
TABLE OF
CONTENTS
Contents:

About This Document

1. Enterprise Model and Implementation
Three-Tier Processing ... 1-1

Panther Development Environment .. 1-8

Administration Tools... 1-9

2. Setting the Enterprise Environment
Setting Up the Enterprise Directory .. 2-2

Setting the Environment .. 2-4

Setting Up the Client Environment ... 2-8

Middleware Configuration File ... 2-10

Setting IPC Resources ... 2-11

3. Configuring the Enterprise
Using the JetNet Manager ... 3-2

Creating a Configuration File .. 3-2

Editing a Configuration File .. 3-5

Setting Enterprise Properties ... 3-7

Advanced Settings ... 3-10

Setting Machine Properties.. 3-12

Network Settings ... 3-15

Setting Server Properties ... 3-19

Server Details .. 3-22

4. Managing the Enterprise
Monitoring an Enterprise... 4-1

Activating and Deactivating Components... 4-2

Connecting and Disconnecting.. 4-4

Forcibly Deactivating Components... 4-5
JetNet/Oracle Tuxedo Guide 1

Adding and Deleting Components .. 4-6

Changing Machine Roles... 4-7

Disabling and Reenabling Workstation Connections .. 4-8

Handling Load ... 4-8

Status and Error Messages... 4-10

5. Defining Services in JetNet and Oracle Tuxedo
Applications

Services.. 5-2

Creating Graphical Services .. 5-5

Initiating a Service... 5-8

Using Service Aliases to Test Services ... 5-8

Writing Service Routines... 5-9

Service Groups .. 5-13

Service Messages and Data Types... 5-15

6. JetNet/Oracle Tuxedo Event Processing
Event Sequence.. 6-2

Handler Scope and Installation.. 6-3

Writing Event Handlers ... 6-5

Built-in Handlers ... 6-6

Advertise and Unadvertise Events... 6-8

Exception Events ... 6-11

Jif_changed Events .. 6-15

Message Events ... 6-17

Pre_request and Post_request Events .. 6-20

Request_received Events ... 6-22

Server_exit Events ... 6-23

Pre_service and Post_service Events... 6-25

Unload Events.. 6-28

7. Transaction Model for JetNet

8. Oracle Tuxedo Features
Service Data Buffer Types... 8-1

XA Transaction Management.. 8-3
2 JetNet/Oracle Tuxedo Guide

Message Forwarding ... 8-5

Event Brokering... 8-5

Reliable Queues... 8-11

Initializing Servers... 8-17

A. Administration Utilities

B. Converting to a Three-tier Application
Converting an Application from Two- to Three-Tier..B-2

Requirements for Running a Converted Application ..B-3

Enhancing a Converted Application..B-5

C. Enterprise Bank
The User's View of Enterprise Bank ...C-1

Enterprise Bank Customer ATM Client ..C-2

The Enterprise Bank Employee Client ..C-10

The Enterprise Bank Administrator Client..C-19

Designing Enterprise Bank..C-27

D. JetNet/Oracle Tuxedo Exception Event Types

E. Application Setup Checklist
Setting Up the Application Server...E-1

Setting Up the Workstation Client ..E-5

F. Deployment Checklist for JetNet
Directory Structure for JetNet Applications.. F-1

Checklist for Deployment.. F-2

Index
JetNet/Oracle Tuxedo Guide 3

4 JetNet/Oracle Tuxedo Guide

Panther
JetNet/Oracle Tuxedo Guide

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
What You Need to Know .. xiv

Documentation Website .. xiv

How to Print the Document...xv

Documentation Conventions ...xv

Contact Us! ... xvii

1. Enterprise Model and Implementation
Three-Tier Processing ... 1-1

Three-Tier Application Components ... 1-2

Workstation Connections .. 1-4

Multi-Machine Configuration ... 1-6

Web Application Server.. 1-7

Panther Development Environment .. 1-8

Administration Tools... 1-9

2. Setting the Enterprise Environment
Setting Up the Enterprise Directory .. 2-2

Server Executables ... 2-2

Application Libraries.. 2-3

Environment Files .. 2-3

Setting the Environment .. 2-4

UNIX Environment .. 2-4

Windows Environment... 2-4
JetNet/Oracle Tuxedo Guide iii

Environment File Settings .. 2-5

Machine Environment File.. 2-5

Server Environment File ... 2-6

Interfacing with SCCS/PVCS... 2-7

SMVARS Settings.. 2-7

Setting Up the Client Environment ... 2-8

Workstation Clients .. 2-8

Setting Access to Libraries.. 2-8

Enabling Client Connections... 2-9

Native Clients ... 2-10

Middleware Configuration File ... 2-10

Setting IPC Resources ... 2-11

Messages... 2-12

UNIX... 2-12

Windows.. 2-13

Semaphores... 2-14

UNIX... 2-14

Windows.. 2-14

Shared Memory Requirements ... 2-15

UNIX... 2-15

Windows.. 2-15

3. Configuring the Enterprise
Using the JetNet Manager ... 3-2

Creating a Configuration File .. 3-2

How to Create a Basic Configuration File .. 3-2

Editing a Configuration File .. 3-5

Adding and Deleting Components .. 3-6

Editing Components.. 3-7

Selecting Another Enterprise's Configuration.. 3-7

Setting Enterprise Properties ... 3-7

General Settings.. 3-7

How to Assign or Reassign Machines Roles 3-9

Advanced Settings ... 3-10

Setting Machine Properties.. 3-12
iv JetNet/Oracle Tuxedo Guide

Network Settings ... 3-15

Workstation Connections .. 3-17

Setting Server Properties ... 3-19

Server Details .. 3-22

Standard Server ... 3-23

Conversion Server... 3-26

File Access Server... 3-27

4. Managing the Enterprise
Monitoring an Enterprise... 4-1

Activating and Deactivating Components... 4-2

Enterprise Application.. 4-3

Machine.. 4-4

Servers .. 4-4

Connecting and Disconnecting.. 4-4

Forcibly Deactivating Components... 4-5

Adding and Deleting Components .. 4-6

Adding and Removing Server Instances .. 4-6

How to Add a Server Instance .. 4-6

How to Remove a Server Instance .. 4-7

Changing Machine Roles .. 4-7

Recovering From Master Machine Failure .. 4-7

Reassigning Master and Backup Machines.. 4-8

Disabling and Reenabling Workstation Connections.. 4-8

Handling Load ... 4-8

Status and Error Messages... 4-10

5. Defining Services in JetNet and Oracle Tuxedo
Applications

Services.. 5-2

Service Routine .. 5-2

Service Component .. 5-3

JIF Service Definition .. 5-4

Optional Service Attributes... 5-4

Creating Graphical Services .. 5-5
JetNet/Oracle Tuxedo Guide v

Creating Services with the Screen Wizard ... 5-5

Building Services with the Screen Editor... 5-6

Modifying Service Components... 5-7

Initiating a Service... 5-8

Using Service Aliases to Test Services ... 5-8

Writing Service Routines... 5-9

Storing and Invoking JPL Service Code .. 5-11

Service Code and Service Components .. 5-12

JIF-Invoked Services... 5-12

Public Services .. 5-13

Service Groups .. 5-13

Criteria for Grouping Services ... 5-14

Adding Services to Existing Service Groups ... 5-14

Service Messages and Data Types... 5-15

Buffer Data Types .. 5-16

Default Mapping ... 5-16

NULL Arguments ... 5-17

Arrays .. 5-17

FML and FML32 Buffers.. 5-17

Converting from JAMFLEX to FML.. 5-18

STRING Data Types .. 5-18

Setting Service Message Types .. 5-19

6. JetNet/Oracle Tuxedo Event Processing
Event Sequence.. 6-2

Handler Scope and Installation.. 6-3

Writing Event Handlers ... 6-5

Events Generated within Handlers ... 6-5

Built-in Handlers ... 6-6

Advertise and Unadvertise Events... 6-8

Advertise and Unadvertise Handlers .. 6-9

Scope ... 6-9

Contact .. 6-9

Returns .. 6-10

Built-in Handlers ... 6-10
vi JetNet/Oracle Tuxedo Guide

Exception Events ... 6-11

Exception Handlers .. 6-11

Exceptions within an Exception Handler.. 6-12

Scope ... 6-12

Contract ... 6-12

Returns .. 6-13

Exception Severity Codes ... 6-13

Built-in Handlers... 6-15

Jif_changed Events.. 6-15

Jif_changed Handlers ... 6-16

Scope ... 6-16

Contract ... 6-16

Returns .. 6-17

Built-in Handlers... 6-17

Message Events ... 6-17

Message Handlers .. 6-17

Recognizing the Message Source ... 6-18

Scope ... 6-19

Contract ... 6-19

Returns .. 6-20

Built-in Handlers... 6-20

Pre_request and Post_request Events .. 6-20

Pre_request and Post_request Handlers ... 6-20

Scope ... 6-21

Contract ... 6-21

Returns .. 6-21

Built-in Handlers... 6-21

Request_received Events... 6-22

Request_received Handlers .. 6-22

Scope ... 6-22

Contract ... 6-23

Returns .. 6-23

Built-in Handlers... 6-23

Server_exit Events... 6-23

Server_exit Handlers .. 6-24
JetNet/Oracle Tuxedo Guide vii

Scope ... 6-24

Contract ... 6-24

Returns .. 6-24

Built-in Handlers ... 6-24

Pre_service and Post_service Events... 6-25

Pre_service and Post_service Handlers .. 6-25

Scope ... 6-25

Contract ... 6-26

Returns .. 6-26

Example... 6-26

Built-in Handlers ... 6-27

Unload Events.. 6-28

Unload Handlers... 6-29

Scope ... 6-29

Contract ... 6-29

Returns .. 6-30

Example... 6-31

Built-in Handlers ... 6-31

7. Transaction Model for JetNet
Built-in Services ... 7-1

Modifying the Model.. 7-2

Service Limitations... 7-2

Server Processing ... 7-3

Transactional Control ... 7-3

8. Oracle Tuxedo Features
Service Data Buffer Types... 8-1

FML and FML32 Buffers... 8-2

STRING Buffers... 8-3

XA Transaction Management.. 8-3

Message Forwarding.. 8-5

Event Brokering... 8-5

How to Use the Event Broker ... 8-6

Accessing the Event Broker ... 8-6
viii JetNet/Oracle Tuxedo Guide

Example: Stock-change Event .. 8-6

Example: Enterprise Bank .. 8-8

Posting and Subscribing.. 8-10

Unsubscribing ... 8-10

Reliable Queues... 8-11

To use reliable queues:.. 8-12

Enqueuing a Message... 8-12

Dequeuing a Message... 8-13

Defining Reliable Queues .. 8-14

To identify and access queues (and their queuespaces):................... 8-14

Service Queues.. 8-14

Independent Queues .. 8-15

Example .. 8-15

Initializing Servers... 8-17

A. Administration Utilities
clnt2svr .. A-2

Description ... A-2

rb2asc .. A-4

Description ... A-4

rbboot .. A-5

Description ... A-5

rbconfig ... A-6

Description ... A-6

rblisten... A-7

Description ... A-7

rbshutdown .. A-9

Description ... A-9

B. Converting to a Three-tier Application
Converting an Application from Two- to Three-Tier..B-2

Property Settings ..B-2

Requirements for Running a Converted Application ..B-3

Ensuring Usability..B-4

Enhancing a Converted Application..B-5
JetNet/Oracle Tuxedo Guide ix

C. Enterprise Bank
The User's View of Enterprise Bank .. C-1

Running Enterprise Bank .. C-2

Enterprise Bank Customer ATM Client ... C-2

Starting the Customer ATM Client ... C-2

ATM Services.. C-3

Security Violation Alert ... C-3

Customer Selections .. C-4

Make a Deposit... C-5

Make a Withdrawal .. C-6

Withdrawal Limit Exceeded... C-7

Transfer .. C-7

Bank News ... C-8

Balance Inquiry .. C-8

Exit Customer Services .. C-9

The Enterprise Bank Employee Client ... C-10

Starting the Bank Employee Client ... C-10

Employee Services .. C-11

Accounts Menu Option.. C-12

Display a Complete List of Accounts .. C-12

Display a Single Account... C-13

Examine a Customer’s Accounts ... C-13

Select an Account for Maintenance... C-14

Customers Menu Option.. C-15

Display a Complete List of Customers .. C-15

Display a Single Customer... C-16

Update Customer Information.. C-17

New Customer Mailings... C-18

The Enterprise Bank Administrator Client ... C-19

Starting the Bank Administrator Client ... C-19

Administrator Services .. C-19

Accounts Menu Option.. C-20

Post Interest to Accounts.. C-20

Modify an Account Type ... C-21

Customers Menu Option.. C-22
x JetNet/Oracle Tuxedo Guide

Personnel Menu Option..C-22

Display a List of Employees ...C-23

Add/Update or Delete an Employee ...C-24

Select an Employee for Maintenance..C-25

Broadcasting a Message ...C-26

Broadcast a Message...C-26

Designing Enterprise Bank..C-27

D. JetNet/Oracle Tuxedo Exception Event Types

E. Application Setup Checklist
Setting Up the Application Server...E-1

Populate the Application Directory..E-1

Unix Environment...E-1

Windows Environment ...E-2

Configure the Middleware ...E-3

Create a Configuration File...E-3

Configure Each Server ..E-3

Start the Application Server ...E-5

Stop the Application Server ...E-5

Setting Up the Workstation Client ..E-5

F. Deployment Checklist for JetNet
Directory Structure for JetNet Applications.. F-1

Checklist for Deployment.. F-2

Preparing a Windows Distribution... F-2

Preparing a UNIX Distribution .. F-5

Index
JetNet/Oracle Tuxedo Guide xi

xii JetNet/Oracle Tuxedo Guide

PREFACE
About This
Document

The JetNet/Oracle Tuxedo Guide is divided into two sections. The first section, about
setting up and maintaining your application servers, contains the following
information:

! An overview of three-tier system architecture and implementation of this model
with Panther.

! Setup requirements for Panther development environments and deployed
applications.

! How to use the JetNet manager to configure an application, its machines and
servers.

! How to use the JetNet manager and other utilities to boot, monitor and manage
a running Panther application.

Description of command-line utilities that can help you develop and manage a Panther
application are located in the appendices.

The second section about writing services and calling them from your client
application contains the following information:

! Description of a service.

! How to write services and make them available to your application.

! How to use features only available in the Panther Oracle Tuxedo Edition.
JetNet/Oracle Tuxedo Guide xiii

What You Need to Know
What You Need to Know

The first section of this guide is written for system administrators who are responsible
for setting up a Panther development environment and deploying a Panther
application. Knowledge of Panther can be helpful but is not essential.

The second section is written for application developers who are responsible for
writing JetNet and TUXEDO services and calling them from the client application.

This guide assumes that you have already installed Panther on your system.

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.
xiv About This Document

http://docs.prolifics.com/panther/

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.
JetNet/Oracle Tuxedo Guide xv

https://get.adobe.com/reader/otherversions/
https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
xvi About This Document

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
JetNet/Oracle Tuxedo Guide xvii

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20JetNet/Oracle%20Tuxedo%20Guide

Contact Us!
xviii About This Document

CHAPTER
1 Enterprise Model
and Implementation

With Panther, you can build client/server applications that comply with either a
two-tier or three-tier architecture on multiple operating systems, including Windows
and UNIX; you can also build fully functional web applications that run on the Internet
or intranet. Inside the Panther framework, a development environment for Panther
components allows shared access to libraries, and includes utilities to configure and
manage middleware and server components.

Three-Tier Processing

The two-tier client/server model typically separates data from the logic of an
application. In the three-tier or enhanced client/server model, the backend server is
known as the resource manager, and is usually a database. The layer between client
and backend server is the application server. The client is responsible for user
interactions, and the application server is responsible for providing business-level
services and interacting with the resource manager as needed.

Three-tier applications offer the following benefits:

! Reduced overhead per user — Because the application server performs most
processing, client processes require fewer resources. For example, to query a
database, a client needs to contain only enough code to gather user input and
JetNet/Oracle Tuxedo Guide 1-1

Three-Tier Processing
send its request and data to the application server, which contains the code and
SQL libraries required for database interaction.

! Reduced overhead per interaction — By off-loading most processing onto the
application server, the client is free to perform its job independently of actual
interaction with the database. Database requests can be efficiently serialized,
thereby reducing the interaction time required for each request.

! Distributed processing — Because the client is removed from application server
processing, clients and servers can reside on different machines.

! Modular design — By separating clients from database interaction, the database
is protected from client errors. Further, you can modify client and server
processes without disturbing other parts of the application.

! Extensibility — As the application grows, client and server processes can be
added to handle increased traffic or provide new functionality. New client nodes
and server machines can be added as needed while the application runs.

Three-Tier Application Components

The configuration for a three-tier JetNet or Oracle Tuxedo application typically
accounts for these application components:

! Clients that host user interaction and issue service requests. Clients can be one
of two types: a non-workstation client (or local client) resides on a machine
which is running an application server; a workstation client attaches to an
application through its connection to an application machine.

Panther screens provide the mechanism for user interaction and client
processing. Client screens are stored in client libraries.

! Services that are invoked at runtime to handle service requests. Services are
defined in JPL or C or Java and are typically grouped with service components;
refer to Chapter 5, “Defining Services in JetNet and Oracle Tuxedo
Applications.” Service components and routines are stored in server libraries.

! The JIF, which specifies all the services and service groups that are available
for a server to advertise. The JIF provides the mapping between a service and
its service component and routine.
1-2 Enterprise Model and Implementation

Three-Tier Processing
! Application servers that handle service requests from clients. Panther supports
three types of application servers: standard servers, which advertise JIF-defined
services; conversion servers, which handle service requests from client screens
converted from a two-tier application; and file access servers, which provide
developers shared access to libraries across the network.

Application servers provide access to resource managers such as a database.
Each server can be connected to one or more resource managers.

! A JetNet configuration file that defines properties for the application in general,
and for participating machines and servers. When you start an application,
Panther reads the configuration file to determine which servers to boot and on
which machines. The configuration file is accessible through the JetNet
manager. For more information, refer to Chapter 3, “Configuring the
Enterprise.”

! A bulletin board liaison process (BBL) that resides on each machine and
maintains the addresses of servers and the services that they provide. In a
multi-machine configuration, the master machine also contains the
distinguished bulletin board (DBBL), which maintains information about all
machines and servers.

Figure 1-1 shows how components of a Panther enterprise application interact in a
single-machine configuration:

Figure 1-1 Interaction of components in a Panther enterprise application.
JetNet/Oracle Tuxedo Guide 1-3

Three-Tier Processing
A Panther enterprise application typically works as follows:

1. During initialization, a server consults with the JIF to determine which services
it needs to provide:

" A server that is configured to provide all services reads all service
definitions from the JIF.

" A server that is initialized to provide services from a service group reads
the services that are defined for that group.

The initialized server advertises its services to the local bulletin board, which
stores this information and the server's address.

2. When a client makes a service request, it consults the JIF to determine which
data, if any, need to accompany the request and how to make the request.
Panther then relays the request to the local bulletin board. Through the bulletin
board data, the service request is matched to a specific server. This information
is returned to the client.

3. The client sends its request to the server.

4. On receiving the service request, the server responds as follows:

" Consults with the JIF to determine which routine and service component
handles this service.

" Finds the service component in the server library and uses it in order to
process the request.

5. If the request requires database interaction, the server process provides the
necessary SQL to query the database.

6. When the server finishes processing the request, it sends its reply to the client.

Workstation Connections

In the implementation shown earlier, all processing and client interaction takes place
on the same machine. More typically, clients interact with an application from personal
workstations. Each workstation is outside the JetNet configuration and communicates
with the application over a network.

A server machine has two processes that enable workstation connections:
1-4 Enterprise Model and Implementation

Three-Tier Processing
! A workstation listener (WSL) that intercepts requests to connect from
workstation clients.

! A workstation handler (WSH) that manages all interaction between workstation
clients and application servers.

The following figure shows an application that has two workstation client connections:

Figure 1-2 Three-tier configuration with workstation client connections

Workstation clients connect to the application in three steps:

1. The client connects to the server machine's workstation listener process through a
known network address. The workstation listener returns the address of a
workstation handler to the client.

2. The workstation listener process sends a message to the workstation handler,
informing it of the connection request.
JetNet/Oracle Tuxedo Guide 1-5

Three-Tier Processing
3. The workstation client connects to the workstation handler. All further
communication between the client and the application takes place through the
workstation handler.

Multi-Machine Configuration

The three-tier model can be expanded so that multiple server machines can participate
in a single application. In this way, resources can be distributed to allow efficient
throughput and avoid overburdening any one machine.

In a networked application, one host serves as the master machine; you can boot and
shut down an application only from this machine. The master machine also has a
DBBL, which coordinates among BBLs on all other machines including the master.
All machines have a bridge process, which enables communication between them and
the network.

Figure 1-3 diagrams a two-machine configuration that is enabled for workstation client
connections. The data that users require on deposit data and loan data is split between
the two sites; for example, a request for checking account data is directed to host 1,
while a query on mortgages is directed to host 2. Host 1 is also the master machine:
1-6 Enterprise Model and Implementation

Three-Tier Processing
Figure 1-3 System with multiple server machines.

Web Application Server

Panther web applications can be integrated into a three-tier, distributed processing
model. In this model, the Panther application server establishes and maintains
connections to the database. When the web application requires data, the web
application server, acting in the role of client, sends the service request to the Panther
application server. The Panther application server processes this request and returns
the desired data to the web application server.

Note that in a three-tier environment, the web application server remains responsible
for opening screens, mapping browser and data cache values, and generating HTML
from the screen.
JetNet/Oracle Tuxedo Guide 1-7

Panther Development Environment
Figure 1-4 In three-tier processing, the web application server is a Panther
client.

For more information about web application development, refer to the Web
Developer's Guide.

Panther Development Environment

Whether the applications that you build use a two-tier or three-tier processing model,
Panther provides a distributed development environment that affords concurrent
access to server libraries and repositories across the network. This can help give all
members of your development team access to the same information and sets of
standards via the file access server (devserv) in your distribution, which you can
configure and manage through the JetNet manager (refer to page 3-19).
1-8 Enterprise Model and Implementation

Administration Tools
You can take advantage of Panther's built-in controls for monitoring multi-user access
of shared libraries and their contents. You can also use features of your own source
control management system. Panther provides an interface to SCCS and PVCS source
code management systems. If you do not use or have one of these systems, Panther
provides a default warning system for controlling concurrent access to shared
application objects during the development process.

For more information about implementing configuration management, refer to
page 10-4 in the Application Development Guide.

Administration Tools

In Panther software, a number of interactive and command-line utilities let you
configure and manage a distributed development environment as well as a deployed
three-tier and web application environment.

JetMan, the graphical JetNet Manager, integrates all the facilities you need to
configure and manage the middleware component of a Panther application. With it,
you create and edit a binary JetNet configuration file; this file specifies how to set up
an application's clients and servers and configure their interaction.

The following command-line utilities are also provided:

! rb2asc converts a binary JetNet configuration file to ASCII and vice versa.

! rbboot starts a Panther application.

! rbconfig creates a JetNet configuration file.

! rblisten starts the listener process.

! rbshutdown shuts down a Panther application.

! monitor administers a running web application.
JetNet/Oracle Tuxedo Guide 1-9

Administration Tools
1-10 Enterprise Model and Implementation

CHAPTER
2 Setting the
Enterprise
Environment

Panther typically runs in two types of environment: one tailored for development, the
other for production. Each environment has different requirements—for example, a
development environment is typically configured to offer shared access to libraries and
repositories. Despite these differences, setting up a Panther environment for remote
processing and access consists of these tasks:

! Create the server application directory and populate it with the required
software and files.

! Set up the machine and server environments.

! Set up the client environment.

! Create the middleware configuration file.

! Modify the UNIX kernel or Windows registry to ensure adequate resources.

This chapter describes each task in detail; differences between development and
production environments are noted where applicable.

For information about setting up a Panther application that is accessible via the web,
refer to Chapter 2, “Web Application Setup,” in the Web Development Guide.

Note: This chapter assumes that the Panther software is installed (refer to the
Installation).
JetNet/Oracle Tuxedo Guide 2-1

Setting Up the Enterprise Directory
Setting Up the Enterprise Directory

The application directory is the area in a server machine where Panther runs. You must
create this directory on each server machine and populate it with the required server
executables, application libraries, and environment files.

Server Executables

Server executables are required for shared library access during development and for
deploying three-tier applications. Copy or create symbolic links to the required server
executables; in the default distribution, these are located in the util directory. Or set
PATH to $SMBASE/util in the machine environment files. Panther provides four
server executables:

! devserv—Available only in development environments (and in applications
running reports remotely), file access servers offer shared access to libraries and
repositories across the network. You can use this server to facilitate
development of both two-tier and three-tier applications.

! proserv—Required for three-tier applications, this server executable is called
by standard servers and is used to advertise and execute JIF-defined services.

! prodserv—(UNIX only) Identical to proserv with the Panther debugger
linked in, you can run a server in debug mode if the server definition specifies
this executable and specifies Debug (refer to page 3-23).

! progserv—(UNIX only) Required for three-tier applications that are converted
from two-tier applications, this server executable is used by conversion servers.
Conversion servers advertise their services only to converted client screens.

Note: On UNIX, the distributed server executables have the JDB database linked in.
To run a server with another database, you must recompile the executable. For
information on building executables, refer to Chapter 42, “Building
Application Executables,” in Application Development Guide.
2-2 Setting the Enterprise Environment

Setting Up the Enterprise Directory
Application Libraries

The distribution provides three application libraries in the samples/newapp directory
which you should copy to your application directory:

! common.lib stores application-wide objects such as JIF and JPL modules.

! client.lib stores client screens, menus, JPL modules, and other resources
that are used in the client interface such as styles and pixmaps. Copy this
library to the server's application directory only if you want to share access to
its contents with other developers. client.lib should be accessible to a server
only during development; in a deployed application, it is available only to
clients.

! server.lib stores service components and routines.

Specify to open these libraries by setting the application variable SMFLIBS in the
environment file of the host machine or in the standard server's environment file
proserv.env:

Environment Files

A machine environment file machine.env supplements the environment that is
established on machine activation. In addition, two other server environment files are
provided for some server types: proserv.env (used by proserv and prodserv
servers), and progserv.env (used by progserv). These can be used to supplement
the environment for a given server. All files are in the distribution's config directory;
copy these to your application directory.

You specify the machine environment file in JetMan through its Machine Environment
Variable File property (refer to page 3-14); you can specify an environment file for
each server through its Server Environment Variable File property (refer to page 3-21).

For information about environment file settings and format, refer to page 2-4.
JetNet/Oracle Tuxedo Guide 2-3

Setting the Environment
Setting the Environment

On activation, all servers on a UNIX master machine inherit the environment of
rbboot; servers on a non-master machine inherit the environment of rblisten; a
Windows server inherits the environment of the tuxipc service. Each host machine's
environment is supplemented by the settings of its environment file machine.env. All
servers inherit their host machine's environment. Each server's environment can be
further supplemented with the appropriate server environment file: devserv.env,
proserv.env, or progserv.env. You must make sure that all necessary environment
variables are properly set, either in the machine environment before activation, or
through the appropriate environment file.

UNIX Environment

A UNIX host environment must have these variables set before the server is activated:

SMBASE=<root of Panther installation>

PATH=$SMBASE/util:$PATH

LM_LICENSE_FILE=$SMBASE/licenses/license.dat:$LM_LICENSE_FILE

LD_LIBRARY_PATH=$SMBASE/lib:$LD_LIBRARY_PATH

A prodserv server (one that has the debugger linked in) must also set the terminal
display with this variable:

SMTERM=<terminal-type mnemonic>

Windows Environment

A Windows server must have these variables set:

SMBASE=<root of Panther installation>

ULOGDIR=<root of Panther installation>
2-4 Setting the Enterprise Environment

Setting the Environment
PATH=$SMBASE\util;%PATH%

LM_LICENSE_FILE=%SMBASE%\licenses\license.dat;%LM_LICENSE_FILE%

On the Control Panel under System, check the Environment settings and update them
if necessary.

Environment File Settings

On activation, each machine and server reads the environment files that are specified
for it in the middleware's configuration file; in the JetNet manager, these files are set
in the Machine Environment Variable File (page 3-14) and Server Environment
Variable File (page 3-21) properties. Environment file settings supplement the
environment that exists when the host and its servers activate.

Note: You cannot use environment files to override the machine settings for the
Panther Install Directory, Application Directory, and Local JetNet
Configuration File.

Each line in the environment file contains a variable assignment with the format
variable =value, where variable starts with an underscore or alphabetic character and
contains only underscores or alphanumeric characters. Within the value, strings of the
form ${env} are expanded using variables already in the environment. Forward
referencing is not supported, and if a value is not set, the variable is replaced with the
empty string. Use backslash (\) to escape the dollar sign or another backslash. All other
shell quoting and escape mechanisms are ignored.

Machine Environment File

A machine environment file should contain these settings:

! Each file must set SMBASE to the Panther installation directory.

! On UNIX, unless you copied or linked to the server executables in the
application directory, the machine environment file must set PATH to
${SMBASE}/util. On Windows, PATH must be set to ${SMBASE}\util in
order to support DLLs. On both platforms, this setting is added to the
previously established setting to yield the following PATH:

UNIX: ${APPDIR}:${SMBASE}/bin:/bin:${SMBASE}/util

Windows: ${APPDIR};${SMBASE}\bin;${SMBASE}\util
JetNet/Oracle Tuxedo Guide 2-5

Setting the Environment
PATH is set to ${APPDIR}:${SMBASE}/bin:/bin:path, where path is the
value of the environment file's last PATH= entry.

! If servers on a UNIX host have the debugger linked in, LD_LIBRARY_PATH
must be set to Motif shared libraries and the DISPLAY environment to the
display on which debugging takes place.

Setting LD_LIBRARY_PATH in the environment file adds to the previously
established setting:

APPDIR:${SMBASE}/lib:/lib:/usr/lib:lib

where lib is the value of the environment file's last LD_LIBRARY_PATH= entry.

Note: On HPUX, use SHLIB_PATH in place of LD_LIBRARY_PATH; on AIX, use
LIBPATH.

! Optionally, set SMFLIBS to any libraries that clients and servers need to access.
If SMFLIBS is not set in the machine environment file, it must be set for each
server individually in its server environment file, and for native clients through
the client's setup file (in UNIX) or initialization file (Windows).

! Optionally, set SMPATH to include any directories that servers need to access
besides the application directory (set through the JetNet Manager—refer to
page 3-14). If the environment file contains an SMPATH entry, make sure that the
path includes the config directory.

For example, the following entry in a machine environment file ensures that
servers on this host have access to files in the myapps and config directories
as well as in the application directory:

UNIX: SMPATH=/u/myapps|${SMBASE}/config

Windows: SMPATH=c:\myapps|${SMBASE}\config

Note: The path to the application directory is set in the machine's configuration
through its Application Directory property (page 3-14). SMPATH must not
include the same directory again.

Server Environment File

A server environment file should contain these settings:

! In proserv.env, set SMFLIBS to server.lib and common.lib so these
libraries open at application startup:
2-6 Setting the Enterprise Environment

Setting the Environment
SMFLIBS=server.lib|common.lib

! If the application has been upgraded from two-tier to three-tier architecture, set
SMFLIBS in progserv.env to the service component library created by the
upgrade utility clnt2svr:

SMFLIBS=sv.lib

! Optionally, set SMPATH to include any directories that the server needs to access
besides the application directory (set through the JetNet Manager—refer to
page 3-14). If the environment file contains an SMPATH entry, make sure that the
path includes the config directory.

Note: Because a server's application directory is already set through its
machine's configuration (page 3-14), SMPATH must not include the same
directory again.

Interfacing with SCCS/PVCS

When using remote libraries that are under SCCS/PVCS control, files are checked out
of the library under the name of the user who started the application rather than the
client who made the request. This makes it appear as if all work is performed by a
single user, and is probably not desirable.

To workaround for this on UNIX, the check-in/check-out daemon must be able to
pretend to be any user. You may achieve this using our devserv by changing it to be
owned by root and setting the suid bit.

If this is not possible in your configuration, or presents too much risk, there is an
alternate solution. The Panther software contains an alternate check-in/check-out
daemon, named cfgserv. It, too, must be owned by root and have the suid bit set, but
you can eliminate the security risks by running devserv under a dedicated group id
and making cfgserv executable only by that group.

cfgserv is located in $SMBASE/util; the source code is located in $SMBASE/link.

SMVARS Settings

You can test an application with the Panther debugger by running it directly on the
server. To do so, the server's SMVARS file must set configuration variables SMTERM and
SMKEY so that Panther's interacts properly with the terminal's display and keyboard.
JetNet/Oracle Tuxedo Guide 2-7

Setting Up the Client Environment
Setting Up the Client Environment

Two types of clients can connect to a Panther application: native and workstation
clients.

! A workstation client (or remote client) resides on a machine that is not defined
in the application configuration.

! A native client (or local client) resides on a server machine—that is, a machine
that is defined in the application configuration.

When you create an application using JetMan, the machine name is specified
automatically and is then stored as part of the application configuration in
broker.bin.

Each type of client has its environment set differently, as described in the following
sections.

Workstation Clients

Each workstation client's environment must be set up in two ways:

! The configuration variable SMFLIBS must be set to enable shared access to
libraries across the network.

! Configuration variables SMRBHOST and SMRBPORT must be set so that clients can
connect to a Panther application.

Setting Access to Libraries

Access to application libraries—client.lib, server.lib, and common.lib—is set
through the configuration variable SMFLIBS. You can set SMFLIBS in one of two ways,
depending on whether you want to provide shared access to these libraries:

! To allow shared access to application libraries, set SMFLIBS on each
workstation as follows:
2-8 Setting the Enterprise Environment

Setting Up the Client Environment
SMFLIBS=host!client.lib|host!common.lib|host!server.lib

host is the server machine on which these libraries reside. For example, the
following SMFLIBS setting specifies that all application libraries are located on
host aspen:

SMFLIBS=aspen!client.lib|aspen!common.lib|aspen!server.lib

! If you want developers to have their own libraries, copy the application libraries
to each workstation. The workstation's setting for SMFLIBS can remain as set in
the default distribution. For example:

SMFLIBS=client.lib|common.lib|server.lib

! If you installed a web application server, it cannot access remote libraries on
startup using SMFLIBS= server_id!lib_name. If a client library cannot be placed
on a shared file system, connect to the middleware on application startup using
client_init and execute the Panther library function sm_l_open to open a
remote library.

For Windows workstations, SMFLIBS must be set in the initialization file:
prol5w32.ini for Panther, mbedit32.ini or mbedit.ini for the menu bar editor,
and jifedit32.ini or jifedit.ini for the JIF editor. For UNIX clients, you can
set SMFLIBS in the environment, or in the SMVARS or SMSETUP file.

Note: Make sure that, during development, SMFLIBS specifies client libraries before
server libraries; if screens in client and server libraries use the same name, this
ensures that the client version opens when invoked.

Enabling Client Connections

To establish a workstation client connection, two conditions must be true:

! One or more active server machines must be enabled for workstation
connections (refer to page 3-15).

! The workstation must know the network address of a server machine that is
enabled for workstation connections.

Two Panther configuration variables, SMRBHOST and SMRBPORT, let you specify the
network addresses of one or more server machines. For example, you might set the two
variables as follows:

SMRBHOST=aspen,marks,sparks
JetNet/Oracle Tuxedo Guide 2-9

Middleware Configuration File
SMRBPORT=37000,37100

Given these settings, the workstation client initially tries to connect to aspen at port
37000; if unable to connect to aspen, it next tries to connect to marks at port 37100.
Failing both connections, it tries sparks at port 37100.

Set SMRBHOST and SMRBPORT in one or more of the following initialization files:

! In the application initialization file.

! To enable client connections from Panther editors: in prol5w32.ini for the
screen editor, mbedit32.ini for the menu bar editor, and jifedt32.ini for
the JIF editor.

! To enable workstation connections to the JetNet manager, in jetman32.ini.

For more information about setting SMRBHOST and SMRBCONFIG, refer to the
Configuration.

Native Clients

Native clients use the value in SMRBCONFIG to establish their connection to the
middleware. Make sure that the client machine's SMRBCONFIG matches the value
specified for the machine's local configuration file (refer to page 3-14).

If the client resides on a UNIX machine, its environment must have the
LD_LIBRARY_PATH variable (or its equivalent) set to the required JetNet or Oracle
Tuxedo libraries.

Middleware Configuration File

A middleware configuration file is required to develop and deploy three-tier
applications; it is also required for shared library access in a development environment.
This file contains all the information that the middleware requires to provide server
access: which machines are configured for servers, the types of servers that are
available, network settings that enable workstation client connections, and so on.
2-10 Setting the Enterprise Environment

Setting IPC Resources
Panther has its own utilities for creating and editing a configuration file for the JetNet
middleware. You can create a minimal JetNet configuration file through the utility
rbconfig; you can also create and edit JetNet configuration files through the JetNet
manager (page 3-1).

An application using the Oracle Tuxedo middleware adapter can be run with a JetNet
configuration file. You can also use Oracle Tuxedo utilities to create and edit a Oracle
Tuxedo configuration file.

Warning: A configuration file that is created with Oracle Tuxedo utilities must be
used only with the Oracle Tuxedo middleware adapter.

You specify the location of the middleware configuration file through the
configuration variable SMRBCONFIG.

Setting IPC Resources

After you install Panther and before you start development, you might need to adjust
resource settings for the IPC (interprocess communication) subsystem in your UNIX
kernel or Windows registry.

On UNIX, you set IPC resources in the system kernel. You can check the status of
resources using the UNIX command ipcs.

On Windows, the Panther installation adds entries to the registry and adds an Windows
service to the system. This allows JetNet features to work with the embedded Oracle
Tuxedo software. Registry entries can be edited in order to facilitate system
management and debugging.

Registry entries are added under this layout:

HKEY_LOCAL_MACHINES\System/CurrentControlSet
Control\Session Manager\Environment
Services\TUXEDO IPC HELPER
Enum\Root\LEGACY_TUXEDO IPC HELPER
JetNet/Oracle Tuxedo Guide 2-11

Setting IPC Resources
HKEY_LOCAL_MACHINE\Software\ORACLE\TUXEDO\6.3
Environment
Security

You can view the Oracle Tuxedo IPC HELPER service via from the Services applet,
invoked from the Control Panel. This applet lets you perform tasks such as starting or
stopping the service.

You must stop the Oracle Tuxedo IPC HELPER service before you uninstall the
Panther application server; otherwise, the service and its DLLs are still available after
server deinstallation.

The following sections describe IPC resources for message queues, semaphores, and
shared memory. The descriptions include default values; these are usually adequate for
most Panther applications unless otherwise indicated.

Messages

Panther uses messages and message queues to transfer data between clients and
servers. All instances of a server share a single message request queue, while each
client has its own response queue. Individual server instances each get their own reply
queues if the server's Enable Service Calls property (in the JetNet configuration file)
is set to Yes. If the limits set by message parameters are exceeded, additional server
instances and clients cannot start or a blocking condition occurs. If all attempts to send
messages by processes are blocked, application deadlock occurs.

UNIX

MSGMNI

Specifies the number of unique message queue identifiers. The default is 50,
which may be too low. To calculate the correct value, count one queue per
process, including one for each BBL and the DBBL, one for each client and
server, and two for each bridge process. If a server's Enable Service Calls
property (in the JetNet configuration file) is set to Yes, also count one queue
per server instance.

MSGMAP

Specifies the size of the control map that manages message segments. Set this
to twice the value of MSGMNI.
2-12 Setting the Enterprise Environment

Setting IPC Resources
MSGMAX

Specifies the maximum message size in bytes, typically between 16K and
32K. Any message that is larger than 75 percent of MSGNB is sent via file
transfer.

MSGMNB

Specifies the maximum message queue length in bytes. This parameter
determines the amount of data that can be placed on a message queue at any
time. It is typically set to the same value or higher as MSGMAX.

MSGSSZ

Determines the size of a message segment. Each message contains
contiguous segments large enough for the message text. A size of 32 is
typical.

MSGTQL

Specifies the number of outstanding messages. The default is 40 but should
be set higher than 200 for a system with a high volume of traffic.

MSGSEG

Specifies the number of message segments in the system. This value
multiplied by MSGSSZ should be less than or equal to 128K for most
platforms. Refer to your UNIX documentation for more information.

Windows

TUXIPC_MSG_BYTES

Maximum allowed message size. The default is 65536.

TUXIPC_MSG_HDRS

Maximum number of message headers. The default is 8128.

TUXIPC_MSG_QUEUE_BYTES

Maximum message queue size. The default is 65536.

TUXIPC_MSG_QUEUES

Maximum number of message queues. The default is 256.

TUXIPC_MSG_SEG_BYTES

Size of the message segment. The default is 64.

TUXIPC_MSG_SEGS

Number of message segments. The default is 32767.
JetNet/Oracle Tuxedo Guide 2-13

Setting IPC Resources
Semaphores

Each process that attaches itself to a bulletin board acquires a semaphore, which are
means of passing flags from process to process. Semaphores can be tuned by the
following parameters:

UNIX

SEMMNS

Specifies the maximum number of semaphores in use in the system. The
default for most UNIX System V implementations is 60. Check the JetNet
configuration file's Max Accessors settings for individual machines (refer to
page 3-11).

SEMMNI

Specifies the maximum number of active semaphore sets. The default is 10.

SEMMSL

Specifies the maximum number of semaphores per semaphore set. The
default is 25, which should be enough for 200 accessors. Panther will use up
to eight sets, so SEMMSL should be set to the total number of accessors divided
by eight. It is common for SEMMNS to equal SEMMSL * SEMMNI.

SEMMAP

Specifies the size of the control map used to manage semaphore sets. Set this
to the same value as SEMMNS.

SEMMNU

Specifies the number of undo structures in the system. This controls the
number of UNIX system processes that attempt to access the bulletin board
at the same time. If more than this number try to connect to the bulletin board,
a UNIX system error results.

SEMUME

Specifies the maximum number of undo entries per process. Set this to the
same value as SEMMNS.

Windows

TUXIPC_SEM

Maximum number of semaphores. The default is 1024.
2-14 Setting the Enterprise Environment

Setting IPC Resources
TUXIPC_SEM_IDS

Maximum number of semaphores set. The default is 1024.

TUXIPC_SEM_UNDO

Maximum number of semaphore undo structures. The default is 1024.

Shared Memory Requirements

UNIX

SHMAX

Specifies the maximum size in bytes of an attached shared memory segment,
up to 4194304 (4 megabytes). The default is 524288.

SHMSEG

Specifies the maximum number of shared memory segments that a process
can attach to, up to 10. The default is 6.

SHMMNI

Specifies the maximum number of shared memory identifiers in the system.
The default is 100.

Windows

TUXIPC_SHM_PROCS

Number of processes per shared memory mappings. The default is 500.

TUXIPC_SHM_SEGS

Number of shared memory segments. The default is 50.
JetNet/Oracle Tuxedo Guide 2-15

Setting IPC Resources
2-16 Setting the Enterprise Environment

CHAPTER
3 Configuring the
Enterprise

The graphical JetNet Manager (JetMan) integrates all the facilities you need to
configure and manage the middleware component of a Panther application. With it,
you create and edit a binary JetNet configuration file; this file specifies how to set up
an application's clients and servers and configure their interaction—for example,
whether multiple workstations can attach to the application, the maximum number of
machines, servers, and services that the application can support, how many servers to
activate and on which machine.

JetNet configuration files can be used with the Tuxedo middleware adapter, and are
accessible to all Tuxedo utilities, including xtuxadm. Thus, you can use the JetNet
manager to create a configuration file, then edit and enhance it for use with Tuxedo
later on.

Note: The JetNet manager is designed for editing JetNet configuration files only;
you should edit and manipulate Tuxedo configuration files with the
appropriate Tuxedo utilities.

This chapter shows how to use the JetNet manager to create and configure an
application. It describes the interface and the properties that you can set for each
object— application, machine, and server. For information about using the JetNet
manager to manage a running application, refer to page 4-1.
JetNet/Oracle Tuxedo Guide 3-1

Using the JetNet Manager
Using the JetNet Manager

You invoke the JetNet manager through the executable jetman. When you start JetNet
manager on UNIX, it automatically reads its Jetman resource file; on Windows, it
reads the jetman32.ini initialization file. It then reads the configuration file
specified by SMRBCONFIG or TUXCONFIG; if neither is set, the JetNet manager opens
without a configuration file.

The following steps create a basic configuration file. For more information about each
field, refer to page 3-7.

Creating a Configuration File

How to Create a Basic Configuration File

1. Choose File→New Application from the menu bar or the New Application
button from the toolbar. If another configuration file is already selected, the
JetNet manager asks whether to close it.

The JetNet manager displays the Application Configuration dialog:
3-2 Configuring the Enterprise

Creating a Configuration File
2. Assign a name to the application through the Application Name property. Other
application properties are optional; set these as desired (refer to page 3-8).

3. When you finish editing application properties, choose Next. The JetNet
manager displays the Machine Configuration dialog, where you configure the
master machine:
JetNet/Oracle Tuxedo Guide 3-3

Creating a Configuration File
4. Configure the master machine properties as desired (refer to page 3-12). The
Name property is initially set to the machine on which you are running the
JetNet manager.

Note: In a multi-machine application, this machine is initially defined as the
master machine. Later, you can reassign this machine to a non-master role
after other machines are added (refer to page 3-8).

5. Check the path specified for the Panther installation, the application directory,
and the configuration file. These files should be located on the same machine.

6. When you finish setting machine properties, choose Networking.

7. To enable remote access, select Workstation Listener, and choose OK.

8. When you finish setting machine properties on Machine Configuration, choose
Done. If the file name specified in Local

JetNet Configuration File already exists, a message asks for confirmation to overwrite
it.

Note: You can create a minimal configuration through the utility rbconfig.
3-4 Configuring the Enterprise

Editing a Configuration File
Editing a Configuration File

The JetNet manager's opening Application Status dialog shows the hierarchy of
components in an application. Initially, only the top-level component—for the
application itself—is shown. Double-click on each component in the list to toggle in
and out of view components that are one level below. Or you can expand and collapse
the list of all components below the selected component by choosing View→Expand

Subtree and View→Collapse Subtree. A component with subordinates is prefixed
with a - or + symbol to indicate whether they are visible or not.

Note: In an inactive multi-machine application, you can edit the configuration file
from the master machine only.

When you edit an inactive application's configuration, the hierarchy list can contain
three types of components:

! Application—The topmost item in the hierarchy list; the JetNet manager can
view only one application at a time.

! Machine—One or more machines that are configured for an application, listed
below the application name. In a multi-machine application, machines are listed
in the order in which they are added.

! Servers—Servers are listed under the machine for which they are defined. In an
active application, a machine that is enabled for workstation connections also
shows its workstation handler as a server.

You can also edit the configuration file of an active application. Some component
properties are editable only when the component itself is inactive. For more
information about managing an active application, refer to page 4-1.

To the right of the hierarchy list, the Details list displays information about the selected
component, such as its name, type, and state (active or inactive). The dialog also
contains a Status box that displays informational messages.
JetNet/Oracle Tuxedo Guide 3-5

Editing a Configuration File
You can use the hierarchy window to add and delete components from an application's
configuration; you can also use it to access those components' definitions and edit
them:

Adding and Deleting Components

Add servers and machines to a configuration by selecting a higher-level object—for a
new server, its host machine; for a new machine, the application—and choosing the
appropriate File→New option or toolbar button. Servers and machines can be added
and removed whether their parent objects are active or inactive.

You can also create a copy of an existing server by selecting the server and choosing
File→New→Server or the corresponding toolbar button. This adds a new server to
the host machine and copies all non-unique properties from the selected server to the
new one. You must assign the new server a unique name in order to save it.

To delete a component from the configuration, select it and choose Edit→Delete. You
can delete any inactive component from the configuration. If the selected component
has subordinate components, these are deleted also.
3-6 Configuring the Enterprise

Setting Enterprise Properties
Editing Components

A JetNet configuration file defines three types of application components—the
application itself, machines, and servers. You access these definitions through the
JetNet manager. Definitions can be viewed and edited whether a component is active
or not; however, you can change some settings only when the component is inactive.
All changes that you make in the JetNet manager are written to the configuration file
immediately.

To edit a component's settings, select its name from the hierarchy list and choose
Edit→Properties or the Object Properties button from the toolbar. Properties for each
component type are described in later sections of this chapter.

Selecting Another Enterprise's Configuration

To edit another configuration file, choose File→Select Application. This invokes the
Select File dialog where you choose the desired configuration file. When you select a
file, Panther reads the configuration definition. If the JetNet manager was connected
to the previous application (refer to page 4-4), the connection is automatically broken.

Setting Enterprise Properties

To access application properties, select the application name from the hierarchy list
and choose Edit→Properties.

General Settings

The application properties that are initially displayed set an application's identity—its
name, IPC key, and whether it runs on a single or multiple machines. For more
advanced application properties, choose the Advanced push button.
JetNet/Oracle Tuxedo Guide 3-7

Setting Enterprise Properties
Application Name
The application's logical name, a value of up to 30 characters. This name
identifies the application in the hierarchy list.

IPC Key
Specifies the application's address of shared memory. The default value is
system-assigned. You can assign a value between 32,769 and 262,142,
inclusive. Panther uses this address to allocate application IPC resources so
that they can be located easily by new processes as they join the application.
This key is used internally to allocate the bulletin board, message queues, and
semaphores that must be available to processes when they join the
application.

Memory Model
Specifies whether the application runs on a single processor or across a
network with multiple machines:

" Single Machine—Run the application on a single machine.

" Multiple Machine—Run the application on multiple machines.

When you choose this Multiple Machine, the current machine is
automatically assigned the role of master machine. You can add additional
machines to the network by choosing New—Machine from the File menu or
the New Machine button from the toolbar.

Roles
This push button is accessible only for multi-machine applications. In a
networked application, you must identify the master machine and, optionally,
3-8 Configuring the Enterprise

Setting Enterprise Properties
the machine that acts as its backup. The first machine to be defined for the
application is the default master machine.

You should always specify a backup master machine; this is especially
important for 24-hour applications to allow a smooth transfer of operations in
case the master machine unexpectedly ceases operation or is deliberately
brought down for periodic maintenance. In a running application, the backup
master is always prepared to take over the role of master machine.

In an inactive application, you reassign the master machine by running the
JetNet manager from the machine that you want to designate as the new
master. You must always reassign the backup master from the master
machine.

In a running application, you can reassign machine roles by running the
JetNet manager from any active machine.

How to Assign or Reassign Machines Roles

1. From the Application Configuration dialog, choose the Roles push button. This
invokes the Machine Roles dialog:

Two list boxes show all machines in the application. The Master list highlights
the current master; the Backup Master list highlights the current backup master,
if any.

2. Select the desired machine from the appropriate list. When your assignments are
complete, choose OK.
JetNet/Oracle Tuxedo Guide 3-9

Advanced Settings
Advanced Settings

The Advanced Application Configuration dialog sets limits such as the maximum
number of machines and servers that the application supports, and general application
properties such as the application password.

Max Machines
The maximum number of machines that can be used by the application. The
default value is 256.

Max Server Processes
The maximum number of server processes allowed for the application at any
one time. This value must be greater than 0 and less than 8192. The default
value is 50.
3-10 Configuring the Enterprise

Advanced Settings
The value that you should set for this property should account for one listener
server on each workstation, and the maximum number of instances
anticipated for each server. Because this property directly increases
semaphore and shared memory costs, deployed applications should have this
property set to the lowest value that ensures acceptable performance. In a
development environment, set this property sufficiently high to account for
additional resource requirements.

Max Servers
The maximum number of servers allowed for the application at any one time.
The value that you set for this property should account for one listener server
on each workstation. This property's value must be between 100 and 32,767,
inclusive. The default value is 100.

Max Services
The maximum number of services that can be advertised by the application at
any one time. This property's value must be between 1 and 32,767, inclusive.
The default is 100. Because this property directly increases shared memory
costs, set it to the lowest value that allows the application to advertise all
desired services.

Max Accessors
Specifies the initial value that is set for a new machine's Max Accessors
property (refer to page 3-13).

Load Balancing
Determines whether to load balance client requests among active servers.
When load balancing is on, JetNet monitors the total number of all services
waiting to be handled by each server. It uses this information to direct
requests to the least-busy server that can handle each new request.

All requests are equally weighted; this means that JetNet simply calculates a
given server's load from the total number of services waiting to be processed,
and ignores their cumulative processing time. To make maximum use of load
balancing, organize services into service groups according to their processing
requirements and associate these groups with servers as needed. You can also
optimize throughput on the machine level by setting Network Load for each
machine (refer to page 3-16).

Note: Load balancing is not required when services are offered by only one
server.
JetNet/Oracle Tuxedo Guide 3-11

Setting Machine Properties
Application Password
If enabled, this check requires clients to supply a password when joining the
application. This password is checked against the password supplied by the
system administrator.

When Password is enabled, you supply or change the application password
by choosing Change Password. This invokes the Application Password dialog
where you enter the new password twice. If the two entries do not match, an
error message is posted and you must repeat the process.

The application password provides level-2 authentication. Level-3
authentication is provided in the Oracle Tuxedo version. For more
information, refer to page 2-13 in the Programming Guide.

Shared Memory Protection
Shields the system tables that are kept in shared memory from clients and
servers. Enable this option when you are developing an application that is not
yet fully debugged and tested. In finished applications, disable this option for
faster response time.

Default Blocking Timeout
Specifies how much time elapses before a call times out and returns to its
caller. Calls are blocked only if the tp_block property is set to PV_YES. The
default is 60 seconds. If the application uses a server executable that has the
debugger linked in, increase this value sufficiently to allow for slower
response time.

The entered value must be a multiple of 10. If an entry's last digit is non-zero,
the JetNet manager changes it to 0.

Setting Machine Properties

A Panther application can run on a single machine or across a network on multiple
machines. To access machine properties, select the machine name from the hierarchy
list and choose Edit—Properties.
3-12 Configuring the Enterprise

Setting Machine Properties
Name
A logical name that identifies this machine to the network. Names should not
include an embedded period (.) character.

Multiprocessor
Enable if the machine has multi-processor capabilities.

Max Accessors
The maximum number of processes, clients and servers, that can attach to the
application on this machine. The initial value is set from the application's
Max Accessors property. Because this property directly increases semaphore
and shared memory costs, set it to the lowest value that ensures acceptable
performance.

Machine Type
In a multi-machine application, identifies the machine type, either UNIX or
Windows. This setting enables JetNet to manage communication between
machines of different types. When you define a new machine, its machine
type is initially set to the machine on which the JetNet manager is running.
You can change this setting for any non-master machine; it is inaccessible for
the application's master machine.

A UNIX machine can also specify its user and group IDs, UID and GID.
When you define a new UNIX machine, its UID and GID values are initially
JetNet/Oracle Tuxedo Guide 3-13

Setting Machine Properties
set to the UID and GID of the machine on which the JetNet manager is
running, if available. You can change these values to any integer between 0
and 2,147,483,647, inclusive.

A Windows machine prevents access to the UID and GID properties and sets
them to 0.

Panther Install Directory
Shows where Panther is installed.

Application Directory
The working directory where servers running on this machine are started. The
machine's log file (ULOGmmddyy) is also written to this directory.

Machine Environment Variable File
Specifies to execute this machine with the environment in the named file.
This property's default is set to machine.env in the application directory.
You can override the default by entering the pathname directly or by using
the Browse push button to select the desired file.

This environment supplements the one already established when the machine
is activated. For example, you can set a different server library for each server
by setting SMFLIBS in its environment file. You cannot use this file to
override settings in Panther Install Directory, Application Directory, and
Local JetNet Configuration File.

For more information about the contents and format of a machine
environment file, refer to page 2-5.

Local JetNet Configuration File
For the master machine, specifies the JetNet configuration file that is read
when the application is booted. For non-master machine, this property
specifies the pathname of the local copy of the configuration file. When this
machine is activated, it copies the master machine's JetNet configuration file
into this location.

If you are defining a new configuration file, the JetNet manager creates a file
according to the pathname specified and stores your initial settings in it.
Settings for SMRBCONFIG must exactly match this pathname.

Note: Under shared file systems such as NFS, make sure that local
configuration files on different machines have unique pathnames.
3-14 Configuring the Enterprise

Network Settings
Warning: The configuration file created by JetNet manager or rbconfig includes
references to itself. If you change the master machine's Local JetNet
Configuration File property, these internal references become invalid. To
rename a configuration file, convert it to ASCII with rb2asc and edit the
TUXCONFIG string to the new file; then run rb2asc again to convert the
edited file back to binary.

Network Settings

Networking settings specify the information that each workstation requires to contact
other computers and vice versa.

IP Address
This machine's network identifier, valid only for multi-machine
configurations. The JetNet manager assigns a value to this property based on
the machine's IP address. Modify this value if the machine is known by
multiple IP addresses and you need to use a different one.

Network Device
Specifies a machine's network device. The default value is
platform-specific—for example, /dev/tcp.

Listener Port
Identifies the port that is used by this machine's listener process. Enter any
number between 32,768 and 65,535, inclusive. Be sure to reserve this port
number for Panther use only. The default value is the default IPC Key value
plus 10.

At boot time there is no bridge process to receive communication. Instead,
each listener process on the non-master and backup master machines awaits
a message from the master machine to begin the local boot process. The
master machine uses the port number in each machine's Listener Port
property to address its listening process. Consequently, the port number
supplied to rblisten to invoke a machine's listening process must match this
property.
JetNet/Oracle Tuxedo Guide 3-15

Network Settings
For more information about rblisten's role in booting a Panther application,
refer to page A-7.

Bridge Port
Identifies the port that this machine's bridge process uses to communicate
with other machines in the network. Enter any number between 32,768 and
65,535, inclusive. The default value is the application's default IPC key value
plus 20.

When the machine's bridge process is booted, it appropriates this port for its
own use; consequently, you should reserve this port number for Panther.

Network Load
Use this property to inflate the activity of servers on this machine as perceived
by clients on remote nodes. Activity is measured by the number of enqueued
service requests; so two servers on different machines with the same number
of enqueued requests appear equally available to all clients, regardless of their
network proximity. The value specified for Network Load augments this
number for remote clients. You can enter any value between 0 and 32,767,
inclusive. The default value is 0.

For example, a network of two machines, fred and wilma has one server on
each, fred_srv and wilma_srv. If fred_srv has 6 requests pending and
wilma_srv has 9, fred_srv ordinarily gets the next service call, whether the
caller is local or remote. Because routing calls across the network is
expensive, you can set each machine's Network Load property to a level that
deters excessive network traffic. So, if fred‘s Network Load property is set
to 10, the next remote client with a service call sees fred_srv as having 16
pending requests, so the request broker routes the call to wilma_srv;
however, a local client always sees fred_srv's level of activity as it actually
is, so its next call is processed locally.
3-16 Configuring the Enterprise

Network Settings
Workstation Connections

In order to permit workstation clients to connect to the application on this machine,
enable the Workstation Listener toggle button. This starts the workstation listener
process on this machine. When client_init is invoked from a workstation, it uses
the workstation's settings in SMRBHOST and SMRBPORT to request a client connection.
The workstation listener at this host and port intercepts the connection request and, if
possible, finds a handler for the connection.

Note: When you add a machine to an application's configuration from a PC
workstation, you cannot enable the machine's Workstation Listener toggle
button (on the machine's Network Settings dialog). To activate a machine's
workstation listener process, you must run JetNet manager on the server
machine.
JetNet/Oracle Tuxedo Guide 3-17

Network Settings
You configure a machine for workstation client connections with the
following properties:

Listener Port
Identifies the port that is used by the workstation listener. Workstation clients
use this port number when they try to connect to the application on this
machine. This property's value must be between 32,768 and 65,535,
inclusive. Be sure to reserve this port number for Panther use only. The
default value is the application's default IPC key value plus 30.

For more about enabling workstation client connections, refer to page 2-9.

Min Handlers
The minimum number of handlers that this machine's workstation listener
makes available to clients at any given time. The workstation listener starts
this many handlers when it is booted and makes sure that the number of
handlers never decreases below this minimum until it shuts down. More
handlers are made available as needed in order to accommodate clients that
attach to the application on this machine, up to the value set for Max Clients.
You can specify up to 255 handlers. The default value is 1.

Client Timeout
The amount of time in minutes that a client can idle before it is disconnected
by its workstation handler. A client is considered idle if it makes no requests.
Clients that get unsolicited message notifications without responding are also
considered idle. Use this option for client platforms that are unstable—for
example, a workstation that can be turned off without calling client_exit.

To prevent timeouts, set this property to blank. The default value is 60.

Handler Port
Identifies the port range that is used by the workstation listener. By default,
the values are between 2048 and 65535, inclusive.

External Network Address
The network address used by the workstation listener as its listening address.
Enter the host machine and port number as a string following two slashes or
as a hex value. For example, if the machine is bedrock with a TCP/IP
address of 123.1.123.12 and the port number is 9876, the network address
could be specified as any of the following:

//bedrock:9876

//123.1.123.12:9876
3-18 Configuring the Enterprise

Setting Server Properties
0x000226947B017B0C

Max Clients
The maximum number of clients that can attach to the application on this
machine. The default value is 40.

Multiplex
The maximum number of workstation clients that each workstation handler
can support at one time. The workstation listener ensures that new handlers
are started as necessary to handle new workstation clients. This property's
value must be between 1 and 4096, inclusive. The default value is 10.

Max Init Time
The amount of time in seconds that is allowed for client initialization to
complete before it is timed out by the workstation listener. This property's
value can be between 1 and 32,767, inclusive. The default value is 60.

Setting Server Properties

All services in a Panther application are processed by a server. Servers are defined as
part of each machine's configuration. You can define standard servers that advertise
JIF-defined services, and conversion servers that provide services to client screens
converted from a two-tier model. Both types can connect to a one or more database
engines. You can also define file access servers for access to remote Panther libraries.

To access server properties, select the server name from the hierarchy list and choose
Edit→Properties. The following properties are common to all server types:
JetNet/Oracle Tuxedo Guide 3-19

Setting Server Properties
Name
The name of this server, up to 30 characters. All server names must be unique
within an application and must not be the same as a machine name.

Minimum Instances
The number of instantiations of this server created when it is activated. After
the server is activated, you can increase or decrease the number of its
instances as needed. The default value is 2.

Server Type
Specifies to use one of the three server executable types that provide services
to clients:

" Standard—Advertises JIF-defined services.

" Conversion—Available only to applications that are converted from
two-tier applications; the services that are advertised by the conversion
server are not defined in the JIF; instead, services are defined in the
server executable and cannot be modified. These services include
standard database transactions such as VIEW and UPDATE. These
services are only available to converted client screens and can be
processed only by converted service components.
3-20 Configuring the Enterprise

Setting Server Properties
" File Access—Offers shared access to libraries and repositories on any
machine that is included in the configuration.

Note: The machine environment file of a file access server's host must set
PATH to ${SMBASE}/util (refer to page 2-5).

Server Environment Variable File
Specifies to execute this server with the environment in the named file. This
property's default is set according to the server type that you choose:
proserv.env for a standard server or progserv.env for a conversion
server. You can override the default by entering the pathname directly or by
using the Browse push button to select the desired file. By default, file access
servers use the settings in machine.env; however, you can add additional
settings in devserv.env.

This environment supplements the one already established when the server is
activated. For example, you can set a different server library for each server
by setting SMFLIBS in its environment file. You cannot use this file to
override the machine settings for Panther Install Directory, Application
Directory, and Local JetNet Configuration File.

For more information about the contents and format of a server environment
file, refer to page 2-6.

Server Restart Frequency
Specifies whether the server automatically restarts after it unexpectedly
terminates and how soon:

Server restart option Time elapsed until restart

Never

Sometimes Twice within four hours.

Often Twice every 10 minutes.

Always Removes all limitations. The server can be
restarted an unlimited number of times.
JetNet/Oracle Tuxedo Guide 3-21

Server Details
Server Details

You can set one or more properties that define a server's functionality, depending on
its type—standard, conversion, or file access. For example, a standard server specifies
which JIF-defined services to advertise, whether it is enabled for debugging, and its
database connection.

You access server detail properties by choosing Options from the Server Configuration
dialog. This invokes a dialog that is appropriate to the server's type. The following
sections describe properties for each dialog:
3-22 Configuring the Enterprise

Server Details
Standard Server

Auto Advertised Services
There are two categories of auto-advertised services, User-defined and
Built-in.

Under User-defined, select one of these options to determine which services
this server advertises:

" All—The server broadcasts all JIF-defined services

" Group—The server only broadcasts services that are in the specified
group. If you choose Group, supply the name of the group as it is
defined in the JIF.

If you leave both options unselected, you must define services for this group
through the server's initialization routine (refer to page 3-26).

Under Built-in, select Report to enable this server to process reports. A server
that has this check box set advertises the default report service. In addition, a
file access server on the same machine will need to be specified. For more
information about this service, refer to page 9-23 in Reports.

Enable Cross-Server Calls
Specifies whether to allow this server to request services from another server.
If this property's check box is set, the server is allocated its own reply queue.
Because setting this property increases the number of message queues
required by the application, you should do so only if necessary. By default,
this property is set.

Server Executable
The name of the executable to run when this server is activated. proserv is
the default value. You can also specify a standard server that has the Panther
debugger linked in, by default prodserv. You can enter the file name directly
or use the file browser. If the file name omits a path, JetNet looks for the
executable in the application directory (specified in the machine's
Application Directory property), or in /bin.

After you set the server executable's file name, specify whether it is
configured for development or production environments by setting one of
these options:

" Debug—Identical to Development except that the server runs in debug
mode. The debugger starts after default event handlers are established
and before the database connection and the server initialization routine.
JetNet/Oracle Tuxedo Guide 3-23

Server Details
The server runs in debug mode only if the executable has the debugger
linked in.

Note: If you choose Debug for a server, also edit its server environment
file so that it sets DISPLAY appropriately and LD_LIBRARY_PATH to
Motif shared libraries. You might also need to reset the application's
Default Blocking Timeout property.

" Development—Establishes the default event handlers for a
development environment (refer to Table 3-1).

" Production—Establishes the default event handlers for a production
environment (refer to Table 3-1). Choose this option for a server if the
application is ready for deployment. If the specified server executable
has the debugger linked in (prodserv), choose Production only in
order to simulate a production environment; deployed applications
should always use a standard server that does not have the debugger
linked in (proserv).

Table 3-1 shows which default handlers are established for development and
production servers. For detailed information about these handlers, refer to
Chapter 6, “JetNet/Oracle Tuxedo Event Processing.”

Table 3-1 Default handlers for development and production servers

Event Development handler Production handler

advertise sm_tp_advertise_log sm_tp_advertise_cond_winopen

exception sm_tp_exception_print_all sm_tp_exception_promote_erro
r

jif_changed sm_tp_jif_changed_read Same

message sm_tp_message_print_string Same

pre_request sm_tp_pre_request_ignore Same

post_request sm_tp_post_request_ignore Same

pre_service sm_tp_pre_service_winopen sm_tp_pre_service_winopen_or
_select

post_service sm_tp_post_service_winclose sm_tp_post_service_winclose_
or_deselect
3-24 Configuring the Enterprise

Server Details
Service Alias User Name
Specifies to advertise services under their aliases. The value can be up to 8
characters and is prepended to JIF alias entries to construct the advertised
service names in this format:

userName+JifAliasEntry

For example, you might define a server that advertises services from the
banking service group and sets lisa as the service alias user name. Given the
following JIF entries for this group:

The server advertises these service aliases:

lisa1001

lisa1002

lisa1003

request_received sm_tp_request_received_jif_check Same

unadvertise sm_tp_unadvertise_log sm_tp_unadvertise_cond_wincl
ose

unload sm_tp_unload_call_origin Same

server_exit sm_tp_server_exit_log_down Same

dbms onentry sm_tp_dbms_cmd_log None

dbms onerror sm_tp_dbms_error_print_all sm_tp_dbms_error_print_all

Table 3-1 Default handlers for development and production servers (Continued)

Event Development handler Production handler

Service name Alias entry

deposit 1000

withdrawal 1001

transfer 1002

balance 1003
JetNet/Oracle Tuxedo Guide 3-25

Server Details
lisa1004

Servers that advertise aliases are typically set up for the exclusive use of
developers who want to modify existing services without affecting the
running application. For more information, refer to page 5-8.

Database Connect String
Establishes a connection to the desired database engine through a DBMS
DECLARE CONNECTION command. The command is executed after default
handlers are established and before the initialization routine executes.

One database connection string is allowed per server. If you want to enable
multiple database engine connections, you can do so through the server's
initialization routine, specified through its Init Routine property.

Init Routine
Name of a JPL or installed C function to execute when this server is
initialized. For example, you might want to call a JPL procedure that uses the
advertise command to set the services advertised by this server. Enter the
function name and optionally any arguments that it requires, supplied as
constant values. The routine is called after default event handlers are
established and the database connection is made.

Conversion Server

Conversion servers have three properties:

Server Executable
The name of the executable to run when this server is activated. progserv is
the default name for a conversion server. You can enter the file name directly
or use the file browser. If the file name omits a path, JetNet looks for the
executable in the application directory (specified in the machine's
Application Directory property), or in /bin.

Database Connect String
Establishes a connection to the desired database engine through a DBMS
DECLARE CONNECTION command. The command is executed after default
handlers are established and before the initialization routine executes. One
database connection is allowed per server.

Because a server connects to a single database, make sure that none of the
services that it advertises depends on a different database connection.
3-26 Configuring the Enterprise

Server Details
Cache Service Components
Specifies whether to cache service components used by the conversion server
after they are called. If this check box is unset, service components are opened
each time the conversion server processes a service call, and closed when the
service call returns. Set this property's check box if the services are frequently
called.

File Access Server

File access servers have a single property, File Access Server ID. This property
identifies the server by name. If left blank, the property is set to the name of the host
on which the server resides.

A Panther application can get a file access server's ID at runtime through the
application property devserv_id. Report services use this property to return the path
of report metafile output to the invoking client (refer to page 9-23 in the Reports).

Reasons for setting this property include partitioning requests to your devserv
processes by creating multiple devserv groups

! Controlling the performance of your application by creating multiple devserv
groups in order to partition requests to the devserv processes. For example, in
development you might have two devserv groups on a machine—one for
providing remote library access and another for providing remote report file
access.

! Providing machine transparency. For example, if everyone is using a specific
host name in their environment variables, such as SMFLIBS, and the devserv
process is moved to a new machine, setting the File Access Server ID to the old
host name allows everyone to continue to use their old settings.
JetNet/Oracle Tuxedo Guide 3-27

Server Details
3-28 Configuring the Enterprise

CHAPTER
4 Managing the
Enterprise

This chapter describes how to use the JetNet manager and other utilities to boot,
monitor and manage a running Panther application. It also outlines methods for
redistributing network load in a multi-machine application, and ways to monitor and
act on errors.

Monitoring an Enterprise

When you select an application, JetNet manager's opening dialog shows the hierarchy
of all components. These include objects that are defined in the configuration—the
application itself, machines and servers; they are described in Chapter 3, “Configuring
the Enterprise.” In an active application, you can also monitor the following
components:

! Server instances—An active server has at least one active instance. When a
server is activated, it initially has as many instances as its Minimum Instances
property specifies. Thereafter, you can increase and decrease the number of
server instances as needed. Instances are shown below their server and use the
name of the server executable.

! Services—Standard servers that are active list their services under each
instance. Depending on its definition, a server advertises either all JIF-defined
JetNet/Oracle Tuxedo Guide 4-1

Activating and Deactivating Components
services or those that belong to a service group definition. Services are listed
for informational purposes only; you cannot perform any action on them.

! Clients—All clients that are attached to the application are listed, including the
JetNet manager. Clients are only visible when you connect the JetNet manager
to the application from the master machine (refer to page 4-4).

! Workstation listeners— An active machine that is configured to allow
workstation client connections always has a workstation listener process. This
process intercepts connection requests and, if possible, finds a handler for the
connection. For more information about setting workstation listener properties,
refer to page 3-17.

Initially, only the top-level component—for the application itself—is shown.
Double-click on a component to toggle subordinate components in and out of view. A
component with subordinates is prefixed with a - or + symbol to indicate whether they
are visible or not.

To the right of the hierarchy list, the Details list displays information about the selected
component, such as its name, type, and state (active or inactive). The dialog also
contains a Status box that displays informational messages.

Activating and Deactivating Components

The JetNet manager lets you activate and deactivate application components that are
visible in the hierarchy list through the Edit menu options Activate and Deactivate.
You can deactivate any component except a client and the master machine.

Note: To deactivate clients, use forcible deactivation (Edit→Forcibly Deactivate).
Refer to page 4-5 for details. To deactivate the master machine, deactivate the
application from the master machine.

The scope of objects accessible to activation and deactivation depends on where you
are running the JetNet manager. For example, you can activate and deactivate an
application only from the master machine. The following figure shows what activation
and deactivation options are available from each type of site:
4-2 Managing the Enterprise

Activating and Deactivating Components
Deactivating a component can also cause subordinate components to deactivate. For
example, deactivation of a server deactivates all instances of that server.

The following sections discuss activation and deactivation according to component
types and the issues that are associated with each type.

Enterprise Application

You can activate an application with the JetNet manager or with the command-line
utility rbboot. In either case, activation can take place only on the master ma chine.
Before activating an application, verify the following conditions:

! All machines have the executables for which their servers are configured.

! Each machine has SMRBCONFIG set to the same value as its Local JetNet
Configuration File property (refer to page 3-14).

! In a multi-machine application, the listener process is running on all machines.
Start the listener process with rblisten.

To deactivate an application from the JetNet manager, you must be running the JetNet
manager from the master machine. You can also shut down an application with the
command line utility rbshutdown.

If an application has client connections, attempts to deactivate can yield partial
shutdown, where those machines that have client connections remain alive. In this
case, the application also remains active. To shut down an application that has client
connections, choose File→Forcibly Deactivate (refer to page 4-5).

Activate/Deactivate: From:

Application master machine

Non-master machine* master/non-master machine, client workstation

Server master/non-master machine, client workstation

* You cannot deactivate the machine on which the JetNet manager is running
JetNet/Oracle Tuxedo Guide 4-3

Connecting and Disconnecting
Machine

You can activate and deactivate any machine except the one on which the JetNet
manager is running and the master machine. In order to activate a non-master machine,
the listener process must already be running on it (refer to page A-7).

If you try to deactivate the machine on which the JetNet manager is running, all
subordinate components including servers are deactivated; however, the machine itself
remains active.

Note: To activate the master machine, you must activate the entire application from
the master machine, either through the JetNet manager or rbboot. Similarly,
deactivate the master machine by deactivating the application from the master
machine, either through the JetNet manager or rbshutdown.

Servers

You can activate any server. Before you activate a server, make sure that the
appropriate server executable is installed in the same location as the server definition
specifies (refer to page 3-23).

When you activate a server, it initially has as many server instances as its Minimum
Instances property specifies. Thereafter, you can increase and decrease the number of
server instances as needed. For more information, refer to page 4-6.

If you deactivate a server, JetNet automatically removes all instances.

Connecting and Disconnecting

If the current application is active, you can connect the JetNet Manager to it as a client
by choosing File→Connect to Application. When you choose this option, the Connect
dialog displays:
4-4 Managing the Enterprise

Forcibly Deactivating Components
Log in with your user name. If a password is set for the desired application (refer to
page 3-12), you must enter it, too. After the JetNet manager is connected, it and all
other connections are listed by user name in the hierarchy list. The JetNet manager
shows client connections to an application only when it is itself connected to the
application.

When you disconnect from an application (File→Disconnect from Application), the
JetNet manager terminates its client connection and removes from view all other client
connections.

Forcibly Deactivating Components

You can force deactivation of application components by choosing Edit→Forcibly
Deactivate. When you choose this option, a confirmation dialog asks whether to
proceed. Choose this option instead of Deactivate for one of the following reasons:

! To ensure shutdown on the machine and application level. For example, normal
deactivation fails for any machine that has clients connected to it. Forcible
deactivation disconnects clients and allows machine shutdown.

! Parts of an application are in an undefined state and are not responsive to
deactivation attempts.
JetNet/Oracle Tuxedo Guide 4-5

Adding and Deleting Components
! To disconnect a client. Normal deactivation is invalid for client connections.

You can forcibly deactivate four objects: application, machines, server instances, and
clients. Forcible deactivation is invalid for servers.

Forcibly deactivating a component causes JetNet to forcibly deactivate all subordinate
components. For example, deactivation of a machine also deactivates its server
instances and disconnects its clients.

Adding and Deleting Components

You can add servers and machines to an active application exactly as you do with an
inactive application. All additions are immediately written to the application's
configuration file. You can also delete servers and machines; however, they must first
be inactive. If you delete a machine that has servers configured, the JetNet manager
deletes the machine and its subordinate components on confirmation. If you delete an
application object, the entire application is removed. You cannot delete an
application's master machine.

Adding and Removing Server Instances

When a server is activated, it initially has as many instances as its Minimum Instances
property specifies (refer to page 3-20). If a server is experiencing a high volume of
service requests, you can facilitate throughput by increasing the number of instances.
Conversely, you can remove instances from an under-utilized server.

How to Add a Server Instance

1. Select the server from the hierarchy list.

2. Choose Edit→Add Instance.
4-6 Managing the Enterprise

Changing Machine Roles
How to Remove a Server Instance

1. Select the instance from the hierarchy list.

2. Choose from the Edit→Deactivate

If the instance is processing a service request and the tp_block property is set to
PV_YES, the instance is not deleted until the service completes or times out. If you
attempt to deactivate instances of a workstation listener (WSL) server that is
responsible for maintaining workstation client connections, the JetNet manager issues
a warning message and asks whether to disconnect these clients.

Note: If you deactivate all instances of a server, JetNet deactivates the server.

Changing Machine Roles

An application that runs on multiple machines—especially one that must run
continuously—should always have a machine designated as backup master. In a
running application, the backup master is always prepared to take over the role of
master machine in case the master machine unexpectedly terminates.

You might also want to reassign the master or backup master machines in a running
application—temporarily, in order to bring down the master machine for periodic
maintenance; or permanently because of changes in the network.

Recovering From Master Machine Failure

If the master machine failure in a three-tier application fails, or its DBBL and BBL
processes fail, the application continues to run but the DBBL is not recreated on the
backup master machine. In order to recover from abrupt termination on the master
machine, stop all application servers and BBLs when possible and reboot the
application to restart the DBBL.
JetNet/Oracle Tuxedo Guide 4-7

Disabling and Reenabling Workstation Connections
Reassigning Master and Backup Machines

You can reassign the master and backup machines by running the JetNet manager from
any active machine and invoking the Machine Roles dialog (refer to page 3-8). When
you reassign the master, Panther performs the necessary migration of control without
disrupting operations.

Disabling and Reenabling Workstation
Connections

In an active application, you can stop a machine's workstation listener and reconfigure
the machine to disallow workstation connections as follows:

1. Select the machine's workstation listener server from the Application Status
dialog and deactivate it.

2. In the machine's Network Settings dialog, unset the Workstation Listener toggle
button.

To restart an active machine's workstation listener, follow the same procedure in
reverse: set the machine's Workstation Listener toggle button, then activate its
workstation listener server.

Handling Load

You can efficiently distribute application processes and optimize the use of resources
in several ways:
4-8 Managing the Enterprise

Handling Load
! Define service groups and assign them to servers so that service requests can be
routed to the servers that can handle them most efficiently. For example, you
might have a number of services that can be processed quickly and are
frequently requested; several other services are lengthier and are requested less
often. In this case, it makes sense to specify the two types of services in
separate groups; one server can advertise the group of quick services, with
enough instances to handle peak load; another server can advertise the group of
lengthy services, with only enough instances to handle occasional requests.

! Use the Load Balancing (page 3-11) and Network Load (page 3-16) properties
to route service requests to the server machines that are most available to
handle them.

If service requests frequently time out or take a long time to complete, you can increase
the setting for the application property Default Blocking Timeout (page 3-12). You
might also add machines to the configuration and redistribute servers accordingly.

You should also modify IPC settings to handle the application's resource requirements.
IPC requirements can vary according to these property settings:

! Max Accessors—Set on the machine level, this property specifies the maximum
number of processes, clients and servers, that can attach to the application on a
given machine. This property directly increases semaphore and shared memory
costs.

! Enable Cross-Service Calls—Set on individual servers, this property specifies
whether to allow this server to request services from another server. Setting this
property increases the number of message queues required by the application.

The number of semaphores required on each machine is equal to the value of Max
Accessors. To calculate the number of message queues, count one queue for each BBL
and the DBBL, one for each client and server, and two for each bridge process. If a
server's Enable Service Calls property (in the JetNet configuration file) is set to Yes,
also count one queue per server instance.

Queue-related kernel parameters (refer to page 2-12) should be tuned to manage the
flow of buffer traffic between clients and servers:

! The maximum total size of a queue in bytes (MSGMNB) must be large enough to
handle the largest message that the application allows. The queue should
usually be about 75 to 80 percent full.

! The maximum size for a message (MSGMAX) must be set to handle the largest
buffer that the application might send.
JetNet/Oracle Tuxedo Guide 4-9

Status and Error Messages
! The maximum queue length (MSGTQL) must be set high enough to handle
application operations.

To gauge a queue's average fullness or length, you must run the application. Finding
optimal settings for tunable parameters is typically a trial-and-error process.

If you have a large system, you might want to analyze the effect of parameter settings
on the size of the operating system kernel. If it is unacceptable, consider reducing the
number of application processes or distributing the application to more machines in
order to reduce the Max Accessors setting on each one.

Status and Error Messages

Status and error message can be posted in one of three places:

! The JetNet manager's status window

! Machine log file

! stderr, which gets server error output

Machine log file names have the format ULOGmmddyy. Log files on PC workstation
clients have the format ULmmddyy.log. On UNIX, machine log files must be located
on the path specified by the machine's Application Directory property. On Windows,
the ULOGDIR setting in the machine's Environment panel specifies their location.
4-10 Managing the Enterprise

CHAPTER
5 Defining Services in
JetNet and Oracle
Tuxedo
Applications

In JetNet and Oracle Tuxedo applications, services are subroutines that do the work
required for an application to access a resource manager, usually a database. They are
invoked by service requests made by clients or other services.

To expedite responses to service requests, the application can run multiple
instantiations of a server. Service requests are routed to servers in the way that provides
the fastest response.

This chapter covers:

! Service components, including the service definition in the JIF.

! Service aliases.

! Creating services with the screen wizard.

! Writing and calling service procedures.

! Grouping services.
JetNet/Oracle Tuxedo Guide 5-1

Services
Services

A service can consist of three parts:

! A routine that implements the service.

! A service component (optional) that provides a physical means of sending,
receiving, and processing data.

! A service definition in the JIF.

To create a service, you can:

! Use the screen wizard or the screen editor to create a service component—the
graphical or visual representation of a service.

! Write the service routine that implements the service.

The latter method is convenient if you are creating services that do not access a
database. You might also choose to create the service components manually if you
converted an application using the clnt2svr utility and special handling is required,
for example, if a client screen implements partial commands via the transaction
manager. For more information on clnt2svr, refer to page A-2.

Service Routine

Service routines are responsible for optionally receiving data from the client,
performing some task, and optionally returning data to the client. A service routine can
perform any task, such as building a query for accessing a database.

Service routines are built for you when you use the screen wizard to create the server
portion of your application—that is, the service component. These services perform
the database transactions required by your application. For more information on
creating services with the screen wizard, refer to page 5-19.
5-2 Defining Services in JetNet and Oracle Tuxedo Applications

Services
You can also write service routines. These can be written in the same way you write
any other Panther application code. JPL is most convenient, but you can code a service
as a C or Java function if that suits your application needs.

The JPL service code can reside in a library that is accessible to the server, or it can be
implemented as screen-level JPL (in the JPL Procedures property) on a service
component (described in the Service Component section). The routine cannot be
attached at widget-level since the routine must be recognized outside the scope of the
widget. At runtime, the service code procedure is sought first at screen-level (on the
service component), then in public modules, and finally in open libraries on the server.

For information on how to write a service routine, refer to page 5-9.

Service Component

A service component is a graphical service. It's a Panther screen that should look, for
the most part, like the client screen it is servicing. However, service components reside
on the server (in a server library such as server.lib) and so are not visible to the user
at runtime. The service component should contain the same widgets as the client screen
so that it can handle the data that flows between the client screen and the service.

In brief, the client makes a service request and passes information to the service. The
service accesses its corresponding service component which receives the information
and performs any runtime processing, including accessing the database via the
transaction manager or the database interface. In this way, the service component can
carry out a variety of database-related services, such as finding, inserting, deleting and
updating records.

The easiest way to create service components is by using the screen wizard. You can
create them at the same time you create the client screen. When service components
are created in this way, the service routines are automatically provided, so you don't
have to write the routines at all. In addition, service components can hold the routines
for more than one service, and multiple services can use the same service routine or the
same service component.

Service components can be created and edited in the screen editor, just like any Panther
screen. Refer to page 12-1 in the Application Development Guide for further
information on creating service components.
JetNet/Oracle Tuxedo Guide 5-3

Services
JIF Service Definition

When a service call is made, or a server is told to advertise services, the application
server obtains information about the services by consulting the JIF, which at runtime
resides on the application server in common.lib.

A JIF service definition requires the following information:

! Routine name—The name of the JPL procedure or C/Java function that
implements the service.

! Transport method—The data type of the message that transports data to and
from the service, specified individually for incoming and outgoing data. You
can choose to use either JAMFLEX or, if no data is required, none. With the
Oracle Tuxedo middleware adapter, additional buffer types, FML, FML32, and
STRING, are available.

You can create and modify the JIF in the JIF editor. For information on using the JIF
editor, refer to Chapter 25, “JIF Editor,” in Using the Editors.

Optional Service Attributes

You can optionally specify several other service attributes in the JIF:

! The service component associated with the service.

! Synchronous or asynchronous calling modes.

! Normal blocking timeouts.

! An exception handler.

! An unload handler.

! Reply to the calling agent.

! Execution outside the active XA-transaction (only for the Oracle Tuxedo
middleware adapter).

! Priority.

! Caching of service component.
5-4 Defining Services in JetNet and Oracle Tuxedo Applications

Creating Graphical Services
! Transaction manager operations: Select, Insert, Update, Delete, or Link
Validation.

For further information on these service features, refer to page 25-5 in the Using the
Editors.

Creating Graphical Services

Services can be represented as a screen, called a service component, that resides on the
server. You can create client screens and associated service components with the
screen wizard or you can build service components by dragging database objects from
a repository to screens using the screen editor.

Creating Services with the Screen Wizard

Using the screen wizard makes service creation practically effortless. To facilitate
client and server development, the wizard lets you build the client screen and service
component at the same time.

The JPL code that implements the transactions via service calls and the transaction
manager are provided for you, and made public via the service component's JPL
Procedures property. Unless specialized tasks are necessary for your application, you
do not need to write any service code at all.

Database transaction services are named by the screen wizard and implemented via the
Service properties on the master table view of the client screen: Delete Service, Insert
Service, Select Service, and Update Service.

While client screens and service components in the screen wizard are created as pairs,
that is, one service component for each client screen, you can also develop service
components that can service multiple client screens. This can be done by creating a
service component for each table view that client screens might use. In this way, a
service component can service multiple client screens, and in turn, client screens might
make service requests to more than one service component. If a client screen must
access multiple service components, Service properties must be defined for all table
JetNet/Oracle Tuxedo Guide 5-5

Creating Graphical Services
views on the screen. In other words, the master table view on the client screen will call
services specific to the master section of the screen, and the detail and subdetail
sections will call services specific to their own table view. Therefore, the Service
properties for each table view on the screen must be identified.

In general, it is best to create both client screen and corresponding service component
at the same time. Save client screens in the client library, and save service components
in the server library. Even if you don't plan on using the resulting client screen for your
application interface, you can use it to test its associated service component; consider
saving such client screens in a test library.

Once services are created in the screen wizard, you must define them in the JIF. When
you invoke the JIF editor:

! Make sure the service names match those in the Service properties on the table
view widgets on the client screens.

! Identify the JPL procedure or C/Java function containing the service routine
code.

! Identify the associated service component, and set any other service attributes.

! Save the JIF in the common library on the application server.

Once services are added to the JIF, all servers that are currently running are made
aware of changes to the JIF. The new services are immediately available for the
application to advertise. Refer to page 5-14 for more information.

For more information on using the screen wizard, refer to Chapter 5, “Screen Wizard,”
in Using the Editors.

Building Services with the Screen Editor

To create a service component using the screen editor, you must include and identify
all the components necessary to implement the service. In addition to building the
screen, you must code the service routines and set the appropriate property values on
the client screens that will use the service component.

For screens that use the transaction manager, both client screen and service component
must contain the same database information—the same table views, the same columns,
and so on. To create a service component from scratch with the screen editor:
5-6 Defining Services in JetNet and Oracle Tuxedo Applications

Creating Graphical Services
1. Copy the database-related widgets from the repository or from the client screens
that will use this service component.

2. For the master table view on client screens, set the appropriate Service
properties for handling the database transaction (if the screen is using the
transaction manager).

3. Write the service code that will be used by the service component and make it
available to the service component, by either:

" Including the JPL procedure directly in the service component's
(screen-level) JPL Procedures property, if the code is pertinent only to a
single container.

" Storing the procedure in a library module and make the module public via
the service component's entry function.

4. Define the services in the JIF on the application server.

5. Save the service component in the server library.

Modifying Service Components

For the most part, service components must have the same contents and property
values as the client screens that use them. Therefore, changes you make on a client
screen must also be made to its corresponding service component.

To modify a service component, open it in the screen editor and make the appropriate
edits. Some typical modifications might include adding a transaction manager hook
function as screen-level JPL or defining the Use In Where property of a widget.
JetNet/Oracle Tuxedo Guide 5-7

Initiating a Service
Initiating a Service

To initiate a service, a client screen must have a way to make a service call. A service
call can be implemented as JPL code (using the service_call command) attached to
a widget on the client screen, or by naming the service in the Service properties of a
client screen's master table view. Services identified as Service properties are handled
by the JetNet transaction model jetrb1 on screens that use the transaction manager.

For more information on the JetNet transaction model, refer to page 35-12.

Using Service Aliases to Test Services

Once the service has been added to the JIF and the service component and service code
are available on the application server, you can test its behavior. To allow several
developers to work on the same application, each developer has the ability to test their
own version of a service using service aliases.

With service aliases, a developer's name can be appended to the service name. The
original service name is available for all other users of the application; the developer
is able to change functionality without breaking the application for other users.

To use service aliases:

! In the editor under Options→Service Alias, the Service Alias option must be
configured. A user name must be entered; it allows up to an eight character
alphanumeric string. The Use Service Aliases check box must be selected.

! In the application server setup, a unique string must be specified for the
application server in the Service Alias User Name field.
5-8 Defining Services in JetNet and Oracle Tuxedo Applications

Writing Service Routines
The JIF automatically assigns a unique name to each service when the service is added
to the JIF. This unique service name, in combination with the developer's name,
provide the service alias.

To discontinue service aliases:

! In the editor under Options→Service Alias, deselect the Use Service Aliases
check box.

Writing Service Routines

A service routine is responsible for:

! Receiving requests from clients, possibly including input data.

! Performing a service, for example, using the data submitted by the client to find
a record in the database.

! Returning result status and possibly data to the client agent (service calls can
originate from another server as well as from a client).

Table 5-1 lists the basic functions that a service routine should perform and includes
the JPL, library function, and SQL that can be used to implement them.

Table 5-1 Service functions and corresponding Panther commands and SQL

Function Code Source

Receive arguments from
client agent

receive JPL command

sm_receive Panther library function

Fetch data from database call sm_tm_command ("VIEW")
or ("SELECT")

JPL command to Panther library
function for the transaction
manager
JetNet/Oracle Tuxedo Guide 5-9

Writing Service Routines
The following procedure is an example of a JPL service routine that receives the
account id and amount from the client and uses that information, by way of the
transaction manager, to perform a bank account withdrawal.

proc withdraw()
vars message

// service WITHDRAWAL
receive arguments ({account_id, amount})
call sm_tm_command("SELECT")
if (account_id->num_occurrences <= 0)
{

service_return failure ({message = "Invalid account."})
}
// check if the amount to be withdrawn is more
// than the withdrawal limit
if (amount > max_withdrawal)
{

message = \
"Withdrawal limit is " ## max_withdrawal

service_return failure ({message})
}

account_balance = account_balance - amount
if (account_balance < 0)
{

message = \
"Account overdraft attempt on account " ## account_id

log message

dbms QUERY SELECT ... JPL command to database interface

Force screen validation sm_s_val Panther library function

Update the database call sm_tm_command ("SAVE") JPL command to Panther library
function for the transaction
manager

dbms RUN UPDATE ...

dbms RUN DELETE ...

JPL command to database inter
face

Return results to client agent service_return JPL command

Table 5-1 Service functions and corresponding Panther commands and SQL (Continued)

Function Code Source
5-10 Defining Services in JetNet and Oracle Tuxedo Applications

Writing Service Routines
service_return failure ({message})
}

call sm_tm_command("SAVE")
service_return ({message = @NULL, balance = account_balance})
}

The following service routine uses data it receives from the client to apply business
logic. Storing business logic on the application server can facilitate application
maintenance since you only need to update the service routine in order to effect new
business practices. In this example, the service routine uses the customer's id number
and the gross amount of an order to determine at what amount a percentage of discount
should be applied.

// Use gross_amt to determine level of discount for
// a customer. Apply the discount and return net_cost

proc discount()
receive arguments ({customer_id, gross_amt})
call sm_tm_command("VIEW")
if (customer_id->num_occurrences <= 0)
{

service_return failure ({message = "Invalid customer id"})
}
if (gross_cost > 1000)
{

net_cost = gross_cost * (1 - discount)
}
else if (gross_amt > 100)
{

net_cost = gross_amt * (1 - discount / 2)
}
else

net_cost = gross_amt

service_return success ({net_cost})

Storing and Invoking JPL Service Code

You can write JPL service routines directly in the screen editor. The service and your
application's requirements, for development and production, will determine where it
makes the most sense to store and invoke service code:

! Directly with the associated service component in its screen-level JPL (in the
JPL Procedures property).
JetNet/Oracle Tuxedo Guide 5-11

Writing Service Routines
! Via the JIF specification for the service when there is no service component
associated with the service.

! Made public on server initialization or by the service component, if there is one.

Service Code and Service Components

A service routine that resides directly on the service component is immediately
available when the client makes the service request. Service components are opened or
made available either when their associated service is advertised by the server, or when
the service is requested.

Panther's built-in development and production pre_service handlers make the
necessary service component available, and therefore, the routine is made available.

The built-in post_service handlers close or deselect the service component after the
service completes.

Changes you make to the service code are immediately available to your application
without having to restart servers or recompile.

JIF-Invoked Services

If you have service routines that are not associated with a service component, there are
two ways you can make these routines available:

! For the development phase, you can let the JIF invoke the routine.

! For deployment, you can public the routines on server initialization.

For development purposes, store a JPL service routine in a module—one service
routine per module—and do not include the proc statement. When the service is
requested, the JIF is consulted to determine the name of the service's routine—in this
case, the procedure and module name would be the same. At runtime, if a procedure
by the given name is not found, the service seeks a module having the specified name,
and executes its unnamed procedure (refer to page 19-2 in the Application
Development Guide for information on the unnamed procedure in a JPL module).

In this way, you can easily access, update, and retest code without affecting the server.

Once you are ready to deploy your application, edit the JPL module and add a proc
statement to identify the procedure (same as the module name). You can then public
these JPL service routines when the server is initialized.
5-12 Defining Services in JetNet and Oracle Tuxedo Applications

Service Groups
Public Services

If the service routine does not reside directly with a service component, the JPL
procedures can be made public either from the service component's entry function, or
on server initialization.

When JPL is made public, it is available to the entire application until the server is
brought down, or until the module is unloaded. For development purposes, making
modules public on server initialization is the least flexible, because the server offering
the services must be brought down and reinitialized in order to retest service code that
has been modified.

During the development cycle, consider unloading public modules from the service
component's exit function. In this way you can update the code, if necessary, and retest
it without affecting the server that advertises the service.

Service Groups

Once you determine what services are required by your application, you can create
service groups. You can group services for your application if you have just one
application server or multiple servers. Service groups are useful because:

! Your servers can easily advertise sets of services, rather than all services
defined in the JIF.

! You can logically group services based on their duration or response time.

! When a service is added to or updated in a group in the JIF, the new or changed
service is immediately available to the application.

You define service groups in the JIF. Refer to page 25-12 in the Using the Editors for
information on using the JIF editor.
JetNet/Oracle Tuxedo Guide 5-13

Service Groups
Criteria for Grouping Services

To determine what services should be grouped, consider establishing a logical
coherence within the application's tasks, such as:

! Which services should be advertised when the server is first brought up?
Additional services can be made available by the server later.

! Are some services needed at specific times? Some services run continuously but
others are shut down at a specific time. For example, in a banking application,
services used by ATM clients that a required to run 24 hours might be grouped
in one service group, while services used by bank teller clients can be grouped
in another service group whose server is shut down during non-business hours.

! Is there is a substantial difference in the response time of the services? Services
that respond quickly—for example, in less than five-seconds—can be in a
service group on one server, and another group of services that takes longer to
complete might reside in a server.

In general, it is easier and more efficient for servers to advertise groups of services. For
instance, if a server's initialization routine specifies that all services should be
advertised, all is interpreted as all services defined in the JIF (refer to page 3-23 for
JetNet or to page 8-17 for Oracle Tuxedo).

If your application has multiple (unique) servers, each server should have at least one
service group that contains all of the services that the server handles. Additional
servers might be necessary if some services use an XA-compliant database interface,
while others do not, or if your application accesses more than one database.

Adding Services to Existing Service Groups

During development, you can easily add or update services associated with a service
group. When a service is added or updated in the JIF and it is saved to the application's
common library, all running servers are notified to reread the JIF. Service groups that
are advertised at server initialization are readvertised, and the new or updated service
is immediately available to your application.

For details on how to define service groups in the JIF, refer to page 25-12 in the Using
the Editors. For details on advertising a service group when starting your servers, refer
to page 3-23.
5-14 Defining Services in JetNet and Oracle Tuxedo Applications

Service Messages and Data Types
Service Messages and Data Types

In JetNet and Oracle Tuxedo applications, clients and servers exchange data through
messages, and the data type of those messages must be specified. For example, a
service call can have 0 to 2 messages, depending on how the service is defined, for
request data supplied to the server, and reply data expected by the client when the
service returns.

Messages can be composed of simple strings; or they can contain combinations of
numeric and string data.

In JetNet applications, messages are in JAMFLEX data buffers.

In Oracle Tuxedo applications, messages can be data buffers using the JAMFLEX, FML,
or FML32 data types, or messages can be strings using the STRING data type.

For example, when a client calls a bank deposit service, it supplies a message to the
service that is composed of several data fields, such as the bank account number and
deposit amount. The client also expects the service to return with a reply message
whose data includes the bank balance. So, the service call specifies two messages, one
for input data and another for reply data, where each message can itself contain
multiple data fields:

service_call "DEPOSIT"(\
{account_id, amt}, \
{errMsg, acctBal})

In this example, the service request message consists of the account number and
deposit amount; on return, the service can supply the client with an error message in
case the service fails, and the updated account balance. Each message contains two
data fields.

The previous example contains two JAMFLEX messages. A service call can also specify
messages of different types. For example the following call to service OPEN_ACCT
specifies a STRING message type for input data and a JAMFLEX buffer for reply data:

service_call "OPEN_ACCT"("Fred Jones", {acct_num, start_bal})

The following sections discuss service message types.
JetNet/Oracle Tuxedo Guide 5-15

Service Messages and Data Types
Buffer Data Types

Service messages can be defined as buffers that can contain multiple components of
data of different types. In JetNet applications, messages are in JAMFLEX data buffers,
which can contain string, integer, and floating point data. In Oracle Tuxedo
applications, messages can be data buffers using the JAMFLEX, FML, or FML32 data
types.

All buffer types are represented in JPL as a comma-delimited list of fields in this
format:

{[field [, field]] }

The buffer can contain 0 or more fields, where each buffer field has this format:

fieldname [= prolfx-expr]

fieldname is the name of a field in the buffer, and prolfx-expr can be a Panther
variable or constant. If you omit prolfx-expr, Panther assumes that fieldname has
the same name as a Panther variable or widget and maps its data accordingly.

Note: If the buffer type is FML or FML32, fieldname must correspond to the name of
a field defined in the FML file. Refer to page 5-17 for more information.

For example, a message can be specified as follows if the Panther variables and the
corresponding buffer field names have the same names:

{EMP_ID, EMP_NAME, EMP_ADDR}

In the next example, the names of the Panther variables and the corresponding buffer
field names are different, so explicit mapping is required:

{EMP_ID=id, EMP_NAME=name, EMP_ADDR=addr}

Default Mapping

Reply buffer data can be automatically mapped to Panther variables of the same name
through ellipses. For example, this service_call command specifies to map all
buffer fields to client variables that have the same name:

service_call "get_emp_age" ({emp_id},{...})

In the next example, the buffer field emp_age is mapped to Panther variable age. All
other buffer fields are mapped to same-named client variables:
5-16 Defining Services in JetNet and Oracle Tuxedo Applications

Service Messages and Data Types
service_call "get_emp_age" ({emp_id}, {emp_age=age, ...})

NULL Arguments

You can specify the data in a message buffer to be NULL through the keyword
@tpi_null. For example, this service_return command returns a NULL buffer to
the service call:

service_return failure ({@tpi_null})

Arrays

Buffers can reference array occurrences. If a message field specifies the name of an
array, Panther references each occurrence in that array. You can also specify ranges of
occurrences. In the following example, the first 5 occurrences of emp_id are sent to
the service:

service_call "get_emp_args" ({emp_id[1..5]}, {...})

FML and FML32 Buffers

A Oracle Tuxedo application can support FML buffers for messages, both FML and the
enhanced FML32. For complete information on FML buffers, refer to your Oracle
Tuxedo documentation.

You define FML fields in the FML file as one of the following data types: char, string,
short, long, float, and double. Fields are listed by name, field number, and type. A
fourth Flag field is unused. For example:

#Name Number Type Flag
#---- ------ ---- ----
CUSTNUM 1 string -
CUSTID 2 long -
CUSTADDR 3 string -
CUSTCITY 4 string -
CUSTSTATE 5 string -
CUSTZIP 6 long -

Type conversion from the data type specified by the user to the FML field type is
performed as the data allows. In the following example, if amount is of type float, and
if amount = 3, then 3 is converted to a floating point number:

{amount = 3}
JetNet/Oracle Tuxedo Guide 5-17

Service Messages and Data Types
Converting from JAMFLEX to FML

You can convert JAMFLEX buffers to FML buffers later in the development cycle:

! Change the message argument data types for services and queues in the JIF.

! Add the corresponding fields in the Oracle Tuxedo FML file.

! Edit any broadcast or notify commands used in the application to specify
the appropriate FML type.

STRING Data Types

A Oracle Tuxedo application can also support STRING message types. A STRING
message can send or receive only a single string. A STRING input message can be any
string expression, either a variable or string constant; a STRING reply message must be
a variable.

For example, the following JPL procedure calls a service that expects STRING
messages for input and output:.

proc lastname
vars last_name
service_call "get_last_name" ("Jim", last_name)
msg emsg "Last name is ", last_name

In this example, service get_last_name receives the string Jim as an input message.
When the service completes, the return data is put in the output message and mapped
to Panther variable last_name.

In the next example, the input message to the same service refers to a Panther variable:

service_call "get_last_name" (first_name[i], last_name)

In this case, the first name passed to the service is the value in the ith occurrence in
array first_name.
5-18 Defining Services in JetNet and Oracle Tuxedo Applications

Service Messages and Data Types
Setting Service Message Types

The data types for service messages are set in the JIF as part of service or queue
definitions. For each service or queue definition, you can specify the data type for its
request and reply messages. You specify a data type for both messages, only one, or
for none.

When the request broker processes one of these messages, it checks the JIF for its data
type and uses this information in order to pack or unpack the message data. The format
of a message must conform with its JIF definition; otherwise, an error occurs.

service_call messages can contain zero to two comma-delimited messages. Other
commands such as dequeue and service_forward allow only zero or one message
for either input or output.

Several JPL commands send messages that are independent of service definitions:

! broadcast

! notify

! post

These commands set their message's data type. For example, this broadcast
command sends a message that informs the specified user how much time has elapsed
since she logged in and how much time remains until the login lapses:

broadcast USER userName TYPE JAMFLEX \
({sinceLogin, timeLeft})
JetNet/Oracle Tuxedo Guide 5-19

Service Messages and Data Types
5-20 Defining Services in JetNet and Oracle Tuxedo Applications

CHAPTER
6 JetNet/Oracle
Tuxedo Event
Processing

In JetNet and Oracle Tuxedo applications, events occur during the processing of
service requests. These middleware events are one of several categories of events that
occur in a Panther application. For information about the different types of application
events, refer to Chapter 17, “Understanding Application Events,” in Application
Development Guide.

When middleware events occur, they are forwarded to handlers for processing.
Panther provides built-in event handlers for all request broker event types. You can
also write and install your own handlers in JPL or C. These handlers can perform all
required processing on their own, or they can call the built-in handlers and overlay
these with desired enhancements.

Table 6-1 lists all middleware event types that Panther recognizes in JetNet and Oracle
Tuxedo applications:

Table 6-1 Middleware events

Event type Description Location

advertise A service has been advertised Server

exception An error or unusual change in the normal
flow of program execution

Client or server
JetNet/Oracle Tuxedo Guide 6-1

Event Sequence
Event Sequence

During the typical life span of a Panther enterprise application, most or all middleware
events occur. Some of these, such as advertise events, happen independently of
other events. For example, in an multi-server enterprise, servers can be activated and
deactivated in a running application, thereby generating advertise and
unadvertise events. In the meantime, clients continue to issue service requests, and
those servers that are available process them; these actions spawn their own set of
service-related events, such as request_received and unload.

jif_changed The JIF has been changed Client or server

message A client receives an unsolicited message Client

post_request A service request is completed Client or server

post_service A service completes execution Server

pre_request A service request is initiated Client or server

pre_service A service is about to begin execution Server

request_received A service request is received by the
server

Server

server_exit A server is brought down in an orderly
fashion

Server

unadvertise A service has been unadvertised Server

unload Data is received from an external source
that can be written (unloaded) to Panther
variables

Client or server

Table 6-1 Middleware events (Continued)

Event type Description Location
6-2 JetNet/Oracle Tuxedo Event Processing

Handler Scope and Installation
Of all middleware events, only those that are connected to service requests are
dependent on each other, and always occur in this sequence:

Handler Scope and Installation

All middleware event handlers are installed at one of several scopes, which are
hierarchically ordered from most general (default scope) to most specific (request
scope). A handler can be installed at one or more scopes, depending on its event type.
When a request broker event occurs, Panther looks for its handler at the most specific
scope that is valid for the event. If no handler is installed at that scope, Panther
continues to search for the event's handler among other valid scopes, each more
general than the last, until it finds one.

Event handlers can be installed at four scopes, listed here in ascending order of
precedence (general to specific):

! Default—Panther provides built-in handlers which are installed at this scope
and cannot be replaced or removed. A default handler is installed for each event
type; Panther uses it if no handler for that event is installed at another scope.

! Application—Valid for all request broker events, handlers are installed at
application scope through the appropriate runtime properties. An application

Action Events

Client initiates request 1. pre_request

Server receives request 2. request_received

3. pre_service

4. post_service

5. unload

Server returns service to client 6. post_request

Service returns to client 7. unload
JetNet/Oracle Tuxedo Guide 6-3

Handler Scope and Installation
property is defined for each request broker event type (refer to page 1-103 in
Quick Reference). An application scope handler supersedes the corresponding
default handler until the application exits or the handler is explicitly uninstalled.

For example, to install an unload handler at application scope, set the
hdl_unload property:

@app()->hdl_unload = "user_unload"

You can uninstall a handler from application scope by setting the corresponding
property to an empty string. For example:

@app()->hdl_unload = ""

! Transaction—Handlers can be installed via the xa_begin command for
exception and unload events that occur within a transaction. If installed,
these handlers are used during the transaction, and are deinstalled when the
transaction ends.

! Request—Handlers can be installed via the service_call command for
exception and unload events that occur within the requested service. If
installed, these are used while the service undergoes processing, and are
deinstalled when the service returns.

For example, an unload handler can be installed at any scope. When an unload event
occurs, Panther first checks whether an unload handler exists for the applicable
service. If no request handler is found and the unload event occurred within a
transaction, it checks whether an unload handler is installed for that transaction. If no
transaction handler is found, Panther looks for a handler installed at application scope.
If no application-scope handler is set, Panther uses the default unload handler.

If Panther cannot find the specified handler, a TP_HANDLER_MISSING exception of
severity TP_ERROR occurs.
6-4 JetNet/Oracle Tuxedo Event Processing

Writing Event Handlers
Writing Event Handlers

You can write a middleware event handler in JPL or C. Handlers written in JPL can be
stored in screen or library modules; handlers written in C must be installed as
prototyped functions. (For more information, refer to “Prototyped Functions” on page
44-8 in Application Development Guide.)

Request broker event handlers that are written in JPL should be accessible to the
application either as library modules that are made public (via the public command)
or as screen modules (via the screen's JPL Procedures property):

! Application—scope handlers should always be available to the entire
application; therefore, store these handlers in library modules and make them
public at application startup through the base form's unnamed procedure. (For
more information, refer to “Unnamed Procedure” on page 17-6, in Application
Development Guide.

! Transaction—and request-scope handlers can be stored in a client screen or
service component that is open when a service request or transaction is initiated
and remains open until the processing associated with the request or transaction
is complete.

Handlers for a request broker event type must conform to a contract which is specific
to the event type, and specifies the handler's implementation. A handler contract
specifies the number and type of parameters, and how to interpret its return integer
value. For information about handler contracts, refer to event type descriptions later in
this chapter.

Events Generated within Handlers

An event handler should avoid generating events of its own type as this can create an
infinite loop. Because pre_request, post_request and unload events are
necessary to make service requests, these events can be generated recursively.
Handlers for these events should guard against generating events of the same type.
JetNet/Oracle Tuxedo Guide 6-5

Built-in Handlers
When a handler is invoked for an event, the following changes to normal processing
occur:

! Handling of events of the same type is disabled until the current event has been
processed.

! Handling of events that belong in pairs is disabled in pairs.

Built-in Handlers

The Panther distribution provides a number of built-in handlers that are internally
installed. All handlers at default scope are built-in handlers. A number of the built-in
handlers are not used as defaults; these are available for installation at other scopes.
For example, two built-in handlers are available for jif_changed events: the default
handler sm_tp_jif_changed_read, responds to any change in the JIF and
readvertises its services; sm_tp_jif_changed_ignore ignores all changes. You
might want temporarily to install sm_tp_jif_changed_ignore for a deployed
application so it is unaffected by updates to the JIF, such as addition of new services
that are undergoing development.

Some event types use different built-in handlers as the defaults for production and
development environments. Default development handlers are called by standard
servers that are configured for development; default production handlers are called by
standard servers that are configured for production. For example,
sm_tp_advertise_cond_winopen is the default handler for advertise events on a
server that is configured for production; this handler conditionally caches in memory
the service components of advertised services. A server that is configured for
development uses sm_tp_advertise_log; this handler never caches service
components, and also posts success messages to the request broker's log file.

Table 6-2 lists all built-in handlers and indicates which ones are used as defaults for
development (dev) and production (prd). Descriptions of these handlers can be found
in the event type descriptions that follow.
6-6 JetNet/Oracle Tuxedo Event Processing

Built-in Handlers
Table 6-2 Built-in event handlers and defaults

Event Handler

advertise sm_tp_advertise_cond_winopen (prd)

sm_tp_advertise_ignore

sm_tp_advertise_log (dev)

sm_tp_advertise_winopen

exception sm_tp_exception_no_change

sm_tp_exception_print_all (dev)

sm_tp_exception_print_warning

sm_tp_exception_promote_error (prd)

jif_changed sm_tp_jif_changed_ignore

sm_tp_jif_changed_read (dev/prd)

message sm_tp_message_ignore

sm_tp_message_print_string (dev/prd)

post_request sm_tp_post_request_ignore (dev/prd)

post_service sm_tp_post_service_ignore

sm_tp_post_service_winclose (dev)

sm_tp_post_service_winclose_or_deselet (prd)

sm_tp_post_service_windeselect

pre_request sm_tp_pre_request_ignore (dev/prd)

pre_service sm_tp_pre_service_ignore

sm_tp_pre_service_winopen (dev)

sm_tp_pre_service_winopen_or_select (prd)
JetNet/Oracle Tuxedo Guide 6-7

Advertise and Unadvertise Events
Advertise and Unadvertise Events

advertise and unadvertise events occur on the successful return of the advertise
and unadvertise commands, respectively. Both events occur only on servers.

advertise and unadvertise can specify a single service, a group of services, or all
services. Each service generates its own set of advertise and unadvertise events.

sm_tp_pre_service_winselect

request_received sm_tp_request_received_ignore (prd)

sm_tp_request_received_jif_check (dev)

server_exit sm_tp_server_exit_ignore

sm_tp_server_exit_log_down (dev/prd)

unadvertise sm_tp_unadvertise_cond_winclose (prd)

sm_tp_unadvertise_ignore

sm_tp_unadvertise_log (dev)

sm_tp_unadvertise_winclose

unload sm_tp_unload_immediate

sm_tp_unload_call_origin (dev/prd)

Table 6-2 Built-in event handlers and defaults (Continued)

Event Handler
6-8 JetNet/Oracle Tuxedo Event Processing

Advertise and Unadvertise Events
Advertise and Unadvertise Handlers

advertise handlers are used to perform service initialization. unadvertise handlers
are used to perform service cleanup.

Scope

advertise and unadvertise handlers can only be installed at application scope.

Contact

advertise_handler(char *cmdStr, char *serviceName,

 char *groupName, char *serviceContainer, int cacheScreen)

unadvertise_handler(char *cmdStr, char *serviceName,

 char *groupName, char *serviceContainer, int cacheScreen)

cmdStr

The advertise and unadvertise handler arguments.

serviceName
The name of the service as specified in the JIF.

groupName
The name of the service group specified in the advertise or unadvertise
command. If none is specified, this argument is set to null string.

serviceContainer
The name of a service component associated with the service, as specified in
the JIF.

cacheScreen
Determines whether to cache the service component in memory and so
determines how the handlers access serviceContainer, with one of these
values:

" TP_ONADVERTISE—The service component is opened and cached in
memory when the service is first advertised.

" TP_ONFIRSTCALL—The service component is opened and cached in
memory when the service is first called.
JetNet/Oracle Tuxedo Guide 6-9

Advertise and Unadvertise Events
" TP_NOCACHE—The service component is opened each time the service
is called. When the service returns, the container is closed.

Returns

The return codes from advertise and unadvertise handlers are ignored; a 0 return
value is suggested.

Built-in Handlers

Panther provides four built-in advertise handlers:

! sm_tp_advertise_cond_winopen (default production handler) opens the
service component of the advertised service and caches it in memory only if the
JIF's service definition sets Cache Service Component attribute to
TP_ONADVERTISE.

! sm_tp_advertise_log (default development handler) posts a message to the
middleware APIs log file indicating that the server has successfully advertised a
service. This handler never caches service components in memory, so it always
shows the latest changes to a service.

! sm_tp_advertise_winopen opens the service component that is associated
with the advertised service.

! sm_tp_advertise_ignore ignores advertise events.

Panther provides four built-in unadvertise handlers:

! sm_tp_unadvertise_cond_winclose (default production handler) closes the
service component of the advertised service only if the JIF's service definition
sets Cache Service Component to TP_ONADVERTISE.

! sm_tp_unadvertise_log (default development handler) posts a message to
the middleware APIs log file indicating that the server has successfully
unadvertised a service.

! sm_tp_unadvertise_winclose closes the service component associated with
the unadvertised service.

! sm_tp_unadvertise_ignore ignores unadvertise events.
6-10 JetNet/Oracle Tuxedo Event Processing

Exception Events
Exception Events

An exception event occurs while the middleware API is performing work on behalf
of the application. All request broker commands can generate one or more exception
events. Not all exception events are errors; however, all request broker errors are
exception events.

Each exception event is associated with an integer code, string constant, and
message, which are set in application properties tp_exc_code, tp_exc_names and
tp_exc_msg, respectively. tp_exc_names is an array of all exception event type
constants that are indexed by the corresponding exception codes. tp_exc_msg
contains a string that describes the latest exception event.

For example, this JPL statement displays a message that describes the latest
exception event to the user:

msg emsg "Error: " ## @app()->tp_exc_names[tp_exc_code] \
"%NMessage: " ## @app()->tp_exc_msg

Each exception event sets tp_severity to a severity code, which is also supplied as
an argument to the exception handler function.

For a complete list of exception event type constants, refer to page D-1. For
exception severity codes refer to page 6-13.

Exception Handlers

When an exception event occurs, its handler performs the required processing. This
processing might include displaying a message to the user, cancelling a request, or
rolling back a transaction.

On entering an exception handler, Panther sets these application properties:

! tp_exc_code, tp_exc_names, and tp_exc_msg identify and describe the
exception event that triggered execution of this handler.
JetNet/Oracle Tuxedo Guide 6-11

Exception Events
! tp_severity is set to the default severity code for this exception event. The
severity level is also supplied as an argument to the handler function (refer to
page 6-12).

For example, the following exception handler alerts the user of an error condition
whose severity level is equal to or greater than TP_ERROR:

proc err_print (cmdStr, cmdName, callid, severity)

if (severity >= TP_ERROR)

msg emsg "Error: " @app()->tp_exc_code \
"Message: " @app()->tp_exc_msg

return severity

The handler should store the value of tp_exc_code and/or tp_exc_names before it
calls any other middleware API-related functions; otherwise these properties are liable
to be reset before control returns to the handler. Similar precautions are unnecessary
for the handler's severity code, because the severity level is already locally available
as a handler parameter.

Exceptions within an Exception Handler

If an exception handler generates its own exception events, Panther ignores them
and does not call any handlers for them, and the tp_severity property remains
unchanged. To catch exceptions within an exception handler, check the
tp_severity property after each command in the handler. The original handler then
decides whether errors within the handler should affect the severity that it returns.

Scope

exception events can occur on clients and servers. exception handlers can be
installed at all scopes.

Contract

exc_hdl(char *cmdStr, char *cmdName, char *callid, int severity)

cmdStr
The entire text of the JPL command and arguments that generated the
exception event.
6-12 JetNet/Oracle Tuxedo Event Processing

Exception Events
cmdName
The name of the command only, stripped of any arguments.

callid
The identifier of the service call for which the command was issued. If no
service call applies, callid is an empty string.

severity
The default severity for the exception event.

Returns

An exception handler must return a valid severity code. This code is written to the
tp_severity property, and determines how the application responds to the
exception event. If the handler returns an invalid return code, tp_severity is
restored to the severity level it had on entry to the handler. For a description of all
exception severity codes, refer to page 6-13.

Warning: If a JPL procedure omits a return statement, it returns a value of 0.
exception handlers that are written in JPL should always explicitly
return with the appropriate severity code.

Exception Severity Codes

All exception event handlers must return a severity code. Each exception event has
a default severity, and the tp_severity property is set to the corresponding code on
entry to the exception handler. The default severity code is also supplied as an
argument to the handler function. If a request broker event generates multiple
exceptions, the exception with the highest severity has precedence and sets
tp_severity.

The following sections lists severity codes in ascending (lowest to highest) order and
describes what action the application takes when a handler returns one of them.

TP_NONE

The exception event is ignored. Processing of the command or request
continues and the tp_exc_code property remains unchanged. The status of
an enclosing transaction is unaffected.

TP_INFORMATION

Processing of the command or request continues. The status of an enclosing
transaction is unaffected.
JetNet/Oracle Tuxedo Guide 6-13

Exception Events
TP_WARNING

Processing of the command or request continues from where the event
occurred. The status of an enclosing transaction is unaffected.

TP_ERROR

Processing of the command or request continues, but at the next processing
stage, if any. If no processing stage follows, the command terminates. If the
exception occurs within a transaction, the transaction's status is set to

TP_WILL_ABORT.

TP_MESSAGE

exception events of this severity are only raised during the process of
exchanging data between clients and servers. An exception of this severity
level causes the send/receive process to abort any further attempt to
send/receive that message. Any other processing associated with that
message is also aborted. If the exception occurs within a transaction, the
transaction's status is set to TP_WILL_ABORT.

TP_COMMAND

The function or command associated with this severity terminates. No further
messages are sent or received. If the exception occurs within a transaction, the
transaction's status is set to TP_WILL_ABORT.

TP_REQUEST

Applicable only to exceptions that occur while a service request is being
processed. Otherwise, a TP_REQUEST severity is reduced to a TP_COMMAND
severity. For a client, all processing associated with the request is terminated.
After the request aborts, a post_request event occurs. The value of the
tp_exc_code property is set to the exception code. The status of an enclosing
transaction is set to TP_WILL_ABORT. If an exception of severity TP_REQUEST
is generated within a server and is related to its servicing of a client, then the
service is terminated with an error status.

TP_TRANSACTION

Aborts the associated transaction. For more information, refer to the
xa_rollback command.

TP_CONNECTION

If associated with a client exception, the associated connection automatically
closes. Refer to the client_exit command. If no connection applies, the
severity is reduced to the next severity level that is applicable, usually
TP_COMMAND.
6-14 JetNet/Oracle Tuxedo Event Processing

Jif_changed Events
If associated with a server exception, the server aborts its current service and shuts
down.

TP_PANIC

Operation of the agent, client or server, stops. A client process rolls back all
outstanding transactions (via xa_rollback), aborts if possible all outstanding service
requests, closes all open connections, and terminates. A server aborts its current
service as if the severity were TP_REQUEST. and shuts down. The connection to the
middleware API is severed.

Built-in Handlers

Panther provides four exception handlers:

! sm_tp_exception_promote_error (default production handler) promotes all
exceptions of a TP_ERROR severity to TP_COMMAND. Thus, all TP_ERROR
exceptions cause command termination. For other exceptions of severity
TP_WARNING or higher, this handler displays a windowed exception message.

! sm_tp_exception_print_all (default development handler) outputs an
exception message to the display or server log file for all exceptions.

! sm_tp_exception_no_change does nothing other than accept the initial
severity.

! sm_tp_exception_print_warning displays a windowed exception message
for exceptions of severity TP_WARNING or higher.

Jif_changed Events

jif_changed events occur when the jif_check command detects changes in the JIF
since application startup or the last time the JIF was read. Each time the JIF is accessed,
jif_check examines it for changes.
JetNet/Oracle Tuxedo Guide 6-15

Jif_changed Events
Jif_changed Handlers

A jif_changed handler should call the jif_read command to reread the JIF, then
readvertise services through calls to unadvertise and advertise. If necessary, this
handler can also unload public JPL modules that contain service definitions, then
reissue the public command on them.

For example, the following handler rereads the JIF and readvertises all services:

proc jif_changed_hdlr()
unadvertise all
jif_read
advertise all
return 0

The jif_changed event handler can conditionally reread the JIF by checking the
tp_return property, which tells how the JIF changed with one of these values:

! TP_JIF_OLD—Version number decreased, indicating an older version of the JIF
is now in place.

! TP_JIF_NOCHANGE—No changes.

! TP_JIF_NEWER—Version number increased, indicating a newer version of the
JIF is in place.

! TP_JIF_NOACCESS—The JIF file or its library cannot be accessed.

For example, the following JPL rereads the JIF only if it the current version is more
recent than the last:

if (@app()->tp_return == TP_JIF_NEWER)
jif_read

Scope

The jif_changed event is available to clients and servers. A jif_changed handler
can only be installed at application scope

Contract

jif_changed_handler()
6-16 JetNet/Oracle Tuxedo Event Processing

Message Events
Returns

A negative return code causes the jif_check command to abort by raising a
TP_USER_ABORT exception of severity TP_COMMAND.

Built-in Handlers

Two built-in jif_changed handlers are provided:

! sm_tp_jif_changed_read (default) rereads the JIF through the jif_read
command, and readvertises services as specified by a given server's
configuration. If the severity after executing jif_read is greater than
TP_WARNING, this handler returns -1; otherwise it returns 0.

! sm_tp_jif_changed_ignore ignores jif_changed events and does not
reread the JIF.

Message Events

message events occur when a client receives an unsolicited message, including those
generated by the broadcast, and notify commands, or when a subscribed event is
posted with the post command.

Message Handlers

A message handler decides what to do with unsolicited messages received by Panther.
Typically, an application logs messages to a file or displays them immediately to the
user.

If a client needs to process or save a message, the message handler must do so before
it returns. Use the receive command with the MESSAGE keyword to access message
contents.
JetNet/Oracle Tuxedo Guide 6-17

Message Events
Recognizing the Message Source

To ensure that unsolicited messages are received and interpreted correctly, install an
application-wide message handler that relies on a common protocol for identifying
message sources. For example, the protocol might establish that all agents of
unsolicited messages use the same field in their message data to identify the message
source. On receiving unsolicited messages, the message handler then checks this field
to determine the nature of the message and how to respond.

In the following example, an unsolicited message is broadcast to a supervisor client to
report a security violation. In this application, the first field of an unsolicited message
is always named source, whose value indicates the message type. The message
handler first issues the receive command to get the contents of source; subsequent
processing depends on the contents of source:

broadcast CLIENT "supervisor" TYPE JAMFLEX \
({source="bcast_security", ACCOUNT=acct, DATE=date,\

 SECURITY=code, MSG=message})

// Message handler for all unsolicited messages

proc msg_handler(type, subtype)
vars source, account, date, security, message
vars companyNews, teamNews, stock, stock_quote
vars fileStream, acctMsg

// Identify message sender.
receive MESSAGE ({source})
if (source == "bcast_security")
{

// receive security violation data
receive MESSAGE ({account, date, security, message})
// Alert the supervisor
msg emsg "%A004Security alert: " ## message ## \

"%NDate: " ## date ## \
"%NAccount No. " ## account ## \
"%NCode: " ## code

}

else if (source == "bcast_acct_data")
{

// receive account data
receive MESSAGE ({account, date, message})
6-18 JetNet/Oracle Tuxedo Event Processing

Message Events
acctMsg = account##" "##date##" "##message

// write message data to log file
fileStream = sm_fio_open("/u/acct/logfile", "a")
if fileStream > 0
{

 call sm_fio_puts (acctMsg, fileStream)
 call sm_fio_close(fileStream)

}
}

...

else if (source == "post_comp_news")
{

// receive posted company news message data
receive MESSAGE ({ companyNews })
msg emsg "Latest company news: " ## companyNews

}

...

return 0

Scope

message events are restricted to clients, and a message handler can only be installed
at application scope.

Contract

message_handler(char *msgType, char *msgSubType)

msgType
Set to the message data type as specified in the broadcast or notify
command, either JAMFLEX, FML, FML32, or STRING. If the application is likely
to broadcast different message data types, the message handler should
evaluate the contents of this parameter and branch execution accordingly.

msgSubType
Currently unused, reserved for future use.
JetNet/Oracle Tuxedo Guide 6-19

Pre_request and Post_request Events
Returns

Ignored; a 0 return value is suggested.

Built-in Handlers

Two message handlers are provided:

! sm_tp_message_print_string (default) displays any STRING-type messages
to the user as a windowed message that requires acknowledgment. Messages of
other data types are ignored.

! sm_tp_message_ignore ignores all message events.

Pre_request and Post_request Events

pre_request and post_request events occur when a client or server issues a service
request. A pre_request event occurs just before the actual service request is initiated.
A post_request event occurs when the service returns, whether or not the service
completes normally. Each service request generates a pre_request and
post_request event.

pre_request and post_request events are typically used to track the number of
service requests, and how long they take to return.

Pre_request and Post_request Handlers

A pre_request handler is responsible for aborting the service request if execution is
inappropriate.

A non-negative (>=0) return code from a pre_request handler allows service request
processing to continue. A negative return code aborts the request by generating a
USER_ABORT exception of severity TP_REQUEST; a post_request event follows
immediately follows.
6-20 JetNet/Oracle Tuxedo Event Processing

Pre_request and Post_request Events
Scope

pre_request and post_request events are available to clients and to servers acting
as clients—that is, wherever service requests can occur (refer to service_call).
pre_request and post_request handlers can only be installed at application scope.

Contract

pre_request_handler(char *callid, char *serviceName, HR>

 char *cmdStr)

post_request_handler(char *callid, char *serviceName, HR>

 char *cmdStr)

callid
The identifier that Panther assigned to the service request.

serviceName
The name of the invoked service.

cmdStr
The text of the service_call command and its arguments that issued the
service request.

Returns

Ignored; a 0 return value is suggested.

Built-in Handlers

One default handler is provided for each event type:

! The pre_request handler sm_tp_pre_request_ignore ignores
pre_request events.

! The post_request handler sm_tp_post_request_ignore ignores
post_request events.
JetNet/Oracle Tuxedo Guide 6-21

Request_received Events
Request_received Events

request_received events are generated on a server when it receives service
requests. The request_received event occurs before Panther verifies that the service
is defined in the JIF.

Request_received Handlers

The request_received handler performs any processing that is related to receipt of
a service request. Because a request_received event occurs before Panther verifies
a service definition, its handler typically calls jif_check to determine whether the JIF
has changed.

A request_received handler typically works together with a jif_changed handler
to ensure that all changes to the JIF are known to the server before it processes a service
request. For example, if the request_received handler calls jif_check, this
command detects any changes to the JIF and generates a jif_changed event. The
jif_changed handler can then readvertise the services configured for this server
(refer to page 6-16).

For example:

// Check whether JIF has changed. If it has, a jif_changed
// event is raised and jif_read executes

proc request_received_hdlr (callid, serviceName)
jif_check
return 0

request_received handlers abort a service request if it is inappropriate to proceed.

Scope

request_received events are executed only on servers. request_received
handlers can only be installed at application scope.
6-22 JetNet/Oracle Tuxedo Event Processing

Server_exit Events
Contract

request_received_handler(char *callid, char *serviceName)

callid
The identifier assigned to the service request.

serviceName
The name of the service as invoked by the client.

Returns

A non-negative return code from a request_received handler allows continued
processing of the service request. A negative return value aborts the service request.

Built-in Handlers

Two request_received handlers are provided:

! sm_tp_request_received_ignore (default production handler) ignores
request_received events.

! sm_tp_request_received_jif_check (default development handler) calls
the jif_check command. If the severity after executing the jif_check
command is greater than TP_WARNING, the handler returns -1 and the request is
cancelled. Otherwise, 0 is returned. The jif_check command raises a
jif_changed event if the JIF has changed.

Server_exit Events

A server_exit event is generated when a server deactivates in an orderly fashion. It
is usually the last event that user-written code handles before server deactivation.
JetNet/Oracle Tuxedo Guide 6-23

Server_exit Events
Server_exit Handlers

The server_exit handler should clean up any resources allocated while the server
was active that the middleware API nor Panther are unaware of. It can also log a
message that the server is deactivating. For example:

// Implementation of a "log_down" server_exit handler

proc server_exit
log "Server has been brought down."
return 0

Scope

server_exit events are restricted to servers, and the handler can only be installed at
application scope.

Contract

server_exit_handler()

Returns

Ignored; a zero return is recommended.

Built-in Handlers

Two server_exit handlers are provided:

! sm_tp_server_exit_log_down (default) posts a message to the middleware
APIs log file indicating that the server is being deactivated.

! sm_tp_server_exit_ignore ignores server_exit events.
6-24 JetNet/Oracle Tuxedo Event Processing

Pre_service and Post_service Events
Pre_service and Post_service Events

The pre_service and post_service events occur every time a server receives a
service request:

! The pre_service event follows the request_received event and verification
of the service's JIF's definition, and precedes execution of the service routine.

! A post_service event occurs after the service routine completes execution.

pre_service and post_service events are paired events—each pre_service
event is eventually matched by a post_service event for that same service. Both
events are enabled or disabled together.

Pre_service and Post_service Handlers

The pre_service handler should abort the service if execution is inappropriate.
pre_service and post_service handlers typically keep track of the number of
requests to a service and how much time a service requires to process. These handlers
also can associate a service component with the service: the pre_service handler
opens the service component, while the post_service handler closes it.

A non-negative return code from a pre_service handler allows continued execution
of the service. A negative return code aborts the service: a TP_USER_ABORT exception
of severity TP_REQUEST is generated, and the middleware API informs the client that
the service has been aborted with a failure status. A post_service event is then
generated.

Scope

pre_service and post_service events are restricted to servers. pre_service and
post_service event handlers can only be installed at application scope.
JetNet/Oracle Tuxedo Guide 6-25

Pre_service and Post_service Events
Contract

pre_service_handler(char *callid, char *serviceName,
 char *serviceContainer, int cacheScreen)

post_service_handler(char *callid, char *serviceName,
 char *serviceContainer, int cacheScreen)

callid
The identifier assigned to this service request.

serviceName
The name of the service as invoked by the client.

serviceContainer
The name of a service component associated with the service (from the JIF).

cacheScreen
Tells whether the service component is cached in memory and so determines
how the handlers access serviceContainer, with one of these values:

! TP_ONADVERTISE—The service component is opened and cached in memory
when the service is first advertised.

! TP_ONFIRSTCALL—The service component is opened and cached in memory
when the service is first called.

! TP_NOCACHE—The service component is opened each time the service is called.
When the service returns, the container is closed.

Returns

Ignored.

Example

The following is an example of a pre_service handler:

proc pre_service_hdlr(callid, srvcName, srvcContainer, cacheFlag)

vars rcode, log_msg
{
// if there is no service component, do nothing
if (cacheFlag == TP_NOCACHE)

{

6-26 JetNet/Oracle Tuxedo Event Processing

Pre_service and Post_service Events
rcode = sm_jwindow(srvcContainer)
}

else
{

rcode = sm_n_wswlwct(srvcContainer)
if (rcode < 0)
{
// if select failed & ONFIRSTCALL, try to open

if (cacheFlag == TP_ONFIRSTCALL)
{

rcode = sm_jwindow("&&" ## srvcContainer)
}

}
}

if (rcode < 0)
{

log_msg = "Error opening " ## srvcContainer
log log_msg
return -1

}
return 0
}

The following is an example of a post_service handler:

proc post_service_hdlr(callid, srvcName, srvcContainer, cacheFlag)

//if there is no service component, do nothing
if (srvcContainer == ""
return 0
{
if (cacheFlag == TP_NOCACHE)

{
call sm_close_window()

}
else

{
// handle as TP_ONFIRSTCALL and/or TP_ONADVERTISE
call sm_wdeslect()

}
}

Built-in Handlers

Four pre_service handlers are provided:
JetNet/Oracle Tuxedo Guide 6-27

Unload Events
! sm_tp_pre_service_winopen_or_select (default production handler)
selects or opens the specified service component depending on whether it is
already cached, as specified by the cacheScreen parameter (refer to page 6-26).

! sm_tp_pre_service_winopen (default development handler) always opens
the specified service component as a stacked window and, if configured for
debugging or development, logs a Starting service %s message. If the
container is not found, the handler logs an error and returns -1, causing the
service to abort.

! sm_tp_pre_service_winselect makes the specified service component the
active window in the window stack. If the container is not found, the handler
logs an error and returns -1, causing the service to abort.

! sm_tp_pre_service_ignore ignores pre_service events.

Four post_service handlers are provided:

! sm_tp_post_service_winclose_or_deselect (default production handler)
deselects or closes the specified service component depending on whether
caching is specified by the cacheScreen parameter (refer to page 6-26).

! sm_tp_post_service_winclose (default development handler) closes the
specified service component.

If a standard server is configured for debugging or development, then a
Service %s completed message is logged.

! sm_tp_post_service_windeselect restores the specified service component
identified by serviceContainer to its original position in the window hierarchy.

! sm_tp_post_service_ignore ignores post_service events.

Unload Events

An unload event occurs when message data is received from an external source whose
contents can be written to Panther variables. Message data can be unloaded for these
reasons:
6-28 JetNet/Oracle Tuxedo Event Processing

Unload Events
! A client receives message data from a returning service. The unload handler
implements the mapping of reply message data to client variables as specified
earlier by the service_call command.

! A client executes a receive command to obtain an unsolicited message. The
unload handler implements the mapping of unloaded data as specified by the
receive command.

! A server executes a receive command to obtain message data from a client or
another server. The unload handler implements the mapping of unloaded data
to service variables, as specified by the receive command.

All service requests generate an unload event on the client even if an error occurs and
no data unloads. The application can then decide whether to write to the specified
variables, possibly only clearing them of old data.

Unload Handlers

An unload handler is responsible for unloading data into Panther variables through the
unload_data command, and setting conditions for performing the unload.

Note: unload handlers can be triggered anywhere, including within another unload
handler. Therefore, unload handlers should not raise another unload event,
and thus give rise to an infinite loop condition. For instance, if a service call is
issued from within an unload handler, an unload event occurs for that service
when it returns. The handler is called again to handle the event, and so on.

Scope

unload events are available to both servers and clients, and handlers can be installed
at application, transaction, and request scopes.

Contract

unload_handler(char *callid, int msgSource, int receiptMethod)

callid
Identifies the message's service call. If the message is not associated with a
service request (for example, an unsolicited message), this parameter is
empty.
JetNet/Oracle Tuxedo Guide 6-29

Unload Events
msgSource
The source of the message whose receipt caused the unload event, indicated
by one of the following constants:

receiptMethod
Indicates the type of polling used to obtain the message with one of these
constants:

Returns

The severity code that an unload handler returns indicates whether it successfully
processed the unload event. TP_NONE indicates success. Return any other severity
code to indicate failure. A failed unload event generates a TP_UNLOAD_FAILED

msgSource constant Location Source

TP_BLOCKING_RPC client/server Normal blocking service_call

TP_NONBLOCKING_RPC client/server Nonblocking service_call

TP_ARGUMENTS server Arguments sent to the service

TP_UNSOLICITED client Unsolicited message

receiptMethod constant Location Method

TP_ASYNCHRONOUS client Data received from asynchronous
polling

TP_BLOCKING client/server Data received while blocking as part
of service_call command

TP_SERVER server Message obtained through whatever
mechanism is used by a server to
receive service requests; only if
msgSource is TP_ARGUMENTS

TP_WAIT client/server Data received as a result of
invocation of wait
6-30 JetNet/Oracle Tuxedo Event Processing

Unload Events
exception at the specified severity. If the return code is not a valid severity, a
TP_UNLOAD_FAILED exception occurs at the TP_WARNING severity level. For a
description of severity codes, refer to page 6-13.

Example

The following unload handler unloads message data only if the service request is
successful:

proc unload_hdlr (callid, msgSource, msgRcptMethod)
{

if (@app()->tp_svc_outcome == 0)
{

// unload the arguments
unload_data

}
else
{

log "Unsuccessful return from service--no arguments \
unloaded"

}
return TP_NONE

}

Built-in Handlers

Two unload handlers are provided.

! :sm_tp_unload_call_origin (default) unloads the service message data to
the screen where the service call originated. If the screen is no longer active,
this handler unloads the message data to the active screen. This handler ensures
that results are written to the original screen when application processing has
proceeded to a different screen.

! sm_tp_unload_immediate unloads the message data to the active screen,
regardless of whether the message data originated from it.
JetNet/Oracle Tuxedo Guide 6-31

Unload Events
6-32 JetNet/Oracle Tuxedo Event Processing

CHAPTER
7 Transaction Model
for JetNet

On the client side, service requests are made to access the database by user input on a
client screen. These requests can be directed to the transaction manager, which through
the middleware transaction model, decides what services need to be called to satisfy
the requests.

In two-tier applications, the transaction model generates transaction manager events;
in three-tier JetNet applications, the transaction model generates service requests.

jetrb1 is the transaction model provided for three-tier JetNet applications. When a
client uses the transaction manager, jetrb1 determines which service request to make
to satisfy the transaction manager command. jetrb1 provides processing for the
following transaction manager events: TM_SELECT, TM_VIEW, TM_DELETE,
TM_DELETE_EXEC, TM_INSERT, TM_POST_SAVE, and TM_VAL_LINK.

The service properties of the table views and link widgets on the client screen are
checked to determine which services to call. If no services are specified in the
properties, the default, built-in services are called.

Built-in Services

The built-in services are used on:

! Three-tier applications that have been converted from two-tier with the
clnt2svr utility.

! Screens that use the request broker but do not have any Service properties set.
JetNet/Oracle Tuxedo Guide 7-1

The services perform transaction manager operations for the client by executing
sm_tm_command. The operations handled by the built-in services are: SAVE, SELECT,
VIEW, INSERT, DELETE, and VALIDATE LINK. These services are advertised by a
conversion server. For more information on the conversion server, progserv, refer to
page 2-2.The built-in services cannot be modified.

Modifying the Model

The jetrb1 transaction model should prove sufficient for your database processing
needs, but should you need to modify the behavior you can do so. If the behavior that
requires modifying is application-wide, you can modify the source code of the model
directly. Otherwise, you can provide hook functions on a screen-by-screen basis for
particular transaction manager events. Write a hook function and assign it to the
Database Function property of the screen's table view.

You might want to modify the behavior of jetrb1 to augment the service call
functionality, perhaps to add arguments to the service call, to make an additional
service call, or to replace the service call with different one.

For example, if a SELECT operation requires non-screen variables, this would require
changing the processing of the TM_SELECT event either in jetrb1 or in a hook
function written to intercept this event. This could be necessary if a multi-screen
transaction requires additional variables, perhaps from the LDB or from non-screen
variables.

jetrb1 is a C source module located at $SMBASE/samples/jetrb1.c.

To modify it, first make a copy, then do your edits and rebuild your executables. You
will need to add the object module in the makefile in the place reserved for your source
modules.

Service Limitations

The built-in services are only called for full commands. If a screen implements partial
commands, you will have to either write a service to implement the partial command
(and specify the service in the appropriate service property) or modify jetrb1. For
example, if a screen has master and detail sections, and both use grids, the detail
portion of the screen will not update when the focus in the master section changes to
another record.
7-2 Transaction Model for JetNet

If a service property is set on a non-root table view, then all table views must have their
service properties set. If no service properties on the root table view are set but a
service property is set on a subordinate table view on the screen, no action is taken. The
built-in services will not be called, and the service in the property that is set will not be
called.

Server Processing

On the server end, the middleware API receives service requests. The service requests
are sent to the transaction manager, which, using the database transaction model,
passes the requests to the SQL generator where the SQL is constructed. From there, the
database driver (for your database) sends the appropriate instructions to the database.
Responses back from the database travel the same path in reverse.

Transactional Control

Database transactions are database operations that are completed or canceled as a unit.
For example, a change to a record in a database can comprise INSERT, UPDATE, and
DELETE operations. These operations are executed as part of a transaction, so that if
any one fails for any reason, all three are rolled back and the information in the
database is restored to its former state. The operations are only completed and
committed to permanent storage in the database when all three have succeeded.

Middleware systems do not provide transactional control; they rely on the transaction
capabilities of the database as invoked by the application server. In a three-tier
application, the transaction model on the application server determines how database
transactional processing should be invoked. The Oracle Tuxedo middleware adapter
supports XA transactions. For further information on transaction management, refer to
page 8-3
JetNet/Oracle Tuxedo Guide 7-3

7-4 Transaction Model for JetNet

CHAPTER
8 Oracle Tuxedo
Features

If you are using Panther Oracle Tuxedo Edition, you can take advantage of several
enhanced features provided by Oracle Tuxedo. This chapter describes these features:

! FML, FML32 and STRING buffer types.

! XA-compliant transactions.

! Service request forwarding.

! Oracle Tuxedo event brokering.

! Oracle Tuxedo reliable queues.

This chapter also provides information on initializing and booting servers in the Oracle
Tuxedo environment, including a debuggable server.

Service Data Buffer Types

Data is passed between agents—clients and servers—in data buffers. These data
buffers are sometimes referred to as message buffers, or simply messages.
JetNet/Oracle Tuxedo Guide 8-1

Service Data Buffer Types
Within the JetNet middleware adapter, these data buffers can contain information in a
JAMFLEX buffer. In the case of service call operations, up to two buffers can be passed,
one for data incoming to the service, and one for data returned from the service to the
calling agent.

Within the Oracle Tuxedo middleware adapter, in addition to the JAMFLEX buffer type,
you can use FML, FML32 and STRING buffer types to transport data/messages between
agents. The commands that use data transport are service_call, service_forward,
service_return, receive, enqueue, dequeue, post, notify, and broadcast.

FML and FML32 Buffers

Oracle Tuxedo provides FML buffers (both FML and FML32) as a medium for handling
collections of data fields. FML32 differs from FML in that certain identifiers permit
larger sizes—allowing for 32-bit values as opposed to 16-bit values. For example, the
maximum number of fields in an FML buffer is 8,191, and for FML32 about 30 million.
Differences also apply to individual field sizes and total fielded buffer size. In general,
in this documentation, references to FML apply to both types; differences in behavior
are noted accordingly.

When you use FML buffers, fields are listed in an FML file. In the file, each field has a
name, number, and type, either short, long, float, double or carray. For more
information on FML buffers within JPL, refer to page 5-17.

When you use transaction manager defined services with FML buffers, you must
define the following FML fields:

Oracle Tuxedo-specific variables are used by Oracle Tuxedo to locate FML and
FML32 files:

! FLDTBLDIR and FLDTBLDIR32—List of directories where FML and FML32 files,
respectively, can be found.

FML field Type

smTmData carray

smTmRowCount long

SmTmTv string
8-2 Oracle Tuxedo Features

XA Transaction Management
! FIELDTBLS and FIELDTBLS32—Names of the FML and FML32 files,
respectively, in the directories defined by FLDTBLDIR.

For more information on FML buffers and variables, refer to the Oracle Tuxedo
documentation.

STRING Buffers

With the Oracle Tuxedo middleware adapter, Panther supports Oracle Tuxedo STRING
type buffers. Either a string constant or a variable can be passed. Refer to page 5-18
for more information on these buffer types. Also, refer to the Oracle Tuxedo
documentation.

XA Transaction Management

In a Oracle Tuxedo application, you can use the XA protocol to provide transactional
control in addition to native database transaction support. Database and queuing
operations can be grouped together and executed such that either all of them are
completed or none of them are.

JPL commands which support the XA protocol are listed in Table 8-1.

Table 8-1 JPL commands providing XA transactional control

JPL command Description

xa_begin Begin a transaction.

xa_commit Commit a transaction.

xa_end End a transaction.

xa_rollback Abort a transaction.
JetNet/Oracle Tuxedo Guide 8-3

XA Transaction Management
You want to use XA transactional control when operations that must be executed
together span more than one service, or when more than one resource manager is being
accessed. However, if the database operation is contained within one service call, and
only one resource manager is being accessed, it is more efficient to use native database
transaction support.

For example, a bank account transfer operation can be coded so that two service calls
are required to debit one account and credit another. Both services comprise a single
transaction as shown in the following example:

xa_begin
service_call withdraw (....)

...
service_call deposit (....)

...
xa_end

An alternative approach is to write a transfer service that incorporates the code from
both procedures withdraw and deposit. Then, a transaction would not have to be
used when calling this service. However, you would still need to use database
transaction control around the database operations within the service, that is, the dbms
begin, dbms rollback and dbms commit commands, to ensure the integrity of the
database.

For more information about transactional support in each Panther database driver, refer
to Database Drivers.

Note: You cannot mix native database transaction control and XA-transaction
control in the same server. If there is an XA connection to the database, all
transactional control must be performed with the XA protocol.
8-4 Oracle Tuxedo Features

Message Forwarding
Message Forwarding

You can use the service_forward command to forward service request data from
one service to another. A service_forward differs from a service_call in that no
reply is expected by the agent executing service_forward. The responsibility of
replying to the initial client agent is handed over to the service that receives the forward
request.

Event Brokering

With the Oracle Tuxedo middleware adapter, Panther provides access to Oracle
Tuxedo's Event Broker/Monitor. This feature allows clients and servers to generate
application-wide events that can be subscribed to by any agent on an individual basis.
The Oracle Tuxedo event broker system of event processing is distinct from the other
layers of Panther event processing: database event processing, request broker event
processing, transaction manager event processing, and screen/widget event
processing.

Event posting and subscribing provides another method of communication between
agents, one that is more flexible than simple service calling. Communication is not
restricted to a one-to-one relationship between a client agent and a server; any agent
can post an event that can be received by any number of other interested agents.

Use event brokering for important, infrequent events. The application's performance
can be affected if there is an overload of event notifications.
JetNet/Oracle Tuxedo Guide 8-5

Event Brokering
How to Use the Event Broker

Your application configuration must include running the Oracle Tuxedo-provided
event broker server TMUSREVT. To take advantage of Oracle Tuxedo system-specific
events, your configuration must also run the server, TMSYSEVT, which process the
predefined events.

For information on configuring these servers, refer to your Oracle Tuxedo
Administrator's Guide.

Accessing the Event Broker

Three commands are used to access event brokering: post, subscribe, and
unsubscribe.

There is no formal mechanism for defining application-wide events in your application
code. The events are determined as part of the design process of the application, and
exist as part of the application specification. Essentially, the events are defined at the
time they are posted or subscribed to.

A subscriber can subscribe to an event that might not occur, for instance a
stock-changed event when a price exceeds a certain value. When an agent subscribes
to an event with the subscribe command, the Oracle Tuxedo middleware adapter
does not verify that the event named has been defined elsewhere.

For clients, event notification is done via an unsolicited message. For servers, there are
two methods: notification by a service call and notification by message queuing. These
methods, and more information about event brokering, can be found in the descriptions
for the post, subscribe, and unsubscribe commands.

Example: Stock-change Event

An event is a logical condition, defined by the agent that is either posting or
subscribing. An event which registers the change in a stock price could be defined in
several ways. This example illustrates different ways which this can be done. Assume
that the FML fields defined for the stock.* events are:
8-6 Oracle Tuxedo Features

Event Brokering
A message handler designed to handle these event notifications unloads data from the
FML fields into Panther variables:

proc msg_handler(type, subtype)
vars source, event_name, stock_name, price_change, price
{

receive message ({source})
if (source == "post")

receive message ({event_name, stock_name, \
price_change, price})

else if (source == "notify")
...

else if (source == "broadcast")
...

return
}

In the msg_handler procedure, the FML field named source is set by all agents that
generate unsolicited messages, including users of broadcast and notify. Messages
sent by these commands would have different FML fields, and hence, a different
receive statement.

Note: It is important that a standard method of identifying the source of unsolicited
messages be established for the entire application. The handler has no
knowledge of where the message originated, it simply has a buffer of data. The
handler must know how to interpret message data. For more information on
implementing an application-wide message handler, refer to page 6-3.

Posting a change event
If the price of a cola stock changes, the event posting could look like this:

post EVENT "stock_change" ({source="post", \
event_name="stock_change", stock_name="cola",\

source

event_name

stock_name

price_change

price
JetNet/Oracle Tuxedo Guide 8-7

Event Brokering
price_change="+0.50", price="23.00"}) \
TYPE FML

When posting an event, the event name (argument for EVENT) must not begin
with a "."—this is reserved for Oracle Tuxedo predefined events.

Subscribing to any change event
An agent could subscribe to a stock_change event as follows:

subscribe EVENT "stock_change"

This notifies the user when any stock changes.

Subscribing to a specific change event
An agent can seek notification only when cola stock changes:

subscribe EVENT "stock_change" \
FILTER "stock_name == 'cola'"

In this case, the logical event subscribed to is cola-change, though this is
implemented by subscribing to the stock_change event using the FILTER
option of the command to exclude all stock_change events that are not for
the cola stock.

When subscribing to an event, the event name can be any Oracle Tuxedo regular
expression (refer to the Oracle Tuxedo Reference Manual for a description of the
syntax), for instance:

subscribe EVENT "stock.*"

Example: Enterprise Bank

The Enterprise Bank sample application makes use of the event broker. When a
customer attempts to login to the ATM client, three failures to enter a PIN correctly
result in disconnection. A security message is posted to the log file. The event broker
posts the security event, which the server picks up. Event notification is done via a
service call and the service logs the message to the log file.

The following code fragment from a procedure init_atm shows how the event is
posted when a login failure condition occurs:

vars failed_pin_attempts=0

proc init_atm ()
{

vars message
8-8 Oracle Tuxedo Features

Event Brokering
...
/* validate PIN given by the customer */
service_call "VAL_PIN" ({last_name, pin}, \

{message, owner_ssn = user_info})

/* check if validation was not successful */

if ((@app()->tp_severity > TP_WARNING) || \
(@app()->tp_svc_outcome == TP_FAILURE))

{
msg quiet message
client_exit
if (failed_pin_attempts < 2)
{

failed_pin_attempts = failed_pin_attempts + 1
}
else
{

post event "ATM_SECURITY" (last_name)
failed_pin_attempts = 0

}
call sm_n_gofield("pin")

}
...

return 0
}

The ATM_SECURITY event is subscribed to at server initialization. The server
initialization routine, jdbinit.jpl, loads the public module server.jpl, and calls
the following procedure server_subscribe:

proc server_subscribe()
{

vars message ret
// Subscribe to ATM security events (3 failed pin
// entry attempts)
message = "Server subscribing to event: ATM_SECURITY"
log message

subscribe event "ATM_SECURITY" \
notification service "LOG_SEC_EVENT"

// Subscribe to withdrawal limit exceeded events
message = "Server subscribing to event: WITHD_LIM_EXC"
log message

subscribe event "WITHD_LIM_EXC" \
notification enqueue qspace "BANKQSPACE" \
JetNet/Oracle Tuxedo Guide 8-9

Event Brokering
name "WITHD_EXC_Q"
return 0

}

The subscription to the ATM_SECURITY event directs the event broker to perform
notification of the event (if it occurs) via a service call to LOG_SEC_EVENT, which is
implemented as screen-level JPL in the cust.scr service component. The
log_security_event procedure logs the message:

proc log_security_event()
{

vars message
receive args (last_name)
message = "ATM SECURITY event logged for " ## last_name
log message
service_return ()

}

Posting and Subscribing

The following steps describe the process involved in posting and subscribing to a
event.

1. A client or server posts an event with the post command or subscribes to an
event with the subscribe command. The name of the event is passed as an
argument to both commands.

2. Once an event is posted, the event broker determines who has subscribed to the
event—applying the rules of a FILTER expression where they are provided—and
how subscribers should be notified.

3. Clients or servers that have subscribed to the event are notified of the event in
the manner specified by the arguments used in subscribe. Clients are notified
via an unsolicited message; a message handler must be provided that recognizes
the posted events. Servers receive notification either by a service call or message
queuing.

Unsubscribing

Agents unsubscribe from event notification with the unsubscribe command. Events
can be unsubscribed from either collectively—using the ALL option—or
individually—using the event's subscription ID. The subscription ID is required when
unsubscribing from a specific event.
8-10 Oracle Tuxedo Features

Reliable Queues
You can ascertain the subscription ID immediately after the initial subscribe by
obtaining the value of the tp_return property. The following example shows how to
obtain the event's subscription ID:

vars sub_id
...

subscribe "stock_fall"
sub_id = @all()->tp_return

...
unsubscribe SID sub_id

Reliable Queues

Message queuing to reliable queues provides an alternative mechanism for
interprocess communication between clients and servers. With the Oracle Tuxedo
middleware adapter, Panther uses the

Oracle Tuxedo System/Q facility, a system of queue management which includes:

! Stable queues—Ensures enqueued message data is preserved, even if Oracle
Tuxedo is shut down.

! A message queuing server, TMQUEUE—Responsible for enqueuing and
dequeuing messages on behalf of clients and servers.

! A message forwarding server, TMQFORWARD—Responsible for forwarding
dequeued messages from reliable queues to application servers for processing.

The queuing system provides a location where messages can be stored. These
messages can be intended for a variety of purposes—for instance, an agent might want
to store a message that contains data intended for another agent. The agent providing
the data can enqueue the information onto a queue, where it is available for another
agent (or even the same agent) to obtain by dequeuing.

Reliable queues give a three-tier application greater flexibility in client/server
communication, providing more methods of controlling the message enqueue/de
queue process than it does controlling service calls. Also, if
JetNet/Oracle Tuxedo Guide 8-11

Reliable Queues
Oracle Tuxedo goes down, any uncompleted service calls are lost, but enqueued
messages are still available when the system comes back up.

For example, an enqueue request can be used to "batch-up" non-time-critical service
calls. By choosing a queue that is associated with a service (described below), the
enqueuing agent can invoke the service indirectly, independent of its (the client's)
execution. Later, at a convenient time, the client or any other agent, can obtain the
results by dequeuing from a reply queue—after the original enqueued message has
been dequeued and processed by a server.

To use reliable queues:

Your application configuration must include running the Oracle Tuxedo-provided
TMQUEUE and, possibly, TMQFORWARD servers. For information on configuring these
servers, refer to the Oracle Tuxedo Administrator's Guide. Oracle Tuxedo must be
configured for queuing, and for the creation of the application's queues and the
queuespaces in which they are grouped.

The queue management server, TMQUEUE, is used by the reliable queuing facility to
enqueue and dequeue messages. The TMQFORWARD server is responsible for dequeuing
messages, forwarding them to application services, and enqueuing the reply from the
service onto a reply or failure queue.

Enqueuing a Message

The enqueue command places a message on a queue. In order to enqueue the message,
the names of the queue and its corresponding queuespace are required. In addition, the
message data must be in on of the following forms—JAMFLEX, STRING, FML or
FML32—and match what is defined in the JIF.

Agents can specify and keep track of enqueued messages by either their:

! Correlation ID—Defined by the agent doing the enqueuing, and is subsequently
available to the application.

! Message ID—A unique Oracle Tuxedo message identifier generated after
enqueue executes successfully, and is obtained by the enqueuing agent. It is
subsequently available to the agent that does the dequeue. You can reference the
message with this ID as long as it remains on the original queue.

Enqueuing agents can also specify:
8-12 Oracle Tuxedo Features

Reliable Queues
! The reply queue to which replies should be enqueued.

! The failure queue to which failure responses should be enqueued.

! A time when a message is accessible for dequeuing.

! An absolute priority for the message. The value can range from 1 to 100, the
default priority of an enqueued message is 50.

! A location within the queue for the message. The location can be either at the
top of the queue, or directly ahead of another queued message as specified by
the message ID.

! A return code (integer value) for the message.

! That the enqueue operation be unaffected by normal blocking timeouts.

! That the enqueue operation be executed outside of the current transaction.

Dequeuing a Message

The dequeue command removes a message from a queue. To dequeue a message, the
names of the queue and its corresponding queuespace are required. The arguments—
JAMFLEX, STRING, FML or FML32—to receive the message are also required and must
match what is defined in the JIF.

Dequeuing agents identify the message to dequeue by one the following:

! Message ID—Generated after enqueue executes successfully.

! Correlation ID—Created by the enqueuing agent when the message was
enqueued.

! Using the default—Dequeues the message at the top of the queue.

A dequeuing agent can obtain the following information about the message:

! Reply and/or failure queues associated with the message when it was enqueued.

! The ID of the agent that enqueued the message.

! Application authentication key of the client that enqueued the message. For
more information on client authentication, refer to on page 3-12 and refer to
client_init.
JetNet/Oracle Tuxedo Guide 8-13

Reliable Queues
! Its priority.

! Return code (integer value) established by the enqueuing agent.

The dequeuing agent can specify that the dequeue operation be unaffected by normal
blocking timeouts, and that it be executed outside of the current transaction. It can also
indicate that the dequeue should wait for a message if the queue is empty; otherwise
dequeue returns immediately.

Defining Reliable Queues

Reliable queues are uniquely identified by their name and the name of the queuespace
to which they belong. They can be either independent or service queues.

To identify and access queues (and their queuespaces):

Define them in the JIF using the JIF editor. Refer to page 25-15 in the Using the
Editors for instructions on using the JIF editor to define a queue.

Note: The creation of queues is done independently of Panther software; it is part of
your Oracle Tuxedo configuration.

Service Queues

Service queues are associated with a particular service and are invoked to process
message data. To use service queues, the TMQFORWARD server must be running and
configured to monitor your queues. Define service queues in the JIF by providing the
following information:

! Queue name and queuespace to which the queue belongs. All queues exist
within some named queuespace.

! Queue type: one of input, reply, or failure. If the service queue is an input type,
the definition of the message parameters to the queue is taken from the
definition of the input parameters of the associated service, as defined in the
JIF. If the service queue type is either reply or failure, the data from the
associated service's output parameters are assigned.

! Name of the service associated with the queue. For input service queues, the
name of the service must be identical to the name of the queue.
8-14 Oracle Tuxedo Features

Reliable Queues
Independent Queues

An independent queue does not have prescribed service call behavior. Independent
queue definitions in the JIF require the following:

! Queue name and queuespace to which the queue belongs.

! Message data type: JAMFLEX, STRING, FML or FML32. If the data type is STRING,
the name of the argument must be defined. If it is one of the other types, a
default name is provided.

! Optionally, a reply and/or a failure queue specification.

Example

The Enterprise Bank sample application uses reliable queues to queue up new accounts
for batch processing of a generic bank information mailing.

The Customer Maintenance screen cust_mnt.scr has an event function attached to
the customer table view. The Function property identifies the function tm_cust. Part
of the tm_cust. event function is reproduced here, showing how the customer
information is enqueued to NEW_CUST_Q when a transaction manager insert event is
encountered.

proc tm_cust (event)
{
vars cust_ssn, message

if (event == TM_VIEW || event == TM_SELECT)
{
...
}
...

else if (event == TM_INSERT_EXEC)
{
/* this is a new customer */
...

// Queue a notice to send a BANK info packet
// to this new customer

enqueue qspace "BANKQSPACE" name "NEW_CUST_Q" \
({ owner_ssn, \

last_name, \
first_name, \
JetNet/Oracle Tuxedo Guide 8-15

Reliable Queues
mid_ini, \
cust_address1, \
cust_address2}) NOREPLYQ NOFAILUREQ

msg emsg "Saved records of customer :first_name \
:last_name"

return TM_CHECK
}

To initiate the mailing, the New Customer Mailing List screen, custmail.scr, calls
the service get_newcust. This service is coded as screen-level JPL on the service
component, get_cust. The following procedure is the service call code on the client
screen:

proc get_mail_list()
{

service_call "GET_NEWCUST" ({owner_ssn, last_name, \
first_name})

}

The service, get_newcust, on the service component, dequeues all the new customer
entries on the queue:

proc get_newcust()
{
/* service GET_NEWCUST */

vars NumQEntries = 0
vars DeQueueStatus = TP_NONE
vars ssn fname lname initial address1 address2

while (DeQueueStatus == TP_NONE)
{

dequeue qspace "BANKQSPACE" name "NEW_CUST_Q" \\
({ owner_ssn=ssn, \\

last_name=lname, \\
first_name=fname, \\
mid_ini=initial, \\
cust_address1=address1, \\
cust_address2=address2})

if (@jam->tp_severity == TP_NONE)
{

NumQEntries = NumQEntries + 1
owner_ssn[NumQEntries] = ssn
last_name[NumQEntries] = lname
first_name[NumQEntries] = fname

}
else
8-16 Oracle Tuxedo Features

Initializing Servers
{
DeQueueStatus = @jam->tp_severity

}
}
service_return ({owner_ssn, last_name, first_name})

}

Initializing Servers

When Oracle Tuxedo boots a server, it can read one or more user-supplied server
arguments that are supported by Panther. These arguments let you associate a service
group with the server, specify its database connection, and so on. For example, the
following CLOPT entry specifies to initialize a production server that advertises
services from the usr_svcs service group and connects to database entbank:

CLOPT="-- -group usr_svcs -production

dbms declare dbsession connection for database "entbank""

Supply these arguments at the end of the server's CLOPT string with the following
format:

-- [-all | -group serviceGroup] [-rw] serverOption]

 [dbms connectString] initRoutine [args]

-all | group serviceGroup

Advertises all services or the specified services in the named service group at startup.

-rw
Advertises the default report service for the server is responsible for
generating reports. Refer to page 9-23 in the Reports for more information on
the default report service.

serverOption
Specify one of the following server configuration options:
JetNet/Oracle Tuxedo Guide 8-17

Initializing Servers
! -devel—Valid for servers that use either the proserv or prodserv
executables, this option establishes the default event handlers on a server for an
application that is undergoing development.

! -production—Valid only for servers that use the proserv executable, this
option establishes the default event handlers on a server in a deployed
application.

! -debug—Valid only for a server that uses the prodserv executable, which has
the Panther debugger. Set this option to run Panther in debug mode. The
debugger starts after default event handlers are established and before the
database connection and the server initialization routine.

Note: If you set this option, also edit its server environment file so that it sets
LD_LIBRARY_PATH to Motif shared libraries, and DISPLAY to tell the X
server where to display debuggable service component screens.

For information on handlers for development and production servers, refer to
page 3-24.

dbms connectString
Specifies a database connection through a DBMS DECLARE CONNECTION
command (refer to page 8-3 for information on connecting to a database). The
string must be enclosed in quotes. The command is executed after default
handlers are established and before the initialization routine executes.

initRoutine [args]
The initialization routine and any arguments it might use for server
initialization. Enter the function name and, optionally, any arguments that it
requires, supplied as constant values. The routine is called after default event
handlers are established and the database connection is made.
8-18 Oracle Tuxedo Features

APPENDIX
A Administration
Utilities

This chapter describes command-line utilities that can help you develop and manage a
Panther application. Utilities are listed in alphabetical order. Utility descriptions are
organized into the following components, as applicable:

! Utility name and brief description.

! Syntax line and argument descriptions.

! Description of the utility.

To get a command-line description of a utility's available arguments and command
options, type the utility's name with the -h switch. For example:

rbconfig -h

This yields the following output:

Usage: rbconfig [-f] [<binary file>]

-f Output file may overwrite an existing file.
JetNet/Oracle Tuxedo Guide A-1

clnt2svr
clnt2svr

Converts a two-tier application to a JetNet three-tier application

clnt2svr [-frv] sourceLib [-p prefixString]

-f
Replace existing libraries.

-p prefixString
Assign the specified prefixString to the client and server libraries. For
example, if the prefix specification is bank, the client library is assigned the
name, bankcl.lib, and the server library is banksv.lib. If a string is not
provided, the library names default to cl.lib and sv.lib, respectively.

-r

Retain the unnamed JPL procedure on the service component. This can be
useful if the unnamed procedure declares variables or carries out any
initialization required for the service component.

-v

Output (verbose) the name of the each screen as it is processed and lists the
properties that are being changed.

sourceLib

Name of source library that contains screens built with two-tier architecture
functionality.

Description

The clnt2svr utility converts any two-tier JAM or Panther application that uses the
transaction manager to a three-tier application.

Before running the utility, make sure your two-tier client screens, or source, reside in
a library. To store screens in a library, run the formlib utility.
A-2 Administration Utilities

clnt2svr
The clnt2svr utility creates a three-tier client library and a server library from a
single source two-tier library. The utility makes two copies of each screen from the
specified library and moves one of the copies to the new client library (cl.lib) and
moves the other as a service component to the new server library (sv.lib). The source
library remains unchanged and intact.

Certain property values are set on the copies while other properties that are pertinent
only to a client screen are removed from the corresponding service component in order
to avoid unnecessary processing on the server.

Three-tier Client

Screens

The client screens in cl.lib have the model property (under Transaction) set to
jetrb1, the request broker transaction model. The client screens use the model to
submit service requests to the server. The server is then responsible for the database
interaction by the transaction manager.

Service

Components

The service components in the sv.lib are stripped of the following screen-level
property values (if they were set on the source client screen):

! JPL Procedures—The unnamed procedure is removed unless the -r option is
used.

! Entry and Exit Functions.

! Menu and Menu Script Name.

! Pointer (cursor specification).

! Wallpaper Pixmap (screen background).

! Icon (image displayed when screen is iconified).

The following properties associated with widgets on service components are stripped
of values or changed:

! Active, Inactive, and Armed Pixmap specifications are removed.

! Drop-Down Source for option menus/combo boxes is changed from External
Screen to Constant Data since the lists do not need to be populated from an
external screen.
JetNet/Oracle Tuxedo Guide A-3

rb2asc
rb2asc

Converts a binary JetNet configuration file to ASCII and vice versa

rb2asc -a[-f] [asciiFile cfgFile]

rb2asc -b[-f] [asciiFile]
-

1. The configuration file specified by the environment variable SMRBCONFIG.

2. The configuration file specified by the environment variable TUXCONFIG.

3. broker.bin in the current directory.

Description

The rb2asc utility lets you convert a binary JetNet configuration file to ASCII and
vice versa. Use this utility in order to put a configuration file under source control or
to compare different files.

-a Convert binary files to ASCII

-b Convert ASCII files to binary.

-f The output file can overwrite an existing file.

asciiFile The name of the ASCII file, either the target of ASCII
conversion (with -a option) or the source of binary
conversion (-b option). If you omit this argument, the
default is broker.asc in the current directory

cfgFile The name of the configuration file is to convert to
ASCII. If you omit this argument, the default is one of
the following in this order.
A-4 Administration Utilities

rbboot
rbboot

Starts a Panther application

rbboot [-a] [cfgFile]

1. The configuration file specified by the environment variable SMRBCONFIG.

2. The configuration file specified by the environment variable TUXCONFIG.

3. broker.bin in the current directory.

Description

rbboot starts all Panther application components such as servers, as defined in
cfgFile. If you omit specifying a configuration file, rbboot checks whether
environment variables SMRBCONFIG or TUXCONFIG are set; if not, it looks for
broker.bin in the current directory.

Before starting an application, verify the following conditions:

! All machines have the executables for which their servers are configured.

! Each machine has SMRBCONFIG set to the same value as its Local JetNet
Configuration File property (refer to page 3-14).

! In a multi-machine application, the listener process is running on each
machines. Start the listener process with rblisten.

Note: If an application takes more than two minutes to start up, rbboot times out and
posts an error message. When this happens, rbboot exits without booting any
other application servers. To boot the rest of the application, run rbboot
again.

-a Start up only administration servers.

cfgFile The name of the JetNet configuration file. If you omit this argument, the
default is one of the following, in this order
JetNet/Oracle Tuxedo Guide A-5

rbconfig
rbconfig

Creates a JetNet configuration file

rbconfig [-f] [cfgFile]

1. The configuration file specified by the environment variable SMRBCONFIG.

2. The configuration file specified by the environment variable TUXCONFIG.

3. broker.bin in the current directory.rbconfig creates a minimal

Description

JetNet configuration file that you can use as a starting point for application
development. You can subsequently edit this file through the JetNet manager.

rbconfig creates a single-machine configuration that is enabled for workstation
connections. No servers are defined. With this configuration, you can activate the
application and connect to it from a PC workstation. You must define servers in order
to make this a working application.

-f Overwrite cfgFile if it already exists. If you omit this option and
cfgFile exists, rbconfig issues an error message and exits.

cfgFile The name of the new configuration file. If you omit this argument, the
default is one of the following, in this order:
A-6 Administration Utilities

rblisten
rblisten

Starts the listener process

rblisten -p portNum [-h host]

Description

rblisten starts the listener process on the current machine. This process must be
running on each machine that is defined in an application's JetNet configuration before
you boot the application. At boot time there is no bridge process to receive
communication. Instead, each listener process on the non-master and backup master
machines awaits a message from the master machine to begin the local boot process.
The master machine uses the port number in each machine's Listener Port property to
address its listening process (refer to page 3-15). Consequently, the port numbers
supplied to rblisten and specified in the JetNet configuration file must match.

Starting a listener process on the master machine is optional when booting an
application from that machine. However, the master machine must have a listener
process in order to restart it from another machine.

rblisten authenticates most service requests by reading a file with a list of passwords
and checking that any process requesting a service contains at least one of the
passwords found in the file. If a file named .adm/tlisten.pw in the application
directory is not found, the passwords are obtained from the file
$SMBASE/udataobj/tlisten.pw. A zero-length or missing password file disables
password checking which generates a warning in the ULOG file. Panther installs a
default tlisten.pw in $SMBASE/udataobj/tlisten.pw with the password Panther.

-p portNum The port number to be used by the listener process. This argument and the
port number that the configuration file specifies for host's Listener Port
property must be the same.

-h host The name or IP address (in dot notation) of this host's network address
where the listener awaits a message from the master machine to begin the
boot process. If you omit this argument, rblisten uses the machine's
default host name.
JetNet/Oracle Tuxedo Guide A-7

rblisten
Note: Add the appropriate call to rblisten to the system startup scripts file of each
machine (for example, on SUN workstations /etc/rc.local) so that the
utility runs automatically when the machine reboots.
A-8 Administration Utilities

rbshutdown
rbshutdown

Shuts down a Panther application

rbshutdown [-f] [cfgFile]

1. The configuration file specified by the environment variable SMRBCONFIG.

2. The configuration file specified by the environment variable TUXCONFIG.

3. broker.bin in the current directory.

Description

rbshutdown shuts a Panther application and all associated application components
such as servers as defined in cfgFile. If you omit specifying a configuration file,
rbshutdown tries to get SMRBCONFIG or TUXCONFIG from the environment; if neither
is set, it looks for broker.bin in the current directory. Use the -f option to ensure
shutdown of an application that has clients connected to it.

Note: If a server is still booting when rbshutdown is invoked, the utility can time
out before the servers are available for shutdown. Run rbshutdown again after
all servers have finished booting.

-f Forcibly deactivates the application and disconnects all
clients connected to it. If you omit this option and the
application has clients connected to it, rbshutdown leaves
the application active and issues an error message.

cfgFile The name of the JetNet configuration file. If you omit this
argument, the default is one of the following, in this order:
JetNet/Oracle Tuxedo Guide A-9

rbshutdown
A-10 Administration Utilities

APPENDIX
B Converting to a
Three-tier
Application

When you design your application there are many factors to take into account. For
instance:

! The number of users who will be connected to the database, and the frequency
of access to that database.

! Complexity of the database access.

! And, the overall load on the database and response time when the load is at its
peak.

In general, Panther is designed to help you build large, enterprise-wide applications
that utilize multiple servers and distributed databases. But, you can also build simple
client/server applications that operate on a one-server machine. However, as
application needs become more complicated because more frequent access to the
database is required, or the number of users increase, it's time to consider a multi-tier,
enhanced client/server solution.

With the clnt2svr (client-to-server) utility, you can convert a two-tier application
that uses the transaction manager to a three-tier, enterprise-wide application. This
chapter describes:

! Requirements for running a converted application.

! How to enhance the functionality of a converted application.
JetNet/Oracle Tuxedo Guide B-1

Converting an Application from Two- to
Three-Tier

The clnt2svr utility converts any two-tier JAM or Panther application that uses the
transaction manager.

Before running the utility, make sure your two-tier client screens, or source, reside in
a library. To store screens in a library, run formlib.

The clnt2svr utility creates a three-tier client library and a server library from a
single source two-tier library. The utility makes two copies of each screen from the
specified library and moves one of the copies to the new client library (cl.lib) and
moves the other as a service component to the new server library (sv.lib). The source
library remains unchanged and intact.

Property Settings

Certain property values are set on the copies while other properties that are pertinent
only to a client screen are removed from the corresponding service component in order
to avoid unnecessary processing on the server.

Three-tier Client Screens
The client screens in cl.lib have the Model property (under Transaction) set
to jetrb1, the request broker transaction model. The client screens use the
model to submit service requests to the server. The server is then responsible
for the database interaction by the transaction manager.

Service Components
The service components in the sv.lib are stripped of the following
screen-level property values (if they were set on the source client screen):

! JPL Procedures—The unnamed procedure is removed unless the -r option is
used.

! Entry and Exit Functions.
B-2 Converting to a Three-tier Application

! Menu and Menu Script Name.

! Pointer (cursor specification).

! Wallpaper Pixmap (screen background).

! Icon (image displayed when screen is iconified).

The following properties associated with widgets on service components are stripped
of values or changed:

! Active, Inactive, and Armed Pixmap specifications are removed.

! Drop-Down Source for option menus/combo boxes is changed from External
Screen to Constant Data since the lists do not need to be populated from an
external screen.

Requirements for Running a Converted
Application

The installed middleware transaction model handles the service requests made by the
client in a converted application. The model uses a built-in service to pass the request
to the database transaction model and thereby handle most database interactions. To
begin using your newly converted application, you need to:

! Make sure a conversion server is running. This ensures that the built-in services
are available to the new client screens and service components. Refer to
page 3-26 for information on initializing a conversion server.

! Set SMFLIBS to include the new client library in the client environment and do
the same on the server to include the new server library. This ensures that the
libraries are open on start up of the application.
JetNet/Oracle Tuxedo Guide B-3

Ensuring Usability

Once you get your new application up and running, there are some things that you
should note and consider, depending on the kinds of processing or specifications that
existed in your two-tier application. For example:

! If your source two-tier client screens used Continue operations—such as
First/Last Record—via push buttons or menu options, these types of operations
will not function in the three-tier architecture.

! There is no support for any database processing that does not use the
transaction manager; that is, if you made DBMS calls directly to the database in
your two-tier processing, these database interactions are not moved from the
client to the server. You will have to define a service to handle such processing
(refer to the next section for information on enhancing a converted application)
or ensure that the client has a direct connection to the database.

! In general, any processing your two-tier screens performed (JPL execution,
validation, transaction manager event functions) should be reviewed to ensure
that the processing is being performed appropriately and by the appropriate
agent. Depending on the type of processing, you need to determine whether the
processing is best carried out on the client or on the server. For example, data
entry validation might best be performed on the client, while database
validation might be better performed on the server by way of a service call.

! Partial commands are not supported. A partial command is one that specifies a
table view parameter and therefore operates on a portion of the tree, but not for
all linked table views on the screen. Because the server cannot determine or
maintain the state of information from one service call to the next, there is no
guarantee that two sequential requests will be processed by the same server.
Partial commands must be handled by defining a new service (refer to the next
section for information on enhancing a converted application).

! JPL (or C) programs that make runtime property changes to your two-tier client
screen, particularly Transaction and/or Database properties, will not function as
expected once you convert your application. In general, these changes are not
propagated from the three-tier client screen to its corresponding service
component. For example, if you change the Parent Table at runtime, the service
component is not aware of this change and the results returned to the client may
not be as predicted.
B-4 Converting to a Three-tier Application

Enhancing a Converted Application

You can implement a custom service to handle specific types of database interactions
by assigning services via the client screen's table view. When you provide a service
property value and define the service in the JIF, your application can implement a
service for individual operations. For example, your application can use the built-in
service to handle SELECT and INSERT operations, but use a custom service to handle
an UPDATE.

For information on creating services and service components, refer to page 5-1.

To implement a custom service:

! Define the services in the JIF (refer to page 25-1 in the Using the Editors for
instructions on using the JIF editor).

! You can implement a custom service for each server view on a screen. To do
this you would specify the service in the appropriate Service property for the
server view's master (root) table view. You can specify Delete, Insert, Select,
and Update Services.

! Ensure that a server is initialized that advertises the new services.
JetNet/Oracle Tuxedo Guide B-5

B-6 Converting to a Three-tier Application

APPENDIX
C Enterprise Bank

The Enterprise Bank sample application is provided as a demonstration of some of
Panther's capabilities for building three-tier applications. After you become familiar
with its functionality, use the Panther authoring environment to investigate how
Enterprise Bank works. You should also look at the JPL modules that are used to call
services from client screens and initiate database interactions from the service
components.

The Oracle Tuxedo middleware adapter supports additional features, including support
for Oracle Tuxedo System/Q message queuing and Oracle Tuxedo event brokering.
These two features are used in Enterprise Bank, but are not visible to JetNet users. In
this description of Enterprise Bank, features that rely on message queuing and event
brokering are noted as such.

Instructions for building and running Enterprise Bank are given in
$SMBASE/samples/entbank/README.txt.

The User's View of Enterprise Bank

Enterprise Bank is a small database application that models some of the simple tasks
present in a real banking application. The database, entbank, was created with JDB,
Panther's simple relational database manager that is used for building application
prototypes. Using JDB allows you to test data entry and effect database transactions
within Panther as part of the application development process.
JetNet/Oracle Tuxedo Guide C-1

However, since JDB is not an XA-compliant resource manager, transactions in
Enterprise Bank are not controlled by the monitor. Only XA-compliant resource
managers allow transactional control by a monitor. Also, XA transactional control is
only available with Oracle Tuxedo.

Running Enterprise Bank

Enterprise Bank resides in the samples/entbank directory in your Panther
installation. There you will find a README.txt file that has detailed instructions on
how to build and run the application. These instructions include directions for correctly
configuring your environment to run Enterprise Bank, as well as pertinent Oracle
Tuxedo-specific instructions.

You can run Enterprise Bank either as an ATM customer client, or as a bank employee
or administrator client.

Enterprise Bank Customer ATM Client

The ATM client allows you to perform only customer-related tasks, such as personal
account deposits and withdrawals.

Starting the Customer ATM Client

To launch the ATM customer client, start Panther specifying the top-level customer
Enterprise Bank screen as the command-line parameter:

$SMBASE/util/prodev atm

In Windows, double-click on the EntBank Customer ATM icon.

When Enterprise Bank is started, the ATM welcome screen is displayed.
C-2 Enterprise Bank

Figure C-1 Customer ATM login screen.

ATM Services

Logging on to the ATM requires a valid customer Last Name and PIN. You can use
any of those that are present in the customer database table. Try Last Name DUCK and
Password ducky. Notice that entry into the PIN field is not visible since this is
confidential information. Once you have correctly entered the login data, choose the
Start push button to initiate customer services.

Security Violation Alert

If the user fails to login correctly after three attempts, the client connection is
terminated and a security violation event (ATM_SECURITY) is posted to the event
broker. The server establishes its subscription to this event at initialization time.
Notification of the event is done via a service call (service LOG_SEC_EVENT). This
service logs a message to the log file that includes the name of the user that failed to
login. This process uses the Oracle Tuxedo event brokering feature.
JetNet/Oracle Tuxedo Guide C-3

For more information on the event broker and more detail on the coding required to
implement the ATM_SECURITY event, refer to page 8-8. Comprehensive information on
the event broker is in your Oracle Tuxedo documentation.

Customer Selections

Once you have successfully logged on to the ATM, the Customer Selections screen
opens. From this screen you can choose any of the following features:

! Make a deposit to an account.

! Make an account withdrawal.

! Transfer money between accounts.

! Make account balance inquiries.

! Find out what's new.

! Exit.
C-4 Enterprise Bank

Figure C-2 Customer Selections screen presents the services that are available
to a user of the Customer ATM client.

Make a Deposit

Choose the Deposit push button on the Customer Selections screen to open the Deposit
screen. This screen contains a pulldown menu from which you can choose which of
your accounts you wish to access. Enter the amount of the deposit either from a keypad
or by direct text entry. Once the amount has been entered and the Deposit button
chosen, the new balance appears. Choose Done to dismiss the screen.
JetNet/Oracle Tuxedo Guide C-5

Figure C-3 Deposit screen permits either keypad or direct text entry of the
deposit amount, and provides a pulldown menu from which to select the account.

Make a Withdrawal

Choose Withdrawal on the Customer Selections screen to open the Withdraw screen.
This screen is identical in function and appearance to the Deposit screen except that it
has a Withdraw button instead of a Deposit button. Choose Done to dismiss the
Withdraw screen.
C-6 Enterprise Bank

Figure C-4 A customer can make an account withdrawal from the Withdraw
screen.

Withdrawal Limit Exceeded

If the user attempts to withdraw an amount in excess of the maximum withdrawal
amount, the request fails and a WITHD_LIM_EXC event is posted to the event broker.
The server establishes its subscription to this event at initialization time. Notification
of the event is done via enqueuing a message to the WITHD_EXC_Q queue. This process
uses the Oracle Tuxedo event brokering and reliable queue system.

For more information on the event broker, refer to page 8-5. For more information on
message queuing, refer to page 8-11. Comprehensive information on the event broker
and message queuing is in your Oracle Tuxedo documentation.

Transfer

The Transfer screen contains two pulldown menus: one for the debit account id and
another for the credit account id. Enter the amount to transfer from the debit account
to the credit account in the same manner as on the Deposit and Withdraw screens:
through keypad entry or direct entry. After the accounts have been selected and the
JetNet/Oracle Tuxedo Guide C-7

amount specified, choose the Transfer button to perform the transfer and display both
new balances in the Debit Balance and Credit Balance text areas. Choose Done to
dismiss the screen.

Figure C-5 Transfer screen permits an ATM user to transfer money between
accounts.

Bank News

Choose Bank News to display a news message at the bottom of the Customer
Selections screen.

Balance Inquiry

To view all of the current balances in your accounts, choose the Account Information
button from the Customer Selections screen. The Account List screen opens listing the
following information on all your accounts: account id, name, balance, account type,
and branch id. A legend is displayed describing the account type designator. Dismiss
the window by choosing Done.
C-8 Enterprise Bank

Figure C-6 A customer can examine the status of his/her accounts on the Account
List screen.

Exit Customer Services

When you have finished your customer transactions, exit the ATM client by choosing
Done.
JetNet/Oracle Tuxedo Guide C-9

The Enterprise Bank Employee Client

The Bank Employee client allows you to perform employee-related tasks, such as
opening accounts and updating account information.

Starting the Bank Employee Client

To start the employee client, start Panther, specifying the top-level employee
Enterprise Bank screen as the command-line parameter:

$SMBASE/util/prodev branch

In Windows, double-click on the EntBank Employee WS icon.

When Enterprise Bank is started, the Employee Workstation welcome screen is
displayed.

Logging on to the employee client requires a valid employee last name and password.
You can use any of those that are present in the employee database table. Try last name
FLOYD and password farmers. Once you have correctly entered the login data, choose
the Start push button to initiate employee services.
C-10 Enterprise Bank

Figure C-7 Logon as an employee: the Employee Workstation

Employee Services

The employee and administrator clients are both menu-driven. The actions that you can
take are available from the Enterprise Bank menu bar. The options present on the menu
bar give you access to all employee features.

Figure C-8 Employee services are available from pulldown menus on the menu
bar.
JetNet/Oracle Tuxedo Guide C-11

Accounts Menu Option

The Accounts menu option contains two selections on its pulldown menu: Account
List and Account Maintenance.

Figure C-9 Account List screen displays all customer accounts sorted by account
number.

Display a Complete List of Accounts

Choose Accounts→Account List to open the Account List screen. All account
numbers are listed along with the following account information: customers name, the
balance of the account, the account type and the branch ID of the account. Dismiss the
Account List screen by choosing Done.
C-12 Enterprise Bank

Display a Single Account

To examine detailed information for an account, select the account on the Account List
screen. Choose the Details push button to open the Account Details screen.

Figure C-10 Examine the details of a given account by bringing up the Account
Details screen from the Account List screen.

This screen lists the following info for the selected account:

! An indicator for interest bearing accounts.

! The minimum balance required for the account.

! The monthly charge for the account.

! The current interest rate of the account.

! The withdrawal limit on the account.

Dismiss the Account Details screen by choosing Done.

Examine a Customer’s Accounts

The Account Maintenance screen is used by an employee to examine a customer's
existing accounts, add a new account, or delete an existing account. Choose
Account→Account Maintenance from the menu bar to open the screen.
JetNet/Oracle Tuxedo Guide C-13

Figure C-11 A bank employee can update, add, or close an account with the
Account Maintenance screen.

To retrieve a specific account, enter the customer's name, SSN or Account Id. This
screen employs a pattern searching mechanism that permits you to enter any
character[s], including the wildcard ("%") character, in the name or SSN fields.
Choose the Find button after the pattern search data has been entered. If more than one
account satisfies the search criteria, the Account Selection screen will open from which
you can select the account (see below). If only one account matches the search criteria,
that account's data will appear in the Account Maintenance screen. Once the
information is on the screen, the account updating features become enabled:

! The Delete button permits you to close the account.

! The New button permits you to enter new data for a new account. When the
new account data has been correctly entered, choose Save to add the new
account.

Select an Account for Maintenance

The Account Selection screen is used to select an account for maintenance when the
specific identifying information is not at hand. It is opened by entering pattern search
data in any of the identification fields on the Account Maintenance screen.

This screen displays the following information within scrolling lists: SSN, name,
account id, account type, and account balance. To select an account, select the SSN,
then choose the OK button. Alternatively, dismiss the screen by choosing Done.
C-14 Enterprise Bank

Figure C-12 Account Selection screen lets you select an account for updating in
the Account Maintenance screen.

Customers Menu Option

The Customers menu option contains three selections on its pulldown menu: Customer
List, Customer Maintenance, and New Customer Mailings.

Display a Complete List of Customers

Choose Customers→Customer List to raise the Customer List screen. This screen
displays a list of all bank customers showing name and SSN. You can select any of the
SSN entries and choose the Details button to raise the Customer Details screen that
provides more customer information.
JetNet/Oracle Tuxedo Guide C-15

Note: Accessing the Customer Details screen from the Customer List screen
demonstrates the use of asynchronous service calls. The data for the Details
screen comes from two separate tables, both of which use the same key:
owner_ssn. In the JPL code for the c_detail screen, service calls are made
to the services FINDCUST and GET_ACCT. Since the call to GET_ACCT does not
depend on the completion to the call to FINDCUST, the call to FINDCUST is
made asynchronously.

Figure C-13 Customer List screen shows all bank customers.

Display a Single Customer

The Customer Details screen displays the following customer information: name,
SSN, address, home phone, work phone, and PIN. For each account that the customer
holds, the following fields are displayed: account id, account balance, account type (C:
checking, S: savings. or M: money market), and account branch id.
C-16 Enterprise Bank

Figure C-14 Customer Details screen contains all the information for a
customer.

Update Customer Information

Choose Customers→Customer Maintenance to open the Customer Maintenance
screen. This screen is used to update existing customer information or add a new
customer. The screen contains the following data entry fields: Last Name, First Name,
Middle Initial, SSN, Home Phone, Work Phone, Address, City, state, Zip, and PIN.
To add a new customer, choose the New button, enter the data, and then choose
save/Update.

To change an existing customer's information, enter either the customers SSN or name
and choose the Find button. You can use the pattern searching mechanism to obtain
customer data by entering any combination of characters with the wildcard ("%")
character in these fields. The customer's data is fetched and changes can be made.

Several buttons are available to take action after editing a customer's data:
Save/Update to commit the change, Clear to clear all data, and Delete to remove a
customer. Choose Done to dismiss the screen.
JetNet/Oracle Tuxedo Guide C-17

New Customer Mailings

Enterprise Bank includes a feature to do a generic bank information mailing to all new
customers. This process uses Oracle Tuxedo message queuing. Message queuing
allows the queuing up of non-time-critical tasks that are more efficiently processed in
batch mode. When Customer Maintenance is used to add new customers, customer
data is sent to the NEW_CUST_Q message queue for processing at a later time, when the
mailing documents would be produced.

To process all new customers for mailing, choose Customers→New Customer
Mailings to open the New Customer Mailing List screen. You have the option of
selecting specific customers from those that are queued up, or of choosing to send the
mailing to all new accounts in the queue. Choose Retrieve List to see a listing of all
customers currently in the queue.

For more information on message queuing, and more detail on the coding required to
use the NEW_CUST_Q queue, refer to page 8-15. Comprehensive information on Oracle
Tuxedo System/Q message queuing is in your Oracle Tuxedo documentation.

Figure C-15 Customer Maintenance screen.
C-18 Enterprise Bank

The Enterprise Bank Administrator Client

The Bank Administrator client permits you to access all employee features plus bank
personnel data, as well as providing the ability to broadcast messages to all clients
logged on to the system.

Starting the Bank Administrator Client

To start the administrator client, start Panther and give the top-level
employee/administrator Enterprise Bank screen as the command-line parameter:

prodev branch

In Windows, double-click on the EntBank Employee WS icon.

When Enterprise Bank is started, the Employee Workstation welcome screen is
displayed.

To logon to the employee client as an administrator requires a valid administrator last
name and password. There is no separate table in the database for administrators, they
can be found in the employee table and have their Administration Privileges field set
to "Y." Try last name CAPONE and password chicago. Once you have correctly entered
the login data, choose the Start button to initiate administrator services.

Administrator Services

The employee and administrator clients are both menu-driven. The actions that an
administrator can take are available from the Enterprise Bank menu bar. The options
present on the menu bar give you access to all administrator features.
JetNet/Oracle Tuxedo Guide C-19

Figure C-16 Administrator services are available from the pulldown menus on
the menu bar.

Accounts Menu Option

The Accounts menu option contains four selections on its pulldown menu: Account
List, Account Maintenance, Post Interest, and Account Type Settings. The Account
List and Account Maintenance have already been described for the Employee client.

Post Interest to Accounts

Choose Accounts→Post Interest to open the Periodic Activity screen, from which an
administrator can post interest to any of the bank accounts. The administrator chooses
between All Accounts or Account Type radio buttons to specify which accounts are
to have interest posted to them. When choosing Account Type, the administrator
selects the account type from a pulldown menu that contains the three bank account
types: Checking, savings, and Money Market.
C-20 Enterprise Bank

Figure C-17 Post interest to any interest bearing account on the Periodic Activity
screen.

Once the account type choice is made, choosing Find Accounts fetches the accounts
that pertain to the search criteria and displays them in the scrolling window that lists
the accounts by Id number.

To post interest for the accounts selected, choose the Post Interest button. The status
for each account is posted in the second scrolling list. To cancel posting to accounts,
choose the Cancel Posting button. Choose Done to dismiss the screen.

Modify an Account Type

Choose Accounts→Account Type settings to raise the Account Type setting screen.
This screen is used by an administrator to view or change account type features. An
Account Type pulldown menu permits the administrator to choose which account type
to edit. This screen contains the following data entry fields:

! An Interest Bearing field that can be toggled to Y or N that will determine
whether or not the account type will generate interest.

! A Minimum Balance filed that permits the administrator to set the minimum
balance requirement for the account.

! An Interest Rate field to set the interest rate for the account type.
JetNet/Oracle Tuxedo Guide C-21

! A Withdrawal Limit field.

Figure C-18 An administrator can update account parameters such as interest
rate on the Account Type Settings screen.

Several push buttons are available to take action after editing. After an account type
had been selected and the settings possibly changed, the administrator can choose
Save/Update to commit the change, cancel the edit by choosing Clear, or dismiss the
screen by choosing Done.

Customers Menu Option

The Customers menu option contains the same two selections as it does on the
Employee client: Customer List and Customer Maintenance, which have already been
described above.

Personnel Menu Option

The Personnel menu option provides two choices: Employee List and Employee
Maintenance.
C-22 Enterprise Bank

Display a List of Employees

Choose Personnel→Employee List to open the Employee List screen. This screen
provides a list of all bank employees. The administrator can choose to either view all
employees or just employees specific to a branch, by way of two radio buttons and text
entry field for branch Id. Once the choice has been made and the OK button has been
chosen, the following data pertaining to each employee is displayed within scrolling
windows: employee id, name, branch id, and title. The information on this screen is
for viewing purposes only. Choose Done to dismiss the screen when finished.

Figure C-19 An administrator can lookup an employee on the Employee List
screen.
JetNet/Oracle Tuxedo Guide C-23

Add/Update or Delete an Employee

Choose Personnel→Employee Maintenance to open the Employee Maintenance
screen. This screen is used to make changes to an employee's data, add a new
employee, or delete an employee. The screen has the following data entry fields: Last
Name, First Name, Employee Id, Middle Initial, Branch Id, Password, Title, and
Administration Privileges (an employee can have administrator privileges when this
field is set to "Y"; otherwise it is set to "N").

Figure C-20 Employee Maintenance screen permits an administrator to update
personnel files.

To add a new employee, choose New, enter the employee's information, then choose
Save/Update.

To retrieve an existing employee's data, enter the employee's name or Employee Id.
This screen employs a pattern searching mechanism that permits you to enter any
character[s], including the wildcard ("%") character, in any of these identification
fields. Choose the Find button after the pattern search data has been entered. If more
than one employee satisfies the criteria, the Employee Selection screen will open from
which an individual employee can be selected (see below). If only one employee
matches, that employee's data will appear in the Employee Maintenance screen. Once
the employee's data is in the screen it can be edited.
C-24 Enterprise Bank

Several buttons are available to take action after editing: choose the Save/Update
button to commit the change, cancel the edit by choosing the Clear button, or remove
the employee by choosing the Delete button. When editing is finished, dismiss the
window by choosing Done.

Select an Employee for Maintenance

The Employee Selection screen is used to select an employee's data for updating when
the specific identifying information is not at hand. It is raised by entering pattern search
data in any of the identification fields on the Employee Maintenance screen.

This screen displays the following information within scrolling lists: employee id,
name, branch id, and title. To select an employee, select the corresponding Employee
Id in the scrolling window, then choose the OK button. Alternatively, dismiss the
screen by choosing Done.

Figure C-21 Employee Selection screen permits an administrator to select an
employee's data for updating in the Employee Maintenance screen.
JetNet/Oracle Tuxedo Guide C-25

Broadcasting a Message

Administrators have the ability to broadcast a message to any clients who are using the
system. Choosing Messages from the menu bar raises the Broadcast screen.

Broadcast a Message

Five radio buttons permit the administrator to choose whom to broadcast to: all clients,
all customers, one customer, all employees, or one employee. If one customer or one
employee is desired, the Customer or Employer Last Name button is selected, and the
last name is entered into the respective text widget. The message to be broadcast is
typed into the Message text widget. To send the message, choose the OK button.
Choose Done to dismiss the screen.

Figure C-22 An administrator can broadcast a message to any clients logged
onto the system with the Broadcast a Message screen.
C-26 Enterprise Bank

Designing Enterprise Bank

The development of Enterprise Bank proceeded with the creation of the entbank
database. After that, development followed a top-down approach:

! Creation of the client screens.

! Writing of the services, in JPL.

! Creation of the service screens.

JAMFLEX buffers are used for data transport in all services except those that make use
of the extended Oracle Tuxedo features—message queuing and event brokering. The
customer mailings feature uses FML buffers, and the withdrawal limit exceeded and
security violation alert features use STRING buffers.

During development of Enterprise Bank, the service screens associated with the
services are opened and closed with each request to a service. This is done within the
pre_ and post_service handlers defined in the server initialization JPL. The handlers
are set (via the hdl_pre_service and hdl_post_service application properties) to
pre_service and post_service respectively. These handlers make calls to the
default development handlers sm_tp_pre_service_winopen and
sm_tp_post_service_winclose respectively.

Here is the handler code from the server initialization JPL:

proc pre_service(callid, service_name, container_name)
{

if (server_logging)
log "===> Starting service ':service_name' \

in container ':container_name'"
return sm_tp_pre_service_winopen(callid, \

service_name, container_name)
}

proc post_service(callid, service_name, container_name)
{

if (server_logging)
log "===> Ending service ':service_name' \

in container ':container_name'"
JetNet/Oracle Tuxedo Guide C-27

return sm_tp_post_service_winclose(callid, \
service_name, container_name)

}

For a real application, in production mode, the pre_ and post_service handlers would
be replaced with sm_tp_pre_service_winopen_or_select and
sm_tp_post_service_winclose_or_deselect, to minimize unnecessary
overhead of opening and closing service components. When the service component
should be opened depends on the value of the Cache Service Component attribute
specified for the service in the JIF. Depending on the value, the opening and closing of
the service component can occur when the service is first advertised, the first time it is
called, or each time it is called. For information on pre_ and post_service default
handler behavior, refer to page 6-27.

The following code shows how this is implemented; it is excerpted from the server
initialization JPL module:

// For production style environment (when using runtime
// Panther executables instead of development
// executables), set this to 1
global production_env = "0"
...

proc dbms_init()
{

...
if (production_env)
{

// for production environment, service components
// are opened when services are advertised, closed
// when services are unadvertised, and
// selected/deselected with each request

@jam->hdl_pre_service = \
"sm_tp_pre_service_winselect"

@jam->hdl_post_service = \
"sm_tp_post_service_windeselect"

@jam->hdl_advertise = \
"sm_tp_advertise_winopen"

@jam->hdl_unadvertise = \
"sm_tp_unadvertise_winclose"

}
else
{

// for development environment, service components
C-28 Enterprise Bank

// are opened and closed with each request to
// a service

@jam->hdl_pre_service = "pre_service"
@jam->hdl_post_service = "post_service"

}
@jam->hdl_jif_changed = "jif_changed"
@jam->hdl_exception = "exc_hand"
@jam->hdl_server_exit = "server_exit"

return 0
}

JetNet/Oracle Tuxedo Guide C-29

C-30 Enterprise Bank

APPENDIX
D JetNet/Oracle
Tuxedo Exception
Event Types

Each exception event type that is generated by the middleware adapter can be
identified by one of the constants shown in the following table and its corresponding
integer code. These constants are accessible in JPL and C functions; they are also
stored in the application variable tp_exc_names (stripped of the TP_ prefix), and are
indexed according to the corresponding integer codes.

Table D-1 Exception event type constants and integer codes

Exception type constant Code Description

TP_ALREADY_CANCELLED 1 Attempting to cancel a request that has already been
cancelled

TP_BEGIN_FAILED 2 Unable to begin a new transaction

TP_COMMIT_FAILED 3 Unable to commit a transaction

TP_COMMIT_PARTIAL 4 Transaction has (or may have been) partially rolled back

TP_COMMIT_ROLLEDBACK 5 Unable to commit a transaction because it has already
been rolled back

TP_CONNECTION_CLOSE_FAILED 6 Unable to terminate a connection to the middleware
JetNet/Oracle Tuxedo Guide D-1

TP_CONNECTION_LIMIT 7 The connection limit for the middleware session has been
exceeded

TP_CONNECTION_OPEN_FAILED 8 Unable to initiate a connection to the middleware

TP_DATAFUNC_FAILED 9 Failure reported from DATAFUNC function

TP_EVTBROKER_ACCESS_FAILED 10 Unable to access event broker server

TP_EXPLICIT_CANCEL 11 A service request has been cancelled by the
service_cancel command

TP_GROUP_NOT_IN_JIF 12 The service group has not been defined in the JIF

TP_HANDLER_MISSING 13 An invoked handler cannot be located

TP_IDENTIFIER_TRUNCATED 14 An identifier has been truncated

TP_INTERNAL_ERROR 15 Internal error

TP_INVALID_ARGUMENT 16 Name, syntax, or use of an argument is invalid

TP_INVALID_ARGUMENT_COMPONENT 17 Component of an argument is invalid

TP_INVALID_ARGUMENT_LIST 18 Argument list is invalid

TP_INVALID_BUFFER 19 Data buffer received from a client or a service is of the
wrong type as specified in the JIF; or a client has received
an unsolicited message that is of a type not supported

TP_INVALID_BUFFER_VERSION 20 Received data buffer from a client or a service is of an
incompatible version; or a client has received an
unsolicited message that is of an incompatible version

TP_INVALID_CALL 21 Service call does not exist

TP_INVALID_CLIENT_COMMAND 22 Function or JPL command is only available to servers,
not clients

TP_INVALID_CLIENT_OPTION 23 Function or JPL command option is only available to
servers, not clients

TP_INVALID_COMMAND 24 Function or JPL command is invalid

Table D-1 Exception event type constants and integer codes (Continued)

Exception type constant Code Description
D-2 JetNet/Oracle Tuxedo Exception Event Types

TP_INVALID_COMMAND_SYNTAX 25 Function or JPL command syntax is invalid

TP_INVALID_CONNECTION 26 Specified connection does not exist

TP_INVALID_CONTEXT 27 Attempt to perform action out of context

TP_INVALID_FORWARD 28 A conversational service cannot be forwarded

TP_INVALID_VARIABLE_REF 29 Unable to resolve reference to the Panther variable

TP_INVALID_MONITOR_COMMAND 30 Function or JPL command is not available for the
middleware adapter

TP_INVALID_MONITOR_OPTION 31 Function or JPL command option is not available for the
middleware adapter

TP_INVALID_OPTION 32 Option is invalid in this context

TP_INVALID_OPTION_VALUE 33 Value for option is invalid

TP_INVALID_SERVER_COMMAND 34 Function or JPL command is available only to clients, not
servers

TP_INVALID_SERVER_OPTION 35 Function or JPL command option is available only to
clients, not servers

TP_INVALID_SERVICE 36 Service is invalid

TP_INVALID_TRANSACTION 37 Transaction does not exist

TP_JIF_ACCESS_FAILED 38 JIF or the Panther library containing it could not be
accessed

TP_JIF_LOWER_VERSION 39 New JIF has lower version than the current one

TP_LOGFILE_ERROR 40 Unable to write to the ULOG file

TP_MONITOR_ERROR 41 Error reported from middleware adapter

TP_NONTRANSACTIONAL_ACTION 42 Requested action cannot be performed within a
transaction

TP_NONTRANSACTIONAL_SERVICE 43 The service cannot be executed within a transaction

Table D-1 Exception event type constants and integer codes (Continued)

Exception type constant Code Description
JetNet/Oracle Tuxedo Guide D-3

TP_NO_OUTSIDE_TRANSACTION 44 Option OUTSIDE_TRANSACTION is ignored because no
transaction exists

TP_NO_OUTSTANDING_CALLS 45 The specified requests are no longer outstanding

TP_NO_OUTSTANDING_MESSAGE 46 There are no outstanding unsolicited messages

TP_NO_SERVICES_ADVERTISED 47 No services advertised or unadvertised

TP_NO_SIGNALS 48 Client is not capable of signal-based notification

TP_OUT_OF_MEMORY 49 Unable to allocate sufficient memory; program will exit

TP_PERMISSION_DENIED 50 Unable to perform action because permission has been
denied

TP_POSTING_FAILED 51 Posting a transactional event to either a service or to a
storage queue failed

TP_QUEUE_BAD_MSGID 52 Invalid message identifier

TP_QUEUE_BAD_NAMESPACE 53 Invalid resource manager identifier

TP_QUEUE_BAD_QUEUE 54 Invalid or deleted queue name

TP_QUEUE_CANT_START_TRAN 55 Error starting separate transaction for queuing operation

TP_QUEUE_FULL 56 No space left on queue for any additional messages

TP_QUEUE_MSG_IN_USE 57 Selected message (or all messages) is in use by another
transaction

TP_QUEUE_NO_MSG 58 No message was available for dequeuing

TP_QUEUE_NOT_IN_QSPACE 59 Unable to find the specified queue in the specified queue
space in the JIF.

TP_QUEUE_RSRC_NOT_OPEN 60 Resource manager is not currently open

TP_QUEUE_SPACE_NOT_IN_JIF 61 Unable to find specified queue space in JIF.

TP_QUEUE_TRAN_ABORTED 62 Transaction enclosing queuing operation was aborted

Table D-1 Exception event type constants and integer codes (Continued)

Exception type constant Code Description
D-4 JetNet/Oracle Tuxedo Exception Event Types

TP_QUEUE_TRAN_ABSENT 63 Queuing operation was done when transaction state was
not active

TP_QUEUE_UNEXPECTED 64 Undocumented queuing error produced by monitor

TP_REQUEST_LIMIT 65 The limit on the number of outstanding requests has been
exceeded

TP_ROLLBACK_COMMITTED 66 Unable to roll back the transaction because it has already
been committed

TP_ROLLBACK_FAILED 67 Unable to roll back the transaction

TP_SERVICE_FAILED 68 Service returned a failure status

TP_SERVICE_NOT_IN_JIF 69 Service could not be found in the JIF

TP_SERVICE_PROTOCOL_ERROR 70 Service has violated protocol and has been abnormally
terminated

TP_SUBSCRIPTION_LIMIT 71 Maximum number of subscriptions has been reached

TP_SUBSCRIPTION_MATCH 72 Subscription matches one already listed with event
broker

TP_SVCROUTINE_MISSING 73 Unable to locate service routine

TP_SVC_ADVERTISE_LIMIT 74 The limit on the number of advertised services has been
exceeded

TP_SVC_WORK_OUTSTANDING 75 There is work which this service has begun that has not
completed

TP_SVRINIT_WORK_OUTSTANDING 76 Server init routine has begun work that has not yet
completed

TP_TIMEOUT 77 Action terminated due to timeout condition

TP_TRANSACTION_LIMIT 78 A new transaction would exceed transaction limit for the
middleware session

TP_UNLOAD_FAILED 79 Failure reported from unload event handler

TP_UNSUPPORTED_BUFFER 80 Specified buffer type is not supported

Table D-1 Exception event type constants and integer codes (Continued)

Exception type constant Code Description
JetNet/Oracle Tuxedo Guide D-5

TP_USER_ABORT 81 Action has been explicitly aborted

TP_WORK_OUTSTANDING 82 Work is still being performed within this transaction

TP_XA_CLOSE_FAILED 83 Unable to close XA-connection resource managers

TP_XA_OPEN_FAILED 84 Unable to open XA-connection resource managers

Table D-1 Exception event type constants and integer codes (Continued)

Exception type constant Code Description
D-6 JetNet/Oracle Tuxedo Exception Event Types

APPENDIX
E Application Setup
Checklist

Once the software is installed, the following steps provide a basic Panther application
server for a JetNet/Oracle Tuxedo application.

Setting Up the Application Server

Populate the Application Directory

Unix Environment

On a UNIX application server, create an application directory containing:

setup.sh A setup file with the location of the Panther software installation,
the license file, and the middleware configuration file at your site.
For the default setup file, copy setup.sh from the config directory
of your Panther installation.

client.lib,
server.lib and
common.lib

Three standard application libraries. Copies of these libraries are
in the samples/newapp directory of your Panther server
installation.
JetNet/Oracle Tuxedo Guide E-1

Windows Environment

On a Windows application server, create an application folder containing:

machine.env,
proserv.env and
progserv.env (if
using progserv)

Three standard environment files: machine.env for the machine
settings, proserv.env for the standard server, and
progserv.env for the conversion server (only used with
applications converted from two-tier). Copies of these files are in
the samples/newapp directory of your Panther server
installation.

devserv, proserv,
prodserv (optional),
and progserv
(optional)

Symbolic links to, or copies of, the server executables: devserv
for the development access server and proserv for the standard
server. If needed, create links or copies of progserv for the
conversion server and prodserv for the server with debugger
available services. The server executables are located in the util
directory of your Panther installation.

broker.bin The middleware configuration file. To create a middleware
configuration file, refer to page 3-2.

client.lib,
server.lib and
common.lib

Three standard application libraries. Copies of these libraries are
in the samples\newapp directory of your Panther server
installation.

machine.env,
proserv.env and
progserv.env

Three standard environment files: machine.env for the
machine settings, proserv.env for the standard server, and
progserv.env for the conversion server (only used with
applications converted from two-tier). Copies of these files are in
the samples\newapp directory of your Panther server
installation.

devserv.exe,
proserv.exe,
prodserv.exe and
progserv.exe

Copies of the server executables: devserv.exe for the
development access server and proserv.exe for the standard
server. If needed, copy progserv.exe for the conversion
server and prodserv.exe for the server with debugger
available services. The server executables are located in the util
directory of your Panther installation.
E-2 Application Setup Checklist

Configure the Middleware

Create a Configuration File

The middleware configuration file determines the machines and application servers
needed for the application. To create a middleware configuration file:

Configure Each Server

Once the configuration file is created and JetMan displays the application:

Configure the environment. In Windows, check the settings of jetman32.ini. In
UNIX, run the application's version of setup.sh.

Start JetMan.

Choose File→New→Application.

On the Application Configuration window, enter the application name, and choose
Next.

Check the settings for the machine type, the Panther installation, the application
directory, the middleware configuration file, and the machine environment variable
file.

For remote client access, choose Networking. On the Networking window, select
Workstation Listener, and choose OK.

Choose Done, and wait for the configuration file to be completed.

Expand the application by double-clicking on the application name or choosing

View→Expand Subtree.

With the machine highlighted, choose File→New→Server for each type of server
to add to the application. A minimum setting would have one standard server
(proserv) and one file access server (devserv) for each ma chine.
JetNet/Oracle Tuxedo Guide E-3

Applications which are running remote reports must have a file access server on the
same machine as the standard server in order to access and distribute the report files.

For a standard server (proserv):

Enter the name: ProservMyApp.

Under Server Type, select Standard.

Choose Options.

Under Auto Advertised Services, choose All.

If using remote reports, choose Report.

If using service aliasing to test services, enter the Server Alias User
Name.

Under Database Connect String, enter the command needed to connect to
the database.

Under Init Routine, enter the function to be called on initialization of the
server.

When Standard Server Details is complete, choose OK.

When Server Configuration is complete, choose OK.

For a file access server (devserv):

Enter the name: DevservMyApp.

Under Server Type, select File Access.

When Server Configuration is complete, choose OK.
E-4 Application Setup Checklist

Start the Application Server

To start the application server in JetMan, highlight the application and choose
Edit→Activate. An alternative is to use the command line utility rbboot. The Status
window shows the messages for each server process.

Stop the Application Server

To stop the application server in JetMan, choose Edit→Deactivate or, if clients are

connected, Edit→Forcibly Deactivate. An alternative is to use the command line
utility rbshutdown.

Setting Up the Workstation Client

Workstation (or remote) clients set SMRBPORT and SMRBHOST in order to access the
remote application server. For Windows, these settings are stored in prol5w32.ini
or prol5w64.ini.

Native (or local) clients set SMRBCONFIG in order to access the middleware
configuration file on the same host machine.
JetNet/Oracle Tuxedo Guide E-5

E-6 Application Setup Checklist

APPENDIX
F Deployment Checklist
for JetNet

Directory Structure for JetNet
Applications

Distribute the files and libraries used by your Panther application in a single directory,
call it the application directory. The directory should include such things as your
application's executables and Panther-specific libraries. In addition, it should include
the following subdirectories:

! bin directory for UNIX only—Includes JetNet administrative executables.
Required for three-tier processing.

! configuration directory—Includes the runtime components that make up your
application, such as your application libraries and those files that are specific to
running your application.

! library directory for UNIX only—Includes JetNet shared libraries. Required for
three-tier processing.

! locale directory—Includes the routines used by JetNet. Required for three-tier
processing.

! udataobj directory—Includes files used by JetNet. Required for three-tier
processing.
JetNet/Oracle Tuxedo Guide F-1

Checklist for Deployment

The tables in this section list the components you should include in a distribution for
the specific platform. Depending on your particular application, there might be other
considerations and files which you might include. Those considerations are covered
later in this chapter.

Preparing a Windows Distribution

Table F-1 lists the files and libraries required on a Windows installation. The table also
includes where these files can be found in the Panther distribution. In general, you or
should make copies of those files as opposed to using the originals. In all likelihood,
your Panther application has been using the components it needs while you've been
developing it. This list will serve as a means of making certain all the pieces you need
are deployed to the application users.

Table F-1 Checklist for contents of Panther Windows applications

File/Library Found in Panther Description

application directory contents:

cktbl32/64.dll util Panther-specific DLL

database DLLs util Support Panther database drivers—Informix, ODBC,
Oracle, Sybase

*.ini config Initialization files. prol5w32/64.ini, jetman.ini if
using the JetNet manager.

jetman.exe util JetNet manager executable; required only if running the
manager

libsti32/64.dll util Panther-specific DLL

libsti.ini config Graph-specific initialization file (copy this file to the
Windows directory)
F-2 Deployment Checklist for JetNet

libxml2.dll util Needed if XML files are to be imported.

msvcr80.dll util Microsoft Visual C++ 2005 runtime DLL. Needed if the
Redistributable Package will not be installed.

PanPDF32/64.dll util Needed if PDF reports will be created.

projpeg.dll util Needed to process JPEG images.

promfc32/64.dll util Contains status line and frameset code.

prores32/64.dll util Panther Windows resource DLL

prorun32/64.exe util Runtime executable (rename for your application)

rwres32/64.dll util Report Writer Windows resource DLL

wbuft.dll util JetNet library

wtuxws.dll util JetNet library

config directory contents:

client.lib includes:

client screens Panther screens that make up the user interface

smwzmenu Binary menu script file; include if client screens created
with screen wizard use the prototype menu bar/toolbar

smwizard.bin JPL module made public by client screens created by the
screen wizard

JPL modules JPL code used by client screens

Graphics files Image files (such as *.ico, *.bmp, *.jpg) referenced on
client screens and/or toolbars

styles.sty Transaction manager styles file for your application

common.lib includes:

wincmap.bin config Binary configuration map file (maps Panther fonts to
Windows-specific fonts, etc.).

Table F-1 Checklist for contents of Panther Windows applications (Continued)

File/Library Found in Panther Description
JetNet/Oracle Tuxedo Guide F-3

jif.bin Binary service and queue definition file

winkeys.bin config Binary key files for mapping physical keys to Panther
logical keys. Omit this file from the library if end-users can
modify key mapping on installation.

msgfile.bin config Contains messages and information used by Panther

*.fnt config Graph-specific fonts referenced in graphs in your
application

grafcap config Initialization file for graph support

prorun5.lib config Panther's runtime support library

prorw5.lib config Panther's runtime library for reports

winkeys config ASCII key file for mapping physical keys to Panther
logical keys. Required if key mapping is user configurable;
include key2bin utility as well.

smvars.bin config Binary environment setup file

symbold,

 symbols1

config Font files for graphs, if used in application

locale\C directory contents:

Routines used by JetNet

gp_cat locale\C

langinfo locale\C

libwsc_cat locale\C

trpc_cat locale\C

udataobj directory contents:

tpadm udataobj JetNet-specific file

usysfl32 udataobj JetNet-specific file

Table F-1 Checklist for contents of Panther Windows applications (Continued)

File/Library Found in Panther Description
F-4 Deployment Checklist for JetNet

Preparing a UNIX Distribution

usysflds udataobj JetNet-specific file

Table F-1 Checklist for contents of Panther Windows applications (Continued)

File/Library Found in Panther Description

Table F-2 Checklist for contents of Panther UNIX/Motif applications

File/Library Found in Panther Description

application directory contents:

broker.bin JetNet configuration file

progserv util Conversion server executable (rename for your
application); required only for 2- to 3-tier converted
applications

progserv.env config Conversion server environment definition file; required
only for 2- to 3-tier converted applications

Prolifics config Resource file for Motif (installation should copy Prolifics
to the home directory of each user)

prorun util Client executable (rename for your application); required
only if supporting UNIX clients

proserv util Standard server executable (rename for your application)

proserv.env config Standard server environment definition file

rbboot util Utility to start JetNet and boot application servers

rbcfinfo util Used by rbconfig

rbconfig util Command-line utility for creating a JetNet configuration
file

rblisten util Utility allows application servers to run on multiple ma
chines.

rbshutdown util Utility to shutdown JetNet and application servers
JetNet/Oracle Tuxedo Guide F-5

bin directory contents:

JetNet administrative executables

config directory contents:

client.lib includes: Required only if supporting UNIX clients

client screens Panther screens that make up user interface

smwzmenu Binary menu script file; include if client screens created
with screen wizard use the prototype menu bar/toolbar

smwizard.bin JPL module made public by client screens created by the
screen wizard

JPL files JPL files used by client screens

Graphics files Image files (e.g., *.xbm, *.xpm, *.bmp, *.jpg) referenced
on client screens and/or toolbars

styles.sty Transaction manager styles file

common.lib includes:

*cmap.bin config Binary configuration map file (maps Panther fonts to
Motif-specific fonts, etc.).

jif.bin Binary service and queue definition file

*key.bin config Binary key files for mapping physical keys to Panther
logical keys. Omit this file from the library if end-users can
modify key mapping on installation.

msgfile.bin config Contains messages and information used by Panther

*vid.bin config For character-mode only. Binary files that describe
terminal capabilities and attributes to Panther. Omit this
file from the library if end-users can modify video
specifications on installation.

*.fnt config Graph-specific fonts referenced in graphs in your
application; required if supporting UNIX clients

Table F-2 Checklist for contents of Panther UNIX/Motif applications (Continued)

File/Library Found in Panther Description
F-6 Deployment Checklist for JetNet

gdsp util Graph support utility

grafcap config Initialization file for graph support

prorun5.lib config Panther's runtime support library

prorw5.lib config Panther's runtime library for reports

server.lib includes: Not required for two-tier applications

service components Screens that are defined as service components for use on
a server

smwizsrv.bin config JPL module made public by service components created by
the screen wizard

JPL modules JPL code used by service components

smvars.bin config Binary environment setup file. Copy and modify for your
application.

swsdrvr util Graph support utility

library directory
contents:

JetNet shared libraries and platform-specific shared
libraries. Platform-specific libraries have a unique
extension; refer to your platform documentation to
determine the extension. For example, for Solaris, the file
extension is .so and for HPUX on PA-RISC, it is .sl.

libbuft.pltExt lib

libfml.pltExt lib

libfml32.pltExt lib

libgp.pltExt lib

libnwi.pltExt lib

libnws.pltExt lib

libqm.pltExt lib

libtmib.pltExt lib

Table F-2 Checklist for contents of Panther UNIX/Motif applications (Continued)

File/Library Found in Panther Description
JetNet/Oracle Tuxedo Guide F-7

libtux.pltExt lib

libtux2.pltExt lib

libusort.pltExt lib

libwsc.pltExt lib

libwsh.pltExt lib

locale/C directory contents:

Routines used by JetNet

CMDTUX_CAT locale/C

GP_CAT locale/C

LIBTMIB_CAT locale/C

LIBTUX_CAT locale/C

TMADMIN_CAT locale/C

WSNAT_CAT locale/C

udataobj directory contents:

mib_views.V udataobj JetNet-specific file

tmib_views.V udataobj JetNet-specific file

tpadm udataobj JetNet-specific file

Table F-2 Checklist for contents of Panther UNIX/Motif applications (Continued)

File/Library Found in Panther Description
F-8 Deployment Checklist for JetNet

INDEX
Index

A

Accessors
maximum number for machine 3-13

Advertise and Unadvertise Events 6-8
Advertise event 6-8

built-in handlers 6-10
handler contract 6-9

Application
booting from command line A-5
configuring middleware 3-1
libraries 2-3
packaging checklist F-2

Motif/UNIX F-5
Windows F-2

setting up
JetNet E-1

shutting down from command line A-9
Application components

activating and deactivating 4-2
adding and deleting 3-6
editing properties 3-7
forcibly deactivating 4-5
interaction 1-3

Application configuration properties 3-7
Application directory 2-2, 3-14
Application Name property 3-8
Application Password property 3-12
Application server

defined 1-3

Application-level event scope
advertise handlers 6-9
exception handlers 6-12
jif_changed handlers 6-16
message handlers 6-19
post_request handlers 6-21
post_service handlers 6-25
pre_request handlers 6-21
pre_service handlers 6-25
request_received handlers 6-22
server_exit handlers 6-24
unadvertise handlers 6-9
unload handlers 6-29

ASCII output
JetNet configuration file A-4

Auto Advertised Services option 3-23

B

Backup master machine 3-8
BBL 1-3
Blocking timeout

setting default 3-12
Built-in handlers 6-6

advertise events 6-10
exception events 6-15
jif_changed events 6-17
message events 6-20
post_requests events 6-21
post_service events 6-28
JetNet/Oracle Tuxedo Guide I-1

Index
pre_request events 6-21
pre_service events 6-27
request_received events 6-23
server_exit events 6-24
unadvertise events 6-10
unload events 6-31

Built-in services 7-1

C

Cache Service Containers property 3-27
Client

environment 2-8
Client authentication

setting application password 3-12
Client connection

enabling 2-8
Client events 6-1
Client Timeout property 3-18
Client/server

comparison 1-1
clnt2svr A-2, B-1

and transaction model 7-1
Conversion utilities

rb2asc A-4

D

Data transport buffers 8-1
Database Connect String property

for conversion server 3-26
for standard server 3-26

Database connections
via server initialization 8-18

DBBL 1-3
Debuggable server

configuring 8-18
Default Blocking Timeout property 3-12
Deployment

directory structure
JetNet/BEA Tuxedo F-1

Dequeue 8-13
Development Server ID property 3-27

E

Enable Cross-Service Calls option 3-23
Enqueue 8-12
Enterprise Bank

design issues C-27
Error messages

JetNet 4-10
Event

post 8-5
subscribe 8-5

Event broker 8-5
example 8-8
used in Enterprise Bank C-1

Event processing
request broker 6-1

Event scope
defined 6-3
jif_changed handler 6-16
message handler 6-19

Exception code property
set in exception handler 6-11

Exception event 6-11
built-in handlers 6-15
handler contract 6-13
handler scope 6-12
handlers 6-11
severity 6-13
TP_UNLOAD_FAILED 6-30
types of D-1

Exception severity property
set in exception handler 6-12

Exception types D-1
External Network Address property

for workstation connections 3-18
I-2 JetNet/Oracle Tuxedo Guide

Index
F

Firewall
specifying workstation listener 3-18

FML buffers 5-17, 8-2
converted from JAMFLEX 5-18

FML file 5-17

I

Independent queue 8-15
Init Routine property 3-26
Initialization

server 8-17
Installation directory

specifying in configuration file 3-14
IP Address property 3-15
IPC Key property 3-8
IPC resources 2-15

controlling through JetMan configuration 4-9
message queues 2-12
semaphores 2-14
shared memory 2-15

J

JAMFLEX buffers
converting to FML 5-18

JDB
in Enterprise Bank C-1

JetNet
setting up application E-1

JetNet configuration file
application properties 3-7
ASCII/binary conversion A-4
changing selection 3-7
creating with JetNet manager 3-2
creating with rbconfig A-6
defined 1-3
editing 3-5
machine properties 3-12

server properties 3-19
specifying location 3-14

JetNet manager 3-1
connecting as client 4-4
disconnecting from application 4-5
setting default configuration file 3-2

JetNet utilities
rbboot A-5
rbconfig A-6
rblisten A-7
rbshutdown A-9

jetrb1
modifying 7-2

JIF
invoking service with 5-12
reliable queue identification 8-14

Jif_changed event 6-15
built-in handlers 6-17
handler contract 6-17

L

Library
setting shared access for workstation client

setting shared access for client 2-8
Listener Port property

for machine listener process 3-15
Listener process

specifying port 3-15
starting A-7

Load Balancing property 3-11
Local JetNet Configuration File property 3-14
Log file

JetNet 4-10

M

Machine
activating and deactivating 4-4
adding to application configuration 3-6
listener port 3-15
JetNet/Oracle Tuxedo Guide I-3

Index
maximum number in configuration 3-10
removing from application configuration 3-6

Machine configuration properties 3-12
network settings 3-15

Machine environment file
required entries 2-5

Master machine
reassigning 3-8
reassigning in active application 4-7

Max Accessors property 3-13
Max Machines property 3-10
Max Server Processes property 3-10
Max Servers property 3-11
Max Services property 3-11
Memory model property 3-8
Message

dequeuing 8-13
enqueuing 8-12
queue 8-11

Message event 6-17
built-in handlers 6-20
handler contract 6-19

Message queuing
in Enterprise Bank C-1
setting resources 2-12

Middleware configuration file
defined 2-10

Min Handlers property 3-18
Minimum Instances property 3-20
Motif

deploying application F-5
Multiprocessor property 3-13

N

Name property
for machine 3-13
for server 3-20

Network Device property 3-15
Network settings

in machine configuration 3-15

P

Panther Install Directory property 3-14
Partial command 7-2, B-4
Password

setting for application 3-12
Post_request event 6-20

built-in handlers 6-21
handler contract 6-21
handlers 6-20

Post_service event 6-25
built-in handlers 6-28
handlers 6-25

Pre_request event 6-20
built-in handlers 6-21
handler contract 6-21
handlers 6-20

Pre_service event 6-25
built-in handlers 6-27
handlers 6-25

Public module
for service routines 5-13

Q

Queuespace 8-14

R

rb2asc A-4
rbboot A-5
rbconfig A-6
rblisten A-7
rbshutdown A-9
Reliable queue 8-11

example of 8-15
identifying 8-14

Report service
configuring standard server to advertise 3-23

Request broker
and client 7-1
I-4 JetNet/Oracle Tuxedo Guide

Index
and transaction control 7-3
events 6-1

Request broker event handlers 6-5
advertise events 6-9

contract 6-9
built-in 6-6
default handlers 6-7
exception events 6-11

contract 6-13
installing 6-3
jif_changed events 6-16

contract 6-17
message events 6-17

contract 6-19
post_request events 6-20

contract 6-21
post_service events 6-25

contract 6-26
pre_request events 6-20

contract 6-21
pre_service events 6-25

contract 6-26
request_received events 6-22

contract 6-23
server_exit events 6-24

contract 6-24
unadvertise events 6-9

contract 6-9
unload events 6-29

contract 6-29
Request broker events

default handlers 6-7
generated from within a handler 6-5
types 6-1

Request_received event 6-22
built-in handlers 6-23

Request-level event scope
exception handlers 6-12
unload handlers 6-29

S

Sample application
Enterprise Bank C-1

Semaphores
setting parameters 2-14

Server
activating and deactivating 4-4
adding and removing instances 4-6
adding to application configuration 3-6
balance load distribution among 3-11
connecting to database 3-26
enabling to request services 3-23
error output to stderr 4-10
initialization routine 3-26
initializing 8-17
maximum allowed in application 3-11
maximum processes allowed in application

3-10
message forwarding 8-11
options 8-17
removing from application configuration 3-6
restart frequency 3-21
setting advertised services 3-23
types 3-20

Server configuration properties 3-19
Server environment file 2-3

format 2-5
required entries 2-6
specifying for server 3-14, 3-21

Server Environment Variable File property 3-14,
3-21
Server events 6-1
Server Executable option

for standard server 3-23
Server Executable property

for conversion server 3-26
Server executables

specifying for conversion server 3-26
specifying for standard server 3-23
types 2-2
JetNet/Oracle Tuxedo Guide I-5

Index
Server initialization
example in Enterprise Bank C-28

Server instances
adding and removing 4-6
initial number 3-20

Server library
creating via clnt2svr B-1

Server Restart Frequency property 3-21
Server Type property 3-20
Server_exit event 6-23

built-in handlers 6-24
handler contract 6-24

Service
aborting 6-25
adding to service group 5-14
built-in 7-1

limitations 7-2
components of 5-2
creating 5-5
defining in JIF 5-4
in transaction model 7-1
initiating 5-8, 5-12

Service container 5-3
and JPL 5-12
creating 5-5
creating via clnt2svr B-1
editing 5-7

Service containers
caching for conversion server 3-27

Service group 5-13
adding service to 5-14

Service messages
argument types 5-15
default mapping of output data 5-16
defining argument types 5-19
FML arguments 5-17
forwarding 8-5
listing buffer fields 5-16
NULL arguments 5-17
STRING arguments 5-18

Service properties 5-5

Service queue 8-14
Service request

forwarding 8-5
Service routine 5-2, 5-9
Services

advertising automatically 3-23
maximum allowed advertised in application

3-11
Severity

of exception events 6-13
Shared memory

setting resources 2-15
Shared Memory Protection property 3-12
sm_tp_advertise_cond_winopen 6-10
sm_tp_advertise_ignore 6-10
sm_tp_advertise_log 6-10
sm_tp_advertise_winopen 6-10
sm_tp_exception_no_change 6-15
sm_tp_exception_print_all 6-15
sm_tp_exception_print_warning 6-15
sm_tp_exception_promote_error 6-15
sm_tp_jif_changed_ignore 6-17
sm_tp_jif_changed_read 6-17
sm_tp_message_ignore 6-20
sm_tp_message_print_string 6-20
sm_tp_post_request_ignore 6-21
sm_tp_post_service_ignore 6-28
sm_tp_post_service_winclose 6-28
sm_tp_post_service_windeselect 6-28
sm_tp_pre_request_ignore 6-21
sm_tp_pre_service_ignore 6-28
sm_tp_pre_service_winopen 6-28
sm_tp_pre_service_winopen_or_select 6-28
sm_tp_pre_service_winselect 6-28
sm_tp_request_received_ignore 6-23
sm_tp_request_received_jif_check 6-23
sm_tp_server_exit_ignore 6-24
sm_tp_server_exit_log_down 6-24
sm_tp_unadvertise_cond_winclose 6-10
sm_tp_unadvertise_ignore 6-10
sm_tp_unadvertise_log 6-10
I-6 JetNet/Oracle Tuxedo Guide

Index
sm_tp_unadvertise_winclose 6-10
sm_tp_unload_call_origin 6-31
sm_tp_unload_immediate 6-31
SMRBHOST 2-9
SMRBPORT 2-9
Status window

in JetNet manager 4-10
STRING data transport buffer 8-3
STRING message arguments 5-18

T

Three-tier applications
conversion from 2-tier B-1

Three-tier architecture
sample application C-1

TMQFORWARD 8-12, 8-14
TMQUEUE 8-12
TMSYSEVT 8-6
TMUSREVT 8-6
TP_COMMAND 6-14
TP_CONNECTION 6-14
TP_ERROR 6-14
TP_INFORMATION 6-13
TP_MESSAGE 6-14
TP_NONE 6-13
TP_PANIC 6-15
TP_REQUEST 6-14
TP_TRANSACTION 6-14
TP_WARNING 6-14
Transaction

control and request broker 7-3
Transaction control 8-3
Transaction model

for request broker
modifying 7-2

Transaction-level event scope
exception handlers 6-12
unload handlers 6-29

TUXEDO 8-1
setting up application E-1

U

ULOG file 4-10
Unadvertise event 6-8

built-in handlers 6-10
handler contract 6-9

UNIX
deploying application F-5

UNIX kernel
setting for Panther application 2-15

Unload event 6-28
built-in handlers 6-31

Unnamed procedure
for service routine 5-12

Utilities
clnt2svr A-2, B-1
rb2asc A-4
rbboot A-5
rbconfig A-6
rblisten A-7
rbshutdown A-9

W

Web applications
specifying firewall access 3-18

Windows
deploying application F-2

Workstation client
connecting to application 1-4
defined 1-2
environment 2-8
idle time allowed 3-18

Workstation handler
minimum available on machine 3-18
timing out idle client 3-18

Workstation listener process
specifying network address 3-18
JetNet/Oracle Tuxedo Guide I-7

Index
X

XA transactions 8-3
I-8 JetNet/Oracle Tuxedo Guide

	Contents:
	About This Document
	What You Need to Know
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Enterprise Model and Implementation
	Three-Tier Processing
	Three-Tier Application Components
	Workstation Connections
	Multi-Machine Configuration
	Web Application Server

	Panther Development Environment
	Administration Tools

	2 Setting the Enterprise Environment
	Setting Up the Enterprise Directory
	Server Executables
	Application Libraries
	Environment Files

	Setting the Environment
	UNIX Environment
	Windows Environment
	Environment File Settings
	Machine Environment File
	Server Environment File

	Interfacing with SCCS/PVCS
	SMVARS Settings

	Setting Up the Client Environment
	Workstation Clients
	Setting Access to Libraries
	Enabling Client Connections

	Native Clients

	Middleware Configuration File
	Setting IPC Resources
	Messages
	UNIX
	Windows

	Semaphores
	UNIX
	Windows

	Shared Memory Requirements
	UNIX
	Windows

	3 Configuring the Enterprise
	Using the JetNet Manager
	Creating a Configuration File
	How to Create a Basic Configuration File

	Editing a Configuration File
	Adding and Deleting Components
	Editing Components
	Selecting Another Enterprise's Configuration

	Setting Enterprise Properties
	General Settings
	How to Assign or Reassign Machines Roles

	Advanced Settings
	Setting Machine Properties
	Network Settings
	Workstation Connections

	Setting Server Properties
	Server Details
	Standard Server
	Conversion Server
	File Access Server

	4 Managing the Enterprise
	Monitoring an Enterprise
	Activating and Deactivating Components
	Enterprise Application
	Machine
	Servers

	Connecting and Disconnecting
	Forcibly Deactivating Components
	Adding and Deleting Components
	Adding and Removing Server Instances
	How to Add a Server Instance
	How to Remove a Server Instance

	Changing Machine Roles
	Recovering From Master Machine Failure
	Reassigning Master and Backup Machines

	Disabling and Reenabling Workstation Connections
	Handling Load
	Status and Error Messages

	5 Defining Services in JetNet and Oracle Tuxedo Applications
	Services
	Service Routine
	Service Component
	JIF Service Definition
	Optional Service Attributes

	Creating Graphical Services
	Creating Services with the Screen Wizard
	Building Services with the Screen Editor
	Modifying Service Components

	Initiating a Service
	Using Service Aliases to Test Services
	Writing Service Routines
	Storing and Invoking JPL Service Code
	Service Code and Service Components
	JIF-Invoked Services
	Public Services

	Service Groups
	Criteria for Grouping Services
	Adding Services to Existing Service Groups

	Service Messages and Data Types
	Buffer Data Types
	Default Mapping
	NULL Arguments
	Arrays
	FML and FML32 Buffers
	Converting from JAMFLEX to FML

	STRING Data Types
	Setting Service Message Types

	6 JetNet/Oracle Tuxedo Event Processing
	Event Sequence
	Handler Scope and Installation
	Writing Event Handlers
	Events Generated within Handlers

	Built-in Handlers
	Advertise and Unadvertise Events
	Advertise and Unadvertise Handlers
	Scope
	Contact
	Returns
	Built-in Handlers

	Exception Events
	Exception Handlers
	Exceptions within an Exception Handler
	Scope
	Contract
	Returns
	Exception Severity Codes
	Built-in Handlers

	Jif_changed Events
	Jif_changed Handlers
	Scope
	Contract
	Returns
	Built-in Handlers

	Message Events
	Message Handlers
	Recognizing the Message Source
	Scope
	Contract
	Returns
	Built-in Handlers

	Pre_request and Post_request Events
	Pre_request and Post_request Handlers
	Scope
	Contract
	Returns
	Built-in Handlers

	Request_received Events
	Request_received Handlers
	Scope
	Contract
	Returns
	Built-in Handlers

	Server_exit Events
	Server_exit Handlers
	Scope
	Contract
	Returns
	Built-in Handlers

	Pre_service and Post_service Events
	Pre_service and Post_service Handlers
	Scope
	Contract
	Returns
	Example
	Built-in Handlers

	Unload Events
	Unload Handlers
	Scope
	Contract
	Returns
	Example
	Built-in Handlers

	7 Transaction Model for JetNet
	Built-in Services
	Modifying the Model
	Service Limitations
	Server Processing
	Transactional Control

	8 Oracle Tuxedo Features
	Service Data Buffer Types
	FML and FML32 Buffers
	STRING Buffers

	XA Transaction Management
	Message Forwarding
	Event Brokering
	How to Use the Event Broker
	Accessing the Event Broker
	Example: Stock-change Event
	Example: Enterprise Bank
	Posting and Subscribing
	Unsubscribing

	Reliable Queues
	To use reliable queues:
	Enqueuing a Message
	Dequeuing a Message
	Defining Reliable Queues
	To identify and access queues (and their queuespaces):
	Service Queues
	Independent Queues
	Example

	Initializing Servers

	A Administration Utilities
	clnt2svr
	Description
	rb2asc
	Description
	rbboot
	Description
	rbconfig
	Description
	rblisten
	Description
	rbshutdown
	Description

	B Converting to a Three-tier Application
	Converting an Application from Two- to Three-Tier
	Property Settings

	Requirements for Running a Converted Application
	Ensuring Usability

	Enhancing a Converted Application

	C Enterprise Bank
	The User's View of Enterprise Bank
	Running Enterprise Bank

	Enterprise Bank Customer ATM Client
	Starting the Customer ATM Client
	ATM Services
	Security Violation Alert

	Customer Selections
	Make a Deposit
	Make a Withdrawal
	Withdrawal Limit Exceeded
	Transfer
	Bank News
	Balance Inquiry
	Exit Customer Services

	The Enterprise Bank Employee Client
	Starting the Bank Employee Client
	Employee Services
	Accounts Menu Option
	Display a Complete List of Accounts
	Display a Single Account
	Examine a Customer’s Accounts

	Select an Account for Maintenance
	Customers Menu Option
	Display a Complete List of Customers
	Display a Single Customer
	Update Customer Information
	New Customer Mailings

	The Enterprise Bank Administrator Client
	Starting the Bank Administrator Client
	Administrator Services
	Accounts Menu Option
	Post Interest to Accounts
	Modify an Account Type

	Customers Menu Option
	Personnel Menu Option
	Display a List of Employees
	Add/Update or Delete an Employee
	Select an Employee for Maintenance

	Broadcasting a Message
	Broadcast a Message

	Designing Enterprise Bank

	D JetNet/Oracle Tuxedo Exception Event Types
	E Application Setup Checklist
	Setting Up the Application Server
	Populate the Application Directory
	Unix Environment
	Windows Environment

	Configure the Middleware
	Create a Configuration File
	Configure Each Server

	Start the Application Server
	Stop the Application Server

	Setting Up the Workstation Client

	F Deployment Checklist for JetNet
	Directory Structure for JetNet Applications
	Checklist for Deployment
	Preparing a Windows Distribution
	Preparing a UNIX Distribution

	Index

