
TABLE OF
CONTENTS
Contents

About This Document

1. JPL Command Overview
Control Flow.. 1-1

Procedure Structure ... 1-2

Variable Declaration.. 1-2

Command/Function Execution.. 1-2

Module Access and Availability ... 1-3

Text Display .. 1-3

Data/Message Transfer.. 1-3

Database Drivers ... 1-4

JetNet/Oracle Tuxedo Processing.. 1-4

Component Processing (COM, EJB)... 1-6

2. JPL Command Reference

3. Built-in Control Functions

4. Library Function Overview
Initialization/Reset... 4-1

Screen and Viewport Control .. 4-2

Interscreen Messaging ... 4-3

Widget Creation/Deletion.. 4-4

Property Access ... 4-5

Field/Array Data Access.. 4-5

Group Access... 4-7

Local Data Block Access... 4-8

Validation .. 4-9

Cursor Control ... 4-10

Display Terminal I/O... 4-10
Programming Guide 1

Message Display.. 4-11

Mass Storage and Retrieval ... 4-13

Global Data and Changing Panther Behavior.. 4-13

Menus .. 4-14

Database Interaction .. 4-15

Transaction Manager ... 4-18

GUI Access.. 4-20

DDE (Dynamic Data Exchange) ... 4-21

File Access... 4-22

Library Access ... 4-23

JPL ... 4-24

JetNet/Oracle Tuxedo Processing.. 4-24

Open Middleware Connectivity... 4-25

COM/MTS Processing .. 4-26

Reports... 4-27

Web Applications .. 4-28

Mail.. 4-28

XML .. 4-29

Miscellaneous .. 4-29

5. Library Functions

6. Java Library Function Interfaces

7. Java Object Interfaces

8. Transaction Manager Commands

9. Transaction Model Events
Common Transaction Model ... 9-2

Database-Specific Transaction Models ... 9-13

10. Transaction Manager Error Messages
Transaction Manager Errors .. 10-1
2 Programming Guide

11. DBMS Statements and Commands
DBMS Command Summary.. 11-2

12. DBMS Global Variables
Variable Overview... 12-2

13. Keywords in Database Drivers

14. ActiveX Controls

Index
Programming Guide 3

4 Programming Guide

Panther
Programming Guide

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents

About This Document
Documentation Website .. xxiii

How to Print the Document... xxiii

Documentation Conventions ... xxiii

Contact Us! ..xxv

1. JPL Command Overview
Control Flow.. 1-1

Procedure Structure ... 1-2

Variable Declaration.. 1-2

Command/Function Execution.. 1-2

Module Access and Availability ... 1-3

Text Display .. 1-3

Data/Message Transfer.. 1-3

Database Drivers ... 1-4

JetNet/Oracle Tuxedo Processing.. 1-4

Connection .. 1-4

Data/Message Transfer ... 1-4

Service Request Processing .. 1-5

Event Broker Processing... 1-5

Two-Phase Commit Transaction Processing 1-6

Component Processing (COM, EJB)... 1-6
Programming Guide ii

2. JPL Command Reference
advertise.. 2-2

break ... 2-4

broadcast... 2-5

call .. 2-8

client_exit ... 2-10

client_init .. 2-11

dbms ... 2-16

dequeue... 2-18

enqueue... 2-22

flush .. 2-26

for ... 2-27

global .. 2-29

if.. 2-31

include .. 2-33

jif_check ... 2-34

jif_read.. 2-35

log ... 2-36

msg ... 2-37

next ... 2-42

notify... 2-43

parms .. 2-45

post ... 2-47

proc ... 2-49

public .. 2-51

raise_exception ... 2-53

receive... 2-54

receive_args.. 2-59

return... 2-60

return_args.. 2-61

runreport .. 2-62

send... 2-64

service_call ... 2-66

service_cancel... 2-75

service_forward .. 2-77
iii Programming Guide

service_return ... 2-79

subscribe... 2-82

switch ... 2-87

unadvertise ... 2-89

unload ... 2-91

unload_data .. 2-92

unsubscribe... 2-94

vars ... 2-95

wait ... 2-97

while ... 2-100

xa_begin ... 2-102

xa_commit ... 2-106

xa_end .. 2-108

xa_rollback .. 2-110

3. Built-in Control Functions
jm_exit.. 3-2

jm_gotop... 3-3

jm_goform.. 3-4

jm_keys .. 3-5

jm_system... 3-6

jm_winsize ... 3-7

4. Library Function Overview
Initialization/Reset... 4-1

Screen and Viewport Control .. 4-2

Interscreen Messaging ... 4-3

Widget Creation/Deletion.. 4-4

Property Access ... 4-5

Field/Array Data Access.. 4-5

Group Access... 4-7

Local Data Block Access... 4-8

Validation .. 4-9

Cursor Control ... 4-10

Display Terminal I/O... 4-10
Programming Guide iv

Message Display.. 4-11

Mass Storage and Retrieval ... 4-13

Global Data and Changing Panther Behavior.. 4-13

Menus .. 4-14

Database Interaction .. 4-15

Transaction Manager ... 4-18

GUI Access.. 4-20

DDE (Dynamic Data Exchange) ... 4-21

File Access... 4-22

Library Access ... 4-23

JPL ... 4-24

JetNet/Oracle Tuxedo Processing.. 4-24

Open Middleware Connectivity... 4-25

COM/MTS Processing .. 4-26

Reports... 4-27

Web Applications .. 4-28

Mail.. 4-28

XML .. 4-29

Miscellaneous .. 4-29

5. Library Functions
dm_bin_create_occur ... 5-2

dm_bin_delete_occur ... 5-3

dm_bin_get_dlength ... 5-4

dm_bin_get_occur .. 5-5

dm_bin_length.. 5-6

dm_bin_max_occur .. 5-7

dm_bin_set_dlength ... 5-8

dm_convert_empty ... 5-9

dm_cursor_connection ... 5-10

dm_cursor_consistent ... 5-11

dm_cursor_engine .. 5-12

dm_dbi_init .. 5-13

dm_dbms .. 5-14

dm_dbms_noexp... 5-16
v Programming Guide

dm_disable_styles .. 5-17

dm_enable_styles ... 5-18

dm_exec_sql... 5-19

dm_expand .. 5-23

dm_free_sql_info ... 5-26

dm_gen_change_execute_using .. 5-27

dm_gen_change_select_from... 5-32

dm_gen_change_select_group_by .. 5-35

dm_gen_change_select_having ... 5-37

dm_gen_change_select_list ... 5-40

dm_gen_change_select_order_by .. 5-43

dm_gen_change_select_suffix .. 5-46

dm_gen_change_select_where .. 5-48

dm_gen_get_tv_alias ... 5-52

dm_gen_sql_info.. 5-53

dm_get_connection_option .. 5-54

dm_get_db_conn_handle ... 5-55

dm_get_db_cursor_handle ... 5-56

dm_get_driver_option .. 5-57

dm_getdbitext .. 5-58

dm_init .. 5-59

dm_is_connection .. 5-61

dm_is_cursor ... 5-62

dm_is_engine .. 5-63

dm_odb_preserves_cursor.. 5-64

dm_reset ... 5-65

dm_set_connection_option... 5-66

dm_set_driver_option... 5-69

dm_set_max_fetches .. 5-72

dm_set_max_rows_per_fetch... 5-73

dm_set_onevent.. 5-74

dm_set_tm_clear_fast... 5-75

dm_val_relative.. 5-76

sm_adjust_area ... 5-77

sm_allget .. 5-78
Programming Guide vi

sm_*amt_format... 5-80

sm_append_bundle_data .. 5-82

sm_append_bundle_done ... 5-84

sm_append_bundle_item.. 5-85

sm_*at_cur ... 5-86

sm_*attach_drawing_func.. 5-87

sm_backtab ... 5-91

sm_bel... 5-92

sm_bi_compare... 5-93

sm_bi_copy... 5-95

sm_bi_initialize .. 5-96

sm_bkrect ... 5-98

sm_c_off ... 5-100

sm_c_on.. 5-101

sm_c_vis ... 5-102

sm_calc ... 5-103

sm_cancel ... 5-104

sm_ckdigit .. 5-105

sm_cl_all_mdts... 5-107

sm_cl_unprot .. 5-108

sm_*clear_array ... 5-109

sm_close_window .. 5-110

sm_com_load_picture... 5-112

sm_com_QueryInterface .. 5-114

sm_com_result.. 5-115

sm_com_result_msg ... 5-116

sm_com_set_handler .. 5-117

sm_*copyarray ... 5-119

sm_create_bundle ... 5-120

sm_d_msg_line... 5-121

sm_*dblval ... 5-124

sm_dd_able... 5-125

sm_dde_client_connect_cold ... 5-126

sm_dde_client_connect_hot ... 5-127

sm_dde_client_connect_warm ... 5-128
vii Programming Guide

sm_dde_client_disconnect ... 5-130

sm_dde_client_off.. 5-131

sm_dde_client_on... 5-132

sm_dde_client_paste_link_cold ... 5-133

sm_dde_client_paste_link_hot ... 5-134

sm_dde_client_paste_link_warm ... 5-135

sm_dde_client_request ... 5-136

sm_dde_execute ... 5-137

sm_dde_install_notify .. 5-138

sm_dde_poke.. 5-140

sm_dde_server_off ... 5-141

sm_dde_server_on.. 5-142

sm_delay_cursor... 5-143

sm_deselect .. 5-145

sm_dicname.. 5-146

sm_disp_off.. 5-147

sm_*dlength ... 5-148

sm_do_uinstalls .. 5-149

sm_*doccur .. 5-150

sm_*drawingarea ... 5-152

sm_*dtofield... 5-153

sm_femsg ... 5-155

sm_ferr_reset .. 5-158

sm_ffree.. 5-160

sm_fi_path.. 5-161

sm_file_copy .. 5-162

sm_file_exists... 5-164

sm_file_move ... 5-165

sm_file_remove.. 5-167

sm_filebox.. 5-168

sm_filetypes ... 5-170

sm_fio_a2f.. 5-172

sm_fio_close... 5-173

sm_fio_editor ... 5-174

sm_fio_error ... 5-175
Programming Guide viii

sm_fio_error_set... 5-177

sm_fio_f2a.. 5-178

sm_fio_getc .. 5-180

sm_fio_gets... 5-181

sm_fio_handle .. 5-183

sm_fio_open ... 5-184

sm_fio_putc .. 5-187

sm_fio_puts .. 5-188

sm_fio_rewind.. 5-190

sm_flush ... 5-191

sm_fmalloc ... 5-192

sm_*form.. 5-193

sm_formlist... 5-196

sm_*fptr.. 5-198

sm_fqui_msg .. 5-200

sm_fquiet_err.. 5-201

sm_free_bundle .. 5-202

sm_*ftog ... 5-203

sm_*fval ... 5-205

sm_*get_bi_data... 5-208

sm_get_bundle_data ... 5-209

sm_get_bundle_item_count.. 5-210

sm_get_bundle_occur_count .. 5-211

sm_get_next_bundle_name .. 5-212

sm_*get_tv_bi_data.. 5-213

sm_getenv... 5-214

sm_*getfield ... 5-215

sm_getkey... 5-218

sm_*gofield .. 5-221

sm_*gtof ... 5-223

sm_n_gval... 5-224

sm_hlp_by_name.. 5-225

sm_home... 5-226

sm_inimsg... 5-227

sm_*initcrt.. 5-228
ix Programming Guide

sm_input ... 5-230

sm_inquire.. 5-231

sm_install ... 5-233

sm_*intval .. 5-235

sm_*ioccur ... 5-236

sm_is_bundle.. 5-238

sm_*is_no... 5-239

sm_*is_yes ... 5-240

sm_isabort .. 5-241

sm_iset.. 5-242

sm_issv ... 5-244

sm_*itofield.. 5-245

sm_jclose.. 5-246

sm_jfilebox... 5-248

sm_jform .. 5-250

sm_*jplcall ... 5-252

sm_jplpublic ... 5-253

sm_jplunload .. 5-254

sm_jtop ... 5-255

sm_jwindow ... 5-256

sm_key_integer .. 5-258

sm_keyfilter.. 5-259

sm_keyhit ... 5-260

sm_keyinit .. 5-262

sm_keylabel.. 5-263

sm_keyoption ... 5-264

sm_l_close.. 5-267

sm_l_open .. 5-268

sm_l_open_syslib ... 5-270

sm_last.. 5-271

sm_launch... 5-272

sm_*ldb_fld_*get... 5-273

sm_*ldb_fld_*store.. 5-275

sm_ldb_get_active.. 5-277

sm_ldb_get_inactive... 5-278
Programming Guide x

sm_ldb_get_next_active ... 5-279

sm_ldb_get_next_inactive.. 5-280

sm_*ldb_*getfield .. 5-281

sm_ldb_handle.. 5-283

sm_ldb_init ... 5-284

sm_ldb_is_loaded ... 5-285

sm_ldb_load ... 5-286

sm_ldb_name.. 5-287

sm_ldb_next_handle... 5-288

sm_ldb_pop .. 5-289

sm_ldb_push... 5-290

sm_*ldb_*putfield.. 5-291

sm_ldb_*state_get .. 5-293

sm_ldb_*state_set... 5-294

sm_ldb_*unload ... 5-296

sm_leave ... 5-297

sm_list_objects_count .. 5-298

sm_list_objects_end ... 5-299

sm_list_objects_next .. 5-300

sm_list_objects_start .. 5-302

sm_*lngval ... 5-303

sm_load_screen .. 5-304

sm_log .. 5-305

sm_lstore... 5-306

sm_ltofield.. 5-307

sm_m_flush .. 5-308

sm_*mail_attach... 5-309

sm_*mail_file_text ... 5-310

sm_mail_message... 5-311

sm_mail_new.. 5-312

sm_*mail_send ... 5-314

sm_*mail_text .. 5-315

sm_*mail_widget ... 5-316

sm_menu_bar_error.. 5-317

sm_menu_change ... 5-319
xi Programming Guide

sm_menu_create... 5-323

sm_menu_delete... 5-324

sm_menu_get* ... 5-325

sm_menu_install... 5-328

sm_menu_remove .. 5-333

sm_message_box.. 5-334

sm_mncrinit6.. 5-338

sm_*mnitem_change.. 5-339

sm_*mnitem_create ... 5-345

sm_*mnitem_delete ... 5-348

sm_*mnitem_get .. 5-349

sm_mnscript_load .. 5-354

sm_mnscript_unload .. 5-356

sm_ms_inquire ... 5-357

sm_msg... 5-360

sm_msg_del.. 5-361

sm_msg_get.. 5-362

sm_*msg_read.. 5-363

sm_msg_set .. 5-365

sm_msgfind .. 5-366

sm_mts_CreateInstance.. 5-367

sm_mts_CreateProperty ... 5-368

sm_mts_CreatePropertyGroup ... 5-369

sm_mts_DisableCommit .. 5-370

sm_mts_EnableCommit ... 5-371

sm_mts_GetPropertyValue .. 5-372

sm_mts_IsCallerInRole.. 5-373

sm_mts_IsInTransaction .. 5-374

sm_mts_IsSecurityEnabled .. 5-375

sm_mts_PutPropertyValue... 5-376

sm_mts_SetAbort ... 5-377

sm_mts_SetComplete... 5-378

sm_mus_time ... 5-379

sm_mw_DismissIntroPixmap .. 5-380

sm_mw_get_client_wnd... 5-381
Programming Guide xii

sm_mw_get_cmd_show ... 5-382

sm_mw_get_frame_wnd .. 5-383

sm_mw_get_instance ... 5-384

sm_mw_get_prev_instance .. 5-385

sm_mw_install_msg_callback.. 5-386

sm_mw_PrintScreen... 5-388

sm_next_sync ... 5-390

sm_nl .. 5-391

sm_*null ... 5-392

sm_obj_call... 5-393

sm_obj_copy*... 5-396

sm_obj_create... 5-398

sm_obj_create_licensed.. 5-399

sm_obj_create_server ... 5-400

sm_obj_delete*... 5-402

sm_obj_get_property.. 5-404

sm_obj_onerror... 5-406

sm_obj_set_property .. 5-408

sm_obj_sort .. 5-410

sm_obj_sort_auto ... 5-411

sm_occur_no... 5-413

sm_*off_gofield ... 5-414

sm_option ... 5-416

sm_optmnu_id .. 5-418

sm_*PiMwCopyToClipboard... 5-420

sm_*PiMwPasteFromClipboard... 5-421

sm_pinquire .. 5-422

sm_popup_at_cur ... 5-425

sm_prop_error .. 5-426

sm_prop_get* ... 5-428

sm_prop_id ... 5-432

sm_prop_name_to_id ... 5-434

sm_prop_set*.. 5-435

sm_pset ... 5-439

sm_*putfield ... 5-441
xiii Programming Guide

sm_raise_exception .. 5-442

sm_receive.. 5-443

sm_receive_args ... 5-444

sm_rescreen.. 5-445

sm_*resetcrt ... 5-446

sm_resize.. 5-447

sm_restore_data.. 5-449

sm_return.. 5-450

sm_return_args ... 5-451

sm_rmformlist .. 5-452

sm_rs_data.. 5-453

sm_rw_error_message.. 5-454

sm_rw_play_metafile ... 5-455

sm_rw_runreport .. 5-456

sm_s_val... 5-457

sm_save_data ... 5-459

sm_sb_delete .. 5-460

sm_sb_format ... 5-461

sm_sb_gettext... 5-462

sm_sb_insert... 5-463

sm_sb_settext ... 5-466

sm_sdtime... 5-467

sm_select .. 5-470

sm_send.. 5-471

sm_set_help.. 5-472

sm_setbkstat ... 5-473

sm_setsibling.. 5-474

sm_setstatus.. 5-475

sm_sh_off ... 5-477

sm_shell.. 5-478

sm_shrink_to_fit... 5-479

sm_slib_error.. 5-480

sm_slib_install.. 5-481

sm_slib_load... 5-483

sm_soption ... 5-485
Programming Guide xiv

sm_strdup ... 5-487

sm_*strip_amt_ptr.. 5-488

sm_sv_data ... 5-490

sm_sv_free.. 5-491

sm_svscreen.. 5-492

sm_tab... 5-494

sm_tm_clear ... 5-495

sm_tm_clear_model_events ... 5-496

sm_tm_command ... 5-497

sm_tm_command_emsgset... 5-499

sm_tm_command_errset... 5-500

sm_tm_continuation_validity ... 5-501

sm_tm_dbi_checker.. 5-503

sm_tm_error ... 5-504

sm_tm_errorlog .. 5-505

sm_tm_event... 5-507

sm_tm_event_name.. 5-509

sm_tm_failure_message ... 5-510

sm_tm_handling ... 5-511

sm_tm_inquire.. 5-513

sm_tm_iset.. 5-517

sm_tm_msg_count_error.. 5-519

sm_tm_msg_emsg .. 5-520

sm_tm_msg_error... 5-521

sm_tm_old_bi_context ... 5-522

sm_tm_pcopy ... 5-523

sm_tm_pinquire.. 5-525

sm_tm_pop_model_event... 5-527

sm_tm_pset... 5-528

sm_tm_push_model_event ... 5-530

sm_tmpnam .. 5-532

sm_tp_exec ... 5-533

sm_tp_free_arg_buf.. 5-535

sm_tp_gen_insert.. 5-536

sm_tp_gen_sel_return... 5-537
xv Programming Guide

sm_tp_gen_sel_where .. 5-538

sm_tp_gen_val_link ... 5-539

sm_tp_gen_val_return.. 5-540

sm_tp_get_svc_alias... 5-541

sm_tp_get_tux_callid ... 5-542

sm_trace ... 5-543

sm_translatecoords ... 5-546

sm_tst_all_mdts.. 5-548

sm_udtime .. 5-550

sm_ungetkey... 5-552

sm_unload_screen .. 5-553

sm_unsvscreen ... 5-554

sm_upd_select .. 5-555

sm_*validate .. 5-556

sm_*vinit .. 5-558

sm_wcount ... 5-559

sm_wdeselect ... 5-560

sm_web_get_cookie ... 5-561

sm_web_invoke_url ... 5-562

sm_web_log_error.. 5-563

sm_web_save_global ... 5-564

sm_web_set_cookie ... 5-566

sm_web_set_onevent ... 5-568

sm_web_unsave_all_globals.. 5-569

sm_web_unsave_global ... 5-570

sm_*widget .. 5-571

sm_win_shrink ... 5-573

sm_*window .. 5-574

sm_winsize ... 5-577

sm_wrotate ... 5-578

sm_*wselect ... 5-580

sm_*ww_length ... 5-582

sm_*ww_read... 5-584

sm_*ww_write ... 5-585

sm_xlate_table.. 5-587
Programming Guide xvi

sm_xm_get_base_window ... 5-589

sm_xm_get_display.. 5-590

sm_*xml_export ... 5-591

sm_*xml_export_file.. 5-592

 sm_*xml_import.. 5-593

sm_*xml_import_file ... 5-594

6. Java Library Function Interfaces
CFunctionsInterface ... 6-2

ComFunctionsInterface .. 6-14

DMFunctionsInterface.. 6-16

RWFunctionsInterface.. 6-17

TMFunctionsInterface .. 6-18

TPFunctionsInterface ... 6-21

WSFunctionsInterface .. 6-22

7. Java Object Interfaces
ApplicationInterface ... 7-2

FieldInterface.. 7-3

GridInterface... 7-5

GroupInterface.. 7-6

ScreenInterface ... 7-7

WidgetInterface .. 7-8

8. Transaction Manager Commands
sm_tm_command ... 8-3

CHANGE .. 8-10

CLEAR... 8-11

CLOSE ... 8-13

CONTINUE.. 8-16

CONTINUE_BOTTOM... 8-19

CONTINUE_DOWN ... 8-23

CONTINUE_TOP .. 8-27

CONTINUE_UP... 8-31

COPY ... 8-35

COPY_FOR_UPDATE.. 8-37
xvii Programming Guide

COPY_FOR_VIEW ... 8-39

FETCH ... 8-41

FINISH... 8-43

FORCE_CLOSE .. 8-45

NEW... 8-47

REFRESH .. 8-50

RELEASE .. 8-51

SAVE ... 8-52

SELECT ... 8-57

START ... 8-62

VIEW ... 8-65

WALK_DELETE... 8-70

WALK_INSERT.. 8-72

WALK_SELECT ... 8-74

WALK_UPDATE .. 8-76

9. Transaction Model Events
Common Transaction Model ... 9-2

Reading the Event Table .. 9-2

Error and Diagnostic Events .. 9-12

Database-Specific Transaction Models ... 9-13

INITIAL Mode Handling ... 9-14

BEGIN Command Processing.. 9-14

Special Processing.. 9-14

10. Transaction Manager Error Messages
Transaction Manager Errors .. 10-1

11. DBMS Statements and Commands
DBMS Command Summary.. 11-2

ALIAS .. 11-5

BINARY .. 11-8

CATQUERY .. 11-10

CLOSE_ALL_CONNECTIONS ... 11-14

CLOSE CONNECTION ... 11-15

CLOSE CURSOR .. 11-16
Programming Guide xviii

COLUMN_NAMES... 11-18

CONNECTION .. 11-20

CONTINUE.. 11-21

CONTINUE_BOTTOM .. 11-23

CONTINUE_DOWN .. 11-25

CONTINUE_TOP ... 11-26

CONTINUE_UP .. 11-27

DECLARE CONNECTION .. 11-29

DECLARE CURSOR .. 11-31

ENGINE .. 11-33

EXECUTE ... 11-34

FORMAT .. 11-36

OCCUR ... 11-38

ONENTRY .. 11-40

ONERROR .. 11-42

ONEXIT .. 11-45

QUERY .. 11-47

RUN.. 11-48

SQL .. 11-49

START .. 11-50

STORE .. 11-51

UNIQUE .. 11-54

WITH CONNECTION .. 11-55

WITH CURSOR .. 11-57

WITH ENGINE ... 11-59

12. DBMS Global Variables
Variable Overview... 12-2

@dmengerrcode ... 12-4

@dmengerrmsg .. 12-6

@dmengreturn .. 12-7

@dmerrsqlstate... 12-8

@dmengwarncode .. 12-9

@dmengwarnmsg... 12-10

@dmretcode ... 12-11
xix Programming Guide

@dmretmsg .. 12-14

@dmrowcount .. 12-15

@dmserial .. 12-17

@dmwarnsqlstate ... 12-18

13. Keywords in Database Drivers

14. ActiveX Controls
PrlSpinner... 14-2

Index
Programming Guide xx

xxi Programming Guide

PREFACE
About This
Document

Programming Guide is a reference tool for Panther users who already have a general
understanding about Panther concepts and design techniques. This book offers general
and specific information on how to use Panther language resources to code back-end
processing for your application. The sections on JPL assume that you already have
general programming experience; while the library function and Java descriptions
assume specific experience with C and Java programming.

This manual is divided into the following sections:

! Descriptions of each JPL command.

! Descriptions of the preinstalled, or built-in, control functions that you can call
from the application.

! Descriptions of Panther's library of C functions, which provide precise runtime
control over your application.

! Descriptions of Panther's Java interfaces.

! Descriptions of the transaction manager commands and error messages.

! A database reference, including descriptions of DBMS statements and
commands, global variables and keywords in database drivers.
Programming Guide xxii

Documentation Website
Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.

How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.
xxiii About This Document

https://get.adobe.com/reader/otherversions/
http://docs.prolifics.com/panther/

Documentation Conventions
Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.

monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.
Programming Guide xxiv

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xxv About This Document

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=About%20Panther%205.50%20Programming%20Guide
mailto:support@prolifics.com?subject=Contact%20Us

Contact Us!
! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
Programming Guide xxvi

Contact Us!
xxvii About This Document

CHAPTER
1 JPL Command
Overview

Below is a summary of the JPL commands organized according to category. All JPL
statements begin with one of these commands. For more information on each
command, refer to Chapter 2, “JPL Command Reference.”

Control Flow

Table 1-1 JPL Control Flow Commands

break Exits a loop

for Executes an indexed loop

if...else if...else Conditionally executes statements

next Skips to next iteration of loop

return Exits a JPL procedure

switch...case...default Execute different statements based on the value of an expression

while Repeatedly executes statements while a condition is true
Programming Guide 1-1

Procedure Structure
Procedure Structure

Variable Declaration

Command/Function Execution

Table 1-2

parms Declares parameters in an unnamed JPL procedure

proc Begins a named procedure

Table 1-3

global Declares global JPL variables

vars Declares JPL variables

Table 1-4

call Executes an installed function or JPL procedure

runreport Run a report
1-2 JPL Command Overview

Module Access and Availability
Module Access and Availability

Text Display

Data/Message Transfer

Table 1-5

include Includes contents of another module at current statement line

public Reads a JPL module into memory and enables access to its named procedures

unload Unloads modules loaded through the public command and releases their associated
memory

Table 1-6

flush Flushes buffered output to the display

msg Displays a message to the terminal

Table 1-7

receive Receives data from a screen sent via send or from a remote client via service_call

send Sends data to a buffer for retrieval by the receive command
Programming Guide 1-3

Database Drivers
Database Drivers

JetNet/Oracle Tuxedo Processing

Connection

Data/Message Transfer

Table 1-8

dbms Executes a command available in Panther's database drivers.

Table 1-9

jif_check Determines if the JIF has changed

jif_read Rereads the JIF

log Logs a message to the machine event log

Table 1-10

client_exit Closes the middleware session

client_init Attaches a client to the middleware

Table 1-11

broadcast Sends a message to a client

dequeue** Releases a message from a reliable queue
1-4 JPL Command Overview

JetNet/Oracle Tuxedo Processing
Service Request Processing

Event Broker Processing

enqueue** Places a message on a reliable queue

notify Sends an unsolicited message to a client

**Oracle Tuxedo only

Table 1-12

advertise Advertises services offered by a server to a client

service_call Initiates a service call from a client agent

service_cancel Cancels an outstanding service request

service_forward Forwards service request data to another service

service_return Returns from a service request invocation

unadvertise Unadvertises services from a server

unload_data Writes data received remotely via the middleware to target Panther variables

wait Waits for service calls to return before processing resumes

Table 1-13

post** Posts an event

subscribe** Subscribes to an event

unsubscribe** Unsubscribes from an event

**Oracle Tuxedo only

Table 1-11
Programming Guide 1-5

Component Processing (COM, EJB)
Two-Phase Commit Transaction Processing

Component Processing (COM, EJB)

Table 1-14

xa_begin** Starts a middleware transaction

xa_commit** Commits a middleware transaction

xa_end** Completes a middleware transaction

xa_rollback** Aborts a middleware transaction

**Oracle Tuxedo only

Table 1-15

log Logs a message to server.log

raise_exception Sends an error code back to the client

receive_args Receives a method's parameters from the client

return_args Returns the method's parameters to the client
1-6 JPL Command Overview

CHAPTER
2 JPL Command
Reference

This section lists JPL commands in alphabetical order. It serves as a reference for users
who already have a working knowledge of JPL. Each command description tells you
what the command does, and where and how to use it. Command descriptions are
organized into the following components, as applicable:

! Command name and brief description.

! Syntax line and parameter descriptions.

! Unless stated otherwise, JPL command arguments can be variables or quoted
strings.

! Environment-specificity; that is, if the command is dependent on a particular
environment feature.

! Client and/or server applicability.

! Description of the command.

! Possible exceptions that can be raised due to the command's execution.

! Examples.

! Related commands.
Programming Guide 2-1

advertise
advertise

Advertises services offered by a server to a client

Synopsis advertise {ALL | SERVICE serviceName | GROUP serviceGroup}

Arguments ALL

Advertise all services defined in the JIF.

SERVICE serviceName

Advertise a service that is defined in the JIF, where serviceName can be up
to 15 characters long. The JIF is consulted to validate the service name.

GROUP serviceGroup
Advertise all services belonging to the named group, as defined in the JIF,
where serviceGroup can be up to 31 characters long.

Environment JetNet, Oracle Tuxedo

Scope Server

Description The advertise command reads the specified services from the JIF and advertises
them to clients. If a service is already advertised, its JIF definition is reread and the
service is readvertised. This might occur during development or maintenance when a
server is reinitialized after a JIF entry is updated or corrected. If successful,
advertise sets the tp_return property to the number of services advertised.

You can advertise individual services, all services in a group, or all services. For
example, the following code advertises service transfer:

advertise SERVICE "transfer"

This code advertises all services in the emp_account group:

advertise GROUP "emp_account"

The next example advertises all services and logs a message:
2-2 JPL Command Reference

advertise
proc adv_and_log
vars message

advertise ALL
message = @app()->tp_return##" services advertised."
log message

Exceptions Execution of advertise can raise the following exceptions:

See Also unadvertise

Exception Severity Cause

TP_GROUP_NOT_IN_JIF TP_COMMAND Group cannot be found in the JIF.

TP_IDENTIFIER_TRUNCATED TP_WARNING Service name exceeded 15 characters.

TP_MONITOR_ERROR TP_ERROR An error was reported by the middleware.

TP_NO_SERVICES_ADVERTISED TP_WARNING ALL was specified and there are no services in the
JIF, or GROUP was specified and the group is
empty.

TP_SERVICE_NOT_IN_JIF TP_COMMAND Service cannot be found in the JIF.

TP_SVC_ADVERTISE_LIMIT TP_COMMAND The limit on number of advertised services has
been reached.
Programming Guide 2-3

break
break

Stops loop execution

Synopsis break [intConstant]

Arguments intConstant

The number of nested loops to stop, where a value of 1 specifies the current
loop. If you omit this argument, break exits the current loop.

Description The break command stops execution of the current while or for loop. If the current
loop is nested inside one or more other loops, and intConstant is greater than 1,
break stops execution of the specified number of outer loops. If intConstant is
greater than or equal to the number of loops currently being executed, JPL stops each
loop until it exits the outermost one.

Example // Concatenate address and execute function for 100 entries.
// If cities[i] is empty stop executing the loop.
//

vars i, address, total
for i = 1 while i <= 100
{

if cities[i] == ""
break

address = cities[i]##", "##states[i]##" "##zips[i]
call do_process (address)

}
total = i - 1
msg emsg "Done! :total addresses processed."

See Also for, next, while
2-4 JPL Command Reference

broadcast
broadcast

Broadcasts a message to a client

Synopsis broadcast [broadcastOption]... TYPE msgType (message)

Arguments broadcastOption

One or more of the following options:

CLIENT [clientName]

Identifies the client to receive the message, where clientName can
be up to 30 characters long. A client's name is set by client_init,
which establishes the client connection. If you omit clientName, all
clients receive the message.

LMID lmid

Specifies the logical ID of a machine to get the broadcast, where
lmid can be up to 30 characters long. (Oracle Tuxedo only)

NOTIMEOUT

Disregards the blocking timeout. Transaction timeouts remain in
effect.

USER [userName]

Identifies the user to receive the message, where userName can be
up to 30 characters long. A client's user name is set by
client_init.

If userName is not found on the system, this option is ignored and
no error is raised. If you omit userName, all users receive the
message.

TYPE msgType

Specifies the message's data type, where msgType is one of these values:

" JAMFLEX

" STRING (Oracle Tuxedo only)

" FML (Oracle Tuxedo only)

" FML32 (Oracle Tuxedo only)

For more information on message data types, refer to “Service Messages and
Data Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.
Programming Guide 2-5

broadcast
message

The message to broadcast. The message data must conform to the
<TYPE>-specified data type.

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The broadcast command is used by the middleware to broadcast a message to all
clients that match the criteria specified in broadcastOption. Clients and servers can
broadcast a message to other clients. If no options are specified, the message is
broadcast to all clients.

For example, the following command broadcasts a JAMFLEX-type message to client
supervisor. It uses source to identify itself as the source of the message:

broadcast CLIENT "supervisor" TYPE JAMFLEX \
({source="broadcast_security", ACCOUNT=acct, DATE=date,\
 SECURITY=code, MSG=message})

Messages delivered via broadcast are unsolicited. In order for unsolicited messages to
be interpreted correctly by agents receiving them, a message handler must be installed.
Because the handler is unaware of a message's origin, it is important that a standard
method of identifying the source of unsolicited messages be established for the entire
application. For more information on writing a message handler for your application,
refer to “Message Handlers” on page 6-17 in JetNet/Oracle Tuxedo Guide.

Exceptions Execution of the broadcast command can raise the following exceptions:

Exception Severity Cause

TP_IDENTIFIER_TRUNCATED TP_WARNING clientName, lmid, or userName exceeds
30 characters.

TP_INVALID_ARGUMENT_LIST TP_COMMAND More than one argument is passed to
message.

TP_MONITOR_ERROR TP_COMMAND Error reported from middleware.

TP_TIMEOUT TP_COMMAND Timeout condition occurs.
2-6 JPL Command Reference

broadcast
Example // get the option menu choice and
// broadcast message accordingly

proc brdcast_to()
if opt_mnu == "All"
{

broadcast (message)
}
else if opt_mnu == "Customers"
{

broadcast USER "Customer" (message)
}
else if opt_mnu == "Employees"
{

broadcast USER "Employee" (message)
}
else if opt_mnu == "Select Customer"
{

send BUNDLE "scr_title" DATA opt_menu
call sm_jwindow(&get_name)
receive BUNDLE "name" DATA cust_last_name
broadcast USER "Customer" CLIENT cust_last_name (message)

}
else if opt_mnu == "Select Employee"
{

send BUNDLE "scr_title" DATA opt_menu
call sm_jwindow(&get_name)
receive BUNDLE "name" DATA emp_last_name
broadcast CLIENT emp_last_name (message)

}

return 0

See Also client_init, notify, receive
Programming Guide 2-7

call
call

Executes an installed function or JPL procedure

Synopsis call executable[([argList])]

Arguments executable

The name of an installed function or JPL module or procedure.

Refer to “Precedence of Called Objects” on page 19-24 in Application
Development Guide for more information on how Panther resolves this
argument.

argList

One or more comma- or space-delimited arguments optionally to pass to
parameters in executable. Enclose the entire argument list in parentheses.
You can pass the following as arguments:

" Variables, including those declared by the vars command, field
names, and LDB entries.

" String and numeric constants.

" Global constants.

" @NULL for any parameter in a C function that accepts NULL as an
argument.

" Colon-expanded variables.

Description The call command can call one of the following executables:

! Built-in and installed functions. Installed functions can include Panther library
functions and your own functions.

! JPL modules and procedures.

When Panther gets a call command, it must ascertain whether the executable is a JPL
module or procedure, or an installed function. Panther looks for executable's name first
among all built-in and installed functions, then among JPL modules and procedures.
Refer to “Precedence of Called Objects” on page 19-24 in Application Development
Guide for more information on how Panther searches among JPL modules and
procedures. If no match is found, Panther issues an error message.
2-8 JPL Command Reference

call
Panther evaluates the call statement to its return value–either integer, string, or double,
according to the procedure definition. Therefore, you can implicitly call a function
within an expression and gets its return value as follows:

vars i
i = myproc (a,b)

Panther assumes that the executable has the same number and type of parameters.
Panther passes arguments by value, so changes to the receiving parameter's value leave
its corresponding caller's argument unchanged. If the executable is an installed
function, you can pass it hex, binary or octal numbers.

You can install C functions so that arguments can be passed by value. Refer to
“Installing Functions” on page 44-5 in Application Development Guide for
information about installation options.

If you pass a variable's name, you can use Panther library functions to change the
contents of the variable. For example, if you pass a field name to a prototyped function,
the function can change the field's contents by using sm_n_putfield.
Programming Guide 2-9

client_exit
client_exit

Disconnects from the middleware

Synopsis client_exit

Environment JetNet, Oracle Tuxedo

Scope Client

Description The client_exit command closes a connection between a client and the middleware.

When it closes a connection, Panther cleans up all resources associated with it. This
includes aborting outstanding requests and rolling back incomplete transactions. It
automatically terminates the connection to all resource managers.

client_exit sets the tp_return property to the number of connections actually
closed.

If you have established a direct connection to an XA-compliant resource manager with
the GROUP option of client_init, this command closes that connection.

Exceptions The client_exit command can raise the following exceptions:

See Also client_init

Exception Severity Cause

TP_INVALID_CONNECTION TP_COMMAND No connection to close.

TP_INVALID_SERVER_COMMAND TP_COMMAND Server attempts to use the command.

TP_MONITOR_ERROR TP_ERROR Operating system error is detected.

TP_XA_CLOSE_FAILED TP_ERROR Unable to close XA-connection resource managers.
2-10 JPL Command Reference

client_init
client_init

Attaches a client to the middleware

Synopsis client_init [connectionOpt]... [authLevel2] [authLevel3]
[NOTIFICATION notifyMethod]

Arguments connectionOpt

One or more options that supply information about the client:

CLIENT clientName

Specifies the name of the client, where clientName can be up to 30
characters long. If omitted, the default is an empty string.

USER userName

Specifies a user account (login) name, where userName can be up to
30 characters long. If omitted, the default is an empty string.

GROUP groupName

(Oracle Tuxedo only) Specifies the name of a group associated with
this client, where groupName can be up to 15 characters long. If
omitted, the default is an empty string.

You can set groupName to associate the client with a resource
manager group that is defined in the configuration file. This allows
the client to access an XA-compliant resource manager as part of a
global transaction.

authLevel2

Supply the application password for client access with this syntax:

PASSWORD password
password specifies the application password, a string of up to 30
characters; however, only the first 8 characters are significant. If
omitted, the default is an empty string. You set the application
password through the JetNet manager; refer to “Application
Password” on page 3-12 in JetNet/Oracle Tuxedo Guide for more
information.

authLevel3

(Oracle Tuxedo only) Supply level-3 authentication data with one of these
syntax clauses:
Programming Guide 2-11

client_init
DATA password

Specifies the user-specific password required by the authentication
service.

DATAFUNC dataFunc [POSTFUNC postFunc]

 Specifies a function that provides level-3 authentication data and,
optionally, a post-connection function that handles successful or
failed connections. For the DATAFUNC function's prototype and
description, refer to page 2-13, “Authentication Data Function”; for
the POSTFUNC function, page 2-14, “Post-Connection Function.”

Both functions must be installed. For information on installing a
DATAFUNC function, refer to “Client Authentication Functions” on
page 44-28 in Application Development Guide; for POSTFUNC
functions, refer to “Client Post-Connection Functions” on page
44-30 in Application Development Guide.

NOTIFICATION notifyMethod

For use by administrator clients only: Specify how the client is notified of
unsolicited messages, where notifyMethod has one of these values:

" POLL—Notify by polling for messages. The default polling interval is
10 seconds. To change the interval, set the tp_unsol_poll_interval
property. If you are using Panther, this is the default. For Oracle
Tuxedo applications, the default can be set in the tuxconfig.

" SIGNAL—Notify by signal. If this option is not available on a given
platform, Panther uses POLL instead.

" IGNORE— All unsolicited messages are ignored.

For example, the following code opens a client connection and specifies to
ignore all unsolicited messages:

client_init CLIENT "shipping" USER user NOTIFICATION IGNORE

This code specifies that the client be notified of unsolicited messages by
polling:

client_init CLIENT last_name USER "Customer" \
NOTIFICATION POLL

Environment JetNet, Oracle Tuxedo

Scope Client
2-12 JPL Command Reference

client_init
Description The client_init command opens a client connection to the application middleware–
either JetNet or Oracle Tuxedo. Only one connection between client and middleware
is allowed. Panther connects a workstation client to the middleware through its settings
in configuration variables SMRBHOST and SMRBPORT, which specify the network
addresses of one or more server machines; native clients use the settings in the
configuration file specified by SMRBCONFIG.

Client

Authentication

client_init offers several ways to authorize client access to an application. Level-2
authentication provides a single application-wide password; the PASSWORD option is
required; the USER and CLIENT options are for informational purposes only and are not
validated.

For example, this statement opens a client connection and specifies an application
password:

client_init PASSWORD appPassword

Level-3 authentication, available with Oracle Tuxedo, offers user-specific validation
as an additional layer of security. Level-3 authentication uses a Oracle Tuxedo service
that validates the user name, client name, and user password, as supplied by the USER,
CLIENT, and DATA options, respectively. The Oracle Tuxedo service can be configured
to validate different combinations of this data.

For example, this command assumes validation at the application and user levels:

client_init USER username PASSWORD appPassword DATA userPassword

For more information about setting user-level security in Oracle Tuxedo applications,
refer to "Security Administration" in the Oracle Tuxedo Administrator's Guide.

Authentication

Data Function

Use the DATAFUNC option if the user password data is more complex than a simple
string. On return, the DATAFUNC-specified C function supplies all data that is required
by the authentication service, including user name, client name, and group name. For
example, the following code opens a client connection for a named client, specifying
a function that produces the authentication data:

client_init CLIENT "shipping" DATAFUNC "ship_authorize"

All DATAFUNC functions must be installed; for more information, refer to “Client
Authentication Functions” on page 44-28 in Application Development Guide.

A DATAFUNC function must conform to this prototype:
Programming Guide 2-13

client_init
long DATAFUNC (VOIDPTR *data,
 const char *usrname, const char *cltname,
 const char *passwd, cons char *grpname);

data

Must be set by the DATAFUNC function to the address of the user data. This
address must remain valid on return from the function.

srname, cltname, passwd, grpname

Contain the values specified by the corresponding USER, CLIENT, PASSWORD,
and GROUP options; otherwise NULL. These values must not be changed by the
DATAFUNC function.

When successful, the DATAFUNC function returns the length of the data; a negative
value indicates that an error occurred. If the function is successful, the output value of
data should be the address of the user data. If dataFunc returns a negative value, or if
the address in data is NULL when a positive value is returned, client_init raises a
TP_DATAFUNC_FAILED exception of severity TP_COMMAND.

Post-Connection

Function

Use the POSTFUNC option to pair a post-connection function with the DATAFUNC
function. This C function is always called whether or not the connection is successful.

Panther installs a built-in postFunc sm_tp_free, which deallocates any memory
allocated by the dataFunc.

All POSTFUNC functions must be installed; for more information, refer to “Client
Post-Connection Functions” on page 44-30 in Application Development Guide.

A POSTFUNC function must conform to this prototype:

void POSTFUNC (VOIDPTR data, long datalen,
 const char *usrname, const char *cltname,
 const char *passwd, const char *grpname);

data

Contains the address of the user data as set by the DATAFUNC function.

datalen

Contains the length returned by the DATAFUNC function.

usrname, cltname, passwd, grpname

Contain the values specified by the corresponding USER, CLIENT, PASSWORD,
and GROUP options; otherwise NULL. These values must not be changed by the
POSTFUNC function.
2-14 JPL Command Reference

client_init
Exceptions client_init can raise the following exceptions:

See Also client_exit

Exception Severity Cause

TP_CONNECTION_LIMIT TP_COMMAND A second connection to the middleware is
attempted.

TP_CONNECTION_OPEN_FAILED TP_ERROR Connection to the middleware cannot be
initiated.

TP_DATAFUNC_FAILED TP_COMMAND DATAFUNC function returned a negative
value, or address in data is NULL when
positive value is returned.

TP_HANDLER_MISSING TP_ERROR DATAFUNC and/or POSTFUNC options are
specified but do not exist in the appropriate
Panther function list.

TP_INVALID_SERVER_COMMAND TP_COMMAND Server attempts to use this command.

TP_MONITOR_ERROR TP_ERROR Operating system error is detected.

TP_NO_SIGNALS TP_INFORMATION Client is not capable of signal-based
notification.

TP_PERMISSION_DENIED TP_ERROR The middleware does not accept connection.

TP_XA_OPEN_FAILED TP_ERROR Unable to open XA-connection resource
managers.
Programming Guide 2-15

dbms
dbms

Executes a command available in Panther's database drivers

Synopsis dbms dbmsStmt

Arguments dbmsStmt

The command to execute, where dbmsStmt can include one of the following:

! SQL statements preceded by the keyword RUN or QUERY.

! Directives that are a part of Panther's database drivers—for example, fetch the
next 10 rows.

! Directives that are not standardized across dialects of SQL, such as commit
transaction.

Description The dbms command executes the specified command after colon expansion and syntax
checking. These commands control the connections to database engines, process
information fetched in SELECT statements, and update database information. For
information on available commands, refer to Chapter 11, “DBMS Statements and
Commands.”

There are three methods of executing SQL statements:

" DBMS QUERY and DBMS RUN pass the statement directly to the database
engine.

" DBMS DECLARE CURSOR creates a named cursor to use for executing the
SQL statement.

 For more information, refer to Chapter 28, “Writing SQL Statements,” in Application
Development Guide.

Because each database engine has unique features, refer to Database Drivers for
information about database-specific features and commands.

Additional forms of colon expansion–colon plus processing and colon equal
processing—are available with the dbms command to help format information before
passing it to the database engine. For more information, refer to Chapter 29, “Reading
Information from the Database,” in Application Development Guide.
2-16 JPL Command Reference

dbms
Example // Fetch next set of rows
dbms continue

// Commit transaction
dbms commit

// SQL statement
dbms QUERY select * FROM titles WHERE title_id = :+title_id
Programming Guide 2-17

dequeue
dequeue

Releases a message from a reliable queue

Synopsis dequeue QSPACE queueSpace NAME queue message [which]
[inputOption]... [outputOption]...

Arguments QSPACE queueSpace

Names the queue space to which queue belongs.

NAME queue
Names the queue as defined in the JIF.

message

A message output argument to receive the dequeued message. The argument's
format must conform to the message data type as specified in the queue's JIF
definition. For more information on message data types, refer to “Service
Messages and Data Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

which

Specifies which message to dequeue; use one of the following arguments. If
no argument is supplied, the first message in the queue is removed.

FIRST_AVAILABLE [WAIT]

Remove the first message in the queue. This is the default behavior
if no argument is supplied. If the queue is empty, the WAIT option
specifies to wait until a message becomes available for dequeuing;
otherwise, an error message is posted.

Note, you should only use FIRST_AVAILABLE WAIT if there is more
than one TMQUEUE server running, otherwise the one server will wait
indefinitely for a message that cannot be enqueued. For further
information on Oracle Tuxedo-provided servers, consult your
Oracle Tuxedo documentation.

BY_MSGID msgId

Dequeue the message corresponding to msgId. The message
identifier is generated when the message is successfully enqueued.

BY_CORRID corrID

Dequeue the message corresponding to corrID. The correlation
identifier is set by the application when enqueuing the message.

inputOption

Use one or more of the following options to control the behavior of dequeue:
2-18 JPL Command Reference

dequeue
NOTIMEOUT

Specifies that the dequeue operation is unaffected by the blocking
timeout; however, transaction timeouts remain in effect.

OUTSIDE_TRANSACTION

Specifies to perform the dequeuing operation outside the current
transaction. If message dequeuing fails, the current transaction is
unaffected. If you specify this option, transaction-level exception
and unload handlers are not executed when their corresponding
events are generated.

outputOption

Use any the following keywords to set output arguments with information
about the dequeued message:

APPL_AUTH_KEY key
Returns the application authentication key associated with the client
that enqueued the message.

CLIENT clientId

Returns the client ID of the agent that originated the request.

CORRID corrID

Returns the message's correlation ID, set by enqueue. For more
information about using correlation IDs, refer to the enqueue
command.

FAILUREQ queue

Returns the name of the queue where a failure message should be
stored. The value is set if the dequeued message is associated with a
failure queue.

MSGID qMsgId

Returns the unique message ID if set and the dequeue was
successful. The identifier is generated when the message is
successfully enqueued.

PRIORITY priority

Returns the message's priority relative to other messages in the
queue as an integer between 1 and 100, where 100 indicates the
highest priority. A message with the highest number is dequeued
before all others.

RCODE returnCode

Returns the return code specified by enqueue when the message was
enqueued.
Programming Guide 2-19

dequeue
REPLYQ queue

Returns the name of queue where the reply message should be
stored. The value is set if the dequeued message is associated with a
reply queue.

Environment Oracle Tuxedo

Scope Client, Server

Description The dequeue command removes a message from the specified queue. You can identify
the message you want dequeued; otherwise, dequeue uses the first message. The order
of messages in the queue is specified when they are enqueued. You can request a
particular message for dequeuing by specifying its message identifier (BY_MSGID
msgId) or correlation ID (BY_CORRID corrID). You can also indicate that the
application wait for a message that is not immediately available.

When dequeue is successful, it can return additional information about the message:

! The message identifier for the dequeued message.

! A user-assigned correlation identifier that should accompany any reply or
failure message. This allows the originator to correlate the message with the
original request

! The name of a reply queue if a reply is desired

! The name of the failure queue on which the application can enqueue
information regarding failure to process the message.

You can determine the success or failure of dequeue by checking the severity level
that is set in the tp_severity property.

For more information about Oracle Tuxedo System /Q, refer to “Reliable Queues” on
page 8-11 in JetNet/Oracle Tuxedo Guide and refer to your Oracle Tuxedo
documentation.

Exceptions dequeue can generate the following exceptions:

Exception Severity Cause

TP_INVALID_COMMAND_SYNTAX TP_COMMAND Command syntax is invalid.
2-20 JPL Command Reference

dequeue
See Also enqueue

TP_INVALID_VARIABLE_REF TP_COMMAND or
TP_WARNING

Unable to resolve reference to Panther variable.

TP_NO_OUTSIDE_TRANSACTION TP_WARNING No transaction exists.

TP_QUEUE_SPACE_NOT_IN_JIF TP_COMMAND Queue space not found in the JIF.

TP_QUEUE_NO_MSG TP_ERROR No message was available for dequeuing.

TP_TIMEOUT TP_ERROR Message does not successfully dequeue within
specified timeout.

Exception Severity Cause
Programming Guide 2-21

enqueue
enqueue

Places a message on a reliable queue

Synopsis enqueue QSPACE queueSpace NAME queueName message
[enqueueOption]... [MSGID msgId]

Arguments QSPACE queueSpace
Specifies queueName's queue space.

NAME queueName
The name of the queue as defined in the JIF.

message

The message data to enqueue, as defined by the queue data type description
in the JIF. For more information on message data types, refer to “Service
Messages and Data Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

enqueueOption

One or more of the following options:

CORRID corrID

Associates the message with a queue-independent identifier of up to
32 characters. Because this identifier can be maintained across all
queues, the dequeue command can use it to identify a message.
Other related messages can also be enqueued with it, such as reply
or failure messages that are associated with message.

DQTIME dequeueTime

Specifies when to make the message available for dequeuing. If you
omit this option, the message can be dequeued immediately. This
option is valid only if the queue has been configured for time-based
ordering; that is, queue order is set to time. For more information,
refer to the Oracle Tuxedo /Q Guide of the Oracle Tuxedo SDK in
your Oracle Tuxedo documentation.

The server dequeues the message and calls the appropriate service if
it is monitoring the queue. dequeueTime can be a relative time (time
elapsed after the message is enqueued) or an absolute time. An
absolute time must be greater than January 1 1970 00:00:00 UTC. In
either case, Panther can dequeue the command only after the
specified amount of time has elapsed.

A relative dequeueTime can be specified in this format:
2-22 JPL Command Reference

enqueue
"[+days hours::minutes::]seconds"

Seconds are required; minutes, hours, or days (space delimiter
between days and hours) can also be specified. If more than seconds
is specified, the + symbol and the quotation marks are mandatory. If
only seconds are specified, both are optional.

Note: JPL's colon preprocessor expands colon-prefixed variables. To
prevent expansion of variables that contain colons, you must prefix
literal colons with another colon (::) or a backslash (\:).

An absolute dequeueTime can be specified in one of these ways:

" The value from a Panther date/time field.

" A date/time string in this format: "mm/dd/yy HH::MM"

FAILUREQ queue | NOFAILUREQ
Specify a failure queue for failure responses, or use NOFAILUREQ if
no failure message is expected. If neither option is specified, the JIF
is checked for the default failure queue.

FRONT | BEFORE_MSGID msgId
Place the message in the queue:

" FRONT—Put the message at the head of the queue.

" BEFORE_MSGID msgId—Put the message ahead of the
message with Oracle Tuxedo message identifier msgId.

NOTIMEOUT

Specifies that the enqueue operation is unaffected by the blocking
timeout. This option has no effect on transaction timeouts. If you
omit this option, Panther use the setting in the tp_timeout
property.

OUTSIDE_TRANSACTION

Specifies to perform the enqueuing operation outside the current
transaction. If message enqueuing fails, the current transaction is
unaffected. If you specify this option, transaction-level exception
and unload handlers are not executed when their corresponding
events are generated.

PRIORITY priority

An integer between 1 and 100, inclusive, that establishes the
message's priority, where 100 specifies the highest priority. This
Programming Guide 2-23

enqueue
option is valid only if the queue's queue order parameter includes a
priority setting. An out-of-range priority value generates the
exception TP_INVALID_OPTION_VALUE. For further information on
priority enqueuing, refer to the Oracle Tuxedo /Q Guide of the
Oracle Tuxedo SDK in your Oracle Tuxedo documentation.

RCODE returnCode

An integer that specifies the return status to be made available to the
dequeuing agent. The return code is handed to the reply queue from
the service that replies to the message.

REPLYQ queue NOREPLYQ

Specifies a reply queue for replies to the message, or that no reply
message is wanted (NOREPLYQ). If neither option is specified, the JIF
is checked for a reply queue.

MSGID msgId
On return, msgId contains the unique Oracle Tuxedo message identifier that
is generated after enqueue executes successfully. You can use this identifier
to reference the enqueued message as long as it remains on the original queue.

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The enqueue command puts a message in the specified queue. You identify the queue
by specifying its queue name and queue space. This queue must be defined in the JIF;
otherwise, the command fails and generates the exception TP_IN VALID_QUEUE. The
enqueued message must conform to the data type defined in the JIF for the designated
queue.

An enqueued message can only be removed from its queue by the dequeue command,
and only after the DQTIME time delay (if any) elapses. The reply to this message is put
in the REPLYQ-specified reply queue or, if this option is omitted, in the reply queue
specified in queueName's JIF definition. enqueue can also specify a failure queue to
supersede the one specified by the JIF. You can prevent reply and failure queueing
with the NOREPLYQ and NOFAILUREQ options, respectively.

By default, messages are enqueued in first-in/first-out (FIFO) order. You can rely on
this ordering when dequeuing messages, or you can use specific identifiers. Two kinds
of identifiers are available:
2-24 JPL Command Reference

enqueue
! The Oracle Tuxedo-assigned message identifier that is returned with a
successful enqueue command; you obtain this identifier through the MSGID
option.

! A correlation ID that you explicitly assign to the enqueued message. This
identifier is independent of the queue in which the message is placed; you
should assign a correlation ID in order to identify the reply or failure messages
that are generated in response to a dequeued message.

enqueue sets the tp_return property to NULL.

For more information on queueing and Oracle Tuxedo System /Q, refer to “Reliable
Queues” on page 8-11 in JetNet/Oracle Tuxedo Guide and refer to your Oracle Tuxedo
documentation.

See Also enqueue can generate the following exceptions:

See Also dequeue

Exception Severity Cause

TP_INVALID_COMMAND_SYNTAX TP_COMMAND Command syntax is invalid.

TP_INVALID_VARIABLE_REF TP_COMMAND or
TP_WARNING

Unable to resolve reference to Panther variable.

TP_INVALID_OPTION_VALUE TP_COMMAND An invalid time value is specified in the DQTIME
option or PRIORITY value is out-of-range.

TP_INVALID_QUEUE TP_COMMAND Queue is not defined in the JIF.

TP_QUEUE_SPACE_NOT_IN_JIF TP_COMMAND Queuespace not found in the JIF.

TP_NO_OUTSIDE_TRANSACTION TP_WARNING There is no current transaction.
Programming Guide 2-25

flush
flush

Flushes buffered output to the display

Synopsis flush

Description The flush command performs delayed writes and flushes all buffered output to the
display. Panther automatically performs this operation when the keyboard is open and
the input queue is empty. This command calls the library function sm_flush.

Because Panther uses a delayed-write feature, Panther does not immediately display
output from assignments and msg statements. Instead, it updates the screen image in
memory. When the keyboard is opened or the flush command is called, Panther
updates the display from this image.

Frequent calls to this command and its library equivalent sm_flush can significantly
slow execution. Panther always calls sm_flush when the keyboard opens, so the
display is always up to date before data entry occurs. Use this command when your
procedure requires timed output or non-interactive display–for example, to update a
time field.

Example // If this procedure is called as a screen entry function,
// it prints text one character at a time in field
// banner when the screen is opened.

proc welcome
vars w, i
w = "-------Sam's Discount Rentals-------"
for i = 1 while w(i,1) != "" step 1
{
 banner(i) = w(i,1)
 flush
 call delay
}

proc delay
// Lengthen the interval between flushes.
vars i
for i =1 while i < 5 step 1
{ }
2-26 JPL Command Reference

for
for

Executes one or more JPL statements the specified number of times

Synopsis for counter = initValue while logicalExpr [step stepValue]
 [statementBlock]

Arguments counter

A variable whose value may be tested as a condition for continuing or ending
for execution

initValue

The initial value of counter

logicalExpr

Specifies the condition for continuing for execution. Execution remains
inside the for loop until logicalExpr evaluates to false. You can specify
multiple conditions with the logical operators AND (&&) and OR (||).

step stepValue
Optionally specifies the value by which counter is incremented or
decremented, where stepValue is a positive or negative integer constant or
variable. The default step value is 1. If stepValue is a variable, JPL
evaluates it only once, before the first evaluation of logicalExpr.
Subsequent changes in the value of the stepValue variable during loop
execution have no effect on step processing.

statementBlock

One or more JPL statements to execute as long as logicalExpr evaluates to
true. If statementBlock has multiple statements, enclose them with open
and close blocking characters {0} on the lines before and after. If there is no
statement to execute, enter a null statement {}.

Description The for command starts a loop whose iterations increment a counter variable. Each
for statement contains up to three clauses–initialization of the counter variable, a
logical expression whose evaluation determines whether to reenter the loop, and
optionally, the number by which to increment the counter variable. Panther executes a
for statement as follows:

1. Initializes counter to the value of initValue.
Programming Guide 2-27

for
2. Evaluates stepValue.

3. Evaluates logicalExpr:

" If logicalExpr evaluates to false, stop execution of the loop and exit.

" If logicalExpr evaluates to true, execute the for statement or block;
increment counter by stepValue; repeat step 3 (evaluate logicalExpr).

When the value of logicalExpr is false, JPL stops loop execution. In the simplest
case, it compares counter to a value that specifies the number of times that JPL
executes the loop. You can use other values to decide when loop execution ends. For
example, you can use counter to evaluate array occurrences and use the value of an
occurrence, like a null string, to the end the loop.

When you construct a logical expression, take into account that JPL, unlike C, always
fully evaluates a boolean expression. For example, the following for statement
traverses a screen's fields by field number (ct) until the last field or the first modified
field is reached:

vars ct
vars n_flds = @screen("@current")->numflds

for ct = 1 while ct <= n_flds && @field_num(ct)->mdt == PV_NO

If all fields are unmodified, ct increments to one greater than n_flds on the last pass
through the for loop, so the first condition evaluates to false; however, JPL also
evaluates the second condition @field_num(ct), which is invalid. Consequently, JPL
issues an error message and stops execution of the remaining code.

Example // Change each element of an array to its absolute value.
vars i
for i = 1 while i <= 10 step 1
{
 if amounts[i] == ""
 amounts[i] = "0"
 else if amounts[i] < 0
 amounts[i] = -amounts[i]
}

See Also next, break, while
2-28 JPL Command Reference

global
global

Declares global JPL variables

Synopsis global varSpec[, varSpec]...

Arguments

varSpec Specifies the global variable's name and properties as follows:

varName [[numOccurs]] [(size)] [= initValue]

varName

The name of the variable, where varName is a string that contains up to 31
characters. Global names can use any combination of letters, digits, or
underscores, where the first character is not a digit. Panther also allows usage
of two special characters, the dollar sign ($) and period (.).

[numOccurs]
Optionally declares varName as an array of numOccurs occurrences. The
default number of occurrences is 1. For example the following statement
declares dependents as an array of ten occurrences:

global dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; Panther
automatically allocates an extra byte for the terminating null character. The
default size is 255 bytes. For example, the following statement declares the
variable zip with a size of 10 bytes:

global zip (10)

= initValue
Optionally initializes the variable to initValue, where initValue can be
any expression less than or equal to the variable's size. If no value is assigned,
Panther initializes the variable to null string ("").

If the variable is declared as an array, you can initialize its occurrences. For
example:

global ratings[5] = {"G", "PG", "PG-13", "R", "NC-17"}

Occurrence values are comma-delimited, and can be any constants or
variables that are in scope, including other global variables and widget names.
Programming Guide 2-29

global
Description The global command creates one or more global JPL variables. These variables are
visible to the entire application and can be referenced at any time.

Avoid using names already in use by Panther itself–for example, logical key names
such as XMIT and EXIT, and bit mask settings such as K_EXPOSE and K_ENTRY.
Because Panther uses these variables internally, reinitializing them can yield
unpredictable and possibly harmful results.

See Also vars
2-30 JPL Command Reference

if
if

Conditionally executes one or more JPL statements

Synopsis if logicalExpr
statementBlock

[else if logicalExpr
statementBlock]

...
[else

statementBlock]

Arguments logicalExpr

Specifies the condition under which JPL executes statementBlock, where
logicalExpr can be any logical expression. For more information on logical
expression construction, refer to “Logical Expressions” on page 19-55 in
Application Development Guide.

statementBlock

One or more statements that JPL executes if the preceding logicalExpr
evaluates to true. If statementBlock has more than one statement, enclose
the block with open and close blocking characters {} on the lines before and
after.

else if logicalExpr

Optionally specifies the statement block to execute if all previous if and
else if conditions evaluate to false and logicalExpr evaluates to true.

else

Optionally specifies the statement block to execute if all previous if and
else if conditions evaluate to false. Each else must be paired with an if
statement and follow all else if statements associated with that if.

Description The if command specifies conditional execution of other JPL statements. Each if can
be followed by one or more else if commands to create a chain of conditional
processing. JPL executes each if and else if in the chain until it evaluates one of
the conditions to true; JPL then executes the statement block and exits the chain. If all
conditions in an if chain evaluate to false and the chain ends with an else command,
JPL executes the else statement block. If the if chain omits an else command, JPL
simply exits the chain and continues module execution.
Programming Guide 2-31

if
Example //Determine a person's sex, based on personal title.
if title == 'MR'
 sex = 'Male'

else if title == 'MS'
 sex = 'Female'

else if title == 'MRS'
 sex = 'Female'

else if title == 'MISS'
 sex = 'Female'

else
{
 sex = 'Unknown'
 msg err_reset 'Please supply a title.'
}

2-32 JPL Command Reference

include
include

Interpolates the contents of another module at the current statement line

Synopsis include module

Arguments module

The name of the module to include.

Description The include command replaces the current include statement with the contents of
the specified file module. include lets you write and maintain JPL in separate
modules. You can thereby avoid hard-coding the same procedure across several
modules, or allocating memory for public modules. The included module can itself
contain its own include statements. You can nest include statements up to eight
levels deep.

Panther looks for module among available modules in this order:

1. Memory-resident modules.

2. Library module in an open library.

3. The current directory.

4. File module in a directory specified by sm_initcrt.

5. File module in a directory specified by SMPATH.

At runtime, JPL compiles and loads the included module as needed. Compilation
occurs before JPL executes the primary module or procedure that contains the
include statement. Consequently, compilation errors in the included module prevent
execution of the primary module.
Programming Guide 2-33

jif_check
jif_check

Determines if the JIF has changed

Synopsis jif_check

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The jif_check command checks whether changes occurred in the JIF. You typically
use this command in the request_received handler, which is called on all service
requests (refer to “Request_received Events” on page 6-22 in JetNet/Oracle Tuxedo
Guide). If a change has occurred, jif_check sets the value of tp_return and raises
a JIF_changed event (refer to “Jif_changed Events” on page 6-15 in JetNet/Oracle
Tuxedo Guide); the default handler for this event calls jif_read to reread the JIF, and
readvertises all services.

Exceptions jif_check can generate these exceptions:

See Also jif_read

Exception Severity Cause

TP_JIF_LOWER_VERSION TP_REQUEST An older version of the JIF is in place; the
tp_return property is set to TP_JIF_OLDER.

TP_JIF_ACCESS_FAILED TP_REQUEST The JIF cannot be accessed.
2-34 JPL Command Reference

jif_read
jif_read

Rereads the JIF

Synopsis jif_read

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The jif_read command rereads the JIF and updates all service information. This
command is typically called in the jif_changed event handler before it readvertises
services (refer to “Jif_changed Events” on page 6-15 in JetNet/Oracle Tuxedo Guide).

Exceptions jif_read can generate one exception:

See Also jif_check

Exception Severity Cause

TP_JIF_ACCESS_FAILED TP_REQUEST The JIF is not accessible.
Programming Guide 2-35

log
log

Logs a message to the machine event log

Synopsis log logEntry

Arguments logEntry

The string to write to the log file: supply either a string constant or variable.

Environment JetNet, Oracle Tuxedo, COM, EJB

Scope Client, Server

Description The log command writes an entry to the machine-specific log file. For example, you
can define a server_exit handler that logs a message when the server shuts down:

proc server_exit()
log "Enterprise Bank server shutting down"
return 0

For COM/MTS applications, the log file must be named server.log and reside in the
service component's application directory. log is not supported for COM/MTS clients.
For more information, refer to “Logging Server Messages” on page 3-17 in COM/MTS
Guide.

Exceptions In JetNet/Oracle Tuxedo applications, log can generate one exception:

Exception Severity Cause

TP_INVALID_CONNECTION TP_WARNING There is no connection to the middleware.
2-36 JPL Command Reference

msg
msg

Writes a message to the terminal

Synopsis msg mode message

Arguments mode

Specifies the message's format and behavior with one of these arguments:

emsg

Displays message as an error message and awaits user
acknowledgement.

err_reset

Identical to emsg except when the message is displayed on the status
line: in that case, err_reset forces the cursor on at its current
position.

qui_msg

Displays message as an error message and awaits user
acknowledgement. message is preceded by the SM_ERROR string
from the message file–for example, ERROR. In GUIs, the SM_ERROR
text is also preceded by the stop icon.

quiet

Identical to qui_msg except when the message is displayed on the
status line: in that case, quiet forces the cursor on at its current
position.

setbkstat

Installs message as the background status line, which displays when
no other message is active.

d_msg

Displays message arguments on the status line and leaves it there
until cleared or replaced by another message. Text displayed using
d_msg is buffered. You can clear the buffer by another msg d_msg
command that supplies an empty string(""). msg d_msg displaces the
status line message displayed by msg setbkstat.

message

One or more comma-delimited arguments that comprise the message to
display. Each argument can be a string or numeric constant, or a variable.
Programming Guide 2-37

msg
Note that msg query allows only one argument. All other arguments for mode
allow multiple arguments.

Description The msg command displays messages on the status line or in a popup window in one
of several modes. Each mode correspond to a Panther library function. To display
messages in a dialog box with standard command buttons, call sm_message_box.

Window versus

Status Line

Display

By default, GUI versions of Panther always display messages in a popup window with
an OK button. Character-mode Panther displays messages in a window only if the
configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set this variable to
WHEN_REQUIRED (the default), character-mode Panther displays messages on the status
line except when these conditions occur:

! The message overflows the status line. Note that Panther prevents the message
from overlapping the cursor row/column display, if it is turned on.

! The message wraps to multiple lines.

! You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW's setting, if the
message contains the %Mu option, or the setup variable ER_KEYUSE is set to
ER_USE. Also, the setbkstat and d_msg modes always display messages on
the status line.

Message

Acknowledgment

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error message.
The acknowledgement key (by default, spacebar) can be set through the setup variable
ER_ACK_KEY. If the user acknowledges the message through the keyboard, Panther
discards the key. You can modify this behavior for individual messages through the
%Mu option, described later.

Message

Appearance and

Behavior

Several setup variables determine default message presentation and behavior. For
more information about these variables, refer to “Message Display” on page 2-20 in
Configuration Guide. You can change these defaults at runtime through sm_option.

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the call
to sm_initcrt; otherwise, the percent characters appear as literals.
2-38 JPL Command Reference

msg
%AattrValue
Change the display of the subsequent string to the attrValue-specified
attribute, where attrValue is a four-digit hexadecimal value. If the string to
get the attribute change starts with a hexadecimal digit (0...F), pad
attrValue with leading zeros to four digits. Refer to Table 45-2 on page
45-9 in Application Development Guide for valid attribute values.

This option is valid only for messages that display on the status line. Panther
ignores this option if the message displays in a window.

%B

Beep the terminal before the message displays. This option must precede the
message text.

%KkeyLogical

Display key label for logical key, where keyLogical is a logical key
mnemonic or hex value. When Panther displays the message, it replaces
keyLogical with the key label string defined for that key in the key
translation file. If there is no label, the %K is stripped out and the mnemonic
remains. Key mnemonics are defined in smkeys.h

Note: If %K is used in a status line message, the user can push the
corresponding logical key onto the input queue by mouse-clicking
on the key label text.

%Md

Force the user to press the acknowledgment key (ER_ACK_KEY) in order to
dismiss the error message. Panther discards the key that is pressed. If the user
presses any other key, Panther displays an error message or beeps, depending
on how setup variable ER_SP_WIND is set. The %Md option corresponds to the
default message behavior when setup variable ER_KEYUSE is set to
ER_NO_USE.

This option must precede the message text.

%Mt[timeOut]
Force temporary display of message to the status line. Panther automatically
dismisses the message after the specified timeout elapses and restores the
previous status line display. Timeout specification is optional; the default
timeout is one second. You can specify another timeout in units of 1/10
second with this syntax:
Programming Guide 2-39

msg
#(n)
n is a numeric constant that specifies the timeout's length. If n is
more than one digit, the value must be enclosed with parentheses.
For example, this statement displays a message for 2 seconds:

msg emsg "%Mt(20) Changes have been saved to database."
The user can dismiss the message before the timeout by pressing any key or
mouse clicking. Panther then processes the keyboard or mouse input.

If the message is too long to fit on the status line, Panther displays the
message in a window. In this case, users can dismiss the message only by
choosing OK or pressing the acknowledgement key. Panther then discards
any keyboard input.

This option must precede the message text. It is ignored by setbkstat and
d_msg modes.

%Mu

Force message display to the status line and permit any keyboard or mouse
input to serve as error acknowledgment. Panther then processes the keyboard
or mouse input.

If the message is too long to fit on the status line, Panther displays the
message in a window. In this case, users can dismiss the message only by
choosing OK or pressing the acknowledgement key. Panther then discards
any keyboard input.

This option must precede the message text. It is ignored by setbkstat and
d_msg modes.

%N

Insert a line break. This option is invalid for setbkstat and d_msg modes.

%W

Forces display of the message in a window. This option is ignored by
setbkstat and d_msg modes.

Example // Indicate that the entry to the field state is invalid.
msg err_reset ':state is not a U.S. state'

// Indicate that the current entry is being processed.
// Note that d_msg overrides delayed write and immediately
// flushes text to the screen.
msg d_msg 'Processing :name'

// Ask whether the user wants to quit the current screen.
vars quit
2-40 JPL Command Reference

msg
quit = sm_message_box \
('Are you ready to quit?' ,"",SM_MB_OKCANCEL,"")

if quit = SM_ID_OK
 return 0

vars field1 message
field1 = "message"
message = "Quick brown fox"

// This will display 'message' on the status line.
msg emsg field1

// This will also display 'message'.
msg emsg ":field1"

// This will display 'field1'.
msg emsg "field1"

// This will display 'Quick brown fox'.
msg emsg :field1

// These messages use percent escapes.
// Print message in red
msg emsg "%A004Stop now."

msg emsg "The menu toggle is %KMTGL"
msg emsg "Enter value.%NPress XMIT."
msg qui_msg "%WInvalid password."
msg err_reset "%MdPlease enter a positive value."

See Also sm_message_box
Programming Guide 2-41

next
next

Skips to the next iteration of a loop

Synopsis next

Description The next command is valid in any for or while loop. next terminates the current
iteration of the loop and starts the next iteration. When a next statement executes, JPL
skips all subsequent statements until the end of the loop. If the loop is controlled by a
for statement, JPL increments the loop's step value. It then tests the loop condition; if
the condition evaluates to true, JPL executes the while or for statement block. next
resembles the continue statement in C.

Example // Process all the engineers in a list of people.
vars k
for k = 1 while job[k] != "" step 1
{
 if job[k] != "engineer"
 next
//process mailing label for engineers...
}

See Also break, for, while
2-42 JPL Command Reference

notify
notify

Sends an unsolicited message to a client

Synopsis notify TYPE msgType (message) [NOTIMEOUT]

Arguments TYPE msgType
Specifies the message's data type, where msgType is one of these values:

" JAMFLEX

" STRING (Oracle Tuxedo only)

" FML (Oracle Tuxedo only)

" FML32 (Oracle Tuxedo only)

For more information on message data types, refer to “Service Messages and
Data Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

message

The message data, which must conform to msgType.

NOTIMEOUT

Disregard blocking timeouts; however, transaction timeouts remain in effect.

Environment JetNet, Oracle Tuxedo

Scope Server

Description The notify command sends a message to the client whose service request the server
is currently processing. The client to be notified cannot be another server.

For example, this server procedure might be used to notify ATM clients about
bankservices while it processes their requests. It uses source to identify itself as the
source of the message:

proc bankinfo ()
// service BANK_INFO
// send a message with bank news to the client
notify TYPE JAMFLEX \

({source="notify_news", msg="Low rate mortgages with \
 no points - no closing fees. \
 Stop in your local branch for details!"})

service_return ()
Programming Guide 2-43

notify
Messages delivered via notify are unsolicited. In order for unsolicited messages to be
interpreted correctly by agents receiving them, a message handler must be installed.
Because the handler is unaware of a message's origin, it is important that a standard
method of identifying the source of unsolicited messages be established for the entire
application. For more information on writing a message handler for your application,
refer to “Recognizing the Message Source” on page 6-18 in JetNet/Oracle Tuxedo
Guide.

Exceptions notify can generate the following exceptions:

See Also broadcast, client_init, receive

Exception Severity Cause

TP_INVALID_ARGUMENT_LIST TP_COMMAND More than one argument is passed to message.

TP_TIMEOUT TP_COMMAND notify times out before completion.
2-44 JPL Command Reference

parms
parms

Declares parameters in the unnamed procedure of a JPL module

Synopsis parms [deref] paramName[, paramName]...

Arguments deref

Specifies to pass in the values of the caller's arguments. If you omit the deref
qualifier, JPL passes in the literal value of the caller's arguments. In the case
of a variable, JPL passes in the name of the variable instead of its value. Omit
this argument if you use the parms command to get the standard arguments
passed in by a field, group, or screen.

paramName

The name of the parameter, where paramName is a string that contains up to
31 characters. JPL parameter names can use any combination of letters,
digits, or underscores, where the first character is not a digit. Panther also
allows usage of two special characters, the dollar sign ($) and period (.).

Description The parms command declares one or more parameters in a JPL module's unnamed
procedure. An unnamed procedure must be the first procedure in a JPL module;
because this procedure omits the proc statement, you must use the parms command
to receive any arguments that are passed in by its caller. Also use it in a field's
validation module or in an external non-public JPL module to get the standard
arguments passed by screens, groups, and fields. For more information about the
standard arguments available for screen modules, refer to “Screen Function
Arguments” on page 44-11 in Application Development Guide; for widget modules,
refer to “Field Function Arguments” on page 44-15. parms statement can declare up
to twenty comma-delimited parameters. If you declare more parameters than are
actually passed, Panther initializes the extra parameters to empty strings. If you declare
fewer, the undeclared parameters are inaccessible. Like variables, parameters that are
declared in a module's unnamed procedure are accessible to all procedures in that
module.

Example // call module calculatecall calculate(subtotal, state)

//first unnamed procedure in module calculate
parms amt, st
if st == 'CA'
 tax = 0.0725
Programming Guide 2-45

parms
else if st == 'NY'
 tax = 0.085
else
 tax = 0.00
total = amt * (1 + tax)

See Also vars, proc
2-46 JPL Command Reference

post
post

Posts an event

Synopsis post EVENT eventName TYPE msgType (message) [postOption]...

Arguments EVENT eventName
The event to be posted, where eventName can be up to 31 characters long,
but cannot start with a period (.) or sm.

TYPE msgType
Specifies the data type of the message to accompany this event posting, where
msgType is one of these values:

" JAMFLEX

" STRING

" FML

" FML32

If TYPE is not specified, the default is STRING. For more information on
message data types, refer to “Service Messages and Data Types” on page 5-15
in JetNet/Oracle Tuxedo Guide.

message

Data to accompany the event posting; the message's format must conform to
the TYPE-specified data type.

postOption

One or more of the following options:

NOREPLY

The event broker does not wait for replies from subscribers to the
event before returning to the posting agent.

NOTIMEOUT

The event posting is not subject to blocking timeouts; however,
transaction timeouts remain in effect.

OUTSIDE_TRANSACTION

Execute the event posting operation outside of the current
transaction (if issued within a transaction). If you specify this option,
transaction-level exception and unload handlers are not executed
when their corresponding events are generated.
Programming Guide 2-47

post
Environment Oracle Tuxedo

Scope Client, Server

Description The post command lets a client or server post an event. When an event is posted, the
event broker notifies all subscribers of the event. If successful, post sets the
tp_return property to the number of notifications dispatched; otherwise, it sets
tp_return to TP_FAILURE. For information about the Oracle Tuxedo event broker
and configuration requirements, refer to “Event Brokering” on page 8-5 in
JetNet/Oracle Tuxedo Guide; also refer to your Oracle Tuxedo documentation.

Exceptions The post command can generate these exceptions:

See Also subscribe, unsubscribe

Exception Severity Cause

TP_EVTBROKER_ACCESS_FAILED TP_COMMAND Unable to access the event broker sever.

TP_NO_OUTSIDE_TRANSACTION TP_WARNING There is no current transaction.

TP_POSTING_FAILED TP_COMMAND An error occurs when posting a transactional
event to either a service routine or a reliable
queue on behalf of the caller's transaction.

TP_INVALID_COMMAND_SYNTAX TP_COMMAND Command syntax is invalid.

TP_INVALID_VARIABLE_REF TP_COMMAND or
TP_WARNING

Unable to resolve reference to Panther variable.
2-48 JPL Command Reference

proc
proc

Starts a JPL procedure definition

Synopsis [returnType] proc procName [([param[, param]...])]

Arguments returnType

Specifies the data type of the procedure's return value. An unqualified proc
command returns an integer value. You can specify to return a string or
double precision value by qualifying the proc command with the keywords
string or double, respectively.

procName

A character string that specifies the JPL procedure name. Procedure names
can be up to 31 characters long and contain any keyboard character except a
blank space. When naming procedures in screen and public modules, be sure
to avoid name conflicts, especially with any external modules that you wish
to call by name.

param

A parameter to receive the corresponding argument passed by this
procedure's caller. You specify parameters as a comma- or space-delimited
argument list within parentheses. Panther passes arguments by value–that is,
the called procedure gets its own private copies of the values in the calling
procedure's arguments. This means that the called procedure cannot directly
alter a variable in its caller; it can only alter its own copies.

Description The proc command names a procedure and optionally specifies its parameters and
return value's data type. If a module contains multiple procedures, each proc statement
serves to end the previous procedure. Only named procedures can be called from other
procedures, and from application hooks such as control strings and Focus properties.

In the following example, the call to procedure process_input passes data from
variables data1 and data2 to the procedure's corresponding parameters. The
procedure is defined to return a double value. This return value is used to determine
whether the if statement evaluates to true or false:

Example if process_input(data1, data2) > 0.16667
...

double proc process_input(d1, d2)
Programming Guide 2-49

proc
vars retval
//process d1 and d2 values
return retval

Because a proc statement marks the end of one procedure and the start of another, you
cannot embed one procedure definition inside another. Refer to Chapter 19,
“Programming in JPL,” in Application Development Guide for more information on
procedure structure and execution.

See Also call
2-50 JPL Command Reference

public
public

Reads JPL modules into memory and makes their procedures available to application

Synopsis public moduleName[moduleName]...

Arguments moduleName

Specifies the module to read into memory (if necessary), where moduleName
is a string constant or colon-expanded variable that names a library module
or memory-resident module. If Panther cannot find moduleName, it issues an
error message.

Note: If the public command is issued in a screen's unnamed procedure and
moduleName cannot be found, no error message is issued.

Description The public command reads the procedures contained in one or more JPL modules. If
the modules are not already memory-resident, public compiles them and puts them in
memory, making the contents of the module available to the application as a whole. It
also executes the first procedure if it is unnamed. All procedures beginning with a
proc statement are available until the application exits or you remove their module
from memory with an unload statement. public lets you store generic procedures in
library modules that are easy to edit and available to any application. For example,
these procedures handle user exits:

Example proc quit
vars ans
ans = sm_message_box \

("Are you ready to quit?", "", SM_MB_YESNO, "")
if ans = SM_IDYES
 return 1
else
 return 0

proc end
msg emsg 'Program exit.'

Given that these procedures are in library module exit_handler, you can make them
available to the application by entering this public command in the opening screen's
unnamed procedure (accessed through the screen's JPL Procedures property):

public exit_handler
Programming Guide 2-51

public
You can now call quit from any available application hook, for example, from a control
string that is associated with the EXIT key:

EXIT=^(0=&nextscreen; 1=^end)quit

You can issue the public command on a module only once. Panther ignores public
commands on a module that is already public.

Note: If you test an application that loads a public module, that module remains in
memory until you explicitly unload it or Panther exits. If you edit the module
after exiting test mode, remember in the next test session to unload the
module's earlier version and reload the new one in order to see your changes.

See Also unload
2-52 JPL Command Reference

raise_exception
raise_exception

Sends an error code back to the client

Synopsis raise_exception returnCode message

Arguments

returnCode Specifies the exception error to return to the client for COM components and EJBs.

message Specifies the message to return to the client for CORBA components.

Environment COM, EJB

Scope Server

Description raise_exception sends an error code back to the client, generally a negative
number. The client's error handler can then decide what to do based on the value sent.
There are some conventional exception codes defined by Microsoft for use in COM
programming.

Calling this command causes the remainder of the JPL to be skipped. The return code
from the aborted JPL will be 0.

Example // This JPL procedure sends an exception code.

proc my_method()
{

. . .
return_args (id, name)
raise_exception -2

}

See Also receive_args, return_args
Programming Guide 2-53

receive
receive

Receives data sent via send or from a remote client via service_call

Synopsis receive [bundle bundleName] [item itemNo] [keep] data fieldExpr

receive {ARGUMENTS | MESSAGE} ([receiveArg])

Arguments bundle bundleName
Optionally names the buffer, or bundle, from which to receive data, where
bundleName can be a string constant or variable. Bundle data is written by
send commands; if the send command supplies a bundle name, Panther
creates a bundle with that name. Panther by default maintains up to ten
bundles of send data in memory; change the number of available bundles by
setting the max_bundles property. If no name is supplied, Panther gets data
from the unnamed bundle–that is, a bundle whose data is sent from the last
send command that omitted a bundle name.

item itemNo
Specifies the bundle offset from which to start reading data, where item
numbering begins at 1. If you omit this argument, receive starts getting
bundle data from the first item. receive counts data items in the same order
as they were sent. Each item in the bundle can contain one or more
occurrences; because an array is regarded as a single data item, Panther
disregards its occurrences when it evaluates itemNo.

keep

Specifies to leave the bundle data intact after receive completes execution.
This lets multiple receive statements specify the same bundle of data. By
default, receive destroys the bundle and frees the memory allocated for it
after it completes execution.

data fieldExpr
Specifies the fields or occurrences to receive the bundle data. Refer to “Object
Specification” on page 19-33 in Application Development Guide for more
information about valid field expressions. You can specify multiple
fieldExpr arguments delimited by commas.

If fieldExpr is a non-subscripted array, receive reads the bundle data into
all of the array's occurrences. You can specify a single occurrence or range of
occurrences within an array by subscripting it with this format:

array[intExpr[..[intExpr]]]
2-54 JPL Command Reference

receive
where intExpr evaluates to an integer. If you omit the last occurrence
specifier, receive reads into all occurrences from the one specified to the
end of the array. The following examples show different subscripts that are
valid:

receive data @widget("empno")[1] //read only occurrence 1
receive data empno[1..10] //read into occurrences 1-10
receive data empno[ct..] //read all occurrences from ct

ARGUMENTS

Used by services to receive their arguments from a client agent that initiated
a service request. Use of this keyword is restricted to servers.

MESSAGE

Enables clients to receive unsolicited messages via a message handler. Use of
this keyword is restricted to clients.

receiveArg

Specifies the target variables to receive the incoming message data.
Parentheses are required even when no argument is specified. The format of
the incoming data is specified in the JIF's definition of the service. For more
information on message data types, refer to “Service Messages and Data
Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

Scope Client, Server

Description The receive command is used in different ways depending on whether it is used to
receive data/messages from remote client or server agents using the middleware, or if
it is receiving data locally from another screen. In JetNet/Oracle Tuxedo applications,
receive is used either by a service to receive data from a client, or in a message
handler to receive unsolicited messages from servers.

Local Receive When a receive executes independently of the middleware, Panther reads data from
a bundle that was written by an earlier send command, typically, from another screen.
receive reads the data into its fieldExpr arguments in the same order that it was
sent. Unless you supply the keep argument, the bundle data is discarded when
receive completes execution.
Programming Guide 2-55

receive
receive sequentially pairs each fieldExpr argument to a data item in the bundle. If
the data item contains multiple occurrences, receive reads as many occurrences into
fieldExpr as the field allows, or as many as the fieldExpr expression specifies. If
any occurrences remain unread, receive ignores them and reads the next data item
into its corresponding target.

You can use the item argument to start reading data from a specified offset in the
bundle. receive starts reading data from this offset.

If a bundle item has more occurrences than are currently allocated for the target array,
Panther allocates new occurrences for the overflow data. If the incoming data
overflows the array's maximum number of occurrences or a specified range, receive
ignores the extra occurrences.

If a bundle item has fewer occurrences than currently allocated for the target array,
receive writes to the array as follows:

! If no range is specified, Panther overwrites the array with the bundle data and
discards previous data in remaining occurrences.

! If a range is specified, Panther writes only to those occurrences. Data in other
occurrences remains intact. If the range has more occurrences than the
incoming data, Panther discards previous data in the remaining occurrences.

! If an unbounded range is specified, for example, DATA empno[4..], Panther
overwrites the array from the specified occurrence and discards previous data in
remaining occurrences. Data in occurrences that precede the range remains
intact.

If a data argument is invalid, for example, the target field does not exist or the range of
occurrences is invalid, the receive command aborts data transfer prematurely and
posts an error message. Panther ignores remaining bundle data and, unless keep was
specified, destroys the bundle.

Middleware API

Receive

In JetNet/Oracle Tuxedo applications, when the middleware intercepts receive, it
establishes a mapping for incoming data and applies that mapping (unloads the data)
when the data is available.

Use the ARGUMENTS keyword along with receiveArg to specify a Panther mapping
for the incoming data and to request that the data be unloaded to those Panther targets.
For more information on specifying arguments, refer to “Service Messages and Data
Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.
2-56 JPL Command Reference

receive
A message handler uses the receive command to specify a Panther mapping for the
incoming message and to request that the message actually be unloaded to those
Panther targets based on the mapping specified in receiveArg. A message handler is
invoked to process unsolicited messages. These include broadcast messages from
other clients or servers, and notify messages from the servers currently processing
service requests for the client.

For example, the following code shows receive used in a message handler:

// The message handler
proc msg_handler (type)
vars msgStr
if (type=="JAMFLEX")
{

receive MESSAGE ({msgStr})
msg emsg msgStr

}
return

// Install the message handler:
...
@app()->hdl_message = "msg_handler"
...

The next example shows the code for service VAL_PIN, which validates a client
logging in with last name and password. The client end of this process is shown in the
service_call command.

proc val_pin()
// service VAL_PIN

receive ARGUMENTS ({last_name, pin})
call sm_tm_command("VIEW")

if (!@dmrowcount)
{

service_return failure \
({message = "Password or name is invalid; try again"})

}
service_return ({message = @tpi_null, owner_ssn})

Exceptions When used to receive data via the middleware, the receive command can generate
the following exceptions:
Programming Guide 2-57

receive
See Also send, service_call, service_return

Exception Severity Cause

TP_INVALID_ARGUMENT TP_COMMAND Argument specification doesn't match incoming
data.

TP_INVALID_ARGUMENT_LIST TP_COMMAND No arguments are available.

TP_INVALID_BUFFER TP_COMMAND,
TP_WARNING

The type of the data buffer received is not the
same type as specified in the JIF.

TP_INVALID_BUFFER_VERSION TP_COMMAND,
TP_WARNING

JAMFLEX is the buffer type, but the version is
incompatible.

TP_INVALID_CALL TP_COMMAND receive ARGUMENTS is used outside of a service.

TP_INVALID_CONTEXT TP_COMMAND receive is called from a client but not within a
message handler.

TP_NO_OUTSTANDING_MESSAGE TP_COMMAND receive MESSAGE is used and there is no
message to receive.
2-58 JPL Command Reference

receive_args
receive_args

Receives in and in/out parameters for a method

Synopsis receive_args argList

Arguments argList

Specifies a comma-delimited list of target variables to receive the incoming
data for the method.

Environment COM, EJB

Scope Server

Description The receive_args command processes a list of in and in/out parameters that have
been passed by a client when calling a method. Since the method's parameters cannot
be passed directly to a JPL procedure, this command is how the method receives
incoming data.

When processing the targets on the list, the command skips the out only parameters,
and takes the other parameters in the order in which they were provided.

Example // This JPL procedure implements the GetCustomer method.
// The parameters are defined as:

// [in, out] CompanyName
// [in] CompanyID
// [out] CustomerID
// [out] Phone

proc GetCustomer
{

receive_args (CompanyName, CompanyID)
call sm_tm_command ("VIEW")
return_args (CompanyName, CustomerID, Phone)

See Also return_args, raise_exception
Programming Guide 2-59

return
return

Exits a JPL procedure

Synopsis return [retval]

Arguments retval

The value to return to this procedure's caller, where the data type of retval
depends on the procedure definition. Supply either a constant, a variable or
an expression that evaluates to a string or numeric value. If no argument is
supplied, Panther returns a value of 0 or null string, depending on the
procedure’s return type.

Description The return command causes a JPL procedure to exit. Control is returned to the
procedure's caller, if any, or to the Panther runtime system.

JPL automatically returns with either 0 or null string to a procedure's caller when it
reaches the end of the called module or another proc statement. Use the return
statement to exit before the end of a procedure, or to return a value other than zero or
the null string.

Example // Call procedure checknum to evaluate value of num
// field. Based on its value, return an integer that
// determines the next procedure to call

vars ret
ret = checknum()
if ret == 1
 call lownum_process()
else if ret == 2
 call midnum_process()
else
 call hinum_process()

proc checknum()
if num < 0
 return 1
if num < 500
 return 2

return 3
2-60 JPL Command Reference

return_args
return_args

Returns in/out and out parameters for a method

Synopsis return_args argList

Arguments argList

Specifies a comma-delimited list of variables whose data will be returned to
the client.

Environment COM, EJB

Scope Server

Description The return_args command passes a list of variables whose data is to be passed back
to the client. These are matched in order with the method's in/out and out parameters.

Example Refer to the example for receive_args.

See Also receive_args, raise_exception
Programming Guide 2-61

runreport
runreport

Invokes the report generator and runs the specified report

Synopsis runreport filename[!reportname] [(arg[, ...])] [option]...

Arguments filename

Specifies the name of a report file. Panther looks for the file in the
application's memory-resident list, then in all open libraries. For remote
report processing, the report file must be in a server or common library.

reportname

The name of a report definition in filename to invoke. If reportname is
omitted, Panther uses the first report definition in the report file.

arg

You can supply one or more arguments to the report. Each argument must be
a valid JPL expression–either a string within quotation marks, a number, or
the name of a Panther variable to evaluate when the report is run. In order to
process these arguments, the following conditions must be true:

" Each argument has a corresponding parameter that is declared in the
report node's Parameters property (refer to “Report Parameters” on
page 5-2 in Reports).

" Arguments are supplied in the same order as their corresponding
parameters

" Each declared parameter exists in the report as a widget, a JPL global
variable, or an LDB variable.

Note: Any punctuation that has a special usage in the operating system
such as parentheses (), must be prefixed with an escape character (\).

option

You can specify invocation options. For a description of invocation options,
refer to “Setting Invocation Options” on page 9-9 in Reports.

Description The runreport command invokes Panther's report generation facility to execute the
specified report.
2-62 JPL Command Reference

runreport
Example The following JPL procedure runs the custinfo.rpt report for the value in the
cust_num variable and writes the report to the file custinfo.txt.

proc make_report
 runreport custinfo.rpt (cust_num) output=custinfo.txt
 return

See Also sm_rw_runreport
Programming Guide 2-63

send
send

Sends data to a buffer for retrieval by the receive command

Synopsis send [bundle bundleName] [append] data dataExpr[,...]

Arguments bundle bundleName
Optionally names the buffer, or bundle, in which to store the send data, where
bundleName can be a string constant or variable. Bundle names can be up to
31 characters long. By using names, you can maintain additional bundles of
send data in memory. The number of available bundles (including the
unnamed bundle) defaults to ten, but can be changed by setting the
max_bundles property. For example, this command sends data to named
bundle empData:

send BUNDLE "empData" DATA empno, dept, status

If an existing bundle is already named bundleName, Panther frees the
existing bundle and replaces it with the new one. If the named bundle exceeds
the number of allowable bundles, Panther removes the oldest bundle from
memory.

If no name is supplied, Panther stores the data in an unnamed bundle–that is,
a bundle whose name is an empty string. Panther uses the unnamed bundle
for receive calls that specify no bundle name.

append

Optionally appends the send data to the specified or unnamed bundle.

data dataExpr
Specifies the data to send from this screen, where dataExpr can be a
constant, JPL variable, or field expression. Refer to “Object Specification” on
page 19-33 in Application Development Guide for more information about
valid field expressions. You can specify multiple data arguments delimited by
commas.

If dataExpr is a non-subscripted array, send writes all its occurrences. You
can specify a single occurrence or range of occurrences within an array by
subscripting it with this format:

array[intExpr[..[intExpr]]]
2-64 JPL Command Reference

send
where intExpr evaluates to an integer. If you omit the last occurrence
specifier, send writes all occurrences from the one specified to the end of the
array. The following examples show different subscripts that are valid:

send DATA @widget("empno")[1] //get only occurrence 1
send DATA empno[1..10] //get occurrences 1-10
send DATA empno[ct..] //get all occurrences from ct to end

Description The send command writes screen data to a buffer that is accessible through the
receive command. send can send one or more values from fields and array
occurrences on a screen. It can also send constant values and JPL variables, as well as
parts of arrays or the current occurrence of an array.

Panther writes the send data to a temporary buffer, or bundle, which you can optionally
name. Panther by default maintains up to ten named and unnamed bundles; the number
of available bundles can be changed by setting the max_bundles property. If you omit
a bundle name, Panther writes the data to an unnamed bundle; this data is accessed by
the next receive command that omits the bundleName argument or specifies it as the
empty string.

The bundle retains no information about its data sources. receive gets data in the
order as it was sent. For example, the following send statement sends to an unnamed
bundle the value in credit_acctno, the value 1000, and all values in occurrences of
the array credit. The receive command receives this data in the same order:

send DATA credit_acctno, 1000, credit
receive DATA acctno, amount, references

See Also receive
Programming Guide 2-65

service_call
service_call

Initiates a service call from a client agent

Synopsis service_call serviceName ([requestMsg] [[,] replyMsg])
[callOption]...

Arguments serviceName

Any JIF-defined service, specified as a variable or quoted string. The service
name can be up to 15 characters long.

requestMsg

Message data supplied by this client to the server, where requestMsg's data
type is defined in the JIF's definition of this service. For more information on
message data types, refer to “Service Messages and Data Types” on page 5-15
in JetNet/Oracle Tuxedo Guide.

replyMsg

Specifies the variables to receive the data that the service returns to the client.
The format of the return data is specified in the JIF's definition of the service.
If the service call also specifies request message data, separate the two
messages with a comma. For more information on message data types, refer
to “Service Messages and Data Types” on page 5-15 in JetNet/Oracle Tuxedo
Guide.

callOption

One or more options that control service call behavior. Each call option can
be set through the service's JIF definition; unless the command specifies
otherwise, the service call uses the JIF settings.

service_call call options always have precedence over their corresponding
JIF settings. You set call options through these key words:

ASYNC

Specifies to let the client resume processing immediately after
issuing the call without waiting for a response. If you omit this
option, all processing on the client is suspended until the service call
returns.

NOTIMEOUT

If service calls are blocked (the tp_block property is set to Yes),
this option overrides the blocking timeout and blocks the call
indefinitely.
2-66 JPL Command Reference

service_call
NOREPLY

Use only in ASYNC mode to inform Panther that this service call
expects no reply, so there is no need to poll for one.

Note: From the client's perspective, Panther makes no attempt to poll for a
reply or to receive one; however, Panther might quietly poll for a
reply if required by the middleware to end the client-server
connection.

The following restrictions apply to the use of NOREPLY:

" (Oracle Tuxedo only) The NOREPLY option cannot be used
with a service request that is part of a transaction. To remove
a service request from an active transaction use the
OUTSIDE_TRANSACTION option.

" The service call specifies no reply message data.

When the NOREPLY option is specified, a post_request event is
generated directly after the service_call command is executed.

OUTSIDE_TRANSACTION (Oracle Tuxedo only)
Specifies to execute the service call independently of the active
transaction, if one exists. Use this option in order to prevent events
generated by this request from being affected by commits or
rollbacks of the current transaction. If you specify this option,
transaction-level exception and unload handlers are not executed
when their corresponding events are generated.

EXCEPTION_HANDLER handler
Specifies an exception handler to install at the request scope, where
handler is a Panther variable or a string. This handler handles any
exceptions that result from the request or its response.

The handler is installed just before service invocation, that is, after
all parsing, interpretation, and validation of the command has
occurred. For more information on exception events and handlers,
refer to “Exception Handlers” on page 6-11in JetNet/Oracle Tuxedo
Guide.

UNLOAD_HANDLER handler
Specifies an unload handler to install at the request scope, where
handler is a Panther variable or a string. This handler handles any
unload events that might result from receiving the service's
Programming Guide 2-67

service_call
response. The service must be called synchronously (without the
ASYNC option).

The handler is installed just before service invocation. For more
information on unload events and handlers, refer to “Unload
Handlers” on page 6-29 in JetNet/Oracle Tuxedo Guide.

PRIORITY priority
A signed or unsigned integer that sets the priority for serviceName.
If unsigned, priority overrides this service's predefined priority; if
signed, priority is added or subtracted from the predefined priority.
In both cases, a service's priority level must be between 1 and 100.
If you omit this option, the middleware uses the priority that is set in
the JIF or (under Oracle Tuxedo), in the TUXCONFIG configuration
file.

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The service_call command invokes a service request that can be issued by a client
or a server. A server that requests a service acts in the role of a client. The JIF is
accessed at runtime to determine predefined service attributes such as message data
type.

Message
Data

service_call can specify zero to two messages that enable exchange of data
between the calling client and the server that processes the requested service.
Depending on how the JIF defines the service's transport method, message data can
have one of these forms:

! ()—No data sent or received.

! (message)—Data is sent in only one direction, either to or from the server, as
specified in the JIF's service definition.

! (requestMsg, replyMsg)—The server receives data along with the client
request (requestMsg), and returns data to the client (replyMsg)

The JIF also defines each message's data type. For more information, refer to “Service
Messages and Data Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.
2-68 JPL Command Reference

service_call
Appending

Transaction

Manager Data to

Messages

If the JIF defines a service to use the transaction manager, any data that the transaction
manager needs for a database operation or that it returns is automatically appended to
the corresponding request or reply message. For example, service customer_s
specifies Select as its transaction type. When that service is called, the middleware
appends to the request message any data that the transaction manager needs to
construct a SELECT statement. When the service returns, the middleware appends the
query results to the reply message.

When service_call calls a service that uses the transaction manager, the command
must always specify one or both messages, according to the transaction's type. Thus, a
service that specifies Select as its transaction type must be called with both messages;
a service definition that specifies Delete as its transaction type can be called with only
a single (request) message.

If a service_call command has no message data of its own, the command must use
the default mapping format for one or both messages: {...}. For example, a
service_call command can invoke the customer_s service as follows:

service_call "customer_s" ({...}, {...})

Synchronous and

Asynchronous

Modes

By default, a service call is issued in synchronous mode—that is, processing on the
client is suspended until it receives a reply from the service. You can specify
asynchronous mode for a service call through the ASYNC option. In this case, client
processing continues without waiting for a response from the service.

Asynchronous processing might be desired if a client transaction includes several
service calls that can be executed simultaneously. For example, a bank account transfer
procedure requiring a debit to one account and a credit to another might be performed
simultaneously as one transaction. If there is an error in the execution of one service,
the entire transaction can be rolled back (Oracle Tuxedo only).

Asynchronous service calls can be issued by clients and servers, with these differences:

! For clients, Panther polls continuously for a reply from the service. This
guarantees that requested data is returned when the service completes.

! Servers do not poll for replies to their own service calls, so a server that expects
a reply to an asynchronous service call must use the wait command.

Service Call

Event Stream

When a client agent initiates a service call, events are raised depending on the
service_call options used. Figure 2-1 shows the sequence of events as the service
call is processed.
Programming Guide 2-69

service_call
Figure 2-1 Event stream generated by a service_call

Refer to Chapter 6, “JetNet/Oracle Tuxedo Event Processing,” in JetNet/Oracle
Tuxedo Guide for information on middleware-related events, and how handlers can be
used to customize your application's response to specific service calls.

The following scenarios illustrate a variety of ways of using service_call:

Scenario 1: If service INQUIRY is defined in the JIF to allow only incoming JAMFLEX data, you can
pass the string "Brontis" to the service as follows:

service_call "INQUIRY" ({"Brontis"})

The following code calls the same service in asynchronous mode, passing the content
of variable name to the service:

service_call "INQUIRY" ({name}) ASYNC

Scenario 2: If service GET_NAME is defined in the JIF to allow only outgoing JAMFLEX data, you
can designate variable name to receive string data from the service as follows:

service_call "GET_NAME" ({name})
2-70 JPL Command Reference

service_call
This code also calls the GET_NAME service, this time specifying an unload handler
(name_unload) to unload the data:

service_call "GET_NAME" ({name}) UNLOAD_HANDLER "name_unload"

Scenario 3: The four examples illustrate how the service DEPOSIT is called. The service can be
defined in the JIF to use JAMFLEX buffer types for messages.

! Call the DEPOSIT service and designate the content of the variables
ACCOUNT_ID and AMOUNT as IN parameters, and designate the content of
MESSAGE and ACCOUNT_BAL as the data to receive back from the service:

service_call "DEPOSIT" ({ACCOUNT_ID, AMOUNT},\
{MESSAGE, ACCOUNT_BAL})

! Call the DEPOSIT service and map local variable id to ACCOUNT_ID and local
variable amt to AMOUNT in asynchronous mode with the NOREPLY option:

service_call "DEPOSIT" ({ACCOUNT_ID=id, AMOUNT=amt})\
ASYNC NOREPLY

! Call the DEPOSIT service and map the local variable id to ACCOUNT_ID and
local variable amt to AMOUNT, and map the receiving MESSAGE into the local
variable msg, and ACCOUNT_BAL into the local variable bal:

service_call "DEPOSIT" ({ACCOUNT_ID=id, AMOUNT=amt},\
{MESSAGE=msg, ACCOUNT_BAL=bal})

! Call the DEPOSIT service with a relative priority of +50:

service_call "DEPOSIT" PRIORITY +50 \
({ACCOUNT_ID, AMOUNT},{MESSAGE, ACCOUNT_BAL})

Under Oracle Tuxedo, the same service can be defined to use FML buffer types. This
requires that the FML file contain the following entries for FML fields for the bankapp
database:

Name Number Type Comments

ACCOUNT_ID 101 long Account No.

ACCOUNT_BAL 117 float Account balance

AMOUNT 111 float Transaction amount

MESSAGE 126 string Message text
Programming Guide 2-71

service_call
The screen variables have identical names to the FML fields.

Property Settings Table 2-1 shows which application properties are affected when service_call
executes:

Exceptions service_call can generate the following exceptions:

Table 2-1 Properties set by service_call

Property Value

tp_return Set to the callid for the associated request, provided the
command progressed as far as the pre_request event.

tp_svc_return Set to the service return value. This property reflects the CODE
value specified by the service when it executes a
service_return command. It is only set if the service
actually provides a return value and if the return type is a
scalar or an array of scalars. Otherwise, the variable is not
changed.

tp_svc_outcome Set to the service return status when the service has returned
its last message to the client. This status is the indication of
application success or failure, if the service provides such to
the middleware.

Exception Severity Cause

TP_IDENTIFIER_TRUNCATED TP_WARNING Length of serviceName exceeds 15
characters; it is truncated to the maximum
length permitted by the middleware.

TP_INVALID_ARGUMENT TP_COMMAND Argument is invalid.

TP_INVALID_ARGUMENT_LIST TP_COMMAND Argument list is invalid.

TP_INVALID_BUFFER TP_ERROR Buffer received has unexpected type.

TP_INVALID_BUFFER_VERSION TP_ERROR Buffer received is of an incompatible
version.
2-72 JPL Command Reference

service_call
Example The following procedure init_atm initiates the client identification process when a
user logs on as an ATM customer. FML buffers are used in a call to the VAL_PIN
service. For the server end of this process, refer to the receive command.

proc init_atm ()
vars message

...
@app()->hdl_exception = "exc_hand"
@app()->hdl_jif_changed = "jchhandc"

client_init client last_name user "Customer" \
notification poll

if ((@app()->tp_severity) > TP_WARNING)
{

// initiating a connection was unsuccessful
message = @app()->tp_exc_msg
msg quiet message
...

TP_INVALID_CONNECTION TP_COMMAND Connection does not exist.

TP_INVALID_OPTION_VALUE TP_COMMAND Option value is invalid.

TP_INVALID_SERVICE TP_COMMAND Service is invalid or was not advertised.

TP_MONITOR_ERROR TP_COMMAND The middleware raises an error.

TP_NO_OUTSIDE_TRANSACTION TP_COMMAND There is no current transaction.

TP_NONTRANSACTIONAL_SERVICE TP_COMMAND Service cannot be executed within a
transaction.

TP_REQUEST_LIMIT TP_COMMAND Number of outstanding requests has
exceeded the limit.

TP_SERVICE_FAILED TP_INFORMATION Service returned failure status.

TP_SERVICE_PROTOCOL_ERROR TP_ERROR Service has violated protocol and has been
abnormally terminated.

TP_TIMEOUT TP_MESSAGE Action terminated due to a timeout
condition.

Exception Severity Cause
Programming Guide 2-73

service_call
return 0
}

// validate PIN given by the customer
service_call service "VAL_PIN" ({last_name, pin}, \

{message, owner_ssn = user_info})

// check if validation was not successful
if ((@app()->tp_severity > TP_WARNING) || \

 (@app()->tp_svc_outcome == TP_FAILURE))
{

msg quiet message
client_exit
...

}
...
return 0
}

See Also receive, service_cancel, service_forward, wait
2-74 JPL Command Reference

service_cancel
service_cancel

Cancels an outstanding service request

Synopsis service_cancel [services]

Arguments services

Specifies which services to cancel:

CALL callid

Cancel the specific service request identified by callid.

ALL [(callid...)]
An unqualified ALL cancels all outstanding service requests; if
followed by a list of service call identifiers (callid), ALL cancels
the specified service requests. Enclose the list of call identifiers with
parentheses.

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The service_cancel command cancels the specified service requests. An
unqualified service_cancel cancels the most recent asynchronous request. You can
cancel one or more requests with the CALL and ALL options. For example, this
statement cancels the service request identified by the Panther variable call_id:

service_cancel CALL call_id

This statement cancels all outstanding service requests:

service_cancel ALL

You can cancel both synchronous and asynchronous service calls. Canceling a call
does not stop it from running; however, it does stop the reply. If the canceled service
is part of a transaction under Oracle Tuxedo, the cancellation should be accompanied
by a rollback to ensure the integrity of an XA resource.

service_cancel sets the tp_return property to the number of service calls
canceled.
Programming Guide 2-75

service_cancel
Exceptions service_cancel can generate the following exceptions:

Note: A call is considered outstanding as soon as its associated pre_request event
has been raised, and is considered complete as soon as its associated
post_request event has been generated. After each request has terminated,
a post_request event is generated. For more information, refer to
“Pre_request and Post_request Events” on page 6-20 in JetNet/Oracle Tuxedo
Guide.

See Also receive, service_call, service_forward, service_return

Exception Severity Cause

TP_ALREADY_CANCELED TP_WARNING The request has already been canceled.

TP_EXPLICIT_CANCEL TP_INFORMATION Each request is canceled (informational only).

TP_INVALID_CALL TP_COMMAND Service call is unidentifiable.

TP_INVALID_CONNECTION TP_COMMAND No connection to the middleware exists.

TP_MONITOR_ERROR TP_COMMAND An error is reported from the middleware.

TP_NO_OUTSTANDING_CALLS TP_INFORMATION No service calls are outstanding; that is, a
specified service call has already completed.
2-76 JPL Command Reference

service_forward
service_forward

Forwards service request data to another service

Synopsis service_forward serviceName [(message)] [PRIORITY priority]

Arguments serviceName

The JIF-defined service to get the forwarded service request. This argument
must be either a variable containing the name of a service or a quoted string.

message

Message data to relay from the original service to serviceName. You can
omit this argument only if both services have identical message data
definitions; in this case, serviceName gets the original service's message
data. To forward no data, supply an empty argument ().

A supplied message must conform to the JIF definition for serviceName. For
more information on message data types, refer to “Service Messages and Data
Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

PRIORITY priority
A signed or unsigned integer that sets the priority for serviceName. If
signed, priority overrides any priority set in this service's JIF definition; if
signed, priority is added or subtracted from the default priority for all
services, set in the middleware configuration file. In both cases, a service's
priority level must be between 1 and 100.

Environment JetNet, Oracle Tuxedo

Scope Server

Description The service_forward command passes the current service request to another service
for processing. After the service is forwarded, the current service routine terminates
immediately, thereby terminating processing of the current request by this agent. All
properties are restored to normal default settings after execution of
service_forward.

For example, this JPL forwards credit data from service TRANSFER to the DEPOSIT
service:
Programming Guide 2-77

service_forward
// Service TRANSFER
...

receive ARGUMENTS ({acct_id_deb, amount_deb, \
acct_id_cred, amount_cred})

...
service_forward "DEPOSIT" ({acct_id_cred, amount_cred})

If an exception of severity TP_ERROR or greater occurs before the forward operation
begins, the service request is not forwarded. Instead, the service returns with
TP_FAILURE. If the service is part of a transaction, the transaction is marked for
abort-only and is not committed; it can only be rolled back explicitly by the user.

Services are typically forwarded with their original message data by omitting the
message argument. This implicit passing of data is valid only if both services define
their input message arguments identically.

Exceptions service_forward can generate the following exceptions:

See Also receive, service_call, service_return

Exception Severity Cause

TP_INVALID_ARGUMENT TP_COMMAND Data is passed by omitting (argList), but the
services do not have identical input buffers defined

TP_INVALID_ARGUMENT_LIST TP_COMMAND The return parameters of the services are not
identically defined

TP_INVALID_OPTION_VALUE TP_COMMAND The absolute priority value was out of range (must
be from 1 to 100)

TP_INVALID_SERVICE TP_COMMAND Service specification is invalid
2-78 JPL Command Reference

service_return
service_return

Returns from a service request invocation

Synopsis service_return [returnStatus] ([message]) [CODE returnCode]

Arguments returnStatus

Specifies the service return status with one of these values:

" SUCCESS—The service succeeded.

" FAILURE—The service failed.

" EXIT—The service failed and the server executable should terminate.

Under Oracle Tuxedo, the middleware uses the service's return status to
determine whether a transaction is successful. If any service that participates
in a transaction returns with FAILURE or EXIT, the transaction is marked as
abort-only. The transaction cannot be committed and must be aborted
explicitly by the user.

For more information about transactions, refer to xa_begin and xa_end

message

Specifies the message data to return to the invoking agent. This provides a
mapping from Panther variables to the return arguments specified in the
service call. Always enclose the data in message in parentheses even if no
data is specified. The message format is determined by the transport method
specified for the service in the JIF: JAMFLEX, STRING or an FML buffer.

For more information on message data, refer to “Service Messages and Data
Types” on page 5-15 in JetNet/Oracle Tuxedo Guide.

CODE returnCode
An integer to associate with the return. This code can be examined by the
client agent; it is ignored by the middleware. If omitted, the default return
value is 0.

Environment JetNet, Oracle Tuxedo

Scope Server
Programming Guide 2-79

service_return
Description The service_return command returns data from a service request and indicates to
the middleware whether the service was performed successfully. service_return
and service_forward are the only commands by which a service can be explicitly
completed. If a service routine terminates without using either of these, Panther
completes the service automatically as if the service_return command were
invoked with an empty argument list, with a returnCode equal to the return value
from the service routine, and with a returnStatus of either FAILURE (if the service
return value is negative), or SUCCESS (if the return value is 0 or greater).

All properties are restored to default settings after execution of service_return,
since the service routine will have terminated.

On the client side, the tp_svc_outcome property is set to the service's return status,
where it can be inspected by the client. The tp_svc_return property is set to the
return code.

The tp_tran_status property is set to TP_WILL_ABORT if the service returned with
a FAILURE or EXIT status.

Appending

Transaction

Manager Data to

Reply Messages

If the JIF defines a service to use the transaction manager, any data that the transaction
manager returns is automatically appended to the message argument. For example,
service customer_s specifies Select as its transaction type. When that service
returns, the middleware appends the query results to the reply message.

If a transaction returns data to the client, the service_return call must specify a
message argument. Thus, a service that specifies Select as its transaction type returns
(if successful) with the results of the database query, so service_return must
specify a message argument; conversely, a Delete transaction returns no data to the
client, so a service_return command that returns from a service of that transaction
type can omit its message argument.

If a transaction returns data and the service_return command has no message data
of its own, the command must use the default mapping format for its message
arguments: {...}. For example:

service_return SUCCESS ({...})

Exceptions service_return can generate the following exceptions:

Exception Severity Cause

TP_INVALID_ARGUMENT TP_COMMAND Invalid arguments are supplied
2-80 JPL Command Reference

service_return
If, during processing of a service_return command, an exception of severity
TP_ERROR or greater occurs before control returns to the middleware, the service is
completed with an error return status. Panther ensures an error return status by using a
FAILURE status unless the service_return command explicitly specifies an EXIT
status, in which case an EXIT status is used.

Example The following code is the DEPOSIT service. The client side of this process is shown in
the xa_end command.

proc deposit()
// service DEPOSIT
vars amount
receive arguments ({account_id, amount})
call sm_tm_command("SELECT")

if (!@dmrowcount)
{

service_return failure ({message = "Invalid account."})
}
// need to check that overflow will not happen when
// depositing
if (account_balance + amount > max_balance)
{

service_return failure \
({message = "Balance field overflow"})

}
account_balance = account_balance + amount
call sm_tm_command("SAVE")
service_return ({message = @tpi_null, \

balance = account_balance})

See Also service_call, service_forward, xa_begin, xa_end

TP_INVALID_ARGUMENT_LIST TP_COMMAND Invalid arguments are supplied

TP_INVALID_CONTEXT TP_COMMAND Command is used outside of the service, or out of
context

Exception Severity Cause
Programming Guide 2-81

subscribe
subscribe

Subscribes to an event managed by the Oracle Tuxedo event broker

Synopsis subscribe EVENT eventName NOTIFICATION notificationSpec
ENQUEUE enqueueSpec [OUTSIDE_TRANSACTION] [PERSIST]
[FILTER rule] [NOTIMEOUT]

Arguments EVENT eventName
The name of an event. eventName is any regular expression containing up to
255 characters. For information about regular expressions, refer to recomp()
in the Oracle Tuxedo Reference Manual.

NOTIFICATION notificationSpec
Method of notification to the subscriber when the event is posted, formatted
as follows:

{SERVICE serviceName | ENQUEUE enqueueSpec}

SERVICE serviceName
Notification is done via a call to the service serviceName. The
event broker calls serviceName to notify the agent of the event.

ENQUEUE enqueueSpec
Notification is done via enqueuing a message to a reliable queue.
enqueueSpec has this format:

QSPACE queueSpace NAME queueName [queueOption
[queueOption]...]

QSPACE queueSpace
The name of the queue space to which the queue belongs.

NAME queueName
The name of the queue.

queueOption

One or more of the enqueuing options listed in the “Enqueue
Options” section.

OUTSIDE_TRANSACTION

Specifies that event notifications are dispatched outside of the current
transaction. If this option is not used, the default behavior is notification
within the current transaction.
2-82 JPL Command Reference

subscribe
PERSIST

Maintains the event subscription regardless of any error situation. By default,
subscriptions are deleted when a resource is not available to an event poster.

FILTER rule
A filter rule to apply when the event broker determines that the subscriber
should be notified of an event. rule is a string expression of up to 255
characters. The rule is applied to the message data of the event posting. This
option is available for FML and STRING types only.

NOTIMEOUT

Specify that the execution of this command is unaffected by the blocking
timeout.

Enqueue Options ! BEFORE_MSGID msgId—Put the message ahead of the message with Oracle
Tuxedo message identifier msgId.

! CORRID corrID—A correlation ID to associate with the enqueued message, a
string of up to 32 characters. The value is maintained across all queues, so any
reply or failure message associated with the queued message can be identified.

! DQTIME dequeueTime—Specifies when to make the message available for
dequeuing. If you omit this option, the message can be dequeued immediately.

The server dequeues the message and calls the appropriate service, if it is
monitoring the queue. dequeueTime can be a relative time (time elapsed after
the message is enqueued) or an absolute time. An absolute time must be greater
than January 1 1970 00:00:00 UTC. In either case, Panther can dequeue the
command only after the specified amount of time has elapsed.
A relative dequeueTime can be specified in this format:

"[+days hours::minutes::]seconds"

Seconds are required; minutes, hours, or days (space delimiter between days
and hours) can also be specified. If more than seconds is specified, the +
symbol and the quotation marks are mandatory. If only seconds are specified,
both are optional.

Note: JPL's colon preprocessor expands colon-prefixed variables. To prevent
expansion of variables that contain colons, prefix literal colons with
another colon (::) or a backslash (\:).

An absolute dequeueTime can be specified in one of these ways:

" The value from a widget having Date/Time property values.
Programming Guide 2-83

subscribe
" A date/time string in this format: "mm/dd/yy HH::MM"

The DQTIME option is valid only if the queue has been configured for
time-based ordering; that is, queue order is set to time. For more information,
refer to the Oracle Tuxedo /Q Guide of the Oracle Tuxedo SDK in your Oracle
Tuxedo documentation.

! FAILUREQ queue | NOFAILUREQ—Specify a failure queue to which failure
responses can be enqueued, or use NOFAILUREQ if no failure message is
necessary. If this option is not used, the JIF is checked for a failure queue.

! FRONT—Place the message at the head of the queue. This option can only be
used if the queue has been configured (when it was created) for out_of_order
enqueuing, with this attribute set to top.

! For further information on out_of_order enqueuing, refer to the Oracle
Tuxedo /Q Guide of the Oracle Tuxedo SDK in your Oracle Tuxedo
documentation.

! PRIORITY priority— Establish a priority value for the message. The valid
range is 1 to 100; the default is 1. This option will only have effect if the queue
was created using priority as a queue-ordering parameter. The larger the value
of priority, the higher the priority.

! For further information on priority enqueuing, refer to the Oracle Tuxedo /Q
Guide of the Oracle Tuxedo SDK in your Oracle Tuxedo documentation.

! RCODE returnCode—Specify an integer-value return code to be made
available to the application. The return is handed to the reply queue from the
service which replies to the message.

! REPLYQ queue | NOREPLYQ—Specify a reply queue to which replies can be
enqueued, or use NOREPLYQ if no reply message is wanted. If this option is not
used, the JIF is checked for a reply queue.

Environment Oracle Tuxedo

Scope Client, Server

Description The subscribe command permits agents to subscribe to events managed by the event
broker. Once an event is posted via the post command, subscribers to the event are
notified in the manner determined by the arguments to this command.
2-84 JPL Command Reference

subscribe
When the subscribing agent is a client, event notification is done via an unsolicited
message. A client can receive unsolicited notifications only if it has appropriate
message handling. Refer to the client_init and receive commands for information on
how to permit clients to receive unsolicited messages.

For servers subscribing to events, there are two methods of notification: notification
by service call and notification by message queuing.

Before notification is initiated, the event broker, after successfully matching the event
to its potential subscribers via the EVENT eventName, applies the subscribers filter rule
if one was used. If the data passes through the filter rule, the subscriber is notified via
the method selected with notificationSpec.

Successful execution of the subscribe command results in a unique subscription ID,
which can be accessed from the tp_return property. If the command fails,
tp_return is set to TP_FAILURE.

For additional information on message queuing, refer to “Reliable Queues” on page
8-11 in JetNet/Oracle Tuxedo Guide and refer to your Oracle Tuxedo System /Q
documentation.

Filter Rule Syntax The filter rule is contained in a string of up to 255 characters. The rule format is
specific to the type of event message data—FML or STRING—of the event's data to
which it is applied.

FML filters can be built from primary expressions, regular expressions, and operators.
A STRING filter must be in the form of a regular expression. For information about
regular expressions, refer to recomp() in the Oracle Tuxedo Reference Manual; for
information about operators and primary expressions, refer to the Oracle Tuxedo FML
Guide.

Exceptions Because subscribe uses message queues, it can raise some of the same exceptions as
the enqueue command.

Exception Severity Cause

TP_INVALID_COMMAND_SYNTAX TP_COMMAND Command syntax is invalid.

TP_INVALID_OPTION_VALUE TP_COMMAND Priority value is not between 1 and 100 or
an invalid time value was specified

TP_INVALID_QUEUE TP_COMMAND Queue is not declared in the JIF
Programming Guide 2-85

subscribe
Example // Client
// The client will receive an unsolicited message
// along with any data posted with the event.

subscribe EVENT "user*" FILTER "*something*"

// Server
// The server will receive notification via a call
// to the service "svc1"

subscribe EVENT "user*" FILTER "*something" \
NOTIFICATION SERVICE "svc1" OUTSIDE_TRANSACTION

// Server
// The server will receive notification via enqueuing the
// message to the queue "queue1" in queue space "qspace1."

subscribe EVENT "user*" NOTIFICATION ENQUEUE QSPACE \
"qspace1" NAME "queue1" PRIORITY 5 REPLYQ "rqueue1" NOTIMEOUT

See Also enqueue, dequeue, post, unsubscribe

TP_QUEUE_SPACE_NOT_IN_JIF TP_COMMAND Queuespace not found in the JIF.

Exception Severity Cause
2-86 JPL Command Reference

switch
switch

Execute different statements based on the value of an expression

Synopsis switch testExpression

case caseExpression[, caseExpression] ...
statementBlock

[case caseExpression[, caseExpression] ...
statementBlock]

...
[default

defaultStatementBlock]

Arguments testExpression

Specifies a value to be tested by case statements that follow the switch
statement. testExpression can be any expression. For more information on
expressions, refer to “Expressions” on page 19-55 in Application
Development Guide.

caseExpression

Each caseExpression is evaluated and compared with testExpression.
If they are equal, the statementBlock following the case statement is
executed

statementBlock

One or more statements that JPL executes if the preceding case statement
finds a match. If statementBlock has more than one statement, enclose the
block with open and close blocking characters {} on the lines before and
after.

defaultStatementBlock

defaultStatementBlock is or more statements that JPL executes if none of
the preceding case statements find a match. If defaultStatementBlock
has more than one statement, enclose the block with open and close blocking
characters {} on the lines before and after it.

Description The switch command does conditional execution of other JPL statements. It is new
to Panther 5.40. Each switch can be followed by one or more case commands to
create a chain of conditional processing. JPL checks the value of each
caseExpression in the chain until finds a value that is equal to testExpression;
Programming Guide 2-87

switch
JPL then executes the statement block that follows the case command and exits the
chain. If none of the case expressions in a switch chain match testExpression and
if the chain ends with the default command, JPL executes the following statement
block. If the switch chain omits a default command, JPL simply exits the chain and
continues execution with the next statement after it.

Example //Determine a person's sex, based on personal title.
switch title

case 'MR'
 sex = 'Male'

case 'MS', 'MRS', 'MISS'
 sex = 'Female'

default
{
 sex = 'Unknown'
 msg err_reset 'Please supply a title.'
}

2-88 JPL Command Reference

unadvertise
unadvertise

Unadvertises services from a server

Synopsis unadvertise {ALL | SERVICE service | GROUP serviceGroup}

Arguments ALL

Unadvertise all advertised services.

SERVICE service
Unadvertise service. The service name can be up to 15 characters in length.

GROUP serviceGroup
Unadvertise all services advertised via serviceGroup. If services that are
contained in a group are advertised individually or through the ALL option,
this option has no effect on them and no exception event is raised.

Environment JetNet, Oracle Tuxedo

Scope Server

Description The unadvertise command unadvertises services previously advertised via the
advertise command. You can unadvertise individual services, services from a group,
or all services. For example, this statement unadvertises all services:

unadvertise ALL

The following statement unadvertises service transfer:

unadvertise SERVICE "transfer"

The tp_return property is set to the number of services successfully unadvertised.

Exceptions The unadvertise command can generate these exceptions:

Exception Severity Cause

TP_INVALID_SERVICE TP_COMMAND SERVICE is used and the service has not been
advertised

TP_NO_SERVICES_ADVERTISED TP_WARNING ALL is used and no services have been advertised.
Programming Guide 2-89

unadvertise
See Also advertise
2-90 JPL Command Reference

unload
unload

Frees the memory allocated for a public module

Synopsis unload moduleName [moduleName]...

Arguments moduleName

The name of the public module to remove from memory. This parameter is
case-sensitive; the name must exactly match the name used in the public
command.

Description The unload command releases the memory used to hold one or more JPL modules
previously loaded into memory as public modules. After you unload moduleName,
subsequent calls to that module read it from disk, the memory-resident list, or an open
library. The named procedures in that module are inaccessible to the application except
through its unnamed procedure.

Avoid unloading a module that is undergoing execution.

Unloading a module not currently in memory does not cause an error.

Example // load a file, call it in a loop,
// then unload it after exiting the loop
public validname
for i = 1 while i < 11 step 1
 call validname (name[i])
unload validname

See Also public
Programming Guide 2-91

unload_data
unload_data

Writes data received remotely via the middleware to target Panther variables

Synopsis unload_data [CLEAR_ONLY]

Arguments CLEAR_ONLY

Clears target Panther variables and does not attempt to write any data to them.

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The unload_data command writes to Panther variables data received from a re mote
agent via middleware processing. The data is written into the variables according to the
mapping established in a service_call or receive command invocation. This
command is used in the default Panther unload handler. Use this command if you write
your own unload handler.

An unload event is triggered whenever data is received from an external source whose
contents can be written to a set of target Panther variables. For clients, external sources
of data include service_return data from services requested and unsolicited
messages. For servers, external sources of data are data sent from a client as part of a
service request, such as arguments. The unload operation begins by first clearing all
target Panther variables, even if there is actually no data to unload. The CLEAR_ONLY
option ensures that the target Panther variables are cleared of old data even in the event
of an error, and prevents new data from being written.

Example For example, the following unload handler user_unload_handler calls an
unqualified unload_data command:

proc user_unload_handler (callid, msg_source, method)
if (method == TP_ASYNCHRONOUS)
{

msg emsg "Data has arrived!"
}

// Do the unload
unload_data
return
2-92 JPL Command Reference

unload_data
The following client JPL installs this unload handler. The service reverse takes a string
as input and reverses the characters for output:

// Client code:
vars receive_string
@app()->hdl_unload = "user_unload_handler
service_call "reverse" ("hello world", receive_string)
msg setbkstat "String unloaded", receive_string

Exceptions If unload_data is called other than from an unload handler or subordinate procedures,
a TP_INVALID_CONTEXT exception of severity TP_COMMAND is raised.

See Also receive, service_call, service_return
Programming Guide 2-93

unsubscribe
unsubscribe

Unsubscribes to an event managed by the Oracle Tuxedo event broker

Synopsis unsubscribe {ALL | SID subscriptionId} [NOTIMEOUT]

Arguments ALL

Removes all event subscriptions, except persistent subscriptions—that is,
those whose subscribe command used the PERSIST option.

SID subscriptionId
Unsubscribe from the event specified by subscriptionId, even if the
subscription is persistent. You obtain subscriptionId at the time the event
is subscribed to.

NOTIMEOUT

Execution of the command disregards the blocking timeout; however,
transaction timeouts remain in effect.

Environment Oracle Tuxedo

Scope Client, Server

Description The unsubscribe command removes event subscriptions from Oracle Tuxedo's event
broker. The command lets you unsubscribe all events, or specific or persistent events.

The tp_return property is set to number of subscriptions canceled after successful
execution of the command.

See Also post, subscribe
2-94 JPL Command Reference

vars
vars

Declares JPL variables

Synopsis vars varSpec [, varSpec]...

Arguments

varSpec Specifies the variable's name and properties as follows:

varName [[numOccurs]] [(size)] [= initValue]

varName

The name of the variable, where varName is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. Panther also allows usage
of two special characters, the dollar sign ($) and period (.).

[numOccurs]
Optionally declares varName as an array of numOccurs occurrences. The
default number of occurrences is 1. For example the following statement
declares dependents as an array of ten occurrences:

vars dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; Panther
allocates an extra byte for the terminating null character. The default size is
255 bytes. For example, the following statement declares the variable zip with
a size of 10 bytes:

vars zip (10)

= initValue
Optionally initializes the variable to initValue, where initValue can be
any constant, variable, or string or numeric expression. For example:

vars workweek = 5
vars avg_sale = @sum(sale_amt) / sale_amt->num_occurrences
vars name = fname##lname

If the variable is declared as an array, you can initialize its occurrences. For
example:

vars ratings[5] = {"G", "PG", "PG-13", "R", "NC-17"}

Occurrence values are comma-delimited.
Programming Guide 2-95

vars
If no value is assigned, Panther initializes the variable to an empty string ("").

Description The vars command creates one or more JPL variables. Panther executes vars
statements as it encounters them at runtime. JPL's ability to reference a variable
depends on the variable's scope and lifetime:

! Variables declared in a named procedure are known only to that procedure and
remain in memory until the procedure returns.

! Variables declared in an unnamed procedure are accessible to all procedures in
the module. These remain in memory until the module returns. Two exceptions
apply: variables declared in a screen module's unnamed procedure remain in
memory until the screen exits; variables in a public module's unnamed
procedure remain in memory until the module itself is removed from memory.

Example vars name(50), flag(1)
vars address[3](50), abbrevs[10]
vars zip(5) = "02138"

See Also global
2-96 JPL Command Reference

wait
wait

Waits for service calls to return before processing resumes

Synopsis wait [serviceCalls] [TIMEOUT timeout]

Arguments serviceCalls

Specifies which service calls must return before processing resumes. If no
service calls are specified, processing is suspended until the current service
call returns. Use one of these keywords and its options:

FOR [callid]
Processing resumes when service call callid returns.

FOR_ALL [callSpec]
Processing resumes when all the specified services return. If you
omit callSpec, all outstanding service calls must return in order to
resume processing. callSpec can have one of these formats:

" (callid[, callid]...)—A comma-delimited list of service
call IDs, enclosed in parentheses, that specifies the service
calls that must return before processing resumes.

" TRANSACTION—Processing resumes when all services
associated with the current transaction return.

FOR_ANY [callSpec]
Processing resumes when one of the specified services return. If you
omit callSpec, processing resumes when any outstanding service
call returns. callSpec can have one of these formats:

" (callid, [callid]...)—A comma-delimited list of service
call IDs, enclosed in parentheses. Processing resumes when
any of these calls returns.

" TRANSACTION—Processing resumes when any service
associated with the current transaction returns.

TIMEOUT timeout
Resume processing if the specified service calls do not return before timeout
elapses. timeout is a quoted string or variable whose format can specify a
relative time (time elapsed after the wait command is issued) or an absolute
time. If no timeout is specified, all specified service calls must return before
processing resumes.
Programming Guide 2-97

wait
A relative timeout can be specified in this format:

"[+days hours::minutes::]seconds"

Seconds are required; minutes, hours, or days (space delimiter between days
and hours) can also be specified. If more than seconds is specified, the +
symbol and the quotation marks are mandatory. If only seconds are specified,
both are optional.

Note: JPL's colon preprocessor expands colon-prefixed variables. To
prevent expansion of variables that contain colons, you must prefix
literal colons with another colon (::) or a backslash (\:).

An absolute timeout can be specified in one of these ways:

" The value from a Panther date/time field.

" A date/time string in this format: "mm/dd/yy HH::MM"

For example, the following wait command suspends processing for 10
seconds or until any call in the list has completed:

WAIT FOR_ANY (call_save_emp, call_save_dept) TIMEOUT 10

Environment JetNet, Oracle Tuxedo

Scope Client, Server

Description The wait command suspends processing of its caller pending completion of the
specified service calls or elapse of the specified timeout. If no service calls are
specified, processing is suspended until the current service call returns. Processing can
resume whether or not the specified calls return with the requested service. When wait
returns, it sets the tp_return property to the number of service calls that returned
while processing was suspended.

The wait command activates the exception, unload and post_request handlers
associated with any call that returns while the wait command executes.

In the following example, the client code issues two service calls, WITHDRAWAL and
BAL_INFO, both asynchronous. The wait command includes the FOR_ALL option,
which prevents the same client from engaging in any other activity until both service
calls return:
2-98 JPL Command Reference

wait
vars err_msg
service_call service "WITHDRAWAL"(\

acct_id, \
{err_msg, transact_id, post_date}) ASYNC

service_call service "BAL_INFO"(\
acct_id, \
{message, cur_bal, avail_bal, cur_date}) ASYNC

wait FOR_ALL
...

Exceptions wait can generate these exceptions:

See Also service_call, receive

Exception Severity Cause

TP_INVALID_CALL TP_COMMAND Invalid callid.

TP_INVALID_CONNECTION TP_COMMAND No connection to middleware.

TP_INVALID_OPTION_VALUE TP_COMMAND Invalid TIMEOUT specification.

TP_NO_OUTSTANDING_CALLS TP_INFORMATION All specified service calls returned.

TP_TIMEOUT TP_WARNING The wait command returned because the
specified timeout elapsed.
Programming Guide 2-99

while
while

Repeatedly executes a block while a condition is true

Synopsis while logicalExpr
statementBlock

Arguments logicalExpr

Specifies the condition that JPL uses to determine whether to reiterate
execution of the while block.

statementBlock

One or more statements that JPL executes if logicalExpr evaluates to true.
If statementBlock has more than one statement, enclose the block with
open and close blocking characters {0} on the lines before and after.

Description The while statement repeatedly executes a block of one or more statements as long as
the value of logicalExpr is true. JPL evaluates logicalExpr before each iteration
of the loop.

Example // do do_proc as often as user wants
vars ans
ans = sm_message_box \

("Start processing?","",SM_MB_YESNO, "")
while ans
{
 call do_proc
 ans = sm_message_box \

("Repeat processing?","",SM_MB_YESNO, "")
}

When you construct a logical expression, take into account that JPL, unlike C, always
fully evaluates a boolean expression. For example, the following while loop traverses
a screen's fields by field number (ct) until the last field or the first modified field is
reached:

vars ct
vars n_flds = @screen("@current")->numflds

while ct <= n_flds && @field_num(ct)->mdt == PV_NO
{
 ...
2-100 JPL Command Reference

while
 ct = ct + 1
}

If all fields are unmodified, ct increments to one greater than n_flds on the last pass
through the while loop, so the first condition evaluates to false; however, JPL also
evaluates the second condition @field_num(ct), which is invalid. Consequently,
JPL issues an error message and stops execution of the remaining code.

See Also break, for, next
Programming Guide 2-101

xa_begin
xa_begin

Starts a middleware transaction

Synopsis xa_begin [EXCEPTION_HANDLER handler, UNLOAD_HANDLER handler,
TIMEOUT timeout]

Arguments EXCEPTION_HANDLER handler
Specifies an exception handler to be installed for the duration of the
transaction; use NULL if none is to be specified. For further information on
exception events and handlers, refer to “Exception Events” on page 6-11 in
JetNet/Oracle Tuxedo Guide.

UNLOAD_HANDLER handler
Specifies an unload handler to be installed for the duration of the transaction.
The handler should control all unloading of transaction data to Panther target
variables; use @NULL if none is to be specified.

For example, this command specifies the unload handler myhandler:

xa_begin UNLOAD_HANDLER "myhandler"

For more information on unload events and handlers, refer to “Unload
Events” on page 6-28 in JetNet/Oracle Tuxedo Guide.

TIMEOUT timeout
Resume processing if the transaction is not complete before timeout elapses.
If you omit this option, transaction processing continues without a time limit.
Specify timeout with this format:

"[+days hours::minutes::]seconds"

Seconds are required; minutes, hours, or days (space delimiter between days
and hours) can also be specified. If more than seconds is specified, the +
symbol and the quotation marks are mandatory. If only seconds are specified,
both are optional.

Note: JPL's colon preprocessor expands colon-prefixed variables. To
prevent expansion of variables that contain colons, you must prefix
literal colons with another colon (::) or a backslash (\:).

For example, this command specifies a time interval of 30 seconds:

xa_begin TIMEOUT 30
2-102 JPL Command Reference

xa_begin
The following command specifies a time interval of 3 hours:

xa_begin TIMEOUT "+3::00::00"

Environment Oracle Tuxedo

Scope Client, Server

Description The xa_begin command initiates a transaction to be performed on XA-compliant
resource managers. Once initiated, a transaction must be completed by a call to either
xa_commit, xa_rollback or xa_end. When a transaction is in progress, any service
requests made to XA-compliant resources can be processed on behalf of the current
transaction.

Use the EXCEPTION_HANDLER option to specify an exception handler to be installed for
the lifetime of this transaction. All exceptions generated within the scope of this
transaction are passed to the associated handler, unless a more specific scope has
specified its own handler, for example, by an individual request.

For example, this command starts a transaction with the exception handler

my_exc_handler:
xa_begin EXCEPTION_HANDLER "my_exc_handler"

Exceptions related to the parsing or execution of the xa_begin command do not cause
the associated exception handler to be invoked, since the exception occurs before the
transaction has begun.

For information about event scopes and handler properties, refer to “Handler Scope
and Installation” on page 6-3 in JetNet/Oracle Tuxedo Guide.

The following application properties are affected by execution of xa_begin:

Property Value

tp_return TP_NOTRAN or TP_TOP_LEVEL—Indicates type of transaction
started, if any.

tp_tran_status TP_WILL_COMMIT—If a new transaction is started and
becomes the active transaction context. Otherwise,
unchanged.
Programming Guide 2-103

xa_begin
Exceptions xa_begin can generate the following exceptions:

Example // Process a bank account withdrawal.
// FML buffers are used in a call to service WITHDRAWAL
proc withd ()
vars message
//******** Perform ATM Withdrawal ********
if (account_id == "")
{

msg quiet "Account id is required"
return 0

}

if (amount > 0)
{

xa_begin
service_call "WITHDRAWAL" ({account_id, amount}, \

{message, balance = account_balance})
xa_end
if (@app()->tp_svc_outcome == TP_FAILURE)
{

msg quiet message
}

}

else
{

Exception Severity Cause

TP_BEGIN_FAILED TP_COMMAND
TP_ERROR

The middleware is unable to begin a transaction

TP_INVALID_CONNECTION TP_COMMAND There is no connection to the middleware

TP_INVALID_OPTION_VALUE TP_COMMAND An invalid timeout value is specified

TP_MONITOR_ERROR TP_ERROR Error is reported from the middleware

TP_INVALID_MONITOR_OPTION TP_WARNING timeout is specified as INFINITE and the
middleware does not support it. If the command
continues, the maximum timeout allowed by
the middleware is used

TP_TRANSACTION_LIMIT TP_COMMAND A transaction is already active; only one is
allowed to exist at a time
2-104 JPL Command Reference

xa_begin
msg quiet "Invalid withdrawal amount"
}
return 0

See Also xa_commit, xa_end, xa_rollback
Programming Guide 2-105

xa_commit
xa_commit

Commits an XA-compliant transaction

Synopsis xa_commit

Environment Oracle Tuxedo

Scope Client, Server

Description The xa_commit command commits the current transaction, initiated by xa_begin.
Once initiated, a transaction must be completed by a call to either xa_commit,
xa_rollback, or xa_end.

For example, the following transaction calls service DEPOSIT. If successful, the
transaction is committed; otherwise, it is rolled back:

xa_begin
service_call "DEPOSIT" ({ACCOUNT, AMOUNT})
if ((@app()->tp_severity > TP_WARNING) \

|| (@app()->tp_return < 0) || (@app()->tp_tran_status < 0))
{

xa_rollback
return 0

}
xa_commit
return 0

xa_commit can set the tp_return property to one of these values:

! TP_COMMIT—The transaction is committed.

! TP_PARTIAL_COMMIT—The transaction is partially committed.

! TP_NOT_COMPLETED—The attempt to commit failed; the transaction remains
viable.

! TP_ROLLBACK—The attempt to commit failed, the transaction is rolled back.

Exceptions Execution of xa_commit can generate the following exceptions:
2-106 JPL Command Reference

xa_commit
See Also xa_begin, xa_end, xa_rollback

Exception Severity Cause

TP_COMMIT_FAILED TP_ERROR Attempt to commit the transaction failed

TP_COMMIT_PARTIAL TP_WARNING Transaction has or might have been partially rolled
back

TP_COMMIT_ROLLEDBACK TP_WARNING Transaction cannot be committed because it has been
rolled back

TP_INVALID_CONTEXT TP_ERROR Commit operation was attempted outside of a
transaction

TP_INVALID_TRANSACTION TP_ERROR There is no current transaction

TP_MONITOR_ERROR TP_ERROR An error was reported from the middleware

TP_WORK_OUTSTANDING TP_COMMAND There is still service request work that has not been
completed
Programming Guide 2-107

xa_end
xa_end

Completes an XA-compliant transaction

Synopsis xa_end

Environment Oracle Tuxedo

Scope Client, Server

Description The xa_end command terminates a middleware transaction. It checks the
tp_tran_status property to determine whether the current transaction is successful.
If no errors occurred, xa_end commits the transaction; otherwise, the transaction is
rolled back. Exception handlers play a direct role in determining whether to commit or
abort a transaction; the exception handler decides the actual severity of an exception,
and thus determines the value set in the tp_tran_status application property.
xa_end can set the tp_return property to one of these values:

! TP_COMMIT—The transaction is committed.

! TP_PARTIAL_COMMIT—The transaction is partially committed.

! TP_NOT_COMPLETED—The attempt to commit failed; the transaction remains
viable.

! TP_ROLLBACK—The attempt to commit failed, the transaction is rolled back.

Example In the following example, the following client code makes a service call that performs
an account deposit transaction. The server side of the deposit process is shown in the
return command.

proc dep()
vars message
//******** Perform ATM Deposit ********
if (account_id == "")
{

msg quiet "Account id is required"
return 0

}
...

if (amount > 0)
{

2-108 JPL Command Reference

xa_end
xa_begin
service_call "DEPOSIT" ({account_id, amount}, \

{message, balance = account_balance})
xa_end
if (@app()->tp_svc_outcome == TP_FAILURE)
{

msg quiet message
}

}

else
{

msg quiet "Invalid deposit amount"
}
return 0

Exceptions Because xa_end implicitly performs either xa_commit or xa_rollback, refer to
those commands for possible exceptions.

See Also xa_begin, xa_commit, xa_rollback
Programming Guide 2-109

xa_rollback
xa_rollback

Aborts an XA-compliant transaction

Synopsis xa_rollback

Environment Oracle Tuxedo

Scope Client, Server

Description The xa_rollback command aborts the current middleware transaction. If a
transaction has unfinished work, this command cancels all outstanding requests and
rolls back all child transactions. Unfinished work includes:

! A service request performed as part of the transaction that has not yet
completed.

! Resource manager data manipulation that is not yet committed.

On return, xa_rollback sets the tp_return property to one of these values:

! TP_PARTIAL_COMMIT—The transaction is partially committed.

! TP_NOT_COMPLETED—The attempt to rollback failed; the transaction remains
viable.

! TP_ROLLBACK—The transaction is rolled back.

Example In the following example, service transfer is called by a client to transfer money
between accounts. transfer first calls service withdrawal to withdraw the amount from
the debit account. If this fails, the entire transaction is rolled back.

// Client code:
...
service_call "transfer" \

({debit_acct_id, credit_acct_id, amount },\
{message, debit_bal, credit_bal})

if (@app()->tp_svc_outcome ! = TP_SUCCESS
{

msg emsg message
}
...
2-110 JPL Command Reference

xa_rollback
// Service: transfer
proc transfer
vars withdrawal_msg

receive arguments \
({debit_acct_id, credit_acct_id, amount})

xa_begin
service_call "withdrawal" \

({account_id = debit_acct_id, amount}, \
{message=withdrawal_msg, balance = debit_bal})

if ((@app()->tp_severity > TP_WARNING) ||
 (@app()->tp_svc_outcome !=TP_SUCCESS))

{
xa_rollback
service_return FAILURE \

({message = "Debit account problem -- :withdrawal_msg"})
}
...

Exceptions The xa_rollback command can generate the following exceptions:

See Also xa_begin, xa_commit, xa_end

Exception Severity Cause

TP_MONITOR_ERROR TP_ERROR An error is reported from the middleware

TP_ROLLBACK_COMMITTED TP_ERROR Transaction cannot be rolled back because
it has already been committed

TP_ROLLBACK_FAILED TP_ERROR Transaction could not be rolled back

TP_INVALID_TRANSACTION TP_COMMAND There is no current transaction
Programming Guide 2-111

xa_rollback
2-112 JPL Command Reference

CHAPTER
3 Built-in Control
Functions

This chapter describes control functions supplied with Panther. You can use these
functions in control strings and in JPL call statements. Unlike other control hook
functions, these functions are installed internally and cannot be deinstalled.

! jm_exit—ends processing and leaves the current screen

! jm_gotop—returns to form stack's base screen

! jm_goform—invokes a dialog box that prompts for the name of a screen to
display

! jm_keys—simulates keyboard input

! jm_system—prompts for and executes an operating system command

! jm_winsize—lets users manipulate a screen's viewport from the keyboard

Notes: Built-in control functions are internally installed. Unlike Panther library
functions, they can only be called from within Panther.
Programming Guide 3-1

jm_exit
jm_exit

Ends processing and leaves the current screen

jm_exit

Description jm_exit closes the current form or window and returns to the previous one. If the form
is the application's base form and the setup variable CLOSELAST_OPT is set to
OK_CLOSELAST, Panther asks the user whether to exit the application.

By default, EXIT invokes this function at runtime.

Example /* The following control string invokes a function named
 process. If it returns 0, another function is
 invoked to reinitialize the screen. If it returns -1,
 the screen closes.
 */

^(-1=^jm_exit; 0=^reinit)process

/* This control string replaces a form or a window with another
 form or a window
 */

^(0=&w2)jm_exit
3-2 Built-in Control Functions

jm_gotop
jm_gotop

Returns to form stack's base screen

Description jm_gotop returns to the form stack's base screen–typically, the first screen that the
application displays at startup. Panther closes all other forms and windows and
removes them from their respective stacks.

By default, SPF1 invokes this function at runtime.
Programming Guide 3-3

jm_goform
jm_goform

Invokes a dialog box that prompts for the name of a screen to display

jm_goform

Description jm_goform invokes an Open Screen dialog box that asks the user to enter the name of
a screen to open. By default, Panther opens the screen as a form; however, users can
specify to open a screen as a a stacked or sibling window. If the screen opens as a form,
Panther closes all previously open windows before it displays the specified screen.

By default, the SPF3 key invokes this function at runtime.

For example, the following line in your setup file causes PF10 to invoke jm_goform.

SMINICTRL= PF10=^jm_goform
3-4 Built-in Control Functions

jm_keys
jm_keys

Simulates keyboard input

jm_keys input[, input...]

input

A logical key or string to push onto the input queue. Arguments can be space
or comma-delimited. Strings are enclosed by single or double quote
characters. Logical keys are defined in smkeys.h. For a complete list of
Panther logical keys, refer to Table 6-1 on page 6-7 in Configuration Guide.

Because jm_keys passes its arguments to sm_ungetkey in reverse order, list
them in their actual input sequence. You can specify up to 20 arguments.

Description jm_keys queues the specified characters and function keys for input to the runtime
system through successive calls to sm_ungetkey. The runtime system then be haves
as though you had typed the keys or strings.

For a single call to jm_keys, list items in input order. Items in a single call are placed
on the input queue in right to left order; the keyboard stack then processes items by last
in, first out (LIFO) order.

For example, the following single call to jm_keys enters a string value into the current
field, then tabs to the next field and enters a number value into it:

^jm_keys 'Steinway Brauhall', TAB, "104"

Successive calls to jm_keys place additional items on the input queue; the keyboard
stack processes the last item first. For example, the following three calls:

jm_keys "One"
jm_keys "Two"
jm_keys "Three"

would output the following keyboard sequence:

ThreeTwoOne
Programming Guide 3-5

jm_system
jm_system

Prompts for and executes an operating system command

jm_system

Description jm_system invokes a dialog box in which you can enter an operating system
command. By default, the SPF2 key invokes this function at runtime.

For example, the following line in your setup file causes PF10 to invoke system.

SMINICTRL= PF10 = ^jm_system

See Also sm_shell
3-6 Built-in Control Functions

jm_winsize
jm_winsize

Lets users manipulate a screen's viewport from the keyboard

jm_winsize

Description Valid only in character mode, jm_winsize invokes the system menu and selects the
Move option. Cursor keys are enabled to change the window's position, size, and the
offset of its contents. You can also change focus to a sibling window. XMIT accepts the
changes; EXIT cancels them.

The initial mode is resize. You can change the mode through one of these function
keys:

! F2: Move the screen.

! F3: Resize the screen.

! F4: Change offset of the screen's contents within its window.

! F5: Change focus to a sibling window.

See Also sm_winsize
Programming Guide 3-7

jm_winsize
3-8 Built-in Control Functions

CHAPTER
4 Library Function
Overview

This chapter summarizes the Panther library functions and lists them by category.
Groups of closely related variant functions are listed under a single root name. The
functions sm_r_form, sm_d_form, and sm_l_form, for example, are all grouped
under the heading sm_*form.

Functions marked with § are not installed in the distribution and cannot be directly
called from JPL. All other functions can be called from JPL.

Initialization/Reset

The following library functions are called in order to initialize or reset certain aspects
of the Panther runtime environment. Those that are necessary for the proper operation
of Panther are called from within the supplied main routine source modules jmain.c
and jxmain.c.

Table 4-1 Initialization/Reset

sm_cancel Resets the display and exits

sm_do_uinstalls§ Installs an application's event functions
Programming Guide 4-1

Screen and Viewport Control
Screen and Viewport Control

Control viewports, the display of screens, and the form and window stacks:

sm_inimsg§ Creates a displayable error message on failure of an init initialization function

sm_initcrt§ Initializes the display and Panther data structures

sm_install§ Installs application event functions

sm_jtop§ Starts Panther

sm_launch Invokes a process without waiting for it to return

sm_leave§ Prepares to temporarily leave a Panther application

sm_resetcrt§ Resets the terminal to the operating system's default state

sm_return§ Prepares for return to Panther application

sm_shell Executes a system call

sm_vinit§ Initializes the video translation table

§ Cannot be called directly from JPL.

Table 4-1 Initialization/Reset (Continued)

Table 4-2 Screen/Viewport Control

sm_*at_cur Displays a window at the cursor location

sm_close_window Closes the current window

sm_*form Opens a screen as a form

sm_formlist§ Updates the list of memory-resident files

sm_issv Checks whether a screen is in the saved list
4-2 Library Function Overview

Interscreen Messaging
Interscreen Messaging

Send and receive data from one screen to another:

sm_jclose Closes the current window or form

sm_jform Displays a screen as a form

sm_jwindow Displays a window at a given position

sm_load_screen Preloads a screen into memory

sm_rmformlist§ Purges the memory-resident form list

sm_setsibling Specifies to open the next screen as a sibling of the current window

sm_shrink_to_fit Removes trailing empty array elements and shrinks the screen

sm_svscreen§ Registers a list of screens on the save list

sm_unload_screen Unloads a screen, freeing the memory associated with it

sm_unsvscreen§ Removes screens from the save list

sm_wcount Obtains the number of currently open windows

sm_wdeselect Restores the previously active window

sm_win_shrink Trims the current screen

sm_*window Opens a window at a given position

sm_winsize Lets users interactively move and resize a window

sm_wrotate Rotates the display of sibling windows

sm_wselect Activates a window

§ Cannot be called directly from JPL.

Table 4-2 Screen/Viewport Control (Continued)
Programming Guide 4-3

Widget Creation/Deletion
Widget Creation/Deletion

Table 4-3 Interscreen Messaging

sm_append_bundle_data Sends data to a bundle item

sm_append_bundle_done Optimizes memory allocated for a send bundle

sm_append_bundle_item Adds a data item to a bundle

sm_create_bundle Creates a send bundle

sm_free_bundle Destroys a send bundle

sm_get_bundle_data Reads an occurrence of bundle item data

sm_get_bundle_item_count Counts the number of data items in a bundle

sm_get_bundle_occur_count Counts the number of occurrences in a data item

sm_get_next_bundle_name Gets the name of the bundle created before the one specified

sm_is_bundle Checks whether a bundle exists

sm_receive Executes a JPL receive command

sm_send Executes a JPL send command

Table 4-4 Widget Creation/Deletion

sm_obj_copy Copies a widget

sm_obj_delete* Deletes a widget
4-4 Library Function Overview

Property Access
Property Access

Set and get properties of Panther objects–for example, screens, widgets, and the
application itself:

Field/Array Data Access

Access data in fields and arrays:

Table 4-5 Property Access

sm_prop_error Gets the error code returned by the last properties API function call

sm_prop_get Gets a property setting

sm_prop_id Returns an integer handle for an application component

sm_prop_name_to_id Gets the integer ID of a Panther property

sm_prop_set Sets a property

Table 4-6 Field/Array Data Access

sm_*amt_format Writes formatted data to a field

sm_calc Executes a math expression

sm_cl_all_mdts Clears the mdt property for all occurrence on current screen

sm_cl_unprot Clears data from unprotected widgets

sm_*clear_array Clears all data in an array
Programming Guide 4-5

Field/Array Data Access
sm_*copyarray Copies the contents of one array to another

sm_*dblval Returns the value of a field as a double precision floating point number

sm_*dlength Gets the length of a field's contents

sm_*doccur Deletes occurrences from a field

sm_*dtofield§ Writes a real number to a field

sm_*fptr Gets the contents of a field

sm_*getfield Copies the contents of a field

sm_*intval Gets the integer value of a field

sm_*ioccur Inserts blank occurrences into an array

sm_*is_no Tests a field for no

sm_*is_yes Tests a field for yes

sm_*itofield Writes an integer value to a field

sm_list_objects_count Counts the widgets contained by an application object

sm_list_objects_end Destroys an object contents list

sm_list_objects_next Traverses the widgets contained by an application object

sm_list_objects_start Constructs a list of widgets contained by an application object

sm_*lngval§ Gets the long integer value of a field

sm_*ltofield§ Writes a long integer value to a field

sm_*null Tests whether a field is null

sm_obj_sort Sorts an object's occurrences

sm_obj_sort_auto Sorts an object's occurrences according to grid settings

sm_optmnu_id Gets the ID of an option menu or combo box

sm_*putfield Puts a string into a field

sm_sdtime Gets the formatted system date and time

Table 4-6 Field/Array Data Access (Continued)
4-6 Library Function Overview

Group Access
Group Access

The following functions access groups. Groups are made up of fields that have
attributes and data in them. The value of a group indicates the set of selected
constituent fields, although it is not recommended that that value ever be accessed or
modified directly with any of the field access functions discussed in the preceding
sections.

sm_*strip_amt_ptr Strips non-digit characters from a string

sm_udtime§ Formats a user-supplied date and time

sm_upd_select§ Updates the contents of an option menu or combo box

sm_*ww_length Gets the number of characters in a wordwrapped multiline text widget

sm_*ww_read§ Copies the contents of a wordwrapped text widget into a text buffer

sm_*ww_write Writes text into a wordwrapped multiline text widget

§ Cannot be called directly from JPL.

Table 4-6 Field/Array Data Access (Continued)

Table 4-7 Group Access

sm_deselect Deselects an occurrence in a selection widget group

sm_*ftog§ Converts field references to selection group references

sm_*gtof§ Converts a selection group name and occurrence into a field number and occurrence

sm_n_gval Forces execution of a group's validation function

sm_next_sync Finds the next synchronized array

sm_select Selects an occurrence in a selection group

§ Cannot be called directly from JPL.
Programming Guide 4-7

Local Data Block Access
Local Data Block Access

The following functions access local data blocks, or LDBs. Note that if a field data
access function references a field by name–for example, sm_n and sm_i_variants–
and the name field does not exist on the active screen, it looks in an active LDB for an
entry of the same name.

Table 4-8 Local Data Block Access

sm_allget Loads data from the active LDBs to the current screen

sm_dd_able Turns LDB write-through on or off for all LDBs

sm_*ldb_fld_*get Copies data from LDBs to specific fields on the current screen

sm_*ldb_fld_*store Copies data from specific fields to LDBs

sm_*ldb_*getfield§ Gets the contents of an LDB entry

sm_ldb_get_active Gets the handle of the most recently loaded active LDB

sm_ldb_get_inactive Gets the handle of the most recently loaded inactive LDB

sm_ldb_get_next_active Gets the active LDB loaded before the one specified

sm_ldb_get_next_inactive Gets the inactive LDB loaded before the one specified

sm_ldb_handle Gets the handle of an LDB

sm_ldb_init§ Initializes or reinitializes LDBs

sm_ldb_is_loaded Tests whether an LDB is loaded

sm_ldb_load Loads an LDB into memory

sm_ldb_name Gets the name of an LDB of the specified handle

sm_ldb_next_handle Gets the handle of previously loaded LDB with the same name as the
specified LDB

sm_ldb_pop Pops LDBs off the LDB save stack
4-8 Library Function Overview

Validation
Validation

The following functions provide an application interface to the field and group
validation processes:

sm_ldb_push Pushes all LDBs onto a save stack

sm_*ldb_*putfield Reads data into an LDB entry

sm_ldb_*state_get Gets the current state of the LDB

sm_ldb_*state_set Changes the state of the LDB

sm_ldb_*unload Unloads LDBs from memory

sm_lstore Copies everything from screen to LDB

§ Cannot be called directly from JPL.

Table 4-8 Local Data Block Access (Continued)

Table 4-9 Validation

dm_val_relative Sets bits for validation after SELECT statements are executed

sm_ckdigit Validates data with a check digit function

sm_cl_all_mdts Clears mdt property for all occurrences

sm_fval Forces field validation

sm_n_gval Forces execution of a group's validation function

sm_s_val Validates the current screen

sm_tst_all_mdts§ Finds the first modified occurrence on the current screen

sm_validate Validates the specified object–screen, widget or widget group

§ Cannot be called directly from JPL.
Programming Guide 4-9

Cursor Control
Cursor Control

Control the positioning and display of the cursor on the active screen:

Display Terminal I/O

Set the interface to Panther terminal I/O:

Table 4-10 Cursor Control

sm_backtab Backtabs to the previous unprotected field

sm_c_off Turns the cursor off

sm_c_on Turns the cursor on

sm_c_vis Turns the cursor position display on or off

sm_disp_off Gets the cursor's offset in the current field

sm_gofield Moves the cursor into a field

sm_home Homes the cursor

sm_last Positions the cursor in the last field

sm_nl Positions the cursor to the first unprotected field beyond the current line

sm_off_gofield Moves the cursor into a field, offset from the left

sm_sh_off Gets the cursor location relative to the start of a shifting field

sm_tab Moves the cursor to the next unprotected field
4-10 Library Function Overview

Message Display
Message Display

Access and display runtime application messages:

Table 4-11 Display Terminal I/O

sm_bel Issues a beep from the terminal

sm_bkrect Sets the background color of a rectangle

sm_flush Flushes delayed writes to the display

sm_getkey Gets the logical value of the key hit

sm_input Opens the keyboard for data entry and menu selection

sm_key_integer Gets the integer value of a logical key mnemonic

sm_keyfilter Controls keystroke record/playback filtering

sm_keyhit Tests whether a key is typed ahead

sm_keyinit Initializes a key translation table

sm_keylabel Gets the printable name of a logical key

sm_keyoption Sets cursor control key options

sm_m_flush Flushes the status line

sm_rescreen Refreshes the data displayed on the screen

sm_resize Notifies Panther of a change in the display size

sm_ungetkey Pushes a translated key onto the input queue

sm_xlate_table§ Installs or deinstalls an 8-bit character translation table

§ Cannot be called directly from JPL.
Programming Guide 4-11

Message Display
Table 4-12 Message Display

sm_d_msg_line Displays a message on the status line

sm_femsg§§ Displays an error message and awaits user acknowledgement

sm_ferr_reset§§ Displays an error message and awaits user acknowledgement

sm_fqui_msg§§ Displays an error message preceded by a constant tag

sm_fquiet_err§§ Displays an error message preceded by a constant tag

sm_hlp_by_name Displays a help window

sm_message_box Displays a message in a dialog box

sm_msg Displays a message at a given column on the status line

sm_msg_del Removes a class of messages from memory

sm_msg_get Finds a message

sm_msg_read§ Reads messages from a message file

sm_msg_set Replace a message

sm_msgfind Finds a message given its number

sm_sb_delete Deletes a status bar section

sm_sb_format Sets a format string for a status bar section

sm_sb_gettext Gets contents of a status bar section

sm_sb_insert Inserts a status bar section

sm_sb_settext Sets contents of a status bar section

sm_setbkstat Sets background text for status line

sm_setstatus Turns alternating background status message on or off

§ Cannot be called directly from JPL.
§§ In JPL, error messages are handled by the msg command.
4-12 Library Function Overview

Mass Storage and Retrieval
Mass Storage and Retrieval

Move data to or from sets of fields in the screen or LDB:

Global Data and Changing Panther
Behavior

Get access to global data and manipulate their settings:

Table 4-13 Mass Storage and Retrieval

sm_restore_data§ Restores previously saved data to the screen

sm_rs_data§ Restores saved data to some of the screen

sm_save_data§ Saves screen contents

sm_sv_data§ Saves partial screen contents

sm_sv_free§ Frees a buffer that contains saved screen data

sm_svscreen§ Registers a list of screens on the save list

§ Cannot be called directly from JPL.

Table 4-14 Global Data and Changing Application Behavior

sm_inquire Gets the value of a global integer variable

sm_iset Changes the value of a global integer variable

sm_ms_inquire Gets information about the mouse's current state
Programming Guide 4-13

Menus
Menus

Get and change properties of menus and menu items:

sm_mus_time§ Gets the system time of the last mouse click

sm_occur_no Gets the current occurrence number

sm_option Sets a behavior variable

sm_pinquire Gets the value of a global string

sm_pset Modifies the value of a global string

sm_soption Sets a string option

§ Cannot be called directly from JPL.

Table 4-14 Global Data and Changing Application Behavior (Continued)

Table 4-15 Menus

sm_menu_bar_error Returns the last error returned by a menu function

sm_menu_change Sets a menu's properties

sm_menu_create Defines a menu at runtime

sm_menu_delete Removes a menu from the specified script

sm_menu_get_* Gets a menu's property

sm_menu_install Makes a menu available for display

sm_menu_remove Removes a menu from display

sm_mncrinit6§ Initializes support for the menu subsystem

sm_mnitem_change§§ Sets a menu item's property
4-14 Library Function Overview

Database Interaction
Database Interaction

sm_mnitem_create Inserts a new item into a menu

sm_mnitem_delete Removes an item from a menu

sm_*mnitem_get_* Gets a menu item's property

sm_mnscript_load Loads a menu script into memory and makes its menus available for installation

sm_mnscript_unload Removes a script from memory and destroys all menus installed from it

sm_popup_at_cur Invokes the current widget's popup menu

§ Cannot be called directly from JPL.
§§ Wrapper functions for sm_mnitem_change are prototyped in funclist.c and callable from JPL. For
a list of these functions and their parameter declarations, refer to Table 5-15 on page 5-343.

Table 4-16 Database Initialization

dm_dbi_init§ Initializes for database interaction

dm_init§ Initializes access to a specific database engine

dm_reset§ Disables support for a named database engine

§ Cannot be called directly from JPL.

Table 4-17 Database Access

dm_cursor_connection Gets the connection name for a database cursor

dm_cursor_consistent Determines if a cursor is on the default connection

dm_cursor_engine Determines the database engine of a cursor

Table 4-15 Menus (Continued)
Programming Guide 4-15

Database Interaction
dm_dbms Executes a DBMS command directly from C

dm_dbms_noexp Executes a DBMS command without colon preprocessing

dm_expand§ Formats a string for an engine

dm_get_connection_option Gets a connection option

dm_get_db_conn_handle§ Gets a handle to a database connection logon structure

dm_get_db_cursor_handle§ Gets a handle to a database cursor's structure

dm_get_driver_option Gets a database driver option

dm_getdbitext§ Gets the text of the last-executed DBMS command

dm_is_connection Verifies that a connection is open

dm_is_cursor Checks to see if a cursor exists

dm_is_engine Verifies that a database engine is initialized

dm_set_connection_option Sets a database connection option

dm_set_driver_option Sets a database driver option

dm_set_max_fetches Sets the maximum number of rows in a select set

dm_set_max_rows_per_fetch Sets the maximum number of rows per fetch

dm_set_onevent Install a C DBi event hook function

§ Cannot be called directly from JPL.

Table 4-18 Database Binary Variables

dm_bin_create_occur§ Gets or allocates an occurrence in a binary variable

dm_bin_delete_occur§ Deletes an occurrence in a binary variable

dm_bin_get_dlength§ Gets the length of an occurrence in a binary variable

dm_bin_get_occur§ Gets the data in an occurrence of a binary variable

dm_bin_length§ Gets the maximum length of an occurrence in a binary variable

Table 4-17 Database Access (Continued)
4-16 Library Function Overview

Database Interaction
dm_bin_max_occur§ Gets the maximum number of occurrences in a binary variable

dm_bin_set_dlength§ Sets the length of an occurrence in a binary variable

§ Cannot be called directly from JPL.

Table 4-19 SQL Generation

dm_exec_sql Generates and executes SQL statements

dm_free_sql_info Frees memory associated with an SQL statement

dm_gen_change_execute_using Adds or replaces a bind value in a DBMS EXECUTE statement for
SQL generation

dm_gen_change_select_from Edits the FROM clause in a SELECT statement for automatic SQL
generation

dm_gen_change_select_group_by Edits the GROUP BY clause in a SELECT statement for automatic
SQL generation

dm_gen_change_select_having Edits the HAVING clause in a SELECT statement for automatic
SQL generation

dm_gen_change_select_list Edits the select list for automatic SQL generation

dm_gen_change_select_order_by Edits the ORDER BY clause in a SELECT statement for automatic
SQL generation

dm_gen_change_select_suffix Appends text to the end of a SELECT statement for automatic SQL
generation

dm_gen_change_select_where Edits the WHERE clause in a SELECT statement for automatic SQL
generation

dm_gen_get_tv_alias Gets the correlation name, or alias, for a table view

dm_gen_sql_info Generates a data structure used in SELECT statements

Table 4-18 Database Binary Variables (Continued)
Programming Guide 4-17

Transaction Manager
Transaction Manager

T

Table 4-20 Transaction Manager Access

dm_disable_styles Suppresses the application of transaction manager styles

dm_enable_styles Enables the application of transaction manager styles

dm_set_tm_clear_fast Determines the behavior of the CLEAR command

sm_tm_clear Clears all fields in the table view

sm_tm_command Executes a transaction command

sm_tm_event Returns the event number for the specified transaction manager event
name

sm_tm_event_name Returns the transaction manager event name for the specified event
number

sm_tm_handling Processes a handling method property

sm_tm_inquire Gets an integer attribute of the current transaction

sm_tm_iset Sets the value of an integer transaction attribute

sm_tm_old_bi_context Sets a backward compatibility flag

sm_tm_pcopy§ Gets a string attribute of the current transaction and stores a copy

sm_tm_pinquire Gets a string attribute of the current transaction for immediate use

sm_tm_pset Sets the value of a string transaction attribute

§ Cannot be called directly from JPL.

Table 4-21 Transaction Manager Event Processing

sm_tm_clear_model_events Empties the transaction event stack
4-18 Library Function Overview

Transaction Manager
sm_tm_continuation_validity Checks whether CONTINUE events are permitted for the current table
view

sm_tm_pop_model_event Pops an event off the transaction event stack

sm_tm_push_model_event Pushes an event onto the transaction event stack

Table 4-22 Transaction Manager Error and Message Handling

sm_tm_command_emsgset Initiates error message processing for a transaction manager error code

sm_tm_command_errset Initiates error processing for a transaction manager error code

sm_tm_dbi_checker Tests for common database errors during transaction manager
processing

sm_tm_error Reports an error condition

sm_tm_errorlog Controls error log processing

sm_tm_failure_message Specifies an error message for a failed event

sm_tm_msg_count_error Reports a transaction manager error

sm_tm_msg_emsg Reports an error of emsg severity

sm_tm_msg_error Reports an error

Table 4-23 Before-image Access in the Transaction Manager

sm_bi_compare Compares widgets in the current table view with their before-image values

sm_bi_copy Copies current values of a range of occurrences to the before-images

sm_bi_initialize Initializes before-image data for widgets in the current table view

sm_get_bi_data Returns the specified before-image data

sm_get_tv_bi_data Gets before-image data

Table 4-21 Transaction Manager Event Processing (Continued)
Programming Guide 4-19

GUI Access
GUI Access

The following functions are applicable for GUI Panther applications. Those that
contain _mw_ or _xm_ are specific to Windows or Motif only.

Table 4-24 GUI Access

sm_adjust_area Recalculates widget positions

sm_*attach_drawing_func§ Associates a drawing function with a widget

sm_delay_cursor Changes the state of the mouse pointer

sm_*drawingarea§ Gets a handle to the current screen that can be passed to the window
manager

sm_mw_DismissIntroPixmap Close the window containing the image selected byIntroPixmap in
the application’s .ini file

sm_mw_get_client_wnd Gets a handle to the client area of the MDI frame

sm_mw_get_cmd_show Returns the initial state of an application

sm_mw_get_frame_wnd Gets a handle to the MDI frame

sm_mw_get_instance§ Gets a handle to the current instance of a Windows program

sm_mw_get_prev_instance Gets a handle to the previous instance of a Windows program

sm_mw_install_msg_callback Install a message handler in Panther’s Windows message loop

sm_mw_PrintScreen Prints a Panther screen

sm_*PiMwCopyToClipboard Copy data from fields to the Windows clipboard

sm_*PiMwPasteFromClipboard Paste data from the Windows clipboard to fields

sm_translatecoords§ Translates screen coordinates to display coordinates

sm_*widget§ Gets a handle to a widget
4-20 Library Function Overview

DDE (Dynamic Data Exchange)
DDE (Dynamic Data Exchange)

Exchange data between Panther Windows applications and other Windows
applications.

sm_win_shrink Trims the current screen

sm_xm_get_base_window§ Gets a widget ID to the base window

sm_xm_get_display§ Gets a pointer to the current display

§ Cannot be called directly from JPL.

Table 4-24 GUI Access (Continued)

Table 4-25 DDE

sm_dde_client_connect_cold Creates a cold DDE link to a server

sm_dde_client_connect_hot Creates a hot DDE link to a server

sm_dde_client_connect_warm Creates a warm DDE link to a server

sm_dde_client_disconnect Destroys a DDE link to a server

sm_dde_client_off Disables DDE client activity

sm_dde_client_on Enables DDE client activity

sm_dde_client_paste_link_cold Creates a cold DDE paste link between a widget and a DDE server

sm_dde_client_paste_link_hot Creates a hot DDE paste link between a widget and a DDE server

sm_dde_client_paste_link_warm Creates a warm DDE paste link between a widget and a DDE
server

sm_dde_client_request Requests data from a DDE server

sm_dde_execute Sends a command to a DDE server
Programming Guide 4-21

File Access
File Access

sm_dde_install_notify§ Installs a callback function that executes on changes in warm link
data

sm_dde_poke Pokes data into a DDE server

sm_dde_server_off Disables DDE server activity

sm_dde_server_on Enables DDE server activity

§ Cannot be called directly from JPL.

Table 4-26 File Access

sm_fi_path Returns the full path name of a file

sm_file_copy Copies a file

sm_file_exists Checks whether a file exists

sm_file_move Copies a file and deletes its source

sm_file_remove Deletes a file

sm_filebox§ Opens a file selection dialog box

sm_filetypes Adds an option to the file type option menu

sm_fio_a2f Writes the contents of an array to a file

sm_fio_close Closes an open file stream

sm_fio_editor Invokes an external text editor for an array

sm_fio_error Gets the error returned by the last call to a file I/O function

sm_fio_error_set Sets the file I/O error

Table 4-25 DDE (Continued)
4-22 Library Function Overview

Library Access
Library Access

sm_fio_f2a Writes a file's contents to an array

sm_fio_getc Reads the next byte from the specified file stream

sm_fio_gets Reads a line from a file

sm_fio_handle§ Gets a handle to an open file

sm_fio_open Opens the specified file and returns a handle to the JPL caller

sm_fio_putc Writes a single byte to an open file

sm_fio_puts Writes a line of text to an open file

sm_fio_rewind Resets the file stream to the beginning of a file

sm_jfilebox Opens a file selection dialog box

sm_tmpnam Creates a unique file name

§ Cannot be called directly from JPL.

Table 4-27 Library Access

sm_l_close Closes a library and frees all memory associated with it

sm_l_open Opens a library

sm_l_open_syslib Opens a library as a system library

sm_slib_error Gets the system return for the last call to sm_slib_load

sm_slib_install Installs a function from a DLL into a Panther application

sm_slib_load Loads a dynamic link library (DLL) and makes its functions available for
installation

Table 4-26 File Access (Continued)
Programming Guide 4-23

JPL
JPL

JetNet/Oracle Tuxedo Processing

Table 4-28 JPL

sm_jplcall Executes a JPL procedure

sm_jplpublic Executes JPL's public command

sm_jplunload Executes JPL's unload command

Table 4-29 JetNet/Oracle Tuxedo Processing

sm_tp_exec§ Executes a middleware API JPL command

sm_tp_free_arg_buf§ Frees memory allocated by argument list generation functions

sm_tp_gen_insert§ Generates an argument list of fields for an INSERT operation

sm_tp_gen_sel_return§ Generates a list of fields for the returned select set of a SELECT or VIEW
operation

sm_tp_gen_sel_where§ Generates a list of fields for the WHERE clause of a SELECT or VIEW
operation

sm_tp_gen_val_link§ Generates a list of fields to be validated in a validation link operation

sm_tp_gen_val_return§ Generates a list of fields for the returned select set of a validation link
operation
4-24 Library Function Overview

Open Middleware Connectivity
Open Middleware Connectivity

The following functions can be used with all service components, regardless of the
technology used to deploy the components–COM or EJB.

sm_tp_get_svc_alias§ Returns the alias assigned to a server

sm_tp_get_tux_callid§ Returns the Oracle Tuxedo identifier for a service call

§ Cannot be called directly from JPL.

Table 4-29 JetNet/Oracle Tuxedo Processing (Continued)

Table 4-30 Open Middleware Connectivity

sm_log Writes a message to a log file

sm_obj_call Calls a service component's method

sm_obj_create Instantiates a service component

sm_obj_get_property Gets a service component's property setting

sm_obj_onerror Installs an error handler

sm_obj_set_property Sets a property for a service component

sm_raise_exception Sends an error code back to the client

sm_receive_args Receives a list of in and in/out parameters for a method

sm_return_args Returns a list of in/out and out parameters for a method
Programming Guide 4-25

COM/MTS Processing
COM/MTS Processing

Table 4-31 COM/MTS Processing

sm_obj_create_licensed Instantiates a licensed COM component

sm_obj_create_server Instantiates a COM component

sm_com_load_picture Returns the object ID for a graphics file in COM format

sm_com_QueryInterface§ Accesses an interface of a COM component

sm_com_result Gets the error code returned by the last call to a COM component

sm_com_result_msg Gets the error message returned by the last call to a COM component

sm_com_set_handler Sets an event handler for the specified event on a COM component

§ Cannot be called directly from JPL.

Table 4-32 MTS Database Transactions

sm_mts_CreateInstance Creates a new object for use in the existing transaction

sm_mts_DisableCommit Prohibits the transaction from being committed

sm_mts_EnableCommit Allows the transaction to be committed

sm_mts_IsInTransaction Determines if the object is participating in a transaction

sm_mts_SetAbort Tells MTS to abort the transaction

sm_mts_SetComplete Tells MTS the work is complete (and ready to be committed)

Table 4-33 MTS Property Access

sm_mts_CreateProperty Creates a named property
4-26 Library Function Overview

Reports
Reports

sm_mts_CreatePropertyGroup Creates a named property group

sm_mts_GetPropertyValue Gets the value of a property

sm_mts_PutPropertyValue Sets a property's value

Table 4-34 MTS Security Checking

sm_mts_IsCallerInRole Determines if the caller of the component is in a role

sm_mts_IsSecurityEnabled Determines if security is currently enabled

Table 4-35 Reports

sm_rw_error_message Returns the last error message generated by report processing

sm_rw_play_metafile Displays or prints a report that is in metafile format

sm_rw_runreport Invokes the report generator from a user-written function

Table 4-33 MTS Property Access (Continued)
Programming Guide 4-27

Web Applications
Web Applications

Mail

Table 4-36 Web Applications

sm_web_get_cookie Returns the value of a specified cookie

sm_web_invoke_url Invokes a URL on the Web

sm_web_log_error Writes Web application errors to a log file

sm_web_save_global Creates a context global variable

sm_web_set_cookie Sets HTML cookies on a client

sm_web_set_onevent Install a C function as the Web event hook

sm_web_unsave_all_globals Redesignates all context global variables as transient globals

sm_web_unsave_global Redesignates a context global variable as a transient global

Table 4-37 Mail

sm_*mail_attach Attaches a file to the email message

sm_*mail_file_text Specifies the file containing the text of the email message

sm_mail_message Send a simple email message

sm_mail_new Creates a new mail object
4-28 Library Function Overview

XML
XML

Miscellaneous

sm_*mail_send Sends a mail object

sm_*mail_text Specifies the widget containing the text of the email message

sm_mail_widget Specifies a widget to be included as an image attachment to an email message

Table 4-38 XML

sm_*xml_export§ Generate XML from Panther screens and widgets

sm_*xml_export_file Export Panther-generated XML to a file

sm_*xml_import Import XML to a Panther screen

sm_*xml_import_file Import XML to a Panther screen from a file

§ Cannot be called directly from JPL.

Table 4-39 Miscellaneous

sm_dicname§ Sets the repository name

sm_ffree§ Free allocated memory

Table 4-37 Mail (Continued)
Programming Guide 4-29

Miscellaneous
sm_fmalloc§ Allocate memory

sm_getenv Get system environment variable value

sm_isabort Tests and sets the abort control flag

sm_set_help Puts an application into help mode

sm_strdup§ Copy a string to newly allocated memory

sm_trace Tracing and dumping of Panther events

§ Cannot be called directly from JPL.

Table 4-39 Miscellaneous (Continued)
4-30 Library Function Overview

CHAPTER
5 Library Functions

This chapter contains descriptions of Panther library functions arranged alphabetically.
Each function description tells what the function does, and where and how to use it.
Information about each function is organized into the following sections:

! Syntax lines that are patterned after C function declarations. A syntax line is
given for each variant of this function. Syntax lines are preceded by include
statements that are specific to the function.

! Parameter descriptions.

! Platforms on which the function is valid. If the function is available on all
platforms, this section is omitted.

! Return values, if any. If the function returns no meaningful value, this section is
omitted.

! Description of the function—typical usage, prerequisites, results, and potential
side-effects.

! An example that shows how to use the function.

! Listing of related functions.

Note: Because all routines that call Panther library functions must include
smdefs.h, syntax sections omit an include statement for this file. If the
function requires inclusion of other header files, the syntax section contains
include statements for them.
Programming Guide 5-1

dm_bin_create_occur
dm_bin_create_occur

Gets or allocates an occurrence in a binary variable

#include <dmuproto.h>

char *dm_bin_create_occur(char *variable, int occurrence);

variable

The binary variable that contains the occurrence to get.

occurrence

The occurrence in variable to get.

Environment C only

Returns • 0: The variable is not found or the occurrence number is not valid.
• A pointer to an occurrence in a binary variable.

Description dm_bin_create_occur gets the specified occurrence from the variable if the
application has created a binary variable with DBMS BINARY. If the occurrence has not
been allocated, this function will allocate it. Note that occurrence must be less than
or equal to the number of occurrences specified in the DBMS BINARY statement.

See Also DBMS BINARY
5-2 Library Functions

dm_bin_delete_occur
dm_bin_delete_occur

Deletes an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_delete_occur(char *variable, int occurrence);

variable

The binary variable that contains the occurrence to delete.

occurrence

The occurrence in variable to delete.

Environment C only

Description dm_bin_delete_occur frees the specified occurrence and sets the pointer to the
occurrence to 0 if the application has created a binary variable with DBMS BINARY and
the occurrence has been allocated. If the occurrence has not been allocated, the
function does nothing.

See Also DBMS BINARY
Programming Guide 5-3

dm_bin_get_dlength
dm_bin_get_dlength

Gets the length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_get_dlength(char *variable, int occurrence);

variable

The binary variable that contains the occurrence to measure.

occurrence

The occurrence in variable whose length you want to get.

Environment C only

Returns • 0: The variable or occurrence is not found.
• The length of the occurrence.

Description If the application has created a binary variable with DBMS BINARY and the occurrence
has been allocated, this function returns the length of the contents in the specified
occurrence.

See Also DBMS BINARY, dm_bin_set_dlength
5-4 Library Functions

dm_bin_get_occur
dm_bin_get_occur

Gets the data in an occurrence of a binary variable

#include <dmuproto.h>

char *dm_bin_get_occur(char *variable, int occurrence);

variable

The binary variable that contains the occurrence to get.

occurrence

The occurrence in variable whose data you want to get.

Environment C only

Returns • 0: The variable or occurrence is not found.
• A pointer to an occurrence in the variable.

Description If the application has created a binary variable with DBMS BINARY and the occurrence
has been allocated, this function gets the specified occurrence from the variable.

See Also DBMS BINARY
Programming Guide 5-5

dm_bin_length
dm_bin_length

Gets the maximum length of an occurrence in a binary variable

#include <dmuproto.h>

unsigned int dm_bin_length(char *variable);

variable

The variable whose maximum occurrence length you want to ascertain.

Environment C only

Returns • 0: The variable is not found.
• The length of the variable.

Description If the application has created a binary variable with DBMS BINARY, this function gets
the maximum length of a single occurrence in the variable. To get the length of an
occurrence’s contents, use dm_bin_get_dlength.

See Also DBMS BINARY
5-6 Library Functions

dm_bin_max_occur
dm_bin_max_occur

Gets the maximum number of occurrences in a binary variable

#include <dmuproto.h>

int dm_bin_max_occur(char *variable);

variable

The variable whose maximum number of occurrences you want to ascertain.

Environment C only

Returns • 0: The variable is not found.
• The number of occurrences in the variable.

Description If the application has created a binary variable with DBMS BINARY, this function gets
the maximum number of occurrences in the variable.

See Also DBMS BINARY
Programming Guide 5-7

dm_bin_set_dlength
dm_bin_set_dlength

Sets the length of an occurrence in a binary variable

#include <dmuproto.h>

void dm_bin_set_dlength(char *variable, int occurrence,
unsigned int length);

variable

The variable that contains the occurrence to set.

occurrence

The occurrence in variable whose length is to be set.

length

The length to set for occurrence.

Environment C only

Description If the application has created a binary variable with DBMS BINARY, this function sets
the length of a single occurrence in the binary variable. length can be less than or
equal to the variable’s declared length. If length is greater than the variable’s declared
length, the variable’s length is used.

See Also DBMS BINARY, dm_bin_get_dlength
5-8 Library Functions

dm_convert_empty
dm_convert_empty

Specifies the format of empty numeric fields

#include <dmuproto.h>

int dm_convert_empty(int flag);

flag

One of the following values:

Returns The previous value of the flag.

Description dm_convert_empty determines whether empty numeric fields ("") should be replaced
with a 0. This setting is database-specific since some databases do not allow NULL
values in numeric columns.

0 Empty numeric fields are entered as "".

>0 Empty numeric fields are entered as 0.
Programming Guide 5-9

dm_cursor_connection
dm_cursor_connection

Gets the connection name for a database cursor

#include <dmuproto.h>

char *dm_cursor_connection(char *cursor_name);

cursor_name

Specifies a cursor name. For a named cursor, use the name specified in a DBMS
DECLARE CURSOR command. To refer to the default connection, specify as a
null pointer or an empty string.

Returns • Name of the database connection name for the named cursor. If cursor_name
is a null pointer or empty string, the name of the default connection is returned.

• An empty string if there is no such cursor as cursor_name, or if cursor_name
is a null pointer or empty string, and there is no default connection.

Description dm_cursor_connection returns the name of the connection for the named cursor, or
returns the name of the default connection if cursor_name is a null pointer or an
empty string.

See Also dm_cursor_consistent, dm_cursor_engine
5-10 Library Functions

dm_cursor_consistent
dm_cursor_consistent

Determines if a cursor is on the default connection

#include <dmuproto.h>

int dm_cursor_consistent(char *cursor_name);

cursor_name

Specifies a cursor name. For a named cursor, use the name specified in a DBMS
DECLARE CURSOR command. For a default cursor, specify as a null pointer or
an empty string.

Returns 1 The cursor (named or default) exists and is on the default connection.
0 The cursor (named or default) is on a connection other than the default, or is not

found.

Description dm_cursor_consistent determines whether a database cursor is on the default
connection. The cursor may be named, or if cursor_name is a null pointer or an empty
string, the default cursor.

See Also dm_cursor_connection, dm_cursor_engine
Programming Guide 5-11

dm_cursor_engine
dm_cursor_engine

Determines the database engine of a cursor

#include <dmuproto.h>

char *dm_cursor_engine(char *cursor_name);

cursor_name

Specifies a cursor name. For a named cursor, use the name specified in a DBMS
DECLARE CURSOR command. To refer to the default engine, specify as a null
pointer or an empty string.

Returns • Name of the engine of the cursor’s connection. If cursor_name is a null pointer
or an empty string, the name of the default engine is returned.

• An empty string if the named cursor does not exist; or, if cursor_name is a null
pointer or empty string and there is no default engine.

Description dm_cursor_engine returns the name of the database engine for the database
connection of the named cursor, or returns the name of the default engine if
cursor_name is a null pointer or an empty string.

See Also dm_cursor_connection, dm_cursor_consistent, dm_init
5-12 Library Functions

dm_dbi_init
dm_dbi_init

Initializes for database interaction

#include <dmuproto.h>

void dm_dbi_init(void);

Environment C only

Description Panther must be initialized for use with the database drivers. dm_dbi_init tells
Panther the class of error messages used with the database drivers and how to handle
the JPL command dbms.

Panther calls this function in the source files jmain.c and jxmain.c. If you modify
these files or if you write your own executive, you can call this function at another
time. However, it should be called before sm_initcrt so that the message file loads
properly.
Programming Guide 5-13

dm_dbms
dm_dbms

Executes a DBMS command directly from C

#include <dmuproto.h>

int dm_dbms(char *dbms_cmd);

dbms_cmd

Points to a buffer with the DBMS command to execute. Refer to Chapter 11,
“DBMS Statements and Commands,” for detailed descriptions of each DBMS
command.

Returns • 0: Success.
• An error code from the default or installed error handler.

Description dm_dbms lets you execute any DBMS command directly from C. This function executes
in the following steps:

1. dbms_cmd is examined for the WITH ENGINE or WITH CONNECTION clause. If it
is not used, dm_dbms assumes the default engine and connection.

2. The colon preprocessor examines dbms_cmd for colon variables and performs
the indicated expansion.

3. dbms_cmd is passed to the appropriate function for handing DBMS commands.
After executing the requested command, Panther updates all global status and
error variables (@dm).

If the application has installed an entry function with DBMS ONENTRY, an exit function
with DBMS ONEXIT, or an error handler with DBMS ONERROR, the installed function is
called for commands executed through dm_dbms.

Example int start_up ()
{
 int retcode;
 retcode = dm_dbms ("ONERROR CALL do_error");
 if (retcode)
 {
 sm_emsg("Cannot install application error handler.")
 return 0;
 }
 dm_dbms ("DECLARE c1 CONNECTION FOR USER ':user' PASSWORD
5-14 Library Functions

dm_dbms
 ':password'");
 return 0;
}

See Also dm_dbms_noexp
Programming Guide 5-15

dm_dbms_noexp
dm_dbms_noexp

Executes a DBMS command without colon preprocessing

#include <dmuproto.h>

int dm_dbms_noexp(char *dbms_cmd);

dbms_cmd

Points to a buffer that contains the DBMS command to execute.

Returns • 0: Success.
• A return code from an installed or default error handler.

Description dm_dbms_noexp is identical to dm_dbms except that no colon preprocessing is
performed on dbms_cmd.

See Also dm_dbms, dm_expand
5-16 Library Functions

dm_disable_styles
dm_disable_styles

Suppresses application of transaction manager styles

#include <tmusubs.h>

int dm_disable_styles(void)

Returns 0 Transaction manager styles were previously not applied.
1 Transaction manager styles were previously applied.

Description dm_disable_styles suppresses application of transaction manager styles. This can
increase the efficiency of a transaction server, where user interface considerations
don’t apply. Styles are enabled by default, in accordance with the contents of
styles.sty. If transaction manager processing occurs in batch mode, styles are
disabled automatically.

See Also dm_enable_styles
Programming Guide 5-17

dm_enable_styles
dm_enable_styles

Enables application of transaction manager styles

#include <tmusubs.h>

int dm_enable_styles(void)

Returns 0 Transaction manager styles were previously not applied.
1 Transaction manager styles were previously applied.

Description dm_enable_styles enables application of transaction manager styles. Styles are
enabled by default, in accordance with the contents of styles.sty. If transaction
manager processing occurs in batch mode, styles are disabled automatically. Disabling
styles can speed up processing on a transaction server, where user interface
considerations don’t apply.

See Also dm_disable_styles
5-18 Library Functions

dm_exec_sql
dm_exec_sql

Generates and executes SQL statements

#include <tmusubs.h>

int dm_exec_sql(int type, char *cursor_name);

type

Type of SQL statement specified by one of the constants listed in Table 5-1.

cursor_name

Name of the cursor associated with the SQL statement.

Returns • 0: Success.
• A non-zero value returned from an ONENTRY, ONEXIT or ONERROR function

resulting from a generated SQL statement having executed.
• One of the DM_TM_ERR_xxx return values listed in tmusubs.h.

Description dm_exec_sql is called from a transaction model or a user event function to generate
and execute SQL statements according to one of the following constants supplied for
the type parameter:

Table 5-1 SQL statement types

Argument Description

BUILD_SELECT Examines screen properties and builds structures for a SELECT statement including
a distinct string, if specified, a select list (column names and/or expressions), and a
WHERE clause.

BUILD_VALIDATE Examines screen edits and builds structures for a SELECT statement used to process
a validation link.

DECLARE_DELETE_NBR
DECLARE_DELETE_OCC

Builds and executes the following statement for database deletions:

DBMS DECLARE cursor CURSOR FOR DELETE FROM
current-table-view
 WHERE primary-key-column = :w_primary-key-column ...
Programming Guide 5-19

dm_exec_sql
DECLARE_INSERT Builds and executes the following statement for database insertions:

DBMS DECLARE cursor CURSOR FOR INSERT INTO
current-table-view
 (column-name ...)
 VALUES (:v_column-name...)

DECLARE_UPDATE Builds and executes the following statement for database updates:

DBMS DECLARE cursor CURSOR FOR UPDATE current-table-view
 SET column-name = :s_widget-name ...
 WHERE primary-key-column = :w_primary-key-column ...

EXEC_DELETE_NBR
EXEC_DELETE_OCC

Builds and executes the following statement for database deletions:

DBMS WITH CURSOR cursor EXECUTE USING
 w_primary-key-column = @bi(primary-key-widget)[occ] ...

EXEC_INSERT Builds and executes the following statement for database insertions:

DBMS WITH CURSOR cursor EXECUTE USING
 v_column-name = widget-name[occ] ...

EXEC_UPDATE Builds and executes the following statement for database updates:

DBMS WITH CURSOR cursor EXECUTE USING
 s_column-name = widget-name[occ] ...
 w_primary-key-column = @bi(primary-key-widget)[occ] ...

Table 5-1 SQL statement types (Continued)

Argument Description
5-20 Library Functions

dm_exec_sql
Selecting Data dm_exec_sql(BUILD_SELECT) and dm_exec_sql(BUILD_VALIDATE) should not be
called without a prior call to dm_gen_sql_info to initialize the statement structures.
In the standard transaction models, dm_exec_sql and other related functions are
called by the following requests:

PERFORM_SELECT Executes the following statements for database queries:

DBMS DECLARE cursor CURSOR FOR SELECT [DISTINCT]
select-list
 FROM tables-in-current-server-view
 [WHERE [join-clause] [AND search-condition]]
 [GROUP BY column-list]
 [HAVING search-condition]
 [ORDER BY column-position { ASC|DESC }, ...]

DBMS WITH CURSOR cursor ALIAS widget-list

DBMS WITH CURSOR cursor <EXECUTE
 [USING [join-values] [where-values] [having-values
]]

PERFORM_VALIDATE Executes the following statements for validation links:

DBMS DECLARE cursor CURSOR FOR
 SELECT {1 | look-up list} FROM child-table-view WHERE ...
DBMS WITH CURSOR cursor ALIAS ...
DBMS OCCUR
DBMS WITH CURSOR cursor EXECUTE
DBMS CLOSE CURSOR cursor

Table 5-1 SQL statement types (Continued)

Argument Description

Table 5-2

Request dm_exec_sql (and related) calls

TM_SEL_GEN dm_gen_sql_info(SELECT, cursor)

TM_SEL_BUILD_PERFORM dm_exec_sql(BUILD_SELECT, cursor)
dm_exec_sql(PERFORM_SELECT, cursor)
dm_free_sql_info(SELECT)
Programming Guide 5-21

dm_exec_sql
Modifying Data dm_exec_sql(DECLARE_xxx) should not be called without a prior call to
sm_bi_initialize. The transaction manager calls sm_bi_initialize
automatically when sm_tm_command("NEW") or sm_tm_command("SELECT") is
executed. In the standard transaction models, dm_exec_sql and other related
functions are called by the following requests:

TM_VAL_GEN dm_gen_sql_info(VALIDATE, cursor)

TM_VAL_BUILD_PERFORM dm_exec_sql(BUILD_VALIDATE, cursor)
dm_exec_sql(PERFORM_VALIDATE, cursor)

TM_VAL_CHECK dm_free_sql_info(VALIDATE)

Table 5-2

Request dm_exec_sql (and related) calls

Table 5-3

Request dm_exec_sql calls

TM_DELETE_DECLARE dm_exec_sql(DECLARE_DELETE_NBR)
dm_exec_sql(DECLARE_DELETE_OCC)

TM_DELETE_EXEC dm_exec_sql(EXEC_DELETE_NBR)
dm_exec_sql(EXEC_DELETE_OCC)

TM_INSERT_DECLARE dm_exec_sql(DECLARE_INSERT)

TM_INSERT_EXEC dm_exec_sql(EXEC_INSERT)

TM_UPDATE_DECLARE dm_exec_sql(DECLARE_UPDATE)

TM_UPDATE_EXEC dm_exec_sql(EXEC_UPDATE)
5-22 Library Functions

dm_expand
dm_expand

Formats a string for an engine

#include <dmuproto.h>

int dm_expand(char *engine, char *data, int type, char *buf,
int buflen, char *edit);

engine

The name of an initialized engine. If this argument is null, Panther uses the
default engine.

data

The string to format. Use Panther library functions such as sm_getfield to
get the value of a field or LDB entry.

type

A Panther data type, specified by one of the following constants defined in
smedits.h:

buf

A buffer provided by the program. The program is responsible for allocating
a buffer large enough for the formatted string.

buflen

Points to the size of the buffer. Upon return from dm_expand, the value
contained in the integer will be the length of the formatted text. The program
can compare this value with the allocated length to ensure that truncation did
not occur.

edit

A date-time edit string describing data. It is required when type is
DT_DATETIME.

Environment C only

FT_CHAR FT_DOUBLE FT_LONG

DT_CURRENCY FT_FLOAT FT_SHORT

DT_DATETIME FT_INT DT_YESNO
Programming Guide 5-23

dm_expand
Returns 0 Success.
-1 engine is invalid.
-2 Arguments are invalid—illegal Panther type, buflen ≤ 0, buf not allocated, or

DT_DATETIME was used without a datetime edit.
-3 Formatting function failed.

Description dm_expand lets you format a string for a particular engine and Panther type. The
function copies the formatted string to a buffer provided by the program.

Example #include <smdefs.h>
#include <smedits.h>
#include >dmuproto.h>

char *
formatter (src_name, prolfxtype)
char *src_name;
int prolfxtype;
{
char src_buf[256]; /* For widget contents */
char *edit=0; /* For datetime edit */
char dst_buf[256]; int dst_len=256;/* For formatted string*/

strcat (dst_buf, "");

/* Get contents of non-null widget. */
if ((sm_n_null (src_name) == 0) &&

(sm_n_getfield (src_buf, src_name) > 0))
{
/* If no type was supplied, get it from the source

field.*/
if (prolfxtype == 0)
{

prolfxtype =
sm_n_ftype(src_name, (int*)0) & DT_DTYPE;

}

/* If type is DT_DATETIME get format from source field. */
if (prolfxtype == DT_DATETIME)
{

edit = sm_n_edit_ptr (src_name, UDATETIME);
/* If there is no user format, check for

system format. */
if (edit == 0)
{

edit = sm_n_edit_ptr(src_name, SDATETIME);
}

5-24 Library Functions

dm_expand
edit = edit + 2;
}

/* Format text for the current engine. */
dm_expand("", src_buf, prolfxtype, dst_buf, &dst_len, edit);

}
return dst_buf;

}

See Also dm_dbms_noexp
Programming Guide 5-25

dm_free_sql_info
dm_free_sql_info

Frees memory associated with a SELECT statement

#include <tmusubs.h>

int dm_free_sql_info(int type);

type

The type of SELECT statement, either SELECT or VALIDATE. When this
function is called by the standard transaction models, the type is set to SELECT
for the transaction commands SELECT and VIEW, and the type is set to
VALIDATE for the transaction command VALIDATE_LINK.

Returns 0

Description dm_free_sql_info is used to free data that is associated with SELECT or VALIDATE
statements. If the type is SELECT, it should follow the BUILD_SELECT or
PERFORM_SELECT processing performed in dm_exec_sql.

If the type is VALIDATE, it should follow the BUILD_VALIDATE and
PERFORM_VALIDATE processing performed in dm_exec_sql as well as any call to
dm_val_relative.

Example int retcode;
char *sel_cursor;
...
retcode = dm_exec_sql(BUILD_SELECT, sel_cursor);
if (!retcode)
 retcode = dm_exec_sql(PERFORM_SELECT, sel_cursor);
dm_free_sql_info(SELECT);

See Also dm_gen_sql_info
5-26 Library Functions

dm_gen_change_execute_using
dm_gen_change_execute_using

Adds or replaces a bind value in a DBMS EXECUTE statement for SQL generation

#include <tmusubs.h>

int dm_gen_change_execute_using(char *arg, char *bind_parm,
char *bind_val, int occ, int relative, int flag);

arg

Reserved for future use.

bind_parm

Specifies the bind parameter.; if a null pointer or empty string, the clause is
not built.

bind_val

Specifies the bind value; if a null pointer or an empty string, the clause is not
built.

occ

Specifies the occurrence number.

relative

Specifies how to use the occurrence number with one of the following values:

DM_GEN_ABSOLUTE_OCCUR
DM_GEN_RELATIVE_TO_PARENT
DM_GEN_RELATIVE TO CHILD

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

When flag is set to this value, bind_val is added to end of the
USING clause. This produces the following statement:

DBMS WITH CURSOR cursor EXECUTE USING
 existing_parentTV_binds,
 existing_childTV_binds,
 bind_parm = bind_val[occ]

DM_GEN_PREPEND

When flag is set to this value, bind_val is added to the beginning
of the USING clause. This produces the following statement:

DBMS WITH CURSOR cursor EXECUTE USING
 bind_parm = bind_val[occ],
Programming Guide 5-27

dm_gen_change_execute_using
 existing_parentTV_binds,
 existing_childTV_binds

DM_GEN_REPLACE_ALL

When flag is set to this value, bind_val replaces the previous
USING clause. This produces the following statement:

DBMS WITH CURSOR cursor EXECUTE USING
 bind_parm = bind_val[occ]

If flag is set to this value and the other arguments are empty strings,
the USING clause is removed.

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
-2 Error: Invalid flag.

Description dm_gen_change_execute_using lets you edit the USING clause of a DBMS EXECUTE
statement. The data structure for the SELECT statement, which is built by a call to
dm_gen_sql_info (generally in the TM_SEL_GEN event), must already exist before
this function is called. Note that this function must be called once for each bind value
you wish to change.

Often, a call to dm_gen_change_execute_using follows a call to the function
dm_gen_change_select_where. If new parameters are added to the WHERE clause’s
search conditions, those parameters must also be added to the EXECUTE USING
statement.

This function can be implemented as part of a transaction manager event function that
processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call the dm_gen_change_execute_using function from
an event function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in this section.
For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

The settings for relative and occurrence determine the value for occ, the
occurrence number used in the statement.

If relative is set to DM_GEN_RELATIVE_TO_PARENT or
DM_GEN_RELATIVE_TO_CHILD, the current occurrence in the parent or child table
view is used as the basis for the occurrence number. Then, the setting for occurrence
5-28 Library Functions

dm_gen_change_execute_using
is checked. If occurrence is 0, the current occurrence in that table view is used in the
statement. If occurrence is greater than 0, the occurrence is calculated by adding the
specified occurrence to the current occurrence.

If you only need to substitute an occurrence number in the statement processing, set
relative to DM_GEN_ABSOLUTE_OCCUR and set occurrence to be greater than 0.

Example # JPL Procedure:
Generate IN clause using binding parameters.
Function property is set to titles_exec.

proc titles_exec (event)
if (event == TM_SEL_BUILD_PERFORM)
{
 vars retval(5), occ(3), i(3), in_buffer(255), comma(1)

 occ = @widget("qbe_titleid")->num_occurrences

If the array "qbe_titleid" contains data,
build a SQL "in" clause.

 if (occ > 0)

First loop through qbe_titleid and build an IN clause
in the form "title_id" in (::p1, ::p2, ::p3).
 {
 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != "")
 {
 %.0 i = i
 in_buffer = in_buffer ## comma ## "\:\:p" ## i \
 comma = ","
 }
 }
 in_buffer = "title_id in (" ## in_buffer ## ")"
 retval = dm_gen_change_select_where \
 ("", in_buffer, DM_GEN_APPEND)

Now loop through qbe_titleid and change the EXECUTE
USING statement. This could be done in the previous loop.
It is separated for clarity.

 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != "")
 {
 %.0 i = i
Programming Guide 5-29

dm_gen_change_execute_using
 retval=dm_gen_change_execute_using \
 ('', "p:i", "qbe_titleid", i, \
 DM_GEN_ABSOLUTE_OCCUR, DM_GEN_APPEND)
 }
 }

 if (retval != 0)
 return TM_FAILURE
 }
}
return TM_PROCEED

Example The following example uses the current occurrence in the parent table view to specify
the occurrence number. The parent table view in this sequential link is a list of
customers. When you enter one of the rental_status codes for a customer in the
qbe_status field, the rentals for that customer which match that status populate the
child table view.

JPL Procedure:
Generate WHERE and EXECUTE USING clause using occurrence
in parent table view. The Function property for rentals
table view is set to rentals_hook.

proc rentals_hook(event)
{
 vars whexp(100) retval(5)
 if (event==TM_SEL_BUILD_PERFORM)
 {
 # Build the following: correlation.rental_status = ::qbe1
 whexp=dm_gen_get_tv_alias(sm_tm_pinquire(TM_TV_NAME)) \
 ## ".rental_status" \
 ## "=" \
 ## "::::qbe1"

 # Add it to the WHERE clause.
 retval = dm_gen_change_select_where("", whexp,\
 DM_GEN_APPEND)

 # Append to the EXECUTE USING clause in the form:
 # qbe1 = qbe_stat[<occ>]
 # where occ is the same occurrence number as the current
 # occurrence in parent table view.
 retval = dm_gen_change_execute_using\
 ("", "qbe1", "qbe_stat", \
 0, DM_GEN_RELATIVE_TO_PARENT, DM_GEN_APPEND)
 }
 return TM_PROCEED
}

5-30 Library Functions

dm_gen_change_execute_using
See Also dm_gen_sql_info
Programming Guide 5-31

dm_gen_change_select_from
dm_gen_change_select_from

Edits the FROM clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_from(char *arg, char *table,
char *corr_name, int flag);

arg

Reserved for future use.

table

The name of the database table. For some database engines, you may need to
include the owner name in the format:

owner.table_name

corr_name

The correlation name for the database table.

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the name of the database table and its associated correlation
name to the end of the FROM clause. This produces the following
statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 existing_from_clause,
 table corr_name

DM_GEN_PREPEND

Adds the name of the database table and its associated correlation
name to the beginning of the FROM clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 table corr_name,
 existing_from_clause

DM_GEN_REPLACE_ALL

The name of the database table and its associated correlation name
replace the previous FROM clause. This produces the following
statement:
5-32 Library Functions

dm_gen_change_select_from
DBMS DECLARE cursor FOR SELECT select_list FROM
 table corr_name

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
-2 Error: Invalid flag.

Description dm_gen_change_select_from allows you to edit the tables listed in the FROM clause
of a SELECT statement built with the SQL generator. The data structure for the SELECT
statement, which is built by a call to dm_gen_sql_info (generally in the TM_SEL_GEN
event), must already exist before this function is called. Note that this function must be
called once for each table name you wish to change.

By default, the SQL generator builds the table list based on the table property of each
table view in the server view. For more information on the SQL generator, refer to
Chapter 33, “Using Automated SQL Generation,” in Application Development Guide.

This function can be implemented as part of a transaction manager event function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call the dm_gen_change_select_from function from
an event function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in this section.
For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

Example # JPL Procedure:
Fetch data from titles which is an unlinked table view.
Function property is set to titles_join.

proc titles_join (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_list("", "name", "name", \
 DM_GEN_APPEND)

 retval = dm_gen_change_select_from \
 ("", "titles", "titles", DM_GEN_APPEND)

 retval = dm_gen_change_select_where ("", \
 "rentals.title_id = titles.title_id", DM_GEN_APPEND)
Programming Guide 5-33

dm_gen_change_select_from
 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

See Also dm_gen_sql_info
5-34 Library Functions

dm_gen_change_select_group_by
dm_gen_change_select_group_by

Edits the GROUP BY clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_group_by(char *arg, char *column,
int flag);

arg

Reserved for future use.

column

The name of the column to be used in the GROUP BY clause.

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds column to the end of the GROUP BY clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 tables GROUP BY existing_group_by_list, column

DM_GEN_PREPEND

Adds column to the beginning of the GROUP BY clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 tables GROUP BY column, existing_group_by_list

DM_GEN_REPLACE_ALL

column replaces the previous GROUP BY clause. This produces the
following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 tables GROUP BY column

If flag is set to this value and column is set to an empty string, the
GROUP BY clause is removed. For example:

x = dm_gen_change_select_group_by
 ("", "", DM_GEN_REPLACE_ALL)

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
Programming Guide 5-35

dm_gen_change_select_group_by
-2 Error: Invalid flag.

Description dm_gen_change_select_group_by allows you to edit the GROUP BY clause built
with the SQL generator. The data structure for the SELECT statement, which is built
by a call to dm_gen_sql_info (generally in the TM_SEL_GEN event), must already
exist before this function is called. Note that this function must be called once for each
change you wish to make.

By default, the SQL generator builds a GROUP BY clause automatically when one of
the select expressions is an aggregate function. For more information on how the SQL
generator builds statements, refer to Chapter 33, “Using Automated SQL Generation,”
in Application Development Guide.

This function can be implemented as part of a transaction manager event function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call the dm_gen_change_select_group_by function
from an event function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in this section.
For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

Example # JPL Procedure:
Append column not part of table view to automatically
generated group by clause.
Function property set to titles_group.

proc titles_group (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_list \
 ("", "rating_code", "rc", DM_GEN_APPEND)
 retval = dm_gen_change_select_group_by \
 ("", "rating_code", DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

See Also dm_gen_sql_info
5-36 Library Functions

dm_gen_change_select_having
dm_gen_change_select_having

Edits the HAVING clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_having(char *arg, char *search_cond,
int flag);

arg

Reserved for future use.

search_cond

The search condition to include in the HAVING clause.

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds search_cond to the end of the HAVING clause. This produces
the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
tables HAVING existing_having_clause AND search_cond

DM_GEN_PREPEND

Adds search_cond to the beginning of the HAVING clause. This
produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 tables HAVING search_cond AND existing_having_clause

DM_GEN_REPLACE_ALL

search_cond replaces the existing HAVING clause. This produces
the following statement:

DBMS DECLARE cursor FOR SELECT select_list FROM
 tables HAVING search_cond

If flag is set to this value and search_cond is set to an empty
string, the HAVING clause is removed. For example:

x = dm_gen_change_select_having
 ("", "", DM_GEN_REPLACE_ALL)

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
Programming Guide 5-37

dm_gen_change_select_having
-2 Error: Invalid flag.

Description dm_gen_change_select_having lets you edit the HAVING clause built with the SQL
generator. The data structure for the SELECT statement, which is built by a call to
dm_gen_sql_info (generally in the TM_SEL_GEN event), must already exist before
this function is called.

Generally, a HAVING clause sets search conditions for the preceding GROUP BY clause.
The SQL generator creates GROUP BY clauses automatically for aggregate functions.
GROUP BY clauses can also be generated using the function
dm_gen_change_select_group_by. HAVING clauses can be generated with the
Having property or by using this function. For more information on automatic SQL
generation, refer to Chapter 33, “Using Automated SQL Generation,” in Application
Development Guide.

This function can be implemented as part of a transaction manager event function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call dm_gen_change_select_having from an event
function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in this section.
For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

Example # JPL Procedure:
Generate a having clause.
Function property is set to titles_having.

proc titles_having (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_having\
 ("", "count(*) > 2", DM_GEN_APPEND)

 retval = dm_gen_change_select_having\
 ("", "dir_last_name like 'W%'", DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED
5-38 Library Functions

dm_gen_change_select_having
See Also dm_gen_sql_info
Programming Guide 5-39

dm_gen_change_select_list
dm_gen_change_select_list

Edits the select list for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_list(char *arg, char *sel_expr,
char *prolfx_alias, int flag);

arg

Reserved for future use.

sel_expr

The select expression. If the expression is invalid, the engine returns an error.

prolfx_alias

Name of the Panther variable to use in the DBMS ALIAS statement. This
variable should not be a local JPL variable. If this variable does not exist or
is blank, the SELECT statement fetches the expression’s values, but they are
ignored. This is not considered an error.

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds sel_expr to the end of the select list. prolfx_alias is added
after the existing aliases. This produces the following statements:

DBMS DECLARE cursor FOR SELECT existing_select_list,
 sel_expr FROM ...
DBMS WITH CURSOR cursor ALIAS existing_aliases,
 prolfx_alias

DM_GEN_PREPEND

Adds sel_expr to the beginning of the select list, and
prolfx_alias is added before the existing aliases. This produces
the following statements:

DBMS DECLARE cursor FOR SELECT sel_expr,
 existing_select_list FROM ...
DBMS WITH CURSOR cursor ALIAS prolfx_alias,
 existing_aliases

DM_GEN_REPLACE_ALL

sel_expr replaces the previous select list, and prolfx_alias
replaces the existing aliases. This produces the following
statements:
5-40 Library Functions

dm_gen_change_select_list
DBMS DECLARE cursor FOR SELECT sel_expr FROM ...
DBMS WITH CURSOR cursor ALIAS prolfx_alias

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
-2 Error: Invalid flag.

Description dm_gen_change_select_list allows you to edit the select list built using the SQL
generator. The data structure for the SELECT statement, which is built by a call to
dm_gen_sql_info (generally in the TM_SEL_GEN event), must already exist before
this function is called. You must call this function once for each change you wish to
make.

By default, the SQL generator builds the select list from the widgets whose
use_in_select property is set to PV_YES. For more information on the SQL
generator, refer to Chapter 33, “Using Automated SQL Generation,” in Application
Development Guide.

This function can be implemented as part of a transaction manager event function that
processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call dm_gen_change_select_list from an event
function attached to the first parent table view in the server view.

For more information on transaction event functions, refer to Chapter 32, “Writing
Transaction Event Functions,” in Application Development Guide.

Example # JPL Procedure:
Adds pic1, a binary column, to the select list for the
current server view and sets bin_col1 as the target.
The Function property is set to binary_hook.

proc binary_hook (event)
{
vars retval(5) colexp(64)

if (event==TM_SEL_BUILD_PERFORM)
 {
 colexp=dm_gen_get_tv_alias\
 (sm_tm_pinquire(TM_TV_NAME) ## ".pic1")
 retval=dm_gen_change_select_list\
 ("", colexp, "bin_col1", DM_GEN_APPEND)

The number of occurrences for bin_col1 is set to match the
number of occurrences of another column in the table.
Programming Guide 5-41

dm_gen_change_select_list
 if (retval == 0)
 {
 retval=sm_n_max_occur("name")
 dbms binary bin_col1[:retval](1024)
 }
 }
 return TM_PROCEED}

See Also dm_gen_sql_info
5-42 Library Functions

dm_gen_change_select_order_by
dm_gen_change_select_order_by

Edits the ORDER BY clause in a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_order_by(char *arg, char *widget_name,
int sort_ind, int flag);

arg

Reserved for future use.

widget_name

The name of the widget whose column_name property is referenced in the
ORDER BY clause. If the name of the database column is entered, it is ignored.

sort_ind

Specifies whether the sort is ascending (DM_GEN_ASC_SORTED) or descending
(DM_GEN_DESC_SORTED). If set to an invalid value, an error is generated.

flag

Specifies the type of change to make with one of the following constants:

DM_GEN_APPEND

Adds the specified information to the end of the ORDER BY clause.
This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM tables ORDER BY existing_order_by_list,
 column_position sort_ind

DM_GEN_PREPEND

Adds the specified information to the beginning of the ORDER BY
clause. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM tables ORDER BY column_position sort_ind,
 existing_order_by_list

DM_GEN_REPLACE_ALL

The specified information replaces the previous ORDER BY clause.
This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM tables ORDER BY column_position sort_ind

If flag is set to this value and widget_name is set to an empty
string, the ORDER BY clause is removed. For example:
Programming Guide 5-43

dm_gen_change_select_order_by
x = dm_gen_change_select_order_by
 ("", "", "", DM_GEN_REPLACE_ALL)

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
-2 Error: Invalid flag.

Description dm_gen_change_select_order_by lets you edit the ORDER BY clause built with the
SQL generator. The structure for the SELECT statement, which is built by a call to
dm_gen_sql_info (generally in the TM_SEL_GEN event), must already exist before
this function is called. Note that this function must be called once for each change you
wish to make.

By default, the SQL generator builds the ORDER BY clause from values of the table
view’s Sort Widgets (sort_widgets) property. For more information on how the
SQL generator builds statements, refer to Chapter 33, “Using Automated SQL
Generation,” in Application Development Guide.

This function can be implemented as part of a transaction manager event function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call dm_gen_change_select_order_by from an event
function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in this section.
For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

Example # Appends the order by list for titles table.
The Function property is set to titles_orderby.

proc titles_orderby (event)

vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_order_by \
 ("", "film_minutes", DM_GEN_ASC_SORTED, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED
5-44 Library Functions

dm_gen_change_select_order_by
See Also dm_gen_sql_info
Programming Guide 5-45

dm_gen_change_select_suffix
dm_gen_change_select_suffix

Appends text to the end of a SELECT statement for automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_suffix(char *arg, char *suffix);

arg

Reserved for future use.

suffix

The suffix to append to the generated SELECT statement.

Returns 0 Success.
-1 dm_gen_sql_info was not called.
-2 Invalid flag.

Description dm_gen_change_select_suffix lets you append text to the end of a generated
SELECT statement built with the SQL generator. For example, you can use this function
to add a FOR UPDATE clause to the end of a SELECT statement. The data structure for
the SELECT statement, built by an earlier call to dm_gen_sql_info (generally in the
TM_SEL_GEN event), must already exist before this function is called.

By default, the SQL generator builds the statement based on the widgets’ and table
view’s property settings. For more information on the SQL generator, refer to
Chapter 33, “Using Automated SQL Generation,” in Application Development Guide.

You can use this function in a transaction manager event function that processes the
TM_SEL_BUILD_PERFORM event. To modify the select processing for a server view,
call dm_gen_change_select_suffix from an event function that is attached to the
first parent table view in the server view.

For more information on writing transaction event functions, refer to Chapter 32,
“Writing Transaction Event Functions,” in Application Development Guide.

Example # JPL Procedure:
Fetch data from titles for possible update.
Function property is set to titles_select.

proc titles_select (event)

vars retval(5)
5-46 Library Functions

dm_gen_change_select_suffix
 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_suffix("", "for update")

 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

See Also dm_gen_sql_info
Programming Guide 5-47

dm_gen_change_select_where
dm_gen_change_select_where

Edits the WHERE clause in a SELECT statement used in automatic SQL generation

#include <tmusubs.h>

int dm_gen_change_select_where(char *arg, char *where_expr,
int flag);

arg

Reserved for future use.

where_expr

Text of the expression to include in the WHERE clause. If the expression
includes a parameter and the function is called within a JPL procedure, the
parameter name must be declared with four colons because of colon
expansion (::::parm1).

flag

Specifies the type of change to make with one of these constants:

DM_GEN_APPEND

When flag is set to this value, where_expr is added to end of the
WHERE clause. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM table_list WHERE link_expression
 AND existing_where_expr AND where_expr

DM_GEN_PREPEND

Adds where_expr to the beginning of the expressions derived from
the use_in_where property. This produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM table_list WHERE link_expression
 AND where_expr AND existing_where_expr

DM_GEN_REPLACE_ALL

Removes all the expressions based on the use_in_where property
being PV_YES and where_expr replaces the previous data. This
produces the following statement:

DBMS DECLARE cursor FOR SELECT select_list
 FROM table_list WHERE link_expression AND where_expr
5-48 Library Functions

dm_gen_change_select_where
You also need to call dm_gen_change_execute_using to remove
the existing_where_expr from the USING clause of the EXECUTE
statement.

Returns 0 Success.
-1 Error: dm_gen_sql_info was not called.
-2 Error: Invalid flag.

Description dm_gen_change_select_where lets you edit the WHERE clause of a SELECT
statement. The structure for the SELECT statement, which is generally built by a call to
dm_gen_sql_info in the TM_SEL_GEN event, must already exist before
dm_gen_change_select_where is called.

By default, the data for the WHERE clause comes from:

! Widgets whose use_in_where property is set to PV_YES.

! The relations property for the link which determines the columns for joins if
it is a server link and for master/detail information if it is a sequential link.

dm_gen_change_select_where adds to or replaces the data based on the
use_in_where property. For more information on how the SQL generator uses this
property, refer to Chapter 33, “Using Automated SQL Generation,” in Application
Development Guide.

In particular, this function can be used to add a BETWEEN clause or a subquery to a
SELECT statement.

This function can be implemented as part of a transaction manager event function
which processes the TM_SEL_BUILD_PERFORM event. If you are modifying the select
processing for a server view, call dm_gen_change_select_where from an event
function attached to the first parent table view in the server view.

To view a sample event function written in JPL, refer to the example in the next
section. For more information on writing transaction event functions, refer to
Chapter 32, “Writing Transaction Event Functions,” in Application Development
Guide.

Example # JPL Procedure:
Append IN clause to WHERE clause.
Function property is set to titles_in.

proc titles_in (event)
Programming Guide 5-49

dm_gen_change_select_where
vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
{
vars occ(3), i(3), in_buffer(255) comma(1)

occ = @widget("qbe_titleid")->num_occurrences

If the array "qbe_titleid" contains data, build
a SQL "in" clause.
 if (occ > 0)
 {
 for i=1 while i <= occ
 {
 if (qbe_titleid[i] != "")
 {

in_buffer = in_buffer ## comma ## \
 ':+qbe_titleid[i]'

comma = ","
 }
 }

 in_buffer = "title_id in (" ##in_buffer ")"
 retval = dm_gen_change_select_where \
 ("", in_buffer, DM_GEN_APPEND)

 if (retval != 0)
 return TM_FAILURE
 }
}
return TM_PROCEED

JPL Procedure:
Append search condition using onscreen value.
Function property is set to titles_where.

proc titles_where (event)

vars retval(5)

 if (event == TM_SEL_BUILD_PERFORM)
 {
 retval = dm_gen_change_select_where\
 ("", "film_minutes > ::::parm1", DM_GEN_APPEND)
 retval = dm_gen_change_execute_using("", "parm1", \
 "film_minutes", 1, DM_GEN_ABSOLUTE_OCCUR, \
 DM_GEN_APPEND)
5-50 Library Functions

dm_gen_change_select_where
 if (retval != 0)
 return TM_FAILURE
 }

return TM_PROCEED

See Also dm_gen_sql_info, dm_gen_change_execute_using
Programming Guide 5-51

dm_gen_get_tv_alias
dm_gen_get_tv_alias

Gets the correlation name or alias for a table view

#include <tmusubs.h>

char *dm_gen_get_tv_alias(char *tv_name);

tv_name

Specifies the table view name.

Returns • A correlation name for the table view
• NULL string: tv_name is null.

Description dm_gen_get_tv_alias returns the correlation name, or alias, for the specified table
view name.

Generally, the SQL generator uses the value in the table view’s Name property as the
table’s correlation name in a generated SELECT statement. However, if the table view
name contains illegal characters for a correlation name, the SQL generator removes the
offending characters.

The SQL generator calls this function to generate correlation names. If you modify
generated SQL statements with one of the dm_gen_change functions and any
argument supplies a column name, you must supply the proper correlation name.

Example # JPL Procedure:
Adds a column to the select list for the current \
server view and sets copy as the target.

proc rentals_hook(event)
{
vars retval(5) colexp(64)

if (event==TM_SEL_BUILD_PERFORM)
 {
 colexp=dm_gen_get_tv_alias\
 (sm_tm_pinquire(TM_TV_NAME) ## ".copy_num")

 retval=dm_gen_change_select_list\
 ("", colexp, "copy", DM_GEN_APPEND)
 }
 return TM_PROCEED
}

5-52 Library Functions

dm_gen_sql_info
dm_gen_sql_info

Generates a data structure used in SELECT statement generation

#include <tmusubs.h>

int dm_gen_sql_info(int type, char *cursor_name);

type

Type of SELECT to generate, specified by one of these constants:

SELECT
VALIDATE
CHECK_PKEY

cursor_name

Name of the cursor associated with the SQL statement.

Returns 0 Success.
<0 One of the transaction error codes.

Description dm_gen_sql_info generates a data structure associated with SELECT statements. The
type is SELECT when the function is called as the result of the transaction commands
SELECT and VIEW. The type is VALIDATE when the function is called as a result of
processing a validation link. The type is CHECK_PKEY when the function is called as a
result of checking for duplicate key values before inserting a new row or updating the
primary key columns.

Example int gen_select (cursor)
char *cursor;
{
 int retcode;
 retcode = dm_gen_sql_info(SELECT, cursor1);
 ...
 return retcode;
}

See Also dm_free_sql_info
Programming Guide 5-53

dm_get_connection_option
dm_get_connection_option

Gets a database connection option

#include <dmuproto.h>

int dm_get_connection_option(char *connection, char *option);

connection

The name of the connection.

option

The option whose value is to be returned.

Returns • value of the option.
• -1: connection does not exist or option is invalid.

Description dm_get_connection_option gets the value of a connection option. The valid values
of option depend on the database engine that the connection is to. Table 5-5 lists the
values that can be used.

See Also dm_set_connection_option
5-54 Library Functions

dm_get_db_conn_handle
dm_get_db_conn_handle

Gets a handle to a database connection logon structure

#include <dmuproto.h>

int dm_get_db_conn_handle_handle(char *connection, void *handle,
int size);

connection

Name of the database connection.

handle

Pointer to the connection structure.

size

Size of the handle.

Environment C only

Returns 0 Success.
-1 A NULL handle.
-2 Named connection not found.
-3 Invalid handle.
-4 Size of the handle differs from value specified in size.

Description dm_get_db_conn_handle obtains a handle to the logon data structure for a named
database connection. This information can be used in database engine programs that
need information about the Panther database connection.

See Also dm_get_db_cursor_handle
Programming Guide 5-55

dm_get_db_cursor_handle
dm_get_db_cursor_handle

Gets a handle to a database cursor’s structure

#include <dmuproto.h>

int dm_get_db_cursor_handle(char *name, void *handle, int size);

name

Name of the database cursor.

handle

Pointer to the cursor structure.

size

Size of the handle.

Environment C only

Returns 0 Success.
-1 A NULL handle.
-2 Cursor not found.
-3 Invalid handle.
-4 Size of the handle differs from value specified in size.

Description dm_get_db_cursor_handle obtains a handle to a copy of a database cursor’s
structure pointer. This information can be used in database engine programs that need
information about the Panther database cursors.

If name is NULL or an empty string, the default cursor is used. If the named cursor is
found, the support routine is called to retrieve the cursor handle.

See Also dm_get_db_conn_handle
5-56 Library Functions

dm_get_driver_option
dm_get_driver_option

Gets a database driver option

#include <dmuproto.h>

int dm_get_driver_option(char *engine, char *option);

engine

The name of the database engine.

option

The option whose value is to be returned.

Returns • value of the option.
• DM_NODATABASE if engine is not the name of an installed database engine.
• -1: Invalid option.

Description dm_get_driver_option gets the value of a database engine’s generic connection
options. The valid values of option depend on the database engine. Table 5-6 lists the
values that can be used.

See Also dm_set_driver_option
Programming Guide 5-57

dm_getdbitext
dm_getdbitext

Gets the text of the last-executed DBMS command

#include <dmuproto.h>

char *dm_getdbitext(void);

Environment C only

Returns A pointer to the last-executed database command.

Description dm_getdbitext lets you get the full text of the last-executed DBMS command. This
includes all commands executed from JPL with dbms, or executed from C with
dm_dbms or dm_dbms_noexp.

You must call this function from within an installed entry, error, or exit handler. This
function stores the data in a pool of buffers that it shares with other functions, so you
must either process the returned string immediately or copy it to another variable for
additional processing.

This function gets the same string that is passed to the first argument of an installed
entry, error, or exit handler; however, these handlers are limited to 255 characters.

Example int
logfunc PARMS((stmt, engine, flag))
PARM (char *stmt)
PARM (char *engine)
LASTPARM(int flag)
{

 FILE *fp;
 if (strlen(stmt) >= 255)
 stmt = dm_getdbitext();
 fp = fopen("dbi.log", "a");
 fprintf(fp, "%s\n", stmt);
 fclose(fp);
 return 0;

}

See Also DBMS ONERROR, DBMS ONEXIT
5-58 Library Functions

dm_init
dm_init

Initializes access to a specific database engine

#include <dmuproto.h>

int dm_init(char *engine, int support_function, int case,
char *arg);

engine

A name you assign to the engine. If an application uses two or more engines,
the application uses the mnemonic engine to indicate a particular DBMS.
Most examples in the guide use a vendor name as the mnemonic, for example
sybase or oracle, but any character string that is not a keyword is valid. For
a list of keywords, refer to Chapter 13, “Keywords in Database Drivers.” If
engine is already installed, dm_init returns 0.

support_function

One of the function names documented in the dbiinit.c file. The file name
is usually in the form dm_vendorsup where vendor is an abbreviated vendor
name. For example:

dm_sybsup
dm_orasup
dm_intsup

case

Sets the case processing for the specified engine. The constants are shown in
Table 5-4 in Description.

arg

Reserved for future use. Set this parameter to 0.

Environment C only

Returns • 0: Success.
• A return code from the support function.

Description Before an application can access a database, Panther must perform an engine
initialization. The initialization adds the engine name to the list of available engines,
allocates a data structure for the engine, calls the engine’s support function to initialize
Programming Guide 5-59

dm_init
the data structure, and sets case handling for the engine. You can use the vendor_list
structure in dbiinit.c to initialize an engine at startup or else use dm_init to
initialize an engine at a later point in the application.

The case parameter specifies how Panther uses case to map column names to
variables when executing a SELECT statement. Table 5-4 lists the available options.

After the engine is initialized, the application can declare a connection on it.

Example #include <dmerror.h>
#include <smusrdbi.h>

int retcode;

retcode = dm_init("jdb", dm_jdbsup, DM_DEFAULT_CASE, 0);

See Also dm_reset

Table 5-4 Database engine case constants

Constant Description

DM_DEFAULT_CASE Use the case option set in the support function for that
engine. For information on this setting, refer to the
documentation for “Database Drivers.”

DM_PRESERVE_CASE Use case exactly as returned by the engine.

DM_FORCE_TO_UPPER_CASE Force all column names returned by an engine to upper
case. Therefore, the application should use upper case
names for Panther variables.

DM_FORCE_TO_LOWER_CASE Force all column names returned by an engine to lower
case. Therefore, the application should use lower case
names for Panther variables.
5-60 Library Functions

dm_is_connection
dm_is_connection

Verifies that a connection is open

#include <dmuproto.h>

int dm_is_connection(char *connection_name);

connection_name

Specifies a connection name that is declared in a DBMS DECLARE
CONNECTION command.

Returns 1 True: Connection exists.
0 False: Connection does not exist, either because it was never declared or was

closed.

Example #include <smdefs.h>
#include <dmuproto.h>

int free_resources()
{

 if (dm_is_connection("work_connection"))
 {
 dm_dbms("close connection work_connection");
 }
 return 0
}

Programming Guide 5-61

dm_is_cursor
dm_is_cursor

Verifies that a cursor is open

#include <dmuproto.h>

int dm_is_cursor(char *cursor_name);

cursor_name

Specifies a cursor name. For a named cursor, use the name specified in a
DBMS DECLARE CURSOR command. For a default cursor, specify
cursor_name as being default_cursor or as being 0.

Returns 1 The cursor exists.
0 The cursor does not exist, either because it was never declared or has been

closed.

Example #include <smdefs.h>
#include <dmuproto.h>

int free_resources()
{

 if (dm_is_cursor("work_cursor"))
 {
 dm_dbms("close cursor work_cursor");
 }
 return 0
}

5-62 Library Functions

dm_is_engine
dm_is_engine

Verifies that a database engine is initialized

#include <dmuproto.h>

int dm_is_engine(char *engine);

engine

Specifies an engine name. The engine name is the character string assigned
to a database engine in the dbiinit.c or Windows initialization file. For
more information about specifying engine names, refer to Chapter 8,
“Connecting to Databases,” in Application Development Guide.

Returns 1 True: Engine is initialized.
0 False: Engine is not initialized.

Example // Test if engine was installed

#include <smdefs.h>
#include <dmuproto.h>

int
eng_connection()
{

 if (dm_is_engine("sybase"))
 {
 dm_dbms("engine sybase");
 dm_dbms("declare c1 connection for ...");
 }
 return 0
}

Programming Guide 5-63

dm_odb_preserves_cursor
dm_odb_preserves_cursor

Checks if the ODBC datasource preserves the cursor on a commit or rollback

int dm_odb_preserves_cursor(void);

Returns ≥1 Datasource preserves cursor on both a commit and a rollback.
0 Cursor is not preserved.

Description dm_odb_preserves_cursor checks to see whether the ODBC datasource preserves
the cursor on a commit or a rollback. Unless the datasource is ascertained to preserve
the cursor on both operations, this routine returns that the cursor is not preserved.
5-64 Library Functions

dm_reset
dm_reset

Disables support for a named database engine

#include <dmuproto.h>

int dm_reset(char *engine);

engine

The name assigned to the DBMS in dm_init or in the vendor_list
structure of dbiinit.c.

Environment C only

Returns 0 The database engine was successfully disabled.
-1 engine is not a valid engine name.

Description An application can call this function to disable support for a named engine. If the
function executes successfully, it performs the following steps:

1. Closes all active connections on the engine.

2. Calls the support function to perform any engine-specific reset processing.

3. If engine was the default engine, sets the default engine to 0.

4. Frees all data structures associated with the engine.

After an engine is reset, the application cannot connect to the engine unless it initializes
the engine with dm_init.

See Also dm_init
Programming Guide 5-65

dm_set_connection_option
dm_set_connection_option

Sets a database connection option

#include <dmuproto.h>

int dm_set_connection_option(char *connection, char *option,
 int value);

connection

The name of the connection.

option

The option to be set.

value

The option’s new value.

Returns • 0: Success.
• -1: connection does not exist or option or value is invalid.

Description dm_set_connection_option sets a database connection option to a new value. See
Table 5-5 below for a list of the values of option that are supported for each driver.

Table 5-5 Connection options by driver

Option Value

Informix driver

xa_connection* 1 for XA connection; 0 for normal connection.

SQL Server driver

cursor_pool_size Allow the client code to reuse closed database connections in a pool
to reduce overhead when making new connections. The default
value is zero, which disables this feature. New in Panther 5.10.

ODBC driver

bind_set_scale When not zero, the scale is always set when binding numeric
columns. Set when connecting to DB2. New in Panther 5.10.
5-66 Library Functions

dm_set_connection_option
case_flag Allows setting the case flag for a connection. value can be one of
PV_LOWER; PV_UPPER or PV_MIXED. New in Panther 5.50.

count_decimal_digits When set, the scale will be set when numeric values are bound as
character strings. Set when connecting to SQL Server. New in
Panther 5.00.

force_char_binding When this option is set, if the bind type is SQL_VARCHAR, it is set to
SQL_CHAR. Set when connecting to Oracle and Informix. New in
Panther 4.60.

force_date_convert When set, date fields will always be bound in the internal ODBC
date format even when character string binding is requested. Set
when connecting to Oracle. New in Panther 4.60.

long_date_bind When set, uses at least 19 characters when binding SQL_TIMESTAMP
columns. Set when connecting to SQL Server. New in Panther 5.10.

oracle_empty_string Special null string handling for Oracle. Set when connecting to
Oracle. New in Panther 4.60.

set_concurrency Value for the SQL_ATTR_CONCURRENCY ODBC statement handle
attribute. Set to SQL_CONCUR_VALUES when connecting to SQL
Server. New in Panther 5.10.

Oracle OCI driver

no_utf8_conversion Can only be set for UTF8 connections. When set, the application
must convert character date from and to UTF8. New in Panther
5.40.

utf8* 1 if the UTF8 option was specified in the DECLARE CONNECTION
statement for the connection. New in Panther 5.40.

xa_connection* 1 for XA connection; 0 for normal connection.

Oracle Pro*C driver

xa_connection* 1 for XA connection; 0 for normal connection.

Table 5-5 Connection options by driver

Option Value
Programming Guide 5-67

dm_set_connection_option
See Also dm_get_connection_option

Sybase CT Library driver

xa_connection* 1 for XA connection; 0 for normal connection.

*Option is read-only..

Table 5-5 Connection options by driver

Option Value
5-68 Library Functions

dm_set_driver_option
dm_set_driver_option

Sets a database driver option

#include <dmuproto.h>

int dm_set_driver_option(char *engine, char *option, int value);

engine

The name of the engine.

option

The option to be set.

value

The option’s new value.

Returns • 0: Success.
• DM_NODATABASE if engine is not the name of an installed database engine.
• -1: Invalid option or value.

Description dm_set_connection_option sets a database engine’s generic connection options to
a new value. See Table 5-6 for a list of the values of option that are supported.

Table 5-6 Driver options by driver

Option Value

Informix driver

select_numeric_as_string Set to nonzero to select numeric values as strings to avoid rounding
errors. New in Panther 5.00.

ODBC driver

enable_mars When used with a Microsoft SQL Server ODBC driver, enables the
MARS (Multiple Active Result Sets) feature. New in Panther 5.20.

extended_fetch When zero, the ODBC SQLExtendedFetch function will not be
used even if it is supported by the driver. New in Panther 4.50.
Programming Guide 5-69

dm_set_driver_option
force_date_convert When set, date fields will be bound with the ODBC date format
rather as strings. New in Panther 4.60.

long_escape_seq ODBC uses escape sequences to add certain features such as date
literals to SQL. These escape formats have two formats, long and
short. Long escape sequences are deprecated in ODBC 3.

new_date_binding If set (the default), date fields will be bound depending on their date
format. If not set, date fields will always be bound with the
date/time format.

no_more_rows_value If not zero (the default), @dmengerrcode will be set to this value
when @dmretcode is set to DM_NO_MORE_ROWS. New in Panther
5.51.

Oracle OCI driver

blank_as_null The OCI Library treat the null string '' as the NULL value. By
default, this driver uses the string ' ' instead to keep this from
happening. 0 does this; 2 uses ''; any other value used NULL.

neg_err_mode When set, positive error codes other than END_OF_FETCH are
returned as negative error codes. This option affects the value of
@dmengerrcode when an engine error is reported.

select_numeric_as_double Set to nonzero to select values as doubles when retrieving numeric
arrays from stored procedures. New in Panther 5.00.

select_numeric_as_string Set to nonzero to select numeric values as strings to avoid rounding
errors. New in Panther 4.10.

v2_mode Use old Oracle error codes if not 0. For backwards compatibility
with older JAM code.

Oracle Pro*C driver

blank_as_null The Pro*C Library treat the null string '' as the NULL value. By
default, this driver uses the string ' ' instead to keep this from
happening. 0 does this; 2 uses ''; any other value uses NULL.

Table 5-6 Driver options by driver

Option Value
5-70 Library Functions

dm_set_driver_option
See Also dm_get_driver_option

select_numeric_as_double Set to nonzero to select values as doubles when retrieving numeric
arrays from stored procedures. New in Panther 5.00.

select_numeric_as_string Set to nonzero to select numeric values as strings to avoid rounding
errors. New in Panther 4.10.

Sybase CT Library driver

expand_bind Who will expand bind markers in SQL statements: 0 Sybase
expands bind markers (default); 1 Panther will expand bind markers
if Sybase cannot; 2 Panther will expand bind markers.

old_display_lengths Compatibility for column widths with the CATQUERY command
before Panther 4.10: 0 DB Library compatible; 1 older version
compatible.

xa_connection* Type of the default connection: 1 for XA connection; 0 for normal
connection; -1 if no connection.

Sybase DB Library driver

allow_password_change Normally the DECLARE CONNECTION will fail if the password has
expired. Setting this option to 1 will allow the connection so that the
Sybase sp_password script can be run. New in Panther 5.10.

msg_severity_threshhold Normally severity 10 Sybase server messages are treated by the
driver as fatal errors. Setting this option to 11 will change this
behavior. See the Sybase documentation for more information.

secure_login Set to non-zero to encrypt the password in DECLARE CONNECTION
processing. New in Panther 5.40.

*Option is read-only..

Table 5-6 Driver options by driver

Option Value
Programming Guide 5-71

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc36273.1550/html/sprocs/X96621.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc31654.1570/html/sag1/sag1570.htm

dm_set_max_fetches
dm_set_max_fetches

Sets the maximum number of rows in a select set

#include <dmuproto.h>

int dm_set_max_fetches(int count);

count

Maximum number of rows to be in the select set. If -1, return the current
setting.

Returns The new maximum number of rows. If count is -1, the current value.

Description dm_set_max_fetches determines the maximum number of rows that will be
retrieved from a SELECT statement or DBMS CONTINUE command. If -1 is passed in as
the value, the function returns the current value; otherwise, it returns the new
maximum value.

Initially, the maximum number of fetches is determined by the default value of the
max_fetches application property, which is 1,000. This property provides an
alternative way to modify the maximum number of fetches.

See Also dm_set_max_rows_per_fetch
5-72 Library Functions

dm_set_max_rows_per_fetch
dm_set_max_rows_per_fetch

Sets the maximum number of rows per fetch

#include <dmuproto.h>

int dm_set_max_rows_per_fetch(int count);

count

Maximum number of rows per fetch. If -1, return the current setting.

Returns The new maximum number of rows per fetch. If count is -1, the current value.

Description dm_set_max_rows_per_fetch sets the maximum number of rows per fetch. The
default (and maximum) value is 1000. This affects the number of rows retrieved on
each fetch request, not the number of rows retrieved by a SELECT statement or DBMS
CONTINUE command. Use this function in order to optimize your application on a
specific platform.

The max_rows_per_fetch application property also sets this value.

See Also dm_set_max_fetches
Programming Guide 5-73

dm_set_onevent
dm_set_onevent

Install a C DBi event hook function

int dm_set_onevent(char *handler);

handler

The name of the DBi event handler. If handler is the null pointer or the null
string, the DBi event handler is uninstalled. Otherwise, it must be the name
of a C function installed in the prototyped function list.

Returns 0 The DBi event hook function was installed or uninstalled.
-1 handler is not in the list of installed prototyped C functions.

Description handler is called after the DBMS ONEXIT function is or would be called. The prototype
of this function is:

void handler(char *command, char *args, char *sql,
 int elapsed_time);

This function is passed the following parameters:

command

A string containing the DBi command, for example "ALIAS" for the
DBMS ALIAS command.

arg

The argument passed to the DBMS command. It is same as the value
that would be returned by the dm_getdbitext function.

sql

If the DBMS statement includes the WITH CURSOR clause, this value
is the text of the SQL that was in the DBMS DECLARE CURSOR
statement that created the cursor. Otherwise it is the null pointer.

elapsed_time

This is the elapsed time for the DBMS command in milliseconds. It
may be zero for commands like DBMS ALIAS that do not require any
database interactions.
5-74 Library Functions

dm_set_tm_clear_fast
dm_set_tm_clear_fast

Determines the behavior of the CLEAR command in transaction manager

#include <tmusubs.h>

int dm_set_tm_clear_fast(int clear_setting);

clear_setting

Setting for transaction manager CLEAR operations:

Returns The current value of the tm_clear_fast property.

Description dm_set_tm_clear_fast determines how the transaction manager clears data in table
views. By default, the transaction manager clears data by table view. To have the
transaction manager clear data by server view, change the value of the
tm_clear_fast application property by calling this function (or setting the property
at runtime).

Do not call this function while the transaction manger is traversing table views for a
CLEAR command. The current setting applies to the entire application; you cannot
apply the setting per table view.

If you have added widgets to the synchronization group that are not part of a table
view, they will be cleared.

1 True: Clear data by server view.

0 False: Clear data by table view.

-1 The current setting.
Programming Guide 5-75

dm_val_relative
dm_val_relative

Sets bits for validation after SELECT statements are executed

#include <tmusubs.h>

void dm_val_relative(void);

Description dm_val_relative sets validated bits, and can be called after successful
lookup/validation when using validation links. Because this function uses the data
structure generated by dm_gen_sql_info for validation, you should call
dm_val_relative before calling dm_free_sql_info to free the data.
5-76 Library Functions

sm_adjust_area
sm_adjust_area

Recalculates widget positions

void sm_adjust_area(void);

Environment Motif, Windows

Description sm_adjust_area recalculates the positions of widgets on the current screen and
redraws the screen accordingly. It uses Panther’s positioning algorithm to map
character-mode coordinates to the current GUI environment. You should call this
function when runtime changes to the screen might cause widgets to overlap—for
example, move a widget, add a new one, or change widget dimensions.
Programming Guide 5-77

sm_allget
sm_allget

Loads data from the active LDBs to the current screen

void sm_allget(int respect_flag);

respect_flag

Indicates whether to write to fields that already contain data:

Description sm_allget copies data from the active local data blocks to fields on the current screen
with matching names. Panther calls this function automatically unless LDB processing
is turned off through sm_dd_able.

sm_allget overwrites or respects existing data according to the value of
respect_flag. sm_allget leaves unchanged the mdt property of the fields that it
initializes.

Example #include <smdefs.h>
#include <smkeys.h>

/* If you open a window with sm_r_window and want named
 * fields initialized from the LDB, where LDB processing
 * is off, you need to call sm_allget. You might use
 * this to make the active LDBs read-only for a certain
 * transaction. */

 sm_dd_able(0);
 ...
 if (sm_r_window("popup", 5, 24) == 0)
 {

sm_allget(0);
while (sm_input(IN_DATA) != EXIT)
{

 ...
}
sm_close_window();

 }

0 Initialize all fields, regardless of their status.

≥1 Initialize only empty or unmodified fields.
5-78 Library Functions

sm_allget
See Also sm_dd_able, sm_lstore
Programming Guide 5-79

sm_*amt_format
sm_*amt_format

Writes formatted data to a field

int sm_amt_format(int field_number, char *buffer);

int sm_e_amt_format(char *field_name, int element, char *buffer);

int sm_i_amt_format(char *field_name, int occurrence,
char *buffer);

int sm_n_amt_format(char *field_name, char *buffer);

int sm_o_amt_format(int field_number, int occurrence,
char *buffer);

field_name, field_number

The field to receive the formatted data.

element

The onscreen element in the field.

occurrence

The occurrence in the field.

buffer

A pointer to the data to write.

Returns 0 Success.
-1 The field is not found or the occurrence is out of range.
-2 The edited string does not fit in the field.

Description sm_amt_format writes data to a field in the following steps:

1. Panther checks whether the field’s format properties are set for numeric display.
If so, it formats the data in buffer accordingly.

2. Panther calls sm_putfield to write the string to the specified field. If the field’s
data_formatting property is set to PV_NONE, sm_putfield writes the
unedited string. If the resulting string is too long for the field, Panther truncates
it.

Example #include <smdefs.h>

/* Write a list of real numbers, stored as character strings,
 * to the screen. The first and last fields in the list are
5-80 Library Functions

sm_*amt_format
 * tagged with special names.
*/

int fld, first, last;
extern char *values[]; /* defined elsewhere */

last = sm_n_fldno("last");
first = sm_n_fldno("first");
for (fld = first; fld <= last; ++fld)
{

sm_amt_format(fld, values[fld - first]);
}

See Also sm_dtofield, sm_strip_amt_ptr
Programming Guide 5-81

sm_append_bundle_data
sm_append_bundle_data

Sends data to a bundle item

int sm_append_bundle_data(char *bundle_name, int item_no,
char *data);

bundle_name

The name of the bundle to get data. Supply NULL or an empty string to specify
the unnamed bundle.

item_no

The bundle offset of the item to get data. You add data items to a bundle
through successive calls to sm_append_bundle_item; each data item is
identified by its offset in the bundle, where the first data item has an offset
value of 1. If item_no already contains data, Panther appends data as the
item’s latest occurrence.

data

A single occurrence of data to append to item_no.

Returns 0 Success.
-1 Invalid bundle name or item number.
-2 Memory allocation error.

Description sm_append_bundle_data sends a single occurrence of data to the specified data item
in bundle_name. A bundle contains sequentially numbered data items, where each
data item can hold one or more occurrences of send data for later access by
sm_get_bundle_data. If the source data contains multiple occurrences, Panther ends
each occurrence with a null string terminator.

This function assumes the existence of the specified bundle and item. Before calling
this function, create the target bundle and its items with calls to sm_create_bundle
and sm_append_bundle_item, respectively.

Example /* Iterate over all fields on current screen and
 * send data to bundle
 */
void sendScreenDataToBundle(int numFields)
{
int ret, i, item;
ret = sm_create_bundle("myBundle");
5-82 Library Functions

sm_append_bundle_data
if (ret == 0)
 {

sm_append_bundle_item("myBundle");
item = sm_bundle_item_count("myBundle");
for (i = 1; i <= numFields; i++)

{
sm_append_bundle_data("myBundle",

item, sm_i_fptr("mySend", i));
}

 }
return 0;
}

See Also sm_append_bundle_item
Programming Guide 5-83

sm_append_bundle_done
sm_append_bundle_done

Optimizes memory allocated for a send bundle

int sm_append_bundle_done(char *bundle_name);

bundle_name

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

Returns 0 Success.
-1 Invalid bundle name.

Description sm_append_bundle_done optimizes the memory allocated for a send bundle. Call
this function after you finish appending items and data to a bundle.

See Also sm_append_bundle_data
5-84 Library Functions

sm_append_bundle_item
sm_append_bundle_item

Adds a data item to a bundle

int sm_append_bundle_item(char *bundle_name);

bundle_name

The name of the bundle to get a new item. Supply NULL or empty string to
specify the unnamed bundle.

Returns 0 Success.
-1 Invalid bundle name.
-2 Memory allocation error.

Description sm_append_bundle_item appends a new data item to the end of the specified bundle.
After you create a data item, you can send one or more occurrences of data to it by
calling sm_append_bundle_data.

This function assumes the existence of bundle_name, previously created with
sm_create_bundle. A bundle contains sequentially numbered data items, where the
first data item has an offset of 1.

Example See the example in sm_append_bundle_data.

See Also sm_append_bundle_data
Programming Guide 5-85

sm_*at_cur
sm_*at_cur

Displays a window at the cursor location

int sm_d_at_cur(char *address);

int sm_l_at_cur(int lib_desc, char *name);

int sm_r_at_cur(char *name);

address

The address of the screen in memory.

lib_desc

Specifies the library in which the window is stored, where lib_desc is an
integer returned by sm_l_open. You must call sm_l_open before you read
any screens from a library.

name

The name of the window.

Environment sm_d_at_cur is C only

Returns 0 Success.
-1 Screen file’s format is incorrect.
-2 Screen cannot be found.
-3 System ran out of memory but the previous screen was restored.
-5 System ran out of memory after the screen was cleared.
-6 Library is corrupted.

Description sm_window.
5-86 Library Functions

sm_*attach_drawing_func
sm_*attach_drawing_func

Associates a drawing function with a widget

#include <smmwuser.h>

int sm_mw_attach_drawing_func(int widgetnumber, int (*drawfunc));

int sm_mwn_attach_drawing_func(char *widgetname, int (*drawfunc));

int sm_mwe_attach_drawing_func(char *widgetname, int element,
int (*drawfunc));

#include <smxmuser.h>

int sm_xm_attach_drawing_func(int widgetnumber, void(*drawfunc),
XtPointer data);

int sm_xmn_attach_drawing_func(char *widgetname, void(*drawfunc),
XtPointer data);

int sm_xme_attach_drawing_func(char *widgetname, int element,
void(*drawfunc), XtPointer data);

widgetname, widgetnumber
Specifies the widget to get drawfunc.

element

If the widget is an array, specifies the element in widgetname to get
drawfunc.

drawfunc

The drawing function to attach to the specified widget. Drawing function
declarations for Windows and Motif are shown in Description.

data

Points to a user-defined structure that contains the data required by the
drawing function.

Environment Motif, Windows

Returns 0 Success.
-1 Invalid widget or element, or the appropriate data structures or handles do not

exist and cannot be created.
Programming Guide 5-87

sm_*attach_drawing_func
Description sm_attach_drawing_func attaches the drawing function pointed to by drawfunc to
the specified widget or element on the current screen. The widget must have its
customer_drawn property set to PV_YES. You can use your own drawing functions
with dynamic labels, push buttons, and toggle buttons. Panther handles all processing
for these widgets except for drawing them, although it does draw the shading for push
button widgets.

The most convenient place to attach a drawing function is at screen entry. Once
attached, the drawing function is called whenever the widget needs to be painted,
drawn or refreshed, regardless of whether the paint message comes from the window
manager or from Panther.

Windows Draw

Function

Declaration

For Windows applications, declare the drawing function as follows:

int drawfunc(HWND handle, UINT message, WPARAM wParam,
 LPARAM lParam);

The HWND argument is a handle to the widget. If the widget is a dynamic label, the
message argument is a WM_PAINT message. If the widget is a push button or toggle
button, the message argument is a WM_DRAWITEM message. For dynamic labels, the
lParam and wParam arguments are not used. For push buttons or toggle buttons, the
wParam argument specifies the identifier of the widget that sent the message, and the
lParam argument points to a DRAWITEMSTRUCT structure, which provides information
on how to paint the widget.

Refer to the Windows SDK documentation for details on WM_PAINT and WM_DRAWITEM
messages, and the DRAWITEMSTRUCT data structure.

Note: Because Panther draws the shading on a push button and toggle button, it alters
a field in the DRAWITEMSTRUCT which specifies the rectangle to draw in. The
rectangle passed to the drawfunc in the rcItem field is reduced slightly to
account for the shading. The drawfunc therefore should draw in the entire
rectangle that it is passed, and not draw any shading. Furthermore, the hDC
item in the structure is altered, allowing for faster display and less flashing.

Panther selects Panther’s color palette into the device context. For a dynamic label, the
color palette is selected into the device context during the BeginPaint() call in the
drawfunc. For a push button or toggle button, the palette is selected into the memory
device context before drawfunc is called.

After drawfunc returns, Panther draws the cursor or focus rectangle. Panther ignores
the return value from drawfunc.
5-88 Library Functions

sm_*attach_drawing_func
Motif Draw

Function

Declaration

For Motif, declare the drawing function as follows:

void drawfunc(Widget wdgt, XtPointer xtpUserData, XtPointer
xtpCallBackData);

Example #include <smdefs.h>
#include <smmwuser.h>

int MyDrawingFunc(HWND, UINT, WPARAM, LPARAM);

/* sample drawing function */
int
MyDrawingFunc(hWnd, message, wParam, lParam)
HWND hWnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
{
 PAINTSTRUCT ps;
 HBRUSH hBrush;

 BeginPaint(hWnd, &ps);

 hBrush = CreateSolidBrush(RGB(0, 0, 255));
 FillRect(ps.hdc, &ps.rcPaint, hBrush);
 DeleteObject(hBrush);

 EndPaint(hWnd, &ps);

 return(0);
}

{
 ...
 /* attach drawing function to widget number 2 */
 if (sm_attach_drawing_func(2, MyDrawingFunc) == -1)
 {
 << error handling >>
 }
 ...
}

int MyButtonDrawingFunc(HWND, UINT, WPARAM, LPARAM);

/* sample drawing function */
int
MyButtonDrawingFunc(hWnd, message, wParam, lParam)
HWND hWnd;
UINT message;
Programming Guide 5-89

sm_*attach_drawing_func
WPARAM wParam;
LPARAM lParam;
{
 DRAWITEMSTRUCT *dis;
 HBRUSH hBrush;

 dis = (DRAWITEMSTRUCT *)lParam;

 hBrush = CreateSolidBrush(RGB(0, 0, 255));
 FillRect(dis->hDC, &dis->rcItem, hBrush);
 DeleteObject(hBrush);
 return(0);
}

{
 ...
 /* attach drawing function to widget number 3 */
 if (sm_attach_drawing_func(3, MyButtonDrawingFunc) == -1)
 {
 << error handling >>
 }
 ...
}

5-90 Library Functions

sm_backtab
sm_backtab

Backtabs to the previous unprotected field

void sm_backtab(void);

Description sm_backtab moves the cursor to the first enterable position of the field with the
next-lowest field number that is tab-accessible. The following conditions can modify
this behavior:

! The cursor is not in the current field’s first enterable position and the field is
left-justified. In this case, sm_backtab moves the cursor to the current field’s
first enterable position.

! The cursor is in a field with a previous-field property and one of the fields
specified by the property is accessible to tabbing. The cursor moves to the first
enterable position of that field.

! The cursor is in the first position of the first unprotected field on the screen, or
before the first unprotected field on the screen. The cursor wraps backward into
the last unprotected field.

! There are no unprotected fields. The cursor remains stationary.

If the destination field is shiftable, it is reset according to its justification. The first
enterable position depends on the justification of the field and, in fields with embedded
punctuation, on the presence of punctuation.

This function does not immediately trigger field entry, exit, or validation processing.
This processing occurs according to the cursor position when control returns to
sm_input.

Panther calls this function when the Panther logical key BACK is struck.

See Also sm_home, sm_last, sm_nl, sm_tab
Programming Guide 5-91

sm_bel
sm_bel

Issues a beep from the terminal

void sm_bel(void);

Description sm_bel causes the terminal to beep, usually by transmitting the ASCII BEL code to it.
If there is a BELL entry in the video file, sm_bel transmits that instead. This usually
causes the terminal to flash.

Even if there is no BELL entry, use this function instead of sending a BEL, because
certain displays use BEL as a graphics character.

This function is automatically called when message text begins with %B.

Example #include <smdefs.h>

/* Beep if cost is too high. */
if (sm_n_dblval("cost") > 1000.00)
 sm_bel();
5-92 Library Functions

sm_bi_compare
sm_bi_compare

Compares widgets in the current table view with their before-image values

#include <tmusubs.h>

int sm_bi_compare(void);

Returns DM_TM_ERR_GENERAL if no transaction or table view is available.

Success—one of the following constants:

• BI_UNCHANGED: Occurrence was not changed.
• BI_DELETED: Occurrence was deleted.
• BI_INSERTED: Occurrence was inserted.
• BI_KEY_NULLED: A primary key field in the occurrence was cleared or set to

NULL.
• BI_KEY_CHANGED: A primary key field in the occurrence was changed to a

non-NULL/non-empty value.
• BI_UPDATED: A non-primary key field in the occurrence was changed.

Description sm_bi_compare compares an occurrence value with its before-image and returns a
code indicating the status of the comparison. Comparison codes are listed above.

The occurrence is the current occurrence number as determined by
sm_tm_inquire("TM_OCC"). A positive occurrence number indicates an onscreen
occurrence. A negative occurrence number indicates a deleted occurrence; an
occurrence is deleted by the logical key DELL or by a call to sm_i_doccur.

In the standard transaction models, the requests TM_INSERT, TM_UPDATE, and
TM_DELETE each call sm_bi_compare. This allows the model to choose the
appropriate processing for a changed occurrence.

A special case exists when a row’s primary key value is set to empty or NULL. The
program can do this in one of the following ways:

! Write an empty string to the field.

! Call sm_tm_command("CLEAR").

! Call sm_tm_clear.
Programming Guide 5-93

sm_bi_compare
In the standard models both the TM_DELETE and TM_INSERT requests test for
BI_KEY_CHANGED and both perform processing for this change. Therefore, if a primary
key value changes, the standard models delete the occurrence using the before-image
value of the primary key and insert a new occurrence using the onscreen value of the
primary key. The model may be changed so that TM_UPDATE handles all updates,
including primary key changes.

This function operates on the current table view. It is intended to be called from a
transaction model or event function.

Example /* The following example taken from the standard
transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:
/* Do nothing, except for updates */

occ_type = sm_bi_compare();
if (occ_type != BI_UPDATED)
{

break;
}

if (!reuse_cursor)
{

save_cursor_type = 0;
}
reuse_cursor = 0;

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;
5-94 Library Functions

sm_bi_copy
sm_bi_copy

Copies current values of a range of occurrences to before images

#include <tmusubs.h>

int sm_bi_copy(void);

Returns • 0: Success.
• DM_TM_ERR_GENERAL: No transaction or table view is available.
• DM_TM_ERR_MALLOC: Memory allocation error.

Description sm_bi_copy writes the current values of a range of occurrences to their respective
before-image occurrences. The starting occurrence is the value of
sm_tm_inquire("TM_OCC") and the range of occurrences is determined by the value
of sm_tm_inquire("TM_OCC_COUNT"). If TM_OCC_COUNT has a value of -1,
sm_bi_copy gets the number of occurrences in the table view. If TM_OCC has a value
of 1 and TM_OCC_COUNT has -1, sm_bi_copy copies every occurrence in the table
view. Use sm_tm_iset to set the values of TM_OCC and TM_OCC_COUNT before calling
sm_bi_copy.

The SELECT transaction command calls sm_bi_copy for updatable and non-updatable
table views. It sets TM_OCC to the first occurrence where data was fetched; it sets
TM_OCC_COUNT to the number of rows fetched. Therefore, sm_bi_copy copies each
selected occurrence.

The standard transaction models call sm_bi_copy in the TM_POST_SAVE request if the
current mode is TM_UPDATE_MODE and sm_bi_initialize was successful. Notice
that the models set TM_OCC_COUNT to -1 before calling sm_bi_copy. This ensures that
all onscreen occurrences are copied.
Programming Guide 5-95

sm_bi_initialize
sm_bi_initialize

Initializes before-image data for widgets in the current table view

#include <tmusubs.h>

int sm_bi_initialize(void);

Returns • 0: Success. Before-image successfully initialized for the table view or the table
view has the updatable property (under Transaction) set to PV_NO.

• DM_TM_ERR_TBLNAME: Table view did not have table property set.
• DM_TM_ERR_PRIMARY_KEY: Table view did not have a primary_key property

set.
• DM_TM_ERR_COL_NOT_FOUND: Widget not found for primary key column.
• DM_TM_ERR_MALLOC: Memory allocation error.
• DM_TM_ERR_GENERAL: No transaction or table view is available.

Description sm_bi_initialize initializes or reinitializes before-image data for the widgets in the
current table view. Before-image describes the state of transaction data before the user
or program changes it.

The transaction commands NEW and SELECT call sm_bi_initialize. For the NEW
command, the before-image for the table view is empty. For the SELECT command, a
before-image is defined for each row in the select set.

To initialize the before-image structures, the function first examines the properties of
the current table view and the table view’s members. It builds the table view’s insert
list and update list and it verifies that the current table view can participate in the
before-image. If a table view has the updatable property set to PV_YES, it must also
have values in the table and primary_key properties (under Database).

If the Table and Primary Key properties are not set, sm_bi_initialize returns an
error. Furthermore, sm_bi_initialize verifies that a widget exists for each column
named by the table view’s primary_key property. If the widget does not exist in the
current table view, the transaction manager looks for a link that names the current table
view as a child. The criteria is satisfied if the primary key column is named in the
relations property of the link and that property points to an onscreen widget, a
literal, or to a widget in the link’s parent table view (or the parent of the server view).
Otherwise, sm_bi_initialize returns an error.
5-96 Library Functions

sm_bi_initialize
The standard transaction models call sm_bi_initialize as part of the processing for
the TM_POST_SAVE request. If an application has saved data while in new or update
mode, the models call sm_bi_initialize after the save completes. This allows the
application to use the current screen data as the starting point for the next save.

For example, assume the application executes sm_tm_command("NEW") to enter new
customer data. The user enters the data and the application executes
sm_tm_command("SAVE"). If the save is successful (e.g., it generates and executes a
SQL INSERT statement), the standard model calls sm_bi_initialize before
returning control to Panther. To enter the customer’s spouse, the user can change the
appropriate fields and call sm_tm_command("SAVE") again. This is also equivalent to
calling sm_tm_command("COPY") after a SAVE.

Similarly, for the SELECT command, the use of sm_bi_initialize in the standard
models allows the application to continue updating the screen data after a save. If
customer data is fetched with sm_tm_command("SELECT") and the user changes the
customer’s phone number and calls sm_tm_command("SAVE"), the model performs
save processing (e.g., generates and executes a SQL UPDATE statement) and, by default,
calls sm_bi_initialize. The user can continue updating the onscreen data without
re-selecting it. If the user enters a comment and calls sm_tm_command("SAVE")
again, the transaction manager performs save processing for all changes since the last
call to sm_bi_initialize. Therefore, it might generate and execute a SQL UPDATE
statement for the comment; it does not repeat save processing for the earlier phone
number change.

This function operates on the current table view. It is intended to be called from a
transaction model or event function.
Programming Guide 5-97

sm_bkrect
sm_bkrect

Sets the background color of a rectangle

int sm_bkrect(int start_line, int start_col, int num_of_lines,
int num_of_col, int bkgr_colors);

start_line, start_col
Specify the upper-left corner of the area to set, where the values of
start_line and start_column can range from 0 through the length and
width of the screen less 1, respectively.

num_of_lines

The length of the area to set.

num_of_col

The width of the area to set.

bkgr_colors

The attributes to set as the area’s background color.

Environment Character-mode

Returns 0 Success.
1 The starting line and column are valid but the rectangle was truncated to fit.

-1 Invalid starting line or column.

Description sm_bkrect changes the background color of a rectangular area of the current screen.
The background color must be one of the constants defined in smattrib.h. You can
highlight the background color by OR’ing the background color attribute with
B_HILIGHT.

All fields or elements that start inside the area have their background attributes
changed to the specified attribute. Display text inside the rectangular area has its
background attribute set. Make sure that fields or elements that change are entirely
inside the area; otherwise, a ragged edge results.

Example /* Draw some colored squares on the display*/
int colors[] =
{

B_RED,
B_BLUE,
B_WHITE,
5-98 Library Functions

sm_bkrect
B_CYAN
};

int mondrian(void)
{
 int i;

for (i=0;i<sizeof(colors)/sizeof(int);i++)
 {

 sm_bkrect((i/2) * 10,(i & 1) * 40, 10, 40, colors[i]);
 }
 return(0);
}

Programming Guide 5-99

sm_c_off
sm_c_off

Turns the cursor off

void sm_c_off(void);

Description sm_c_off tells Panther that the normal cursor setting is off. Use this function when all
fields on the current screen are protected. The normal cursor setting is in effect except
under these circumstances:

! The cursor is off when a block cursor is in use, as during menu processing.

! The cursor is off while screen manager functions are writing to the display.

! The cursor is on within certain error message display functions.

If the display cannot turn its cursor on and off—CON and COF entries are not defined in
the video file—this function has no effect.

Use sm_c_on to turn the cursor on.

Example sm_ferr_reset(0, "Verify that the cursor is turned ON");
sm_c_off();
sm_femsg(0, "Verify that the cursor is turned OFF");
sm_c_on();
sm_femsg(0, "Verify that the cursor is turned ON");

See Also sm_c_on
5-100 Library Functions

sm_c_on
sm_c_on

Turns the cursor on

void sm_c_on(void);

Description sm_c_on tells Panther that the normal cursor setting is on. The normal setting is in
effect except under these circumstances:

! The cursor is off when a block cursor is in use, as during menu processing.

! The cursor is off while screen manager functions are writing to the display.

! The cursor is on within certain error message display functions.

If the display cannot turn its cursor on and off—CON and COF entries are not defined in
the video file—this function has no effect.

Use sm_c_off to turn the cursor off.

Example sm_ferr_reset(0, "Verify that the cursor is turned ON");
sm_c_off();
sm_femsg(0, "Verify that the cursor is turned OFF");
sm_c_on();
sm_femsg(0, "Verify that the cursor is turned ON");

See Also sm_c_off
Programming Guide 5-101

sm_c_vis
sm_c_vis

Turns the cursor position display on or off

void sm_c_vis(int display);

display

Specifies whether to turn the cursor position display on or off:

" 0 causes subsequent status line messages to be displayed without the
cursor’s position display.

" Non-zero displays subsequent status line messages with the cursor’s
position display. This includes background status messages. Messages
that would overlap the cursor position display are truncated.

Description sm_c_vis toggles display of the cursor position on and off according to the value of
display. This function has no effect if the CURPOS entry in the video file is not
defined. In this case, the cursor position display never appears.

Panther uses an asynchronous function and a status line function to perform the cursor
position display. If either one is already installed, sm_c_vis overrides it.

Example #include <smdefs.h>
#include <smkeys.h>

/* Toggle the cursor position display on or off when
 * the PF10 key is struck. The first time the key is
 * struck, it will go on.
 */

static int cpos_on = 0;

switch (sm_input(IN_DATA))
{
...
case PF10:

sm_c_vis (cpos_on ^= 1);
...
}

5-102 Library Functions

sm_calc
sm_calc

Executes a math expression

int sm_calc(int field_number, int occurrence, char *expression);

field_number

The field to use for relative field references, for backward compatibility only.
If expression references fields according to current conventions, supply 0.

occurrence

The occurrence in field_number to use for relative field references, for
backward compatibility only. If expression references fields according to
current conventions, supply 0.

expression

A math expression. Refer to “Performing Calculations and Validating
Numbers” on page 8-26 in Using the Editors for information on creating math
expressions.

Returns 0 Success
-1 A math error occurred.

Description sm_calc lets you execute a math expression. Use this function to perform
mathematical operations that use the contents of one or more fields and then insert the
result into a field.

If, in the event of a math error, you want the cursor to move a specific field, specify
that field with field_number. If the field is an array and occurrence is offscreen,
Panther scrolls that occurrence into view.

Example /* Compute payment due date. */

sm_calc(0, 0, "paymentduedate = @date(shipdate) + 30");
Programming Guide 5-103

sm_cancel
sm_cancel

Resets the display and exits

void sm_cancel(int arg);

arg

A dummy argument that always has a value of 0. This argument lets the C
function signal use sm_cancel as a signal handler.

Description sm_initcrt installs this function to handle keyboard interrupts. sm_cancel calls
sm_resetcrt to restore the display to the operating system’s default state, and exits
to the operating system.

Depending on your operating system, you can also install this function to handle
conditions that normally cause a program to abort. If a program aborts with
sm_cancel installed, its call to sm_resetcrt ensures that your terminal is restored to
its normal state.

Example /* the following program segment could be found in
 * some error routines */

#include <smdefs.h>
if (error)
{

sm_fquiet_err(0, "fatal error -- can't continue!\n");
sm_cancel(0);

}

/* The following code can be used on a UNIX system to
 * install sm_cancel() as a signal handler. */

#include <smdefs.h>
#include <signal.h>

signal(SIGTERM, sm_cancel);
5-104 Library Functions

sm_ckdigit
sm_ckdigit

Validates data with a check digit function

int sm_ckdigit(int field_number, char *field_data, int occurrence,
int modulus, int minimum_digits);

field_number

The field to validate. If field_number is 0, sm_ckdigit uses the data in
field_data. If an error occurs and field_number is 0, no message is
posted.

field_data

Specifies the data to validate. If field_data is null, the string to check is
obtained from the field_number and occurrence and an error message is
displayed if the string is bad.

occurrence

The occurrence in field_number to validate.

modulus

Specifies the check digit algorithm to use. By default, sm_ckdigit supports
mod 10 and mod 11 algorithms. For more information about the check digit
algorithms, refer to the source code of sm_ckdigit that is distributed with
Panther.

minimum_digits

The minimum number of digits required by the check digit algorithm.

Returns 0 The value of field_number or field_data is valid.
-1 The field contents lack the minimum number of digits or proper check digit.
-2 field_data is null and the field or occurrence cannot be found.

Description sm_ckdigit checks whether the data in field_data or occurrence contains the
required minimum number of digits and ends with the proper check digit. This function
is typically called by Panther at field validation; it uses the values in the field’s Check
Digit and Minimum Digits properties as arguments for parameters modulus and
minimum_digits, respectively.

If you specify a field occurrence and its data is invalid, Panther issues an error message
before returning. If you set field_number to 0 and supply invalid data for
field_data, Panther does not issue any message.
Programming Guide 5-105

sm_ckdigit
You can install your own check digit function to replace sm_ckdigit. For more
information on installing functions, refer to “Installing Functions” on page 44-5 in the
Application Development Guide.
5-106 Library Functions

sm_cl_all_mdts
sm_cl_all_mdts

Clears the mdt property for all occurrences

void sm_cl_all_mdts(void);

Description sm_cl_all_mdts resets to PV_NO the mdt property of all occurrences, onscreen and
off, for every field on the current screen. This property indicates whether the data in an
occurrence has changed since screen entry.

Panther sets an occurrence’s mdt property to PV_YES when it is modified after screen
entry, either because of keyboard entry or a call to a function like sm_putfield. A
field undergoes validation only if its mdt property is set to PV_YES.

You can clear an individual occurrence, set its mdt property to PV_NO.

Example /* Clear mdt property for all fields on the screen.
 * Then write data to the last field, and check that its
 * mdt property is the only one set. */

vars ct
vars not_modified = 1
vars total_fields = @screen("@current")->numflds

call sm_cl_all_mdts()
@field_num(total_fields) = "Hello" // modify last field

for ct = 1 while ct <= total_fields && not_modified
{
 if @field_num(ct)->mdt == PV_YES
 not_modified = 0
}
ct = ct - 1 // remove last increment of counter

if ct == total_fields && !not_modified
 msg emsg("last field is the only one modified")
else if ct < total_fields
 msg emsg("Something is rotten here")
else
 msg emsg("Nothing has changed")
return

See Also sm_tst_all_mdts
Programming Guide 5-107

sm_cl_unprot
sm_cl_unprot

Clears data from unprotected widgets

void sm_cl_unprot(void);

Description sm_cl_unprot erases onscreen and offscreen data from all widgets (with the
exception of list boxes) that are unprotected from clearing—that is, their
clearing_protect property is set to PV_NO. Date and time fields that take system
values are reinitialized. Fields whose null_field property are set to PV_YES are reset
to their null indicator values.

This function is normally bound to the CLR key.

To clear data from list box widgets, refer to sm_clear_array.

Example /* The following code clears all unprotected fields
 * and puts the cursor into the first one. */

sm_cl_unprot();
sm_home();
5-108 Library Functions

sm_*clear_array
sm_*clear_array

Clears all data in an array

int sm_clear_array(int field_number);

int sm_n_clear_array(char *field_name);

int sm_1clear_array(int field_number);

int sm_n_1clear_array(char *field_name);

field_name, field_number
A field in the array to clear.

Returns 0 Success.
-1 The field does not exist.

Description sm_clear_array clears all data from the array that contains field_number or
field_name and resets the number of occurrences in the array to 0. The array is
cleared even if it is protected from clearing.

sm_1clear_array and sm_n_1clear_array only clear the specified array;
sm_clear_array and sm_n_clear_array also clear arrays synchronized with the
array unless they are protected from clearing.

Example /* Clear the entire array of "names" and arrays
 * synchronized with "names". */

sm_n_clear_array("names");

/* Clear the "totals" column of a screen,
 * without clearing arrays synchronized with "totals". */
sm_n_1clear_array("totals");
Programming Guide 5-109

sm_close_window
sm_close_window

Closes the current window

int sm_close_window(void);

Returns 0 Success.
-1 No window is open.

Description sm_close_window closes a screen opened as a window by sm_r_window,
sm_r_at_cur, or one of their variants.

sm_close_window erases the currently open window and restores the screen to its
state before the window opened. If LDB processing is active, sm_lstore writes data
from the named fields to the LDB; otherwise, all window data is lost. If the closed
window was spawned by another one, Panther makes the parent window the current
one and restores the cursor to its last position in that window.

Panther automatically calls sm_close_window when you close a form with
sm_jclose. sm_jclose calls sm_jform to pop the form stack and calls
sm_close_window to empty the form’s window stack.

Note: sm_close_window does not close the base screen in a window stack—that is,
the active form. To close the active form, call sm_jclose.

Example #include <smdefs.h>
#include <smkeys.h>

/* In a validation function, if the field contains a */
/* special value, open up a window to prompt for a */
/* second value and save it in another field. */

int validate (field, data, occur, bits)
char *data;
int field, occur, bits;
{

char buf[256];

if (bits & VALIDED)
return 0;

if (strcmp(data, "other") == 0)
5-110 Library Functions

sm_close_window
{
sm_r_at_cur "getsecval");
if (sm_input(IN_DATA) != EXIT)

sm_getfield(buf, 1);
else

buf[0] = 0;
sm_close_window();
sm_n_putfield("secval", buf);

}

return 0;
}

See Also sm_r_window, sm_wselect
Programming Guide 5-111

sm_com_load_picture
sm_com_load_picture

Returns the object ID for a graphics file

#include <smmwuser.h>

int sm_com_load_picture(char *name, int width, int height);

name

The name of the graphics file located in a Panther library or in a directory
specified by SMPATH.

width, height
The size of the graphic. If 0, the picture keeps it natural size; otherwise, these
parameters can be used to shrink or enlarge the picture. In JPL these
parameters can be omitted and therefore default to 0.

Environment Windows

Scope Client

Returns • An object ID which represents the picture. The caller is responsible for
destroying the picture (by calling sm_obj_delete_id) when the picture is no
longer needed.

Description sm_com_load_picture gets an object ID for the specified picture so that the image
can be passed as a parameter in sm_obj_call or as a value in
sm_obj_set_property.

In those functions, the image’s object ID can be referenced using @obj.

Example In the following example, @obj must be used since the ImageListcontrol does not
supply sufficient information in its type library. In other cases, @obj may not be
needed (but is not harmful). If you get a type mismatch error without using @obj, try
@obj in the call.

proc fill_imagelist
{
vars imagelist// imagelist control
vars images// list of images in the imagelist
vars pic // one picture

@app()->current_component_system=PV_SERVER_COM
5-112 Library Functions

sm_com_load_picture
imagelist = sm_obj_create("MSComctlLib.ImageListCtrl")
images = sm_obj_get_property(imagelist, "ListImages")

pic = sm_com_load_picture("logo.bmp")
call sm_obj_call(images, 1, '', @obj(pic))
sm_obj_delete_id(pic)

pic = sm_com_load_picture("folder.bmp")
call sm_obj_call(images, 2, '', @obj(pic))
sm_obj_delete_id(pic)

pic = sm_com_load_picture("screen.bmp")
call sm_obj_call(images, 3, '', @obj(pic))
sm_obj_delete_id(pic)

call sm_obj_delete_id(images)

// install the ImageList into the control

call sm_obj_set_property(control->id, "ImageList", imagelist)
call sm_obj_delete_id(imagelist)
}

See Also sm_obj_call, sm_obj_set_property
Programming Guide 5-113

sm_com_QueryInterface
sm_com_QueryInterface

Accesses an interface of a COM component

#include <smmwuser.h>

hr = sm_com_QueryInterface(obj_id, iid, ppv);

HRESULT hr;

REFIID iid;

LPVOID *ppv;

obj_id

An integer handle that identifies the COM object whose interface you want to
get. The handle is returned by sm_obj_create for service components,
sm_prop_id for ActiveX controls.

Environment Windows, Web; C only

Returns • 0: The HRESULT is S_OK; the last call succeeded.
• E_NOINTERFACE if the interface is not available.

Description sm_com_QueryInterface can be used to access an interface of a COM component.
This function provides low-level access to the component and, as such, can only be
called from C or C++.

For more information on using the QueryInterface method, refer to the ActiveX and
COM specifications.

Example int id = sm_prop_id ("treeview");
LPDISPATCH pDispatch;
HRESULT hr;

hr = sm_com_QueryInterface
(id, IID_IDispatch, (LPVOID *)&pDispatch);

if (SUCCEEDED(hr))
{
...
pDispatch->Release ();
}

5-114 Library Functions

sm_com_result
sm_com_result

Gets the error code returned by the last call to a COM component

int sm_com_result(void);

Environment Windows, Web

Scope Client

Returns On Windows platforms:

• The HRESULT from the most recent COM function call. Refer to winerror.h
for values; 0 is the value for S_OK.

On UNIX platforms:

0 Success.
-1 Failure.

Description sm_com_result returns the result from the last call to an sm_com routine. Only the
result of the last call is recorded; subsequent calls will overwrite this value.

The HRESULT values are only available on Windows platforms and are determined by
the OLE specifications and the COM component author. For values, refer to
winerror.h and the documentation for the COM component.

Since an error handler will only be fired on negative exception codes, use this function
to retrieve positive exceptions.

Example #include <smuprapi.h>
{
id = sm_prop_id("spinner");
sm_obj_set_property(id, "Value", "40");
errcode = sm_com_result();
}

Programming Guide 5-115

sm_com_result_msg
sm_com_result_msg

Gets the error message returned by the last call to a COM component

char *sm_com_result_msg(void);

Environment Windows, Web

Scope Client

Returns The error message as a string.

Description sm_com_result_msg returns a string giving the text of the error message.

See Also sm_com_result
5-116 Library Functions

sm_com_set_handler
sm_com_set_handler

Sets an event handler for the specified event on an ActiveX control

int sm_com_set_handler(int obj_id, char *event, char *handler);

obj_id

An integer handle that identifies the COM component whose method you
want to call. The handle is returned through sm_prop_id for ActiveX
controls.

event

The designated event fired by the ActiveX control.

handler

The handler to set for the specified event. This can be a prototyped function
or a JPL procedure.

Environment Windows, Web

Scope Client

Returns 0 Success.
-1 Failure: The event is not supported by the component.

Description sm_com_set_handler sets the handler for the specified event. Refer to the
documentation for the ActiveX control to see which events are available.

The ActiveX control can pass parameters as part of the event. If parameters exist, the
handler must perform the necessary processing. For an example, open the TreeView
ActiveX control in the Panther COM Samples and look at the node_click procedure.

The return value from the handler is ignored.

Note: COM components (as opposed to ActiveX controls) normally do not generate
events. However, this routine can be used for any COM components that do
fire events.

Example // This C function calls the onURL handler on the
// URLSelected event.

#include <smuprapi.h>
int id;
Programming Guide 5-117

sm_com_set_handler
int retcode;

{
id = sm_prop_id("treeview");
retcode = sm_com_set_handler(id, "URLSelected", "onURL");
}

// This is the same JPL procedure.

vars retcode

call sm_com_set_handler(treeview->id, "URLSelected", "onURL")

proc onURL
...
return
5-118 Library Functions

sm_*copyarray
sm_*copyarray

Copies the contents of one array to another

int sm_copyarray(int target_fnum, int source_fld);

int sm_n_copyarray(char *target_fname, char *source_name);

target_fnum, target_fname
An element in the array to receive the data.

source_fld, source_name
An element in the source array.

Returns 0 Success.
-1 One of the fields or LDB entries is not found.

Description sm_copyarray and sm_n_copyarray copy the contents of the specified source array
into a target array. For each destination array occurrence, the mdt property is set to
PV_YES and the valided property to PV_NO to indicate that the occurrence is modified
and needs validation.

Because sm_copyarray references fields by number, they must be on the current
screen. sm_n_copyarray looks for the named fields first in the current screen; if the
screen omits one or both of the specified arrays, the function looks for the named entry
in the current LDB. If found there, sm_n_copyarray gets the data from or writes to
that entry.

Source and target arrays must be compatible to ensure the integrity of the copied data.
Otherwise, Panther handles differences between the two arrays as follows:

! If the source data is too long for its target, Panther truncates it automatically
and issues no warning.

! If the data is too short, Panther pads the target occurrence with spaces.

! If the target array has fewer occurrences than the source array, Panther discards
the data in the extra occurrences.

! If the target array has more occurrences than the source array, Panther clears the
data from the extra target occurrences but maintains their allocation.

See Also sm_clear_array, sm_getfield, sm_putfield
Programming Guide 5-119

sm_create_bundle
sm_create_bundle

Creates a send bundle

int sm_create_bundle(char *bundle_name);

bundle_name

The name of the buffer, or bundle, in which to store the send data. Bundle
names can be up to 31 characters long. You can create up to ten bundles of
send data in memory. One of these bundles can be unnamed. JPL’s send and
receive commands identify the unnamed bundle as the default bundle.
Create an unnamed bundle by supplying a null argument.

Returns 0 Success.
-2 Memory allocation failure.

Description sm_create_bundle creates a new send bundle. The bundle initially is empty. After
you create a bundle, you can append data items to it and send data to those items
through sm_append_bundle_item and sm_append_bundle_data, respectively.

If an existing bundle is already named bundle_name, Panther frees the existing bundle
and replaces it with the new one. If ten bundles already are in memory, Panther
removes the oldest bundle.
5-120 Library Functions

sm_d_msg_line
sm_d_msg_line

Displays a message on the status line

void sm_d_msg_line(char *message, int display_attr);

message

A pointer to the message to display. To clear the message previously
displayed with this function, supply an empty string.

display_attr

The display attribute to use for message, one of the constants defined in
smattrib.h. A value of 0 clears the message previously displayed with this
function.

Foreground colors can be used alone or OR’d together with one or more
highlights, a background color, and a background highlight. If you do not
specify a highlight or a background color, the attribute defaults to white
against a black background. Omitting a foreground color causes the attribute
to default to black.

Description sm_d_msg_line displays the contents of message on the status line with an initial
display attribute of display_attr. If the cursor position display is turned on (refer to
sm_c_vis), the end of the status line contains the cursor’s current row and column.

Messages displayed with sm_d_msg_line override both background and field status
text. They remain on all screens until you clear the status line with another call to
sm_d_msg_line, where message gets an empty string and display_attr gets 0.
Once cleared, the previously overridden message redisplays. The function
sm_d_msg_line is itself overridden by sm_ferr_reset and related functions, or by
the ready/wait message enabled by sm_setstatus.

Several percent escapes let you control the content and presentation of status messages.
The character that follows the percent sign must be in uppercase. Note that if a message
containing percent escapes is displayed before sm_initcrt is called, the percent
escapes appear in the message.

If a string of the form %Annnn appears anywhere in the message, the hexadecimal
number nnnn is interpreted as a display attribute to be applied to the remainder of the
message. Use numeric values to specify the logical display attributes you need to
construct embedded attributes. These values are specified in Table 5-7:
Programming Guide 5-121

sm_d_msg_line
If you want a digit to appear immediately after the attribute change, pad the attribute
to 4 digits with leading zeros. If the following character is not a legal hex digit, then
leading zeros are unnecessary.

Table 5-7 Panther color/attribute mnemonics

Foreground Attributes* Background
Attributes

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code

REVERSE 0010 B_HILIGHT 8000

UNDERLN 0020

BLINK 0040

HILIGHT 0080

DIM 1000

Foreground Colors Background Colors

BLACK 0000 B_BLACK 0000

BLUE 0001 B_BLUE 0100

GREEN 0002 B_GREEN 0200

CYAN 0003 B_CYAN 0300

RED 0004 B_RED 0400

MAGENTA 0005 B_MAGENTA 0500

YELLOW 0006 B_YELLOW 0600

WHITE 0007 B_WHITE 0700

NORMAL_ATTR 0007 B_CONTAINER 4000

* Attributes are additive. One or more foreground attributes can be added to
a background attribute, foreground color and background color.
5-122 Library Functions

sm_d_msg_line
If a string of the form %Kkeyname appears anywhere in the message, keyname is
interpreted as a logical key constant, and the whole expression is replaced with the key
label string defined for that key in the key translation file. If there is no label, the %K is
stripped out and the constant remains. Key constants are defined in smkeys.h.

If the message begins with a %B, Panther beeps the terminal (using sm_bel) before
issuing the message.

Example /* The following prompt uses labels for the EXIT and
 * return keys, and underlines crucial words. */

sm_d_msg_line("Press %KEXIT to %A0027abort%A7, "
"or %KNL to %A0027continue%A7.");

/* To clear the status line, use: */

sm_d_msg_line("", 0);

See Also sm_ferr_reset, sm_msg
Programming Guide 5-123

sm_*dblval
sm_*dblval

Returns the value of a field as a double precision floating point

double sm_dblval(int field_number);

double sm_e_dblval(char *field_name, int element);

double sm_i_dblval(char *field_name, int occurrence);

double sm_n_dblval(char *field_name);

double sm_o_dblval(int field_number, int occurrence);

field_name, field_number
The field with the value to get.

element

The element in field_name with the value to get.

occurrence

The occurrence with the value to get.

Environment C only

Returns • The real value of the field.

Description sm_dblval returns the contents of the specified field as a double precision floating
point. It calls sm_strip_amt_ptr to remove extra amount editing characters before it
converts the data.

Example #include <smdefs.h>

/* Retrieve the value of a starting parameter. */

double param1;

param1 = sm_n_dblval("param1");

See Also sm_dtofield, sm_strip_amt_ptr
5-124 Library Functions

sm_dd_able
sm_dd_able

Turns LDB write-through on or off for all LDBs

int sm_dd_able(int flag);

flag

Specifies whether to turn LDB processing on or off:

The previous state of LDB write-through:

0 LDB write-through was off for all LDBs.
1 LDB write-through was on for one or more LDBs.

Description sm_dd_able enables or disables data exchange between screens and all loaded LDBs
according to the value of flag.

Individual LDBs can have their write-through capability selectively turned on or off
via sm_ldb_state_set, but attempting activate write-through for an LDB will not
work if sm_dd_able has already been called to turn processing off for all loaded
LDBs.

For more information about LDB processing, refer to “Using Local Data Blocks” on
page 25-7 in Application Development Guide.

See Also sm_ldb_state_set

0 Turn processing off; no data is exchanged between screens and LDBs.

1 Turn processing on for all LDBs loaded into memory.
Programming Guide 5-125

sm_dde_client_connect_cold
sm_dde_client_connect_cold

Creates a cold DDE link to a server

#include <smmwuser.h>

int sm_dde_client_connect_cold(char *server, char *topic,
char *item, char *field);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_client_connect_cold creates a cold DDE link between a widget and a
server application. Given a cold link, the server does not notify the client Panther
application of changes to linked data. The application must explicitly request data
updates by calling sm_dde_client_request.

Before creating a link, Panther must be enabled as a client. Panther checks whether a
connection to the server application already exists—for example, another open screen
has a link to this server. If no connection exists, Panther attempts to establish one. After
Panther verifies or establishes a connection, it creates a cold link between the widget
and the specified topic and item.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.

See Also sm_dde_client_request
5-126 Library Functions

sm_dde_client_connect_hot
sm_dde_client_connect_hot

Creates a hot DDE link to a server

#include <smmwuser.h>

int sm_dde_client_connect_hot(char *server, char *topic,
char *item, char *field);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_client_connect_hot creates a hot DDE link between a widget and a server
application. Given a hot link, the server automatically updates the widget whenever the
linked data changes.

Before creating a link, Panther must be enabled as a client. Panther checks whether a
connection to the server application already exists—for example, another open screen
has a link to this server. If no connection exists, Panther attempts to establish one. After
Panther verifies or establishes a connection, it creates a hot link between the widget
and the specified topic and item.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.
Programming Guide 5-127

sm_dde_client_connect_warm
sm_dde_client_connect_warm

Creates a warm DDE link to a server

#include <smmwuser.h>

int sm_dde_client_connect_warm(char *server, char *topic,
char *item, char *field);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_client_connect_warm creates a warm DDE link between a widget and a
server application. Given a warm link, the server notifies the client Panther application
of changes to linked data. However, the application must explicitly request data
updates by calling sm_dde_client_request.

When the server notifies Panther that linked data has changed, Panther checks whether
a callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Use sm_dde_install_notify to install a callback
function.

Before creating a link, Panther must be enabled as a client. Panther checks whether a
connection to the server application already exists—for example, another open screen
has a link to this server. If no connection exists, Panther attempts to establish one. After
Panther verifies or establishes a connection, it creates a warm link between the widget
and the specified topic and item.
5-128 Library Functions

sm_dde_client_connect_warm
This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.

See Also sm_dde_client_request, sm_dde_install_notify
Programming Guide 5-129

sm_dde_client_disconnect
sm_dde_client_disconnect

Destroys a DDE link to a server

#include <smmwuser.h>

int sm_dde_client_disconnect(char *server, char *topic,
char *item, char *field);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

field

The name of a widget on the active screen.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_client_disconnect destroys a client DDE link on the active screen. If the
link specified is the last link to a server application, Panther also closes the connection
to that server.

Note: When a screen closes, Panther automatically destroys its DDE links.
5-130 Library Functions

sm_dde_client_off
sm_dde_client_off

Disables DDE client activity

#include <smmwuser.h>

void sm_dde_client_off(void);

Environment Windows

Description sm_dde_client_off prevents Panther from acting as a DDE client.

See Also sm_dde_client_on
Programming Guide 5-131

sm_dde_client_on
sm_dde_client_on

Enables DDE client activity

#include <smmwuser.h>

void sm_dde_client_on(void);

Environment Windows

Description sm_dde_client_on lets Panther act as a DDE client.

See Also sm_dde_client_off
5-132 Library Functions

sm_dde_client_paste_link_cold
sm_dde_client_paste_link_cold

Creates a cold DDE paste link between a widget and a DDE server

#include <smmwuser.h>

int sm_dde_client_paste_link_cold(char *field);

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
≤0 Failure.

Description sm_dde_client_paste_link_cold requests a cold DDE paste link between a
widget and a server application. Panther gets the clipboard data and its source—server,
topic, and item. Subsequent requests to update data use this source information to get
new data from the server. Given a cold paste link, the server does not notify the client
Panther application of changes to linked data. The application must explicitly request
data updates by calling sm_dde_client_request.

Before creating a paste link, two conditions must be true:

! The clipboard must contain data copied from the server.

! Panther must be enabled as a client.

Panther checks whether a connection to the server application already exists—for
example, another open screen has a link to this server. If no connection exists, Panther
attempts to establish one. After Panther verifies or establishes a connection, it creates
a cold link between the widget and the data source.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.
Programming Guide 5-133

sm_dde_client_paste_link_hot
sm_dde_client_paste_link_hot

Creates a hot DDE paste link between a widget and a DDE server

#include <smmwuser.h>

int sm_dde_client_paste_link_hot(char *field);

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
≤0 Failure.

Description sm_dde_client_paste_link_hot requests a hot DDE paste link between a widget
and a server application. Panther gets the clipboard data and its source—server, topic,
and item. Subsequent requests to update data use this source information to get new
data from the server. Given a hot paste link, the server automatically updates the
widget whenever the linked data changes.

Before creating a paste link, two conditions must be true:

! The clipboard must contain data copied from the server.

! Panther must be enabled as a client.

Panther checks whether a connection to the server application already exists—for
example, another open screen has a link to this server. If no connection exists, Panther
attempts to establish one. After Panther verifies or establishes a connection, it creates
a hot link between the widget and the data source.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.
5-134 Library Functions

sm_dde_client_paste_link_warm
sm_dde_client_paste_link_warm

Creates a warm DDE paste link between a widget and a DDE server

#include <smmwuser.h>

int sm_dde_client_paste_link_warm(char *field);

field

The name of the widget to receive server data.

Environment Windows

Returns 1 Success.
≤0 Failure.

Description sm_dde_client_paste_link_warm requests a warm DDE paste link between a
widget and a server application. Panther gets the clipboard data and its source—server,
topic, and item. Subsequent requests to update data use this source information to get
new data from the server. Given a warm paste link, the server notifies the client Panther
application of changes to linked data. However, the application must explicitly request
data updates by calling sm_dde_client_request.

When the server notifies Panther that linked data has changed, Panther checks whether
a callback function is installed and uses it to notify the application; otherwise, it uses
its own callback function. Use sm_dde_install_notify to install a callback
function.

Before creating a paste link, two conditions must be true:

! The clipboard must contain data copied from the server.

! Panther must be enabled as a client.

Panther checks whether a connection to the server application already exists—for
example, another open screen has a link to this server. If no connection exists, Panther
attempts to establish one. After Panther verifies or establishes a connection, it creates
a warm link between the widget and the data source.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message. If the link cannot be created, Panther posts an error
message.
Programming Guide 5-135

sm_dde_client_request
sm_dde_client_request

Requests data from a DDE server

#include <smmwuser.h>

int sm_dde_client_request(char *server, char *topic, char *item,
char *field);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

field

The name of a widget on the active screen.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_client_request requests data from a DDE server. Call this function to
update cold and warm link data on Panther screens.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message.

See Also sm_dde_client_connect_cold, sm_dde_client_connect_warm,
sm_dde_client_paste_link_cold, sm_dde_client_paste_link_warm
5-136 Library Functions

sm_dde_execute
sm_dde_execute

Sends a command to a DDE server

#include <smmwuser.h>

int sm_dde_execute(char *server, char *topic, char *command);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

command

A command in the server application’s syntax.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_execute sends a command from a Panther client to a server application. The
server decides how to execute this command.

This function can succeed only if the server application is already running; otherwise
Panther posts an error message.

See Also sm_dde_poke
Programming Guide 5-137

sm_dde_install_notify
sm_dde_install_notify

Installs a callback function that executes on changes in warm link data

#include <smmwuser.h>

void sm_dde_install_notify(void (*callback)(char *, char *));

callback

The name of the callback function to install.

Environment Windows

Description sm_dde_install_notify installs a function that Panther calls when it gets
notification from a server that warm link data has changed. If no callback function is
installed, Panther uses its own callback function to notify the application. After the
application is notified, it must explicitly request the data by calling
sm_dde_client_request.

Panther supplies two arguments to a callback function: the name of the screen, and the
name of the field that contains the link data.

Declare a callback function as follows:

void callback(char* screenname, char *fieldname);

Example /* Function to notify user of new data via a message and
 a checkbox.*/
#include <smdefs.h>

void notify(s_name, f_name)
char *s_name;
char *f_name;
{

int g_occur; /* group occurrence number */
char *g_name; /* group name */
char buff[128];
sprintf(buff,"New data available for %s on %s",

 f_name, s_name);
sm_d_msg_line(buff, 10);

 /* Locate next field, get group name, and use it to set a
 checklist item indicating that new data is available.
 */
5-138 Library Functions

sm_dde_install_notify
 g_name=sm_ftog(sm_e_fldno(f_name,0) + 1, &g_occur);
sm_select(g_name, g_occur);

}

See Also sm_dde_client_request
Programming Guide 5-139

sm_dde_poke
sm_dde_poke

Pokes data into a DDE server

#include <smmwuser.h>

int sm_dde_poke(char *server, char *topic, char *item,
char *data);

server

The server application’s name—for example, WINWORD

topic

The server topic, typically the file name of the spreadsheet or document—for
example, SALES.DOC

item

The server item—for example, DDE_LINK1

data

The data to send to the server.

Environment Windows

Returns 1 Success.
0 Failure.

Description sm_dde_poke sends unsolicited data from a Panther client to a server application. The
server decides whether to accept or reject this data. A connection to the server must
already exist; however, a link to the specified topic and item is not required.

See Also sm_dde_execute
5-140 Library Functions

sm_dde_server_off
sm_dde_server_off

Disables DDE server activity

#include <smmwuser.h>

void sm_dde_server_off(void);

Environment Windows

Description sm_dde_server_off prevents Panther from acting as a DDE server.

See Also sm_dde_server_on
Programming Guide 5-141

sm_dde_server_on
sm_dde_server_on

Enables DDE server activity

#include <smmwuser.h>

void sm_dde_server_on(void);

Environment Windows

Description sm_dde_server_on enables Panther to act as a DDE server.

See Also sm_dde_server_off
5-142 Library Functions

sm_delay_cursor
sm_delay_cursor

Changes the state of the mouse pointer

int sm_delay_cursor (int state);

state

Specifies the cursor’s new state with one of these arguments:

SM_AUTO_BUSY_CURSOR

Toggles the mouse pointer between the default cursor and the delay
cursor depending on whether the application is awaiting input or not.
The default cursor appears whenever Panther is awaiting input.

SM_BUSY_CURSOR

Changes the mouse pointer into the delay cursor.

SM_DEFAULT_CURSOR

Restores the default cursor.

SM_SAME_CURSOR

Leaves the mouse pointer unchanged. Use this argument to get the
pointer’s current state.

SM_TEMP_BUSY_CURSOR

Temporarily changes the mouse pointer to the delay cursor. Panther
restores the mouse pointer to the default cursor after Panther
refreshes the screen.

Returns • The mouse pointer’s previous state, one of the arguments specified for the
parameter state, excluding SM_SAME_CURSOR.

Description sm_delay_cursor sets the mouse pointer to be either the default cursor or the delay
cursor, or gets the mouse pointer’s current state, according to the value of state. It can
also specify to change the cursor’s state automatically, depending on whether the
application is awaiting input or not.

You can set the default cursor for a screen through the pointer property. In Windows
and Motif, the default cursor is an arrow. The delay cursor in Windows is an hourglass;
in Motif, the delay cursor is usually a wristwatch icon. You can change Motif’s default
cursor through the pointerShape resource.
Programming Guide 5-143

sm_delay_cursor
Because character-mode Panther does not change the mouse pointer shape,
sm_delay_cursor resets the background status line message to the value of SM_WAIT
or SM_READY. Note that you can turn background status messages on and off through
sm_setstatus.
5-144 Library Functions

sm_deselect
sm_deselect

Deselects an occurrence in a selection group

int sm_deselect(char *selection_group, int grp_occurrence);

selection_group

The name of the selection group with the item to deselect.

grp_occurrence

The occurrence in selection_group to deselect.

Returns -1 Arguments do not reference an occurrence.
0 Occurrence not previously selected.
1 Occurrence previously selected.

Description sm_deselect lets you deselect an occurrence within a selection group. You can use
sm_select to select a group occurrence.

See Also sm_select
Programming Guide 5-145

sm_dicname
sm_dicname

Sets the repository name

int sm_dicname(char *filespec);

filespec

The repository’s name and, optionally, path. If no path is specified, Panther
searches for the file according to the paths specified in SMPATH.

Environment C only

Returns 0 Success.
-1 Insufficient memory.
-2 Unable to find filespec.
-3 filespec is not a repository.

Description sm_dicname sets the name of the repository to open in the screen editor. You can also
specify a repository by setting the SMDICNAME variable in your setup file to the desired
repository’s name. During an editing session, you can close and open repositories
through the screen editor’s File menu. Only one repository can be open at a time.

Example #include <smdefs.h>

/* Set the name of the application's repository
 * to /usr/app/common.dic .*/

sm_dicname("/usr/app/common.dic");
5-146 Library Functions

sm_disp_off
sm_disp_off

Gets the cursor’s offset in the current field

int sm_disp_off(void);

Returns ≥0 The difference between cursor’s position and the start of the field.
-1 The cursor is not in a field.

Description sm_disp_off returns the difference between the field’s first position and the current
cursor location. sm_disp_off ignores offscreen data. To get the total cursor offset in
a shiftable field, use sm_sh_off.

See Also sm_sh_off
Programming Guide 5-147

sm_*dlength
sm_*dlength

Gets the length of a field’s contents

int sm_dlength(int field_number);

int sm_e_dlength(char *field_name, int element);

int sm_i_dlength(char *field_name, int occurrence);

int sm_n_dlength(char *field_name);

int sm_o_dlength(int field_number, int occurrence);

field_name
field_number

The field with the data to evaluate.

element

The element in field_name with the data to evaluate.

occurrence

The occurrence in the field with the data to evaluate.

Returns ≥0 Length of field contents.
-1 The field is not found.

Description sm_dlength returns the length of the data in the specified field or occurrence of a
field. The length includes any data that is shifted offscreen and therefore out of view.
The length excludes leading blanks in right-justified fields, and trailing blanks in
left-justified fields.

Example #include <smdefs.h>

/* Save the contents of the "rank" field in a buffer
 * of the proper size. */

char *save_rank;

if ((save_rank = malloc(sm_n_dlength("rank") + 1)) == NULL)
{

report_error("malloc error.");
}
else
{

sm_n_getfield(save_rank, "rank");
}

5-148 Library Functions

sm_do_uinstalls
sm_do_uinstalls

Installs an application’s event functions

void sm_do_uinstalls(void);

Environment C only

Description Event functions are installed with the library function sm_install. The call to this
function is typically, but not necessarily, made by sm_do_uinstalls, whose source
is in funclist.c.

sm_do_uinstalls is usually called by the main function. The provided source code
calls the library function sm_install to install dummy function lists. You should
replace these dummy calls with your own installation calls.

In general, you should install event functions after the call to sm_initcrt, which
initializes the display. One exception applies: you should always install an
initialization function before the call to sm_initcrt.

For more information about installing event functions, refer to “Installing Functions”
on page 44-5 in Application Development Guide.

See Also sm_initcrt, sm_install
Programming Guide 5-149

sm_*doccur
sm_*doccur

Deletes occurrences from a field

int sm_i_doccur(char *field_name, int occurrence, int count);

int sm_o_doccur(int field_number, int occurrence, int count);

field_name
field_number

The field with the occurrences to delete. In Panther 5.50 and later,
field_name can also be a grid frame or a syncronized scrolling group.

occurrence

The first occurrence to delete in the array specified by field_number or
field_name.

count

The number of occurrences to delete, starting with occurrence. If you
supply a negative value, Panther inserts new occurrences above occurrence,
with the same restrictions that apply to sm_ioccur.

Returns ≥0 The number of occurrences deleted.
-1 The field or occurrence number is out of range.
-3 Insufficient memory available.

Description sm_i_doccur and sm_o_doccur delete data from count occurrences, starting with
occurrence. If the array is scrolling, Panther then deallocates count occurrences.
Panther moves up data in the occurrences after the last-deleted occurrence to prevent
gaps in the array.

If count is equal to or greater than the number of allocated occurrences, Panther
deletes all data from the array.

If other arrays are synchronized with this one, sm_doccur performs the same operation
on them, provided their clearing_protect property is set to PV_NO. sm_doccur
ignores the target array’s clearing_protect setting.

You can use sm_doccur to insert new occurrences in a field by supplying a negative
value for count. You can achieve the same effect with sm_ioccur.

This function is normally bound to the logical key DELL.
5-150 Library Functions

sm_*doccur
See Also sm_ioccur
Programming Guide 5-151

sm_*drawingarea
sm_*drawingarea

Gets a handle to the current screen that can be passed to the window manager

#include <smmwuser.h>

HWND sm_mw_drawingarea(void);

#include <smxmuser.h>

Widget sm_xm_drawingarea(void);

Environment Motif, Windows; C only

Returns • Success: On Windows, an HWND handle to the window; on Motif, a Widget
ID.

• Failure: NULL if there is no current screen.

Description sm_mw_drawingarea and sm_xm_drawingarea get a handle to the current screen—
in the case of Windows, a HWND handle; under Motif, a Widget ID. Use these
functions with sm_translatecoords to place objects such as bitmapped graphics or
custom widgets on a Panther screen. Refer to sm_translatecoords for a Windows
example that uses this function.

Note: The Widget ID that sm_xm_drawingarea returns is not a recognizable X
widget type. Consequently, you cannot directly call XmAddCallback with it.
To use this Widget ID, you must call XmAddEventHandler.

See Also sm_translatecoords, sm_widget
5-152 Library Functions

sm_*dtofield
sm_*dtofield

Writes a real number to a field

int sm_dtofield(int field_number, double value, char *format);

int sm_e_dtofield(char *field_name, int element, double value,
char *format);

int sm_i_dtofield(char *field_name, int occurrence, double value,
char *format);

int sm_n_dtofield(char *field_name, double value, char *format);

int sm_o_dtofield(int field_number, int occurrence, double value,
char *format);

field_name
field_number

The field to receive value.

element

The element in field_name to receive value.

occurrence

The occurrence in the field to receive value.

value

The real number data to write.

format

Specifies the format to apply to value. To supply a value of 0, cast the
argument as follows: (char *)0.

Environment C only

Returns 0 Success.
-1 The field is not found.
-2 The field format properties are set for numeric display, but the formatted output

is too wide for it.

Description sm_dtofield converts the real number value to user-readable format as specified by
format. It then moves this value into the specified field with a call to sm_amt_format.
If the format string is empty and the field’s data_formatting property is set to
Programming Guide 5-153

sm_*dtofield
PV_NUMERIC, Panther uses the field’s numeric formatting subproperties to determine
precision. If data_formatting is set to PV_NONE, Panther uses the precision set by
the behavior variable DECIMAL_PLACES.

You can round the number of decimal places to n places with the format string "%.nf".
To truncate, use the format string "%t.nf".

Example /* Place the value of pi on the screen, using the
 * formatting attached to the field. */

sm_n_dtofield("pi", 3.14159, (char *)0);

/* Do it again, using only three decimal places.
 sm_n_dtofield("pi", 3.14159, "%5.3f");

See Also sm_amt_format, sm_dblval
5-154 Library Functions

sm_femsg
sm_femsg

Displays an error message and awaits user acknowledgement

void sm_femsg(int msg_num, char *message);

msg_num

A Panther message number. If you supply a string value for message, Panther
ignores this parameter.

message

The error message to display. To use the msg_num-specified message, set this
parameter to NULL.

Description sm_femsg displays the specified message either on the status line or in a popup
window and awaits user acknowledgement. This function also calls the error event
function if one is installed.

Window versus

Status Line

Display

By default, GUI versions of Panther always display messages in a popup window with
an OK button. Character-mode Panther always displays messages in a window only if
the configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set this variable
to WHEN_REQUIRED (the default), Panther displays messages on the status line except
when these conditions occur:

! The message overflows the status line. Note that Panther prevents the message
from overlapping the cursor row/column display, if it is turned on.

! The message wraps to multiple lines.

! You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW’s setting, if the
message contains the %Mu option, or the behavior variable ER_KEYUSE is set to
ER_USE.

Message

Acknowledgment

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error message.
The acknowledgement key—by default, space bar—can be set through the behavior
Programming Guide 5-155

sm_femsg
variable ER_ACK_KEY. If the user acknowledges the message through the keyboard,
Panther discards the key. You can modify this behavior for individual messages
through the %Mu option, described later.

Message

Appearance and

Behavior

Several behavior variables determine default message presentation and behavior. For
more information about these variables, refer to Chapter 2, “Application Variables,” in
Configuration Guide. You can change these defaults at runtime through sm_option.

You can change message behavior and appearance for individual messages by
embedding percent escape options in the message text. Use these options after the call
to sm_initcrt; otherwise, the percent characters appear as literals.

%Aattr-value

Change the display of the subsequent string to the attr-value-specified
attribute, where attr-value is a four-digit hexadecimal value. If the string
to get the attribute change starts with a hexadecimal digit (0...F), pad
attr-value with leading zeros to four digits. refer to Table 45-2 on page
45-9 in the Application Development Guide for valid attribute values.

This option is valid only for messages that display on the status line. Panther
ignores this option if the message displays in a window.

%B

Beep the terminal with sm_bel before the message displays. This option must
be at the beginning of the message.

%Kkey-logical

Display key label for logical key, where key-logical is a logical key
constant. When Panther displays the message, it replaces key-logical with
the key label string defined for that key in the key translation file. If there is
no label, the %K is stripped out and the constant remains. Key constants are
defined in smkeys.h

Note: If %K is used in a status line message, the user can push the
corresponding logical key onto the input queue by mouse-clicking
on the key label text.

%Md

Force the user to press the acknowledgment key (ER_ACK_KEY) in order to
dismiss the error message. Panther discards the key that is pressed. If the user
presses any other key, Panther displays an error message or beeps, depending
on how behavior variable ER_SP_WIND is set. The %Md option corresponds to
the default message behavior when behavior variable ER_KEYUSE is set to
ER_NO_USE.
5-156 Library Functions

sm_femsg
This option must precede the message text.

%Mt[time-out]

Force temporary display of message to the status line. Panther automatically
dismisses the message after the specified timeout elapses and restores the
previous status line display. Timeout specification is optional; the default
timeout is one second. You can specify another timeout in units of 1/10
second with this syntax:

#(n)

where n is a numeric constant that specifies the timeout’s length. If n is more
than one digit, the value must be enclosed with parentheses. For example, this
statement displays a message for 2 seconds:

err = sm_femsg(0, "%Mt(20)Changes saved to database.");

The user can dismiss the message before the timeout by pressing any key or
mouse clicking. Panther then processes the keyboard or mouse input.

If the message is too long to fit on the status line, Panther displays the
message in a window. In this case, users can dismiss the message only by
choosing OK or pressing the acknowledgement key. Panther then discards
any keyboard input.

This option must precede the message text.

%Mu

Force message display to the status line and permit any keypress to serve as
both error acknowledgment and data entry. Panther processes the key that is
pressed. This option must precede the message text. This option corresponds
to default message behavior when behavior variable ER_KEYUSE is set to
ER_USE.

If the message is too long to fit on the status line, Panther displays the
message in a window. In this case, users can dismiss the message only by
choosing OK or by pressing the acknowledgement key or space bar. Panther
then discards any keyboard input used to dismiss the message.

%N

Insert a line break and force display of the message in a window.

%W

Force display of the message in a window. This option must be at the
beginning of the message.

See Also sm_ferr_reset, sm_fqui_msg, sm_fquiet_err
Programming Guide 5-157

sm_ferr_reset
sm_ferr_reset

Displays an error message and awaits user acknowledgement

void sm_ferr_reset(int msg_num, char *message);

msg_num

A Panther message number. If you supply a string value for message, Panther
ignores this parameter.

message

The error message to display. To use the msg_num-specified message, set this
parameter to NULL.

Description sm_ferr_reset displays the specified message either on the status line or in a popup
window and awaits user acknowledgement. This function also calls the error event
function if one is installed.

Window versus

Status Line

Display

By default, GUI versions of Panther always display messages in a popup window with
an OK button. Character-mode Panther always displays messages in a window only if
the configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set this variable
to WHEN_REQUIRED (the default), character-mode Panther displays messages on the
status line except when these conditions occur:

! The message overflows the status line. Note that Panther prevents the message
from overlapping the cursor row/column display, if it is turned on.

! The message wraps to multiple lines.

! You specify window display with the %W format option.

Note: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of MESSAGE_WINDOW’s setting, if the
message contains the %Mu option, or the behavior variable ER_KEYUSE is set to
ER_USE.

sm_ferr_reset and sm_femsg function identically when messages are displayed in
a window. If the message is displayed on the status line, sm_ferr_reset forces the
cursor on at the current field and forces off global flag sm_do_not_display.
5-158 Library Functions

sm_ferr_reset
Message

Acknowledgment

Users can dismiss the error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error message.
The acknowledgement key—by default, space bar—can be set through the behavior
variable ER_ACK_KEY. If the user acknowledges the message through the keyboard,
Panther discards the key. You can modify this behavior for individual messages
through the %Mu option (described under sm_femsg).

Several behavior variables determine default message presentation and behavior. For
more information about these variables, refer to Chapter 2, “Application Variables,”
in Configuration Guide. You can change these defaults at runtime through
sm_option.

You can also change message behavior and appearance for individual messages
through percent escapes embedded in the message text (described under “Message
Appearance and Behavior”).

See Also sm_femsg, sm_fqui_msg, sm_fquiet_err
Programming Guide 5-159

sm_ffree
sm_ffree

Free memory allocated by sm_fmalloc

sm_ffree(VOIDPTR ptr);

ptr

Pointer to memory allocated by sm_fmalloc or functions like sm_strdup
that call sm_fmalloc.

Description .Unless ptr is the null pointer, the allocated memory that ptr points to is freed.

See Also sm_fmalloc, sm_strdup
5-160 Library Functions

sm_fi_path
sm_fi_path

Returns the full path name of a file

char *sm_fi_path(char *file_name);

file_name

A pointer to the name of the file whose path is sought.

Returns • A pointer to a static buffer that contains the path.
• 0: The file cannot be found on any path.

Description sm_fi_path finds the full path name of a file. The file can be a screen or any other
type of file. sm_fi_path returns a pointer to a static buffer that contains the file’s full
path name.

Panther searches for file_name in the current directory, then along the path given to
sm_initcrt, and finally along the path defined by SMPATH.

If the file is found, the full path name is returned to the caller. Because the static buffer
used to hold the full path name is shared by several functions, it should be used or
copied immediately.

Example char *file, *path;
...
if ((path = sm_fi_path(file)) == NULL)

sm_femsg(0, "Unable to find file");
else

sm_d_msg_line(path, INHERITED);
endif
Programming Guide 5-161

sm_file_copy
sm_file_copy

Copies a file

int sm_file_copy(char *source, char *destination, char *mode);

source, destination
The paths of the file in its original and new locations. source and
destination must be different file paths.

destination must include a file name; implicit copying to the same name
as the source file yields an error. In three-tier applications, the path to source
and destination can include a file access server ID in this format:

[server-id!]path

If you omit server-id, Panther looks for the file locally.

mode

Specifies whether to perform a text or binary copy; supply one of these
arguments:

Returns 0 Success
-1 Failure: the specified source file does not exist; an invalid argument was

supplied for mode; or another I/O error occurred.
• TP_INVALID_CONNECTION: Unable to connect to the specified server.

Description sm_file_copy copies the specified file. If the destination file does not exist,
sm_file_copy creates it; if it already exists, the function overwrites it.

In a three-tier environment, you can copy files to and from a remote file access server
by prefixing the file path with the server ID. For example, this JPL copies file rpt.out
from server oak to the local client:

vars err = ""
if sm_file_exists("oak!/disk/reports/rpt.out")
{

"b" Binary transfer

"t" Text transfer
5-162 Library Functions

sm_file_copy
err = sm_file_copy \
("oak!/disk/reports/rpt.out", "c:\reports\rpt.out", "b")

if err == 0 && cleanup() == 1
call sm_file_remove("oak!/disk/reports/rpt.out")

}

See Also sm_file_exists, sm_file_move, sm_file_remove
Programming Guide 5-163

sm_file_exists
sm_file_exists

Checks whether a file exists

int sm_file_exists (char *path);

path

Specifies the file to check. In three-tier applications, the path can include a
file access server ID in this format:

[server-id !]path

If you omit server-id, Panther looks for the file locally.

Returns 1 File exists.
0 File does not exist.

-1 Failure: An I/O error occurred.
• TP_INVALID_CONNECTION: Unable to connect to the specified server.

Description sm_file_exists lets you ascertain whether a file exists. In a three-tier environment,
you can check a file on a remote file access server by prefixing the file path with the
server ID.

For example, this JPL verifies the existence of file rpt.out on server oak before
moving it to the local machine:

if sm_file_exists("oak!/disk/reports/rpt.out")
{

call sm_file_move \
("oak!/disk/reports/rpt.out", "c:\reports\rpt.out", "b")

}

Note: On file systems that allow file-level permissions, sm_file_exists only
verifies the existence of files for which the user has read permission.

See Also sm_file_copy, sm_file_move, sm_file_remove
5-164 Library Functions

sm_file_move
sm_file_move

Copies a file and deletes its source

int sm_file_move(char *source, char *destination, char *mode);

source, destination

The paths of the file in its original and new locations. source and
destination must be different file paths.

destination must include a file name; implicit copying to the same name
as the source file yields an error. In three-tier applications, the path to source
and destination can include a file access server ID in this format:

[server-id!]path

If you omit server-id, Panther looks for the file locally.

mode

Specifies whether to perform a text or binary copy; supply one of these
arguments:

Returns 0 Success
-1 Failure: the specified source file does not exist; or another I/O error occurred.
• TP_INVALID_CONNECTION: Unable to connect to the specified server.

Description sm_file_move copies a file to the specified destination. If the destination file does not
exist, sm_file_move creates it; if it already exists, the function overwrites it. When
the copy operation is complete, the function deletes the source file. Calling this
function is equivalent to successive calls to sm_file_copy and sm_file_remove.

In a three-tier environment, you can move files to and from remote file access servers
by prefixing the file path with the server ID. For example, this JPL moves file rpt.out
from server oak to the local machine:

"b" Binary transfer

"t" Text transfer
Programming Guide 5-165

sm_file_move
if sm_file_exists("oak!/disk/reports/rpt.out")
{

call sm_file_move \
("oak!/disk/reports/rpt.out", "c:\reports\rpt.out", "b")

}

See Also sm_file_copy, sm_file_exists, sm_file_remove
5-166 Library Functions

sm_file_remove
sm_file_remove

Deletes a file

int sm_file_remove(char *path);

path

Specifies the file to delete. In three-tier applications, the path can include a
file access server ID in this format:

server-id!path

If you omit server-id, Panther looks for the file locally.

Returns 0 Success
-1 Failure: the specified file does not exist; or another I/O error occurred.
• TP_INVALID_CONNECTION: Unable to connect to the specified server.

Description sm_file_remove deletes a file. In a three-tier environment, you can remove a file
from a remote file access server by prefixing the file path with the server ID. For
example, this JPL deletes file rpt.out from server oak after moving it to the local
workstation client:

vars err = ""
if sm_file_exists("oak!/disk/reports/rpt.out")
{

err = sm_file_copy \
("oak!/disk/reports/rpt.out", "c:\reports\rpt.out", "b")

if err == 0 && cleanup() == 1
call sm_file_remove("oak!/disk/reports/rpt.out")

}

See Also sm_file_copy, sm_file_exists, sm_file_move
Programming Guide 5-167

sm_filebox
sm_filebox

Opens a file selection dialog box

void int sm_filebox(char *buffer, int length, char *path,
char *file_mask, char *title, int open_save);

buffer

On return, contains the selected file’s name. Make sure that buffer is at least
the size specified by length.

length

The length of buffer.

path

The initial path for the directory tree. If you supply an empty string, the dialog
box initially shows the directory in which the Panther application was
launched.

file_mask

A filter to narrow down the display of files in path. Use at least one wildcard
character. For example, to narrow down the display to all files that have the
extension doc, supply "*.doc" as the argument.

To show all files, supply an empty string.

title

The text of the dialog box’s title. Supply an empty string to suppress title
display.

open_save

Valid only for Windows, determines the title of the file type option menu;
ignored by other platforms. The title is platform-specific; for example, in
Windows, FB_OPEN sets the title to List Files of Type.

Environment C only

Returns 1 Success: the user chose OK and Panther copied the filename to buffer.
0 The user chose Cancel. No text is copied to buffer.

-1 Failure: A malloc error occurred or buffer was too small.
5-168 Library Functions

sm_filebox
Description sm_filebox invokes a file selection box that lets users choose a file to open or save a
file. On GUI platforms, Panther uses the GUI’s standard file selection dialog. The
dialog box initially displays the contents of the path-specified directory, and lists files
that match the wildcard specification in file_mask. Users can browse through the
directory tree. When the user chooses OK, Panther copies to buffer the name of the
file to open or save.

If you are running an application on Windows, Panther uses the value of open_save
to change the title of the file type option menu. You specify the option menu’s contents
through sm_filetypes.

Example #include <smdefs.h>

#define LEN 256
char buf [LEN];

sm_filebox(buf, LEN, "c::\\videobiz", "*.tbl", "", FB_OPEN);

See Also sm_filetypes, sm_jfilebox
Programming Guide 5-169

sm_filetypes
sm_filetypes

Adds an option to the file type option menu

int sm_filetypes(char *option_text, char *filters);

option_text

The text of the option to display on the file type option menu.

filters

A semicolon-separated list of file masks that specify the files selected through
description.

Environment Windows

Returns 0 The description is successfully added to the list.
-1 A memory allocation error occurred.

Description sm_filetypes defines a file type and adds it to the option menu that Panther displays
in a file selection dialog box. This menu gives users an easy way to specify which files
to show in the current directory.

You build the option menu through repeated calls to sm_filetypes. For example, the
following statements define two files types, Text and Executables:

sm_filetypes("Text", "*.doc; *.txt");
sm_filetypes("Executables", "*.com; *.exe; *.bat");

The dialog box subsequently invoked by sm_filebox or sm_jfilebox contains an
option menu with these file types. Options are displayed in order of their definition:
5-170 Library Functions

sm_filetypes
To change the menu, first reinitialize the current one by calling sm_filetypes with
NULL arguments or empty strings, as in this JPL statement:

call sm_filetypes("", "")

See Also sm_filebox
Programming Guide 5-171

sm_fio_a2f
sm_fio_a2f

Writes the contents of an array to a file

int sm_fio_a2f(char *file_name, char *array_name);

file_name

The name of the target file.

array_name

The name of a Panther widget that serves as the source array.

Returns 0 Success.
-4 SMFIO_IO_ERROR: Error during write operation.
-7 SMFIO_OPEN_ERROR: Unable to open file—for example, because the file does

not exist or is protected.
-8 SMFIO_FIELD_ERROR: Nonexistent field.

-13 SMFIO_GETFIELD: Unable to read the field’s contents.

Description sm_fio_a2f writes the contents of the specified array to a file. The contents of each
occurrence are written as a single line to the file.

Example proc array2file()
vars fileName, retErr

/* get the file name sent from previous dialog */
receive DATA fileName

/* put array's contents into file */
retErr = sm_fio_a2f(fileName, "comments")
if retErr != 0
{
 msg emsg "Error - error number :retErr"
}
return

See Also sm_fio_f2a
5-172 Library Functions

sm_fio_close
sm_fio_close

Closes an open file stream

int sm_fio_close(int file_stream);

file_stream

A handle to the file to close, obtained by sm_fio_open.

Returns 0 Success.
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

Description sm_fio_close closes the specified file and releases its handle for reuse. You should
call this function after all read and write operations that require an open file stream—
for example, after calling sm_fio_gets.

This function is similar to the C function fclose, except that sm_fio_close takes an
integer argument so that it can be called from JPL.

See Also sm_fio_open
Programming Guide 5-173

sm_fio_editor
sm_fio_editor

Invokes an external text editor for an array

int sm_fio_editor(char *array_name);

array_name

The name of the array whose contents you wish to edit.

Returns 0 Success.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
-8 SMFIO_FIELD_ERROR: Nonexistent field.
-9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; partial

read was successful.
-10 SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
-11 SMFIO_NO_EDITOR: Panther behavior variable SMEDITOR is undefined; no

editor is available to handle the operation.
-12 SMFIO_PUTFIELD: Unable to write to the field.
-13 SMFIO_GETFIELD: Unable to read the field’s contents.

Description sm_fio_editor invokes the editor specified in the behavior variable SMEDITOR and
writes the contents of array_name to a temporary file. Each occurrence is written as
a single line to that file.

When you exit the editor, Panther writes the edited text back to the array. Panther
attempts to write each line in the file to a single occurrence. If any line is too long for
its target occurrence, Panther breaks the line and writes the overflow text to the next
occurrence. If the array contains too few occurrences to read the entire file,
sm_fio_editor discards the excess text.
5-174 Library Functions

sm_fio_error
sm_fio_error

Gets the error returned by the last call to a file I/O function

int sm_fio_error(void);

Returns 0 Success.
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-3 SMFIO_EOF: Already at end of file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
-5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
-6 SMFIO_NO_HANDLES: All available file handles currently in use.
-7 SMFIO_OPEN_ERROR: Unable to open the file—for example, because it does not

exist or is protected.
-8 SMFIO_FIELD_ERROR: Nonexistent field.
-9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; partial

read was successful.
-10 SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
-11 SMFIO_NO_EDITOR: Panther behavior variable SMEDITOR is undefined; no

editor is available to handle the operation.
-12 SMFIO_PUTFIELD: Unable to write to the field.
-13 SMFIO_GETFIELD: Unable to read the field’s contents.

Description sm_fio_error gets the last value returned by a file I/O function. Use this function
after calling sm_fio_gets and sm_fio_handle, which respectively return an empty
string and NULL when an error occurs. In both cases, you must call sm_fio_error to
determine the actual cause of the error.

Note: Because the same error code variable is shared by all JPL file I/O routines, you
should call sm_fio_error before making any other I/O operations with
Panther library functions.

Example /* Write the contents of an ASCII file to a single- *
 * line text array. The file stream handle was *
 * obtained earlier by a call to sm_fio_open() *
 */
Programming Guide 5-175

sm_fio_error
proc getStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget("comments")->max_occurrences

 /* get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get the next string in file stream */
 str = sm_fio_gets(fileStream, 32)

 /* check for error condition like EOF */
 if (str == "")
 {
 err = sm_fio_error()
 }
 /* read string into occurrence */
 comments[occurNo] = str
 }

 /* close the file stream when done */
 call sm_fio_close(fileStream)
 return
}

5-176 Library Functions

sm_fio_error_set
sm_fio_error_set

Sets the file I/O error

int sm_fio_error_set(int new_error);

new_error

The error code to set, one of the file I/O error codes shown in the Returns
section below.

Returns The value returned by the last call to a file I/O function, one of the following:

0 Success.
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-3 SMFIO_EOF: Already at end of file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
-5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
-6 SMFIO_NO_HANDLES: All available file handles currently in use.
-7 SMFIO_OPEN_ERROR: Unable to open the file—for example, because it does not

exist or is protected.
-8 SMFIO_FIELD_ERROR: Nonexistent field.
-9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; partial

read was successful.
-10 SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
-11 SMFIO_NO_EDITOR: Panther behavior variable SMEDITOR is undefined; no

editor is available to handle the operation.
-12 SMFIO_PUTFIELD: Unable to write to the field.
-13 SMFIO_GETFIELD: Unable to read the field’s contents.

Description sm_fio_error_set sets the error code for Panther’s file I/O processing functions.
Use this function to clear the last-reported error.

For an example of this function, refer to sm_fio_error.
Programming Guide 5-177

sm_fio_f2a
sm_fio_f2a

Writes a file’s contents to an array

int sm_fio_f2a(char *file_name, char *array_name);

file_name

The name of the file to read.

array_name

The name of a Panther widget.

Returns 0 Success.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.
-7 SMFIO_OPEN_ERROR: Unable to open the file—for example, because it does not

exist or is protected.
-8 SMFIO_FIELD_ERROR: Nonexistent field.
-9 SMFIO_FILE_TRUNCATE: Array not large enough to accept all file data; partial

read was successful.
-10 SMFIO_LINE_BREAK: One or more lines in the file were too long and wrapped

to the next occurrence.
-12 SMFIO_PUTFIELD: Unable to write to the field.

Description sm_fio_f2a writes the contents of a file to an array. All previous text in the array is
overwritten. If the array belongs to a synchronized scrolling group, the data of other
members in the group is unaffected.

Panther attempts to write each line in the file to a single occurrence. If any line is too
long for its target occurrence, Panther breaks the line and writes the overflow text to
the next occurrence. If the array contains too few occurrences to read the entire file,
sm_fio_f2a discards the excess text.

Example proc file2array()
vars fileName, retErr

/* get file name sent from previous dialog */
receive DATA fileName

/* put file's contents into array*/
retErr = sm_fio_f2a(fileName, "comments")
5-178 Library Functions

sm_fio_f2a
if retErr != 0
{
 call io_errproc(retErr)
}
return

See Also sm_fio_a2f
Programming Guide 5-179

sm_fio_getc
sm_fio_getc

Reads the next byte from the specified file stream

int sm_fio_getc(int file_stream);

file_stream

A handle to the required file stream, obtained by sm_fio_open.

Returns ≥0 Next character in the file stream as an integer.
-3 SMFIO_EOF: Already at end of file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

Description sm_fio_getc reads a character from the specified file stream and returns the result as
an integer. This function is similar to the C function fgetc and is intended to read the
contents of binary files.

Note: This function only returns the ASCII integer value of the read character.
5-180 Library Functions

sm_fio_gets
sm_fio_gets

Reads a line from a file

char *sm_fio_gets(int file_stream, int maxlen);

file_stream

A handle to the required file stream, obtained by sm_fio_open.

maxlen

The number of bytes to read.

Returns • A pointer to the string read from file_stream.
• An empty string if an error occurred.

Description sm_fio_gets reads maxlen bytes from the current line in file_stream or to the end
of the line and returns that string. If the current line is shorter than maxlen,
sm_fio_gets only reads up to the end of the line. If the current line is longer than
maxlen, the function returns only maxlen characters and sets the error code to
SMFIO_LINE_BREAK. The next read operation on this file stream by sm_fio_gets
continues where the last read ended. This function strips newline characters before
reading it into the return value.

If the read operation fails, the function returns an empty string and sets the appropriate
error code. You can get this error code by calling sm_fio_error. Because an empty
string can also be a valid return value—for example, the file stream contains a blank
line—you should interleave calls to sm_fio_gets with calls to sm_fio_error to
determine whether an error condition exists and to ascertain its nature. sm_fio_gets
can set one of these error codes:

SMFIO_INVALID_HANDLE Invalid file handle.

SMFIO_HANDLE_CLOSE Handle points to closed file.

SMFIO_EOF Already at end of file.

SMFIO_IO_ERROR Standard I/O error. Check the value in system variable
errno to determine the nature of the error.

SMFIO_LINE_BREAK The line is longer than maxlen characters.
Programming Guide 5-181

sm_fio_gets
Note: Because the same error code variable is shared by all JPL file I/O routines, you
should call sm_fio_error before calling any other I/O library functions.

Example /* Write the contents of an ASCII file to a single- *
 * line text array. The file stream handle was *
 * obtained earlier by a call to sm_fio_open() *
 */

proc getStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget("comments")->max_occurrences

 /* get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get the next string in file stream */
 str = sm_fio_gets(fileStream, 32)

 /* check for error condition like EOF */
 if (str == "")
 {
 err = sm_fio_error()
 }
 /* read string into occurrence */
 comments[occurNo] = str
 }

 /* close the file stream when done */
 call sm_fio_close(fileStream)
 return
}

5-182 Library Functions

sm_fio_handle
sm_fio_handle

Gets a handle to an open file

FILE *sm_fio_handle(int file_stream);

file_stream

A handle to the required file stream, obtained by sm_fio_open.

Environment C only

Returns • FILE * pointer to the specified file.
• NULL: Failure—for example, the file is closed. Call sm_fio_error to ascertain

the nature of the failure.

Description sm_fio_handle gets a FILE * pointer to a JPL file stream opened by sm_fio_open.
You can pass this handle to routines written in C. This function lets you write your own
extensions to Panther file I/O functions.

Note: This function cannot be called from JPL.
Programming Guide 5-183

sm_fio_open
sm_fio_open

Opens the specified file and returns a handle to the JPL caller

int sm_fio_open(char *path, char *mode);

path

Path name of file to open.

mode

Describes the file type—binary or text—and type of access required, one of
the following constants described in Table 5-8 in Description.

Returns ≥0 A handle to the opened file.
-5 SMFIO_INVALID_MODE: Invalid mode specified for open operation.
-6 SMFIO_NO_HANDLES: All available file handles currently in use.
-7 SMFIO_OPEN_ERROR: Unable to open the file—for example, because it does not

exist or is protected.

Description sm_fio_open opens a file in the specified mode and returns an integer handle to a file
stream that is accessible to other Panther library file I/O functions. Supply this handle
to these functions for all subsequent I/O operations on the file stream.

Note: The file stream that is opened by sm_fio_open is not accessible to standard C
library functions.

You can open a file in one of the modes shown in Table 5-8:

Table 5-8 File access modes

Mode identifier Access description

r Open read-only text file.

rb Open read-only binary file.

w Create write-only text file.

wb Create write-only binary file.

a Open text file for append.
5-184 Library Functions

sm_fio_open
If a server executes this command, it must have the necessary permissions for the
requested operation to the specified path. For example, when a Web client issues
sm_fio_open to create or open a file, the Web application server’s user ID must have
write permission to that file’s directory.

Example // this validation routine is attached to a
 // push button on a dialog screen that gets the
 // user-entered name of a file and opens it

vars fileStream = SMFIO_INVALID_HANDLE
vars operation
receive BUNDLE mode DATA operation

if (operation == "w")
{
 fileStream = getFileHandle(file, "w")
}
if (operation == "r")
{
 fileStream = getFileHandle(file, "r")
}

// All-purpose routine for supplying file handles
proc getFileHandle(fileName, mode)
vars fileHandle
fileHandle = sm_fio_open(fileName, mode)
if fileHandle < 0
{
 msg emsg "I/O error :fileHandle - reenter file name
 sm_n_gofield("fileName")
}

if fileHandle >= 0
{
 send BUNDLE f_handle DATA fileHandle

ab Open binary file for append.

r+b Open binary file for update.

w+b Create binary file for update.

a+b Open binary file for append or update.

Table 5-8 File access modes (Continued)

Mode identifier Access description
Programming Guide 5-185

sm_fio_open
}
return
5-186 Library Functions

sm_fio_putc
sm_fio_putc

Writes a single byte to an open file

int sm_fio_putc(int byte, int file_stream);

byte

An ASCII integer value to write. Attempts to write any other kind of value—
for example, a string—yield an error.

file_stream

A handle to the file to write to, obtained by sm_fio_open.

Returns 0 Success
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

Description sm_fio_putc writes the specified integer character—a single byte—to a file opened
by sm_fio_open. The value should be the integer value of an ASCII character. Call
this function only for file streams opened by sm_fio_open. JPL. Routines that are
written in C should call fputc. Do not call Panther and C functions on the same I/O
stream.

Be sure to call sm_fio_close on file_stream after you finish writing the data; the
actual write operation is not complete until the handle to this file stream is released.
Programming Guide 5-187

sm_fio_puts
sm_fio_puts

Writes a line of text to an open file

int sm_fio_puts(char *string, int file_stream);

string

Character string to be output.

file_stream

A handle to the file to write to, obtained by sm_fio_open.

Returns 0 Success.
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

Description sm_fio_puts writes the contents of string to the specified open file and appends a
newline \n character. Be sure to call sm_fio_close on file_stream after you finish
writing the data; the actual write operation is not complete until the handle to this file
stream is released.

Example proc putStr()
{
 vars str, occurNo, err, fileStream, maxOccurs
 call sm_fio_error_set(0)

 /* get array size */
 maxOccurs = @widget("comments")->max_occurrences

 /*get file stream handle sent from previous dialog */
 receive BUNDLE f_handle DATA fileStream

 /* loop through array occurrences */
 for occurNo = 1 && err = 0 \
 while (err == 0 && occurNo <= maxOccurs)
 {
 /* get string in current occurrence */
 str = comments[occurNo]

 /* put string into next line of file stream */
5-188 Library Functions

sm_fio_puts
 err = sm_fio_puts(str, fileStream)
 }

 /* close file stream when done */
 call sm_fio_close(fileStream)
 return
}

Programming Guide 5-189

sm_fio_rewind
sm_fio_rewind

Resets the file stream to the beginning of a file

int sm_fio_rewind(int file_stream);

file_stream

A handle to the file to rewind, obtained by sm_fio_open.

Returns 0 Success.
-1 SMFIO_INVALID_HANDLE: Invalid file handle.
-2 SMFIO_HANDLE_CLOSE: Handle points to closed file.
-4 SMFIO_IO_ERROR: Standard I/O error. Check the value in system variable

errno to determine the nature of the error.

Description sm_fio_rewind resets the specified file stream to the file’s beginning—for example,
in order to re-read a file’s contents.
5-190 Library Functions

sm_flush
sm_flush

Flushes delayed writes to the display

void sm_flush(void);

Description sm_flush performs delayed writes and flushes all buffered output to the display. It is
called automatically by sm_input when the keyboard is opened and there are no
keystrokes available—that is, typed ahead.

Frequent calls to this function can significantly slow execution. Because it is called
whenever the keyboard opens, the display is always up to date before data entry occurs.

You must use this function if you want timed output or other non-interactive display.

Example #include <smdefs.h>

/* Update a system time field once per second,
 * until a key is pressed. */

while (!sm_keyhit(10))
{
 sm_n_putfield("time_now", "");
 sm_flush();
}

/* ...process the key */

See Also sm_m_flush, sm_rescreen
Programming Guide 5-191

sm_fmalloc
sm_fmalloc

Allocate memory

VOIDPTR sm_fmalloc(unsigned size);

size

Number of bytes of memory to allocate.

Returns . • The value returned by malloc.
• the null pointer if size is zero or if the call to malloc failed.

Description .If size is not zero, the C library function malloc is called and the value it returns is
returned. Memory allocated by calling sm_fmalloc should be freed by calling
sm_ffree.

See Also sm_ffree, sm_strdup
5-192 Library Functions

sm_*form
sm_*form

Opens a screen as a form

int sm_d_form(char *screen_address);

int sm_l_form(int lib_desc, char *screen_name);

int sm_r_form(char *screen_name);

screen_address

A pointer to the screen’s address in memory.

lib_desc

Specifies the library in which screen_name is stored, where lib_desc is an
integer returned by sm_l_open. You must call sm_l_open before you read
any screens from a library.

screen_name

The name of the screen.

Returns 0 Success.
-1 Screen file’s format is incorrect; previous form still displayed and available.
-2 The screen cannot be found or the maximum allowable number of files is

already open; previous form still displayed and available.
-4 Unable to read the specified screen after the previous screen closed.
-5 Insufficient memory available to display the screen.

Description sm_form and its variants open a screen as a form. Because these functions do not
update the form stack, use them only with your own executive. To open a form while
under Panther control, use a control string or sm_jform. To display a screen as a
window, use sm_r_window, or one of its variants.

sm_form displays the named screen as a form. In so doing, it discards the previously
displayed form and its window stack and frees their memory. The screen displays with
its upper left-hand corner at the display’s upper left position (0,0).

If the function returns an error code of -1 or -2, the previously displayed form remains
on display and available for use. Other negative return codes indicate that the display
is undefined. The caller should display another form before using screen manager
functions.
Programming Guide 5-193

sm_*form
If the form is stored in a library, you can use sm_l_form to display it. If the form is
memory-resident, you can use sm_d_form. sm_r_form looks for the form in all
possible areas, including the disk.

Search Path When you use sm_r_form, Panther looks for the named screen in the following
locations in this order:

1. The application’s memory-resident list; if found, sm_d_form is called to display
the screen.

2. All open libraries; if found, sm_l_form is called to display the screen.

If the search fails and the supplied file name has no extension, Panther appends the
SMFEXTENSION-specified extension to the file name and repeats the search. If all
searches fail, sm_r_form displays an error message and returns.

Memory-resident

Screens

You can save processing time by using sm_d_form to display memory-resident
screens. Memory-resident screens are useful in applications with a limited number of
screens, and in environments with a slow disk. A memory-resident screen never
changes at runtime, so it can be made sharable on systems that support sharing
read-only data. sm_r_form can also display memory-resident screens if they are
properly installed with sm_formlist. To create memory-resident screens, use bin2c
to convert editable screens from disk files to program data structures that you can
compile into your application.

Screens Stored in

Libraries

You can also save processing time with sm_l_form to display screens from a library.
A library is a single file that stores screens, JPL modules, and menus. You can
assemble a library from individual screen files with formlib. Libraries let you
distribute a large number of screens with an application, and can improve efficiency
by reducing the number of search paths.

Example #include <smdefs.h>
#include <setjmp.h>

/* If an abort condition exists, read in a special
 * form to handle that condition, discarding all
 * open windows. */

extern jmp_buf re_init;

if (sm_isabort(ABT_OFF) > 0)
{
 sm_r_form("badstuff");
5-194 Library Functions

sm_*form
 if (sm_message_box("Do you want to continue?", 0,
 SM_MB_YESNO, 0) == SM_IDYES)
 longjmp(re_init);
 else sm_cancel();
}

See Also sm_r_window, sm_r_at_cur, sm_formlist
Programming Guide 5-195

sm_formlist
sm_formlist

Updates the list of memory-resident files

int sm_formlist(struct form_list *ptr_to_form_list);

ptr_to_form_list

A pointer to the form list to update.

Environment C only

Returns 0 Success.
-1 Insufficient memory is available for the new list.

Description sm_formlist adds JPL modules and screens to the memory-resident form list. Each
member of the list is a structure that contains the name of the JPL module or screen as
a character string and its address in memory. You usually call this function from main.
You can also call it elsewhere in an application program to augment to the memory
resident list.

The library functions sm_r_form, sm_r_window, and sm_r_at_cur search for the
specified screen in the memory-resident list before they try to read it from disk. The
call command and library function sm_jplcall search the memory-resident list
when they look for a JPL procedure to execute.

Because no count is given with the list, be careful to end the list with a null entry.

To make a JPL module or screen memory resident:

1. Use the bin2c utility to create a static C structure initialized with the binary
content of the object.

2. Compile and link the structure with the application executable.

Alternatively, read the object into memory after opening it with the C function fopen.

Example #include <smdefs.h>

/* Add 2 screens to memory-resident form list. */

struct form_list new_list[] =
{
 {"new_form1", new_form1},
5-196 Library Functions

sm_formlist
 {"new_form2", new_form2},
 {0, 0}
};

sm_formlist(new_list);

See Also sm_rmformlist
Programming Guide 5-197

sm_*fptr
sm_*fptr

Gets the contents of a field

char *sm_fptr(int field_number);

char *sm_e_fptr(char *field_name, int element);

char *sm_i_fptr(char *field_name, int occurrence);

char *sm_n_fptr(char *field_name);

char *sm_o_fptr(int field_number, int occurrence);

field_name
field_number

The field with the data to get.

element

The element that contains the data to get.

occurrence

The occurrence that contains the data to get.

Environment C only

Returns • A pointer to the field’s contents.
• 0: The field cannot be found.

Description sm_fptr returns the contents of the specified field. Panther strips leading or trailing
blanks.

sm_fptr shares with several other functions a pool of buffers where it stores returned
data. Consequently, you should immediately process or copy the value returned by this
function.

Example #include <smdefs.h>

/* This function reports the contents of a field. */

void report(fieldname)
char *fieldname;
{
 char buf[256], *stuf;
 if ((stuf = sm_n_fptr(fieldname)) == NULL)
 return;
 sprintf(buf, "Field '%s' contains '%s'",
5-198 Library Functions

sm_*fptr
 fieldname, stuf);
 sm_femsg(0, buf);
}

See Also sm_getfield, sm_putfield
Programming Guide 5-199

sm_fqui_msg
sm_fqui_msg

Displays an error message preceded by a constant tag

void sm_fqui_msg(int msg_num, char *message);

msg_num

A Panther message number. If you supply a string value for message, Panther
ignores this parameter.

message

The message to display on the status line. To use the msg_num-specified
message, set this parameter to NULL.

Description sm_fqui_msg is identical to sm_femsg except that it prepends a tag—for example,
ERROR:—to the specified message. sm_fqui_msg gets the tag from the SM_ERROR
entry in the message file. In GUIs, the SM_ERROR text is also preceded by the stop icon.

For more information on options available for this function, refer to sm_femsg.

See Also sm_femsg, sm_ferr_reset, sm_fquiet_err
5-200 Library Functions

sm_fquiet_err
sm_fquiet_err

Displays an error message preceded by a constant tag

void sm_fquiet_err(int msg_num, char *message);

msg_num

A Panther message number. If you supply a string value for message, Panther
ignores this parameter.

message

The message to display on the status line. To use the msg_num-specified
message, set this parameter to NULL.

Description sm_fquiet_err is identical to sm_ferr_reset except that it prepends a tag—for
example, ERROR:—to the specified message. sm_fquiet_err gets the tag from the
SM_ERROR entry in the message file. In GUIs, the SM_ERROR text is also preceded by
the stop icon.

For more information on options available for this function, refer to sm_ferr_reset.

See Also sm_femsg, sm_ferr_reset, sm_fqui_msg
Programming Guide 5-201

sm_free_bundle
sm_free_bundle

Destroys a send bundle

int sm_free_bundle(char *bundle_name);

bundle_name

The name of the bundle to destroy. Supply NULL or empty string to specify
the unnamed bundle.

Returns 0 Success.
-1 Invalid bundle name.

Description sm_free_bundle destroys the specified send bundle and frees the memory allocated
for it.

See Also sm_create_bundle
5-202 Library Functions

sm_*ftog
sm_*ftog

Converts field references to selection group references

char *sm_ftog(int field_number, int *grp_occurrence);

char *sm_e_ftog(char *field_name, int element,
int *grp_occurrence);

char *sm_i_ftog(char *field_name, int occurrence,
int *grp_occurrence);

char *sm_n_ftog(char *field_name, int *grp_occurrence);

char *sm_o_ftog(int field_number, int occurrence,
int *grp_occurrence);

field_name, field_number
The field whose group name is sought.

element

The element in field_name whose group name and group occurrence
number is sought.

occurrence

The occurrence in the specified field whose group name and group
occurrence number is sought.

grp_occurrence

On return, contains the group occurrence number that is currently in the
specified field.

Environment C only

Returns • A pointer to the group name if found and, through grp_occurrence’s output
value, the group occurrence number.

• 0 otherwise and grp_occurrence is unchanged.

Description sm_ftog converts field references to group references. It returns the name of the
selection group that contains the referenced field, and puts the field’s group occurrence
number into the address pointed to by grp_occurrence.

Use sm_i_gtof to convert selection group references back into field references.
Programming Guide 5-203

sm_*ftog
Caution: This function returns a pointer to internal data that remains valid only for
the duration of the current screen. Do not change the pointer. Doing so can
yield unpredictable and possibly disruptive results.

See Also sm_i_gtof
5-204 Library Functions

sm_*fval
sm_*fval

Forces field validation

int sm_fval(int field_number);

int sm_e_fval(char *array_name, int element);

int sm_i_fval(char *field_name, int occurrence);

int sm_n_fval(char *field_name);

int sm_o_fval(int field_number, int occurrence);

field_name
field_number

The field to validate.

element

The element in field_name to validate.

occurrence

The occurrence in the specified field to validate.

Returns 0 The field data is valid, or the field’s no_validation property is set to PV_YES.
-1 Unable to find the validation function specified for this field.
-2 The field or occurrence specification is invalid.

Description sm_fval performs validation on the specified field and returns the result. This function
is called automatically when the cursor exits a field whose no_validation property
is set to PV_NO. A field whose no_validation property is set to PV_YES never
undergoes validation processing. When called for a tab card, sm_fval first validates
all the widgets on that card and then calls the card’s validation function. To perform
validation on all screen fields, call sm_s_val.

During field validation, Panther tests a field’s data against a number of formatting and
input property settings, in the order shown in Table 5-9. Some are skipped if the field
is empty or its valided property is set to PV_YES—that is, there is no data to verify or
the data already passed verification.

Table 5-9 Property settings and field validation

Property setting Skip if valid Skip if empty

required = PV_YES y n
Programming Guide 5-205

sm_*fval
You can force validation for an empty field by setting its required property to
PV_YES. If a field has embedded characters, Panther performs validation if it contains
at least one character that is neither blank nor punctuation; otherwise, it treats the field
as empty. Math expressions, JPL functions and field validation functions are never
skipped, because they are liable to modify other fields.

Field validation is performed automatically within sm_input when the cursor exits a
field. sm_s_val validates all fields on a screen during screen exit. Applications should
call this function only to force validation of other fields. Field validation is also
performed when sm_fval or sm_validate is called to validate a tab card or tab deck
of which the field is a member.

Example // Verify that the previous field is valid before using
// the data in the current one

must_fill = PV_YES y y

regular_exp = expr y y

minimum_value = value y y

maximum_value = value y y

Check Digit = value* y y

data_formatting = PV_DATE_TIME y y

table_lookup = expr y y

data_formatting = PV_NUMERIC y y**

Validation Function* n n

Auto Field Function* n n

JPL Validation* n n

calculation n n

*Properties that are not accessible at runtime.
**If the field has a numeric format, the empty_format property also is tested.

Table 5-9 Property settings and field validation (Continued)

Property setting Skip if valid Skip if empty
5-206 Library Functions

sm_*fval
proc validate(fieldnum, data, occurrence, bits)

{
 if (sm_fval(fieldnum - 1))
 {
 // Put cursor in the previous field to show error
 call sm_gofield(fieldnum - 1);
 return 1;
 }
 // otherwise process this field's data
 ...
}

See Also sm_n_gval, sm_s_val, sm_validate
Programming Guide 5-207

sm_*get_bi_data
sm_*get_bi_data

Returns the specified before-image data

#include <tmusubs.h>

char *sm_i_get_bi_data(char *field_name, int occurrence);

char *sm_o_get_bi_data(int field_number, int occurrence);

field_name
field_number

The field whose before-image data is requested.

occurrence

The field’s occurrence number. A negative number indicates deleted
before-image data.

Environment C only

Returns • A pointer to the before-image data.
• 0: Error.

Description sm_get_bi_data retrieves the before-image data for the specified field and
occurrence.
5-208 Library Functions

sm_get_bundle_data
sm_get_bundle_data

Reads an occurrence of bundle item data

char *sm_get_bundle_data(char *bundle_name, int item_no,
int occur);

bundle_name

The name of the bundle to read. Supply NULL or empty string to specify the
unnamed bundle.

item_no

The bundle offset of the item whose data you want to read. Each data item is
identified by its offset within the bundle, where the first data item has an
offset value of 1.

occur

The occurrence to read from item_no. If the data item contains only one
occurrence, supply a value of 1.

Returns • Success: A pointer to the buffer that gets the bundle data.
• Failure: NULL pointer.

Description sm_get_bundle_data reads an occurrence from the data item item_no and returns a
pointer to the data’s location. Each occurrence in a bundle item is a null-terminated
string. If occur is greater than 1, sm_get_bundle_data traverses the bundle item
until it finds the specified occurrence.

Because Panther reuses the memory location in which the bundle data is copied, you
should read this data immediately after calling sm_get_bundle_data.

See Also sm_append_bundle_data, sm_is_bundle
Programming Guide 5-209

sm_get_bundle_item_count
sm_get_bundle_item_count

Counts the number of data items in a bundle

int sm_get_bundle_item_count(char *bundle_name);

bundle_name

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

Returns ≥0 The number of items in the bundle.
-1 Invalid bundle name.

Description sm_get_bundle_item_count counts the number of data items in the specified
bundle. You can call this function before reading send data into a screen to ensure that
a data item exists for each receiving field, or to set a counter for successive calls to
sm_get_bundle_data or sm_append_bundle_data within a loop.

See Also sm_append_bundle_item
5-210 Library Functions

sm_get_bundle_occur_count
sm_get_bundle_occur_count

Counts the number of occurrences in a data item

int sm_get_bundle_occur_count(char * bundle_name, int item_no);

bundle_name

The name of the bundle. Supply NULL or empty string to specify the unnamed
bundle.

item_no

The bundle offset of the item whose occurrences you want to count. Each data
item is identified by its offset within the bundle, where the first data item has
an offset value of 1.

Returns ≥0 The number of items in the bundle.
-1 Invalid bundle name or item number.

Description sm_get_bundle_occur_count counts the number of occurrences in the specified
data item. Use this function to get the number of occurrences in a data item. This lets
you supply the correct argument to sm_get_bundle_data to read the entire contents
of the item into a buffer. You can also use the function’s return value to set a counter
for successive reads from this buffer into a target field.

Example /* read data occurrences from a bundle data item
 into a field
 */
char *occur_data, array_data;
int num_occurs, emp_name_occur;
emp_name_occurs = 1;

/*count the number of occurrences in the data item */
num_occurs = sm_get_bundle_occur_count("myBundle", 1);

/*get item data and put into field*/
for (occur = 1;occur <= num_occurs;occur++, emp_name_occur++)
 sm_i_putfield
 ("emp_names",
 emp_name_occur,
 sm_get_bundle_data("myBundle",1,occur);

See Also sm_get_bundle_data
Programming Guide 5-211

sm_get_next_bundle_name
sm_get_next_bundle_name

Gets the name of the bundle created before the one specified

char *sm_get_next_bundle_name(char *bundle_name);

bundle_name

A pointer to the name of the bundle that precedes the bundle to get. Supply
NULL or empty string to get the most recently created bundle.

Returns • The name of the next bundle.
• An empty string if bundle_name does not exist or there are no more bundles.

Description sm_get_next_bundle_name returns the name of the bundle whose creation preceded
the one specified. Call this function iteratively inside a loop to traverse the list of all
existing bundles, from youngest to oldest.
5-212 Library Functions

sm_*get_tv_bi_data
sm_*get_tv_bi_data

Gets before-image data

#include <tmusubs.h>

char *sm_i_get_tv_bi_data(char *field_name, int occurrence,
char *tv);

char *sm_o_get_tv_bi_data(int field_number, int occurrence,
char *tv);

field_name
field_number

The field whose before-image data is requested.

occurrence

The field’s occurrence number. A negative number refers to a deleted
occurrence.

tv

The name of a table view in a transaction that is on the same screen as the
specified field. If null or empty, the current transaction manager command
determines the current table view to search for the before image.

Environment C only

Returns • 0: Error.
• A pointer to the before-image data.
• An empty string if the specified field does not exist or is not on the same screen

as an explicitly specified table view.

Description sm_get_tv_bi_data obtains the before-image values for the specified field and
occurrence, from the point of view of the specified table view.

These routines are not to be used when previous release behavior has been set by
calling sm_tm_old_bi_context. However, if the table view name is supplied, it will
be used, despite the sm_tm_old_bi_context setting.

To obtain the table view containing the specified field, use fieldName?tv as the tv
parameter.

See Also sm_get_bi_data, sm_tm_old_bi_context
Programming Guide 5-213

sm_getenv
sm_getenv

Get the value of an environment variable

char *sm_getenv(char *varname);

varname

The name of the environment variable whose value is desired.

Returns The value of the environment variable named by varname or a null string.

Description .The environment variable table or Panther’s copy of this table is searched for the
variable named varname. If the variable is found, its value is returned, else the null
string ("") is returned.

Example vars oracle_home = sm_getenv("ORACLE_HOME")
5-214 Library Functions

sm_*getfield
sm_*getfield

Copies the contents of a field

int sm_getfield(char *buffer, int field_number);

int sm_e_getfield(char *buffer, char *field_name, int element);

int sm_i_getfield(char *buffer, char *field_name, int occurrence);

int sm_n_getfield(char *buffer, char *field_name);

int sm_o_getfield(char *buffer, int field_number, int occurrence);

buffer

On return, contains the data copied from the specified field.

field_name, field_number
The field to copy, where field_name can be the name of a field or group.

element

The element to copy.

occurrence

The occurrence to copy.

Environment C only

Returns ≥0 The total length of the field’s contents.
-1 The field cannot be found.

Description sm_getfield copies data from the specified field or occurrence to buffer. Panther
omits leading blanks from right justified fields and trailing blanks from other fields If
you specify the field by name and the field is not on the screen, Panther looks for the
corresponding LDB entry. If you call the function during screen entry processing,
Panther first checks the LDB for an entry if ENTEXT_OPTION is set to LDB_FIRST.

Make sure that buffer is large enough to receive the field’s contents—at least one
greater than the field’s maximum length.

If you call sm_n_getfield on a radio button group that allows one selection, buffer
gets the group occurrence number of the selected item. For example, the radio button
group rating has the third occurrence, PG-13, selected:
Programming Guide 5-215

sm_*getfield
Given this selection, the following call to sm_n_getfield puts the string "3" into
buffer:

retvar = sm_n_getfield(buffer, "rating");

To get selections in a group that allows multiple selections—for example a group of
check box widgets—issue successive calls to either sm_i_getfield or
sm_o_getfield. For example, the genre check box group has occurrences 1, 3, and
4 selected:

Panther sees a group’s value as an array whose elements contain the offsets of the
selected items. Thus, Panther stores the selections in genre as follows:

genre[1] = "1"
genre[2] = "3"
genre[3] = "4"
genre[4] = " "

The following code gets the selections in genre through successive calls to
sm_i_getfield:

int len, grp_occ, num_occs;
char *select_val;

/* get number of selections in group "genre" */
num_occs = sm_prop_get_int(sm_prop_id("genre"),
 PR_NUM_OCCURRENCES);
5-216 Library Functions

sm_*getfield
/* get offset of selections */
for (grp_occ = 1; grp_occ <= num_occs; grp_oc++)
{
 len = sm_i_getfield(select_val, "genre", grp_occ);
 ...
}

Each call to sm_i_getfield gets the next val selection in the group and puts its offset
into select_val. For instance, when grp_occ is 2, sm_i_getfield gets the
second-selected item in genre and puts its offset value, 3 (Sci-Fi), into select_val.

Example #include <smdefs.h>

/* Save the contents of the "rank" field in a buffer
 * of the proper size. */

int size;
char *save_rank;

size = sm_n_dlength("rank");
if ((save_rank = malloc(size + 1)) == NULL)
 report_error("malloc error.");
else
 sm_n_getfield(save_rank, "rank");

See Also sm_dblval, sm_fptr, sm_intval, sm_lngval, sm_putfield
Programming Guide 5-217

sm_getkey
sm_getkey

Gets the logical value of the key hit

#include <smkeys.h>

int sm_getkey(void);

Returns • The standard ASCII value of a displayable key.
• A value greater than 255 (FF hex) for a key sequence in the key translation file.

Description sm_getkey gets and interprets keyboard input and returns its logical value. Panther
returns normal characters unchanged; it interprets logical keys according to the current
key translation file. sm_getkey is called by sm_input and is not usually called
explicitly by the application program.

Logical keys include XMIT, EXIT, HELP, arrows, data modification keys like INS,
user function keys PF1 - PF24, shifted function keys SPF1 - SPF24, and others.
Defined values for all are in smkeys.h. Some logical keys like LP and REFR are
processed locally in sm_getkey and are not returned to the caller.

Use sm_getkey to retrieve logical key values previously pushed back on the input
stream by sm_ungetkey. Because all Panther input routines call sm_getkey, you can
use sm_ungetkey to generate any input sequence automatically.

When sm_getkey reads a key from the keyboard, it flushes the display first so the user
sees a fully updated display before typing on. This is not the case for keys pushed back
by sm_ungetkey; because input comes from the program, it is responsible for
updating the display itself.

sm_getkey can call a number of user-installed functions. For information on installing
functions, refer to “Installing Functions” on page 44-5 in Application Development
Guide.

Like other Panther input functions, sm_getkey checks for externally established abort
conditions on each iteration. If such a condition exists, sm_getkey returns the ABORT
key and returns to its caller immediately. Refer to sm_isabort.

Note that Panther control strings are not executed within this function, but at a higher
level in Panther’s runtime system—that is, by functions that call sm_getkey.
5-218 Library Functions

sm_getkey
The following outline shows how Panther processes sm_getkey. This presentation
omits key translation for the sake of clarity; for a description of that algorithm, refer to
Chapter 6, “Key Translation File,” in Configuration Guide.

Step 1:

" If an abort condition exists, return the ABORT key.

" If there is a key pushed back by sm_ungetkey, return the key.

" If playback is active and a key is available, take it directly to Step 2;
otherwise read and translate input from the keyboard. When the
keyboard is read and remains inactive, Panther calls the asynchronous
functions, if any are installed.

Step 2:

" Pass the key to the keychange function. If that function specifies to
discard the key, repeat step 1; otherwise, if an abort condition exists,
return the ABORT key.

" If recording is active, pass the key to the recording function.

Step 3:

" If the routing table says to process the key locally, do so.

" If the routing table says to return the key, return it; otherwise, return to
step 1.

" If the key is a soft key, return its logical value.

Example #include <smdefs.h>
#include <smkeys.h>

int query (text)
char *text;
{
 int key;

 sm_d_msg_line(text, REVERSE);
 for (;;)
 {
 switch (key = sm_getkey())
 {
 case XMIT:
 case 'y':
 case 'Y':
 sm_d_msg_line("", WHITE);
Programming Guide 5-219

sm_getkey
 return 1;
 default:
 sm_femsg(0, "%Mu So it's 'no'");
 sm_d_msg_line("", WHITE);
 return 0;
 }
 }
}

See Also sm_keyfilter, sm_ungetkey
5-220 Library Functions

sm_*gofield
sm_*gofield

Moves the cursor into a field

int sm_gofield(int field_number);

int sm_e_gofield(char *field_name, int element);

int sm_i_gofield(char *field_name, int occurrence);

int sm_n_gofield(char *field_name);

int sm_o_gofield(int field_number, int occurrence);

field_name, field_number

The destination field.

element

The destination element.

occurrence

The destination occurrence. If occurrence is offscreen, Panther scrolls it
into view.

Returns 0 Success.
-1 The field is not found.

Description sm_gofield puts the cursor in the first enterable position of the specified field or
occurrence, according to its justification. If the field is shiftable, it is reset. If the field
has embedded characters, the cursor goes to the nearest position unoccupied by a
punctuation character. Use sm_off_gofield to put the cursor elsewhere in the field.

When called to position the cursor in a scrolling array, sm_o_gofield and
sm_i_gofield return an error if the occurrence number passed exceeds by more than
1 the number of allocated occurrences in the specified array.

This function does not immediately trigger field entry, exit, or validation processing.
This processing occurs according to the cursor position when control returns to
sm_input.

If a field validation function that calls sm_gofield is invoked by TAB, Panther
executes sm_gofield and moves the cursor to the specified field, then executes the
TAB. To prevent this extra tab, the validation function must return non-zero. When
non-zero is returned by a validation function, the field’s valided property is set to 0
(false). In this case, reset the property to 1 (true).
Programming Guide 5-221

sm_*gofield
Example #include <smdefs.h>

/* If the combination of this field and the previous
 * one is invalid, go back to the previous for data
 * entry. */

int validate(field, data, occur, bits)
int field, occur, bits;
char *data;
{
 if (bits & VALIDED)
 return 0;

 if (!lookup(data, sm_fptr(field - 1)))
 {
 sm_novalbit(field - 1);
 sm_gofield(field - 1);
 sm_fquiet_err(0, "Lookup failed - "

 "please re-enter both items.");
 return 1;
 }
 return 0;
}

See Also sm_off_gofield
5-222 Library Functions

sm_*gtof
sm_*gtof

Converts a selection group name and occurrence into a field number and occurrence

int sm_i_gtof(char *selection_group, int grp_occurrence,
int *occurrence);

selection_group

The name of the group whose field number is sought.

grp_occurrence

The occurrence in selection_group.

occurrence

On return, contains the occurrence number of the field.

Environment C only

Returns ≥1 The field number.
0 Cannot find the field.

Description sm_i_gtof converts a selection group name and occurrence into a field number and
occurrence. This function lets you use other Panther library functions to manipulate
selection group fields by converting group references into field references. For
example, to access text from a specific field within a selection group, use sm_i_gtof
to get the field and occurrence number, then call sm_o_getfield to retrieve the text.

See Also sm_ftog
Programming Guide 5-223

sm_n_gval
sm_n_gval

Forces execution of a group’s validation function

int sm_n_gval(char *group_name);

group_name

The name of the group to validate.

Returns 0 Success.
-1 The group fails any validation.
-2 The group name is invalid.

Description sm_n_gval forces execution of a group’s validation function. Note that since groups
cannot be referenced by number, this function has only the _n_ variant.

See Also sm_fval, sm_s_val, sm_validate
5-224 Library Functions

sm_hlp_by_name
sm_hlp_by_name

Displays a help window

int sm_hlp_by_name(char *help_screen);

help_screen

The name of the help screen to display.

Returns 0 Success.
1 Success: data was copied from the help screen to the underlying field.

-1 Screen was not found or another error occurred.

Description sm_hlp_by_name displays and processes the specified screen as a Panther help screen.
If the help screen has a data entry field, the function copies its data back to the
underlying field, as if the help screen were specified in the widget’s help_screen
property and the user pressed HELP.

Refer to Chapter 12, “Providing Help Facilities,” in Using the Editors for information
about Panther help screen creation and behavior.
Programming Guide 5-225

sm_home
sm_home

Homes the cursor

int sm_home(void);

Returns ≥1 The number of the field where the cursor is put.
0 All fields on the screen are tab-protected and the home position is not in a

protected field.

Description sm_home moves the cursor to the first enterable position of the first tab-accessible field
on the current screen. Panther automatically calls this function when it processes the
logical key HOME.

The first enterable position in a field depends on the justification of the field and, in
fields with embedded characters, on the presence of punctuation. If all the screen’s
fields are tab-protected, sm_home moves the cursor to the first line and column (0,0) of
the screen. If a tab-protected field occupies this position, Panther places the cursor in
that field; in this case, the cursor might be invisible.

sm_home does not immediately trigger field entry, exit, or validation processing.
Processing is based on the cursor position when control returns to sm_input.

See Also sm_backtab, sm_gofield, sm_last, sm_nl, sm_tab
5-226 Library Functions

sm_inimsg
sm_inimsg

Creates a displayable error message on failure of an initialization function

char *sm_inimsg(int filetype, int error_code);

filetype

Specifies the source of the error through one of the following constants,
defined in smumisc.h:

B_E_KEYS

Error was generated by sm_keyinit or sm_n_keyinit.

B_E_MSGS

Error was generated by sm_msg_read.

B_E_VID

Error was generated by sm_vinit or sm_n_vinit.

error_code

The error code returned by the initialization function.

Environment C only

Returns • Success: A pointer to the error message.
• Failure: Empty string.

Description sm_inimsg lets you display an error message to the user after an initialization function
fails—for example, attempts to initialize a message file fail. You supply sm_inimsg
with the error code returned from the failed function and a description of the function
itself through parameters error_code and filetype, respectively. sm_inimsg uses
this information to return a string that you can display to the user—for example, by
passing it to sm_fqui_msg.

See Also sm_keyinit, sm_msg_read, sm_vinit
Programming Guide 5-227

sm_*initcrt
sm_*initcrt

Initializes the display and Panther data structures

int sm_initcrt(char *path);

void sm_jinitcrt(char *path);

void sm_jxinitcrt(char *path);

path

Specifies where to look for a library file after Panther searches the current
directory. If you supply an empty string, Panther looks only in the current
directory or in the paths specified by SMPATH. Panther searches for library
files in these areas:

1. The current directory.

2. The directory specified by path.

3. The paths specified in the environment variable SMPATH.

Environment C only

Returns • 0: Success.
• On an error, sm_initcrt prints a descriptive message and terminates.

Description sm_initcrt is called automatically by Panther. Use this function only if you write
your own executive.

A custom executive should call sm_initcrt when screen handling starts—that is,
before any screens display and the keyboard opens for screen input. sm_initcrt can
be preceded only by those functions that set options, such as sm_option, and those
that install functions or configuration files such as sm_install or sm_vinit.

sm_initcrt performs these tasks:

1. Sets a path that Panther uses to search for libraries.

2. Calls an optional user-defined initialization function. This function initializes the
character string sm_term. If sm_term contains the terminal type, sm_initcrt
proceeds to step 4.

3. Tries to ascertain the terminal type with this search algorithm:
5-228 Library Functions

sm_*initcrt
" Looks for the variable SMTERM in the environment.

" Looks for SMTERM in SMVARS.

" Looks for the system’s TERM in the environment.

If neither SMTERM or TERM are found, sm_initcrt prompts the user to supply
the terminal type. If none is provided, the application terminates.

4. Finds and reads the setup file specified by SMVARS or the default configuration
file smvars. If the SMSETUP variable is set, it also finds and
reads this setup file.

5. Finds and reads the binary message file specified by SMMSGS. If SMMSGS cannot
be found, Panther aborts initialization.

6. Finds and reads the binary video and keyboard files defined by SMVIDEO and
SMKEY, respectively. These variables are defined in the SMVARS or SMSETUP setup
files, or in the environment. If Panther cannot determine which files to use, it
prompts for a terminal type and repeats this step.

7. Allocates memory for various data structures shared among Panther library
functions.

8. Initializes the operating system’s terminal channel. It is set to no echo and
non-buffered input, if appropriate.

9. Initializes the operating system display.

Example /* To initialize Panther without supplying a path
 * for screens:
 */

 sm_initcrt("");

See Also sm_resetcrt
Programming Guide 5-229

sm_input
sm_input

Opens the keyboard for data entry and menu selection

int sm_input(int initial_mode);

initial_mode

Supply IN_AUTO.

Returns • The key that terminated the call to sm_input.
• The first character of the selected menu item.

Description sm_input opens the keyboard for data entry or menu selection. This function is called
automatically by Panther; use it only if you write your own executive.

sm_input calls sm_getkey to get and process keyboard entry. While in data entry
mode, ASCII data can be entered into fields according to their restrictions or
properties. sm_input returns when one of these events occurs:

! A return entry field is filled or tabbed from.

! It gets a logical key with the return bit set in the routing table.

If sm_getkey returns one of these logical keys—XMIT, EXIT, HELP, or a cursor
position key—a routing table determines how to process it. Routing options are set by
sm_keyoption.

See Also sm_getkey, sm_isabort, sm_keyoption
5-230 Library Functions

sm_inquire
sm_inquire

Gets the value of a global integer variable

#include <smglobs.h>

int sm_inquire(int property);

property

Specifies the global integer to get with one of the constants described in
Table 5-10.

Returns ≥0 The current value of the global variable. If the variable can have a value of true
or false, sm_inquire returns 1 for true and 0 for false.

-1 Failure.

Description sm_inquire gets the integer value of the global variable specified by property. To
modify the value of a global integer variable, use sm_iset.

Table 5-10 lists the constants that you can supply as arguments for property:

Table 5-10 Global integer variables

Constant Meaning

I_BSNESS Screen manager controls display? (true/false).

I_INHELP Help level of current screen, or 0 if not in help.

I_INERROR Is a message box up on the screen? (true/false)

I_INSMODE In insert mode? (true/false).

I_INXFORM In the screen editor? (true/false) Field validation routines are generally still
called when in editor; they can check this flag to disable certain features.

I_MXCOLMS Number of columns available for use by Panther on the hardware display.

I_MXLINES Number of lines available for use by Panther on the hardware display.

I_NODISP In non-display mode? (true/false). Initially set to false, setting this variable
to true causes no further changes to the actual display, although Panther’s
internal screen image is kept up-to-date.
Programming Guide 5-231

sm_inquire
Example if (sm_inquire(I_BSNESS))
 sm_ferr_reset(0, "Problem #2!");
else
 fprintf(stderr,"Problem #2!\n");

See Also sm_iset, sm_pinquire, sm_pset

I_NOMSG Error message display disabled? (true/false).

I_NOWSEL LDB merge off for sm_wselect? (true/false) Normally false. True can be
useful for a quick sm_wselect/sm_wdeselect pair.

SC_AFLDMDT Bit mask that contains contextual information about the field’s validation
state and the circumstances under which a prototyped field function was
called. Corresponds to the fourth standard argument passed to a
non-prototyped field function.

SC_AFLDNO Number of the field calling a prototyped field function. Corresponds to the
first of the four standard arguments passed to a non-prototyped field
function.

SC_AFLDOCC Occurrence number of the field calling a prototyped field function.
Corresponds to the third standard argument passed to a non-prototyped
field function. The second standard argument, can be obtained from
sm_getfield or sm_o_getfield.

SC_AGRPMDT Bit mask that contains information about the group’s validation state and
the circumstances under which a prototyped group function was called.
Corresponds to the second of two standard arguments passed to a
non-prototyped group function. The first standard argument, a pointer to
the group name, can be obtained by the fldnum property of a member
widget and sm_ftog at group entry and exit. Access to the group name at
group validation is not supported.

SC_BDATTR Border attribute of screen.

SC_BDCHAR Border character of screen.

SC_CCOLM Current column number in screen (zero-based).

SC_CLINE Current line number in screen (zero-based).

Table 5-10 Global integer variables (Continued)

Constant Meaning
5-232 Library Functions

sm_install
sm_install

Installs application event functions

fnc_data_r *sm_install(int func_type, fnc_data_t funcs[],
int *num_fncs);

func_type

Specifies the event function type. For event function types, refer to
Table 44-1 on page 44-6 in Application Development Guide.

funcs

The address of the fnc_data structure or array of structures to install.
Functions to install with sm_install are stored in a fnc_data structure
before installation. For more information about fnc_data structures, refer to
“Preparing Functions for Installation” on page 44-4 in Application
Development Guide.

To deinstall functions, set funcs to 0. This removes all unprotected event
functions of all func_type types.

num_fncs

Supply one of these arguments:

" If an automatic function, null pointer.

" If a list of demand functions, the address of an integer whose value is
the number of functions to install.

On return, this parameter points to the number of entries in the function list.

Environment C only

Returns • When installing an automatic event with a single function, returns the address
of a buffer that contains a copy of the previously installed function’s data
structure. If no function was previously installed, returns zero.

• When installing a function list, returns a pointer to the list.

Description sm_install is typically used when you build a Panther application or authoring
executable. It compiles C functions and links them to Panther’s function events. These
C functions can be Panther library functions or functions that you write. sm_install
can also install and deinstall functions at runtime.
Programming Guide 5-233

sm_install
The file funclist.c, provided in source form with Panther, can be used as a template
for installing automatic and demand event functions. This file contains sample
fnc_data structure definitions and corresponding calls to sm_install. Most of these
calls are used to install dummy functions to the local function lists. Replace these with
your own installations.

Note that in funclist.c, calls to sm_install are made by sm_do_uinstalls.
sm_do_uinstalls is called after sm_initcrt, which calls the initialization event
functions. Consequently, you should not install an initialization event function with
funclist.c.

For specific examples of event function installation, refer to Chapter 44, “Installed
Event Functions,” in Application Development Guide.

Example /* Include the functions in fnc_data structures */

/* Install two prototyped functions that return ints,
dereference JPL-supplied variables, and take two int
arguments. */
fnc_data_t proto_list[] = {

SM_INTFNC("mark_fields(i,i)", mark_flds),
SM_INTFNC("report(s,s)", report)

};

/* Install a screen function that returns an int, does
not perform dereferencing on JPL-supplied variables,
and takes two string arguments. */
fnc_data_t autosc_struct = SM_OLDFNC(0, auto_sfunc);

/* Install the functions */
int ct = sizeof(proto_list) / sizeof(fnc_data_t);
sm_install(PROTO_FUNC, proto_list, &ct);
sm_install(DFLT_SCREEN_FUNC, &autosc_struct, (int *)0);
5-234 Library Functions

sm_*intval
sm_*intval

Gets the integer value of a field

int sm_intval(int field_number);

int sm_e_intval(char *field_name, int element);

int sm_i_intval(char *field_name, int occurrence);

int sm_n_intval(char *field_name);

int sm_o_intval(int field_number, int occurrence);

field_name, field_number
The field whose value is sought.

element

The element in field_name whose value is sought.

occurrence

The occurrence in the field whose value is sought.

Environment C only

Returns • The integer value of the specified field.

Description sm_intval returns the integer value of the data contained in the specified field,
including its sign. All other punctuation characters are ignored. If sm_intval cannot
find the field, it returns with 0. Because a field can contain a value of 0, you should use
another method to check whether the field exists.

Example /* Retrieve the integer value of the
 * "sequence" field. */

int sequence;

sequence = sm_n_intval("sequence");

See Also sm_itofield
Programming Guide 5-235

sm_*ioccur
sm_*ioccur

Inserts blank occurrences into an array

int sm_i_ioccur(char *field_name, int occurrence, int count);

int sm_o_ioccur(int field_number, int occurrence, int count);

field_name, field_number
The array to receive new occurrences. In Panther 5.50 and later, field_name
can also be a grid frame or a syncronized scrolling group.

occurrence

Specifies where to insert the first occurrence in the array specified by
field_number or field_name, where 0 inserts the new occurrences at the
beginning of the array.

count

The number of new occurrences to insert. If count is negative, occurrences
are deleted instead, subject to the same limitations described for sm_doccur.

Returns ≥0 The number of occurrences actually inserted.
-1 The field or occurrence number is out of range.
-3 Insufficient memory.

Description sm_ioccur inserts count blank occurrences before occurrence. If the array is
scrollable, sm_ioccur can allocate up to count new occurrences. Before it inserts
these, Panther checks whether the array’s maximum number of occurrence is equal or
greater than count plus existing data-filled occurrences:

! If true—max-occurs ≥ count + old-occurs —Panther inserts count blank
occurrences before occurrence and pushes it and all subsequent occurrences
(old-occurs) down.

! If false—max-occurs < count + old-occurs—Panther modifies the value of
count to equal max-occurs - old-occurs; it then inserts as many blank
occurrences as it can before occurrence without pushing any existing data off
they array’s end.

Note that sm_ioccur never increases the maximum number of occurrences an array
can contain; you can do this by resetting the arrays’ max_occurrences property.
5-236 Library Functions

sm_*ioccur
Panther inserts the same number of occurrences for synchronized arrays that are
unprotected from clearing. If a synchronized array is protected from clearing, Panther
leaves it unchanged. Thus, you can synchronize a protected array that contains an
unchanging sequence of numbers with an adjoining unprotected array whose data
grows and shrinks.

sm_o_ioccur is normally invoked by the logical key INSL.

Example #include <smdefs.h>
/* Insert five blank lines at the beginning of
 an array named "amounts". */

sm_i_ioccur("amounts", 0, 5);

See Also sm_doccur
Programming Guide 5-237

sm_is_bundle
sm_is_bundle

Checks whether a bundle exists

int sm_is_bundle(char *bundle_name);

bundle_name

The name of the bundle to verify. Supply NULL or empty string to specify the
unnamed bundle.

Returns 1 True: the bundle exists.
0 False: the bundle does not exist.

Description sm_is_bundle verifies the existence of the specified bundle.

See Also sm_append_bundle_data, sm_get_bundle_data
5-238 Library Functions

sm_*is_no
sm_*is_no

Tests a field for no

int sm_is_no(int field_number);

int sm_e_is_no(char *field_name, int element);

int sm_i_is_no(char *field_name, int occurrence);

int sm_n_is_no(char *field_name);

int sm_o_is_no(int field_number, int occurrence);

field_name, field_number
The field to test.

element

The element in field_name to test.

occurrence
The occurrence in the field to test.

Returns 1 True: The field’s first character matches the first character of the SM_NO entry
in the message file.

0 False, or failure.

Description sm_is_no compares the first character of the data in the specified field or occurrence
to the first letter of the SM_NO entry in the message file, ignoring case. A return of 0
(failure) does not indicate whether the failure occurred because the field contains the
value of SM_YES or for another reason. To test for SM_YES, use sm_is_yes.

You can use this function with one-letter fields that specify the yes/no character edit.
For these fields, users can enter only the values SM_YES or SM_NO, or space (= SM_NO).
Unlike other functions, sm_is_no does not ignore leading blanks.

See Also sm_is_yes
Programming Guide 5-239

sm_*is_yes
sm_*is_yes

Tests a field for yes

int sm_is_yes(int field_number);

int sm_e_is_yes(char *field_name, int element);

int sm_i_is_yes(char *field_name, int occurrence);

int sm_n_is_yes(char *field_name);

int sm_o_is_yes(int field_number, int occurrence);

field_name, field_number
The field to test.

element

The element in field_name to test.

occurrence

The occurrence in the field to test.

Returns 1 True: The field’s first character matches the first character of the SM_YES entry
in the message file.

0 False, or failure.

Description sm_is_yes compares the first character of the data in the specified field or occurrence
to the first letter of the SM_YES entry in the message file, ignoring case. A return of 0
(failure) does not indicate whether the failure occurred because the field contains the
value of SM_NO or for another reason. To test for SM_NO, use sm_is_no.

You can use this function with one-letter fields that specify the yes/no character edit.
For these fields, users can enter only the values SM_YES or SM_NO, or space (= SM_NO).
Unlike some other functions, sm_is_yes does not ignore leading blanks.

See Also sm_is_no
5-240 Library Functions

sm_isabort
sm_isabort

Tests and sets the abort control flag

#include <smumisc.h>

int sm_isabort(int flag);

flag

The flag to set for abort control, one of the following defined in smumisc.h:

ABT_ON

Set abort flag.

ABT_OFF

Clear abort flag.

ABT_DISABLE

Turn abort reporting off.

ABT_NOCHANGE

Do not alter the flag.

Returns The previous value of the abort flag.

Description sm_isabort sets the abort flag to the value of flag and returns the old value. Abort
reporting provides a quick way out of processing in the Panther library, which
otherwise might involve nested calls to sm_input. The triggering event is the
detection of an abort condition by sm_getkey, either an ABORT keystroke, or a call
to this function with ABT_ON—for example, from an asynchronous function.

Example #include <smdefs.h>

/* Establish an abort condition */

sm_isabort(ABT_ON);

/* Verify that an abort condition exists, without
 * altering it. */

if (sm_isabort(ABT_NOCHANGE) == ABT_ON)
 ...
Programming Guide 5-241

sm_iset
sm_iset

Changes the value of a global integer variable

#include <smglobs.h>

int sm_iset (int property, int newval);

property

Specifies the global variable to change with one of these constants:

newval

The new value to assign to property as shown in the previous table.

Returns ≥0 Success: The previous value of property.
-1 Failure.

Description Panther has a number of global parameters and settings. Use sm_iset to modify the
current value of global integers. To get the value of a global integer, use sm_inquire.

Constant Value Meaning

I_INSMODE 0 Enter overtype mode.

1 Enter insert mode.

I_NOWSEL 0 LDB merge is on for sm_wselect.

1 LDB merge is off for sm_wselect, normally set to 0.
A value of 1 is useful for a quick sm_wselect/
sm_wdeselect pair, for example, to update a realtime
clock.

I_NODISP 0 Enable updating of display.

1 Disable updating of display, except for error messages.

I_NOMSG 0 Display error messages.

1 Don’t display error messages.
5-242 Library Functions

sm_iset
If you want a process to run in the background, you can set both I_NODISP and
I_NOMSG to 1.

Example void insert_mode(int on_off);
{
 sm_iset(I_INSMODE, on_off);
}

See Also sm_inquire, sm_pinquire, sm_pset
Programming Guide 5-243

sm_issv
sm_issv

Checks whether a screen is in the saved list

int sm_issv(char *screen_name);

screen_name

The name of the screen to search in the saved list.

Returns 1 True: The screen is in the saved list.
0 False.

Description sm_issv searches the list of screens saved in memory for the specified screen. Call this
function on screen entry to avoid redundant database queries for previously saved
screens:

1. On screen exit, call sm_svscreen to add the screen to the save list.

2. On screen entry, call sm_issv to check the save list, to ascertain whether the
screen has already been displayed.

Example /* Perform database query only once */
/* on the screen "results". */

if (!sm_issv("results"))
{
 /* do query . . .*/
 sm_svscreen(screen_list, 1);
}

See Also sm_svscreen
5-244 Library Functions

sm_*itofield
sm_*itofield

Writes an integer value to a field

int sm_itofield(int field_number, int value);

int sm_e_itofield(char *field_name, int element, int value);

int sm_i_itofield(char *field_name, int occurrence, int value);

int sm_n_itofield(char *field_name, int value);

int sm_o_itofield(int field_number, int occurrence, int value);

field_name, field_number
The field to write.

element

The element in field_name to write.

occurrence

The occurrence in the field to write.

value

The integer value to write to the field or occurrence.

Environment C only

Returns 0 Success.
-1 Failure: The field is not found.

Description sm_itofield converts value to a string and places it in the specified field. If the
string is longer than the field, Panther truncates it without warning on the left or right,
according to the field’s justification.

Example /* Find the length of the data in field number 12 */

sm_n_itofield("count", sm_dlength(12));

See Also sm_intval
Programming Guide 5-245

sm_jclose
sm_jclose

Closes the current window or form

int sm_jclose(void);

Returns 0 Success.
-1 No window is open—for example, the currently displayed screen is a form—

or no screen is displayed.

Description sm_jclose closes the active screen and restores the display to its state before the
screen opened. When called for a form, sm_jclose pops the form stack and calls
sm_jform to display the screen on the top of the form stack. When called for a
window, sm_jclose calls sm_close_window. Panther redisplays the previous
window on the window stack and puts the cursor at its last-displayed position.

Example #include <smdefs.h>

/* This is an example of a control function attached to
 * the XMIT key. It validates login and password
 * information. If the login and password are
 * incorrect, the program proceeds to close three of
 * the four "security" windows used for getting a
 * user's login and password information, and the
 * user may again attempt to enter the information.
 * If the password passes, the welcome screen is
 * displayed, and the user may proceed.
 */

int complete_login(jptr);
char *jptr;
{

char pass[10];
sm_n_getfield(pass, "password");
/*call routine to validate password*/
if(!check_password(pass))
{

/*close current password window*/
sm_jclose();
/*close 3rd underlying login window*/
sm_jclose();
/*close 2nd underlying login window*/
sm_jclose();
5-246 Library Functions

sm_jclose
/*in bottom window*/
sm_femsg(0, "Please reenter login and password");

}
else
{

sm_d_msg_line("Welcome to Security Systems, Inc.");
/*open welcome screen*/
sm_jform("Welcome");

}
return (0);

}

See Also sm_close_window, sm_jform, sm_jwindow
Programming Guide 5-247

sm_jfilebox
sm_jfilebox

Opens a file selection dialog box

int sm_jfilebox(char *selection, char *path, char *file_mask,
char *title, int open_save);

selection

A local or global JPL variable, widget, or property to get the selected file’s
name.

path

The initial path for the directory tree. If you supply an empty string, the dialog
box initially shows the directory in which the Panther application was
launched.

file_mask

A filter to narrow down the display of files in path. Use at least one wildcard
character. For example, to narrow down the display to all files that have the
extension doc, supply "*.doc" as the argument.

To show all files, supply an empty string.

title

The text of the dialog box’s title. Supply an empty string to suppress title
display.

open_save

Valid only for Windows, determines the title of the file type option menu;
ignored by other platforms. The title is platform-specific; for example, in
Windows, FB_OPEN sets the title to List Files of Type.

Returns 1 Success: the user chose OK and Panther copied the filename to selection.
0 The user chose Cancel. No text is copied to selection.

-1 Failure: A malloc error occurred or selection was too small.

Description sm_jfilebox invokes a file selection box that lets users choose a file to open or save
a file. On GUI platforms, Panther uses the GUI’s standard file selection dialog. The
dialog box initially displays the contents of the path-specified directory, and lists files
that match the wildcard specification in file_mask. Users can browse through the
directory tree. When the user chooses OK, Panther copies to selection the name of
the file to open or save.
5-248 Library Functions

sm_jfilebox
If you are running an application on Windows, Panther uses the value of open_save
to change the title of the file type option menu. You specify the option menu’s contents
through sm_filetypes.

Example proc open_save()
vars filename

if @widget("@current")->name == "save_button"
{
 call sm_jfilebox \
 ("filename", "c::\\videobiz", "", "Save File", FB_SAVE)
 call save_proc(filename)
}
else if @widget("@current")->name == "new_button"
{
 call sm_jfilebox \
 ("filename", "c::\\videobiz", "*.doc" "New File", FB_OPEN)
 call open_proc(filename)
}

See Also sm_filebox, sm_filetypes
Programming Guide 5-249

sm_jform
sm_jform

Displays a screen as a form

int sm_jform(char *screen_name);

screen_name

The screen to open as a form. This character string uses the same format as a
Panther control string that displays a form. This argument can optionally
specify the form’s position on the physical display, the size of the viewport,
and which portion of the form to position in the viewport’s top-left corner.
For information on control string options, refer to Chapter 18, “Programming
Control Strings,” in Application Development Guide.

Returns 0 Success.
-1 The screen file’s format is incorrect.
-2 The screen cannot be found.
-4 After the display cleared, the screen failed to display because of a read error.
-5 After the display cleared, the system ran out of memory.

Description sm_jform displays the specified screen as a form under Panther control. If you are
using your own executive, call sm_r_form or one of its variants to display a form. To
display a window under Panther control, use sm_jwindow.

When sm_jform opens a screen as a form, Panther discards the previously displayed
form and windows and frees their memory. Panther places the new form on top of the
Panther form stack. You can use sm_jclose to close the form, or let Panther handle
it—for example, when the user presses the EXIT key.

Because sm_jform calls sm_r_form, refer to sm_r_form for information on other
details, such as how Panther finds the screen to display.

The following statement displays myScreen’s first row and column at row 0, column
0 of the physical display:

status = sm_jform("myScreen");

The next statement displays the screen at row 20, column 10 of the display:

status = sm_jform("(20,10)myScreen");
5-250 Library Functions

sm_jform
This statement display the screen at row 20, column 10 of the physical display in
viewport that is 15 rows by 8 columns:

status = sm_jform("(20,10,15,8)myScreen");

A screen can be larger than its viewport. If the viewport does not fit on the physical
display where indicated, Panther tries to place it entirely on the display at a different
location. If you specify a viewport that is larger than the physical display, the viewport
is the size of the physical display. To change the viewport size after the screen is
displayed, set the applicable viewport properties.

Example #include <smdefs.h>
/* This could be a control function attached to the
 * XMIT key. Here we have completed entering data
 * on the second of several security screens. If
 * the user entered "bypass" into the login, he
 * bypasses the other security screens, and the
 * "welcome" screen is displayed. If the user
 * login is incorrect, the current window is
 * closed, and the user is back at the initial
 * screen (below). Otherwise, the next security
 * window is displayed. */

int getlogin(jptr)
char *jptr;
{

char password[10];
sm_n_getfield(password, "password");
/* check if "bypass" has been entered into login */
if (strcmp(password, "bypass"))

sm_jform("welcome");
/* check if login is valid */

else if (check_password(password))
{

/*close current (2nd) login window */
sm_jclose();
sm_femsg(NULL, "Please reenter login");

}
else

sm_jwindow("login3");
return (0);

}

See Also sm_r_form, sm_jwindow
Programming Guide 5-251

sm_*jplcall
sm_*jplcall

Executes a JPL procedure

double sm_djplcall(char *jplcall_text);

int sm_jplcall(char *jplcall_text);

char *sm_sjplcall(char *jplcall_text);

jplcall_text

Specifies the JPL procedure to execute, where jplcall_text is a string of
up to 255 characters that contains the name of a JPL module or procedure and
its arguments. The module or procedure must be made public with an earlier
call to the JPL public command or to sm_jplpublic.

Returns For sm_djplcall and sm_jplcall:

• The value returned by the JPL procedure.
-1 An error prevented execution of the procedure.

For sm_sjplcall:

• Success: A dynamically allocated string containing the value returned by the
JPL procedure. When no longer needed, free this string by calling sm_ffree.

• Failure: Null pointer.

Description sm_jplcall and its variants sm_djplcall and sm_sjplcall lets you call a JPL
procedure or module from a C function. sm_jplcall executes a JPL procedure
exactly as if the specified JPL statement were executed from within a JPL procedure.
The three variants of this function differ only in their return value types.

For example, these statements in C and JPL are equivalent:

stat = sm_jplcall("verifysal(name, 50000)");

call verifysal(name, 50000)

For more information on calling JPL, refer to the call command.
5-252 Library Functions

sm_jplpublic
sm_jplpublic

Executes JPL’s public command

int sm_jplpublic(char *module_list);

module_list

Specifies the JPL modules to load as public modules, where module_list is
a string of up to 255 characters that contains one or more module names
delimited by spaces.

Returns 0 Success.
-1 Failure.

Description sm_jplpublic is the C interface to the JPL public command. Use this command to
load the procedures of one or more modules into memory. Calling sm_jplpublic is
equivalent to using the JPL public command. For more information, refer to the
public command.

Use sm_jplunload to remove a module from memory.

Example /* Make the error handler procedures within the file
err_handlers available to the application */
sm_jplpublic("err_handlers")

See Also sm_jplunload
Programming Guide 5-253

sm_jplunload
sm_jplunload

Executes JPL’s unload command

int sm_jplunload(char *module_list);

module_list

Specifies the JPL modules to unload, where module_list is a string that
contains one or more module names delimited by spaces.

Returns 0 Success.
-1 Failure.

Description sm_jplunload is the C interface to the JPL unload command. Use this command to
remove one or more modules from memory. Modules are read into memory with
sm_jplpublic or, in a JPL module, with the public command.

Calling sm_jplunload is equivalent to using the JPL unload command. For more
information, refer to the unload command.

Example void
unload_modules()
{

if (sm_jplunload("select.jpl insert.jpl delete.jpl"))
sm_ferr_reset(0,

 "Unable to unload modules from memory");
}

See Also sm_jplpublic
5-254 Library Functions

sm_jtop
sm_jtop

Starts Panther

int sm_jtop(char *screen_name);

screen_name

The name of the first screen that your application displays.

Environment C only

Returns 0

Description sm_jtop must be called by all applications that use Panther. This function starts
Panther and displays screen_name as a form. After the call to sm_jtop, Panther
retains control until the user exits the application.

Panther calls various functions that handle all of the tasks required to control
application flow—for example, opening the keyboard for input, opening and closing
forms and windows, and processing all control strings.

If you do not use sm_jtop, you must write your own procedures to control application
flow.
Programming Guide 5-255

sm_jwindow
sm_jwindow

Displays a window at a given position

int sm_jwindow(char *screen_name);

screen_name

The screen to open as a window. screen_name uses the same format as a
Panther control string that invokes a screen as a stacked or sibling window.
Use a single ampersand (&) to specify a stacked window and a double
ampersand (&&) to specify a sibling window. If no ampersand is included, the
screen opens as a stacked window. The string can also specify viewport
parameters.

For information on control string options, refer to Chapter 18, “Programming
Control Strings,” in Application Development Guide.

Returns 0 Success.
-1 The screen file’s format is incorrect.
-2 The form cannot be found.
-3 The system ran out of memory but the previous screen was restored.

Description sm_jwindow displays a screen as a window by calling sm_r_window. You can also
call sm_r_window or one of its variants directly. Refer to sm_r_window for
information on how Panther finds the screen to display.

To display a screen as a form, use sm_jform. To close the window programmatically,
call sm_jclose or sm_close_window.

Example #include <smdefs.h>

/* This could be a control function attached to the
 * XMIT key. Here we have completed entering data
 * on the second of several security screens. If
 * the user entered "bypass" into the login, he
 * bypasses the other security screens, and the
 * "welcome" screen is displayed. If the user
 * login is incorrect, the current window is
 * closed, and the user is back at the initial
 * screen (below). Otherwise, the next security
 * window is displayed. */
5-256 Library Functions

sm_jwindow
int getlogin(jptr)
char *jptr;
{

char password[10];
sm_n_getfield(password, "password");
/* check if "bypass" has been entered into
 * login */
if (strcmp(password, "bypass"))

sm_jform("welcome");
/* check if login is valid */

else if (check_password(password))
{

/*close current (2nd) login window */
sm_jclose();
sm_femsg(0, "Please reenter login");

}
else

sm_jwindow("login3");
return (0);

}

See Also sm_jclose, sm_jform, sm_window
Programming Guide 5-257

sm_key_integer
sm_key_integer

Gets the integer value of a logical key mnemonic

#include <smkeys.h>

int sm_key_integer(char *key);

key

A logical key constant defined in smkeys.h. For a complete list of Panther
logical keys, refer to Table 6-1 on page 6-7 in Configuration Guide.

Returns ≥1 The integer value of the logical key mnemonic.
-1 The mnemonic is not found.

Description sm_key_integer returns the integer value of a Panther logical key constant. Panther
gets this value from smkeys.h. This function is useful when a function needs a key’s
integer value but cannot access the include files.

Example /* Get the integer value of the New Line/Enter key */
int key;
key = sm_key_integer("NL");

See Also sm_keylabel
5-258 Library Functions

sm_keyfilter
sm_keyfilter

Controls keystroke record/playback filtering

int sm_keyfilter (int flag);

flag

One of the following values:

Returns The previous value of the filter flag:

0 Recording was off.
≥1 Recording was on.

Description sm_keyfilter turns on or off the keystroke record/playback mechanism of
sm_getkey according to the value of flag.

Example /* Disable key recording and playback. */

sm_keyfilter(0);

See Also sm_getkey

≥1 Turn keystroke record/playback on.

0 Turn keystroke record/playback off.

<0 Return the status of keystroke record/playback.
Programming Guide 5-259

sm_keyhit
sm_keyhit

Tests whether a key is typed ahead

int sm_keyhit(int interval);

interval

Specifies in tenths of seconds how long to wait before it checks whether the
user pressed a key. The exact length of the wait depends on the granularity of
the system clock and on the hardware and operating system.

Returns 1 A key was typed ahead, or pressed during the interval-specified period.
0 False: no key is available.

Description sm_keyhit checks whether a key has already been pressed. If a key has been pressed,
it returns 1 immediately. Otherwise, it waits the specified interval. If a key is pressed
during the interval the function returns 1; otherwise, it returns 0. The key, if any is
struck, is not read in and is available to the usual keyboard input functions.

If the operating system does not support reads with timeout, this function ignores the
interval and only returns 1 if a key has been typed ahead.

Panther calls timeout and timer functions and updates the date/time display of fields
with System Update set to Yes during calls to this function.

Example #include <smdefs.h>
#include <smkeys.h>

/* The following code adds one asterisk per second to
 * a danger bar, until somebody presses EXIT. */

static char *danger_bar = "***********************";
int k;

sm_d_msg_line
 ("You have 25 seconds to find the EXIT key.", WHITE);

/* Clear the danger bar area
sm_do_region(5, 10, 25, WHITE, ""); */

for (k = 1; k <= 25; ++k)
{

sm_flush();
}

5-260 Library Functions

sm_keyhit
if (sm_keyhit(10))
{

if (sm_getkey() == EXIT)
break;

}
sm_do_region(5, 10, k, WHITE, danger_bar);

if (k <= 25)
sm_d_msg_line("%BCongratulations! you win!");

else
sm_ferr_reset(0, "Sorry, you lose.");

See Also sm_getkey
Programming Guide 5-261

sm_keyinit
sm_keyinit

Initializes a key translation table

#include <keyfile.h>

int sm_keyinit(char *key_address);

int sm_n_keyinit(char *key_file);

key_address

The address of a key translation table created with key2bin and bin2c;
required to install a memory-resident key translation file.

key_file

The name of the key translation file to use to initialize the table.

Returns 0 Success. Otherwise, Panther aborts program execution and returns to the
operating system.

Description sm_keyinit is called by sm_initcrt during initialization. You can also call it from
an application program, either before or after sm_initcrt, to install a
memory-resident key translation file.

If sm_keyinit fails, you can generate error messages through sm_inimsg. This
function creates formatted output that you can display through other library functions
like sm_fqui_msg.
5-262 Library Functions

sm_keylabel
sm_keylabel

Gets the printable name of a logical key

#include <smkeys.h>

int sm_keylabel(char *key);

key

The logical key whose key label is sought.

Returns • The key’s name.
• Null pointer if the key has no name.

Description sm_keylabel returns the label defined for key in the key translation file—for
example, End for the XMIT key. If no label exists, the function returns the name of the
logical key. Refer to Table 6-1 on page 6-7 in Configuration Guide for a list of Panther
logical keys.

If the value of key is undefined in smkeys.h, the function returns an empty string.

Example #include <smkeys.h>

/* Put the name of the TRANSMIT key into a field
 * for help purposes. */

char buf[80];

sprintf(buf, "Press %s to commit the transaction.",

sm_keylabel(XMIT));
sm_n_putfield("help", buf);
Programming Guide 5-263

sm_keyoption
sm_keyoption

Sets cursor control key options

#include <smkeys.h>

int sm_keyoption(int key, int mode, int newval);

key

The key whose processing you wish to change.

mode

Specifies the type of action to take on key with one of these values:

" KEY_ROUTING lets you disable a key or explicitly control the action
taken when a key is pressed.

" KEY_GROUP lets you control the cursor action when it is within a
group.

" KEY_XLATE lets you assign key the action performed by newval.

newval

The new action to assign to key.

Returns • The old value.
• −1: A parameter is out of range.

Description Use sm_keyoption to change at runtime how sm_input processes key, where key is
a cursor control key. Default key option values are built into Panther. This function
only works with cursor control keys; these include all Panther logical keys except those
of type PF, SPF, and APP. Refer to Table 6-1 on page 6-7 in Configuration Guide for
a list of Panther logical keys.

There are three different possible values for mode: KEY_ROUTING, KEY_GROUP and
KEY_XLATE. The newval arguments that are valid for each mode are described below.
All of these modes accept a logical key constant for key.

KEY_ROUTING

Allows access to the EXECUTE and RETURN bits of the routing table. Use
this mode to disable a key or to explicitly control the action to take when a
key is pressed. The following constants can be assigned to newval:

" KEY_IGNORE. Disables key. Panther does nothing when key is struck.
5-264 Library Functions

sm_keyoption
" EXECUTE. The action normally associated with key is executed; can be
OR’d with RETURN.

" RETURN. No action is performed, but the function returns to the caller
in your code. Use to gain direct control of key’s action; can be OR’d
with EXECUTE.

KEY_GROUP

Allows access to the group action bits. Use this mode to control the action of
the cursor when it is within a group. The following values can be assigned to
newval:

" VF_GROUP — Obey group semantics. Hitting key causes the cursor to
move to the next field within the group in the indicated direction. If
this constant is OR’d with VF_CHANGE the cursor exits the group in the
indicated direction.

" VF_CHANGE — This value has no effect, unless it is OR’d with
VF_GROUP. In this case the cursor exits the group in the indicated
direction.

" 0 — Assigning zero to newval causes key to treat a field within a
group as if it were not part of a group.

" VF_OFFSCREEN — Offscreen data scrolls onscreen from the direction
indicated.

" VF_NOPROT.key — Moves cursor into a field protected from tabbing.

KEY_XLATE

Allows access to the cursor table. Use this mode to assign key the action
performed by newval. key can be any cursor control key excluding INS,
MNBR, REFR, SFTS, and LP. newval can be any key—logical, function,
application, ASCII, and so on.

Example /* newline_is_xmit: Map the new line key (Return or Enter on
 * most keyboards) to XMIT -or- reset it back to NL.
 * Invoke from a control string as:
 * ^newline_is_xmit X To make NL act as XMIT
 * ^newline_is_xmit N To make NL act as NL */

int newline_is_xmit(char *cs_data);
{

while (*cs_data && *cs_data != ' ')
cs_data++;

 while (*cs_data == ' ')
Programming Guide 5-265

sm_keyoption
cs_data++;
 if (*cs_data == 'X')

{
sm_keyoption(NL, KEY_XLATE, XMIT);

}
else
{

sm_keyoption(NL, KEY_XLATE, NL);
}
return(0);

}

5-266 Library Functions

sm_l_close
sm_l_close

Closes a library and frees all memory associated with it

int sm_l_close(int lib_desc);

lib_desc

The library to close, where lib_desc is an integer library descriptor returned
by sm_l_open.

Returns 0 Success.
-1 Operating system reported an error closing the library.
-2 The library is already closed.

Example /* Bring up a window from a library. */

int ld;

if ((ld = sm_l_open ("myforms")) < 0)
sm_cancel();
...
sm_l_at_cur(ld, "popup");
...
sm_l_close(ld);

See Also sm_l_at_cur, sm_l_form, sm_l_open, sm_l_window
Programming Guide 5-267

sm_l_open
sm_l_open

Opens a library

int sm_l_open(char *lib_name);

lib_name

The name of the library to open. Panther searches for lib_name in the current
directory, then along the path given to sm_initcrt, and finally along the
path defined by SMPATH.

Returns ≥1 The library file’s identifier.
-1 The library cannot be opened or read.
-3 The named file is not a library.
-4 Insufficient memory is available.

Description Use sm_l_open to open a library before you use a JPL module, a menu, or a screen
that is in that library. sm_l_open opens a library in these steps:

! Allocates space in which to store information about the library.

! Leaves the library file open, and returns a descriptor that identifies the library.
You can use this descriptor to explicitly search a single library—for example, to
find a screen in a specific library with sm_l_window.

If you define the SMFLIBS variable in your setup file as a list of library names, Panther
automatically calls sm_l_open for those libraries.

Panther has no limit on the number of libraries you can have open at the same time.
Note that some systems have severe limits on memory or simultaneously open files.

Example /* Prompt for the name of a library until a
 * valid one is found. Assume the memory-resident
 * screen contains one field for entering the library
 * name, with suitable instructions. */

int ld;
extern char libquery[];

if (sm_d_form(libquery) < 0)
sm_cancel();

sm_d_msg_line("Please enter the name of your library.");
5-268 Library Functions

sm_l_open
do {
sm_input(IN_DATA);

} while ((ld = sm_l_open(sm_fptr (1))) < 0);

See Also sm_form, sm_jplcall, sm_jplpublic, sm_l_close, sm_window
Programming Guide 5-269

sm_l_open_syslib
sm_l_open_syslib

Opens a system library

int sm_l_open_syslib(char *lib_name);

lib_name

The name of the library to open. Panther searches for lib_name in the current
directory, then along the path given to sm_initcrt, and finally along the
path defined by SMPATH.

Returns ≥1 The library file’s identifier.
-1 The library cannot be opened or read.
-3 The named file is not a library.
-4 Insufficient memory is available.

Description Use sm_l_open_syslib to open a library as a system library. The library name will
not be displayed in the Library Table of Contents window. Otherwise, this function
performs the same steps as sm_l_open which opens a library in these steps:

! Allocates space in which to store information about the library.

! Leaves the library file open, and returns a descriptor that identifies the library.
You can use this descriptor to explicitly search a single library—for example, to
find a screen in a specific library with sm_l_window.

Panther has no limit on the number of libraries you can have open at the same time.
Note that some systems have severe limits on memory or simultaneously open files.

See Also sm_l_open
5-270 Library Functions

sm_last
sm_last

Positions the cursor in the last field

void sm_last(void);

Description sm_last places the cursor at the first enterable position of the last tab-accessible field
of the current screen. The first enterable position depends on the justification of the
field and, in fields with embedded punctuation, on the presence of punctuation.

Unlike sm_home, sm_last does not reposition the cursor if all fields are tab-protected.

This function does not immediately trigger field entry, exit, or validation processing.
Such processing depends on the cursor position when control returns to sm_input.

This function is called when the Panther logical key EMOH is struck.

See Also sm_backtab, sm_home, sm_nl, sm_tab
Programming Guide 5-271

sm_launch
sm_launch

Invokes a process without waiting for it to return

int sm_launch(char *command);

command

The command to be launched

Returns • Success: On Windows, 0; on POSIX, the process ID of the new process.
• Failure: On Windows, -1.

Description sm_launch starts the command running, and does not wait for it to terminate.

See Also sm_shell
5-272 Library Functions

sm_*ldb_fld_*get
sm_*ldb_fld_*get

Copies data from LDBs to specific fields on the current screen

int sm_h_ldb_fld_get(int respect_flag, int ldb, int field_number);

int sm_n_ldb_fld_get(int respect_flag, char *ldbname,
int field_number);

int sm_h_ldb_n_fld_get(int respect_flag, int ldb,
char *field_name);

int sm_n_ldb_n_fld_get (intrespect_flag, char *ldbname,
char *field_name);

respect_flag

Indicates whether to write to fields that already contain data:

ldb

Handle of LDB from which to get data.

ldbname

Name of LDB from which to get data. Use NULL or "" (the empty string) to
search through all LDBs for the one that matches the field.

field_number, field_name

Field to write to on the current screen.

Returns 0 Success.
-1 Invalid field specifier.
-2 LDB entry not found.
-4 Invalid LDB specifier.

Description sm_ldb_fld_get copies data from specific local LDB blocks loaded into memory to
specific fields on the current screen. This function has the following variants:

! sm_h_ldb_fld_get specifies the LDB by its handle. The LDB data is copied
to the field identified by number in the field_number argument.

0 Initialize all fields, regardless of their status.

≥1 Initialize only empty or unmodified fields.
Programming Guide 5-273

sm_*ldb_fld_*get
! sm_n_ldb_fld_get specifies the LDB by its name. The LDB data is copied to
the field identified by number in the field_number argument. You can specify
ldb as NULL or "" (the empty string) to search through all LDBs for the one
that matches field_number.

! sm_h_ldb_n_fld_get specifies the LDB by its handle, and the field to be
written to by its name in the field_name argument.

! sm_n_ldb_n_fld_get specifies the LDB by its name, and the field to be
written to by its name in the field_name argument. You can specify ldb as
NULL or "" (the empty string) to search through all active LDBs for the one that
matches field_name.

See Also sm_ldb_fld_store, sm_ldb_getfield, sm_ldb_name, sm_ldb_handle
5-274 Library Functions

sm_*ldb_fld_*store
sm_*ldb_fld_*store

Copies data from specific fields to LDBs

int sm_h_ldb_fld_store(int ldb, int field_number);

int sm_n_ldb_fld_store(char *ldbname, int field_number);

int sm_h_ldb_n_fld_store(int ldb, char *field_name);

int sm_n_ldb_n_fld_store(char *ldbname, char *field_name);

ldb

Handle of the LDB to write to.

ldbname

Name of the LDB to write to.

field_number, field_name

Field from which to get data.

Returns 0 Success.
-1 Invalid field specifier.
-2 LDB entry not found.
-3 Insufficient memory failure.
-4 Invalid LDB specifier.

Description sm_ldb_fld_store copies data from the specified fields on the current screen to the
(possibly) specified LDBs. This function has the following variants:

! sm_h_ldb_fld_store specifies the LDB by its handle. The field data is copied
from the field identified by its number in the field_number argument.

! sm_n_ldb_fld_get specifies the LDB by its name. The field data is copied
from the field identified by its number in the field_number argument. You can
specify ldb as NULL or "" (the empty string) to search through all active LDBs
for the one that matches field_number.

! sm_h_ldb_n_fld_get specifies the LDB by its handle, and the field to be
copied from by its name in the field_name argument.

! sm_n_ldb_n_fld_get specifies the LDB by its name, and the field to be
copied from by its name in the field_name argument. You can specify ldb as
Programming Guide 5-275

sm_*ldb_fld_*store
NULL or "" (the empty string) to search through all active LDBs for the one that
matches field_name.

See Also sm_ldb_fld_get, sm_ldb_name, sm_ldb_handle
5-276 Library Functions

sm_ldb_get_active
sm_ldb_get_active

Gets the handle of the most recently loaded active LDB

int sm_ldb_get_active(void);

Returns ≥0 Success: The integer handle of the most recently activated LDB.
-1 Failure: No LDBs are active.

Description sm_ldb_get_active searches the stack of loaded LDBs and returns the integer
handle of the topmost LDB that is marked as active. If multiple LDBs are active, the
most recently loaded one always has precedence during LDB write-through. Use this
function together with sm_ldb_get_next_active to iterate over all active LDBs in
order of most to least recently loaded. For example:

int h;
 for (
 h = sm_ldb_get_active();
 h != -1;
 h = sm_ldb_get_next_active())
 {
 /* Do stuff with h */
 }

Note: The order in which LDBs are activated can be different from the order in
which they were loaded.

See Also sm_ldb_get_next_active
Programming Guide 5-277

sm_ldb_get_inactive
sm_ldb_get_inactive

Gets the handle of the most recently loaded inactive LDB

int sm_lbd_get_inactive(void);

Returns ≥0 Success: The integer handle of the most recently inactivated LDB.
-1 Failure: No LDBs are inactive.

Description sm_ldb_get_inactive searches the stack of loaded LDBs and returns the integer
handle of the topmost LDB that is also inactive. Use this function together with
sm_ldb_get_next_inactive to iterate over all inactive LDBs in order of most to
least recently loaded. For example:

int h;
 for (
 h = sm_ldb_get_inactive();
 h != -1;
 h = sm_ldb_get_next_inactive(h))
 {
 /* Do stuff with h */
 }

See Also sm_ldb_get_next_inactive
5-278 Library Functions

sm_ldb_get_next_active
sm_ldb_get_next_active

Gets the active LDB loaded before the one specified

int sm_ldb_get_next_active(int prev_handle);

prev_handle

The handle of an active LDB.

Returns ≥0 Success: The handle of an activated LDB.
-1 No LDB was active before prev_handle.
-2 prev_handle is invalid.

Description sm_ldb_get_next_active takes the handle of an active LDB and returns with the
handle of the LDB that was most recently loaded before it and is also active. Use this
function together with sm_ldb_get_active to iterate over all active LDBs in order of
most to least recently loaded. For example:

int h;
 for (
 h = sm_ldb_get_active();
 h != -1;
 h = sm_ldb_get_next_active(h))
 {
 /* Do stuff with h */
 }

Note: The order in which LDBs are activated can be different from the order in
which they were loaded.

See Also sm_ldb_get_active
Programming Guide 5-279

sm_ldb_get_next_inactive
sm_ldb_get_next_inactive

Gets the inactive LDB loaded before the one specified

int sm_ldb_get_next_inactive(int prev_handle);

prev_handle

The handle of an inactive LDB.

Returns ≥0 Success: The handle of an inactivated LDB.
-1 No LDB was inactivated before prev_handle.
-2 prev_handle is invalid.

Description sm_ldb_get_next_inactive takes the handle of an inactive LDB and returns with
the handle of the LDB most recently loaded before it that is also inactive. Use this
function together with sm_ldb_get_inactive to iterate over all inactive LDBs in
order of most to least recently loaded. For example:

int h;
 for (
 h = sm_ldb_get_inactive();
 h != -1;
 h = sm_ldb_get_next_inactive(h))
 {
 /* Do stuff with h */
 }

See Also sm_ldb_get_inactive
5-280 Library Functions

sm_*ldb_*getfield
sm_*ldb_*getfield

Gets the contents of an LDB entry

int sm_ldb_getfield (char *buffer, int field_number,
char *ldbname);

int sm_i_ldb_getfield (char *buffer, char *field_name,
int occurrence, char *ldbname);

int sm_n_ldb_getfield (char *buffer, char *field_name,
char *ldbname);

int sm_o_ldb_getfield (char *buffer, int field_number,
int occurrence, char *ldbname);

int sm_ldb_h_getfield (char *buffer, int field_number,
int ldbhandle);

int sm_i_ldb_h_getfield (char *buffer, char *field_name,
int occurrence, int ldbhandle);

int sm_n_ldb_h_getfield (char *buffer, char *field_name,
int ldbhandle);

int sm_o_ldb_h_getfield (char *buffer, int field_number,
int occurrence, int ldbhandle);

buffer

The buffer to get the LDB data.

field_name, field_number
The LDB field with the data to obtain.

occurrence

The occurrence that contains the data to obtain.

ldbname

The name of the LDB that contains the field.

ldbhandle

The handle of the LDB that contains the field.

Environment C only

Returns ≥0 The length of the data in the LDB entry.
-1 Unable to find the specified field.
-2 Unable to find the specified LDB.
-3 The occurrence number is out of range.
Programming Guide 5-281

sm_*ldb_*getfield
Description sm_ldb_getfield gets the contents of an entry or array occurrence in the specified
LDB. This function is not callable from JPL code. This function and its variants let you
specify an LDB by name or by handle. The LDB must be among one of the LDBs
loaded into memory. If multiple instances of the same LDB are loaded, you can get the
value from the desired instance by specifying its handle; if you specify the LDB by
name, Panther gets the value from the last-loaded instance.
5-282 Library Functions

sm_ldb_handle
sm_ldb_handle

Gets the handle of an LDB

int sm_ldb_handle(char *ldbname);

ldbname

The name of the LDB to get.

Returns ≥0 Success: The handle of ldbname.
-1 Failure: Cannot find ldbname among the loaded LDBs.

Description sm_ldb_handle takes the name of an LDB and returns with its integer handle of the
specified LDB. The LDB can be active or inactive; however, it must be loaded into
memory.
Programming Guide 5-283

sm_ldb_init
sm_ldb_init

Initializes or reinitializes local data blocks

void sm_ldb_init(void);

Environment C only

Description sm_ldb_init unloads all LDBs from memory, whether active or not. It then loads and
activates the same LDBs as at application startup. At application startup, Panther calls
this function and attempts to load and activate LDBs as follows:

1. Looks for the configuration variable SMLDBLIBNAME and opens all screens in the
specified libraries as LDBs. The default value for this variable is ldb.lib.

2. Looks for the configuration variable SMLDBNAME and opens the specified screens
as LDBs. For example:

SMLDBNAME = screen1.scr screen2.scr screen3.scr

The default value for this variable is ldb.scr.
5-284 Library Functions

sm_ldb_is_loaded
sm_ldb_is_loaded

Tests whether an LDB is loaded

int sm_ldb_is_loaded(char *ldbname);

ldbname

The name of the LDB to test.

Returns 0 The LDB is not loaded.
1 The LDB is loaded.

Description sm_ldb_is_loaded takes the name of an LDB and tests whether it is loaded into
memory or not. It returns a value of true (1) or false (0).
Programming Guide 5-285

sm_ldb_load
sm_ldb_load

Loads an LDB into memory

int sm_ldb_load(char *ldbname);

ldbname

The name of the LDB to load.

Returns ≥0 The handle of the loaded LDB.
-1 Failure. Panther was unable to load the LDB for one of these reasons:

- Unable to open the specified file.
- Unable to read the file.
- The file type is invalid.

Description sm_ldb_load loads a screen into memory as an LDB. Multiple LDBs can be loaded
into memory; of these, one or more can be active at any time. Once an LDB is loaded,
you can activate it by calling sm_ldb_state_set; only active LDBs are open to read
and write operations.

You can load multiple instances of the same LDB. For example, you might do this to
prevent data from multiple invocations of the same screen from overwriting each other.
Because Panther assigns a unique handle to each loaded LDB, you can reference these
LDBs either collectively by their common name, or individually by their separate
handles.

See Also sm_ldb_state_set, sm_ldb_unload
5-286 Library Functions

sm_ldb_name
sm_ldb_name

Gets the name of an LDB of the specified handle

char *sm_ldb_name(int ldbhandle);

ldbhandle

The handle of the LDB to look up.

Returns • Success: A pointer to the name of the LDB specified by ldbhandle.
• Failure: Null pointer.

Description sm_ldb_name takes the integer handle of an LDB and returns a pointer to the LDB’s
name.
Programming Guide 5-287

sm_ldb_next_handle
sm_ldb_next_handle

Gets the handle of a previously loaded LDB with the same name as the specified LDB

int sm_ldb_next_handle(int ldbhandle);

ldbhandle

The handle of a loaded LDB whose name is sought among previously loaded
LDBs.

Returns ≥0 Success: The handle of a previously loaded LDB with the same name as
ldbhandle.

-1 No LDB was loaded before ldbhandle.
-2 ldbhandle is not a valid handle.

Description sm_ldb_next_handle takes a handle of a loaded LDB and looks for a previously
loaded instance of the same LDB. If an earlier instance exists, the function returns with
its handle. You can call this function iteratively to ascertain how many instances of an
LDB are loaded into memory and their order of precedence.
5-288 Library Functions

sm_ldb_pop
sm_ldb_pop

Pops LDBs off the LDB save stack

void int sm_ldb_pop(void);

Returns 0 Success.
-1 The stack is empty.

Description sm_ldb_pop removes all loaded LDBs from memory. It then restores to memory the
LDBs in the LDB save stack’s topmost—that is, most recently pushed—list. If any
LDBs were active at the time they were unloaded, sm_ldb_pop restores them to active
status. If the stack is empty, sm_ldb_pop removes all loaded LDBs from memory and
returns with -1.

See Also sm_ldb_push
Programming Guide 5-289

sm_ldb_push
sm_ldb_push

Pushes all LDBs onto a save stack

void int sm_ldb_push(void);

Returns 0 Success: one or more LDBs are pushed.
-1 No LDBs are currently loaded.
-2 A memory allocation error occurred.

Description sm_ldb_push makes all loaded LDBs unavailable to the application. It writes their
identities and status—whether active or not—to a list that it pushes onto the LDB save
stack. Each call to sm_ldb_push pushes another list of LDBs onto the stack; the stack
stores these lists in first-in/last-out order. The number of lists you can save depends on
the amount of memory available on your system. To restore the last-pushed list of
LDB’s to memory, call sm_ldb_pop.

See Also sm_ldb_pop
5-290 Library Functions

sm_*ldb_*putfield
sm_*ldb_*putfield

Reads data into an LDB entry

int sm_ldb_putfield (int field_number, char *ldbname,
char *buffer);

int sm_i_ldb_putfield (char *field_name, int occurrence,
char *ldbname, char *buffer);

int sm_n_ldb_putfield (char *field_name, char *ldbname,
char *buffer);

int sm_o_ldb_putfield (int field_number, int occurrence,
char *ldbname, char *buffer);

int sm_ldb_h_putfield (int field_number, int ldbhandle,
char *buffer);

int sm_i_ldb_h_putfield (char *field_name, int occurrence,
int ldbhandle, char *buffer);

int sm_n_ldb_h_putfield (char *field_name, int ldbhandle,
char *buffer);

int sm_o_ldb_h_putfield (int field_number, int occurrence,
int ldbhandle, char *buffer);

field_name, field_number

The LDB field to read the data in buffer.

occurrence

The occurrence to read the data.

ldbname

The name of the LDB that contains the field.

ldbhandle

The handle of the LDB that contains the field.

buffer

The buffer that contains the data to read.

Returns 0 Success.
-1 Unable to find the specified field.
-2 Unable to find the specified LDB.
-3 The occurrence number is out of range.
Programming Guide 5-291

sm_*ldb_*putfield
Description sm_ldb_putfield reads the contents of the specified buffer into an entry or array
occurrence in the specified LDB. This function and its variants let you specify an LDB
by name or by handle. The LDB must be among one of the LDBs loaded into memory.
If multiple instances of the same LDB are loaded, you can get the value from the
desired instance by specifying its handle; if you specify the LDB by name, Panther gets
the value from the last-loaded instance.
5-292 Library Functions

sm_ldb_*state_get
sm_ldb_*state_get

Gets the current state of the LDB

int sm_ldb_state_get(char *ldbname, int state_type);

int sm_ldb_h_state_get(int ldbhandle, int state_type);

ldbname

The name of the LDB whose state you want to get.

ldbhandle

The integer handle of the LDB whose state you want to get.

state_type

Specifies the state to get with one of these constants:

LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active
LDBs participate in LDB write-through.

LDB_READ_ONLY

A Yes/No flag that specifies whether the LDB is read-only. Screens
can read from this LDB on screen entry but cannot modify it on exit;
consequently, a read-only LDB cannot be used to transfer values
from one screen to another.

Returns 0 state_type is set to No.
1 state_type is set to Yes.

-1 Unable to find ldbname.

Description sm_ldb_state_get lets you determine whether a loaded LDB is active or whether it
is read-only. Call this function before changing an LDB’s state through
sm_ldb_state_set.
Programming Guide 5-293

sm_ldb_*state_set
sm_ldb_*state_set

Changes the state of the LDB

int sm_ldb_state_set (char *ldbname, int state_type,
int new_value);

int sm_ldb_h_state_set (int ldbhandle, int state_type,
int new_value);

ldbname

The name of the LDB whose state you want to set.

ldbhandle

The integer handle of the LDB whose state you want to set.

state_type

Specifies the state to set with one of these constants:

LDB_ACTIVE

A Yes/No flag that specifies whether the LDB is active. Only active
LDBs participate in LDB write-through.

LDB_READ_ONLY

A Yes/No flag that specifies whether the LDB is read-only. The
default for newly activated LDBs is set to No. Screens can read from
this LDB on screen entry but cannot modify it on exit; consequently,
a read-only LDB cannot be used to transfer values from one screen
to another.

new_value

A value of 1 (Yes) or 0 (No) to set for state_type.

Returns 0 Success.
1 No change: the LDB was already set to the specified state.

-1 Unable to find ldbname.

Description sm_ldb_state_set lets you change the status of an LDB in one of two ways:

! Allow or disallow participation in LDB write-through. If a loaded LDB has its
active state (LDB_ACTIVE) set to Yes, screens can, at a minimum, read its data;
if the LDB’s LDB_READ_ONLY state is set to No, screens can also write data to
it. For more information about LDB write-through, refer to “Using Local Data
Blocks” on page 25-7 in Application Development Guide.
5-294 Library Functions

sm_ldb_*state_set
! Set the LDB data to be read-only. If an active LDB is read-only—
LDB_READ_ONLY is set to Yes—a screen can read that LDB’s data but cannot
use it to propagate data to other screens. By default, newly activated LDBs have
LDB_READ_ONLY set to No.

Note: You can call sm_ldb_state_set only on LDBs that are already loaded into
memory. To load an LDB at runtime, call sm_ldb_load.

See Also sm_ldb_load, sm_ldb_state_get
Programming Guide 5-295

sm_ldb_*unload
sm_ldb_*unload

Unloads LDBs from memory

int sm_ldb_unload(char *ldbname);

int sm_ldb_h_unload(int ldbhandle);

ldbname

The name of the LDB to unload.

ldbhandle

The integer handle of the LDB to unload.

Returns 0 Success.
-1 Failure. Panther is unable to find the specified LDB.

Description sm_ldb_unload unloads LDBs and free the memory allocated for it. If the LDB is
loaded more than once, use sm_ldb_unload to unload all instances; to unload a
specific instance, supply its handle with sm_ldb_h_unload.
5-296 Library Functions

sm_leave
sm_leave

Prepares to temporarily leave a Panther application

void sm_leave(void);

Environment C only

Description sm_leave lets you leave a Panther application temporarily—for example, to escape to
the command interpreter or execute some graphics functions. When you call this
function before leaving, sm_leave performs these tasks:

! Clears the physical screen, but not the internal screen image.

! Resets the operating system channel.

! Resets the terminal with the RESET sequence found in the video file.

Example #include <smdefs.h>

/* Escape to the UNIX shell for a directory listing */

sm_leave();
sm_system("ls -l");
sm_return();
sm_c_off();
sm_d_msg_line("Hit any key to continue", BLINK | WHITE);
sm_getkey();
sm_d_msg_line("", WHITE);
sm_rescreen();

See Also sm_return
Programming Guide 5-297

sm_list_objects_count
sm_list_objects_count

Counts the widgets contained by an application object

int sm_list_objects_count(int list_id);

list_id

An integer handle to the list of widgets in an application object, obtained from
sm_list_objects_start.

Returns ≥0 The number of objects listed for the specified container.
• PR_E_OBJID: Unable to find the specified list handle.

Description sm_list_objects_count returns the number of objects specified in an object
contents list. This list, created by sm_list_objects_start, initially contains the
object IDs of all widgets in the container object; thus, a call to
sm_list_objects_count immediately after the list is created yields the total number
of widgets in a container object. Each call to sm_list_objects_next reduces by one
the number of objects in the list; so a call to sm_list_objects_count that is
preceded by calls to sm_list_objects_next yields the number of objects that
remain on the object contents list.

Note: sm_list_objects_count does not check whether the widgets in an object
contents list are still in existence; it is therefore possible to return a count that
includes invalid object IDs for widgets that were destroyed after the list’s
creation.

See Also sm_list_objects_end, sm_list_objects_start
5-298 Library Functions

sm_list_objects_end
sm_list_objects_end

Destroys an object contents list

void sm_list_objects_end(int list_id);

list_id

An integer handle to the object contents list to destroy, obtained from
sm_list_objects_start.

Description sm_list_objects_end destroys an object contents list created by
sm_list_objects_start and deallocates the memory associated with it. All
subsequent attempts to access this list yield an error (PR_E_OBJID). Always pair this
function with sm_list_objects_start.

See Also sm_list_objects_start
Programming Guide 5-299

sm_list_objects_next
sm_list_objects_next

Traverses the widgets contained by an application object

int sm_list_objects_next(int list_id);

list_id

An integer handle to the list of widgets in an application object, obtained from
sm_list_objects_start.

Returns ≥1 The object ID of the next widget listed for the specified container object.
• PR_E_ERROR: The list is empty.
• PR_E_OBJID: Unable to find the specified list handle.

Description sm_list_objects_next returns a handle to the next widget in the object contents list
created by sm_list_objects_start. When this list is created, it contains the object
IDs of all widgets within the container object. The first call to
sm_list_objects_next on a given list returns the object ID of the first widget on the
list; each subsequent call returns the object ID of the next-listed widget; it also removes
the last-returned object ID and thereby reduces the number of listed objects by one.

When the list is completely traversed, the function returns PR_E_ERROR. You can use
this error code to test whether a list is fully traversed; or use
sm_list_objects_count to set a counter for traversing the list.

For example, the following code creates an objects contents list for all members in a
grid and traverses the list:

proc traverse_grid(grid_name)
vars grid_list, ct, member_ct, member_id

// create list of all members in grid
grid_list = sm_list_objects_start(sm_prop_id(grid_name))

if grid_list > 0
{

// get count of listed object IDs
member_ct = sm_list_objects_count(grid_list)

for ct = 1 while ct <= member_ct
// traverse list
{

5-300 Library Functions

sm_list_objects_next
member_id = sm_list_objects_next(grid_list)
// use member's object ID to perform some action on it

}
call sm_list_objects_end(grid_list)
return 1

}
return 0

sm_list_objects_next does not check whether the widgets identified in an object
contents list are still in existence; it is therefore possible to return invalid object IDs for
widgets that were destroyed after the list’s creation.

When you are finished traversing an object contents list, call sm_list_objects_end
on the list to destroy it and deallocate its memory.

See Also sm_list_objects_count, sm_list_objects_end, sm_list_objects_start
Programming Guide 5-301

sm_list_objects_start
sm_list_objects_start

Constructs a list of widgets contained by an application object

int sm_list_objects_start(int obj_id);

obj_id

An integer handle that identifies the container object whose contents are to be
listed, obtained through sm_prop_id or through the JPL id property.

Returns ≥1 A handle to the object contents list.
• PR_E_OBJID: The container object does not exist.
• PR_E_MALLOC: Memory allocation error occurred.

Description sm_list_objects_start creates a list of all widgets that are currently contained by
the specified object; the list identifies widgets by their object IDs. The function returns
a handle to the list so you access its contents. The container object can be a screen
(including one used as an LDB), grid widget, box widget, selection group,
synchronized scrolling group, or table view widget.

All widgets within the container object are included in the list, even if they are
themselves contained by other widgets. Two exceptions apply: the list that is generated
for a box and or grid widget excludes any selection groups and synchronized scrolling
groups that are inside the container object.

Widgets that accept data are listed in order of their position within the container
object—from left to right, top to bottom. You can traverse an object contents list and
thereby access the widgets in it by calling sm_list_objects_next; you can also
count the listed objects with sm_list_objects_count. For an example, refer to
sm_list_objects_next.

An ID to an object contents list is always returned, even when the list is empty. When
you are done examining the list, be sure to free the memory allocated for it by calling
sm_list_objects_end.

See Also sm_list_objects_count, sm_list_objects_end, sm_list_objects_next,
sm_prop_id
5-302 Library Functions

sm_*lngval
sm_*lngval

Gets the long integer value of a field

long sm_lngval(int field_number);

long sm_e_lngval(char *field_name, int element);

long sm_i_lngval(char *field_name, int occurrence);

long sm_n_lngval(char *field_name);

long sm_o_lngval(int field_number, int occurrence);

field_name, field_number
The field whose value is sought.

element

The element in field_name that contains the data to get.

occurrence

The occurrence in the specified field that contains the data to get.

Environment C only

Returns • The long value of the field.

Description sm_lngval returns the contents of the specified field as a long integer. It recognizes
only digit characters and a leading plus or minus sign.

Example #include <smdefs.h>

/* Retrieve the number of fish in one particular sea
 * (a big number) from the screen. */

#define MEDITERRANEAN 4
long fish;

fish = sm_e_lngval("seas", MEDITERRANEAN);

See Also sm_intval, sm_ltofield
Programming Guide 5-303

sm_load_screen
sm_load_screen

Preloads a screen into memory

int sm_load_screen(char *screen_name);

screen_name

The name of the screen.

Returns 0 Success.
-1 Screen file’s format is incorrect.
-2 Screen cannot be found.
-3 Insufficient memory available to load the screen.

Description sm_load_screen loads a screen into memory without displaying it. Use this function
to provide fast response times when the screen is displayed later. This function calls
sm_svscreen, but it improves efficiency by also processing any GUI extensions
necessary for display. Also, unlike sm_svscreen, it can be called from JPL.

See Also sm_svscreen, sm_unload_screen, sm_window
5-304 Library Functions

sm_log
sm_log

Writes a message to an error log

int sm_log(char *msg);

msg

Message to be printed to the log.

Scope Server

Description sm_log writes messages to an error log file.

For COM and EJB applications, a file named server.log must exist in the
component’s application directory. When this file is created, in addition to the
messages logged with this function, messages are automatically logged when service
components are created or destroyed. All messages that would normally appear on the
message line or message window are also logged.

During development you should always enable error logging by creating server.log.
In production server.log should not be present as logging is a substantial load on the
system.
Programming Guide 5-305

sm_lstore
sm_lstore

Copies everything from screen to LDB

int sm_lstore(void);

Returns 0 Success.
-3 Insufficient memory.

Description sm_lstore copies data from the screen to local data block entries with matching
names.

Panther automatically calls sm_lstore when it brings up a new screen or before it
closes a window. You should explicitly call this function only for special
circumstances.

See Also sm_allget
5-306 Library Functions

sm_ltofield
sm_ltofield

Writes a long integer value to a field

int sm_ltofield(int field_number, long value);

int sm_e_ltofield(char *field_name, int element, long value);

int sm_i_ltofield(char *field_name, int occurrence, long value);

int sm_n_ltofield(char *field_name, long value);

int sm_o_ltofield(int field_number, int occurrence, long value);

field_name, field_number

The field to receive value.

element

The element in field_name to receive value.

occurrence

The occurrence in the specified field to receive value.

value

A long integer to put into the specified field.

Environment C only

Returns 0 Success.
-1 The field is not found.

Description The long integer passed to this function is converted to user-readable format and
placed in field_number. If the number is longer than the field, it is truncated without
warning, on the right or left depending on the field’s justification.

Example #include <smdefs.h>

/* Set the number of fish in the sea to a
 * smallish number. */

#define MEDITERRANEAN 4

sm_i_ltofield("seas", MEDITERRANEAN, 14L);

See Also sm_itofield, sm_lngval
Programming Guide 5-307

sm_m_flush
sm_m_flush

Flushes the status line

void sm_m_flush(void);

Description sm_m_flush forces Panther to display updates to the status line. This is useful if you
want to display the status of an operation with sm_d_msg_line without flushing the
entire display like sm_flush.

Example #include <smdefs.h>

/* Process a big pile of records, providing
 * status as we go.
 */
char buf[80];
int k;

k = 0;
do {
 sprintf(buf, "Processing record %d", k + 1);
 sm_d_msg_line(buf, REVERSE | WHITE);
 sm_m_flush();
} while (process(records[k++]) >= 0);

See Also sm_flush
5-308 Library Functions

sm_*mail_attach
sm_*mail_attach

Sends an attachment with the email message

int sm_mail_attach(int obj_id, char *pathname, char *filename, int
delete);

int sm_n_mail_attach(char *name, char *pathname, char *filename,
int delete);

obj_id

The object ID of the mail object.

name

The name of the message.

pathname

The path to the file.

filename

The name to use when the file is saved by the message recipient. If the null
string or null pointer is passed, the filename will be taken from pathname.

delete

If not 0, the file will be deleted when the message is sent or deleted.

name

The name assigned to the mail object.

Returns 0 Success.

Description sm_mail_attach adds an attachment to the mail message.

See Also sm_mail_new
Programming Guide 5-309

sm_*mail_file_text
sm_*mail_file_text

Specifies the file containing the text of the email message

int sm_mail_file_text(int obj_id, char *filename);

int sm_n_mail_file_text(char *name, char *filename);

obj_id

The object ID of the mail object.

filename

The file containing the mail message.

name

The name assigned to the mail object.

Returns 0 Success.

Description sm_mail_file_text takes the message text from the specified text file.
5-310 Library Functions

sm_mail_message
sm_mail_message

Sends a simple email message

int sm_mail_message(char *to, char *subject, char *text);

to

The recipient of the mail message.

subject

The subject of the mail message.

text

The text of the mail message.

Returns 0 Success.

Description sm_mail_message mails a simple email message containing text with to as the
email address.

The default values of PR_MAIL_FROM, PR_MAIL_CC, PR_MAIL_BCC and
PR_MAIL_RECEIPT will be used if they are set.
Programming Guide 5-311

sm_mail_new
sm_mail_new

Returns the object ID of a new email message

int sm_mail_new(char *name);

name

An optional name to be assigned to the mail object that is to be created.

Returns ≥1 Integer handle to the new mail object.
• PR_E_PROP_VAL: name is not valid or an object with that name already exists.
• PR_E_MALLOC: unable to allocate memory for internal structures.
• PR_E_OBJECT: unexpected internal error.

Description sm_mail_new returns the object ID of a new message. If name is supplied, it can be
used to set properties of the message. Before the message is sent, the following
properties can be set:

PR_MAIL_SUBJECT

Text of the Subject: line.

PR_MAIL_TEXT

Text of the message. There are several functions that also can be used to set
the message text.

PR_MAIL_FROM

Information for the From: line of mail messages. Some Mail Transfer Agents
ignore this property.

PR_MAIL_TO

Information for the To: line of mail messages.

PR_MAIL_CC

Information for the CC: line of mail messages.

PR_MAIL_BCC

Information for the BCC: line of mail messages.

PR_MAIL_REPLYTO

Information for the Reply-to: line of mail messages. Ignored when using
MAPI.
5-312 Library Functions

sm_mail_new
PR_MAIL_RECEIPT

Whether to ask for a receipt when the mail is first read. This seemingly does
not work for most Mail Transfer Agents (Outlook and Outlook Express in
particular).

PR_NAME

Name of the message.

See Also sm_*mail_send, sm_*mail_attach
Programming Guide 5-313

sm_*mail_send
sm_*mail_send

Sends an email message

int sm_mail_send(int obj_id);

int sm_n_mail_send(char *name);

obj_id

The object ID of the mail object.

name

The name assigned to the mail object.

Returns 0 Success.
Error code from smuprapi.h

Description sm_mail_send sends the message identified by obj_id or name and deletes it.

See Also sm_mail_new
5-314 Library Functions

sm_*mail_text
sm_*mail_text

Specifies the field containing the text of the email message

int sm_mail_text(int obj_id, char *field_name);

int sm_n_mail_text(char *name, char *field_name);

obj_id

The object ID of the mail object.

name

The name assigned to the mail object.

field_name

The field containing the text of the mail message.

Returns 0 Success.

Description sm_mail_text takes the message text from the specified field. If the field is not word
wrapped, each occurrence will be placed on a new line.

See Also sm_*mail_file_text
Programming Guide 5-315

sm_*mail_widget
sm_*mail_widget

Sends an image of a Panther widget as an attachment to the mail message

int sm_mail_widget(int obj_id, char *widget_name,
char *attachment_name, int quality);

int sm_n_mail_widget(char *name, char *widget_name,
char *attachment_name, int quality);

obj_id

The mail object ID.

name

The name assigned to the mail object.

widget_name

The widget to be converted to a JPEG file and attached to the mail message.
PR_APPLICATION will send the complete MDI frame.

attachment_name

The name to use when the file is saved by the message recipient. If the null
string or null pointer is passed, the name used depends on the widget.

quality

An integer from 0 to 100. Low numbers give poorer image quality but reduce
the file size.

Returns 0 Success.
Error code from smuprapi.h, most likely PR_E_OBJECT or PR_E_OBJID.

Description sm_*mail_widget can only be used in prodev and prorun. The screen image of a
widget is converted to a JPEG file and attached to the mail message.
5-316 Library Functions

sm_menu_bar_error
sm_menu_bar_error

Returns the last error returned by a menu function

int sm_menu_bar_error(void);

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-2 MNERROR_EMPTY_SCOPE: Menu not installed at specified scope.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Invalid data.
-7 MNERR_MALLOC: Memory allocation error.
-8 MNERR_NULL: Property has a value of null string pointer.
-9 MNERR_READ_ONLY: Property is read-only.

-10 MNERR_LOCATION: Invalid memory location.

Description sm_menu_bar_error returns the error generated by the last call to a menu function.
This is particularly useful for calls to sm_menu_get and sm_mnitem_get and their
variants. These functions return the value of the specified property when successful;
otherwise, they return -1 for failure of the _get_int variants, and 0 for the _get_str
variants. sm_menu_bar_error returns the actual cause of failure. It also lets you
determine whether a return of -1 indicates the property’s actual value or an error
condition.

Because Panther retains the error code only for the last call to one of the menu
functions, call sm_menu_bar_error immediately afterward to evaluate the call’s
return status.

Example /*enable and disable menu tear-offs*/

int ToggleTearOffs(void)
{
 int errorCode;
 switch(sm_menu_get_int(MNL_SCREEN, "menucom", "main", MN_TEAR))
 {
 case 0: /*enable tear-offs */
 sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 1, NULL);
Programming Guide 5-317

sm_menu_bar_error
 break;

 case 1: /*disable tear-offs */
 sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 0, NULL);
 break;

 case -1: /* if error returned, find out why */
 errorCode = sm_menu_bar_error();
 menuErrorHandler(errorCode);
 break;
 }
}

5-318 Library Functions

sm_menu_change
sm_menu_change

Sets a menu’s properties

int sm_menu_change(int mem_location, char *script, char *menu,
int prop, int intval, char *strval);

mem_location

The menu’s memory location, one of these constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If set to MNL_ANY, Panther looks for the menu in all memory locations. If the
menu is installed in more than one location, the call fails and returns
MN_ERR_LOCATION.

script

The name of a memory-resident script that contains the menu to change. The
script must already be loaded into memory at mem_location by
sm_mnscript_load. If you supply NULL, Panther searches among the most
recently loaded script in mem_location for the specified menu.

menu

The menu to change. If set to NULL, Panther uses the first menu in script.

prop

The property to change. Table 5-11 lists properties that you can change and
their constants.

intval

The integer value to set for prop. Supply 0 if prop takes a string value.

strval

The string value to set for prop. Supply NULL if prop takes an integer value.

Environment C only

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
Programming Guide 5-319

sm_menu_change
-6 MNERR_DATA: Invalid data.
-8 MNERR_NULL: Null string argument.
-9 MNERR_READ_ONLY: Property is read-only.

-10 MNERR_LOCATION: Invalid memory location.

Description sm_menu_change sets a menu property. Menu properties are derived from a
memory-resident script. Because sm_menu_change changes the specified script, all
instances of menus from this script get the requested property change.

Specify the property to change through one of the constants in Table 5-11.
Menu-specific properties begin with a prefix of MN. Properties that begin with MNI set
defaults for new items that are added to the menu at runtime. If you call
sm_menu_change to reset item property defaults, the changes only affect items that are
added after this call; it leaves existing menu items unchanged. To reset item properties
for individual items, call sm_mnitem_change.

Table 5-11 Menu properties that can be changed at runtime

Property Type* Description

MN_EXTERNAL int A value of PROP_ON or PROP_OFF specifies whether to find this menu’s
definition in another script.

MN_NAME str The name of this menu. The function does not check for duplicate names.

MN_TEAR int A value of PROP_ON or PROP_OFF enables or disables this submenu as a
tear-off menu.

MN_TITLE str A title to display with popup menus.

MNI_ACCEL_ACTIVE int A value of PROP_ON or PROP_OFF specifies whether menu item
accelerators are active.

MNI_ACTIVE int A value of PROP_ON or PROP_OFF allows or disallows access to menu
items. If MNI_ACTIVE is set to PROP_OFF, menu items are greyed out.

MNI_INDICATOR int A value of PROP_ON or PROP_OFF specifies whether to show the toggle
indicator on items.
5-320 Library Functions

sm_menu_change
Example /*enable and disable menu tear-offs*/

int ToggleTearOffs(void)
{
 int errorCode;
 switch
 (sm_menu_get_int(MNL_SCREEN, "menucom", "main", MN_TEAR)
 {
 /*enable tear-offs */
 case 0: sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 1, NULL);
 break;

 /*disable tear-offs */
 case 1: sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 0, NULL);
 break;

 /* if error returned, find out why */
 case -1:
 errorCode = sm_menu_bar_error();

MNI_SEP_STYLE int The default style used by separator-type items, specified by one of these
integer constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED
SEP_MENUBREAK
SEP_TYPE_MASK

MNI_SHOW_ACCEL int A value of PROP_ON or PROP_OFF specifies whether menu items display
the accelerator key next to their labels.

* For integer-type properties, supply an argument for the intval parameter and set the strval parameter to NULL;
for string-properties, supply an argument for the strval parameter and set the intval parameter to 0.

Table 5-11 Menu properties that can be changed at runtime (Continued)

Property Type* Description
Programming Guide 5-321

sm_menu_change
 menuErrorHandler(errorCode);
 break;
 }
}

See Also sm_mnitem_change
5-322 Library Functions

sm_menu_create
sm_menu_create

Defines a menu at runtime

int sm_menu_create(int mem_location, char *script, char *menu);

mem_location

The memory location in which to load this menu, one of the following
constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script to contain the menu. The script can be
one previously loaded into memory at mem_location by
sm_mnscript_load; otherwise, Panther creates a script in memory with the
name that you supply.

menu

The name of the menu to create. The menu name must be unique in script.

Returns 0 MNERR_OK: Success.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-6 MNERR_DATA: Menu name already exists or not supplied.
-7 MNERR_MALLOC: Memory allocation error.

Description sm_menu_create defines a menu and loads it into memory as part of the specified
script. After you create this menu, you can set its properties and create items for it
through sm_menu_change and sm_mnitem_create, respectively. Like other menus
that are loaded into memory, you can attach this menu to an application component—
screen or widget—and make it available for display through sm_menu_install.
Programming Guide 5-323

sm_menu_delete
sm_menu_delete

Removes a menu from the specified script

int sm_menu_delete(int mem_location, char *script, char *menu);

mem_location

The menu’s memory location, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script that contains the menu. The script must
already be loaded into memory at mem_location by sm_mnscript_load. If
you supply NULL, Panther searches in the most recently loaded script in
mem_location for the specified menu.

menu

The name of the menu to delete. If you supply NULL, Panther uses the first
menu in script.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.

Description sm_menu_delete removes a menu from memory at runtime and frees the memory
allocated for it. This function also destroys all items in the menu and frees the memory
associated with them. After you call this function, you can restore this menu only by
reloading its script, provided the script’s source file already contains the menu
definition.

See Also sm_menu_create
5-324 Library Functions

sm_menu_get*
sm_menu_get*

Gets a menu’s property

int sm_menu_get_int(int mem_location, char *script, char *menu,
int prop);

char *sm_menu_get_str(int mem_location, char *script, char *menu,
int prop);

mem_location

The menu’s memory location, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script that contains the menu. The script must
already be loaded into memory at mem_location by sm_mnscript_load. If
you supply NULL, Panther searches in the most recently loaded script in
mem_location for the specified menu.

menu

The menu’s name. If you supply NULL, Panther uses the first menu in script.

prop

The property to get. Table 5-12 lists the properties that you can get and their
constants.

Returns • A pointer to the property’s current value, returned either as an integer or as a
pointer to a string value.

NULL Error returned by a _get_str variant. Call sm_menu_bar_error to get the
error code.

-1 Error returned by a _get_int variant. Call sm_menu_bar_error to get the
error code.

Description sm_menu_get_int and sm_menu_get_str returns the current setting of the specified
property. Use the _int variant for those properties that have an integer value—for
example, MN_TEAR; use the _str variant for properties that take string values, such as
MN_NAME and MN_TITLE.
Programming Guide 5-325

sm_menu_get*
Table 5-12 Menu properties

Property Type* Description

MN_EXTERNAL int A value of PROP_ON or PROP_OFF specifies whether to find this menu’s
definition in another script.

MN_NAME str The name of this menu.

MN_NUM_ITEMS int Number of items in this menu.

MN_TEAR int A value of PROP_ON or PROP_OFF enables or disables this submenu as a
tear-off menu.

MN_TITLE str A title to display with popup menus.

MNI_SHOW_ACCEL int A value of PROP_ON or PROP_OFF specifies whether menu items display
the accelerator key next to their labels.

MNI_ACCEL_ACTIVE int A value of PROP_ON or PROP_OFF specifies whether menu item
accelerators are active.

MNI_ACTIVE int A value of PROP_ON or PROP_OFF allows or disallows user access to menu
items. If MNI_ACTIVE is set to PROP_OFF, menu items are greyed out.

MNI_INDICATOR int A value of PROP_ON or PROP_OFF specifies whether to show the toggle
indicator on items

MNI_SEP_STYLE int The default style used by separator-type items, specified by one of these
constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

* For integer-type properties, use sm_menu_get_int; for string-properties, use
sm_menu_get_str.
5-326 Library Functions

sm_menu_get*
Example /*enable and disable menu tear-offs*/

int ToggleTearOffs(void)
{
 int errorCode;
 switch
 (sm_menu_get_int(MNL_SCREEN, "menucom", "main", MN_TEAR)
 {
 /*enable tear-offs */
 case 0: sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 1, NULL);
 break;

 /*disable tear-offs */
 case 1: sm_menu_change
 (MNL_SCREEN, "menucom", "main", MN_TEAR, 0, NULL);
 break;

 /* if error returned, find out why */
 case -1:
 errorCode = sm_menu_bar_error();
 menuErrorHandler(errorCode);
 break;
 }
}

Programming Guide 5-327

sm_menu_install
sm_menu_install

Makes a menu available for display

void int sm_menu_install(int scope, int mem_location,
char *script, char *menu);

scope

Specifies the menu’s scope within the application with one of these constants:

MNS_APPLIC

Associates menu with the application and displays it. An application
menu displays with all screens unless you install another menu at
screen scope (MNS_SCREEN). Under Motif, the application menu can
display on the base window along with the active screen’s menu if
you set the baseWindow and formMenus resources to true. You can
install an application menu only from a script that is loaded into
application (MNL_APPLIC) memory.

MNS_SCREEN

Associates menu with the current screen and displays it. The menu
displays when its screen is invoked or reexposed. You can install a
screen menu from a script that is loaded into application
(MNL_APPLIC) or screen (MNL_SCREEN) memory.

MNS_SCRN_POPUP

Associates menu with the current screen and makes it available for
display as a popup that the user invokes when the cursor is outside a
field or in field that has no menu associated with it. You can install
a screen popup menu from a script that is loaded into application
(MNL_APPLIC) or screen (MNL_SCREEN) memory.

MNS_FIELD

Associates a menu with the current field, and makes it available for
display as a popup that the user invokes while in that field. You can
install a field menu from a script in any memory location.

mem_location

Specifies the memory location in which script is loaded. A script’s
memory location determines the scope at which you can install its
menus—for example, you can install a screen menu only from a
script that is loaded into screen (MNL_SCREEN) or application
(MNL_APPLIC) memory. You load a menu script into memory with
5-328 Library Functions

sm_menu_install
sm_mnscript_load with one of the arguments in the following
table. The table shows which scope arguments are valid for each
memory location:

Refer to sm_mnscript_load for more information about these
arguments.

script

The name of a memory-resident script that contains the menu to install. The
script must already be loaded into memory at mem_location by
sm_mnscript_load. If you supply NULL, Panther searches for menu in the
script most recently loaded in mem_location. A NULL value requires you to
supply a non-NULL value for menu.

menu

Specifies a menu definition in script to install. If you supply an empty
string, Panther installs the first menu definition in script. Make sure that
menu names among all scripts loaded at the same memory location are
unique; otherwise, results can be unpredictable.

If you supply NULL, Panther uses the first menu in script. A NULL value requires you
to supply a non-NULL value for script.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Invalid scope or menus not supported.

Memory
location

Valid scopes

MNL_APPLIC All

MNL_SCREEN MNS_SCREEN, MNS_SCRN_POPUP, MNS_FIELD

MNL_FIELD MNS_FIELD

MNL_ANY Panther searches for the menu’s script in all memory
locations that are valid for the menu’s scope, starting
with the “lowest” location. For example, if you want to
install a screen-level menu, (MNS_SCREEN), Panther
first looks in screen memory, (MNL_SCREEN), then in
application memory (MNL_APPLIC).
Programming Guide 5-329

sm_menu_install
-4 MNERR_MENU: Menu name not found.
-7 MNERR_MALLOC: Memory allocation error.

-10 MNERR_LOCATION: Invalid memory location for specified scope.

Description sm_menu_install finds a menu in the specified script and memory location and reads
its definition. If the menu contains external references, Panther resolves these; it then
makes the menu available for display.

Except for Motif versions, Panther applications can display only one menu bar at a
time. For example, if an application contains multiple screens and each screen has its
own menu, Panther displays only the menu bar of the active screen. Under Motif, an
application menu and screen menu can display simultaneously.

The scope at which you install a menu determines when Panther displays it; its
memory location determines whether you can have identical instances of the same
menu.

Menus display according to their scope assignment as follows:

! An application menu displays at all times unless a screen menu is installed.
Note that under Motif, an application menu bar can display along with a screen
menu.

! A screen menu displays when its screen is invoked or reexposed. This menu
also displays with successive screens that lack their own menus: with sibling
and child windows; and, if invoked as a form, with other forms invoked later.

! A screen popup menu displays when invoked from an area of the screen that
has no field, or when the cursor is in a field that has no menu of its own
associated with it.

! A field menu displays as a popup that the user invokes while on that field.

You can install a menu at any scope that is the same or higher than the scope of its
caller. For example, the application’s startup routines in jmain.c can only install a
menu at application scope, while a screen’s entry procedure can install a menu at all
scopes except field (MNS_FIELD); a field’s entry procedure can install menus at all
scopes, including field.

Panther installs a screen menu with the current screen, a field menu with the current
field. If another menu is already installed at the specified scope, Panther removes the
previous menu. If the same menu is already installed from the same memory location,
Panther does not try to reinstall it.
5-330 Library Functions

sm_menu_install
Installing Menus

with Shared

Content

Because a script can be loaded only once into a given memory location, all menus
installed from that location are identical. Panther provides only one memory location
at the application level (MNL_APPLIC). So, all scripts in application memory are
unique, and all instances of a menu installed from application memory are the same:
changes in one are immediately propagated to all others.

You can install the same menu from application memory for different screens and
fields; if you do, all instances of this menu are always the same. If you install the same
menu from screen memory for different fields on that screen; all popup menus of those
fields are identical.

For example, the following JPL procedure in an application’s startup screen loads a
menu script into application memory; it then installs the menu scr_mn for the startup
screen from application memory:

if sm_mnscript_load(MNL_APPLIC, "mnscript_myprog") == MNERR_OK

 call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC,"mnscript_myprog", "scr_mn")
else
{
 msg emsg "No menu found for application. Goodbye"
 call jm_exit
}
return

Subsequently, other screens in this application can install their own instances of this
menu with the following call:

call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC, "mnscript_myprog", "scr_mn")

All screens that display the scr_mn menu display the same menu. Thus, if one screen
makes a menu option inactive, that option is inactive when other screens display that
menu.

Installing Menus

with Unique

Content

Conversely, you can install multiple copies of the same menu for screens and widgets,
where each copy is unique. Because screens and widgets can load menu scripts into
their private memory locations, each location can maintain its own copy of a menu;
changes to one have no effect on the others.

To install unique copies of the same menu for several screens, repeat these steps for
each screen:
Programming Guide 5-331

sm_menu_install
1. Load the menu script into screen memory—call sm_mnscript_load with an
argument of MNL_SCREEN.

2. Install the menu from screen memory—call sm_menu_install with arguments
of MNS_SCREEN and MNL_SCREEN.

Similarly, you can make sure that several widgets on a screen have unique copies of
the same popup menu. Repeat these steps for each field:

1. Load the menu script into field memory for the widget—call sm_mnscript_load
with an argument of MNL_FIELD.

2. Install the menu from the widget’s memory—call sm_menu_install with
arguments of MNS_FIELD and MNL_FIELD.

External Menus A menu definition can specify submenus whose contents are defined outside the
current script—that is, the submenu’s External property is set to Yes. For maximum
flexibility, the external flag contains no information about this menu’s script name.
Consequently, when you install a menu, Panther resolves external references by
searching first among scripts in the same memory location, then among scripts in the
next highest memory location, and so on.

For example, given a menu installed from screen memory, Panther tries to resolve each
of its external references first by searching among other scripts in screen memory; if
no match is found in screen memory, Panther continues the search among the scripts
loaded into application memory. If no menu is found in any memory location, Panther
displays an empty submenu.

Removing Menus

from Memory

You can explicitly remove any instance of a menu by calling sm_menu_remove.
Otherwise, the menu remains installed until its screen or widget is removed from
memory—for example, when a screen with its own menu is removed from the form or
window stack. Panther automatically removes all menus and frees their memory when
the application exits.
5-332 Library Functions

sm_menu_remove
sm_menu_remove

Removes a menu from display

int sm_menu_remove(int scope);

scope

Specifies which menu to remove from display:

MNS_APPLIC

Removes the application menu.

MNS_SCREEN

Removes the current screen’s menu, either installed with the current
screen or inherited from another screen.

MNS_FIELD

Removes the current field’s menu.

Returns 0 MNERR_OK: Success.
-2 MNERROR_EMPTY_SCOPE: Menu not installed at specified scope.
-3 MNERR_NOT_SUPPORTED: Invalid scope or menus not supported.

Description sm_menu_remove makes a menu unavailable for display at the specified scope.
Because the script remains loaded, any subsequent changes to the menu’s properties
become visible when you reinstall it.

This function has no effect on other instances of the menu that are installed from the
same memory location.

See Also sm_menu_install
Programming Guide 5-333

sm_message_box
sm_message_box

Displays a message in a dialog box

int sm_message_box(char *text, char *title, unsigned int options,
char *icon);

text

The text of the message. The text can contain format options shown in
“Description.” For Motif, the text has a maximum size of 75 characters.

title

The title of the dialog box. A null pointer or empty string specifies no title.

options

A bit mask that specifies message box display and behavior. Arguments that
set different bits can be OR’d together. Table 5-13shows the flags that you
can set on this mask.

icon

Specifies the icon to use in the dialog box. The icon specified here overrides
any icon set through options. This argument is ignored in character-mode.

Returns An integer that indicates which button was pushed:

1 SM_IDOK: OK
2 SM_IDCANCEL: Cancel
3 SM_IDABORT: Abort
4 SM_IDRETRY: Retry
5 SM_IDIGNORE: Ignore
6 SM_IDYES: Yes
7 SM_IDNO: No
8 SM_IDHELP: Help
9 SM_IDYESALL: Yes to All

10 SM_IDOKALL: OK to All
11 SM_ID_NOALL: No to All

Description sm_message_box creates a dialog box that displays a message and requests the user to
select a button. Panther prevents further interaction with the application until the
function returns with the user’s selection.
5-334 Library Functions

sm_message_box
The message text is a single string that wraps within the window. The text can contain
these % format options:

%Kkeyname

Displays the specified key, where keyname is a logical key constant. When
Panther displays the message, it replaces keyname with the key label string
defined for that key in the key translation file. If there is no label, the %K is
stripped out and the constant remains. Key constants are defined in smkeys.h

%B

Beeps the terminal with sm_bel before the message displays. This escape
character must precede the message text.

%N

Creates a new line.

You control message box display and behavior by setting one or more flags in
Table 5-13. You can set one flag from each group. Flag settings from different groups
can be OR’d together.

Table 5-13 Message box settings

Flag settings (by group) Display/Action

Button Combinations

SM_MB_OK OK

SM_MB_OKCANCEL OK, Cancel

SM_MB_ABORTRETRYIGNORE Abort, Retry, Ignore

SM_MB_YESNOCANCEL Yes, No, Cancel

SM_MB_YESNO Yes, No

SM_MB_RETRYCANCEL Retry, Cancel

SM_MB_YESALLNOCANCEL Yes, Yes to All, No, Cancel

SM_MB_OKALL OK, OK to All

SM_MB_OKHELP OK, Help

SM_MB_OKCANCELHELP OK, Cancel, Help

SM_MB_ABORTRETRYIGNOREHELP Abort, Retry, Ignore, Help
Programming Guide 5-335

sm_message_box
The following sections describe these settings in more detail.

Button

Combinations

User options are controlled through the message box buttons. Table 5-13 shows the
permissible combinations and the constants that set them.

SM_MB_YESNOCANCELHELP Yes, No, Cancel, Help

SM_MB_YESNOHELP Yes, No, Help

SM_MB_RETRYCANCELHELP Retry, Cancel, Help

SM_MB_YESALLNOALLCANCEL Yes, Yes to all, No, No to all, Cancel

System Icon Display

SM_MB_ICONNONE No icon

SM_MB_ICONSTOP Stop

SM_MB_ICONQUESTION Question

SM_MB_ICONWARNING Warning

SM_MB_ICONINFORMATION Information

Default Button

SM_MB_DEFBUTTONn Sets the button in the nth position as the default
button.

Modality

SM_MB_APPLMODAL Confines user interaction to message box until
message is acknowledged; user can interact freely
with other applications.

SM_MB_SYSTEMMODAL Confines user interaction to message box until
message is acknowledged.

Table 5-13 Message box settings (Continued)

Flag settings (by group) Display/Action
5-336 Library Functions

sm_message_box
Your message file defines the labels of message box buttons. You can edit this file and
modify the label text. For more information on button label text, refer to “Customizing
Push Button Labels for Message Boxes” on page 45-23 in Application Development
Guide.

System Icon You can use the options parameter to set a flag for the system icon you want to
display in the message window, if any. The actual icon that appears is
platform-specific. In character mode, Panther searches in the message file for the tag
that corresponds to the specified icon and its associated text; this text appears in front
of the title text. For information on modifying message file tags, refer to “Using
Message Files” on page 45-2 in Application Development Guide.

Default Buttons The options parameter can set the default button. The default button is specified by
position—for example, you can set the third button as the default. You cannot set the
Help button as the default button.

Modality Panther requires the user to respond to the message before continuing interaction with
the application. You can extend this restriction to the entire system, and thereby
prevent interaction with other applications, by setting SM_MB_SYSTEMMODAL on the
options parameter. The default modality setting is SM_MB_APPLMODAL, which
constrains user interaction only within the Panther application.

Example proc clean_exit()
{
 vars btnPush
 btnPush = sm_message_box("Save changes before exiting?",\
 "", SM_MB_YESNOCANCEL | SM_MB_ICONQUESTION,"")

 if (btnPush == SM_IDCANCEL)
 {
 return
 }
 if (btnPush == SM_IDYES)
 {
 call save_changes()
 }
 if (btnPush == SM_IDNO)
 {
 call sm_jclose()
 }

}

Programming Guide 5-337

sm_mncrinit6
sm_mncrinit6

Initializes support for Panther’s menu subsystem

void sm_mncrinit6(void);

Environment C only

Description sm_mncrinit6 is usually called automatically when you enable menus in your
application. This function is called and menu support is enabled if you set MENUS to 1
in the main function.

sm_mncrinit6 sets a global variable to point to a control function. All screen manager
functions that need menu support check the variable and, if it is non-zero, call
indirectly with the request.

Call this function explicitly only if you write your own executive. You must call
sm_mncrinit6 in the main function before the call to sm_initcrt.
5-338 Library Functions

sm_*mnitem_change
sm_*mnitem_change

Sets a menu item’s property

int sm_mnitem_change(int mem_location, char *script, char *menu,
int item_no, int prop, int intval, char *strval);

int sm_n_mnitem_change(int mem_location, char *script, char *menu,
char *item_name, int prop, int intval, char *strval);

mem_location

The memory location of the item’s menu, one of the following constants:

MNL_ANY
MNL_APPLIC
MNL_SCREEN
MNL_FIELD

If you supply MNL_ANY, Panther looks for the menu in all memory locations.
If the menu is installed in more than one location, the function call fails and
returns MN_ERR_LOCATION.

script

The name of a memory-resident script that contains the menu to change. The
script must already be loaded into memory at mem_location by
sm_mnscript_load. If you supply NULL, Panther searches in the most
recently loaded script in mem_location for the specified menu.

menu

The name of the item’s menu, as listed in the Submenu field of the menu bar
editor or with the MENU keyword in an ASCII menu file. If you supply NULL,
Panther uses the first menu in script.

item_no, item_name

Specifies the menu item to change by its number or name:

" sm_mnitem_change identifies the item by its numeric offset within the
menu, where the first menu item is 0.

" sm_n_mnitem_change identifies the item by its name.

prop

The property to change, one of the constants listed in Table 5-14.

intval

The integer value to set for prop. If the property takes a string value, supply 0.
Programming Guide 5-339

sm_*mnitem_change
strval

The string value to set for prop. If the property takes an integer value, supply
NULL.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Invalid data.
-7 MNERR_MALLOC: Memory allocation error.
-8 MNERR_NULL: Null string argument.
-9 MNERR_READ_ONLY: Property is read-only.

Description sm_mnitem_change sets the property of a menu item. Menu item properties are
derived from a memory-resident script. Because sm_mnitem_change changes the
specified script, all instances of items from this script get the property change.

Menu Item

Property

Constants

Table 5-14 lists menu item property constants and the values you can set these to.
Integer and string properties are listed in separate groups.

Table 5-14 Menu item properties that can be changed at runtime

Constant Property values

Integer properties:

 MNI_ACCEL An accelerator keystroke that specifies the keyboard equivalent
for selecting this menu item, valid only for action and toggle
menu items.

You cannot set this property for main menu items. Accelerator
keys for edit-type items such as Edit Cut or Edit Paste are set by
the GUI platform—for example, in Windows, through the
Panther initialization file; on Motif, in the Panther file. To
change edit item accelerators, modify the appropriate GUI file.

 MNI_ACCEL_ACTIVE A value of PROP_ON or PROP_OFF specifies whether the menu
item accelerator is active.

 MNI_ACTIVE A value of PROP_ON or PROP_OFF allows or disallows user
access to this menu item. If MNI_ACTIVE is set to PROP_OFF,
the menu item is greyed out.
5-340 Library Functions

sm_*mnitem_change
 MNI_DISPLAY_ON Specifies whether to display the menu item on the menu and/or
the tool bar. Supply one of these arguments:

DISPLAY_MENU: Menu only (default)
DISPLAY_TOOL: Tool bar only
DISPLAY_BOTH: Menu and tool bar
DISPLAY_NEITHER: Neither

 MNI_INDICATOR A value of PROP_ON or PROP_OFF specifies whether to show
the toggle indicator.

 MNI_IS_HELP A value of PROP_ON or PROP_OFF specifies whether to
display this item as the rightmost item on the menu bar.

 MNI_MNEMONIC A zero-based offset into the item’s label that specifies which
character users can type to select this item, provided the menu
is displayed. A value of -1 specifies no mnemonic for this item.

 MNI_ORDER* The order in which this item appears on the toolbar. The default
value is 100. You can enter any value between 0 and 200,
inclusive. If all toolbar items are set to the same value, they
appear in the same order as they do in the menu.

 MNI_SEP_STYLE The style used by an item separator, specified by one of these
constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

 MNI_SHOW_ACCEL A value of PROP_ON or PROP_OFF specifies whether a menu
item displays the accelerator key next to the item label.

Table 5-14 Menu item properties that can be changed at runtime (Continued)

Constant Property values
Programming Guide 5-341

sm_*mnitem_change
String properties:

MNI_ACT_PIXMAP* The name of an image file whose contents are shown for an
active toolbar item—that is, accessible but not pressed. Refer to
Table 25-1 on page 25-15 in Using the Editors for valid file
types, and for information about path and extension options.

MNI_ARM_PIXMAP* The name of an image file whose contents are shown for an
armed toolbar item—that is, in its pressed state. If this property
is blank, Motif uses the MNI_ACT_PIXMAP property for the
item’s armed state. Windows uses a modified version of the
Active Pixmap property to display a toolbar item’s armed state
and ignores this property.

MNI_CONTROL A control string that specifies the action that occurs when this
item is selected.

MNI_EXT_HELP_TAG A help context identifier that specifies the help to invoke from
an external help program.

MNI_HOT_PIXMAP* The name of an image file whose contents are shown when a
pointer moves over an active toolbar item. (Windows only)

MNI_INACT_PIXMAP* The name of an image file whose contents are shown for an
inactive or unavailable (grayed) item. If this property is blank,
Motif displays an empty toolbar item. Windows uses a grayed
version of the Active Pixmap property to display a toolbar
item’s inactive state if a pixmap is not specified.

MNI_HELP_SCREEN The name of a Panther screen to invoke as a help screen.

MNI_LABEL A string expression to display as this item’s label.

MNI_MEMO A string expression for this menu item’s Memo Text property.

MNI_NAME The menu item’s name. This function does not check for
duplicate names.

MNI_STAT_TEXT A string expression to display on the screen’s status line when
this item has focus.

MNI_SUBMENU Name of the submenu to invoke when this item is selected.

Table 5-14 Menu item properties that can be changed at runtime (Continued)

Constant Property values
5-342 Library Functions

sm_*mnitem_change
Calling from JPL sm_mnitem_change and sm_n_mnitem_change have too many parameters to allow
installation by sm_install; consequently, they are not directly accessible to JPL
modules. (Refer to “Installing Prototyped Functions” on page 44-9 in Application
Development Guide for function installation requirements.) A number of wrapper
functions that call sm_mnitem_change and sm_n_mnitem_change are declared and
installed in funclist.c. You can call these functions from JPL to modify menu items.

Table 5-15 lists the provided wrapper functions and their parameter declarations. Each
wrapper function is narrowly defined to look for a menu in a discrete memory
location—application, screen, or field—or to look in all memory locations (the
change_i_any and change_s_any variants). Also, the change_i variants set only
integer properties; the change_s variants set only string properties. All parameters are
identical in type and purpose to those declared for sm_mnitem_change and
sm_n_mnitem_change.

MNI_TM_CLASS The transaction manager class assigned to this menu item. This
property determines how the item behaves in each of the
transaction manager modes. Refer to “Using Styles and
Classes” on page 23-5 in Using the Editors for more
information on transaction manager classes.

MNI_TOOL_TIP* The balloon help to display when the cursor remains over the
toolbar item.

* Ignored in character-mode.

Table 5-14 Menu item properties that can be changed at runtime (Continued)

Constant Property values

Table 5-15 Wrapper functions for changing menu item properties from JPL

Function names Parameter declarations

To modify integer properties, call:

sm_n_mnitem_change_i_any*
sm_n_mnitem_change_i_app
sm_n_mnitem_change_i_screen
sm_n_mnitem_change_i_field

(char *script, char *menu, char *item_name,
int prop, int intval)
Programming Guide 5-343

sm_*mnitem_change
sm_mnitem_change_i_any*
sm_mnitem_change_i_app
sm_mnitem_change_i_screen
sm_mnitem_change_i_field

(char *script, char *menu, int item_no,
int prop, int intval)

To modify string properties, call:

sm_n_mnitem_change_s_any*
sm_n_mnitem_change_s_app
sm_n_mnitem_change_s_screen
sm_n_mnitem_change_s_field

(char *script, char *menu, char *item_name,
int prop, char *strval)

sm_mnitem_change_s_any*
sm_mnitem_change_s_app
sm_mnitem_change_s_screen
sm_mnitem_change_s_field

(char *script, char *menu, int item_no
int prop, char *strval)

* Panther looks for the menu in all memory locations. If the menu is installed in more than one location, the
function call fails and returns MN_ERR_LOCATION.

Table 5-15 Wrapper functions for changing menu item properties from JPL (Continued)

Function names Parameter declarations
5-344 Library Functions

sm_*mnitem_create
sm_*mnitem_create

Inserts a new item into a menu

int sm_mnitem_create(int mem_location, char *script, char *menu,
int next_item_no, int item_type, char *item_name);

int sm_n_mnitem_create(int mem_location, char *script, char *menu,
char *next_item_name, int item_type, char *item_name);

mem_location

The memory location of the item’s menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script that contains the item’s menu. The
script must already be loaded into memory at mem_location by
sm_mnscript_load. If you supply NULL, Panther searches in the most
recently loaded script in mem_location for the specified menu.

menu

The name of the item’s menu, as listed in the Submenu field of the menu bar
editor or with the MENU keyword in an ASCII menu file. If you supply NULL,
Panther uses the first menu in script.

next_item_no, next_item_name

Specifies the new item’s position by the number or name of the item to follow
it:

" sm_mnitem_create identifies the next item by its numeric offset
within the menu, where the first menu item is 0. Supply -1 to append
the new item to the end of the menu.

" sm_n_mnitem_create identifies the next item by its name. Supply
NULL to append the new item to the end of the menu.

item_type

The item’s type. Supply one of the constants described in Table 5-16.

item_name

The name to assign this item. Item names must be unique within the same
menu. Supply NULL to create an unnamed item.
Programming Guide 5-345

sm_*mnitem_create
Environment C only

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.
-6 MNERR_DATA: Item name already exists.
-7 MNERR_MALLOC: Memory allocation error.

Description sm_mnitem_create inserts a new menu item into a menu. After you create this item,
you can set its properties through sm_mnitem_change. The menu displays this item at
the next delayed write.

Table 5-16 lists menu item type constants.

Table 5-16 Menu item type constants

Item type constants Item behavior

MI_SEPARATOR Draws a separator between the previous and next menu items,
according to the specified separator style MNI_SEP_STYLE).

MI_SUBMENU Invokes another menu. If a MI_SUBMENU-type item is on the
menu bar, its submenu displays as a pulldown; otherwise, the
submenu displays to its right.

MI_ACTION_BTTN Invokes an action through a control string.

MI_TOGGLE_BTTN Invokes an action through a control string and toggles the indicator
on or off.

MT_WINDOWS_OPT Invokes the windows menu of the current platform—for example,
under Windows, the Windows menu with Arrange Icons, Tile, and
Cascade. This item is ignored in character mode.

MT_WINDOWS_LIST Invokes a menu that lists all open windows.

MT_EDIT_CUT* Cuts selected text to the clipboard.

MT_EDIT_DELETE* Deletes the selected text.

MT_EDIT_PASTE* Pastes the clipboard contents.

MT_EDIT_SELECT* Selects the current widget’s contents.
5-346 Library Functions

sm_*mnitem_create
MT_EDIT_COPY* Copies selected text to the clipboard.

MT_EDIT_CLEAR* Replaces the selected text with blank spaces.

*Under Windows and Motif, use edit-type items only on a pulldown or popup menu.
Windows and Motif inactivate edit-type menu items when they appear on a menu bar.

Table 5-16 Menu item type constants (Continued)

Item type constants Item behavior
Programming Guide 5-347

sm_*mnitem_delete
sm_*mnitem_delete

Removes an item from a menu

int sm_mnitem_delete(int mem_location, char *script, char *menu,
int item_no);

int sm_n_mnitem_delete(int mem_location, char *script, char *menu,
char *item_name);

mem_location

The memory location of the item’s menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script that contains the item’s menu. If you
supply NULL, Panther searches in the most recently loaded script in
mem_location for the specified menu.

menu

The name of the item’s menu, as listed in the Submenu field of the menu bar
editor or with the MENU keyword in an ASCII menu file. If you supply NULL,
Panther uses the first menu in script.

item_no, item_name

Specifies the menu item to delete by its number or name:

" sm_mnitem_delete identifies the item by its numeric offset within the
menu, where the first menu item is 0.

" sm_n_mnitem_delete identifies the item by its name.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-4 MNERR_MENU: Menu name not found.
-5 MNERR_ITEM: Item name not found.

Description sm_mnitem_delete removes an item from a menu and frees the memory associated
with it. Panther updates the menu display at the first delayed write.
5-348 Library Functions

sm_*mnitem_get
sm_*mnitem_get

Gets a menu item’s property

int sm_mnitem_get_int(int mem_location, char *script, char *menu,
int item_no, int prop);

int sm_n_mnitem_get_int(int mem_location, char *script,
char *menu, char *item_name, int prop);

char *sm_mnitem_get_str(int mem_location, char *script,
char *menu, int item_no, int prop);

char *sm_n_mnitem_get_str(int mem_location, char *script,
char *menu, char *item_name, int prop);

mem_location

The memory location of the item’s menu, one of the following constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The name of a memory-resident script that contains the item’s menu. The
script must already be loaded into memory at mem_location by
sm_mnscript_load.

menu

The name of the item’s menu, as listed in the Submenu field of the menu bar
editor or with the MENU keyword in an ASCII menu file.

item_no, item_name

Specifies the menu item by its number or name:

" sm_mnitem_get identifies the item by its numeric offset within the
menu, where the first menu item is 0.

" sm_n_mnitem_get identifies the item by its name.

prop

The property to get. Supply one of the constants described in Table 5-17.

Returns • The property’s current value, returned either as an integer or as a pointer to a
string value. Because this function stores a returned string in a pool of buffers
that it shares with other functions, copy or process this data immediately.
Programming Guide 5-349

sm_*mnitem_get
NULL Error returned by _get_str variants. Call sm_menu_bar_error to get the
error code.

-1 Error returned by _get_int variants. Call sm_menu_bar_error to get the
error code.

Description sm_mnitem_get_int and sm_mnitem_get_str return the current setting of the
specified property. Use the _int variant for those properties that have an integer
value—for example, MNI_SEP_STYLE; use the _str variant for properties that take
string values, such as MNI_NAME and MNI_ACCEL.

Table 5-17 lists the menu item property constants that you can supply as arguments to
the prop parameter and the values that these return. Integer and string properties are
listed in separate groups.

Table 5-17 Menu item properties

Constant Property values

Integer properties:

MNI_ACCEL An accelerator keystroke that specifies the keyboard equivalent
for selecting this menu item, valid only for action and toggle menu
items.

MNI_ACCEL_ACTIVE A value of PROP_ON or PROP_OFF specifies whether the menu
item accelerator is active.

MNI_ACTIVE A value of PROP_ON or PROP_OFF allows or disallows user
access to this menu item. If MNI_ACTIVE is set to PROP_OFF,
the menu item is greyed out.

MNI_DISPLAY_ON Specifies whether to display the menu item on the menu and/or the
tool bar. Supply one of these arguments:

DISPLAY_MENU: Menu only (default).
DISPLAY_TOOL: Tool bar only.
DISPLAY_BOTH: Menu and tool bar.
DISPLAY_NEITHER: Neither.

MNI_INDICATOR A value of PROP_ON or PROP_OFF specifies whether to show the
toggle indicator.

MNI_IS_HELP A value of PROP_ON or PROP_OFF specifies whether to display
this item as the rightmost item on the menu bar.
5-350 Library Functions

sm_*mnitem_get
MNI_MNEMONIC A zero-based offset into the item’s label that specifies which
character users can type to select this item, provided the menu is
displayed. A value of -1 indicates that the item has no mnemonic
set.

MNI_ORDER* The order in which this item appears on the toolbar. The default
value is 100. You can enter any value between 0 and 200,
inclusive. If all toolbar items are set to the same value, they appear
in the same order as they do in the menu.

MNI_SEP_STYLE The style used by an item separator, specified by one of these
constants:

SEP_SINGLE
SEP_DOUBLE
SEP_NOLINE
SEP_SINGLE_DASHED
SEP_DOUBLE_DASHED
SEP_ETCHEDIN
SEP_ETCHEDOUT
SEP_ETCHEDIN_DASHED
SEP_ETCHEDOUT_DASHED

MNI_SHOW_ACCEL A value of PROP_ON or PROP_OFF specifies whether a menu
item displays the accelerator key next to the item label.

MNI_TM_CLASS The transaction manager class assigned to this menu item. This
property determines how the item behaves in each of the
transaction manager modes. Refer to “Using Styles and Classes”
on page 23-5 in Using the Editors for more information on
transaction manager classes.

Table 5-17 Menu item properties (Continued)

Constant Property values
Programming Guide 5-351

sm_*mnitem_get
MNI_TYPE The menu item’s type, specified by one of the following
constants:

MI_SEPARATOR
MI_SUBMENU
MI_ACTION_BTTN
MI_TOGGLE_BTTN
MT_WINDOWS_OPT
MT_WINDOWS_LIST
MT_EDIT_CUT
MT_EDIT_DELETE
MT_EDIT_PASTE
MT_EDIT_SELECT
MT_EDIT_COPY
MT_EDIT_CLEAR

String properties:

MNI_ACT_PIXMAP* The name of an image file whose contents are shown for an active
toolbar item—that is, accessible but not pressed. Refer to
Table 25-1 on page 25-15 in Using the Editors for valid file types.
File paths and extensions are optional; for more information, refer
to “Filename Extensions” on page 25-16 in Using the Editors.

MNI_ARM_PIXMAP* The name of an image file whose contents are shown for an armed
toolbar item—that is, in its pressed state. If this property is blank,
Motif uses the MNI_ACT_PIXMAP property for the item’s armed
state. Windows uses a modified version of the Active Pixmap
property to display a toolbar item’s armed state and ignores this
property.

MNI_CONTROL A control string that specifies the action that occurs when this item
is selected.

MNI_EXT_HELP_TAG A help context identifier that specifies the help to invoke from an
external help program.

MNI_HOT_PIXMAP* The name of an image file whose contents are shown when a
pointer moves over an active toolbar item. (Windows only)

Table 5-17 Menu item properties (Continued)

Constant Property values
5-352 Library Functions

sm_*mnitem_get
MNI_INACT_PIXMAP
*

The name of an image file whose contents are shown for an
inactive or unavailable (grayed) item. If this property is blank,
Motif displays an empty toolbar item. Windows uses a grayed
version of the Active Pixmap property to display a toolbar item’s
inactive state if a pixmap is not specified.

MNI_HELP_SCREEN The name of a Panther screen to invoke as a help screen.

MNI_LABEL A string expression to display as this item’s label.

MNI_MEMO A string expression for this menu item’s Memo Text property.

MNI_NAME The menu item’s name.

MNI_STAT_TEXT A string expression to display on the screen’s status line when this
item has focus.

MNI_SUBMENU Name of the submenu to invoke when this item is selected.

MNI_TOOL_TIP* The balloon help to display when the cursor remains over the
toolbar item.

* Ignored in character-mode.

Table 5-17 Menu item properties (Continued)

Constant Property values
Programming Guide 5-353

sm_mnscript_load
sm_mnscript_load

Loads a menu script into memory and makes its menus available for installation

int sm_mnscript_load(int mem_location, char *script);

mem_location

Specifies where to load this script into memory. You can load a script only
once into a given memory location. The script’s memory location determines
the scope at which its menus can be installed and whether you can install
identical instances of the same menu.

MNL_APPLIC

Loads the menu script into application memory. Menus in
application memory can be installed at any scope—application,
screen, and field. All instances of a menu installed from application
memory are always identical; changes in one are immediately
propagated to the others.

MNL_SCREEN

Loads the menu script into the current screen’s memory. Each screen
maintains its own memory location. You can install menus for a
screen and its widgets from that screen’s memory.

MNL_FIELD

Loads the menu script into the current field’s memory. Each field
maintains its own memory location. You can install a popup menu
for a field from its own memory location.

script

The name of the menu script to load into memory.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found, or script or menu name not supplied.
-3 MNERR_NOT_SUPPORTED: Menus not supported.
-7 MNERR_MALLOC: Memory allocation error.

-10 MNERR_LOCATION: Invalid memory location.

Description sm_mnscript_load loads the specified script into application, screen, or field
memory. All menus that are defined in that script are subsequently available for
installation and display through sm_menu_install.
5-354 Library Functions

sm_mnscript_load
sm_mnscript_load lets you load a menu into any memory location that is the same
or higher than its caller, as shown in Table 5-18:

For example, the application’s startup routines in jmain.c can only load menu scripts
into application memory, while a screen’s entry procedure can load scripts into
application memory and into its own memory.

A menu script’s memory location determines the scope at which its menus can be
installed:

! Application memory menus can be installed at all scopes: application, screen,
and field. Instances of a menu installed from application memory all share the
same content; changes to one are propagated to all.

! Screen memory menus can be installed at screen and field scopes. All copies of
a screen menu installed from screen memory are unique; copies of a field menu
installed from screen memory all share the same content within that screen.

! Field memory menus can be installed only at field scope. All instances of a
field menu installed from field memory are unique.

See Also sm_mnscript_unload

Table 5-18 Valid menu script load locations

sm_mnscript_load caller Valid memory locations

Application MNL_APPLIC

Screen MNL_SCREEN
MNL_APPLIC

Widget MNL_FIELD
MNL_SCREEN
MNL_APPLIC
Programming Guide 5-355

sm_mnscript_unload
sm_mnscript_unload

Removes a script from memory and destroys all menus installed from it

int sm_mnscript_unload(int mem_location, char *script);

mem_location

The memory location that contains the menu script, one of the following
constants:

MNL_APPLIC
MNL_SCREEN
MNL_FIELD

script

The menu script to unload. An argument of NULL unloads the script last
loaded in mem_location.

Returns 0 MNERR_OK: Success.
-1 MNERR_SCRIPT: Script not found.

-10 MNERR_LOCATION: Invalid memory location.

Description sm_mnscript_unload removes script from the specified memory location and
destroys all menus that are installed from it. If any of those menus are currently
displayed, Panther removes them immediately. If a menu is referenced as an external
menu, Panther displays an empty menu in its place.

See Also sm_mnscript_load
5-356 Library Functions

sm_ms_inquire
sm_ms_inquire

Gets information about the mouse’s current state

int sm_ms_inquire(int request);

request

Specifies the data to get, one of the following constants:

MOUSE_LINE

The line of the physical display on which the mouse click occurred.

MOUSE_COLM

The column of the physical display on which the mouse click
occurred.

MOUSE_SHIFT

The state of the Shift, Control, and Alt keys during the mouse click.
Panther returns this information in an integer bit mask. For bit
settings, refer to the Description.

MOUSE_BUTTONS

The state of all mouse buttons, left, middle, and right. Panther
returns this information in an integer bit mask. For states that are
recognized by Panther and their corresponding bit settings, refer to
the Description.

MOUSE_FIELD

The number of the field in which the mouse click occurred. If the
mouse click occurs outside a field, the function returns -1.

MOUSE_FORM_LINE

The number of the Panther screen line on which the mouse click
occurred.

MOUSE_FORM_COLM

The number of the Panther screen column on which the mouse click
occurred.

Returns • The data specified by request.
-1 Unable to get the requested data.
Programming Guide 5-357

sm_ms_inquire
Description sm_ms_inquire gets information about the mouse’s current state—the position of the
last mouse click on the physical or Panther screen, whether other keys are pressed in
combination with it, and which mouse buttons have been pressed and how recently.

This function’s returns an integer value whose bits are set according to the supplied
argument, MOUSE_SHIFT or MOUSE_BUTTONS.

Mouse Events

with Keyboard

Modifiers

MOUSE_SHIFT sets the three lowest-order bits in the return value to indicate which of
three keys—Shift, Ctrl, and Alt—are pressed at the same time as the mouse click.
sm_ms_inquire can set these bits as follows, from lowest- to highest-order bit:

1 Shift key is down
1 Ctrl key is down
1 Alt key is down

For example, a return value of 2 (0 1 0) indicates that the Ctrl key is down, while a
return value of 5 (1 0 1) indicates that the Alt and Shift keys are both down. The
second of these returns can be represented as follows:

MOUSE_BUTTONS sets nine bits to indicate the state of the left, right, and middle mouse
buttons. sm_ms_inquire puts the requested data in three segments of three bits each,
where each segment represents one of three mouse buttons—left, right, and middle.
The three lowest-order bits contain left button data; if the mouse has only one button,
only these bit settings are significant. The three middle bits contain right button data,
and the three highest-order bits contain data for the middle button, if any.

Each bit within a three-bit segment can be set as follows, from lowest- to highest-order
bit:

0/1 Up/down
1 Just pressed
1 Just released

For example, the bit settings returned for a just-initiated point and click operation—
left button is down and just pressed—can be represented as follows:
5-358 Library Functions

sm_ms_inquire
A click and drag operation that is in progress—right button is down—can be
represented like this:

Only four combinations of bit settings are meaningful to Panther and recognized as
valid button states:

! Up — 0 0 0

! Down — 0 0 1

! Down and just pressed — 0 1 1

! Up and just released — 1 0 0

Example /*find out whether any button is down */

int is_any_button_down(void)
{
 int retval;
 retval = -1;
 if (sm_ms_inquire(MOUSE_BUTTONS) > -1)
 return retval & 0x49;
 return retval;
}

See Also sm_mus_time
Programming Guide 5-359

sm_msg
sm_msg

Displays a message at a given column on the status line

void sm_msg(int column, int disp_length, char *text);

column

The message’s start column on the status line. On terminals with onscreen
attributes, you might need to adjust the column position to allow for attributes
embedded in the status line. sm_d_msg_line explains how to embed
attributes and function key names in a status line message.

disp_length

The number of characters to display.

text

The contents of the message.

Description sm_msg merges the specified message with the current contents of the status line and
displays it at the specified column. This function is called by the function that updates
the cursor position display (refer to sm_c_vis).

Note: Messages generated by sm_msg have the lowest of priority among status line
messages; consequently, its display is guaranteed only until the function
returns to its caller, or until another message routine is called. Any messages
that are subsequently posted to the status line overwrite the sm_msg-generated
text.

Example #include <smdefs.h>

/* This code displays a message, then chops out
 * part of it.
 */

char *text0 = " ";
char *text1 = "Message is displayed on the status "
 "line at col 1.";

sm_msg(1, strlen(text1), text1);
sm_msg(12, strlen(text0), text0);

See Also sm_d_msg_line
5-360 Library Functions

sm_msg_del
sm_msg_del

Removes a class of messages from memory

#include <smerror.h>

int sm_msg_del(int class);

class

Specifies the class of messages to remove, where 0-7 are reserved for
user-defined message classes, and the following classes, defined in
smerror.h, are reserved for Panther:

If the message file is not divided into sections, supply a value of 0.

Returns 0 Success.
-1 Unable to find message class.

Description sm_msg_del removes the specified class of messages from memory. All messages of
this class are thereafter inaccessible to the application unless explicitly reloaded
through sm_msg_read.

See Also sm_msg_read, sm_msg_get, sm_msgfind

DM_MSGS UT_MSGS

SM_MSGS WB_MSGS

TP_MSGS
Programming Guide 5-361

sm_msg_get
sm_msg_get

Finds a message

#include <smerror.h>

char *sm_msg_get(int msg_id);

msg_id

Specifies the message to get through its number or name, defined in
smerror.h.

Returns • A pointer to the text of msg_id’s message.
• A string that contains the message class and number if no message exists for

msg_id.

Description sm_msg_get gets a message from a message file previously loaded by sm_msg_read.
Message files are binary files, created through the Panther utility msg2bin, whose
contents are accessible through Panther library functions like sm_msg_get.

Example #include <smdefs.h>
#include <smerror.h>

/* Assume that an anxious programmer has just
 * typed in the question, "Will my boss like
 * my new program?" This code fragment answers
 * the question.
 */

sm_n_putfield("answer", rand() & 1 ?
sm_msg_get(SM_YES):
sm_msg_get(SM_NO));

See Also sm_msgfind, sm_msg_read, sm_msg_set
5-362 Library Functions

sm_*msg_read
sm_*msg_read

Reads messages from a message file

#include <smerror.h>

int sm_msg_read(char *msg_prefix, int class, int no_replace,
char *msgfile);

int sm_d_msg_read(char *msg_prefix, int class, int no_replace);

int sm_n_msg_read(char *msg_prefix, int class, int no_replace,
char *msgfile);

msg_prefix

Specifies to read messages of this prefix within message class class. Panther
messages have the following prefixes:

To read all messages in class, supply NULL or empty string "".

class

Specifies the class of messages to read, where 0-7 are reserved for
user-defined message classes, and the following classes, defined in
smerror.h, are reserved for Panther:

DM Database interface

DM_TM Transaction manager

FM Editor

JM Panther runtime

JV Java

SM Screen manager

TP Three-tier (JetNet/Tuxedo)

UT Utilities

WB Web
Programming Guide 5-363

sm_*msg_read
If the message file is not divided into sections, supply a value of 0.

no_replace

Boolean flag. If set to other than 0 (true), an existing message set of the same
class already loaded into memory is not replaced.

msgfile

Specifies the message file.

Environment C only

Returns 0 Success.
1 If no_replace is true and the message set was already loaded.

-1 Specified file either can’t be found or can’t be opened.
-3 Message section not found.
-4 Specified file is not a message file.
-5 File read error or a premature end-of-file.
-6 Memory allocation error.
-7 File had an invalid version number.

Description sm_msg_read and its variants let you read a set of messages from a binary message
file. The set of messages from the message file that is read is determined by the values
of class and msg_prefix. When Panther reads messages of prefix msg_prefix from
the file, it numbers them sequentially, starting from class*4096. Later, you can
access these messages through sm_msg_get or sm_msgfind.

This function has three variants:

! sm_d_msg_read reads from the default message file specified by the
environment variable SMMSGS.

! sm_n_msg_read reads from a named binary message file.

! sm_msg_read reads from a message file already loaded into memory.

See Also sm_msg_del, sm_msg_get, sm_msgfind

DM_MSGS UT_MSGS

SM_MSGS WB_MSGS

TP_MSGS
5-364 Library Functions

sm_msg_set
sm_msg_set

Replaces a message

#include <smerror.h>

int sm_msg_set(int msg_id, char *text);

msg_id

Specifies the message to set using its number, as defined in smerror.h.

text

The replacement message.

Returns • 0 on success.
• PR_E_MALLOC if insufficient memory is available.

Description sm_msg_set a replaces a message file entry. When a message is replaced, there is no
way to restore the original message other than copying its text and then calling
sm_msg_set again. This function first appeared in Panther 4.60.

Example #include <smdefs.h>
#include <smerror.h>

// To replace SM_5DEF_DTIME with 2 digit time tokens use:

sm_msg_set(SM_5DEF_DTIME, "%0m/%0d/%2y %0h:%0M");

// To restore SM_5DEF_DTIME to its value in the default msgfile:

sm_msg_set(SM_5DEF_DTIME, "%m/%d/%2y %h:%0M");

See Also sm_msg_get
Programming Guide 5-365

sm_msgfind
sm_msgfind

Finds a message given its number

#include <smerror.h>

char *sm_msgfind(int msg_id);

msg_id

Specifies the message to get.

Returns • A pointer to the message.
0 The message number is out of range.

Description sm_msgfind finds the message specified by number and returns the message string.
Unlike sm_msg_get, this function returns NULL if the message number is not found.

Message numbers for Panther messages are defined in smerror.h.

Example #include <smdefs.h>
#include <smerror.h>

/* print out message #4 */

sprintf(buf, "The message reads: %s\n", sm_msgfind
 (SM_BADKEY));
sm_fquiet_err(0, buf);

See Also sm_msg_get, sm_msg_read
5-366 Library Functions

sm_mts_CreateInstance
sm_mts_CreateInstance

Creates an object under MTS control

int sm_mts_CreateInstance(char *name);

name

Name of object to be created.

Environment MTS

Scope Server

Returns • An object id suitable for making sm_obj_call calls.
• In case of error, PR_E_OBJECT will be returned and a notation with the

HRESULT written to the log file.

Description sm_mts_CreateInstance can be used in place of sm_obj_create to create an object
that inherits the transaction context from the calling service object.

For more details see CreateInstance method under IObjectContextMethods in the MTS
documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.
Programming Guide 5-367

sm_mts_CreateProperty
sm_mts_CreateProperty

Creates a named property

int sm_mts_CreateProperty(char *group, char *prop);

group

Name of group to be created.

prop

Name of object to be created.

Environment MTS

Scope Server

Returns 0 Success. The property was created.
1 The property previously existed.
• Otherwise, PR_E_OBJECT. The log file will have further error information.

Description sm_mts_CreateProperty creates a named property within the specified group. If the
group does not exist, it will be created. It is not necessary to call this function as getting
or putting a value to a property will automatically create the property if necessary. See
sm_mts_GetPropertyValue and sm_mts_PutPropertyValue.

The one reason to call this function is to examine the return code. It will be 1 if the
property previously existed.

For more details see the CreateProperty method under ISharedPropertyGroup in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_CreatePropertyGroup, sm_mts_GetPropertyValue,
sm_mts_PutPropertyValue
5-368 Library Functions

sm_mts_CreatePropertyGroup
sm_mts_CreatePropertyGroup

Creates a new property group

int sm_mts_CreatePropertyGroup(char *group);

group

Name of group to be created.

Environment MTS

Scope Server

Returns 0 Success. The group was created.
1 The group previously existed.
• Otherwise, PR_E_OBJECT. The log file will have further error information.

Description sm_mts_CreatePropertyGroup creates a named property group. It is not necessary
to call this function as getting or putting a value to a property will automatically create
the group if necessary. See sm_mts_GetPropertyValue and
sm_mts_PutPropertyValue.

The one reason to call this function is to examine the return code. It will be 1 if the
property group previously existed.

For more details see the CreatePropertyGroup method under
ISharedPropertyGroupManager in the MTS documentation.

Panther uses the following settings:

! The isolation mode is set to LockMethod. This means that the group will be
locked for the entire method call. This ensures that the object can read data, and
update it, without interference with other objects.

! The release mode is set to Process. Thus the data will be retained for the life of
the package. However, data can only be shared within a single package.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_CreateProperty, sm_mts_GetPropertyValue,
sm_mts_PutPropertyValue
Programming Guide 5-369

sm_mts_DisableCommit
sm_mts_DisableCommit

Prevents database transactions from being committed

int sm_mts_DisableCommit(void);

Environment MTS

Scope Server

Returns • 0: OK
• PR_E_OBJECT if there is no context

Description sm_mts_DisableCommit prohibits the current transaction from being committed
when all interested parties complete their work. If the database updates are not in a
consistent state at some point during processing, calling this method prevents those
updates from being committed.

This function will not destroy the object, nor will it cause the transaction to be aborted.
Only SetAbort or SetComplete by all parties will allow the transaction to be
completed.

Transactions are created with EnableCommit on.

For more details see the DisableCommit method under IObjectContextMethods in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_EnableCommit, sm_mts_SetComplete, sm_mts_SetAbort
5-370 Library Functions

sm_mts_EnableCommit
sm_mts_EnableCommit

Enables database transactions to be committed

int sm_mts_EnableCommit(void);

Environment MTS

Scope Server

Returns • 0: OK
• PR_E_OBJECT if there is no context

Description sm_mts_EnableCommit allows the current transaction to be committed when all
interested parties complete their work.

This function will not destroy the object, nor will it cause the transaction to be
committed. Only SetComplete by all parties will allow the transaction to be
committed.

Transactions are created with EnableCommit on so this function is only needed if
DisableCommit has been called.

For more details see the EnableCommit method under IObjectContextMethods in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_DisableCommit, sm_mts_SetComplete, sm_mts_SetAbort
Programming Guide 5-371

sm_mts_GetPropertyValue
sm_mts_GetPropertyValue

Gets the value of a property

char *sm_mts_GetPropertyValue(char *group, char *prop);

group

Name of the property group.

prop

Name of the property.

Environment MTS

Scope Server

Returns • The value of the property as a string
• 0: An error occurred

Description sm_mts_GetPropertyValue gets the value of the named property within the
specified group. If the property or the group does not exist, it will be created.

The value of the property is always converted to a string.

For more details see the get_Value method under ISharedProperty in the MTS
documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

This function stores the data in a buffer that is shared with other functions, so you must
either process the returned string immediately or copy it to another variable for
additional processing.

See Also sm_mts_PutPropertyValue, sm_mts_CreateProperty
5-372 Library Functions

sm_mts_IsCallerInRole
sm_mts_IsCallerInRole

Determines if the client calling the component is allowed access

int sm_mts_IsCallerInRole(char *role);

role

Name of the user accessing the COM component.

Environment MTS

Scope Server

Returns • PV_YES if the caller is in the role
• PV_NO if the caller is not
• PR_E_OBJECT if there is no context

Description sm_mts_IsCallerInRole queries whether the current user is in the component
package’s specified role.

For more details see the IsCallerInRole method under IObjectContextMethods in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_IsSecurityEnabled
Programming Guide 5-373

sm_mts_IsInTransaction
sm_mts_IsInTransaction

Determines if the object is participating in a transaction

int sm_mts_IsInTransaction(void);

Environment MTS

Scope Server

Returns • PV_YES if the object is in a transaction
• PV_NO if the object is not in a transaction
• PR_E_OBJECT if there is no context

Description sm_mts_IsInTransaction queries whether the current object is taking part in a
transaction.

For more details see the IsInTransaction method under IObjectContextMethods in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.
5-374 Library Functions

sm_mts_IsSecurityEnabled
sm_mts_IsSecurityEnabled

Determines if security checking is enabled

int sm_mts_IsSecurityEnabled(void);

Environment MTS

Scope Server

Returns • PV_YES if security checking is on
• PV_NO if security checking is off
• PR_E_OBJECT if there is no context

Description sm_mts_IsSecurityEnabled queries whether the current object has security
checking on.

For more details see the IsSecurityEnabled method under IObjectContextMethods in
the MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_IsCallerInRole
Programming Guide 5-375

sm_mts_PutPropertyValue
sm_mts_PutPropertyValue

Sets value of named property

int sm_mts_PutPropertyValue(char *group, char *prop, char *val);

group

Name of the property group.

prop

Name of the property.

val

The property’s value, passed as a string.

Environment MTS

Scope Server

Returns • 0: OK
• PR_E_OBJECT if there is no context

Description sm_mts_PutPropertyValue sets the value of the named property within the specified
group. If the property or the group does not exist, it will be created.

For more details see the put_Value method under ISharedProperty in the MTS
documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_GetPropertyValue
5-376 Library Functions

sm_mts_SetAbort
sm_mts_SetAbort

Tells MTS to abort the transaction

int sm_mts_SetAbort(void);

Environment MTS

Scope Server

Returns • 0: OK
• PR_E_OBJECT if there is no context

Description sm_mts_SetAbort marks the current transaction invalid. The object will be destroyed
upon return to MTS from the current method.

This function can be called even if the object is not in a transaction. The effect is to
cause the object to be destroyed. Thus this call says that the object is done with its work
and the transaction should be rolled back (when all other parties have finished their
work).

For more details see the SetAbort method under IObjectContextMethods in the MTS
documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_SetComplete
Programming Guide 5-377

sm_mts_SetComplete
sm_mts_SetComplete

Informs MTS that the work is complete and ready to be committed

int sm_mts_SetComplete(void);

Environment MTS

Scope Server

Returns • 0: OK
• PR_E_OBJECT if there is no context

Description sm_mts_SetComplete marks the current transaction complete. The object will be
destroyed upon return to MTS from the current method.

This function can be called even if the object is not in a transaction. The effect is to
cause the object to be destroyed. Thus this call says that the object is done with its work
and the transaction may be committed (if all other parties agree).

For more details see the SetComplete method under IObjectContextMethods in the
MTS documentation.

Note that this function requires an object context and therefore cannot be used in the
constructor of a service component.

See Also sm_mts_SetAbort
5-378 Library Functions

sm_mus_time
sm_mus_time

Gets the system time of the last mouse click

double sm_mus_time(void);

Environment C only

Returns The system time in milliseconds.

Description sm_mus_time reports the number of milliseconds that elapsed since an unspecified
time. You can compare this value to the value reported on previous or subsequent
mouse clicks—for example, to determine whether two successive mouse clicks should
be interpreted as a double mouse click.

See Also sm_ms_inquire
Programming Guide 5-379

sm_mw_DismissIntroPixmap
sm_mw_DismissIntroPixmap

Close the window containing the allpication’s startup image

void sm_mw_DismissIntroPixmap(void);

Description sm_mw_DismissIntroPixmap closes the window displaying the image specified by
the IntroPixmap entry in the application’s Windows initialization file.
5-380 Library Functions

sm_mw_get_client_wnd
sm_mw_get_client_wnd

Gets a handle to the client area of the MDI frame

#include <smmwuser.h>

HWND sm_mw_get_client_wnd(void);

Environment Windows C

Returns HWND of the client window.

Description sm_mw_get_client_wnd gets a handle to the client area of the MDI frame of an
application.
Programming Guide 5-381

sm_mw_get_cmd_show
sm_mw_get_cmd_show

Returns the initial state of an application

#include <smmwuser.h>

int sm_mw_get_cmd_show(void);

Environment Windows

Returns SW_SHOW, SW_MAXIMIZE, SW_MINIMIZE

Description sm_mw_get_cmd_show gets the initial state of a Windows application. Use this
function to get the nCmdShow parameter of WinMain. This function returns the
application’s initial state.
5-382 Library Functions

sm_mw_get_frame_wnd
sm_mw_get_frame_wnd

Gets a handle to the MDI frame

#include <smmwuser.h>

HWND sm_mw_get_frame_wnd(void);

Environment Windows C

Returns HWND of the frame window.

Description sm_mw_get_frame_wnd gets a handle to the MDI frame of an application.
Programming Guide 5-383

sm_mw_get_instance
sm_mw_get_instance

Gets a handle to the current instance of a Windows program

#include <smmwuser.h>

HINSTANCE sm_mw_get_instance(void);

Environment Windows C

Returns A handle to the application’s instance.

Description sm_mw_get_instance gets a handle to the current instance of a Windows application.
Use this function to supply the handle required by Windows API routines such as
CreateWindow.
5-384 Library Functions

sm_mw_get_prev_instance
sm_mw_get_prev_instance

Gets a handle to the previous instance of a Windows program

#include <smmwuser.h>

HINSTANCE sm_mw_get_prev_instance(void);

Environment Windows

Returns • A handle to the application’s previous instance.
• NULL if there is no current instance. For WIN32 this value is always NULL.

Description sm_mw_get_prev_instance gets a handle to the previous instance of a Windows
application. Use this function to supply the handle required by Windows API routines
such as CreateWindow.
Programming Guide 5-385

sm_mw_install_msg_callback
sm_mw_install_msg_callback

Install a message handler to be called by Panther's Windows message loop

void sm_mw_install_msg_callback(PiMwMsgCbFunc_t callback,
LPVOID context);

callback

A callback function that will be called when Panther gets a Windows message
from its message queue. If NULL is passed, the current callback function (if
any) will be uninstalled.

When callback is called, it is passed two parameters, an LPMSG structure
containing the Windows message and context. It should return TRUE if no
more processing should take place on the message, else FALSE so that Panther
can continue normal message processing.

context

Information to pass when callback is called It can be a Window handle; a
structure or some other useful pointer. If not needed, you should pass NULL.

Environment Windows C/C++

Description sm_mw_install_msg_callback installs a function that is called when Panther gets a
message from its message queue. It should be used, for example, when an application
opens windows outside of the Panther framework.

Example #include <smdefs.h>
#include <smmwuser.h>

extern "C"
{

void OpenMyDialog()
{

HWND hParent = GetParent(sm_mw_drawingarea());
CMyDialog* myDialog = new CMyDialog(CWnd::FromHandle(hParent));

}

BOOL CALLBACK
MsgCallback (LPMSG pMsg, LPVOID context)
{

if (context) // process messages for our dialog
5-386 Library Functions

sm_mw_install_msg_callback
{
CMyDialog* d = (CMyDialog*)context;
if (IsDialogMessage(d->m_hWnd, pMsg))

return TRUE;
}
return FALSE;

}

CMyDialog::CMyDialog(CWnd* pParent)
: CDialog(CMyDialog::IDD, pParent)

{
Create(CMyDialog::IDD, pParent);
ShowWindow(SW_SHOW);

}

BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
//{{AFX_MSG_MAP(CMyDialog)
ON_WM_ACTIVATE()
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

void CMyDialog::OnActivate(UINT nState, CWnd* pWndOther,
BOOL bMinimized)

{
if (nState == WA_INACTIVE)
{

sm_mw_install_msg_callback(NULL, NULL);
}
else
{

sm_mw_install_msg_callback(MsgCallback, (LPVOID)this);
}
CDialog::OnActivate(nState, pWndOther, bMinimized);

}

}

Programming Guide 5-387

sm_mw_PrintScreen
sm_mw_PrintScreen

Prints a Panther screen

#include <smmwuser.h>

void sm_mw_PrintScreen(int region, int interactive, int reserved1,
int reserved2);

region

The region to be printed. The following values are from smumisc.h:

interactive

Specifies whether the default printer will be used or whether a dialog box for
user interaction will be posted:

reserved1

Reserved for future use; set to 0.

reserved2

Reserved for future use; set to 0.

Environment Windows only.

Region Value

PS_CUR_SCREEN 0 Print the top screen only.

PS_MDI_FRAME 1 Print the MDI frame and contents.

PS_CUR_TITLE 2 Print the top screen with title bar.

PS_MDI_TITLE 3 Print the MDI frame and contents with title bar.

Interaction Value

PS_USE_DEFAULT 0 Use the default printer.

PS_USE_DIALOG 1 Display the printer selection dialog box.
5-388 Library Functions

sm_mw_PrintScreen
Description sm_mw_PrintScreen is a control function for printing Panther screens. It sends either
the current Panther screen or all the screens in the MDI frame to the printer.
Programming Guide 5-389

sm_next_sync
sm_next_sync

Finds the next synchronized array

int sm_next_sync(int field_number);

field_number

Specifies the field for which a synchronized array is sought.

Returns • The field number of the next synchronized array, if any.
• The field number the function was passed.

Description Given a field number, sm_next_sync finds the next array synchronized with
field_number and returns the field number of the corresponding element in that
array. Panther identifies the next synchronized array as the one to the right, unless
field_number is in the rightmost synchronized array. In that case, the function
returns the corresponding element in the leftmost array that is synchronized with
field_number—that is, it wraps around the screen.
5-390 Library Functions

sm_nl
sm_nl

Positions the cursor to the first unprotected field beyond the current line

void sm_nl(void);

Description sm_nl moves the cursor to the next line of the screen or to the next occurrence of a
scrolling array. If the current field is non-scrolling, the cursor goes to the first
unprotected field, if any, on the screen’s next line. If all fields below the current one
are protected, the cursor wraps to the screen’s first unprotected field.

If the cursor is on the last allocated occurrence of a scrolling array and the number of
allocated occurrences is less than the maximum, Panther allocates an empty
occurrence.

If all fields are protected, the cursor goes to the first column of the next line. If the
cursor is on the screen’s last line of the form, it wraps to the screen’s top left-hand
corner (0,0).

sm_nl does not immediately trigger field entry, exit, or validation processing. Such
processing occurs according to the cursor position when control returns to sm_input.

This function is usually bound to NL.

See Also sm_backtab, sm_home, sm_last, sm_tab
Programming Guide 5-391

sm_*null
sm_*null

Tests whether a field is null

int sm_null(int field_number);

int sm_e_null(char *field_name, int element);

int sm_i_null(char *field_name, int occurrence);

int sm_n_null(char *field_name);

int sm_o_null(int field_number, int occurrence);

field_name, field_number

Specifies the field to test.

element

The element in field_name to test.

occurrence

The occurrence in the specified field to test.

Returns 1 True: the field’s Null Field property is set to Yes and contains a null value.
0 False: the field’s Null Field property is set to No or it does not contain a null

value.
-1 The field does not exist.

Description Use sm_null to test whether a field’s value is null or not. This function checks whether
a field’s null_field property is set to PV_YES; if it is, sm_null gets the field’s null
indicator and compares it to the field’s value.

You can specify the field’s null indicator string through the message file and/or the
field’s Null Text property.
5-392 Library Functions

sm_obj_call
sm_obj_call

Calls a method of a service component, Java object or COM control

char *sm_obj_call(char *method_spec);

method_spec

A string specifying the method and its parameters consisting of the following:

object_id

An integer handle identifying the component whose method you
want to call. Object handles are returned by sm_obj_create for
component objects, sm_prop_id for ActiveX controls and by
sm_obj_call.

method

The name of the method. Periods are allowed as part of the method
specification, as in:

Application.Quit

p1, p2, ...

(Optional) A comma-delimited list of the method’s parameters.
Unused parameters can be omitted, as in:

sm_obj_call ("TreeView, \"Add\" , , , , 'First node'")

Environment COM, EJB, Java

Scope Client

Returns • The value returned by the component, converted to a string.
• A null string if an error occurred. For a COM error code, call sm_com_result.

COM error codes are defined in winerror.h.

Description sm_obj_call calls methods that are part of the component’s interfaces. To find which
methods are available, refer to the documentation supplied with COM component, use
the Panther AxView utility, or use the View⇒Component Interface in the Panther
Editor for service components.

This function returns a string; the component itself can return different types of data.
Programming Guide 5-393

sm_obj_call
Java Objects For calling methods of Java objects, the method name can include an optional
type-specifier to eliminate ambiguity for overloaded methods (see Working with Java
Objects for further information on using type-specifiers.) @obj() may be used to pass
in Java objects as parameters for the Java method. For primitive and String valued
method return types, this function returns the value as a string. Otherwise, a Panther
object ID is returned. This object ID should be passed to sm_obj_delete_id when
the associated Java object is no longer needed in order to allow for garbage collection
by the JVM.

COM

Components

For COM components, if the typelib cannot be used to determine the parameter’s type,
@obj() can be used to specify the object ID of the parameter. Generally, this syntax
will not be necessary. For an example of its usage, see the example under
sm_com_load_picture.

If you get a “type mismatch” error, refer to the component documentation and check
that all the parameters are of the correct type. @obj() may be needed if any of the
parameters must be passed as objects.

Syntax Changes

in JPL, Java and

C

The syntax of sm_obj_call is different in JPL from that in C and Java. For JPL,
sm_obj_call can have multiple parameters. For Java and C, sm_obj_call accepts
one parameter, a string, which Panther parses into multiple parameters. See the
Examples section.

Examples // This C function calls the InsertNode method of the
// ActiveX treeview control.

char *parent;
char *child;

child = sm_obj_call("treeview->id, \"InsertNode\", parent, \"Child
node\"");

// This Java example calls the SetStyle method.

import com.prolifics.jni.*;
public class SetStyleButton extends ButtonHandlerAdapter
{
public int buttonValidate(FieldInterface f, int item, int context)

{
ScreenInterface scrn = f.getScreen();
WidgetInterface w = scrn.getWidget("tree");
CFunctionsInterface cfi = w.getCFunctions();
5-394 Library Functions

sm_obj_call
String s = cfi.sm_obj_call("tree->id, \"SetStyle\", 1, 1, 1,
1");
 return 0;
 }
}

// This is the JPL call for this method. Single quotation
// marks are used surrounding the method in order to pass
// double quotation marks to the method itself.

vars parent
vars child

child = sm_obj_call \
(treeview->id, "InsertNode", :parent, "Child node")

// These JPL procedures instantiate the cCustomers COM
// component and call its GetCustomer method.

vars id

proc entry
@app->current_component_system=PV_SERVER_COM
id = sm_obj_create("cCustomers")
return

proc GetCustomer
call sm_obj_call(id, "GetCustomer", \

CompanyName, CustomerID, Phone)
return

// This JPL procedure closes down Microsoft Excel
// that is running as a COM component.

proc close
call sm_obj_call(ExcelID, "Application.Quit")
return

See Also sm_obj_get_property, sm_obj_set_property
Programming Guide 5-395

sm_obj_copy*
sm_obj_copy*

Copies a widget

#include <smuprapi.h>

int sm_obj_copy(char *target_widget, char *source_widget);

int sm_obj_copy_id(int target_widget_id, int source_widget_id);

target_widget, target_widget_id

The widget to receive the copied widget, specified either by name or by an
integer handle obtained from sm_prop_id. It can specify a screen, a box, a
tab card, a tab deck or a grid.

source_widget, source_widget_id

The widget to copy, specified either by its name or by an integer handle
obtained from sm_prop_id. The widget to copy can be on any screen on the
window stack. If the widget is not on the current screen, supply its integer
handle; or use the JPL object syntax to specify the source screen. For
example, supply this string to copy cust_id from the custqry screen:

@screen("custqry.scr")!cust_id.

Returns ≥1 Object ID of the new widget.
PR_E_MALLOC: Insufficient memory available.
PR_E_OBJID: ID for source widget or target screen does not exist.
PR_E_OBJECT: Named object does not exist.
PR_E_OBJ_TYP: The source widget cannot be copied into the target widget
because their widget types are not compatible. For example, only tab cards can
be copied into tab decks.
PR_E_TOO_BIG: Widget cannot fit on the target screen.

Description sm_obj_copy creates a copy of the specified widget and puts it in the target widget.
The data and all properties of the source widget are copied to the new one, including
its position on the screen. If the widget is copied onto the screen of the source widget,
the new widget overlays the original. If a widget is copied to a box or to a tab card it
will be moved if necessary.

If the source widget is named and the target screen already has a widget with the same
name, Panther sets the new widget’s name to an empty string to prevent duplicate
names.
5-396 Library Functions

sm_obj_copy*
Copying Groups sm_obj_copy can also copy a synchronized scrolling group or table view group; the
function copies an empty group to the target screen—that is, the member widgets are
not copied. You can subsequently copy one or more members of the group through
additional calls to sm_obj_copy.

Selection groups cannot be copied directly; however if you copy a field that belongs to
a selection group to another screen, Panther copies the field and its group to the target
screen, provided that the target screen does not already contain a group of the same
name; if it does, the copied field is added to the existing group.

See Also sm_obj_delete_id
Programming Guide 5-397

sm_obj_create
sm_obj_create

Instantiating an object

int sm_obj_create(char *object);

object

The service component to instantiate.

Environment COM, EJB, Java

Returns • Success: object ID
PR_E_ERROR: @app()->current_component_system is not set
PR_E_OBJECT: the service component could not be created.

Description sm_obj_create instantiates a service component regardless of whether it is deployed
using COM, EJB or Java technologies. Before invoking this function, you must set the
current_component_system application property in order to select the type of
components to create: PV_SERVER_COM for COM components, PV_SERVER_EJB for
Enterprise JavaBeans deployed in a JEE Application Server, such as IBM's
WebSphere Application Server, or PV_SERVER_JAVA for Java Objects.

The argument to sm_obj_create may contain a comma separated list of parameters
that is specific to the component system being used. When sm_obj_create is called
from JPL, these embedded parameters should be passed as separate parameters to
sm_obj_create.

See Also sm_obj_delete_id
5-398 Library Functions

sm_obj_create_licensed
sm_obj_create_licensed

Instantiating a licensed object

int sm_obj_create_licensed(char *object, char *license);

object

 The service component to instantiate.

license

The license needed to instantiate the service component.

Environment COM

Returns • Success: object ID
PR_E_ERROR: @app()->current_component_system is not PV_SERVER_COM
PR_E_OBJECT: The service component could not be created

Description sm_obj_create_licensed instantiates a licensed COM service component. Before
invoking this function, you must set @app()->current_component_system to
PV_SERVER_COM. This function first appeared in Panther 5.10.

Example vars objId, license

license = '0FA372A815960ED56DE037A'

objId = sm_obj_create_licensed("FAXOCX.FaxManCtrl.1", license)

See Also sm_obj_delete_id
Programming Guide 5-399

sm_obj_create_server
sm_obj_create_server

Instantiate a COM object

int sm_obj_create_server(char *object);

object

The service component to instantiate.

Environment COM

Returns • Success: Object ID
PR_E_ERROR: @app()->current_component_system is not
PV_SERVER_COM

PR_E_OBJECT: the service component could not be created

Description sm_obj_create_server instantiates a COM service component. It is needed because
some COM components cannot be instantiated by sm_obj_create. A notable
example is the Crystal Reports CrystalRuntime.Application component. Before
invoking this function, you must set @app()->current_component_system to
PV_SERVER_COM. This function was first released in Panther 5.10.

Example // This JPL code assmes that the screen has a Crystal Reports
// 'Crystal ActiveX Report Viewer Control 11.5' ActiveX field
// named 'myReport'.

vars reportObj, applicObj

@app()->current_component_system = PV_SERVER_COM

applicObj = sm_obj_create_server("CrystalRuntime.Application")

// reportPfad is the file name of a Crystal Reports report file.

proc ViewReport (reportPfad)
{
 if applicObj > 0
 {
 reportObj = sm_obj_call(applicObj, "OpenReport", reportPfad)

 if reportObj > 0
 {
 sm_obj_set_property(myReport->id, "ReportSource", reportObj)
5-400 Library Functions

sm_obj_create_server
 sm_obj_call (myReport->id, "ViewReport")

 sm_obj_delete_id (reportObj)
 }
 }
}

See Also sm_obj_delete*
Programming Guide 5-401

sm_obj_delete*
sm_obj_delete*

Deletes an object

int sm_obj_delete(char *object);

int sm_obj_delete_id(int object_id);

object, object_id

The object (a widget or a component) to delete, specified either by its name
or by an integer handle obtained from sm_prop_id for widgets,
sm_obj_create for components, or from sm_obj_call.

Returns 0: Success.
PR_E_OBJID: ID for source widget or target screen does not exist.
PR_E_OBJECT: Named object does not exist.

Description sm_obj_delete and sm_obj_delete_id delete objects.

Deleting Widgets The widget to delete can be on any screen on the window stack. If the widget is not on
the current screen, supply its integer handle; or use the JPL object syntax to specify the
source screen. For example, this JPL statement deletes cust_id from the custqry
screen:

 call sm_obj_delete("@screen('custqry.scr')!cust_id")

Note: This function has no effect on the screen definition; to restore deleted widgets,
close and reopen the screen.

Destroying

Components

After invoking and working with the methods and properties of a component, you
should destroy it by calling sm_obj_delete_id with the component’s object ID.
Otherwise, the component will continue to exist until the application terminates (or
goes from test mode to edit mode).

Java objects returned by calls by sm_obj_create and to sm_obj_call should be
deleted by sm_obj_delete_id to allow garbage collection of these objects by the
JVM. (This does not happen automatically when switching from test to edit mode.)

If a COM component is running under MTS, its life cycle can be managed by MTS,
depending on whether the component is marked as belonging to a transaction and
whether the work in the transaction is complete.
5-402 Library Functions

sm_obj_delete*
 call sm_obj_delete_id(cmpt_id)

See Also sm_obj_copy, sm_obj_create
Programming Guide 5-403

sm_obj_get_property
sm_obj_get_property

Gets the value of a property from a service component or ActiveX control

char *sm_obj_get_property(int obj_id, char *prop);

obj_id

An integer handle that identifies the component whose property you want to
get. Object handles are returned by sm_obj_create for service components,
sm_prop_id for ActiveX controls and by sm_obj_call.
.

prop

The designated property. For indexed properties, use brackets to specify the
occurrence.

Environment COM, EJB, Java

Scope Client

Returns • The property’s current value, returned as a string.
• A null string if an error occurred. For the error code from COM components,

call sm_com_result. Error codes are defined in winerror.h.

Description sm_obj_get_property retrieves property values from a service component or
ActiveX control.

Properties can be determined through the AxView utility for COM components, the
Properties window for ActiveX controls, or the Component Interface window for
service components.

Example #include <smuprapi.h>
{

id = sm_prop_id("spinner");
value = sm_obj_get_property(id, "prop");

}

// For an indexed property:
{

id = sm_prop_id("spinner");
value = sm_obj_get_property(id, "prop[5]");

}

5-404 Library Functions

sm_obj_get_property
See Also sm_obj_set_property
Programming Guide 5-405

sm_obj_onerror
sm_obj_onerror

Installs an error handler

void sm_obj_onerror(char *handler);

handler

The name of the error handler. This C function or JPL procedure will be
passed three parameters:

errorNumber

The error number as an integer. Use this value to test for errors.

errorHexidecimal

The error number as a string in hexadecimal format, as in
0x80000307. (This parameter is displayed by the default error
handler.)

errorMessage

The text description of the error. (This parameter is displayed by the
default error handler.)

Environment COM, EJB, Java

Scope Client

Description sm_obj_onerror specifies the error handler that will be called if an operation returns
a negative exception.

An error handler will only be fired on negative exception codes; for COM/MTS
applications, use sm_com_result to retrieve positive exceptions.

If you do not want an error handler, you must install your own error handler that simple
returns.

To restore the default error handler, use sm_obj_onerror("").

Example // This JPL module specifies an error handler
// similar to the default error handler.

call sm_obj_onerror (handler)

proc handler (errnum, errhex, errmsg)
5-406 Library Functions

sm_obj_onerror
msg emsg "COM Error: " errhex " " errmsg
return
Programming Guide 5-407

sm_obj_set_property
sm_obj_set_property

Sets the value of a property of a service component or ActiveX control

int sm_obj_set_property(int obj_id, char *prop, char *val);

obj_id

An integer handle that identifies the object whose property you want to set.
The handle is returned through sm_obj_create for service components,
sm_obj_create or sm_obj_call for Java Objects, and sm_prop_id for
ActiveX controls.

prop

The designated property. Refer to the Description for information about
available properties.

val

The value to set for the specified property or property item. Panther converts
the value to the type expected by the component.

If the value needs to be sent as an object ID, @obj() can be used to specify the object
ID. For an example of its usage, see the example under sm_com_load_picture.

Environment COM, EJB, Java

Scope Client

Returns On Windows platforms:

• The HRESULT from the most recent component function call. Refer to
winerror.h for values; 0 is the value for S_OK.

On UNIX platforms:

0 Success.
-1 Failure.

Description sm_obj_set_property sets the value of the specified property of a service
component or ActiveX control.

When setting properties for ActiveX controls, this function can be used on all
platforms for CLSID and Control Name and only on Windows for properties of the
ActiveX control itself.
5-408 Library Functions

sm_obj_set_property
Properties can be determined through the AxView utility for COM components, the
Properties window for ActiveX controls, or the Component Interface window for
service components.

In property specifications, periods are allowed. For example:

sm_obj_set_property(Excel_Sheet,
"ActiveSheet.Cells(1,1).Value", text)

For indexed properties, use brackets to specify the occurrence. For example:

sm_obj_set_property(id, "prop[5]", value)

Example #include <smuprapi.h>
int id;
int retcode;

{
id = sm_prop_id("spinner");
retcode = sm_obj_set_property(id, "Value", "40");
}

See Also sm_obj_get_property
Programming Guide 5-409

sm_obj_sort
sm_obj_sort

Sorts the object’s occurrences

int sm_obj_sort(int obj_id, int direction);

obj_id

An integer handle that identifies the object to be sorted. For widgets, it can be
obtained from sm_prop_id.

direction

The direction for the sort: SORT_ASCENDING for an ascending sort or
SORT_DESCENDING for a descending sort.

Returns 0: Success. Target has been sorted without error.
PR_E_OBJECT: Cannot find target object.
PR_E_MALLOC: Memory error.
PR_E_NO_SORT_FUNC: Sort order function not specified.
PR_E_SORT_FUNC: Sort order function not found, or error reported by sort order
function.
PR_E_DATA_FORMAT: Incompatible data format for sort order.
PR_E_ERROR: Error in performing sort.

• A property API error code.

Description sm_obj_sort sorts the object’s occurrences according to the rules specified in the
object’s Sort Order property. If the Sort Order is set to PV_CUSTOM, then the function
named in the Sort Order Function property is used.

If the specified object is a member of a synchronized scrolling group, the other arrays
in the group will be re-ordered to retain row integrity for the group.

See Also sm_obj_sort_auto
5-410 Library Functions

sm_obj_sort_auto
sm_obj_sort_auto

Sorts the object’s occurrences according to grid conventions

int sm_obj_sort_auto(int obj_id);

obj_id

An integer handle that identifies the object to be sorted. For widgets, it can be
obtained from sm_prop_id.

Returns 0: Success. Target has been sorted without error.

PR_E_OBJECT: Cannot find target object.
PR_E_MALLOC: Memory error.
PR_E_NO_SORT_FUNC: Sort order function not specified.
PR_E_SORT_FUNC: Sort order function not found, or error reported by sort order
function.
PR_E_DATA_FORMAT: Incompatible data format for sort order.
PR_E_ERROR: Error in performing sort.

• A property API error code.

Description sm_obj_sort_auto sorts the object’s occurrences according to the rules specified for
grids in the Windows API. For fields that have their Column Click Action property set
to PV_SORT, this function is invoked automatically in response to user clicks on the
field’s grid column heading.

What happens in response to the invocation of sm_obj_sort_auto on a given field
depends on the settings of the field’s runtime properties column_arrow_direction
and column_arrow_hidden.

If column_arrow_hidden is set to PV_NO, the value of column_arrow_direction
will be flipped from PV_UP to PV_DOWN, or vice versa, and the object will be sorted
according to the new column_arrow_direction value.

If column_arrow_hidden is set to PV_YES, then the field is sorted according to the
current value of column_arrow_direction, and then the value of
column_arrow_hidden is changed to PV_NO.

Note that these column arrow properties are in effect, and are manipulated by
sm_obj_sort_auto, even when an object is not in a grid and when there is no visible
representation of the arrow on the screen.
Programming Guide 5-411

sm_obj_sort_auto
Access to sm_obj_sort_auto is provided if you want to invoke it in the context of
custom column_click_func functions. sm_obj_sort_auto should either be called
in response to column click events or during screen entry processing, so that the first
time a user sees a grid, it is already sorted. In general, sm_obj_sort_auto is not
useful except for objects in grids. For general-purpose sorting of objects and
synchronization groups, use sm_obj_sort.

See Also sm_obj_sort
5-412 Library Functions

sm_occur_no
sm_occur_no

Gets the current occurrence number

int sm_occur_no(void);

Returns ≥1 The occurrence number.
0 The cursor is not in a field.

Description sm_occur_no returns the number of the occurrence in the current field.
Programming Guide 5-413

sm_*off_gofield
sm_*off_gofield

Moves the cursor into a field, offset from the left

int sm_off_gofield(int field_number, int offset);

int sm_e_off_gofield(char *field_name, int element, int offset);

int sm_i_off_gofield(char *field_name, int occurrence,
int offset);

int sm_n_off_gofield(char *field_name, int offset);

int sm_o_off_gofield(int field_number, int occurrence,
int offset);

field_name, field_number

Specifies the destination field.

element

The destination element in field_name.

occurrence

The destination occurrence in the specified field.

offset

The position in the destination field at which to place the cursor. If offset is
larger than the field’s length, or greater than a shiftable field’s maximum
length, the cursor is placed in the rightmost position.

Returns 0 Success.
-1 The field is not found.

Description sm_off_gofield moves the cursor into the specified field at position offset,
regardless of the field’s justification. If the data specified by offset is out of view,
Panther shifts the field’s contents to make the data visible.

Example #include <smdefs.h>
#include <ctype.h>
/* Place cursor over the first embedded blank in */
/* the "names" field.
 */

char buf[256], *p;
int length;

length = sm_n_getfield(buf, "names");
5-414 Library Functions

sm_*off_gofield
for (p = buf; p <buf + length; ++p)
{
 if (isspace(*p))
 break;
}
sm_n_off_gofield("names", p - buf);

See Also sm_disp_off, sm_gofield, sm_sh_off
Programming Guide 5-415

sm_option
sm_option

Sets a behavior variable

int sm_option(int option, int newval);

option

The behavior variable to change.

newval

The new value, defined in smsetup.h, to assign the option-specified
option. To get an option’s current value, supply the value NOCHANGE.

Returns • The old value for the specified option.
• −1: The option is out of range.

Description sm_option lets you change Panther behavior variables at runtime—for example, error
window attributes, delayed write options, cursor display, and zoom options. You can
set one of these variables:
5-416 Library Functions

sm_option
Note: Use sm_keyoption to change the behavior of cursor control keys.

See Also sm_keyoption, sm_soption

CHAR_VAL_OPT
CLOSELAST_OPT
DA_CENTBREAK
DECIMAL_PLACES
EMSGATT
ENTEXT_OPTION
ER_ACK_KEY
ER_KEYUSE
ER_SP_WIND
EXPHIDE_OPTION
F_EXTREC
F_EXTOPT
F_EXTSEP
FCASE
GA_CURATT
GA_CURMASK
GA_SELATT
GA_SELMASK
IN_ENDCHAR
IN_HARROW
IN_RESET
IN_VALID

IN_VARROW
IN_WRAP
IND_OPTIONS
IND_PLACEMENT
LISTBOX_SELECTION
MESSAGE_WINDOW
OCTAL_SUPPORT
QUIETATT
SB_OPTIONS
SCR_KEY_OPT
SMSGBKATT
SMSGPOS
STEXTATT
TOOLBAR_DISPLAY
TOOLTIP_DISPLAY
TXT_SELECT_ATTR
TXT_SELECT_MASK
ZM_DISPLAY
ZM_SC_OPTIONS
ZM_SH_OPTIONS
WWTAB
XMIT_LAST
Programming Guide 5-417

sm_optmnu_id
sm_optmnu_id

Gets the ID of an option menu or combo box

int sm_optmnu_id(void);

Returns • An integer handle that uniquely identifies an option menu or combo box.
• PR_NULL_OBJID: Unable to identify an option menu or combo box.

Description sm_optmnu_id gets the object ID property of an option menu or combo box that is
initialized on popup from an external screen (initialization =
PV_FILL_AT_POPUP); this function can only be called by the external screen’s entry
function; otherwise, it returns PR_NULL_OBJID. (For more information about
initializing option menu data, refer to “Using Data from an External Source” on page
14-22 in Using the Editors.)

For example, you might have two option menus that are initialized from the same
external screen but require different sets of data. The external screen’s entry function
can call sm_optmnu_id to get the ID of its caller and thereby determine which
database query fetches the required data:

/* get the option menu's ID */
vars opt_id
opt_id = sm_optmnu_id()

dbms declare cursor c1
dbms with cursor c1 alias array1

/* query the database according to option menu name */
if @id(opt_id)->name == "ratings_opt"
{
 dbms declare cursor c1 \
 select rating_code from titles \
 group by rating_code order by 1
}
else if @id(opt_id)->name == "genre_opt"
{
 dbms declare cursor c1 \
 select descr from codes \
 where code_type = 'genre_code' order by 1
}

5-418 Library Functions

sm_optmnu_id
dbms with cursor c1 execute
dbms close cursor c1
return
Programming Guide 5-419

sm_*PiMwCopyToClipboard
sm_*PiMwCopyToClipboard

Copy data from field(s) to the Windows clipboard

#include <smmwuser.h>

int sm_n_PiMwCopyToClipboard(const char *fields);

int sm_i_PiMwCopyToClipboard(const char *fields, int from);

int sm_ii_PiMwCopyToClipboard(const char *fields, int from,
int to);

fields

A comma separated list of one or more fields. If copying from a word
wrapped field, only one field can be specified. Grids and synchronized
scrolling groups can also be specified, in which case, data from all the grid or
group members is copied.

from

For a word wrapped field, the starting character; otherwise the starting
occurrence.

to

For a word wrapped field, the ending character - 0 (zero) to copy the
remaining characters; otherwise the ending occurrence.

Environment Windows interactive. First released in Panther 5.40.

Returns • 0: Success.
• PR_E_ARGS: problems parsing argument fields or in the values of from or to.
• PR_E_ERROR: Unable to access the clipboard or field data.
• PR_E_MALLOC: Memory allocation error.

Description For a word wrapped field, the data is just copied, including any new line and tab
characters in the field data.

Otherwise, the field data is tab separated with each occurrence being on a separate line.
This allows the data to be pasted, for example, into a spreadsheet.

See Also sm_*PiMwPasteFromClipboard
5-420 Library Functions

sm_*PiMwPasteFromClipboard
sm_*PiMwPasteFromClipboard

Paste data from the Windows clipboard to field(s)

#include <smmwuser.h>

int sm_n_PiMwPasteFromClipboard(const char *fields);

int sm_i_PiMwPasteFromClipboard(const char *fields, int from);

int sm_ii_PiMwPasteFromClipboard(const char *fields, int from,
int to);

fields

A comma separated list of one or more fields. When pasting to a word
wrapped field, only one field can be specified. Grids and synchronized
scrolling groups can also be specified, in which case, data is pasted to all the
grid or group members.

from

For a word wrapped field, the starting character to paste to; otherwise the
starting occurrence.

to

For a word wrapped field, the ending character - 0 (zero) to replace the
remaining characters; otherwise the ending occurrence.

Environment Windows interactive. First released in Panther 5.40.

Returns • 0: Success.
• PR_E_ARGS: problems parsing argument fields or in the values of from or to.
• PR_E_ERROR: Unable to access the clipboard or field data.
• PR_E_MALLOC: Memory allocation error.

Description For a word wrapped field, the data is just pasted, including any new line and tab
characters in the clipboard data.

Otherwise, the clipboard data is assumed to be tab separated with each occurrence
being on a separate line. This allows, for example, pasting data copied to the clipboard
from a spreadsheet.

See Also sm_*PiMwCopyToClipboard
Programming Guide 5-421

sm_pinquire
sm_pinquire

Gets the value of a global string

#include <smglobs.h>

char *sm_pinquire(int which);

which

Specifies the global string to get through one of these constants:

P_YES

Returns valid affirmative input for a field whose
keystroke_filter property is set to PV_YES_NO. The return is a
null-terminated string that contains the lowercase yes value and the
uppercase yes value.

P_NO

Returns valid negative input for a field whose keystroke_filter
property is set to PV_YES_NO. The return is a null-terminated string
that contains the lowercase no value and the uppercase no value.

P_DECIMAL

Returns a three-character string: the user’s decimal point marker, the
operating system’s decimal point marker, and the null terminator.

P_DICNAME

Returns the repository’s file name.

P_FLDPTRS

Returns a pointer to an array of field structures. The implementation
of these structures is release-dependent.

P_TERM

Returns the name Panther uses as the terminal identifier, or an empty
string if not found.

P_SPMASK

Returns a pointer to a memory-resident, full-size form containing all
blanks.

P_USER

Returns a pointer to developer-specified region of memory for the
current screen. Each screen maintains its own pointer. This pointer
is not set by Panther; it is set and maintained by the application.
5-422 Library Functions

sm_pinquire
SP_NAME

Returns the name of the active screen.

SP_STATLINE

Returns the status line’s current text.

SP_STATATTR

Returns attributes of current status line—a pointer to an array of
unsigned short integers.

V_

One of the V_ constants defined in smvideo.h, returns video-related
information.

Returns • If the argument corresponds to a global pointer variable, a pointer to the value
of that variable.

• 0: Failure.

Description sm_pinquire gets the current value of a global pointer variable. To modify a global
string, use sm_pset.

Because the objects pointed to by the pointers returned by sm_pinquire usually have
short duration, use or copy them quickly. This caution does not apply to P_USER, which
is maintained by the application. The P_ pointers point to the actual objects in Panther.
The SP_ pointers point to copies of the objects. Because an object’s characteristics is
implementation dependent, it might change in future releases of Panther. Except for
P_USER, do not use the pointers returned by sm_pinquire to modify objects directly.
Use sm_pset instead.

Example /* Get next key from user. Return -1 for 'n', 1 for 'y', and
 * 0 if unknown. 'n' and 'y' come from the message file,
 * and so can be changed to reflect the local language.
 */

int get_yes_no()
{
 unsigned key;
 char *yes;
 char *no;
 key = sm_getkey();
 yes = sm_pinquire(P_YES);
 no = sm_pinquire(P_NO);
 if (key == yes[0] || key == yes[1])
 return(1);
 if (key == no[0] || key == no[1])
Programming Guide 5-423

sm_pinquire
 return(-1);
 return(0);
}

See Also sm_inquire, sm_iset, sm_pset
5-424 Library Functions

sm_popup_at_cur
sm_popup_at_cur

Invokes the current widget’s popup menu

int sm_popup_at_cur(void);

Returns 0 MNERR_OK: Success.
-3 MNERR_NOT_SUPPORTED: Menu bars are not supported.

Description sm_popup_at_cur invokes the popup menu installed for the field or screen,
depending on which one has focus. This function lets users access popup menus via
the keyboard. For example, the following control string assignment lets a user invoke
a popup menu by pressing the PF1 key:

PF1 = ^sm_popup_at_cur

sm_popup_at_cur uses one of the following two algorithms for finding and
displaying a popup menu:

! If a field has focus, sm_popup_at_cur displays the first menu that it finds from
the following:

1. The field’s popup menu.

2. The screen’s popup menu.

3. The menu installed for the screen’s menu bar and toolbar.

4. The application-level menu.

! If the screen has focus, sm_popup_at_cur displays the first menu that it finds
from the following:

1. The screen’s popup menu.

2. The menu installed for the screen’s menu bar and toolbar.

3. The application-level menu.

See Also sm_menu_install
Programming Guide 5-425

sm_prop_error
sm_prop_error

Gets the error code returned by the last properties API function call

#include <smuprapi.h>

int sm_prop_error(void);

Returns • 0: The last function call succeeded.
• PR_E_ERROR: Failed for another reason.
• PR_E_MALLOC: Insufficient memory.
• PR_E_OBJID: Object ID does not exist.
• PR_E_OBJECT: Object does not exist.
• PR_E_ITEM: Invalid occurrence or element.
• PR_E_PROP: Invalid property.
• PR_E_PROP_ITEM: Invalid property item.
• PR_E_PROP_VAL: Invalid property value.
• PR_E_CONVERT: Unable to perform conversion.
• PR_E_OBJ_TYPE: Invalid object type.
• PR_E_RANGE: Property value is out of range.
• PR_E_NO_SET: Property cannot be set.
• PR_E_BEYOND_SCREEN: Widget extends beyond screen.
• PR_E_WW_SCROLLING: Word wrap must be scrolling.
• PR_E_NO_SYNC: Arrays cannot be synchronized.
• PR_E_TOO_BIG: Widget too large for screen.
• PR_E_BAD_MASK: Invalid edit mask or regular expression
• PR_E_NO_KEYSTRUCT: Property requires previous execution of SELECT, NEW,

COPY, or COPY_FOR_UPDATE command.

Description sm_prop_error gets the error code returned by the last-called properties API
function: sm_prop_get, sm_prop_set, sm_prop_id, or one of their variants. This
function is especially useful for ascertaining the success or failure of calls to variants
that do not return an error code—for example, sm_prop_get_str, which returns 0
when an error occurs.

Because Panther internal processing also uses the properties API, you should call this
function and retrieve the desired error code immediately.
5-426 Library Functions

sm_prop_error
Note: A negative value returned by sm_prop_get_int and its variants usually
specifies an error. However, some integer properties accept negative values; in
these cases, you can differentiate between a negative property value and an
error condition only by calling sm_prop_error.

Example /* Act on error code */

switch (sm_prop_error())
{

case '0':
...
break;

case PR_E_ERROR:
...
break;

case PR_E_MALLOC:
...
break;

...
default:

...
}

Programming Guide 5-427

sm_prop_get*
sm_prop_get*

Gets a property setting

#include <smuprapi.h>

int sm_prop_get_int(int obj_id, int prop);

char *sm_prop_get_str(int obj_id, int prop);

double sm_prop_get_dbl(int obj_id, int prop);

int sm_prop_get_x_int(int obj_id, int array_item, int prop);

char *sm_prop_get_x_str(int obj_id, int array_item, int prop);

double sm_prop_get_x_dbl(int obj_id, int array_item, int prop);

int sm_prop_get_m_int(int obj_id, int prop, int prop_item);

char *sm_prop_get_m_str(int obj_id, int prop, int prop_item);

double sm_prop_get_m_dbl(int obj_id, int prop, int prop_item);

obj_id

An integer handle that identifies the Panther object whose property you want
to get, obtained through sm_prop_id. For application properties, supply
PR_APPLICATION; for the current screen, PR_CURSCREEN.

array_item

The widget occurrence or element whose property you want to get.

prop

The property to get. Refer to Chapter 1, “Runtime Properties,” in Quick
Reference for a full list of property constants.

prop_item

Specifies the item in a multi-item property whose value you want to get. For
example, if the prop value is SM_PR_CONTROL_STRING, supply a logical key
name such as XMIT to get that key’s current control string assignment.

Returns For sm_prop_get_int and its variants:

• The property’s current value, returned as an integer
<0 The property’s negative value or the error code returned by this function. To

ascertain whether an error condition exists, call sm_prop_error.

For sm_prop_get_str, sm_prop_get_dbl, and their variants:

• The property’s current value, returned either as a string pointer or a double.
5-428 Library Functions

sm_prop_get*
0 Failure. To ascertain the cause of failure, call sm_prop_error.

Description sm_prop_get has three basic variants: sm_prop_get_str, sm_prop_get_int and
sm_prop_get_dbl, which get string, integer, and double properties, respectively. For
example, sm_prop_get_str gets string properties such as title, while
sm_prop_get_int gets integer properties such as max_occurrences.

sm_prop_get_str stores the returned data in a pool of buffers that it shares with other
functions; either process the returned string immediately or copy it to another variable
for additional processing.

Each of these variants have _x and _m variants. These let you access properties of
occurrences or elements, and offsets into properties that take multiple values,
respectively. These variant types are discussed in the following sections.

Elements and

Occurrences

You can get properties for individual elements and occurrences in an array by calling
sm_prop_get_x_prop-type. All variants of this function require an obj_id handle
to the array and an array_item argument. Depending on how the obj_id handle was
obtained, the function determines whether array_item specifies an offset into the
array’s elements or its occurrences:

! To set the properties of an array’s elements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[[]].

! To set the properties of an array’s occurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[].

For example, this call to sm_prop_id gets a handle to the properties of cust_id’s
elements:

int elem_h;
elem_h = sm_prop_id("cust_id[[]]");

This call gets a handle to the properties of cust_id’s occurrences:

int occ_h;
occ_h = sm_prop_id("cust_id[]");

Given these two handles, you can use sm_prop_get_x_int to get the mdt property
setting for either cust_id’s first element or first occurrence as follows:

/* get the first element's mdt setting */
int elem_mdt;
elem_mdt = sm_prop_get_x_int(elem_h, 1, PR_MDT);
Programming Guide 5-429

sm_prop_get*
/* get the first occurrence's mdt setting */
int occ_mdt;
occ_mdt = sm_prop_get_x int(occ_h, 1, PR_MDT);

Multi-item

Properties

sm_prop_get_m_prop-type gets one of the settings in a multi-item property such as
PR_DROP_DOWN_DATA for an option menu, or PR_CONTROL_STRING for a screen. For
example, this code iteratively calls sm_prop_get_m_str to compare the data in each
item in option menu flavors to the current selection:

/* replace current item with contents of "substitute" */
char cur_item[256], new_item[256];
char *option_txt;
int ct, f_id, err;

f_id = sm_prop_id("flavors");

/*get substitute data*/
sm_n_getfield("substitute", new_item);

/*get selection data*/
sm_n_getfield("flavors", cur_item);

/* get offset of current selection */
for (ct = 1; ; ct++)
{
 option_txt = sm_prop_get_m_str(f_id,
 PR_DROP_DOWN_DATA, ct)
 if (!option_txt)
 {
 err = PR_E_ERROR;
 break;
 }
 if (strcmp(option_txt, cur_item) == 0)
 {
 err = sm_prop_set_m_str(f_id,
 PR_DROP_DOWN_DATA, ct, new_item);
 break;
 }
}

Errors A return value of 0 from sm_prop_get_str, sm_prop_get_dbl, or one of its variants
usually indicates that the call failed. However, some string and double properties
accept NULL or 0 values. To determine with absolute certainty whether a call failed and
to get its error code, call sm_prop_error.
5-430 Library Functions

sm_prop_get*
A negative value returned by sm_prop_get_int and its variants usually specifies an
error. However, some integer properties accept negative values; in these cases, you can
differentiate between a negative property value and an error condition only by calling
sm_prop_error.

See Also sm_prop_error, sm_prop_id, sm_prop_set
Programming Guide 5-431

sm_prop_id
sm_prop_id

Returns an integer handle for an application component

#include <smuprapi.h>

int sm_prop_id(char *obj_name);

obj_name

A string that identifies an object in the current application. The string must
conform to Panther object name conventions. For information about valid
formats, refer to “Properties” on page 19-40 in Application Development
Guide.

For example, this call to sm_prop_id gets a handle to the cust_id widget in
the custlist screen:

err = sm_prop_id
 ("@screen('custlist')!@widget('cust_id')");

A non-subscripted widget identifier returns a handle to the entire widget. If
the widget is an array, you can use this handle to get or set properties for all
occurrences and elements. You can also create handle to an array that lets you
get or set properties for individual occurrences or elements. To do this,
include an empty subscript in the widget’s string identifier, using one of these
two formats:

" widget-spec[] enables access to properties of occurrences in
widget-spec.

" widget-spec[[]] enables access to properties of elements in
widget-spec.

For example, the handle returned by this call to sm_prop_id can be used as
an argument to variants of sm_prop_get_x_prop-type to get or set
properties of elements in cust_id:

sm_prop_id("@widget('cust_id')[[]]");

Refer to Description for more information about obtaining access to the
properties of an array’s occurrences or elements.

Returns ≥1 Integer handle to the specified object.
• PR_E_ERROR: Failed for another reason.
5-432 Library Functions

sm_prop_id
• PR_E_OBJID: Object ID does not exist.
• PR_E_OBJECT: Object does not exist.
• PR_E_ITEM: Invalid element or occurrence.

Description sm_prop_id gets an integer handle to an application component—widgets and array
elements or occurrences. Use this handle to get and change the component’s properties
with calls to functions like sm_prop_get_str or sm_prop_set_int.

Access to

Occurrence and

Element

Properties

You can get three kinds of handles to an array, depending on whether the array’s string
identifier contains a subscript and the subscript’s format:

! A non-subscripted identifier returns a handle that lets you get or set properties
for the array as a whole. The following sequence of calls changes the reverse
property for all elements and occurrences in array cust_id:

arr_h = sm_prop_id("cust_id");
sm_prop_set_int(arr_h, PR_REVERSE, PV_YES);

! An empty subscript of single paired brackets—[]—returns a handle to an array
that you can supply to _x variants of sm_prop_get and sm_prop_set to get
and set properties of individual occurrences. The following sequence of calls
changes the reverse property for the first occurrence in array cust_id:

occ_h = sm_prop_id("cust_id[]");
sm_prop_set_x_int(occ_h, 1, PR_REVERSE, PV_YES);

! An empty subscript of double paired brackets—[[]]—returns a handle to an
array that you can supply to _x variants of sm_prop_get and sm_prop_set, to
get and set properties of individual elements. The following sequence of calls
changes the reverse property for the first element in array cust_id:

elem_h = sm_prop_id("cust_id[[]]");
sm_prop_set_x_int(elem_h, 1, PR_REVERSE, PV_YES);

See Also sm_prop_get, sm_prop_set
Programming Guide 5-433

sm_prop_name_to_id
sm_prop_name_to_id

Gets the integer ID of a Panther property

int sm_prop_name_to_id(char* jpl_prop_str);

jpl_prop_str

The JPL mnemonic for the desired property.

Returns ≥1 The integer ID of the specified property.
<0 No match found.

Description sm_prop_name_to_id gets the integer ID for the supplied JPL property name. Access
to this ID lets you call C library routines such as sm_prop_get and sm_prop_set
from JPL. JPL only has direct access to its own property mnemonics, while calls to
these routines require the property identifiers that are defined in Panther header files.

For example, JPL gets the number of occurrences in an array through
num_occurrences, while sm_prop_get takes PR_NUM_OCCURRENCES to specify
the same property. With sm_prop_name_to_id, you can translate the JPL mnemonic
to the integer value of PR_NUM_OCCURRENCES and call sm_prop_get from JPL:

/* get the number of selections in group 'genre' */
vars num_selects

num_selects = sm_prop_get_int(\
 sm_prop_id("genre"), \
 sm_prop_name_to_id("num_occurrences"))
5-434 Library Functions

sm_prop_set*
sm_prop_set*

Sets a property

#include <smuprapi.h>

int sm_prop_set_int(int obj_id, int prop, int val);

int sm_prop_set_str(int obj_id, int prop, char *val);

int sm_prop_set_dbl(int obj_id, int prop, double val);

int sm_prop_set_x_int(int obj_id, int array_item, int prop,
int val);

int sm_prop_set_x_str(int obj_id, int array_item, int prop,
char *val);

int sm_prop_set_x_dbl(int obj_id, int array_item, int prop,
double val);

int sm_prop_set_m_int(int obj_id, int prop, int prop_item,
int val);

int sm_prop_set_m_str(int obj_id, int prop, int prop_item,
char *val);

int sm_prop_set_m_dbl(int obj_id, int prop, int prop_item,
double val);

obj_id

An integer handle that identifies the Panther object whose property you want
to set, obtained through sm_prop_id. For application properties, supply
PR_APPLICATION; for the current screen, PR_CURSCREEN.

array_item

The widget occurrence or element whose value you want to set.

prop

The property to set. Refer to Chapter 1, “Runtime Properties,” in Quick
Reference for a full list of property constants.

prop_item

Specifies the item in a multi-item property whose value you want to set. For
example, if prop is set to PR_CONTROL_STRING, supply a logical key name
to get that key’s current control string assignment.

val

The value to set for the specified property or property item. The value’s
type—string, integer, or double—must be appropriate to the property itself.
Programming Guide 5-435

sm_prop_set*
For a list of properties and their valid values, refer to Chapter 1, “Runtime
Properties,” in Quick Reference.

Returns • 0: Success.
• PR_E_MALLOC: Insufficient memory.
• PR_E_OBJID: Object ID does not exist.
• PR_E_OBJECT: Object does not exist.
• PR_E_ITEM: Invalid occurrence or element.
• PR_E_PROP: Invalid property.
• PR_E_PROP_ITEM: Invalid property item.
• PR_E_PROP_VAL: Invalid property value.
• PR_E_CONVERT: Unable to perform conversion.
• PR_E_OBJ_TYPE: Invalid object type.
• PR_E_RANGE: Property value is out of range.
• PR_E_NO_SET: Property cannot be set.
• PR_E_BEYOND_SCREEN: Widget extends beyond screen.
• PR_E_WW_SCROLLING: Word wrap must be scrolling.
• PR_E_NO_SYNC: Arrays cannot be synchronized.
• PR_E_TOO_BIG: Widget too large for screen.
• PR_E_ERROR: Failed for another reason.
• PR_E_BAD_MASK: Invalid edit mask or regular expression
• PR_E_NO_KEYSTRUCT: Property requires previous execution of SELECT, NEW,

COPY, or COPY_FOR_UPDATE command.

Description sm_prop_set has three basic variants: sm_prop_set_str, sm_prop_set_int, and
sm_prop_set_dbl, which set string, integer, and double properties, respectively. For
example, sm_prop_set_str sets string properties such as title, while
sm_prop_set_int sets integer properties such as max_occurrences.

Each of these variants have _x and _m variants. These let you set properties of
occurrences or elements, and offsets into properties that take multiple values,
respectively. These variant types are discussed in the following sections.

Elements and

Occurrences

You can set properties for individual elements and occurrences in an array by calling
sm_prop_set_x_prop-type. All variants of this function require an obj_id handle
to the array and an array_item argument. Depending on how the obj_id handle was
obtained, the function determines whether array_item specifies an offset into the
array’s elements or its occurrences:
5-436 Library Functions

sm_prop_set*
! To set the properties of an array’s elements, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[[]].

! To set the properties of an array’s occurrences, obtain a handle by supplying
sm_prop_id with a widget identifier that has the format widget-spec[].

For example, this call to sm_prop_id gets a handle to the properties of cust_id’s
elements:

int elem_h;
elem_h = sm_prop_id("cust_id[[]]");

Alternatively, this call gets a handle to the properties of cust_id’s occurrences:

int occ_h;
occ_h = sm_prop_id("cust_id[]");

Given these two handles, you can use sm_prop_get_x_int to set the foreground color
of either cust_id’s first element or first occurrence as follows:

/*set the first element's foreground color */
sm_prop_set_x int(elem_h, 1, PR_FG_COLOR_NUM, MAGENTA);

/*set the first occurrence's foreground color */
sm_prop_set_x_int(occ_h, 1,PR_FG_COLOR_NUM, MAGENTA);

Note: To set properties on the entire array, use a handle obtained by supplying
sm_prop_id with a widget string identifier that contains no subscript.

Multi-item

Properties

sm_prop_set_m_prop-type sets one of the values in a multi-item property such as
PR_DROP_DOWN_DATA for an option menu, or PR_CONTROL_STRING for a screen. For
example, this code calls sm_prop_set_m_str to set the data for an item in option
menu flavors:

/* replace current item with contents of "substitute" */
char cur_item[256], new_item[256];
char *option_txt[256];
int ct, f_id, err;

f_id = sm_prop_id("flavors");

/*get substitute data*/
sm_n_getfield("substitute", new_item);

/*get selection data*/
sm_n_getfield("flavors", cur_item);
Programming Guide 5-437

sm_prop_set*
/* get offset of current selection */
for (ct = 1; ; ct++)
{
 option_txt = sm_prop_get_m_str(f_id,
 PR_DROP_DOWN_DATA, ct)
 if (!option_txt)
 {
 err = PR_E_ERROR;
 break;
 }
 if (strcmp(option_txt, cur_item) == 0)
 {
 err = sm_prop_set_m_str(f_id,
 PR_DROP_DOWN_DATA, ct, new_item);
 break;
 }
}

See Also sm_prop_error, sm_prop_id, sm_prop_set
5-438 Library Functions

sm_pset
sm_pset

Modifies the value of a global string

#include <smglobs.h

char *sm_pset(int which, char *newval);

which

Specifies the global string to modify with one of these constants:

P_YES

Set the affirmative input that is valid for a field whose
keystroke_filter is set to PV_YES_NO. Supply a two-character
string that contains the lowercase yes value and the uppercase yes
value.

P_NO

Set the negative input that is valid for a field whose
keystroke_filter is set to PV_YES_NO. Supply a two-character
string that contains the lowercase no value and the uppercase no
value.

P_DECIMAL

Set the user’s decimal point marker and the operating system’s
decimal point marker in a two-character string.

P_TERM

Set the terminal type. You must call sm_pset with this argument
this before initialization.

P_USER

Set a pointer to a developer-specified region of memory for the
current screen. Each screen maintains its own pointer. This pointer
is not set by Panther; it is set and maintained by the application.

SP_NAME

Set the name of the active screen.

SP_STATATTR

Set attributes of current status line—a pointer to an array of unsigned
short integers.

SP_STATLINE

Set the current text of the status line as a space padded, 255 character
string (not including the terminating null).
Programming Guide 5-439

sm_pset
V_

One of the V_ constants defined in smvideo.h, returns video-related
information.

newval

The new value to assign to this global string.

Note: If you supply a V_ constant for which, declare this parameter as a
static variable.

Returns • A pointer to a buffer with the old contents of the array specified by which. The
buffer’s maximum size of 255 bytes, including the null terminator.

• 0: which is invalid.

Description sm_pset lets you modify the contents of the which-specified global string. To get the
value of a global string, use sm_pinquire.

Example /* Set things for "German": Ja == yes, */
/* Nein == no, and ',' is decimal point. */

void
set_german()
{
 sm_pset(P_YES,"jJ");
 sm_pset(P_NO,"nN");
 sm_pset(P_DECIMAL,",.");
 sm_ferr_reset(0, "Jetzt spreche ich Deutsch!");
}

See Also sm_iset, sm_pinquire
5-440 Library Functions

sm_*putfield
sm_*putfield

Puts a string into a field

int sm_putfield(int field_number, char *data);

int sm_e_putfield(char *field_name, int element, char *data);

int sm_i_putfield(char *field_name, int occurrence, char *data);

int sm_n_putfield(char *field_name, char *data);

int sm_o_putfield(int field_number, int occurrence, char *data);

field_name, field_number

The field to receive the contents of data.

element

The element in array field_name to receive the string.

occurrence

The occurrence in the field to receive the string.

data

A pointer to the string to put in the specified field or occurrence.

Returns 0 Success.
- 1 Failure.

Description sm_putfield moves the string in data into the specified field, if it differs from the
existing value. If the string is too long, Panther truncates it without warning. If the
string is shorter than the destination field, Panther blank fills it according to the field’s
justification. If data points to an empty string, the field is cleared. This refreshes date
and time fields that take system values.

sm_putfield sets the field’s mdt property to PV_YES to indicate that it is modified,
and clears its valided property to PV_NO to indicate that the field requires validation on
exit. If you use variants sm_n_putfield or sm_i_putfield and field_name is
absent from the screen, the value of data is put in the corresponding LDB entry.

Example #include <smdefs.h>

sm_putfield(1, "This string has 29 characters");

See Also sm_deselect, sm_dtofield, sm_getfield, sm_itofield, sm_ltofield
Programming Guide 5-441

sm_raise_exception
sm_raise_exception

Sends an error back to the client

int sm_raise_exception(int error, char *message);

error

Error code to be returned to the client with COM components.

message

Error message to be returned to the client with Enterprise JavaBeans.

Environment COM, EJB

Scope Server

Description sm_raise_exception sends an error code and message back to the client. The
client’s error handler then can decide what to do based on the value sent.

For COM applications, Microsoft defines some conventional exception codes for use
in COM programming; see winerror.h.

See Also sm_receive_args, sm_return_args
5-442 Library Functions

sm_receive
sm_receive

Executes a JPL receive command

int sm_receive(char *receive_args);

receive_args

A string constant that contains receive command arguments, using one of
the following formats:

[bundle bundleName] [item itemNo] [keep] data fieldExpr

{ ARGUMENTS | MESSAGE } ([receiveArg])

Refer to the receive command for a description of these arguments.

Returns 0 Success.
-1 Unable to execute the function, or execution aborted prematurely. Refer to the

receive command for potential error conditions.
-2 Memory allocation failure.

Description sm_receive reads data from a bundle that was written by an earlier call to sm_send
or the JPL send command—typically, from another screen. sm_receive reads the data
into its field-expr arguments in the same order that it was sent. Unless you supply
the keep argument, the bundle data is discarded after sm_receive completes
execution.

For more information, refer to the JPL receive command.

See Also sm_send
Programming Guide 5-443

sm_receive_args
sm_receive_args

Receives a list of in and in/out parameters for a method

int sm_receive_args(char *text);

text

List of in/out and out parameters, separated by commas, of field names and
global JPL variables.

Environment COM, EJB

Scope Server

Returns 0 Not an available method.
1 Success.
• Otherwise, a value from smerror.h

Description sm_receive_args receives a list of arguments, and writes them to the in and in/out
parameters of a method. The arguments are written to the parameters in the order
received.

Example See the example under the JPL verb receive_args.

See Also sm_return_args
5-444 Library Functions

sm_rescreen
sm_rescreen

Refreshes the data displayed on the screen

void sm_rescreen(void);

Description sm_rescreen repaints the entire display from Panther’s internal screen and attribute
buffers. This function erases anything written to the screen by means other than
Panther library functions. This function is normally bound to the REFR key and
executes automatically within sm_getkey.

You might need to call this function explicitly under the following conditions:

! Screen I/O occurs with the flag sm_do_not_display turned on.

! Escape from an Panther application to another program through sm_leave.

To force writes to the display, use sm_flush.

See Also sm_flush, sm_return
Programming Guide 5-445

sm_*resetcrt
sm_*resetcrt

Resets the terminal to the operating system’s default state

void sm_resetcrt(void);

void sm_jresetcrt(void);

void sm_jxresetcrt(void);

Environment C only

Description sm_resetcrt resets terminal characteristics to the operating system’s normal state.
Use this function only with your own executive. Call sm_resetcrt when leaving the
screen manager environment before program exit.

All the memory associated with the display and open screens is freed. However, the
buffers that hold the message file, key translation file, and so on, are not released. A
subsequent call to sm_initcrt finds them in place. In character-mode, sm_resetcrt
then clears the screen and turns on the cursor, transmits the RESET sequence defined in
the video file, and resets the operating system channel.

Panther automatically calls sm_resetcrt through sm_jresetcrt or—in the case of
the screen editor—sm_jxresetcrt as part of its exit processing. These two functions
should not be called by application programs except in case of abnormal termination.

Example /* If an effort to read the first form results in
 * failure, clean up the screen and leave. */

if (sm_r_form("first") < 0)
{
 sm_resetcrt();
 exit(1);
}

See Also sm_cancel, sm_leave
5-446 Library Functions

sm_resize
sm_resize

Notifies Panther of a change in the display size

int sm_resize(int rows, int columns);

rows, columns

Specifies the new display size, where the maximum value of rows and
columns is 255. If the specified rectangle is larger than the physical display,
results can be unpredictable.

Returns • 0: Success.
• −1: Failure. A parameter is less than 0 or greater than 255.
• Program exit on memory allocation failure.

Description sm_resize lets you change the default display set by the video file’s LINES and COLMS
entries. Character-mode applications can run in different-sized windows by setting
their individual display sizes at runtime. Also use sm_resize to switch between
normal and compressed modes—for example, 80 and 132 columns on
VT100-compatible terminals.

Example #include <smdefs.h>
#include <smkeys.h>
#include <smglobs.h>
#define WIDTH_TOGGLE PF9

/* Somewhat irregular code to switch a VT-100
 * between 80- and 132-column mode by pressing PF9. */

switch (sm_input(IN_DATA))
{
...
case WIDTH_TOGGLE:
 if (sm_inquire(I_MXCOLMS) == 80)
 {
 printf("\033[?3h");
 sm_resize(sm_inquire(I_MXLINES), 132);
 }
 else
 {
 printf("\033[?3l");
 sm_resize(sm_inquire(I_MXLINES), 80);
 }
Programming Guide 5-447

sm_resize
 break;
...
}

5-448 Library Functions

sm_restore_data
sm_restore_data

Restores previously saved data to the screen

int sm_restore_data(char *buffer);

buffer

The address of an area initialized by sm_save_data that contains the data to
restore. Data items are stored in buffer as null-terminated character strings.
The contents of a scrollable array is preceded by 2 bytes giving the total
number of items saved (high order byte first); each item is preceded by two
bytes of display attribute, and followed by a null. There is an additional null
following all the scrolling data.

Environment C only

Returns 0 Success.
-1 Error, usually memory allocation failure.

Description sm_restore_data restores all data items, on- and off-screen, to the current screen
from buffer, previously initialized by sm_save_data. Passing a buffer not returned
by sm_save_data, or attempting to restore to a screen other than the one saved, can
yield unpredictable results.

See Also sm_save_data, sm_sv_free
Programming Guide 5-449

sm_return
sm_return

Prepares for return to a Panther application

void sm_return(void);

Environment C only

Description Call sm_return on returning to a Panther application after a temporary exit. This
function sets up the operating system channel, and in character-mode initializes the
display with the video file’s SETUP string.

Note that sm_return does not restore the screen to its state before the call to
sm_leave. To restore the screen to its previous state, call sm_rescreen.

Example #include <smdefs.h>

/* Escape to the UNIX shell for a directory listing */

sm_leave();
sm_system("ls -l");
sm_return();
sm_c_off();
sm_d_msg_line("Hit any key to continue", BLINK | WHITE);
sm_getkey();
sm_d_msg_line("", WHITE);
sm_rescreen();

See Also sm_leave, sm_resetcrt
5-450 Library Functions

sm_return_args
sm_return_args

Returns a method’s in/out and out parameters

int sm_return_args(char *text);

text

List of in/out and out parameters, separated by commas.

Environment COM, EJB

Scope Server

Returns 0 Not an available method.
1 Success.
• Otherwise, a value from smerror.h

Description sm_return_args is passed a list of arguments to be written to the in/out and out
parameters of a method.

Example See the example under the JPL verb receive_args.

See Also sm_receive_args, sm_raise_exception
Programming Guide 5-451

sm_rmformlist
sm_rmformlist

Purges the memory-resident form list

void sm_rmformlist(void);

Environment C only

Description sm_rmformlist erases the memory-resident form list established by sm_formlist,
and releases the memory used to hold it. It does not release any of the memory-resident
JPL modules or screens. Calling this function prevents sm_r_window, sm_jplcall,
and related functions from finding memory-resident objects.

Example /* Hide all the memory-resident screens, perhaps
 * because the disk versions have been modified. */

sm_rmformlist();

See Also sm_formlist
5-452 Library Functions

sm_rs_data
sm_rs_data

Restores saved data to some of the screen

int sm_rs_data(int first_field, int last_field, char *buffer);

first_field, last_field

Specifies the range of data items to restore, where all data between
first_field and last_field are restored to the screen.

buffer

The address of a buffer, initialized by sm_sv_data, that stores the data to
restore. Data items are stored in buffer as null-terminated character strings.
The contents of a scrollable array is preceded by 2 bytes giving the total
number of items saved (high order byte first); each item is preceded by two
bytes of display attribute, and followed by a null. There is an additional null
following all the scrolling data.

Environment C only

Returns 0 Success.
-1 Error, usually memory allocation failure.

Description sm_rs_data restores all data items between first_field and last_field, both off-
and onscreen, from a buffer initialized by sm_sv_data.

The range of fields passed to sm_rs_data must match those passed to sm_sv_data
and buffer must be a value returned by that function; otherwise, serious errors may
occur. For more information on saving data for later retrieval by sm_rs_data, refer to
sm_sv_data.

See Also sm_sv_data
Programming Guide 5-453

sm_rw_error_message
sm_rw_error_message

Returns the last error message generated by report processing

char *sm_rw_error_message(void);

Returns • The last report error message.
• NULL: No errors occurred.

Description sm_rw_error_message returns the last error message returned by a report that is
undergoing execution. The character string that this function returns can be used in one
of the Panther message commands or functions, such as the msg command or
sm_message_box. If report processing is error-free, this function returns NULL.

You can use this function to test report processing within a Panther application—for
example, through sm_rw_runreport or sm_rw_play_metafile.
5-454 Library Functions

sm_rw_play_metafile
sm_rw_play_metafile

Displays or prints a report that is in metafile format

#include <rwdefs.h>

int sm_rw_play_metafile(char *invocation_str);

invocation_str

A string that contains the name of the metafile to run and one or more
invocation options in this format:

"metafile-name [option]..."

If metafile-name contains spaces, it must be quoted. For a description of
invocation options, refer to “Setting Invocation Options” on page 9-9 in
Reports.

Returns 0 Success.
-1 A syntax error occurred or the specified file is not in metafile format.

Description sm_rw_play_metafile takes an existing metafile and processes it according to the
specified invocation options. Metafiles are the output of a report invocation that
specifies rwmetafile as its output driver (refer to “Driver Options” on page 9-11 in
Reports). For example, this statement saves the first two pages of metafile
report1.rwm to a PostScript file:

retcode = sm_rw_play_metafile \
("report1.rwm driver=postscript \
 output=report1.ps overwrite topage=2")

This function can be used in an report service’s unload handler to process
server-generated metafiles. For more information about using this function in unload
handlers, refer to “Handling Client Output” on page 9-26 in Reports.
Programming Guide 5-455

sm_rw_runreport
sm_rw_runreport

Invokes the report generator from a user-written function

#include <rwdefs.h>

int sm_rw_runreport(char *invocation_str);

invocation_str

A string that contains the name of the report to be invoked, arguments passed
to the report, and output and page layout options. The format of the string is
identical to the invocation string for the JPL command runreport:

"filename[!reportname] [('arg'[, ...])] [option]..."

For a description of invocation arguments and options, refer to “Setting
Invocation Options” on page 9-9 in Reports.

Returns 0 Success.
-1 Failure.

Description sm_rw_runreport invokes the report generator from a user-written function that is
linked into a Panther application. This function is functionally identical to the JPL
command runreport.

Example #include <rwdefs.h>

if (sm_rw_runreport("rptfile!myreport
('myarg1', 'myarg2') output=myoutput") == -1)

{
sm_n_putfield("myrwstatus", "failure");

}

5-456 Library Functions

sm_s_val
sm_s_val

Validates the current screen

int sm_s_val(void);

Returns 0 Success.
-1 A field failed validation.

Description sm_s_val validates all fields and their occurrences, on- and offscreen, that are not
protected from validation. Calling this function is equivalent to calling sm_fval for
each field and its occurrences. If an occurrence fails validation, sm_s_val repositions
the cursor to it and displays an error message. If the occurrence is offscreen, sm_s_val
scrolls the array until it is visible. The function then stops validation and returns. Fields
that follow the invalid occurrence remain unvalidated.

sm_s_val validates array occurrences sequentially, whether onscreen or offscreen.
Thus, offscreen occurrences that precede the first onscreen occurrence are validated
first.

sm_s_val also validates groups, grids, and tab cards. A group is validated when its
first field would be validated were it not a group member. Fields that are members of
a group are not validated individually. A grid is validated after its last field is validated.
All fields, grids and tab cards that are on a tab card are validated together and before
the card’s validation function is called. When a card is validated, offscreen occurrences
of fields not on that card may be validated if they are synchronized with fields on the
card.

sm_s_val validates synchronized arrays by processing parallel occurrences
sequentially. The function begins by validating the first occurrence (on- or offscreen)
of the array with the lowest base field number, then the first occurrence of the array
with the next base field number, and so on. sm_s_val completes validation when it
processes the last occurrence of the array with the highest base field number.

For more information about field validation processing, refer to sm_fval.

Example proc screen_exit()

if (sm_s_val()) // found invalid field data, returned -1
{

Programming Guide 5-457

sm_s_val
 msg err_reset \
 "Erroneous data; please correct and save again"
 return
}
...
return

See Also sm_fval, sm_n_gval, sm_validate
5-458 Library Functions

sm_save_data
sm_save_data

Saves screen contents

char *sm_save_data(void);

Environment C only

Returns • The address of a memory area that contains the screen’s data.
• 0: Insufficient memory.

Description sm_save_data saves the current screen’s data for external access or subsequent
retrieval and returns the address of the save area. sm_save_data ignores selections
from the following widgets: radio buttons, toggle buttons, check boxes, and list boxes.

To restore the saved data, use sm_restore_data. Use sm_sv_free to discard a save
area.

You can get the size of the data with this statement:

length = ((unsigned int *)buffer)[-1];

See Also sm_restore_data, sm_sv_data, sm_sv_free
Programming Guide 5-459

sm_sb_delete
sm_sb_delete

Deletes a status bar section

int sm_sb_delete(int sectno);

sectno

The number of the section to be deleted.

Returns 0 Success
-1 Failure

Description This function deletes a section of the status bar as specified by its index in the array of
status bar sections. The initial section, the message line, always has section number 0
and cannot be deleted. Hence, the argument to this function must always be >=1.

See Also sm_sb_format, sm_sb_gettext, sm_sb_insert, sm_sb_settext
5-460 Library Functions

sm_sb_format
sm_sb_format

Sets a format string for a status bar section

int sm_sb_format(int sectno, char* format)

sectno

The number of the section for which to specify a format string.

format

A format string for a section.

Returns 0 Success
-1 Failure

Description This function sets the format string for a status bar section. This is relevant only for
sections of type SBS_SYSTEM_TIME and SBS_ELAPSED_TIME, as described above.

The second argument, format, represents a format string. Valid date/time format
strings are described in the documentation for the function sm_sdtime. Note that an
SBS_ELAPSED_TIME section displays a clock that starts at midnight when the section
is created. So a format string for a section of that type should be chosen so that it is
meaningful in that context.
Programming Guide 5-461

sm_sb_gettext
sm_sb_gettext

Get contents of a status bar section

char* sm_sb_gettext(int sectno);

sectno

The number of the section being queried.

Returns • The section’s contents
-1 Error

Description This function gets the contents of a status bar section. The text returned is as shown on
the status bar, and may differ from the text set with sm_sb_settext if that text
contained formatting tokens.

See Also sm_sb_settext
5-462 Library Functions

sm_sb_insert
sm_sb_insert

Inserts a status bar section

int sm_sb_insert(int sectno, int type, int length);

sectno

The index, in the array of sections, of the section to be added.

type

The type of the new section, one of the following constants:

SBS_TEXT
SBS_SEPARATOR
SBS_SYSTEM_TIME
SBS_ELAPSED_TIME
SBS_OVERLAY
SBS_CAPS
SBS_NUM
SBS_SCROLL

length

The length of the section to be added.

Returns • The section number given to the new section
-1 Failure

Description This function inserts a new section on the status bar. When the status bar is initially
created it contains a single section of type SBS_MSGLINE. This initial section is the one
written to by the various Panther functions that send messages to the status line. The
initial SBS_MSGLINE section occupies the 0 position in the array of status bar sections.
Newly added sections must be placed to the right of the initial section, hence the value
of the first argument to sm_sb_insert cannot be 0. If you supply a negative value to
the first parameter, the newly added section will be the rightmost, no matter how many
sections already exist.

The newly added section must be one of several pre-defined types, as specified by the
second argument to sm_sb_insert. You cannot add a second section of type
SBS_MSGLINE. Hence, the valid values for the second argument are as follows:

SBS_TEXT

This type of section is used to display text. Text is written to such a section
using the funtion sm_sb_settext.
Programming Guide 5-463

sm_sb_insert
SBS_SEPARATOR

This type of section is used to mark a boundary between two other sections.
In character mode, it is equivalent to SBS_TEXT, and you can write whatever
character you wish to it, to mark the section boundary. In a GUI
SBS_SEPARATOR sections aren’t displayed in a recessed style.

SBS_SYSTEM_TIME

This type of section displays the system time. The format for the time
displayed is set by the function sm_sb_format. The default format shows
the time in a 12-hour clock, with an AM/PM indicator.

SBS_ELAPSED_TIME

This type of section displays the time elapsed since the section was created.
The format for the time displayed is set by the function sm_sb_format. The
default format shows the time in the form '00:00:00'.

SBS_OVERLAY

This type of section displays the state of Panther’s insert/overstrike mode.
The length parameter is ignored if this is the type specified. In character mode
the length defaults to 3, and will either display 'OVR' or be blank. In a GUI
the 'OVR' indicator may be grayed out rather than blanked.

SBS_CAPS

This type of section displays the CAPS LOCK state of the keyboard. The
length parameter is ignored if this is the type specified. This type is not
supported in character mode.

SBS_NUM

This type of section displays the NUM LOCK state of the keyboard. The
length parameter is ignored if this is the type specified. This type is not
supported in character mode.

SBS_SCROLL

This type of section displays the SCROLL LOCK state of the keyboard. The
length parameter is ignored if this is the type specified. This type is not
supported in character mode.

Other than for SBS_TEXT and SBS_SEPARATOR, you can have only one section of each
type on the status bar. Calls to sm_sb_insert that specify a type that already exists on
the status bar will have no effect. You can insert any number of SBS_TEXT or
SBS_SEPARATOR sections.
5-464 Library Functions

sm_sb_insert
The length parameter is the length, in characters, of the section to be added. The
length specified should be greater than or equal to the length of any text that might be
placed in that section. This parameter is ignored for some section types, as noted
above.

Note that the length of the status bar as a whole remains constant, and that the message
line section initially occupies all of it. In Motif, the message line section is always 255
characters long, so any sections placed after it will appear displaced by 255 character
positions. As a result, in Motif sections added to the status bar will probably not be
visible unless the window containing the status bar is very wide. To compensate for
this you can, in Motif, add a trailing SBS_SEPARATOR section that’s wide enough to
force the section to the right of the message line section to become visible.

Since in the GUIs the screen space allocated to status line sections is font-dependent,
you may need to experiment with different lengths to get the status line sections to
appear the way you want them.

See Also sm_sb_delete, sm_sb_format, sm_sb_gettext, sm_sb_settext
Programming Guide 5-465

sm_sb_settext
sm_sb_settext

Set contents of a status bar section

int sm_sb_settext(int sectno, char* text);

sectno

The number of the section to update

text

The text to place in that section

Returns 0 Success
-1 Failure

Description This function assigns contents to a section of the status bar. The text specified as the
second argument to this function may contain formatting tokens such as %A and %K. See
the description of the JPL command msg for descriptions of the valid formatting and
key value display tokens.

See Also sm_sb_gettext
5-466 Library Functions

sm_sdtime
sm_sdtime

Gets the formatted system date and time

char *sm_sdtime(char *format);

format

Specifies the format to use with an expression that starts with y or n, followed
by any combination of date/time tokens and literal text. y indicates a 12-hour
clock; n or any other character indicates a 24-hour clock. This character is
required even if the format does not include time tokens. The table in
Description shows the date/time tokens that you use to build a format
expression.

Returns • A pointer to a string that contains the current date/time in the specified format.
• Empty: format is invalid.

Description sm_sdtime gets the current date and/or time from the operating system and returns it
in the format-specified format.

The following table lists the tokens you use to build a format expression. All tokens
are prefixed by the percent sign (%) and are case-sensitive.

Table 5-19 Date/time format options

Unit Description Token

year 4 digit (e.g., 1990) %4y

2 digit (e.g., 90) %2y

month 1 or 2 digit (1 - 12) %m

2 digit (01 - 12) %0m

full name (e.g., January) %*m

3 character name (e.g., Jan) %3m

day 1 or 2 digit (1 - 31) %d

2 digit (01 - 31) %0d
Programming Guide 5-467

sm_sdtime
At runtime, Panther strips off the first character of format. If the character is y, it uses
a 12-hour clock; otherwise, it uses the 24-hour clock. Next, it examines the rest of
format, replacing any tokens with the appropriate values. All non-token characters are
treated as literal values.

The message file contains the text for day and month names, AM and PM, and the
tokens for the default formats. You can modify these. Refer to “Date/Time Defaults”
on page 45-13 in Application Development Guide for details.

sm_sdtime uses a 256-byte static buffer that it shares with other date and time
formatting functions. Because Panther does not check for overflow, process the
returned string or copy it to a local variable immediately.

day of the week full name (e.g., Sunday) %*d

3 character name (e.g., Sun) %3d

numeric day of the week (1-7) %.d

day of the year digit (1 - 366) %+d

hour 1 or 2 digit (1 - 12 or 0 - 23) %h

2 digit (01 -12 or 00 -23) %0h

minute 1 or 2 digit (0 - 59) %M

2 digit (00 - 59) %0M

second 1 or 2 digit (0 - 59) %s

2 digit (00 - 59) %0s

AM or PM for use with a 12-hour clock %p

literal percent use % as a literal character %%

default formats from the
message file (refer to
“Date/Time Defaults” on
page 45-13 in Application
Development Guide)

SM_0DEF_DTIME
SM_1DEF_DTIME
...
SM_9DEF_DTIME

%0f
%1f
...
%09f

Table 5-19 Date/time format options (Continued)

Unit Description Token
5-468 Library Functions

sm_sdtime
Example #include <smdefs.h>
/* Put current date MONTH-DAY-YEAR in the field "time". */
char *format;
format = "n%m-%0d-%2y";
sm_n_putfield("time", sm_sdtime(format));

See Also sm_udtime
Programming Guide 5-469

sm_select
sm_select

Selects an occurrence in a selection group

int sm_select(char *selection_group, int group_occurrence);

selection_group

The name of a selection group.

group_occurrence

The number of the occurrence in selection_group to select.

Returns 1 Occurrence is already selected.
0 Occurrence not previously selected.

-1 Invalid reference to group or occurrence.

Description sm_select lets you select an occurrence within a selection group. If the group’s
num_of_selections property is set to PV_1 (allows only one selection), Panther first
deselects the current selection before it selects group_occurrence. For more
information about selection widgets, refer to Chapter 20, “Selection Widgets,” in
Using the Editors.

To deselect an occurrence, call sm_deselect.

See Also sm_deselect
5-470 Library Functions

sm_send
sm_send

Executes a JPL send command

int sm_send(char *send_args);

send_args

A string constant that contains send command arguments:

[bundle bundle-name] [append] data data-expr[,...]

For a description of these arguments, refer to the send command.

Returns 0 Success.
-1 Unable to execute the function, or execution aborted prematurely. Refer to the

send command for potential error conditions.
-2 Memory allocation failure.

Description sm_send executes a JPL send command exactly as if called from JPL. sm_send writes
screen data to a buffer that is accessible to other screens through calls to sm_receive
or the JPL receive command. sm_send can send one or more values from fields and
array occurrences on a screen. It can also send character string constants as well as
parts of arrays or the current occurrence of an array.

Panther writes the data that you specify in sm_send to a temporary buffer, or bundle,
which you can optionally name. Panther by default maintains up to ten bundles; you
can set the number of available bundles using the max_bundles property. If you omit
a bundle name, Panther writes the data to an unnamed bundle; this data is accessed by
the next call to sm_receive or receive that also omits a bundle name argument or
specifies it as an empty string.

For more information, refer to the send command.

See Also sm_receive
Programming Guide 5-471

sm_set_help
sm_set_help

Puts an application into help mode

void sm_set_help(void);

Description sm_set_help puts Panther into help mode. When Panther is in help mode,
mouse-clicking on any object in the Panther application invokes the help that is
associated with that object. On GUI platforms, help mode changes the mouse pointer
shape to the symbol associated with help—for example, on Windows and Motif, a
question mark with an arrow. In character mode, the status line displays Help Mode.

While Panther is in help mode, the user can click on any application object that can
have help associated with it—a screen, toolbar or menu item, or widget. Help on an
object is accessible whether or not the object is inactive or focus-protected. Clicking
on the screen is equivalent to using the logical key FHLP; clicking on a widget is
equivalent to HELP.

Panther exits help mode and restores the mouse pointer shape after a mouse click
occurs.
5-472 Library Functions

sm_setbkstat
sm_setbkstat

Sets background text for status line

void sm_setbkstat(char *message, int display_attr);

message

Specifies the message to display as background text.

display_attr

The display attributes to use for message, one of the constants defined in
smattrib.h.

Foreground colors can be used alone or OR’d with one or more highlights, a
background color, and a background highlight. If you do not specify a
highlight or a background color, the attribute defaults to white against a black
background. Omitting a foreground color causes the attribute to default to
black.

Description sm_setbkstat saves the contents of message for display on the status line when there
is no other message with a higher priority to display. The highest priority messages are
those passed to sm_d_msg_line, sm_ferr_reset, and sm_fquiet_err; the next
highest are those attached to a widget or screen through its status_line_text
property. Background status text has lowest priority.

sm_setstatus sets the background status to an alternating ready/wait flag; turn this
feature off before calling sm_setbkstat.

sm_d_msg_line shows how to embed attributes and function key names in messages.

See Also sm_d_msg_line, sm_setstatus
Programming Guide 5-473

sm_setsibling
sm_setsibling

Specifies to open the next screen as a sibling of the current window

void sm_setsibling(void);

Description sm_setsibling forces sibling status onto the next screen opened as a window.
Usually, you can open a screen as a sibling window by prepending the screen name
with double ampersands (&&) in a control string—for example, in a widget’s Control
String property or as an argument to sm_jwindow. This operation fails if the specified
screen is already open as the current window or as a sibling of the current window. If
you want to open multiple instances of the same screen as sibling windows, precede
each call that opens these windows with a call to sm_setsibling.

Also, you can use this function to set sibling status for a screen to be opened with
sm_r_window, sm_r_at_cur, or one of their variants. Otherwise, Panther opens all
windows opened by these functions as stacked windows.

To change stacked windows into siblings and vice-versa, set their sibling property
to PV_YES and PV_NO, respectively.

Note: sm_setsibling temporarily sets a static variable that is immediately unset
after the next window-open operation, even if the operation fails. All
subsequent window-open operations revert to their default behavior.
5-474 Library Functions

sm_setstatus
sm_setstatus

Turns alternating background status message on or off

void sm_setstatus(int mode);

mode

Specifies whether to turn the alternating status message on or off:

Environment Character-mode

Description When alternating messages are turned on, one message—typically Ready—displays on
the status line while Panther awaits input, and another—normally Wait—when it is not.
If mode is 0, the messages are turned off.

The status flags are replaced temporarily by messages passed to sm_ferr_reset and
related functions. They overwrite messages posted by sm_d_msg_line and
sm_setbkstat.

You can edit the text of alternating messages in the message file, where they are stored
as SM_READY and SM_WAIT. You can also embed attribute changes and function key
names in these messages, as described in sm_d_msg_line.

Example #include <smdefs.h>
#include <smerror.h>
#define PAUSE (sm_flush(), sleep(3))
char buf[100];

/* Tell people what you're going to tell them. */
sprintf (buf, "You will soon see %s alternating "
 "with %s below.",
 sm_msg_get(SM_READY), sm_msg_get(SM_WAIT));
sm_do_region(3, 0, 80, WHITE, buf);

/* Now tell them. */
sm_setstatus(1);
PAUSE; /* Shows WAIT */

1 Turns the status message on.

0 Turns the status message off.
Programming Guide 5-475

sm_setstatus
sm_input(IN_DATA); /* Shows READY */

/* Finally, tell them what you told them. */
sprintf(buf, "That was %s alternating with %s "
 "on the status line.",
 sm_msg_get(SM_READY), sm_msg_get(SM_WAIT));
sm_ferr_reset (0, buf);

See Also sm_setbkstat
5-476 Library Functions

sm_sh_off
sm_sh_off

Gets the cursor location relative to the start of a shifting field

int sm_sh_off(void);

Returns ≥0 The difference between the current cursor position and the start of shiftable data
in the current field.

-1 The cursor is not in a field.

Description sm_sh_off returns the difference between the start of data in a shiftable field and the
current cursor location. If the current field is not shiftable, it returns the difference
between the field’s leftmost column and the current cursor location.

Example #include <smdefs.h>

/* Fancy test to see whether the current field is shifted
 * to the left. */

if (sm_sh_off() != sm_disp_off())
 sm_ferr_reset(0, "Ha! You shifted!");

See Also sm_disp_off, sm_off_gofield
Programming Guide 5-477

sm_shell
sm_shell

Executes a system call

int sm_shell(char *cmdstr, int wait);

cmdstr

The operating system command to execute; its syntax is system-dependent.

wait

Used only in character mode, specifies whether to display an
acknowledgement message before returning to the Panther application:

" 1 (Yes): Display a message that the user must acknowledge before the
Panther application resumes execution.

" 0 (No): Return immediately to the Panther application after cmdstr
executes. Panther refreshes the screen and resumes screen processing.

Returns System-dependent.

Description In character mode, sm_shell clears the screen and displays any output from the
specified program; on GUI platforms, display output is system-dependent.

Return values are system-dependent. For example, UNIX systems typically supply
sm_shell with the executed command’s return value and reason for exiting by
shifting and OR’ing two values together; under Windows, the WinExec Windows API
function is used and a return value greater than 31 indicates success.

On Windows, the command string must contain a filename. For example, to run batch
files, specify the file extension, as in run.bat. To generate a directory listing using the
dir command, specify:

command.com /c dir

Example # On a UNIX system, check a directory listing.
call sm_shell("ls -l", 1)
#open a file...

See Also jm_system, sm_launch
5-478 Library Functions

sm_shrink_to_fit
sm_shrink_to_fit

Removes trailing empty array elements and shrinks the screen

void sm_shrink_to_fit(void);

Description sm_shrink_to_fit lets you dynamically reduce the current screen size according to
the number of array elements that contain data at runtime. This function removes the
trailing elements in all arrays on a screen and then shrinks the screen to a size just large
enough to accommodate the displayed data. If there is no data in the array, then the
entire array is removed. Only the currently displayed copy of the screen in memory is
altered.

sm_shrink_to_fit never minimizes screen size at the expense of the screen’s first or
last line. For example, given a five-line screen with a five-element array in which only
four elements have data, sm_shrink_to_fit leaves the last empty element alone
because it occupies the screen’s last line.

Example /* Put ^shrink in the auto control */
/* to have window shrink to fit before */
/* user gets a chance to see it! */

int
shrink(ignored_data)
char *ignored_data;
{
 sm_shrink_to_fit();
 return (0);
}

Programming Guide 5-479

sm_slib_error
sm_slib_error

Gets the system return for the last call to sm_slib_load

int sm_slib_error(void);

Environment Windows

Description sm_slib_error gets the system-specific error value set when a DLL is loaded by
sm_slib_load.

See Also sm_slib_load
5-480 Library Functions

sm_slib_install
sm_slib_install

Installs a function from a DLL into a Panther application

int sm_slib_install(char *fnc_spec, int language,
int return_type);

fnc_spec

A string that includes the name of the function to install and a
comma-delimited list of its argument types enclosed in parentheses:

"func-name(param-list)"

Panther supports string and integer arguments, specified by s and i,
respectively. Specify any combination of strings and integers from zero to
five arguments. Panther also supports functions with six integer arguments.

For example, this statement installs the Windows library function
FindWindow, which expects two string arguments:

err = sm_slib_install
 ("FindWindow(s,s)", SLIB_C, SLIB_INTFNC);

language

Specifies which language calling convention to use when pushing this
function’s arguments onto the code stack. The convention that you specify
must conform to the order in which the function expects to find its arguments
stacked. Supply one of these identifiers:

SLIB_C

Arguments are pushed onto the stack in left-to-right order. Windows
functions usually use this convention.

SLIB_PASCAL

Arguments are pushed onto the stack in right-to-left order. Microsoft
Visual C++ does not support this convention.

return_type

The installed function’s return type, specified by one of these arguments:

SLIB_INTFNC
SLIB_STRFNC
SLIB_DBLFNC
Programming Guide 5-481

sm_slib_install
SLIB_ZROFNC

SLIB_ZROFNC specifies to ignore the installed function’s return
value and always to return 0.

Environment Windows

Returns 0 Success.
-1 Cannot find function in the loaded libraries.
-2 Invalid argument.

Description sm_slib_install installs the specified function from a shared library previously
installed by sm_slib_load. Panther searches for the function in all libraries loaded by
sm_slib_load, starting with the one most recently loaded. This function is installed
as a prototyped function and can be called directly from JPL modules.

Note: In the Windows distribution, Panther automatically loads the DLLs KERNEL32
and USER32 in that order. All functions in these libraries are available for
installation.

See Also sm_slib_load
5-482 Library Functions

sm_slib_load
sm_slib_load

Loads a dynamic link library (DLL)

int sm_slib_load(char *lib_name);

lib_name

The name of the dynamic library to load. The name can include its path. If
lib_name is already loaded, Panther moves the library to the top of the stack
of loaded libraries.

Environment Windows

Returns 0 Success.
-1 Unable to load lib_name. Call sm_slib_error to get the system-specific

error code.

Description sm_slib_load makes the functions and other resources in lib_name available for
installation. Resources can include bitmaps and icons. The library must be sharable—
on Windows, a dynamic link library (DLL). To install a function from a loaded library,
call sm_slib_install. After a function is installed, it can be called directly from a
JPL module.

If the argument supplied for lib_name omits a path, Panther searches for the library
in these locations:

1. Panther’s working directory

2. Windows directory

3. Windows system directory

4. The executable’s startup directory

5. SMPATH

6. The list of directories mapped in a network

Note: In the Windows distribution, Panther automatically loads the DLLs
KEYBOARD, KERNEL, and USER, in that order. All functions in these libraries are
available for installation.
Programming Guide 5-483

sm_slib_load
All loaded libraries are automatically unloaded on program exit.

See Also sm_slib_install
5-484 Library Functions

sm_soption
sm_soption

Sets a string variable

char *sm_soption(int option, char *newval);

option

Specifies the variable to set with one of these constants:

SO_EDITOR

Editor to use in JPL windows. Equivalent to SMEDITOR.

SO_LPRINT

The operating system command that is invoked through the local
print key (LP). Equivalent to SMLPRINT. Set this option only for
character-mode applications.

SO_PATH

Search path for libraries. Equivalent to SMPATH.

SO_LDBLIBNAME

An LDB library to open. Equivalent to SMLDBLIBNAME. Set this
option in jmain.c or jxmain.c before the call to sm_ldb_init.

SO_LDBNAME

An LDB screen to open. Equivalent to SMLDBNAME.

SO_RBCONFIG

Specifies the middleware configuration file for a running
application, required to enable a native client connection. Equivalent
to SMRBCONFIG. Set newval to the full pathname of the middleware
configuration file—for example, /usr/myapp/broker.bin.

SO_RBHOST

Provides the middleware API with the network addresses of the
machines to which a workstation client can connect. Equivalent to
SMRBHOST.

SO_RBPORT

Provides the middleware API with the port numbers associated with
the machines (SMRBHOST) to which a workstation client can connect.
Equivalent to SMRBPORT.
Programming Guide 5-485

sm_soption
newval

The new value to assign to the option-specified variable.

Returns • A pointer to the old value for the specified option or an empty string if the
specified option was not set.

• 0: The option is invalid or a malloc error occurred.

Description sm_soption lets you change at runtime various application-level variables that are
typically defined in the application’s environment, its initialization file, or setup files.

Example char *default_lp;
default_lp = sm_soption(SO_LPRINT, "lp -dny %s");

See Also sm_option
5-486 Library Functions

sm_strdup
sm_strdup

Allocate memory and copy a string to that memory

char *sm_strdup(char *string);

string

The string to be duplicated.

Returns . • The value returned by sm_fmalloc.
• the null pointer if string is the null pointer or if the call to sm_fmalloc failed.

Description .If string is not the null pointer, its length is found, sm_fmalloc is called and if it did
not return the null pointer, string is copied to the allocated memory. Memory
allocated by calling sm_strdup should be freed by calling sm_ffree.

See Also sm_ffree, sm_fmalloc
Programming Guide 5-487

sm_*strip_amt_ptr
sm_*strip_amt_ptr

Strips non-digit characters from a string

char *sm_strip_amt_ptr(int field_number, char *inbuf);

char *sm_e_strip_amt_ptr(char *field_name, int element,
char *inbuf);

char *sm_i_strip_amt_ptr(char *field_name, int occurrence,
char *inbuf);

char *sm_n_strip_amt_ptr(char *field_name, char *inbuf);

char *sm_o_strip_amt_ptr(int field_number, int occurrence,
char *inbuf);

field_name, field_number

The field with the string to strip. You must also set parameter inbuf to NULL.
For example, this JPL statement puts the unformatted contents of field
sale_amt into variable amt:

vars amt
amt = sm_n_strip_amt_ptr("sale_amt", @NULL)

If inbuf contains the string to strip, supply this parameter with an argument
of NULL.

element

The element with the string to strip.

occurrence

The occurrence with the string to strip.

inbuf

Contains the string to strip. For example, this JPL statement strips the
supplied string of its currency symbol and comma and puts 123489.12 into
amt:

amt = sm_strip_amt_ptr(@NULL, "$123,489.12")

To use the data in field_name/field_number, supply NULL.

Returns • A pointer to a string that contains the stripped text.
• 0 if inbuf is set to NULL and the field number is invalid.
5-488 Library Functions

sm_*strip_amt_ptr
Description sm_strip_amt_ptr strips all leading zeros and non-digit characters from the string,
except for an optional leading minus sign and decimal point. If you supply a value for
inbuf sm_strip_amt_ptr processes its contents. Otherwise, it uses the field data.

This function identifies the decimal character to preserve from the widget’s
decimal_symbol property. If this property is not set, sm_strip_amt_ptr uses the
character that is set by the message file’s SM_DECIMAL entry (refer to “Decimal
Symbols” on page 45-23 in Application Development Guide).

Note: sm_strip_amt_ptr stores its return value in a pool of buffers that it shares
with other functions. Consequently, you should use this data immediately.

See Also sm_amt_format, sm_dblval
Programming Guide 5-489

sm_sv_data
sm_sv_data

Saves partial screen contents

char *sm_sv_data(int first_field, int last_field);

first_field, last_field

Specifies the area to save. All data between first first_field and
last_field, inclusive, is saved to the specified address.

Environment C only

Returns • The address of an area containing the saved data.
• 0: The current screen has no fields, first_field or last_field is invalid, or

insufficient free memory.

Description sm_sv_data saves the current screen’s data from all fields numbered from
first_field to last_field for external access or subsequent retrieval. Use
sm_rs_data to restore the saved data to the screen.

Data items are stored as null-terminated character strings. The contents of a scrollable
array is preceded by 2 bytes giving the total number of items saved (high order byte
first); each item is preceded by two bytes of display attribute, and followed by a null.
There is an additional null following all the scrolling data.

See Also sm_rs_data, sm_save_data, sm_sv_free
5-490 Library Functions

sm_sv_free
sm_sv_free

Frees a buffer that contains saved screen data

void sm_sv_free(char *buffer);

buffer

The address of the buffer to free.

Environment C only

Description sm_sv_free releases the save area at buffer, created by sm_save_data or
sm_sv_data. Once released, this data is no longer accessible.

sm_save_data and related functions record up to 10 save area addresses. If you save
more than 10 times during a Panther session, Panther frees existing buffers on a
first-in/first-out basis. Consequently, you should use this function only if you need to
manipulate the save buffers manually.

See Also sm_save_data, sm_sv_data
Programming Guide 5-491

sm_svscreen
sm_svscreen

Registers a list of screens on the save list

int sm_svscreen(char **screen_list, int count);

screen_list

Specifies the screens to add to the save list.

count

The number of screens to add to screen_list.

Environment C only

Returns 0 Success.
1 Failure: Insufficient memory.

Description sm_svscreen adds screens to the Panther-managed list of screens that are saved in
memory. You can call this function to add screens to this list anywhere in your code;
however, these screens and the data entered in them are saved in memory only when
you close the screens for the first time. Consequently, access to the saved screens is
more efficient only on subsequent opens of those screens.

If a screen is already on the save list, Panther leaves that list entry unchanged. You can
remove screens from the list with sm_unsvscreen. To check whether a screen is on
the save list, use sm_issv.

This function saves processing time at the expense of memory. It is especially useful
with read-only screens that use large amounts of external data, for example, from
databases or other files. For instance, use this function to save in memory a help screen
that gets its data from a database and is repeatedly opened.

Example /* sm_issv */
/* sm_svscreen */
/* sm_unsvscreen */

char *screens[] =
{
 "start.scr",
 "demo.scr",
 "help.scr"
};
5-492 Library Functions

sm_svscreen
int num_screens = sizeof(screens) / sizeof(char *);

void
save_screens()
{
 /* Put 'screens' onto the save list. */
 sm_svscreen(screens, num_screens);
}

void
release_screens()
{
 /* Remove 'screens' from the save list. */
 sm_unsvscreen(screens, num_screens);
}

void
release_screen(name)
char *name;
{
 char *temp[1];
 if (sm_issv(name))
 {
 temp[0] = name;
 sm_unsvscreen(temp, 1);
 }
}

See Also sm_issv, sm_unsvscreen
Programming Guide 5-493

sm_tab
sm_tab

Moves the cursor to the next unprotected field

void sm_tab(void);

Description sm_tab moves the cursor to first enterable position in the next tab-accessible field on
the screen. If the cursor is in a field with a next-field property and one of the fields
specified by the property is tab-accessible, the cursor moves to that field’s first
enterable position. This function is normally bound to the TAB key.

This function does not immediately trigger field entry, exit, or validation processing.
Such processing occurs based on the cursor position when control returns to
sm_input.

Example #include <smkeys.h>

/* This moves the cursor to the next field. */
sm_tab();

See Also sm_backtab, sm_home, sm_last, sm_nl
5-494 Library Functions

sm_tm_clear
sm_tm_clear

Clears all fields in the table view

#include <tmusubs.h>

int sm_tm_clear(int suppress);

suppress

A flag that, if set to other than 0, indicates that before-image processing
should be suppressed while the clearing is being done.

Returns 0 Success.
<0 Failure.

Description sm_tm_clear clears all fields in the current table view. A positive value of suppress
indicates that before-image processing should be suppressed while the clearing is
being done.
Programming Guide 5-495

sm_tm_clear_model_events
sm_tm_clear_model_events

Empties the transaction event stack

#include <tmusubs.h>

void sm_tm_clear_model_events(void);

Description sm_tm_clear_model_events clears the transaction event stack. Events can be
pushed onto the event stack by the transaction manager, a transaction model, or a user
event function. The events generated by the transaction manager and those by the
standard transaction models can be found in the include file tmusubs.h.

This function can be used by transaction models or by transaction event functions
associated with a table view.

For more information on the event stack, refer to Chapter 35, “Generating Transaction
Manager Events,” in Application Development Guide.

See Also sm_tm_push_model_event, sm_tm_pop_model_event
5-496 Library Functions

sm_tm_command
sm_tm_command

Executes a transaction command

#include <tmusubs.h>

int sm_tm_command(char *cmd_string);

cmd_string

Contains one of the following transaction commands and its associated
parameters:

When specifying a command, the table view name is case sensitive; however,
the command name and the optional parameters following the table view
name are not case sensitive.

Returns • STATUS of the current transaction.
-1 Unable to execute command because transaction is already in progress.

Description sm_tm_command executes the specified transaction manager command. Before the
command is processed, a test is performed to see if the specified command is available
with the current mode.

By definition, a command is in progress from the moment sm_tm_command is called
until the moment it returns. As it processes most commands, sm_tm_command invokes
transaction event functions and transaction models. These, in turn, should not invoke
transaction manager commands, because the transaction manager cannot process its
commands recursively. This implies that they should not close the active screen (which
triggers a FINISH command), or cause any other screen to be displayed that contains
table views (which triggers a CHANGE command).

CHANGE CONTINUE_DOWN COPY_FOR_VIEW REFRESH

CLEAR CONTINUE_TOP FETCH SAVE

CLOSE CONTINUE_UP FINISH SELECT

CONTINUE COPY FORCE_CLOSE START

CONTINUE_BOTTOM COPY_FOR_UPDATE NEW VIEW
Programming Guide 5-497

sm_tm_command
For the transaction command START, the command keyword is followed by the
transaction name and can also be followed by a table view name.

int sm_tm_command(START transactionName [tableViewName]);

For the transaction command CHANGE, the command keyword is followed by the
transaction name.

int sm_tm_command(CHANGE transactionName);

For other transaction commands, the transaction name is set by the previous START or
CHANGE command and the parameter following the command is interpreted as a table
view name.

If there is an additional scope parameter, it specifies a portion of the table view tree.
The command is then applied only to those table views.

int sm_tm_command(command[tableViewName][scope]);

The scope parameter must be preceded by a table view name and takes one of these
arguments:

TV_AND_BELOW

Applies the command to the specified table view and all table views below it
on the tree. If no parameter is specified, the transaction manager acts as
though TV_AND_BELOW was supplied.

BELOW_TV

Applies the command to the table views below the specified table view.

TV_ONLY

Applies the command to the specified table view only.

SV_ONLY

Applies the command only to the table views of the specified server view.

Special processing occurs for the FETCH command. For FETCH, the scope parameter
is either FETCH_SIMPLE or FETCH_SPECIAL which specifies the type of fetch
processing.

Example int sm_tm_command("SELECT titles BELOW_TV");

See Also For the syntax of transaction manager commands, refer to Chapter 8, “Transaction
Manager Commands.”
5-498 Library Functions

sm_tm_command_emsgset
sm_tm_command_emsgset

Initiates error message processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_emsgset(char *caller_id, int code);

caller_id

A string used for identification; in Panther transaction models this is set to the
module name followed by the function name where the event was triggered.

code

One of the transaction manager DM_TM_ERR_XXXX return codes.

Returns STATUS value of the current transaction.

Description sm_tm_command_emsgset reports an error to the transaction manager error processor
(sm_tm_error). code is one of the DM_TM_ERR_XXX return codes returned from
sm_tm_command. The error severity level is set to TM_EMSG. The error text generated
corresponds to the error message for code.

If the TM_STATUS value of the current transaction is 0, this function sets TM_STATUS to
-1. If both TM_STATUS and TM_MSG values of the current transaction are 0, this function
sets TM_MSG to the value of code.
Programming Guide 5-499

sm_tm_command_errset
sm_tm_command_errset

Initiates error processing for a transaction manager error code

#include <tmusubs.h>

int sm_tm_command_errset(char *caller_id, int code);

caller_id

A string used for identification; in Panther transactions models this is set to
the module name followed by the function name where the event was
triggered.

code

One of the transaction manager DM_TM_ERR_XXXX return codes.

Returns STATUS value of the current transaction.

Description sm_tm_command_errset reports an error to the transaction manager error processor
(sm_tm_error). code is one of the DM_TM_ERR_XXX return codes returned from
sm_tm_command. The error severity level is set to TM_ERROR. The error text generated
corresponds to the error message for code.

If the TM_STATUS value of the current transaction is 0, this function sets TM_STATUS to
-1. If both TM_STATUS and TM_MSG values of the current transaction are 0, this function
sets TM_MSG to the value of code.
5-500 Library Functions

sm_tm_continuation_validity
sm_tm_continuation_validity

Checks to see if the CONTINUE events are permitted for the current table view

#include <tmusubs.h>

int sm_tm_continuation_validity(int report);

report

Controls whether an error message is generated. If this parameter is non-zero,
the message is generated.

Returns • TM_OK if the TM_CONTINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN, and
TM_CONTINUE_BOTTOM events are permitted.

• TM_FAILURE if these events are not permitted. If report is non-zero, an error
message is also generated.

Description This function is used in the standard transaction models for two-tier applications as
part of the transaction manager processing for the SELECT and VIEW commands. It
checks the value of the fetch_directions property for the current table view to see
if the TM_CONTINUE_UP, TM_CONTINUE_TOP, TM_CONTINUE_DOWN, and
TM_CONTINUE_BOTTOM events are permitted.

If the fetch_directions property is specified as Down only-all modes
(PV_CONT_NEVER), only TM_CONTINUE fetches additional data. TM_CONTINUE_DOWN is
not permitted.

If the fetch_directions property is specified as Up/Down-view mode
(PV_CONT_VIEW_ONLY), the TM_CONTINUE_UP, TM_CONTINUE_TOP,
TM_CONTINUE_DOWN, and TM_CONTINUE_BOTTOM events are allowed in addition to
TM_CONTINUE if the current transaction mode is view.

If the fetch_directions property is specified as Up/Down-all modes
(PV_CONT_ALWAYS), the TM_CONTINUE_UP, TM_CONTINUE_TOP,
TM_CONTINUE_DOWN, and TM_CONTINUE_BOTTOM events are allowed in addition to
TM_CONTINUE in view and update mode. Data must be re-fetched in order for updates
to be displayed from the continuation file used with these events.
Programming Guide 5-501

sm_tm_continuation_validity
If the table view’s fetch_directions property is specified as default
(PV_CONT_DEFAULT), the screen’s Fetch Directions property is consulted. If the
screen’s Fetch Directions property is specified as default, this is the equivalent of
Down only-all modes.
5-502 Library Functions

sm_tm_dbi_checker
sm_tm_dbi_checker

Tests for common database errors during transaction manager processing

#include <tmusubs.h>

int sm_tm_dbi_checker(int event);

event

TM_TEST_ERROR to check for database errors, TM_TEST_ONE_ROW to check
that one row was affected by the processing, or TM_TEST_SOME_ROWS to
check that one or more rows was affected by the processing.

Returns • TM_FAILURE:
- If a database error is recognized.
- If no database error is recognized but event is TM_TEST_ONE_ROW and more
than one row has been affected by database interface processing.
- If no database error is recognized but event is TM_TEST_SOME_ROWS and no
rows have been affected by database interface processing.

• TM_OK if no database error has been recognized, nor an error because of an
event condition as described above.

Description sm_tm_dbi_checker tests the Panther database variables @dmretcode and
@dmengerrcode for any errors in database processing. If it finds an error, it logs it and
sets error messages.

If no database errors are encountered but event is TM_TEST_ONE_ROW,
sm_tm_dbi_checker returns the error status TM_FAILURE if @dmrowcount is not 1.

Similarly, if event is TM_TEST_SOME_ROWS, sm_tm_dbi_checker returns the error
status TM_FAILURE if @dmrowcount is 0.

Example /* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_TEST_ERROR:
case TM_TEST_ONE_ROW:
case TM_TEST_SOME_ROWS:

retcode = sm_tm_dbi_checker(event);
break;
Programming Guide 5-503

sm_tm_error
sm_tm_error

Reports an error condition

#include <tmusubs.h>

void sm_tm_error(char *caller_id, char *text, char *user_use,
int severity);

caller_id

A string used for identification; in Panther transactions models this is set to
the module name followed by the function name where the event was
triggered.

text

Null-terminated character string containing a message.

user_use

Null-terminated character string for user’s message.

severity

Severity level of the error.

Description sm_tm_error reports an error to the transaction manager error processor. The error is
identified by the caller_id, text, user_use (if one exists) and severity. Errors
are written to an error log file. If an error log file is not specified or if severity is less
than the severity limit, nothing is written.

The character string parameters can contain white space but the first NULL character
indicates the end of the string.

See Also sm_tm_errorlog, sm_tm_msg_count_error, sm_tm_msg_emsg,
sm_tm_command_emsgset, sm_tm_command_errset
5-504 Library Functions

sm_tm_errorlog
sm_tm_errorlog

Controls error log processing

#include <tmusubs.h>

int sm_tm_errorlog(int call_type, int call_type_code,
char *log_file);

call_type

Determines which aspect of error log processing is affected. One of the
following constants: TM_ERR_KEEP, TM_ERR_SUPPRESS, TM_ERR_FILE,
TM_ERR_NEW_COMMAND, as defined below.

call_type_code

A value that is used depending on the argument supplied for call_type.

log_file

The name of the file in which the error log is maintained; ignored unless
call_type is TM_ERR_FILE.

Returns 0 Success.
-1 Failure.

Description sm_tm_errorlog controls error log processing according to the value of call_type.

TM_ERR_KEEP specifies the existence of the error log. A call_type_code value of 0
clears the error log when a new command begins processing. A value of 1 indicates not
to clear out the log. The last parameter is ignored.

TM_ERR_SUPPRESS specifies which errors to suppress depending on a severity level,
where call_type_code determines which errors to suppress. Any errors passed to
sm_tm_error with a severity greater than 0 and less than or equal to
call_type_code are not logged. If call_type_code is 0, there is no suppression.

TM_ERR_FILE specifies the error log file that is named by log_file. The file is
appended to if it exists, but a call to this function with TM_ERR_KEEP might override
this. If there is no call to sm_tm_errorlog, there is no sm_tm_error error logging.

If call_type_code is 0, the file is not flushed or closed unnecessarily after it is
written to. If call_type_code is 1, the file is closed after each entry is written.
Programming Guide 5-505

sm_tm_errorlog
If log_file is a null pointer or empty string, there is no further error logging until a
subsequent call to sm_tm_errorlog reinstates it.

TM_ERR_NEW_COMMAND specifies that processing of a new command is starting.

See Also sm_tm_error
5-506 Library Functions

sm_tm_event
sm_tm_event

Returns the event number for the specified transaction manager event name

#include <tmusubs.h>

int sm_tm_event(char *event_name);

event_name

One of the names in the table of request and event numbers defined in
tmusubs.h.

Returns • The number for the specified event.
0 Error: event_name is not found.

Description sm_tm_event returns the event number corresponding to the specified transaction
manager event name. As part of its processing, event_name is converted from lower
case letters to upper case.

Example int process_event (event_name, caller_id)
char* event_name, caller_id;
{

int event_num;
if ((event_num = sm_tm_event(event_name)) != 0)

switch (event_num)
{

case TM_SELECT: ...
break;

case TM_PRE_SELECT: ...
break;

case TM_POST_SELECT: ...
break;

...
case TM_NOTE_FAILURE:
case TM_NOTE_UNSUPPORTED:

sm_tm_failure_message(event_num, caller_id,
"Unsupported or failed event");

break;
default:

sm_tm_failure_message(event_num, caller_id,
"Unsupported event");

}
else /* returned '0', event_name unrecognized */
{

char buf[255];
Programming Guide 5-507

sm_tm_event
sprintf(buf, "Bad TM event name: %s", event_name);
sm_tm_error(caller_id, buf, "", TM_WARNING);
buf[0]='\0';

}
}

5-508 Library Functions

sm_tm_event_name
sm_tm_event_name

Returns the transaction manager event name for the specified event number

#include <tmusubs.h>

char *sm_tm_event_name(int event_number);

event_number

One of the request and event numbers defined in tmusubs.h.

Returns • A pointer to a string that contains the name of the specified event number.
• A string that contains the event number if the number does not correspond to

one of the events

Description sm_tm_event_name returns the event name corresponding to the specified event
number. Because this function stores the returned data in a pool of buffers that it shares
with other functions, copy or process this data immediately.

Example # JPL Procedure called as an event function that displays
each event name as it is processed.

proc getname(event)
vars retname
retname = sm_tm_event_name(event)
msg_emsg "Event name is " retname
return TM_PROCEED
Programming Guide 5-509

sm_tm_failure_message
sm_tm_failure_message

Specifies an error message to report for a transaction manager error

#include <tmusubs.h>

int sm_tm_failure_message(int type, char *caller_id, char *text);

type

The event calling this function. This event must be TM_NOTE_FAILURE or
TM_NOTE_UNSUPPORTED.

caller_id

Identifier for the calling program. If this is not supplied, the generated
caller_id has embedded in it the previous event name or number and the
previous transaction model or transaction event function name.

text

The text for the error message. If this is not supplied, a generic error message
is generated.

Returns • TM_OK

Description When the transaction manager generates either the TM_NOTE_FAILURE or the
TM_NOTE_UNSUPPORTED event, the standard transaction models call
sm_tm_failure_message to generate an error message for the previous event.

sm_tm_failure_message checks the value of TM_STATUS and sets it to -1 if the value
is 0.

Example /* The following example taken from the standard
transaction model for JDB shows the processing for
these events. */

case TM_NOTE_FAILURE:
case TM_NOTE_UNSUPPORTED:

retcode = sm_tm_failure_message(event, "", "");
break;
5-510 Library Functions

sm_tm_handling
sm_tm_handling

Processes a handling method property

#include <tmusubs.h>

int sm_tm_handling(int prop);

prop

One of the property constants.

Returns • TM_PROCEED if the property value specifies something other than function
invocation or doing nothing, or if dm_tm_listing_sql is being done.

• TM_FAILURE if there is an error calling an invoked function or if an invoked
function returns non-zero.

• TM_OK otherwise.

Description sm_tm_handling analyzes and, in some cases, processes the handling specified
(indirectly) by the prop parameter for the specified table view. If the parameter is
DM_SEL_FUNC_NAME, DM_INS_FUNC_NAME, DM_UPD_FUNC_NAME or
DM_DEL_FUNC_NAME, the handling is that of the corresponding PR_xxx_HANDLING
property. If prop is DM_CONTINUE_FUNC_NAME, the choice of behavior is based on
DM_SELECT_HANDLING, but the function invoked, if any, is the CONTINUE function. If
prop is DM_SAVE_FUNC_NAME, the function (if any) specified by that property is
invoked if any of the insert, update or delete handling properties specify function
invocation. Otherwise TM_OK is returned.

If the property value specifies to do nothing, this routine simply returns TM_OK.

If the property value specifies to invoke a function, this routine calls it; the function
has no parameters. If the function returns a non-zero integer, and the TM_STATUS
member of sm_tm_curinfo is zero, this routine puts that value there; it similarly
proposes a generalized error message, if none has been set up. The return value from
this routine is TM_FAILURE (for an error on the function call or a non-zero return from
the function), or TM_OK for a successful call with a zero value returned by the function.
Absence of the corresponding function name value is an error, except for CONTINUE
and SAVE functions. However, inability to find a function whose name has been
specified as a property value is always an error. For this and other serious processing
errors in function invocation, this routine reports an error and displays an error
message.
Programming Guide 5-511

sm_tm_handling
Otherwise this routine returns TM_PROCEED.

Since the handling properties are stored internally as strings, the property API access
functions are used to get the more convenient PV_ integers.

If dm_tm_listing_sql is being done, this routine always returns TM_PROCEED.
5-512 Library Functions

sm_tm_inquire
sm_tm_inquire

Gets an integer attribute of the current transaction

#include <tmusubs.h>

int sm_tm_inquire(int attribute);

attribute

Specifies the integer attribute of the current transaction to get with one of the
constants shown in the Description section.

Returns ≥1 The current value of attribute.
0 The current transaction is null.

-1 Invalid argument supplied for attribute.

Description sm_tm_inquire gets the value of an integer attribute of the current transaction. This
includes the data in the current transaction structure itself and data that can be found
indirectly—for example, information about the current table view.

Supply one of the following constants to specify the desired transaction attribute:

TM_AT_OR_BELOW

Traversal specifier.

TM_CANCEL_ON_DISCARD

Gets cursor-related behavior that is associated with the transaction event
TM_FINISH. The default setting is 1, which ensures that all cursor-associated
locks are released when the FINISH command executes. For behavior that is
backward compatible, call sm_iset and supply a value of 0—
sm_iset(TM_CANCEL_ON_DISCARD, 0). This change affects all outstanding
and subsequent transactions for the current database connection.

TM_CONTINUATION

Value of fetch_directions property for current table view:
PV_CONT_DEFAULT, PV_CONT_ALWAYS, PV_CONT_NEVER,
PV_CONT_VIEW_ONLY.

TM_CURRENT_COMMAND

Identifies the current transaction event—for example, TM_SELECT during
CLOSE processing of a SELECT command.
Programming Guide 5-513

sm_tm_inquire
TM_CURRENT_MODE

Current transaction mode.

TM_CURRENT_OCC

Current occurrence number of current table view.

TM_CURRENT_REQUEST

Current request being processed. Use sm_tm_event_name to get the string
equivalent.

TM_EMSG_USED

Error message indicator.

TM_FULL

Full or partial command indicator.

TM_HOOK_IN_USE

Indicates whether a transaction model or transaction event function is in use.
Values include:

TM_LINK

Link from a table view to its parent table view.

TM_MSG

User specified message code to use for exit condition after a call to
sm_tm_command.

TM_OCC

Occurrence number being processed.

TM_OCC_COUNT

The number of occurrences in the table view.

TM_OCC_TYPE

Code reflecting the nature of change, if any, of an occurrence from its
before-image. The codes are listed in “Determining How Screen Data Has
Changed” on page 36-26 in the Application Development G uide.

TM_PARENT_OCC

Current occurrence of parent of current table view.

TM_NOTHING_IN_USE Nothing in use

TM_MODEL_IN_USE Transaction model in use

TM_UHOOK_IN_USE Event function in use
5-514 Library Functions

sm_tm_inquire
TM_PARENTING_OCC

Occurrence that was valid in parent when table view last fetched.

TM_PREVIOUS_EVENT

Indicates the previous transaction manager event. Used when writing an error
handler to log the event which generated the error.

TM_PREVIOUS_HOOK_IN_USE

Indicates whether the transaction model or an event function was used in the
previous event. Used when writing an error handler. Values include:

TM_QUERY_ACTION

Return code from TM_QUERY. Models return:

TM_SAVE_COUNT

When supplied this argument, sm_tm_inquire returns the number of rows
that the transaction manager asked the transaction model to save to the
database.

Note: The value returned by sm_tm_inquire(TM_SAVE_COUNT) is not
equivalent to the number of SQL statements issued, inasmuch as
multiple SQL statements can be issued for each row.

If an error occurs during save processing, sm_tm_inquire returns 0 and a
DBMS ROLLBACK is executed.

The following example is in smwizard.jpl:

// If new row was added, allow user to work with it.
// Otherwise, place TM back into INITIAL mode.

if (sm_tm_inquire(TM_SAVE_COUNT) > 0)
{

TM_NOTHING_IN_USE Nothing in use

TM_MODEL_PREV_IN_USE Transaction model used for previous event

TM_UHOOK_PREV_IN_USE Hook function used for previous event

TM_DISCARD_ACTION Discard changes

TM_EXIT_ACTION Return to screen without discarding changes
Programming Guide 5-515

sm_tm_inquire
 call sm_tm_command("COPY_FOR_UPDATE")
}
else
{
 call sm_tm_command("FORCE_CLOSE")
}

TM_STATUS

Error indicator.

TM_SV_SEL_COUNT

For SELECT and VIEW, this argument is set to 1 if the Count Select property
indicates that an initial query be performed to determine the number of rows
in the select set.

TM_SV_SEL_REQUEST

Request that gave rise to the current select cursor for the table view (either
SELECT or VIEW).

TM_USER_VALUE

Reserved for user use.

TM_VALUE, TM_VALUE2
General purpose integer.

TM_XA_TRANSACTION_BEGUN

For the Tuxedo middleware adapter, this argument tests whether the
transaction model has started an XA transaction.

See Also sm_tm_iset, sm_tm_pcopy, sm_tm_pinquire, sm_tm_pset
5-516 Library Functions

sm_tm_iset
sm_tm_iset

Sets the value of a transaction attribute

#include <tmusubs.h>

int sm_tm_iset(int attribute, int value);

attribute

Specifies the integer attribute of the current transaction to change with one of
the constants shown in Description.

value

attribute’s new value.

Returns 0 Success.
-1 Invalid argument supplied for attribute.
-2 Unable to make the requested change.

Description sm_tm_iset changes the value of an integer attribute of the current transaction. This
includes not only data in the current transaction structure itself, but also data that can
be found indirectly, such as data relating to the current table view.

Supply one of the following constants to specify the transaction attribute to be
changed:

TM_CANCEL_ON_DISCARD

Sets cursor-related behavior that is associated with the transaction event
TM_FINISH. The default setting is 1, which ensures that all cursor-associated
locks are released when the FINISH command executes. For behavior that is
backward compatible, supply a value of 0. This change affects all outstanding
and subsequent transactions for the current database connection.

TM_EMSG_USED

If set to 1, no error message is displayed when sm_tm_command returns to its
caller. Indicates that the error message was displayed by sm_tm_command.

TM_MSG

User specified message code to use for exit condition after a call to
sm_tm_command.

TM_OCC

Occurrence number being processed.
Programming Guide 5-517

sm_tm_iset
TM_OCC_COUNT

The number of occurrences in the table view.

TM_PROPOSE_MSG

A conditional value for TM_MSG; used only if there is no existing value.

TM_PROPOSE_STATUS

A conditional value for TM_STATUS; used only if there is no existing value.

TM_QUERY_ACTION

Return code from TM_QUERY. Models return:

TM_STATUS

Error indicator.

TM_SV_SEL_COUNT

Set to 1 to get the size of the select set for the server view (either SELECT or
VIEW).

TM_SV_SEL_REQUEST

Request that gave rise to the current select cursor for the table view (either
SELECT or VIEW).

TM_USER_VALUE

Reserved for user use.

TM_VALUE, TM_VALUE2
General purpose integer.

TM_XA_TRANSACTION_BEGUN

For the Tuxedo middleware adapter, this argument sets the transaction model
to start an XA transaction.

See Also sm_tm_inquire, sm_tm_pcopy, sm_tm_pinquire, sm_tm_pset

TM_DISCARD_ACTION Discard changes

TM_EXIT_ACTION Return to screen without discarding changes
5-518 Library Functions

sm_tm_msg_count_error
sm_tm_msg_count_error

Reports a transaction manager error

#include <tmusubs.h>

void sm_tm_msg_count_error(char *caller_id, int msg, int count);

caller_id

A string used for identification; in Panther transactions models, this is set to
the module name followed by the function name where the event was
triggered.

msg

Identifier for a predefined error message.

count

Any integer value useful for display in the message string.

Description sm_tm_msg_count_error reports an ERROR severity error to the transaction manager
error processor (sm_tm_error). The error text includes the name of the function where
the error occurred identified by caller_id, the message text string corresponding to
msg (obtained by a call to sm_msg_get), and the value identified in count. A typical
use for count would be to display an error return code from the function that triggered
the error event.

If msg is DM_TM_ALREADY or 0, this function does nothing.

See Also sm_tm_error, sm_tm_msg_emsg, sm_tm_msg_error
Programming Guide 5-519

sm_tm_msg_emsg
sm_tm_msg_emsg

Reports an error of message severity

#include <tmusubs.h>

void sm_tm_msg_emsg(char *caller_id, int msg);

caller_id

A string used for identification; in Panther transactions models this is set to
the module name followed by the function name where the event was
triggered.

msg

Identifies an error message.

Description sm_tm_msg_emsg reports an EMSG severity error to the transaction manager error
processor. The error text includes the name of the function where the error occurred
identified by caller_id and the message text string corresponding to msg, obtained
by a call to sm_msg_get.

If msg is DM_TM_ALREADY or 0, this function does nothing.

See Also sm_tm_error, sm_tm_msg_count_error, sm_tm_msg_error
5-520 Library Functions

sm_tm_msg_error
sm_tm_msg_error

Reports an error

#include <tmusubs.h>

void sm_tm_msg_error(char *caller_id, int msg);

caller_id

A string used for identification; in Panther transactions models this is set to
the module name followed by the function name where the event was
triggered.

msg

Identifies an error message.

Description sm_tm_msg_error reports an ERROR severity error to the transaction manager error
processor. The error text includes the name of the function where the error occurred
identified by caller_id and the message text string corresponding to msg, obtained
by a call to sm_msg_get.

If msg is DM_TM_ALREADY or 0, this function does nothing.

See Also sm_tm_error, sm_tm_msg_emsg, sm_tm_msg_count_error
Programming Guide 5-521

sm_tm_old_bi_context
sm_tm_old_bi_context

Sets a backward compatibility flag

#include <tmusubs.h>

int sm_tm_old_bi_context(int flag);

flag

The setting for fetching before-image data:

Returns • The old value of the flag.

Description sm_tm_old_bi_context sets a new value of the old_bi_context_flag and returns
the old value. The old_bi_context_flag is used to determine whether to use more
powerful name parsing methods than had previously been used.
sm_tm_old_bi_context also uses this flag to decide whether it should use the old or
a new algorithm to get a before image context.

Calling this routine with a parameter of 1 causes the old algorithm to be used
thereafter. Calling this routine with a parameter of 0 causes the new algorithm to be
used thereafter; 0 is the default.

See Also sm_get_tv_bi_data

1 Set backwards compatibility flag.

0 Use the current release process (default).

-1 The current setting.
5-522 Library Functions

sm_tm_pcopy
sm_tm_pcopy

Gets a string attribute of the current transaction and stores it

#include <tmusubs.h>

int sm_tm_pcopy(int attribute, char *attr_value, int length);

attribute

Specifies the string attribute of the current transaction to get with one of the
constants shown in Table 5-20.

attr_value

A string buffer where the specified attribute’s value is copied.

length

Specifies the maximum length of data to copy to attr_value, excluding the
NULL string terminator. If length has a 0 or negative value, it is set to 255.

Environment C only

Returns 0 Success.
• DM_TM_ERR_NO_TRANSACTION: The current transaction is null.
• DM_TM_ERR_ARGS: value is a null pointer.
• DM_TM_ERR_BAD_MEMBER: attribute is invalid.
• DM_TM_ERR_GENERAL: The length of attr_value exceeds length or 255.

Description sm_tm_pcopy is used to obtain the current value of a string attribute of the current
transaction. This includes not only data in the current transaction structure itself, but
also data that can be found indirectly, such as data relating to the current table view.
This function stores the value to a user-defined buffer, and returns error information.

Table 5-20 lists the constants, defined in tmusubs.h, that specify the string attributes
to get with this function.

Table 5-20 Transaction string attributes

Transaction Attribute Description

TM_BUFFER General purpose string.

TM_COMMAND_PARM Text string passed to sm_tm_command.
Programming Guide 5-523

sm_tm_pcopy
Data is only copied if no errors are encountered.

See Also sm_tm_inquire, sm_tm_iset, sm_tm_pinquire, sm_tm_pset

TM_MSG_TEXT Text of sm_tm_command exit message.

TM_COMMAND_ROOT Identifies the root table view of the current command. This is
either the root of the tree (for the entire transaction), or the root
of the partial tree specified for the current command.

TM_PARENT_NAME Name of parent table view of current table view.

TM_PREVIOUS_HOOK Name of the previous event function. Used when writing an
error handler.

TM_ROOT_NAME Name of root table view of the transaction.

TM_SAVE_CURSOR SAVE or VALIDATION cursor name.

TM_SV_NAME Name of server view containing current table view.

TM_SV_SELECT_CURSOR SELECT cursor name.

TM_TRAN_NAME Name of the current transaction.

TM_TRANS_MODEL_NAME Name of the transaction model.

TM_TV_NAME Name of the current table view.

TM_USER_BUFFER Buffer reserved for user use.

Table 5-20 Transaction string attributes

Transaction Attribute Description
5-524 Library Functions

sm_tm_pinquire
sm_tm_pinquire

Gets the value of a string attribute of the current transaction for immediate use

#include <tmusubs.h>

char *sm_tm_pinquire(int attribute);

attribute

Specifies the string attribute of the current transaction to copy with one of the
constants defined in tmusubs.h and shown in the Description section.

Returns • Success: copy of the string value of attribute.
• Failure: empty string.

Description sm_tm_pinquire gets the current value of a string attribute of the current transaction.
This includes not only data in the structure itself, but also data that can be found
indirectly, such as data relating to the current table view.

An empty string is returned if any of the following errors occurs: the current
transaction is null, attribute is invalid, the value of attribute is a non-existent
string, or the length of the value of attribute is greater than 255.

Because the objects pointed to by the pointers returned by sm_tm_pinquire usually
have short duration, as they are stored in rotating buffers, use or copy them quickly

Supply one of the following constants to specify the desired transaction attribute:

TM_BUFFER

General purpose string.

TM_COMMAND_PARM

Text string passed to sm_tm_command.

TM_COMMAND_ROOT

Text of sm_tm_command exit message.

TM_MSG_TEXT

Identifies the root table view of the current command. This is either the root
of the tree (for the entire transaction), or the root of the partial tree specified
for the current command.

TM_PARENT_NAME

Name of parent table view of current table view.
Programming Guide 5-525

sm_tm_pinquire
TM_PREVIOUS_HOOK

Name of the previous event function. Used when writing an error handler.

TM_ROOT_NAME

Name of root table view of the transaction.

TM_SAVE_CURSOR

SAVE or VALIDATION cursor name.

TM_SV_NAME

Name of server view containing current table view.

TM_SV_SELECT_CURSOR

SELECT cursor name.

TM_TRAN_NAME

Name of the current transaction.

TM_TRANS_MODEL_NAME

Name of the transaction model.

TM_TV_NAME

Name of the current table view.

TM_USER_BUFFER

Buffer reserved for user use.

See Also sm_tm_inquire, sm_tm_iset, sm_tm_pset, sm_tm_pcopy
5-526 Library Functions

sm_tm_pop_model_event
sm_tm_pop_model_event

Pops an event off the transaction event stack

#include <tmusubs.h>

int sm_tm_pop_model_event(void);

Returns The event popped off the event stack.
0: The stack is empty.

Description sm_tm_pop_model_event pops the next event in the transaction event stack. Events
can be pushed onto the event stack by the transaction manager, a transaction model, or
a user event function. The events generated by the transaction manager and those by
the standard transaction models can be found in the include file tmusubs.h.

This function can be used by transaction models or by transaction event functions
associated with a table view.

See Also sm_tm_clear_model_events, sm_tm_push_model_event
Programming Guide 5-527

sm_tm_pset
sm_tm_pset

Sets the value of a string transaction attribute

#include <tmusubs.h>

int sm_tm_pset(int attribute, char *value);

attribute

Specifies the string attribute of the current transaction to change with one of
the constants shown below.

value

attribute’s new value.

Returns 0 Success.
-1 Invalid argument supplied for attribute.
-2 Unable to make the requested change.

Description sm_tm_pset changes the value of a string attribute of the current transaction. This
includes not only data in the current transaction structure itself, but also data that can
be found indirectly, such as data relating to the current table view.

Table 5-21 describes the constants, defined in tmusubs.h, that specify the attributes
to change with this function.

Table 5-21 Transaction string attributes for sm_tm_pset

Transaction Attribute Description

TM_BUFFER General purpose string.

TM_MSG_TEXT Text of sm_tm_command exit message.

TM_PROPOSE_MSG_TXT Used to conditionally set TM_MSG_TEXT.

TM_SAVE_CURSOR SAVE or VALIDATION cursor name.

TM_SV_SELECT_CURSOR SELECT cursor name.

TM_USER_BUFFER Reserved for user use.
5-528 Library Functions

sm_tm_pset
Example void set_msg_text(msg);
char *msg;
{

/*
 * Set the sm_tm_command exit message, possibly overriding
 * any previously set message.
 */

 sm_tm_pset(TM_MSG_TEXT, msg);
}

See Also sm_tm_inquire, sm_tm_pinquire, sm_tm_pcopy, sm_tm_pset
Programming Guide 5-529

sm_tm_push_model_event
sm_tm_push_model_event

Pushes an event onto the transaction event stack

#include <tmusubs.h>

int sm_tm_push_model_event(int event);

event

Any transaction event.

Returns 0 Success: event pushed on stack and stack was not full.
-1 event is 0.
• The event value pushed off the stack because the stack was full.

Description sm_tm_push_model_event pushes an event onto the transaction event stack. If
event is 0, the stack is unchanged and a warning is logged. If the stack is full before
the event is pushed, the event that is pushed off the stack is returned.

The transaction manager generates requests in response to commands. It calls this
function to push each request onto the stack as an event, to commence event processing
for the request. This function can also be used by transaction models or by transaction
event functions associated with a table view. The events generated by the transaction
manager and those generated by the standard transaction models are defined in
tmusubs.h. For a description of these events, refer to Chapter 9, “Transaction Model
Events,” in this manual and Chapter 35, “Generating Transaction Manager Events,” in
Application Development Guide.

Example /* The following example taken from the standard
transaction model for JDB shows the processing for the
TM_UPDATE request. */

case TM_UPDATE:
/* Do nothing, except for updates */

occ_type = sm_bi_compare();
if (occ_type != BI_UPDATED)
{

break;
}

if (!reuse_cursor)
{

save_cursor_type = 0;
5-530 Library Functions

sm_tm_push_model_event
}
reuse_cursor = 0;

sm_tm_push_model_event(TM_UPDATE_EXEC);
sm_tm_push_model_event(TM_UPDATE_DECLARE);
sm_tm_push_model_event(TM_GET_SAVE_CURSOR);
break;

See Also sm_tm_clear_model_events, sm_tm_pop_model_event
Programming Guide 5-531

sm_tmpnam
sm_tmpnam

Creates a unique file name

char *sm_tmpnam(void)

Returns • A pointer to the new file name.

Description sm_tmpnam is an extension of the ANSI function tmpnam(); it returns a name that is
unique among other file names.

In Windows, the TMP environment variable will be used to set the temporary file’s
directory. If TMP is not set but if the environment variable TEMP is set, it will be used.
Otherwise, the \ (root directory) on the current disk will be used.

In Linux, if the TMPDIR environment variable is set, it will be used as the trmporary
file’s directory. In UNIX and when TMPDIR is not set in Linux, P_tmpdir from the
stdio.h file will be used. If P_tmpdir is not defined, /tmp will be used.

The default report service unload handler uses this function to generate a temporary
file name on the client; it then moves a server-generated metafile to that file name. See
“Handling Client Output” on page 9-26 in the Reports Manual for this code.
5-532 Library Functions

sm_tp_exec
sm_tp_exec

Executes a middleware-related JPL command in JetNet and TUXEDO applications

int sm_tp_exec(char *command-stream);

command-stream

A string that contains a middleware-related JPL command. Enclose the
command string in quotation marks.

Environment JetNet, TUXEDO

Returns ≥0 An exception severity associated with execution of the command. Refer to the
command for information about potential exceptions and their severity levels.

-1 The command failed due to an undefined error.
-2 The application executable is not capable of three-tier processing.

Description sm_tp_exec executes the specified middleware API-related JPL command.
Table 5-22 shows the JPL commands that you can invoke from this function. For more
information about a command, refer to its description in this manual.

Example int severity;

severity = sm_tp_exec

Table 5-22 Middleware API Commands

advertise log unadvertise

broadcast notify unload_data

client_exit post unsubscribe

client_init service_call wait

dequeue service_cancel xa_begin

enqueue service_forward xa_commit

jif_check service_return xa_end

jif_read subscribe xa_rollback
Programming Guide 5-533

sm_tp_exec
("service_call \"WITHDRAWAL\" ({account_id, amount},
{message, account_bal})");
5-534 Library Functions

sm_tp_free_arg_buf
sm_tp_free_arg_buf

Frees memory allocated by argument list generation functions

void sm_tp_free_arg_buf(void);

Environment JetNet, TUXEDO; C only

Description sm_tp_free_arg_buf frees memory that is allocated to build an argument list for any
of the sm_tp_gen_ functions. After the last call to a sm_tp_gen_ function, call
sm_tp_free_arg_buf to free this memory.

See Also sm_tp_gen_insert, sm_tp_gen_sel_return, sm_tp_gen_sel_where,
sm_tp_gen_val_link, sm_tp_gen_val_return
Programming Guide 5-535

sm_tp_gen_insert
sm_tp_gen_insert

Generates an argument list of fields for an INSERT operation

char *sm_tp_gen_insert(char *tv, int scope);

tv

The name of the first table view to traverse. Supply NULL pointer or an empty
string to use the screen’s root table view.

scope

Specifies which part of the table view tree to use:

TM_TV_AND_BELOW

Build the argument list for the fields from tv and all table views
below it on the tree.

TM_SV_ONLY

Build the argument list for the table views on the server view only.

Environment JetNet, TUXEDO; C only

Returns • A pointer to a string that contains the comma separated list of fields to be
inserted for the current INSERT operation.

• NULL pointer if an error occurs.

Description sm_tp_gen_insert returns a list of fields for an INSERT operation that can be used
as a service call’s input argument. The fields are on the current screen and participate
in the database INSERT operation.

The list is returned in a temporary buffer whose contents remain valid until the next
call to a sm_tp_gen_ function. So, you should use or save the return data immediately.
When the last sm_tp_gen_ function is called, free the memory allocated for the buffer
with sm_tp_free_arg_buf.

See Also sm_tp_free_arg_buf
5-536 Library Functions

sm_tp_gen_sel_return
sm_tp_gen_sel_return

Generates a list of fields for the returned select set of a SELECT or VIEW operation

char *sm_tp_gen_sel_return(char *tv, int scope);

tv

The name of the first table view to traverse. Supply NULL pointer or an empty
string to use the screen’s root table view.

scope

Specifies which part of the table view tree to use:

TM_TV_AND_BELOW

Build the argument list for the fields from tv and all table views
below it on the tree.

TM_SV_ONLY

Build the argument list for the table views on the server view only.

Environment JetNet, TUXEDO; C only

Returns • A pointer to a string that contains a list of comma-separated fields for the
returned select set of a SELECT or VIEW operation.

• NULL pointer: an error occurred.

Description sm_tp_gen_sel_return returns a list of fields that can be used as an output argument
for a service request implementing a SELECT. or VIEW operation. The fields are on the
current screen and are used for the returned select set of the database operation.

The list is returned in a temporary buffer whose contents remain valid until the next
call to a sm_tp_gen_ function. So, you should use or save the return data immediately.
When the last sm_tp_gen_ function is called, free the memory allocated for the buffer
with sm_tp_free_arg_buf.

See Also sm_tp_free_arg_buf, sm_tp_gen_sel_where
Programming Guide 5-537

sm_tp_gen_sel_where
sm_tp_gen_sel_where

Generates a list of fields for the WHERE clause of a SELECT or VIEW operation

char *sm_tp_gen_sel_where(char *tv, int scope);

tv

The name of the first table view to traverse. Supply NULL pointer or an empty
string to use the screen’s root table view.

scope

Specifies which part of the table view tree to use:

TM_TV_AND_BELOW

Build the argument list for the fields from tv and all table views
below it on the tree.

TM_SV_ONLY

Build the argument list for the table views on the server view only.

Environment JetNet, TUXEDO; C only

Returns • A pointer to a string that contains a list of comma-separated fields for the WHERE
clause of a SELECT or VIEW operation.

• NULL pointer: an error occurred.

Description sm_tp_gen_sel_where returns a list of fields that can be used as an input argument
for a service request implementing a SELECT. or VIEW operation. The fields are on the
current screen and are used in the WHERE clause.

The list is returned in a temporary buffer whose contents remain valid until the next
call to a sm_tp_gen_ function. So, you should use or save the return data immediately.
When the last sm_tp_gen_ function is called, free the memory allocated for the buffer
with sm_tp_free_arg_buf.

See Also sm_tp_free_arg_buf, sm_tp_gen_sel_return
5-538 Library Functions

sm_tp_gen_val_link
sm_tp_gen_val_link

Generates a list of fields to be validated in a validation link operation

char *sm_tp_gen_val_link(char *tv);

tv

The name of the first table view to traverse. Supply NULL pointer or an empty
string to use the screen’s root table view.

Environment JetNet, TUXEDO; C only

Returns • A pointer to a string that contains a list of comma-separated fields to be
validated in the current validation link operation.

• NULL pointer: an error occurred.

Description sm_tp_gen_val_link returns a list of fields that can be used as an input argument for
a service request that implements validation link processing. The fields are on the
current screen and require validation.

The list is returned in a temporary buffer whose contents remain valid until the next
call to a sm_tp_gen_ function. So, you should use or save the return data immediately.
When the last sm_tp_gen_ function is called, free the memory allocated for the buffer
with sm_tp_free_arg_buf.

See Also sm_tp_free_arg_buf, sm_tp_gen_val_return
Programming Guide 5-539

sm_tp_gen_val_return
sm_tp_gen_val_return

Generates a list of fields for the returned select set of a validation link operation

char *sm_tp_gen_val_return(char *tv);

tv

The name of the first table view to traverse. Supply NULL pointer or an empty
string to use the screen’s root table view.

Environment JetNet, TUXEDO; C only

Returns • A pointer to a string that contains a list of comma-separated fields for the
returned select set of a validation link operation.

• NULL pointer: an error occurred.

Description sm_tp_gen_val_return returns a list of fields that can be used as an output argument
for a service request implementing validation link processing. The fields are on the
current screen and are used for the returned select set of the operation.

The list is returned in a temporary buffer whose contents remain valid until the next
call to a sm_tp_gen_ function. So, you should use or save the return data immediately.
When the last sm_tp_gen_ function is called, free the memory allocated for the buffer
with sm_tp_free_arg_buf.

See Also sm_tp_free_arg_buf, sm_tp_gen_val_link
5-540 Library Functions

sm_tp_get_svc_alias
sm_tp_get_svc_alias

Returns the service alias for a JetNet or TUXEDO server

char *sm_tp_get_svc_alias(char *server);

server

A standard or debuggable server (proserv or prodserv).

Environment JetNet, TUXEDO

Returns • The service alias currently assigned to the server.

Description sm_tp_get_svc_alias returns the service alias assigned to a standard or debuggable
server (proserv or prodserv) in JetNet and TUXEDO applications.

If a server has been assigned a service alias, log entries in development mode for
services running on that server will contain the alias name when the services are
advertised or named in event handlers.
Programming Guide 5-541

sm_tp_get_tux_callid
sm_tp_get_tux_callid

Returns the Tuxedo identifier for a service call

int sm_tp_get_tux_callid(char *callid);

callid

Tuxedo service call identifier, which is set in the tp_return property
immediately after the service request is made.

Environment Tuxedo

Returns • Tuxedo identifier of the specified service call.
• NULL: callid is invalid or there is no active service request.

Description sm_tp_get_tux_callid gets the Tuxedo identifier for the specified service call. Use
this identifier in order to make direct calls to Tuxedo API functions.

Example char *callid;
int tux_id;

callid = sm_prop_get_str(sm_prop_id("@app"),\
PR_TP_THIS_CALL);

if ((callid != NULL) && (strlen(callid) > 0))
{

tux_id = sm_tp_get_tux_callid(callid);
/* Make call to TUXEDO API using tux_id... */
...

}

5-542 Library Functions

sm_trace
sm_trace

Create event trace and dump files

int sm_trace(char *commands);

commands

Commands to execute.

Returns • 0: no errors found in commands.
• SM_EQUALS: No equal sign following a DUMPFILE; FRAMES or TRACEFILE

command.
• SM_FORMAT: a non-alphabetic character was found in a command.
• SM_MALLOC: a call to the malloc C function has failed.
• SM_MISSARGS: commands is the null pointer; the null string or just whitespace.
• SM_NOFILE: unable to open the file in a DUMPFILE or TRACEFILE command.
• SM_NOT_LOADED: DUMP command when DUMPFILE is not specified.
• SM_NUMBER: DUMP command when FRAMES is zero or the FRAMES command

value is not one or more digits.
• SM_QUOTE: DUMPFILE or TRACEFILE value starts with a quote character but a

matching terminating quote was not found.
• SM_SYNTAX: character after the closing quote in a DUMPFILE or TRACEFILE is

not a NUL or whitespace.
• SM_VERB_UNKNOWN: command is not valid.

Description sm_trace can create trace and dump files containing information about Panther
events. The events that are reported in these files can be selected. The commands
parameter is series of command tokens that control operations. Most tokens can be
prefixed with NO to reverse their effect. The case of tokens is ignored but they will be
capitalized in this manual.

sm_trace was first released in Panther 5.30.

Trace files are written as events occur. The following commands control trace files:

TRACEFILE= File to write event information to. The file name should be
quoted if it contains spaces. Use the null string "" to stop tracing
and to close the current TRACEFILE.
Programming Guide 5-543

sm_trace
Dump files are written when the DUMP command is executed. The number of events to
store for reporting is controlled by the FRAMES= command. The following commands
control dump files:

The following commands control how files are opened:

The following commands control which events are to be logged:

TRACE Used to control whether event information is to be written to
TRACEFILE. Default is TRACE. You can use NOTRACE to
disable tracing to reduce the size of the trace file when nothing
of interest is happening.

DUMPFILE= File to write information to. The file name should be quoted if
it contains spaces.

DUMP Used to cause information is to be written to DUMPFILE.

FRAMES= Specifies how many events are to be stored for writing by the
DUMP command. 500 is the default.

OVERWRITE Specifies that existing files should be overwritten. It is the
default.

APPEND Specifies that existing files should be appended to.

CSTR Control String events.

DBI Database events.

FIELD Field entry, exit and validation events.

FUNCTION Installed function call and return events.

GRID Grid and grid row entry, exit and validation events.

GROUP Group entry, exit and validation events.

JAVA Java events.

JPL JPL execution events.
5-544 Library Functions

sm_trace
The following command causes parameters to be displayed:

To enable tracing to begin at startup, the SMTRACE application variable can be included
in a SMVARS or SMSETUP setup file, for example:

 SMTRACE=NOJAVA FRAMES=100 TRACEFILE="c:\temp\forex.trc"

SMINITJPL in a setup file can also be used to call sm_trace, for example:

 SMINITJPL=call sm_trace('PARMS TRACEFILE="c:\temp\forex.trc"')

When debugging a program, sm_trace can be called from the debugger to produce a
dump file. For example, one can call:

 sm_trace("DUMPFILE='dump1.dmp' DUMP")

to create a dump file named "dump1.dmp" with the most recent trace information.

KEY Key being taken off the key queue events.

LDB Local Data Block events.

RW Report Writer events.

SCREEN Screen entry, exit and expose events.

TM Transaction Manager events.

ALL All of the above events. This is the default.

CORE All of the above events except for DBI, RW and TM.

NONE The same as NOALL.

PARMS Causes parameters to be displayed for calls to functions,
including JPL functions. The default is NOPARMS.
Programming Guide 5-545

sm_translatecoords
sm_translatecoords

Translates screen coordinates to display coordinates

int sm_translatecoords(int column, int line, int *column_ptr,
int *line_ptr);

column, line

Zero-based coordinates relative to the current screen, where 0,0 specifies the
screen’s upper-left corner.

column_ptr, line_ptr

On return, contain the pixel coordinates relative to the drawing area.

Environment Motif, Windows

Returns 0 Success.
-1 line or column is out of range

Description sm_translatecoords translates the Panther line and column relative to a screen,
into pixel line and column relative to the upper left hand corner of the drawing area.
line and column are zero based. This function in conjunction with sm_drawingarea
is useful when placing objects such as bitmapped graphics or custom widgets on a
Panther screen.

Example #include <smdefs.h>
#include <smwin.h>
#include "drawbmp.h"

/*
 * The following program shows how to display a bitmap file
 * on current Panther screen in Windows. The routine uses
 * several functions from sample code in Programming Windows
 * 3.1, pp. 610-616 by Charles Petzold (Microsoft Press,
 * 1992). All other functions are either standard C,
 * Panther API, or Windows API calls
 */

int prlfx_display_bmp_file(char *file_name, int ln, int col)
{
 static BYTE huge *lpDib;
 HWND hwnd;
 HDC hdc;
 BYTE huge *lpDibBits;
 short cxDib, cyDib, pix_ln, pix_col;
5-546 Library Functions

sm_translatecoords
 if (lpDib != NULL) {
 GlobalFreePtr(lpDib);
 lpDib = NULL;
 }
 lpDib = ReadDib(file_name); /* Petzold, pp. 613-614 */

 if (lpDib == NULL) {
 sm_message_box("Could not open DIB file", "ERROR",
 SM_MB_OK | SM_MB_ICONSTOP, 0);
 return RET_FATAL;
 }
 hwnd = sm_mw_drawingarea();
 hdc = GetDC(hwnd);

 if (hdc != NULL) {
 lpDibBits = GetDibBitsAddr(lpDib);/* Petzold,p. 612 */
 cxDib = GetDibWidth(lpDib); /* Petzold, p. 612 */
 cyDib = GetDibHeight(lpDib); /* Petzold, p. 612 */

 if (sm_translatecoords(col, ln, &pix_col, &pix_ln) < 0) {
 char buf[100];
 sprintf(buf,
 "prlfx_display_bmp_file: invalid line/column: %d/%d",
 ln, col);
 sm_message_box(buf, "ERROR",
 SM_MB_OK | SM_MB_ICONSTOP, 0);
 return RET_FATAL;
 }

 SetStretchBltMode(hdc, COLORONCOLOR);
 SetDIBitsToDevice(
 hdc, pix_col, pix_ln, cxDib, cyDib, 0, 0, 0, cyDib,
 (LPSTR) lpDibBits, (LPBITMAPINFO) lpDib,
 DIB_RGB_COLORS);
 }
 else {
 sm_message_box("Could not get handle to drawing area",
 "ERROR", SM_MB_OK | SM_MB_ICONSTOP, 0);
 }
 ReleaseDC(hwnd, hdc);
 return RET_SUCCESS;
}

Programming Guide 5-547

sm_tst_all_mdts
sm_tst_all_mdts

Finds the first modified occurrence on the current screen

int sm_tst_all_mdts(int *occurrence);

occurrence

On output, the address of a variable that contains the number of the first
modified occurrence.

Environment C only

Returns ≥1 The number of the first field on the current screen that contains a modified
occurrence. In this case, the number of the first occurrence that has its mdt
property set to PV_YES is returned in the variable addressed by occurrence.

0 No occurrence on the current screen has its mdt property set to PV_YES.

Description sm_tst_all_mdts tests the mdt property of all onscreen and offscreen occurrences of
all fields on the current screen. If it finds an occurrence with its mdt property set to
PV_YES, the function returns with the base field and occurrence number. Use this
function to ascertain whether any occurrence has been modified on the screen, either
from the keyboard or by the application program, since the screen was displayed or
since the occurrence’s mdt property was last cleared.

Note: sm_tst_all_mdts does not test for insertion or deletion of occurrences; it
only tests the mdt property of existing occurrences.

Example #include <smdefs.h>

/* Clear mdt property for all fields on screen;
 * then write data to last field, and check
 * that its mdt property is the first one set.
 */

int occurrence;
int numflds;

sm_cl_all_mdts();
numflds = sm_prop_get_int(PR_CURSCREEN, PR_NUMFLDS);
sm_putfield(numflds, "Hello");
if (sm_tst_all_mdts(&occurrence) !=
 sm_prop_get_int(PR_CURSCREEN, PR_NUMFLDS))
5-548 Library Functions

sm_tst_all_mdts
 ferr_reset(0,
 "Something is rotten in the state of Denmark.");
Programming Guide 5-549

sm_udtime
sm_udtime

Formats a user-supplied date and time

char *sm_udtime(struct tm *dt_tm_data, char *format);

dt_tm_data

A pointer to the date and time data to format. dt_tm_data is a tm structure,
defined in the standard C header file time.h.

format

Specifies the format to use with an expression that starts with y or n, followed
by any combination of date/time tokens and literal text. y indicates a 12-hour
clock; n or any other character indicates a 24-hour clock. This character is
required even if the format does not include time tokens. Refer to Table 5-19
on page 5-467 for a list of the date/time tokens that you use to build a format
expression.

Environment C only

Returns • A pointer to a string that contains the user date/time in the specified format.
• Empty if format is invalid.

Description sm_udtime formats the date and time data in dt_tm_data according to the specified
format.

This function uses a static buffer that it shares with other date and time formatting
functions. The buffer is 256 bytes long. Panther does not check for overflow.
Consequently, you should process the returned string or copy it to a local variable
before making additional function calls.

Example /* Put the date 135 days from now into the field "maturity" */
#include <smdefs.h>
time_t tim;
struct tm *matdate;
char *ptr;

/* calculate local time in seconds */
tim = time((time_t *)0) + 135L * 24 * 60 * 60;
matdate = localtime(&tim);
ptr = sm_udtime(matdate, " %0f");
sm_n_putfield("maturity", ptr);
5-550 Library Functions

sm_udtime
See Also sm_sdtime
Programming Guide 5-551

sm_ungetkey
sm_ungetkey

Pushes a translated key onto the input queue

#include <smkeys.h>

int sm_ungetkey(int key);

key

The key to push onto the input stack.

Returns • The value of key.
• −1: Insufficient memory.

Description sm_ungetkey saves the translated key given by key so it can be retrieved by the next
call to sm_getkey. Multiple calls are allowed. The key values are pushed onto a stack
in last-in/first-out order.

When sm_getkey reads a key from the keyboard, it flushes the display first so the user
sees a fully updated display before typing on. This is not the case for keys pushed back
by sm_ungetkey.

Example #include <smkeys.h>

/* Force tab to next field */
sm_ungetkey(TAB);

See Also sm_getkey
5-552 Library Functions

sm_unload_screen
sm_unload_screen

Unloads a screen from memory

void sm_unload_screen(char *screen_name);

screen_name

The name of the screen.

Description sm_unload_screen unloads a screen previously loaded into memory by
sm_load_screen or sm_svscreen. This function simply makes a call to
sm_unsvscreen for one screen. Unlike sm_unsvscreen, it can be called from JPL.

See Also sm_load_screen, sm_svscreen, sm_unsvscreen
Programming Guide 5-553

sm_unsvscreen
sm_unsvscreen

Removes screens from the save list

void sm_unsvscreen(char **screen_list, int count);

screen_list

The screens to remove from the save list.

count

The number of screens to remove from the save list.

Environment C only

Description sm_unsvscreen removes screens from the list of screens that are saved in memory
and frees the memory associated with them. You can call this function to remove
screens from this list anywhere in your code, whether or not the screen is open. Note
that if a screen is open, Panther frees its memory only when it closes.

See Also sm_issv, sm_svscreen
5-554 Library Functions

sm_upd_select
sm_upd_select

Updates the contents of an option menu or combo box

int sm_upd_select(int fldno);

int sm_n_upd_select(char *fldname);

fldname, fldno

The name or field number of the option menu or combo box to update.

Environment Motif, Windows

Returns 0 Success.
-1 Invalid widget type.
-2 Widget’s list contains constant data.

Description sm_upd_select updates the contents of an option menu or combo box with data from
another screen. The widget must be defined to accept data from an external screen;
otherwise, the function returns an error.

An option menu or combo box that gets its data from a screen can be initialized either
on screen entry or each time the widget list displays, depending whether its
initialization property is set to PV_FILL_AT_POPUP or PV_FILL_AT_INIT. Use
sm_upd_select to force updates only if initialization is set to
PV_FILL_AT_INIT.

Note: If fields on the external screen have initial data, LDB write-through is disabled
for those fields.
Programming Guide 5-555

sm_*validate
sm_*validate

Forces validation for the specified object

int sm_validate(int obj_id);

int sm_n_validate(char *widget_name);

obj_id

Object ID of the widget or screen to be validated, obtained from sm_prop_id

widget_name

The name of the widget to validate. For fields, an occurrence number or
element number can be included. For example, sm_n_validate
"field[[3]]") causes the third element of the named field to be validated.

Returns 0 Success.
-1 One of the fields failed validation or one of the validation functions did not

return 0.
-2 The specified object is invalid or not on the current screen.

Description sm_validate causes the specified widget or screen to be validated. The specified
widget must be on the current screen.

The widget must be one of the following types:

! A field that is not a card. When sm_n_validate is called, widget_name can
specify an occurrence or an element to validate. If not specified, the first
element is validated.

! A tab card. Each field, grid and tab card in the card is validated.

! A tab deck. Each tab card in the deck is validated.

! A screen. This is the same as calling sm_s_val except that the flag K_USER
rather than K_SVAL is passed to the validation functions.

! A grid. The grid validation function is called (unless the grid is empty). The
fields in the grid are not validated.

Validation stops when a field fails validation or when a validation function returns a
non-zero value. See sm_fval for more about field validation and sm_s_val for more
about screen validation.
5-556 Library Functions

sm_*validate
Example #include <smdefs.h>

/* Call a grid validation function and return if it fails.
*/

int
validate (fieldnum, data, occurrence, bits)
int fieldnum, occurrence, bits;
char *data;
{

if (sm_n_validate("grid1")

{
/* Stop processing if grid validation function fails */
return 1;

}
 ...
}

See Also sm_fval, sm_n_gval, sm_s_val
Programming Guide 5-557

sm_*vinit
sm_*vinit

Initializes the video translation table

int sm_vinit(char *video_address);

int sm_n_vinit(char *video_file);

video_address

The address of a memory-resident video file. Create this file with vid2bin
and bin2c utilities, then compile it into the application.

video_file

The name of a video file, set in the SMVIDEO variable that is specified in the
setup file or in the environment.

Returns 0 Success.
• Non-zero value: failure.

Description sm_vinit and sm_n_vinit initialize the video translation table. Panther uses one of
these functions during program initialization, depending on whether the video file is
memory-resident or resides on disk. These functions can also be called directly by an
application program.

If sm_vinit fails, you can generate error messages through sm_inimsg. This function
creates formatted output that you can display through other library functions like
sm_fqui_msg.

Example /* Install a memory-resident video file */

extern char special_vid[];

sm_vinit (special_vid);
5-558 Library Functions

sm_wcount
sm_wcount

Obtains the number of currently open windows

int sm_wcount(void);

Returns ≥1 The number of windows open.
0 The base window is the only open screen.

-1 There is no current screen.

Description sm_wcount returns the number of windows currently open. The number is equivalent
to the number of windows in the window stack, excluding the base window.

Use this function with sm_wselect to activate another window from the window
stack. For example, the following statement selects the screen beneath the current
window:

sm_wselect(sm_wcount()-1);

See Also sm_wselect
Programming Guide 5-559

sm_wdeselect
sm_wdeselect

Restores the previously active window

int sm_wdeselect(void);

Returns 0 Success.
-1 No window to restore.

Description sm_wdeselect restores a window to its original position in the window stack after it
has been moved to the top by a call to sm_wselect. Successive calls to sm_wdeselect
recursively restore windows selected by sm_wselect.

See Also sm_wcount, sm_wselect
5-560 Library Functions

sm_web_get_cookie
sm_web_get_cookie

Returns the value of the specified cookie

#include <smuweb.h>

char *sm_web_get_cookie(char *cookie_name);

cookie_name

The cookie whose value you want to retrieve.

Environment Web

Returns • The value of the specified cookie.
• A null pointer if cookie_name does not exist.

Description sm_web_get_cookie returns the value of the specified cookie. The cookie must
already exist in the user’s browser program.

If the same cookie name is present more than once, only the first one is returned by this
function. The entire cookie string is available as @cgi_http_cookie.

Example // Get the browser's cookie values for user and visit_num
// and insert those values into the user and visit_num
// fields on the screen. Then, the visit_num cookie is reset
// to its new value.

proc entry

user = sm_web_get_cookie("user")
visit_num = sm_web_get_cookie("visit_num")
visit_num = visit_num + 1
call sm_web_set_cookie("visit_num=:visit_num;\

expires=Monday, 03-Jan-2030 00::00::00 GMT; \
domain=.Panther.com; path=/samples")

See Also sm_web_set_cookie
Programming Guide 5-561

sm_web_invoke_url
sm_web_invoke_url

Invokes a URL on the Web

#include <smuweb.h>

void sm_web_invoke_url(char *url);

url

The URL to call and display in the browser.

Environment Web

Description sm_web_invoke_url displays the specified Web resource in the Web browser. When
this function is called, Panther suspends the HTML generation for the screen and
outputs the HTML to go directly to the specified resource.

Example // Go to the Panther home page.
proc go_home

call sm_web_invoke_url("http\://www.Panther.com")
return
5-562 Library Functions

sm_web_log_error
sm_web_log_error

Write Web application errors to a log file

void sm_web_log_error(char *message);

message

The text of the error message.

Environment Web

Description sm_web_log_error writes Web application errors to the file specified in the
ErrorFile variable in the Web initialization file. This error text is not displayed to the
user; the sm_femsg or sm_message_box functions display error messages to
application users.

Example // The following JPL error handler displays a message to
// the user and then writes a message to the error log file.

proc error_def
msg emsg "Error: File not found"
call sm_web_log_error("Unable to find file.")
return
Programming Guide 5-563

sm_web_save_global
sm_web_save_global

Creates a context global variable

#include <smuweb.h>

int sm_web_save_global(char *variable_name);

variable_name

Name of the JPL global variable to be designated as a context global.

Environment Web

Returns 0 Success
-1 The supplied variable is not an existing JPL global.

Description sm_web_save_global designates a JPL global variable as a context global. Each
context global is private to a single user of a Web application server and is
automatically cached until it reverts to a transient global or the application exits.
Before calling this function, create the global variable with the global command.

A context global can save user-specific information such as ID, preferences, or start
time. The value of the variable is cached before Panther generates the HTML for the
screen; the value is restored from the cache file when the screen is submitted back to
the server.

If the global command executes a second time, it overwrites the global’s previous
value. If you execute the global command in the unnamed JPL procedure or during
screen entry, also test whether the screen is being opened for a GET event, because the
screen is then reopened on a POST event. You can test this by using the K_WEBPOST flag
or the CGI variable @cgi_request_method.

For more information about using JPL global variables in a Web application, refer to
Chapter 7, “JPL Globals in Web Applications,” in Web Development Guide.

Example // Call on application startup.
proc setup()

// Create global variables if they do not already exist.
if (sm_web_save_global("pref_lang") < 0)
{

global pref_lang(15), pref_textonly(1), pref_maxrows(1)
call sm_web_save_global("pref_lang")
5-564 Library Functions

sm_web_save_global
call sm_web_save_global("pref_textonly")
call sm_web_save_global("pref_maxrows")

// Initialize the preferences to the default values.
pref_lang = def_lang
pref_textonly = def_textonly
pref_maxrows = def_maxrows

}

See Also sm_web_unsave_global, sm_web_unsave_all_globals
Programming Guide 5-565

sm_web_set_cookie
sm_web_set_cookie

Sets HTML cookies on a client

#include <smuweb.h>

void sm_web_set_cookie(char *cookie_string);

cookie_string

Specifies the cookie’s name and properties in the following format:

cookie-name=value [; expires=date] [; path=path-string]
[; domain=domain-name] [; secure]

name=value
Specifies a unique character string to identify the cookie and assigns
the cookie a value. For example:

Visits=1

expires=date
Specifies an expiration date for the cookie in Greenwich mean time
(GMT), where date has this format:

Wdy, DD-Mon-YYYY HH:mm:ss GMT

After this date, the cookie is no longer stored or given out. This
parameter must be specified in order to store the cookie value on the
browser for multiple sessions; otherwise, the cookie value expires
when the browser session ends.

For example, the following cookie expires on December 31, 1999 at
11:45 PM.

Friday, 31-Dec-1999 23:45:05 GMT

path=path

Specifies the path of the URL to use in matching the cookie values.
If you specify the path value as /, the cookie is sent for every request
to your HTTP server. If you specify the path value as /dir, the
cookie is sent only if the URL path contains /dir. For example,
path might be set as follows:

path=/vid

Given this path, the cookie is included when the following URL is
sent to the HTTP server:
5-566 Library Functions

sm_web_set_cookie
http:/www.Panther.com/cgi-bin/vid/main.scr

domain=domain-name

Specifies the domain of the URL to use when matching the cookie
values. If there is a tail match, the path value is checked to determine
whether to send the cookie value.

The value specified must have at least two periods in it. For
example:

domain=.Panther.com

secure

Specifies to send the cookie only if the HTTP request is transmitted
to a secure server.

Environment Web

Description sm_web_set_cookie adds the specified string to a list of cookies. When HTML is
generated for the screen, each cookie is sent as a Set-cookie: header. After HTML
generation, the list of cookies is removed.

Cookies are pieces of information that can be stored on the browser side of the
connection and later retrieved. In order to use them, the browser must accept cookie
specifications.

Any cookie specified with this function is included in the HTML header for the screen.
If accepted by the browser, the cookie is stored on the browser. Afterward, if the
browser asks for a resource from the HTTP server that originally sent the cookie, the
cookie value is sent along with the resource request.

Example // Get the browser's cookie values for user and visit_num
// and insert those values into the user and visit_num
// fields on the screen, then reset the visit_num cookie
// to its new value.

proc entry

user = sm_web_get_cookie("user")
visit_num = sm_web_get_cookie("visit_num")
visit_num = visit_num + 1
call sm_web_set_cookie("visit_num=:visit_num;\

expires=Monday, 03-Jan-2030 00::00::00 GMT; \
domain=.Panther.com; path=/samples")

See Also sm_web_get_cookie
Programming Guide 5-567

sm_web_set_onevent
sm_web_set_onevent

Install a C Web event hook function

int sm_web_set_onevent(char *handler);

handler

The name of the Web event handler. If handler is the null pointer or the null
string, the Web event handler is uninstalled. Otherwise, it must be the name
of a C function installed in the prototyped function list.

Returns 0 The Web event hook function was installed or uninstalled.
-1 handler is not in the list of installed prototyped C functions.

Description handler is called after processing has completed for each request. The prototype of
this function is:

void handler(char *command, char *path_info, char *arg,
 int elapsed_time);

This function is passed the following parameters:

command

A string containing the web command that was processed. It will be
either "GET" or "POST".

path_info

This is the value of PATH_INFO in the CGI request.

arg

The query string for GET and the form name for POST.

elapsed_time

This is the elapsed time for the Web command in milliseconds.
5-568 Library Functions

sm_web_unsave_all_globals
sm_web_unsave_all_globals

Redesignates all context global variables as transient globals

#include <smuweb.h>

int sm_web_unsave_all_globals(void);

Environment Web

Returns 0 Success.
-1 No context global variables exist.

Description sm_web_unsave_all_globals redesignates all context global variables as transient
globals, which are destroyed when Panther completes the screen’s processing and
generates HTML for the screen. Context global variables are created through
sm_web_save_global. For more information about using JPL global variables in a
Web application, refer to Chapter 7, “JPL Globals in Web Applications,” in Web
Development Guide.

Example // Remove all context globals from application
proc undo_var()

call sm_web_unsave_all_globals()

See Also sm_web_save_global, sm_web_unsave_global
Programming Guide 5-569

sm_web_unsave_global
sm_web_unsave_global

Redesignates a context global variable as a transient global

#include <smuweb.h>

int sm_web_unsave_global(char *variable_name);

variable_name

The name of the JPL global variable to remove from the save list.

Environment Web

Returns 0 Success.
-1 The specified variable is not on the save list, or the save list is empty.

Description sm_web_unsave_global redesignates the specified context global variable as a
transient global, which is destroyed when Panther completes the screen’s processing
and generates HTML for the screen. Context global variables are created through
sm_web_save_global. For more information about using JPL global variables in a
Web application, refer to Chapter 7, “JPL Globals in Web Applications,” in Web
Development Guide.

Example // Remove context globals from application
proc undo_var()

call sm_web_unsave_global("pref_lang")
call sm_web_unsave_global("pref_textonly")
call sm_web_unsave_global("pref_maxrows")

See Also sm_web_save_global, sm_web_unsave_all_globals
5-570 Library Functions

sm_*widget
sm_*widget

Gets a handle to a widget

#include <smmwuser.h>

HWND sm_mw_widget(int widgetnumber);

HWND sm_mwn_widget(char *widgetname);

HWND sm_mwe_widget(char *widgetname, int element);

#include <smxmuser.h>

Widget sm_xm_widget(int widgetnumber);

Widget sm_xmn_widget(char *widgetname);

Widget sm_xme_widget(char *widgetname, int element);

widgetname, widgetnumber

Specifies the widget whose handle you want to get. (See the Returns section
for unavailable widget types.)

element

If the widget is an array, specifies element whose handle you want to get.

Environment C only

Returns • Success: For Windows, an HWND handle; for Motif, a Widget ID.
-1 The specified widget is a graph, grid, grid member, box, line or scale widget.
• Null pointer: the widget does not exist.

Description sm_widget gets a handle to the specified widget or widget element—in the case of
Windows applications, a HWND handle; under Motif, a Widget ID. You can pass this
handle to Windows and Motif functions when you want the window manager to act
directly on a Panther widget.

For more information about corresponding Motif and Panther widget types, refer to
“Widget Hierarchy” on page 4-12 in Configuration Guide.

Note: For scale widgets, list box widgets, and multiline text widgets in Motif
applications, sm_xm_widget and its variants return the widget ID of the scroll
bar. Use XtParent to obtain the ID of the scale, list box or multiline text
widget. For list boxes in Windows applications, sm_mw_widget and its
Programming Guide 5-571

sm_*widget
variants return a handle to the list box itself. SDK function calls such as
GetScrollPos use the list box’s handle and a flag that identifies the desired
scroll bar.
5-572 Library Functions

sm_win_shrink
sm_win_shrink

Trims the current screen

int sm_win_shrink(void);

Environment Motif, Windows

Returns PI_ERR_NONE: Success

Description sm_win_shrink trims all space on a screen to the right of the rightmost widget and
below the bottom widget. It does not change the number of Panther lines and columns.
It is primarily useful after repositioning fields. Call sm_adjust_area to restore a
screen to its original size.
Programming Guide 5-573

sm_*window
sm_*window

Opens a window at a given position

int sm_d_window(char *address, int start_line, int start_column);

int sm_l_window(int lib_desc, char *name, int start_line,
int start_column);

int sm_r_window(char *name, int start_line, int start_column);

address

The address of the screen in memory

lib_desc

Specifies the library in which the window is stored, where lib_desc is an
integer library descriptor returned by sm_l_open. You must call sm_l_open
before you read any screens from a library.

name

The name of the window.

start_line, start_column

Specifies the window’s top left corner, where start_line and
start_column are zero-based offsets from the physical display’s top left
corner. Thus, setting start_line to 1 starts the window at the screen’s
second line. If the window does not fit on the display at the specified location,
Panther adjusts it as needed.

A negative value for start_line specifies to clear the current screen before
displaying the window. The screen’s contents are discarded and cannot be
restored.

Environment sm_d_window is C only

Returns 0 Success.
-1 Screen file’s format is incorrect.
-2 Screen cannot be found.
-3 Insufficient memory available to display the screen; the current screen remains

displayed.
-4 Read error occurred after the current screen was cleared and start_line is -1.

Consequently, Panther cannot restore the screen.
-5 System ran out of memory after the current screen was cleared and

start_line is -1. Consequently, Panther cannot restore the screen.
5-574 Library Functions

sm_*window
-6 Library is corrupted.
-7 The window is larger than the physical display and there are fields that

overhang the display.

Description Use sm_d_window, sm_l_window, or sm_r_window to display a screen as a stacked
window at the specified line and column.:

! On GUI platforms such as Windows, the window is positioned relative to the
GUI display. For example, in Windows, the screen is positioned in the middle
of the display; on Motif, it is positioned relative to the base window’s status
line.

! In character mode, the window is positioned relative to the cursor position on
the invoking screen, offset by one line to avoid hiding the line’s current display.

The area of the display that surrounds the window remains visible. However, only the
opened window is active, and only its fields are accessible to input and library
functions. To change the active window, use sm_wselect.

To display a form use sm_r_form or one of its variants. Use sm_close_window to
close the window.

Search Path When you use sm_r_window, Panther looks for the named screen in the following
places in this order:

1. The application’s memory-resident list; if found, sm_d_window is called to
display the screen.

2. All open libraries; if found, sm_l_window is called to display the screen.

If the search fails and the supplied file name has no extension, Panther appends the
SMFEXTENSION-specified extension to the file name and repeats the search. If all
searches fail, sm_r_window displays an error message and returns.

Memory-resident

Screens

You can save processing time by using sm_d_window to display screens that are
memory-resident. Use bin2c to convert screens from disk files to program data
structures that you can compile into your application.

A memory-resident screen never changes at runtime and therefore can be made
sharable on systems let you share read-only data. sm_r_window can also display
memory-resident screens if they are properly installed with sm_formlist.
Memory-resident screens are especially useful in applications with a limited number
of screens, or in environments with a slow disk.
Programming Guide 5-575

sm_*window
Screens Stored in

Libraries

You can also save processing time with sm_l_window to display screens from a
library. A library is a single file that stores screens, JPL modules, and menus. You can
assemble a library from individual screen files with formlib. Libraries let you
distribute a large number of screens with an application, and can improve efficiency
by reducing the number of search paths.

Example /* Bring up a window from a library. */
 int ld;

if ((ld = sm_l_open("myforms")) < 0)
 sm_cancel();
...
sm_l_window(ld, "popup", 5, 22);
...
sm_l_close(ld);

See Also sm_*at_cur, sm_close_window, sm_*form, sm_jwindow
5-576 Library Functions

sm_winsize
sm_winsize

Lets users interactively move and resize a window

int sm_winsize(void);

Returns 0 Success.
-1 Failure.

Description sm_winsize invokes the viewport status line and lets the user move, resize and change
the offset of the current screen and any sibling windows. XMIT restores the previous
status line. To resize the viewport programmatically, set the applicable viewport
properties for the screen.
Programming Guide 5-577

sm_wrotate
sm_wrotate

Rotates the display of sibling windows

int sm_wrotate(int step);

step

A positive or negative integer that specifies the number of times to rotate the
windows. A positive value makes the topmost sibling window the last sibling
window for each instance of step. A negative value makes the last sibling
window first window. A value of 0 specifies to perform no rotations.

Returns ≥1 The number of sibling windows, less one, on top of the window stack.
0 Failure: There are no sibling windows.

Description sm_wrotate rotates the sequence of sibling windows according to the value of step.
For example, given the following sequence of sibling windows A, B, and C:

this following function call:

sib_windows = sm_wrotate(1);

rotates the top sibling window C to the bottom of the sibling stack and leaves screen B
on top.
5-578 Library Functions

sm_wrotate
Conversely, this function call supplies a value of -1:

sib_windows = sm_wrotate(-1);

This rotates the bottom sibling window C to the top:

sm_wrotate can take any value, positive or negative, as the step value. If the value
of step is greater than one, Panther rotates the windows that many times. For example,
given the previous window order, this call tells Panther to perform two rotations:

sib_windows = sm_wrotate(2);

This moves the top two windows to the back—first C, then B. This leaves window A
as the topmost window:

See Also sm_setsibling, sm_wselect
Programming Guide 5-579

sm_*wselect
sm_*wselect

Activates a window

int sm_wselect(int window_number);

int sm_n_wselect(char *window_name);

window_number

Specifies the window to activate, where window_number is its zero-based
offset in the window stack. Windows are numbered sequentially from the
bottom of the stack, where the bottom-most screen, or base window, is 0.
Calling sm_wselect changes the number of the specified window and all
windows previously above it.

window_name

The window’s screen name.

Returns ≥0 The number of the window that was made active—either the value of
window_number, or the maximum if window_number is out of range.

-1 Failure: The window was not found or the window was not open.

Description sm_wselect lets you change the active window in a multi-window display. This
function is typically used in routines that update information in windows that might be
inactive.

Only one window—the one at the top of the window stack—can be active at a time,
and thereby accessible to library functions and user input. These functions activate a
window by bringing it to the top of the window stack and restores the cursor to its last
position in it. If the window is hidden by an overlying window, Panther brings it to the
forefront of the display.

You can specify a window by its offset into the window stack with sm_wselect, or by
its screen name with sm_n_wselect. sm_wselect involves more work inasmuch as
you must keep track of the inactive window’s position on the stack. However,
sm_wselect can find windows displayed with sm_d_window or related functions,
which do not record the screen name.

In character mode, sm_wselect selects sibling windows as a group. If any one of a set
of sibling windows is activated by this function, then all of the siblings are brought to
the top of the window stack. The selected window becomes the active window at the
top of this set. Otherwise, the sequence within the set of siblings remains the same.
5-580 Library Functions

sm_*wselect
sm_wselect and sm_n_wselect can be used in the following ways:

! Select a hidden screen, update it with sm_putfield, then deselect it with
sm_wdeselect. Panther updates the visible portion of the hidden screen with
the new data. Because of delayed write, Panther updates the screen only when
keyboard input is sought.

! Select a hidden screen and open the keyboard. In this case, the selected screen
becomes visible, and can hide part or all of the previously active screen. This
lets you implement multi-page forms, or switch among several tiled windows.
You can let the user select among windows by defining them as siblings.

See Also sm_wcount, sm_wdeselect
Programming Guide 5-581

sm_*ww_length
sm_*ww_length

Gets the number of characters in a wordwrapped multiline text widget

int sm_ww_length(int field_number);

int sm_n_ww_length(char *field_name);

field_number, field_name

Specifies the field whose length is required. Word wrapped text is allowed
only in multiline text widgets whose word_wrap property is set to PV_YES.

Returns ≥0 The number of bytes in the specified field, excluding the null terminator.
-1 Failure.

Description sm_ww_length returns the number of bytes in a word wrap field—that is, a multiline
text widget whose Word Wrap property is set to Yes. You can call this function to get
the offset into the end of word wrap field data, then use that offset to append data to
the field with sm_ww_write. You can also use it to determine how large a buffer you
need to allocate for reading word wrap field data with sm_ww_read.

Example /* this JPL procedure reads text from a filestream and
 * reads each line into a word wrapped field. It uses
 * sm_ww_write to reformat the file text so that it
 * wraps within the field.
 */

proc wrapFileTextToMulti
{
 vars str, last_char, wwErr, err, fileStream

 call sm_fio_error_set(0)

 /* get file stream sent from previous dialog */
 receive DATA fileStream
 err = 0
 while (err == 0)
 {
 str = sm_fio_gets(fileStream, 255)
 /* check for error condition like EOF */
 if (str != "")
 {
 last_char = sm_n_ww_length("comments")
5-582 Library Functions

sm_*ww_length
 /* if writing to empty array */
 if (last_char = 0)
 {
 wwErr = sm_n_ww_write("comments", str, last_char)
 }

 /* otherwise add space after last char before write*/
 else
 {
 wwErr = sm_n_ww_write("comments", " ", last_char)
 wwErr = sm_n_ww_write("comments", str, last_char+1)
 }
 }
 else
 {
 err = sm_fio_error()
 }
 }
 call sm_fio_close(fileStream)
 return
}

See Also sm_ww_read, sm_ww_write
Programming Guide 5-583

sm_*ww_read
sm_*ww_read

Copies the contents of a wordwrapped text widget into a text buffer

int sm_ww_read(int field_number, char *buffer, int nbytes,
int offset);

int sm_n_ww_read(char *field_name, char *buffer, int nbytes,
int offset);

field_name, field_number

Specifies the field whose contents you want to read. Word wrapped text is
allowed only in multiline text widgets whose word_wrap property is set to
PV_YES.

buffer

A pointer to the buffer into which the field’s contents are to be read. To
determine the size required by this buffer, call sm_ww_length to get the
length of the word wrapped text and add 1.

nbytes

The size of buffer in bytes.

offset

The offset into the word wrap field at which to start reading. Supply a value
of 0 to start reading from the beginning of the field.

Environment C only

Returns ≥0 The number of bytes read into buffer, excluding the null terminator.
-1 Failure.

Description sm_ww_read copies word wrapped text from a multiline text widget into buffer,
starting at offset. A null terminator is supplied in buffer after the copied data. Use
sm_ww_length to determine the size required for buffer and add 1.

See Also sm_ww_length, sm_ww_write
5-584 Library Functions

sm_*ww_write
sm_*ww_write

Writes text into a word wrapped text widget

int sm_ww_write(int field_number, char *buffer, int offset);

int sm_n_ww_write(char *field_name, char *buffer, int offset);

field_name, field_number

Specifies the field to receive the contents of buffer. The field must be a
multiline text widget whose word_wrap property is set to PV_YES.

buffer

A pointer to a null-terminated buffer that contains the text to write.

offset

The offset into the word wrap field at which to start writing. Supply a value
of 0 to start writing at the beginning of the field. If supplied value is greater
than the field’s total length, Panther recalculates the value of offset to the
field’s length + 1; the contents of buffer are thereby appended to the end of
the field.

Returns ≥0 The number of bytes written to the field.
-1 Failure.

Description sm_ww_write copies buffer text into the specified word wrap field—that is, a
multiline text widget whose Word Wrap property is set to Yes. sm_ww_write wraps at
the end of words and leaves a space at the end of each line. If a word is equal to or
longer than the length of the field, sm_ww_write breaks the word one character before
the end of the field, appends a space, and wraps the rest of the word on the next line.

Overflow and

Underflow

If you try to copy data that is too large for the field to hold, sm_ww_write truncates the
excess text. If the field’s original contents exceeds the amount of text in buffer, the
leftover text remains in the field. To avoid this, first clear the field with
sm_clear_array or one of its variants before calling sm_ww_write.

Example /* this procedure reads text from a filestream and
 * reads each line into a word wrapped field. It uses
 * sm_ww_write to reformat the file text so that it
 * wraps within the field.
 */
Programming Guide 5-585

sm_*ww_write
proc wrapFileTextToMulti
{
 vars str, last_char, wwErr, err, fileStream

 call sm_fio_error_set(0)

 /* get file stream sent from previous dialog */
 receive DATA fileStream
 err = 0

 while (err == 0)
 {
 str = sm_fio_gets(fileStream, 255)
 /* check for error condition like EOF */
 if (str != "")
 {
 last_char = sm_n_ww_length("comments")

 /* if writing to empty array */
 if (last_char = 0)
 {
 wwErr = sm_n_ww_write("comments", str, last_char)
 }

 /* otherwise add space after last char before write*/
 else
 {
 wwErr = sm_n_ww_write("comments", " ", last_char)
 wwErr = sm_n_ww_write("comments", str, last_char + 1)
 }
 }
 else
 {
 err = sm_fio_error()
 }
 }
 call sm_fio_close(fileStream)
 return
}

See Also sm_clear_array, sm_ww_length, sm_ww_read
5-586 Library Functions

sm_xlate_table
sm_xlate_table

Installs or deinstalls an 8-bit character translation table

char *sm_xlate_table(int which, char *new);

which

Determines whether the table is for keyboard input or screen output through
arguments of XLATE_INPUT or XLATE_OUTPUT.

new

The name of the new translation table, where new can hold at least 256 bytes.
Be sure to allocate permanent memory to hold the table data.

Environment C only

Returns • Pointer to the previous table.
• NULL: No previous table found.

Description sm_xlate_table installs the translation table pointed to by new. To deinstall and
deactivate translation, supply a value of NULL for new.

Example /**/
/* The following example translates, on keyboard input, */
/* all vowels to the letter 'a'. */
/**/

static char working_buf[256];

int
install_xlate_table ()
{
 int i;

 for (i = 0x00; i <= 0xff; i++)
 working_buf[i] = i;

 working_buf[0x65] = 0x61; /* change 'e' to 'a' */
 working_buf[0x69] = 0x61; /* change 'i' to 'a' */
 working_buf[0x6f] = 0x61; /* change 'o' to 'a' */
 working_buf[0x75] = 0x61; /* change 'u' to 'a' */

 sm_xlate_table (XLATE_INPUT, working_buf);
Programming Guide 5-587

sm_xlate_table
 return (0);
}

5-588 Library Functions

sm_xm_get_base_window
sm_xm_get_base_window

Gets a Widget ID to the base window

#include <smxmuser.h>

Widget sm_xm_get_base_window(void);

Environment Motif

Returns • The base window’s Widget ID.
• Failure: 0

Description sm_xm_get_base_window gets a Widget ID to the base window that you can pass to
the Motif window manager.

See Also sm_drawingarea
Programming Guide 5-589

sm_xm_get_display
sm_xm_get_display

Gets a pointer to the current display

#include <smxmuser.h>

Display *sm_xm_get_display(void);

Environment Motif

Returns • A pointer to the current display.
• Failure: 0

Description sm_xm_get_display gets a pointer to the current display that you can pass to the
Motif window manager.
5-590 Library Functions

sm_*xml_export
sm_*xml_export

Generates XML for annotated widgets

char *sm_xml_export();

char *sm_n_xml_export(char *gsd);

char *sm_obj_xml_export(int *objid);

gsd

An expression indicating the screen or LDB to use for XML generation. For
example, @screen_num(-1) specifies the next to top screen on the form
stack, and @ldb("customer_xml.scr") specifies the customer_xml.scr
screen in the LDB.

objid

An object id indicating the screen or LDB to use for XML generation.

Returns • Success: A character string containing the generated XML
• Failure: Null pointer

Description The sm_*xml_export functions generate XML for the specified screen. You can call
sm_xml_export to generate XML for the current screen.

In order to be included in the XML, widgets must have the xml_tag property
specified. In addition, the screen must have a value in the xml_tag property or both
the xml_prefix and xml_postfix properties. For more information on using these
functions, see Chapter 22, “Using XML Data,” in the Application Development Guide.

Do not call sm_ffree to free the returned value. This value will be freed on the next
call to one of these functions.
Programming Guide 5-591

sm_*xml_export_file
sm_*xml_export_file

Generates XML for annotated widgets to a file

int sm_xml_export_file (char *filename);

int sm_n_xml_export_file (char *filename, char *gsd);

int sm_obj_xml_export_file (char *filename, int *objid);

filename

The name of the file to contain the generated XML.

gsd

An expression indicating the screen or LDB to use for XML generation. For
example, @screen_num(-1) specifies the next to top screen on the form
stack, and @ldb("customer_xml.scr") specifies the customer_xml.scr
screen in the LDB.

objid

An object id indicating the screen or LDB to use for XML generation.

Returns 0 Success.
• Failure: One of the PR_E_ error messages:

PR_E_OBJID: The specified object cannot be found.

Description The sm_*xml_export_file functions generate XML for the specified screen and
write it to the specified file. You can call sm_xml_export_file to generate XML for
the current screen.

 In order to be included in the XML, widgets must have the xml_tag property
specified. In addition, the screen must have a value in the xml_tag property or both
the xml_prefix and xml_postfix properties.

For more information on using these functions, see Chapter 22, “Using XML Data,” in
the Application Development Guide.
5-592 Library Functions

sm_*xml_import
 sm_*xml_import

Import data from XML in a character string

int sm_xml_import(char *xmlbuf);

int sm_n_xml_import(char *gsd, char *xmlbuf);

int sm_obj_xml_import(int *objid, char *xmlbuf);

xmlbuf

A buffer containing the XML to import.

gsd

An expression indicating the screen or LDB that will receive data from the
XML import. For example, @screen_num(-1) specifies the next to top
screen on the form stack, and @ldb("customer_xml.scr") specifies the
customer_xml.scr screen in the LDB.

objid

An object id indicating the screen or LDB receiving the XML import.

Returns 0 Success.
• Failure: One of the PR_E_ error messages:

PR_E_OBJID: The specified object cannot be found.

Description sm_xml_import updates objects in the screen from data in the imported XML. In
order for the XML import to work, the tags associated with widgets and their
corresponding containers must match the tags in the XML file. For more information
on using these functions, see Chapter 22, “Using XML Data,” in the Application
Development Guide.
Programming Guide 5-593

sm_*xml_import_file
sm_*xml_import_file

Import data from an XML file

int sm_xml_import_file (char *filename);

int sm_n_xml_import_file (char *filename, char *gsd);

int sm_obj_xml_import_file (char *filename, int *objid);

filename

The name of the XML file.

gsd

An expression indicating the screen or LDB receiving the XML import. For
example, @screen_num(-1) specifies the next to top screen on the form
stack, and @ldb("customer_xml.scr") specifies the customer_xml.scr
screen in the LDB.

objid

An object id indicating the screen or LDB receiving the XML import.

Returns 0 Success.
• Failure: One of the PR_E_ error messages:

PR_E_OBJID: The specified object cannot be found.

Description sm_xml_import_file reads the specified XML file and updates the specified objects.
In order for the XML import to work, the tags associated with widgets and their
corresponding containers must match the tags in the XML file. For more information
on using these functions, see Chapter 22, “Using XML Data,” in the Application
Development Guide.

5-594 Library Functions

CHAPTER
6 Java Library
Function Interfaces

This chapter contains a listing of the library functions in each of Panther's Java library
function interfaces.
Programming Guide 6-1

CFunctionsInterface
CFunctionsInterface

Panther general library function interface

public interface CFunctionsInterface

Methods int sm_allget(int a1);

int sm_append_bundle_data(String a1, int a2, String a3);

int sm_append_bundle_done(String a1);

int sm_append_bundle_item(String a1);

void sm_backtab();

void sm_bel();

int sm_bkrect(int a1, int a2, int a3, int a4, int a5);

int sm_c_com_obj_create(String a1);

void sm_c_off();

void sm_c_on();

void sm_c_vis(int a1);

int sm_calc(int a1, int a2, String a3);

void sm_cancel(int a1);

int sm_ckdigit(int a1, String a2, int a3, int a4, int a5);

void sm_cl_all_mdts();

int sm_clear_array(int a1);

int sm_close_screen();

int sm_close_window();

int sm_com_attach(String a1);

String sm_com_call(String a1);

String sm_com_call_method(String a1);

int sm_com_delete_id(int a1);
6-2 Java Library Function Interfaces

CFunctionsInterface
String sm_com_get_prop(int a1, String a2);

String sm_com_get_property(int a1, String a2);

int sm_com_obj_create(String a1);

int sm_com_obj_destroy(int a1, int a2);

void sm_com_onerror(String a1);

int sm_com_receive_args(String a1);

int sm_com_result();

String sm_com_result_msg();

int sm_com_return_args(String a1);

int sm_com_set_handler(int a1, String a2, String a3);

int sm_com_set_prop(int a1, String a2, String a3);

int sm_com_set_property(int a1, String a2, String a3);

int sm_copyarray(int a1, int a2);

int sm_create_bundle(String a1);

void sm_d_msg_line(String a1, int a2);

int sm_d_msg_read(String a1, int a2, int a3);

int sm_dd_able(int a1);

int sm_delay_cursor(int a1);

int sm_disp_off();

double sm_djplcall(String a1);

String sm_fi_path(String a1);

int sm_file_copy(String a1, String a2, String a3);

int sm_file_exists(String a1);

int sm_file_move(String a1, String a2, String a3);

int sm_file_remove(String a1);

int sm_filetypes(String a1, String a2);

int sm_fio_a2f(String a1, String a2);
Programming Guide 6-3

CFunctionsInterface
int sm_fio_close(int a1);

int sm_fio_editor(String a1);

int sm_fio_error();

int sm_fio_error_set(int a1);

int sm_fio_f2a(String a1, String a2);

int sm_fio_getc(int a1);

String sm_fio_gets(int a1, int a2);

int sm_fio_open(String a1, String a2);

int sm_fio_putc(int a1, int a2);

int sm_fio_puts(String a1, int a2);

int sm_fio_rewind(int a1);

void sm_flush();

int sm_free_bundle(String a1);

String sm_get_bundle_data(String a1, int a2, int a3);

int sm_get_bundle_item_count(String a1);

int sm_get_bundle_occur_count(String a1, int a2);

String sm_get_next_bundle_name(String a1);

int sm_getenv(String a1);

int sm_getkey();

int sm_h_ldb_fld_get(int a1, int a2, int a3);

int sm_h_ldb_fld_store(int a1, int a2);

int sm_h_ldb_n_fld_get(int a1, int a2, String a3);

int sm_h_ldb_n_fld_store(int a1, String a2);

int sm_hlp_by_name(String a1);

int sm_home();

int sm_i_amt_format(String a1, int a2, String a3);

double sm_i_dblval(String a1, int a2);
6-4 Java Library Function Interfaces

CFunctionsInterface
int sm_i_dlength(String a1, int a2);

String sm_i_fptr(String a1, int a2);

int sm_i_intval(String a1, int a2);

int sm_i_is_no(String a1, int a2);

int sm_i_is_yes(String a1, int a2);

int sm_i_itofield(String a1, int a2, int a3);

int sm_i_ldb_h_putfield(String a1, int a2, int a3, String a4);

int sm_i_ldb_putfield(String a1, int a2, String a3, String a4);

int sm_i_putfield(String a1, int a2, String a3);

String sm_i_strip_amt_ptr(String a1, int a2, String a3);

int sm_input(int a1);

int sm_inquire(int a1);

String sm_inst_script(int a1);

int sm_is_bundle(String a1);

int sm_iset(int a1, int a2);

int sm_isselected(String a1, int a2);

int sm_issv(String a1);

int sm_jclose();

int sm_jfilebox(String a1, String a2, String a3, String a4, int a5);

int sm_jform(String a1);

int sm_jplcall(String a1);

int sm_jplpublic(String a1);

int sm_jplunload(String a1);

int sm_jwindow(String a1);

int sm_key_integer(String a1);

int sm_keyfilter(int a1);

int sm_keyhit(int a1);
Programming Guide 6-5

CFunctionsInterface
String sm_keylabel(int a1);

int sm_keyoption(int a1, int a2, int a3);

int sm_l_at_cur(int a1, String a2);

int sm_l_close(int a1);

int sm_l_form(int a1, String a2);

int sm_l_open(String a1);

int sm_l_open_syslib(String a1);

int sm_l_window(int a1, String a2, int a3, int a4);

void sm_last();

int sm_launch(String a1);

int sm_ldb_get_active();

int sm_ldb_get_inactive();

int sm_ldb_get_next_active(int a1);

int sm_ldb_get_next_inactive(int a1);

int sm_ldb_h_putfield(int a1, int a2, String a3);

int sm_ldb_h_state_get(int a1, int a2);

int sm_ldb_h_state_set(int a1, int a2, int a3);

int sm_ldb_h_unload(int a1);

int sm_ldb_handle(String a1);

int sm_ldb_is_loaded(String a1);

int sm_ldb_load(String a1);

String sm_ldb_name(int a1);

int sm_ldb_next_handle(int a1);

int sm_ldb_pop();

int sm_ldb_push();

int sm_ldb_putfield(int a1, String a2, String a3);

int sm_ldb_state_get(String a1, int a2);
6-6 Java Library Function Interfaces

CFunctionsInterface
int sm_ldb_state_set(String a1, int a2, int a3);

int sm_ldb_unload(String a1);

int sm_list_objects_count(int a1);

void sm_list_objects_end(int a1);

int sm_list_objects_next(int a1);

int sm_list_objects_start(int a1);

int sm_load_screen(String a1);

int sm_log(String a1);

int sm_lstore();

void sm_m_flush();

int sm_menu_bar_error();

int sm_menu_change(int a1, String a2, String a3, int a4, int a5,
String a6);

int sm_menu_create(int a1, String a2, String a3);

int sm_menu_delete(int a1, String a2, String a3);

int sm_menu_get_int(int a1, String a2, String a3, int a4);

String sm_menu_get_str(int a1, String a2, String a3, int a4);

int sm_menu_install(int a1, int a2, String a3, String a4);

int sm_menu_remove(int a1);

int sm_message_box(String a1, String a2, int a3, String a4);

int sm_mnitem_change_i_any(String a1, String a2, int a3, int a4,
int a5);

int sm_mnitem_change_i_app(String a1, String a2, int a3, int a4,
int a5);

int sm_mnitem_change_i_field(String a1, String a2, int a3, int a4,
int a5);

int sm_mnitem_change_i_screen(String a1, String a2, int a3, int a4,
int a5);

int sm_mnitem_change_s_any(String a1, String a2, int a3, int a4,
String a5);
Programming Guide 6-7

CFunctionsInterface
int sm_mnitem_change_s_app(String a1, String a2, int a3, int a4,
String a5);

int sm_mnitem_change_s_field(String a1, String a2, int a3, int a4,
String a5);

int sm_mnitem_change_s_screen(String a1, String a2, int a3, int a4,
String a5);

int sm_mnitem_create(int a1, String a2, String a3, int a4, int a5,
String a6);

int sm_mnitem_delete(int a1, String a2, String a3, int a4);

int sm_mnitem_get_int(int a1, String a2, String a3, int a4, int a5);

String sm_mnitem_get_str(int a1, String a2, String a3, int a4,
int a5);

int sm_mnscript_load(int a1, String a2);

int sm_mnscript_unload(int a1, String a2);

int sm_ms_inquire(int a1);

void sm_msg(int a1, int a2, String a3);

int sm_msg_del(int a1);

String sm_msg_get(int a1);

String sm_msgfind(int a1);

int sm_n_amt_format(String a1, String a2);

int sm_n_clear_array(String a1);

double sm_n_dblval(String a1);

int sm_n_dlength(String a1);

int sm_n_dtofield(String a1, double a2, String a3);

String sm_n_fptr(String a1);

int sm_n_intval(String a1);

int sm_n_is_no(String a1);

int sm_n_is_yes(String a1);

int sm_n_itofield(String a1, int a2);

int sm_n_keyinit(String a1);
6-8 Java Library Function Interfaces

CFunctionsInterface
int sm_n_ldb_fld_store(String a1, int a2);

int sm_n_ldb_h_fldno(String a1, int a2);

int sm_n_ldb_h_putfield(String a1, int a2, String a3);

int sm_n_ldb_n_fld_get(int a1, String a2, String a3);

int sm_n_ldb_n_fld_store(String a1, String a2);

int sm_n_ldb_putfield(String a1, String a2, String a3);

int sm_n_length(String a1);

int sm_n_max_occur(String a1);

int sm_n_mnitem_change_i_any(String a1, String a2, String a3,
int a4, int a5);

int sm_n_mnitem_change_i_app(String a1, String a2, String a3,
int a4, int a5);

int sm_n_mnitem_change_i_field(String a1, String a2, String a3,
int a4, int a5);

int sm_n_mnitem_change_i_screen(String a1, String a2, String a3,
int a4, int a5);

int sm_n_mnitem_change_s_any(String a1, String a2, String a3,
int a4, String a5);

int sm_n_mnitem_change_s_app(String a1, String a2, String a3,
int a4, String a5);

int sm_n_mnitem_change_s_field(String a1, String a2, String a3,
int a4, String a5);

int sm_n_mnitem_change_s_screen(String a1, String a2, String a3,
int a4, String a5);

int sm_n_mnitem_delete(int a1, String a2, String a3, String a4);

int sm_n_mnitem_get_int(int a1, String a2, String a3, String a4,
int a5);

String sm_n_mnitem_get_str(int a1, String a2, String a3, String a4,
int a5);

int sm_n_msg_read(String a1, int a2, int a3, String a4);

int sm_n_num_occurs(String a1);

int sm_n_putfield(String a1, String a2);
Programming Guide 6-9

CFunctionsInterface
String sm_n_strip_amt_ptr(String a1, String a2);

int sm_n_validate(String a1);

int sm_n_wselect(String a1);

int sm_n_ww_length(String a1);

int sm_n_ww_write(String a1, String a2, int a3);

int sm_n_xml_export_file(String a1, String a2);

int sm_n_xml_import(String a1, String a2);

int sm_n_xml_import_file(String a1, String a2);

String sm_name(int a1);

int sm_next_sync(int a1);

void sm_nl();

int sm_o_ldb_h_putfield(int a1, int a2, int a3, String a4);

int sm_o_ldb_putfield(int a1, int a2, String a3, String a4);

int sm_o_off_gofield(int a1, int a2, int a3);

String sm_obj_call(String a1);

int sm_obj_copy(String a1, String a2);

int sm_obj_copy_id(int a1, int a2);

int sm_obj_create(String a1);

int sm_obj_delete(String a1);

int sm_obj_delete_id(int a1);

String sm_obj_get_property(int a1, String a2);

String sm_obj_onerror(String a1);

int sm_obj_set_property(int a1, String a2, String a3);

int sm_obj_sort(int a1, int a2);

int sm_obj_sort_auto(int a1);

int sm_obj_xml_export_file(String a1, int a2);

int sm_obj_xml_import(int a1, String a2);
6-10 Java Library Function Interfaces

CFunctionsInterface
int sm_obj_xml_import_file(int a1, String a2);

int sm_option(int a1, int a2);

int sm_optmnu_id();

int sm_popup_at_cur();

int sm_prop_error();

double sm_prop_get_dbl(int a1, int a2);

int sm_prop_get_int(int a1, int a2);

double sm_prop_get_m_dbl(int a1, int a2, int a3);

int sm_prop_get_m_int(int a1, int a2, int a3);

String sm_prop_get_m_str(int a1, int a2, int a3);

String sm_prop_get_str(int a1, int a2);

double sm_prop_get_x_dbl(int a1, int a2, int a3);

int sm_prop_get_x_int(int a1, int a2, int a3);

String sm_prop_get_x_str(int a1, int a2, int a3);

int sm_prop_id(String a1);

int sm_prop_id_app();

int sm_prop_id_element(int a1, String a2);

int sm_prop_id_element_num(int a1, int a2);

int sm_prop_id_screen(String a1, int a2);

int sm_prop_id_screen_num(int a1);

int sm_prop_id_widget(int a1, String a2);

int sm_prop_id_widget_num(int a1, int a2);

int sm_prop_name_to_id(String a1);

int sm_prop_set_int(int a1, int a2, int a3);

int sm_prop_set_m_int(int a1, int a2, int a3, int a4);

int sm_prop_set_m_str(int a1, int a2, int a3, String a4);

int sm_prop_set_str(int a1, int a2, String a3);
Programming Guide 6-11

CFunctionsInterface
int sm_prop_set_x_int(int a1, int a2, int a3, int a4);

int sm_prop_set_x_str(int a1, int a2, int a3, String a4);

String sm_pset(int a1, String a2);

int sm_r_at_cur(String a1);

int sm_r_form(String a1);

int sm_r_window(String a1, int a2, int a3);

int sm_raise_exception(int a1, String a2);

int sm_receive(String a1);

int sm_receive_args(String a1);

void sm_rescreen();

int sm_resize(int a1, int a2);

int sm_return_args(String a1);

int sm_s_val();

String sm_save_screen(int a1, String a2);

String sm_sb_gettext(int a1);

String sm_sdtime(String a1);

int sm_send(String a1);

void sm_set_help();

void sm_setbkstat(String a1, int a2);

void sm_setsibling();

void sm_setstatus(int a1);

int sm_sh_off();

int sm_shell(String a1, int a2);

void sm_shrink_to_fit();

String sm_sjplcall(String a1);

int sm_slib_error();

int sm_slib_install(String a1, int a2, int a3);
6-12 Java Library Function Interfaces

CFunctionsInterface
int sm_slib_load(String a1);

String sm_soption(int a1, String a2);

void sm_tab();

String sm_tmpnam();

int sm_ungetkey(int a1);

int sm_unload_screen(String a1);

int sm_wcount();

int sm_wdeselect();

int sm_winsize();

int sm_wrotate(int a1);

int sm_wselect(int a1);

int sm_ww_length(int a1);

int sm_ww_write(int a1, String a2, int a3);

int sm_xml_export(String a1);

int sm_xml_import(String a1);

int sm_xml_export_file(String a1);

int sm_xml_import_file(String a1);

Environment Java only

Description To get an object of type CFunctionsInterface, call the getCFunctions method.
The getCFunctions method is supported by all the Java objects that represent Panther
objects. An object of type CFunctionsInterface implements methods that
correspond to the core Panther library functions.
Programming Guide 6-13

ComFunctionsInterface
ComFunctionsInterface

Panther library function interface for MTS applications

public interface ComFunctionsInterface

Methods int log (String text, int code);

int raise_exception (int code);

int receive_args (String text);

int return_args (String text);

int sm_mts_CreateInstance (String text);

int sm_mts_CreateProperty (String group, String prop);

int sm_mts_CreatePropertyGroup (String group);

int sm_mts_DisableCommit ();

int sm_mts_EnableCommit ();

String sm_mts_GetPropertyValue (String group, String prop);

int sm_mts_IsCallerInRole (String role);

int sm_mts_IsInTransaction ();

int sm_mts_IsSecurityEnabled ();

int sm_mts_PutPropertyValue (String group, String prop, String
value);

int sm_mts_SetAbort ();

int sm_mts_SetComplete ();

Environment Java only for COM/MTS

Description Objects that implement this interface provide access to functions that are of use in
service components running under COM/MTS. Java methods that implement a service
component's public methods are passed an object of type

Example ComFunction sInterface as a parameter.
6-14 Java Library Function Interfaces

ComFunctionsInterface
Additional COM functions, such as sm_obj_call and sm_com_result, are
implemented as part of the CFunctionsInterface.
Programming Guide 6-15

DMFunctionsInterface
DMFunctionsInterface

Panther general library function interface

public interface DMFunctionsInterface

Methods int dm_convert_empty(int a1);

String dm_cursor_connection(String a1);

int dm_cursor_consistent(String a1);

String dm_cursor_engine(String a1);

int dm_dbms(String a1);

int dm_dbms_noexp(String a1);

int dm_get_connection_option(String a1, String a2);

int dm_get_driver_option(String a1, String a2);

int dm_is_connection(String a1);

int dm_is_cursor(String a1);

int dm_is_engine(String a1);

int dm_set_con_pool_size(int a1);

int dm_set_connection_option(String a1, String a2, int a3);

int dm_set_driver_option(String a1, String a2, int a3);

int dm_set_max_fetches(int a1);

int dm_set_max_rows_per_fetch(int a1);

Environment Java only

Description To get an object that implements DMFunctionsInterface, call the getDMFunctions
method. The getDMFunctions method is supported by all the Java objects that
represent Panther objects. The methods implemented by an object of type
DMFunctionsInterface correspond to the Panther database interface library
functions.
6-16 Java Library Function Interfaces

RWFunctionsInterface
RWFunctionsInterface

Panther library function interface for reports

public interface RWFunctionsInterface

Methods String sm_rw_error_message ();

int sm_rw_play_metafile (String metatfileName);

int sm_rw_runreport (String reportName);

Environment Java only

Description Objects that support this interface provide access to functions that are of use in
implementing reports. Java methods that implement the public methods of reports are
passed an object of type RWFunctionsInterface as a parameter.
Programming Guide 6-17

TMFunctionsInterface
TMFunctionsInterface

Panther transaction manager function interface

public interface TMFunctionsInterface

Methods int dm_disable_styles();

int dm_enable_styles();

int dm_exec_sql(int a1, String a2);

int dm_free_sql_info(int a1);

int dm_gen_change_execute_using(String a1, String a2, String a3,
int a4, int a5, int a6);

int dm_gen_change_select_from(String a1, String a2, String a3,
int a4);

int dm_gen_change_select_group_by(String a1, String a2, int a3);

int dm_gen_change_select_having(String a1, String a2, int a3);

int dm_gen_change_select_list(String a1, String a2, String a3,
int a4);

int dm_gen_change_select_order_by(String a1, String a2, int a3,
int a4);

int dm_gen_change_select_suffix(String a1, String a2);

int dm_gen_change_select_where(String a1, String a2, int a3);

String dm_gen_get_tv_alias(String a1);

int dm_gen_sql_info(int a1, String a2);

int dm_set_tm_clear_fast(int a1);

void dm_val_relative();

int sm_bi_compare();

int sm_bi_copy();

int sm_bi_initialize();

int sm_tm_clear(int a1);
6-18 Java Library Function Interfaces

TMFunctionsInterface
void sm_tm_clear_model_events();

int sm_tm_clear_no_select(int a1);

int sm_tm_command(String a1);

int sm_tm_command_emsgset(String a1, int a2);

int sm_tm_command_errset(String a1, int a2);

int sm_tm_continuation_validity(int a1);

int sm_tm_dbi_checker(int a1);

int sm_tm_dbms(String a1);

void sm_tm_error(String a1, String a2, String a3, int a4);

int sm_tm_errorlog(int a1, int a2, String a3);

int sm_tm_event(String a1);

String sm_tm_event_name(int a1);

int sm_tm_failure_message(int a1, String a2, String a3);

int sm_tm_handling(int a1);

int sm_tm_inquire(int a1);

int sm_tm_iset(int a1, int a2);

void sm_tm_msg_count_error(String a1, int a2, int a3);

void sm_tm_msg_emsg(String a1, int a2);

void sm_tm_msg_error(String a1, int a2);

int sm_tm_old_bi_context(int a1);

String sm_tm_pinquire(int a1);

int sm_tm_pop_model_event();

int sm_tm_pset(int a1, String a2);

int sm_tm_push_model_event(int a1);

int sm_tm_set_max_bind_name_len(int a1);

int sm_tm_set_save_backward(int a1);

int sm_tm_synchronization(int a1);
Programming Guide 6-19

TMFunctionsInterface
int sm_tm_update_pkey();

Environment Java only

Description To get an object of type TMFunctionsInterface, call the method getTMFunctions.
The methods implemented by objects of this type correspond to the Prolifics
transaction manager library functions. The getTMFunctions method is supported by
all the Java objects that represent Panther objects.
6-20 Java Library Function Interfaces

TPFunctionsInterface
TPFunctionsInterface

Panther library function interface for service components in JetNet and Oracle Tuxedo

public interface TPFunctionsInterface

Methods int sm_tp_exec(String a1);

WidgetInterface getTpRequest();

WidgetInterface getTpRequest(String callid);

Environment Java only for JetNet and Oracle Tuxedo

Description Code in a client screen in a Oracle Tuxedo or JetNet application can get a handle to an
object that implements TPFunctionsInterface by calling the getTPFunctions
method. Methods of service components that implement services in a Oracle Tuxedo
or JetNet application receive an object of type TPFunctionsInterface as a
parameter.

The method getTPRequest returns a handle to an object that represents a service
request. These objects implement WidgetInterface. Interactions with such an object
will generally only be for the purpose of querying its property values.

The method sm_tp_exec corresponds to the Panther library function of the same
name.
Programming Guide 6-21

WSFunctionsInterface
WSFunctionsInterface

Library function interface for Enterprise JavaBeans operating in WebSphere

public interface WSFunctionsInterface

Methods PantherSessionBean get_bean();

int log (String message);

void raise_exception (String message);

int receive_args (String args);

int return_args (String args);

Environment Java only for Enterprise JavaBeans on WebSphere

Description Objects that support this interface provide access to functions that are of use in
implementing Enterprise JavaBeans deployed on WebSphere Application Server. Java
methods that implement the public methods of Enterprise JavaBeans are passed an
object of type WSFunctionsInterface as a parameter.
6-22 Java Library Function Interfaces

CHAPTER
7 Java Object
Interfaces

This chapter contains descriptions of Panther's Java object interfaces arranged
alphabetically. Panther objects are referenced in Java code by means of Java objects of
types that are defined by these interfaces.

These interfaces define the methods supported by such objects and would be used to
perform operations on those objects.

Information about each interface is organized into the following sections:

! Methods supported by objects that implement the interface.

! Description of the interface.
Programming Guide 7-1

ApplicationInterface
ApplicationInterface

Interface definition for the application as a whole

public interface ApplicationInterface extends WidgetInterface

Methods getScreen
ScreenInterface getScreen();
ScreenInterface getScreen(int level);
ScreenInterface getScreen(String name);

ScreenInterface getScreen(String name, int instance);

getWidget
WidgetInterface getWidget(int id);

Environment Java only

Description One of the methods of WidgetInterface, and therefore common to all widgets, is
getApplication. This returns an object that represents the application as a whole.
The methods that get and set properties can be used on this object to program
application-scope properties.

The getScreen method returns an object corresponding to a screen. It has four
variants. When called with no parameters, it returns an object corresponding to the
current screen (the top of the window stack). When called with one integer parameter,
the integer specifies the zero-based offset in the window stack, as used by the Panther
library function sm_wselect. When called with one string parameter, the string
specifies the screen's name. To get an object corresponding to a specific instance of a
screen (you can have more than one copy of a screen open at a time), call getScreen
with both the name and an integer that corresponds to the instance of the screen you
wish to specify.

The getWidget method returns an object corresponding to a widget given an object id
for the widget. If the widget is a screen, field, group, etc., the object returned will be
cast to the appropriate type. In other words, the object returned will not merely
implement WidgetInterface, but will implement FieldInterface,
ScreenInterface, etc., as appropriate.
7-2 Java Object Interfaces

FieldInterface
FieldInterface

Interface definition for fields

public interface FieldInterface extends WidgetInterface

Methods amt_format
int amt_format(String value);
int amt_format(int item, String value);

clear_array
int clear_array();

dblval
double dblval();
double dblval(int item);

dtofield
int dtofield(double value, String format);
int dtofield(int item, double value, String format);

fval
int fval();
int fval(int item);

getfield
String getfield();
String getfield(int item);

getScreen
ScreenInterface getScreen();

gofield
int gofield();
int gofield(int item);

intval
int intval();
int intval(int item);

ioccur
int ioccur(int count);
int ioccur(int item, int count);
Programming Guide 7-3

FieldInterface
is_no
boolean is_no();
boolean is_no(int item);

is_null
boolean is_null();
boolean is_null(int item);

is_yes
boolean is_yes();
boolean is_yes(int item);

itofield
int itofield(int value);
int itofield(int item, int value);

off_gofield
int off_gofield(int offset);

int off_gofield(int item, int offset);

putfield
int putfield(String text);

int putfield(int item, String text);

ww_read
String ww_read();
String ww_read(int offset);

Environment Java only

Description FieldInterface defines the methods for objects representing fields. In addition,
objects of type FieldInterface support all the methods in WidgetInterface.

Java objects representing text fields, push buttons, toggle buttons, check boxes, radio
buttons, dynamic labels, tab cards, option menus, combo boxes and scales are of type
FieldInterface.

The method getScreen will return an object corresponding to the screen on which the
field in question is found.

The other methods correspond in functionality to Panther library functions that have
the same name, only with an sm_ prefix. Those library functions take parameters to
indicate which field the function should operate on. Since these are methods of objects
that correspond to fields, the field in question is always implicitly indicated.
7-4 Java Object Interfaces

GridInterface
GridInterface

Interface definition for grids

public interface GridInterface extends WidgetInterface

Methods getColumn
FieldInterface getColumn(int n);

num_columns

int numColumns();

Environment Java only

Description GridInterface defines the methods for objects representing grid widgets. In
addition, objects of type GridInterface support all the methods in
WidgetInterface.

The method numColumns returns the number of columns in the grid; the method
getColumn returns an object corresponding to a given field in the grid, referenced by
column number.
Programming Guide 7-5

GroupInterface
GroupInterface

Interface definition for groups

public interface GroupInterface extends WidgetInterface

Methods deselect
void deselect(int item);

getMember
FieldInterface getMember(int n);

isSelected
boolean isSelected(int item);

numMembers
int numMembers();

select
void select(int item);

Environment Java only

Description GroupInterface defines the methods for objects representing groups. In addition,
objects of type GroupInterface support all the methods in WidgetInterface.

The method numMembers returns the number of members in the group; the method
getMember returns an object corresponding to a given member, referenced by number.
7-6 Java Object Interfaces

ScreenInterface
ScreenInterface

Interface definition for screens

public interface ScreenInterface extends WidgetInterface

Methods getField
FieldInterface getField(String name);
FieldInterface getField(int fieldnum);

getWidget
WidgetInterface getWidget(String name);

Environment Java only

Description ScreenInterface defines the methods for objects representing screens. In addition,
objects of type ScreenInterface supports all the methods in WidgetInterface.

The method getField returns an object corresponding to a particular field on the
screen. The methods of this object can then be used perform operations on that field.
Field objects can be obtained by field name or by field number. If you refer to an object
by name and the object is not a field, the getField method will return null.

To get handles to objects that are not fields, use the getWidget method. This will
return a generic widget handle that can then be cast to a handle of a given type (grid or
group).
Programming Guide 7-7

WidgetInterface
WidgetInterface

Interface definition for widgets

public interface WidgetInterface

Methods getApplication
ApplicationInterface getApplication();

get_dbl
double get_dbl(int prop);
double get_dbl(int item, int prop);

get_int
int get_int(int prop);
int get_int(int item, int prop);

getServer
ServerInterface getServer();

get_str
String get_str(int prop);
String get_str(int item, int prop);

set_dbl
int set_dbl(int prop, double value);
int set_dbl(int item, int prop, double value);

set_int
int set_int(int prop, int value);
int set_int(int item, int prop, int value);

set_str
int set_str(int prop, String value);
int set_str(int item, int prop, String value);

Library Function Interfaces
CFunctionsInterface getCFunctions();
ComFunctionsInterface getcomFunctions();
DMFunctionsInterface getDMFunctions();
RWFunctionsInterface getRWFunctions();
TMFunctionsInterface getTMFunctions();
TPFunctionsInterface getTPFunctions();
WSFunctionsInterface getWSFunctions();
7-8 Java Object Interfaces

WidgetInterface
Environment Java only

Description WidgetInterface defines the methods that are common to all objects that correspond
to Panther objects.

The get_int, get_str, and get_dbl methods are used to get property values. These
methods come in two variants, using either one parameter or two. The version with two
parameters is for widgets in arrays. The first parameter is the occurrence number. Use
the PR_ values to identify the property requested.

The set_int, set_str, and set_dbl methods are used to set property values. These
methods come in two variants, one with two parameters and one with three. The
version with three parameters is used when referencing a particular occurrence in an
array. The final parameter is the new value for the property.

The get*Functions methods are used to get handles to special objects that exist to
support the Panther library functions. For a listing of the methods in each library
function interface, refer to Chapter 6, “Java Library Function Interfaces.”
Programming Guide 7-9

WidgetInterface
7-10 Java Object Interfaces

CHAPTER
8 Transaction
Manager
Commands

This chapter describes the sm_tm_command function and the transaction commands
(listed alphabetically) that can be called using this function.

Each reference page includes the following information:

! Syntax—Lists the command and its parameters.

! Description—Gives an explanation of the command.

! Sequence—Lists other transaction manager commands that might be needed
before or after this command.

! Events—Lists the transaction request events and slice events that can be
generated with a command. This information is useful when writing a
transaction event function to change the processing in a request or when
modifying the transaction model. For information on writing transaction event
functions, refer to Chapter 32, “Writing Transaction Event Functions,” in the
Application Development Guide.

Some requests refer to the following transaction attributes:
Programming Guide 8-1

To test the value of transaction attributes, use the library functions sm_tm_inquire,
sm_tm_pinquire, or sm_tm_pcopy. To set transaction attributes, use the library
functions sm_tm_iset and sm_tm_pset

Table 8-1 Transaction Attributes

Attribute Description

TM_FULL Indicator of whether it is a full (1) or partial (0) command.

TM_OCC Occurrence number being processed.

TM_OCC_COUNT The number of occurrences in the table view.

TM_STATUS Error indicator.

TM_VALUE General purpose integer.
8-2 Transaction Manager Commands

sm_tm_command
sm_tm_command

Executes a transaction command

#include <tmusubs.h>

int sm_tm_command (cmd_string);

Arguments cmd_string

Contains one of the following transaction commands and its associated
parameters. The parameters can include a table view name and/or command
scope. Refer to the specific command for details and command syntax.

Returns ! STATUS of the current transaction.

CHANGE FORCE_CLOSE

CLEAR NEW

CLOSE REFRESH

CONTINUE RELEASE

CONTINUE_BOTTOM SAVE

CONTINUE_DOWN SELECT

CONTINUE_TOP START

CONTINUE_UP VIEW

COPY WALK_DELETE

COPY_FOR_UPDATE WALK_INSERT

COPY_FOR_VIEW WALK_SELECT

FETCH WALK_UPDATE

FINISH
Programming Guide 8-3

sm_tm_command
Description sm_tm_command executes the specified transaction manager command.

When specifying a command, the table view name is case sensitive; however, the
command name and the optional parameters following the table view name are not
case sensitive.

By definition, a command is in progress from the moment sm_tm_command is called
until the moment it returns. As it processes most commands, sm_tm_command invokes
transaction event functions and transaction models. These, in turn, should not invoke
transaction manager commands, because the transaction manager cannot process its
commands recursively. This implies that they should not close the active screen (which
triggers a FINISH command), or cause any other screen to be displayed that contains
table views (which triggers a CHANGE command).

Transaction

Modes

After recognizing a transaction command, the transaction manager either sets the
transaction mode or checks the transaction mode to see if the specified command is
available with the current mode. If the command is not supported in the current mode,
or if the command is not recognized, then the transaction manager displays an error
message that the mode does not permit the specified command. It also sets the value
of TM_STATUS to -1, which causes sm_tm_command to return a value of -1. For more
information on command availability in transaction modes, refer to “Setting the
Transaction Mode” on page 34-7 in Application Development Guide.

Tree Traversal The transaction tree is the group of linked table views that are part of the current
transaction manager transaction. After a command is issued, the transaction manager
traverses the transaction tree, issuing the request and slice events defined for that
command for each table view and performing the processing defined for each event in
transaction event functions and transaction models. The most common order is
referred to as table/server view order. A server view is defined as:

! A single table view having no server links to other table views.

! A group of table views connected by server links.

Tree traversal in table/server view order begins at the root table view or at the specified
table view. The traversal covers all table views within the server view, and then moves
on to the next server view. The Parent and Child properties for each link help
determine the traversal order. The tree traversal reaches a parent table view before its
child, but there can be intervening table views (in the same and different server views).
8-4 Transaction Manager Commands

sm_tm_command
Restriction A transaction manager transaction must be in progress in order to call commands.
Transactions are created with the START command which is called automatically on
screen entry. However, the Panther events that occur on screen entry call the unnamed
JPL procedure before calling the START command. Therefore, transaction manager
commands cannot be invoked in the unnamed procedure.

Example int sm_tm_command ("SELECT titles BELOW_TV");

Errors Errors in the transaction manager set TM_STATUS to -1.

In addition, there are return values for transaction models or transaction event
functions that set the value of TM_STATUS. Table 8-2 lists the return codes, the events
that get generated for each return code, and the processing that occurs for the event.

Events Once you select a transaction command, the transaction manager generates the
transaction events defined for that command. These events are defined to perform the
processing needed for the command. The major events for each command are called
requests. Some requests are further subdivided into more events, called slices. As the
transaction manager traverses the tree, it looks for the processing for each event first
in a transaction manager event function, then in an engine-specific transaction model,
and then in the common transaction model.

The transaction manager has an event stack, onto which the transaction events are
pushed. As the events are processed, they are popped from the stack. For more
information on the event stack, refer to Chapter 35, “Generating Transaction Manager
Events,” in Application Development Guide.

Table 8-2 Return values for transaction event functions and transaction models

Return Code Event Processing

TM_OK None None.

TM_PROCEED None Invoke transaction model.

TM_FAILURE TM_NOTE_FAILURE Call sm_tm_failure_message.

TM_UNSUPPORTED TM_NOTE_UNSUPPORTED Call sm_tm_failure_message.

TM_CHECK TM_TEST_ERROR Call sm_tm_dbi_checker.

TM_CHECK_ONE_ROW TM_TEST_ONE_ROW Call sm_tm_dbi_checker.

TM_CHECK_SOME_ROWS TM_TEST_SOME_ROWS Call sm_tm_dbi_checker.
Programming Guide 8-5

sm_tm_command
Table 8-3 lists all the transaction manager events. A description of the general
processing performed by each request or slice is part of the documentation for a
command in which it is used. To see the processing done for a particular database
engine, refer to the transaction model for that engine. For a summary list of the
commands, requests, and slices, refer to Chapter 9, “Transaction Model Events.”

Table 8-3 Events available in the transaction manager

Event Command*

TM_CLEAR CLEAR

TM_CLEAR_SEL_COUNT_FLAG SELECT, VIEW

TM_CLOSE CLOSE

TM_CONTINUE_BOTTOM CONTINUE_BOTTOM

TM_CONTINUE_DOWN CONTINUE_DOWN

TM_CONTINUE_TOP CONTINUE_TOP

TM_CONTINUE_UP CONTINUE_UP

TM_COPY COPY

TM_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_COPY_FOR_VIEW COPY_FOR_VIEW

TM_DELETE SAVE

TM_DELETE_DECLARE SAVE

TM_DELETE_EXEC SAVE

TM_DISCARD CLOSE

TM_FETCH FETCH

TM_FINISH FINISH

TM_GET_SAVE_CURSOR SAVE

TM_GET_SEL_CURSOR SELECT

TM_GIVE_UP_SAVE_CURSOR SAVE
8-6 Transaction Manager Commands

sm_tm_command
TM_GIVE_UP_SEL_CURSOR SELECT

TM_INSERT SAVE

TM_INSERT_DECLARE SAVE

TM_INSERT_EXEC SAVE

TM_NEW NEW

TM_NOTE_FAILURE Part of error processing

TM_NOTE_UNSUPPORTED Part of error processing

TM_POST_CLEAR CLEAR

TM_POST_CLOSE CLOSE

TM_POST_COPY COPY

TM_POST_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_POST_COPY_FOR_VIEW COPY_FOR_VIEW

TM_POST_NEW NEW

TM_POST_RELEASE RELEASE

TM_POST_SAVE SAVE

TM_POST_SAVE1 SAVE

TM_POST_SAVE2 SAVE

TM_POST_SELECT SELECT

TM_POST_VAL_LINK Part of validation link processing

TM_POST_VIEW VIEW

TM_PRE_CLEAR CLEAR

TM_PRE_CLOSE CLOSE

TM_PRE_COPY COPY

Table 8-3 Events available in the transaction manager (Continued)

Event Command*
Programming Guide 8-7

sm_tm_command
TM_PRE_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_PRE_COPY_FOR_VIEW COPY_FOR_VIEW

TM_PRE_NEW NEW

TM_PRE_RELEASE RELEASE

TM_PRE_SAVE SAVE

TM_PRE_SELECT SELECT

TM_PRE_VAL_LINK Part of validation link processing

TM_PRE_VIEW VIEW

TM_PREPARE_CONTINUE SELECT, VIEW

TM_QUERY CLOSE

TM_RELEASE RELEASE

TM_SAVE SAVE

TM_SAVE_BEGIN SAVE

TM_SAVE_COMMIT SAVE

TM_SAVE_ROLLBACK SAVE

TM_SAVE_SET_MODE SAVE

TM_SET_SEL_COUNT_FLAG SELECT, VIEW

TM_SEL_BUILD_PERFORM SELECT

TM_SEL_CHECK FETCH

TM_SEL_COUNT_CHECK SELECT, VIEW

TM_SEL_GEN SELECT

TM_SELECT SELECT

TM_START START

Table 8-3 Events available in the transaction manager (Continued)

Event Command*
8-8 Transaction Manager Commands

sm_tm_command
TM_TEST_ERROR Part of error processing

TM_TEST_ONE_ROW Part of error processing

TM_TEST_SOME_ROWS Part of error processing

TM_UPDATE SAVE

TM_UPDATE_DECLARE SAVE

TM_UPDATE_EXEC SAVE

TM_VAL_BUILD_PERFORM Part of validation link processing

TM_VAL_CHECK Part of validation link processing

TM_VAL_GEN Part of validation link processing

TM_VAL_LINK Part of validation link processing

TM_VIEW VIEW

TM_WALK_DELETE WALK_DELETE

TM_WALK_INSERT WALK_INSERT

TM_WALK_SELECT WALK_SELECT

TM_WALK_UPDATE WALK_UPDATE

* Indicates under which command the event is documented.

Table 8-3 Events available in the transaction manager (Continued)

Event Command*
Programming Guide 8-9

CHANGE
CHANGE

Switches to another transaction

int sm_tm_command ("CHANGE transactionName");

Arguments transactionName

The name of a valid transaction manager transaction.

Description CHANGE switches to another transaction, making it the current transaction. To use this
command, you must specify the transaction name. If the transaction does not exist, the
previous transaction remains active. In cases where you move between two screens,
the command is automatically issued as part of Panther’s screen processing.

To get the current transaction name, call sm_tm_pinquire(TM_TRAN_NAME).

To specify a new transaction, use the START command. Any transaction begun with an
explicit call to the START command must also be closed by an explicit call to the
FINISH command.

Events There are no request events generated by the CHANGE command.

Example Refer to the START command.
8-10 Transaction Manager Commands

CLEAR
CLEAR

Clears data in widgets

int sm_tm_command ("CLEAR [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name. TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified, the
transaction manager acts as though TV_AND_BELOW was supplied. BELOW_TV
which applies the command to the table views below the specified table view.
TV_ONLY which applies the command to the specified table view only.
SV_ONLY which applies the command only to the table views of the specified
server view.

Description CLEAR clears the data displayed on the screen for any widget belonging to a valid table
view. CLEAR has two major uses:

! Clears onscreen data so that you can enter selection criteria for a subsequent
VIEW or SELECT.

! Clears onscreen data so that SAVE processing deletes the database rows
represented.
Programming Guide 8-11

CLEAR
In order to delete rows from the database, the table view must be updatable. If the table
view is non-updatable, the data is cleared from the screen, but SQL DELETE statements
are not issued.

The CLEAR command does not change the transaction mode.

Push buttons and menu selections for the CLEAR command can choose to set the class
property to clear_button. By default, clear_button is active in all transaction
modes.

Sequence To delete rows, CLEAR must be followed by the SAVE command.

To perform a query-by-example, execute CLEAR before entering a value for the SELECT
or VIEW commands.

Events The following request events can be generated by the CLEAR command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

Table 8-4 Request events for CLEAR

Request Traversal Typical Processing

TM_PRE_CLOSE Described under CLOSE

TM_CLOSE Described under CLOSE

TM_QUERY Described under CLOSE

TM_DISCARD Described under CLOSE

TM_POST_CLOSE Described under CLOSE

TM_PRE_CLEAR By table/server view from the specified table view Do nothing

TM_CLEAR By table/server view from the specified table view Do nothing (sm_tm_clear is called
for the table view by the transaction
manager after this request)

TM_POST_CLEAR By table/server view from the specified table view Do nothing
8-12 Transaction Manager Commands

CLOSE
CLOSE

Closes the current database transaction, allowing you to discard or save your
changes

int sm_tm_command ("CLOSE [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If table View Name is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

table View Scope

One of the following parameters, which must be preceded by a table view
name. TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified, the
transaction manager acts as though TV_AND_BELOW was supplied. BELOW_TV
which applies the command to the table views below the specified table view.
TV_ONLY which applies the command to the specified table view only.
SV_ONLY which applies the command only to the table views of the specified
server view.

Description If changes are made in table views on which CLOSE operates after a SELECT, NEW,
COPY, or COPY_FOR_UPDATE command, CLOSE displays a dialog box which allows
users to discard any changes entered. If the user chooses OK, changes are discarded;
choosing Cancel, returns the user to the current screen so changes can be saved. In Web
applications, this command is the same as the FORCE_CLOSE command.

CLOSE sets the transaction mode to initial unless a table view is specified. In the default
styles file (style.sty), the style assigned to initial mode clears any protections on the
widgets.
Programming Guide 8-13

CLOSE
Push buttons and menu selections for the CLOSE command can choose to set the class
property to close_button. By default, close_button is inactive in initial mode but
active in all other modes.

For some database engines, such as SYBASE CT-Lib, the CLOSE command does not
release the database locks when a SELECT command is not followed by a SAVE
command. In this case, follow the CLOSE with the RELEASE command which gives up
the locks on the database.

Sequence The CLOSE command is useful after SELECT, NEW, COPY, or COPY_FOR_UPDATE in
order to discard your changes.

Events

Table 8-5 Request events for CLOSE (if there are screen changes)

Request Traversal Typical Processing

TM_PRE_CLOSE By table/server view from the
specified table view

CLOSE or SAVE processing is beginning.
(Processing identical for TM_PRE_SAVE)

TM_CLOSE By table/server view from the
specified table view. Traversal ends if
TM_VALUE is set to
TM_DISCARD_ACTION or
TM_EXIT_ACTION.

Appropriate responses are those listed for
TM_QUERY below, but typical processing is to do
nothing.

TM_QUERY By table/server view from the
specified table view, but restricted to
table views, if any, in which there has
been a change that would entail a
SAVE command. Traversal ends if
TM_VALUE is set to
TM_DISCARD_ACTION or
TM_EXIT_ACTION

A message is chosen according to the value of
TM_FULL. If 1, the displayed message is for the
complete transaction tree. If 0, the message is for
a portion of the tree. sm_message_box, which
displays the message, gives a choice of OK and
Cancel. TM_DISCARD_ACTION and
TM_EXIT_ACTION are the corresponding values
passed back to TM_VALUE.

TM_DISCARD By table/server view from the
specified table view

Set a discard flag, consulted by
TM_POST_SAVE1

TM_POST_CLOSE By table/server view from the
specified table view

Generates slice events: TM_POST_CLOSE,
TM_POST_SAVE1, TM_POST_SAVE2 (described
under SAVE, but no save cursor exists.
8-14 Transaction Manager Commands

CLOSE
The TM_CLOSE and TM_QUERY requests have four possible return values:
TM_NO_ACTION, TM_DISCARD_ACTION, TM_SAVE_ACTION, and TM_EXIT_ACTION.
The distributed transaction models use two of these return values:

! TM_DISCARD_ACTION discards the changes to the data.

! TM_EXIT_ACTION returns the user to the screen in order to choose the SAVE
command or make additional changes.

If TM_SAVE_ACTION is used as a return value, all the requests associated with the SAVE
command (except TM_PRE_SAVE and TM_POST_SAVE) are completed, but this
processing is not used in the distributed transaction models.

Table 8-6 Slice event processing for CLOSE

Slices Typical Processing

TM_POST_CLOSE Processing is identical to that of TM_POST_SAVE described under SAVE.

TM_POST_SAVE1 Described under SAVE, but no save cursor exists.

TM_POST_SAVE2 Described under SAVE.
Programming Guide 8-15

CONTINUE
CONTINUE

Fetches the next set of information from the database

int sm_tm_command ("CONTINUE [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a server view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. (Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.) The specified table view must either be a server view or be the
server view to which the desired table view belongs.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified, the
transaction manager acts as though TV_AND_BELOW was supplied. BELOW_TV
which applies the command to the table views below the specified table view.
TV_ONLY which applies the command to the specified table view only.
SV_ONLY which applies the command only to the table views of the specified
server view.

Description CONTINUE (not available in Web applications or three-tier processing) fetches the next
set of information from the database. If there are no additional rows, this command has
no effect.

CONTINUE does not set the transaction mode but requires view or update mode. A
partial CONTINUE command is also permitted in new mode.
8-16 Transaction Manager Commands

CONTINUE
Push buttons and menu selections for the CONTINUE command can choose to set the
class property to continue_button. By default, continue_button is active in view
and update modes.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE for the specified table view and any table views linked to it via server links.
This displays the next set of rows for that server view. Then SELECT or VIEW
processing is done for any additional child table views.

If your screen has multiple table views and you want to fetch data for only one table
view, use FETCH instead of CONTINUE.

Warning about

Continuation Files

If the setting of the Fetch Directions property, as discussed in the CONTINUE_DOWN
command, permits the CONTINUE_DOWN command to be executed, the data displayed
by this command for the specified server view can come from a continuation file. The
warnings for CONTINUE_DOWN then apply.

Sequence Use CONTINUE after SELECT or VIEW which generate a database query and display the
first set of query results.

Events The following requests can be generated by the CONTINUE command to ascertain
whether the changes from the previous command have been saved and, if desired, to
discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated:

! TM_FETCH (described under FETCH)

! TM_PRE_SELECT (described under SELECT)

! TM_SELECT (described under SELECT)

! TM_POST_SELECT (described under SELECT)

! TM_PRE_VIEW (described under VIEW)
Programming Guide 8-17

CONTINUE
! TM_VIEW (described under VIEW)

! TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR requests
are generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.
8-18 Transaction Manager Commands

CONTINUE_BOTTOM
CONTINUE_BOTTOM

Fetches the last set of rows from the file

int sm_tm_command ("CONTINUE_BOTTOM [tableViewName [
tableViewScope]]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive. If tableViewName is specified, the command is applied according
to the tableViewScope parameter. Since the entire table view tree might not
be included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description CONTINUE_BOTTOM (not available in Web applications or three-tier processing) fetches
the last set of rows from the file. The availability of this command is de pendent on the
setting of the fetch_directions property for the server view or screen. If the
fetch_directions property is set to PV_CONT_ALWAYS (Up/ Down-all modes), this
command is available in update or view mode. If the fetch_directions property is
set to PV_CONT_VIEW_ONLY (Up/Down-view mode), this command is available only
Programming Guide 8-19

CONTINUE_BOTTOM
in view mode. Otherwise, an error is generated. For more information on setting the
Fetch Directions property, refer to “Scrolling Through the Select Set” on page 36-5 in
Application Development Guide.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_BOTTOM for the specified table view and any table views linked to it via
server links. This displays the last set of rows for that server view. Then SELECT or
VIEW processing is done for any additional child table views.

The data displayed with this command is from a continuation file; it is not refetched
from the database. Therefore, any updates made to the data in this server view are not
displayed immediately to other users. In order to display those updates, the data must
be refetched from the database with a VIEW or SELECT command.

The advantage of using the continuation file is that it prevents having shared locks on
data. However, if the fetch_directions property is set to PV_CONT_ALWAYS
(Up/Down-all modes), you are responsible for implementing the necessary locking
scheme for concurrent users. For more information on using the Version Column
property to implement optimistic locking, refer to “Implementing Optimistic Locking”
on page 33-39 in Application Development Guide.

If you want to use the database engine's facilities for non-sequential scrolling, you need
to add processing for the request events to the engine-specific transaction model.

Push buttons and menu selections for the CONTINUE_BOTTOM command can choose to
set the class property to continue_button which activates the option only in view
and update modes or to continue_view_button which activates the option only in
view mode.

Sequence Use CONTINUE_BOTTOM after SELECT or VIEW which generate a database query and
display the first set of query results or after any other CONTINUE command.

Events

Table 8-7 Request event for CONTINUE_BOTTOM

Request Traversal Typical Processing

TM_CONTINUE_BOTTOM By table views in the specified server
view

Can generate slices:
TM_CONTINUE_BOTTOM and
TM_SEL_CHECK. Refer to Table 7.
8-20 Transaction Manager Commands

CONTINUE_BOTTOM
The following requests can be generated by the CONTINUE_BOTTOM command to
ascertain if the changes from the previous command have been saved and, if desired,
to discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

! TM_PRE_SELECT (described under SELECT)

! TM_SELECT (described under SELECT)

! TM_POST_SELECT (described under SELECT)

! TM_PRE_VIEW (described under VIEW)

Table 8-8 Slice event processing for CONTINUE_BOTTOM

Slices Typical Processing

TM_CONTINUE_BOTTOM A select cursor must have been set up for the server view encompassing the current
table view or nothing more is done.

Calls sm_tm_continuation_availability to check if the command is
available. If not, an error is issued.

On entry, TM_OCC_COUNT specifies the maximum number of occurrences to be
fetched. If TM_OCC_COUNT is zero on entry, it means that there is no explicit limit
being imposed. The TM_OCC member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this request, TM_SEL_CHECK sets it
to contain the number of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise, report
the number of rows fetched to TM_OCC_COUNT.
Programming Guide 8-21

CONTINUE_BOTTOM
! TM_VIEW (described under VIEW)

! TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR requests
are generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.
8-22 Transaction Manager Commands

CONTINUE_DOWN
CONTINUE_DOWN

Fetches the next set of rows from the file

int sm_tm_command ("CONTINUE_DOWN [tableViewName [tableViewScope
]]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name. TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified, the
transaction manager acts as though TV_AND_BELOW was supplied. BELOW_TV
which applies the command to the table views below the specified table view.
TV_ONLY which applies the command to the specified table view only.
SV_ONLY which applies the command only to the table views of the specified
server view.

Description CONTINUE_DOWN (not available in Web applications or three-tier processing) fetches
the next set of rows from the file. Note that even though the commands
CONTINUE_DOWN and CONTINUE both display the next set of data, CONTINUE_DOWN
generates different a request than CONTINUE.

The availability of CONTINUE_DOWN is dependent on the setting of the
fetch_directions property for the server view or screen. If the fetch_directions
property is set to PV_CONT_ALWAYS (Up/Down-all modes), this command is available
in update or view mode. If the fetch_directions property is set to
Programming Guide 8-23

CONTINUE_DOWN
PV_CONT_VIEW_ONLY (Up/Down-view mode), this command is available only in view
mode. Otherwise, an error is generated. For more information on setting the Fetch
Directions property, refer to “Scrolling Through the Select Set” on page 36-5 in
Application Development Guide.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_DOWN for the specified table view and any table views linked to it via server
links. This displays the next set of rows for that server view. Then SELECT or VIEW
processing is done for any additional child table views.

The data displayed with this command is from a continuation file; it is not refetched
from the database. Therefore, any updates made to the data in this server view either
by you, or by another user, are not displayed. In order to display those updates, you
must again fetch the data from the database with a VIEW or SELECT command.

The advantage of using Panther’s continuation file is that it prevents having shared
locks on data. However, if the fetch_directions property is set to
PV_CONT_ALWAYS (Up/Down-all modes), you are responsible for implementing the
necessary locking scheme for concurrent users. For more information on using the
Version Column property to implement optimistic locking, refer to “Implementing
Optimistic Locking” on page 33-39 in Application Development Guide.

If you want to use the database engine's facilities for non-sequential scrolling, you need
to add processing for the request events to the engine-specific transaction model.

Push buttons and menu selections for the CONTINUE_DOWN command can choose to set
the class property to continue_button which activates the option only in view and
update modes or to continue_view_button which activates the option only in view
mode.

Sequence Use CONTINUE_DOWN after SELECT or VIEW which generate a database query and
display the first set of query results or after any other CONTINUE command.

Events

Table 8-9 Request event for CONTINUE_DOWN

Request Traversal Typical Processing

TM_CONTINUE_DOWN The table views in the specified server view See below
8-24 Transaction Manager Commands

CONTINUE_DOWN
The following requests can be generated by the CONTINUE_DOWN command to
ascertain if the changes from the previous command have been saved and, if desired,
to discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

! TM_PRE_SELECT (described under SELECT)

! TM_SELECT (described under SELECT)

! TM_POST_SELECT (described under SELECT)

! TM_PRE_VIEW (described under VIEW)

Table 8-10 Request and slice event processing for CONTINUE_DOWN

Slices Typical Processing

TM_CONTINUE_DOWN A select cursor must have been set up for the server view encompassing the current
table view or nothing more is done.

Calls sm_tm_continuation_availability to check if the command is
available. If not, an error is issued.

On entry, TM_OCC_COUNT specifies the maximum number of occurrences to be
fetched. If TM_OCC_COUNT is zero on entry, it means that there is no explicit limit
being imposed. The TM_OCC member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this request, TM_SEL_CHECK sets it to
contain the number of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise, report
the number of rows fetched to TM_OCC_COUNT.
Programming Guide 8-25

CONTINUE_DOWN
! TM_VIEW (described under VIEW)

! TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR requests
are generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.
8-26 Transaction Manager Commands

CONTINUE_TOP
CONTINUE_TOP

Fetches the first set of rows from the file

int sm_tm_command ("CONTINUE_TOP [tableViewName [tableViewScope]
]");

t

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive. If tableViewName is specified, the command is applied according
to the tableViewScope parameter. Since the entire table view tree might not
be included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description CONTINUE_TOP (not available in Web applications or three-tier processing) fetches the
first set of rows from the file. The availability of this command is dependent on the
setting of the fetch_directions property for the server view or screen. If the
fetch_directions property is set to PV_CONT_ALWAYS (Up/Down-all modes), this
command is available in update or view mode. If the fetch_directions is set to
PV_CONT_VIEW_ONLY (Up/Down-view mode), this command is available only in view
Programming Guide 8-27

CONTINUE_TOP
mode. Otherwise, an error is generated. For more information on setting the Fetch
Directions property, refer to “Scrolling Through the Select Set” on page 36-5 in
Application Development Guide.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_TOP for the specified table view and any table views linked to it via server
links. This displays the first set of rows for that server view. Then SELECT or VIEW
processing is done for any additional child table views.

The data displayed with this command is from a continuation file: it is not refetched
from the database. Therefore, any updates made to the data in this server view either
by you, or by another user, are not displayed. In order to display those updates, you
must again fetch the data from the database with a VIEW or SELECT command.

The advantage of using Panther’s continuation file is that it prevents having shared
locks on data. However, if the fetch_directions property is set to
PV_CONT_ALWAYS (Up/Down-all modes), you are responsible for implementing the
necessary locking scheme for concurrent users. For more information on using the
Version Column property to implement optimistic locking, refer to “Implementing
Optimistic Locking” on page 33-39 in Application Development Guide.

If you want to use the database engine's facilities for non-sequential scrolling, you need
to add processing for the request events to the engine-specific transaction model.

Push buttons and menu selections for the CONTINUE_TOP command can choose to set
the class property to continue_button which activates the option only in view and
update modes or to continue_view_button which activates the option only in view
mode.

Sequence Use CONTINUE_TOP after SELECT or VIEW which generate a database query and display
the first set of query results or after any other CONTINUE command.

Events

Table 8-11 Request event for the CONTINUE_TOP

Request Traversal Typical Processing

TM_CONTINUE_TOP The table views in the specified server view See below
8-28 Transaction Manager Commands

CONTINUE_TOP
The following requests can be generated by the CONTINUE_TOP command to ascertain
if the changes from the previous command have been saved and, if desired, to discard
those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

! TM_PRE_SELECT (described under SELECT)

! TM_SELECT (described under SELECT)

! TM_POST_SELECT (described under SELECT)

! TM_PRE_VIEW (described under VIEW)

! TM_VIEW (described under VIEW)

Table 8-12 Request and slice event processing for CONTINUE_TOP

Slices Typical Processing

TM_CONTINUE_TOP A select cursor must have been set up for the server view encompassing the current table
view or nothing more is done.

Calls sm_tm_continuation_availability to check if the command is available.
If not, an error is issued.

On entry, TM_OCC_COUNT specifies the maximum number of occurrences to be fetched.
If TM_OCC_COUNT is zero on entry, it means that there is no explicit limit being
imposed. The TM_OCC member on entry specifies the first occurrence to be fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this request, TM_SEL_CHECK sets it to
contain the number of rows fetched.) The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise, report the
number of rows fetched to TM_OCC_COUNT.
Programming Guide 8-29

CONTINUE_TOP
! TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR requests
are generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.
8-30 Transaction Manager Commands

CONTINUE_UP
CONTINUE_UP

Fetches the previous set of rows from the file

int sm_tm_command ("CONTINUE_UP [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description CONTINUE_UP (not available in Web applications or three-tier processing) fetches the
previous set of rows from the file. The availability of this command is dependent on
the setting of the fetch_directions property for the server view or screen. If the
fetch_directions property is set to PV_CONT_ALWAYS (Up/ Down-all modes), this
command is available in update or view mode. If the fetch_directions property is
Programming Guide 8-31

CONTINUE_UP
set to PV_CONT_VIEW_ONLY (Up/Down-view mode), this command is available only
in view mode. Otherwise, an error is generated. For more information on setting the
Fetch Directions property, refer to “Scrolling Through the Select Set” on page 36-5 in
Application Development Guide.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_UP for the specified table view and any table views linked to it via server
links. This displays the previous set of rows for that server view. Then SELECT or VIEW
processing is done for any additional child table views.

You should be aware that the data displayed with this command is from a continuation
file. It is not re-fetched from the database. Therefore, any updates made to the data in
this server view either by you, or by another user, are not displayed. In order to display
those updates, you must again fetch the data from the database with a VIEW or SELECT
command.

The advantage of using Panther’s continuation file is that it prevents having shared
locks on data. However, if the fetch_directions property is set to
PV_CONT_ALWAYS (Up/Down-all modes), you are responsible for implementing the
necessary locking scheme for concurrent users. For more information on using the
Version Column property to implement optimistic locking, refer to “Implementing
Optimistic Locking” on page 33-39 in Application Development Guide.

If you want to use the database engine's facilities for non-sequential scrolling, you need
to add processing for the request events to the engine-specific transaction model.

Push buttons and menu selections for the CONTINUE_UP command can choose to set
the class property to continue_button which activates the option only in view and
update modes or to continue_view_button which activates the option only in view
mode.

Sequence Use CONTINUE_UP after SELECT or VIEW which generate a database query and display
the first set of query results or after any other CONTINUE command.

Events

Table 8-13 Request event for CONTINUE_UP

Request Traversal Typical Processing

TM_CONTINUE_UP The table views in the specified server view See below
8-32 Transaction Manager Commands

CONTINUE_UP
The following requests can be generated by the CONTINUE_UP command to ascertain
if the changes from the previous command have been saved and, if desired, to discard
those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

! TM_PRE_SELECT (described under SELECT)

! TM_SELECT (described under SELECT)

! TM_POST_SELECT (described under SELECT)

! TM_PRE_VIEW (described under VIEW)

Table 8-14 Request and slice event processing for CONTINUE_UP

Slices Typical Processing

TM_CONTINUE_UP A select cursor must have been set up for the server view encompassing the current table
view or nothing more is done.

Calls sm_tm_continuation_availability to check if the command is available.
If not, an error is issued.

On entry, TM_OCC_COUNT specifies the maximum number of occurrences to be fetched.
If TM_OCC_COUNT is zero on entry, it means that there is no explicit limit being
imposed. The TM_OCC member on entry specifies the first occurrence to be fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this request, TM_SEL_CHECK sets it to
contain the number of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise, report the
number of rows fetched to TM_OCC_COUNT.
Programming Guide 8-33

CONTINUE_UP
! TM_VIEW (described under VIEW)

! TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR requests
are generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.
8-34 Transaction Manager Commands

COPY
COPY

Duplicates the data on the screen so it can be edited

int sm_tm_command ("COPY");

Description COPY copies the data on the screen for use in the next insertion.

After you select COPY, the following steps occur:

1. If you have made changes in the table views on which this command operates in
a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are prompted to discard
your changes. If you choose OK, changes are discarded; however, the data remains
visible and is treated as though you had just typed it in after a NEW command. If
you choose Cancel, you return to the screen so you can save your changes.

2. The data currently displayed on the screen is copied.

3. The transaction mode is set to new. By default, this mode clears all the
protection bits in updatable table views to reflect that data entry is available in
those widgets.

4. Edit the data as much as you wish. Select SAVE to insert the data into the
database. If you select SAVE without changing any data, the transaction manager
generates an INSERT statement for the duplicate data. Depending on the engine,
this could result in a duplicate entry or in an engine error.

Push buttons and menu selections for the COPY command can choose to set the class
property to copy_button. By default, copy_button is active in all transaction modes.

Sequence COPY is available after you enter new data using NEW and SAVE. It is also available after
SELECT or VIEW which display data on the screen. Select SAVE after you finish your
edits.

Events The following requests can be generated by the COPY command to ascertain whether
the changes from the previous command have been saved and, if desired, to discard
those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)
Programming Guide 8-35

COPY
! TM_POST_CLOSE (described under CLOSE)

Since no TM_DISCARD request is made for the COPY command, the discard flag used in
TM_POST_SAVE1 is not set.

See Also NEW

Table 8-15 Request events for COPY

Request Traversal Typical Processing

TM_PRE_COPY By table/server view from the
specified table view

Do nothing

TM_COPY By table/server view from the
specified table view

Do nothing (sm_bi_initialize is called for the
table view by the transaction manager after this request)

TM_POST_COPY By table/server view from the
specified table view

Do nothing
8-36 Transaction Manager Commands

COPY_FOR_UPDATE
COPY_FOR_UPDATE

Changes the transaction manager to update mode

int sm_tm_command ("COPY_FOR_UPDATE");

Description COPY_FOR_UPDATE changes the current mode to update. This allows the data currently
displayed on the screen to be modified, as though it had been fetched from the
database. After you select COPY_FOR_UPDATE, the transaction manager initializes
before image processing.

If you edit the data and select SAVE, the transaction manager generates statements as if
the data now on the screen had come from a SELECT command. If corresponding data
is not in the database, the results might not be what you expect.

Push buttons and menu selections for the COPY_FOR_UPDATE command can choose to
set the class property to continue_button since, by default, continue_button is
active in view or update modes.

Sequence COPY_FOR_UPDATE is available from any mode. Select SAVE after you finish your
edits.

Events The following requests can be generated by the COPY_FOR_UPDATE command to
ascertain whether the changes from the previous command have been saved and, if
desired, discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

Table 8-16 Request events for COPY_FOR_UPDATE

Request Traversal Typical Processing

TM_PRE_COPY_FOR_UPDATE By table/server view from
the specified table view

Do nothing
Programming Guide 8-37

COPY_FOR_UPDATE
TM_COPY_FOR_UPDATE By table/server view from
the specified table view

Do nothing (sm_bi_initialize and
sm_bi_copy are called for the table view by
the transaction manager after this request)

TM_POST_COPY_FOR_UPDATE By table/server view from
the specified table view

Do nothing

Table 8-16 Request events for COPY_FOR_UPDATE (Continued)

Request Traversal Typical Processing
8-38 Transaction Manager Commands

COPY_FOR_VIEW
COPY_FOR_VIEW

Changes the transaction manager to view mode

int sm_tm_command ("COPY_FOR_VIEW");

Description COPY_FOR_VIEW makes view the current mode. After you select COPY_FOR_VIEW, the
transaction manager disables before image processing. Changes to the data currently
on the screen no longer generate updates to the data base with a SAVE command.

Push buttons and menu selections for the COPY_FOR_VIEW command can choose to set
the class property to continue_button. By default, continue_button is active in
view or update modes.

Sequence COPY_FOR_VIEW is available after any command.

Events The following requests can be generated by the COPY_FO+R_VIEW command to as
certain whether the changes from the previous command have been saved and, if
desired, discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

Table 8-17 Request events for COPY_FOR_VIEW

Request Traversal Typical Processing

TM_PRE_COPY_FOR_VIEW By table/server view from the
specified table view

Do nothing

TM_COPY_FOR_VIEW By table/server view from the
specified table view

Do nothing (sm_bi_suppress is called for
the table view by the transaction manager
after this request)

TM_POST_COPY_FOR_VIEW By table/server view from the
specified table view

Do nothing
Programming Guide 8-39

COPY_FOR_VIEW
8-40 Transaction Manager Commands

FETCH
FETCH

Fetches the next set of data from the database

int sm_tm_command ("FETCH [tableViewName [{ FETCH_SIMPLE |
FETCH_SPECIAL }]]");

Arguments tableViewName

The name of a table view in the current transaction. The table view must
either be a server view or be the server view to which the desired table view
belongs. This parameter is case sensitive. If tableViewName is not specified,
the command is applied to the root table view.

FETCH_SIMPLE

Start the fetch with the first occurrence. The number of rows fetched depends
on the size of the arrays. This is the default parameter if none is specified, or
if no table view name is specified.

FETCH_SPECIAL

Allows you to override the occurrence number and the size of the array. To
use the FETCH_SPECIAL parameter, you must set the value of TM_OCC and
TM_OCC_COUNT with sm_tm_iset before calling this command. When
FETCH_SPECIAL is specified, TM_OCC is consulted for the start position and
TM_OCC_COUNT is consulted for the count.

Description FETCH fetches the next set of rows for the specified table view.

If your screen has multiple table views and you want to fetch data for all of them at the
same time, use CONTINUE instead of FETCH, since fetch is performed only for the
specified table view.

Push buttons and menu selections for the FETCH command can choose to set the class
property to continue_button. By default, continue_button is active in view and
update modes.

Sequence The FETCH command is available after SELECT or VIEW, both of which generate a
database query and display the first set of query results.
Programming Guide 8-41

FETCH
Events

Table 8-18 Request events for FETCH

Request Traversal Typical Processing

TM_FETCH No tree traversal, since performed only for the
specified table view

Slices:

TM_FETCH, TM_SEL_CHECK

Table 8-19 Slice event processing for FETCH

Slices Typical Processing

TM_FETCH A select cursor must have been set up for the server view encompassing the current table
view or nothing more is done.

On entry, TM_OCC_COUNT specifies the maximum number of occurrences to be fetched.
If TM_OCC_COUNT is zero on entry, it means that there is no explicit limit being
imposed. The TM_OCC member on entry specifies the first occurrence to be fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this event, TM_SEL_CHECK sets it to
contain the number of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise, report the
number of rows fetched to TM_OCC_COUNT.

Give up the select cursor if there are no more rows unless a continuation file is in use.
8-42 Transaction Manager Commands

FINISH
FINISH

Closes the current transaction manager transaction

int sm_tm_command ("FINISH");

Description FINISH contains the screen exit processing needed by the transaction manager and is
called automatically on screen exit. Therefore, if you use only the default transaction
manager transaction on your screen, you do not need to explicitly call this command.

As part of its processing, FINISH closes the current transaction, which has been set
with the START or CHANGE commands. In cases where you initiate a transaction by
calling the START command, you must also call the FINISH command to close that
transaction before closing the transaction's screen. Note that you might need to call the
CHANGE command to make the transaction active before closing it with the FINISH
command.

The FINISH command is called after the named screen exit function and after the
default screen function. After FINISH, the transaction manager data structures for what
had been the current transaction no longer exist.

Events

Table 8-20 Request events for FINISH

Request Traversal Typical Processing

TM_FINISH By table/server view from the root table view. Done both for
event functions and the transaction model.

Slice:

TM_FINISH

Table 8-21 Slice event processing for FINISH

Slices Typical Processing

TM_FINISH Give up the save cursor (if it is in use) and the select cursor for the server view
encompassing the current table view (if it is in use). For engines where giving up a cursor
involves closing the cursor, the return value is TM_CHECK.

Give up data areas allocated to this transaction, but not areas that are allocated for the
transaction model, since there can be other transactions that are still active.
Programming Guide 8-43

FINISH
Example The following procedure closes two additional transactions and then changes back to
the main transaction which is assumed to have been active when the procedure is
invoked and which is closed on screen exit.

proc close_tran

vars main_tran

main_tran = sm_tm_pinquire(TM_TRAN_NAME)

call sm_tm_command("CHANGE tran1")

call sm_tm_command("FINISH")

call sm_tm_command("CHANGE tran2")

call sm_tm_command("FINISH")

call sm_tm_command("CHANGE :main_tran")

return 0

Also, refer to the START command.
8-44 Transaction Manager Commands

FORCE_CLOSE
FORCE_CLOSE

Unconditionally discards the changes to the screen

int sm_tm_command ("FORCE_CLOSE [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description FORCE_CLOSE unconditionally discards the changes to the screen without a query
message. If a table view is not specified, it sets the transaction mode to initial.
Programming Guide 8-45

FORCE_CLOSE
Push buttons and menu selections for the FORCE_CLOSE command can choose to set
the class property to close_button. By default, close_button is active in all but
initial mode.

Sequence The FORCE_CLOSE command is useful after SELECT, NEW or COPY in order to discard
changes.

Events The following requests can be generated by the FORCE_CLOSE command to discard
changes that have been made to the screen.

Table 8-23 Table 22.Slice event processing for the FORCE_CLOSE command.

Table 8-22 Request events for FORCE_CLOSE

Request Traversal Typical Processing

TM_PRE_CLOSE By table/server view from the
specified table view

SAVE/CLOSE processing is beginning. Identical
processing is performed for TM_PRE_SAVE.

TM_DISCARD By table/server view from the
specified table view

Sets a discard flag, consulted by TM_POST_SAVE1.

TM_POST_CLOSE By table/server view from the
specified table view

Generates event slices:

TM_POST_CLOSE, TM_POST_SAVE1,
TM_POST_SAVE2

For some engines, the processing in
TM_POST_SAVE1 can suggest a change to initial
mode at the end of this request.

Table 8-24 Slice event processing for FORCE_CLOSE

Slices Typical Processing

TM_POST_CLOSE Processing is identical to that of TM_POST_SAVE described under SAVE, but no save
cursor exists.

TM_POST_SAVE1 Described under SAVE, but no save cursor exists.

TM_POST_SAVE2 Described under SAVE.
8-46 Transaction Manager Commands

NEW
NEW

Prepares screen for data entry

int sm_tm_command ("NEW [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a table view in the current transaction. A table view can only be
specified if the mode has already been set to new. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description NEW clears each field and prepares it for data entry. To insert data successfully, all the
fields in a table view that are participating in the SQL INSERT statement need to have
the same number of occurrences.

After you select NEW, the following steps occur:
Programming Guide 8-47

NEW
1. If you have made changes in the table views on which this command operates in
a previous NEW, COPY or SELECT, you are prompted to discard your changes. If you
choose OK, changes are discarded and fields in the specified table views are
cleared. If you choose Cancel, you return to the screen so you can save your
changes. You must then select NEW again.

2. The fields are cleared of all previous values.

3. The transaction mode is set to new. By default, this mode clears all the
protection bits in updatable table views to reflect that data entry is available in
those widgets.

4. Before image processing for the screen is enabled. Any changes made to the
screen following this step can then be processed using SAVE.

Push buttons and menu selections for the NEW command can choose to set the class
property to new_button. By default, new_button is active in initial and view modes.

Sequence To save the additions, select SAVE as the next transaction command. To discard the
additions, select CLOSE or FORCE_CLOSE.

If you are entering a series of rows, COPY copies the data on a screen so it can then be
edited, without having to enter the data again.

Events The following requests can be generated by the NEW command to ascertain whether the
changes from the previous command have been saved and, if desired, discard those
changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

Table 8-25 Request events for NEW

Request Traversal Typical Processing

TM_PRE_NEW By table/server view from the specified
table view

Do nothing
8-48 Transaction Manager Commands

NEW
TM_NEW By table/server view from the specified
table view

Do nothing (sm_bi_initialize and
sm_bi_copy are called for the table view by the
transaction manager after this request)

TM_POST_NEW By table/server view from the specified
table view

Do nothing

Table 8-25 Request events for NEW (Continued)

Request Traversal Typical Processing
Programming Guide 8-49

REFRESH
REFRESH

Refreshes the screen in order to update the style and class settings

int sm_tm_command ("REFRESH");

Description REFRESH reapplies the styles and classes for the current mode.

Events There are no request events generated by the REFRESH command.
8-50 Transaction Manager Commands

RELEASE
RELEASE

Release the cursor used to fetch data in the transaction manager

int sm_tm_command ("RELEASE [tableViewName [tableViewScope]]");

Description RELEASE releases the database cursor used to fetch data in the transaction manager. In
two-tier applications, if a continuation file is in use, that file will no longer be
available. RELEASE is only used in special cases; generally, cursor management is part
of the SELECT, VIEW and CONTINUE command.

For some database engines, such as SYBASE CT-Lib, the CLOSE command does not
release the database locks when a SELECT command is not followed by a SAVE
command. In this case, follow the CLOSE with the RELEASE command which gives up
the locks on the database.

Sequence RELEASE has no effect unless it is called after SELECT or VIEW.

Events

Table 8-26 Request events for RELEASE

Request Traversal Typical Processing

TM_PRE_RELEASE By table/server view from the specified table view Do nothing

TM_RELEASE By table/server view from the specified table view Slice:
TM_GIVE_UP_SEL_CURSOR

TM_POST_RELEASE By table/server view from the specified table view Do nothing

Table 8-27 Slice event processing for RELEASE

Slices Typical Processing

TM_GIVE_UP_SEL_CURSOR Give up the select cursor. If the cursor name is that of an existing cursor in
the database interface, close that cursor (in which case the return value will
be TM_CHECK).
Programming Guide 8-51

SAVE
SAVE

Saves the changes made on the screen to the database

int sm_tm_command ("SAVE [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.
If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0. Refer to the description for more information about partial
commands.
If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description SAVE compares the current screen to the before image data and generates the necessary
statements needed to update the database.

After you select SAVE, the following steps occur:

1. The transaction manager checks to see that the mode is not initial or view.
8-52 Transaction Manager Commands

SAVE
2. For engines requiring it, the transaction model starts a database transaction.

3. The transaction model calls the SQL generator to execute the necessary
statements according to the changes that were entered on the screen. Statements
can only be generated for updatable table views.

Note: Some database engines discard the select set when a commit or rollback
is performed. For those engines, the distributed transaction models give
up the select cursor after a commit or rollback.

4. If an error is encountered, the database transaction is rolled back. If no errors are
reported and the SAVE command has been specified as a full command, the
transaction model commits the database transaction.

Push buttons and menu selections for the SAVE command can choose to set the class
property to save_button. By default, save_button is active in new and update
modes.

Primary Key

Changes

The transaction manager is aware of any primary key changes. If the primary key is
updated, the common transaction model deletes the row containing the old value of the
primary key and inserts a row contains the new value of the primary key. If the primary
key is cleared, the common transaction model deletes the row corresponding to the
cleared key fields.

Partial

Commands

When a table view is specified for a command, the transaction manager considers it to
be a partial command since the command may not apply to the entire tree. In the
standard transaction models, the processing for partial SAVE commands does not
commit the database transaction. Therefore, you must perform an explicit DBMS
COMMIT. Otherwise, the changes could be rolled back if a later rollback is performed
or if the database engine automatically performs a rollback when the connection is
closed.

Events The following request events can be generated by the SAVE command:

! TM_PRE_SAVE

! TM_SAVE

! TM_DELETE

! TM_UPDATE

! TM_INSERT

! TM_SAVE_ENDING
Programming Guide 8-53

SAVE
! TM_POST_SAVE

Table 8-28 Request events for SAVE

Request Traversal Typical Processing

TM_PRE_SAVE By table/server view from the specified table
view

Note that SAVE/CLOSE processing
is beginning. (Processing is identical
for TM_PRE_CLOSE.)
close_or_save_started flag
is set to 1, discard flag is set to 0, and
reuse_cursor flag is set to 0.

TM_SAVE By table/server view from the specified table
view

Do nothing

TM_DELETE Modify table views in the order specified in the
link properties, with one request in each table
view for each row in that table view that has
changed

Slices:

TM_DELETE,
TM_GET_SAVE_CURSOR,
TM_DELETE_DECLARE,
TM_DELETE_EXEC

TM_UPDATE Modify table views in the order specified in the
link properties, with one request in each table
view for each row in that table view that has
changed

Slices:

TM_UPDATE,
TM_GET_SAVE_CURSOR,
TM_UPDATE_DECLARE,
TM_UPDATE_EXEC

TM_INSERT Modify table views in the order specified in the
link properties, with one request in each table
view for each row in that table view that has
changed

Slices:

TM_INSERT,
TM_GET_SAVE_CURSOR,
TM_INSERT_DECLARE,
TM_INSERT_EXEC

TM_SAVE_ENDING By table/server view from the specified table
view

Call sm_tm_handling to invoke
an appropriate function.

TM_POST_SAVE By table/server view from the specified table
view

Slices:

TM_POST_SAVE,
TM_POST_SAVE1,
TM_GIVE_UP_SAVE_CURSOR,
TM_POST_SAVE2
8-54 Transaction Manager Commands

SAVE
Table 8-29 Slice event processing for SAVE

Slices Typical Processing

TM_DELETE Find out what type of change was made to the current occurrence by checking
the return code from sm_bi_compare.

If the return code is BI_KEY_CHANGED, BI_KEY_NULLED, or
BI_DELETED, push the TM_GET_SAVE_CURSOR, TM_DELETE_DECLARE
and TM_DELETE_EXEC events onto the stack.

TM_GET_SAVE_CURSOR If a name does not exist for the save cursor, generate it. For some engines, push
the TM_SAVE_BEGIN event onto the stack.

TM_SAVE_BEGIN For some engines, start a database transaction with DBMS BEGIN or a
savepoint with DBMS SAVE.

TM_DELETE_DECLARE For some engines, give up any select cursor relating to this table view. Call
dm_exec_sql to declare the save cursor for this deletion, unless the
occurrence is part of an array and previously generated SQL is being reused.

TM_DELETE_EXEC Call dm_exec_sql to execute the save cursor for this deletion. The return
value is TM_CHECK_ONE_ROW which tests that only one row was deleted.

TM_UPDATE Find out what type of change was made to the current occurrence by checking
the return code from sm_bi_compare.

If the return code is BI_UPDATED, push the TM_GET_SAVE_CURSOR,
TM_UPDATE_DECLARE and TM_UPDATE_EXEC events onto the stack.

TM_UPDATE_DECLARE For some engines, give up any select cursor relating to this table view. Call
dm_exec_sql to declare the save cursor for this update, unless the
occurrence is part of an array and previously generated SQL is being reused.

TM_UPDATE_EXEC Call dm_exec_sql to execute the save cursor for this update. The return
value is TM_CHECK_ONE_ROW which tests that only one row was updated.

TM_INSERT Find out what type of change was made to the current occurrence by checking
the return code from sm_bi_compare.

If the return code is BI_KEY_CHANGED or BI_INSERTED, push the
TM_GET_SAVE_CURSOR, TM_INSERT_DECLARE and TM_INSERT_EXEC
events on the stack.

TM_INSERT_DECLARE For some engines, give up any select cursor relating to this table view. Call
dm_exec_sql to declare the cursor for this insertion, unless the occurrence
is part of an array and previously generated SQL is being reused.
Programming Guide 8-55

SAVE
TM_INSERT_EXEC Call dm_exec_sql to execute the save cursor for this insertion. The return
value is TM_CHECK_ONE_ROW which tests that only one row was inserted.

TM_POST_SAVE If this is the first TM_POST_SAVE event since the last TM_PRE_CLOSE or
TM_PRE_SAVE, push the TM_POST_SAVE1 event on the stack. Otherwise, if
TM_DISCARD or TM_POST_SAVE1 set the saving worked flag, push the
TM_POST_SAVE2 event on the stack.

TM_POST_SAVE1 The existence of a save cursor indicates that SQL statements were executed so
the saving worked flag is set to 1.

If there is a save cursor and if TM_STATUS is equal to 0 (indicating that the
statements executed successfully) and if TM_FULL is equal to 1 (indicating a
full SAVE command), the TM_SAVE_COMMIT event is pushed onto the stack.

If there is a save cursor and if TM_STATUS is non-zero (indicating that the
statements failed), the TM_SAVE_ROLLBACK is pushed onto the stack. For
rollbacks, the saving worked flag is reset to 0 since no changes were actually
made.

TM_SAVE_ROLLBACK Push the TM_SAVE_SET_MODE event onto the stack. Do a DBMS ROLLBACK.

TM_SAVE_COMMIT For full SAVE commands (when TM_FULL is set to 1), do a DBMS COMMIT.
If it fails, push the TM_SAVE_ROLLBACK event onto the stack. If it succeeds,
push the TM_SAVE_SET_MODE event onto the stack. If the saving worked
flag is set to 1, push the TM_GIVE_UP_SAVE_CURSOR and
TM_POST_SAVE2 events on the stack and set the discard flag.

TM_SAVE_SET_MODE Some engine-specific models set TM_VALUE to TM_INITIAL_MODE to
indicate that processing should resume in initial mode. (These engines discard
the select set when commits and roll backs are performed.)

TM_GIVE_UP_SAVE_CURSOR Give up the save cursor.

TM_POST_SAVE2 Call sm_bi_initialize. Set TM_OCC to 1 and TM_OCC_COUNT to -1;
then, call sm_bi_copy.

Table 8-29 Slice event processing for SAVE (Continued)
8-56 Transaction Manager Commands

SELECT
SELECT

Fetches data from the database to be updated

int sm_tm_command ("SELECT [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a server view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. (Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.) The specified table view must either be a server view or be the
server view to which the desired table view belongs.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description SELECT fetches data from the database so it can be modified. In order to success fully
update data or insert new data, all the fields in a server view which are included in the
select list need to have the same number of occurrences.

After you choose SELECT, the following steps occur:
Programming Guide 8-57

SELECT
1. If you have made changes in the table views on which this command operates in
a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are prompted to discard
your changes. If you choose OK, changes are discarded and fields in the specified
table views are cleared. If you choose Cancel, you return to the screen so you can
save your changes.

2. The transaction mode is set to update unless a table view is specified and the
mode is not initial mode. By default, update mode protects the primary key
fields from data entry and sets the display attributes differently for key and
non-key fields.

3. If the Count Select property is set to Yes, the transaction manager issues a
SELECT statement using COUNT(*) to find the number of rows in the select set.
If this number exceeds the amount set in the Count Threshold property, a
message box offers the user the choice of discontinuing data selection.

4. The screen displays the first set of data for all linked table views. When you
choose SELECT, the standard transaction models have the SQL generator execute
a SELECT statement for the database table named in the root table view and any
table views connected to it via a server link. Then, recursively, SELECT
statements are issued for the child table views having sequential links, and any
table views connected to those child table views by server links.

5. The before image, or snapshot, of the screen is taken for the screen`s updatable
table views. An updatable table view must have its primary key fields on screen.
Any changes made to the screen following this step can then be processed using
a SAVE command.

Push buttons and menu selections for the SELECT command can choose to set the class
property to view_button. By default, view_button is active in initial or view modes.

Using QBE If you want to select a specific record or group of records, set the widget's
use_in_where property to PV_YES and the type of operator (where_operator) to be
used in the WHERE clause. Then, in the transaction manager, choose CLEAR to clear the
fields, enter a value in your query field, and then choose SELECT. The screen displays
the specified information.

Using the Count

Select Property

If the server view's Count Select and Count Warning properties are set to Yes, the
application will warn users about large select sets; however, the SELECT statement is
performed twice, and the tables must remain locked for the result to be the same for
both statements.
8-58 Transaction Manager Commands

SELECT
Sequence To save the changes or additions made to the selected data, choose SAVE as the next
transaction command.

To display the next row of information, choose CONTINUE as the next transaction
command. If you have updated the data on the screen, you are prompted to discard your
changes. If you choose OK, changes are discarded. If you choose Cancel, you return to
the screen so you can save your changes.

To discard any changes you have made to the screen, choose CLOSE or FORCE_CLOSE.
For some database engines, such as SYBASE CT-Lib, the CLOSE command does not
release the database locks when a SELECT command is not followed by a SAVE
command. In this case, follow the CLOSE with the RELEASE command which gives up
the locks on the database.

Events The following request events can be generated by the SELECT command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The SELECT command generates TM_CLEAR requests if TM_SELECT for a parent table
view returns no data. In that case, TM_CLEAR is generated for all subordinate table
views, but not for table views at the same level of the tree. TM_CLEAR requests are
described under CLEAR.

Table 8-30 Request events for SELECT

Request Traversal Typical Processing

TM_PRE_SELECT By table/server view from the
specified table view

Do nothing
Programming Guide 8-59

SELECT
Table 8-31 Table 29. the SELECT command.

TM_SELECT By table/server view from the
specified table view

Slices:

TM_SELECT,
TM_GET_SEL_CURSOR,
TM_PREPARE_CONTINUE,
TM_SET_SEL_COUNT_FLAG,
TM_SEL_GEN,
TM_SEL_BUILD_PERFORM,
TM_SEL_COUNT_CHECK,
TM_CLEAR_SEL_COUNT_FLAG,
TM_SEL_CHECK
(sm_bi_initialize is called for the
table view by the transaction manager
after this request. If rows were fetched,
sm_bi_copy is also called.)

TM_POST_SELECT By table/server view from the
specified table view

Do nothing

Table 8-30 Request events for SELECT (Continued)

Request Traversal Typical Processing

Table 8-32 Slice event processing for SELECT

Slices Typical Processing

TM_SELECT TM_OCC_COUNT is zeroed. At the end of processing for this request, it
contains the number of rows fetched (set, if at all, by TM_SEL_CHECK).

If the table view is the first one in the current server view:

-Push the TM_GET_SEL_CURSOR (only if there is no select cursor already)
and the TM_PREPARE_CONTINUE events on the stack.

-If use_select_count is set to 1, push TM_SET_SEL_COUNT_FLAG,
TM_SEL_GEN, TM_SEL_BUILD_PERFORM, TM_SEL_COUNT_CHECK, and
TM_CLEAR_SEL_COUNT_FLAG events on the stack.

-Push the TM_SEL_GEN, TM_SEL_BUILD_PERFORM, and TM_SEL_CHECK
events on the stack.

If the table view is not the first one in the server view, nothing more is done
for this request, and the number of rows fetched for this request is correctly
reported as zero.
8-60 Transaction Manager Commands

SELECT
If TM_SELECT for a parent table view returns no data, TM_CLEAR requests are generated
for all subordinate table views, but not for table views at the same level of the tree.
TM_CLEAR requests are described under CLEAR.

TM_GET_SEL_CURSOR If a name does not exist for the Panther select cursor, generate it.

(Depending on the engine, a Panther cursor may or may not correspond to a
database cursor.)

TM_PREPARE_CONTINUE If the select cursor does not already exist, a dummy DECLARE CURSOR
command is issued.

If sm_tm_continuation_validity reports that continuation file
commands (like CONTINUE_TOP) are valid, DBMS STORE FILE is issued.
If the function reports that those commands are invalid, DBMS STORE is
issued.

TM_SET_SEL_COUNT_FLAG If count_select is set to Yes, set TM_SV_SEL_COUNT to 1.

TM_SEL_GEN Generate data structures with dm_gen_sql_info that are used in the
TM_SEL_BUILD_PERFORM slice to build the SQL statements.

If TM_SV_SEL_COUNT is 1, modify the structure to use count(*) and alias the
result into the server view's count_result property.

TM_SEL_BUILD_PERFORM Build, and then, if there was no error in building, perform SELECT (and other
DBMS commands) with dm_exec_sql. Free the select information.

TM_SEL_COUNT_CHECK If count_result > count_threshold, check count_warning to see
if a Y/N message box should be displayed.

If count_result is 0, push the TM_GIVE_UP_SEL_CURSOR event and
call sm_tm_clear.

TM_CLEAR_SEL_COUNT_FLAG Set TM_SV_SEL_COUNT to 0.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor. Otherwise,
report the number of rows fetched to TM_OCC_COUNT. Give up the select
cursor if there are no more rows un less a continuation file is in use. (On
engines where this means that the cursor is closed, the return code is
TM_CHECK. Otherwise, the return code is TM_OK.)

Table 8-32 Slice event processing for SELECT

Slices Typical Processing
Programming Guide 8-61

START
START

Initializes a new transaction tree

int sm_tm_command ("START transaction-name [tableViewName]");

Arguments transaction-name

The name of a transaction to be used for this screen.

tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive. If tableViewName is not specified, the command is applied for
each table/server view, starting with the root table view. This is known as a
full command, and sm_tm_command sets TM_FULL to 1.

Description START initiates a transaction manager transaction and makes it the current transaction.
The mode is set to initial. Since this command is called automatically on screen entry
whenever a root table view can be determined, you only call this command explicitly
when you are using more than one transaction manager transaction on the same screen.

Any transaction begun with an explicit call to the START command must also be closed
by an explicit call to the FINISH command. If necessary, use the CHANGE command to
make the transaction active before closing it with the FINISH command.

A transaction manager transaction must be in progress in order to call other transaction
manager commands.

Note: In screen entry events, the unnamed JPL procedure is called before the START
command. Therefore, transaction manager commands cannot be invoked in
the unnamed procedure. After the START command is called, Panther then
calls the default screen function and the named screen entry function.

Sequence Once a transaction has been initiated with the START command, you can make it the
current transaction using the CHANGE command.
8-62 Transaction Manager Commands

START
Events

Example The following example illustrates the use of the START, CHANGE, and FINISH
commands in order to execute transaction manager commands on an unlinked table
view.

In this example, pricecats is the unlinked table view. The procedure
start_new_tran first finds the name of the current transaction, starts a new
transaction for the pricecats table view, and then changes to that transaction in order
to execute a VIEW command. The procedure change_to_main changes back to the
original transaction in order to execute transaction manager commands on those table
views. The procedure change_to_new_tran changes to the new transaction in order
to execute transaction manager commands on the pricecats table view. The
procedure exit is set as the value of the screen's exit_function property.

JPL Procedures:
vars main_tran(31)
proc start_new_tran
main_tran=sm_tm_pinquire(TM_TRAN_NAME)
call sm_tm_command("START price_tran pricecats")
call sm_tm_command("CHANGE price_tran")
call sm_tm_command("VIEW")
return

proc change_to_main
call sm_tm_command("CHANGE :main_tran")
return

proc change_to_new_tran
call sm_tm_command("CHANGE price_tran")
return

Screen exit function property invokes following procedure.

proc exit(screen, flags)
if (flags & K_EXIT)
{
call sm_tm_command("CHANGE price_tran")
 call sm_tm_command("FINISH")

Table 8-33 Request events for START

Request Traversal Typical Processing

TM_START By table/server view from the specified table view. Done both
for event functions and the transaction model.

Do nothing
Programming Guide 8-63

START
 call sm_tm_command("CHANGE :main_tran")
 call sm_tm_command("FINISH")
}
return
8-64 Transaction Manager Commands

VIEW
VIEW

Fetches data from the database for display purposes

int sm_tm_command ("VIEW [tableViewName [tableViewScope]]");

Arguments tableViewName

The name of a server view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. (Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.) The specified table view must either be a server view or be the
server view to which the desired table view belongs.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description VIEW fetches data from the database for display purposes only.

When VIEW is selected the following steps occur:
Programming Guide 8-65

VIEW
1. If you have made changes in the table views on which this command operates in
a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are prompted to discard
your changes. If you choose OK, changes are discarded and fields in the specified
table views are cleared. If you choose Cancel, you return to the screen so you can
save your changes.

2. The transaction mode is set to view unless a table view is specified. By default,
view mode protects all fields from data entry.

3. If the Count Select property is set to Yes, the transaction manager issues a
SELECT statement using COUNT(*) to find the number of rows in the select set.
If this number exceeds the amount set in the Count Threshold property, a
message box offers the user the choice of discontinuing data selection.

4. The screen displays the first set of data for all linked table views. When you
choose VIEW, the common transaction model has the SQL generator execute a
SELECT statement for the database table named in the root table view and any
table views connected to it via a server link. Then, recursively, SELECT
statements are issued for the child table views having sequential links, and any
table views connected to those child table views by server links. If the query
does not return any rows for the first server view, no data are displayed for the
remaining server views. (A query which successfully returns rows sets
TM_OCC_COUNT as part of the TM_SEL_CHECK slice. When TM_OCC_COUNT is
greater than 0, the query is generated for the next server view.)

Push buttons and menu selections for the VIEW command can choose to set the class
property to view_button. By default, view_button is active in initial or view modes.

Using QBE If you want to select a specific record or group of records, you need to set the
use_in_where property to PV_YES and set the type of operator (where_operator
property) to be used in the WHERE clause. Then, in the transaction manager, choose
CLEAR to clear the fields, enter a value in your query field, and then choose VIEW. The
screen displays the specified information.

Using the Count

Select Property

If the server view's Count Select and Count Warning properties are set to Yes, the
application will warn users about large select sets; however, the SELECT statement is
performed twice, and the tables must remain locked for the result to be the same for
both statements.

Sequence To display additional data in two-tier processing, choose any CONTINUE command.
8-66 Transaction Manager Commands

VIEW
Events The following request events can be generated by the VIEW command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

! TM_PRE_CLOSE (described under CLOSE)

! TM_CLOSE (described under CLOSE)

! TM_QUERY (described under CLOSE)

! TM_DISCARD (described under CLOSE)

! TM_POST_CLOSE (described under CLOSE)

The VIEW command generates TM_CLEAR requests if TM_VIEW for a parent table view
returns no data. In that case, TM_CLEAR is generated for all subordinate table views, but
not for table views at the same level of the tree. TM_CLEAR requests are described under
CLEAR.

Table 8-34 Transaction manager command.

Table 8-35 Request events for VIEW

Request Traversal Typical Processing

TM_PRE_VIEW By table/server view from the specified table view Do nothing

TM_VIEW By table/server view from the specified table view Slices:

TM_VIEW, TM_GET_SEL_CURSOR,
TM_PREPARE_CONTINUE,
TM_SET_SEL_COUNT_FLAG,
TM_SEL_GEN,
TM_SEL_BUILD_PERFORM,
TM_SEL_COUNT_CHECK,
TM_CLEAR_SEL_COUNT_FLAG,
TM_SEL_CHECK (sm_bi_suppress
is called for the table view by the
transaction manager after this request.)

TM_POST_VIEW By table/server view from the specified table view Do nothing
Programming Guide 8-67

VIEW
Table 8-36 Slice event processing for VIEW

Slices Typical Processing

TM_VIEW TM_OCC_COUNT is zeroed. At the end of processing for this request, it
contains the number of rows fetched (set, if at all, by TM_SEL_CHECK).

If the table view is the first one in the current server view:

-Push the TM_GET_SEL_CURSOR (only if there is no select cursor already)
and the TM_PREPARE_CONTINUE events on the stack.

-If use_select_count is set to 1, push TM_SET_SEL_COUNT_FLAG,
TM_SEL_GEN, TM_SEL_BUILD_PERFORM, TM_SEL_COUNT_CHECK, and
TM_CLEAR_SEL_COUNT_FLAG events on the stack.

-Push the TM_SEL_GEN, TM_SEL_BUILD_PERFORM, and
TM_SEL_CHECK events on the stack.

If the table view is not the first one in the server view, nothing more is done
for this request, and the number of rows fetched for this request is correctly
reported as zero.

TM_GET_SEL_CURSOR If a name does not exist for the Panther select cursor, generate it.

(Depending on the engine, a Panther cursor may or may not correspond to a
database cursor.)

TM_PREPARE_CONTINUE If the select cursor does not already exist, a dummy DBMS DECLARE
CURSOR command is issued.

If sm_tm_continuation_validity reports that continuation file
commands (like CONTINUE_TOP) are valid, DBMS STORE FILE is issued.
If the function reports that those commands are invalid, DBMS STORE is
issued.

TM_SET_SEL_COUNT_FLAG If count_select is set to Yes, set TM_SV_SEL_COUNT to 1.

TM_SEL_GEN Generate data structures with dm_gen_sql_info that are used in the
TM_SEL_BUILD_PERFORM slice to build the SQL statements.

If TM_SV_SEL_COUNT is 1, modify the structure to use count(*) and alias
the result into the server view's count_result property.

TM_SEL_BUILD_PERFORM Build, and then, if there was no error in building, perform SELECT (and other
DBMS commands) with dm_exec_sql. Free the select information.
8-68 Transaction Manager Commands

VIEW
If TM_VIEW for a parent table view returns no data, TM_CLEAR requests are generated
for all subordinate table views, but not for table views at the same level of the tree.
TM_CLEAR requests are described under CLEAR.

TM_SEL_COUNT_CHECK If count_result > count_threshold, check count_warning to
see if a Y/N message box should be displayed.

If count_result is 0, push the TM_GIVE_UP_SEL_CURSOR event and
call sm_tm_clear.

TM_CLEAR_SEL_COUNT_FLAG Set TM_SV_SEL_COUNT to 0.

TM_SEL_CHECK If there was an error in earlier processing, give up the select cursor.
Otherwise, report the number of rows fetched to TM_OCC_COUNT. Give up
the select cursor if there are no more rows un less a continuation file is in use.

Table 8-36 Slice event processing for VIEW (Continued)
Programming Guide 8-69

WALK_DELETE
WALK_DELETE

Traverses the transaction tree in delete order

int sm_tm_command ("WALK_DELETE [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description WALK_DELETE performs a traversal of the transaction tree, using the Delete Order
property in the link widgets to determine the traversal order. If a table view's
transaction event function contains processing for the TM_WALK_DELETE request event,
it is executed.
8-70 Transaction Manager Commands

WALK_DELETE
Events A TM_WALK_DELETE request event is generated by the WALK_DELETE command, but no
processing is associated with this event in the transaction models.
Programming Guide 8-71

WALK_INSERT
WALK_INSERT

Traverses the transaction tree in insert order

int sm_tm_command ("WALK_INSERT [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description WALK_INSERT performs a traversal of the transaction tree, using the Insert Order
property in the link widgets to determine the traversal order. If a table view's
transaction event function contains processing for the TM_WALK_INSERT request event,
it is executed.
8-72 Transaction Manager Commands

WALK_INSERT
Events A TM_WALK_INSERT request event is generated by the WALK_INSERT command, but no
processing is associated with this event in the transaction models.
Programming Guide 8-73

WALK_SELECT
WALK_SELECT

Traverses the transaction tree in select order

int sm_tm_command ("WALK_SELECT [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description WALK_SELECT performs a traversal of the transaction tree, starting with the root
table/server view, unless another table/server view is specified. If a table view's
transaction event function contains processing for the TM_WALK_SELECT request event,
it is executed.
8-74 Transaction Manager Commands

WALK_SELECT
Events A TM_WALK_SELECT request event is generated by the WALK_SELECT command, but no
processing is associated with this event in the transaction models.
Programming Guide 8-75

WALK_UPDATE
WALK_UPDATE

Traverses the transaction tree in update order

int sm_tm_command ("WALK_UPDATE [tableViewName [tableViewScope]
]");

Arguments tableViewName

The name of a table view in the current transaction. This parameter is case
sensitive.

If tableViewName is specified, the command is applied according to the
tableViewScope parameter. Since the entire table view tree might not be
included, this is known as a partial command, and sm_tm_command sets
TM_FULL to 0.

If tableViewName is not specified, the command is applied for each
table/server view, starting with the root table view. This is known as a full
command, and sm_tm_command sets TM_FULL to 1.

tableViewScope

One of the following parameters, which must be preceded by a table view
name.

" TV_AND_BELOW which applies the command to the specified table view
and all table views below it on the tree. If no parameter is specified,
the transaction manager acts as though TV_AND_BELOW was supplied.

" BELOW_TV which applies the command to the table views below the
specified table view.

" TV_ONLY which applies the command to the specified table view only.

" SV_ONLY which applies the command only to the table views of the
specified server view.

Description WALK_UPDATE performs a traversal of the transaction tree, using the Update Order
property in the link widgets to determine the traversal order. If a table view's
transaction event function contains processing for the TM_WALK_UPDATE request event,
it is executed.
8-76 Transaction Manager Commands

WALK_UPDATE
Events A TM_WALK_UPDATE request event is generated by the WALK_UPDATE command, but no
processing is associated with this event in the transaction models.
Programming Guide 8-77

WALK_UPDATE
8-78 Transaction Manager Commands

CHAPTER
9 Transaction Model
Events

The transaction manager accesses two layers of transaction models: the common
model and a database-specific model. The common transaction model contains the
functionality common to all of the database engines; the database-specific model
contains processing necessary for a specific database engine.

The source code for the database-specific transaction models is provided in the
distribution and can be modified to make global changes in transaction manager
functionality. The common model should not be modified; however, the source code
is available for reference.

! Common Transaction Model (page 9-2)

! Database-Specific Transaction Models (page 9-13)

For more information, refer to Application Development Guide—Chapter 35,
“Generating Transaction Manager Events,” for how the transaction manager uses the
transaction model and to Chapter 32, “Writing Transaction Event Functions,” for an
explanation of the return codes.
Programming Guide 9-1

Common Transaction Model
Common Transaction Model

Table 9-1lists the events generated for each transaction manager command in the
common model. The events are listed in the table in the order in which they are
processed. Error and diagnostic events are indicated for the events which might
generate them, although many of the error events shown are unlikely to be
encountered. The error checking events are done after the events that give rise to them,
and before any other event processing.

The transaction manager command documentation contains a description of the
processing for each event; refer to Chapter 8, “Transaction Manager Commands.”

Reading the Event Table

For compactness, whenever it is possible, the lower level events are shown on the same
line as the higher level events that give rise to them. Thus, the entry for the FETCH
command compresses the information about six events into the following two lines:

! The FETCH command generates only one request, TM_FETCH.

! TM_FETCH in its own right can cause a TM_TEST_ERROR event to be generated
by the transaction manager (by returning TM_CHECK).

! The TM_TEST_ERROR event can cause a TM_NOTE_FAILURE event to generated
by transaction manager (by returning TM_FAILURE).

! TM_FETCH also has a slice that it generates, TM_SEL_CHECK.

Command Request Slice Slice Error Error

FETCH TM_FETCH . . E F

. . TM_SEL_CHECK TM_SEL_CHECK E F
9-2 Transaction Model Events

Common Transaction Model
! TM_SEL_CHECK can cause a TM_TEST_ERROR event to be generated by the
transaction manager (by returning TM_CHECK).

! The TM_TEST_ERROR event can cause a TM_NOTE_FAILURE event to be
generated by transaction manager (by returning TM_FAILURE).

For a description of the error events, refer to page 9-12, “Error and Diagnostic Events.”

Table 9-1 Transaction manager request events

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

CHANGE

CLEAR PRE_CLOSE

CLOSE

QUERY

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

PRE_CLEAR

CLEAR

POST_CLEAR

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
Programming Guide 9-3

Common Transaction Model
CLOSE PRE_CLOSE

CLOSE

QUERY

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
9-4 Transaction Model Events

Common Transaction Model
CONTINUE FETCH - E /F SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

PRE_SELECT

SELECT GET_SEL_CURSOR - F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_SELECT

PRE_VIEW

VIEW GET_SEL_CURSOR - F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_VIEW

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
Programming Guide 9-5

Common Transaction Model
CONTINUE_BOTTOM CONTINUE_BOTTOM - E,F/F SEL_CHECK

GIVE_UP_SEL_CURSOR

PRE_SELECT

SELECT GET_SEL_CURSOR - F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_SELECT

PRE_VIEW

VIEW GET_SEL_CURSOR - F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_VIEW

CONTINUE_DOWN CONTINUE_DOWN - E,F/F refer to CONTINUE_BOTTOM for the
remainder of the requests and slices

CONTINUE_TOP CONTINUE_TOP - E,F/F refer to CONTINUE_BOTTOM for the
remainder of the requests and slices

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
9-6 Transaction Model Events

Common Transaction Model
CONTINUE_UP CONTINUE_UP - E,F/F refer to CONTINUE_BOTTOM for the
remainder of the requests and slices

COPY PRE_CLOSE

CLOSE

QUERY

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

PRE_COPY

COPY

POST_COPY

COPY_FOR_UPDATE PRE_CLOSE

CLOSE

QUERY

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

PRE_COPY_FOR_UPDATE

COPY_FOR_UPDATE

POST_COPY_FOR_UPDATE

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
Programming Guide 9-7

Common Transaction Model
COPY_FOR_VIEW PRE_CLOSE

CLOSE

QUERY

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

PRE_COPY_FOR_VIEW

COPY_FOR_VIEW

POST_COPY_FOR_VIEW

FETCH FETCH - E/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

FINISH FINISH - E/F GIVE_UP_SAVE - E/F

GIVE_UP_SEL_CURSOR - E/F

FORCE_CLOSE PRE_CLOSE

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
9-8 Transaction Model Events

Common Transaction Model
NEW PRE_CLOSE

CLOSE

QUERY

DISCARD

POST_CLOSE POST_SAVE1

! POST_SAVE2 - F

POST_SAVE2 - F

PRE_NEW

NEW

POST_NEW

REFRESH

RELEASE PRE_RELEASE

RELEASE GIVE_UP_SEL_CURSOR - E/F

POST_RELEASE

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
Programming Guide 9-9

Common Transaction Model
SAVE PRE_SAVE

SAVE

DELETE GET_SAVE_CURSOR - F

! SAVE_BEGIN

DELETE_DECLARE - E,F/F

DELETE_EXEC - O.F/F

UPDATE GET_SAVE_CURSOR - F

! SAVE_BEGIN

UPDATE_DECLARE - E,F/F

UPDATE_EXEC - O.F/F

INSERT GET_SAVE_CURSOR - F

! SAVE_BEGIN

INSERT_DECLARE - E,F/F

INSERT_EXEC - O.F/F

Note:
TM_POST_SAVE1

is processed
differently for
SAVE

than for other
commands.

POST_SAVE POST_SAVE1 - E,F/F

! SAVE_ROLLBACK - E/F

! SAVE_SET_MODE

! SAVE_COMMIT - E/F

! SAVE_SET_MODE

! GIVE_UP_SAVE - E/F

! POST_SAVE2 - F

! POST_SAVE2 - F

POST_SAVE2 - F

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
9-10 Transaction Model Events

Common Transaction Model
SELECT PRE_SELECT

SELECT GET_SEL_CURSOR - F

PREPARE_CONTINUE - E/F

! GIVE_UP_SEL_CURSOR - E/F

SET_SEL_COUNT_FLAG**

! SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

! SEL_BUILD_PERFORM - E,F/F

! COUNT_CHECK

! GIVE_UP_SEL_CURSOR - E/F

! CLEAR_SEL_COUNT_FLAG - F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_SELECT

START START

VALIDATE_LINK

(internally generated
command)

PRE_ VAL_LINK

VAL_LINK GET_SAVE_CURSOR - F

VAL_GEN - F

! GIVE_UP_SAVE - E/F

VAL_BUILD_PERFORM - E,F/F

VAL_CHECK - E/F

GIVE_UP_SAVE - E/F

POST_VAL_LINK

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
Programming Guide 9-11

Common Transaction Model
Error and Diagnostic Events

The transaction error and diagnostic events are generated as a result of return values
for other events. The most common error and diagnostic events are shown in the Error
columns in Table 63. They are: TM_TEST_ERROR, TM_TEST_ONE_ROW and
TM_NOTE_FAILURE.

VIEW PRE_ VIEW

VIEW GET_SEL_CURSOR - F

PREPARE_CONTINUE - E/F

! GIVE_UP_SEL_CURSOR - E/F

SEL_GEN - F

! GIVE_UP_SEL_CURSOR - E/F

SEL_BUILD_PERFORM - E,F/F

SEL_CHECK - E/F

! GIVE_UP_SEL_CURSOR - E/F

CLEAR

POST_SELECT

WALK_DELETE WALK_DELETE

WALK_INSERT WALK_INSERT

WALK_SELECT WALK_SELECT

WALK_UPDATE WALK_UPDATE

Table 9-1 Transaction manager request events (Continued)

Command Request with Corresponding
Error Events

Slices with Corresponding Error
Events

E = TM_TEST_ERROR, O = TM_TEST_ONE_ROW, F = TM_NOTE_FAILURE;
 *All request and slice events have TM_ prefix.
**Slice events generated based on server view property specifications.
9-12 Transaction Model Events

Database-Specific Transaction Models
The slice event TM_SEL_BUILD_PERFORM in all the CONTINUE commands has two
events (E and F) in the first Error column, because TM_SEL_BUILD_PERFORM can
return TM_CHECK, in addition to TM_FAILURE and TM_OK. In this table, the second F is
associated with the E, not with the first F. It is the TM_TEST_ERROR event from
TM_SEL_CHECK that can give rise to a further TM_NOTE_FAILURE event.

Database-Specific Transaction Models

Panther transaction models perform specialized processing for their respective
databases. Table 9-2 lists the supported databases, the corresponding model name, and
the type of non-trivial processing performed by each model.

Table 9-2 Databases and transaction model processing

Database Model INITIAL mode
handling

BEGIN command
processing

Specialized processing

DB2 tmdb21.c

Informix tminf1.c x x Special subroutine.

JDB tmjdb1.c Check for duplicates.

SQL Server tmmss1.c x x Cursor management, etc.

ODBC tmodb1.c x

Oracle tmora1.c Name and save rollback
special tp processing.

Sybase tmsyb1.c x x Cursor management, etc.

Panther support of databases is subject to change. Panther continually updates database-specific
transaction models in order to be consistent with DBMS systems.
Programming Guide 9-13

Database-Specific Transaction Models
INITIAL Mode Handling

For TM_SAVE_SET_MODE, the model sets TM_VALUE to TM_INITIAL_MODE. This means
that when a COMMIT has been done in the course of a SAVE command, the model
suggests that the mode be set to INITIAL. (Such a suggestion of a mode change can be
ignored, particularly in a web application context.)

BEGIN Command Processing

For TM_SAVE_BEGIN, the transaction model does a BEGIN command.

Special Processing

The following models perform specialized processing:

! tminf1.c—INITIAL mode processing is done only if the special subroutine
dm_inf_static_cursors so specifies.

! tmjdb1.c—If rows are inserted into the database during SAVE processing, a
special check (optional) for duplication rows in that table after the insertion.
(This entails cursor name generation and giving up the cursor used for this test,
so there are several slices beyond those obviously needed for the test.)

! tmora1.c—For TM_SAVE_BEGIN, the model performs a DBMS SAVE command;
in the event that a ROLLBACK is necessary, the DBMS ROLLBACK uses the same
name. For Oracle Tuxedo applications, if in an XA context, XA processing is
done rather than the corresponding DBMS operations for BEGIN, COMMIT and
ROLLBACK; the timing of the XA operations can also be somewhat different
from the timing of the DBMS operations.

! tmsyb1.c—There is specialized cursor management. This includes reusing
cursors, rather than closing cursors that are given up. It also entails flushing
cursors that are used for SELECT operations, and giving up select cursors before
inserting, updating, or deleting tables on which they were used. commit and
ROLLBACK are performed on the save cursor.
9-14 Transaction Model Events

CHAPTER
10 Transaction
Manager Error
Messages

The transaction manager error messages are listed in alphabetical order with a possible
cause and solution for each message. Those containing an error constant are stored in
the Panther message file. Those without an error constant are caused by errors in SQL
generation.

Transaction Manager Errors

Bad arguments (DM_BAD_ARGS)

Cause General error. The START command was issued without a transaction name or a
bad value was specified for the return code of an event function.

Action n/a
Programming Guide 10-1

Transaction Manager Errors
Bad field name, #, or subscript at line line_number

Cause Standard JPL error; generally indicates the JPL procedure or variable causing the
error. One cause which is not a syntax error is using the property API to query for
the value of server view, table view or link when it is not in the current traversal
tree or for the value of num_key_columns when a database modification
command is not in effect.

Action Edit the JPL procedure.

Bad mode (DM_TM_BAD_MODE)

Cause Command availability varies according to the transaction mode.

Action 1. Refer to “Setting the Transaction Mode” on page 34-7 in Application
Development Guide for the command availability in each mode.

2. Use the COPY_FOR_UPDATE and COPY_FOR_VIEW commands, which set the
mode, when appropriate.

3. For menu items and push buttons, set the class property which controls the
active/inactive property according to the transaction mode.

Column column-name not found in table view table-view-name specified in link link-name

Cause 1. Invalid column name specified in the link's Relations property.

2. Parent and Child entries for the Relations need to be reversed.

Action Edit the relations property to contain the column names which join the two table
views named in the link. Check that column names exist in the corresponding
Parent and Child table views.

Discard all changes? (DM_TM_DISCARD_ALL)

Cause Transaction manger command was executed without saving the changes made to
onscreen data.

Action Choose Yes to discard changes; choose No to return to the screen so that the SAVE
command can be executed.
10-2 Transaction Manager Error Messages

Transaction Manager Errors
Discard latest changes? (DM_TM_DISCARD_LATEST)

Cause Transaction manger command was executed without saving the changes made to
a portion of onscreen data.

Action Choose Yes to discard changes; choose No to return to the screen so that the SAVE
command can be executed.

Error executing database command (DM_TM_DBI_ERROR)

Cause Error occurred while executing a command in one of Panther’s database drivers.

Action Refer to error for action.

Error in User hook function or Transaction Model (DM_TM_HOOK_MODEL_ERROR)

Cause This error lists whether a model or function is being accessed, the name of the
model or function, and the event that failed. One common usage is to display the
failed event after an error has been reported from the database engine.

Action Generally, the engine error is more descriptive of the problem

Invalid field type for Version Column (DM_TM_VC_TYPE)

Cause Version columns must have the C Type property set to Int, Long, Float or
Double.

Action Change C Type property. As a result, database re-design might be necessary.

Invalid sort order type specified in the sort-columns edit of tableview table-view

Cause Value entered for the sort type is invalid.

Action Change the sort order type to ASC or DESC.

Invalid widget widget specified in the sort-columns edit of tableview table-view

Cause The Sort Widgets property does not contain a valid widget name.

Action Check the table view's sort_widgets property and make sure the widget is on the
screen; it is the widget name and not the database column name that must be
specified.
Programming Guide 10-3

Transaction Manager Errors
Loop in transaction manager event processing (DM_TM_EVENT_LOOP)

Cause 1. Transaction event function specified in Function property is defined without
passing it the event argument.

2. Transaction event function has incorrect or invalid return code specified, for
example, TM_CHECK instead of TM_PROCEED when no database driver
statement was issued for that event.

Action For 1, add (event) after the procedure name.

For 2, change return code.

Maximum depth exceeded

Cause 1) There is a circular link in the Parent and Child properties.

2) A link has both the Parent and Child properties set to the same table view.

Action Check parent and child properties for each link, editing where necessary.

mode does not permit command command (DM_TM_CMD_MODE)

Cause Command availability varies according to the transaction mode

Action 1. Refer to “Setting the Transaction Mode” on page 34-7 in Application
Development Guide for the command availability in each mode.

2. Use the COPY_FOR_UPDATE and COPY_FOR_VIEW commands, which set the
mode, when appropriate.

3. For menu items and push buttons, set the class property which controls the
active/inactive property according to the transaction mode.

More than one row affected (DM_TM_ONE_ROW)

Cause TM_CHECK_ONE_ROW, which calls the TM_TEST_ONE_ROW event to check that
@dmrowcount is equal to 1, has been set as the return code either in the transaction
model or in an event function.

Action Change the return code in the model or event function. Change the SQL
generation, for example, by expanding the primary key values so that only one row
is changed. Check data in the database to make sure that duplicate key values have
not been entered.
10-4 Transaction Manager Error Messages

Transaction Manager Errors
No rows affected (DM_TM_SOME_ROWS)

Cause TM_CHECK_SOME_ROWS, which calls the TM_TEST_SOME_ROWS event to check that
@dmrowcount is equal to or greater than 1, has been set as the return code either
in the transaction model or in a event function.

Action If error is valid, do nothing. Otherwise, change the return code in the model or
event function.

No select columns specified, first table view table-view

Cause For all the members of this table view, either the column_name property is blank
or the use_in_select property is set to PV_NO.

Action Set the appropriate properties for each widget.

No such command as command (DM_TM_NO_SUCH_CMD)

Cause The syntax of sm_tm_command is incorrect.

Action Edit the call to sm_tm_command so that a valid command name is the first
parameter of its quoted command string.

No such scope as in scope (DM_TM_NO_SUCH_SCOPE)

Cause The syntax of sm_tm_command is incorrect.

Action Edit the call to sm_tm_command so that a valid scope parameter follows the
command and table view parameters.

No such table view as in table-view (DM_TM_NO_SUCH_TV)

Cause The syntax of sm_tm_command is incorrect.

Action Edit the call to sm_tm_command so that a valid table view name follows the
command parameter in the quoted command string.

Primary key not specified for updatable Tableview table-view (DM_TM_PRIMARYKEY)

Cause For commands that could result in database modifications, like SELECT, NEW,
COPY, or COPY_FOR_UPDATE, the transaction manager checks that primary key
fields for a table view are available.

Action Specify the table view's primary key in the primary_key property.
Programming Guide 10-5

Transaction Manager Errors
Root table view name not supplied or not valid (DM_TM_NO_ROOT)

Cause 1. Table view parameter supplied with START command is not valid.

2. More than one table view appears on a screen and there are no link widgets.

Action For 1, edit START command specification.

For 2, create a link widget with the appropriate Parent, Child and Relations
property settings.

Table name not specified for tableview table-view

Cause Table property is blank for this table view.

Action Enter the name of the database table in the table view's Table property. For the
format needed by a specific database driver, refer to “Database Drivers.”

Table name not specified for Tableview (DM_TM_TBLNAME)

Cause Table property is blank for this table view.

Action Enter the name of the database table in the table view's Table property. For the
format needed by a specific database driver, refer to “Database Drivers.”

Tableview table-view is updatable but its primary key is incomplete

Cause For commands that could result in database modifications, like SELECT, NEW,
COPY, or COPY_FOR_UPDATE, the primary key fields of an updatable table view
must either be a member of that table view or one of its parent table views. It does
not have to be in the direct parent, it can be in the “grandparent” table view.

Action 1. Add the widget to the desired table view.

2. Check the link's relations property to see if the shared fields between the table
views is complete.

3. Change the table view to non-updatable.

4. Check the link's relations property to make sure the relation type is valid.

Transaction in progress (DM_TM_IN_PROGRESS)

Cause sm_tm_command is being called recursively.

Action Do not call sm_tm_command in transaction manager event functions.
10-6 Transaction Manager Error Messages

Transaction Manager Errors
Transaction model not found (DM_TM_NO_MODEL)

Cause Model specified in table view or screen properties is not initialized.

Action Specify valid model or leave blank to use standard model.

Transaction unspecified or unavailable (DM_TM_NO_TRANSACTION)

Cause 1. Transaction manager command was called in an unnamed JPL procedure.
Since Panther calls the unnamed JPL procedure before it calls the START
command on screen entry, an error occurs.

2. More than one table view appears on a screen and there are no link widgets.

3. START command was not issued because of error in table view tree or because
the table view parameter specified with the command was invalid.

Action For 1, call the command after the START command has been invoked, for example,
in the screen entry procedure.

For 2, create a link widget with the appropriate Parent, Child and Relations
property settings.

For 3, check Parent and Child properties. Check specification of additional START
commands.

Unable to synchronize server view (DM_TM_SYNCH_SV)

Cause For all updatable table views, the transaction manager synchronizes the tableviews
when a command that could modify data is issued, for example, SELECT, NEW,
COPY, or COPY_FOR_UPDATE.

Action 1. If possible, set all the members of the same table view whose use_in_update
property is set to PV_YES to the same number of occurrences

2. Change the synchronization property to PV_NO.

User event function not found (DM_TM_NO_HOOK)

Cause The table view's Function property specifies a name that is not available either as
a JPL procedure or as a prototyped function.

Action 1. Check the value of the function property.

2. Check the prototyped function list.

3. Check that the JPL procedure name matches the function property and that the
JPL module is available.
Programming Guide 10-7

Transaction Manager Errors
Version Column setting on widget is incompatible with the properties property_name

Cause If a widget's version_column property is PV_YES, then the properties
in_delete_where and in_update_where must be set to PV_NO.

Action Set the properties to the correct values
10-8 Transaction Manager Error Messages

CHAPTER
11 DBMS Statements
and Commands

This chapter describes the DBMS (dbms) commands, in alphabetical order, that are
supported by all database engines.

Each reference page contains the following information:

! The command name.

! Usage synopsis.

! Full description of the command, with an explanation of its parameters, outputs,
and actions.

! One or more examples of JPL procedures demonstrating how the command is
used.

The commands can be executed with the JPL command DBMS and with the C library
function dm_dbms. Some database engines support additional commands; for DBMS
commands that are specific to a database engine, refer to “Database Drivers.” This
includes the transaction commands and any special feature commands.

Since DBMS is a JPL command, using these commands inside a JPL statement must
follow all the conventions for JPL.
Programming Guide 11-1

DBMS Command Summary

The following listing is a summary of the DBMS commands by category. Some
commands might appear in more than one category.

Selecting a
Database

Engine

ENGINE

Sets the default database engine for the application.

WITH ENGINE

Sets the engine to use for a command.

Using
Connections

CLOSE CONNECTION

Closes a named connection.

CLOSE_ALL_CONNECTIONS

Closes all connections on the named or on the default engine.

CONNECTION

Sets a default connection and engine for the application.

DECLARE CONNECTION

Declares a named connection to a database engine.

WITH CONNECTION

Sets the connection to use for a command.

Using
Cursors

CLOSE CURSOR

Closes a cursor.

CONTINUE

Fetches the next rows from a select set.

DECLARE CURSOR

Declares a named cursor.

EXECUTE

Executes a named cursor.

WITH CURSOR

Specifies the cursor to use for a command.
11-2 DBMS Statements and Commands

Executing
SQL

Statements

QUERY

Specifies an SQL statement that returns one or more select sets to be passed
to the database engine for processing.

RUN

Specifies an SQL statement that will not return any select sets to be passed to
the database engine for processing.

SQL

Specifies an SQL statement to be passed to the database engine for processing
(not recommended).

Changing
SELECT

Behavior

ALIAS

Defines Panther variables as the destination of selected columns and/or
aggregate functions in a select set.

BINARY

Defines Panther variables for fetching binary values.

CATQUERY

Redirects SELECT results to a file or a Panther variable.

COLUMN_NAMES

Maps a database column name to a Panther variable.

FORMAT

Formats the results of a CATQUERY.

OCCUR

Optionally sets the number of rows for Panther to fetch to an array and
chooses an occurrence where Panther should begin writing result rows.

START

Sets the first row for Panther to return from a select set.

UNIQUE

Suppresses repeating values in a selected column.

Paging
through
Multiple

Rows

CONTINUE

Fetches the next screenful of rows from a select set.

CONTINUE_BOTTOM

Fetches the last screenful of rows from a select set.

CONTINUE_DOWN

Fetches the next screenful of rows from a select set.

CONTINUE_TOP

Fetches the first screenful of rows from a select set.
Programming Guide 11-3

CONTINUE_UP

Fetches the previous screenful of rows from a select set.

STORE

Stores the rows of a select set in a temporary file so that the application can
scroll through the rows.

Handling
Binary Data

BINARY

Defines one or more binary variables.

Status and
Error

Processing

ONENTRY

Installs a function or JPL procedure which Panther calls before executing
each DBMS statement.

ONERROR

Installs a function or JPL procedure which Panther calls whenever a DBMS
statement fails.

ONEXIT

Installs a function or JPL procedure which Panther calls after executing each
DBMS statement.
11-4 DBMS Statements and Commands

ALIAS
ALIAS

Sets aliases for a declared or default SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] ALIAS [column pantherVar
[, column pantherVar ...]]

DBMS [WITH CURSOR cursor] ALIAS [pantherVar [, pantherVar ...]]

Arguments WITH CURSOR cursor
Name of a declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

column

Name of column in the database table.

pantherVar

Name of Panther variable to contain the data.

Description By default, database values are written to Panther variables with the same names as the
selected database columns. Use DBMS ALIAS to map a database column or value to any
Panther variable.

If a column name is given, it is associated with the variable name that follows it. For
example:

DBMS ALIAS name title, film_minutes length

If the database column name is selected with the default cursor, its value is written to
the Panther variable title. If the column film_minutes is selected with the default
cursor, its value is written to the Panther variable length. For all other columns
selected with the default cursor, the column's value is written to a variable with the
same (unqualified) name as the selected column.

If column contains characters not permitted in Panther identifiers, enclose column in
quotes to ensure correct parsing. For example:

DBMS ALIAS "last-name" last_name

The case of column needs to match the setting of the case flag used to initialize the
database engine. For example, if the case flag is DM_FORCE_TO_LOWER_CASE, column
must be entered in lower case. The case of pantherVar must be the case used to name
Programming Guide 11-5

ALIAS
the Panther variable. If pantherVar does not exist, Panther ignores the column when
it executes the SELECT. Refer to “Database Drivers” for details of case setting for each
database engine.

If no column arguments are given, the association is positional. For example:

DBMS ALIAS title_var, , abc

When the above statement is executed, each time values are selected with the default
cursor, Panther writes the values of the first and third columns to the Panther variables
title_var and abc, respectively. For all other columns selected with the default
cursor, Panther writes to a variable with the same (unqualified) name as the selected
column. The order of column names in the select statement determines the mapping.
Named and positional aliases cannot be assigned in a single statement.

Only one DBMS ALIAS statement is allowed for each cursor. The last DBMS ALIAS
statement called is the one currently in effect.

If aliases are declared for a CATQUERY cursor with the HEADING ON option, Panther
uses the aliases rather than the column names to build the heading. The alias for a
column selected with a CATQUERY cursor can be enclosed in quotes. This permits a
column heading to use embedded spaces. For example:

DBMS DECLARE t_cursor CURSOR FOR \
SELECT title_id, name, pricecat FROM titles

DBMS WITH CURSOR t_cursor CATQUERY TO FILE t_list
DBMS WITH CURSOR t_cursor ALIAS \

"Title ID", Name, "Price Category"
DBMS WITH CURSOR t_cursor EXECUTE

Aliasing for a cursor is turned off by executing the DBMS ALIAS command with no
arguments. Closing a cursor also turns off aliasing. If a cursor is redeclared without
being closed, the cursor keeps the aliases. Aliases do not affect INSERT, UPDATE, or
DELETE statements.

The ALIAS command is necessary if the name of a selected column is not a valid
Panther variable name, if the application is selecting values from different tables which
use the same column name for different values, or if a selection is not a column value,
but the value of an aggregate function or select expression.

Example // Assign named aliases for a declared cursor.

DBMS DECLARE x CURSOR FOR \
SELECT title_id, copy_num, status FROM tapes

DBMS WITH CURSOR x ALIAS \
title_id code, copy_num copy, status current_status
11-6 DBMS Statements and Commands

ALIAS
DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x ALIAS

// Set a positional alias for the 2nd and 4th columns.
// Use automatic mapping for the 1st and 3rd columns.

DBMS ALIAS , var_x, , var_y
DBMS QUERY SELECT title_id, name, genre_code, release_date \

FROM titles

// Panther will write
// column title_id to variable title_id,
// column name to variable var_x,
// column genre_code to variable genre_code, and
// column release_date to variable var_y.

// Note how the mappings change when the columns are
// listed in another order.

DBMS QUERY SELECT name, genre_code, release_date, title_id \
FROM titles

// Panther will write
// column name to variable name,
// column genre_code to variable var_x,
// column release_date to variable release_date, and
// column title_id to variable var_y.

See Also CATQUERY, WITH CURSOR
Programming Guide 11-7

BINARY
BINARY

Defines Panther variables for fetching binary values

Synopsis DBMS BINARY variable [, variable ...]

Arguments variable

Name of binary variable Panther creates. The variable can contain the number
of occurrences and/or a length. Refer to the Description for more information.

Description Many database engines support a binary data type for byte strings and other
non-printable data. There are two ways an application can fetch binary values to
Panther variables (widgets, LDB variables, or JPL variables):

! To variables created with the DBMS BINARY command.

! To text widgets which have their C Type (c_type) property set to Hex Dec
(PV_HEX_DEC). Panther converts the binary data to hexadecimal strings.

The definition for a variable created with DBMS BINARY can include a number of
occurrences and/or a length. If a number of occurrences is supplied, it must be enclosed
in square brackets. If a variable length is supplied, it must be enclosed in parentheses.
If both are supplied, the number of occurrences must be first. Any of the following are
permitted:

db_binvar
db_binvar [10] (255)
db_binvar [5]
db_binvar (8)

Any valid Panther variable name is a legal BINARY variable name. The default number
of occurrences is 1, and the default length is 255. The maximum length is
platform-dependent, based on the platform's maximum length for unsigned integers.
Memory is allocated for the occurrences when they are used (that is, when a binary
column is fetched).

If an application is selecting a binary column, use DBMS BINARY to create a binary
variable for the column. The variable can have the same name as the column, or it can
be mapped to the column with DBMS ALIAS. Because a binary variable is a target of a
SELECT, Panther examines its number of occurrences when determining how many
rows to fetch. Therefore, the binary variable should have the same number of
11-8 DBMS Statements and Commands

BINARY
occurrences as the other Panther target variables. When searching for target variables,
Panther searches among the binary variables before searching among the Panther
variables. You are responsible for ensuring that the binary variable names do not
conflict with Panther variable names.

Binary variables can also be included in the USING clause of a DBMS EXECUTE
statement. If no occurrence is given for the variable, the first occurrence is the default.

Once defined, a binary variable is available to the rest of the application. Note that

DBMS BINARY db_binvar[10]
DBMS BINARY timestamp[100]

is the same as

DBMS BINARY db_binvar[10], timestamp[100]

To delete all binary variables, execute DBMS BINARY with no arguments:

DBMS BINARY

Several library functions are provided for accessing and manipulating binary variables.
These functions are only available in C. (Refer to the specific functions in this
reference for more information.)

Example // "timestamp" is a binary column and "timeval"
// is a binary variable.

DBMS BINARY timeval
DBMS ALIAS timestamp timeval
DBMS QUERY SELECT id, name, price, timestamp FROM products

DBMS DECLARE upd_cursor CURSOR FOR \
UPDATE products SET price = ::priceval \
WHERE id = ::idval and timestamp = ::timeval

DBMS WITH CURSOR upd_cursor EXECUTE \
USING priceval, idval, timeval

See Also dm_bin_create_occur, dm_bin_delete_occur, dm_bin_get_dlength,
dm_bin_get_occur, dm_bin_length, dm_bin_max_occur,
dm_bin_set_dlength
Programming Guide 11-9

CATQUERY
CATQUERY

Concatenates a full result row to a Panther variable or file

Synopsis DBMS [WITH CURSOR cursor] CATQUERY TO pantherVar
[SEPARATOR "text"] [HEADING [ON | OFF]]

DBMS [WITH CURSOR cursor] CATQUERY TO FILE file
[SEPARATOR "text"] [HEADING [ON | OFF]]

DBMS [WITH CURSOR cursor] CATQUERY TO FILENAME fileVar \
[SEPARATOR "text"] [HEADING [ON | OFF]]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

TO pantherVar
Name of destination Panther variable.

TO FILE file
Name of destination text file. If the file already exists, it is overwritten when
the SELECT is executed. In Panther 5.50 and later file can be in quotes.

TO FILENAME fileVar
Name of variable whose value is the name of the destination text file. If the
file already exists, it is overwritten when the SELECT is executed. You can use
this variant for filenames that include spaces and/or punctuation.

SEPARATOR "text"
Specifies text to use to separate column values in a result row. The default is
two blank spaces.

HEADING ON

Specifies that Panther put a heading at the beginning of the select results. This
is the default for a catquery to a file. The heading is built using the column
names or any aliases assigned to the cursor. The maximum length of a
heading is 255 characters. Any additional characters are truncated.

HEADING OFF

Specifies that Panther not use a heading. This is the default for a catquery to
a Panther variable.
11-10 DBMS Statements and Commands

CATQUERY
Description The result columns of a SELECT statement are usually mapped to individual variables.
Use CATQUERY to map full result rows to a variable's occurrences or to a text file.

Panther attempts to format the column values by searching for Panther variables of the
same name and using their attributes for length, precision, and date-time or currency
specifications. The application can override any default formatting with the command
FORMAT.

The catquery for a cursor is turned off by executing the DBMS CATQUERY command with
no arguments. Closing a cursor also turns off the catquery. If a cursor is redeclared
without being closed, the cursor keeps the catquery destination as the cursor's SELECT
destination.

Catquery to a

Variable

When the catquery destination is a Panther variable, Panther concatenates a result row
and writes it to pantherVar when the SELECT is executed. If pantherVar is an LDB
or onscreen array, the result rows are written to the array occurrences. If there are more
result rows than occurrences in pantherVar, use CONTINUE to fetch the additional
rows.

If the clause HEADING ON is used, a heading is created by using the cursor's aliases and
column names. If pantherVar has two or more occurrences, the heading is put in the
first occurrence of pantherVar.

Catquery to a

Text File

When the catquery destination is a text file, all the result rows are written to the
specified text file when the SELECT is executed. Any existing file with the same name
is overwritten. If a result row is longer than the page width, the row wraps to the next
line.

Note: Only 1000 characters per row can be written to a file if the database column's
type is defined as FT_VARCHAR. If more data output are required, consider
outputting results to a report.

If the name of the file includes spaces and/or punctuation, use the FILENAME variant to
name a variable that contains the file name. In Panther 5.50 and later, you can also
quote file.

If aliases have been specified for the cursor, those aliases are used as column headings
in the text file. If there are no aliases, the columns' names are used. If the HEADING OFF
clause is used, a heading is not output.

Since all result rows are written to the file, the CONTINUE commands should not be
used with a CATQUERY TO FILE cursor while the file is open.
Programming Guide 11-11

CATQUERY
The file remains open until DBMS CATQUERY is reset or the cursor is closed.

Example // Select a customer's first and last name
// and concatenate the values in the field "fullname".

DBMS DECLARE name_cursor CURSOR FOR \
SELECT last_name, first_name FROM customers \
WHERE cust_id = :+cust_id

DBMS WITH CURSOR name_cursor CATQUERY TO fullname \
SEPARATOR ","

DBMS WITH CURSOR name_cursor EXECUTE
return

// Select the maximum value from the column "cost"
// and write it to the JPL variable "hi_cost"
// formatting it with currency edit saved with the
// LDB variable "money_var".

vars hi_cost
DBMS DECLARE max_cursor CURSOR FOR \

SELECT MAX(price) FROM pricecats
DBMS WITH CURSOR max_cursor CATQUERY TO hi_cost
DBMS WITH CURSOR max_cursor FORMAT money_var
DBMS WITH CURSOR max_cursor EXECUTE
return

// Write the results of the default SELECT cursor
// to a file with heading. Turn off ALIAS and CATQUERY
// when finished.

proc file_list
DBMS CATQUERY TO FILE titlelist
DBMS ALIAS title_id "Title ID", name "Title",\

film_minutes "Length", pricecat "Price Category"
DBMS QUERY SELECT title_id, name, film_minutes, pricecat \

FROM titles
DBMS CATQUERY
DBMS ALIAS
return

// Write results of the default SELECT cursor
// to a named file
proc title_list
vars fname
fname = "my titles file"
DBMS CATQUERY TO FILENAME fname
DBMS QUERY SELECT * FROM titles
11-12 DBMS Statements and Commands

CATQUERY
DBMS ALIAS
DBMS FORMAT
return
Programming Guide 11-13

CLOSE_ALL_CONNECTIONS
CLOSE_ALL_CONNECTIONS

Closes all connections on a database engine

Synopsis DBMS [WITH ENGINE engine] CLOSE_ALL_CONNECTIONS

Arguments WITH ENGINE engine

Name of engine for which connections are to be closed. If the clause is not
used, Panther closes all the connections on the default engine.

Description When DBMS CLOSE_ALL_CONNECTIONS is executed, every connection which the
application declared either on the named database engine or on the default engine
closes. For each connection, it closes all cursors belonging to the connection,
disconnects from the database engine, and frees all structures associated with the
connection.

If the application accesses multiple engines, include the WITH ENGINE clause and issue
the statement for each engine used in the application.

Example // This procedure unsets the error handler and
// then closes all connections.

proc logoff
DBMS ONERROR
DBMS CLOSE_ALL_CONNECTIONS
return

See Also DECLARE CONNECTION, CLOSE CONNECTION, dm_is_connection
11-14 DBMS Statements and Commands

CLOSE CONNECTION
CLOSE CONNECTION

Closes a declared connection

Synopsis DBMS CLOSE CONNECTION [connection]

Arguments connection

Name of connection to be closed. If connection name is not included, the
default connection is closed.

Description Executing DBMS CLOSE CONNECTION closes all open cursors associated with the
named or default connection, logs off the connection from its database engine, and
frees the connection data structure.

Example // This procedure unsets the error handler and
// then closes the specified connection.

proc logoff
DBMS ONERROR
DBMS CLOSE CONNECTION c1
return

See Also CLOSE_ALL_CONNECTIONS, dm_is_connection
Programming Guide 11-15

CLOSE CURSOR
CLOSE CURSOR

Closes a named or default cursor

Synopsis DBMS CLOSE CURSOR [cursor]

DBMS WITH CONNECTION connection CLOSE CURSOR [cursor]

DBMS WITH CURSOR cursor CLOSE CURSOR

Arguments cursor

Name of cursor to be closed. If cursor is not listed, Panther closes the default
SELECT cursor.

WITH CONNECTION connection
Name of connection having the cursor to be closed.

WITH CURSOR cursor
Name of cursor to be closed.

Description DBMS CLOSE CURSOR closes an open cursor. Closing a cursor frees all structures
associated with the cursor.

Closing a cursor turns off all attributes assigned to the cursor with the DBMS commands:
ALIAS, CATQUERY, COLUMN_NAMES, FORMAT, OCCUR, START, STORE, TYPE, and
UNIQUE.

To close the default SELECT cursor on the default connection, specify:

DBMS CLOSE CURSOR

To close the default SELECT cursor on a specific connection, specify:

DBMS WITH CONNECTION connection CLOSE CURSOR

Panther will automatically declare another default SELECT cursor if needed.

To close a named cursor, specify either of the following:

DBMS CLOSE CURSOR cursor
DBMS WITH CURSOR cursor CLOSE CURSOR

Closing a connection first closes all cursors associated with the connection.
11-16 DBMS Statements and Commands

CLOSE CURSOR
Example // Assign a catquery and aliases to the default SELECT
// cursor. Close the cursor when finished.

DBMS CATQUERY TO FILE titlelist
DBMS ALIAS title_id "Title ID", name "Title",\

film_minutes "Length", pricecat "Price Category"
DBMS QUERY SELECT title_id, name, film_minutes, pricecat \

FROM titles
DBMS CLOSE CURSOR

See Also DECLARE CURSOR, dm_is_cursor
Programming Guide 11-17

COLUMN_NAMES
COLUMN_NAMES

Map column names into Panther variables using a SELECT statement

Synopsis DBMS [WITH CURSOR cursor] COLUMN_NAMES [pantherVar
 [, pantherVar ...]]

Arguments pantherVar

Name of Panther variable to contain the column name.

WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description DBMS COLUMN_NAMES fetches the column names, not the column data, into Panther
variables when a SELECT statement is executed.

The correspondence between the Panther variable and the column is positional. The
first Panther variable named in the DBMS COLUMN_NAMES command will contain the
name of the first column listed in the SELECT statement. If the number of Panther
variables is greater than the number of columns, the remaining Panther variables are
ignored. If the number of columns is greater than the number of Panther variables, the
remaining columns are ignored.

If the SELECT statement includes data which is not a column, like an aggregate
function, then the value written to the Panther variable is whatever is returned from the
database engine.

A Panther variable can be a widget or JPL variable. If the variable is an array or
multi-occurrence widget, the column name appears in the first occurrence unless a
particular occurrence is specified.

Only one DBMS COLUMN_NAMES statement is allowed for each cursor. The last DBMS
COLUMN_NAMES statement called is the one currently in effect.

Column name aliasing for a cursor is turned off by executing the DBMS COLUMN_NAMES
command with no arguments. Closing a cursor also turns it off. If a cursor is redeclared
without being closed, the cursor keeps the aliases.
11-18 DBMS Statements and Commands

COLUMN_NAMES
Example // Assign column name aliases for a declared cursor.
// The column names are written to id_title, copy_title
// and status_title.
// The data is written is title_id, copy_num and status.

DBMS DECLARE x CURSOR FOR \
SELECT title_id, copy_num, status FROM tapes

DBMS WITH CURSOR x COLUMN_NAMES \
id_title, copy_title, status_title

DBMS WITH CURSOR x EXECUTE
DBMS WITH CURSOR x COLUMN_NAMES

// Assign column name aliases for the default cursor

DBMS COLUMN_NAMES id_title, copy_title, status_title
DBMS QUERY SELECT title_id, copy_num, status \

FROM tapes
DBMS COLUMN_NAMES
Programming Guide 11-19

CONNECTION
CONNECTION

Sets or changes the default connection

Synopsis DBMS CONNECTION connection

Arguments connection

Name of the connection to set as the default.

Description If an application declares two or more connections, the application can set a default
connection with DBMS CONNECTION. The default connection is used for all subsequent
statements that do not use a WITH CONNECTION or WITH CURSOR clause.

Example // con1 is set to be the default connection.
// The INSERT statement has a WITH CONNECTION clause
// using connection con2.
// The SELECT statement uses the default connection.

DBMS ENGINE sybase

DBMS DECLARE con1 CONNECTION FOR USER ":uname" \
PASSWORD ":pword" SERVER "s1" DATABASE "master"

DBMS DECLARE con2 CONNECTION FOR USER ":uname" \
PASSWORD ":pword" SERVER "s2" DATABASE "videobiz"

DBMS CONNECTION con1

DBMS WITH CONNECTION con2 DECLARE c1 CURSOR FOR \
INSERT INTO tapes (title_id, copy_num, status) \
VALUES (::title_id, ::copy_num, ::status)

DBMS WITH CURSOR c1 EXECUTE USING title_id, copy_num, status

DBMS SELECT title_id, name FROM titles

See Also DECLARE CONNECTION, WITH CONNECTION, dm_is_connection
11-20 DBMS Statements and Commands

CONTINUE
CONTINUE

Fetches the next set of rows associated with a default or named SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] CONTINUE

Arguments WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description If a SELECT statement retrieves more rows than can fit in its destination variables,
Panther returns as many rows as will fit. It continues fetching more rows from the
select set when the application executes this command. If there are pending rows,
executing DBMS CONTINUE clears the destination variables, and fetches the next
screen-full of rows from the select set. If there are no pending rows, executing DBMS
CONTINUE does nothing.

If the cursor's aliases have changed between the execution of the SELECT and the
execution of DBMS CONTINUE, DBMS CONTINUE uses the new settings. DBMS CONTINUE
should not be used with a CATQUERY TO FILE cursor. CATQUERY TO FILE always
writes out the entire select set to the CATQUERY file.

Example // This procedure fetches the specified rows
// and calls the JPL procedure check_count.

proc get_selection
DBMS DECLARE movie_list CURSOR FOR \

SELECT * FROM titles WHERE genre_code = ::genre_code
DBMS WITH CURSOR movie_list EXECUTE USING genre_code
call check_count
return

// This procedure sets the message line according
// to the number of rows available.

proc check_count
if @dmretcode != DM_NO_MORE_ROWS

msg setbkstat "Press %KPF1 to see more films " \
"or press %KPF2 to specify another type."

else
msg setbkstat "That's all folks!"

return
Programming Guide 11-21

CONTINUE
// This procedure is called by pressing PF1.
// It retrieves the next set of rows.

proc get_more
DBMS WITH CURSOR movie_list CONTINUE
call check_count
return

See Also CONTINUE_BOTTOM, CONTINUE_DOWN, CONTINUE_TOP, CONTINUE_UP, STORE
11-22 DBMS Statements and Commands

CONTINUE_BOTTOM
CONTINUE_BOTTOM

Fetches the last page of rows associated with the default or named SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] CONTINUE_BOTTOM

Arguments WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description DBMS CONTINUE_BOTTOM fetches the last screen-full of rows from the cursor's select
set. If the number of rows in the select set is less than the number of occurrences in the
Panther variables, the request is ignored.

Some database engines automatically support DBMS CONTINUE_BOTTOM. Other engines
require a temporary storage file created by the command STORE. If the DM_BAD_CMD
error return happens when the application executes DBMS CONTINUE_BOTTOM, the
engine needs a scrolling file. For information about a specific engine, refer to
“Database Drivers.”

DBMS CONTINUE_BOTTOM should not be used with a CATQUERY TO FILE cursor.

Example // Engines not requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return

// Engines requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_last
DBMS WITH CURSOR t_cursor CONTINUE_BOTTOM
return
Programming Guide 11-23

CONTINUE_BOTTOM
See Also CONTINUE, CONTINUE_DOWN, CONTINUE_TOP, CONTINUE_UP, STORE
11-24 DBMS Statements and Commands

CONTINUE_DOWN
CONTINUE_DOWN

Fetches the next set of rows associated with the default or named SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] CONTINUE_DOWN

Arguments WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description DBMS CONTINUE_DOWN is identical to DBMS CONTINUE.

Example // This procedure selects the rows from the table.

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

// This procedure fetches the next set of rows.

proc get_more
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

See Also CONTINUE, CONTINUE_BOTTOM, CONTINUE_TOP, CONTINUE_UP, STORE
Programming Guide 11-25

CONTINUE_TOP
CONTINUE_TOP

Fetches the first page of rows associated with the default or named SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] CONTINUE_TOP

Arguments WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description DBMS CONTINUE_TOP fetches the first screen-full of rows from the cursor's select set.
If the number of rows in the select set is less than the number of occurrences in the
Panther variables, the request is ignored.

Some database engines automatically support DBMS CONTINUE_TOP. Other engines
require a temporary storage file created by the command STORE. If the engine needs
such a file and the application tries to execute DBMS CONTINUE_TOP without executing
DBMS STORE, Panther returns the error DM_BAD_CMD. For information about a specific
engine, refer to “Database Drivers.”

Example // Engines not requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_to_start
DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

// Engines requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_to_start
DBMS WITH CURSOR t_cursor CONTINUE_TOP
return

See Also CONTINUE, CONTINUE_BOTTOM, CONTINUE_DOWN, CONTINUE_UP, STORE
11-26 DBMS Statements and Commands

CONTINUE_UP
CONTINUE_UP

Fetches the previous page of rows associated with the default or named SELECT cursor

Synopsis DBMS [WITH CURSOR cursor] CONTINUE_UP

Arguments WITH CURSOR cursor

Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

Description DBMS CONTINUE_UP scrolls backwards through a select set. If number of rows in the
select set is less than the number of occurrences in the Panther variables, Panther
ignores the request.

Some database engines automatically support DBMS CONTINUE_UP. Other engines
require a temporary storage file created by the command STORE. If the engine needs
such a file and the application tries to execute DBMS CONTINUE_UP before executing
DBMS STORE, Panther returns the error DM_BAD_CMD. For information about a specific
engine, refer to “Database Drivers.”

DBMS CONTINUE_UP should not be used with a CATQUERY TO FILE cursor.

Example // Engines not requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_back
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

// Engines requiring DBMS STORE

proc select_all
DBMS DECLARE t_cursor FOR SELECT * FROM title
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc go_back
DBMS WITH CURSOR t_cursor CONTINUE_UP
return
Programming Guide 11-27

CONTINUE_UP
See Also CONTINUE, CONTINUE_BOTTOM, CONTINUE_DOWN, CONTINUE_TOP, STORE
11-28 DBMS Statements and Commands

DECLARE CONNECTION
DECLARE CONNECTION

Creates a named connection to a database engine

Synopsis DBMS [WITH ENGINE engine] DECLARE connection CONNECTION
[WITH option=argVar [,...]]

DBMS [WITH ENGINE engine] DECLARE connection CONNECION
[FOR option arg ...]

Arguments WITH ENGINE engine

Name of engine to associate with the connection. If the clause is not used,
Panther opens the connection on the default engine.

connection

Name of connection to be opened.

option

Name of connection option. Names and number of available options is
engine-specific.

argVar

Variable that contains the value assigned to the option, or a quoted string. Use
this variant when the value might contain spaces and/or punctuation. Spaces
are permitted around the equal sign.

arg

Literal value, either a quoted string or a colon-expanded expression, assigned
to the connection option.

Description DBMS DECLARE CONNECTION opens a session on a database engine. If the statement
executes successfully, it allocates a connection structure and adds it to the list of open
structures.

Applications which must connect to two or more database servers should declare a
named connection to each server. If you are connecting to two or more database
engines, you must declare a connection for each engine.

The combination of necessary or supported options is engine-specific. Common
options include USER, PASSWORD, DATABASE, and SERVER. For a list of the valid
options, refer to “Database Drivers.”
Programming Guide 11-29

DECLARE CONNECTION
Options can be specified using either of two ways:

! WITH variant (recommended)—The option and its argument value are separated
by an equal sign (spaces are permitted), option-value pairs are
comma-separated, and if the argument is a variable, it is not enclosed in quotes
(and not colon-expanded). If the argument is a string, it is enclosed in quotes;
spaces and special punctuation characters are permitted.
Since the variables are not colon-expanded, this variant prevents the values of
variables from appearing in error messages or trace statements.

! FOR variant—The option is followed by its value. The argument values are
enclosed within quoted strings. If the value is a variable, it must be
colon-expanded.

The connection remains open until it is closed with DBMS CLOSE CONNECTION or
DBMS CLOSE_ALL_CONNECTIONS.

For additional information, refer to Chapter 8, “Connecting to Databases,” in
Application Development Guide.

Example // This procedure connects to the database and has

// two variables for the user and password.

proc logon

DBMS DECLARE c1 CONNECTION \
WITH USER=user, PASSWORD=pword, \
DATABASE="C:\Program Files\video\videobiz"

return

// Same example as above, but using FOR rather
// than WITH. Note that the variable names are
// quoted and colon-expanded.

proc logon
DBMS DECLARE c1 CONNECTION \

FOR USER ":user" PASSWORD ":pword" \
DATABASE "C:\Progra~1\video\videobiz"

return

See Also CLOSE CONNECTION, CLOSE_ALL_CONNECTIONS, CONNECTION, WITH CONNECTION,
dm_get_db_conn_handle, dm_is_connection
11-30 DBMS Statements and Commands

DECLARE CURSOR
DECLARE CURSOR

Declares a named cursor for an SQL statement

Synopsis DBMS [WITH CONNECTION connection] DECLARE cursor CURSOR
FOR SQLstatement

Arguments WITH CONNECTION connection

Name of connection to associate with the cursor. If the clause is not used,
Panther opens the cursor on the default connection.

cursor

Name of cursor to be created.

SQLstatement

SQL statement to be performed when the cursor is executed.

Description Use DBMS DECLARE CURSOR to create or redeclare a named cursor.

If the application has not already declared cursor, Panther allocates a new cursor
structure and adds its name to the list of declared cursors.

If a cursor with the name cursor already exists and if the connection is the same,
Panther reinitializes this cursor. Reinitialization clears any information on SELECT
columns and binding parameters. It does not clear any attributes assigned to the cursor
with the statements:

! ALIAS

! CATQUERY

! COLUMN_NAMES

! FORMAT

! OCCUR

! START

! STORE

! TYPE

! UNIQUE
Programming Guide 11-31

DECLARE CURSOR
Panther uses these settings if the cursor is redeclared with a SELECT statement. It
ignores the attributes if the cursor is redeclared with an INSERT, UPDATE, or DELETE
statement. To redeclare the cursor with a new (empty) structure, close the cursor with
CLOSE CURSOR before executing the new declaration.

If a cursor is redeclared on a different connection, Panther automatically closes the
cursor and declares a new structure.

A cursor remains open until it is explicitly closed with the CLOSE CURSOR command.
Closing a connection also closes all cursors on the connection.

There are few restrictions on valid cursor names. However, avoid using any DBMS,
JDB, or Panther keywords as a cursor name. Panther is case sensitive regarding cursor
names; for example, it considers cursor c1 as different from cursor C1.

For information on the format of parameters in the SQL statement, refer to Chapter 30,
“Writing Information to the Database,” in Application Development Guide and refer to
“Using Database Cursors” on page 28-3 in Application Development Guide for
information about declaring cursors.

Example // When the following statement is executed, it fetches

// a list of actors in the specified video.

proc s_entry

DBMS WITH CONNECTION c1 DECLARE act_cursor CURSOR FOR \
SELECT actors.first_name, actors.last_name, roles.role \
FROM actors, roles \
WHERE actors.actor_id = roles.actor_id \
AND roles.title_id = ::film_code

proc exec1

DBMS WITH CURSOR t_cursor EXECUTE USING film_code

return

See Also CLOSE CURSOR, EXECUTE, WITH CURSOR, dm_is_cursor
11-32 DBMS Statements and Commands

ENGINE
ENGINE

Sets or changes the default database engine

Synopsis DBMS ENGINE engine

Arguments engine

Name of default database engine when two or more engines are initialized.
engine is the mnemonic assigned to the database engine in the file
dbiinit.c, prol5w32.ini, prol5w64.ini, or prol5unix.ini.

Description If an application initializes two or more database engines, the application can use DBMS
ENGINE to set a default engine. If an application has only one initialized engine,
Panther automatically assigns that engine as the default.

For more information on initializing database engines, refer to Chapter 7, “Initializing
the Database,” in Application Development Guide.

Example // This procedure declares two connections,
// sets oracle to be the default engine, and
// then declares and executes a cursor on the
// default engine.

proc entry

DBMS WITH ENGINE oracle DECLARE c1 CONNECTION FOR \
USER ":user" PASSWORD ":pword"

DBMS WITH ENGINE sybase DECLARE c2 CONNECTION FOR \
USER ":user" PASSWORD ":pword" SERVER "maple" \
DATABASE "sales"

DBMS ENGINE oracle

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles

DBMS WITH CURSOR t_cursor EXECUTE

return

See Also WITH ENGINE, dm_is_engine
Programming Guide 11-33

EXECUTE
EXECUTE

Executes the SQL statement declared for a named cursor

Synopsis DBMS [WITH CURSOR cursor] EXECUTE [USING args]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

args

Panther variables containing parameter values.

Description Use DBMS EXECUTE to execute the statement associated with a declared cursor.

DBMS EXECUTE does not support the WITH CONNECTION clause. Panther uses the
connection that was specified either by name or by default when the cursor was
declared. The only way to change the cursor's engine or connection is to redeclare the
cursor.

If an application is executing a similar statement many times, it is often more efficient
to declare a cursor for the statement. Usually the database engine saves the parsed
statement, executing it when the application executes the cursor. It is not necessary to
redeclare the cursor to supply new data for a WHERE or VALUES clause. Instead, the
application can declare the cursor and use a substitution parameter for each value that
the application supplies when it executes the cursor. Substitution parameters begin
with a double colon (::). For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM titles WHERE name LIKE ::name_parm

name_parm is a place holder for the value that will be supplied when the cursor is
executed. For example:

DBMS WITH CURSOR c1 EXECUTE USING "St%"

This command fetches rows where name begins with the characters "St". The
application could execute the cursor repeatedly, each time with a new value. It can use
the value of a field to supply a value. For example:

DBMS WITH CURSOR c1 EXECUTE USING aname
11-34 DBMS Statements and Commands

EXECUTE
Since aname is not quoted, Panther assumes it is a Panther variable. If an argument in
the USING clause is a widget or LDB variable that has date/time, currency, null field,
or type property specifications, Panther formats the variable's value before passing it
to the database engine. Refer to Chapter 30, “Writing Information to the Database,” in
Application Development Guide for details of this topic.

Example DBMS DECLARE x CURSOR FOR \
SELECT * FROM tapes WHERE title_id=::p1 AND copy_num=::p2

// bind by position:

DBMS WITH CURSOR x EXECUTE USING code, copy_id

// or bind by name:

DBMS WITH CURSOR x EXECUTE \
USING p1 = code, p2 = copy_id

See Also DECLARE CURSOR, CLOSE CURSOR, WITH CURSOR
Programming Guide 11-35

FORMAT
FORMAT

Formats CATQUERY values

Synopsis DBMS [WITH CURSOR cursor] FORMAT [[column] format
[, [column] format ...]]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

column

Name of selected column. The case of column should match the setting of the
case flag for the database engine. If columns are not named, the formats are
applied by position.

format

Specifies how Panther should format the value. format is either a Panther
variable or a quoted precision edit.

Description Use DBMS FORMAT to format CATQUERY values before writing them to a variable or a
text file. The options are explained below.

If format is a Panther variable, Panther formats the column value as if it were writing
to the field. In particular, the following characteristics affect the formatting:

! Variable's maximum shifting length

! Variable's Panther type

For more information about formatting select results, refer to “Format of Select
Results” on page 29-15 in Application Development Guide.

format can also be a precision edit. A precision edit is a quoted string beginning with
a percent sign. It supplies the length of the value, and optionally, a decimal precision
for numeric values.

 A precision is given in the form:

"%width"

"%width.precision"
11-36 DBMS Statements and Commands

FORMAT
To turn off formatting on the default or named cursor, execute DBMS FORMAT with no
arguments.

Example // use column "title_id" and "copy_num" exactly as returned
// format column "due_back" with the LDB variable "today",
// format column "price" to width 5 with 2 decimal places
// format column "rental_comment" to width 25 and truncate.

proc tapes_due
DBMS CATQUERY TO FILE rentlist
DBMS FORMAT due_back today, price "%5.2", \

rental_comment "%25"
DBMS QUERY SELECT title_id, copy_num, due_back, price, \

rental_comment FROM rentals
return
Programming Guide 11-37

OCCUR
OCCUR

Changes the behavior of a SELECT cursor that writes to Panther arrays

Synopsis DBMS [WITH CURSOR cursor] OCCUR occInt [MAX int]

DBMS [WITH CURSOR cursor] OCCUR CURRENT [MAX int]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

occInt

Occurrence number where Panther should begin placing SELECT results.

CURRENT

Specifies that Panther use the occurrence number of the “current” field.
Panther begins writing at this occurrence number in the target arrays. The
current field is the one containing the Panther screen cursor and is not
necessarily a target variable.

MAX int
Specify maximum number of rows to fetch for a SELECT or CONTINUE. If int
is less than 1, no rows are fetched.

Description By default, if the destination of a SELECT is one or more arrays, Panther fetches as
many rows as will fit in the arrays and begins writing at the first occurrence in the
arrays. DBMS OCCUR changes this default behavior for a SELECT cursor.

The setting is turned off by executing the DBMS OCCUR command with no arguments.
Closing a cursor also turns off the setting. If a cursor is redeclared without being
closed, the cursor continues to use the setting for SELECT statements and CONTINUE
commands.

DBMS OCCUR is ignored with a CATQUERY cursor.

Example // When executed, this procedure starts writing
// the result set at the current occurrence.

proc select_type
DBMS DECLARE genre_cursor CURSOR FOR \

SELECT * FROM titles WHERE genre_code = :+code
11-38 DBMS Statements and Commands

OCCUR
DBMS WITH CURSOR title_cursor OCCUR CURRENT
DBMS WITH CURSOR title_cursor EXECUTE
return
Programming Guide 11-39

ONENTRY
ONENTRY

Installs an entry handler

Synopsis DBMS ONENTRY CALL function

DBMS ONENTRY JPL jplEntryPoint

DBMS ONENTRY STOP

Arguments CALL function

Name of prototyped function.

JPL jplEntryPoint

Name of JPL procedure.

STOP

Remove any installed entry handler.

Use DBMS ONENTRY to install a function or JPL procedure which Panther calls before
it executes each DBMS statement.

This function is for informational purposes only. For instance, you can log statements
to a text file before executing them. You can use this function with an exit function to
track the start and end time for a query or any other database operation.

The function is passed three arguments:

1. A copy of the first 255 characters of the statement; if the statement is executed
from JPL, this is the first 255 characters after the command word DBMS or DBMS
SQL.

2. The name of the database engine for the statement.

3. Context flag; for the entry handler its value is 0.

The function's return code is not used.

Example The following sample function logs the current statement in a text file.

/* This function is installed as a prototyped function.*/
/* It writes the current time, name of the current */
/* engine, and the command which Panther will execute */
/* to a file called dbi.log. */
11-40 DBMS Statements and Commands

ONENTRY
/* dbms ONENTRY CALL dbientry */

#include <smdefs.h>

int
dbientry (stmt, engine, flag)
char *stmt;
char *engine;
int flag;

{
FILE *fp;
time_t timeval;

fp = fopen ("dbi.log", "a");
timeval = time(NULL)
fprintf (fp, "%s\n%s\n%s\n\n",

 ctime(&timeval), engine, stmt);
fclose (fp);
return 0;

}

This sample function displays a message before performing any database operations.

// dbms ONENTRY JPL entrymsg

proc entrymsg
msg setbkstat "Processing. Please be patient..."
flush
return 0

See Also ONEXIT, Chapter 12, “DBMS Global Variables,” Chapter 37, “Processing Application
Errors,” in Application Development Guide
Programming Guide 11-41

ONERROR
ONERROR

Sets the behavior of the error handler

Synopsis DBMS ONERROR CALL function

DBMS ONERROR CONTINUE

DBMS ONERROR JPL jplEntryPoint

DBMS ONERROR STOP

Arguments CALL function

Name of prototyped C function.

JPL jplEntryPoint

Install a user function as the error handler. If Panther or the database engine
find an error, Panther updates the global error and status variables (the @dm
variables) and calls the installed function.

function

Name of prototyped C function.

jplEntryPoint

Name of JPL procedure.

CONTINUE

Prevents default error handler from aborting a JPL procedure where a Panther
error occurs. Message display is not changed.

STOP

Restores default error handler.

Description Use DBMS ONERROR to set or change the behavior of the Panther database error handler
for the application. The default error handler displays the following:

! Statement which caused the error.

! Source of the message. If the database engine generated the message, only the
engine name is listed. If Panther's database driver generated the message,
database interface is listed along with the engine name.

! Error code number from Panther's database driver or from the database engine.
11-42 DBMS Statements and Commands

ONERROR
! Error message from Panther's database driver or from the database engine.

If an error occurs while executing a JPL procedure, the default handler aborts the
procedure, returning -1 to the calling procedure.

An application can override the default error handler with the command DBMS
ONERROR and an argument. The error handler is global to the application. Each
execution of this command overrides the previous error handler.

The function displays any error messages and its return code controls whether or not
JPL execution is aborted.

The function is passed three arguments:

1. The first 255 characters of the statement; if the statement was executed from JPL,
this is the first 255 characters after the command word DBMS or DBMS SQL.

2. The name of the database engine for the statement.

3. Context flag; for the error handler its value is 2.

The function's return code is returned to the application. If an ONEXIT function and an
ONERROR function are both installed, the return code from the ONERROR function takes
precedence.

If the error occurred while executing a JPL statement with a DBMS command:

! 0 returns control to the JPL procedure where the error occurred.

! 1 aborts the JPL procedure where the error occurred and returns 1 to the
procedure’s caller (either Panther or another JPL procedure).

If the error occurred while executing a statement with the dm_dbms library function,
the function returns the error handler's return code.

To use a C function as an error handler, you must first install the function as a
prototyped function. Refer to “Prototyped Functions” on page 44-8 in Application
Development Guide for more information on prototyped functions.

Example //Error handler installed in JPL.

proc entry
DBMS ONERROR JPL dbi_err
return

proc dbi_err (stmt, engine)
if @dmengerrcode == 0
Programming Guide 11-43

ONERROR
msg emsg stmt "%N" "Panther error: " @dmretmsg
else

msg emsg stmt "%N" "Panther error: " @dmretmsg "%N"\
":engine error: " @dmengerrcode " " @dmengerrmsg

return

The next example first checks to see if the Panther error is DM_ALREADY_ON. In this
case, it simply displays a message and returns 0. For all other errors, it checks for an
engine error code. If there is an engine error, it calls another subroutine to check for
engine-specific errors. For any other errors, it displays the standard Panther message.

proc entry
DBMS ONERROR JPL dbi_error_handler
return

proc dbi_error_handler (stmt, engine, flag)

if (@dmretcode == DM_ALREADY_ON)
{

msg emsg "You are already logged on."
return 0

}

if (@dmengerrcode != 0)
{

msg emsg @dmretmsg
call engine_errors (engine)

}
else
{

msg emsg "Application Error: " \
@dmretmsg \
"See the DBA for assistance."

}
return 1

proc engine_errors (engine_name)
if engine_name == "xyzdb"
...

// Examine DBMS error codes here.

See Also ONENTRY, ONEXIT, Chapter 12, “DBMS Global Variables,” Chapter 37, “Processing
Application Errors,” in Application Development Guide
11-44 DBMS Statements and Commands

ONEXIT
ONEXIT

Installs an exit handler

Synopsis DBMS ONEXIT CALL function

DBMS ONEXIT JPL jplEntryPoint

DBMS ONEXIT STOP

Arguments CALL function

Name of prototyped C function.

JPL jplEntryPoint

Name of JPL procedure.

STOP

Remove any installed exit function.

Use DBMS ONEXIT to install a function which Panther calls after executing a DBMS
command from JPL or C. Use this function to process error and status codes after every
command.

The exit handler is global to the application. Each execution of DBMS ONEXIT overrides
the previous exit handler.

The function is passed three arguments:

1. The first 255 characters of the statement. If the statement was executed from JPL,
this is the first 255 characters after the command word DBMS or DBMS SQL.

2. The name of the database engine for the statement.

3. Context flag; for the exit handler its value is 1.

The function's return code is returned to the application. If an ONEXIT function and an
ONERROR function are both installed, the return code from the ONERROR function takes
precedence.

If an error occurred while executing a JPL statement with a DBMS command and there
is no ONEXIT function, then

! 0 returns control to the JPL procedure where the error occurred.
Programming Guide 11-45

ONEXIT
! 1 aborts the JPL procedure where the error occurred and returns 1 to the
procedure's caller (either Panther or another JPL procedure).

If the error occurred while executing a statement with the dm_dbms library function
and there is an ONEXIT function, the function returns the exit handler's return code.

To use a C function as an exit handler, you must first install the function as a
prototyped function. For more information, refer to “Prototyped Functions” on page
44-8 in Application Development Guide.

Example //JPL procedure processes warnings from the database engine.

proc entry
DBMS ONEXIT JPL dbi_warn
return

proc dbi_warn (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg stmt "%N" "Error: " @dmretmsg
else

msg emsg stmt "%N" "Error: " @dmretmsg "%N" \
":engine error: " @dmengwarncode " " @dmengwarnmsg

return

See Also ONENTRY, ONERROR, Chapter 12, “DBMS Global Variables,” Chapter 37, “Processing
Application Errors,” in Application Development Guide
11-46 DBMS Statements and Commands

QUERY
QUERY

Executes an SQL statement that returns one or more select sets

Synopsis DBMS [WITH CONNECTION connection] QUERY SQLstatement

Arguments WITH CONNECTION connection
Name of connection to associate with the statement. If the clause is not used,
Panther uses the default connection.

SQLstatement

SQL statement to be sent to the database engine. The syntax of the statement
can be the specific to the database engine.

Description DBMS QUERY prepares SQLstatement (in general, one that returns rows) by indicating
to the database engine where to put return data (if any), and then tells the database to
execute the SQL statement.

This command is used for statements, such as SELECT statements and stored
procedures, that return select data. For statements that do not return data, use RUN.

For additional information, refer to Chapter 29, “Reading Information from the
Database,” in Application Development Guide.

Example DBMS QUERY SELECT title_id, name, dir_first_name, \
dir_last_name FROM titles

See Also RUN
Programming Guide 11-47

RUN
RUN

Executes an SQL statement that does not return any select sets

Synopsis DBMS [WITH CONNECTION connection] RUN SQLstatement

Arguments WITH CONNECTION connection
Name of connection to associate with the statement. If the clause is not used,
Panther uses the default connection.

SQLstatement

SQL statement (INSERT, UPDATE, DELETE, CREATE TABLE, etc.) to be sent to
the database engine. The syntax of the statement can be specific to database
engine.

Description DBMS RUN executes SQLstatement on the assumption that no data will be returned by
submitting the SQL to the database for immediate execution.

If, however, a data selection SQL statement is executed (one which returns data from
the database), the statement will be executed a second time in order that the selected
data can be fetched. For this reason, use the QUERY statement when selected data may
be returned.

Example DBMS RUN INSERT INTO actors \
(actor_id, last_name, first_name) VALUES \
(:+actor_id, :+last_name, :+first_name)

See Also QUERY
11-48 DBMS Statements and Commands

SQL
SQL

Executes an SQL statement

Synopsis DBMS [WITH CONNECTION connection] SQL SQLstatement

Arguments WITH CONNECTION connection
Name of connection to associate with the statement. If the clause is not used,
Panther uses the default connection.

SQLstatement

SQL statement to be sent to the database engine. The syntax of the statement
can be the format needed by your database engine.

Description This command is not recommended. For SQL statements that return data, use QUERY.
For SQL statements that do not return data (such as INSERT, UPDATE and DELETE), use
RUN.

DBMS SQL sends the specified statement to the database engine for execution after
colon expansion is performed. If a connection is not specified, Panther uses the default
cursor on the default connection.

SQLstatement can be in the format needed by your database engine. This allows you
to access all the features of your database engine.

Example DBMS SQL SELECT title_id, name, dir_first_name, \
dir_last_name FROM titles

DBMS SQL INSERT INTO actors \
(actor_id, last_name, first_name) VALUES \
(:+actor_id, :+last_name, :+first_name)

See Also QUERY, RUN
Programming Guide 11-49

START
START

Specifies a starting row in a SELECT set

Synopsis DBMS [WITH CURSOR cursor] START [int]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

int

Number indicating the row at which to begin the fetch.

Description By default, when a select set contains more than one row, Panther fetches them
sequentially beginning with the first row in the select set. Use DBMS START to begin
fetching at row int. Panther fetches and discards int - 1 rows from the select set
before returning the requested rows to the application. The discarded rows do not
update @dmrowcount. If int is greater than the number of rows in the select set, no
rows are fetched.

The setting is turned off by executing DBMS START with no arguments. Closing a
cursor also turns off the setting. If a cursor is redeclared without being closed, the
cursor continues to use the setting for SELECT statements.

Example proc discard_100
DBMS START 100
DBMS QUERY SELECT * FROM actors
if @dmrowcount == 0

msg emsg "There are fewer than 100 rows."
DBMS START
return
11-50 DBMS Statements and Commands

STORE
STORE

Sets up a continuation file for a named or default cursor

Synopsis DBMS [WITH CURSOR cursor] STORE [FILE [filename]]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

filename

Name of temporary binary file.

Description When DBMS STORE is used with a SELECT cursor, Panther maintains a copy of the
result rows in a temporary binary file. The file permits an application to scroll forward
and backward in a select set, even if the database has no native support for backward
scrolling.

A continuation file remains open for the life of the cursor, or until the feature is turned
off with the command,

DBMS [WITH CURSOR cursor] STORE

Executing the command without the keyword FILE closes and deletes the file and turns
off the feature for the named or default cursor. Closing the cursor also closes and
deletes the file. If a cursor is not closed but simply redeclared for another SELECT
statement, the file is cleared. Therefore, a continuation file holds the results of one
SELECT statement only.

The use of a continuation file does not force the database engine to return the entire
select set when the SELECT is executed. Panther examines the number of occurrences
in the destination variable to determine the number of rows to fetch. Each time it
fetches rows from the database engine by executing the SELECT or a DBMS CONTINUE,
Panther updates the screen and appends the new data to the continuation file. If the
application wishes to see rows already fetched, Panther uses the continuation file to get
the rows and update the screen. If Panther reaches the end of the continuation file and
the application executes another DBMS CONTINUE, Panther attempts to get more rows
from the database engine. When the engine returns the no-more-rows code, Panther
Programming Guide 11-51

STORE
sets @dmretcode to the value of DM_NO_MORE_ROWS. Similarly, if the application
attempts to scroll back past the first row in the continuation file, Panther sets
@dmretcode to DM_NO_MORE_ROWS. Write errors are not reported.

DBMS STORE provides several advantages:

! A means for displaying very large select sets without keeping all rows in
memory at once.

! Better response time for very large select sets; since fetches are incremental, it
is not necessary to get the entire select set at once.

! A means for forcing an database engine to release a shared lock on a large
select set.

For information on engine-specific scrolling issues, refer to “Database Drivers.”

Example // Use of STORE FILE with JPL procedures to fetch more rows.

proc title_select
DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

proc get_next
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

proc get_previous
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

// Use of STORE FILE and map keys in order to fetch more rows.

proc select_titles
DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor STORE FILE
DBMS WITH CURSOR t_cursor EXECUTE
return

// This procedure is called on screen entry.

proc entry (name, flag)
if (flag & K_ENTRY)
{

call sm_keyoption (SPGD, KEY_XLATE, APP1)
call sm_keyoption (SPGU, KEY_XLATE, APP2)

}

11-52 DBMS Statements and Commands

STORE
...
return

//This procedure is called on screen exit.

proc exit (name, flag)
if (flag & K_EXIT)
{

call sm_keyoption (SPGU, KEY_XLATE, SPGU)
call sm_keyoption (SPGD, KEY_XLATE, SPGD)

}
...
return

proc scroll_up
// Control strings contains:
// APP1 = ^scroll_up

DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
// Control strings contains:
// APP2 = ^scroll_down

DBMS WITH CURSOR t_cursor CONTINUE
return

See Also CONTINUE
Programming Guide 11-53

UNIQUE
UNIQUE

Suppresses repeating values in selected columns

Synopsis DBMS [WITH CURSOR cursor] UNIQUE column [, column ...]

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor.

column

Column name in the SELECT statement.

Description DBMS UNIQUE suppresses repeating values in each named column of a select set when
the values are in adjacent rows. Typically, this feature is set for a column named in an
ORDER BY clause.

If the destination variable has a null edit, an occurrence containing a suppressed value
is blank, not null.

The setting is turned off by executing the DBMS UNIQUE command with no arguments.
Closing a cursor also turns off the setting. If a cursor is redeclared without being
closed, the cursor continues to use to the setting for SELECT statements and CONTINUE
commands.

Example // Since several titles can be rented to the same customer,
// suppress repeating customer numbers when listing
// outstanding rentals.

proc rent_list

DBMS DECLARE rent_cursor CURSOR FOR \
SELECT cust_id, title_id, copy_num, due_back FROM rentals \
WHERE due_back < today \
ORDER BY cust_id

DBMS WITH CURSOR rent_cursor UNIQUE cust_id
DBMS WITH CURSOR rent_cursor EXECUTE
DBMS WITH CURSOR rent_cursor UNIQUE
return
11-54 DBMS Statements and Commands

WITH CONNECTION
WITH CONNECTION

Uses a named connection for the duration of a statement

Synopsis DBMS WITH CONNECTION connection DBMSstatement...

Arguments WITH CONNECTION connection
Specifies connection for the execution of the command, overriding the
default connection. connection must be declared and open. Colon expansion
on the connection name is allowed.

DBMSstatement

Text of the DBMS command.

Description The most frequent use of the DBMS WITH CONNECTION clause is in a DECLARE CURSOR
statement.

DBMS WITH CONNECTION connection DECLARE cursor CURSOR...

Once a cursor is declared it remains associated with the connection on which it was
declared. After declaring the cursor, the DBMS WITH CONNECTION clause must not be
used in statements that manipulate the cursor. However, the DBMS WITH CONNECTION
clause can be used on statements that manipulate the default cursor on any declared
connection. Therefore, the following commands

DBMS WITH CONNECTION connection ALIAS ...
DBMS WITH CONNECTION connection CATQUERY ...
DBMS WITH CONNECTION connection CLOSE CURSOR
DBMS WITH CONNECTION connection COLUMN_NAMES
DBMS WITH CONNECTION connection CONTINUE
DBMS WITH CONNECTION connection CONTINUE_BOTTOM
DBMS WITH CONNECTION connection CONTINUE_TOP
DBMS WITH CONNECTION connection CONTINUE_UP
DBMS WITH CONNECTION connection FORMAT ...
DBMS WITH CONNECTION connection OCCUR ...
DBMS WITH CONNECTION connection QUERY ...
DBMS WITH CONNECTION connection RUN ...
DBMS WITH CONNECTION connection SQL ...
DBMS WITH CONNECTION connection START ...
DBMS WITH CONNECTION connection STORE ...
DBMS WITH CONNECTION connection UNIQUE ...

perform the request on the default SELECT cursor on the named connection.
Programming Guide 11-55

WITH CONNECTION
Some engine-specific DBMS commands can also support the WITH CONNECTION
clause. For more information, refer to “Database Drivers.”

Example // This procedure performs a commit before closing the
// connection.

proc cleanup (connection)
DBMS WITH CONNECTION :connection COMMIT
DBMS CLOSE CONNECTION :connection
return 0

See Also DECLARE CONNECTION, dm_is_connection
11-56 DBMS Statements and Commands

WITH CURSOR
WITH CURSOR

Uses a named cursor for the duration of a statement

Synopsis DBMS WITH CURSOR cursor DBMSstatement

Arguments WITH CURSOR cursor
Name of declared SELECT cursor. If the clause is not used, Panther uses the
default SELECT cursor. Colon expansion of the cursor name is allowed.

DBMSstatement

Text of the DBMS command.

Description The DBMS WITH CURSOR clause specifies the name of a declared cursor on which
Panther executes the DBMS command. Once a cursor is declared, the application can
manipulate or execute the cursor by using the WITH CURSOR clause with the following
commands:

DBMS WITH CURSOR cursor ALIAS ...
DBMS WITH CURSOR cursor CATQUERY ...
DBMS WITH CURSOR cursor COLUMN_NAMES
DBMS WITH CURSOR cursor CONTINUE
DBMS WITH CURSOR cursor CONTINUE_BOTTOM
DBMS WITH CURSOR cursor CONTINUE_TOP
DBMS WITH CURSOR cursor CONTINUE_UP
DBMS WITH CURSOR cursor EXECUTE ...
DBMS WITH CURSOR cursor FORMAT ...
DBMS WITH CURSOR cursor OCCUR ...
DBMS WITH CURSOR cursor START ...
DBMS WITH CURSOR cursor STORE ...
DBMS WITH CURSOR cursor UNIQUE ...

If the DBMS WITH CURSOR clause is not used with these commands, Panther uses the
default SELECT cursor. The application can also manipulate the default cursor by
using the DBMS WITH CONNECTION clause.

Some engine-specific DBMS commands can also support the WITH CURSOR clause.
For more information, refer to “Database Drivers.”
Programming Guide 11-57

WITH CURSOR
Example // Uses colon expansion on the cursor name to remove
// the command attributes for named cursors.

proc cursor_refresh (cursor_name)
DBMS WITH CURSOR :cursor_name ALIAS
DBMS WITH CURSOR :cursor_name CATQUERY
return 0

See Also DECLARE CURSOR, CLOSE CURSOR, dm_is_cursor
11-58 DBMS Statements and Commands

WITH ENGINE
WITH ENGINE

Uses a named database engine for the duration of a statement

Synopsis DBMS WITH ENGINE engine command...

Arguments WITH ENGINE

Name of engine to associate with the command. If the clause is not specified,
Panther uses the default engine.

engine

Mnemonic associated with the engine when you make your Panther
executables. Colon expansion of the engine name is allowed.

command

Text of the DBMS command.

Description The DBMS WITH ENGINE clause specifies which database engine Panther should use
when executing a command. If only one database engine is initialized, that engine is
automatically the default. An application using two or more engines can set the default
engine with the DBMS ENGINE command.

The following commands accept an optional WITH ENGINE clause:

DBMS WITH ENGINE engine DECLARE connection CONNECTION ...
DBMS WITH ENGINE engine CLOSE_ALL_CONNECTIONS

Once a connection is declared, it remains associated with the database engine on which
it was declared. After declaring the connection, the WITH ENGINE clause is no longer
necessary or valid in any statement except for DBMS CLOSE_ALL_CONNECTIONS which
allows you to close the connections for the default or named engine.

Example Refer to “Connecting to Multiple Engines” on page 8-5 in Application Development
Guide.

See Also ENGINE, dm_is_engine
Programming Guide 11-59

WITH ENGINE
11-60 DBMS Statements and Commands

CHAPTER
12 DBMS Global
Variables

This chapter describes the global variables, in alphabetical order, available in Panther's
database drivers.

A reference page for each global variable includes:

! A description of the variable.

! A list of related variables and commands.

! An example.

Since some variables store engine-specific values, refer to “Database Drivers” for
additional information. For more information on using the global variables as part of
your error processing, refer to Chapter 37, “Processing Application Errors,” in
Application Development Guide.
Programming Guide 12-1

Variable Overview

The global variables available through Panther's database drivers are automatically
defined at initialization. All the global variable names used in the database drivers
begin with the characters @dm. Since the character @ is not permitted in user-defined
Panther variables, these variables will never conflict with any screen, LDB or JPL
variables defined by your application.

These variables and their values are available to JPL commands and to Panther library
functions like sm_getfield and sm_fptr.

The variables are automatically maintained by Panther. Before executing a DBMS
command, Panther clears the contents of all the DBMS global variables. After
executing the command and before returning control to the application, Panther
updates the variables to indicate the current status.

Table 12-1 Error Data

Variable Description

@dmretcode Error code from Panther’s database driver. Codes are the
same for all engines.

@dmretmsg Error message from Panther’s database driver. Messages are
the same for all engines.

@dmengerrcode Engine error code. Codes are unique to the engine.

@dmengerrmsg Engine error message. Messages are unique to the engine.
Some engines do not supply messages.

@dmerrsqlstate Engine status code signaling an error condition. Not used by
all engines.
12-2 DBMS Global Variables

Table 12-2 Status Data

Variable Description

@dmretcode Status code available for “no more rows” or “end of
procedure.”

@dmretmsg Status message available for “no more rows” or “end of
procedure.”

@dmengreturn Engine return code from a stored procedure. Not used by all
engines.

@dmrowcount Count of the number of rows fetched to Panther by the last
SELECT or CONTINUE. Used by all engines.

@dmserial A serial value returned after inserting a row into a table with
a serial column. Not used by all engines.

@dmengwarncode A code or byte signalling a non-fatal error or unusual
condition. Not used by all engines.

@dmengwarnmsg A message corresponding to an engine warning code. Not
used by all engines.

@dmwarnsqlstate Engine status code signaling a warning condition. Not used by
all engines.
Programming Guide 12-3

@dmengerrcode
@dmengerrcode

Contains an engine-specific error code

Description @dmengerrcode is set to 0 before executing a DBMS command. If the database engine
detects an error, Panther writes the engine's error code to this variable. In cases where
a database engine can generate multiple error codes for one statement,
@dmengerrcode is an array, and each error code is written to a different occurrence.

A 0 (zero) value in this variable does not guarantee that the last statement executed
without error. Some errors are detected by Panther's database driver before a request is
made to the engine. For example, if an application attempts a SELECT before declaring
a connection, Panther detects the error. Use the global variable @dmretcode to check
for errors in Panther's database drivers.

Because the value of @dmengerrcode is engine-specific, it is strongly recommended
that you install an error handler to test for these errors. In a multi-engine application,
the error handler can call another function to do this depending on the engine.

If the default error handler is in use, Panther displays the statement which failed and
an error message from either Panther’s database driver or from the database engine. If
the application has installed its own error handler, the installed function controls what
messages are displayed. Refer to the Database Drivers for more information about the
codes for a particular engine.

Example proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode == 0
msg emsg @dmretmsg
else if engine == "xyzdb"

call xyzerror (@dmengerrcode)
else if engine == "oracle"

call oraerror (@dmengerrcode)
else

msg emsg "Unknown engine."
return 1

proc xyzerror (error)
Check for specific xyzdb error codes.
if error == 90931

msg emsg "Invalid user name."
else if error == ...

...
else
12-4 DBMS Global Variables

@dmengerrcode
msg emsg @dmengerrmsg
return
Programming Guide 12-5

@dmengerrmsg
@dmengerrmsg

Contains an engine-specific error message

Description @dmengerrmsg is set to "" before executing a DBMS command. If the database engine
returns an error message after attempting to execute the command, Panther writes the
message to this variable. If a database engine can generate multiple error messages for
one command, @dmengerrmsg is an array, and each error message is written to a
different occurrence.

If @dmengerrcode is 0, this variable contains no message. It will also be 0 if the engine
does not supply error messages. Refer to the Database Drivers for more information
about the availability of this variable.

Example proc dbi_errhandle (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg @dmretmsg
else

msg emsg @dmretmsg "%N" @dmengerrmsg
return 1
12-6 DBMS Global Variables

@dmengreturn
@dmengreturn

Contains a return code from a stored procedure

Description Use @dmengreturn to get a stored procedure's return or status code. This variable is
only available if your engine supports stored procedures and their return codes and if
the Panther database driver supports stored procedure return codes.

Since database engines implement stored procedures differently, refer to the Database
Drivers for engine-specific information and examples.

By default, Panther pauses the execution of a stored procedure if the procedure
executes a SELECT statement and the number of rows in the select set is greater than
the number of occurrences in the Panther destination variables. The application must
execute CONTINUE or DBMS NEXT to resume execution. If the value of @dmengreturn
is null after calling a stored procedure, the procedure might be pending. If the engine
has completed the execution of the procedure, @dmretcode will contain the
DM_END_OF_PROC code and @dmengreturn will contain the procedure's return code.

The value of this variable is cleared once another DBMS command is executed. If the
application needs the value for a longer period of time, it should copy it to a standard
Panther variable or some other static location.

Example # This is an example of a SYBASE stored procedure:
create proc checkid @id int as
if (SELECT COUNT (*) FROM titles WHERE title_id = @id) = 1
return 1

else
return 2

DBMS RUN EXEC checkid :+title_id
if @dmengreturn == 1

call addrow

else if @dmengreturn == 2
msg emsg "Sorry, " title_id " is not a valid code."

return

proc addrow
DBMS RUN INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, 'O', 0)
return
Programming Guide 12-7

@dmerrsqlstate
@dmerrsqlstate

Contains an engine-specific status code for error conditions

Description Some database engines support a SQLSTATE status code which is updated after each
SQL statement. SQLSTATE is currently supported by Panther’s ODBC, Informix and
DB2 drivers.

SQLSTATE is a five-character string which can be set for warning or error conditions.
In Panther, warning conditions from SQLSTATE are written to @dmwarnsqlstate;
error conditions are written to @dmerrsqlstate.

If the database engine does not support SQLSTATE, the value of @dmerrsqlstate will
be "00000", the value that represents success.

A "00000" (five zeros) value in this variable does not guarantee that the last statement
executed without error. Some errors are detected by Panther's database driver before a
request is made to the engine. For example, if an application attempts a SELECT before
declaring a connection, Panther detects the error. Use the global variable @dmretcode
to check for errors in Panther's database drivers.

Because the value of @dmerrsqlstate is engine-specific, it is strongly recommended
that you install an error handler to test for these errors.

If the application accesses multiple database engines, the database driver for each
engine must support SQLSTATE in order to use its values for application processing.
@dmerrsqlstate is set to "00000" before each DBMS statement. If you need its value
for later processing, it should be copied to another variable.
12-8 DBMS Global Variables

@dmengwarncode
@dmengwarncode

Contains an engine-specific warning code

Description Most engines supply a mechanism for signalling an unusual, but non-fatal condition.

Some engines use an eight-element array. If there is a warning, it sets the first element
to indicate a warning and then sets one or more additional elements to describe the
warning. Other engines use codes and messages similar to those used for errors. Those
of a high severity are handled as errors and those of a low severity are handled as
warnings. Refer to the Database Drivers for engine-specific information and
examples.

By default, Panther ignores warnings. If an application needs to alert users to warning
codes, it must use a JPL or C function to check for them. There is no default warning
handler. The most efficient way to process warning codes is with an installed exit
handler using ONEXIT.
Programming Guide 12-9

@dmengwarnmsg
@dmengwarnmsg

Contains an engine-specific warning message

Description Most engines supply a mechanism for signalling an unusual, but non-fatal condition.
Some engines uses a warning array or byte. These engines do not supply warning
messages and therefore do not use @dmengwarnmsg. Others use a code and message
for low-severity errors. Refer to the Database Drivers for engine-specific information
and an example.

By default, Panther ignores warnings. If an application needs to alert users to warning
codes or messages, it must use a JPL or C function to check for them. There is no
default warning handler. The most efficient way to process warning values is with an
installed exit handler using ONEXIT.
12-10 DBMS Global Variables

@dmretcode
@dmretcode

Contains an engine-independent error or status code

Description @dmretcode is set to 0 before Panther executes a new DBMS command. If the command
fails because of an error detected either by the engine or by Panther's database driver,
Panther writes an error code to @dmretcode describing the failure.

Usually a non-zero value in @dmretcode indicates that an error occurred. The default
or an installed error handler is called for an error. If the default handler is in use,
Panther displays the statement which failed and an error message from either Panther's
database driver or from the database engine. If the application has installed its own
error handler, the installed function controls what messages are displayed.

There are two non-zero codes for @dmretcode which are not errors:
DM_NO_MORE_ROWS and DM_END_OF_PROC. When an engine indicates that it has
returned all rows for a select set, Panther writes the DM_NO_MORE_ROWS code to
@dmretcode. Since this is not considered an error, Panther does not call the default or
installed error handler. You can test for DM_MORE_ROWS after executing a SELECT or in
an exit handler.

Panther uses DM_END_OF_PROC with engines that support stored procedures. When an
engine indicates that it has completed executing the stored procedure, Panther writes
the DM_END_OF_PROC code to @dmretcode. This is not an error. An application can
test for this code in an exit procedure or after calling a stored procedure. Refer to the
Database Drivers for information on stored procedures.

The values for @dmretcode are listed alphabetically in Table 12-3 (in the source code,
they reside in dmerror.h).

Table 12-3 @dmretcode error codes and corresponding messages

Code constant Message

DM_ABORTED Processing aborted due to DB error.

DM_ALREADY_INIT Engine already installed.

DM_ALREADY_ON Already logged in.

DM_ARGS_NEEDED Arguments required.
Programming Guide 12-11

@dmretcode
DM_BAD_ARGS Bad arguments.

DM_BAD_CMD Bad command.

DM_BIND_COUNT Incorrect number of bind variables.

DM_BIND_VAR Bad or missing bind variable.

DM_COMMIT Commit failed.

DM_DESC_COL Describe select column error.

DM_END_OF_PROC End of procedure.

DM_FETCH Error during fetch.

DM_INVALID_DATE Invalid date.

DM_KEYWORD Bad or missing keyword.

DM_LOGON_DENIED Logon denied.

DM_MANY_CURSORS Too many cursors.

DM_NO_CURSOR Cursor does not exist.

DM_NO_MORE_ROWS No more rows indicator.

DM_NO_NAME No name specified.

DM_NO_TRANSACTION Transaction does not exist.

DM_NOCONNECTION No connection active.

DM_NODATABASE No database selected.

DM_NOTLOGGEDON Not logged in.

DM_NOTSUPPORTED Command not supported for specified engine.

DM_PARSE_ERROR SQL parse error.

DM_ROLLBACK Rollback failed.

Table 12-3 @dmretcode error codes and corresponding messages (Continued)

Code constant Message
12-12 DBMS Global Variables

@dmretcode
Example proc entry
DBMS ONERROR JPL dbi_errhandle
DBMS ONEXIT JPL dbi_exithandle
...
return

proc dbi_errhandle (stmt, engine, flag)
Check for logon errors.
if @dmretcode == DM_ALREADY_ON

return 0

else if @dmretcode == DM_LOGON_DENIED
msg emsg @dmretmsg "%N" @dmengerrmsg

....
return 1

proc dbi_exithandle (stmt, engine, flag)
if @dmretcode == DM_NO_MORE_ROWS

msg emsg "All rows returned."
return 0

DM_TRAN_PEND Transaction pending.

Table 12-3 @dmretcode error codes and corresponding messages (Continued)

Code constant Message
Programming Guide 12-13

@dmretmsg
@dmretmsg

Contains an engine-independent error or status message

Description @dmretmsg is cleared before Panther executes a new DBMS command. If the command
fails because of an error detected either by the engine or by Panther's data base driver,
Panther writes an error message to @dmretmsg describing the failure. These messages
are defined in dmerror.h and are engine-independent. Refer to Table 12-3 on page
12-11 for a listing of the codes and messages.

If @dmretcode is 0, @dmretmsg is always empty.

Example proc dbi_errhandle (stmt, engine, flag)
msg emsg "Statement " stmt " failed." "%N"\

 @dmretmsg "%N" @dmengerrmsg
return 1
12-14 DBMS Global Variables

@dmrowcount
@dmrowcount

Contains a count of the number of rows either fetched to Panther or affected by the
previous statement

Description The use of this variable is dependent on the database engine. On all engines,
@dmrowcount is set to the number of rows fetched to Panther variables in a SELECT
statement or CONTINUE command. On some engines, it can also reflect the number of
rows affected by an INSERT, UPDATE, or DELETE statement.

@dmrowcount is set to 0 before each new DBMS command is executed. You must copy
its value to another location if you want to use the value after subsequent commands.

If the command fetches rows, Panther updates @dmrowcount writing the number of
rows fetched to Panther variables. Most SQL syntaxes provide an aggregate function
COUNT to count the number of values in a column or the number of rows in a select set.
The value of @dmrowcount is not the number of rows in a select set; rather, it is the
number of rows returned to Panther variables. Therefore if a select set has 14 rows in
total, and its target Panther variables are arrays, each with ten occurrences,
@dmrowcount is 10 after the SELECT is executed, and 4 after CONTINUE is executed. If
CONTINUE is executed a second time, @dmrowcount would equal 0.

The value of @dmrowcount is either less than or equal to the maximum number of rows
that can be written to the target Panther destinations; the maximum number of rows is
the number of occurrences in a destination variable. If the value in @dmrowcount is
less than the maximum number of occurrences, then the entire select set is written to
the target variables and no further processing is needed. If @dmrowcount equals the
maximum number of occurrences, then the SELECT might fetch more rows than can fit
in the variables. To display the rest of the select set, the application must execute DBMS
CONTINUE until @dmrowcount is less than the maximum number of occurrences (or
equals 0) or until @dmretcode receives the DM_NO_MORE_ROWS code.

For information on whether the variable can be used to obtain the number of rows
affected by an INSERT, UPDATE, or DELETE statement, refer to the Database Drivers
for the specified engine.

If you are using the transaction manager, call sm_tm_inquire(TM_OCC_COUNT) to find
the number of rows fetched in the current server view. Since a transaction command
can consist of more than one DBMS command, @dmrowcount might have already been
overwritten.
Programming Guide 12-15

@dmrowcount
Example proc get_selection
DBMS QUERY SELECT * FROM titles WHERE genre_code=:+type
call check_count
return

proc check_count
 # If rows are returned but not the NO_MORE_ROWS code,
 # let the user know there are rows pending.
 if (@dmrowcount > 0) && \

(@dmretcode != DM_NO_MORE_ROWS)
msg setbkstat "Press %KPF1 to see more."

else
msg setbkstat "All rows returned."

return

proc get_more
 # This function is called by pressing PF1.
 # It retrieves the next set of rows.

DBMS CONTINUE
call check_count
return
12-16 DBMS Global Variables

@dmserial
@dmserial

Contains a serial column value after performing INSERT

Description Some engines supply the data type serial to assist applications that need to assign a
unique numeric value to each row in a table. When an application inserts a row in a
table with a serial column, the engine generates a serial number, inserts the row with
the number, and returns the number to the application. Refer to the Database Drivers
for information about support for this on your engine.

Before executing a new DBMS command, Panther writes a 0 to @dmserial. If the
statement is an INSERT and the engine returns a serial value, Panther writes the value
to @dmserial. Since this variable is cleared before executing a new DBMS command,
you must copy its value to another location if you want to use the value in subsequent
commands.

Example proc new_order
vars i(3), order_id(5)
DBMS BEGIN
First INSERT row into invoices table.
Column order_id in table invoices is a SERIAL.

DBMS RUN INSERT INTO invoices \
(order_id, order_date, cust_num) VALUES \
(0, :+today, :+cust_num)

Copy the serial value to a JPL variable for use with
subsequent INSERTS.
order_id = @dmserial

Use order number to insert new rows to the orders
table. Column order_id in table orders is an INT.

for i=1 while i<=max step 1

DBMS RUN INSERT INTO orders \
(order_id, part_id, quant, u_cost) VALUES \
(:order_id, :+part_id[i], :+quant[i], :+u_cost[i])

DBMS COMMIT

msg emsg "Order completed. Invoice number is " order_id
return
Programming Guide 12-17

@dmwarnsqlstate
@dmwarnsqlstate

Contains an engine-specific status code indicating a warning

Description Some database engines support a SQLSTATE status code which is updated after each
SQL statement. SQLSTATE is a five-character string which can be set for warning or
error conditions. In Panther, warning conditions from SQLSTATE are written to
@dmwarnsqlstate; error conditions are written to @dmerrsqlstate.

By default, Panther ignores warnings. If an application needs to alert users to warning
codes, it must use a JPL or C function to check for them. There is no default warning
handler. The most efficient way to process warning codes is with an installed exit
handler using ONEXIT.

If the database engine does not support SQLSTATE, the value of @dmwarnsqlstate
will be "00000", the value that represents success.

If the application accesses multiple database engines, the database driver for each
engine must support SQLSTATE in order to use its values for application process
ing.@dmwarnsqlstate is set to "00000" before each DBMS statement. If you need its
value for further processing, it should be copied to another variable.
12-18 DBMS Global Variables

CHAPTER
13 Keywords in
Database Drivers

This chapter lists the keywords for Panther’s database drivers. Avoid using these
keywords as identifiers, particularly for cursors, connections, engines, and
transactions. Also, avoid using these keywords when naming Panther variables which
will be used in a DBMS statement. Since keywords are not case-sensitive, the following
two statements are equivalent:

dbms close_all_connections
DBMS CLOSE_ALL_CONNECTIONS

Table 13-1 Keywords in the database drivers

alias application autocommit

begin binary browse

call cancel catalog_function

catquery checkpt_interval close

close_all_connections column_names commit

completion conn_string connect

connected connection continue

continue_bottom continue_down continue_top
Programming Guide 13-1

continue_up create_proc create_trigger

count ct_command ct_cursor

current cursor cursors

database datasource db

dbms declare disconnect

drop_proc drop_trigger

end engine error

error_continue exec execute

execute_all

flush file for

format

heading host

interfaces

jpl

locklevel locktimeout logon

logoff

Table 13-1 Keywords in the database drivers (Continued)
13-2 Keywords in Database Drivers

max

next null

occur off on

onentry onerror onexit

options out output

parsing_mode password prepare_commit

print proc proc_control

query

redirect return retvar

rfjournal rollback rpc

run run_default

save schema select

select_aliases separator serial

server set set_buffer

single_step sql sqltimeout

start stop stop_at_fetch

store supreps

Table 13-1 Keywords in the database drivers (Continued)
Programming Guide 13-3

tee timeout to

tranid transaction transport

type

unique update use

user using

warn width

Table 13-1 Keywords in the database drivers (Continued)
13-4 Keywords in Database Drivers

CHAPTER
14 ActiveX Controls

This chapter contains descriptions of the ActiveX Controls distributed with Panther.
Information about each ActiveX control is organized into the following sections:

! Description

! Properties

! Methods

! Events
Programming Guide 14-1

PrlSpinner
PrlSpinner

Enter a numeric value within a specified range

Description The Panther Spinner ActiveX Control is a text entry box combined with an up-down
control (up arrow/down arrow button). Enter ordered, numeric values into the control
directly or increment/decrement the value by the buttons. Additionally, properties can
be set to control the maximum or minimum of the value. The control can be installed
using the file $SMBASE\Samples\Activex\PrlSpinner.ocx.

CLSID DA2599CE-F939-11D0-A19E-00A02481A2E9

Properties Maximum

Set to any integer, defaults to 100.

Minimum

Set to any integer, defaults to 0.

BlankIfZero

Set to yes/no.

Value

Set to its numeric content. This is the default property.

Events None.

Methods None.
14-2 ActiveX Controls

INDEX
Index

Symbols

@dm global variables 12-1
@NULL 2-8

A

ALIAS
dbms command

aliasing column names 11-5
Aliasing

column names to widgets 11-5
Application

aborting 5-104, 5-241
escaping to operating system 5-297
getting handle for instance 5-384
getting handle for object 5-432
getting handle to frame 5-383
getting initial state 5-382
getting previous handle 5-385
getting runtime properties 5-428
global variables 5-231, 5-242
initialization

error message 5-227
initializing 5-228
resetting display 5-446
returning after escape 5-450
setting runtime properties 5-435, 5-439
starting 5-255
using Java methods 7-2

Application runtime properties
getting 5-422

Application server
advertising services

in JetNet/Tuxedo 2-2
Array

clearing all data 5-109
copying data 5-119
declaring in JPL 2-95
deleting occurrence 5-150
find next synchronized 5-390
getting current occurrence number 5-413
inserting occurrence 5-236
reading file contents into 5-178
sorting at runtime 5-410, 5-411
trimming 5-479
using text editor 5-174
writing contents to file 5-172

Asynchronous service call 2-69

B

Background color
setting 5-98

Backtab 5-91
Backward compatibility

before image data 5-522
Backward scrolling

viewing database rows 11-26, 11-27, 11-51
Base window
Programming Guide I-1

Index
getting Widget ID 5-589
Before image processing

backward compatibility 5-522
comparing values 5-93
copying current values 5-95
initializing 5-96
retrieving data 5-208, 5-213

Bell
invoking 5-92
setting in messages 2-39

BINARY
dbms command

fetching binary column values 11-8
Binary variables

deleting occurrence 5-3
getting maximum number of occurrences 5-7
getting maximum occurrence length 5-6
getting occurrence data 5-5
getting occurrence length 5-4
getting pointer to occurrence 5-2
setting occurrence length 5-8

Buffer
copying data to 5-215

Built-in control functions 3-1
Bundles

appending data 5-82, 5-85
counting items in 5-210
counting occurrences 5-211
creating 5-120
destroying 5-202
getting name 5-212
of data in JPL 2-64
optimizing bundle storage 5-84
reading an occurrence 5-209
receiving 5-443
verifying name 5-238
writing to 5-471

C

Case sensitivity

transaction manager commands 8-4
CATQUERY

dbms command
writing results to widget or file 11-10

CHANGE
transaction manager command

switching transactions 8-10
Check digit function

executing 5-105
CLEAR

transaction manager command
clearing data in widgets 8-11
setting behavior 5-75

Client
notifying from application server

in JetNet/Tuxedo 2-43
Client authentication

data function
in JetNet/Tuxedo 2-13

in JetNet/Tuxedo 2-13
post-connection function

in JetNet/Tuxedo 2-14
Client connection

closing
in JetNet/Tuxedo 2-10

opening
in JetNet/Tuxedo 2-11

CLOSE
transaction manager command

closing database transaction 8-13
CLOSE CONNECTION

dbms command
closing database connection 11-15

CLOSE CURSOR
dbms command

closing database cursor 11-16
CLOSE_ALL_CONNECTIONS

dbms command
closing all database connections 11-14

Colon preprocessing
simulating from C 5-23
I-2 Programming Guide

Index
Color attributes
setting

for area 5-98
COLUMN_NAMES

dbms command
mapping column names only 11-18

COM
creating named property 5-368
creating object 5-367
error handling 5-442

COM components
calling methods 5-393
calling QueryInterface 5-114
getting error code 5-115
getting error message 5-116
getting property settings 5-404
receiving method's parameters 2-59
returning method's parameters 2-61
sending error to client 2-53
setting event handler 5-117
setting property settings 5-408

Combo box widget
updating contents 5-555

Command
launching 5-272

Components
creating 5-398, 5-399, 5-400
destroying 5-402

CONNECTION
dbms command

setting default database connection
11-20

Container
counting number of widgets 5-298
creating object list 5-302
destroying object list 5-299
traversing 5-300

Continuation file
specifying 11-51
using in transaction manager 5-501

CONTINUE

availability in transaction manager 5-501
dbms command

fetching next set of rows 11-21
transaction manager command

fetching next set of data 8-16
CONTINUE_BOTTOM

dbms command
fetching last set of rows 11-23

transaction manager command
fetching last set of rows 8-19

CONTINUE_DOWN
dbms command

fetching next set of rows 11-25
transaction manager command

fetching next set of rows 8-23
CONTINUE_TOP

dbms command
fetching first set of rows 11-26

transaction manager command
fetching first set of rows 8-27

CONTINUE_UP
dbms command

fetching previous set of rows 11-27
transaction manager command

fetching previous set of rows 8-31
Cookies

retrieving values 5-561
setting values 5-566

COPY
transaction manager command

copying data for edit 8-35
COPY_FOR_UPDATE

transaction manager command
changing to update mode 8-37

COPY_FOR_VIEW
transaction manager command

changing to view mode 8-39
copying

file 5-162
Correlation names

finding corresponding table view 5-52
Programming Guide I-3

Index
Creating
unique file name 5-532

Currency format
stripping from string 5-488

Cursor
backtabbing to previous field 5-91
changing delay state 5-143
getting location in field 5-477
getting offset in field 5-147
moving

to field 5-221, 5-414
to first field 5-226
to last field 5-271
to next field 5-494
to next line 5-391
to next occurrence of array 5-391

toggling position display 5-102
turning off 5-100
turning on 5-101

Cursor (database) 11-1
closing 11-16
declaring 11-31
executing statement 11-34
finding default connection 5-11
getting connection name 5-10
getting engine name 5-12
getting handle 5-56
specifying cursor for dbms command 11-57
verifying cursor behavior in ODBC 5-64
verifying status 5-62

D

Data
clearing

in the transaction manager 8-11
copying

in the transaction manager 8-35
copying to buffer 5-215
forcing validation 5-205
formatting in C 5-23

inserting
in the transaction manager 8-47

modifying
in the transaction manager 8-52

receiving data bundles 2-54
restoring saved data 5-449, 5-453
scrolling through result set 11-23
selecting

in the transaction manager 8-57, 8-65
sending data bundles 2-64

Data bundles
appending data 5-82, 5-85
counting bundle items 5-210, 5-211
creating bundle 5-120
destroying 5-202
getting bundle name 5-212
optimizing bundle storage 5-84
reading an occurrence 5-209
receiving 5-443
verifying name 5-238
writing to bundle 5-471

Database
database connections 11-1
database drivers 11-1
database engines 11-1

Database columns
aliasing to widgets 11-5
fetching binary values 5-2, 11-8
getting serial column value 12-17
mapping column names to Panther variables

11-18
mapping result set to widget/file 11-10
suppress repeating values 11-54

Database connections
closing 11-14, 11-15
cursor

getting the engine name 5-12
on the default connection 5-11

declaring 11-29
disabling support 5-65
finding value of option 5-54
I-4 Programming Guide

Index
getting handle 5-55
getting name from cursor 5-10
setting current 11-55
setting default 11-20
setting value of option 5-66
verifying connection status 5-61

Database cursors
getting handle 5-56
verifying status 5-62

Database drivers
commands 11-1

executing from C 5-14, 5-16
finding value of connection options 5-54
finding value of option 5-57
getting last command 5-58
initializing 5-13, 5-59
keywords 13-1
listing of error messages 12-11
setting options 5-69
verifying status 5-63

Database engines
disabling support 5-65
getting from specified cursor 5-12
initializing 5-13
setting current 11-59
setting default 11-33
using more than one 11-59

Database engnes
finding value of option 5-57
setting value of option 5-69

Date/time format
applying 5-467
applying to supplied value 5-550

DBMS commands
defined 11-1
executing from C 5-14, 5-16
finding out last command 5-58
summary 11-2

DDE
callback function

installing 5-138

cold links
creating for Panther client 5-126

cold paste links
creating for Panther client 5-133

destroying links to Panther client 5-130
disabling Panther as client 5-131
disabling Panther as server 5-141
enabling Panther as client 5-132
enabling Panther as server 5-142
executing command from Panther client

5-137
hot links

creating for Panther client 5-127
hot paste links

creating for Panther client 5-134
paste links

creating for Panther client 5-133
poking data from Panther client 5-140
requesting link data 5-136
warm links

creating for Panther client 5-128
warm paste links

creating for Panther client 5-135
DECLARE CONNECTION

dbms command
making database connection 11-29

DECLARE CURSOR
dbms command

creating database cursor 11-31
Delay cursor 5-143
Delayed write

flushing 2-26, 5-191
Deleting

file 5-167
translation table 5-587

Deselecting
in selection group 5-145

Dialog box
displaying message 5-334
for file selection 5-248
selecting file 5-168
Programming Guide I-5

Index
viewing file type 5-170
Display

getting HWND handle 5-590
getting Widget ID 5-590

Display attributes
setting

for area 5-98
in status line 2-39

DLLs
getting load error 5-480
installing function from 5-481
loading 5-483

dm_
@dm global variables 12-1

Double clicking
getting time between clicks 5-379

Drawing function
attaching to widget 5-87

E

Editor
invoking for arrays 5-174

Email
creating new mail object 5-312
sending 5-311, 5-314

attachments 5-309
field contents 5-315
text file 5-310
widget image 5-316

ENGINE
dbms command

setting default database engine 11-33
Enterprise JavaBeans

receiving method's parameters 2-59
returning method's parameters 2-61
sending error to client 2-53

Error handler
installing 5-74, 5-406, 5-568

Error handling
DLL loading 5-480

for COM objects 5-115, 5-116
for menu API 5-317
for properties API 5-426
for reports 5-454
sending message to client 5-442

Error log
creating 5-305

Error messages
database drivers 12-11
displaying 5-200, 5-201
for user 5-155, 5-158
from service components 2-53
in the transaction manager

transaction manager 10-1
in Web applications 5-563
initializing application 5-227

Error messages (database)
calling function after dbms command 11-45
calling function before dbms command 11-40
engine-specific codes 12-4
engine-specific messages 12-6, 12-8
generic database driver messages 12-11,

12-14
listing 12-11

in transaction manager 5-503
installing error handler 11-42
warning codes 12-9, 12-10, 12-18

Errors
transaction manager 5-499, 5-500, 5-504,

5-505, 5-510, 5-519, 5-520, 5-521
from database 5-503

Event
posting to event broker

in JetNet/Tuxedo 2-47
subscribing to

in Tuxedo 2-82
Event broker

posting an event
in JetNet/Tuxedo 2-47

subscribing to event 2-82
unsubscribing from event
I-6 Programming Guide

Index
in Tuxedo 2-94
Event functions

installing 5-149, 5-233
Event handlers

for COM components 5-117
Exception event

handler installed for transaction
 2-103

EXECUTE
dbms command

executing statement 11-34
generating SQL

changing bind values 5-27
Executing

SQL statements 11-47, 11-48, 11-49
Exit screen 3-2
External menu 5-332

F

FETCH
transaction manager command

fetching next row of data 8-41
Fetch

setting number of rows 5-73
Field

getting cursor offset 5-147
setting current 5-221
using Java methods 7-3

Field data
clearing

in transaction manager 5-495
clearing all fields 5-108
clearing from array 5-109
copying array data 5-119
copying to buffer 5-215
deleting occurrence 5-150
forcing validation 5-205
formatting empty numeric field 5-9
getting length 5-148

of word wrapped text 5-582

reading 5-198
double precision float 5-124
from LDBs 5-78
integer 5-235
long integer 5-303
unformatted data 5-488
word wrapped text 5-584

testing
all fields for changes 5-548
for no value 5-239
for yes value 5-240
if null 5-392

validating
with check digit function 5-105

writing 5-441
double precision floating point 5-153
formatted data 5-80
integer 5-245
long integer 5-307
word wrapped text 5-585

File
checking for 5-164
copying 5-162
deleting 5-167
getting path name 5-161
moving 5-165
selecting in dialog box 5-168, 5-170, 5-248

File I/O
closing file stream 5-173
error handling 5-175
getting file stream handle 5-183
invoking editor for editing array 5-174
opening file 5-184
reading characters from file 5-180
reading line from file 5-181
rewinding file stream 5-190
setting error code 5-177
writing array to file 5-172
writing character to file 5-187
writing file contents to array 5-178
writing line of text to file 5-188
Programming Guide I-7

Index
File selection
in dialog box 5-248

File types
selecting in dialog box 5-170

Filename
creating unique 5-532

FINISH
transaction manager command

closing current transaction 8-43
Floating point

reading from field 5-124
writing to field 5-153

Flush buffered output 2-26, 5-191
For loop 2-27

skip to next iteration 2-42
FORCE_CLOSE

transaction manager command
discarding changes 8-45

Form
closing 5-246
opening 5-250

Form list 5-196
FORMAT

dbms command
formatting CATQUERY values 11-36

Frames
getting handle 5-383

FROM clause
changing SQL generation 5-32

Functions
calling from JPL 2-8
installing from DLLs 5-481

G

Global JPL variable
declaring 2-29

Global variables
changing to transient status 5-569, 5-570
creating

on Web 5-564

database drivers 12-1
getting value 5-422
getting values 5-231
updating values 5-242

Graphics file
Windows

returning object ID 5-112
Grid widgets

using Java methods 7-5
Group

controlling cursor key 5-265
converting to field number 5-223
forcing validation 5-224
getting name from field reference 5-203
using Java methods 7-6

GROUP BY clause
changing SQL generation 5-35

H

HAVING clause
changing SQL generation 5-37

Help mode
invoking 5-472

Help screen
displaying 5-225

HINSTANCE handle 5-384, 5-385
HOME

moving cursor to 5-226
Hook functions

installing 5-149, 5-233
HTML

getting cookie values 5-561
setting cookies 5-566

HWND handle
getting

for drawing area 5-152
for screen-resident widget 5-571

getting for display 5-590
I-8 Programming Guide

Index
I

If logic 2-31, 2-87
Included JPL modules 2-33
Initial state

getting 5-382
Initialization

application 5-228
error message 5-227

key translation file 5-262
menu system 5-338
of database driver 5-13
of database drivers 5-59
video translation table 5-558

Input
simulating from keyboard 3-5, 5-552
testing for keyboard activity 5-260

Insert operation
generating argument list

for service call 5-536
Inserting data

generating argument list 5-536
Installing

translation table 5-587
Instance

getting handle 5-384
getting previous handle 5-385

Integer value
reading from field 5-235
writing to field 5-245

Interface
accessing for COM components 5-114

Interrupt handler 5-104
INVALID_CONTEXT exception 2-93

J

Java
library function interfaces 6-1

Java interfaces
calling methods

for fields 7-3
for grids 7-5
for groups 7-6
for screens 7-7
for the application 7-2
for widgets 7-8

JetNet applications
executing JPL commands 5-533
getting service alias 5-541
inserting data 5-536
selecting data 5-537, 5-538

JIF
advertising services in 2-2
checking for changes 2-34
rereading 2-35

JPL
command overview 1-1
displaying messages 2-37
executing commands

in JetNet applications 5-533
global variables

adding to save list 5-564
changing to transient status 5-569, 5-570

loading as public module 5-253
making memory-resident 5-196
receiving data bundles 2-54
sending data bundles 2-64
unloading module 5-254

JPL calls
from C function 5-252
to JPL and installed functions 2-8

JPL command
advertise 2-2
break 2-4
broadcast 2-5
call 2-8
client_exit 2-10
client_init 2-11
dbms 2-16
dequeue 2-18
enqueue 2-22
Programming Guide I-9

Index
flush 2-26
for 2-27
global 2-29
if 2-31
include 2-33
jif_check 2-34
jif_read 2-35
log 2-36
msg 2-37
next 2-42
notify 2-43
parms 2-45
post 2-47
proc 2-49
public 2-51
raise_exception 2-53
receive 2-54
receive_args 2-59
return 2-60
return_args 2-61
runreport 2-62
send 2-64
service_call 2-66
service_cancel 2-75
service_forward 2-77
service_return 2-79
subscribe 2-82
switch 2-87
unadvertise 2-89
unload 2-91
unload_data 2-92
unsubscribe 2-94
vars 2-95
wait 2-97
while 2-100
xa_begin 2-102
xa_commit 2-106
xa_end 2-108
xa_rollback 2-110

JPL commands
arguments 2-1

command/function execution 1-2
component processing (COM, EJB) 1-6
control flow 1-1
data/message transfer 1-3
database drivers 1-4
JetNet/Tuxedo processing 1-4

connection 1-4
data/message transfer 1-4
event broker processing 1-5
service request processing 1-5
two-phase commit transaction process-

ing 1-6
module access and availability 1-3
procedure structure 1-2
text display 1-3
variable declaration 1-2

JPL module
include module 2-33
loading as public 2-51
unloading public 2-91

JPL procedure
declaring return type 2-49
returning from 2-60

JPL variable
allocating size 2-95
declaring 2-95

as array 2-95
global 2-29

initializing 2-95
name conventions 2-95

K

Key
disabling 5-264
get logical value 5-218
getting integer value 5-258
getting label 5-263
pushing onto input queue 5-552
setting cursor key options 5-264

Key label
I-10 Programming Guide

Index
displaying in messages 2-39
Key translation

initializing table 5-262
Keyboard

opening for input 5-230
Keywords

database drivers 13-1

L

Launching command 5-272
LDB

activating 5-294
changing to read/write 5-294
changing to read-only 5-294
copying data from 5-273, 5-275
enabling write-through 5-125
forcing read from screen 5-306
getting

contents 5-281
current state 5-293
handle 5-283

getting active LDB handle 5-277
getting data from 5-273
getting name 5-287
getting previously activated 5-279
getting previously inactivated 5-280
getting recently inactivated 5-278
getting to another instance 5-288
inactivating 5-294
initializing 5-284
loading 5-285, 5-286
popping 5-289
pushing 5-290
reading data from all 5-78
setting state 5-294
testing if loaded 5-285
unloading 5-296
writing to entry 5-291

Libraries
getting load error 5-480

installing function from DLLs 5-481
loading DLLs 5-483
setting search path 5-485

Library
closing 5-267
opening 5-268, 5-270
opening screen

as window 5-574
at cursor location 5-86

Library functions 5-1
Java interfaces 6-1

Log file
setting for web applications 5-563
writing server message to 2-36

Logical key
getting integer value 5-258
getting label 5-263
getting value 5-218

Long integer
reading from field 5-303
writing to field 5-307

Loop
breaking from 2-4
for condition 2-27
skipping to next iteration 2-42
while condition 2-100

M

Mail
creating new mail object 5-312
sending 5-311, 5-314

attachments 5-309
field contents 5-315
text file 5-310
widget image 5-316

Math expression
specifying in function call 5-103

MDT bit
clearing for all fields 5-107
testing for modified field 5-548
Programming Guide I-11

Index
Memory
allocating for application 5-228
deallocating 5-446

from argument lists 5-535
Memory-resident list

purging 5-452
updating 5-196

Menu
adding item 5-345
changing properties 5-319
creating at runtime 5-323
deleting at runtime 5-324
deleting item 5-348
external reference 5-332
getting last error 5-317
getting property 5-325
initializing 5-338
installing 5-328
installing unique content 5-331
loading 5-354
popup for field 5-425
property constants 5-320, 5-326
removing 5-332, 5-333
setting scope 5-328
sharing content 5-331
unloading 5-356

Menu item
adding at runtime 5-345
changing properties 5-339
deleting 5-348
getting properties 5-349
property constants 5-340, 5-350
type constants 5-346

Menu script
loading into memory 5-354
unloading into memory 5-356

Message
acknowledgment 2-38, 2-40
acknowledgment key 2-39
bell 2-39
default display

in status line 2-38
in window 2-38

displaying
error tag 2-37
forcing to window 2-40
in dialog box 5-334
through JPL commands 2-37
using function 5-155, 5-158

displaying attributes in 2-39
displaying error message 5-200, 5-201
displaying in status line 5-155, 5-158
finding 5-366
forcing to status line 2-40

automatic dismissal 2-39
key labels in 2-39
line break insertion 2-40
putting on status line 5-360
Ready/Wait status 5-475
retrieving from message file 5-362, 5-365
setting attributes 5-156
writing to log 5-305

Message dialog box
button combinations 5-335
default button 5-336
modality 5-336
system icon 5-336
text format options 5-335

Message file
deleting 5-361
reading 5-363

Message handler
invoked by client 2-57

Metafile
displaying and printing 5-455

Method
receiving parameters 5-444

Methods
executing

COM methods 5-393
returning parameters 5-451

Middleware
I-12 Programming Guide

Index
broadcasting service message
in JetNet/Tuxedo 2-5

connecting client to
in JetNet/Tuxedo 2-11

disconnecting client from
in JetNet/Tuxedo 2-10

Middleware transaction
committing 2-106, 2-108
completing 2-108
rolling back 2-108, 2-110
starting 2-102

Mouse events
getting state of buttons 5-357
getting system time 5-379

Mouse pointer
help mode shape 5-472

Moving
file 5-165

N

NEW
transaction manager command

entering new data 8-47
Numeric data

formatting empty field 5-9

O

Object ID
for graphics file 5-112

Objects
creating 5-398, 5-399, 5-400

OCCUR
dbms command

setting occurrence for SELECT 11-38
Occurrence

deleting 5-150
deselecting

in selection group 5-145
getting current number 5-413

inserting 5-236
ODBC

verifying cursor behavior 5-64
ONENTRY

dbms command
installing function to call before dbms

command 11-40
ONERROR

dbms command
installing error handler 11-42

ONEXIT
dbms command

installing function to call after dbms
command 11-45

Operating system
escaping from application 5-297
executing command 5-214, 5-478

from JPL 3-6
getting date/time 5-467
returning to application 5-450

Option menu widget
identifying to external screen 5-418
updating contents 5-555

ORDER BY clause
changing SQL generation 5-43

P

Parameters
declaring in JPL

named procedure 2-49
unnamed procedure 2-45

name requirements
in JPL 2-45

Password
supplying on client connection

in JetNet/Tuxedo 2-13
Path

finding for file 5-161
Percent escapes

in JPL msg command 2-38
Programming Guide I-13

Index
Playback function
turning on or off 5-259

Polling
for reply from service 2-69

Popup menu
invoking 5-425

Printing
report metafile 5-455
screen 5-388

Procedure
declaring in JPL 2-49

Programming
in JPL

command overview 1-1
Properties

error handling 5-426
for applications 5-231, 5-242
getting at runtime 5-428
getting handle to object 5-432
setting at runtime 5-435
setting global 5-439
translating JPL mnemonics to integer IDs

5-434
Public module

loading 2-51, 5-253
unloading 2-91, 5-254

Q

QUERY
dbms command

executing SQL statement that returns
data 11-47

QueryInterface
calling for COM components 5-114

R

Ready/Wait status
displaying 5-475

Record function

turning on or off 5-259
REFRESH

transaction manager command
refreshing the screen 8-50

Reliable queue
dequeuing message

in Tuxedo 2-18
enqueuing message

in Tuxedo 2-22
Report processing

returning last error message 5-454
running reports 5-456

Reports
generating from JPL 2-62
printing 5-455
viewing report metafile 5-455

Repository
opening 5-146

Request broker command
executing from C function 5-533

Return codes
stored procedures 12-7

Return value 2-60
declaring type in JPL 2-49

Rows
determining number fetched 12-15
fetching 11-21, 11-23
value of @dmrowcount in DBMS START

11-50
RUN

dbms command
executing SQL statement that does not

return data 11-48
Running reports

from JPL 2-62
Runtime properties

getting 5-428
setting 5-435
I-14 Programming Guide

Index
S

SAVE
transaction manager command

saving database changes 8-52
Screen

changing window through keyboard 3-7
closing 3-2, 3-4, 5-110, 5-246
displaying 5-77
forcing validation 5-457
forcing write from LDB 5-306
freeing saved data 5-491
HWND handle 5-152
memory-resident

adding to list 5-304
removing 5-553

memory-resident list
updating 5-196

opening
as a window 5-574
as form 5-250
as window 5-256
at cursor location 5-86
search path 5-194
through dialog box 3-4

pre-loading into memory 5-304
printing 5-388
refreshing 5-445
removing from save list 5-554
restoring saved data 5-449, 5-453
save list

check for screen 5-244
saving

in memory 5-492
saving data 5-459, 5-490
setting next sibling window 5-474
shrinking 5-479
translating coordinates to pixels 5-546
trimming 5-573
using Java methods 7-7
widget ID 5-152

Screen data transfer. See Sending data
Screen editor

setting defaults 5-485
Screen save list

adding screen 5-304
removing screen 5-553

Scrolling
specifying backward scrolling 11-26, 11-27
specifying continuation file 11-51

Search path
screen 5-194

SELECT
transaction manager command

fetching data for update 8-57
SELECT statement

fetching binary columns 11-8
formatting result set 11-36
freeing memory 5-26
generating SQL

appending text 5-46
changing select list 5-40

no more rows status 12-15
number of rows fetched 12-15
scrolling through result set 11-21, 11-51
setting number of rows 5-72
setting number of rows per fetch 5-73
setting starting row 11-50
suppressing repeating values 11-54
writing results

to a file 11-10
to a specific occurrence 11-38

Selecting data
generating argument list 5-537, 5-538

Selection group
deselecting 5-145
selecting 5-470

Sending data
appending bundle item 5-85
appending to bundle 5-82
counting bundle items 5-210, 5-211
destroying bundle 5-202
Programming Guide I-15

Index
getting bundle name 5-212
initializing bundle 5-120
reading bundle data through JPL 2-54
reading occurrence from bundle 5-209
verifying bundle name 5-238
with C function 5-443, 5-471
writing data to bundle

in JPL 2-64
Serial column

@dmserial 12-17
Service

advertising
in JetNet/Tuxedo 2-2

returning from
in JetNet/Tuxedo 2-79

Service components
receiving method's parameters 2-59
returning method's parameters 2-61
sending error to client 2-53

Service group
advertising

in JetNet/Tuxedo 2-2
Service messages

broadcasting
in JetNet/Tuxedo 2-5

dequeuing from reliable queue
in Tuxedo 2-18

enqueuing on reliable queue
in Tuxedo 2-22

forwarding
in JetNet/Tuxedo 2-77

sending from server to client
in JetNet/Tuxedo 2-43

unloading data from
in JetNet/Tuxedo 2-92

Service request
cancelling

in JetNet/Tuxedo 2-75
event stream 2-69
forwarding

in JetNet/Tuxedo 2-77

getting Tuxedo callid 5-542
initiating

in JetNet/Tuxedo 2-66
receiving arguments from client

in JetNet/Tuxedo 2-54
returning from

in JetNet/Tuxedo 2-79
setting priority 2-68
waiting for completion

in JetNet/Tuxedo 2-97
Services

getting service alias 5-541
inserting data 5-536
selecting data 5-537, 5-538

Setup variables
setting at runtime

Application behavior
setting at runtime 5-416

Sibling window
changing focus 5-578
setting next opened window 5-474

SQL
dbms command

executing SQL statement (not recom-
mended) 11-49

executing SQL statements
on named cursor 11-34

generating 5-19
SQL generation

appending text 5-46
calling in C 5-19
changing bind values 5-27
changing FROM clause 5-32
changing GROUP BY clause 5-35
changing HAVING clause 5-37
changing ORDER BY clause 5-43
changing select list 5-40
changing WHERE clause 5-48
generating SELECT statement 5-53

START
dbms command
I-16 Programming Guide

Index
setting starting row 11-50
transaction manager command

initiating transaction 8-62
Starting

Panther 5-255
Status bar

deleting section 5-460
formatting 5-461
getting contents 5-462
inserting section 5-463
setting contents 5-466

Status line
cursor position display 5-102
default message 2-37

overriding 2-37, 5-121
flushing 5-308
message 5-360
setting text 5-473
toggling status 5-475

Status line function
cursor position display 5-102

STORE
dbms command

setting continuation file 11-51
Stored procedures

return codes 12-7
String

reading from file 5-181
writing to file 5-188

Styles
disabling 5-17
enabling 5-18

Synchronized arrays
finding next 5-390

Synchronous service call 2-69

T

TAB
calling in C function 5-494

Table views

before image data 5-213
getting correlation name (alias) 5-52

Terminal
changing display size 5-447
flushing buffer 5-191
flushing delayed write 2-26
initializing 5-228
refreshing 5-445
resetting to system defaults 5-446

Text
reading from field

word wrapped 5-584
writing to field 5-441

word wrapped 5-585
Text editor

invoking for arrays 5-174
Timeout

preventing 2-66
Timeout function

testing input 5-260
Transaction

database drivers 11-1
in the transaction manager

changing transactions 8-10
closing the current transaction 8-43
starting a new transaction 8-62

setting timeout
on middleware transaction 2-102

specifying service call outside of 2-67
XA

committing 2-106
completing 2-108
rolling back 2-110
starting 2-102

Transaction commands
executing 5-497

Transaction events 8-5, 9-1
after an error 8-5
clearing event stack 5-496
getting event name 5-509
getting event number 5-507
Programming Guide I-17

Index
popping event from stack 5-527
pushing onto stack 5-530

Transaction manager
availability of CONTINUE 5-501
before image processing 5-93, 5-95, 5-96,

5-208, 5-213
changing to update mode 8-37
changing to view mode 8-39
clear fields 5-495
clearing data in widgets 8-11
clearing event stack 5-496
closing current transaction 8-43
closing database transaction 8-13
commands 8-1

listing of events 8-5
controlling event stack 5-527, 5-530
copying data for edit 8-35
discarding changes 8-45
entering new data 8-47
error list 10-1
errors

database 5-503
error logs 5-505
reporting 5-499, 5-500, 5-504, 5-510,

5-519, 5-520, 5-521
executing command 5-497
fetching data

for update 8-57
for view 8-65
getting first set of rows 8-27
getting last set of rows 8-19
getting next set of rows 8-16, 8-23, 8-41
getting previous set of rows 8-31

freeing memory 5-26
generating SQL

appending text 5-46
changing bind values 5-27
changing FROM clause 5-32
changing GROUP BY clause 5-35
changing HAVING clause 5-37
changing ORDER BY clause 5-43

changing select list 5-40
changing WHERE clause 5-48
for SELECT statements 5-53

getting attributes 5-513, 5-523, 5-525
hook function return codes 8-5
initiating a transaction 8-62
no-operation traversal 8-70, 8-72, 8-74, 8-76
processing for transaction commands 8-1
refreshing the screen 8-50
restrictions 8-5
saving database changes 8-52
setting attributes 5-517, 5-528
setting CLEAR command behavior 5-75
setting number of rows in SELECT 5-72
setting number of rows per fetch 5-73
setting the transaction mode 8-4
setting validation bits 5-76
styles

disabling 5-17
enabling 5-18

switching transactions 8-10
transaction events 5-507, 5-509, 8-5, 9-1
transaction requests 9-1
tree traversal 8-4

Transaction manager commands 8-1
specifying the table view 8-4

Transaction mode
changing to initial mode 8-13, 8-45
changing to new mode 8-47
changing to update mode 8-37, 8-57
changing to view mode 8-39, 8-65
setting 8-4

Transaction model
return codes 8-5

Transferring data. See Sending data
Translation table

installing 5-587
Tuxedo

posting event 2-47
subscribing to event 2-82
unsubscribing from event 2-94
I-18 Programming Guide

Index
U

ULOG file
writing message to 2-36

UNIQUE
dbms command

suppressing repeating values 11-54
Unsolicited message

handling via message handler 2-57
URL

invoking 5-562

V

Validation
clearing MDT bit 5-107
executing check digit function 5-105
forcing

for field 5-205
for group 5-224
for screen 5-457

testing screen for modified data 5-548
widget 5-556

Validation link
generating list of fields 5-539
getting list of fields 5-540

Variables
creating JPL global variables 5-564
declaring global in JPL 2-29
declaring in JPL 2-95
getting global values 5-231
updating global values 5-242

Video mapping
initializing 5-558

VIEW
transaction manager command

fetching data for view 8-65
View operation

generating argument list
for service call 5-537, 5-538

Viewport

enabling user to change 5-577

W

WALK_DELETE
transaction manager command

traversing tree 8-70
WALK_INSERT

transaction manager command
traversing tree 8-72

WALK_SELECT
transaction manager command

traversing tree 8-74
WALK_UPDATE

transaction manager command
traversing tree 8-76

Warning messages
database 12-9, 12-10, 12-18

Web applications
getting cookie values 5-561
setting cookies 5-566
writing an error log 5-563

Web resources
invoking 5-562

WHERE clause
changing SQL generation 5-48

While loop 2-100
Widget ID

getting
for base window 5-589
for display 5-590
for drawing area 5-152
for screen-resident widget 5-571

Widgets
aliasing to column names 11-5
attaching drawing function 5-87
copying 5-396
counting number in container 5-298
creating object list 5-302
deleting

at runtime 5-402
Programming Guide I-19

Index
destroying object list 5-299
getting runtime property values 5-428
invoking popup menu 5-425
repositioning at runtime 5-77
setting runtime property values 5-435
traversing container 5-300
using Java methods 7-8
validation 5-556

Window
changing focus of 5-578
closing 5-110, 5-246
deselecting 5-560
giving focus to 5-580
opening 5-256, 5-574

at cursor location 5-86
printing 5-388
resizing 5-577
setting next sibling 5-474
setting position 5-256
sibling 5-578, 5-580

Window stack
changing focus in 5-578
changing order 5-580
counting windows 5-559
deselecting window 5-560

WITH CONNECTION
dbms clause

setting database connection 11-55
WITH CURSOR

dbms clause
setting database cursor 11-57

WITH ENGINE
dbms clause

setting database engine 11-59
Word wrapped text

getting length 5-582
reading from field 5-584
writing to field 5-585

X

XA transactions
committing 2-106
completing 2-108
rolling back 2-110
starting 2-102

XML
generating 5-591

to file 5-592
importing 5-593

from file 5-594
I-20 Programming Guide

	Contents
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 JPL Command Overview
	Control Flow
	Procedure Structure
	Variable Declaration
	Command/Function Execution
	Module Access and Availability
	Text Display
	Data/Message Transfer
	Database Drivers
	JetNet/Oracle Tuxedo Processing
	Connection
	Data/Message Transfer
	Service Request Processing
	Event Broker Processing
	Two-Phase Commit Transaction Processing

	Component Processing (COM, EJB)

	2 JPL Command Reference
	advertise
	break
	broadcast
	call
	client_exit
	client_init
	dbms
	dequeue
	enqueue
	flush
	for
	global
	if
	include
	jif_check
	jif_read
	log
	msg
	next
	notify
	parms
	post
	proc
	public
	raise_exception
	receive
	receive_args
	return
	return_args
	runreport
	send
	service_call
	service_cancel
	service_forward
	service_return
	subscribe
	switch
	unadvertise
	unload
	unload_data
	unsubscribe
	vars
	wait
	while
	xa_begin
	xa_commit
	xa_end
	xa_rollback

	3 Built-in Control Functions
	jm_exit
	jm_gotop
	jm_goform
	jm_keys
	jm_system
	jm_winsize

	4 Library Function Overview
	Initialization/Reset
	Screen and Viewport Control
	Interscreen Messaging
	Widget Creation/Deletion
	Property Access
	Field/Array Data Access
	Group Access
	Local Data Block Access
	Validation
	Cursor Control
	Display Terminal I/O
	Message Display
	Mass Storage and Retrieval
	Global Data and Changing Panther Behavior
	Menus
	Database Interaction
	Transaction Manager
	GUI Access
	DDE (Dynamic Data Exchange)
	File Access
	Library Access
	JPL
	JetNet/Oracle Tuxedo Processing
	Open Middleware Connectivity
	COM/MTS Processing
	Reports
	Web Applications
	Mail
	XML
	Miscellaneous

	5 Library Functions
	dm_bin_create_occur
	dm_bin_delete_occur
	dm_bin_get_dlength
	dm_bin_get_occur
	dm_bin_length
	dm_bin_max_occur
	dm_bin_set_dlength
	dm_convert_empty
	dm_cursor_connection
	dm_cursor_consistent
	dm_cursor_engine
	dm_dbi_init
	dm_dbms
	dm_dbms_noexp
	dm_disable_styles
	dm_enable_styles
	dm_exec_sql
	dm_expand
	dm_free_sql_info
	dm_gen_change_execute_using
	dm_gen_change_select_from
	dm_gen_change_select_group_by
	dm_gen_change_select_having
	dm_gen_change_select_list
	dm_gen_change_select_order_by
	dm_gen_change_select_suffix
	dm_gen_change_select_where
	dm_gen_get_tv_alias
	dm_gen_sql_info
	dm_get_connection_option
	dm_get_db_conn_handle
	dm_get_db_cursor_handle
	dm_get_driver_option
	dm_getdbitext
	dm_init
	dm_is_connection
	dm_is_cursor
	dm_is_engine
	dm_odb_preserves_cursor
	dm_reset
	dm_set_connection_option
	dm_set_driver_option
	dm_set_max_fetches
	dm_set_max_rows_per_fetch
	dm_set_onevent
	dm_set_tm_clear_fast
	dm_val_relative
	sm_adjust_area
	sm_allget
	sm_*amt_format
	sm_append_bundle_data
	sm_append_bundle_done
	sm_append_bundle_item
	sm_*at_cur
	sm_*attach_drawing_func
	sm_backtab
	sm_bel
	sm_bi_compare
	sm_bi_copy
	sm_bi_initialize
	sm_bkrect
	sm_c_off
	sm_c_on
	sm_c_vis
	sm_calc
	sm_cancel
	sm_ckdigit
	sm_cl_all_mdts
	sm_cl_unprot
	sm_*clear_array
	sm_close_window
	sm_com_load_picture
	sm_com_QueryInterface
	sm_com_result
	sm_com_result_msg
	sm_com_set_handler
	sm_*copyarray
	sm_create_bundle
	sm_d_msg_line
	sm_*dblval
	sm_dd_able
	sm_dde_client_connect_cold
	sm_dde_client_connect_hot
	sm_dde_client_connect_warm
	sm_dde_client_disconnect
	sm_dde_client_off
	sm_dde_client_on
	sm_dde_client_paste_link_cold
	sm_dde_client_paste_link_hot
	sm_dde_client_paste_link_warm
	sm_dde_client_request
	sm_dde_execute
	sm_dde_install_notify
	sm_dde_poke
	sm_dde_server_off
	sm_dde_server_on
	sm_delay_cursor
	sm_deselect
	sm_dicname
	sm_disp_off
	sm_*dlength
	sm_do_uinstalls
	sm_*doccur
	sm_*drawingarea
	sm_*dtofield
	sm_femsg
	sm_ferr_reset
	sm_ffree
	sm_fi_path
	sm_file_copy
	sm_file_exists
	sm_file_move
	sm_file_remove
	sm_filebox
	sm_filetypes
	sm_fio_a2f
	sm_fio_close
	sm_fio_editor
	sm_fio_error
	sm_fio_error_set
	sm_fio_f2a
	sm_fio_getc
	sm_fio_gets
	sm_fio_handle
	sm_fio_open
	sm_fio_putc
	sm_fio_puts
	sm_fio_rewind
	sm_flush
	sm_fmalloc
	sm_*form
	sm_formlist
	sm_*fptr
	sm_fqui_msg
	sm_fquiet_err
	sm_free_bundle
	sm_*ftog
	sm_*fval
	sm_*get_bi_data
	sm_get_bundle_data
	sm_get_bundle_item_count
	sm_get_bundle_occur_count
	sm_get_next_bundle_name
	sm_*get_tv_bi_data
	sm_getenv
	sm_*getfield
	sm_getkey
	sm_*gofield
	sm_*gtof
	sm_n_gval
	sm_hlp_by_name
	sm_home
	sm_inimsg
	sm_*initcrt
	sm_input
	sm_inquire
	sm_install
	sm_*intval
	sm_*ioccur
	sm_is_bundle
	sm_*is_no
	sm_*is_yes
	sm_isabort
	sm_iset
	sm_issv
	sm_*itofield
	sm_jclose
	sm_jfilebox
	sm_jform
	sm_*jplcall
	sm_jplpublic
	sm_jplunload
	sm_jtop
	sm_jwindow
	sm_key_integer
	sm_keyfilter
	sm_keyhit
	sm_keyinit
	sm_keylabel
	sm_keyoption
	sm_l_close
	sm_l_open
	sm_l_open_syslib
	sm_last
	sm_launch
	sm_*ldb_fld_*get
	sm_*ldb_fld_*store
	sm_ldb_get_active
	sm_ldb_get_inactive
	sm_ldb_get_next_active
	sm_ldb_get_next_inactive
	sm_*ldb_*getfield
	sm_ldb_handle
	sm_ldb_init
	sm_ldb_is_loaded
	sm_ldb_load
	sm_ldb_name
	sm_ldb_next_handle
	sm_ldb_pop
	sm_ldb_push
	sm_*ldb_*putfield
	sm_ldb_*state_get
	sm_ldb_*state_set
	sm_ldb_*unload
	sm_leave
	sm_list_objects_count
	sm_list_objects_end
	sm_list_objects_next
	sm_list_objects_start
	sm_*lngval
	sm_load_screen
	sm_log
	sm_lstore
	sm_ltofield
	sm_m_flush
	sm_*mail_attach
	sm_*mail_file_text
	sm_mail_message
	sm_mail_new
	sm_*mail_send
	sm_*mail_text
	sm_*mail_widget
	sm_menu_bar_error
	sm_menu_change
	sm_menu_create
	sm_menu_delete
	sm_menu_get*
	sm_menu_install
	sm_menu_remove
	sm_message_box
	sm_mncrinit6
	sm_*mnitem_change
	sm_*mnitem_create
	sm_*mnitem_delete
	sm_*mnitem_get
	sm_mnscript_load
	sm_mnscript_unload
	sm_ms_inquire
	sm_msg
	sm_msg_del
	sm_msg_get
	sm_*msg_read
	sm_msg_set
	sm_msgfind
	sm_mts_CreateInstance
	sm_mts_CreateProperty
	sm_mts_CreatePropertyGroup
	sm_mts_DisableCommit
	sm_mts_EnableCommit
	sm_mts_GetPropertyValue
	sm_mts_IsCallerInRole
	sm_mts_IsInTransaction
	sm_mts_IsSecurityEnabled
	sm_mts_PutPropertyValue
	sm_mts_SetAbort
	sm_mts_SetComplete
	sm_mus_time
	sm_mw_DismissIntroPixmap
	sm_mw_get_client_wnd
	sm_mw_get_cmd_show
	sm_mw_get_frame_wnd
	sm_mw_get_instance
	sm_mw_get_prev_instance
	sm_mw_install_msg_callback
	sm_mw_PrintScreen
	sm_next_sync
	sm_nl
	sm_*null
	sm_obj_call
	sm_obj_copy*
	sm_obj_create
	sm_obj_create_licensed
	sm_obj_create_server
	sm_obj_delete*
	sm_obj_get_property
	sm_obj_onerror
	sm_obj_set_property
	sm_obj_sort
	sm_obj_sort_auto
	sm_occur_no
	sm_*off_gofield
	sm_option
	sm_optmnu_id
	sm_*PiMwCopyToClipboard
	sm_*PiMwPasteFromClipboard
	sm_pinquire
	sm_popup_at_cur
	sm_prop_error
	sm_prop_get*
	sm_prop_id
	sm_prop_name_to_id
	sm_prop_set*
	sm_pset
	sm_*putfield
	sm_raise_exception
	sm_receive
	sm_receive_args
	sm_rescreen
	sm_*resetcrt
	sm_resize
	sm_restore_data
	sm_return
	sm_return_args
	sm_rmformlist
	sm_rs_data
	sm_rw_error_message
	sm_rw_play_metafile
	sm_rw_runreport
	sm_s_val
	sm_save_data
	sm_sb_delete
	sm_sb_format
	sm_sb_gettext
	sm_sb_insert
	sm_sb_settext
	sm_sdtime
	sm_select
	sm_send
	sm_set_help
	sm_setbkstat
	sm_setsibling
	sm_setstatus
	sm_sh_off
	sm_shell
	sm_shrink_to_fit
	sm_slib_error
	sm_slib_install
	sm_slib_load
	sm_soption
	sm_strdup
	sm_*strip_amt_ptr
	sm_sv_data
	sm_sv_free
	sm_svscreen
	sm_tab
	sm_tm_clear
	sm_tm_clear_model_events
	sm_tm_command
	sm_tm_command_emsgset
	sm_tm_command_errset
	sm_tm_continuation_validity
	sm_tm_dbi_checker
	sm_tm_error
	sm_tm_errorlog
	sm_tm_event
	sm_tm_event_name
	sm_tm_failure_message
	sm_tm_handling
	sm_tm_inquire
	sm_tm_iset
	sm_tm_msg_count_error
	sm_tm_msg_emsg
	sm_tm_msg_error
	sm_tm_old_bi_context
	sm_tm_pcopy
	sm_tm_pinquire
	sm_tm_pop_model_event
	sm_tm_pset
	sm_tm_push_model_event
	sm_tmpnam
	sm_tp_exec
	sm_tp_free_arg_buf
	sm_tp_gen_insert
	sm_tp_gen_sel_return
	sm_tp_gen_sel_where
	sm_tp_gen_val_link
	sm_tp_gen_val_return
	sm_tp_get_svc_alias
	sm_tp_get_tux_callid
	sm_trace
	sm_translatecoords
	sm_tst_all_mdts
	sm_udtime
	sm_ungetkey
	sm_unload_screen
	sm_unsvscreen
	sm_upd_select
	sm_*validate
	sm_*vinit
	sm_wcount
	sm_wdeselect
	sm_web_get_cookie
	sm_web_invoke_url
	sm_web_log_error
	sm_web_save_global
	sm_web_set_cookie
	sm_web_set_onevent
	sm_web_unsave_all_globals
	sm_web_unsave_global
	sm_*widget
	sm_win_shrink
	sm_*window
	sm_winsize
	sm_wrotate
	sm_*wselect
	sm_*ww_length
	sm_*ww_read
	sm_*ww_write
	sm_xlate_table
	sm_xm_get_base_window
	sm_xm_get_display
	sm_*xml_export
	sm_*xml_export_file
	sm_*xml_import
	sm_*xml_import_file

	6 Java Library Function Interfaces
	CFunctionsInterface
	ComFunctionsInterface
	DMFunctionsInterface
	RWFunctionsInterface
	TMFunctionsInterface
	TPFunctionsInterface
	WSFunctionsInterface

	7 Java Object Interfaces
	ApplicationInterface
	FieldInterface
	GridInterface
	GroupInterface
	ScreenInterface
	WidgetInterface

	8 Transaction Manager Commands
	sm_tm_command
	CHANGE
	CLEAR
	CLOSE
	CONTINUE
	CONTINUE_BOTTOM
	CONTINUE_DOWN
	CONTINUE_TOP
	CONTINUE_UP
	COPY
	COPY_FOR_UPDATE
	COPY_FOR_VIEW
	FETCH
	FINISH
	FORCE_CLOSE
	NEW
	REFRESH
	RELEASE
	SAVE
	SELECT
	START
	VIEW
	WALK_DELETE
	WALK_INSERT
	WALK_SELECT
	WALK_UPDATE

	9 Transaction Model Events
	Common Transaction Model
	Reading the Event Table
	Error and Diagnostic Events

	Database-Specific Transaction Models
	INITIAL Mode Handling
	BEGIN Command Processing
	Special Processing

	10 Transaction Manager Error Messages
	Transaction Manager Errors

	11 DBMS Statements and Commands
	DBMS Command Summary
	ALIAS
	BINARY
	CATQUERY
	CLOSE_ALL_CONNECTIONS
	CLOSE CONNECTION
	CLOSE CURSOR
	COLUMN_NAMES
	CONNECTION
	CONTINUE
	CONTINUE_BOTTOM
	CONTINUE_DOWN
	CONTINUE_TOP
	CONTINUE_UP
	DECLARE CONNECTION
	DECLARE CURSOR
	ENGINE
	EXECUTE
	FORMAT
	OCCUR
	ONENTRY
	ONERROR
	ONEXIT
	QUERY
	RUN
	SQL
	START
	STORE
	UNIQUE
	WITH CONNECTION
	WITH CURSOR
	WITH ENGINE

	12 DBMS Global Variables
	Variable Overview
	@dmengerrcode
	@dmengerrmsg
	@dmengreturn
	@dmerrsqlstate
	@dmengwarncode
	@dmengwarnmsg
	@dmretcode
	@dmretmsg
	@dmrowcount
	@dmserial
	@dmwarnsqlstate

	13 Keywords in Database Drivers
	14 ActiveX Controls
	PrlSpinner

	Index

