylesheet Source (stylesheet_source)
Under Web Options, specify whether the style sheet for the web application
screen is included in the screen itself (Inline) or in a separate document
(Link).

Stylesheet Type (stylesheet_type)
Under Web Options, specify the type of style sheet to be used for the web
application screen: CSS (cascading style sheets) or JavaScript.

Submit (submit)
Under Web Options, setting this new push button property to No will keep the
screen from being submitted back to the web application server when the
button is pressed.
1-36 Upgrading to Panther from JAM 7

API Changes
VBScript (vbscript)
Under Web Options, setting this new push button property to No will keep the
screen from being submitted back to the web application server when the
button is pressed.

Web ID (webid)
For Web applications, this application property obtains the name of the next
cache file to be generated.

Property Changes for Web Applications

There are several property changes associated with Web applications:

Label (label) property
The Label property (label) is now available for grid widgets. The setting
provides a caption for the HTML table in Web applications.

Link (default_link) property
The Link property (link) in previous releases has been changed to Default
Link (default_link).

In addition, business graphs can be assigned a URL. If no value is set, the
graph does not act as an HTML link.

Style property (style)
The screen subproperty of the Pixmap property now defaults to Tile instead
of Center. This only affects newly created screens.

Dockable Toolbars

New Properties for Dockable Toolbars

There are new properties associated with the use of dockable toolbars in Windows
applications:

Toolbar Allowed Sites (toolbar_allowed_sites)
For toolbars in Windows applications, a runtime application property sets the
frame placement for the toolbar using one or more of the following bit flags:
PV_TOOLBAR_FLOAT, PV_TOOLBAR_TOP, PV_TOOLBAR_BOTTOM,
PV_TOOLBAR_LEFT or PV_TOOLBAR_RIGHT.
Upgrade Guide 1-37

API Changes
Toolbar Coordinates (toolbar_x_position, toolbar_y_position)
For toolbars in Windows applications, runtime application properties set the
screen coordinates of the upper-left corner of the floating toolbar.

Toolbar Current Site (toolbar_current_site)
For toolbars in Windows applications, a runtime application property sets the
current placement of the toolbar using one of the defined bit flags:
PV_TOOLBAR_FLOAT, PV_TOOLBAR_TOP (default), PV_TOOLBAR_BOTTOM,
PV_TOOLBAR_LEFT, or PV_TOOLBAR_RIGHT.

Toolbar Hidden (toolbar_hidden)
For toolbars in Windows applications, a runtime application property sets
whether the toolbar is currently displayed using PV_YES and PV_NO. Users
can hide the toolbar by clicking on the X in the upper-right corner of the
menu.

Other API Changes

New Properties

These are the remaining new properties not covered in previous sections:

Endsession (endsession)
For Windows applications, an application property which specifies the
function to call which closes down the application when Windows sends the
WM_ENDSESSION message.

Java Tag (java_tag)
Under Identity, specify the Java class implementing the event handler for this
object (screen, service component, widget).

Max Bundles (max_bundles)
A runtime-only application property specifying the number of JPL bundles
available for send and receive commands. It defaults to ten bundles (including
the unnamed bundle) if unspecified.

Queryendsession (queryendsession)
For Windows applications, an application property which specifies the
function to call which prepares to close the application when Windows sends
the WM_QUERYENDSESSION message.
1-38 Upgrading to Panther from JAM 7

API Changes
Screen Type (screen_type)
For screens and service components in distributed applications, a property
under Identity which displays whether the screen object is a client screen or
service component.

Property Changes

The following properties have changed in Panther:

Font properties
Screen and widget font properties that identify, what was JAM-specific fonts,
have been updated to be Panther-specific fonts both in the Properties window
and in the configuration map file; the JAM modifier has been eliminated.

Help properties (help_screen)
The menu property, mni_jam_help (menu item Help property) is now
mni_help.

The screen property (JAM Help property) and its corresponding mnemonic,
jam_help_screen are now Help Screen and help_screen, respectively.

Style property (style)
The screen subproperty of the Pixmap property now defaults to Tile instead
of Center. This only effects newly created screens.

Application Properties

The @jam property shortcut for the application name has been replaced with @app().
@jam will continue to work for backward compatibility.

Text Selection

A new series of logical keys have been added for selecting text:

EXTFB extend selection to start of field or list box

EXTFE extend selection to end of field or list box

EXTL extend selection with left arrow in text field

EXTLB extend selection to start of line in text field
Upgrade Guide 1-39

API Changes
In addition, EXTD and EXTU now also apply to text fields as well as list boxes.

New Library Functions

There are several new library functions for use in application building:

sm_file_exists

Checks whether a file exists.

sm_file_move

Copies a file and deletes its source.

sm_file_remove

Deletes a file.

sm_ldb_fld_get

Copy data from LDBs to specific fields.

sm_ldb_fld_store

Copy data from specific fields to LDBs.

sm_l_open_syslib

Opens a library as a system library.

sm_list_objects_count

Counts the widgets contained by an application object.

sm_list_objects_end

Destroys an object contents list.

sm_list_objects_next

Traverses the widgets contained by an application object.

EXTLE extend selection to end of line in text field

EXTPD extend selection down one page in text field or list box

EXTPU extend selection up one page in text field or list box

EXTR extend selection with right arrow in text field

EXTWL extend selection one word left in text field

EXTWR extend selection one word right in text field

SLALL select entire text field

SLWRD select current word
1-40 Upgrading to Panther from JAM 7

API Changes
sm_list_objects_start

Constructs a list of widgets contained by a Panther object.

sm_load_screen

Preload a screen into memory.

sm_menu_change

Set a menu's properties.

sm_mnitem_create

Insert a new item into a menu.

sm_msg_del

Delete a message set from memory.

sm_msg_read

Read messages from a memory block.

sm_mw_PrintScreen

In Windows executables, print Panther screens, sending either the current
Panther screen or all the screens in the MDI frame to the printer.

sm_unload_screen

Unload a screen from memory.

Changed or Discontinued Functions

The following library functions have been changed or discontinued:

sm_fi_open

Is no longer documented. sm_fi_open was used to find a file (along the
Panther's search path) and open it in binary read-only mode. Use sm_fi_path
instead to search along Panther's search path. Then call fopen (a standard C
function) to open the file in any way you choose (it does not limit you to
binary read-only mode).

sm_inquire

A new parameter, I_INERROR, is available to determine if a message box is
being displayed.

sm_msgread
Has been replaced with the following new functions:

" sm_n_msg_read—Reads messages from a named file with standard file
lookup protocol.
Upgrade Guide 1-41

Database Interface
" sm_d_msg_read—Reads messages from the default message file (SMMSGS
variable.

" sm_msg_read—Reads messages from a memory block.

" sm_msg_del—Deletes a message set from memory.

The message classes have also been updated; FM_MSGS, JM_MSGS and JX_MSGS
messages are now located in SM_MSGS. The value for WB_MSGS has also been updated.
Any instances of sm_msgread in a Panther application should be updated to the new
message classes.

Database Interface

For additional information, refer to page 1-27, “Database Interface API Changes.”

Improved SQL Processing

DBMS SQL statements that specify data modification and do not return data (INSERT,
UPDATE, and DELETE statements) are executed by simply passing the SQL statement to
the database immediately to process the statement quickly and efficiently. For SQL
statements that return rows (SELECT), the process includes a prepare and execute cycle.
This means that the database is first notified where to put the data (if any), and then
tells the database to execute the SQL.

The method used to determine if a SQL statement returns rows is to execute the SQL
statement and see if it returns rows. If it does, it goes through the prepare and execute
cycle—essentially executing the SELECT statement twice. If the statement is a stored
procedure which inserts a row and then selects back data, the stored procedure is
executed twice and therefore causes two copies of the row to be inserted.

The new method of SQL statement processing includes two new DBMS statements
which will improve SELECT-type processing and performance:

" DBMS QUERY—Executes the SQL statement based on the assumption that it
may or may not return data.
1-42 Upgrading to Panther from JAM 7

Database Interface
" DBMS RUN—Executes the SQL statement immediately, which assumes that
no data is returned from the database.

Performance is improved because:

" Data-modification (non-SELECT) statements are not executed twice.

" Since it can be determined ahead of time whether or not to expect fetched
rows, it takes less time to execute a SELECT statement.

Specifying Variables in DECLARE CONNECTION

The new recommended syntax for DBMS DECLARE CONNECTION allows the values for
the connection options to contain spaces or punctuation characters. Use the WITH
keyword in the statement (instead of FOR) and connect the option and value with an
equal sign in comma-separated pairs. Variables no longer need to be colon-expanded;
strings must still be in quotation marks. The following example contains two variables
for the user and password and a quoted string for the database path:

DBMS DECLARE c1 CONNECTION WITH \
USER=user, PASSWORD=pword, \
DATABASE="C:\Program Files\Prolifics\videobiz"

Since the variables are not colon-expanded in this variant, the values will not appear
in error messages and trace statements.

Support for Long Filenames

DBMS CATQUERY now supports writing to a filename containing spaces or punctuation.
Create a variable for the filename and use the variable in the new command syntax:

vars query1 = "query results"
DBMS CATQUERY TO FILENAME query1

This syntax does not replace DBMS CATQUERY TO FILE, which is supported
unchanged.
Upgrade Guide 1-43

Transaction Manager
Transaction Manager

For information on API changes (functions, properties, commands, slice events), refer
to page 1-28, “Transaction Manager API Changes.”

Transaction Manager Common Model

The previous set of database-specific transaction models delivered with Panther have
been replaced with smaller, more manageable models. In addition to the
database-specific model, each engine also accesses a common transaction model,
containing the functionality common to all of the database engines. The source code
for the new database-specific transaction models is provided and can be modified to
make global changes in transaction manager functionality. The common model should
not be modified; however, the source code is available for reference.

Having a database-specific model expands the event processing in the transaction
manager. As in previous versions, the transaction manager first checks to see if an
event function has been specified for the event. If so, it is processed; otherwise, the
transaction manager proceeds to the database-specific transaction model. If
database-specific processing for the event is required, it must be contained in this
model. Otherwise, the transaction manager proceeds to the common transaction model
and performs the processing defined there.

To call the common model in addition to an event function and the database-specific
model, have the event processing in the event function and the database-specific model
return TM_PROCEED, which passes the processing to the next level. The common model
is always called for TM_START and TM_FINISH events.

The common model provides plausible processing for every event known to the
transaction manager. This includes default behavior for the database transaction
events. While a majority of the database-specific transaction models set the mode to
initial after a database transaction is committed, the common model does not, leaving
this for the database-specific transaction models.
1-44 Upgrading to Panther from JAM 7

Web Application Development
If you have revised an existing transaction model, the revised version can continue to
serve as a database-specific transaction model. Since none of the previously distributed
transaction models return TM_PROCEED, unless this return value has been explicitly
coded, the transaction manager will only access the common model for the new
transaction manager events.

If you have implemented a transaction manager event function and use one of the
existing transaction models, there is no visible effect with the replacement of the old
models with the new.

Web Application Development

For additional information, refer to page 1-35, “Web Application API Changes.”

Initialization File Changes

Initialization File Settings

Web initialization files have the following new initialization variables:

! NumServers—The number of jserver processes, or concurrent users, for an
application. This setting replaces the MinServers and MaxServers settings
which are no longer available. Web applications from previous releases need to
update their web initialization file to the new variable.

! IdleServerTimeOut—Number of seconds that a jserver process will wait for
an incoming request before exiting.

! EnableWebid—Activates the caching process which uses the webid property to
obtain the cache file so that it can be specified in the URL.

! ImageDir—Graphics can be fetched using the HTTP protocol, rather than the
Panther web application server. In the web application's initialization file,
specify a sub-directory of the HTTP server's document root directory in the
Upgrade Guide 1-45

Web Application Development
ImageDir variable. When development of the application is complete, copy the
graphics to this sub-directory.

! ListenQueueLength—The length of the listen queue. This approximately
represents the number of web requests that can be waiting for an available
jserver.

! PadOptionMenus—For option menus, pads the text with trailing and HTML
spaces (nbsp) if set to Yes. To pad only the first occurrence, set this option to
First. Setting this option to Yes matches the behavior in previous versions of
JAM and Panther.

One Initialization File

In previous releases, a Panther web application read the values from a global
initialization file before reading the application's initialization file (appName.ini).
This was done so that the proweb.ini or jamweb.ini could define any global values
which are common among all web applications, but it caused problems for application
maintenance. Therefore, the distributed proweb.ini file will no longer be read when
you have an application initialization file. Only one initialization file is read for each
Web application.

If you are using a global initialization file (proweb.ini or jamweb.ini) to set global
parameters, merge all global values into your application-specific initialization file.

New Web Applications

A new Web-based utility, the Web Setup Manager, will help write and configure the
files needed for your Web application.

For step-by-step instructions, refer to Appendix B, “Web Setup Manager,” in Web
Development Guide.

HTML Template Changes

HTML templates behave as Panther screens, allowing you to have the flexibility of
how the HTML is created tied in with the power of the Panther backend. In the HTML
Template property, you specify the name of the HTML document to use in conjunction
with the Panther screen.
1-46 Upgrading to Panther from JAM 7

Web Application Development
HTML Template Caching
The cache data for a Panther screen utilizing an HTML template can be
maintained, and the template will be updated dynamically to associate the
cache file with it. The HTML template must contain the {{form:info}}
template tag.

HTML Template Tags
The syntax for HTML template tags has changed from <<variable>> to
{{variable}}. In addition, there are new tags for HTML templates:

Two application properties are associated with HTML loop processing:
html_max_loop to limit the number of loop iterations and html_max_nest to limit
the number of nesting levels.

{{form:info}} Interpolates hidden data needed to submit the form.

{{form:output}} Outputs the entire form in the HTML format Panther

would normally use.

{{form:script}} Generates JavaScript procedures based on edits and

validations of widgets on the form.

{{form:tag}} Generates the start <FORM> tag with ACTION and JavaS-

cript attributes.

{{value:variable}} Generates the value corresponding to the specified

variable.

{{emit:object}} Generates the HTML that Panther would normally out-

put for the specified object.

{{while:condition}}

{{if:condition}}

{{else:}}

{{elseif:condition}}

{{end:}}

Performs condition processing based on a JPL boolean

expression.

{{include:filename}} Include the specified file.

{{eval:statement}} Evaluate a simple JPL statement.
Upgrade Guide 1-47

Web Application Development
New Syntax for Specifying Variables

The syntax for accessing Panther variables has changed from <<variable>> to
{{variable}}. This new syntax can be used in JavaScript, VBScript, the Custom
HTML properties (such as Prefix Markup and Suffix Markup), and HTML templates.

Web Entry Processing

When screens are submitted at runtime, Panther variables (@web_action,
@web_action_widget and @web_action_occurrence) contain information about
the push button that was pressed and the widget's object ID and occurrence number, if
applicable. These variables can be accessed in web_enter processing. For more
information, refer to “Web Entry Context Flags” on page 5-9 in Web Development
Guide.

Caching Application State

The state of the application can now be obtained when performing a GET for Panther
files. In previous releases, invoking screens and reports via a GET caused the state
information to be lost. The following can now be accomplished:

! Hyperlinks—A hyperlink can be used to obtain a Panther screen that has access
to application state information on the server.

! Frames—The HTML file which defines the frames would be set as an HTML
template. Then, using the procedure for HTML templates, the <FRAMESET> can
specify a series of screens sharing the same cache file.

! HTML Template – The name of the cache file can be encoded into the HTML
template using the <<widget_name>> syntax. The template can call subsequent
Panther screens via GET with this cache name specified. The called screens
would then have access to the cache information.

To implement this caching behavior, two new application properties are available:

Previous Form (previous_form)
Gets the screen name as stored in the current cache file. Typically, this would
be the name of the last screen that was accessed.
1-48 Upgrading to Panther from JAM 7

Web Application Development
WebID (webid)
Obtains the name of the next cache file to be generated.

To access the cache file, a new name=value pair can be encoded as part of the
URL:

@webid=cacheFile

For more information, refer to “Getting Screens from the Server” on page 6-4
in Web Development Guide.

Requester Executables

If you are using an ISAPI- or NSAPI-compliant HTTP server, use the new ISAPI and
NSAPI versions of the requester executable, instead of the CGI version, for faster
processing of your HTTP requests.

Windows Servers

If you are using Windows as your Web application server:

! Use NTFS as the disk file system, not FAT, to improve your system
performance.

! Use the new ISAPI and NSAPI versions of the requester executable, instead of
the CGI version, for faster processing of your HTTP requests.

! Set your Web application to run as an service using the monitor utility. As an
service, you can have the application automatically start when the server is
rebooted. You can also specify that other services needed by the Web
application, such as database access, be restarted first.

Running Java Servlets

A Panther web application can run as a Java servlet. For more information, refer to
Appendix D, “Using Java Servlets,” in Web Development Guide.
Upgrade Guide 1-49

Web Application Development
Determining Mouse Location

Two JPL globals, @web_image_click_x and @web_image_click_y, contain the X
and Y coordinates of the user's mouse click for use in JPL procedures.

Widget Positioning in Web Applications

In order to control widget positioning in Web applications better, a COLS attribute has
been added to the table definition in the generated HTML. This will affect the widget
positioning for screens built in previous versions of Panther. For new screens, there is
a higher correlation between the GUI position and the HTML position.

Additionally if you create multiple boxes or grids which are aligned on two sides in the
screen editor, they will now appear to be aligned in the Browser.

Note that one browser may create its widgets using different font families and sizes
than another browser, or than the Panther screen editor. This results in screens that can
appear slightly different (more or less space between widgets) from browser to
browser, or from browser to screen editor.

Some helpful tips are:

! If you find that widgets are being pushed out further than expected in the
generated HTML, place repeated design elements together in a box.

! If you want a group of widgets to be spaced close together, select all these
widgets; then use Edit→Space→Custom to distance them at 0, either
horizontally or vertically.

! Specifying font sizes in the Panther screen editor results in better positioning
than using header tags, such as H1.

! HTML does not support overlapping widgets. In order to quickly detect
overlapping widgets, borders were added to radio buttons, check boxes and
labels to indicate whether they overlapped another widget. These borders do not
appear at runtime. Additionally, to ensure that widgets do not overlap, use the
new menu options which find overlapping widgets (Find→Overlapping
Widgets or Options→Check Overlap on Screen Save).
1-50 Upgrading to Panther from JAM 7

Web Application Development
Errors in Web Applications

Additional error text has been added for the requester, dispatcher, and jserver
programs. Errors for the Web application server have also been added to the Panther
message file.

Web Gallery Samples

The following changes have been made to the gallery of Web application samples:

ActiveX and VBScript
You can embed ActiveX controls in your Panther screens and write VBScript
to manipulate them on the browser. This example contains JPL procedures
that dynamically generate VBScript to populate an ActiveX control. This
example also demonstrates how to write VBScript to get values from an
ActiveX control and copy them to hidden Panther fields in order to send them
back to the server.

Templates
Demonstrates the use of the Panther Template property to present data from
a Panther screen using the format of a custom HTML file. This HTML file
can also be submitted back to Panther for normal processing.

By clicking on the scroll buttons of the grid, the custom representation of the
data is also updated at the bottom of the screen.

Web Wizard Defaults

For wizard-generated Web screens, the default values have changed for some
properties. The Border, Title Bar, and System Menu properties now default to No.

Naming Conventions

With the change in naming conventions, smrepost.jam becomes smrepost.scr.
Upgrade Guide 1-51

Reports
Reports

Converting ReportWriter 6 Reports

If you need to modify a report created with JAM/ReportWriter 6, you must first
convert it to a Panther report file using the rw6toprl utility. From the command line,
type:

rw6toprl [-fgkm] rw6Report pantherReport

-f

Output file can overwrite existing file.

-g

Use GUI coordinates when converting the report. This option positions
widgets using the GUI decimal coordinates, instead of integer coordinates.
Used this option if PostScript and proportional fonts have been specified in
the JAM ReportWriter 6 source file.

-k

Retain ReportWriter 6 widget types in the output file.

-m

Merge included files name in input file into output report file.

The utility converts GUI coordinates to column and row (whole-number grid units, as
though in character mode) coordinates to position widgets. To ensure GUI coordinates,
run rw6toprl with the -g option.

Modifying Reports from Previous Versions

As of Prolifics 2.5, several changes were made inside the report editor. To edit report
files created in previous versions, you need to manually rescale the grid in the report
editor using either of the following methods:

! Set the report level font to a new value and then set it back to the original
setting.
1-52 Upgrading to Panther from JAM 7

Upgrading to JetNet
! Set the Grid Height and Grid Width properties manually (to the values already
displayed in the Properties window). For example, if the Grid Height property
is set to 0.17, enter: 0.17. If the Grid Width property is 0.10, enter: 0.10.

Setting Widget Size

To resize a widget in ReportWriter, do not drag the widget by its edges; set the widget
size by setting the font size.

Printing PostScript

In Windows, if reports are generated using the driver=postscript option, those
reports must be printed using a Windows print driver that supports PostScript. Some
printer models have more than one printer driver; install the PostScript version for
PostScript reports.

Report Utilities

The r2asc utility has been superseded by f2asc; therefore, to convert a report
between binary and ASCII output, use f2asc. The rinherit utility has been
superseded by binherit; therefore, to batch update all reports with inherited values
from your application's repository, use binherit.

Upgrading to JetNet

JetNet, Panther's three-tier middleware product, is available for UNIX and Windows
server. This section lists the additional features available in that product.
Upgrade Guide 1-53

Upgrading to JetNet
Editor

! On the File menu, there are menu options for creating, opening and saving
service components.

! New Service properties are provided to define services to implement database
access operations with the transaction manager. Table views can have the Insert,
Update, Delete, and Select service properties set. Link widgets can have the
Validation Service property set. Table view widgets on client screens are
assigned service property values by the screen wizard to identify the services.

If you use the screen wizard to create screens, these properties are automatically
defined.

! Connection to the middleware is provided via a dialog box accessed by
choosing File→Open→Middleware Session.

Screen Wizard

! The screen wizard now creates service components as well as client screens.
The Application Model dialog prompts you to choose between two- or three-tier
architecture, and whether to create a client screen, a service component, or both.

! Three-tier client screens created with the screen wizard do not have Continue
(i.e., Next, Prev, First, Last) options built into the screen or menu bar. These
operations are not available in a three-tier architecture because a server has to
service multiple client requests and cannot keep track of the state of the
database between requests, and also because there is no guarantee that the same
server will handle repeated requests from a client.

! Screens created with the screen wizard use bitmaps. The bitmaps reside in the
distributed client library client.lib.

! New transaction manager operation Service properties are automatically set to
pre-defined services for the transaction manager operations. No coding is
necessary.

! When selection screens are created for you in the screen wizard, the name
extensions differentiate between two-tier screens and between client screens and
service components in three-tier. The extension for two-tier screens remains the
1-54 Upgrading to Panther from JAM 7

Upgrading to JetNet
same: .itm. In three-tier, the screen for the client is given the extension .cit.
The extension for its corresponding selection service component is .sit.

! New server JPL code that implements service calls for database access is
provided for you in the service component's JPL Procedures property and in
smwizsrv.bin. smwizsrv.bin is distributed in the server library server.lib.
The procedures contained in the service component's JPL procedure call
common functions in the smwizsrv.bin module.

Menu Bar Editor

! Open and Save recognize local and remote libraries, not standalone files or
screens. A library must be opened, and all menu bar scripts must be stored in a
library.

! Connection to the middleware is provided. The menu bar editor becomes a
client when the connection is made.

Styles Editor

! The styles editor recognizes libraries, not standalone disk files. A library must
be opened, and styles files must be stored in it. The default style file,
styles.sty, is distributed in client.lib and server.lib.

! Upon invoking the styles editor, all open libraries are searched for the file
styles.sty.

! Style files must be saved to a library. If the file is new, the Save As Library
Member dialog box opens where you can save it with a name to a library.

JIF Editor

! File menu options reflect storage of screen and JPL modules in local and
remote libraries and support source control management if the library is under
source control management.

! Connection to the middleware from the JIF editor. This permits interprocess
communication, allowing access to remote libraries and automatic updating of
Upgrade Guide 1-55

Upgrading to JetNet
servers when the JIF is changed and saved. The JIF editor alerts servers when
changes have been made to a service group that is advertised at server startup.

! Service options screen for specifying:

" Transaction type; one of: select, insert, update, delete, or link validation

" Asynchronous mode

" Reply expected

" Outside transaction

" Exception handler

" Unload handler

" Priority

" Service component caching choices: on advertise, on first call, or none

! Queue specifications for users of Oracle Tuxedo.

" Queue menu for create, update, and delete queue screens.

" View menu provides access to View Queues screen for viewing queues and
queuespaces, as well as screens for View Service and View Groups.

Debugger

For JetNet/Oracle Tuxedo applications in order to debug your server, you must
configure a debuggable server. For more information, refer to “Server Details” on page
3-22 in JetNet/Oracle Tuxedo Guide.

The debugger will only access compiled JPL code saved in libraries. If compiled JPL
is put in a library outside of the editor (with the jpl2bin and formlib utilities), the
binary JPL file must include the JPL source code. This means that you must not use
the -r flag with jpl2bin. For more information on compiling JPL source code, refer
to jpl2bin on page A-20 in Application Development Guide.
1-56 Upgrading to Panther from JAM 7

Upgrading to JetNet
Service Components

Service components reside on the server, and are used to map data between client
screens and services. In a running application they are not visible to the user. During
development, if you execute a debuggable server, service components can be viewed
in Test mode, or you can test it like a client screen if you have a direct connection to
the database. They can be created using the screen wizard at the same time you create
client screens.

JIF

For JetNet/Oracle Tuxedo applications, the JIF is a file that contains service
information required by both the clients and servers of your application. A JIF is
created and edited using the JIF editor and can be set in the environment using
SMTPJIF.

For more information on the JIF and the JIF editor, refer to Chapter 25, “JIF Editor,”
in Using the Editors.

Administration Utilities

Panther provides several utilities to configure and operate your three-tier application.
For the Oracle Tuxedo middleware adapter, use utilities provided by Oracle Tuxedo
that perform similar functions, such as tpadmin.

! jetman, the JetNet manager, is an interactive utility that performs all the
functions necessary to configure, boot, monitor, and shutdown JetNet and your
application's servers. jetman contains all the functionality of these utilities:
rbconfig, rbboot, and rbshutdown.

! rbboot is used to start JetNet and boot up your servers.

! rbshutdown shuts down JetNet and your servers.

! rbconfig provides an alternative method for creating a minimal JetNet
configuration file.

! rblisten allows application servers to run on multiple machines.

! rb2asc converts a JetNet configuration file to ASCII and vice versa.
Upgrade Guide 1-57

Upgrading to JetNet
Environment Variables

! A single declaration of SMFLIBS can now point to multiple libraries. Separate
directories with a vertical bar (|) or use the convention used by your operating
system for listing multiple directories in path. (For UNIX, this is a colon, and
for Windows, it is a semi-colon.) The default setting automatically opens
client.lib, server.lib, and common.lib.

! New middleware API-specific variables used to connect to the middleware:
SMRBCONFIG, SMRBHOST, and SMRBPORT.

" The JIF file for your application can be set in SMTPJIF.

Database Error Handling

Errors resulting from database access are handled differently when the server is
connected to the database, as opposed to two-tier processing where the client is
connected directly to the database. Default error handling on the server also depends
on the environment: development or production.

There are new default database error handlers for servers. The DBMS ONENTRY default
error handler logs each DBMS command in the development environment, but does
nothing in a production environment. The DBMS ONERROR function default error
handler logs all DBMS errors to the central user log file in both the development and
production environments.

Team Development

In JetNet and Oracle Tuxedo executables, developers can have personal copies of
screens in library files and services in the JIF in order to make and test changes during
development.

A new menu option, Options→Service Alias allows you to specify a user identifier to
use when testing services. For more information, refer to “Using Service Aliases to
Test Services” on page 5-8 in JetNet/Oracle Tuxedo Guide.

To use this feature, the application server must have a service alias defined. Once
defined, the library function sm_tp_get_svc_alias returns the value of the service
alias for the application server.
1-58 Upgrading to Panther from JAM 7

Upgrading to JetNet
Transaction Model

A JetNet-specific transaction model is provided for applications that use the
transaction manager in the client side of your application: jetrb1. This database- and
middleware-independent model is designed to process transaction manager events by
requesting service calls, for example, when:

! You convert an existing two-tier application to three-tier (refer to the clnt2svr
utility).

! You use the screen wizard to create your screens and service components.

progserv

A conversion server, progserv, is provided to process service requests made by client
screens that use the transaction manager but do not have Service property
specifications, such as screens created from a clnt2svr conversion.

JetNet and Oracle Tuxedo Event Handling

For JetNet/Oracle Tuxedo applications, there is a middleware layer of event handling.
Several event types are defined, and built-in handlers are provided for both
development and production executables. Default handlers are installed and can be
overridden by using new, runtime, application-specific property settings.

For information on middleware API events and event handling, refer to Chapter 6,
“JetNet/Oracle Tuxedo Event Processing,” in JetNet/Oracle Tuxedo Guide.

API Changes for JetNet and Oracle Tuxedo
Applications

JPL Commands

There are several JPL commands associated with use of the JetNet and Oracle Tuxedo
applications:
Upgrade Guide 1-59

Upgrading to JetNet
Note that each new JPL command represents a potential name conflict with existing
variable and field names in your application. All JPL commands are reserved
keywords.

The receive command has been enhanced to provide middleware support. It is used to
receive message data, for example by service routines to receive client data.

For more information on these commands, refer to Programming Guide.

Library Functions

There are several library functions associated with use of the JetNet and Oracle
Tuxedo:

advertise notify unload_data

client_exit service_call wait

client_init service_cancel xa_begin

jif_check service_forward xa_end

jif_read service_return xa_commit

log unadvertise xa_rollback

sm_tp_free_arg_buf Frees up memory allocated by argument list
generation functions.

sm_tp_gen_insert Generates an argument list of fields for an INSERT
operation.

sm_tp_gen_sel_return Generates a list of fields for the returned select set of
a SELECT or VIEW operation.

sm_tp_gen_sel_where Generates a list of fields for the WHERE clause of a
SELECT or VIEW operation.

sm_tp_gen_val_link Generates a list of fields to be validated in a
validation link operation.
1-60 Upgrading to Panther from JAM 7

Upgrading to JetNet
Properties

There are several properties for JetNet and Oracle Tuxedo applications:

Table view service properties:

Runtime application properties:

sm_tp_gen_val_return Generates a list of fields for the returned select set of
a validation link operation.

sm_tp_get_svc_alias Returns the value of the service alias for the
application server.

sm_tp_get_tux_callid Returns the Oracle Tuxedo-specific ID for a service
request call.

delete_service insert_service

select_service update_service

agent_type

devserv_id hdl_advertise

hdl_exception hdl_jif_changed

hdl_message hdl_post_request

hdl_post_service hdl_pre_request

hdl_pre_service hdl_request_received

hdl_server_exit hdl_unadvertise

hdl_unload tp_async_poll_interval

tp_block tp_commit_return

tp_exc_code tp_exc_msg

tp_exc_names tp_mon_exc_code
Upgrade Guide 1-61

Upgrading to JetNet
Runtime service request properties:

Link widget service property:

Migrating a JAM Transaction Manager Application

If you are upgrading a two-tier application that uses the transaction manager to
three-tier–either a pre-Enterprise application or a two-tier Panther application– you
must use the clnt2svr (client-to-server) utility provided with the Panther distribution.

The clnt2svr utility creates three-tier client screens and service components from the
two-tier client screens in the library you provide as input. Upon completion, the service
components, and optionally any JPL procedures associated with the original client

tp_mon_exc_msg tp_return

tp_severity tp_severity_names

tp_signal_restart tp_svc_cache_size

tp_svc_outcome tp_svc_return

tp_this_call tp_timeout

tp_tran_level tp_tran_status

tp_unsol_poll_interval

call_client call_in_transaction

call_initial_text call_no_reply

call_origin call_priority

call_security_key call_svc_name

call_text

validation_service
1-62 Upgrading to Panther from JAM 7

Upgrading to JetNet
screens, are placed in a library which can be used as the server library in a three-tier
application. Also, the client screens are updated to use the default three-tier transaction
model jetrb1, and stored in a new client library. The input library is left unchanged.

Certain property values that existed on the client screens are removed from the service
components created from them in order to avoid unnecessary entry processing on the
server.

To convert your two-tier JAM application to a three-tier Panther application:

1. If your two-tier screens are not in a library, run formlib and create a two-tier
client library from all client screens and client JPL.

2. From the command line, type:

clnt2svr inputLib

A new client library (cl.lib) and a server library (sv.lib) are created from
the input client library, which is left intact.

3. Create a JetNet configuration file using the JetNet manager. Include in the
configuration a conversion server (progserv).

4. Set SMFLIBS on the client and server to recognize and open the new libraries on
application startup.

clnt2svr is described in more detail on page A-2 in JetNet/Oracle Tuxedo
Guide.

Upgrading an Existing Application

If you are not ready to convert your existing application to three-tier, you need to put
all the screens, modules and bitmaps in a library in order to use it with Panther. Run
formlib and create a client library from all client screens and client JPL, or add them
to the distributed client library (client.lib).

Consideration needs to be made for existing JPL code. JPL modules must be compiled
before they are put in libraries. JPL can be compiled in two ways:

! Open the JPL module in the editor and save the JPL to an open library. The JPL
is automatically compiled.

! Run jpl2bin on your existing JPL modules to compile them. If your JPL
modules include a file extension, such as .jpl, you need to keep the extension
Upgrade Guide 1-63

Upgrading to Panther for IBM WebSphere
for the binary version. This is to ensure that public calls of the modules, such as
public mymodule.jpl, will still work. To do this, use the -e- option to jpl2bin
to preserve the existing file extension, but first copy the original ASCII file to
another location so that it doesn't get overwritten. For example, to compile the
JPL module mymodule.jpl and preserve the file extension, do:

cp mymodule.jpl old/mymodule.jpl
jpl2bin -b -f -e- mymodule.jpl

Upgrading to Panther for IBM WebSphere

Refer to Panther for IBM WebSphere Developer's Studio for information about:

! Configuring your Panther/WebSphere environment

! Building Enterprise JavaBeans in Panther

! Building client screens that call Enterprise JavaBeans

! Deploying Panther-built Enterprise JavaBeans on WebSphere Application
Server

Documentation

Documentation Titles

The titles of some manuals have changed in this release:
1-64 Upgrading to Panther from JAM 7

Documentation
A new Quick Reference manual has been printed, containing a list of the property
names, library functions, JPL commands, and transaction manager commands. The
properties reference section of that manual is available online. For changes to the
Quick Reference since its printing, refer to page 1-66, “Quick Reference Changes and
Corrections.”

The Application Development Guide has been totally re-organized in order to illustrate
a typical development process.

Online Documentation

Panther documentation is now available in HTML and PDF formats. For more
information about Panther online documentation, refer to Appendix A, “Panther
Online Documentation,” in Installation Guide.

Documentation Changes and Corrections

Other documentation changes not listed in previous sections are:

ASCII JPL modules
Even though it is recommended that all JPL modules be placed in libraries,
JPL modules can be in ASCII format on disk. This has been added back to the
Programming in JPL chapter.

JAM/Prolifics 2.5 Title Panther Title

Administration Guide JetNet Guide

Oracle Tuxedo Guide

COM/MTS Guide

WebSphere Developer's Studio

Editors Guide Using the Editors

Language Reference Programming Guide

Tutorial Getting Started
Upgrade Guide 1-65

Documentation
CGI variables
In Web applications, the variables containing the HTTP header information,
such as @cgi_request_method, are now referred to as HTTP server
variables.

cgi-bin directory
With the addition of ISAPI and NSAPI requester executables, the cgi-bin
directory is now referred to as the program directory or scripts directory.

Reports
The first release of Panther documentation incorrectly included descriptions
of the Bar Height and Portable Placement properties. These properties are not
in the Panther product.

sm_card_val
sm_tw_val

The first release of Panther documentation incorrectly included these
functions. For tab card validation, use sm_validate.

sm_msg_del
sm_msg_read

Initial releases of the Panther documentation did not have an updated list of
the message prefixes or message classes. FM_MSGS, JM_MSGS and JX_MSGS
messages are now located in SM_MSGS. The value for WB_MSGS has also been
updated.

sm_prop_get_str

The documentation has been updated to say that this function stores the
returned data in a pool of buffers that it shares with other functions so you
need to copy or process this data immediately.

Traversal properties for table views
Traversal properties for table views and server views in the transaction
manager return the table view or server view name as a string, not as an object
ID.

Quick Reference Changes and Corrections

The Panther Quick Reference which was printed in November 1999 does not have the
following changes.
1-66 Upgrading to Panther from JAM 7

Documentation
Configuration

Text Selection Keys - Windows
Refer to “Text Selection” on page 1-39 for the list of new logical keys.

SMIBMVJAVA, SMPROVIDERURL, SMTPCLIENT, SMTPINIT, SMWSADMIN

Refer to “WebSphere Variables” on page 1-19 for a description of the
configuration variables in Panther for IBM WebSphere.

Functions

sm_com* Functions
The functions for components supersede the functions for COM components
released in Panther 4.0 and 4.1.

sm_obj_sort, sm_obj_sort_auto
New functions for sorting data in arrays and grids.

COM Function Panther 4.2 Replacement

sm_com_call_method sm_obj_call

sm_com_get_prop sm_obj_get_property

sm_com_log sm_log

sm_com_obj_create sm_obj_create

sm_com_obj_destroy sm_obj_delete_id

sm_com_onerror sm_obj_onerror

sm_com_raise_exception sm_raise_exception

sm_com_receive_args sm_receive_args

sm_com_return_args sm_return_args

sm_com_set_prop sm_obj_set_property
Upgrade Guide 1-67

Documentation
Properties

Column Click Action (column_click_action)
For widgets in grids, under Format/Display, specify the action–sort or custom
function–that occurs when a user clicks on the grid column header.

Column Click Function (column_click_func)
For widgets in grids, under Format/Display, specify the custom function to
invoke when a user clicks on the grid column header. For this property to be
available, Column Click Action must be set to Custom.

Connection Pooling (conn_pool_size)
In Panther/WebSphere applications, specify the number of concurrent
database connections.

Current Component System (current_component_system)
A runtime-only property that instantiates the type of component system
currently in use. Before creating any service components, set this property to
PV_SERVER_COM for COM components or PV_SERVER_EJB for Enterprise
JavaBeans deployed under WebSphere Application Server.

HTML Max Loop (html_max_loop)
For HTML templates using condition processing, specify the number of loop
iterations to perform before terminating the process. The default setting is
1000.

HTML Max Nest (html_max_nest)
For HTML templates using condition processing, specify the number of
nesting levels. Each if, while, or include constitutes one level. The default
setting is 20.

In Server (in_server)
A new value for Panther/WebSphere applications, PV_SERVER_EJB.

Max Bundles (max_bundles)
A runtime-only application property specifying the number of JPL bundles
available for send and receive commands. It defaults to ten bundles (including
the unnamed bundle) if unspecified.

Provider URL (provider_url)
For Panther/WebSphere applications, a runtime-only application property
specifying the location of the WebSphere application server machine. If
1-68 Upgrading to Panther from JAM 7

Documentation
SMPROVIDERURL is set in the environment, the property is initially set to
this value.

Runtime License (runtime_license)
For ActiveX controls which support runtime licensing, if the Runtime
License property exists, the control will be created using the license.

Sort Order (sort_order)
Under Format/Display, specify the sort order to be used when the widget is in
an array or in a grid. If the widget is in a grid, the Column Click Action
property must also be set to Sort.

Sort Order Function (sort_order_func)
Under Format/Display, specify the custom function to be invoked when Sort
Order is set to Custom. The function can be either a JPL procedure or
prototyped C function.

Utilities

formlib

New -m option for compacting the library.

makeejb

Panther/WebSphere utility for generating the Java files for EJBs from the
service components in an application library.
Upgrade Guide 1-69

Documentation
1-70 Upgrading to Panther from JAM 7

CHAPTER
2 Using the JAM
Upgrade Utility

To order to help you upgrade a JAM application to a Panther application, the JAM to
Panther utility bundles your loose JAM application files into libraries.

You can choose to update an existing JAM library to be your Panther application
library or you can create a new application library. After the utility is complete, you
can have the library open automatically by setting the SMFLIBS environment variable.

Running JAM to Panther

To run JAM to Panther:

! Windows: On the Start Menu, choose Panther→JAM Upgrade Utility.

! UNIX: On the command line, type j2p.
Upgrade Guide 2-1

Running JAM to Panther
! Choose Next.

! Specify the path for the log file, and then choose Next. If unspecified, it
defaults to $SMBASE/util for Windows and the current directory for UNIX.

! If you have an existing JAM library, choose Yes. In the next screen, enter the
library's location.

! If you did create a library for your JAM application, choose No.
2-2 Using the JAM Upgrade Utility

Running JAM to Panther
! If you have screens not contained in a library, choose Yes and then Next.

! If you have not already specified a library, you can select a Panther library or
create a new library. After entering the information, choose OK.
Upgrade Guide 2-3

Running JAM to Panther
! Enter the path name of the new Panther library. If you want to include wizard
files or maintain the library under source code control, specify the additional
parameters. Choose OK.

! Select the directory containing the screens. If your screens do not end with a
.jam extension, change the filter as needed.
2-4 Using the JAM Upgrade Utility

Running JAM to Panther
! When the screens are displayed on the left, select the screens and choose Add.
If you need to add additional screens from another library, select Choose
Another Library.

! Choose Done when all screens have been added.

! The JAM Upgrade Utility then prompts you to add the following types of files
to your library:

" JPL files (filter is set to .jpl)

" Reports (filter is set to .jrw)

" Menu files (filter is set to .mnu)

" Miscellaneous files, such as GIFs and JPGs for graphics.

! A repository can also be upgraded to the Panther format.

! After all steps are complete, the final screen displays:

! Choose Done.
Upgrade Guide 2-5

Running JAM to Panther
2-6 Using the JAM Upgrade Utility

CHAPTER
3 Upgrading to Oracle
Tuxedo from JetNet

When you upgrade from the JetNet middleware adapter to Oracle Tuxedo, do not
install the Oracle Tuxedo version over the JetNet version. The Oracle Tuxedo product
should be installed in a separate directory.

Once the Oracle Tuxedo product is installed, you need to make the following changes
in your application directory:

! Change the SMBASE setting to the Panther for Oracle Tuxedo installation. For
UNIX application servers, SMBASE is set in machine.env and in setup.sh.
For Windows application servers, it is set in machine.env and in the Windows
System Environment.

! Because the following variables use SMBASE in their settings, their settings will
also be updated:

" PATH

" LD_LIBRARY_PATH, SHLIB_PATH, or LIBPATH

! Update the server executables.

" For UNIX, remove the existing links to the server executables and create
new ones to the executables in the Oracle Tuxedo installation.

" For Windows, remove the existing copies of the server executables and
copy the ones from the Oracle Tuxedo installation.
Upgrade Guide 3-1

3-2 Upgrading to Oracle Tuxedo from JetNet

CHAPTER
4 Upgrading to
Panther from JAM 5

This chapter only discusses issues that pertain to upgrading screens in JAM 5
applications to Panther.

To further upgrade your application to Panther, refer to Chapter 1, “Upgrading to
Panther from JAM 7.”

To upgrade your reports to ReportWriter 7, refer to page 1-52.

Upgrading From JAM 5

Although Panther differs considerably in its appearance from JAM 5, in its underlying
functionality it remains closely related to JAM 5. The most obvious change is that
JAM's interface has moved from a character to a graphical orientation. This is most
evident in the graphical editor and in the more object-oriented terminology used
throughout the product. This document discusses how to upgrade your applications
from JAM 5 to Panther.

Warning: Be sure to back up your JAM 5 application before you start to upgrade it.
Upgrade Guide 4-1

Upgrade Paths
Upgrade Paths

There are three potential paths to follow when upgrading a JAM 5 application:

" Migration

" Utility conversion

" Full upgrade

These three paths are listed in ascending order of difficulty and effectiveness. Each
path encompasses the previous one, but takes it several steps further.

Migration

Migration is the fastest and most direct way to get up and running with Panther.
Migration means that your application remains virtually the same and runs with JAM
5 compatibility in the Panther environment. Once migrated, you can immediately
begin to use the features of Panther to extend and modify your application. Although
this compatibility will eventually be phased out of future releases, using it may buy you
the time you need to plan a proper conversion. Experience has proven that migration
works best for character-based applications, since graphical applications present more
challenging issues. If you used JAM/Pi to build your application, then migration is not
recommended.

Utility Conversion

Conversion is potentially a more complicated process than migration. Its goal is to map
your application's functionality into Panther constructs without altering it too much. A
suite of conversion utilities, including a screen conversion utility, \f5upg, are
provided to perform the bulk of this mapping. Once again, character applications
convert more easily than graphical applications, but the utility does use a series of
heuristics in an attempt to map JAM/Pi constructs into Panther. The reason that
graphical applications take more work to convert is that JAM/Pi has undergone an
4-2 Upgrading to Panther from JAM 5

Upgrading the Operating Environment
extensive reworking as it was folded into Panther. The appearance of your graphical
application after conversion will most likely be different than it was before, so you
should examine each screen carefully and manually adjust them as necessary.

Full Upgrade

Finally, you might want to fully upgrade your application to Panther. Here, your
application must be extensively modified to take full advantage of the advanced
features provided in Panther. At this time, fully upgrading an application is a manual
process.

Which Path is Best for My Application?

The best way to decide which path to follow is to read through the rest of this chapter,
keeping in mind the specifics of your application and the upgrade options available.
We first cover the steps that are common to all upgrade paths, and then branch into
some of the more advanced upgrade steps.

Upgrading the Operating Environment

First of all, there are several steps common to each of the methods. These steps must
be performed for all upgrades.

Update Your Configuration Files

Panther is distributed with new configuration files. If you modified any of these files
in previous releases, you must reevaluate and transfer the changes into the new
environment. You can edit the ASCII version of these files directly.

" keyfile

" message file
Upgrade Guide 4-3

Upgrading the Operating Environment
" setup or SMVARS file

" video file

Once you have made your changes, be sure to convert the file to binary using the
appropriate Panther utility:

" key2bin

" msg2bin

" var2bin

" vid2bin

Table 4-1 shows the setup variables from JAM 4 that are no longer supported in
Panther. References to these variables should be removed from your setup and
configuration files.

Be sure that your environment is pointing to the correct Panther configuration. This
usually involves changing your SMVARS environment variable.

Update Your GUI Resource and Initialization Files

The Motif XJam file and the Windows ini file should be updated just like the
configuration files. Any changes that you made to these files should be reevaluated and
transferred to the Panther versions.

Table 4-1 Obsolete setup variables

SMCHEMSGATT SMCHFORMATTS SMCHQMSGATT

SMCHSTEXTATT SMCHUMSGAT SMDWOPTIONS

SMEROPTIONS SMFCASE SMFEXTENSION

SMINDSET SMMPOPTIONS SMMPSTRING

SMOKOPTIONS SMUSEEXT SMZMOPTIONS
4-4 Upgrading to Panther from JAM 5

Upgrading the Operating Environment
Color Aliases

Support for color aliases has now moved from the GUI resource and initialization files
to the JAM configuration map file, clrcmap. Any color aliases that you added should
therefore be moved to the configuration map file. Remember to use the utility
cmap2bin to convert this file to binary format.

Update Your Data Dictionary into a Repository and LDB

While the format of most configuration files has not changed, an important exception
is the Data Dictionary. In fact, both its role and its name have changed. Panther uses
this file as a development tool; a repository of reusable widget definitions, stored in
JAM library format. It is no longer used to create the runtime Local Data Block (LDB).
You must use the dd5upg utility to convert your Data Dictionary to a repository. If
your application relies on the LDB, use dd5upg -l to create a Panther library
(ldb.lib) which is automatically loaded into the LDB at runtime. For details on using
dd5upg, refer to “The dd5upg Utility” on page 4-21.

LDB Initialization

Panther no longer supports LDB initialization through ini files. We do however
provide sample code that you can use to mimic JAM 5 behavior. You must choose
whether to convert over to the new Panther conventions or simply link in the sample
code.

An LDB in Panther is simply a library of screens. Panther performs initialization by
either setting the initial text of the LDB widgets or by explicitly placing values into
them through JPL statements. The sample code we provide, sm5ldb.c, enables ini
files to work as they did in JAM 5, providing near seamless compatibility. Similar
support is available for LDB scopes, Form structures, Data Dictionary records, and the
old menu bar API.
Upgrade Guide 4-5

Upgrading the Operating Environment
Update Your Main Routines

Any changes that you made to the main routines in JAM 5, jmain.c and jxmain.c,
should be reevaluated and transferred to the main routines provided with Panther. One
way to locate these changes is to compare the distributed JAM 5 main routines with
the JAM 5 main routines that you have been using. Then carry these changes forward
to the Panther main routines, if appropriate.

Update Your Function List

Any functions that you added to the function list file funclist.c must be added to the
new Panther funclist.c. You can use the same structure for declaring functions that you
used in JAM 5.

Automatic Dereferencing

In looking at the function list in Panther, you'll notice that it includes prototypes for
most of the JAM library functions. These are declared using a macro called
SM_INTFNC. If you prototyped any of these functions for use in JAM 5, then you'll want
to change these declarations to use the macro SM_OLDFNC instead.

The difference between the two macros is in their use of a new flag that has been added
to the intrn_use member of the installation structure. This flag, DEREF_ARGS, allows
function arguments to be automatically dereferenced without the need for colon
expansion. If you were not in the habit of enclosing arguments in quotes when calling
prototyped library functions in JAM 5, then you'll want to declare these library
functions without the DEREF_ARGS flag. Declaring them with the SM_OLDFNC macro
accomplishes this. SM_OLDFNC, SM_INTFNC, and DEREF_ARGS are all defined in the
include file sminstfn.h.

Eliminate the Use of Release 4 Library Functions

Functions that were supported in JAM 5 for compatibility with JAM 4 are no longer
supported. All usage of JAM 4 functions must be updated to use Panther functions.
Table 4-2 lists the obsolete JAM 4 functions and their Panther equivalents.
4-6 Upgrading to Panther from JAM 5

Upgrading the Operating Environment
Table 4-2 Obsolete JAM 4 functions and their Panther counterparts

JAM 4 Function Panther Function

sm_ch_emsgatt sm_option

sm_ch_form_atts sm_option

sm_ch_qmsgatt sm_option

sm_ch_stextatt sm_option

sm_choice sm_input

sm_cl_everyfield sm_cl_unprot

sm_dw_options sm_option

sm_er_options sm_option

sm_fcase sm_option

sm_fextension sm_pset

sm_inbusiness sm_inquire

sm_menu_proc sm_input

sm_mp_options sm_option

sm_mp_string sm_option

sm_ok_options sm_option

sm_openkeybd sm_input

sm_plcall sm_jplcall

sm_sdate sm_sdtime

sm_stime sm_sdtime

sm_smsetup sm_option

sm_unsetup sm_option

sm_zm_options sm_option
Upgrade Guide 4-7

Converting an Application
Converting an Application

Converting a JAM 5 application to Panther is an iterative process that should be
mapped out carefully.

The Conversion Toolkit

A suite of utilities are provided to aid in converting the various pieces of your
application. These are summarized in Table 4-3.

Sample source code is also provided that maps some JAM 5 features and function calls
to Panther equivalents at runtime. These are summarized in Table 4-4. Detailed
documentation for this code is provided in the source files themselves.

Table 4-3 The upgrade utilities

Utility Purpose

dd5upg Converts JAM 5 data dictionaries to Panther repositories and,
optionally, Local Data Blocks.

f5upg Converts JAM 5 screens to Panther format.

m2asc Converts JAM 5 menu bars to Panther format.

dd2rec Converts records in a JAM 5 data dictionary to a format for
use with sm5strct.c functions (see Table 4-4).

Table 4-4 Source code for backward compatibility

Function Purpose

sm5init.c Sets Panther library options for JAM 5 compatibility.

sm5ldb.c Support for JAM 5 LDB scope and initialization
functions.
4-8 Upgrading to Panther from JAM 5

Converting an Application
The design and features in your particular application dictate which utilities and source
modules are required in your conversion.

When a Feature is Missing...

As you work to establish a configuration and executable for your application you will
undoubtedly notice that some features of JAM 5 are no longer supported in Panther.
When this happens you must chose among converting to the new Panther conventions,
finding a new approach, or linking in sample code we've provided to mimic the JAM
5 behavior.

As mentioned before, LDB initialization is a prime example of this. Panther supports
this directly through the initial text property of an LDB widget. However, an
alternative, and perhaps more flexible, approach is to explicitly place values into the
widgets through JPL or C statements. Finally you can continue to use the ini files from
JAM 5 by linking with the sample code we provide (sm5ldb.c) and calling
sm5_ldb_init from your main routine. The choice is yours. Different applications
and schedules require different choices.

Screens and Related Topics

Once you've built a Panther environment for your application, the next step is getting
your screens to operate within it. Here the differences between migration and
conversion become apparent.

All JAM 5 screens will execute under Panther without conversion. Panther recognizes
that the screen was created in JAM 5 and translates fields, attributes and edits into
widgets and properties. Widgets of this type are called “Release 5” widgets. You can

sm5strct.c Support for JAM 5 bulk load/unload functions.

sm5mbar.c Support for JAM 5 menu bar API.

f2struct.c Converts screens to C structures for use with sm5strct.c
functions.

Table 4-4 Source code for backward compatibility (Continued)

Function Purpose
Upgrade Guide 4-9

Converting an Application
expect these widgets for the most part to look and act as they did under JAM 5 control
in both character and GUI environments. This is what we call migration, since with
some subtle differences, your application remains the same.

The fact is, not everything translates automatically to Panther equivalents, and the
appearance of certain fields/groups/messages will change under Panther. Since
Panther is much more graphically oriented, you'll notice that many messages now
appear in dialog boxes rather than on the status line. In addition, the border
surrounding most windows looks slightly different by default. The rules governing the
tabbing order between fields and groups have also changed slightly. Most of these
differences can be resolved by either editing the screen or setting one or more of the
option variables through your SMVARS file or source code provided in sm5init.c.

Users of JAM/Pi will immediately note that none of the extensions to JPL are
interpreted by default. Users of JAM/Reportwriter will find likewise. JAM/Pi
extensions and Reportwriter scripts have been fully integrated into widget properties
for Panther. They can only be activated by passing the screen through the f5upg
conversion utility. The utility supports a -5 option which performs these and other
minor translations on the screen, avoiding a full conversion of the screen (f5upg can
be used to continue the conversion at a later time).

Perhaps the most noticeable difference for GUI users is in widget positioning. The
positioning algorithm in Panther places widgets at approximately the same positions
they held under JAM/Pi. For both migration and conversion, you will need to closely
examine your screens under Panther and, more than likely, touch up the positioning of
fields, boxes and lines. In most cases character users are spared this step.

Biting the Bullet

Most users will find that a full conversion to Panther is desirable. The f5upg utility
defaults to performing a conversion and has many command line options available to
help you in this process. Not all options are required for all screens and, indeed, some
options are not desirable at all. We suggest that you look at all the available options
and determine a set that most closely represents a conversion path for most of your
screens. The remainder will need to be handled on an individual basis. The utility is
based on heuristics controlled by command line options, so you may want to assess
each screen and try different options.
4-10 Upgrading to Panther from JAM 5

Converting an Application
Unless the -5 switch was used, screens that come out of f5upg consist entirely of
Panther widgets. These may have different appearance and behavior than they had in
JAM 5. The f5upg utility establishes each widget's type based on the rules established
for JAM/Pi. Plan on examining each screen to confirm that the conversion operated as
intended and to resolve ambiguities that the utility was unable to handle.

Running Your Application for the First Time

For the most part, you can expect your application to run correctly. With minor
exceptions, JAM events, JPL commands and library functions all perform as you
remember. There are, however, several issues you may encounter.

As mentioned previously, there is a new function prototyping feature called field
dereferencing that may cause your code to malfunction. Using this feature, JAM treats
any string not surrounded by quotes as a field name, and attempts to extract a value
from it which it then passes to the function being called. If you do not routinely place
quotes around individual function arguments you will either need to correct your code
or alter all the function prototypes in functlist.c to turn off the dereferencing feature.
This can be accomplished by declaring the functions with the SM_OLDFUNC macro
instead of INTFNC.

Users of JAM/Pi should recall that widget types routinely changed from label to text
and visible to invisible depending on protection settings and content. This behavior is
no longer supported by Panther. The easiest way around this change in behavior is to
settle on a single type for each widget for the duration of the screen. In lieu of this you'll
have to rework your code to manage the display in two overlapping widgets of
different types. In addition, you must to explicitly set the hidden property of widgets
to get them to disappear, otherwise they merely deactivate.

Another potential issue deals with JAM 5 menus. Menu control strings are now a
property of the menu fields themselves and, as a result, the control fields no longer
have special meaning. The f5upg utility optionally migrates the content of the control
fields to this new property, but if your code routinely reconstructs these fields, it will
have to be changed to work with the properties instead. Please note that the old
behavior continues to be supported by Release 5 widgets.
Upgrade Guide 4-11

The f5upg Utility
The Bottom Line

Plan on a full regression test of your application. Examine the behavior between and
within screens. Undoubtedly you will like some new features and want to incorporate
them right away; others you will want to avoid until later. Expect character
applications to convert easier than GUI applications. Expect a majority of the code to
convert easily, and some to be more difficult. Each application is different and it is
important to treat them as such.

The f5upg Utility

Panther has an entirely new look and feel to its interface and its screens. This is a
natural consequence of the changing computer software market and the rapidly
expanding requirements for GUI technology and, even in character mode, applications
that are as GUI-like as possible. In order to accommodate this new demand, we have
added a significant amount of functionality to JAM and a new conceptual paradigm
about JAM objects and their relationships to one another. In many cases, the old JAM
5 world will map with relative ease into the new Panther framework, but in order to
bring the product into stricter compliance with GUI standards, there were some unique
challenges that may make your upgrade from JAM 5 to Panther a tad more tricky than
the JAM upgrades you have performed in the past.

The utility f5upg is designed purely for the purpose of converting JAM 5 screens to
Panther screen format. Although Panther can read and process JAM 5 screens, certain
JAM 5 features will be obsolete in future versions of the product, so it is strongly
recommended that f5upg be used to convert all your JAM 5 screens to Panther.

If you are currently using JAM with a version earlier than 5, you must use the various
utilities (f3to5, f4to5, etc.) to convert your screen binaries to JAM 5 format before
you can use f5upg. If you use those utilities now or if you have used them in the past,
you will notice that there is a rather large difference between those utilities and the
f5upg utility.
4-12 Upgrading to Panther from JAM 5

The f5upg Utility
The reason for this difference is that conversion of JAM screens in earlier versions of
the product was a deterministic operation. In other words, there were no conceptual
shifts in how JAM dealt with objects from version to version, so the conversion utilities
merely had to map one binary representation of a concept into another. For the
conversion from JAM 5 to Panther, the process is not strictly deterministic, but must
use various heuristics specified by the user as command line options to effect the
desired conversions. It is possible that you will need to use different combinations of
command line options for different screens in the application you are converting,
although in all likelihood most of your screens will be converted the same way.

Although it is possible with f5upg to specify the same file name for input and output
and consequently overwrite your JAM 5 input screen binary with a Panther screen
binary of the same name, we would strongly recommend that you not use this
approach. Keep your JAM 5 screens available for the entire time you are upgrading
your application until you are completely satisfied with the conversion. It might be that
on looking at a particular converted screen, you could get something more along the
lines of what you want by using a different combination of options to control the
conversion heuristics.

Even if you did not use it, you should be aware of the product JAM/Pi, or Presentation
Interface, which was a layered product in the JAM 5 world and is now fully integrated
with JAM in the Panther world. JAM/Pi allowed JAM 5 users to create JAM
applications in GUI environments. Much of the complexity of converting JAM 5
screens to Panther arises from the need to convert the JPL extensions used in JAM 5
to specify GUI-specific field and screen attributes to the Panther environment. If you
did not use JAM/Pi in JAM 5, much of the remaining part of this document may appear
more complicated than necessary.

Invoking f5upg

The utility should be invoked from the command line with the following syntax:

f5upg [-5bcdfklmp] [-g type] [-v num] [-s color] JAM5_screen
JAM7_screen

Arguments and Options

JAM5_screen

The name of the JAM 5 screen that you wish to convert.
Upgrade Guide 4-13

The f5upg Utility
JAM7_screen

The name that you would like the converted screen to have.

-5 Leaves fields as release 5 widgets by default.
-b Forces border unless noborder is specified.
-c Converts onscreen control fields to properties.
-d Deletes onscreen control fields.
-f Allows output file to overwrite existing file.
-k Keeps JPL extensions on the output screen.
-l Converts menu arrays to list boxes by default.
-m Converts keyset designations to menu designations.
-p Includes the GUI interface values for the hmargin, vmargin,
hbuffer, vbuffer properties in the converted screens.
-s Assumes system colors (or scheme) by default.

-g typeSets graphic conversion type:

N = none (default),

S = simple.

-v num Sets verbosity level. The default is 1.

-s colorDetermines color conversion method for screens and widgets:

X - For Motif applications, maintain JAM/Pi color scheme.

W - For Windows applications, maintain the JAM/Pi color scheme.

R - Reset colors according to Scheme in the Panther cmap file.

If the option is not used, Windows' applications will convert the colors correctly only
if color priority is undefined or not set to system. Colors for Motif applications may
differ if the -sX option is not used.

General Behavior

f5upg assumes that the file name arguments are full path names, and treats them as
such. There is no attempt to find screens along any particular path. First the utility
ensures that the arguments are correct and consistent, then it attempts to find and open
the input file as a JAM 5 screen. It then goes through the screen and convert JAM 5
4-14 Upgrading to Panther from JAM 5

The f5upg Utility
screen and field objects and attributes to Panther screen and widget properties,
according to some deterministic rules and a set of heuristics which are controlled by
the command line options detailed below. Finally, the output file is written as a Panther
screen.

Depending on the verbosity level set, informational status messages are printed to
standard output and error messages are printed to standard error, and may be
re-directed to log files by the operating system as desired.

When no command line options are set, all JAM 5 display text is converted to Panther
Static Label widgets.

Any fields which are in JAM 5 groups are converted as follows:

" If they do not have JAM 5 check boxes assigned to them, they are
converted to toggle button widgets.

" If they have JAM 5 check boxes but are JAM 5 radio buttons, they are
converted to radio button widgets.

" If they have JAM 5 check boxes and are JAM 5 check boxes, they are
converted to check box widgets.

Any fields unconverted so far are checked for the menu bit.

" If the menu bit is set, the fields are converted to Panther push buttons.

Any fields still unconverted are checked to see if they are protected from both data
entry and tabbing:

" If not, they are converted to text widgets.

" If so, they are checked for protection against clearing, and if that is found
they are made into dynamic labels.

" Otherwise they are converted to text widgets. This last set of fields, (those
which are protected from both data entry and tabbing into) are hidden if the
BLANK attribute is set, regardless of whether they were converted into text
widgets or dynamic labels.

All JAM/Pi extensions found in screen JPL modify properties of the screen as
specified. All JAM/Pi extensions found in field JPL modify the properties of the
resulting widget as specified, including, possibly, the widget type.
Upgrade Guide 4-15

The f5upg Utility
Verbosity Level

The verbosity level is set with the -v command line option. The -v option is followed
by a number ranging from zero to three. When 0 is specified, only critical errors are
displayed to standard error. Verbosity levels 1, 2, and 3 all provide increasing levels of
informational messages about the progress of the conversion, the heuristics being
employed, and the use of features which may be rendered obsolete in future versions
of JAM. These messages generally scroll to the terminal very fast, so if you need them
it is recommended that output be directed to a log file.

By default, the verbosity level is set to 1.

Graphics Conversion

This is only of interest to JAM/Pi users. In that product, boxes and lines could be
specified as attributes of a given screen in that screen's JPL with the box, hline, and
vline extensions. In Panther, boxes and lines are not attributes of screens, but screen
objects in their own right. The -g option controls how these JAM/Pi extensions are
converted.

Specifying -gN merely throws away those graphic objects. Depending on the verbosity
level, when f5upg encounters the JAM/Pi extension for a box or line in a screen JPL,
a message is printed to standard output warning the user that the extension could not
be converted. This is the default.

Specifying -gS attempts a simple conversion of those graphic objects. In JAM/Pi,
boxes and lines were drawn between grid units on the screen for positioning purposes.
In Panther, since these are objects in their own right, they take up grid units. As a result,
this simple conversion will likely require subsequent manual manipulation in the
editor to properly position the graphic element in question.

Keep JPL Extensions Around

By default, f5upg removes any JAM/Pi extensions found in screen or field JPL before
writing out the output screen. If the -k command line flag is specified, the utility leaves
those extensions there. This does not harm the JPL, since the extensions are treated as
4-16 Upgrading to Panther from JAM 5

The f5upg Utility
comments by the JPL parser, but they really have no use. You should keep them around
only if they serve as documentation to you. Most likely, they will just be a source of
confusion.

The JPL extensions kept around are modified so that they are not reinterpreted if the
target screen is run through f5upg a second time. They are modified so that the first
angle bracket in the lead-in to each extension becomes an exclamation point. For
example, #<<nominimize>> <<font(myfont)>>becomes#!<nominimize>>
!<font(myfont)>>

Allow Output File to Overwrite an Existing File

By default, if the output file specified already exists, f5upg aborts without performing
the conversion in question. However, if the -f option is specified, the output file is
overwritten if it exists. Note that this means it is possible, in principle, to specify the
same path for the input and output files. This is not recommended, however, because
you will have lost your JAM 5 source file.

Assuming System Colors or Scheme by Default

f5upg provides a color option to specify how screen and widget colors will be
converted. Depending on your use of the -s option, you can direct color conversion of
your screen and widget colors in any of four different ways. The arguments to the color
option work as follows:

W
Use this option to preserve widget and screen colors for Windows JAM/Pi
applications if color priority was set to system in the JAM.INI file.

X
Use this argument if you want your Motif application to maintain the same
color scheme established in JAM/Pi.

R
Convert all colors of screens and widgets according to the Scheme in the
configuration map file. s option not specified For Windows applications, if
color priority is not set to system—or is not defined—the colors will be
unchanged. For Motif applications, the colors may differ if the color option is
not set.
Upgrade Guide 4-17

The f5upg Utility
Conversion of Menu Arrays to List Boxes

By default, as mentioned above, JAM 5 menu fields are converted to push buttons.
This is not necessarily optimal if your application had menu arrays, in particular
scrolling menu arrays. If you specify the -l command line flag, all menu arrays are
converted to list boxes rather than push buttons. Any single non-scrolling menu fields
(not part of an array) are still converted to push buttons, even if -l is specified. (A
non-scrolling list box with one element doesn't make sense).

Please be warned that the way JAM menu fields work means that their conversion to
list boxes will likely cause them to operate in a way that is slightly different from most
GUI standards. This is why the -l option is not the default behavior.

Note also that if there are JAM/Pi extensions specifying widget type, this option will
be overridden for that field.

Conversion of Borders

In JAM 5, screens were created without borders by default. JAM/Pi screens, on the
other hand, had borders unless the JAM/Pi extension noborder was set in the screen
JPL. JAM/Pi users might, therefore, have created JAM screens without ever giving
them borders and enjoyed the experience of the screens with borders nonetheless.

By default f5upg only designates a border for the Panther screen if there was a border
specified in the JAM 5 character mode instantiation of the screen. However, if you set
the -b command line flag, f5upg gives all screens a border even if the character mode
JAM 5 screen did not have one. Only those screens marked as noborder will, in fact,
not have a border.

Conversion of Onscreen Control Fields

Under JAM 5, the typical configuration of a menu involved a field (or array) with the
menu bit set followed immediately on the screen by a corresponding field (or array)
which held a control string. These control fields, usually hidden from view, were fields
in their own right, and had field numbers, and could be accessed via the sm_getfield
and sm_putfield. This was not the only way menu fields could be used, however.
4-18 Upgrading to Panther from JAM 5

The f5upg Utility
Menu fields could have return values or submenus set, or the application might have
managed the screen outside of the control of the JAM executive, such that a control
field was not necessary.

In Panther, onscreen control fields are still supported, but they are on their way to
obsolescence. Control strings under Panther are typically designated as properties of
the push button or list box widgets in question, not as separate fields on the screen.

By default, when f5upg encounters a JAM 5 field with the menu bit set, it leaves it in
place and generates a level 1 warning to the user stating that a menu was found and that
an onscreen control field may have been used, and that this feature will soon be
obsolete. Two command line flags can alter this behavior: the flags -c and -d. -c
cause f5upg to copy control strings from onscreen control fields to the properties of
the actual push button or list box widget derived from the initial menu field or array,
and -d causes f5upg to delete the onscreen control fields from the screen.

Please note that there is no deterministic way for f5upg to know whether a given field
did or did not have an associated control field in JAM 5. It depends on the application
using that screen, which f5upg has no access to. f5upg can make certain good guesses
which it does as follows:

" If the menu field or array is the last (or only) field on the screen, there can
be no associated control field.

" If the menu field or array has a submenu attribute specified in JAM 5,
f5upg assumes there is no corresponding control field.

" If the menu field or array has a return value attribute specified in JAM 5,
f5upg assumes there is no corresponding control field.

" In all other cases, f5upg assumes that the field or array immediately
following the menu field or array is an onscreen control field. These fields
are either flagged as obsolete, copied to control string properties, and/or
deleted depending on the presence or absence of the -c and/or -d
command line flags.

Reasons not to use the -c command line flag:

" Your application uses C language or JPL routines to set the value of a
control field. (If your application sets the value of the actual menu field,
there is no problem.)

" Your application processes the screen in question (possibly every screen)
without using the JAM executive. In other words, the screen is processed
directly by using sm_input.
Upgrade Guide 4-19

The f5upg Utility
" The screen you are converting has (for obscure reasons) different
dimensionality between the menu fields and their associated control fields.
For example, there is a single array for a set of menu description fields, but
each control field is a single field.

Reasons not to use the -d command line flag:

" All reasons not to use -c apply also to -d.

" You probably do not want to use -d independently of -c because you will
lose information.

" Your application uses C language or JPL routines to inspect the value of a
control field. (If your application inspects the value of the actual menu
field, there is not a problem.)

" Your application makes use of field numbers to set the values of or
otherwise access fields on the screen. All fields following the deleted
control field would be re-numbered on the converted screen, leading to
erroneous field processing.

Conversion of Keyset Designations

In JAM/Pi, the designation of a keyset was reinterpreted as designating a menu script.
Since f5upg has no way of knowing whether a given screen was designed for use
under JAM/Pi or not, use the -m option to move the designation of a keyset to the menu
script property.

Protected Field Heuristics

f5upg converts any data entry fields that are protected from both data entry and
tabbing into to Dynamic Label Widgets. In addition, if the field is marked as
non-display, it is hidden. This heuristic is performed by default because it is assumed
that the vast majority of screens would be best converted in this way.
4-20 Upgrading to Panther from JAM 5

The dd5upg Utility
Release 5 Widgets

f5upg attempts to convert every widget it can according to the heuristics discussed
above under “General Behavior” on page 4-14. If, however, the -5 option is specified,
the widget is left unconverted as a JAM release 5 field on a Panther screen. Panther
attempts to deal with such fields to achieve a stricter backwards compatibility, but
these fields are much harder to manipulate in the Panther editor, and are more difficult
to convert to future releases of the product. You may wish to do the conversion with
the -5 option and later do a full conversion. Please note that the presence of a JAM/Pi
extension specifying widget type overrides this option, and the field is converted
nonetheless.

The dd5upg Utility

The dd5upg utility converts JAM 5 data dictionaries into JAM/Panther repositories.
The utility should be invoked from the command line with the following syntax:

dd5upg [-cflv] [-p prefix] [-e ext] JAM5dd repository

Arguments and Options

JAM5dd

The name of the JAM 5 data dictionary.

repository

The name of the JAM/Panther repository.

-c

Create compact JAM/Panther screens.

-f

Output file may overwrite an existing file.

-l

Generate a screen library, ldb.lib, to be used as the LDB.
Upgrade Guide 4-21

The dd5upg Utility
-v

Prints the name of each screen as it is generated.

-p<str>
Uses the specified prefix for generated JAM/Panther screens. The default is
R5dd.

-e<str>
Uses the specified extension for generated JAM/Panther screens. The default
is SMFEXTENSION.

Description

By default, the utility looks for the file data.dic in the current directory. That file is
read and a file named data6.dic, a Panther library, is output. This library is intended
to be used as a Panther repository.

Each field in the original data dictionary has a scope associated with it. Each scope
produces one or more screens in the new library that contain the entries of that scope.
By default, the screens are named:

R5dd
<scope>
<sequence#>

An output screen is populated with as many fields of a given scope as possible. If there
are more fields of a scope than will fit on one screen, a new screen is started with the
next sequence number tacked onto the name. Sequence numbers start at 0.

For example, if the input data dictionary has five entries of scope 1 and three entries of
scope 2, the output library will contain the following screens:

R5dd10.jam (has 5 fields)
R5dd20.jam (has 3 fields)

If the -l option is used, dd5upg also creates the library ldb.lib to be used as the local
data block. This library contains the same screens as data6.dic, except that they are
named ldb1.jam, ldb2.jam, etc.
4-22 Upgrading to Panther from JAM 5

The m2asc Utility
The m2asc Utility

The m2asc utility converts Panther menus between binary and ASCII formats. It also
upgrades JAM 5 menus to Panther menus. To upgrade menus, the utility should be
invoked from the command line with the following syntax:

m2asc -c [-fv] JAM5_menu [JAM5_menu ...]

Arguments and Options

JAM5_menu

The name of the JAM 5 binary menu file to convert.

-c

Converts JAM 5 binary file to Panther binary file.

-f

Output file may overwrite an existing file.

-v

Generates a list of the files as they are processed.

Description

When run with the -c option, this utility converts JAM 5 menu bar binaries to Panther
menu bar binaries.
Upgrade Guide 4-23

The dd2rec Utility
The dd2rec Utility

The dd2rec utility converts JAM 5 data dictionary records to programming language
data structures. The utility should be invoked from the command line with the
following syntax:

dd2rec [-flpv] [-o output_file | -o-] [-g language] dictionary

Arguments and Options

dictionary

The name of the JAM 5 data dictionary to convert.

-f

Overwrites an existing output file.

-l

Converts record names to lower case.

-p

Creates the output files in the same directory as the data dictionary.

-v

Generates a list of the records as they are written.

-o output_file

The name of the output file.

-o-

Outputs to the screen.

-g language

Generates records as an array of structures in the language specified.
Currently only C is supported.

Description

The data structures generated by dd2rec can be used for backward compatibility via
the sm5strct.c functions listed in on page 4-8 in Table 4-4.
4-24 Upgrading to Panther from JAM 5

CHAPTER
5 Conversion
Summary from JAM
5 to Panther

The following tables summarize the issues that you may face in converting your
applications. They are divided into three categories:

! All Applications (page 5-2)

! GUI Applications (page 5-10)

! Character Applications (page 5-13)
Upgrade Guide 5-1

All Applications
All Applications

Table 5-1 Configuration

Configuration Area Notes

Data dictionaries Run dd5upg to create a Prolifics data dictionary (data6.dic)
and, optionally, an LDB (ldb.lib). Set SMLDBNAME = new name
if you have not named it ldb.lib.

Groups Groups are not loaded as part of repositories and LDBs. Hence,
groups must be reestablished via the screen editor.

Key files New keys have been added.

LDB Initialization Files Perform one of these actions:

! Compile and link sm5ldb.c to the application and call
sm5_ldb_init in main.

! Move SMININAMES from the setup file to either environment
or sm_ininames call.

! Edit the file by changing: “field” “value” to field=“value”;
include this file in your startup JPL code.

! Remove these fields from the data dictionary and make them
global JPL variables.

Menu bar files Run m2asc -c to convert to Panther format.

Message file Fold in changes made to JAM 5 message file.

SMVARS and SMSETUP Fold in changes made to JAM 5 files.

DBI4COMPATIBLE is no longer supported.

Video file While the format of these files remains the same, the content of
the Panther files might be different, resulting in different
appearance (e.g. graphic characters).
5-2 Conversion Summary from JAM 5 to Panther

All Applications
screen libraries Extract all screens from the library. Run f5upg on each screen.
Reconstruct the library.

Italics indicate options that are supported for backward compatibility only.

Table 5-2 Executable

Area Notes

Block mode Not available in this release.

Memory-resident screens Run f5to6 on the original screen. Run bin2c. Re construct the
header file.

funclist.c Fold in changes made to your JAM 5 funclist.c.

If your application does not routinely enclose each function
argument in quotes, turn off the DEREF_ARGS flag in
SM_INTFNC, SM_STRFNC and SMDBLFNC macros (see
SM_OLDFNC) to turn off dereferencing of field names on
function call lines.

Makefile Use the supplied makefile, folding in changes made to your
JAM 5 makefile. Compare your JAM 5 file with the distributed
JAM5 file to discover your changes.

Main routine Use the supplied jmain.c, folding in changes made to your
JAM 5 jmain.c. Compare your JAM 5 file with the distributed
JAM5 file to discover your changes.

Table 5-3 Library Functions

Function Notes

sm_bkrect Obsolete, but still supported.

sm_blkinit Block mode not supported.

Table 5-1 Configuration (Continued)

Configuration Area Notes
Upgrade Guide 5-3

All Applications
sm_blkreset Block mode not supported.

sm_i_bitop Fails on array fields.

sm_c_keyset Soft keys not supported.

sm_dicname Link your application with sm5ldb.c.

sm_do_region Obsolete, but still supported.

sm_edit_ptr Use sm_prop_get.

sm_emsg Use sm_femsg.

sm_err_reset Use sm_ferr_reset.

sm_getjctrl Use sm_prop_get.

sm_ininames Link your application with sm5ldb.c.

sm_initcrt Use sm_jinitcrt.

sm_jplload Use sm_jplpublic.

sm_keyset Soft keys not supported, use menu bars instead.

sm_kscscope Soft keys not supported, use menu bars instead.

sm_ksinq Soft keys not supported, use menu bars instead.

sm_kson Soft keys not supported, use menu bars instead.

sm_ksoff Soft keys not supported, use menu bars instead.

sm_lclear Link your application with sm5ldb.c.

sm_ldb_hash Link your application with sm5ldb.c.

sm_ldb_init Link your application with sm5ldb.c.

sm_ldbrevive Link your application with sm5ldb.c.

sm_ldbsave Link your application with sm5ldb.c.

Table 5-3 Library Functions (Continued)

Function Notes
5-4 Conversion Summary from JAM 5 to Panther

All Applications
sm_lreset Link your application with sm5ldb.c.

sm_r_menu Link your application with sm5mbar.c.

sm_d_menu Link your application with sm5mbar.c.

sm_c_menu Link your application with sm5mbar.c.

sm_mnadd Link your application with sm5mbar.c.

sm_mnchange Link your application with sm5mbar.c.

sm_mndelete Link your application with sm5mbar.c.

sm_mnget Link your application with sm5mbar.c.

sm_mninsert Link your application with sm5mbar.c.

sm_mnitems Link your application with sm5mbar.c.

sm_mnnew Link your application with sm5mbar.c.

sm_mnutogl and
jm_mnutogl

Menu and input modes are no longer relevant. Push buttons (formerly
menus) always execute an action when activated, and can be tabbed into
from other fields. To restore JAM 5 behavior, set AUTO_TOGGLE =
AT_DISABLE in the setup file or call sm_option.

sm_perm_emph No longer supported.

sm_putjctrl Use sm_prop_set.

sm_qui_msg Use sm_fqui_msg.

sm_rd_part Link your application with sm5strct.c.

sm_rdstruct Link your application with sm5strct.c.

sm_rrecord Link your application with sm5strct.c.

sm_skinq Soft keys not supported, use menu bars instead.

sm_skmark Soft keys not supported, use menu bars instead.

Table 5-3 Library Functions (Continued)

Function Notes
Upgrade Guide 5-5

All Applications
sm_skset Soft keys not supported, use menu bars instead.

sm_skvinq Soft keys not supported, use menu bars instead.

sm_skvmark Soft keys not supported, use menu bars instead.

sm_skvset Soft keys not supported, use menu bars instead.

sm_submenu_close Use menu bars instead.

sm_wrecord Link your application with sm5strct.c.

sm_wrt_part Link your application with sm5strct.c.

sm_wrtstruct Link your application with sm5strct.c.

Italics indicate options that are supported for backward compatibility only.

Table 5-4 JPL

Area Notes

Comments The : character is no longer supported for comments.

Keywords Panther introduces the following new keywords:
double

global

string

send

receive

runreport

tpi

For ease of recognition, avoid using these as program variables.

Loop variables These are no longer floating point numbers (e.g. JAM 5 = 1.00; JAM 6
= 1).

Table 5-3 Library Functions (Continued)

Function Notes
5-6 Conversion Summary from JAM 5 to Panther

All Applications
unload An error is now generated when unload is issued for a file which was not
previously loaded. Use call sm_jplunload... to restore JAM 5 behavior.

sql Obsolete. Use dbms query and dbms run instead.

Table 5-5 Screens

Feature Notes

Circular arrays Arrowing down past the last occurrence places the cursor in the first
element and displays the first occurrence there. Arrowing up past the first
occurrence places the cursor in the last element and displays the last
occurrence there. JAM 5 did not reposition the cursor.

Cursor up/down Panther positions the cursor at the end of existing data by default when
entering a widget. To restore JAM 5 behavior, set IN_RESET =
OK_NORESET in the set up file or call sm_option.

Field function flags K_KEYS always set to K_NORMAL on K_ENTRY.

Group navigation In Panther, TAB and BACK position the cursor to the next field by default.
To restore JAM 5 behavior, call sm_keyoption and set the TAB and BACK
key bits to VF_GROUP | VF_CHANGE.

Group function flags The MDT bit is not set when a member is selected. K_KEYS is always set
to K_NORMAL on K_ENTRY.

Menus with control
fields

Control fields are replaced by the control string property. There are two
possible conversions via f5to6. The first is to use f5to6 -5 to retain
control field functionality via the Release 5 widget type. The second is to
use f5to6 -c to set the Control String property from the control field data,
provided that its number of occurrences matches that of the menu field.
Code that modifies the control fields must be changed to call property API
functions.

Menus with return codes To push back a key, call jm_keys from the control string property.

Table 5-4 JPL (Continued)

Area Notes
Upgrade Guide 5-7

All Applications
Multiple range edits New widgets may only have one range. Use the validation function for
complex range evaluation.

Submenus Use menu bars instead.

Tabbing order Panther uses the alt_next_tab_stop property only when the field
specified in its next_tab_stop property does not exist. If the next field is
protected, then its designated next field is used. To restore JAM 5
behavior, set JAM5_COMPATIBLE = JAM5_ON in the setup file or call
sm_option.

Scrolling date/time
fields

All occurrences in a scrolling array with a system date/time edit will fill
with data once they are allocated. In JAM 5, only the first element was
filled.

Soft keys Soft keys are not supported.

f5to6 -m copies the keyset name into the menu bar property.

Zoom If you map the NL key to TAB, you will not be able to add new lines at the
end of an array. Use insert key instead. Remap NL to NL before invoking
zoom.

Italics indicate options that are supported for backward compatibility only.

Table 5-6 Processing

Area Notes

AUTO key In Panther, this event occurs after entering first field. In JAM 5 it
occurred before.

Custom executive If menu return codes are used, call jm_keys and sm_keyoption to
change key routing.

Key remapping Mouse clicks generate NL and DELE keys which will be remapped as if
they had been entered from the keyboard. Use a default field function to
reset remappings on entry and restore them on exit from menu fields.

Table 5-5 Screens (Continued)

Feature Notes
5-8 Conversion Summary from JAM 5 to Panther

All Applications
Menu vs. input mode Menu and input modes are no longer relevant. Push buttons (formerly
menus) always execute an action when activated, and can be tabbed into
from other fields. To restore JAM 5 behavior, set AUTO_TOGGLE =
AT_DISABLE in the setup file or call sm_option.

Screen entry/exit hooks Activation on expose/hide is now the default. To re store JAM 5
behavior, set EXPHIDE_OPTION = OFF_EXPHIDE in the setup file or call
sm_option.

Status line hook Does not get called for messages now displayed via sm_message_box.
Use ERROR_FUNC to trap all messages excluding setbkstat, d_msg and
query.This event takes place before translation of % escapes.

Italics indicate options that are supported for backward compatibility only.

Table 5-7 Menu Bar

Item Notes

empty items No longer supported. Panther displays the parent button when a child menu
has no recognizable contents.

title No longer supported. It will not appear on menus.

Table 5-8 Utilities

Utility Notes

dd2struct No longer supported. Use the d2rec utility to generate record
definitions.

f2asc Text format changed.

f2struct No longer supported. Use f2struct supplied in sample code.

f2tbl Not available in this release.

Table 5-6 Processing (Continued)

Area Notes
Upgrade Guide 5-9

GUI Applications
GUI Applications

lstform No longer supported.

menu2bin Replaced by m2asc. Text format changed.

modkey Replaced by showkey utility. Since key file formats remain the same,
the JAM 5 utility may still be used for those keys that aren't new.

term2vid Not available in this release.

text2form Not available in this release. Use the JAM 5 utility and load the
generated screens directly into Panther or pass them through f5to6 for
conversion.

Italics indicate options that are supported for backward compatibility only.

Table 5-9 Configuration

Area Notes

Environment variables In Motif, XNLSPATH may be required for some implementations.

Color aliases Color aliases currently defined in resource files must be moved to the
JAM configuration map file. To mimic JAM 5 behavior, set the
Color Type property for all widgets and screens to Scheme and either
re move [Scheme] settings from the configuration map or set all BG
and FG scheme colors to GUI equivalents (e.g. XJam.Background).

Table 5-8 Utilities (Continued)

Utility Notes
5-10 Conversion Summary from JAM 5 to Panther

GUI Applications
Table 5-10 Screen, general

Feature Notes

Automatic widget type changes The JAM/Pi widget conversion algorithm formerly determined
widget types based on protection. In Panther, widget types do not
change at runtime. Therefore, changes in protection do not change
widget type.

Blank push buttons (menu fields) Blank push button widgets are no longer invisible. If you want
widgets to disappear and reappear, use the following code:

In JPL:
field-spec->hidden = PV_YES

field-spec->hidden = PV_NO

In C:
id = sm_prop_id (field-spec);

sm_set_prop (id, PR_HIDDEN, PV_YES);

sm_set_prop (id, PR_HIDDEN, PV_NO);

A more GUI-like behavior is to make the button in active by
toggling its active property.

Button label text In Motif, the label is centered based on resource settings. In
Windows, the label is always centered.

Table 5-11 Screen, Pi extensions

Feature Notes

colorpriority Sets the Color Type property of Foreground and Background to
Scheme.

frame, box Margin no longer supported.

hline, vline May need to be repositioned.

hoff, voff Not converted.

iconify Iconifies a screen even if there is no icon specified.

list Default horizontal and vertical scroll bars translated to no scroll bars.
Upgrade Guide 5-11

GUI Applications
multiline These are converted to push buttons, and the additional text is truncated.

multitext Default horizontal and vertical scroll bars translated to no scroll bars.

noadj Colon expansion is no longer supported.

nomove No longer supported.

space Colon expansion is no longer supported.

Colon expansion Colon expansion of variables might not occur at the same time as in
JAM/Pi,

Widget position The Panther positioning algorithm may change widget positions.
Inspect your converted screens and make appropriate adjustments.

Table 5-12 Processing

Area Notes

Changing field colors Calls to sm_chg_attr that set field colors to match the screen colors
(e.g. unhighlighted black) should be changed to set the colors to the
expected color or to the container color (via the B_INHERITED
attribute mask). JAM no longer automatically propagates screen
colors to fields when the attributes match.

Table 5-13 Library functions

Function Notes

sm_widget In Motif, use sm_xm_widget. In Windows, use sm_mw_widget.

Also, the include files required by these functions changed to
smmwuser.h and smxmuser.h.

Table 5-11 Screen, Pi extensions (Continued)

Feature Notes
5-12 Conversion Summary from JAM 5 to Panther

Character Applications
Character Applications

sm_attach_drawing_func In Motif: sm_xm_attach_drawing_func.In Windows:
sm_mw_attach_drawing_func

Note that a 3rd argument for a user data buffer has been added to
these functions.

Also, the include files required by these functions changed to
smmwuser.h and smxmuser.h.

sm_drawingarea In Motif, use sm_xm_drawingarea. In Windows, use
sm_mw_drawingarea.

Also, the include files required by these functions changed to
smmwuser.h and smxmuser.h.

Table 5-14 Screen

Feature Note

Clear on input Field is selected if data is present.

Table 5-13 Library functions (Continued)

Function Notes
Upgrade Guide 5-13

Character Applications
Groups The appearance of JAM 5 check boxes on Panther radio button and
check box widgets has changed from _ to either () or []. The f5to6
utility at tempts to reposition the group so that brackets appear around
the old check box position.

Because these extra characters are now considered part of the original
field width, the initial text might be truncated by the conversion
process, requiring you to manually reset the values.

f5to6 cannot automatically resize the widgets since it might cause
unintentional overlapping of widgets or push widgets off the screen.
Use f5to6 -5 to retain the old appearance through a Release 5 widget
type.

Menu Fields These are now push buttons so they are not set to reverse video when
the cursor enters. Use f5to6 -5 to retain old behavior through the
Release 5 widget type.

Table 5-14 Screen (Continued)

Feature Note
5-14 Conversion Summary from JAM 5 to Panther

APPENDIX
A JAM Documentation:
Alternative Scrolling

By default, storage of scrolling arrays is handled internally by Panther, which stores
them in its own memory buffers. It is also possible for this data to be stored by the
application, external to Panther–for example, in memory or disk. In this case, the
application must install a scrolling driver which is called by Panther with an interface
defined by Panther. Installation of a scrolling driver replaces Panther's default scroll
driver. The driver is called to initialize the array, get and put occurrences, and so on.

You can write your own scrolling function; an alternative scroll driver can reduce
application memory usage when used to control the scrolling of large arrays. Scroll
drivers can be freely mixed on a screen. Each driver can be specified to manage any
number of arrays and any number of drivers can be used at once.

Panther Interaction with Scrolling Drivers

When Panther initializes an application, it calls all scrolling drivers, and installs them.
Similarly, when the application exits, Panther calls the driver for clean up. While the
driver is active, Panther calls the routine once for each new scrolling array that Panther
creates–for example, on screen open–telling it to initialize the array.

While the array is active, Panther moves data back and forth between itself and the
driver and informs the driver of other changes to the array–for example, insertion or
deletion of occurrences.

When the array is destroyed–for example, its window closes–the driver is called to
release all the data associated with the array.
Upgrade Guide A-1

Normally, a non-scrolling widget can hold as many occurrences of data as the display
allows. In character mode, this corresponds to the number of lines the widget occupies
onscreen. The data held in non-scrolling widgets is kept as part of the normal screen
data structure. However, by setting the Scrolling property to Yes, you can enter a
number of occurrences that is equal to or greater than the number of visible
occurrences.

Because the amount of data kept in scrolling widgets can grow large, the data for
offscreen occurrences is managed separately from onscreen. Management of offscreen
data is handled either by Panther's default scroll driver, or by a custom-written driver,
which you can specify in the Alt Scroll Func property. If this property is left blank or
the name is invalid, Panther uses its own scroll driver.

Installation

You can bundle multiple scrolling drivers into a Panther application. Scrolling drivers
are installed in funclist.c in sm_do_uinstalls. Two types installations are
important:

! A default scrolling driver, used when an array does not specify which driver to
use or the specified driver is not installed.

! Installation of alternate drivers that are available in the executable.

The definition and installation of the default driver in funclist.c looks like this:

static struct fnc_data udfunc[] =
{
 SM_OLDFNC("virtmem", sm_vmbscroll),
};

static int udcount =
 sizeof (udfunc) / sizeof (struct fnc_data);
sm_install (DFLT_SCROLL_FUNC, udfunc, &udcount);

The definition and installation of the list of drivers in funclist.c looks like:

static struct fnc_data ufuncs[] =
{
 SM_OLDFNC("virtmem", sm_vmbscroll),
 SM_OLDFNC("dosmem", sm_mbscroll),
 SM_OLDFNC("dummy", adummy),
};
A-2 JAM Documentation: Alternative Scrolling

static int ucount =
 sizeof (ufuncs) / sizeof (struct fnc_data);
sm_install (SCROLL_FUNC, ufuncs, &ucount);

If no default scrolling driver is installed, Panther uses its own scroll driver.

Scroll Driver Interface

All scroll drivers have a single entry point. Panther passes the driver two parameters.
The first is a pointer to an altsc_t structure; the second parameter is an operation
code, indicating what action Panther needs the scrolling driver to perform. Following
is an example definition of a scrolling driver:

int
scroll_driver (as_ptr, action_code)
altsc_t *as_ptr;
int action_code;

The altsc_t Structure

A pointer to an altsc_t structure is the first parameter to a scroll driver. Table A-1
describes the altsc_t structure.

Table A-1 The altsc_t structure

Member name Description Type

Driver-maintained information:

scrolldata Pointer to structure maintained by
driver.

VOIDPTR

Scrolling information:*

luid ID of the largest-used occurrence unsigned int

max_items Maximum number of occurrence unsigned int

shs Largest non-blank occurrence unsigned int

Occurrence information:

item Occurrence number unsigned int
Upgrade Guide A-3

The altsc_t structure serves two purposes:

! Lets the scrolling driver save information about an array between calls.

! Acts as a vehicle for passing data between the driver and Panther.

A scrolling driver can manage several arrays at once. The scrolldata member of the
altsc_t structure serves the purpose of keeping tract of data for each array. When the
driver is called to AS_INIT_FUNC, the driver should store a pointer in the scrolldata
member, usually to an internal structure. Panther assumes that the driver uses the
pointer in scrolldata to access the offscreen data. The scrolldata pointer can only
be changed during the INIT call; all other calls pass back the same pointer saved from
the INIT call.

The altsc_t structure also passes data into and out of the driver. The scrolling
information parameters–luid, max_items, and shs–are passed so the driver knows
the size of the array, current and potential. However, the luid and shs parameters are
only completely accurate for the AS_INSRT_FUNC and AS_DEL_FUNC calls; otherwise,
they are approximate. The occurrence information parameters–item, len, attr,
valids and text–are used to pass information about specific occurrences into and out
of the driver. The other parameters –number, vptr–are used only for specific
calls.These members are discussed later in the description of each action.

len Length of the occurrence unsigned char

attr Occurrence attributes attribute

valids[AS_VAL] Occurrence validation bits unsigned char

*text Occurrence data unsigned char

Other parameters:

number Integer parameter int

vptr Pointer parameter–currently not used. VOIDPTR

*This information is supplied on all calls except for INIT and RESET.

Table A-1 The altsc_t structure (Continued)

Member name Description Type
A-4 JAM Documentation: Alternative Scrolling

Return Values

The scrolling driver generally returns 0 if the function is supported and it succeeds, -1
if the function is not supported, and non-zero value if the function fails. Exceptions are
noted in the action code descriptions.

Scroll Driver Action Codes

The interface to the scrolling driver is through the mechanism of various action codes.
Each action code represents one particular functionality. Many actions are required to
update members of the altsc_t structure that is passed to the driver. Although the
scrolling driver has one entry point, almost all drivers are implement ed as a giant
switch statement that calls other routines.

For an example, refer to page A-9, “Scrolling Driver Example.”

The following sections describe the calling protocols and functionality expected for
the routines associated with the action codes.

AS_CLEAR_FUNC

Not currently used. Function should return -1.

AS_DLT_FUNC, AS_INSRT_FUNC

AS_DLT_FUNC and AS_INSRT_FUNC expect routines to delete and insert array
occurrences, respectively. The routines typically manipulate indexes or lists
to implement the deletion/insertion.New entries that are inserted into the
array, or trailing occurrences that are left blank when occurrences are deleted,
should have their attr, valids, and text parameters set from the values that are
passed in the structure. A NULL pointer for text indicates an empty string.

The return value is the number of lines actually inserted/deleted; should equal
number.

Input parameters (and their descriptions) are:

scrolldata Pointer to the driver's internal buffer.

item Occurrence number to start at–the first deleted
occurrence or first newly inserted occurrence.

number Number of occurrences to delete or insert.

len Length of the occurrence.
Upgrade Guide A-5

AS_GDATA_FUNC

AS_GDATA_FUNC expects a routine that gets the data of an occurrence in a
scrolling array. The routine might be called because the occurrence scrolled
onscreen, or in response to a request for data from a C or JPL routine, for
example, a call by sm_getfield.

Occurrence data contains text, display attributes, and validation flags. Panther
allocates a buffer to hold this data and passes a pointer to the buffer in the text
member. The routine should update the attr, text, and valids members in the
structure with values previously passed in by the AS_PDATA_FUNC routine,
although a clever driver can manufacture them.

Return value of 0 indicates success; -1 indicates failure.

Note: An empty occurrence must be blank-filled.

Input parameters (and their descriptions) are:

Output parameters (and their descriptions) are:

attr Display attribute to give to new occurrences.

valids Validation bits to give to new occurrences.

text Text to put into new occurrences.

scrolldata Pointer to the driver's internal buffer.

item Occurrence number to get.

len Length of the occurrence. Represents the size of
Panther's buffer; the scrolling driver should not
overrun this length.

text Buffer to get the text.

attr Display attribute of the occurrence.

text The routine should fill the buffer pointed to by text with
the text of the occurrence as passed to the routine by
PDATA.
A-6 JAM Documentation: Alternative Scrolling

AS_GTSPC_FUNC

AS_GTSPC_FUNC expects a routine that tells the driver the largest occurrence,
or luid, that it must keep track of. Any buffers or resources currently allocated
for keeping track of data above number occurrences can be freed.

The return value is the number of occurrences it has resources allocated for.
Usually, the return is the same as number.

Input parameters (and their descriptions) are:

AS_INIT_FUNC

AS_INIT_FUNC expects a routine that is called when Panther starts handling
scrolling data for an array. The max_items and len parameters provide the
driver with approximately how much data the array can hold.

Return value of 0 indicates success; -1 indicates failure.

Input parameters (and their descriptions) are:

Output parameter is scrolldata. Set to point to a driver-specific data
structure that keeps track of the data for the array. This value is associated
with the array; all future calls to the scrolling driver that refer to this array get
the scrolldata value passed in the altsc_t structure.

AS_INST_FUNC

AS_INST_FUNC expects a routine that is called once when Panther starts up.
If an application causes Panther to initialize and reset more than once, the

valids Occurrence's validation bits; these are packed into a
unique form.

scrolldata Pointer to the driver's internal buffer.

number New luid to use.

max_items Maximum number of occurrences in the array. If the
value of max_items subsequently changes,
Panther calls the AS_GTSPC_FUNC function to
inform the driver of new limits.

len Maximum width of the text of each occurrence.
Upgrade Guide A-7

function is called repeatedly. No buffer is passed to the driver; instead, it gets
NULL.

This routine usually initializes the driver's global properties, allocates buffers,
initializes virtual memory, opens files. However, it cannot perform tasks,
especially if the initialization is performed for each array by AS_INIT_FUNC.

Return value of 1 indicates success; 0 indicates failure–driver is not installed.

AS_NMUSD_FUNC

Not currently used. Function should return -1.

AS_PDATA_FUNC

AS_PDATA_FUNC expects a routine that is called when Panther wants to
update offscreen data in the driver. The routine should save the contents of
the attr, valids, and text members.

Return value of 0 indicates success; -1 indicates failure.

Note: The routine cannot assume that text is null-terminated; it should save
all len bytes of it.

Input parameters (and their descriptions) are:

AS_RESET_FUNC

AS_RESET_FUNC expects a routine to call when Panther terminates with
sm_resetcrt. The routine can perform any desired final clean up, such as
deleting temporary files, freeing memory allocated in the INST function, and
so on. The routine has no input or output parameters and returns no value. It

scrolldata Pointer to the driver's internal buffer.

item Occurrence number to save.

len Length of the occurrence.

text Buffer to get the text.

attr Display attribute of the occurrence.

valids Validation bits of the occurrence.

text Text to save.
A-8 JAM Documentation: Alternative Scrolling

should only be called by Panther when it has released all active arrays with
AS_RLS_FUNC.

AS_RLS_FUNC

AS_RLS_FUNC expects a routine that is called when Panther destroys an array.
The routine should then free any resources allocated for the array. The return
value from this call is ignored. Thus, the scrolling driver must inform the user
about any failure and take the appropriate action–for example, exit the
program.

The input parameter is scrolldata, the pointer to the driver's internal buffer.

Return value of 0 indicates success; -1 indicates failure.

AS_SCMAX_FUNC

Not currently used. Function should return -1.

Scrolling Driver Example

The following code is an example of a scrolling driver:

/* Scroll buffers hold field data of scrolling. New buffers
are allocated as formerly empty offscreen elements are filled.
Each buffer can hold several items, determined by
i_per_buff = (SC_BUF_SIZE - SC_OVERHEAD) / (item_size + SC_BYTES)
where item_size is the maximum (shifting) length of a field.
The extra SC_BYTES hold VALIDED, MDT, and attribute information
for a field scrolled offscreen. The constants are defined below */

/* A buffer is allocated contiguously with its sc_buf_s.*/

#define SC_BUF_SIZE 1024
#define SC_LEN 0 /* length of an item if var.*/
#define SC_ATTR 0 /* offset of saved attribute*/
#define SC_BITS 2 /* offset of saved bits*/
#define SC_BYTES SC_BITS+AS_VAL /* extra bytes per item*/
#define SC_DATA SC_BYTES /* offset of field data*/

/* bits stored are:
SELECTED (0x10)
VALIDED (0x20)
MDT (0x40)
OPROTECT (0x80)
PROTECT (0x0f) */
Upgrade Guide A-9

typedef
struct sc_buf_s

{
struct sc_buf_s *link; /* forward link */
struct sc_buf_s *back; /* backward link */
unsigned int first_item; /* first in this buffer */
unsigned int last_item; /* last in this buffer */
char item[SC_BYTES+1]; /* start of buffer */

} sc_buf_t;

#define SC_OVERHEAD (int)(sizeof (sc_buf_t) - SC_BYTES - 1)

/* Every scroll header has an item altsc_id which is a pointer to
a scroll_t. scroll_t has an item scrolldata. A structure of
scrolldata depends on a scrolling method. If memory-based scrolling
is used, the structure of scrolling data is: */

typedef
struct scr_data_s

{
sc_buf_t *first_buff;
sc_buf_t *cur_buff;
unsigned int i_per_buff;

} scr_data_t;

/* To store offscreen data, buffers are acquired as needed. Buffers
are linked into a chain whose head is stored in the member
first_buff in the structure above. Each buffer holds the same number
of items, determined by the formula above. */

/* FUNCTIONS IN THIS MODULE */

int sm_mbscroll PROTO((altsc_t *, int));
static int SMLOCAL mb_initscr PROTO((altsc_t *));
static int SMLOCAL mb_getitem PROTO((altsc_t *));
static int SMLOCAL mb_putitem PROTO((altsc_t *));
static int SMLOCAL mb_insitem PROTO((altsc_t *));
static int SMLOCAL mb_delitem PROTO((altsc_t *));
static int SMLOCAL mb_setluid PROTO((altsc_t *));
static int SMLOCAL mb_rlsscrl PROTO((altsc_t *));
static char * SMLOCAL mb_getptr PROTO((altsc_t *));
static sc_buf_t * SMLOCAL mb_addscbuf PROTO((altsc_t *,

sc_buf_t *));

static int SMLOCAL mb_incluid PROTO((altsc_t *, scr_data_t *,
unsigned int));
A-10 JAM Documentation: Alternative Scrolling

static sc_buf_t * SMLOCAL mb_getscbuf PROTO((scr_data_t *,
int));

static void SMLOCAL mb_free_sc_bufs PROTO((sc_buf_t *));

int sm_mbscroll (as_ptr, option) altsc_t *as_ptr;

int option;

{
switch (option)
{
case AS_INIT_FUNC:

return mb_initscr (as_ptr);

case AS_GDATA_FUNC:
return mb_getitem (as_ptr);

case AS_PDATA_FUNC:
return mb_putitem (as_ptr);

case AS_INSRT_FUNC:
return mb_insitem (as_ptr);

case AS_DLT_FUNC:
return mb_delitem (as_ptr);

case AS_GTSPC_FUNC:
return mb_setluid (as_ptr);

case AS_RLS_FUNC:
return mb_rlsscrl (as_ptr);

default:
return 1;

}
}

static int SMLOCAL
mb_initscr (as_ptr)
altsc_t *as_ptr;
{

scr_data_t *scr_data;
int retcode;
scr_data = (scr_data_t *) sm_fmalloc (sizeof /

 (scr_data_t));
if (scr_data && as_ptr->len > 0)
{

scr_data->first_buff = 0;
scr_data->cur_buff = 0;
scr_data->i_per_buff =
Upgrade Guide A-11

(unsigned)(SC_BUF_SIZE - SC_OVERHEAD) /
(as_ptr->len + SC_BYTES);

retcode = 0;
}

else
{

sm_qui_msg ("Memory based scrolling method
cannot be initialized");

retcode = -1;
}
as_ptr->scrolldata = (VOIDPTR)scr_data;
return retcode;

}

static int SMLOCAL
mb_getitem (as_ptr)
altsc_t *as_ptr;
{

char *ptr;
if (!(ptr = mb_getptr (as_ptr)))
{

return -1;
}
memcpy ((VOIDPTR)as_ptr->valids, (VOIDPTR)&ptr[SC_BITS],

 AS_VAL);
as_ptr->attr = UGET (ptr, SC_ATTR);
memcpy ((VOIDPTR)as_ptr->text, (VOIDPTR)&ptr[SC_DATA],

 as_ptr->len);
return 0;

}

static int SMLOCAL
mb_putitem (as_ptr)
altsc_t *as_ptr;
{

char *ptr;
if (!(ptr = mb_getptr (as_ptr)))
{

return -1;
}
memcpy ((VOIDPTR)&ptr[SC_BITS], (VOIDPTR)as_ptr->valids,

 AS_VAL);
UPUT (ptr, SC_ATTR, as_ptr->attr);
memcpy ((VOIDPTR)&ptr[SC_DATA], (VOIDPTR)as_ptr->text,

 as_ptr->len);
return 0;

}

A-12 JAM Documentation: Alternative Scrolling

static int SMLOCAL
mb_insitem (as_ptr)
altsc_t *as_ptr;
{

unsigned char *ptr;
unsigned char valids[AS_VAL];
attrib_t attr;
int item;
int item_to;
int item_from;
item = (int)as_ptr->item;
if ((unsigned int)as_ptr->number >

 (as_ptr->luid - as_ptr->shs))
{

as_ptr->number = (int)(as_ptr->luid - as_ptr->shs);
}
item_from = (int)as_ptr->shs;
item_to = item_from + as_ptr->number;
ptr = as_ptr->text;
attr = as_ptr->attr;
memcpy ((VOIDPTR)valids, (VOIDPTR)as_ptr->valids, AS_VAL);
as_ptr->text = (unsigned char *)sm_fmalloc (as_ptr->len);
if (!as_ptr->text)
{

return -3;
}
for (; item_to >= item; item_to--)
{

if (item_from >= item)
{

as_ptr->item = item_from;
if (mb_getitem (as_ptr))
{

if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return -1;

}
item_from--;

}
else if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;
as_ptr->attr = attr;
memcpy((VOIDPTR)as_ptr->valids,(VOIDPTR)valids,

 AS_VAL);
Upgrade Guide A-13

ptr = 0;
}
as_ptr->item = item_to;
if (mb_putitem (as_ptr))
{

if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return -2;

}
}
if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return as_ptr->number;

}
static int SMLOCAL
mb_delitem (as_ptr)
altsc_t *as_ptr;
{

unsigned char *ptr;
unsigned char valids[AS_VAL];
attrib_t attr;
unsigned int item_to;
unsigned int item_from;
item_to = as_ptr->item;
if (as_ptr->number > (int)(as_ptr->luid - item_to + 1))
{

as_ptr->number = (int)(as_ptr->luid - item_to + 1);
}
item_from = item_to + (unsigned int)as_ptr->number;
ptr = as_ptr->text;
attr = as_ptr->attr;
memcpy ((VOIDPTR)valids, (VOIDPTR)as_ptr->valids, AS_VAL);
as_ptr->text = (unsigned char *)sm_fmalloc (as_ptr->len);
if (!as_ptr->text)
{

return -3;
}
for (; item_to <= as_ptr->shs; item_to++)
{

if (item_from <= as_ptr->shs)
{

as_ptr->item = item_from;
if (mb_getitem (as_ptr))
A-14 JAM Documentation: Alternative Scrolling

{
if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return -1;

}
item_from++;

}
else if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;
as_ptr->attr = attr;
memcpy((VOIDPTR)as_ptr->valids,(VOIDPTR)valids,

 AS_VAL);
ptr = 0;

}
as_ptr->item = item_to;
if (mb_putitem (as_ptr))
{

if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return -2;

}
}
if (ptr)
{

sm_ffree (as_ptr->text);
as_ptr->text = ptr;

}
return as_ptr->number;

}
static int SMLOCAL
mb_setluid (as_ptr)
altsc_t *as_ptr;
{

sc_buf_t *sc_buf;
scr_data_t *scroll;
unsigned int new_luid;
unsigned int old_fuid;
scroll = (scr_data_t *) as_ptr->scrolldata;
if (!scroll)

return 0;
new_luid = as_ptr->number;
Upgrade Guide A-15

if (!new_luid)
{

mb_free_sc_bufs(scroll->first_buff);
scroll->first_buff = scroll->cur_buff = 0;
return 0;

}
sc_buf = mb_getscbuf (scroll, (int)new_luid);
if (!sc_buf)

new_luid = mb_incluid(as_ptr, scroll, new_luid);
else if (sc_buf->link)
{

mb_free_sc_bufs(sc_buf->link);
sc_buf->link = 0;
scroll->cur_buff = sc_buf;

}
old_fuid = as_ptr->luid;
as_ptr->luid = new_luid;
while (++old_fuid <= new_luid)
{

as_ptr->item = old_fuid;
mb_putitem (as_ptr);

}
return (int)new_luid;

}

/*

NAME: mb_rlsscrl - Free scroll buffers

SYNOPSIS: mb_rlsscrl (as_ptr)
altsc_t *as_ptr;

DESCRIPTION: Loops through field's scroll buffers, freeing them.
Then frees altsc_id and sets it to 0.

*/

static int SMLOCAL
mb_rlsscrl (as_ptr)
altsc_t *as_ptr;
{

sc_buf_t *sc_buf;
scr_data_t *scroll;
scroll = (scr_data_t *) as_ptr->scrolldata;
sc_buf = scroll->first_buff;
mb_free_sc_bufs(sc_buf);
sm_ffree ((VOIDPTR) scroll);
return 0;

}

A-16 JAM Documentation: Alternative Scrolling

/*

NAME: mb_getptr - Get a pointer to offscreen item in memory buffer

SYNOPSIS:

ptr = mb_getptr (as_ptr);
char *ptr;
altsc_t *as_ptr;

DESCRIPTION: Searches forward or backward from current scroll
buffer to find buffer that contains specified occurrence. If the
occurrence previously existed, returns pointer to data.

RETURNS: ptr = pointer to offscreen data; 0 if occurrence could not
be found.

*/

static char * SMLOCAL
mb_getptr(as_ptr)
altsc_t *as_ptr;

{
scr_data_t *scroll;
unsigned int occur;
sc_buf_t *sc_buf;
if (!(scroll = (scr_data_t *)as_ptr->scrolldata) ||

!(sc_buf = mb_getscbuf(scroll, (int)(occur =
 as_ptr->item))))
return 0;

return sc_buf->item + ((unsigned)occur -
 sc_buf->first_item) * (as_ptr->len + SC_BYTES);

}

/*

NAME: mb_addscbuf - Add another sc_buf_s to the list specified.

SYNOPSIS:

new_scroll_buffer = mb_addscbuf (as_ptr, scroll_buffer);
sc_buf_t *new_scroll_buffer;
altsc_t *as_ptr;
sc_buf_t *scroll_buffer;

DESCRIPTION: Mallocs and initializes new scroll buffer. If scroll
buffer passed is null, the first_buff and cur_buff entries of scroll
header are set to the new buffer.

RETURNS: new_scroll_buffer = pointer to new buffer; 0 if malloc
failed.
Upgrade Guide A-17

*/

static sc_buf_t * SMLOCAL
mb_addscbuf (as_ptr, sc_buf)
altsc_t *as_ptr;
sc_buf_t *sc_buf;

{
unsigned int f_item;
unsigned int l_item;
unsigned int buf_size;
sc_buf_t *new_buf;
scr_data_t *scroll;
scroll = (scr_data_t *) as_ptr->scrolldata;
l_item = 0;
if (sc_buf)

l_item = sc_buf->last_item;
f_item = l_item + 1;
l_item += scroll->i_per_buff;
if (l_item > as_ptr->max_items)

l_item = as_ptr->max_items;
buf_size = (l_item - f_item + 1) * (as_ptr->len +

SC_BYTES) + SC_OVERHEAD;
new_buf = (sc_buf_t *)sm_fmalloc(buf_size);
if (new_buf == 0)
{

char buf[80];
sprintf (buf, "There is no more memory for new

occurrence # %i", as_ptr->number);
sm_qui_msg (buf);
return 0;

}
memset((VOIDPTR)new_buf, 0, buf_size);
new_buf->link = 0;
new_buf->first_item = f_item;
new_buf->last_item = l_item;
new_buf->back = sc_buf;
if (sc_buf)

sc_buf->link = new_buf;
else
{

scroll->first_buff = new_buf;
scroll->cur_buff = new_buf;

}
return(new_buf);

}

/*
NAME: mb_getscbuf - Get pointer to scroll buf that contains the
A-18 JAM Documentation: Alternative Scrolling

specified item.

SYNOPSIS:
scroll_buffer = mb_getscbuf (sc_data, item);
sc_buf_t *scroll_buffer;
scr_data_t *sc_data;
int item;

DESCRIPTION: Searches scroll buffers for specified item. Uses the
cur_buff pointer to save time. Updates cur_buff pointer (to save
time next time). If desired item is in first buffer, don't bother
with cur_buff.

RETURNS: scroll_buffer = pointer to desired buffer; 0 if item is
not in any buffer.

*/

static sc_buf_t * SMLOCAL
mb_getscbuf(sc_data, item)
scr_data_t *sc_data;
int item;
{

sc_buf_t *sc_buf;
sc_buf_t *ret_buf;
if (!(sc_buf = sc_data->cur_buff))

return 0;
if (item <= (int)sc_buf->last_item)
{

sc_buf_t *f_buf;
if (item >= (int)sc_buf->first_item)

return sc_buf;
f_buf = sc_data->first_buff;
if (item <= (int)f_buf->last_item)
{

if (item < (int)f_buf->first_item)
return 0;

return f_buf;
}
if (item >= (int)((sc_buf->first_item + \

f_buf->last_item) / 2))
{

while ((ret_buf = sc_buf->back) &&
item < (int)(sc_buf = ret_buf)->first_item)

{
}
sc_data->cur_buff = sc_buf;
return ret_buf;

}
sc_buf = f_buf;
Upgrade Guide A-19

}
while ((ret_buf = sc_buf->link) &&

item > (int)(sc_buf = ret_buf)->last_item)
{
}
sc_data->cur_buff = sc_buf;
return ret_buf;

/*

NAME: mb_incluid - Ensures sufficient allocated space to hold
desired item.

SYNOPSIS:

new_luid = mb_incluid (as_ptr, scroll, desired_new_luid)
int new_luid;
altsc_t *as_ptr;
scr_data_t *scroll;
unsigned int desired_new_luid;

DESCRIPTION: Calls mb_addscbuf in a loop to increase
largest_used_item_id until it meets or surpasses desired value.

RETURNS: new_luid = smaller of desired_new_luid and amount of space
which could be allocated.

*/

static int SMLOCAL
mb_incluid (as_ptr, scroll, new_luid)
altsc_t *as_ptr;
scr_data_t *scroll;
unsigned int new_luid;
{

sc_buf_t *new_buf;
sc_buf_t *last_buf;
unsigned int retval;
retval = new_luid;
last_buf = scroll->cur_buff;
do
{

if (!(new_buf = mb_addscbuf(as_ptr, last_buf)))
{

if (last_buf)
retval = last_buf->last_item;

else
retval = 0;

break;
}

}
A-20 JAM Documentation: Alternative Scrolling

while (new_luid > (last_buf = new_buf)->last_item);
scroll->cur_buff = last_buf;
return (int)retval;

}
/*

NAME: mb_free_sc_bufs - Frees scrolling buffers starting with one
passed.

SYNOPSIS:

mb_free_sc_bufs (scroll_buffer)
sc_buf_t *scroll_buffer;

DESCRIPTION: Loops through on link freeing buffers. Caller is
responsible for valid arguments and setting pointers to the freed
buffer to NULL. Argument can be NULL.

RETURNS: None.

*/

static void SMLOCAL
mb_free_sc_bufs(sc_buf)
sc_buf_t *sc_buf;
{

char *ptr;
while (sc_buf)
{

ptr = (char *)sc_buf;
sc_buf = sc_buf->link;
sm_ffree(ptr);

}
}

Upgrade Guide A-21

A-22 JAM Documentation: Alternative Scrolling

APPENDIX
B JAM Documentation:
Internal I/O
Processing

This chapter describes the following:

! How keyboard input is processed—including which library functions are called
to carry out such processing.

! How Panther and Panther applications under character-mode use the
information encoded in the video file to process output.

All user input to a Panther application is processed through a keyboard translation file
or table before being handled by Panther. All output to a character-mode display
monitor is processed through a video mapping table.

This translation of input and output is done to avoid code specific to particular displays
or terminals, and thereby preserve terminal independence. Panther and Panther
applications can run on a variety of terminals, provided that the appropriate keyboard
and video configuration files are identified. These configuration files are used by the
application at initialization to establish the keyboard and video translation.
Upgrade Guide B-1

Processing Keyboard Input
Processing Keyboard Input

Keystrokes are processed in three steps:

1. The sequence of characters generated by one key is identified.

2. The sequence is translated to an internal value, or logical character.

3. The internal value is either acted upon or returned to the application (key
routing).

All three steps, described in this section, are table-driven. Hooks are provided at
several points for application processing; refer to Chapter 44, “Installed Event
Functions,” in Application Development Guide.

Logical Keys

Panther processes characters internally as logical values, which usually correspond to
the physical ASCII codes used by terminal keyboards and displays. Panther uses the
key translation file to map specific physical keys or sequences of physical keys to
logical values, and the video file's MODE and GRAPH entries to map logical characters to
video output. For most keys, such as displayable data characters, no explicit mapping
is necessary. Certain ranges of logical characters are interpreted specially by Panther:

0x0100 to 0x01ff Operations such as tab, scrolling, cursor motion

0x6101 to 0x7801 Function keys PF1 to PF24

0x4101 to 0x5801 Shifted function keys SPF1 to SPF24

0x4103 to 0x5a03 ALT keys ALTA to ALTZ

0x6102 to 0x7802 Application keys APP1 to APP24
B-2 JAM Documentation: Internal I/O Processing

Processing Keyboard Input
Key Translation

The first two steps in Panther's processing of keyboard input–identification and
translation–are controlled by the binary key translation file, loaded at initialization.
Panther finds the file's name in a setup file or in the environment (refer to the
Configuration Guide for details). The binary file is derived from an ASCII file that you
can modify with any text editor.

Panther assumes that the first input character of a multi-character key sequence is a
control character in the ASCII chart (0x00-0x1f, 0x7f, 0x80-0x9f, or 0xff) and
attempts to translate the character to a single logical key. Characters outside this range
are assumed to be displayable characters and are not translated.

Note: This algorithm assumes that a timing interval (KBD_DELAY entry in the video
file) has not been specified. For more information, refer to KBD_DELAY on
page 7-24 in Configuration Guide.

On receiving a control character, the keyboard input function sm_getkey searches the
key translation file for a sequence beginning with that character. If no match is found
on the first character, Panther accepts the key without translation. If a match is found
on the first character, an exact match, sm_getkey returns the indicated value. The
search continues through subsequent characters until one of the following conditions
is true:

! An exact match on n characters is found and the nth+1 character in the file is 0,
or n is 6. In this case, the value in the file is returned.

! An exact match is found on n-1 characters but not on n. In this case,
sm_getkey attempts to flush the sequence of characters returned by the key.

The latter condition is of some importance: if the user presses a function key that is not
defined in the file, Panther must know where the key sequence ends. The following
algorithm is then used:

! The file is searched for all entries that match the first n-1 characters and are of
the same type in the nth character, where the types are digit, control character,
letter, and punctuation. The smallest of the total lengths of these entries is
assumed to be the length of the sequence produced by the key.

! If there is no entry matches by type at the nth character, the shortest sequence
that matches on n-1 characters is used. Hence, sm_getkey can distinguish, for
example, between the sequences ESC O x, ESC [A, and ESC [1 0 ~.
Upgrade Guide B-3

Processing Keyboard Input
With Timing Interval Set

If you have a KBD_DELAY entry in your video file, you can specify key sequences in the
key translation file that are substrings of other sequences. For example, the sequences
ESC and ESC [C can both have logical values, even though one is a substring of the
other. In this case, Panther waits the specified timing interval, as indicated in the
KBD_DELAY entry, between processing characters to determine if a character is a single
keystroke or belongs to a sequence of keystrokes.

Key Routing

The third step in processing keyboard input is handled by the library function
sm_input. This function calls sm_getkey to obtain the translated value of the key. It
then decides what to do based on the following rules:

Value Greater Than 0x1ff

If the logical value is greater than 0x1ff, sm_input returns the value as the return
code.

Value Between 0x01 and 0x1ff

If the value is between 0x01 and 0x1ff, the key is translated via the key translation
file. The processing of the key is then determined by a routing table. You can alter the
default behavior of keys (cursor control) within this range with the library function
sm_keyoption as well as set the routing information for a particular key. The routing
value consists of two bits, examined independently, so four different actions are
possible:

! If neither bit is set, the key is ignored.

! If the EXECUTE bit is set and the logical value is in the range 0x01 to 0xff, it is
written to the screen (as interpreted by the GRAPH entry in the video file, if one
exists). If the value is in the range 0x100 to 0x1ff, the appropriate action (Tab,
field erase, etc.) is taken.

! If the RETURN bit is set, sm_input returns the logical value to the caller;
otherwise, sm_getkey is called for another value.

! If both bits are set, the key is executed and then returned.
B-4 JAM Documentation: Internal I/O Processing

Processing Terminal Output
The default settings are ignored for ASCII and extended ASCII control characters
(0x01 - 0x1f, 0x7f, 0x80 - 0x9f, 0xff), and EXECUTE only for all others. The default
setting for displayable characters is EXECUTE. All other ASCII and extended ASCII
characters are ignored. The function keys (PF1 to PF24, SPF1 to SPF24, APP1 to
APP24, and ABORT) are not handled through the routing table. Their routing is always
RETURN, and cannot be altered. All other function keys (EXIT, SPGU etc.) are initially
set to EXECUTE.

Changing Key Actions at Runtime

You can program your application to change key actions at runtime by using
sm_keyoption. For example, to disable the Backtab key, you execute the following
function:

call sm_keyoption(status, BACK, KEY_ROUTING, KEY_IGNORE giving
status)

To make the field erase key return to the application program, use:

call sm_keyoption(status, FERA, KEY_ROUTING, RETURN giving status)

Logical key mnemonics are defined in the smkeys.h file in the include directory.

Processing Terminal Output

Panther defines a set of logical screen operations (such as positioning the cursor) and
stores the character sequences for performing these operations in a video file specific
to the display. Logical display operations and the coding of sequences are described in
Chapter 7, “Video File,” in Configuration Guide.

This section describes the ways in which Panther uses and ultimately, the way
applications use the information encoded in the video files to determine how and what
output your terminal displays.
Upgrade Guide B-5

Processing Terminal Output
How Panther Handles Output

Panther uses a delayed write output scheme to minimize unnecessary and redundant
output to the display. No output at all is done until the display must be updated, either
because keyboard input is solicited or the library function sm_flush is called. Instead,
the runtime system does screen updates in memory and keeps track of the display
positions. Flushing begins when the keyboard is opened; but if you type a character
while flushing is in progress, the runtime system processes it before sending any more
output to the display. Therefore, you can type ahead on slow displays. You can force
the display to be updated by calling sm_flush.

Graphics Characters and Alternate Character Sets

Many terminals support the display of graphics or special characters through alternate
character sets. Panther provides 8-bit alternate character sets–for example, those that
translate from IBM PC extended character to Latin-1. These tables can be installed by
calling the library function sm_xlate_table. Control sequences switch the terminal
among the various sets, and characters in the standard ASCII range are displayed
differently in different sets. Panther supports 8-bit to 7-bit translations via the MODEx
and GRAPH entries in the video file.

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a particular
character set. MODE0 must be the normal character set. The GRAPH command maps
logical characters to the mode and physical character necessary to display them. It
consists of a number of entries whose form is logical value = mode physical-character.

When Panther needs to output logical value it first transmits the sequence that switches
to mode, then transmits physical-character. It keeps track of the current mode to avoid
redundant mode switches when a string of characters in one mode (such as a graphics
border) is being written. MODE4 through MODE6 switch the mode for a single character
only.
B-6 JAM Documentation: Internal I/O Processing

APPENDIX
C Obsolete Functions

The functions in this section were made obsolete in either the Panther, JAM or Prolifics
products.

Function Name Made Obsolete In Description

sm_achg JAM 7

sm_apply_prop JAM 7

sm_ascroll JAM 7

sm_base_fldno JAM 7

sm_bitop JAM 7

sm_chg_attr JAM 7

sm_com_call_method Panther 4.2 Calls a method of a COM component (Recommended
alternate: sm_obj_call)

sm_com_get_prop Panther 4.2 Gets a COM component property setting
(Recommended alternate:
sm_obj_get_property)

sm_com_log Panther 4.2 Writes a message to a log file (Recommended
alternate: sm_log)

sm_com_onerror Panther 4.2 Installs an error handler (Recommended alternate:
sm_obj_onerror)

sm_com_set_prop Panther 4.2 Sets a property for a COM component
(Recommended alternate:
sm_obj_set_property)
Upgrade Guide C-1

sm_com_obj_create Panther 4.2 Instantiates a COM component (Recommended
alternate: sm_obj_create)

sm_com_obj_destroy Panther 4.2 Destroys a COM component (Recommended
alternate: sm_obj_delete_id)

sm_com_raise_exception Panther 4.2 Sends an error code back to the client (Recommended
alternate: sm_raise_exception)

sm_com_receive_args Panther 4.2 Receives a list of in and in/out parameters for a
method (Recommended alternate:
sm_receive_args)

sm_com_return_args Panther 4.2 Returns a list of in/out and out parameters for a
method (Recommended alternate:
sm_return_args)

sm_create_id JAM 7

sm_destroy_id JAM 7

sm_finquire JAM 7

sm_fldno JAM 7

sm_fldno JAM 7

sm_fset JAM 7

sm_ftype JAM 7

sm_getcurno JAM 7

sm_get_prop JAM 7

sm_gp_inquire JAM 7

sm_iselected JAM 7

sm_n_bld_fldno JAM 7

sm_length JAM 7

sm_max_occur JAM 7

Function Name Made Obsolete In Description
C-2 Obsolete Functions

sm_name JAM 7

sm_novalbit JAM 7

sm_num_occurs JAM 7

sm_oshift JAM 7

sm_prop_errno JAM 7

sm_protect JAM 7

sm_query_msg JAM 7

sm_rscroll JAM 7

sm_sc_max JAM 7

sm_set_prop JAM 7

sm_sibling JAM 7

sm_size_of_array JAM 7

sm_t_scroll JAM 7

sm_t_shift JAM 7

sm_unprotect JAM 7

sm_viewport JAM 7

Function Name Made Obsolete In Description
Upgrade Guide C-3

sm_com_call_method

Calls a method of a COM component or ActiveX widget

char *sm_com_call_method(char *method_spec);

method_spec

A string specifying the method and its parameters consisting of the following:

object_id

An integer handle identifying the COM component whose method
you want to call. The handle is returned through
sm_com_obj_create for COM objects, sm_prop_id for ActiveX
controls.

method

The name of the method. Periods are allowed as part of the method
specification, as in: Application.Quit

p1, p2, ...

(Optional) A comma-delimited list of the method's parameters.
Unused parameters are allowed to be omitted, as in:

sm_com_call_method ("TreeView, \"Add\" , , , , 'First node'")

If the COM object’s typelib cannot be used to determine the parameter's type,
@obj can be used to specify the object ID of the parameter. Generally, this
syntax will not be necessary.

Environment Windows, Web

Scope Client

Returns On Windows platforms:

! The value returned by the COM component, converted to a string.

! A null string if an error occurred. For the error code, call sm_com_result.
Error codes are defined in winerror.h.

On UNIX platforms for ActiveX controls:
C-4 Obsolete Functions

0 Success.

-1 Failure.

Description sm_com_call_method calls methods that are part of COM components' inter faces.
Usage of this function is no longer recommended; use sm_obj_call instead to ensure
component portability.

To find which methods are available, refer to the documentation supplied with the
COM component, use the Panther AxView utility, or use the View→Component
Interface in the editor for service components.

This function returns a string; the COM component itself can return different types of
data.

If you get a “type mismatch” error, refer to the component documentation and check
that all the parameters are of the correct type. @obj may be needed if any of the
parameters must be passed as objects.

Example // This C function calls the InsertNode method of the
// ActiveX treeview control.

char method[100];
char *parent;
char *child;
int id;

id = sm_prop_id ("treeview");
sprintf(method, "InsertNode(%s, \"Child node\"", parent));
child = sm_com_call_method(id, method);

// This is the JPL call for this method. Single quotation
// marks are used surrounding the method in order to pass
// double quotation marks to the method itself.

vars parent
vars child

child = sm_com_call_method \
(treeview->id, "InsertNode", :parent, "Child node")

// These JPL procedures instantiate the cCustomers COM
// component and call its GetCustomer method.

vars id

proc entry
Upgrade Guide C-5

id = sm_com_obj_create("cCustomers")
return

proc GetCustomer
call sm_com_call_method(id, "GetCustomer", \

CompanyName, CustomerID, Phone)
return

// This JPL procedure closes down Microsoft Excel
// that is running as a COM component.

proc close
call sm_com_call_method(ExcelID, "Application.Quit")
return

See Also sm_obj_call
C-6 Obsolete Functions

sm_com_get_prop

Gets the value of a property from a COM component

char *sm_com_get_prop(int obj_id, char *prop);

obj_id

An integer handle that identifies the COM component whose property you
want to get. The handle is returned through sm_com_obj_create for COM
objects, sm_prop_id for ActiveX controls.

prop

The designated COM property. For indexed properties, use brackets to
specify the occurrence.

Environment Windows, Web

Scope Client

Returns ! The property's current value, returned as a string.

! A null string if an error occurred. For the error code, call sm_com_result.
Error codes are defined in winerror.h.

Description sm_com_get_prop retrieves property values from a COM component. Usage of this
function is no longer recommended; use sm_obj_get_property instead to ensure
component portability.

Example #include <smuprapi.h>
{
id = sm_prop_id("spinner");
value = sm_com_get_prop (id, "prop");
}

// For an indexed property:
{
id = sm_prop_id("spinner");
value = sm_com_get_prop (id, "prop[5]");
}

See Also sm_obj_get_property
Upgrade Guide C-7

sm_com_log

Writes a message to an error log

int sm_com_log(char *msg);

msg

Message to be printed to the log.

Environment Windows

Scope Server

Description sm_com_log writes messages to an error log named server.log in the COM
component's application directory. Usage of this function is no longer recommended;
use sm_log instead to ensure component portability.

When this file is activated, in addition to the messages logged with this function,
messages are automatically logged when service components are created or destroyed.
All messages that would normally appear on the message line or message window are
also logged.

During development you should always enable error logging by creating server.log. In
production server.log should not be present as logging is a substantial load on the
system.server.log must exist in the application directory for logging to take place.

See Also sm_log
C-8 Obsolete Functions

sm_com_obj_create

Instantiates a COM component

int sm_com_obj_create(char *name);
int sm_c_com_obj_create(char *clsid);

clsid

Specify the CLSID (Class ID) of the COM component.

name

Specify the name of the COM component.

Environment Windows

Scope Client

Returns 1 Success: the component's object ID.

Description sm_com_obj_create instantiates COM components. Usage of this function is no
longer recommended; use sm_obj_create instead to ensure component portability.
The COM component must support the IDispatch interface (the “automation
interface”) so that properties can be set and methods can be called. For returns greater
than zero, the call has succeeded and the object ID will be used to access the
component.

For ActiveX controls, you do not call this function. The ActiveX container in the
Panther editor specifies the name and CLSID of the component, and makes this call on
your behalf.

Example //The following JPL procedures create a variable
// and instantiate the control.

vars id

proc entry
id = sm_com_obj_create("cCustomers")
return

See Also sm_obj_create
Upgrade Guide C-9

sm_com_obj_destroy

Removes a COM component

int sm_com_obj_destroy(int obj_id, int force);

obj_id

An integer handle that identifies the COM component you want to delete,
obtained through sm_com_obj_create.

force

Specify the type of removal.

If force is zero, only the specified component will be destroyed. Any
components obtained as values of a property of the component or returned by
the component's method calls will be retained.

If force is zero, then these derived components will also be destroyed.

Environment Windows

Scope Client

Returns 0 Always.

Description sm_com_obj_destroy removes COM components. Usage of this function is no
longer recommended; use sm_obj_delete_id instead to ensure component
portability. If force is zero, only the specified COM component will be destroyed. Any
components obtained as values of a component property or returned by method calls
will be retained. If force is non-zero, then these derived components will also be
destroyed.

the COM object will be removed. Otherwise, the COM component will continue to
exist until the last of the dispatch interfaces is deleted by a call to
sm_com_obj_destroy.

For example, the following JPL code creates a treeview control and calls its properties
for nodes, node and font:

vars tree, nodes, node, font
tree = sm_com_obj_create ("treeview")
nodes = sm_com_get_prop (tree, "Nodes")
C-10 Obsolete Functions

node = sm_com_get_prop (tree, "Item[1]")
font = sm_com_get_prop (node, "FontName")

To destroy the COM component tree but not nodes, node or font:

call sm_com_obj_destroy (tree, 0)

To destroy node and font (but not tree):

call sm_com_obj_destroy (nodes, 1)

To destroy the COM component tree and all derived components (node and font):

call sm_com_obj_destroy (tree, 1)

Example // This JPL procedure destroys the component
// referenced by the variable objID on screen exit.

proc exit
{
call sm_com_obj_destroy (objID, 1)
}

See Also sm_obj_delete_id
Upgrade Guide C-11

sm_com_onerror

Installs an error handler

void sm_com_onerror(char *handler);

handler

The name of the error handler. This C function or JPL procedure will be
passed three parameters:

errorNumber

The error number as an integer. Use this value to test for errors.

errorHexadecimal

The error number as a string in hexadecimal format, as in
0x80000307. (This parameter is displayed by the default error
handler.)

errorMessage

The text description of the error. (This parameter is displayed by the
default error handler.)

Environment Windows

Scope Client

Description sm_com_onerror specifies the error handler that will be called if a COM operation
returns a negative exception. The return from the handler is ignored. Usage of this
function is no longer recommended; use sm_obj_onerror instead to ensure
component portability.

An error handler will only be fired on negative exception codes; use sm_com_result
to retrieve positive exceptions.

If you do not want an error handler, you must install your own error handler that simple
returns.

To restore the default error handler, use sm_com_onerror(0).
C-12 Obsolete Functions

Example // This JPL module specifies an error handler
// similar to the default error handler.

call sm_com_onerror (handler)

proc handler (errnum, errhex, errmsg)
msg emsg "COM Error: " errhex " " errmsg
return

See Also sm_obj_onerror
Upgrade Guide C-13

sm_com_raise_exception

Sends an error code back to the client

int sm_com_raise_exception(int error);

error

Error code to be returned to the client.

Environment Windows

Scope Server

Description sm_com_raise_exception sends an error code back to the client. The client's error
handler then decides what to do based on the value sent. Microsoft defines some
conventional exception codes for use in COM programming; see winerror.h. Usage
of this function is no longer recommended; use sm_raise_exception instead to
ensure component portability.

See Also sm_raise_exception
C-14 Obsolete Functions

sm_com_receive_args

Receives a list of in and in/out parameters for a method

int sm_com_receive_args(char *text);

text

List of in/out and out parameters, separated by commas, of field names and
global JPL variables.

Environment Windows

Scope Server

Returns 0 Not an COM method.

1 Success

! Otherwise, a value from smerror.h

Description sm_com_receive_args receives a list of arguments, and writes them to the in and
in/out parameters of a method. The arguments are written to the parameters in the order
received. Usage of this function is no longer recommended; use

sm_receive_args instead to ensure component portability.

Example See the example under the JPL verb receive_args.

See Also sm_receive_args
Upgrade Guide C-15

sm_com_return_args

Returns a method's in/out and out parameters

int sm_com_return_args(char *text);

text

List of in/out and out parameters, separated by commas.

Environment Windows

Scope Server

Returns 0 Not an COM method.

1 Success

! Otherwise, a value from smerror.h

Description sm_com_return_args is passed a list of arguments to be written to the in/out and out
parameters of a method. Usage of this function is no longer recommended; use
sm_return_args instead to ensure component portability.

Example See the example under the JPL verb receive_args.

See Also sm_return_args
C-16 Obsolete Functions

sm_com_set_prop

Sets the value of a property of a COM component

int sm_com_set_prop(int obj_id, char *prop, char *val);

obj_id

An integer handle that identifies the COM component whose property you
want to set. The handle is returned through sm_com_obj_create for COM
objects, sm_prop_id for ActiveX controls.

prop

The designated property. Refer to the Description for information about
available properties.

val

The value to set for the specified property or property item. Panther converts
the value to the type expected by the component.

If the value needs to be sent as an object ID, @obj() can be used to specify
the object ID.

Environment Windows, Web

Scope Client

Returns On Windows platforms:

! The HRESULT from the most recent COM component function call. Refer to
winerror.h for values; 0 is the value for S_OK.

On UNIX platforms:

0 Success.

-1 Failure.

Description sm_com_set_prop sets the value of the specified COM component property. Usage
of this function is no longer recommended; use sm_obj_set_property instead to
ensure component portability.
Upgrade Guide C-17

When setting properties for ActiveX controls, this function can be used on all
platforms for CLSID and Control Name and only on Windows for properties of the
ActiveX control itself.

The properties for a COM components can be determined through the AxView utility,
the Properties window for ActiveX controls, and the Component Interface window for
service components.

In property specifications, periods are allowed. For example:

sm_com_set_prop (Excel_Sheet,
"ActiveSheet.Cells(1,1).Value", text)

For indexed properties, use brackets to specify the occurrence. For example:

sm_com_set_prop (id, "prop[5]", value)

Example #include <smuprapi.h>
int id;
int retcode;

{
id = sm_prop_id("spinner");
retcode = sm_com_set_prop (id, "Value", "40");
}

See Also sm_obj_set_property
C-18 Obsolete Functions

INDEX
Index

A

Alt Scroll Func property A-2
Application

initializing
key translation file B-3

upgrading from JAM 5 4-1
upgrading from JAM 7 1-1, 2-1

D

dd2rec 4-24
dd5upg 4-21

options 4-21
Delayed write B-6

flushing B-6

F

f5upg 4-12
invoking 4-13
options 4-13

G

GRAPH keyword B-2

I

I/O processing B-1

Input
keyboard B-2

J

JAM
upgrading from JAM 5 to JAM 7 4-1
upgrading to Panther 1-1, 2-1, 4-1

K

KBD_DELAY keyword B-3, B-4
Keyboard

processing B-1

L

Library functions
obsolete C-1

M

MODE0 to MODE6 keyword B-2

P

Panther
upgrading from JAM 1-1, 2-1

Portability
terminal B-5
Upgrade Guide I-1

Index
Product changes
obsolete library functions C-1

R

rw6toprl 1-52

S

Scrolling array
alternative scroll driver A-1

action codes A-5
delete lines A-5
get data A-6
initialize A-7
insert blank lines A-5
installing A-2, A-7
put data A-8
release A-9
reserve space A-7
reset A-8
struct parameter A-3

T

Terminal
output B-6
portability B-5

U

Upgrading
from JAM 5 4-1
from JAM 7 1-1, 2-1

Utilities
dd2rec 4-24
dd5upg 4-21
f5upg 4-12
rw6toprl 1-52

V

Video file B-2
Video mapping

file B-2
I-2 Upgrade Guide

	Contents:
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Upgrading to Panther from JAM 7
	Installation
	Start-up License

	Program Startup
	Editor
	Menu Changes
	File Menu
	Edit Menu
	Create Menu
	View Menu
	Options Menu
	Tools Menu

	Other Editor Changes
	Properties
	Library Member Access
	JPL Modules
	Non-modal Text Windows
	Date/time Formats for Year 2000 Compliance
	Name Extensions
	Editor Toolbars
	Screen Wizard
	Grids

	Menu Bar Editor
	Docking Toolbars

	Styles Editor
	JIF Editor

	Development and Deployment
	New Executable Names
	Universal Makefile
	Libraries, not Files
	Library Locking
	Source Control
	Libraries Names

	References to Files Outside of Libraries
	JPL Programming
	Declaring Variables
	Sending and Receiving Data
	Variable Assignments
	Application Properties
	New Commands

	Java Interface
	Internal File Locking Available on Windows
	Opening Library Files in Windows
	MSVC Project Files
	Team Development

	Utilities
	File Extension Option
	Changed Utilities
	New Utilities
	COM/MTS Utilities
	JetNet/Oracle Tuxedo Utilities
	WebSphere Utilities

	Configuration
	JetNet/Oracle Tuxedo Variables
	WebSphere Variables

	API Changes
	Specifying Application Properties
	Additional Flags for Widget Functions
	Properties Window
	Component API Changes
	New Library Functions for Components
	New Properties for Components

	ActiveX Controls and COM Components
	New Library Functions for COM Components
	New MTS Functions
	New Properties for COM Components

	Grid API Changes
	New Library Functions for Grids
	New Properties for Grids

	Tab Control API Changes
	New Properties for Tab Controls
	New Logical Keys for Tab Controls

	Database Interface API Changes
	New Functions for the Database Interfaces
	New Properties for the Database Interfaces
	New Commands for Database Interfaces
	Database Interface Command Changes

	Transaction Manager API Changes
	New Library Functions for the Transaction Manager
	New Properties for the Transaction Manager
	Property Changes for the Transaction Manager
	New Commands for the Transaction Manager
	New Events in Transaction Manager Processing

	Web Application API Changes
	Browser Events
	New Library Functions for Web Applications
	New Properties for Web Applications
	Property Changes for Web Applications

	Dockable Toolbars
	New Properties for Dockable Toolbars

	Other API Changes
	New Properties
	Property Changes
	Application Properties
	Text Selection
	New Library Functions
	Changed or Discontinued Functions

	Database Interface
	Improved SQL Processing
	Specifying Variables in DECLARE CONNECTION
	Support for Long Filenames

	Transaction Manager
	Transaction Manager Common Model

	Web Application Development
	Initialization File Changes
	Initialization File Settings
	One Initialization File

	New Web Applications
	HTML Template Changes
	New Syntax for Specifying Variables
	Web Entry Processing
	Caching Application State
	Requester Executables
	Windows Servers
	Running Java Servlets
	Determining Mouse Location
	Widget Positioning in Web Applications
	Errors in Web Applications
	Web Gallery Samples
	Web Wizard Defaults
	Naming Conventions

	Reports
	Converting ReportWriter 6 Reports
	Modifying Reports from Previous Versions
	Setting Widget Size
	Printing PostScript
	Report Utilities

	Upgrading to JetNet
	Editor
	Screen Wizard
	Menu Bar Editor
	Styles Editor
	JIF Editor
	Debugger
	Service Components
	JIF
	Administration Utilities
	Environment Variables
	Database Error Handling
	Team Development
	Transaction Model
	progserv

	JetNet and Oracle Tuxedo Event Handling
	API Changes for JetNet and Oracle Tuxedo Applications
	JPL Commands
	Library Functions
	Properties

	Migrating a JAM Transaction Manager Application
	Upgrading an Existing Application

	Upgrading to Panther for IBM WebSphere
	Documentation
	Documentation Titles
	Online Documentation
	Documentation Changes and Corrections
	Quick Reference Changes and Corrections
	Configuration
	Functions
	Properties
	Utilities

	2 Using the JAM Upgrade Utility
	Running JAM to Panther

	3 Upgrading to Oracle Tuxedo from JetNet
	4 Upgrading to Panther from JAM 5
	Upgrading From JAM 5
	Upgrade Paths
	Migration
	Utility Conversion
	Full Upgrade
	Which Path is Best for My Application?

	Upgrading the Operating Environment
	Update Your Configuration Files
	Update Your GUI Resource and Initialization Files
	Color Aliases

	Update Your Data Dictionary into a Repository and LDB
	LDB Initialization

	Update Your Main Routines
	Update Your Function List
	Automatic Dereferencing

	Eliminate the Use of Release 4 Library Functions

	Converting an Application
	The Conversion Toolkit
	When a Feature is Missing...
	Screens and Related Topics
	Biting the Bullet
	Running Your Application for the First Time
	The Bottom Line

	The f5upg Utility
	Invoking f5upg
	Arguments and Options

	General Behavior
	Verbosity Level
	Graphics Conversion
	Keep JPL Extensions Around
	Allow Output File to Overwrite an Existing File
	Assuming System Colors or Scheme by Default
	Conversion of Menu Arrays to List Boxes
	Conversion of Borders
	Conversion of Onscreen Control Fields
	Conversion of Keyset Designations
	Protected Field Heuristics
	Release 5 Widgets

	The dd5upg Utility
	Arguments and Options
	Description

	The m2asc Utility
	Arguments and Options
	Description

	The dd2rec Utility
	Arguments and Options
	Description

	5 Conversion Summary from JAM 5 to Panther
	All Applications
	GUI Applications
	Character Applications

	A JAM Documentation: Alternative Scrolling
	Panther Interaction with Scrolling Drivers
	Installation
	Scroll Driver Interface
	The altsc_t Structure
	Return Values
	Scroll Driver Action Codes

	Scrolling Driver Example

	B JAM Documentation: Internal I/O Processing
	Processing Keyboard Input
	Logical Keys
	Key Translation
	With Timing Interval Set

	Key Routing
	Value Greater Than 0x1ff
	Value Between 0x01 and 0x1ff
	Changing Key Actions at Runtime

	Processing Terminal Output
	How Panther Handles Output
	Graphics Characters and Alternate Character Sets

	C Obsolete Functions
	sm_com_call_method
	sm_com_get_prop
	sm_com_log
	sm_com_obj_create
	sm_com_obj_destroy
	sm_com_onerror
	sm_com_raise_exception
	sm_com_receive_args
	sm_com_return_args
	sm_com_set_prop

	Index

