
TABLE OF
CONTENTS
Contents:

About This Document

1. Introduction to JDB
Using JDB ... 1-1

JDB Executables and Utilities ... 1-2

Unsupported Features.. 1-3

See Also... 1-3

2. Introduction to Databases
Structure of a Relational Database .. 2-1

Designing Your Database.. 2-7

3. Introduction to SQL
SQL Statements ... 3-2

SQL Concepts.. 3-7

Executing SQL .. 3-10

See Also... 3-12

4. Database Elements
Naming Conventions ... 4-1

Data Types... 4-2

System Tables.. 4-3

Journal Files... 4-6

Configuration... 4-6

5. Using JISQL
Starting JISQL... 5-1

Creating a New Database .. 5-4

Creating Database Tables .. 5-5

Defining Keys for a Database Table ... 5-8
JDB SQL Reference 1

Maintaining a Database ... 5-16

Running SQL Interactively.. 5-18

6. SQL Reference
Reference Organization ... 6-1

Aggregate Functions... 6-4

BETWEEN Predicate ... 6-7

CREATE DATABASE Statement ... 6-9

CREATE TABLE Statement.. 6-11

Data Types.. 6-15

DELETE Statement .. 6-18

DROP DATABASE Statement .. 6-19

DROP TABLE Statement... 6-20

GROUP BY Clause .. 6-21

HAVING Clause .. 6-23

INSERT Statement ... 6-25

Joins.. 6-27

LIKE Predicate ... 6-33

Null Values... 6-35

Operators .. 6-37

ORDER BY Clause .. 6-42

SELECT Statement .. 6-44

Subqueries .. 6-48

UPDATE Statement ... 6-52

WHERE Clause .. 6-54

SQL Syntax Summary.. 6-58

A. JDB Utilities
isql ... A-2

jdbroll .. A-5

mksql ... A-6

tbldata .. A-7

B. JDB-Specific Error Messages
Error Message Listing .. B-1
2 JDB SQL Reference

C. Keywords in JDB

D. Videobiz Database
Videobiz Schema.. D-1

Index
JDB SQL Reference 3

4 JDB SQL Reference

Panther
JDB SQL Reference

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
Documentation Website ..7

How to Print the Document...8

Documentation Conventions ...8

Contact Us! ..10

1. Introduction to JDB
Using JDB ... 1-1

JDB Executables and Utilities ... 1-2

Unsupported Features.. 1-3

See Also... 1-3

2. Introduction to Databases
Structure of a Relational Database .. 2-1

Tables ... 2-2

Columns ... 2-3

Entering Data .. 2-3

Rows... 2-4

Primary Keys.. 2-4

Foreign Keys .. 2-6

Naming Database Tables and Columns ... 2-6

Designing Your Database.. 2-7
JDB SQL Reference 1

3. Introduction to SQL
SQL Statements ... 3-2

SELECT Statement .. 3-2

WHERE Clause... 3-4

UPDATE Statement ... 3-5

WHERE Clause... 3-5

INSERT Statement ... 3-5

DELETE Statement .. 3-6

SQL Concepts.. 3-7

Multi-Table Queries ... 3-7

Correlation Names.. 3-8

Aggregate Functions... 3-8

Transactions.. 3-9

Implementation in a JDB Database... 3-9

Executing SQL .. 3-10

Using JISQL ... 3-11

Using JPL ... 3-11

See Also... 3-12

4. Database Elements
Naming Conventions ... 4-1

Databases.. 4-1

Identifiers.. 4-2

Data Types ... 4-2

System Tables.. 4-3

Journal Files... 4-6

Configuration... 4-6

Specifying an Editor ... 4-6

Error Messages ... 4-6

Connecting to a JDB Database ... 4-7

5. Using JISQL
Starting JISQL ... 5-1

JDB Database Connections .. 5-3

To connect to an existing database:... 5-3
2 JDB SQL Reference

To connect to a new database: .. 5-3

To disconnect from the current database: ... 5-3

Executing Operating System Commands from JISQL 5-4

To execute an operating system command from JISQL: 5-4

Creating a New Database .. 5-4

Creating Database Tables .. 5-5

To create a database table: ... 5-5

Defining Columns in a Database Table.. 5-7

To add a new column to the table you are creating: 5-7

To change or delete a column's definition: ... 5-7

To change the order of columns in the table:...................................... 5-8

Defining Keys for a Database Table ... 5-8

Primary Key and Unique Keys... 5-9

To add a new primary key or unique key: .. 5-10

To modify an existing primary key or unique key:........................... 5-11

To delete an existing primary or unique key: 5-11

Foreign Keys .. 5-11

To add a new foreign key:... 5-13

To modify an existing foreign key:... 5-15

To delete an existing foreign key:... 5-15

Maintaining a Database ... 5-16

Displaying Database and Table Definitions... 5-16

Dropping Tables... 5-17

Dropping a Database .. 5-17

Running SQL Interactively.. 5-18

Writing SQL Scripts... 5-18

To enter a SQL script: ... 5-19

To edit a SQL script: ... 5-19

To save SQL script displayed in the scripting area:.......................... 5-20

To clear the scripting area:.. 5-20

Script Format and Syntax... 5-20

JISQL Macro Commands... 5-21

Executing SQL Scripts ... 5-22

Output and Execution Options .. 5-22

To stop execution of a SQL script: ... 5-23
JDB SQL Reference 3

Capturing and Displaying Query Results ... 5-23

To save the output to a file: ... 5-24

To display select sets on the screen:.. 5-24

Creating and Viewing the Log File .. 5-25

How to Begin a Log Session ... 5-26

To view the information stored in the log file for the current session:
5-26

To end a log session: ... 5-26

Sample Log File ... 5-26

6. SQL Reference
Reference Organization ... 6-1

SQL Statements... 6-1

SQL Clauses and Keywords.. 6-2

SQL Concepts ... 6-2

Notation Conventions... 6-2

Aggregate Functions... 6-4

BETWEEN Predicate ... 6-7

CREATE DATABASE Statement ... 6-9

CREATE TABLE Statement.. 6-11

Data Types.. 6-15

DELETE Statement .. 6-18

DROP DATABASE Statement .. 6-19

DROP TABLE Statement... 6-20

GROUP BY Clause .. 6-21

HAVING Clause .. 6-23

INSERT Statement ... 6-25

Joins.. 6-27

LIKE Predicate ... 6-33

Null Values... 6-35

Operators .. 6-37

ORDER BY Clause .. 6-42

SELECT Statement .. 6-44

Subqueries .. 6-48

UPDATE Statement ... 6-52
4 JDB SQL Reference

WHERE Clause.. 6-54
Search Conditions 54

SQL Syntax Summary.. 6-58

A. JDB Utilities
isql ... A-2

jdbroll .. A-5

mksql ... A-6

tbldata .. A-7

B. JDB-Specific Error Messages
Error Message Listing ...B-1

C. Keywords in JDB

D. Videobiz Database
Videobiz Schema.. D-1

Index
JDB SQL Reference 5

6 JDB SQL Reference

PREFACE
About This
Document

JDB is a single-user relational database included with Panther. This guide provides
information about relational databases in general, and about JDB specifically,
including JISQL, the interactive SQL utility provided with Panther that lets you
execute SQL.

For a description of relational databases, refer to Chapter 2, “Introduction to
Databases.”

For information on building SQL statements, refer to Chapter 3, “Introduction to
SQL.”

For information on JISQL, refer to Chapter 5, “Using JISQL.”

For complete information on SQL syntax in JDB, refer to Chapter 6, “SQL
Reference.”

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.
JDB SQL Reference 7

How to Print the Document
Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.

How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT
8 About This Document

https://get.adobe.com/reader/otherversions/
http://docs.prolifics.com/panther/

Documentation Conventions
boldface text Indicates terms defined in the glossary.

monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
JDB SQL Reference 9

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
10 About This Document

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20JDB%20SQL%20Reference

Contact Us!
! A description of the problem and the content of pertinent error messages
JDB SQL Reference 11

Contact Us!
12 About This Document

CHAPTER
1 Introduction to JDB

JDB is a single-user Relational Database Management System (RDBMS). You can use
it for building application prototypes; design your application and test data entry
without requiring an external database. You can take full advantage of JPL procedures
using standard SQL syntax as well as the transaction manager to access your JDB
database information.

With JDB, you can:

! Create a database using JDB.

! Create menus and screens for an application using Panther.

! Enter data into your JDB database using Panther's database driver for JDB.

! Generate reports of information in your database.

! Test the entire application, including data entry. You can virtually do all you
need to do with JDB that you would do with a standard database like Sybase or
Oracle. You can also use the interactive SQL editor JISQL to gain direct access
to the JDB data using standard SQL commands.

Using JDB

To use JDB, you build the database, connect to the database via the editor and import
the database tables to a repository. Then you can begin building screens with the editor
or screen wizard using the database-derived widgets in your repository.
JDB SQL Reference 1-1

JDB Executables and Utilities
All of the logic associated with the application resides either on your application
screens, widgets, or service components–so when you connect to the actual database
that your application will use, the application will work just as you prototyped it.

JDB Executables and Utilities

By default, your Panther executables are linked to JDB. For details on building an
executable, refer to page 42-1 in the Developer's Guide.

The utilities you use to build and manipulate your JDB database are located in the
specified directory of your Panther installation and are listed in Table 1.

Under Windows, the graphical interactive SQL editor can be accessed via the JISQL
icon (or under the Panther Start Menu option).

Table 1-1 JDB-related utilities

Utility Found in Description

isql $SMBASE/jdb/bin Interactive SQL editor

jdbroll $SMBASE/jdb/bin Run log files

jisql $SMBASE/util Graphical interactive SQL editor

mksql $SMBASE/jdb/bin Translate JDB database into its related
CREATE TABLE and INSERT statements

tbldata $SMBASE/jdb/bin Imports/exports database information
1-2 Introduction to JDB

Unsupported Features
Unsupported Features

The following database features are not supported by JDB:

! Concurrency controls/locking

! Indexes

! Outer joins

! Stored procedures

! Triggers

! Views

See Also

Refer to page 5-1 for more information on JISQL. If you already have data that you
want to enter into a JDB database, a utility is available to transfer data into a database
table from an ASCII text file. Refer to page A-1 for more information on JDB utilities.
JDB SQL Reference 1-3

See Also
1-4 Introduction to JDB

CHAPTER
2 Introduction to
Databases

A database is a collection of information organized into different areas. Generally, a
database covers information about a specific subject. For example, a company might
have one database for personnel and another database for customer orders.

What sets a database system apart from other computer applications is that a structure
exists which organizes the information. This structure allows each piece of information
to be tagged. In some database systems, this structure is called the data model or
database schema. Since there is a structure, the information stored in a database can be
easily accessed for display to a screen or for printing in a report.

Structure of a Relational Database

To describe the structure of JDB, you need to have a basic understanding of relational
databases as a whole.
JDB SQL Reference 2-1

Structure of a Relational Database
Tables

JDB, like other relational database management systems, organizes its information
into tables, which consist of a row and column arrangement of data values. Generally,
a database table contains a subset of related information about the main subject.

For example, if inventory is the main subject for your database, you might have tables
for products, orders, and suppliers.

The two-tier sample application provided with Panther uses a JDB database called
videobiz. This database was designed for a video rental store, so it needs information
about customers, video titles, and video rentals. Table 2-1 lists the database tables in
the videobiz database.

Table 2-1 Videobiz database tables

Table Name Description

customers Address, phone number and membership information for each customer

titles Title, director, length, rating and price category for each video.

title_dscr Description of each video

tapes Status of each copy of a video

pricecats Listing of the various price categories

actors Actors appearing in the videos

roles Roles associated with each video

rentals Video title, customer, and date information for each video rental

codes Listing of the various codes used in the database

users Login names for users of the database

flag Yes/No flag used in the VideoBiz application
2-2 Introduction to Databases

Structure of a Relational Database
Columns

Each database table is divided into columns and rows. The columns are the various
subcategories of the table, each containing a piece of the table information. The
columns in the titles table, described in Table 2-2, have information about a video
title, such as the director, the type of video, and the running time.

Entering Data

When you start to enter data into your database tables, you will not always have a value
for every column. In those cases, the value of the column is said to be NULL. However,
you must enter a value for your primary key columns and any column specified as NOT
NULL. Those columns cannot have null values.

Null values are used when the column value is unknown or unavailable. A null value
is not synonymous with an entry of zero or with a blank.

Table 2-2 Titles table

Column Name Description Status

title_id Identification code for the video Primary key

name Name of the video

genre_code Code describing the video type

dir_last_name Director's last name

dir_first_name Director's first name

film_minutes Length of the video

rating_code Rating code

release_date Year the original film/video was released

pricecat Price category used when this video is rented Foreign key
JDB SQL Reference 2-3

Structure of a Relational Database
Rows

When you insert information into a database table, you can enter a value for each
column. Each entry is called a row. In some database systems, the equivalent of a
column is called a field and the equivalent of a row is called a record.

Figure 2-1 The columns and rows associated with the titles table.

Each row of data in a JDB database table can be up to 1K. For more information, refer
to page 6-12.

Primary Keys

Every table in a well-designed relational database should have a primary key. A
primary key is the column, or set of columns, that uniquely identifies a row. Because
the rows of a relational database are unordered, the primary key definition lets you
select a particular row of information.

JDB does not enforce unique entries for the primary key columns. So, while you will
not receive an error, you should define the primary key columns when you create your
database tables because:

! The primary key definitions are assigned to table view properties when you
import database tables to the repository.

! The transaction manager gives an error message if you attempt to insert a
duplicate primary key or update the primary key column to a duplicate value.

! If you transfer your database schema to another database engine, the primary
key columns will, no doubt, need to be defined for that engine.
2-4 Introduction to Databases

Structure of a Relational Database
JDB stores the primary key information. To define primary key information, choose
which column or columns are the primary keys when you create your database tables.
In the titles table, the primary key is the title_id column, therefore, a unique
value should be applied for each row in that column.

In some database tables, a combination of two columns must make up the unique
value. For example, the tapes table contains a title_id column, but a store can have
several copies of a video title. Therefore, a combination of the title_id and
copy_num columns must be used as the primary key of the tapes table. Every tape in
the table is guaranteed to have a unique combination of data values in these two
columns.

No two rows of a table with a primary key are duplicated. Table 2-3 lists the columns
associated with the tapes table.

Table 2-3 Tapes table

Column Name Description Status

title_id Title Primary key, Foreign
key

copy_num Copy number for this tape. Primary key

status Code detailing whether the tape is available.

times_rented Number of times this copy has been rented.
JDB SQL Reference 2-5

Structure of a Relational Database
Foreign Keys

If a column in a database table matches the primary key in another table, the column
is referred to as a foreign key. Any value entered into a foreign key column must match
a value previously entered into the primary key column in the other table. For example,
the title_id column is a foreign key in the tapes table. Therefore, any value entered
into the title_id column of the tapes table should already exist as a value in the
titles table.

Naming Database Tables and Columns

In JDB, names for tables and columns are one-word descriptions consisting of letters,
numbers and underscores. Names can be up to 31 characters in length. Tables names
must be unique within the database. Column names must be unique within the table.

When you create columns in a table, you tell the database whether the data in the
column are character strings, dates, or numbers. For numbers, you specify what type
can be entered–integer or float, for example. For character strings, specify the
maximum length. The maximum allowable length for a character string column is 255.
2-6 Introduction to Databases

Designing Your Database
Notes: Do not use JDB keywords as a name of a table or column; refer to page C-1
for a list of keywords.

Designing Your Database

The design process for building a database follows these general steps:

1. Choose the main subject.
Decide the main focus of the database, for example, customer orders, inventory,
or personnel. Generally, the database name indicates its main purpose. The
two-tier sample application included with Panther is for a video rental store and is
called videobiz.

2. Build your database model.
Identify the database tables and their columns. Determine the main subsets of
information; these correspond to the database tables. Then, decide which pieces
of information are to be stored in each table; these pieces become the columns in
each table.

3. Determine where common data values exist and eliminate duplicate data entry.
Although a database table can contain all the information that logically relates to
a subset of your database, this is not always the case. The database table should
be designed to avoid duplicate data entry wherever possible. For example, in the
sample application, information about video tapes is divided into two separate
tables: titles and tapes. The titles table contains the information about the video
title–its name, director, length, etc. The tapes table contains the information
about each copy of the video–the copy number, status code, and the number of
times this copy has been rented. By having two tables, you do not have to
reenter the general video information, like the director and the length, for each
copy of the video. You simply enter the title_id.
If you split the information into two or more tables, determine which column
will be found in all of the tables. In the sample application, the title_id
column is found in several tables. This common data value in different tables
provides the relationship needed to join tables together in order to combine the
information.
JDB SQL Reference 2-7

Designing Your Database
In addition, you can also combine data from two tables into a single database
table. For example, in the sample application, instead of having separate
database tables, one for credit card codes and another for genre codes, the codes
are combined into a single table of codes (called codes) used by the application.
Entries into the columns code_type, code, and dscr describe and identify each
specific code.

4. Define unique entries.
For each table, determine which column or columns comprise the primary key,
uniquely identifying each row. Since the titles table has more than one row with
an entry of Henry V in the name column, the following statement affects both
rows:

DELETE FROM titles WHERE name = 'Henry V';

5. For the titles table, the title_id column is used to uniquely identify each
row.

To uniquely identify each copy of a video tape, the tapes table uses the
title_id and copy_num columns to make the primary key. The following
statement affects all rows with a value of 1345 in the title_id column:

DELETE FROM tapes WHERE title_id = 1345;

To change data about one copy of the tape, you need to list both the title_id
and the copy_num columns in the WHERE clause.

DELETE FROM tapes WHERE title_id = 1345 AND copy_num = 4;

6. Chart the tables and their relationships.

Since information is stored in tables and the tables do not have any inherent
relationship, it is possible to update a column in one table and not update the
column in another table even if both columns correspond to the same value. To
preserve the integrity of the database, it helps to chart the relationships between
the tables. Then, if you update the information in one table, the chart illustrates
if, and which, tables also need to be updated.

Figure 2-2 is a diagram that describes the videobiz database tables and their
relationships to one another. Each table is represented in a box. The table name
and primary key columns are listed in the top of each box. The lines between
the boxes illustrate the foreign key definitions.
2-8 Introduction to Databases

Designing Your Database
Figure 2-2 Diagram of the videobiz database.
JDB SQL Reference 2-9

Designing Your Database
2-10 Introduction to Databases

CHAPTER
3 Introduction to SQL

SQL (Structured Query Language) is the database procedure language used by
relational database management systems. It was developed by IBM in the early 1970s
and then adapted by other software vendors. The American National Standards
Institute (ANSI) issued a standard for SQL in 1986 and again in 1992. Although this
standard defines a basic set of features that is common to all versions of SQL, each
vendor also includes some extensions to SQL in their database products; these
extensions are implemented differently.

The scope of SQL gives you complete control over your database operations. There are
commands for database definition:

! CREATE DATABASE—Creates a database

! CREATE TABLE—Adds a table to the database

! DROP TABLE—Deletes a table from the database

There are also commands to access and update the data:

! SELECT—Retrieves information from the database

! INSERT—Adds information to the database

! UPDATE—Updates information in the database

! DELETE—Deletes information from the database

This chapter contains instructions for using these SQL commands in order to retrieve
information from an existing database and to update the database information.
JDB SQL Reference 3-1

SQL Statements
SQL Statements

In SQL, commands are called statements and consist of one or more keywords
followed by various expressions and clauses. The keywords, used at the beginning of
the statement, describe the major function of the statement. In addition to the
keywords, most statements also reference at least one database table by name. Since
the table is the main storage container for information in a relational database, the
tables to be accessed are included in some clause of the statement.

SELECT Statement

The SELECT statement retrieves information from database tables and returns it to you
in the form of query results.

SELECT * FROM titles;

In this example, the FROM clause lists the database tables from which data will be
retrieved. The * tells the database to fetch all of the columns from the tables specified
in the FROM clause. Therefore, the statement selects all the columns and all the rows
from the database table titles.

The collection of rows retrieved from the database is called a result set.

To fetch data from just some of the columns as opposed to all columns, replace the
asterisk (*) with a list of column names, each name separated from the next by a
comma. This is called the select list.
3-2 Introduction to SQL

SQL Statements
SELECT title_id, name FROM titles;

Generally, the select list consists of a list of items separated by commas. The select list
can include:

! Column names associated with the table or tables in the FROM clause.

! An expression which can be a constant, column name, function, subquery, or
any combination of these connected by arithmetic and bitwise operators.

The following statement uses the arithmetic operator / to calculate the running time of
the video in hours instead of minutes:

SELECT title_id, name, film_minutes / 60 FROM titles;

SQL also provides aggregate functions that compute sums, minimum values, and other
such operations over all selected rows. The following statement uses the aggregate
function COUNT to determine the number of rows in the titles table.

SELECT COUNT(title_id) FROM titles;
JDB SQL Reference 3-3

SQL Statements
WHERE Clause

To select specific rows in a database table, add a WHERE clause to the SELECT
statement:

SELECT title_id, name, film_minutes FROM titles
WHERE name = 'Henry V';

The WHERE clause ensures that the result set includes only certain rows of data. In this
example, the results include information for all the videos having the name Henry V.

The WHERE clause can also specify a search condition to further refine the query. For
example, the following SELECT statement uses the logical operator AND.

SELECT title_id, name, film_minutes FROM titles
WHERE name = 'Henry V' AND dir_last_name = 'Olivier';

The result set contains the information for the version of Henry V directed by Sir
Laurence Olivier.

There are a variety of search conditions and qualifying clauses which let you refine
your database queries. For example, they retrieve:

! Rows with column values in a certain range (BETWEEN)

! Rows containing a certain pattern (LIKE)

! Rows in ascending or descending order (ASC, DESC)
3-4 Introduction to SQL

SQL Statements
! Rows meeting search conditions listed in a subquery (IN, EXISTS)

! Summary values on specific columns (Aggregate Functions)

Refer to Chapter 6, “SQL Reference,” for detailed information on each of these SQL
elements.

UPDATE Statement

The UPDATE statement lets you to modify values in columns belonging to a specified
database table.

UPDATE titles SET pricecat = 'G' WHERE title_id = 62;

The first keyword, UPDATE, defines the purpose of the statement. It is followed by the
table name. The SET clause specifies which columns are to be updated and defines the
new values for those columns. The WHERE clause specifies which rows are to be
updated.

WHERE Clause

If a WHERE clause is not included in the UPDATE statement, every row in the table gets
updated. The WHERE clause must include all the column specifications you need in
order to uniquely identify the rows to be updated. The following statement, without the
copy number, updates all copies of this video title in the tapes table:

UPDATE tapes SET status = 'A' WHERE title_id = 62;

To update a single row in the tapes table, you need to provide the primary key, which
in tapes table is a combination of the title_id and copy_num columns.

UPDATE tapes SET status = 'A' WHERE title_id = 62 AND copy_num = 2;

INSERT Statement

The INSERT statement adds new rows of data to a database table. The syntax can vary
depending on whether you insert a value into every column or only into selected
columns in the table.

INSERT INTO tapes VALUES (62, 2, 'A', 0);
JDB SQL Reference 3-5

SQL Statements
This statement inserts a new row to the tapes table; the VALUES clause specifies the data
values for every column in the table. An INSERT statement of this type, must provide
values for every column in the order in used by the database table. Or, you can include
column list in the statement which specifies which columns should receive values and
in which order. Therefore, you are not dependent on knowing how the columns are
listed in a particular database table. The following statement includes a column list and
the results are identical to the previous INSERT statement:

INSERT INTO tapes
(title_id, copy_num, status, times_rented)
VALUES (62, 2, 'A', 0);

With a column list, you do not have to enter a column value for each column. You can
list only the columns where you plan to make an entry.

INSERT INTO tapes (title_id, copy_num, status) VALUES (62, 2,
'A');

You can also update the columns in any order; however, the order of the column list
and the order of the value list must match.

INSERT INTO tapes (status, title_id, copy_num) VALUES ('A', 62,
2);

DELETE Statement

The DELETE statement removes selected rows of data from a database table. The FROM
clause names the table to be modified. The WHERE clause specifies exactly which rows
of the table are to be deleted. If you do not include a WHERE clause, the DELETE
statement deletes every row in the table.

DELETE FROM titles WHERE title_id = 62;

The WHERE clause needs to include all the necessary column specifications to ensure
that only certain rows are deleted. To delete a single row, use the row's primary key to
identify the row; remember that a primary key can be a combination of more than one
column.

The following statement deletes a single row from the tapes table by specifying values
for both the title_id and copy_num columns.

DELETE FROM tapes WHERE title_id = 62AND copy_num = 2;
3-6 Introduction to SQL

SQL Concepts
SQL Concepts

Multi-Table Queries

The ability to select data from two or more database tables is one of the great
advantages of a relational database. SQL lets you compare any pair or pairs of columns
from two or more tables by matching the contents of the related columns.

You can join the two tables, tapes and titles, by equating the title_id column in the
titles table with the title_id column in the tapes table. The WHERE clause specifies
the relationship.

SELECT * FROM titles, tapes
WHERE titles.title_id = tapes.title_id;

The following SELECT statement joins two tables and the result set provides you with
a list of videos that are available (have status = A) for rental.

SELECT tapes.title_id, tapes.copy_num, titles.name

FROM titles, tapes
WHERE titles.title_id = tapes.title_id
JDB SQL Reference 3-7

SQL Concepts
AND tapes.status = 'A';

For more information on different types of joins and on joining multiple tables, refer
to page 6-27.

Correlation Names

When using joins, instead of using the entire table name throughout the statement, you
can give the table a correlation name. The following example uses a as the correlation
name for the titles table and b as the correlation name for the tapes table.

SELECT b.title_id, b.copy_num, a.name
FROM titles a, tapes b
WHERE a.title_id = b.title_id
AND b.status = 'A';

You can also use correlation names to perform a self-join, which joins a table to itself
so that you can compare values in the same column.

Correlation names must follow the naming conventions for identifiers. They can be 31
characters in length and include letters, numbers, and underscores.

Aggregate Functions

Aggregate functions calculate different types of summary information on rows in a
database table including:
3-8 Introduction to SQL

SQL Concepts
! Sums of numeric columns.

! Average, maximum and minimum values in columns.

! Number of rows containing a specific column value.

For more information on aggregate functions, refer to page 6-4.

Transactions

Transactions are units of work on a database. A transaction consists of a series of
database statements to be completed as a unit. If the unit is unable to be completed, the
statements can be rolled back, restoring the database to its prior state before the
transaction started. This ensures the integrity of the database. For example, in the
videobiz database, each new entry in the titles table also needs entries in the tapes table,
and possibly in the actors and roles tables. All these entries could be grouped into one
transaction so that you know the entry is complete.

Implementation in a JDB Database

Database engines implement transactions differently. In JDB, after you declare a
connection, a transaction automatically starts on that connection. Additional
transactions can then be defined using commit and rollback commands.

The commit command saves the changes to the database. The rollback command
undoes any changes made to the database since the start of the transaction. The
execution of either commit or rollback starts a new transaction.

Using the videobiz database example, a customer comes to the front desk to rent a
video. When the clerk checks out the video, a transaction is started to perform the
following actions:

! Insert the rental information into the rentals table.

! Update information about the customer's rentals in the customers table.

! Update information about the video tape status in the tapes table.

If any of the statements fail, the transaction must be rolled back. If all of the statements
execute without any errors, the transaction can be committed.
JDB SQL Reference 3-9

Executing SQL
JDB performs an automatic commit when you leave an isql or JISQL session. You
must issue a rollback command if you do not want to save your database changes.

The following statements from a JISQL script illustrate the sample rental transaction
which rents a video to a customer:

insert into rentals
(cust_id, title_id, copy_num, rental_date, due_back,
return_date, price, late_fee, amount_paid, rental_status,
rental_comment, modified_date, modified_by)
values
(3, 69, 2, '1993/10/29 19:56:00', '1993/11/01 00:00:00',
NULL, 3.50, 1.00, 3.50, 'C', NULL, '1993/10/29 19:56:00',
'jenny');

update customers set num_rentals = 75, rent_amount = 201.50
where cust_id = 3;

update tapes set status = 'O' where title_id = 69
and copy_num = 2;

$COMMIT;

Executing SQL

In Panther, you can execute SQL commands:

! By using JISQL

! Via JPL procedures

! Through the transaction manager

The examples in this book use the JISQL syntax unless otherwise indicated.
3-10 Introduction to SQL

Executing SQL
Using JISQL

To use JISQL, start the JISQL utility and connect to a database. In the SQL scripting
area, enter the text of the SQL statement followed by the termination character, a
semicolon (;), to end the statement. Any date values or character strings must be
enclosed in single quotation marks. For example:

SELECT title_id, name, dir_first_name, dir_last_name

FROM titles

WHERE name = 'Henry V';

retrieves the following rows:

Refer to Chapter 5, “Using JISQL,” for more information on using the JISQL utility.

Using JPL

The same SQL command in a JPL procedure named query1 would look like this:

proc query1
dbms query SELECT title_id, name, dir_first_name, \

dir_last_name FROM titles \
WHERE name = 'Henry V'

return 0

The JPL continuation character (\) is needed whenever a command is not completed
on one line. A termination character is not required at the end of the statement since it
is added automatically by Panther's database interface to JDB.
JDB SQL Reference 3-11

See Also
See Also

For more information on writing JPL, refer to page 19-1 in the Developer's Guide.

For information on mapping data to Panther variables, refer to page 29-3 in the
Developer's Guide.
3-12 Introduction to SQL

CHAPTER
4 Database Elements

This chapter describes JDB-specific elements, for example, the database and database
column naming conventions and data types that are supported in a JDB database. The
information about your JDB database and tables, such as its primary and foreign key
specification, are stored in system tables which are automatically created.

Also discussed are:

! Journal files which store information about database activities.

! Configuration variables for setting up the JISQL (or isql) environment.

Naming Conventions

Databases

Each database is stored as an operating system file. Therefore, the name for the
database must follow operating system naming conventions. If the database name
contains characters that are not alphanumeric, the name specified in the CREATE
DATABASE statement must be enclosed in single quotation marks.

You can create databases when you are connected to @system or when you are
connected to another database. For more information on the CREATE DATABASE
statement, refer to page 6-9.
JDB SQL Reference 4-1

Data Types
Identifiers

Identifiers, such as table names and column names, must start with a letter, but they
can contain letters, numbers, and underscores in any combination. They cannot contain
dollar signs or periods. The maximum length of an identifier is 31 characters. If more
than 31 characters are entered, the value is truncated.

Table names must be unique within the database. Each column name in a database
table must be unique within that table.

Since column names can be duplicated in different tables, therefore, some statements
might require that you uniquely identify a column name by including its database table
name. For example, in the sample database, the last_name column appears in more
than one table. To specify the last_name column in the actors table, use the following
syntax:actors.last_name

You cannot use any of the JDB keywords as an identifier. For a list of the keywords,
refer to page C-1.

JDB is case insensitive and stores the identifiers in lower case regardless of which case
is used to enter them. If you enter address1, ADDRESS1, or Address1, JDB stores the
column as address1.

Data Types

Table 4-1 lists the data types available in JDB:

Table 4-1 Data types in JDB

Data Type Description

INT Numeric value (stored as LONG)

LONG Numeric value

FLOAT Numeric value
4-2 Database Elements

System Tables
For more information on data types, refer to page 6-15.

System Tables

When you create a new database, five system tables are automatically created that
contain information (such as column names and primary/foreign key specifications)
about the database itself. You can query for information stored in these tables just like
any other database table; however, you can not edit these tables.

The systabs system table contains information about each database table.

The syscols system table contains information about the columns in each database
table.

DOUBLE Numeric value

DATETIME Date and time value–format

yyyy/mm/dd hh:mm:ss

CHAR Character string

Table 4-1 Data types in JDB (Continued)

Data Type Description

Table 4-2 Columns belonging to systabs system table

Column Name Description

tname Table name

ttype Table type

ncols Number of columns

seek Column for internal use
JDB SQL Reference 4-3

System Tables
The syskeys system table specifies the primary and foreign keys.

Table 4-3 Columns belonging to syscols system table

Column Name Description

tname Table name

cname Column name

ctype Column type–numeric values correspond to the following data
types:

101 INT (stored as LONG in the current release)
102 LONG

103 FLOAT

104 DOUBLE

105 DATETIME

106 CHAR

1125 INT, NOT NULL (stored as LONG, NOT NULL)

1126 LONG, NOT NULL

1127 FLOAT, NOT NULL

1128 DOUBLE, NOT NULL

1129 DATETIME, NOT NULL

1130 CHAR, NOT NULL

length Column length

Table 4-4 Columns belonging to syskeys system table

Column Name Description

tname Table name

keyno Number assigned to the key column of the table–primary key is
always 1

resolved Column for internal use

hasreflist Indicator specifying whether a reference list is included in the
REFERENCES clause of the CREATE TABLE statement
4-4 Database Elements

System Tables
The syskeycols system table contains information about each primary and foreign key
column.

The sysrkeycols system table contains information about the columns listed in the
REFERENCES clause of a CREATE TABLE statement.

rtname Name of the database table specified in the REFERENCES clause of
the CREATE TABLE statement

keytype Indicator specifying primary key (P), foreign key (F), or unique
entry (U)

Table 4-5 Columns belonging to syskeycols system table

Column Name Description

tname Table name

keyno Number assigned to the key column in syskeys

position Order of the column in a composite key, if applicable

cname Column name

Table 4-6 Columns belonging to sysrkeycols system table

Column Name Description

tname Table name

keyno Number assigned to the key column in syskeys

position Order of the column in a composite key, if applicable

cname Column name

Table 4-4 Columns belonging to syskeys system table (Continued)

Column Name Description
JDB SQL Reference 4-5

Journal Files
Journal Files

JDB automatically creates journal files in your database directory. These files record
your actions on the current database. The current journal file is named
j1databaseName. When you start a JDB session, the current journal file is copied to
a file named j0databaseName. If the file j0databaseName already exists, its
contents are replaced. Journal files can be reinstated using the utility jdbroll.

Configuration

Specifying an Editor

The environment variables SMEDITOR or EDITOR determine which text editor is
available in JISQL or in isql. When using JISQL, the specified editor can be used to
make changes to the SQL text window. When using isql, entering the edit command
displays the last statement in the specified text editor.

Error Messages

The error messages for JDB are stored in the Panther message file. If the program has
trouble locating the error messages, check the setting of the variable SMVARS.
4-6 Database Elements

Configuration
Connecting to a JDB Database

If you place your JDB database in the application directory or in one of the directories
listed in SMPATH, you do not need to specify the path in the DBMS DECLARE
CONNECTION statement.
JDB SQL Reference 4-7

Configuration
4-8 Database Elements

CHAPTER
5 Using JISQL

JISQL is a graphical tool you can use to:

! Create a JDB database

! Create database tables for a new or existing JDB database

! Display table definitions for the current database

! Write and execute interactive SQL scripts for use with your JDB databases

Starting JISQL

To start JISQL, do either of the following:

! At the command line, type:

$SMBASE/util/jisql (under UNIX)

$SMBASE\util\jisql (under Windows)

! Under Windows, choose the JDB ISQL icon.

The JDB ISQL window opens.
JDB SQL Reference 5-1

Starting JISQL
The JDB ISQL window provides an area into which you enter a SQL script. Menu
options allow you to:

! Execute SQL commands, either from the scripting area or from a file.

! Select options for executing the SQL script.

! Connect to a JDB database.

! Create a JDB database.

! Drop a JDB database.

To exit JISQL, choose File→Exit.

JDB performs an automatic COMMIT when you leave a JISQL session. Issue a
$ROLLBACK macro command if you do not want to save your database changes.
5-2 Using JISQL

Starting JISQL
JDB Database Connections

Before you can create or view database tables or perform any other database
operations, you must connect to the database. (If your SQL script includes a command
to connect to the database, you need not connect as described here before executing the
script.)

To connect to an existing database:

1. Choose Database→Connect. A file selection dialog box opens.

2. Specify the name of the database, and choose OK. The file selection dialog box
closes, and you return to the JDB ISQL window.

To connect to a new database:

When you create a new database, you must connect to it before defining any of its
tables.

! In the Create Database window, specify that you want to automatically connect
to the new database at the time it is created.

Refer to page 5-4 for instructions on creating and connecting to a new database.

To disconnect from the current database:

! Choose Database→Disconnect.

JDB performs an automatic COMMIT when you close a database connection.
Issue a $ROLLBACK macro command if you do not want to save your database
changes.

You can be connected to only one database at a time. If you connect to a database while
a previous connection is still current, JISQL automatically disconnects from the first
database before connecting to the next one.
JDB SQL Reference 5-3

Creating a New Database
Executing Operating System Commands from JISQL

To execute an operating system command from JISQL:

1. Choose Options→System Command. A dialog box opens with a field for you to
enter the command.

2. Enter the desired system command, and choose OK. The command is executed;
display output is platform-dependent.

3. Depending on the platform, if you are not returned to the JDB ISQL window
when the command has finished executing, press any key.

Creating a New Database

1. From the JDB ISQL window, choose Database→Create Database. The Create
Database dialog opens.

2. Enter the name of the database you want to create. You can choose the Browse
push button to view the names of existing files from a file browse dialog box.
When you have finished with this dialog box, choose OK to return to the Create
Database window.

3. (Optional) Select the Connect After Creation check box to automatically connect
to this database after it is created in order to create tables and enter data.
5-4 Using JISQL

Creating Database Tables
4. Choose OK.

If you selected the Connect After Creation check box, the status line message
confirms that you are connected to the database. If you did not select this check
box, the message indicates only that the database was successfully created.

Creating Database Tables

Use the JISQL graphical interface to add tables to a newly created database or to an
existing database.

To create a database table:

1. Connect to the applicable database.

2. Choose Database→Create Table. The Create Table dialog box opens.
JDB SQL Reference 5-5

Creating Database Tables
3. Enter the table name in the Table field

4. Define each column, one at a time, in the Column Definition Entry area. Refer to
page 5-7 for a more detailed explanation of column definition.

5. Specify the keys for this table. Refer to page 5-8 for information on specifying
primary, unique, and foreign keys.

6. (Optional) Choose the Preview SQL push button to display the SQL command
that JISQL will generate to create the table, as it is currently defined.
When you have finished reviewing the SQL command, choose Done to resume
in the Create Table window.

7. Choose OK to create the table you have just defined. A message is displayed
confirming that the table has been created.
5-6 Using JISQL

Creating Database Tables
To populate the table, create and run a SQL script containing the applicable INSERT
statements. For information on entering and running SQL scripts under JISQL, refer to
page 5-18.

Defining Columns in a Database Table

The Column Definition Entry area of the Create Table window allows you to add,
modify, or delete columns in the database table you are creating. In addition, the Create
Table window provides push buttons that enable you to rearrange the columns in the
table.

To add a new column to the table you are creating:

1. In the Column Definition Entry area, specify the column name and data type. For
some data types, you must also specify the length.

2. Select the NOT NULL check box if null values are not to be permitted in this
column.

Note: NULL values are not permitted in primary key columns.

3. Choose Add. Once the column is added, its position in the table is shown in the
middle portion of the Column No. field. It is also added to the column summary
for the table, displayed in the lower portion of the Create Table window.

4. Repeat the preceding steps for each column you want to define for the table.

To change or delete a column's definition:

You can modify or delete a column at any point prior to completing the table
definition.

1. Specify the applicable column by doing either of the following:

" Select its entry in the summary area of the Create Table window.

" Choose the Column No. up/down indicators in the Column Definition
Entry area; continue choosing the appropriate indicator until the desired
column definition is displayed. The column number of the current column
is shown in the middle of the Column No. field. Click on < to display the
JDB SQL Reference 5-7

Defining Keys for a Database Table
previous column, or > to display the next column. Click on |< to display
the first column in the table, or >| to display the last.

The definition for the specified column is shown in the Column Definition
Entry area.

2. Change any of the column definition parameters as desired.

Note: You cannot remove NOT NULL from a primary key column.

3. Do either of the following, depending on the desired results:

" Choose Modify to change the column definition.

" Choose Delete to remove the column from the table.

To change the order of columns in the table:

Select a column in the summary area of the Create Table window. Choose the Move
Up or Move Down push button to move it one place up or down. Continue until the
column is in the desired location.

Defining Keys for a Database Table

Push buttons in the Create Table window allow you to define primary, unique, and
foreign keys into the table. Refer to page 2-4 for an explanation of primary keys. Refer
to page 2-6 for an explanation of foreign keys.

1. Define all columns that will be keys into the table. If you are defining foreign
keys, the referenced table must have been created previously.

2. Choose the applicable push button: Primary Key, Unique Key, or Foreign Key.
The corresponding key definition window opens.

3. Create, modify, or delete the applicable key definition. Refer to page 5-9 for
instructions on using the Primary and Unique Key Definition windows. Refer to
page 5-11 for instructions on using the Foreign Key Definition window.
5-8 Using JISQL

Defining Keys for a Database Table
4. When you are done with the key definition, choose OK. You return to the Create
Table window.

If any column required for a key was not defined as NOT NULL when it was
created, JISQL makes the necessary change to the column definition and
displays an appropriate message. Acknowledge the message by choosing OK.

5. Continue creating, modifying, and deleting keys for the table as needed. You can
create a new key or modify or delete an existing key at any point prior to
completing the table definition.

Primary Key and Unique Keys

The Primary Key and Unique Key Definition windows are similar in appearance and
function. Each consists of:

! A text area showing the SQL definition generated for each key defined on the
screen. When you want to modify or delete an existing key, select it from this
area. As you create or modify a key definition, its SQL text area is updated to
reflect changes.

! Push buttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

! A Select Columns area listing the table columns not used in the selected key.

! A Key Columns area listing, in order, the table columns belonging to the
selected key.

! Push buttons (Add→ and ←Remove) to add a selected column in the Select
Columns area to the key and to remove a selected column in the Key Columns
area from the key.

! Push buttons (Move Up and Move Down) to rearrange the order of columns in
the selected key.

From the Create Table window, choose the Primary Key button to open the Primary
Key Definition window, or choose Unique Key to open the Unique Key Definition
window.

When you are finished working in the Primary Key or Unique Key Definition window,
choose OK to save your changes and return to the Create Table window; or choose
Cancel to return without saving your changes.
JDB SQL Reference 5-9

Defining Keys for a Database Table
Once the applicable key definition window is open, you can add, modify, or delete
keys as follows:

To add a new primary key or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), choose
Add New. All the table columns are listed in the Select Columns area. If a primary
key is already defined for the table, the Add New push button is not available,
since only one primary key statement is permitted. Either delete the existing key
or modify it.

2. For each column you want in the key, select the column from the Select
Columns area and choose Add→. The column name is removed from the Select
Columns area and appears in the Key Columns area.

3. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.
5-10 Using JISQL

Defining Keys for a Database Table
To modify an existing primary key or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), select the
SQL definition corresponding to the key you want to modify. The Select Columns
and Key Columns areas reflect the current definition of the key.

2. Select the column you want to add to the key from the Select Columns area and
choose Add→. The column name is removed from the Select Columns area and
appears in the Key Columns area.

3. Select the column you want to remove from the key from the Key Columns area
and choose ←Remove. The column name is removed from the Key Columns
area and appears in the Select Columns area.

4. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it to the desired
location.

To delete an existing primary or unique key:

1. On the Primary Key or Unique Key Definition window (as applicable), select the
SQL definition corresponding to the key you want to delete. The Select Columns
and Key Columns areas reflect the current definition of the key.

2. Choose Delete. The SQL definition for this key is deleted from the text area, and
the Select Columns and Key Columns areas are emptied.

Foreign Keys

The Foreign Key Definition window consists of:

! A text area showing the SQL definition that will be generated for each key
defined on the screen. When you want to modify or delete an existing key, you
select it from this area. As you create or modify a key definition, the SQL text
area is updated to reflect any changes.

! Push buttons (Add New and Delete) to specify that you want to add a new key
or delete an existing one.

! A Select Columns area listing the table columns not used in the selected key.
JDB SQL Reference 5-11

Defining Keys for a Database Table
! A Select Table/Cols area with:

" An option menu for you to choose the referenced table.

" A listing of the columns in the chosen table not used in the selected key.

! Push buttons (Add and Quick Match) to add a selected column in the Select
Columns area and its foreign table column reference to the key. The Quick
Match button allows you to reference all columns in the current table to
identically-named primary key columns in the chosen table without having to
explicitly choose any columns from the lists.

! A Foreign Key area listing the table columns used in the selected key. Each
column name in this area is lined up beside the corresponding column in the
Referenced Key area.

! A Referenced Key area listing each column in the chosen table that is
referenced in the selected key. Each column name in this area is lined up beside
the corresponding column in the Foreign Key area.

! Push buttons (Move Up and Move Down) to re-arrange the order of columns in
the selected key.

! Push button (Remove) to remove a selected Foreign Key/Referenced Key
column pair from the selected key.

From the Create Table window, choose the Foreign Key button to open the Foreign
Key Definition window.
5-12 Using JISQL

Defining Keys for a Database Table
When you are finished working in the Foreign Key Definition window, choose OK to
save your changes and return to the Create Table window; or choose Cancel to simply
return without saving your changes.

When the Foreign Key Definition window is open, you can add, modify, or delete
foreign keys as follows:

To add a new foreign key:

1. On the Foreign Key Definition window, choose Add New. All the table columns
are listed in the Select Columns area.

2. Select the option menu in the Select Table/Cols area and choose the table to be
referenced.
JDB SQL Reference 5-13

Defining Keys for a Database Table
3. Once you have chosen the table, a list of columns in that table is displayed.
Reference the columns for the key in one of the following ways:

" For each column in the foreign key, select the current table column from
the Select Columns area and select the foreign column to be referenced
from the Select Table/Cols area. Choose Add.

" Choose Quick Match to reference the selected columns in the current table
with identically-named primary key columns in the chosen table.

The column names are removed from the Select Columns area and the Select
Table/Cols area; they appear in the Foreign Key and Referenced Key areas,
respectively.

4. To change the order of a Foreign Key/Referenced Key column pair in the key,
select either column in the pair and choose the Move Up or Move Down push
button to move the pair to the desired location.
5-14 Using JISQL

Defining Keys for a Database Table
To modify an existing foreign key:

1. On the Foreign Key Definition window, select the SQL definition corresponding
to the key you want to modify. The Select Columns, Select Table/Cols, Foreign
Key, and Referenced Key areas reflect the current definition of the key.

2. For each column you want to add to the foreign key, do either of the following:

" Select the current table column from the Select Columns area and select the
foreign column to be referenced from the Select Table/Cols area. Choose
Add.

" Choose Quick Match to reference columns in the current table to
identically-named primary key columns in the chosen table.

3. For each column pair you want to remove from the key, select either column in
the pair and choose Remove. The column names are removed from the Foreign
Key and Referenced Key areas and appear in the Select Columns and the Select
Table/Cols areas, respectively.

4. To change the order of a column in the key, select it in the Key Columns area
and choose the Move Up or Move Down push button to move it one place up or
down. Continue until the column is in the desired location.

To delete an existing foreign key:

1. On the Foreign Key Definition window, select the SQL definition corresponding
to the key you want to delete. The Select Columns, Select Table/Cols, Foreign
Key, and Referenced Key areas reflect the current definition of the key.

2. Choose Delete. The SQL definition for this key is deleted from the text area, and
the Select Columns, Select Table/Cols, Foreign Key, and Referenced Key areas
are emptied.
JDB SQL Reference 5-15

Maintaining a Database
Maintaining a Database

With JISQL, you can perform the following database maintenance functions without
having to write SQL code:

! Display the definition of any or all tables in the current database.

! Drop a database.

! Drop specified tables from a database.

Notes: To perform database maintenance operations involving the data itself, such as
populating tables, viewing data, etc., you must explicitly write and execute the
required SQL statements. Refer to page 5-18 for information on running SQL
interactively using JISQL.

Displaying Database and Table Definitions

1. Connect to the database whose definitions you want to display.

2. Choose Database→Describe. The Describe Table window opens, displaying a
list of all the tables in the database.

3. Select the table whose definition you want to display. The column definitions
and key information for this table are displayed. Continue in this way to display
table definitions one at a time.
5-16 Using JISQL

Maintaining a Database
4. Choose Done when you are finished viewing table definitions for this database.
You return to the JDB ISQL window.

Dropping Tables

1. Connect to the database from which you want to drop a table.

2. Choose Database→Drop Table. The Drop Table window opens.

3. Select the applicable table from the drop-down list for the Table Name field.

4. Choose OK. A message is displayed confirming that the table has been dropped.

Dropping a Database

1. Make sure that you are not connected to the database you want to drop.
JDB SQL Reference 5-17

Running SQL Interactively
2. Choose Database→Drop Database. The Drop Database window opens.

3. Enter the database name, or choose the Browse push button to select the
database from a file selection dialog box.

4. With the database to be dropped specified in the Database Name field, choose
OK. A message is displayed confirming that the database has been dropped.

Running SQL Interactively

Using JISQL, you can run SQL commands either by entering them into the onscreen
scripting area or by specifying an ASCII file that contains the desired SQL script. In
addition, when you create a SQL script in JISQL, and then save it to a file for future
use.

Under JISQL, you can execute any SQL statement that is available in JDB. Refer to
page 6-1 for a detailed description of the SQL commands that can be used with a JDB
database.

Your SQL script can also contain JISQL macro commands. These macros simplify
transaction processing and database maintenance. Refer to page 5-21 for a complete
description of the JISQL macros.

JISQL runtime options enable you to control the execution and output of your SQL
script. Refer to page 5-22 for a description of the available options and commands.

Writing SQL Scripts

The JDB ISQL window contains an area for entering and editing your SQL script.
5-18 Using JISQL

Running SQL Interactively
To enter a SQL script:

Either type directly into the scripting area, or read the script in from an ASCII text file.

To read a text file into the scripting area, choose File→Open Script; a file selection
dialog box opens for you to specify the file you want to read in. By default, only
filenames ending with the *.sql extension are listed in the dialog box.

To edit a SQL script:

You can do either of the following:

! Edit directly in the scripting area. Use the editing keys on your keyboard, or
choose the desired editing function the Keys menu.

! Use the default editor by choosing File→Editor (or press PF2). The editor
specified in the environment variable SMEDITOR is invoked (refer to page 2-6 in
the Configuration for details on specifying the variable).
JDB SQL Reference 5-19

Running SQL Interactively
To save SQL script displayed in the scripting area:

Do either of the following:

! Choose File→Save Script—The displayed script is saved to the file from which
it was read, replacing the original contents of that file with the current script.

! Choose File→Save As—Specify the name of new file in the file selection
dialog box.

Use a *.sql extension in naming SQL script files, since only files with this extension
appear in the file selection dialog box when you choose File→Open script.

To clear the scripting area:

Choose File→New. The scripting area and data output area are cleared in preparation
for entering and running a new script.

Script Format and Syntax

SQL scripts to be executed under JISQL can consist of:

! Any SQL statement available for JDB. Refer to page 6-1 for a description of
each statement and its syntax.

! Any JISQL macro command. Refer to page 5-21 for information on these
macros.

! Comment lines. Any line beginning with a pound sign (#) is treated as a
comment.

! Blank lines.

Only one statement is permitted per line. Each SQL statement and JISQL macro
command must be terminated with a semicolon (;). A line without a trailing semicolon
is concatenated with the next line until the semicolon is reached. Therefore, one
statement can span multiple lines.
5-20 Using JISQL

Running SQL Interactively
JISQL Macro Commands

The macros provided in JISQL are listed in Table 11. Each macro begins with a dollar
sign ($) and can be typed in either all uppercase or all lowercase, but not in mixed case.
Each macro command must be terminated with a semicolon (;).

Table 5-1 JISQL Macro Commands

Command Syntax Description

$COMMIT Same as DBMS COMMIT. Commits a transaction. Data
changes pending in the transaction are applied to the
database. (JDB performs an automatic COMMIT when
you leave a JISQL session or close a database
connection.)

$DESCRIBE table-name Displays a CREATE TABLE statement equivalent to the
definition of the specified table. Example:

$DESCRIBE titles;

Output of this macro can be redirected to a file by
choosing Options→Output to File.

$DUMP table-name Displays a CREATE TABLE statement and an INSERT
statement for each row in the table. Example:

$DUMP tapes;

Output of this macro can be re-directed to a file by
choosing Options→Output to File.

$LOGON database-name Connects to the specified database. Example:

$LOGON videobiz;

Since JISQL allows only one database connection at a
time, this macro closes the previous connection, if
there is one, before initiating a new connection.

$ROLLBACK Same as DBMS ROLLBACK. Backs out a transaction. The
database is restored to its state prior to the start of the
pending transaction.
JDB SQL Reference 5-21

Running SQL Interactively
Executing SQL Scripts

1. Enter your SQL script into the scripting area. Refer to page 5-18 for instructions
on entering and editing SQL scripts.

2. Connect to the database. (Refer to page 5-3 for instructions on connecting to a
database.) Omit this step if your script contains the $LOGON macro to perform
the connection.

3. Choose the desired execution and output options from the Options menu. All the
following options are toggles; select as many as are applicable:

" Continue After Error—If an error occurs during batch mode execution,
JISQL continues execution after you acknowledge the error message. If the
option is not selected, execution stops at the statement that caused the error.

" Output to File—All output from execution of the SQL script is saved to a
file. Select sets from SQL SELECT statements are directed to the file and
are not displayed on the screen. Output from $DESCRIBE and $DUMP
macros is displayed on the screen as well as saved in the file. If the option
is not selected, select sets are displayed in the lower portion of the JDB
ISQL window. Refer to page 5-23 for more information on capturing and
displaying query results.

" Record in Log—Information about execution of the SQL script is saved in
a log file. Refer to page 5-25 for information on creating and viewing the
log file.

4. Position the starting marker on the line of your script where you want execution
to begin. The starting marker appears to the right of the scroll bar for the
scripting area. To move the starting marker, click in the space to the right of the
scroll bar, lining up the mouse cursor with the SQL statement you want to
execute next. Initially, the starting marker is beside the first line of the script.

Output and Execution Options

Choose one of the following execution commands to execute the ISQL script. The
commands are available both as push buttons on the screen and as Run menu options:

! Run to End—Start batch mode execution from the starting marker. Execution
continues to the end of the script unless an error is encountered. The setting of
the Continue After Error toggle determines whether execution is terminated at
5-22 Using JISQL

Running SQL Interactively
the point of the error or if it continues after the error message has been
acknowledged.

! Run to Query—Start batch mode execution from the starting marker. Execution
stops after the first SQL SELECT statement or JISQL $DESCRIBE or $DUMP
macro is encountered or at the end of the script. If an error is encountered, the
setting of the Continue After Error toggle determines whether or not execution
is terminated.

! Single Step—Execute the current line of the script. (If the current line is blank
or a comment, the next SQL statement or JISQL macro command encountered
is executed.)

As execution proceeds, the script scrolls so that the current line is always in view. A
bounce bar highlights the current line.

Caution: JDB does not enforce referential integrity, so an error is not returned if you
insert duplicate primary keys. To prevent duplicate insertions of the same
statement, you may need to move the starting marker before query
execution, clearing the screen, or editing the current statement.

Once you initiate execution of the SQL script, JISQL remains in execution mode until
the end of the script is encountered or until you terminate execution by choosing Reset.

To stop execution of a SQL script:

At any time, you can either:

! Choose Reset.

! Choose Run→Reset.

The Reset command stops execution of the SQL script, clears the output buffer, and
resets the status of the JISQL utility so that you can edit the text of your script or restart
execution.

Capturing and Displaying Query Results

When a SQL SELECT statement or JISQL $DESCRIBE or $DUMP macros are executed,
the data retrieved can either be saved to an ASCII text file or displayed on the screen.
JDB SQL Reference 5-23

Running SQL Interactively
To save the output to a file:

1. Choose Options→Output to File if the Output to File toggle is not currently
selected. A file selection dialog box opens.

2. Specify the name of the file for the output, and choose OK. It is recommended
that you use a *.out extension in naming output files, since only files with this
extension appear in the file selection dialog box.

3. Execute the script. All output generated is saved to the specified file.

Note: When output is saved to a file, select sets generated by SQL QUERY statements
are only directed to the file and are not displayed on the screen. Output from
$DESCRIBE and $DUMP macros, however, is saved in the file and displayed on
the screen.

To display select sets on the screen:

1. Deselect the Output to File toggle.

2. Execute the script. When a SQL SELECT statement is executed, the data
retrieved are displayed in the lower section of the JDB ISQL window. This area
can be scrolled vertically and horizontally to view the select set.
5-24 Using JISQL

Running SQL Interactively
Output from JISQL $DESCRIBE or $DUMP macros is also displayed on the
screen.

Creating and Viewing the Log File

You can log and then review the following information about the execution of your
SQL scripts:

! Type of script execution chosen

! Text of each SQL statement or JISQL macro and the line number, as it is
encountered

! Status of execution for each statement or macro, including any error messages
generated
JDB SQL Reference 5-25

Running SQL Interactively
! Start and end times of script execution

How to Begin a Log Session

Choose Options→Record in Log. On the file selection dialog box, specify the name
of the log file.

It is recommended that you use the *.log extension in naming log files, since only
files with this extension appear in the file selection dialog box.

If you specify the name of an existing file, data from the current log session overwrites
the previous contents of the file. Within a log session, however, data are appended to
the file, even if you execute more than one script.

To view the information stored in the log file for the current session:

Choose Run→View Log File.

To end a log session:

Deselect Options→Record in Log.

Sample Log File

The text of log file SESSION.LOG follows:

ISQL FOR Panther, Copyright 1995-2016 Prolifics Inc.
Record Log <SESSION.LOG>: Friday April 18, 2016

<#14>:
***** Run To End execution from line 14 of 18 at 05:54:34 *****

<#14>: select * from ads;
 [ERROR] Table not found
********** Execution stop in line 14 of 18 at 05:54:36 **********
***** Run To End execution from line 1 of 18 at 05:54:43 *****

<#4>: $logon marketing;
 [SUCCESS]

<#6>: create table ads(ad_num int NOT NULL, magazine char(20) NOT
 NULL, date datetime NOT NULL, product char(20), cost float,
5-26 Using JISQL

Running SQL Interactively
 PRIMARY KEY (ad_num));
 [SUCCESS] 0 row(s).

<#9>: insert into ads values (467, 'PC Week', '1995/04/23
9:00:00', 'HR System', 215.00);
 [SUCCESS] 1 row(s).

<#10>: insert into ads values (468, 'DBMS Magazine', '1995/04/28
9:00:00', 'Accounting', 550.30);
 [SUCCESS] 1 row(s).

<#11>: insert into ads values (469, 'Datamation', '1995/07/12
9:00:00', 'HR System', 312.99);
 [SUCCESS] 1 row(s).

<#12>: select * from ads;
 [SUCCESS] 3 row(s).

<#14>: $logon videobiz;
 [SUCCESS]

<#16>: select * from titles where name like 'A%';
 [SUCCESS] 13 row(s).

********* Execution stop in line 19 of 18 at 05:55:03 *********
***** New Script File *****
***** Run To Query execution from line 1 of 6 at 05:57:22 *****

<#1>: $logon pubs;
 [SUCCESS]

<#3>: $describe titles;
 [SUCCESS]

********** Execution stop in line 4 of 6 at 05:57:29 **********
***** Single Step execution from line 4 of 6 at 05:57:34 *****

<#4>: select * from titles;
 [SUCCESS] 18 row(s).

********** Execution stop in line 5 of 6 at 05:57:40 **********
JDB SQL Reference 5-27

Running SQL Interactively
5-28 Using JISQL

CHAPTER
6 SQL Reference

This chapter includes an explanation of the SQL commands and concepts in
alphabetical order. You can execute the SQL commands described in this chapter using
JPL procedures or using JISQL. For an example, refer to page 3-10.

Reference Organization

The reference material is listed alphabetically for the following topics:

SQL Statements

CREATE DATABASE

CREATE TABLE

DELETE

DROP DATABASE

DROP TABLE

INSERT

SELECT

UPDATE
JDB SQL Reference 6-1

SQL Clauses and Keywords

BETWEEN

GROUP BY

HAVING

LIKE

ORDER BY

WHERE

SQL Concepts

Aggregate Functions

Data Types

Joins

Null Values

Operators

Subqueries

Notation Conventions

This chapter includes a section for each command or topic. Each section can include
the following subsections:

! Syntax

! Arguments

! Description

! Examples

! Variants

! See Also
6-2 SQL Reference

The examples included in this section use the JISQL syntax and are based on the
videobiz database. For a complete description of this database, refer to Figure 2-2 on
page 2-9 or Appendix D, “Videobiz Database.”
JDB SQL Reference 6-3

Aggregate Functions
Aggregate Functions

Obtain information about rows or groups of rows

functionName ([DISTINCT] expression)

functionName

One of the following aggregate functions: AVG, COUNT, MAX, MIN or SUM.

DISTINCT

Eliminates duplicate values before the function is applied. This keyword can
be used with AVG, COUNT or SUM. It is not allowed with COUNT(*), MAX or MIN.

expression

A constant, column name, subquery, or any combination of these connected
by arithmetic or bitwise operators (AND and OR).

Description Aggregate functions calculate different types of summary information on rows in a
database table. All of the aggregate functions ignore null values, with the exception of
COUNT(*). Table 6-1 lists the aggregate functions supported in JDB.

Table 6-1 Aggregate functions supported in JDB

Aggregate function Description

COUNT Counts the total number of rows retrieved with the SELECT
statement. COUNT(*) calculates the number of rows
retrieved. COUNT(columnName) calculates the number of
rows containing a value in the specified column; therefore,
it ignores null values.

AVG Calculates and returns the average value of the specified
numeric column or expression.

MAX Returns the largest value of the specified column or
expression.

MIN Returns the lowest value of the specified column or
expression.
6-4 SQL Reference

Aggregate Functions
Aggregate functions generally appear in a select list, in a HAVING clause, or in
conjunction with a GROUP BY clause. When used in the same statement as a GROUP BY
clause, aggregate functions return summary information on each group of data.
Aggregate functions are not valid in the WHERE clause of SELECT statements.

Example The following statement finds the number of video titles entered in the database by
querying for a count of the rows in the titles table:

SELECT COUNT(*) FROM titles;

The following statement uses the DISTINCT keyword to calculate the number of video
titles that have a copy of the tape available for rental.

SELECT COUNT(distinct title_id) FROM tapes WHERE status = 'A';

The following statement calculates the average number of rentals per customer and the
average rental amount:

SELECT AVG(num_rentals), AVG(rent_amount) FROM customers;

SUM Returns the sum of the values entered in the specified
numeric column or expression.

Table 6-1 Aggregate functions supported in JDB (Continued)

Aggregate function Description
JDB SQL Reference 6-5

Aggregate Functions
The following statement queries for the least number of times a copy of a video has
been rented:

SELECT MIN(times_rented) FROM tapes;

The following statement calculates the money collected from video rentals for a
particular day:

SELECT SUM(amount_paid) FROM rentals
WHERE rental_date LIKE '1993/10/22%';

The following statement calculates the number of times a particular title has been
rented:

SELECT SUM(times_rented) FROM tapes
WHERE title_id = 12;

See Also GROUP BY Clause, HAVING Clause
6-6 SQL Reference

BETWEEN Predicate
BETWEEN Predicate

Specify a range of data values

[NOT] BETWEEN x AND y

Description The BETWEEN predicate, located in the WHERE Clause, specifies a range of database
values to be used in determining a result set. The range specified is inclusive of x and y.

If the NOT keyword is specified, only rows outside the specified range are included in
the result set.

Example The following statement lists videos whose length is between an hour and two hours:

SELECT title_id, name, film_minutes FROM titles
WHERE film_minutes BETWEEN 60 AND 120;

The following statement deletes all the film rentals that occurred in 1989:

DELETE FROM rentals WHERE rental_date
BETWEEN '1989/01/01 00:00:00' AND '1989/12/31 23:59:59';

The following statement finds which current customers live in a series of postal codes:

SELECT cust_id, first_name, last_name FROM customers
WHERE postal_code BETWEEN 10200 AND 10299
AND member_status <> 'I';
JDB SQL Reference 6-7

BETWEEN Predicate
Variants The following statement performs the same query, finding the current customers in the
designated series of postal codes, without the BETWEEN predicate:

SELECT cust_id, first_name, last_name FROM customers
WHERE postal_code >= 10000 AND postal_code <= 10199
AND member_status <> 'I';

See Also WHERE Clause
6-8 SQL Reference

CREATE DATABASE Statement
CREATE DATABASE Statement

Create a new database

CREATE DATABASE database-name

database-name

A unique identifier for the database. Since the database appears as a file on
the operating system, its identifier must follow the naming conventions for
the operating system. If the database name contains characters that are not
alphanumeric or if you are including a path name, the name must be enclosed
in single quotation marks.

Description The CREATE DATABASE statement creates a new database. A database must be created
before you can declare a connection to it. You can create a database when you are
connected to JDB using the identifier @system, when you are connected to another
JDB database, or when you are using JISQL.

Creating the First Database

You can create your first database in JDB either by using JISQL or by writing a JPL
procedure.

JISQL
To create the database in JISQL, first you need to start the program. For
UNIX systems, it is usually located in $SMBASE/util. To start it, type:

jisql

Or, click on the JISQL icon.

The JDB ISQL window opens.

To create the database, choose Database→Create Database. The Create
Database window opens.

Enter the name of the database you want to create, select the Connect after
creation check box, and choose OK. This creates the database and
automatically connects to it so that you can then create database tables.
JDB SQL Reference 6-9

CREATE DATABASE Statement
JPL
The equivalent JPL procedure is as follows:

dbms declare syscon connection for database @system
dbms run create database database-name
dbms close connection syscon
dbms declare c1 connection for database database-name
dbms run create table table-name ...

Example CREATE DATABASE videobiz;

If the database name contains non-alphanumeric characters or if you are including a
path name, enclose the name in single quotation marks:

CREATE DATABASE 'video.db';

CREATE DATABASE '/usr/home/videobiz';
6-10 SQL Reference

CREATE TABLE Statement
CREATE TABLE Statement

Creates a new database table

CREATE TABLE table-name (
column-name data-type [(length)] [NOT NULL] [, column-name ...]

[PRIMARY KEY (column-name [, column-name ...]),]
[UNIQUE (column-name [, column-name ...]),]
[FOREIGN KEY (column-name [, column-name ...])
REFERENCES table-name (column-name [, column-name ...]) [,]]
)

table-name

Identifier for the table to be created. This identifier must be unique to the
database. Identifiers in JDB must start with a letter but may contain letters,
numbers, and underscores.

column-name

Identifier for the column. Each column identifier must be unique within the
table.

data-type

Data type for the column. For char data types, a length must also be
specified. For more information on data types, refer to page 6-15.

NOT NULL

Specifies that a value must be entered for the column. The value for the
column cannot be null.

PRIMARY KEY

Specifies the primary key column(s) for this table. Any column specified as
a primary key must be specified as NOT NULL.

UNIQUE

Specifies that a column or group of columns must contain a unique entry. Any
column specified as unique must be specified as NOT NULL. Column(s)
specified in a PRIMARY KEY clause do not need to be declared as UNIQUE.

FOREIGN KEY

Specifies the foreign key columns for this table. Any such column must refer
to a primary or unique key in the referenced table. Matching between the
foreign and primary keys is performed in the order the columns are listed, not
by their names.
JDB SQL Reference 6-11

CREATE TABLE Statement
REFERENCES

Specifies the database table and the column name in that table for the foreign
key column. If more than one column is listed, the order of the columns listed
in the FOREIGN KEY clause must match the order of the columns in the
REFERENCES clause.

Description The CREATE TABLE statement creates a new table in the current database with the
specified columns. For each column, you must specify the following:

! Column name

! Data type

! Length, if the data type is char

JDB is a case-insensitive database system. No matter which case you use to enter your
table and column names, JDB stores the names in lower case.

Specify Primary and Foreign Keys

You need to specify the primary and foreign keys when you create the table. The
primary key is the column containing a different value in every row, which ensures that
all rows are unique. In cases where one column does not perform this function, you
must specify two or more columns whose values together form a unique entry. This is
called a composite key. Null values are not allowed in the primary key columns;
therefore, the column definitions for those columns should contain the keyword NOT
NULL.

Foreign keys are columns in the database table that are primary or unique keys in
another database table. Data entered into a foreign key column should exist as a value
in the other database table. The data type for the foreign key column and its
corresponding primary or unique key must be the same.

Although JDB does not enforce referential integrity based on your primary and foreign
keys, it is recommended that you enter primary and foreign key information for your
database tables.

Maximum Row Length

In JDB, there is a maximum row length of 1K. In other words, the sum of the table's
column sizes cannot exceed 1K. The base length of the various columns is:
6-12 SQL Reference

CREATE TABLE Statement
The length of a column is defined as its base length plus an additional 2 bytes for flags.

The following statement creates a table whose size equals 1028 ((255+2) * 4). Since
that total is greater than 1024, JDB reports the error “Maximum record length
exceeded.”

CREATE TABLE toobig (
a CHAR (255),
b CHAR (255),
c CHAR (255),
d CHAR (255));

Example The following statement creates the actors table with actor_id as the primary key:

CREATE TABLE actors (
 actor_id INT NOT NULL,
 last_name CHAR (25) NOT NULL,
 first_name CHAR (20) ,
 PRIMARY KEY (actor_id));

The following statement creates the rentals table:

CREATE TABLE rentals (
 cust_id INT NOT NULL,
 title_id INT NOT NULL,
 copy_num INT NOT NULL,
 rental_date DATETIME NOT NULL,
 due_back DATETIME NOT NULL,
 return_date DATETIME ,
 price FLOAT NOT NULL,

Data type Base length

CHAR Specified length

INT 4 bytes (stored as LONG in the current
release)

LONG 4 bytes

FLOAT 12 bytes

DOUBLE 12 bytes

DATETIME 9 bytes
JDB SQL Reference 6-13

CREATE TABLE Statement
 late_fee FLOAT NOT NULL,
 amount_paid FLOAT NOT NULL,
 rental_status CHAR (1) NOT NULL,
 rental_comment CHAR (76) ,
 modified_date DATETIME NOT NULL,
 modified_by CHAR (8) NOT NULL,
 PRIMARY KEY (cust_id, title_id, copy_num, rental_date),
 FOREIGN KEY (cust_id) REFERENCES customers (cust_id),
 FOREIGN KEY (title_id, copy_num)
 REFERENCES tapes (title_id, copy_num),
 FOREIGN KEY (modified_by) REFERENCES users (user_id));

See Also Data Types
6-14 SQL Reference

Data Types
Data Types

List the data types available in JDB

Description The JDB data types are described in this section.

CHAR (n)
Character column containing ASCII characters (letters, numbers and
symbols). Specify the maximum size of the column with n. n can range in
value from 1 to 255. The size of a CHAR column is n no matter how many
characters are entered into the column. If the character string is longer than n,
the string is truncated to the specified length. If the character string is shorter
than n, the string is blank-padded to the specified length. For example, an
entry of
'A12'
in a CHAR(4) column would be stored as
'A12 '

The storage size of a CHAR column is n plus 2 bytes for flags.

To enter values into CHAR columns using JISQL, enclose the character string
in single quotation marks. To include a single quotation mark as part of the
entry, enter two consecutive single quotation marks.

If you use colon plus processing or binding in a JPL procedure, Panther
automatically formats the character string by enclosing the character string in
single quotation marks and converting each single quotation mark to two
single quotation marks.

INT
Numeric column containing whole numbers. In the current version of JDB,
all INT values are stored as LONG values.

LONG
Numeric column containing whole numbers ranging from -2,147,483,647 to
+2,147,483,647. The storage size for an LONG column is 4 bytes plus 2 bytes
for flags.

FLOAT
Numeric column containing positive or negative floating point numbers. The
hardware platform determines the precision and range of FLOAT columns. The
storage size is 12 bytes plus 2 bytes for flags.
JDB SQL Reference 6-15

Data Types
DOUBLE
Numeric column containing double precision numbers. The hardware
platform determines the precision and range of DOUBLE columns. The storage
size is 12 bytes plus 2 bytes for flags.

DATETIME
Date column containing both a date and time of day. The storage size is 9
bytes, plus 2 bytes for flags. The default format for a DATETIME column is:
yyyy/mm/dd hh:mm:ss

For example, January 28, 1993 at 2:40 p.m. is entered as follows:

1993/01/28 14:40:00

Alternate formats for DATETIME values include using periods instead of
colons to separate time entries and using spaces instead of slashes to separate
date entries.

To enter DATETIME values in JISQL, enclose the date entry in single quotes
as in:

'1993/01/28 14:40:00'

To enter DATETIME values in JPL, the date should both be enclosed in single
quotes and contain double colons:

DBMS RUN UPDATE titles \
SET release_date = '1994/01/28 00::00::00' \
WHERE title_id = :+title_id

If DT_DATETIME is the Panther type of the widget containing the entry,
Panther automatically formats the date according to the specified Date/Time
format.

The data type of each column is stored in the system table, syscols. You can
query this table to find the data type for any column. Refer to page 4-3 for
more information on the syscols table.

Numeric Columns

In JDB, you cannot enter numbers with leading zeros in numeric columns.

Example The following statement creates the titles table:

CREATE TABLE titles (
 title_id INT NOT NULL,
 name CHAR (60) NOT NULL,
6-16 SQL Reference

Data Types
 genre_code CHAR (4) ,
 dir_last_name CHAR (25) ,
 dir_first_name CHAR (20) ,
 film_minutes INT ,
 rating_code CHAR (4) ,
 release_date DATETIME ,
 pricecat CHAR (1) NOT NULL
 PRIMARY KEY (title_id),
 FOREIGN KEY (pricecat) REFERENCES pricecats (pricecat));

The titles table contains columns of various data types. The following statement
inserts a row into this table:

INSERT INTO titles (title_id, name, genre_code,
dir_last_name, dir_first_name, film_minutes, rating_code,
release_date, pricecat)
VALUES (72, 'Howards End', 'DRAM', 'Ivory', 'James', 140,
'PG', '1992/01/01 00:00:00', 'G');
JDB SQL Reference 6-17

DELETE Statement
DELETE Statement

Remove information from a database table

DELETE FROM table-name [WHERE search-conditions]

table-name

Identifier for the database table.

WHERE

The WHERE clause specifies which rows will be deleted. Refer to page 6-54 for
more information on the WHERE clause.

Description The DELETE statement removes a row or rows from the specified table. To keep data
consistent across a database, you may need to delete or update rows in other database
tables whose values depend on the deleted row.

Warning: If no WHERE clause is specified, all the information in the table is deleted.

Example If a customer drops his membership, you can delete that customer from the database:

DELETE FROM customers WHERE cust_id = 123;

To delete a video title from the database, you would need to delete rows from titles,
title_dscr, tapes and roles:

DELETE FROM title_dscr WHERE title_id = 134;
DELETE FROM roles WHERE title_id = 134;
DELETE FROM tapes WHERE title_id = 134;
DELETE FROM titles WHERE title_id = 134;

You can delete rows using a subquery in the WHERE clause:

DELETE FROM actors WHERE actor_id IN
(SELECT actor_id FROM roles WHERE title_id = 134);

See Also WHERE Clause
6-18 SQL Reference

DROP DATABASE Statement
DROP DATABASE Statement

Remove a database

DROP DATABASE database-name

database-name

Name of the database to be removed.

Description The DROP DATABASE statement deletes the specified database. The file containing the
database is removed from the operating system. If the database name contains
characters that are not alphanumeric, enclose the name in single quotation marks.

You cannot drop the current database. First, you must close the connection with the
current database and connect either to another database or to the system catalog.

When you drop a database, the journal files are not deleted.

Example DROP DATABASE videobiz;

Enclose the name in single quotation marks if it contains non-alphanumeric characters.

DROP DATABASE 'video.db';
JDB SQL Reference 6-19

DROP TABLE Statement
DROP TABLE Statement

Remove a table from the database

DROP TABLE table-name

table-name

Name of the table to be deleted.

Description The DROP TABLE statement deletes the specified table from the database, including the
data stored in the table.

Example DROP TABLE rentals;
6-20 SQL Reference

GROUP BY Clause
GROUP BY Clause

Divide the returned data into groups according to the specified column(s)

GROUP BY [correlation-name.column-name[, ...]

correlation-name

Identifier which substitutes for the table name.

column-name

Column used to group the data.

Description A GROUP BY clause included in a SELECT statement lets you specify the column or
columns to be used to divide the table into groups. Rows having an identical value in
the specified columns are grouped together.

A GROUP BY clause is most often combined with an aggregate function in order to
obtain summary information on each group. A GROUP BY clause can also be followed
by a HAVING clause in order to define which groups appear in the result set.

In a SELECT statement containing a GROUP BY clause, the columns specified in the
select list or in the HAVING clause must either be listed in the GROUP BY clause or be
parameters of aggregate functions.

Example This statement finds the number of videos in each rating category:

SELECT rating_code, COUNT(*) FROM titles
GROUP BY rating_code;

A GROUP BY clause can be used to find unique entries in a SELECT statement; however,
the DISTINCT generally used for this purpose. The following statement lists the types
of videos found in the titles table:

SELECT genre_code FROM titles GROUP BY genre_code;
JDB SQL Reference 6-21

GROUP BY Clause
This statement using both a GROUP BY clause and a HAVING clause determines the
people who directed more than three videos:

SELECT dir_last_name FROM titles GROUP BY dir_last_name
HAVING COUNT(*) > 3;

If your SELECT statement also includes a WHERE clause, place the GROUP BY clause
after WHERE clause.

SELECT title_id, COUNT (*) FROM tapes WHERE status = 'A'
GROUP BY title_id;

See Also Aggregate Functions, HAVING Clause, SELECT Statement
6-22 SQL Reference

HAVING Clause
HAVING Clause

Set search conditions in order to obtain a subset of data

HAVING search-conditions

search-conditions

Specifies the conditions for the selection of data. For a complete listing of
available conditions, refer to page 6-54.

Description A HAVING clause included in a SELECT statement allows you to select a subset of data
which has a certain value.

Generally, a HAVING clause appears in conjunction with a GROUP BY clause. When this
occurs, the HAVING clause selects its subsets after the GROUP BY clause has been
applied.

Unlike the WHERE clause, a HAVING clause can include aggregate functions.

In statements using both a WHERE clause and a HAVING clause, the following steps
occur:

1. The WHERE clause selects the rows meeting its search conditions.

2. The GROUP BY clause divides these rows into groups according to the specified
column(s).

3. The HAVING clause excludes groups not meeting its search conditions.

4. Any aggregate function specified in the select list performs its calculations for
each group.

Example The following statement finds the customers that are frequent renters for the month:

SELECT cust_id FROM rentals
WHERE rental_date
BETWEEN '1993/10/01 00:00:00' AND '1993/10/31 23:59:59'
GROUP BY cust_id
HAVING COUNT (*) > 4;
JDB SQL Reference 6-23

HAVING Clause
See Also Aggregate Functions, GROUP BY Clause, SELECT Statement, WHERE Clause
6-24 SQL Reference

INSERT Statement
INSERT Statement

Add information to a database table

INSERT INTO table-name [(column-list)] VALUES (literal | NULL [,
...])
INSERT INTO table-name [(column-list)] query-expression

table-name

Unique identifier for the database table.

column-list

Columns which will have values inserted. See the description below.

VALUES

Columns which will have values inserted. See the description below.

query-expression

Subquery used to specify data to be inserted.

Description The INSERT statement enters information into the specified table. There are two forms
of the INSERT statement. In the first form, you insert a single row by specifying values
for the specified columns. In the second form, you use a query to select rows from other
tables to be inserted into the specified table.

Within the first form of the INSERT statement, several format variations exist. The
simplest format includes a VALUES clause without a column list. In this format, you
must provide a value for each column in the table. The values are listed in the same
order that was used to create the columns in the database table.

INSERT INTO roles
VALUES (72, 144, 'Margaret Schlegel');

In a VALUES clause, the column values are separated by commas. You can enter
character strings, date strings, and numeric constants as column values. If you are
entering the data using JISQL, character strings and date values must be enclosed with
single quotation marks.
JDB SQL Reference 6-25

INSERT Statement
Inserting Rows Using a Column List

If you do not know the column order or if you do not want to enter a value for each
column, you can add a column list to the statement:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, 'Margaret Schlegel');

With this format, the first column value, 72, is entered into the first column found in
the column list, title_id. The second value goes into the second column listed, etc.

If you do not specify a value for a column, its value will be set to NULL.

Inserting Rows Containing a Null Value

You can also enter an unknown value for any column using NULL as the column value:

INSERT INTO roles (title_id, actor_id, role)
VALUES (72, 144, NULL);

However, this syntax is not available if the column was specified as NOT NULL in the
CREATE TABLE Statement.

Inserting Rows Using a Subquery

The second syntax statement illustrates the insertion of rows using a subquery.
Multiple rows can be inserted with this format; however, you cannot have the same
table named in the INTO clause and the SELECT statement of the query.

INSERT INTO roles
(title_id)
SELECT title_id FROM titles WHERE title_id > 75;

See Also Null Values
6-26 SQL Reference

Joins
Joins

Specify the interconnection between two tables

... FROM table-name, table-name
WHERE table-name.column-name join-operator

table-name.column-name
[{AND|OR|NOT} table-name. column-name join-operator

table-name.column-name ...]

FROM

The FROM clause lists the tables included in the join.

table-name

Identifier for the database table.

WHERE

The WHERE clause specifies the relationship between each set of tables in
addition to the search conditions to be used for the statement.

column-name

Column from one of the specified database tables.

join-operator

One of the following operators: =, >, <, >=, <=, or <>.

Description A join connects two or more database tables by specifying the relationship between
each set of tables. To specify the relationship, you connect one column from one table
to a column in another table. The column names must be qualified with the table name
if the table location is ambiguous. A join can be part of a SELECT, UPDATE, INSERT, or
DELETE statement. A join can also be included in a subquery. There are several types
of joins which will be discussed in the following paragraphs.

Equi-joins

An equi-join is based on equality as indicated by the equal sign (=). In an equi-join,
all the columns in the tables being joined are included in the result set. For example,

SELECT * FROM roles, actors
WHERE roles.actor_id = actors.actor_id;
JDB SQL Reference 6-27

Joins
This statement joins the actors and roles tables using the actor_id column in each
table. The result set lists the actor for each role included in the roles table.

Natural Joins

A natural join is structured so that there is no duplication of data. The same query as a
natural join would appear as follows:

SELECT title_id, roles.actor_id, first_name, last_name, role
FROM roles, actors
WHERE roles.actor_id = actors.actor_id;

The select list names the columns to be included so that the actor_id is displayed
only once.
6-28 SQL Reference

Joins
Multiple Table Joins

A multiple table join involves more than two tables using one or more columns to make
the connection. The following statement adds the name of the video to the result set.

SELECT roles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id;

You could also use correlation names to formulate the query:

SELECT r.title_id, t.name, a.actor_id,
a.first_name, a.last_name, r.role
FROM roles r, titles t, actors a
WHERE r.title_id = t.title_id
AND r.actor_id = a.actor_id;

Additional search conditions can be added to the WHERE clause to further restrict the
result set:

SELECT roles.title_id, titles.name, actors.actor_id,
actors.first_name, actors.last_name, roles.role
FROM roles, titles, actors
WHERE roles.title_id = titles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 19;
JDB SQL Reference 6-29

Joins
Non equi-joins

In addition to the equal sign, there are additional operators that can be specified.
Table 6-2 lists all the relational operators that can be used in joins.

You can also use a BETWEEN predicate to specify a range of values.

The following query lists the videos that have the same name but have been directed
by different people:

SELECT t.title_id, t.name, t.dir_last_name
FROM titles t, titles d

Table 6-2 Join operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to
6-30 SQL Reference

Joins
WHERE t.name = d.name
AND t.dir_last_name <> d.dir_last_name;

Self-joins

The previous query is called a self-join which joins a table to itself so that you can
compare values in the same column. To make a self-join, use correlation names for the
database tables in the FROM clause and in the column names.

The following self-join finds the directors who have made two different types of films–
for example, directors who have made both comedy and adventure films. All of this
information is in the titles table. For this query, the join condition is made on the
director's last name. Then, the two genre_code entries in each join are compared, and
if they differ, the director's last name, the genre code and the name of each
corresponding video are written to the result set.

SELECT dir.dir_last_name, dir.genre_code, dir.name
FROM titles gen, titles dir
WHERE gen.dir_last_name = dir.dir_last_name
AND gen.genre_code <> dir.genre_code
JDB SQL Reference 6-31

Joins
The following self-join finds the actors in video #50 who are entered in the roles table
only for that video. It uses one version of the roles table to find all the actor_id codes
in video #50. It uses the other version of the table to find the actor_id codes that are
entered in the roles table only once.

SELECT r.actor_id FROM roles r, roles j
WHERE r.title_id = 50
AND r.actor_id = j.actor_id
GROUP BY r.actor_id HAVING COUNT(j.actor_id) = 1;

See Also Subqueries
6-32 SQL Reference

LIKE Predicate
LIKE Predicate

Obtain data matching a specified pattern

column-name [NOT] LIKE literal [ESCAPE literal]

column-name

Column whose value you want to specify.

literal

Wildcard characters intermixed with portions of column values.

Description A LIKE predicate selects rows in which a column value matches a specified pat tern.
You can enter values for character strings or date strings. You can also enter a wildcard
character to substitute for a portion of the string. Table 6-3 lists the wild card
characters that can be used in JDB.

With the specification of an ESCAPE clause, the special meaning given to “_” and “%”
can be disabled. NOT LIKE selects rows that do not match the specified pattern.

Example This query finds all the videos released in 1989:

SELECT title_id, name FROM titles
WHERE release_date LIKE '1989%';

Table 6-3 Wildcard characters

Wildcard Description

% (percent sign) Substitutes for any string of zero or more characters

_ (underline) Substitutes for any single character
JDB SQL Reference 6-33

LIKE Predicate
The following example returns rows where the dscr_text begins with an underscore.
The backslash removes the special meaning for the underscore, but not for the percent
sign:

SELECT * FROM title_dscr
WHERE dscr_text LIKE '_%' ESCAPE ‘\';

See Also WHERE Clause
6-34 SQL Reference

Null Values
Null Values

Specify an unknown value

In INSERT statements
... VALUES {literal | NULL} [, {literal | NULL}]

In SELECT statements,
... WHERE column-name IS [NOT] NULL

In UPDATE statements
... SET column-name = {literal | NULL}
... [, column-name = {literal | NULL}]

Description When a column is set to NULL, it specifies an unknown or an unspecified value. A NULL
value is not the same as a blank or a zero entered into a column.

If you are using a comparison operator, be aware that NULL is not a value and therefore
cannot be compared to any other value. As an example, the following WHERE clause
would evaluate to true for all values of the times_rented column that are greater than
75, but would evaluate to false if the column is set to NULL.

WHERE times_rented > 75

Examples The examples illustrate the uses of NULL values in different types of statements.

The following statement inserts a null value into the role column:

INSERT INTO roles (title_id, actor_id, role)
VALUES (16, 276, NULL);

An error occurs if you attempt to insert a null value into a column which was created
as NOT NULL. The following statement returns the error NULL not allowed since the
column actor_id was specified as NOT NULL in the CREATE TABLE statement for the
roles table.

INSERT INTO roles (title_id, actor_id, role)
VALUES (27, NULL, 'Aunt Gussie');

The following statement selects rows where the rating_code column contains a null
value:

SELECT name FROM titles WHERE rating_code IS NULL;
JDB SQL Reference 6-35

Null Values
The following statement updates the rental_comment column to a null value for
every row in the rentals table:

UPDATE rentals SET rental_comment = NULL;

The following statement updates the rental_comment to a null value for a specific
rental:

UPDATE rentals SET rental_comment = NULL
WHERE cust_id = 6
AND title_id = 69
AND copy_num = 2
AND rental_date = '1993/10/29 18:00:00';

In order to obtain a unique entry for the rentals table, you must include an entry for the
cust_id, title_id, copy_num and rental_date columns.
6-36 SQL Reference

Operators
Operators

Description This section describes the various operators available in JDB.

Arithmetic Operators

Arithmetic operators allow you to perform calculations on data in the database without
altering the data. They are available to use with any numeric column. If the value in
the column is NULL, the result will also be NULL.

Table 6-4 lists the arithmetic operators that are available in JDB.

The arithmetic operators adhere to the following order of precedence:

1. multiplication, division

2. subtraction, addition

Among operators that have the same level of precedence, the order of execution is from
left to right. The order of precedence can also be explicitly specified using parentheses.
For more information, refer to the section on logical operators.

The following statement uses an arithmetic operator to calculate the price with sales
tax on an item:

SELECT pricecat, price * 1.0825 FROM pricecats
WHERE pricecat = 'N';

Arithmetic operators can also be used in calculations that perform comparisons. The
following statement finds rentals where the amount paid was greater than double the
rental fee:

Table 6-4 Arithmetic operators

Operator Definition

+ Addition

- Subtraction

* Multiplication

/ Division
JDB SQL Reference 6-37

Operators
SELECT cust_id, title_id, rental_date FROM rentals
WHERE amount_paid > price * 2;

Comparison Operators

Comparison operators allow you to compare one expression with another expression,
where an expression is defined as a column name, a constant, a function, or any
combination of column names, constants and functions.

Table 6-5 lists the comparison operators that are available in JDB.

When character or date strings are used in comparisons, they need to be enclosed in
single quotation marks. Also, in these comparisons, numbers are greater than
uppercase letters, and uppercase letters are greater than lowercase letters. For character
strings, > asks for character strings closer to the end of the alphabet, < for character
strings closer to the beginning of the alphabet. For date strings, > asks for dates later
than the one specified and < asks for dates earlier than the one specified.

The following query asks for the videos whose length is greater than three hours:

SELECT title_id, name FROM titles WHERE film_minutes > 180

Table 6-5 Comparison operators

Operator Definition

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to
6-38 SQL Reference

Operators
The following query lists the customers who joined during the current year:

SELECT cust_id, first_name, last_name FROM customers
WHERE member_date >= '1993/01/01 00:00:00';

Querying for a specific range of values can be accomplished using a series of
comparison operators or a BETWEEN predicate. The following statements would return
the same data:

SELECT title_id, name FROM titles
WHERE film_minutes BETWEEN 150 AND 180;

SELECT title_id, name FROM titles
WHERE film_minutes >=150 AND film_minutes <= 180;

Logical Operators

Logical operators join sets of search conditions together.

Table 6-6 lists the logical operators that are available in JDB.

Table 6-6 Logical operators

Operator Definition
JDB SQL Reference 6-39

Operators
AND operators take precedence over OR operators unless you change the order of
execution by using parentheses. Also, NOT takes precedence over AND.

If you wanted to find the science fiction videos that either have a PG or G rating or that
are over three hours long, the following query would not return the correct results. This
query first finds the science fiction videos that have a PG or G rating. Then, it finds
any videos over three hours long.

SELECT title_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND rating_code IN ('G', 'PG')
OR film_minutes > 180;

The addition of parentheses finds science fiction videos that either have a PG or G
rating or that are over three hours long.

SELECT title_id, name, film_minutes FROM titles
WHERE genre_code = 'SCFI'
AND (rating_code IN ('G', 'PG')
OR film_minutes > 180);

AND Joins two conditions and returns results when both
conditions are true.

OR Joins two conditions and returns results when either
condition is true.

Table 6-6 Logical operators
6-40 SQL Reference

Operators
Remember that if a column is set to NULL, no comparison operator will retrieve it. The
value of null is unknown. The following example would find the video titles whose
length is less than an hour but would not find the ones whose length is entered as NULL:

SELECT title_id, name FROM titles
WHERE film_minutes < 60;
JDB SQL Reference 6-41

ORDER BY Clause
ORDER BY Clause

Specify the order for the query results

ORDER BY {integer | [correlation-name.]column-name} [, ...]
[ASC | DESC]

integer

If integer is specified instead of a column-name, it refers to the position of a
column or expression in the select list.

correlation-name

Identifier which substitutes for the table name.

column-name

Specifies the column or columns to be used for sorting the result set.

ASC

Specifies that the result set is to be sorted in ascending order. This is the
default.

DESC

Specifies that the result set is to be sorted in descending order.

Description An ORDER BY clause sorts the result set according to the specified column or columns.
The columns specified in the ORDER BY clause must also be specified in the select list
of the SELECT statement. By default, the sort occurs in ascending order which lists the
smallest value first. You can set the sort order by specifying ASC for ascending or DESC
for descending order.

If you list more than one column in the ORDER BY clause, it creates a nested sort. The
sort for the first column takes precedence and occurs first. Then, within each of these
groups, the rows are sorted again according to the value of the second column.

Instead of listing column names in the ORDER BY clause, you can use integers to refer
to the column position.

Example The following SELECT statement without an ORDER BY clause returns the list of video
titles in the order shown in the result set:

SELECT title_id, name, genre_code FROM titles;
6-42 SQL Reference

ORDER BY Clause
With the addition of an ORDER BY clause on the genre code, followed by the video
name, the statement returns the data in the following order:

SELECT title_id, name, genre_code FROM titles
ORDER BY genre_code, name;

If you use integers in the ORDER BY clause to refer to the column position, the previous
statement appears in the following syntax:

SELECT title_id, name, genre_code FROM titles
ORDER BY 3, 2;

genre_code is the third column appearing in the select list, and name is the second
column in the select list.
JDB SQL Reference 6-43

SELECT Statement
SELECT Statement

Obtain information from a database table

SELECT [DISTINCT] {select-list | *} FROM table-name
[correlation-name] [, ...]

[WHERE search-conditions]
[GROUP BY [correlation-name.]column-name[, ...]]
[HAVING search-conditions]
[ORDER BY {integer | [correlation-name.]column-name} [, ...]]

DISTINCT

Exclude any duplicate rows from the result set.

select-list

A series of column names, qualified by the table name if more than one
database table is being accessed, and/or aggregate functions.

*

Selects every column from every table listed in the FROM clause.

table-name

Identifier for a database table.

correlation-name

Identifier which substitutes for the table name in the remainder of the
statement.

WHERE

The WHERE clause specifies a search condition or a join. For more information
on joins, refer to page 6-27. For more information on the WHERE clause, refer
to page 6-54.

search-conditions

Specifies the conditions for the selection of data. For more information, refer
to page 6-54.

GROUP BY

The GROUP BY clause specifies the column used to divide the result set into
groups. For more information, refer to page 6-21.

HAVING

The HAVING clause specifies a search condition. For more information, refer
to page 6-23
6-44 SQL Reference

SELECT Statement
ORDER BY

The ORDER BY clause specifies the column(s) used to sort the result set. For
more information, refer to page 6-42.

Description The SELECT statement obtains data from the specified database table or tables. In its
simplest form, the SELECT statement retrieves all the data from all the columns in the
named table:

SELECT * FROM titles;

However, this syntax is not recommended for use inside an application. It is
recommended that you include a select list in a SELECT statement.

Specifying a Select List

A select list determines which columns will be included in the result set. In the
following example, the select list contains the name, genre_code, dir_last_name
and film_minutes columns:

SELECT name, genre_code, dir_last_name, film_minutes
FROM titles;
JDB SQL Reference 6-45

SELECT Statement
The select list can also include aggregate functions.

SELECT AVG (film_minutes) FROM titles;

Specifying a WHERE Clause

You can choose which rows will be a part of the result set by including a WHERE clause:

SELECT name, genre_code, dir_last_name, film_minutes
FROM titles WHERE dir_last_name = 'Weir';

There are other search conditions available. Refer to page 6-54 for information on the
WHERE clause.

Obtaining Unique Entries

You can include only unique rows in the result set by specifying the keyword
DISTINCT. The following statement gets a list of directors:
6-46 SQL Reference

SELECT Statement
SELECT dir_last_name FROM titles;

By using DISTINCT, the duplicate names are excluded from the result set:

SELECT DISTINCT dir_last_name FROM titles;

Obtaining Data from Multiple Tables

You can obtain information from more than one database table by using joins:

SELECT name, first_name, last_name, role
FROM actors, titles, roles
WHERE titles.title_id = roles.title_id
AND actors.actor_id = roles.actor_id;

Refer to page 6-27 for more information on joins.

See Also BETWEEN Predicate, Joins, GROUP BY Clause, HAVING Clause, Subqueries,
WHERE Clause
JDB SQL Reference 6-47

Subqueries
Subqueries

Nest a SELECT statement within another statement

Description In a subquery, you can nest a SELECT statement within a SELECT, INSERT, UPDATE, or
DELETE statement. The main syntax restriction is that a subquery cannot contain an
ORDER BY clause. Refer to the sections on each keyword for any additional syntax
restrictions. The subquery is enclosed in parentheses. Many statements using
subqueries can alternatively be constructed using joins.

There are five keywords used for subqueries: EXISTS, IN, ANY, ALL, and SOME. These
are explained below.

EXISTS
WHERE [NOT] EXISTS (subquery)

The EXISTS keyword tests for the presence of a result set from the subquery.
The subquery can contain one or more columns. Since you are testing to see
if any rows are returned, you can use SELECT * instead of a select list in the
subquery.

If the NOT keyword is also specified, the WHERE clause is satisfied if there are
no rows in the result set.

The following query checks to see if all of the video titles have entries in the
roles table:

SELECT title_id FROM titles WHERE NOT EXISTS
(SELECT * FROM roles
WHERE roles.title_id = titles.title_id);

IN
WHERE expression [NOT] IN (subquery)

The IN subquery condition evaluates whether the expression in the WHERE
clause matches any row returned in the subquery. The subquery using IN can
only return one column, but it can return more than one row.
6-48 SQL Reference

Subqueries
A subquery using the keyword IN is equivalent to the same subquery using
=ANY.

The following query lists which science fiction movies a customer has
previously rented:

SELECT title_id, name FROM titles WHERE genre_code = 'SCFI'
AND title_id IN
(SELECT title_id FROM rentals
WHERE cust_id = 6);

ANY, ALL, SOME
WHERE expression comparison-operator ANY (subquery)WHERE expression
comparison-operator ALL (subquery)WHERE expression comparison-operator
SOME (subquery)

The keywords ANY, ALL, or SOME are used with a subquery with one of the
following comparison operators: >, >=, <, <=, <>, or =.

A subquery using ANY or SOME tests to see if the comparison is true for at least
one of the values returned by the subquery. If the subquery returns no value,
the search condition is false.

SELECT title_id, name FROM titles WHERE title_id = ANY
(SELECT title_id FROM tapes WHERE status = 'I');

A subquery using ALL tests to see if the comparison is true for every value
returned by the subquery. If the subquery returns no value, the search
condition is true as well.

The following query tests to see which actors are not in the roles table:
JDB SQL Reference 6-49

Subqueries
SELECT actor_id, first_name, last_name FROM actors
WHERE actor_id <> ALL
(SELECT actor_id FROM roles);

The keywords ANY, ALL, or SOME can be omitted if you know that the
subquery will return exactly one value. The following example returns one
value by using an aggregate function. This query finds the customers whose
rental amount was higher than average:

SELECT cust_id, first_name, last_name FROM customers
WHERE rent_amount >
(SELECT AVG(rent_amount) FROM customers);

Nested Subqueries

A subquery can also contain another subquery.

The following query finds the videos depicting dramatic stories that are also in the
rentals table:

SELECT title_id, name FROM titles WHERE title_id IN
(SELECT title_id FROM rentals WHERE title_id IN
(SELECT title_id FROM titles WHERE genre_code = 'DRAM'));
6-50 SQL Reference

Subqueries
See Also Joins
JDB SQL Reference 6-51

UPDATE Statement
UPDATE Statement

Update information in a database table

UPDATE table-name SET column-name = value [, ...]
[WHERE search-conditions]

table-name

Unique identifier for the database table.

SET

The SET clause lists both the columns to be updated and the new values for
those columns.

column-name

Name of the column to be modified.

WHERE

The WHERE clause specifies which rows will be updated. Refer to page 6-54
for more information on the WHERE clause.

search-conditions
Specifies the conditions for the selection of data. For more information, refer
to page 6-54.

Description The UPDATE statement modifies the value of one or more columns in the specified
table.

If the UPDATE statement is part of a transaction, the update can be undone by rolling
back the transaction.

Warning: If you omit the WHERE clause, all rows in the table are updated.

Examples The following statement increases each price category by 10%. Since there is no WHERE
clause, this statement updates each row in the pricecats table:

UPDATE pricecats SET price = price * 1.1;

The following statement updates the price category for a video:

UPDATE titles SET pricecat = 'G' WHERE title_id = 57;
6-52 SQL Reference

UPDATE Statement
The following query updates the member status to the frequent renter category if a
customer rents over 10 videos a month:

UPDATE customers SET member_status = 'F'
WHERE cust_id IN
(SELECT cust_id FROM rentals
WHERE rental_date
BETWEEN '1993/09/01 00:00:00' AND '1993/10/01 00:00:00'
GROUP BY cust_id HAVING COUNT(*) > 10 ');

See Also WHERE Clause
JDB SQL Reference 6-53

WHERE Clause
WHERE Clause

Specify search conditions and/or specify the relationship between tables

WHERE search-conditions
WHERE column-name join-operator column-name

search-conditions

Specifies the conditions for the selection of data.

column-name

Specifies a column in each of the tables to be joined.

join-operator

Specifies the join operator. Refer to page 6-27 for more information about
joins.

Description The WHERE clause performs two functions:

! Specifying the search conditions for the result set.

! Specifying the connection between tables named in the FROM clause.

A result set contains only the rows in the database that meet the search conditions. If
more than one search condition is included in a WHERE clause, connect the conditions
with the logical operators AND or OR.

Search

Conditions

Search conditions can include the following:

BETWEEN
WHERE [NOT] expression [NOT] BETWEEN expression AND
expression

The BETWEEN predicate specifies a range of database values. The following
statement returns all the customers who joined during a certain year:

SELECT cust_id, first_name, last_name FROM customers
WHERE member_date BETWEEN '1992/01/01 00:00:00'
AND '1993/01/01 00:00:00';
6-54 SQL Reference

WHERE Clause
EXISTS

WHERE [NOT] EXISTS subquery

The EXISTS keyword tests for the presence of a result set from the subquery.
If the NOT keyword is also specified, the WHERE clause is satisfied if there are
no rows in the result set. The subquery is enclosed in parentheses.
Notice that the subquery uses an * instead of a select list since you are merely
testing whether rows meet the subconditions specified in the query.

SELECT title_id, name FROM titles WHERE EXISTS
(SELECT * FROM tapes WHERE title_id = tapes.title_id
AND status = 'I');

IN
WHERE expression [NOT] IN subquery

WHERE expression [NOT] IN values-list
The IN keyword evaluates whether or not the expression in the WHERE clause
matches a row in the subquery or a value in the values list. The subquery using
IN can only return one column, but it can return more than one row.
The following query uses a values list to find the adventure and science
fiction videos. It tests whether the genre_code for each video matches ADV
or SCFI.

SELECT name, rating_code FROM titles
WHERE genre_code IN ('ADV', 'SCFI');
JDB SQL Reference 6-55

WHERE Clause
IS NULL
WHERE column-name IS [NOT] NULL

The keyword IS NULL searches for null values in the specified column.

SELECT name FROM titles WHERE rating_code IS NULL;

LIKE
WHERE column-name [NOT] LIKE literal [ESCAPE literal]

A LIKE predicate selects rows where a column value matches a specified
pattern. The following query finds the video titles that begin with “M.”

SELECT title_id, name FROM titles WHERE name LIKE 'M%'

Operators
WHERE expression {> | < | >= | <= | = | <>}{expression |
subquery}

Operators allow you to compare column values. The following query finds
the customers who have rented more than 2000 videos. For more information
on using operators in subqueries, refer to page 6-48.

SELECT cust_id, first_name, last_name FROM customers
 WHERE num_rentals > 200;
6-56 SQL Reference

WHERE Clause
Specifying Joins

The WHERE clause also specifies the interconnecting columns between tables in joins.
The following statement illustrates a multiple join. For additional information on joins,
refer to page 6-27.

SELECT name, first_name, last_name, role
FROM titles, actors, roles
WHERE titles.title_id = roles.title_id
AND roles.actor_id = actors.actor_id
AND titles.title_id = 62;

See Also BETWEEN Predicate, Joins, LIKE Predicate, Null Values, Operators, Subqueries
JDB SQL Reference 6-57

SQL Syntax Summary
SQL Syntax Summary

CREATE DATABASE database-name

CREATE TABLE table-name (
column-name data-type [(length)] [NOT NULL] [, column-name ...]
[PRIMARY KEY (column-name, column-name ...]),]
[UNIQUE (column-name [, column-name ...]),]
[FOREIGN KEY (column-name [, column-name ...])
REFERENCES table-name (column-name [, column-name ...]) [,]

]

CREATE TABLE table-name (
column1 data-type [(length)] NOT NULL,
column2 data-type [(length)] NOT NULL,
column3 data-type [(length)] NOT NULL,
column4 data-type [(length)] NOT NULL,
column5 data-type [(length)],
column6 data-type [{length)],
PRIMARY KEY (column1, column2),
UNIQUE (column2),
UNIQUE (column3, column4),
FOREIGN KEY (column5, column6)

REFERENCES table2 (column, column),
FOREIGN KEY (column5) REFERENCES table3 (column)
)

DELETE FROM table-name [WHERE search-conditions]

DROP DATABASE database-name

DROP TABLE table-name

INSERT INTO table-name [(column-list)]
VALUES (literal| NULL [, ...])

INSERT INTO table-name [column-name [, ...]] query-expression

SELECT [DISTINCT] {select-list | *}
FROM table-name [correlation-name] [, ...]
[WHERE search-conditions]
[GROUP BY [correlation-name.]column-name [, ...]]
[HAVING search-conditions]
[ORDER BY {integer| [correlation-name.]column-name} [, ...]]

UPDATE table-name SET column-name = value [, ...]
[WHERE search-conditions]
6-58 SQL Reference

APPENDIX
A JDB Utilities

This chapter describes the utilities available with JDB:

! isql—A command-line interactive SQL utility

! jdbroll—Updates a database using its journal files

! jisql—Graphical interactive SQL editor

! mksql—Outputs SQL statements for the specified database

! tbldata—Imports/exports data to and from a database
JDB SQL Reference A-1

isql
isql

Access a command line interactive SQL utility

isql databaseName

databaseName

Specifies the name of the database or @system if a database isn’t available.

Description The isql utility is a command-line interactive editor for JDB that lets you to execute
any database statement. It is provided as a command-driven alternative to the JISQL
graphical environment described in Chapter 5, “Using JISQL.”

While isql and JISQL are similar in many respects, they are not identical. JISQL has
a series of macro commands that are not available in isql, so JISQL scripts containing
these commands will not run under isql. Although the SQL commands in isql end
with a ; as a termination character, all JISQL commands terminate with a ;. Use the
interactive SQL capability described here only if you want to bypass the JISQL
environment.

Starting ISQL

To start isql, at the command line, type:

$SMBASE/jdb/bin/isql databaseName

where databaseName is the name of an existing database or @system if a database
isn’t available. The screen displays the following numeric prompt where you can enter
any JDB statement: 1>

Creating a New Database

If this is your first JDB session, or if you want to create a new database, first start isql.
Generally, on UNIX systems, it is located in $SMBASE/jdb/bin.

isql

At the prompt, logon to
A-2 JDB Utilities

isql
JDB using

@system:

logon @system

Once you are connected, create a new database by typing:

create database databaseName;

databaseName must conform to the file naming conventions of the operating system.

To connect to the new database in order to create database tables and enter data, enter:

logon databaseName

Executing SQL Statements

You can execute any SQL statement available in JDB by ending each database
statement with a ; as the command terminator. For example:

1> SELECT title_name, name, genre_code FROM titles;

A line without a trailing semi-colon is concatenated with the next line until a semicolon
is reached. Therefore, one statement can span multiple lines.

Executing ISQL Statements

Table A-1 lists the commands available in isql. These commands allow you to edit a
query, read in a query file, or execute an operating system command.

Note: These commands do not end with a semi-colon. Also, in order for these
commands to be recognized, each must start on the first character of a
command line.

Table A-1 Commands for isql

Command Syntax Description

clear clear Empties the input buffer. Command must start in the first column
of a new line.

comment # Specifies that the line is a comment.
JDB SQL Reference A-3

isql
Exiting ISQL

To exit isql, type:

exit

An automatic commit is generated when you exit the isql session using either the
quit or exit commands. Specify rollback if you do not want to keep your database
changes.

commit commit Saves additions and edits you make to the database since the last
commit or rollback or since connecting to the database.

edit edit Starts an editing shell for entering statements. The editing program
is determined by the environment variable EDITOR or SMEDITOR.

exit exit Exits isql.

list list Displays last executed command.

logon logon databaseName
logon @system

Connects to another database file or @system.

output output filename Redirects output to a file. If you specify output without a file name,
it redirects output to the screen.

quit quit Quits isql.

read read filename Reads and executes the SQL commands in a text file. To execute
more than one command, each command must end with a
semi-colon (;).

rollback rollback Undoes all additions and edits made to the database since the last
commit or rollback or since connecting to the database.

system system commandName Executes the named operating system command.

Table A-1 Commands for isql (Continued)

Command Syntax Description
A-4 JDB Utilities

jdbroll
jdbroll

Restore a transaction log

jdbroll databaseName journalName [journalName ...]

databaseName

Specifies the name of the database.

journalName

Specifies the name of the journal file(s).

Description The jdbroll utility allows you to update the database based on your log files.

When you logon to a database for the first time, JDB creates a journal file named
j1databaseName. For example, a database having the videobiz would have a
journal file named j1videobiz. The next time you log on, the information in the
current file (j1videobiz) is copied to the file j0databaseName. If the file already
exists, it is overwritten.
JDB SQL Reference A-5

mksql
mksql

Translate an existing JDB database into its CREATE TABLE and INSERT statements

mksql databaseName

databaseName

Specifies the name of the database.

Description The mksql utility uses an existing JDB database to output a set of SQL statements from
which the database could be rebuilt. For each table, it writes a CREATE TABLE
statement, followed by a series of INSERT statements for the data in the table.

Example The following result set illustrates a portion of the output for the actors table in the
videobiz database.

create table actors (
actor_id long not null
last_name character(25) not null
first_name character(20)
primary key (actor_id)

);

insert into actors (
actor_id
last_name
first_name)

values (
1
'Abraham'
'F. Murray'

);
A-6 JDB Utilities

tbldata
tbldata

Read rows in a database table to/from text files

tbldata [-d delimiter] -x exportFile databaseName tableName

tbldata [-d delimiter] -i importFile databaseName tableName

-d delimiter
Specifies the column delimiter. The delimiter character might need to be
enclosed in quotation marks. For example, to specify a space as the delimiter:

tbldata -d " " -x exportFile databaseName tableName

If no delimiter is specified, tbldata uses TAB as the delimiter.

-x
Logs onto the specified database and writes each row of the specified table to
the specified text file.

-i
Logs onto the specified database and inserts each row of the specified text file
into the specified table.

exportFile

Name of the text file where the data will be written.

importFile

Name of the text file containing the data to be inserted into JDB.

databaseName

Name of the JDB database.

tableName

Name of the database table.

Description The tbldata utility can be used two different ways:

! With the -x argument to convert rows in a database table to a text file.

! With the -i argument to insert rows into a database table from a text file.
JDB SQL Reference A-7

tbldata
With these options, you must specify both the database and the database table.

When using -i option, the database table must already exist. Also, the column values
must be listed in the same order as the columns in the database table.
A-8 JDB Utilities

APPENDIX
B JDB-Specific Error
Messages

This chapter lists the error messages that can occur while using JDB. The messages are
stored in the Panther message file.

If an error occurs using the isql utility, the error message is displayed on the screen.
If the error prompt appears followed by numbers instead of error message text, check
the setting of the variable SMVARS.

If an error occurs in an application, the message that appears on the screen depends on
the type of error handler currently installed. There are DBMS commands and global
variables available in Panther's database drivers for use in an error handler. For more
information, refer to Chapter 37, “Processing Application Errors,” in Application
Development Guide.

Error Message Listing

Aggregate function not allowed in current context
(DM_JDB_AGGREGATE_NOT_ALLOWED)

Cause:
Aggregate function appears in the wrong context.*
JDB SQL Reference B-1

Error Message Listing
Action:
Aggregate functions can appear in the select list of a SELECT statement or in
a HAVING clause.

Ambiguous column reference (DM_JDB_AMBIGUOUS_COLUMN_REF)

Cause:
In a multiple join, a column name has been specified without its
corresponding table name.

Action:
Add the table name to the column references.

Bad Input (DM_JDB_BAD_INPUT)

Cause:
Data formatted incorrectly for tbldata utility.*

Action:
Edit input file. For information on data types, refer to page 6-15.

Corrupt JDB Database detected (DM_JDB_DB_CORRUPT)

Action:
Exit the database, restart that same database, and reissue the statement to see
if the message disappears. If not, use tbldata to unload the database. Check
the ASCII file before reloading the database.

Current cursor is not attached to a database (DM_JDB_NODB)

Cause:
Executing a query or data modification statement while connected to the
system catalog or while not connected to a database.

Action:
Logon to the desired database, and re-execute the command.

Duplicate column assignment (DM_JDB_DUP_COL_ASSIGNMENT)

Cause:
The column has been specified twice in the SET clause of an UPDATE
statement.

Action:
Edit statement and eliminate duplicate setting.

Duplicate column name (DM_JDB_DUP_CNAME)
B-2 JDB-Specific Error Messages

Error Message Listing
Cause:
The column name has already been specified for that table.

Action:
Assign each column in the database table a unique name.

Duplicate table alias (DM_JDB_DUPTABLEALIAS)

Cause:
Using the same table alias for more than one table.

Action:
Assign each table alias a unique name.

Duplicate table name (DM_JDB_DUP_TNAME)

Cause:
Creating a database table that matches an existing table name.

Action:
Assign each table in the database a unique name.

File I/O Error (DM_JDB_FILE_IO_ERR)

Cause:
1.)Database is not in the current directory. 2) Database does not exist. 3)
Database name was misspelled.

Action:
Depending on the desired outcome, either specify the database path or create
the database in the current directory.

Internal datatype conversion failed (DM_JDB_CONVERSION_FAILED)

Cause:
Inserting a character string into a datetime column in an INSERT or UPDATE
statement. Inserting a ; instead of a : when specifying a datetime value.

Action:
Check to see if the values match the data types of the columns.

Invalid Database/Table Handle (DM_JDB_BAD_HANDLE)

Cause:
Internal error in opening and closing table structure.*
JDB SQL Reference B-3

Error Message Listing
Action:
Exit database and restart.

Invalid Table operation (DM_JDB_INVALID_TABLE_OP)

Cause:
Trying to update system tables.

Action:
Only SELECT statements can be used on the system tables.

Journal error (DM_JDB_JOURNAL_ERROR)

Cause:
Database is read-only.

Action:
Change the file permissions.

Key columns must be specified as not null (DM_JDB_KEY_MUST_BE_NULL)

Cause:
Primary key column was specified in the CREATE TABLE statement without
the NOT NULL keywords.

Action:
Insert the NOT NULL keywords for primary key columns.

Maximum record length exceeded (DM_JDB_MAX_RECLEN_EXCEEDED)

Cause:
Row definition is greater than 1K.

Action:

Edit table definition to a maximum of 1024 bytes for each row.

More than one primary key was specified (DM_JDB_MULT_PKEY)

Cause:
An additional PRIMARY KEY clause was specified in the CREATE TABLE
statement.

Action:
Specify one PRIMARY KEY clause using commas to separate the primary key
columns.
B-4 JDB-Specific Error Messages

Error Message Listing
Must close Database first (DM_JDB_DATABASE_OPEN)

Cause:
Attempting to drop a database while that database connection is still active.

Action:
Logon to another database or to the system catalog in order to drop the
database.

Must drop Database first (DM_JDB_DATABASE_EXISTS)

Cause:
Attempting to create a database when that database already exists.

Action:
Depending on the desired outcome, either 1) drop the database so that it can
be recreated, or 2) use another database name.

Not implemented (DM_JDB_NOT_IMPLEMENTED)

Cause:
Feature not implemented in JDB.*

Action:
n/a

Read-Only handle (DM_JDB_READONLY)

Cause:
Database file is specified to be read-only.

Action:
This appears as a warning when you log on and as an error if you attempt to
insert or update data in the database.

NULL not allowed (DM_JDB_NULL_NOT_ALLOWED)

Cause:
Column has been defined in the CREATE TABLE statement as NOT NULL.

Action:
In an INSERT statement, a value must be entered for all columns defined as
NOT NULL.

Syntax error (DM_JDB_SYNTAX_ERROR)
JDB SQL Reference B-5

Error Message Listing
Cause:
Character strings are not enclosed in single quotation marks in an INSERT
statement.

Action:
Add quotation marks, and reissue statement.

Cause:
Reserved keyword used as a table or column name in a CREATE TABLE
statement.

Action:
Change table or column name.

Table not found (DM_JDB_TABLE_NOT_FOUND)

Cause:
Database table does not exist.

Action:
Create table, or query systabs for table names in the database.

Temporary database error (DM_JDB_TMPDATABASE_ERR)

Cause:
Unable to create temporary database needed for processing.

Action:
Check memory available.*

The number of values specified does not equal the number of columns
(DM_JDB_INVALID_VALUES_COUNT)

Cause:
In an INSERT statement, the number of columns in the column list and the
number of column values in the values list is not the same.

Action:
Check INSERT statements.

The subquery returned too many rows (DM_JDB_SUBQ_TOO_MANY_ROWS)

Cause:
Subquery returned multiple rows when statement needs one value.
B-6 JDB-Specific Error Messages

Error Message Listing
Action:
Edit query to use different search conditions.

Type mismatch (DM_JDB_TYPE_MISMATCH)

Cause:
Inserting a character string into a column specified as integer.

Action:
JDB performs the insertion converting the character string to 0. Edit the
statement to the correct value.

Unresolved column reference (DM_JDB_UNRESOLVED_COLUMN_REF)

Cause:1
 Misspelled column names in SQL statements. 2) Column values not enclosed
in single quotes. 3) Column listed in an ORDER BY clause is not in the select
list. 4) Incorrect table name included in correlation name or alias.

Action:
Correct syntax and reissue statement.
JDB SQL Reference B-7

Error Message Listing
B-8 JDB-Specific Error Messages

APPENDIX
C Keywords in JDB

This chapter lists the keywords specified in the ANSI standard for SQL. These
keywords cannot be used in JDB expressions and are, therefore, not available for use
as table, column or database names.

all alter and

any as asc

authorization avg

begin between by

char character check

clear close cobol

commit continue count

create current cursor

database datetime dec

decimal declare default

delete desc distinct

double drop

edit end escape

exec exists exit
JDB SQL Reference C-1

fetch float for

foreign fortran found

from

go goto grant

group

having

in indicator insert

int integer into

is is null

key

language like list

logon long

max min module

not null numeric

of on open

option or order

output

pascal pli precision
C-2 Keywords in JDB

primary precision primary

privileges procedure public

quit

read real references

rollback

save schema section

select set smallint

some sql sqlcode

sqlerror sum system

table to

union update user

using

values view

whenever where with

work
JDB SQL Reference C-3

C-4 Keywords in JDB

APPENDIX
D Videobiz Database

This section describes the database tables in the videobiz database. The following
information is listed for each table:

! Column names

! Data type of each column.

! Length of character columns

! Status of column detailing whether it is a primary or foreign key and whether it
can accept null values

! Description of the data to be entered into the column

! Sample entry

Videobiz Schema

The following tables outline the database tables in the videobiz database.

Table D-1 Actors table

Column Name Data Type Length Status Description Sample

actor_id integer primary key not
null

Unique number code for
each actor.

87
JDB SQL Reference D-1

Videobiz Schema
last_name char 25 not null Actor's last name or only
name.

Ullmann

first_name char 20 Actor's first name. Liv

Table D-2 Codes table

Column
Name

Data
Type

Length Status Description Sample

code_type char 32 primary key not null Type of code.
Corresponds to column
name.

genre_co
de

code char 4 primary key not null Code value. ADV

dscr char 40 Description of code value. Adventure

Table D-3 Customers table

Column Name Data
Type

Length Status Description Sample

cust_id integer primary key not
null

Unique number code for
each customer.

2

last_name char 25 not null Customer's last name. Scott

first_name char 20 not null Customer's first name. Alexander

address1 char 40 Customer's address. 5601 Wilson

address2 char 40 Additional address
information.

city char 25 City customer lives in. Geneva

state_prov char 10 State/Province. NY

Table D-1 Actors table (Continued)

Column Name Data Type Length Status Description Sample
D-2 Videobiz Database

Videobiz Schema
postal_code char 10 Postal code. 10234

phone char 15 Customer's telephone
number.

515-221-4111

cc_code char 4 Code for type of credit
card. List in codes table.

VISA

cc_number char 16 Number on credit card. 4000...

cc_exp_month integer Month of credit card
expiration. 1=January,
12=December.

2

cc_exp_year integer Year of credit card
expiration (4 digits).

1994

member_date datetime Date when customer
became a member.

1991/05/30
00:00:00

member_status char 1 not null Current status of
membership. Values
include: (A)ctive,
(I)nactive, (F)requent
renter.

A

num_rentals integer not null Total number of rentals
customer has made.

105

rent_amount float not null Total amount of money
paid by customer.

175.00

notes char 254 Comments about
customer.

Likes ADV
videos.

Table D-3 Customers table (Continued)

Column Name Data
Type

Length Status Description Sample
JDB SQL Reference D-3

Videobiz Schema
Table D-4 Flag table

Column
Name

Data
Type

Length Status Description Sample

yesno char 1 Flag used in the sample application. Y

Table D-5 Pricecats table

Column Name Data
Type

Length Status Description Sample

pricecat char 1 primary key not
null

Unique letter code for each
category.

N

pricecat_dscr char 40 Category description. New
Release

rental_days integer not null Number of rentals days
available in this category.

2

price float not null Amount to be paid for rentals
in this category.

2.50

late_fee float not null Amount of late fee for rentals
in this category.

2.00

Table D-6 Rentals table

Column Name Data
Type

Length Status Description Sample

cust_id integer primary key
foreign key not
null

Code identifying the
customer for this rental.

3

title_id integer primary key
foreign key* not
null

Code identifying the video
title for this rental.

69
D-4 Videobiz Database

Videobiz Schema
copy_num integer primary key
foreign key not
null

Copy of this video being
rented.

2

rental_date datetime primary key not
null

Date/time the video was
rented.

1993/10/29
19:56:00

due_back datetime not null Date the video is due back
to avoid late fee.

1993/11/01
00:00:00

return_date datetime Actual date/time the video
was re turned; NULL until
then.

NULL

price float not null Rental fee for video at time
rental was made.

3.50

late_fee float not null Late fee per day for video at
time rental was made.

1.00

amount_paid float not null Total amount paid on this
rental as of current date.

3.50

rental_status char 1 not null Status of rental. Values
include (C)urrently out,
Back and (P)aid, (B)alance
is due.

C

rental_comment char 76 Comments about rental, if
any.

NULL

modified_date datetime not null Date this record was last
modified.

1993/10/29
19:56:00

modified_by integer foreign key not
null

Last user who modified
record.

2

*title_id is a foreign key from the tapes table, in combination with copy_num.

Table D-6 Rentals table (Continued)

Column Name Data
Type

Length Status Description Sample
JDB SQL Reference D-5

Videobiz Schema
Table D-7 Roles table

Column
Name

Data
Type

Length Status Description Sample

title_id integer primary key foreign
key not null

Unique number code for
each video title.

33

actor_id integer primary key foreign
key not null

Unique number code for
each actor.

87

role char 40 Role the actor plays in the
video.

Marianne

Table D-8 Tapes table

Column
Name

Data
Type

Length Status Description Sample

title_id integer primary key foreign
key not null

Unique number code for each
video title.

33

copy_num integer primary key not null Number identifying the copy
of this video.

1

status char 1 not null Code specifying the current
status of this copy. Values
include (A)vailable,
(R)eserved, (O)ut, (I)nactive.

O

times_rented integer not null Number of times this copy has
been rented.

53

Table D-9 Titles table

Column Name Data
Type

Length Status Description Sample

title_id integer primary key not
null

Unique number code for
each video title.

33
D-6 Videobiz Database

Videobiz Schema
name char 60 not null Video title. Scenes from a
Marriage

genre_code char 4 Code specifying the video
category. Values include:
ADLT, ADV, CHLD,
CLAS, COM, HORR,
MUS, MYST, SCFI, TV,
VID. See codes table.

CLAS

dir_last_name char 25 Director's last name. Bergman

dir_first_name char 20 Director's first name. Ingmar

film_minutes integer Length of the video. 168

rating_code char 4 Rating code given the film
by the Motion Picture
Association of America.
Values include: G, PG,
PG13, R, NC17. See
codes table.

PG

release_date datetime Year the film was released to
movie theatres.

1974/01/01
00:00:00

pricecat char 1 foreign key not
null

Code taken from the
pricecats table specifying
the price category.

G

Table D-10 Title_dscr table

Column
Name

Data
Type

Leng
th

Status Description Sample

title_id integer primary key foreign
key not null

Unique number code for
each video title.

33

Table D-9 Titles table (Continued)

Column Name Data
Type

Length Status Description Sample
JDB SQL Reference D-7

Videobiz Schema
line_no integer primary key not null Line number of the video
description.

1

dscr_text char 76 Description of the video. Relationship of a
couple...

Table D-11 Users table

Column Name Data
Type

Length Status Description Sample

user_id integer primary key not
null

Unique number code for each
system user/employee.

3

logon_name char 8 User's logon name. jack

password char 8 User's password. go

last_name char 25 User's last name. Ryan

first_name char 20 User's first name. Jack

customer_flag char 1 Y allows access to customer
subsystem.

Y

admin_flag char 1 Y allows access to
administrative subsystem.

N

marketing_flag char 1 Y allows access to marketing
subsystem.

Y

frontdesk_flag char 1 Y allows access to front desk
subsystem.

Y

Table D-10 Title_dscr table (Continued)

Column
Name

Data
Type

Leng
th

Status Description Sample
D-8 Videobiz Database

INDEX
Index

Symbols

(pound sign)
comments in ISQL A-3
comments in JISQL 5-20

% (percent sign)
as pattern matching operator 6-33

; (semicolon)
command terminator in JISQL 5-20

_ (underscore)
as pattern matching operator 6-33

A

Addition operation
in JDB 6-37

Aggregate functions
in JDB 6-4

with GROUP BY clause 6-21
ALL keyword

in JDB 6-49
ANY keyword

in JDB 6-49
Arithmetic operators

in JDB 6-37
ASC keyword

specifying data order 6-42
AVG function

in JDB 6-4

B

BETWEEN predicate
in JDB 6-7, 6-54

C

char (data type)
in JDB 6-15

Column list 3-6
Columns

Database columns 2-3
Commit

transaction in ISQL A-4
transaction in JDB 3-9

Comparison operators
in JDB 6-38

Configuration
JDB 4-6

Connections
to JDB database 4-7

Correlation names
for database tables 3-8
for self-joins

for self-joins 6-31
COUNT function

in JDB 6-4
CREATE DATABASE statement

in JDB 6-9
CREATE TABLE statement
JDB SQL Reference I-1

Index
in JDB 6-11
Creating

databases
in JDB 6-9

D

Data
deleting from database

in JDB 6-18
entering into database

in JDB 6-25
grouping data 6-21
matching specified pattern 6-33
modifying

in JDB 6-52
selecting

from multiple tables 6-27
in JDB 6-44

specifying data order 6-42
Data type

in JDB 4-2, 6-15
Database

connecting to
in JDB 4-7

creating
in ISQL A-2
in JDB 6-9

designing 2-7
recreating JDB database A-6
relational 2-1

Database columns
defined 2-3
defining

in JDB 6-11
in JISQL 5-7

naming conventions 2-6
in JDB 4-2

selecting 6-44
Database connections

to JDB database 4-7

Database tables
Tables 2-2

datetime (data type)
in JDB 6-16

DELETE statement
constructing 3-6
in JDB 6-18

DESC keyword
specifying data order 6-42

Division operation
in JDB 6-37

double (data type)
in JDB 6-16

DROP DATABASE statement
in JDB 6-19

DROP TABLE statement
in JDB 6-20

E

Equi-joins 6-27
Error messages

JDB B-1
EXISTS keyword

in JDB 6-48, 6-55
Expressions

in JDB 6-38

F

File
export JDB database to text files A-7
import to JDB database from text files A-7

float (data type)
in JDB 6-15

Foreign keys
defined 2-6
defining using JISQL 5-11

Functions
aggregate functions 6-4
I-2 JDB SQL Reference

Index
G

GROUP BY clause
in JDB 6-21

H

HAVING clause
in JDB 6-23

I

IN keyword
in JDB 6-48, 6-55

INSERT statement
constructing 3-5
in JDB 6-25
NULL values and 6-35

int (data type)
in JDB 6-15

Interactive SQL
in JDB

ISQL A-2
JISQL 5-1

ISQL
clearing the input buffer A-3
command terminator A-3
committing transactions A-4
connecting to a database A-4
editing statement in A-4
executing a command file A-4
exiting A-4
starting A-2
using interactive SQL utility

in JDB A-2

J

JDB
connecting to database

using ISQL A-2

using JISQL 5-3
creating databases 4-1, 6-9, A-2

using JISQL 5-4
deleting databases 6-19
describing 1-1
describing tables using JISQL 5-16
disconnecting from database using JISQL 5-3
dropping databases using JISQL 5-17
error messages B-1
executing transactions 3-9
isql (interactive SQL) utility A-2
journal files 4-6
keywords C-1
naming conventions 4-1
SQL commands 6-1
SQL syntax summary 6-58
system tables 4-3
unsupported features 1-3
using JISQL 5-1
utilities A-1

jdbroll A-5
JISQL 5-1

command terminator 5-20
connecting to a database 5-3
creating databases 5-4
creating tables 5-5
defining columns 5-7
disconnecting from a database 5-3
displaying database description 5-16
dropping databases 5-17
dropping tables 5-17
editing SQL scripts 5-18
executing operating system commands 5-4
executing SQL scripts 5-22
exiting 5-2
log file 5-22, 5-25
macro commands 5-21
output options 5-22
query results 5-23
running interactive SQL 5-18
script format 5-20
JDB SQL Reference I-3

Index
starting 5-1
terminating execution 5-23

Join
database tables 3-7, 6-27
using correlation names 3-8

Journal file
in JDB 4-6

K

Key columns
defining using JISQL 5-8
foreign key

defined 2-6
primary key

defined 2-4
Keywords

in JDB 2-7, C-1

L

LIKE predicate
in JDB 6-33, 6-56

Log file
JISQL 5-25

Logical operators
in JDB 6-39

logon
connecting to JDB database A-4

long (data type)
in JDB 6-15

M

Macro commands
JISQL 5-21

MAX function
in JDB 6-4

Message file
JDB 4-6

MIN function

in JDB 6-4
mksql

creating script for JDB database A-6
Multiple table joins 6-29
Multiplication operation

in JDB 6-37

N

Natural joins 6-28
NOT keyword in JDB

in joins 6-27
NOT BETWEEN 6-7, 6-54
NOT EXISTS 6-48, 6-55
NOT IN 6-48, 6-55
NOT LIKE 6-33, 6-56
NOT NULL 6-35, 6-56

NULL
specifying in JDB 6-35

Null value
and arithmetic operations in JDB 6-37
and COUNT aggregate function 6-4
defined 2-3
specifying in JDB 6-35, 6-41

O

Operating system
executing command

from JISQL 5-4
Operators

in JDB 6-37
ORDER BY clause

in JDB 6-42

P

Primary keys 2-8
defined 2-4
defining using JISQL 5-9
I-4 JDB SQL Reference

Index
Q

Queries
database 6-44

quit
exiting ISQL A-4

R

Range
search conditions in JDB 6-7

Relational databases 2-1
Restrictions

JDB 1-3
Rollback

transaction in ISQL A-4
transaction in JDB 3-9

Rows
defined 2-4

S

Schema
defined 2-1

Search conditions
in SQL statements 6-54

SELECT statement
construction 3-2
in INSERT statement 6-26
in JDB 6-44
NULL values and 6-35
select list 3-2

Self-joins
in JDB 6-31

SMEDITOR
editing SQL statements 4-6

SOME keyword
in JDB 6-49

SQL
commands

in JDB 6-1

constructing SQL statements 3-1
executing in JISQL 3-10
executing in JPL 3-10
recreating JDB database A-6
syntax summary for JDB 6-58

Subqueries
database 6-48

Subtraction operation
in JDB 6-37

SUM function
in JDB 6-4

Syntax summary
JDB 6-58

system
executing operating system command in

ISQL A-4
System tables

in JDB 4-3

T

Tables
creating

in JDB 6-11
in JISQL 5-5

defined 2-2
defining keys

using JISQL 5-8
describing in JISQL 5-16
dropping

in JDB 6-20
using JISQL 5-17

exporting
to text files A-7

importing
from text files A-7

joining multiple 3-7, 6-27
naming conventions 2-6

in JDB 4-2
selecting data 6-44
setting correlation names 3-8
JDB SQL Reference I-5

Index
system tables
in JDB 4-3

tbldata
importing/exporting JDB database A-7

Text files
import/export to JDB database A-7

Transaction
defined 3-9
processing for database

JDB 3-9

U

Unique keys
defining using JISQL 5-9

Unsupported features
JDB 1-3

UPDATE statement
constructing 3-5
in JDB 6-52

Utilities
isql A-2
jdbroll A-5
mksql A-6
tbldata A-7

V

videobiz
description of database D-1
diagram 2-8

W

WHERE clause
constructing 3-4
in JDB 6-54

Wildcard characters
in JDB 6-33
I-6 JDB SQL Reference

	Contents:
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Introduction to JDB
	Using JDB
	JDB Executables and Utilities
	Unsupported Features
	See Also

	2 Introduction to Databases
	Structure of a Relational Database
	Tables
	Columns
	Entering Data

	Rows
	Primary Keys
	Foreign Keys
	Naming Database Tables and Columns

	Designing Your Database

	3 Introduction to SQL
	SQL Statements
	SELECT Statement
	WHERE Clause

	UPDATE Statement
	WHERE Clause

	INSERT Statement
	DELETE Statement

	SQL Concepts
	Multi-Table Queries
	Correlation Names
	Aggregate Functions
	Transactions
	Implementation in a JDB Database

	Executing SQL
	Using JISQL
	Using JPL

	See Also

	4 Database Elements
	Naming Conventions
	Databases
	Identifiers

	Data Types
	System Tables
	Journal Files
	Configuration
	Specifying an Editor
	Error Messages
	Connecting to a JDB Database

	5 Using JISQL
	Starting JISQL
	JDB Database Connections
	To connect to an existing database:
	To connect to a new database:
	To disconnect from the current database:

	Executing Operating System Commands from JISQL
	To execute an operating system command from JISQL:

	Creating a New Database
	Creating Database Tables
	To create a database table:
	Defining Columns in a Database Table
	To add a new column to the table you are creating:
	To change or delete a column's definition:
	To change the order of columns in the table:

	Defining Keys for a Database Table
	Primary Key and Unique Keys
	To add a new primary key or unique key:
	To modify an existing primary key or unique key:
	To delete an existing primary or unique key:

	Foreign Keys
	To add a new foreign key:
	To modify an existing foreign key:
	To delete an existing foreign key:

	Maintaining a Database
	Displaying Database and Table Definitions
	Dropping Tables
	Dropping a Database

	Running SQL Interactively
	Writing SQL Scripts
	To enter a SQL script:
	To edit a SQL script:
	To save SQL script displayed in the scripting area:
	To clear the scripting area:

	Script Format and Syntax
	JISQL Macro Commands
	Executing SQL Scripts
	Output and Execution Options
	To stop execution of a SQL script:

	Capturing and Displaying Query Results
	To save the output to a file:
	To display select sets on the screen:

	Creating and Viewing the Log File
	How to Begin a Log Session
	To view the information stored in the log file for the current session:
	To end a log session:

	Sample Log File

	6 SQL Reference
	Reference Organization
	SQL Statements
	SQL Clauses and Keywords
	SQL Concepts
	Notation Conventions
	Aggregate Functions
	BETWEEN Predicate
	CREATE DATABASE Statement
	CREATE TABLE Statement
	Data Types
	DELETE Statement
	DROP DATABASE Statement
	DROP TABLE Statement
	GROUP BY Clause
	HAVING Clause
	INSERT Statement
	Joins
	LIKE Predicate
	Null Values
	Operators
	ORDER BY Clause
	SELECT Statement
	Subqueries
	UPDATE Statement
	WHERE Clause
	SQL Syntax Summary

	A JDB Utilities
	isql
	jdbroll
	mksql
	tbldata

	B JDB-Specific Error Messages
	Error Message Listing

	C Keywords in JDB
	D Videobiz Database
	Videobiz Schema

	Index

