
TABLE OF
CONTENTS
Contents:

About This Document

Introducing Panther

Introducing the Tutorial

Module 1—Preparing the Server and the Client

1. Setting Up the Server

2. Configuring the Servers

3. Setting Up the Client

4. Defining a Test Service

5. Setting Up the Web Application Server

Module 2—Creating and Testing Screens

6. Creating a Repository

7. Using the Screen Wizard

8. Defining Services

9. Testing the Screens

10. Setting Properties to Query the Database

Module 3—Connecting the Screens

11. Enhancing the Screen
Getting Started - JetNet/Oracle Tuxedo i

12. Inheriting from the Repository

13. Writing and Executing JPL

14. Customizing Screen Behavior

Module 4—Extending the Application

15. Implementing Selection Screens

16. Calculating Data from Database Values

17. The Finale

A. Setting Up the Tutorial

B. Troubleshooting

Index
ii Getting Started - JetNet/Oracle Tuxedo

Panther
Getting Started

JetNet/Oracle Tuxedo

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
Documentation Website .. xiii

How to Print the Document... xiv

Documentation Conventions ... xiv

Contact Us! .. xvi

Introducing Panther
About Panther..1

Solutions and Application Scalability ...2
Simple Applications Use a Two-Tier Solution ..2
Enterprise-wide Applications Use a Three-Tier Solution3
Web Applications...5

Product Components ...6

Visual Object Development ..8
Editor ..9
Screen Wizard Development..9
Repository ..9
Menu Bar Editor...10
Styles Editor ...10
JIF Editor..11
Debugger ..11

Development Tools ...11
Source Control Support ..12
Programming Interfaces ...12
Built-in SQL Database ...13
Getting Started - JetNet/Oracle Tuxedo iii

Database Connectivity... 14

Behind the Screens ... 14
Transaction Manager ... 14
Middleware Support .. 16

JetNet.. 16

Oracle Tuxedo .. 17

COM/MTS ... 17

IBM WebSphere... 18

Introducing the Tutorial
About this Tutorial.. 1

Accessing Lessons in the Tutorial... 3
About Each Module... 3

Module 1—Preparing the Server and the Client 3

Module 2—Creating and Testing Screens ... 5

Module 3—Connecting the Screens... 7

Module 4—Extending the Application .. 8

Hints for Completing the Tutorial .. 9

Before You Start ... 10

For More Information... .. 10

Module 1—Preparing the Server and the Client

1. Setting Up the Server
UNIX Application Server .. 1-2

Create an application directory... 1-2

Edit the environment setup file... 1-3

Get new application components.. 1-4

Get tutorial components ... 1-5

Define the server environment ... 1-5

Link to the server executables .. 1-5

Create a middleware configuration file .. 1-7

Name the application.. 1-8

Get the machine’s name and configuration file.. 1-9

Get the machine’s port number .. 1-10

Provide the configuration file’s location .. 1-11
iv Getting Started - JetNet/Oracle Tuxedo

Boot the application ... 1-11

Connect to the application.. 1-13

If you take a break.. 1-15

To resume the tutorial .. 1-15

To continue the tutorial .. 1-15

Windows Application Server .. 1-16

Create an application directory .. 1-16

Get new application components ... 1-16

Get tutorial components ... 1-17

Define the server environment ... 1-17

Copy the server executables ... 1-18

Start the JetNet manager .. 1-19

Create a middleware configuration file .. 1-20

Name the application.. 1-20

Get the machine’s name and configuration file 1-21

Get the machine’s port number .. 1-23

Provide the configuration file’s location.. 1-24

Boot the application ... 1-25

Connect to the application.. 1-26

If you take a break.. 1-27

To resume the tutorial .. 1-28

What did you do? ... 1-28

What did you learn? ... 1-29

2. Configuring the Servers
Add servers to the application.. 2-2

Configure the standard server .. 2-2

Define server properties ... 2-3

Configure the file access server ... 2-5

Activate servers .. 2-6

If you take a break.. 2-7

What did you do? ... 2-7

What did you learn? ... 2-7
Getting Started - JetNet/Oracle Tuxedo v

3. Setting Up the Client
UNIX Client .. 3-2

Apply environment settings.. 3-2

Connect to the middleware... 3-3

Open a library and access library members.. 3-4

Save members to appropriate libraries ... 3-7

If you take a break .. 3-7

To continue the tutorial .. 3-8

Windows Client ... 3-8

Edit initialization files .. 3-8

Connect to the middleware... 3-9

Open a library and access library members.. 3-11

Save members to appropriate libraries ... 3-13

If you take a break .. 3-14

What did you do?.. 3-14

What did you learn?.. 3-14

4. Defining a Test Service
Invoke the JIF editor... 4-2

Define a service by connecting to the middleware..................................... 4-3

Are you connected? .. 4-6

For the next lesson.. 4-7

What did you do?.. 4-7

What did you learn?.. 4-7

5. Setting Up the Web Application Server
Before starting this lesson .. 5-2

Start the Web Setup Manager... 5-3

Enter the program locations.. 5-4

Check the settings for your Web Application Server................................. 5-6

General environment settings ... 5-10

3-Tier Configuration... 5-14

Specify database settings and workstation jserver 5-16

Add JPL routines to the client library... 5-18

Change permissions of shared files (UNIX only) 5-21
vi Getting Started - JetNet/Oracle Tuxedo

Test the connection... 5-22

Stop and restart server after making any changes 5-23

Shut down the server .. 5-23

What did you do? ... 5-24

What did you learn? ... 5-24

Module 2—Creating and Testing Screens

6. Creating a Repository
Connect to the middleware... 6-2

Create a repository ... 6-5

Connect to the database.. 6-6

Import database tables.. 6-7

View repository contents.. 6-9

What did you do? ... 6-10

What did you learn? ... 6-10

7. Using the Screen Wizard
Open the repository .. 7-2

Create screens with the screen wizard.. 7-2

Specify the contents of the master section ... 7-5

Define the detail columns... 7-5

Specify application architecture ... 7-8

Determine service operations ... 7-9

Customize the output screen .. 7-10

Save the screens ... 7-11

What did you do? ... 7-15

What did you learn? ... 7-16

8. Defining Services
Invoke the JIF Editor.. 8-2

Define a service.. 8-4

What did you do? ... 8-6

What did you learn? ... 8-6
Getting Started - JetNet/Oracle Tuxedo vii

9. Testing the Screens
Access test mode .. 9-3

View data.. 9-4

Edit the data.. 9-5

Save the changes... 9-6

Add a new record.. 9-6

What did you do?.. 9-8

What did you learn?.. 9-9

10. Setting Properties to Query the Database
Using the Properties window.. 10-3

Change properties locally ... 10-5

Edit the service component .. 10-8

View specific records ... 10-8

What did you do?.. 10-11

What did you learn?.. 10-11

Module 3—Connecting the Screens

11. Enhancing the Screen
Access table view properties .. 11-5

Update the JIF... 11-8

Resize the screen .. 11-9

Move widgets ... 11-10

Open a repository entry .. 11-10

Copy widgets .. 11-11

Name the widgets ... 11-14

Define the query fields ... 11-14

Synchronize the service component ... 11-16

Query the database ... 11-17

What did you do?.. 11-18

What did you learn?.. 11-18

12. Inheriting from the Repository
Define user input .. 12-2
viii Getting Started - JetNet/Oracle Tuxedo

Define what the user sees ... 12-4

Propagate changes to screens and service components............................ 12-5

Edit inherited property values .. 12-6

Create a push button widget ... 12-8

Define push button behavior .. 12-10

Create a buttons repository entry ... 12-11

What did you do? ... 12-12

What did you learn? ... 12-13

13. Writing and Executing JPL
Write a procedure to access a distributor’s orders 13-3

Write a procedure to receive data... 13-6

Generate a unique ID number .. 13-11

Insert the ID in the Database .. 13-13

Invoke the hook function on the server .. 13-14

Write a hook function for the client event.. 13-16

Invoke the hook function for the client event .. 13-17

Add a new database record... 13-18

View orders .. 13-21

What did you do? ... 13-22

What did you learn? ... 13-22

14. Customizing Screen Behavior
Add double-click functionality... 14-1

Write a screen entry function that executes only on screen exposure...... 14-3

Test the JPL.. 14-5

What did you do? ... 14-7

What did you learn? ... 14-7

Module 4—Extending the Application

15. Implementing Selection Screens
Join multiple tables... 15-2

Add details from another table ... 15-3

Generate selection screens ... 15-5

Save the wizard output ... 15-8
Getting Started - JetNet/Oracle Tuxedo ix

Define link and validation services .. 15-9

Test the selection screen... 15-9

Validate the data ... 15-12

What did you do?.. 15-13

What did you learn?.. 15-14

16. Calculating Data from Database Values
Add a column to the grid widget .. 16-3

Define a currency format.. 16-4

Define a math expression (for server processing) 16-4

Add the widget to a table view ... 16-6

Calculate results on the server.. 16-10

Calculate results on the client... 16-11

Update totals on transaction manager events ... 16-12

Delete a detail record.. 16-12

Validate client data ... 16-15

Clearing data in a virtual field .. 16-17

Update a detail record... 16-18

Connect two screens ... 16-20

What did you do?.. 16-21

What did you learn?.. 16-21

17. The Finale

A. Setting Up the Tutorial

B. Troubleshooting
Error Files ... B-1

Setup and Connection Problems... B-2

Starting the application or servers ... B-2

Booting the application .. B-2

Activating a server ... B-2

Setting up the Web application server.. B-3

Starting the client... B-3

Starting a UNIX client.. B-3

Connecting the client ... B-3
x Getting Started - JetNet/Oracle Tuxedo

Connecting to the server remotely ..B-3

Connecting to the server locally..B-4

Accessing remote libraries ..B-4

Index
Getting Started - JetNet/Oracle Tuxedo xi

xii Getting Started - JetNet/Oracle Tuxedo

PREFACE
About This
Document

Getting Started serves as an introduction to Panther JetNet/Tuxedo Edition, offering
an introduction to the Panther software and development process. It describes the
features of Panther as an enterprise-wide development tool and gives step-by-step
instructions for building a three-tier Panther JetNet application. This includes
directions for setting up servers and clients to provide all Panther users with the
concepts of administering an enhanced client/server environment.

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/index.htm.
Getting Started - JetNet/Oracle Tuxedo xiii

http://docs.prolifics.com/panther/index.htm

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.
xiv About This Document

https://get.adobe.com/reader/otherversions/
https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
Getting Started - JetNet/Oracle Tuxedo xv

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xvi About This Document

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20Getting%20Started%20JetNet/Oracle%20Tuxedo

OVERVIEW
Introducing Panther

About Panther

Panther is a framework for component-based development that gives you a powerful
tool for leveraging a hybrid application development approach—for increased
speed-to-market, flexibility, integration, portability, reuse and enhanced
responsiveness to business needs. Key features include:

! Industry standard component models—Panther supports industry-standard
component models, EJBs and COM+, and simple conversion from one model to
another. Panther also makes it easy for developers to use off-the-shelf COM
components, ActiveX controls and JavaBeans enabling shortened development
cycles, easier application maintenance and faster time-to-market.

! OTMs—Panther makes it easy for developers to build server components for
use with OTMs, the component-based counterpart to TP middleware. Panther
includes adapters for IBM WebSphere Application Server and Microsoft
Transaction Server (MTS). That makes Prolifics the first and (at least for now)
the only vendor to offer a solution that provides seamless integration with
multiple industry-standard OTMs. So now developers can build and deploy
reusable components for the most complex transaction processing applications
faster than ever without being restricted to a proprietary development solution.

! Web Development—Panther's robust development capabilities and powerful
application server mean that developers can construct web applications quickly
using prebuilt components and Panther objects encapsulated in their own
custom HTML. Leapfrogging over application servers that enable only web
development, Panther offers a complete environment featuring all the tools
Getting Started - JetNet/Oracle Tuxedo 1

Solutions and Application Scalability
necessary for development, application integration and full-scale deployment.
With Panther's integrated application server, developers can dynamically create
HTML and build business logic completely in Java for enterprise-scale web
applications.

The Panther framework contains a series of Panther software components, packaged
in the following editions, to help you build enterprise-wide and web-based applications
using the database of your choice:

! 2-Tier—Contains support for building applications using a two-tier architecture.
Windows applications can also use COM components in their applications and
deploy them using COM, COM+, DCOM, or MTS.

! 3-Tier JetNet—Contains support for JetNet, Panther's middleware product.

! 3-Tier Oracle Tuxedo—Contains support for Oracle Tuxedo, the leading TP
monitor middleware from Oracle systems.

! 3-Tier WebSphere—Contains support for building and deploying EJB
components for IBM's WebSphere Application Server.

Solutions and Application Scalability

With Panther software, you can build small, departmental-sized applications using
traditional client/server principles as well as larger, high-demand enterprise-wide
applications that require a more sophisticated, three-tier client/server architecture. In
addition, you can build database applications that run on an intranet or the Internet.
Panther's editor and screen wizard provide a visual environment in which to create
your application's interface and business logic.

Simple Applications Use a Two-Tier Solution

The two-tier client/server model typically separates data from the logic of an
application. The database server stores the application data while the client screens
contain the business and programming logic and process user input.
2 Introducing Panther

Solutions and Application Scalability
Figure 1 In two-tier architecture, each client has direct connection to the
database server.

For small and departmental-sized applications, a two-tier solution can be the best
alternative. With Panther software, you can build such applications and quickly test the
interface and database connectivity. As the application requirements grow or the
number of users grows, you can convert simple client/server processing to a more
enhanced and enterprise-wide application.

Enterprise-wide Applications Use a Three-Tier Solution

Larger, enterprise-wide applications can be built quickly and easily with Panther. The
interface you create is defined, in Panther terms, as the client. Essentially, the clients
are processes which directly interact with the user. A client takes user input, packages
it into a request for the middleware, and sends the request off. The middleware
forwards the request to the Panther application server process which then implements
that business logic. A client also receives replies from services and then presents the
data to the user.
Getting Started - JetNet/Oracle Tuxedo 3

Solutions and Application Scalability
Figure 2 The client requests a service and the appropriate server responds.

In the three-tier or enhanced client/server model, the backend server is known as the
resource manager, and is most often a database. The layer between client and backend
server is the application server. This server handles the business logic of the
application and doesn't need to reside at the client end. Hence, the client is responsible
for user interactions, and the application server is responsible for providing
business-level services and interacting with the resource manager as needed.

Figure 3 Three-tier clients have a connection to the database by way of the
Panther application server.

Three-tier solutions address the needs of large-database users supporting many access
points, usually in an open systems, client/server computing environment. Such
transaction-processing applications are characterized by:

! High throughput, volume, and performance.
4 Introducing Panther

Solutions and Application Scalability
! Continuous real-time processing.

! A need to provide highly secured access to data and detailed control over its
availability.

! Requirements for mechanisms that preserve transactional integrity and provide
fast, reliable recovery.

The central component of a three-tier system is the middleware that manages
communication among the components. Panther provides the tools you need to design
and define the services that enable a transaction processing system to function in
accordance with the application's requirements.

Web Applications

Your application can be deployed on the Internet or on an intranet. In three-tier
applications, the web application server acts as a Panther client, submitting service
requests for any data to the application server. In two-tier applications, the web
application server has a direct connection to the database.

Figure 4 In Panther web applications, the web application server generates
HTML for your web client screens.
Getting Started - JetNet/Oracle Tuxedo 5

Product Components
Product Components

Panther is a framework providing you with everything you need for building n-tier
client/server applications:

! Panther development tools:

" Editor—A graphical environment for creating screens, reports, and service
components, using widgets such as push buttons and data entry fields.
Wizards are available to guide you through the process of creating screens
or reports that access database information.

" Visual object repository—A central library for creating, storing, and
accessing objects used in building your application, allowing you to control
and reuse them. In addition to screens and their objects, the repository also
stores the properties associated with each object.

" Libraries—A facility for storing all the objects used in an application. To
be visible to the development team, an object must reside in a
shared-access library.

Depending on the product, there can be up to three standard application
libraries, divided according to where their members are accessed: client
libraries contain application components that make up the user interface;
server libraries contain server functions and service components required in
three-tier processing; and common libraries contain components needed
application-wide.

" Menu bar editor—For designing menu bars and toolbars.

" Testing environment and built-in debugger.

" Networked library and repository access for cohesive and controlled
software development. This includes repository-stored application objects,
interfaces to third-party source control (PVCS; SCCS and those with
MSSCCI support), and, for some products, access to libraries on remote
machines.

! Panther deployment tools:
6 Introducing Panther

Product Components
" Programming options—You can use JPL (Panther's scripting language with
a C-like syntax), Java or C to add programming logic to your screens,
service components, and reports. All Panther objects and their properties
can be accessed and modified programmatically through JPL modules, Java
methods, or C function calls.

" Styles editor—For assigning styles that define an object's color and
protection based on the current transaction.

! Database access and support, including:

" Database drivers for your specific database engines.

" Ability to import database definitions into a repository.

" JDB database—A single-user SQL database. JDB can be used as a
prototyping tool to test and refine multi-user database applications without
requiring an external database.

" Transaction Manager—A runtime component that performs the processing
needed to view and update database information. The transaction manager
automatically generates SQL statements from settings stored as screen and
object properties.

! Middleware access and support, including:

" Middleware adapter—A facility to connect to the middleware software
which manages communication between the client and server so that data
can be passed from client to middleware, middleware to server, and back
again.

" Ability to create service components to communicate with your chosen
middleware, JetNet, Oracle Tuxedo, MTS, or WebSphere.

" Runtime support for integration with your chosen middleware product.
Getting Started - JetNet/Oracle Tuxedo 7

Visual Object Development
Visual Object Development

The Panther development environment lets you build, test, and debug your application
without having to recompile, relink, or leave the development workspace.

Figure 5 The editor workspace in Panther.
8 Introducing Panther

Visual Object Development
Editor

The editor is a powerful and fully graphical environment for creating and refining
screens, reports, and service components. It lets you build client/server and distributed
applications simply by dragging and dropping application objects onto Panther
screens.

For information on accessing and using the editor, refer to Chapter 2, “Editor Basics,”
in Using the Editors.

Screen Wizard Development

The screen wizard guides you through the process of building client screens for
two-tier and three-tier applications which incorporate database tables and columns you
import from your database. With the JetNet middleware adapter, the screen wizard can
also build the corresponding service components.

Complex database-oriented screens with full master-detail-subdetail capabilities are
easy to build and can be used immediately—because all the background processing
needed to manage complex database transactions is built-in. The screens can be used
as-is, or serve as a basis for further screen development.

For information on using the screen wizard, refer to Chapter 5, “Screen Wizard,” in
Using the Editors.

Repository

Panther's visual object repository with multi-level inheritance provides an excellent
single point of control over the data elements imported from your database and objects
in a large application. A repository is a development tool that helps you establish a
controlled environment and simplifies application maintenance. In a repository, you
can create, store, and gain access to collections of refined and reusable application
objects, each equipped with a discrete set of display and behavioral attributes called
properties.
Getting Started - JetNet/Oracle Tuxedo 9

Visual Object Development
When you build client screens and service components from repository objects, you
are provided with a comprehensive inheritance mechanism. Panther automatically sets
up inheritance links between the objects you use. Changes to the repository entries are
automatically reflected in screens and service components. Alternatively, inheritance
can be overridden on a property-by-property basis.

For more information, refer to Chapter 11, “Creating and Using a Repository,” in
Application Development Guide.

Menu Bar Editor

Panther's integrated menu bar editor lets you create menus (with pulldowns and
submenus) which can be attached to your screens as menu bars and/or toolbars.
Pulldown menus and their submenus can be nested as deep as you wish. You can
associate menu bars with specific screens or widgets. You can also install a menu bar
as the application-wide default to appear when no other menu bar has been specified.
Menus can also be invoked as popups (by using the right mouse button) from a screen
or field. In addition, Panther's library functions allow you to change a menu bar
dynamically at runtime.

For more information, refer to Chapter 26, “Menu Bar Editor,” in Using the Editors.

Styles Editor

A style is a collection of properties that can be applied to a widget or menu item. The
transaction manager determines, based on the current transaction, what makes the most
sense and what style to apply to application objects. As a user runs your application,
the appearance and behavior changes can provide visual cues, such as graying or
ungraying a push button, to indicate a field's protection or availability. For the most
part, styles can eliminate the need for you to code such property changes. The styles
editor lets you fully customize styles that are automatically applied as needed.

For more information, refer to Chapter 24, “Styles Editor,” in Using the Editors.
10 Introducing Panther

Development Tools
JIF Editor

JetNet and Oracle Tuxedo applications use a JIF, or interface file, to act as the central
facility for service and queue information used in enhanced client/server processing.
The JIF editor lets you define the behavior of your application's services. It provides
an environment for maintaining consistency between services and their invocation by
clients. Via the JIF editor, you can group services for easier assignment to server
instances and better manage your application. Features of the JIF editor also include
automatic generation of service and service call invocation code.

For Oracle Tuxedo applications, the JIF editor also helps you define Oracle Tuxedo
queues for use with enqueue and dequeue operations.

For more information, refer to Chapter 25, “JIF Editor,” in Using the Editors.

Debugger

Panther's built-in debugger lets you visually step through events and scripts, while
setting breakpoints and examining variables. The debugger is linked to the screen
editor so you can easily switch between editing, testing, and debugging sessions. The
debugger is available both on the client and on application servers, providing full
three-tier debugging capabilities.

For more information, refer to Chapter 39, “Using the Debugger,” in Application
Development Guide.

Development Tools

The Panther development environment is equipped with numerous utilities and built-in
capabilities to help eliminate or minimize tedious maintenance tasks. Most of what you
need is completely accessible from within the editor environment. You can:

! Connect to your distributed application.
Getting Started - JetNet/Oracle Tuxedo 11

Development Tools
! Connect directly to your database.

! Use Panther's prototyping database, JDB, to quickly build and test your
database applications.

! Take advantage of Panther's built-in controls for monitoring multi-user access
of shared libraries and their contents as well as use features of your own source
control management system.

! Use Panther's simple, but powerful scripting language to handle almost all of
your programming needs.

Source Control Support

To ensure that all members of your development team have access to the same
information and sets of standards, you want to allow multi-user access with assurances
that write-access to files is controlled and monitored. The editor provides an interface
to your source code management system, specifically SCCS; PVCS and those systems
supporting MSSCCI, to help you maintain libraries and repositories.

In a distributed development environment, you can set up source control archives
which can be accessed remotely; for example, you can use UNIX's SCCS to archive
files which are accessed from a Windows client.

In addition, if you do not use or have a source code management system, the editor
provides a default warning system for controlling concurrent access to shared
application objects during the development process.

For more information about implementing configuration management, refer to
Chapter 10, “Accessing Libraries,” in Application Development Guide.

Programming Interfaces

With Panther, you have a choice of programming options in Panther software
components. You can use JPL (Panther's scripting language with a C-like syntax),
Java, or C to add programming logic to your screens, service components, and reports.

JPL is a powerful scripting language that provides a procedural component to Panther's
event-driven environment. You can write JPL directly in the editor environment using
your preferred text editor.
12 Introducing Panther

Development Tools
In addition to the built-in JPL functions, you can invoke Panther C library functions
and your custom C functions from JPL procedures. Under Windows, you can also
make calls to DLLs directly from your JPL code.

For more information, refer to Chapter 2, “JPL Command Reference,” and Chapter 5,
“Library Functions,” in Programming Guide.

All Panther objects and their properties can be accessed and modified
programmatically through JPL, C, or Java. With the properties API, you can identify
any application object, including the application itself, and get or set its properties at
runtime.

For a list of all Panther properties, refer to Chapter 1, “Runtime Properties,” in Quick
Reference.

Programmers who are skilled in Java will find they can write application business logic
in Java regardless of deployment environment. Panther provides a complete
Java-based object framework and class factory as well as access to many Panther
specific methods for interacting with an application.

For more information, refer to Chapter 21, “Java Event Handlers and Objects,” in
Application Development Guide.

Built-in SQL Database

JDB is a fully integrated, single-user SQL database—a powerful prototyping tool that
lets you test and refine multi-user database applications without the need for an
external database. Use it on your servers, or use on your clients for local storage. If you
have not chosen the database engine for your application or the production database is
not immediately available, you can use JDB. Development can proceed while work
continues on creating a production database.

For more information, start with Chapter 1, “Introduction to JDB,” in JDB SQL
Reference.
Getting Started - JetNet/Oracle Tuxedo 13

Behind the Screens
Database Connectivity

From within the editor you can connect to your database and quickly begin developing
database applications. You can import database table definitions into your
application's repository at the outset of development—and then again whenever the
database schema changes. If your database engine supports views and synonyms, you
can import those as well.

Panther's transaction manager can automatically generate SQL statements thereby
making your application database-independent. However, you can also write your own
SQL. Panther provides the DBMS statements that let you take advantage of your
database's unique features, such as executing stored procedures.

For more information, refer to Chapter 11, “DBMS Statements and Commands,” in
Programming Guide.

Behind the Screens

The most powerful and useful tools in Panther are those that can't be seen. These
runtime features make developing an application, be it two-tier or three-tier, easy and
quick.

Transaction Manager

The transaction manager simplifies the process of building database applications by
letting you invoke database operations and apply transaction-specific control
attributes—without coding.
14 Introducing Panther

Behind the Screens
Figure 6 Application built for three-tier architecture with the screen wizard
takes advantage of the transaction manager to generate service requests.

The transaction manager processes high-level commands related to operations
requested by the end-user. It receives such requests—like view, save, and new—
directly from a client, and from a server (in a three-tier application).

The request is sent to a database-specific transaction model, optimized for your target
database, and a common transaction model. Typically, the models cause Panther to
generate and execute the appropriate SQL statements, pass that to the database and
then carry the results, by way of the application server in three-tier processing, back to
the client, or user.

For more information on the transaction manager, its commands, and how to maximize
its use, start with Chapter 31, “Building a Transaction Manager Screen,” in
Application Development Guide.
Getting Started - JetNet/Oracle Tuxedo 15

Behind the Screens
Middleware Support

In a three-tier architecture, the communication between clients and servers across a
network is managed by middleware software. The middleware adapter is the mediator
between client and middleware and between server and middleware in Panther
three-tier products.

JetNet

Panther's built-in middleware, JetNet, supports:

! Service requests in both synchronous (blocking) and asynchronous
(non-blocking) modes—Multiple outstanding asynchronous requests are
possible, and you can choose to wait for them in several highly flexible ways or
allow Panther to handle service completion implicitly.

! Event handling—At critical points during execution, events are generated.
Panther provides built-in handlers or you can write your own JPL or C routines
to handle these events. Events include:

" Exceptions (informational, warning, and error).

" Receipt of unsolicited messages.

" Initiation and termination of service requests.

" Termination of the Panther application server.

! Message broadcasting and notification—Unsolicited messages from the current
server or other clients can be handled by your own handler routines written in
JPL or C.

The JetNet manager (jetman) provides you with the ability to configure, activate, and
maintain Panther applications in three-tier architecture. The JetNet manager provides
an easy-to-use interface for defining how your application will run—the structure of
your application servers and the communication between the middleware and JetNet.

In addition, the JetNet manager lets you start and stop your application or individual
servers running within the application. It gives you a view into your application—
showing you what clients and services are connected and what they are doing.

Additional command-line utilities are provided:

! rbboot is used to start JetNet and boot up your application servers.
16 Introducing Panther

Behind the Screens
! rbshutdown shuts down JetNet and your application servers.

! rbconfig provides an alternative method for creating a JetNet configuration
file.

! rblisten allows application servers to run on multiple machines.

Oracle Tuxedo

Panther's Oracle Tuxedo version is completely compatible with Oracle Tuxedo and
supports its features. In addition to the JetNet features, the Oracle Tuxedo version
supports:

! Transaction control—Transactions can be demarcated with BEGIN...END
blocks, allowing for the automatic generation of ROLLBACK and COMMIT
commands.

! Stable-storage queuing—Takes advantage of the reliable queue management
feature of Oracle Tuxedo System /Q.

! Event brokering—Clients and servers can subscribe to and post events. Event
notification can be made by unsolicited message to clients, or by initiating a
service call or queueing within Oracle Tuxedo's System /Q feature.

! Oracle Tuxedo-specific data transport buffers—FML, FML32, and STRING
buffer types in addition to Panther's own buffer format (JAMFLEX).

COM/MTS

In Windows applications, you can build COM components in the Panther editor and
deploy those components using COM, COM+, DCOM, or MTS. Those COM
components can be used in a Panther application or be called from other COM-based
applications.

Using MTS to deploy your components allows you to take advantage of the database
connection pooling and transactional support that are built into MTS.

For more information on building and deploying Enterprise JavaBeans in Panther, start
with Chapter 1, “Overview,” in COM/MTS Guide.
Getting Started - JetNet/Oracle Tuxedo 17

Behind the Screens
IBM WebSphere

For IBM WebSphere applications, you can build EJB components in the Panther editor
and deploy them using WebSphere Application Server.

For more information on building and deploying Enterprise JavaBeans in Panther, start
with Chapter 1, “Overview,” in Panther for IBM WebSphere Developer’s Studio.
18 Introducing Panther

OVERVIEW
Introducing the
Tutorial

The tutorial is designed to give you an overview of three-tier application development
for JetNet and Oracle Tuxedo applications—providing you with a general
methodology for enhanced client/server application development.

Whether you are new to Panther software or are already a user, a novice programmer
or an experienced software engineer, you can build this mini-application to learn about
Panther's application development process. In addition, you can use the tutorial's
examples, principles, code, and concepts as a template for your own applications.

About this Tutorial

You are now ready for the feature presentation—get ready to begin the tutorial!

The tutorial is organized into four modules—preparing the client and the server,
creating and testing screens, connecting the screens, and extending the application—
plus a wrap-up, designed to be completed in sequence. An introduction precedes each
module, describing the basic concepts you'll learn and what you can expect to
accomplish as a result of completing the module. Each module includes from one to
five lessons—for a total of 16 lessons.
Getting Started - JetNet/Oracle Tuxedo 1

About this Tutorial
You will start by setting up the three-tier environment. In practice, a project leader
would probably set this up for the development team—the intent here is for you to
become familiar with the process of setting up a three-tier development environment.

Once you have the environment set up, you can begin building your application—
creating three screens that implement some of the functions used to view and update
video distributors and their orders.

The tutorial provides you with a JDB database containing distributor and order data. It
also includes a tutorial library, which contains the client screens, service components,
and JPL modules you'll use in the lessons.

orditm.scr

dstord.scr

dstslect.scr

titles.itm
Client screens (client.lib)

Service containers (server.lib)
2 Introducing the Tutorial

About this Tutorial
Accessing Lessons in the Tutorial

You can click on any of the lessons in the following figure to access that lesson.

Figure 0-1 Lessons in the JetNet Tutorial

About Each Module

Module 1—Preparing the Server and the Client

Module 1 consists of five lessons that guide you through the process of setting up the
Panther software environment to run a three-tier JetNet or Oracle Tuxedo application.
In practice, a project leader would probably set this up for the development team—the
intent here is for you to become familiar with the process of setting up a three-tier
development environment.
Getting Started - JetNet/Oracle Tuxedo 3

About this Tutorial
In the first four lessons, you start up the application and its servers, start up a client,
save screens to their appropriate client and server libraries, define a service in the JIF,
and then try out the client screen to test the connection between client and server. In
the fifth lesson, you set up a Panther web application server and test the same client
screen using a web browser.

On completing this module, you will have a client screen that issues service requests
to a Panther application server and to a Panther web application server.

In the process of setting up the environment, you are introduced to the following
concepts:

Three types of servers are supported by Panther:

! standard servers, which advertise services defined in the JIF (an interface file
containing service information used in client/server processing) and perform
remote processing of reports during runtime

! file access servers, which provide the development team shared access to
libraries and repositories across the network, and also provide file transfer
services during runtime

! conversion servers, which service three-tier applications that have been
converted from a two-tier architecture.

All Panther components, such as screens, menu bars, and so forth, reside in libraries.
The three standard libraries, client.lib, server.lib, and common.lib, contain
objects used by clients, servers, and both, respectively.
4 Introducing the Tutorial

About this Tutorial
Panther applications depend on a number of environment and/or setup variables. These
describe the operating environment—for example, the layout of your system and the
terminal you are using. They also point to the Panther software installation and specific
setup files, and other files required by the application such as libraries. Setup files can
also store variables that control the behavior of a Panther application and how users
interact with it—for example, message display, cursor behavior, and numeric format.

! JetMan, the graphical JetNet manager, provides all the facilities you need to
configure and manage Panther's JetNet middleware. The utilities rbboot and
rbshutdown also provide the ability to quickly start up and shut down a
Panther application.

! All services must be defined in the JIF—an interface file that stores information
about services used by an application.

Panther accesses the JIF whenever it needs to determine the requirements and
specifications of a service. You create and edit JIF files using the JIF editor.

Module 2—Creating and Testing Screens

Module 2 consists of five lessons that start you on the process of building your
application—one that will implement the functions used to view and update a list of
video distributors and their orders. In these lessons, you:

! Create a repository and populate it with imported database objects from the
vidsales database provided with the tutorial.

! Use the screen wizard to create a screen that displays information about the
distributors and their orders.

! Define the services needed to view, update, and add order and distributor
information in the database.

! Test the behavior of your screen.

! Assign properties to the screen objects, and enhance the screen to query the
database using those properties.
Getting Started - JetNet/Oracle Tuxedo 5

About this Tutorial
When you complete the lessons in this module, you will have a client screen that lets
you query the database for specific distributors. In the process of creating the screen,
you are introduced to the following concepts:

! The use of a remote repository for storing database-derived objects used in your
application allows the screen wizard to build screens.

! The screen wizard guides you through the process of creating screens,
prompting you for basic design information that it uses to build fully functional
screens.

! Whenever you create a service component that has service routines, you need to
define the service it will use in the JIF—an interface file that stores information
about services used by an application.

Panther accesses the JIF whenever it needs to determine the requirements and
specifications of a service. You create and edit JIF files using the JIF editor.

! Test mode allows you to test screen attributes and logic, including data
validation, database interactions, and client/server connections. In test mode,
your client screen appears and behaves as it would in the final application.

! The transaction manager knows about the interaction between database tables
and columns from information retrieved from the database during the import
process. It automatically builds the appropriate SQL statements, keeps track of

orditm.scr

dstord.scr

dstslect.scr

titles.itm
6 Introducing the Tutorial

About this Tutorial
data changes, and knows when to activate or deactivate specific widgets on the
client screen.

! Each object in your repository has a set of properties that define its visual and
behavioral attributes, as well as database definitions if the object was derived
from a database. These properties can be used as the basis of a query on the
database.

Module 3—Connecting the Screens

Module 3 consists of four lessons that show you how to improve the appearance,
capabilities, and flow of your application. In these lessons, you:

! Enhance a client screen and its service component by allowing users to search
for distributors by name or ID.

! Apply global and local changes to application objects.

! Write several JPL procedures to send and receive data between screens and to
and from the database.

! Add other capabilities, such as double-click events, to the user interface.

When you have completed the lessons in this module, you will have a second screen,
which you will use to query the database for distributors using either their name or ID,
and to invoke the screen you created in Module 2.

In Lesson 13, you add JPL procedures to your screens. These procedures are provided
in tutorial.lib, and their contents are described in the lesson. If you have additional
questions about the code, you can refer to the comments in the actual JPL procedure,
since the comments are not included in the lesson text.

In the process of creating the query screen, you will be introduced to the following
concepts:

! The editor provides a graphical environment for enhancing screens that were
previously created with the screen wizard, allowing you to alter the size,
position, properties, and so forth, of both the screens and the objects contained
in them.

! The inheritance link between a repository and application objects allows you to
use the repository to update the client screens or service components by
Getting Started - JetNet/Oracle Tuxedo 7

About this Tutorial
propagating changes from parent objects in the repository to objects in your
application screens.

! JPL procedures can be attached to screens and widgets to perform such
functions as sending or receiving data between screens, performing error
handling, and providing the transaction manager with additional instructions for
handling database transactions.

! A variety of ways exist to enhance the usability of your application, such as
implementing double-click events, having commands or procedures executed
only under certain conditions, and so forth.

Module 4—Extending the Application

Module 4 consists of two lessons that guide you through the process of adding a third
screen to your application. The screen and its service component, an order entry
interface, are created using the screen wizard. It allows the user to add a new order and
update existing ones for a selected video distributor.

In the process of developing this portion of the application, you will be introduced to
the following concepts:

! Using the screen wizard to create selection screens—pick lists that display
acceptable database values for a field. Selection screens are helpful when you
need to add a new record to the database.

orditm.scr

dstord.scr

dstslect.scr

titles.itm
8 Introducing the Tutorial

Hints for Completing the Tutorial
! Calculating data from database values. You will extend the use of the database
by adding a virtual column to a table view and thereby include the widget in the
automated SQL generation.

! Including a virtual widget in a table view also allows the transaction manager to
apply the same styles to the widget as to the other widgets belonging to the
table view.

! Using three-tier processing to calculate values on the server using transaction
manager hook functions.

! Deleting a single detail record on a master-detail screen, instead of deleting the
master and all of its detail records.

! Implementing a validation procedure on the client screen that recalculates totals
when an update, delete, or insert operation is indicated.

Hints for Completing the Tutorial

! This tutorial is meant to be completed sequentially—in each lesson, you'll build
on the results of the previous lesson. If you jump ahead, you might not have the
data or screens you need to perform the tasks being covered in that lesson.

! Whenever you are done using the application—at the end of the day or if you
want to continue the tutorial later—remember to shut down the application
servers. This is just good practice, since it frees up system resources that may
be required by others. Whenever you want to resume, make sure you're in the
appropriate directory, set up the environment (by applying the setup file for
UNIX users), and boot the application. This procedure is described at the end of
Lesson 1.
Getting Started - JetNet/Oracle Tuxedo 9

Before You Start
Before You Start

Before you begin the tutorial, you should be aware of the following requirements:

! You need to know the directory and path name where Panther software is
installed.

! The client portion of Panther runs either on a UNIX workstation or under
Windows, and instructions are given for both platforms. The illustrations in
each lesson represent the Window version.

! If you are running the client under Windows, make sure the Panther
Samples\Tutorial directory has been installed on your PC.

! For UNIX, it is assumed for this tutorial that you are running under either the
Korn or Bourne shell.

! If you plan to set up a Web application server (in Lesson 5; optional), you need
to have a Web browser and HTTP server available. On the HTTP server, you
need to know the location of its CGI directory and the location of the Panther
installation.

For more information on configuring systems to run the tutorial, refer to Appendix A,
“Setting Up the Tutorial.”

For More Information...

As you're progressing through the tutorial, you might find that you have questions
about a specific area of Panther; or you may just want to learn more about a topic after
completing the tutorial. Listed below are places you can look for more information
online.
10 Introducing the Tutorial

For More Information...
For Information on Refer to This Manual

Configuring your application server and your
environment

JetNet /Oracle Tuxedo Guide

Developing your application; using Panther
software components; using two- and three-tier
architectures, using the JPL scripting language

Application Development Guide

Developing your application for the web Web Developerment Guide

Using the editor, screen wizard, and JIF editor Using the Editors

Using a command or function Programming Guide
Getting Started - JetNet/Oracle Tuxedo 11

For More Information...
12 Introducing the Tutorial

OVERVIEW
Module 1—
Preparing the
Server and the
Client
Getting Started - JetNet/Oracle Tuxedo 1

OVERVIEW
Getting Started - JetNet/Oracle Tuxedo 2

LESSSON
1 Setting Up the
Server

The first step in preparing the three-tier Panther software environment for JetNet and
Oracle Tuxedo applications is to set up the application server. This includes creating
the directory where you run the tutorial, populating it with the appropriate files, setting
some environment variables, copying or linking to the server executables, and then
starting the application.

In this lesson you learn how to:

! Create an application directory and copy to it the libraries, environment files,
and other files needed for the tutorial.

! Edit the environment files used by the server, client, and middleware.

! Copy or link to the server executables.

! Create and boot a Panther application with JetMan, the JetNet manager utility.

A Panther application server can run either on UNIX or Windows; instructions are
given for both.

! UNIX Application Server (page 1-2)

! Windows Application Server (page 1-16)
Getting Started - JetNet/Oracle Tuxedo 1-1

UNIX Application Server
UNIX Application Server

If you are setting up the server on UNIX, it is assumed that you are running under either
the Korn or Bourne shell.

Before beginning this lesson, you need to know the following:

! The location of your Panther application server installation. (The default
location is /usr/prolifics.)

Panther is installed at:______________________

! The location of your license file.
 (The default location is /usr/prolifics/licenses/license.dat.)

The license location is:______________________

Create an application directory

For the tutorial, it is recommended that you create the application directory as a local
directory under your home directory. You will work in that directory, copying all the
necessary files for the tutorial application to that location. In practice, the application
directory is located in a central location that is accessible to the development team.

1 Log onto your application server machine.

2 Create an application directory. For the purposes of this tutorial, create the
directory in your home directory and call it proltut. At the command line,
type:

mkdir proltut

3 Change to the proltut directory:

cd proltut
1-2 Setting Up the Server

UNIX Application Server
4 Copy the file setup.sh from the Panther server installation's config directory
to the proltut directory. This file contains environment setup information that
is required by Panther, such as path names and terminal information. Usually, a
copy of this file resides in the application directory and in each developer's
working directory.

cp ProInstallDir/config/setup.sh .

where ProInstallDir is the full pathname to the Panther application server
installation (which you noted on page 1-2). It is /usr/prolifics by default.

Edit the environment setup file

You set the Panther environment on a UNIX server with the setup.sh file. Edit your
copy of this file to include information needed by Panther such as location of the
installation and license file.

5 Open up the setup.sh file using an editor. Make the following changes:

" Note that SMBASE is set to /usr/prolifics by default. If Panther is
installed at another location, then set SMBASE to the full path name of the
correct directory (as noted on page 1-2).

" Check the location of the license.dat file. If it is not in the default directory
($SMBASE/licenses/license.dat), set the LM_LICENSE_FILE variable
to the license file's full path name (as noted on page 1-2). Uncomment this
setting and its export line.

" Uncomment the SMTERM line and set it to the appropriate terminal type.
This variable tells Panther what console type and model you are using. For
example, if you are running under Motif, set SMTERM=X. If you are running
under UNIX in character mode, refer to the Configuration for information
on using video files, which tell Panther how to drive the terminal display.

" Uncomment the shared library path variable setting that is appropriate to
your UNIX system. Also uncomment the corresponding export line. For
example, for Solaris systems, uncomment these lines:

LD_LIBRARY_PATH=$SMBASE/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

6 Save and close the setup.sh file.

7 At the command line, type:
Getting Started - JetNet/Oracle Tuxedo 1-3

UNIX Application Server
. ./setup.sh

This applies the settings in setup.sh.

Get new application components

The Panther newapp directory contains three standard application libraries and three
server environment files; all must be copied to the proltut directory. The libraries
will include all components used by the application such as screens and menus. The
three environment files provide environment settings for Panther servers.

8 Copy all files from the Panther newapp directory to the application directory
(proltut):

cp $SMBASE/samples/newapp/* .

This copies the libraries (client.lib, server.lib, common.lib) and the
server environment files (progserv.env, proserv.env, machine.env) to the
proltut directory.

More About Libraries

All Panther application components such as screens and menus reside in
libraries. The three standard application libraries listed below are installed with
Panther software; you can add other libraries to your application as needed.

" client.lib—client library that contains components of the user interface. such
as screens, menus, toolbars, JPL modules (Panther’s scripting language)
used by the client, a styles file, and images that illustrate push buttons and
toolbar items.

" server.lib—server library that contains server components (graphical
representations of server functions) and routines; this library is required only
for developing and deploying three-tier applications.

" common.lib—common library that contains components needed
application-wide by both client and server, such as the JIF (JetNet Interface
file) and JPL code.
1-4 Setting Up the Server

UNIX Application Server
Get tutorial components

The Panther tutorial directory includes a tutorial-specific library and the JDB database
vidsales. (JDB is a single-user SQL database provided with Panther; it is described in
Lesson 6.) You need to copy these to the application directory.

9 Copy all files from the tutorial directory to your proltut directory.

cp $SMBASE/samples/tutorial/* .

This copies the tutorial library (tutorial.lib) and the JDB database
(vidsales) to the proltut directory.

Define the server environment

In the tutorial, you run executables that are associated with two server types: proserv
for standard servers, and devserv for file access servers. When these servers are
activated, they read the environment files proserv.env and/or machine.env.

Edit the environment files (use any ASCII text editor such as vi) so that each server
can find the Panther installation and knows which libraries to open.

10 Open up the machine.env file and edit the following:

" Uncomment SMBASE (remove the # from the beginning of the line) and
provide the full path name of the Panther installation (as noted on page 1-2
) if it is not /usr/prolifics.

SMBASE=ProInstallDir

" Uncomment the shared library path variable setting that is appropriate to
your UNIX system.

" Update the license file location if it is not in the default location.

11 Save and close the file.

Link to the server executables

You need to create local links in the proltut directory to the server executables
provided with Panther. These executables are located in the distributed util directory.
Getting Started - JetNet/Oracle Tuxedo 1-5

UNIX Application Server
12 At the command line, type:

ln -s $SMBASE/util/proserv .

This creates a symbolic link to the server executable proserv, which runs a
standard server.

13 At the command line, type:

ln -s $SMBASE/util/devserv .

This creates a symbolic link to the server executable devserv, which runs a file
access server.

More About Panther Servers

Panther supports three types of application servers to handle requests from
clients:

" Standard servers, which advertise services defined in the JIF (JetNet
Interface File, which contains service information used in client/server
processing) and perform remote processing of report during runtime.

" Conversion servers, which provide services for three-tier applications that
have been converted from a two-tier architecture.

" File access servers, which provide the development team shared access to
libraries and repositories across the network, and also provide file transfer
services at runtime.

For more information about servers, refer to the JetNet/Oracle Tuxedo Guide.

A configuration file is required for Panther's middleware, JetNet, which manages
communication between clients and servers. You create this file through JetMan, the
JetNet manager.

Note: In the Oracle Tuxedo version, JetNet configuration files can be used with—
and are accessible to—all Oracle Tuxedo utilities, including xtuxadm. Thus,
you can use the JetNet manager to create a configuration file, then edit and
enhance it for use with Oracle Tuxedo later on. The alternative option is to use
Oracle Tuxedo's own configuration files; in which case you would not use
JetNet at all.

14 Start up the JetNet manager in the same window where you set the tutorial
environment:

jetman

The opening screen of the JetNet manager displays:
1-6 Setting Up the Server

UNIX Application Server
Create a middleware configuration file

JetMan integrates all the facilities you need to configure and manage the middleware
component of a Panther application. With it, you create and edit a binary Jet Net
configuration file—by default, broker.bin—in the current directory.

15 Choose File→New→Application.

JetMan displays the Application Configuration dialog:
Getting Started - JetNet/Oracle Tuxedo 1-7

UNIX Application Server
Name the application

All components of a Panther application—servers, clients, and services—are
identified to your system through the name that you enter in the configuration file's
Application Name property.

16 In the Application Name property, enter Tutorial as the name of your
application. Leave all other properties unchanged.

17 Choose Next. The JetNet manager displays the Machine Configuration dialog,
where you can configure the server machine properties as desired.
1-8 Setting Up the Server

UNIX Application Server
Get the machine’s name and configuration file

The Machine Configuration dialog contains two properties that you use later to set the
environment variables SMRBHOST and SMRBCONFIG:

18 The Name property is set to the host machine—that is, the machine that is
running the JetNet manager. Make a note of the Name property (listed under
General Information) for later reference:

Host Machine Name:_______________________________
(SMRBHOST)

19 The Local JetNet Configuration File property contains the name and location of
the new application's configuration file:

appDirectory/proltut/broker.bin.

Make a note of this property setting for later reference:

Local JetNet Config File:________________________
(SMRBCONFIG)
Getting Started - JetNet/Oracle Tuxedo 1-9

UNIX Application Server
Get the machine’s port number

It is likely that you use your own workstation to develop applications and to run JetNet
manager for most application configuration tasks. In both cases, a workstation
establishes a client connection to the server machine via the machine’s name and
workstation listener port.

You obtained the host machine's name in the previous section; now get the value of its
workstation listener port, which you use later to set the client environment variable
SMRBPORT.

20 From the Machine Configuration dialog, choose the Networking push button.

The Machine Networking dialog displays:

21 Select the Workstation Listener check box.on page 1-11

22 Copy the Listener Port number (under the Workstation Connections section).

Listener Port:____________________________
(SMRBPORT)

23 Choose OK to return to the Machine Configuration dialog.
1-10 Setting Up the Server

UNIX Application Server
24 Choose Done to save the new configuration file.

It takes a few moments as the JetNet manager creates a configuration file for
the Tutorial application.

25 When it completes, choose File→Exit, and choose Yes to the closing message.

Provide the configuration file’s location

The name and location of the configuration file broker.bin must be defined in the
server environment through the SMRBCONFIG variable:

26 Set the SMRBCONFIG variable:

Edit setup.sh to include and export the location of broker.bin. Add the variable
and the value for SMRBCONFIG exactly as it is displayed in the JetNet manager
(as you recorded in step 22).

SMRBCONFIG=appDirectory/proltut/broker.bin
export SMRBCONFIG

Save and close the file.

Note: The value in SMRBCONFIG must match the value in JetMan. If your home
directory is a symbolic link to another disk location, the disk location that
appears in JetMan must be entered, not the value displayed with the UNIX
command pwd.

Boot the application

Now you can start your application with the JetNet manager. Run the following utility
each time you want to start up your Panther application. Make sure you are in the
Tutorial application directory (proltut) and follow these steps:on page 1-15

27 From the server command line, reestablish the environment that the Tutorial
application requires by entering this command:

. setup.sh

28 Enter this command:

jetman

The Application Status dialog opens.
Getting Started - JetNet/Oracle Tuxedo 1-11

UNIX Application Server
29 If Application “Tutorial” is not already highlighted, select it by choosing
File→Select Application.

30 Choose Edit→Activate from the menu bar.

This starts the application. The status window indicates success or failure for
each attempt to activate an application server. A successful boot of all servers
starts your Panther application.
1-12 Setting Up the Server

UNIX Application Server
Note: If you have problems starting the application, refer to Appendix B on
page B-1. Before trying to restart the application, first shut it down by
selecting the Application item from the hierarchy list and choosing
Edit→Deactivate. This shuts down all components of the Panther
application, including any active servers.

Connect to the application

To view all components of an active application, you must connect to the JetNet
manager as a client. If your user name is set in your environment, the connection
window displays it.

31 Enter your user name, if it is not already entered, and choose OK.
Getting Started - JetNet/Oracle Tuxedo 1-13

UNIX Application Server
The information required by the Connect dialog differs for native and
workstation clients:

" The dialog for workstation clients asks for the server machine's host name
and port.

" The dialog for a native client (shown above) asks only for login
information.

Note: In this tutorial, user name and password are not needed; however, a
deployed application typically requires, at a minimum, this level of
security. You can set a password in the JetNet manager through the
application's Application Password property (refer to page 3-12 in
JetNet/Oracle Tuxedo Guide).

All components of the tutorial application now display in the Application Status
window.

More About Panther Utilities

Instead if using the Jet Net manager to create and manage an application, you
can use one of several utilities to perform basic tasks:

" rbconfig creates a minimal middleware configuration file (broker.bin) that
you can use as a starting point for further development.

" rbboot activates a Panther application.

" rbshutdown deactivates a Panther application.
1-14 Setting Up the Server

UNIX Application Server
If you take a break

Whenever you are done using the application—at the end of the day or for an extended
break—remember to shut down the application. This is good practice, since it frees up
system resources that others might require.

32 Select the Application item from the Application Hierarchy list and choose
Edit→Deactivate from the menu bar on the Deactivate button from the toolbar.

This shuts down all components of the Panther application, including any active
servers.

To resume the tutorial

When you want to resume the tutorial (or run your application), repeat the following
procedures (described in Steps 27 through 31 above):

! Establish the environment by running setup.sh.

! Start jetman.

! Select the application, if it is not already highlighted. (If the application is not
listed, you need to open the broker.bin file. Choose File→Select Application.)

! Choose Edit→Activate.

! Open a middleware connection.

To continue the tutorial

To skip to the Lesson 1 summary, refer to page 1-29.
Getting Started - JetNet/Oracle Tuxedo 1-15

Windows Application Server
Windows Application Server

Before beginning this lesson, you need to know the following:

! The location of your Panther application server installation. (The default
location is C:\Prolifics\Panther; this is the location referenced in the steps
in this tutorial.)

Panther is installed at: ______________________

! The location of your license file. (The default location is
C:\Prolifics\Panther\licenses\license.dat.)

The license location is: ______________________

Create an application directory

For the tutorial, it is recommended that you create the application directory as a new
folder under your root directory. You will work in that directory, copying all the
necessary files for the tutorial application to that location. In practice, the application
directory is located in a central location that is accessible to the development team.

1 Create an application directory. For the purposes of this tutorial, create a new
folder in the root directory (for example C:\) and name it proltut.

Get new application components

The Panther newapp directory contains three standard application libraries and three
server environment files; all must be copied to the proltut directory. The libraries
will include all components used by the application such as screens and menus. The
three environment files provide environment settings for Panther servers.

2 Copy all files from the C:\Prolifics\Panther\Samples\newapp directory
to the application directory (C:\proltut). This copies the standard application
libraries (client.lib, server.lib, common.lib) and the server environment
files (progserv.env, pros erv.env, machine.env) to the proltut directory.
1-16 Setting Up the Server

Windows Application Server
More About Libraries

All Panther application components such as screens and menus reside in
libraries. The three standard application libraries listed below are installed with
Panther software; you can add other libraries to your application as needed.

" client.lib—client library that contains components of the user interface. such
as screens, menus, toolbars, JPL modules (Panther’s scripting language)
used by the client, a styles file, and images that illustrate push buttons and
toolbar items.

" server.lib—server library that contains server components (graphical
representations of server functions) and routines; this library is required only
for developing and deploying three-tier applications.

" common.lib—common library that contains components needed
application-wide by both client and server, such as the JIF (JetNet Interface
file) and JPL code.

Get tutorial components

The Panther tutorial directory includes a tutorial-specific library and the JDB data base
vidsales. (JDB is a single-user SQL database provided with Panther; it is described in
Lesson 6.) You need to copy these to the application directory.

3 Copy all files from the C:\Prolifics\Panther\Samples\Tutorial
directory to your C:\proltut directory.

This copies the tutorial library (tutorial.lib), the JDB database (vidsales),
and two initialization files to the proltut directory.

Define the server environment

In the tutorial, you run executables that are associated with two server types:
proserv.exe for standard servers, and devserv.exe for file access servers. When
these servers are activated, they read the environment files proserv.env and/or
machine.env.

Edit the environment files (use any ASCII text editor such as Notepad) so that each
server can find the Panther installation and knows which libraries to open.

4 Edit the SMBASE setting in the machine.env file. It should be set to the Panther
installation directory (as noted on page 1-16).
Getting Started - JetNet/Oracle Tuxedo 1-17

Windows Application Server
5 Check the location of the license.dat file. If it is not in the default directory
($SMBASE\licenses\license.dat), set LM_LICENSE_FILE to the license
file's full path name (as noted on page 1-16).

Copy the server executables

In order for your server executables to be able to read the application's settings in the
environment files, you need to copy the server executables from Panther's util
directory to the tutorial's application directory.

6 Copy proserv.exe and devserv.exe from the
C:\Prolifics\Panther\util directory to the application directory
(C:\proltut).

More About Panther Servers

Panther supports three types of application servers to handle requests from
clients:

" Standard servers, which advertise services defined in the JIF (JetNet
Interface File, which contains service information used in client/server
processing) and perform remote processing of report during runtime.

" Conversion servers, which provide services for three-tier applications that
have been converted from a two-tier architecture.
1-18 Setting Up the Server

Windows Application Server
" File access servers, which provide the development team shared access to
libraries and repositories across the network, and also provide file transfer
services at runtime.

" For more information about servers, refer to JetNet/Oracle Tuxedo Guide.

Start the JetNet manager

A configuration file is required for Panther's middleware, JetNet, which manages
communication between clients and servers. You create this file through JetMan, the
JetNet manager.

Note: In the Oracle Tuxedo version, JetNet configuration files can be used with—
and are accessible to—all Oracle Tuxedo utilities, including xtuxadm. Thus,
you can use the JetNet manager to create a configuration file, then edit and
enhance it for use with Oracle Tuxedo later on. The alternative option is to use
Oracle Tuxedo's own configuration files; in which case you would not use
JetNet at all.

7 Start up the JetNet manager from the Start Menu by choosing
Programs→Panther Application Server→Utilities→Local JetMan.

The opening screen of the JetNet manager displays:
Getting Started - JetNet/Oracle Tuxedo 1-19

Windows Application Server
Create a middleware configuration file

JetMan integrates all the facilities you need to configure and manage the middleware
component of a Panther application. With it, you create and edit a binary Jet Net
configuration file—by default, broker.bin, in the current directory.

8 Choose File→New→Application.

JetMan displays the Application Configuration dialog.

Name the application

All components of a Panther application—servers, clients, and services—are
identified to your system through the name that you enter in the configuration file's
Application Name property:
1-20 Setting Up the Server

Windows Application Server
9 In the Application Name property, enter Tutorial as the name of your
application. Leave all other properties unchanged.

10 Choose Next. The JetNet manager displays the Machine Configuration dialog,
where you can configure the server machine properties as desired.

Get the machine’s name and configuration file

The Machine Configuration dialog contains two properties that you use later to set
environment variables SMRBHOST and SMRBCONFIG:
Getting Started - JetNet/Oracle Tuxedo 1-21

Windows Application Server
11 The Name property is set to the host machine—that is, the machine that is
running the JetNet manager. Make a note of the Name property (listed under
General Information) for later reference:

Name:___
(SMRBHOST)

12 Change the Application Directory setting to the tutorial's application directory
(C:\proltut).

13 The Local JetNet Configuration File property contains the name and location of
the new application's configuration file. Change this line to specify a path to
broker.bin in the proltut directory (for example,
C:\proltut\broker.bin). Make a note of this property setting for later
reference:

Local JetNet Configuration File:________________________
(SMRBCONFIG)

14 The Machine Environment Variable File contains the name and location of the
machine configuration file to use for the application. Change this line to specify
a path to machine.env in the proltut directory (for example,
C:\proltut\machine.env).
1-22 Setting Up the Server

Windows Application Server
Get the machine’s port number

It is likely that you use your own workstation, not the server machine, to develop
applications and to run JetNet manager for most application configuration tasks. In
both cases, a workstation establishes a client connection to the server machine via the
machine's name and workstation listener port.

You obtained the host machine's name in the previous section; now get the value of its
workstation listener port, which you use later to set the client environment variable
SMRBPORT.

15 From the Machine Configuration dialog, choose the Networking push button.

The Machine Networking dialog displays:

16 Select the Workstation Listener check box.

17 Copy the Port number (under the Workstation Connections section).

Port:____________________________
(SMRBPORT)

18 Return to the Machine Configuration dialog by choosing OK.

19 Save the new configuration file by pressing Done.
Getting Started - JetNet/Oracle Tuxedo 1-23

Windows Application Server
It takes a few moments as the JetNet manager creates a configuration file for
the Tutorial application and displays its components in the Application Status
dialog:

20 When it completes, choose File→Exit.

Provide the configuration file’s location

The name and location of the configuration file broker.bin must be defined in the
server environment through the SMRBCONFIG variable.

21 Set the SMRBCONFIG variable:

Open up the file jetman32.ini in the Windows directory (C:\WINDOWS). Add
the variable and the value for SMRBCONFIG exactly as it is shown in the JetNet
manager (as you recorded above in Step 17).

SMRBCONFIG=C:\proltut\broker.bin

Note: If your Windows server is running a production application and you
cannot change SMRBCONFIG in jetman32.ini, you can use the Select
Application option within JetMan.
1-24 Setting Up the Server

Windows Application Server
Boot the application

Now you can start your application with the JetNet manager. Run the following utility
each time you want to start up your Panther application.

22 Start JetMan.

23 If Application “Tutorial” is not displayed, choose File→Select Application.
Browse to the \proltut\ directory, highlight broker.bin, and choose Open.

24 If Application “Tutorial” is not already highlighted, select it in the Application
Hierarchy list.

More About JetNet Manager

If you run the JetNet manager from a native client (one that runs on the same
machine as the server), the dialog displays the application but shows incomplete
information about its components, as shown above. If you run the utility from a
workstation client (one that runs on a different machine from the server), the
dialog is initially empty.

25 Choose Edit→Activate from the menu bar on the Activate button from the
toolbar.
Getting Started - JetNet/Oracle Tuxedo 1-25

Windows Application Server
This starts the application. The status window indicates success or failure for
each attempt to activate an application server. A successful boot of all servers
starts your Panther application.

Note: If you have problems starting the application, refer to Appendix B on
page B-1. Before trying to restart the application, first shut it down by
selecting the Application item from the hierarchy list and choosing
Edit→Deactivate. This shuts down all components of the Panther
application, including any active servers.

More About Panther Utilities

Instead if using the Jet Net manager to create and manage an application, you
can use one of several utilities to perform basic tasks:

" rbconfig creates a minimal middleware configuration file (broker.bin) that
you can use as a starting point for further development.

" rbboot activates a Panther application.

" rbshutdown deactivates a Panther application.

Connect to the application

To view all components of an active application, you must connect to the JetNet
manager as a client. If your user name is set in your environment, the connection
window displays it.

26 Enter your user name, if it is not already entered, and choose OK.

The information required by the Connect dialog differs for native and
workstation clients:

" The dialog for workstation clients asks for the server machine's host name
and port.
1-26 Setting Up the Server

Windows Application Server
" The dialog for a native client (shown above) asks only for login
information.

Note: In this tutorial, user name and password are not needed; however, a
deployed application typically requires, at a minimum, this level of
security. You can set a password in the JetNet manager through the
application's Application Password property (refer to page 3-12 in JetNet
Guide/Oracle TuxedoGuide).

All components of the tutorial application now display in the Application Status
window.

If you take a break

Whenever you are done using the application—at the end of the day or for an extended
break—remember to shut down the application. This is good practice, since it frees up
system resources that others might require.

27 Select the Application item from the Application Hierarchy list and choose
Edit→Deactivate from the menu bar on the Deactivate button from the toolbar.

This shuts down all components of the Panther application, including any active
servers.
Getting Started - JetNet/Oracle Tuxedo 1-27

Windows Application Server
To resume the tutorial

When you want to resume the tutorial (or run your application), repeat the following
procedures (described in Steps 22 through 26 above):

! Start up the JetNet manager by choosing Programs→Panther Application

Server→Utilities→Local JetMan.

! Select the application, if it is not already highlighted. (If the application is not
listed, you need to open the broker.bin file. Choose File→Select Application.)

! Choose Edit→Activate.

! Open a middleware connection.

What did you do?

In this lesson, you performed these tasks:

! Created a Panther application directory, proltut, where, for this tutorial, you
store all necessary files, perform all server-related tasks and boot your
application. In practice, this directory should be in a central location that is
accessible to the entire development team.

! Set the server machine environment—path names, location of the Panther
installation, libraries, and so forth. The extent of this work depended on
whether your server runs on Windows or UNIX.

! Copied the standard application libraries, environment files, tutorial library, and
vidsales database to the proltut directory, and edited the server environment
files for your application.

! Provided access to the Panther server executables by creating links in the
application directory (in UNIX) or by copying those executables to the
application directory (in Windows).

! Created the binary middleware configuration file, broker.bin, with the JetNet
manager. This also created your application.
1-28 Setting Up the Server

Windows Application Server
! Activated your application with the JetNet manager.

What did you learn?

You learned:

! The application directory is the area where a server machine runs Panther. In
general, it contains files that need to be accessed by all development team
members, such as server executables, server environment files, and application
libraries. Also, each developer has a working directory with local files such as
client environment files and local copies of libraries.

! On UNIX, a setup file setup.sh contains variable settings, path names, and other
information that are required for running Panther software. Each time you want
to start up the application, you need to apply these settings before booting.

! The environment variable SMBASE is referred to frequently during installation
and configuration tasks. It refers to the Panther installation directory and is set
in several environment and configuration files. The default location is:

UNIX: /usr/prolifics

Windows: C:\Program Files\Prolifics\Panther

! The JetNet manager lets you define an application by creating the middleware
configuration file broker.bin, and view and edit configuration file settings.
Some of these settings were applied elsewhere in the setup procedure.

! All Panther components reside in libraries. Three standard libraries
(client.lib, server.lib, and common.lib) are provided with Panther; an
application component must reside in a shared library to be available to other
developers.

! When you want to start your application, then reactivate the application with
the JetNet manager (or the rbboot utility). For UNIX, make sure you are in the
application directory, and set up the UNIX environment with the setup file
setup.sh before running JetMan.

! When you are done using your application—at the end of the day or if you want
to continue the tutorial later—you should shut it down, along with any active
servers, with the JetNet manager (or the rbshutdown utility).
Getting Started - JetNet/Oracle Tuxedo 1-29

Windows Application Server
1-30 Setting Up the Server

LESSSON
2 Configuring the
Servers

After you activate your Panther application, you need to define and configure its
servers. The information you supply to the JetNet manager is added to the binary
middleware configuration file, broker.bin that you created in Lesson 1.

In this lesson you learn how to:

! Define different types of servers.

! Set server properties.

1 If you shut down the application and exited the JetNet manager since the previous
lesson, reactivate it now and connect to the middleware from the server machine.
To review those steps in Lesson 1:
Getting Started - JetNet/Oracle Tuxedo 2-1

" UNIX (page 1-15)

" Windows (page 1-28)

All components of the tutorial application now display in the Application Status
window.

Add servers to the application

You need to add two servers to the tutorial application: a standard server and a file
access server.

2 Double-click on the application Tutorial to expand the heading.

3 Select Machine (this should show the name of your server machine).

Configure the standard server

First, add and configure a standard server—a server that advertises and executes
JIF-defined services, and performs remote processing of reports. After adding this
server, you configure it by setting properties that define its functionality.

More About the JIF

The JIF is a file that stores information about services used by your
application-that is, functions performed by a server at the request of a client or
another server. The JIF tells clients and servers what parameters and
information to use when they process service calls. When you create a service
component that has service routines, you must also define in the JIF the service
that it provides. You learn more about the JIF in lessons 3 and 6.

4 Choose File→New→Server.

The Server Configuration dialog box opens.
2-2 Configuring the Servers

5 Enter tutserver as the name of the server.

6 Set Minimum Instances to 1. This number determines how many instantiations
of this server are created when it is activated. Because you are using Panther's
single-user database JDB, in this tutorial this number must be 1; in practice,
Minimum Instances is set to a number that is appropriate to the application.

7 Choose Standard as the server type (the default selection).

8 Choose the Options button.

The Standard Server Details dialog box opens.

Define server properties

In the Standard Server Details dialog, you set properties that are specific to a standard
server, such as which JIF-defined services it advertises, whether it runs in a
development or production environment, and which database it connects to.

9 Under Auto Advertised Services, choose All. This tells the server to advertise all
services defined in the JIF. This choice is useful during development because it
makes all services available to the application from any given server.
Getting Started - JetNet/Oracle Tuxedo 2-3

10 Under Server Executable, Run Mode, choose Development to indicate the mode
for the server executable. (When you activate the server, in Step 20, the File
Name field is populated with the full path name of the proserv executable in
the server machine's proltut directory.)

11 Enter the database connection string:

DECLARE c1 CONNECTION WITH DATABASE="vidsales"

When you activate the server, it automatically connects to the specified
database vidsales.

12 Choose OK.

The Server Configuration dialog box redisplays.

13 Choose OK.

The Application Status window redisplays.

14 Expand the Machine heading in the Application Hierarchy list. It should now
include the server tutserver.
2-4 Configuring the Servers

Configure the file access server

Next, you need to add a file access server to the application. This server offers clients
shared access to libraries and repositories across the network and provides file transfer
services at runtime; it also facilitates remote processing of reports that are transferred
back to the client.

15 With Machine selected in the Application Hierarchy list, add another server by
choosing File→New→Server.

The Server Configuration dialog opens.

16 Enter tutaccess as the name of the server.

17 Set Minimum Instances to 1. This number determines how many instantiations
of this server are created when it is activated. Because you are using Panther's
single-user database JDB, in this tutorial this number must be 1; in practice,
Minimum Instances is set to a number that is appropriate to the application.

18 Choose File Access as the Server Type.

19 Choose OK.

In the Application Status window, both the tutaccess and tutserver servers
are included in the Application Hierarchy list.
Getting Started - JetNet/Oracle Tuxedo 2-5

Activate servers

Now start both servers.

20 Select the tutserver server in the Application Hierarchy list.

21 Choose Edit→Activate.

The status window indicates the server's successful activation.

22 Select the tutaccess server and repeat step 21.

If you have problems activating servers, refer to Appendix B on page B-1.

23 Exit the JetNet manager by choosing File→Exit.
2-6 Configuring the Servers

A dialog box opens, prompting you to confirm that you wish to terminate the
session.

If you take a break

If you take a break, remember to shut down the application to free up the system
resources.

24 Select the Application item from the Application Hierarchy list and choose
Edit→Deactivate from the menu bar (or the Deactivate button from the toolbar).

What did you do?

In this lesson, you performed these tasks:

! Invoked the JetNet manager to define and configure the servers associated with
your application.

! Added and configured a standard server, tutserver, which advertises and
executes JIF-defined services. During development, all services normally are
advertised on a single server and available to developers; in a deployed
application, a server usually advertises only a subset of all possible services.

! Added and configured a file access server, tutaccess, so developers have
shared access to libraries and repositories across the network.

! Activated the standard server and file access server.

What did you learn?

You learned:

! The JetNet manager lets you configure and manage the middleware component
of a Panther application. With it, you create and edit the binary middleware
configuration file (broker.bin), which specifies how to set up an application's
clients and servers and configure their interaction—for example, whether
Getting Started - JetNet/Oracle Tuxedo 2-7

multiple workstations can attach to the application, the maximum number of
machines, servers, and services that the application can support, how many
servers to activate and on which machine, and so on.

! A Panther standard server advertises and executes JIF-defined services, and also
performs remote processing of reports during runtime.

Among the properties you specify for a standard server are:

" The JIF-defined services to advertise.

" Whether to allow the server to request services from another server.

" Whether to configure for development or production environments and if it
is enabled for debugging.

" The server's database connection.

" Any JPL or C Functions to be executed when the server is initialized.

! A Panther file access server offers clients shared access to libraries and
repositories across the network. It also provides file transfer services during
runtime. File access servers have a single property, which identifies the server
by name.
2-8 Configuring the Servers

LESSSON
3 Setting Up the
Client

The server is configured and the development team is ready to start. Now you need to
set up the clients.

In this lesson you learn how to:

! Define the server to your workstation (remote clients).

! Define the libraries (remote and/or local) that should open by default when you
start up your Panther client.

! Connect to the middleware which monitors and manages the requests and
events that occur in a three-tier environment.

! Save application components to their appropriate libraries.
Getting Started - JetNet/Oracle Tuxedo 3-1

UNIX Client
A Panther client can run either on UNIX or Windows; instructions are given for a
native (local) UNIX client and a remote Windows client.

! UNIX Client (page 3-2)

! Windows Client (page 3-8)

For Windows, instructions are given for editing the necessary files for workstation
clients to automatically connect to the Panther servers and access shared libraries.

UNIX Client

1 If your application server is not running, reactivate it now from the server machine
(refer to page 1-15, “To resume the tutorial”).

Apply environment settings

The local UNIX environment must know where and what to access on startup of the
Panther client, such as which libraries to open and the location of the server
configuration file.

2 From the tutorial's application directory (homeDir/proltut), open up the
setup.sh file using an editor. Make the following changes:

" Add SMFLIBS to open the libraries needed in the editor and export the
setting:

SMFLIBS=client.lib:common.lib:server.lib
export SMFLIBS

3 Apply the settings in setup.sh:

. setup.sh

4 At the command line, type prodev.

The editor workspace opens.
3-2 Setting Up the Client

UNIX Client
Connect to the middleware

A Panther client connects to servers through the middleware, which enables client
connections to all active servers, including the file access server for access to re mote
libraries and repositories, and the standard server for database interaction. Since a
UNIX local client opens local libraries, you can request a middleware connection from
within the editor.

5 Choose File→Open→Middleware Session.

The Connect dialog box opens. The configuration file is provided if the entries
in your setup file were properly set. If your user name is set in your
environment, it will be provided as well.

6 Choose OK. You are now connected to the middleware.
Getting Started - JetNet/Oracle Tuxedo 3-3

UNIX Client
More About the Middleware

In a three-tier architecture, communication between clients and servers, across a
network is managed by middleware software. Panther facilitates all interaction
between these agents, passing information from client to middleware,
middleware to server, and back again.

Open a library and access library members

A tutorial library is provided with the Panther installation and was copied to the
tutorial's application directory. This library contains an example of a client screen and
its corresponding service component. First, open the library to access its members.

More About Client Screens and Service Components

Client screens and service components each serve a specific purpose in
Panther applications. They look very similar, but client screens reside on the
client and represent the user interface, while service components reside on the
server and are invisible to the user at runtime. A service component, which is a
graphical representation of a service, provides a physical means of sending,
receiving, and processing data between a client screen and a service.

7 Choose View→Library TOC.

The Library Table of Contents opens.
3-4 Setting Up the Client

UNIX Client
8 Under Libraries, choose the Open button to gain access to libraries stored on
your system.

The Open Library dialog box opens:
Getting Started - JetNet/Oracle Tuxedo 3-5

UNIX Client
9 From the /prolifics/samples/tutorial directory, select tutorial.lib
and choose OK.

The Library Table of Contents dialog reappears, and tutorial.lib is added to
the list of open libraries.

10 Select tutorial.lib, and double-click on lesson3.clt in the Members list to
open it.

The client screen lesson3.clt opens in the editor workspace.
3-6 Setting Up the Client

UNIX Client
11 In the Library Table of Contents dialog, double-click on lesson3.svr in the
Members list to open it.

The service component lesson3.svr opens in the editor workspace.

Save members to appropriate libraries

Now save both the client screen and its corresponding service component to the
appropriate remote libraries, under the same name. You must save the service
component to the server library to make it available to the server, and to test the
connection between client and server later on.

12 With focus on lesson3.svr, choose File→Save As→Library Member.

13 Enter test as the Member name, and save it to server.lib.

The service component is now available to the server and visible to other
developers.

14 Close the service component by choosing File→Close→test.

15 Change focus to lesson3.clt and choose File→Save as→Library Member.

16 Enter test as the Member name, and save it to client.lib.

17 Close the screen by choosing File→Close→test.

If you take a break

If you take a break, you can close the editor by choosing File→Exit and shut down the

application in JetMan by choosing Edit→Deactivate (once the application is selected).
Getting Started - JetNet/Oracle Tuxedo 3-7

Windows Client
To continue the tutorial

To skip to the Lesson 3 summary, refer to page 3-14.

Windows Client

1 If your application server is not running, reactivate it now from the server machine
(UNIX-page 1-15; Windows-page 1-28).

Edit initialization files

In order to start a Panther client running on Windows, you must provide setup
information in the Panther initialization files, which are included with the client
installation. The Panther client must know the name and address of the application
server so it can access remote libraries and repositories, and automatically open
application libraries on startup.

Two tutorial-specific initialization files are in the Windows directory (typically
C:\WINDOWS):

" prtut.ini for the Panther client process and editor

" jifedtut.ini for the JIF editor

In both initialization files, variables need to be set as follows.

2 In both prtut.ini and jifedtut.ini files, verify that SMBASE is set to the
path name of your Panther installation on Windows. For example:

SMBASE=C:\Prolifics\Panther

3 In both initialization files, set the server's host name and port, as obtained in
Lesson 1:

SMRBHOST=host
SMRBPORT=hostAddress
3-8 Setting Up the Client

Windows Client
The variable SMFLIBS identifies the libraries to open when you start Panther
components. Because you want only remote libraries to open for the tutorial, all
SMFLIBS settings should include your server's host name:

4 In prtut.ini, set SMFLIBS as follows:

SMFLIBS=host!client.lib;host!common.lib;host!server.lib

5 In jifedtut.ini, set SMFLIBS as follows:

SMFLIBS=host!common.lib

Connect to the middleware

A Panther client connects to servers through the middleware, which enables client
connections to all active servers, including the file access server for access to remote
libraries and repositories, and the standard server for database interaction. During
development, middleware connections can be established in one of two ways,
depending on the client setup:

! If a client's SMFLIBS environment variable is set to open remote libraries (as in
step 4), a dialog automatically displays when you invoke one of the Panther
editors. This dialog asks whether to connect to the middleware.

! If SMFLIBS is not set or only opens local libraries, you can request a
middleware connection from within the editor.

6 From the Start menu, choose Programs→Panther Client→Tutorial

(folder)→Tutorial.
Getting Started - JetNet/Oracle Tuxedo 3-9

Windows Client
7 If the Connect dialog does not appear, choose File→Open→Middleware
Session. Assuming that the .ini settings in Step 3 are set correctly, the Connect
dialog box opens. If remote libraries are specified in the .ini file, the Connect
dialog opens automatically.

More About the Middleware

In a three-tier architecture, communication between clients and servers across a
network is managed by middleware software. Panther facilitates all interaction
3-10 Setting Up the Client

Windows Client
between these agents, passing information from client to middleware,
middleware to server, and back again.

8 The configuration file and your user name are provided if the entries in your
setup file were properly set. Choose OK.

If the host and port settings are correct–that is, they match the entries in the
configuration file broker.bin–and the server is active, then you are connected
to the middleware. The editor workspace opens.

Open a library and access library members

A tutorial library is provided with the Panther installation and is stored locally on your
workstation or PC. This library contains an example of a client screen and its
corresponding service component. First, open the library to access its members.

More About Client Screens and Service Components

Client screens and service components each serve a specific purpose in
Panther applications. They look very similar, but client screens reside on the
client and represent the user interface, while service components reside on the
server and are invisible to the user at runtime. A service component, which is a
graphical representation of a service, provides a physical means of sending,
receiving, and processing data between a client screen and a service.

9 Choose View→Library TOC.

The Library Table of Contents opens.
Getting Started - JetNet/Oracle Tuxedo 3-11

Windows Client
10 Under Libraries, choose the Open button to gain access to libraries stored on
your system.

The Open Library dialog box opens.

11 From the tutorial directory (pantherInstallDir\Samples\Tutorial), select
tutorial.lib and choose Open.

The Library Table of Contents dialog reappears, and tutorial.lib is added to
the list of open libraries.

12 Select tutorial.lib, and double-click on lesson3.clt in the Members list
to open it.
3-12 Setting Up the Client

Windows Client
The client screen lesson3.clt opens in the editor workspace.

13 In the Library Table of Contents dialog, double-click on lesson3.svr in the
Members list to open it.

The service component lesson3.svr opens in the editor workspace.

Save members to appropriate libraries

Now save both the client screen and its corresponding service component to the
appropriate remote libraries, under the same name. You must save the service
component to the server library to make it available to the server, and to test the
connection between client and server later on.

14 With focus on lesson3.svr, choose File→Save As→Library Member.

15 Enter test as the Member name, click on the (remote) server.lib to select it, and
choose OK.

The service component is now available to the server and visible to other
developers.

16 Close the service component by choosing File→Close→test.
Getting Started - JetNet/Oracle Tuxedo 3-13

Windows Client
17 Change focus to lesson3.clt and choose File→Save As→Library Member.

18 Enter test as the Member name, and click on the (remote) client.lib to select it,
and choose OK.

19 Close the screen by choosing File→Close→test.

If you take a break

If you take a break, you can close the editor by choosing File→Exit and shut down the

application in JetMan by choosing Edit→Deactivate (once the application is selected).

What did you do?

In this lesson, you performed these tasks:

! On Windows, edited the Panther initialization files prtut.ini and
jifedtut.ini (for the JIF editor).

On UNIX, you applied the settings in the setup.sh file.

! Connected to the middleware, which gives you access to the application servers
and the services that they provide, including access to remote libraries.

! From the editor, opened the tutorial library, and from there opened a client
screen and its corresponding service component. You saved these to the
appropriate shared libraries.

What did you learn?

You learned:

! When a Panther application starts up it uses an initialization file (Windows) or
setup and resource files (Motif) to determine values for a variety of attributes
affecting application behavior. These attributes include the name and address of
application servers so that Panther can access the services that they offer,
3-14 Setting Up the Client

Windows Client
including remote library access and remote processing, which libraries to open
on startup, and so on.

! In three-tier environments, the middleware controls communication between
client and server components. The middleware is the interface between client
and middleware, and between middleware and server. Depending on your client
setup, you can connect to the middleware on startup or from within the editor.

! During development, you will probably save client screens and service
components locally. However, to make them available to the server and to other
developers, you must save them to the appropriate client or server shared
library.
Getting Started - JetNet/Oracle Tuxedo 3-15

Windows Client
3-16 Setting Up the Client

LESSSON
4 Defining a Test
Service

The service component that you saved in Lesson 3 contains a service routine that
populates the field on the client screen. This and other service routines are invoked on
the server at runtime to handle service requests, which are typically issued by a client.

All services must be defined for your application in the JIF, an interface file that maps
each service name to a service routine and container. The JIF also defines other
attributes of a service, such as its input and output requirements.

There are a variety of other functions related to services that the JIF provides. For more
information on the JIF, refer to page 25-1 in the online Using the Editors.

In this lesson you learn how to:

! Invoke the JIF editor.

! Define a service that is used to test client/server connections.
Getting Started - JetNet/Oracle Tuxedo 4-1

! Save the JIF file.

! Test all connections.

1 If necessary, reactivate the application from the server machine (UNIX-page 1-15;
Windows-page 1-28).

Invoke the JIF editor

Because the JIF resides in a common library (and can even be remote), the JIF editor
must be connected to the middleware. As before, your client setup determines whether
you are prompted for a middleware connection on startup of the JIF editor, or you
establish the connection through the editor's menu.

2 To start the JIF Editor:

UNIX: Start the editor (prodev), and choose Tools→JIF Editor.

Windows: From the Start Menu, choose Programs→Panther

Client→Tutorial→Tutorial JIF Editor.

The JIF editor opens and the View Services dialogue box appears.
4-2 Defining a Test Service

Define a service by connecting to the middleware

The View Services dialog box, which shows all defined services in the JIF, is currently
empty. Now define a service that tests your client/server connection.

3 First, connect to the middleware if you were not prompted to do so when you
started. Choose File→Open→Middleware Session. Assuming that the .ini
files (Windows) or setup.sh (UNIX) are set correctly, the Connect dialog box
opens.

For Windows, the dialog box displays the host and port information provided in the
initialization file. If the Host Name and Port number are blank, type in the settings
which you recorded in Lesson 1.

4 Choose OK to accept the settings. The View Services screen reappears.

Note: If the connection to the middleware is invalid or is not made, the View
Services screen reappears, but you do not have access to the remote
common.lib on the server. Also, updates to the JIF cannot take effect and
new services are not advertised because the server is unaware of the
changes.

5 From the top menu, choose Service→Create or .

The Create Service dialog box opens.
Getting Started - JetNet/Oracle Tuxedo 4-3

6 Enter test as the Service Name, and press TAB.

The JIF editor uses the service name test for the initial setting of the Routine
Name and Service Component fields. Panther needs this information to look up
the service routine and service component that are associated with this service.
Because the names of this service and its service component and service routine
are identical, leave these settings unchanged.

7 Under Transport Methods, change the IN option to NONE. This means that the
service expects no input data. (Leave the OUT option set to JAMFLEX.)

8 Choose Add.
4-4 Defining a Test Service

The service test is defined in the JIF. The fields clear so you can create another
service.

9 Choose Close to close the Create Service dialog box.

The View Services dialog displays the service that you created:

10 Save the service test to the JIF by choosing File→Save or .

Because you are connected to the middleware, servers are notified immediately
when changes are saved to the JIF. Also, new services (depending on the
advertise specification and if the server is configured to advertise all services)
are advertised and immediately available to your application.

The service test is now available for testing.

11 Choose File→Exit.

You are prompted to release the reservation on the JIF because it is stored in a
remote library and shared with others.
Getting Started - JetNet/Oracle Tuxedo 4-5

12 Choose Yes to release the reservation.

The JIF editor closes.

Are you connected?

The client screen and service component are now saved to the appropriate libraries,
and defined the corresponding service in the JIF. You can now test the client/server
connection. This is done by using the push button on the client screen test to call the
service routine in the corresponding service component. If the connection is set up
correctly, the service returns the appropriate value to the client.

Windows: Start the Tutorial editor.
(UNIX clients should be displaying the editor after leaving the JIF editor.)

13 Choose View→Library TOC and open the screen test in client.lib.

14 Access Test Mode by pressing F2 or File→Test Mode.

The test client screen opens in Test mode.

15 Choose Test Service.

This invokes the test service routine (which resides on the test service
component). If a connection to the server exists, the service component returns
the string “It worked!” to the client, which displays it in the text field.

16 Choose Options→Editor.

You return to the editor workspace.

17 Choose File→Exit to end your session in the editor.
4-6 Defining a Test Service

For the next lesson

For the next lesson, leave the application server running so you can test the screen in
a web browser.

What did you do?

In this lesson, you performed these tasks:

! Invoked the JIF editor.

! Used the JIF editor to define a service, test, to the JIF and associated it with a
service routine and service component.

! Tested the connection between the client and the server by using the client
screen to call the newly defined service.

What did you learn?

You learned:

! After you determine which services are required by your application, you need
to define those services in the JIF. The JIF is the central storage file of
information about your application's services. It specifies all the services and
service groups that are available for a server to advertise. It also provides the
mapping between a service and its service component and routine. The JIF is
stored in the distributed common library and is therefore accessible to the
development team. You create and edit the JIF with the JIF Editor.
Getting Started - JetNet/Oracle Tuxedo 4-7

4-8 Defining a Test Service

LESSSON
5 Setting Up the Web
Application Server

In Lessons 1 through 4 you set up the Panther application server, started the client,
saved a service component and client screen to the correct libraries, updated the JIF,
and tested the client screen. At the end of Lesson 4, a client made service requests to a
server. In this lesson, you will set up a Panther web application and test the same client
screen from a web browser.

A Panther web application server is installed on your HTTP server and can work with
the following web architectures:

! CGI (Common Gateway Interface)

! ISAPI (Internet Server API for Microsoft’s Internet Information Server)

! NSAPI (Netscape Server API)
Getting Started - JetNet/Oracle Tuxedo 5-1

When a browser request comes in for a Panther screen, the HTTP server passes the
screen name to Panther. Panther opens the screen, performs any processing on the
screen including service calls, generates the HTML to display the screen, at which
point the HTTP server transmits the HTML back to the browser that requested it. For
more information on web applications, refer to the Web Developer's Guide.

This lesson shows how to set up a Panther web application and is independent of all
subsequent lessons in this tutorial.

In this lesson you learn how to:

! Run the Panther Web Setup Manager.

! Hook in a JPL module to handle the Panther web application server startup and
shutdown procedures.

! Start up the Panther web application server and test the connection.

More About Web Application Server Processes

The Web Application Server consists of three executable processes for each
application: requester, dispatcher, and jserver.

" Requester - accepts the CI/ISAP/NSAPI request from the HTTP server,
asks the dispatcher for an available jserver, passes the request to the
jserver, waits for the response, and transmits it back to the HTTP server.

" Dispatcher - Acts as the interface between the requester and the jserver.
The dispatcher keeps track of available and busy jservers, and provides an
available jserver to the requester.

" Jserver - Processes the CGI/ISAPI/NSAPI request from the requester,
performing all application processing.

Before starting this lesson

Before beginning this lesson, you need to know the following:

! The location of your Panther web application server installation:

" UNIX: The default location is /usr/prolifics.

" Windows: The default location is C:\Prolifics\Panther.
5-2 Setting Up the Web Application Server

! The location of your HTTP server's program directory:

Common names for the program directory include cgi-bin and scripts.

! The URL for the Panther web setup manager on your HTTP server, as in:

http://hostMachineName/ProgramDirectory/websetup

This tutorial assumes that the Panther application server and the Panther web
application server are installed on the same machine or accessible via the network. To
test the screen on the web, your HTTP server must be able to access your application
directory.

Start the Web Setup Manager

Each Panther web application must have an initialization file, which contains con
figuration settings for the application. The Panther Web Setup Manager helps you
create a new initialization file (or update an existing one).

1 Start up your web browser (for example, Mozilla Firefox or Microsoft Internet
Explorer).

2 In the URL window, type the location of the Panther Web Setup Manager.

UNIX HTTP server:

http://hostMachineName/ProgramDirectory/websetup

Windows HTTP server:

http://hostMachineName/ProgramDirectory/websetup.exe
Getting Started - JetNet/Oracle Tuxedo 5-3

3 Check that the Create an application radio button is selected.

4 Choose Continue.

Enter the program locations

You assign each web application a unique name which is used to name the
application's requester program and the application's initialization (.ini) file.
5-4 Setting Up the Web Application Server

5 For Application Name, enter a unique name to identify this lesson's web
application, like tut_webapp.

6 For SMBASE, type the full path pointing to the Panther web application server
installation (which you recorded on page 5-2).

7 For Program Directory, type the path to your HTTP server's program directory
(which you recorded on page 5-2).

Note: This should be a directory path, not a browser URL path.

8 For application type, choose CGI.

(There are three types of requester programs. Depending on your platform, your
options can include CGI, NSAPI, and ISAPI.)

9 Choose Continue.
Getting Started - JetNet/Oracle Tuxedo 5-5

The program will now create both an .ini file and an executable specific to your
application (for example, tut_webapp.ini and the executable tut_webapp).
The next screen will tell you that both files have been created; the following
steps will be to update the initialization file with the correct settings.

10 Choose OK.

Check the settings for your Web Application Server

In the left-hand frame, you will see icons for the initialization settings specific to the
Panther web application server. When you click on each setting, there will be an
accompanying explanation of how to set that variable. Most settings can be left at the
default for now; however, the following steps lead you through settings which you
need to edit or double-check:
5-6 Setting Up the Web Application Server

11 In Application Directory, enter the path where you created your proltut
directory in Lesson 1.
Getting Started - JetNet/Oracle Tuxedo 5-7

12 Choose Server Executables in order to specify the location of the dispatcher and
jserver executables. Generally, the path location is to the util directory of the
web application server installation.

13 In Dispatcher, set or check the full path name of the dispatcher executable.

14 In Server, set or check the full path name of the jserver executable.

15 Choose Server Variables.
5-8 Setting Up the Web Application Server

16 In Number of Servers, set it to 5. This is the number of concurrent users. Since
this setting greatly affects performance, you must set it for each web application.

17 Choose Licensing.
Getting Started - JetNet/Oracle Tuxedo 5-9

18 In License File, set or check the path of your license.dat file.

19 Choose Continue.

General environment settings

In the next section, you specify the environment settings needed by the web application
server. You will see a new set of icons in the left-hand frame. Step through each
category, editing or double-checking settings as necessary.
5-10 Setting Up the Web Application Server

20 In SMBASE, set or check the setting of the web application server installation.

21 Choose Initial JPL.
Getting Started - JetNet/Oracle Tuxedo 5-11

22 In SMINITJPL, enter initial.jpl.

This is the name of the JPL file that will be run when the web application
server starts. (Later in this lesson you will add this JPL file to the client library.)

23 Choose Initial Development Libraries.
5-12 Setting Up the Web Application Server

24 In SMFLIBS, set or check the settings for client libraries:

client.lib|com mon.lib.

25 (UNIX only) Choose Shared Library Path.
Getting Started - JetNet/Oracle Tuxedo 5-13

26 (UNIX only) Depending on the operating system, enter one of the following:

" Set LD_LIBRARY_PATH to the full path name of WebInstallDir/lib.

" (AIX) Set LIBPATH to the full path name of WebInstallDir/lib.

" (HPUX) Set SHLIB_PATH to the full path name of WebInstallDir/lib.

3-Tier Configuration

Depending on whether you are running the Panther web application server on a
separate machine from your Panther application server, you will need to set this
parameter in one of two ways, as outlined below.

27 Choose 3 Tier Configuration from the left-hand menu.

" (If running a Panther application server and a Panther web application
server on same machine): In JetNet Configuration File (SMRBCONFIG), type
the directory path name where you created your broker.bin file in Lesson 2.
Leave the lines for SMRBHOST and SMRBPORT blank.
5-14 Setting Up the Web Application Server

" (If running servers on different machines): Leave the line for JetNet
Configuration File (SMRBCONFIG) blank. Enter the information for
SMRBHOST (refer to Step 18 on page 1-9 in Lesson 1 for UNIX and to Step
11 on page 1-21 for Windows) and for SMRBPORT (refer to Step 22 on
page 1-10 in Lesson 1 for UNIX and to Step 17 on page 1-23 for
Windows).

28 If you are running the Panther web application server on a different machine
from the Panther application server, you will need to set a value for certain
platforms. It is not needed if you are using JetNet or Oracle Tuxedo 6.4 or later.
Choose one of the values below and enter it under Work Station Device:

" For Oracle Solaris platforms, enter:

/dev/tcp.

" For SCO platform, enter:

/dev/inet/tcp.

29 Choose Path.
Getting Started - JetNet/Oracle Tuxedo 5-15

30 Check that the path location is set to the util directory of the web application
server installation. If the jserver executable is not in the Panther webutil
directory, you must set the correct path to the jserver directory here.

31 Choose Continue.

Specify database settings and workstation jserver

The next screen allows you to enter Additional Environment Variables for such
applications as databases. If you were setting variables for an Oracle database, for
instance, type the variable under “Settings” (e.g., ORACLE_HOME) and the path name
under “Value” (e.g., /usr/oracle). You will also be setting access to the JIF file.
5-16 Setting Up the Web Application Server

32 Under Setting, enter SMTPJIF, the Panther variable that identifies the JIF file.

Note: If the EnableWebId option displays, note that it will not be used in the
tutorial.

33 Under Value, enter jif.bin.

34 Choose Continue. A screen informs you that your Panther web application has
been created.
Getting Started - JetNet/Oracle Tuxedo 5-17

35 Choose Start Application.

Add JPL routines to the client library

When a Panther web application server starts up, it looks for a JPL web_startup
procedure to handle any necessary startup processing, open and close connections to
the middleware API (and therefore to the database), and create global variables.
Similarly, when the server is shut down, it looks for the web_shutdown
routine-accessed by all users of the web application-to perform processing such as
clean up. Both procedures are in the JPL module initial.jpl which is in the tutorial
library. By copying initial.jpl to your client library and setting SMINITJPL in
proweb.ini, these routines automatically run when the web application server is
initialized.

More About JPL

JPL is a powerful scripting language with a C-like syntax. You can write and edit
JPL modules directly in the editor environment, using the JPL editor or your
preferred test editor. You can also write JPL procedures directly to a library and
call these procedures from objects in your screens.
5-18 Setting Up the Web Application Server

You’ll practice writing and executing JPL in Lesson 13 of this tutorial. For more
information on JPL commands and syntax, refer to the online Programming
Guide.

36 For a UNIX client:

" Log on to your Panther application server and change to the application
directory:

cd username/proltut

" Reapply the settings:

. setup.sh

" Invoke the editor by starting up the client executable, prodev. At the
command line, type:

prodev

37 For Windows client:

" From the Start menu, choose Programs→Panther Client→Tutorial

(folder)→Tutorial.

" When the Connect screen opens, check your Host and Port settings for the
middleware session and choose OK.

38 Choose File→Open→JPL.

The Open JPL Module dialog opens.
Getting Started - JetNet/Oracle Tuxedo 5-19

" If tutorial.lib is not open, choose Open and select it from the Open
Library dialog box. (You will need to set the directory path to
/prolifics/samples/tutorial/ to find this file).

39 Select tutorial.lib from the list of open libraries, and double-click on
initial.jpl in the Members list to open it.

The initial.jpl file opens in the JPL Program Text dialog box.
5-20 Setting Up the Web Application Server

40 Choose Save As. The Save JPL dialog opens with initial.jpl in the Member
box.

41 Select client.lib in the Libraries list. Choose OK.

The initial.jpl file is saved to client.lib.

42 Choose OK.

43 Choose Close.

44 Choose File→Exit to end your editor session.

Change permissions of shared files (UNIX only)

The Panther web application server must be able to access some files in the application
directory on UNIX. Because the user account for the HTTP server is different from
your user account, the web application server is normally not allowed to write to your
directory.

45 Switch to the /proltut directory.

If error.log does not exist, create an error log file and set its permissions so that
the web application server has read and write access to the file:touch
error.log
Getting Started - JetNet/Oracle Tuxedo 5-21

chmod 666 error.log

46 Change permissions so that the Panther web application server has read and
write access to the server configuration file, broker.bin:

chmod 666 broker.bin

Test the connection

Now you can start the Panther web application server and test the client/server
connection by trying to invoke the service routine from your client screen with a web
browser.

47 If your Panther application server is not running, reactivate it now from the
server machine (refer to Steps 27 to 31 on page 1-11 in Lesson 1 for UNIX or
refer to Steps 22 to 26 on page 1-25 in Lesson 1 for Windows). Also, start the
web browser, if it is not already running.

48 Since the Panther web application server was started when you ran the web
setup manager, you must restart it so that it will read the new JPL file:

WebInstallDir/util/monitor -stop webAppname
WebInstallDir/util/monitor -start webAppname

Note: On Windows, if your web application has been installed as a service, then
you use the following command to start the web application:

WebInstallDir/util/net start webAppname

49 Request the test screen with this URL:

http://hostName/ProgramDirectory/webAppname/test

The client screen appears.

50 Click on the Test Service button.

The phrase “It worked!” is displayed in the text box.
5-22 Setting Up the Web Application Server

If you have a problem either starting the web application server or seeing the message
returned from the server, refer to Appendix B on page B-1.

Stop and restart server after making any changes

If you make any changes to the web initialization (webAppname.ini) file, or if you see
any error messages indicating that you failed to connect to the server, you must stop
and restart your web application server to have the changes take effect. Shut down the
server by going to a UNIX window and typing at a command prompt:

$SMBASE/util/monitor -stop webAppname

Edit the initialization file the same way you created it, by typing in the browser:

http://hostMachineName/ProgramDirectory/websetup

and choosing to update the application.

You can then restart the server by repeating the procedure outlined in Step 47 above.

Shut down the server

After you successfully start the web application server, you can shut it down. The
lessons that immediately follow do not require its usage.

51 Shut down the web application server:
Getting Started - JetNet/Oracle Tuxedo 5-23

$SMBASE/util/monitor -stop webAppname

What did you do?

In this lesson, you performed these tasks:

! Used the Panther Web Setup Manager to create a copy of the CGI/ISAPI/
NSAPI program so that your application is available on your HTTP server.

! Used the Panther Web Setup Manager to create a web application server
initialization file, webAppname.ini, which has the same name as your web
application. and edited it to reflect variable settings for your application.

! Used the Panther Web Setup Manager to specify the application's settings for
your applications.

! Saved a copy of a JPL module, initial.jpl, to your client library. This file
contains startup and shutdown routines that run when the web application server
is initialized.

! Changed permissions on the error log file and configuration file broker.bin,
so the web application server has read/write access to them.

! Started up the web application server, tested the connection, and shut the server
down.

What did you learn?

You learned:

! A Panther web application is only accessible on an HTTP server if there is a
link to, or a copy of, its requester executable in the server's program directory.

! Each application must have an initialization file, which contains variables
determining the behavior of the web application, the Panther environment used
by the jserver program, and the database environment.

! Certain processing, such as opening a middleware session or setting global
variables, occurs each time a web application server starts. By creating JPL
5-24 Setting Up the Web Application Server

routines to handle this processing, and then setting variables in the web
application initialization file, you can set up default processing to take place
each time the web application server is initialized.
Getting Started - JetNet/Oracle Tuxedo 5-25

5-26 Setting Up the Web Application Server

OVERVIEW
Module 2—
Creating and
Testing Screens
Getting Started - JetNet/Oracle Tuxedo 1

2 Module 2—Creating and Testing Screens

LESSSON
6 Creating a
Repository

When you begin to build a database application, you need to create a repository. A
repository that resides on the server lets you as well as other members of the
development team take advantage of its contents. You can directly, or via the screen
wizard, use the database-derived objects in the repository to create client screens and
service components.

In this lesson, you learn how to create a remote repository using the editor and populate
it with imported database objects. The import process creates a screen, or repository
entry, in the open repository for each database table that you import. The repository
entry contains widgets representing each column defined in the database table.

In this lesson you learn how to:

! Access the editor and open a middleware session.

! Create a remote repository.

! Connect to a local copy of the vidsales database.

! Import the vidsales database tables into the remote repository.

1 If necessary, reactivate the application from the server machine (UNIX-page 1-15;
Windows-page 1-28).
Getting Started - JetNet/Oracle Tuxedo 6-1

Connect to the middleware

When you start one of Panther's editors, such as the screen editor, menu bar editor, or
JIF editor, and you want to access libraries through the middleware, you need to open
a middleware connection. After you connect to the middleware, you can access
libraries and repositories located on the server machine, and the data base specified in
the server configuration.

2 If necessary, start the editor.

3 Depending on whether you invoke the editor from Windows (as a remote client)
or UNIX (as a local client), use one of these procedures:

Windows – The Connect dialog opens and displays the information you
provided in your Windows initialization file. Choose OK to accept the settings.

UNIX – Choose File→Open→Middleware Session. The Connect dialog
displays the location of the configuration file (broker.bin) as you specified in
your environment setup.
6-2 Creating a Repository

4 Choose OK.

If the information is correct–that is, it matches the entries in your server setup–
you are connected to the middleware. Otherwise, you have no access to the
remote libraries on the server which are required for the tutorial.

The editor workspace opens.
Getting Started - JetNet/Oracle Tuxedo 6-3

Many commonly used commands and tasks can be executed by choosing the
appropriate toolbar item. This tutorial acquaints you with most of the File menu
commands that are associated with these toolbar buttons:

More About Toolbars

The editor's toolbar:

" Simplifies use of the editor and facilitates screen design.
6-4 Creating a Repository

" Includes tool tips so you can quickly learn what the buttons do.

You can also use the Panther menu bar editor to create menus and toolbars to
attach to individual screens or to the application as a whole.

Create a repository

Create a remote repository where you can store imported database objects.

5 Choose File→New→Remote Repository.

The New Remote Repository dialog opens.

6 Enter data.dic as the name of a repository in the Repository field.

On startup, the editor automatically opens any local repository with the name
data.dic.

On Windows, to automatically open the remote repository, set the SMDICNAME
variable to host!data.dic in your prtut.ini initialization file.

7 Choose OK.

Creating a new repository automatically closes any repository that is open.

More About Repositories

You can create local as well as remote repositories when you are connected to
the middleware and running a file access server. Remote repositories can be
accessed by the development team and thereby provide a consistent
Getting Started - JetNet/Oracle Tuxedo 6-5

appearance and behavior to your application. You can control the look and feel
of application objects by modifying objects in a repository. From this centralized
location, you can use and reuse the objects throughout the development of your
application. Changes that you make to repository objects automatically
propagate to the various screens that contain copies of the objects. This greatly
simplifies both application development and maintenance.

Connect to the database

A direct connection to the database (that is, not connecting through the middleware)
allows you to import database definitions. A direct connection also lets you test a
simple client/server model (two-tier processing) or the service component behavior in
a three-tier, distributed application model.

8 Choose File→Open→Database.

The Choose Engine dialog opens.

9 Choose OK to accept the defaults (in this case, jdb is the engine and the
connection is dm_jdb0_conn). A database-specific dialog appears.

More About JDB

JDB is Panther's single-user SQL database. You can use it to quickly prototype
your application and refine multi-user database applications without the need for
an external third-party database.

10 Select or specify vidsales in the File Name field, then choose Open.
6-6 Creating a Repository

You are now connected directly to the local copy of the database. You also have
a connection, via the middleware, to the remote database on your server which
was made available when the server was activated.

Note: If the vidsales database is not in your current directory, locate it with the
dialog.

Import database tables

When you import database objects into the repository, you can take advantage of the
data definitions already in the database. The import process creates one screen in the
repository for each selected database object. The contents of the resulting repository
screens can be used to build application screens that access data. The next few steps
show how to import database information into Panther.

More About Importing Database Objects

You can import database table definitions into the repository at the outset of your
development process, and reimport whenever the database schema changes.
Also, if your database engine supports other database object types, such as
views and synonyms, you can import those as well.
Getting Started - JetNet/Oracle Tuxedo 6-7

All screen objects that inherit from repository objects are maintained without your
having to access the database or manually edit client screens and service
components. Development can continue even when the database is inaccessible
or unavailable.

11 Choose Tools→Import Database Objects on .

The Import Database Objects dialog opens. All tables in the vidsales database
are listed.

When you select a table, the detail information for the table is displayed in
Column Descriptions: column name, data type, and length. You can select
multiple tables simultaneously: click+drag or Shift+click to select contiguous
objects; Ctrl+click to select noncontiguous objects.

12 Choose Select All to select all of the tables in the database.

13 Choose Import.
6-8 Creating a Repository

The status line informs you of each table imported into the repository and
notifies you when the import process is completed.

14 When the import is complete, choose Close to return to the editor.

View repository contents

You can use the repository table of contents (TOC) to select and open repository
entries successively for copying and editing purposes. The TOC can remain open
during your editing session.

15 Choose View→Repository TOC.

This menu option toggles the display of the Repository table of contents. The
TOC opens and displays a list of all entries in the open repository.
Getting Started - JetNet/Oracle Tuxedo 6-9

16 (Optional) Leave the Repository TOC open so you can easily access repository
entries. To close the TOC, choose View→Repository TOC, or choose
Close/Quit from the TOCs system menu.

What did you do?

In this lesson, you invoked the editor and:

! Connected to the application server by way of the middleware.

! Connected directly to a local copy of the database so that you could import the
database definitions from the vidsales database.

! Created a remote repository for developing your database application.

! Imported the database tables associated with the local copy of the JDB database
to the remote repository.

! Viewed the contents of the remote repository using the Repository TOC.

What did you learn?

You learned:

! The repository is a development tool for storing application and database
objects that the entire development team can use and reuse throughout
application development. A shared repository can minimize duplication of
effort and enforce application consistency.

! You must have a direct connection to the database to import database
definitions to a repository.

! The import process creates an entry in the open repository for each database
table that you import.

! You can test service components with a direct database connection, using them
like a client screen to see if the correct data returns from the database.
6-10 Creating a Repository

! JDB is a prototyping database that can be used during application development
when an external database is unavailable or is in the design/development phase.

! On application server initialization, a database connection can automatically be
opened. Thus, clients can access a database via their middleware connection to
that server.
Getting Started - JetNet/Oracle Tuxedo 6-11

6-12 Creating a Repository

LESSSON
7 Using the Screen
Wizard

The screen wizard provides an easy way to create transactional database application
components. Use the screen wizard to build:

! Client screens for a traditional client/server application for two-tier processing.

! Client and server components for an application that uses three-tier architecture.

! Screens that can provide the interface to your Internet or intranet application.

In this lesson, you create a master-detail client screen and its corresponding service
component. The client screen will allow a user to view, edit and add information for
video distributors and their video orders. The master section of the screen displays the
address information associated with a single distributor, while the detail section
displays information about that distributor's orders.

The screen wizard uses information you provide to also build the service component
that will carry out the requests—view, update, and add.

The screen wizard creates both screens and service components by using objects and
database columns from the open repository (the remote repository, data.dic for the
tutorial). After the components are created, you will save them to their appropriate
libraries, thereby ensuring that service requests made by the client can be carried out
by the server.

In this lesson you learn how to:

! Create a functional client screen and its supporting service component using the
Panther screen wizard.
Getting Started - JetNet/Oracle Tuxedo 7-1

! Save the wizard output to the appropriate libraries.

1 If necessary, reinvoke the editor.

Open the repository

To use the screen wizard, a repository that contains imported database objects must be
open. The repository that you created in Lesson 6 opens automatically when you
invoke the editor if the SMDICNAME variable is set in the development environment (in
Windows, prtut.ini) or if the repository is located in the application directory, and
you can skip to step 3; otherwise, you must open the repository manually (step 2).

Notes: (UNIX clients only) Because the tutorial is in the application directory,
Panther opens the local repository by default; you do not have to set the
variable.

2 (Windows only) If SMDICNAME is not set in the initialization file prtut.ini, choose
File→Open→Remote Repository and select data.dic from the Open Repository
dialog.

Create screens with the screen wizard

Instead of creating a screen from scratch, use the screen wizard to build your screen.

More About the Screen Wizard

The screen wizard guides you step-by-step in creating database screens that
automatically incorporate tables and columns imported to the repository from
your database.

The screen wizard prompts you for basic design information and uses that
information to build fully functional screens which you can use as-is, or as a
basis for further development. The screen wizard eliminates many of the
mechanical steps of screen design, thereby increasing productivity.

3 Choose File→New→Screen or .
7-2 Using the Screen Wizard

The New Screen Tool dialog opens.

4 Choose Yes to use the screen wizard.

The Format Selection dialog opens.

More About Screen Wizard Formats

When you use the screen wizard you can choose to create a Master only,
Master-Detail, or Master-Detail-Subdetail screen. If you choose the Web-Friendly
Output check box, the screen wizard creates a client screen that uses the
appropriate layout and push button controls for a web application.
Getting Started - JetNet/Oracle Tuxedo 7-3

5 Select the Master-Detail (default) option to define the sections.

6 Deselect the Web-Friendly Output option.

For the purpose of this module, the screen is not being designed for a Web
application.

More About Web-friendly Output

The Web-friendly Output option enforces certain web-specific restrictions on the
widgets and layout used in the final screen to make it usable in the
Internet/Browser interface.

7 Choose Next.

The First Master dialog opens.

The list that displays contains repository entries that represent the database
tables you imported from the vidsales database.
7-4 Using the Screen Wizard

Specify the contents of the master section

Specify the primary table for the screen's master section by selecting from the list of
tables in the open repository.

8 Select distributors from the list of Tables To Pick From.

The columns belonging to the distributors table are displayed. The primary key
(indicated with an asterisk), distrib_id, is automatically included as one of
the columns that will be on the completed screens. The columns indicated with
a number sign (#) must have values when you insert rows into the database.

More About Primary Keys

A primary key is the column, or combination of columns, that uniquely identifies
each row in a database table. If the first table you select in a section lacks a
primary key definition, the Primary Key Selection dialog opens where you can
identify a primary key for the table. These custom-defined primary keys are
indicated with a plus (+) sign in the list of tables that ultimately appear on your
wizard-generated screen.

9 Choose .

All columns are added to the list of columns to display on the finished screen.

Note: You can click+drag or Shift+click to select contiguous items or use
Ctrl+click to select non-contiguous items.

10 Choose Next.

The First Detail dialog opens.

Define the detail columns

Choose from the list of remaining tables to specify the columns that you want in the
screen's detail section. This screen should display all orders for a given distributor.

11 Select orders from the list of tables.
Getting Started - JetNet/Oracle Tuxedo 7-5

12 Choose .

All columns in the orders table are added to the list of columns to include on
the screen.

The finished screen will join the orders table to the distributors table via the
distrib_id column (the foreign key). This allows the screen to display all
orders associated with a given distributor.

More About Links

Links are widgets that are automatically created when you import database
tables. They are visible in the editor and hidden at runtime. The link is used by
the transaction manager to describe relationships between parent and child
tables. In the editor, the link appears like a label widget, with the name of the
parent table and child table in the format parent+child.

The screen wizard expects a link widget to join the first master and first detail
tables. The link specifies how the two tables are connected through a list that
matches columns in the first master to columns in the first detail. If you select a
7-6 Using the Screen Wizard

first detail table that lacks a link to the first master table on your screen, the
screen wizard lets you define the link on the Master Detail Link dialog.

13 Choose Next.

The Layout Selection dialog opens. The master table has a single-row layout
and the detail section specifies a multi-row grid display. Use the default layout.

More About Screen Wizard Layout Options

You can choose the type of layout that serves the screen’s immediate
requirements. For each section, choose one of these layout options:

" Single row—Each database column is represented as a widget (adopting
the widget type as defined in the repository) and has a corresponding label.

" Grid display—Each database column is represented as a vertical column in
a grid widget and has a column title.

14 Choose Next.

The Application Model Selection dialog box opens.
Getting Started - JetNet/Oracle Tuxedo 7-7

Since you created a simple master-detail screen with no additional tables
included, the option to generate selection screens is not available (you'll do this
in Lesson 15).

Specify application architecture

Select the architecture, two- or three-tier, and specify the screens that you want the
screen wizard to generate: client screen, service component, selection screens (if
applicable) and corresponding selection service components.

More About Two- and Three-tier Architecture

One way your choice of architecture affects your application is in the
components that will be included. If you choose two-tier, the Components to
Build section of the dialog box becomes inactive. This is because two-tier
processing only involves building the client screens, or user interface. Three-tier
processing, on the other hand, includes building client screens and their
corresponding service components.

Service components are graphical representations of services, and provide a
physical means of sending, receiving and processing data between a client
7-8 Using the Screen Wizard

screen and a service. A service component looks very much like its
corresponding client screen, but is invisible to the user at runtime.

15 Choose Next to accept the default architecture (three-tier) and components (both
client screen and service component).

The Service Definition dialog box opens.

Determine service operations

By default, the screen wizard provides service names that your client screen can use to
make requests to select, insert, update, and delete database records. It assigns service
routine names by using the name (possibly a truncation) of the master table followed
by a mnemonic corresponding to an operation. Therefore, the four services for this
particular screen, which uses distributors as the master table, are distributor_s for
a select operation, distributor_i for an insert operation, distributor_u for an
update operation, and distributor_d for a delete operation.

16 Choose Next to accept the default service routine names.

The Style and Finish dialog opens.
Getting Started - JetNet/Oracle Tuxedo 7-9

Customize the output screen

The Style and Finish dialog lets you can customize the screen.

17 Change the screen title to Distributor Orders.

This title displays in the client screen's title bar at runtime (the screen's filename
displays in the title bar while in the editor).

18 Set Onscreen Controls to Push Buttons (default).

19 (Optional) Enter comments about the screen in the Comments field. Although
this information has no runtime effect, it can serve as a valuable record of this
screen's history—for example, its function within the larger application,
idiosyncratic behavior, and so on.

20 Choose Done.

Panther displays the finished screen with this prompt:
7-10 Using the Screen Wizard

21 Examine the screen and choose Yes to confirm that the screen includes your
specifications.

If you choose No, you return to the screen wizard's Style and Finish dialog. You
can make further changes there and in previous wizard dialogs.

When you confirm that the screen is complete, the screen wizard builds the
screen, then returns control to the editor. The screen appears in the editor
workspace.

Save the screens

This is a good time to save the screens. You should save the screen in the library
client.lib.

22 Bring focus to the screen.
Getting Started - JetNet/Oracle Tuxedo 7-11

23 Choose File→Save or .
7-12 Using the Screen Wizard

24 Enter dstord.scr in the Member field.

25 Select client.lib as the library in which to store the screen and choose OK.

The filename is displayed in the screen's title bar. This is the screen that users
of your application will see. It includes all the decorations and controls that
define the user interface.

Note: If the file already exists, Panther prompts you to overwrite the existing
one. Choose Yes to overwrite.

More About Naming Conventions

However you name screens, JPL modules, and other application components,
you should consistently adhere to a naming convention. If you use extensions,
apply them to all application components. For example, use *.scr for screens
and service components, and *.jpl for library JPL modules.

26 Move (or minimize) the dstord.scr client screen and bring focus to the service
component (Server1).
Getting Started - JetNet/Oracle Tuxedo 7-13

The service component will reside on the server, and therefore, will never be
visible to the user. It looks similar to the client screen; however, there are no
push buttons, and screen decorations are omitted from service components.
However, data entry widgets on the client screen must be identical to those on
the service component. That's because the service component must act as a
receptacle for data that are ultimately returned to the client and made visible to
the user.

27 Choose Save or .

The Save Screen dialog box opens.
7-14 Using the Screen Wizard

28 Enter dstord.scr in the Member field as the name of the service component.

29 Select host!server.lib as the library in which to store the service component
and choose OK.

30 If you'd like to take a break and exit the editor, choose File→Exit.

What did you do?

In this lesson, you created a master-detail client screen that performs database
transactions. To do this, you performed these tasks:

! Used the screen wizard to join two database tables that reside in a repository

! Told the screen wizard that you are implementing a Web-compatible screen.

! Saved the screen in the appropriate remote library.
Getting Started - JetNet/Oracle Tuxedo 7-15

What did you learn?

You learned:

! The screen wizard uses database-derived objects in an open repository to build
fully functional screens.

! The screen wizard uses information from the repository to include the
appropriate code in the screens that it creates.
7-16 Using the Screen Wizard

LESSSON
8 Defining Services

The service component that you saved in Lesson 7 contains service routines that
display data on the client screen and allow the client to update the database. In Lesson
4, you defined a service, test, in the JIF, and identified the service routine and service
component.

All services must be defined for your application in the JIF, an interface file that maps
each service name to a service routine and component. The JIF also defines other
attributes of a service, such as its input and output requirements.

In general, the JIF is accessed for these reasons:

! A server is activated and checks the JIF to determine which services to
advertise.

! A client issues a service call. The JIF provides service parameter attributes—
types, number, and direction, and verifies the validity of the service call.

! A server receives a service request and its data, either directly from a client
screen or forwarded from another service. The server consults the JIF to find
the service routine and its service component (if any).

! The JIF is modified; all active servers are notified of the change and check the
JIF in order to readvertise their services.

If service components were created with the screen wizard, you must update the JIF
with definitions of the services that are associated with that service component. The
JIF has its own editor which lets you access those service definitions and edit them, or
add new definitions for services that you create yourself.

In this lesson you learn how to:

! Invoke the JIF editor.
Getting Started - JetNet/Oracle Tuxedo 8-1

! Define services for a wizard-based screen that fetch, add, delete and update
distributor's orders.

1 If necessary, reactivate the application from the server machine (refer to page 1-15
for UNIX and refer to page 1-28 for Windows).

Invoke the JIF Editor

You can add and update services while you are using the editor by invoking the
JIF editor.

2 Invoke the JIF editor by doing one of the following, depending on your
platform:

UNIX: Start the editor, and choose Tools→JIF Editor.

" Choose File→Open→Middleware Session.

Windows: From the Start Menu, choose Programs→Panther

Client→Tutorial→Tutorial JIF Editor.

" The Connect dialog box opens and displays the information you provided
in your Windows initialization file (jifedtut.ini).

3 Enter any needed information, and choose OK.
8-2 Defining Services

If the information is correct, that is, if it matches the entries you made in your
server setup, you are connected to the middleware and the JIF editor workspace
opens. The View Services dialog box is displayed showing the test service you
defined (Lesson 3) in the jif.bin from the remote common.lib.

Note: (Windows only) If you did not set the SMFLIBS variable in the
jifedtut.ini to open the remote common.lib (host!common.lib),
choose File→Open→Remote Library and select the remote common.lib

that resides in the proltut directory. Choose File→Open→JIF and
select the jif.bin library member.

If the connection to the middleware is invalid or is not made, the JIF editor
opens, but you will not have access to common.lib on the application server. In
addition, updates to the JIF will not take effect and new services will not be
advertised since the server won't know of the changes.

Determine the correct host name (SMRBHOST) and port value (SMRBPORT), and
under UNIX, the broker.bin (SMRBCONFIG) location. Try connecting to the
middleware by entering the correct values in the Connect dialog box.
Getting Started - JetNet/Oracle Tuxedo 8-3

Define a service

Define services to carry out basic database transaction requests. For the screen
you just created with the screen wizard, you want to define services that let
users add, update, select, and delete distributor records.

4 Choose Service→Create or .

The Create Service dialog box opens.

5 Enter distributor_d in the Service Name field and press TAB.

The JIF editor supplies the routine name, in this case delete, because of the _d
suffix in the Service Name. It also provides a default service component
name—using the prefix of the service name.

6 Press TAB to advance to the Service Component field.

7 Change the service component name to dstord (to match the name you
provided in the editor when you saved the service component to server.lib).

8 Choose Add.

The fields clear so that you can create another service.
8-4 Defining Services

More About Service Options

There are additional service specifications you can define in the JIF that let you
control such things as:

" Which transaction a service implements.

" When a service component is opened and cached to memory.

" Behavior of the service itself when it is called.

By default, the JIF uses the service name to determine the transaction type;
therefore, a service name that ends with _i sets the service to the transaction
manager Insert operation. In addition, the Cache Service Component option by
default is set to open or cache a service's service component when the service
is advertised by the server.Repeat steps 5 through 8 for each of the other
services: distributor_i, distributor_s, and distributor_u. Remember
to provide the correct name of the service component, dstord.

9 Repeat steps 5 through 8 for each of the other services: distributor_i,
distributor_s, and distributor_u. Remember to provide the correct name
of the service component, dstord.

10 After you create all four services, choose Close to close the Create Services
dialog box.

The View Services dialog box displays the services you created.

11 Choose File→Save or .
Getting Started - JetNet/Oracle Tuxedo 8-5

Since you are connected to the middleware, servers are notified immediately
when changes are saved to the JIF. In addition, new services (depending on the
advertise specification and if the server is configured to advertise all services)
are advertised and immediately available to your application.

12 Choose File→Exit.

You are prompted to release the reservation on the JIF since it is stored in a
remote library and is shared by others.

13 Choose Yes to release the reservation.

The JIF editor closes.

What did you do?

In this lesson, you invoked the JIF editor and:

! Created services devised by the screen wizard for your distributor/orders service
component.

! Defined services that will be called by the client to select, update, insert, and
delete distributors and their orders.

What did you learn?

You learned:
8-6 Defining Services

! The JIF stores service definitions.

! The JIF is accessed by client and server to determine what parameters and
information should be used when processing service calls.

! The JIF editor can be invoked while you are working in the editor.

! When you are connected to the middleware, new and changed services are
advertised by the server and are immediately available to your application.

! When you edit a jif.bin that is shared by the entire development team, you
hold a reservation on that file.
Getting Started - JetNet/Oracle Tuxedo 8-7

8-8 Defining Services

LESSSON
9 Testing the Screens

You now have a client screen and its corresponding service component. Now you are
ready to test the screens to make sure they function appropriately.

In this lesson you learn:

! To test the client screen and the services it uses.

! How the transaction manager controls an application's behavior and appearance.

1 If necessary reactivate your application, invoke the editor, and connect to the
middleware.

If you closed the dstord.scr client screen, you need to reopen it:

2 Choose File→Open→Screen or .

The Open Screen dialog box opens.
Getting Started - JetNet/Oracle Tuxedo 9-1

3 Double-click on dstord.scr in the client.lib library on the application
server.

The client screen opens in the workspace.
9-2 Testing the Screens

Access test mode

At any time, you can test a screen that you are editing to see how it behaves and appears
to an end user.

4 Bring focus to the client screen, dstord.scr.

5 Choose File→Test Mode (press F2) or .

The Distributor Orders screen opens in Test mode. All text fields are enterable.

More About Test Mode

Any changes you make to a screen in the editor can be tested immediately
without saving or compiling your edits so you are free to experiment without
committing to the changes. However, you must save service components to the
server library to test service calls.

Test mode is fully functional. Your client screen appears and behaves as it
would in the final application. All screen attributes and logic can be executed and
tested (including data validation, database interactions, and 4GL/3GL code).
Also, you can test any screen that is called by the current, or active, screen.
Getting Started - JetNet/Oracle Tuxedo 9-3

Test mode is flexible and powerful. It lets you verify your application design in its
component modules as well as test the entire application as a whole.

View data

You can access “real” data with the screen that you just built. The commands
associated with the screen's buttons let you access and maintain data in the database.

6 Choose .

The first record in the distributors table displays.

After you press View, the Save and Delete buttons become inactive. The active
or inactive state of buttons depends on the last command to execute. In this
case, the request to view records invalidates requests to save or delete records.

7 Try to enter data in any field. Panther prevents data entry because the View
command only allows read access.
9-4 Testing the Screens

Panther's transaction manager protects widgets from data entry by the style that
it applies to each one. Styles can set a widget's color and protections. In this
case, they activate and deactivate (gray out) push buttons without requiring you
to write any code. You can change the default styles with the styles editor.

More About the Transaction Manager

You can create complex database query/update screens without having to write
any code. That's because the transaction manager "knows" about the interaction
between database tables and columns (via information retrieved from the
database during the importation process). Given this information, the transaction
manager generates the appropriate SQL statements for fetching or updating the
database, and keeps track of any data changes. When your application issues
the SAVE command, the transaction manager automatically generates SQL
commands to update the database to match the data on the screen.

Edit the data

After you select a record for update, you can change its contents. When you choose to
update a record, by default Panther protects the primary key fields from data entry.
This is a result of Panther's application of a style to each widget.

8 Choose .

The Select command selects a record for update. The first record in the
distributors table displays.

9 Try to enter data in the distrib_id field.

Panther prevents changes to distrib_id because it is a primary key in the
distributors table; in general, primary key fields in database tables cannot be
changed.

10 Click in or tab to the Address2 field and enter P.O. Box 133. Here you can enter
data and edit existing data on the screen.
Getting Started - JetNet/Oracle Tuxedo 9-5

Save the changes

To save your changes to the database, you must issue a Save command.

11 Choose .

Panther calls the update service distributor_u to update the database.

12 Choose .

All values are cleared from the fields and the Reset command closes the current
transaction, so that you can execute another transaction command.

Add a new record

You can also add a new distributor record to the database.

13 Choose .

After you choose New, only the Save and Reset buttons are active. All other
buttons are grayed and unavailable. As before, styles control the appearance of
the buttons.

14 Enter values in each of the following fields:
9-6 Testing the Screens

15 Choose .

You just updated the server database via the middleware. The local database
remains unchanged. Recall that the tutorial server that you configured in Lesson
2 automatically declares a database connection to the vidsales database on the
server. So, you don't have to connect every time you start up the editor.

In this field Enter the following value

Distrib_id 7

Distrib_name Video Signs, Inc.

Order_num 1211

Order_date 01/05/97 0:00

Po_num A123
Getting Started - JetNet/Oracle Tuxedo 9-7

Note: The JDB model enforces unique primary keys (distrib_id, in this case).
Therefore, to add a new record, you must enter an ID that is unique in the
database. A message is displayed if the entered ID already exists. In this
case, enter a different number. Lesson 13 shows how to programmatically
assign new and unique distributor ID numbers.

16 Choose .

More About Wizard-Generated Buttons

The transaction-specific buttons generated by the screen wizard let users
update, insert, select, and delete database records. In general, the buttons
operate on the master table and any other updatable tables on the screen.
However, on some screens, the default behavior might have unwanted results.
For instance. the Delete button on the dstord client screen deletes the master
and the associated details. Because the order items associated with the detail
are not present on the screen, these would be orphaned. Therefore, you might
want to remove the Delete button from this type of screen.

The Transaction menu options in test mode offer functionality that is equivalent
to the buttons. Some options, particularly Continue, are invalid in a three-tier
model.

17 Return to the editor in one of these ways:

" Choose Options→Editor (press Shift+F5). (Windows only) Press Esc
twice.

You exit test mode and the editor workspace reopens.

What did you do?

In this lesson, you tested the Distributor Order screen by performing these tasks:

! Accessed test mode from the editor workspace.

! Executed a variety of database commands that let you view, update, and add
data in the vidsales database.

! Saved changes to the database.
9-8 Testing the Screens

What did you learn?

You learned:

! The screen wizard creates screens that can be tested and used almost
immediately.

! The transaction manager knows about the interaction between database tables
and columns. It automatically builds the appropriate SQL statements. It also
knows when to activate and deactivate specific widgets (primary keys and
command buttons) on the client screen, and thereby cue users which actions
they can take next.

! The push buttons that are created by the screen wizard can handle most
database requests. With the screen wizard, you can build screens that retrieve
and update data without writing a single line of code.
Getting Started - JetNet/Oracle Tuxedo 9-9

9-10 Testing the Screens

LESSSON
10 Setting Properties
to Query the
Database

In this lesson, you enhance the Distributor Orders (dstord.scr) screen so users can
query the database for a specific distributor record. You learn about Panther widget
properties and how to set them appropriately.

Properties can be set and changed locally for the current screen and its components,
and globally for objects throughout the application:

! Properties for some objects should be set on a screen-by-screen basis, because
the behavior or appearance of the object depends on how it is used. For
example, on a data maintenance screen, you might want to enforce data entry in
a field by setting its Required property to Yes, while on another screen, the
equivalent field does not have the same requirement.

! Objects throughout your application can inherit their property settings from the
repository. For example, you might set a widget's validation, font specification,
size, and format in the repository. All widgets that inherit from this repository
object have the same appearance and behavior.

In this lesson, you set properties that allow users to search the database for a specific
distributor by entering an identification number. The transaction manager
automatically generates the appropriate SQL query statement based on this input,
submits the input to the middleware API, and ultimately returns the desired distributor
data to the client.
Getting Started - JetNet/Oracle Tuxedo 10-1

In this lesson you learn how to:

! Set widget properties on both the client screen and its corresponding service
component.

! Specify a particular widget to act as a query field.

! Test the resulting query screen by searching for specific distributor records.

1 If necessary:

" Reactivate the application, invoke the editor, and connect to the
middleware.

" Reopen the client screen dstord.scr in client.lib and the service
component dstord.scr in server.lib on the application server.
10-2 Setting Properties to Query the Database

Using the Properties window

You can define the appearance and behavior of screens and widgets through the
Properties window. If the Properties window is not open in the editor workspace, open
it with one of these actions:

! Double-click on a widget or on the screen.

! With focus on the screen or a widget, press Enter.

! Choose View→Properties Window.

More About the Properties Window

The Properties window lets you easily view and set properties for all Panther
objects—for one object at a time or for multiple objects simultaneously. If
multiple objects are selected, the Properties window displays those properties
that are common to all, so you can assign the same font, colors, and formats. If
the selected objects have different values for a given property, three questions
marks (???) are displayed as the property value.

When no widgets are selected, the Properties window displays the properties of
the current screen.

Properties are grouped by category under descriptive headings on the left. Initially, the
properties list is collapsed and displays only headings.
Getting Started - JetNet/Oracle Tuxedo 10-3

2 In the Properties window, choose .

All property headings expand, displaying the properties and their respective
values on the right. To change a property value, select the property and type or
select a new value in the Setting field/option menu of the Properties window.

You can also expand and collapse headings individually. To expand or collapse
a single heading, simply click it.

3 Choose .

The properties list collapses, displaying only the property headings.

No matter how you set a property, you can reverse any change with

Edit→Undo or .
10-4 Setting Properties to Query the Database

Change properties locally

The next several steps show how to set a property on a widget at the screen level. You
need to set a Database property for the distrib_id widget so that users can obtain
information about a specific distributor and its orders via its ID number. The ID
number is used to search for a matching record in the database.

4 On the client screen dstord.scr, select the single line text (data entry) widget
distrib_id, which is adjacent to the Distrib_id label.

5 In the Properties window, select the Database heading.

Database-specific properties are displayed.
Getting Started - JetNet/Oracle Tuxedo 10-5

6 Under Fetch Data, select the Use In Where property.

An option menu is made available in the Properties window. Here you select
from a list of predefined values.

More About Setting Predefined Property Values

You can set a property with predefined values in several ways after you select it:

" Click directly on the displayed property value to scroll through all possible
values.

" Type the initial character to specify a value. For example, type y for yes or n
for no.

" Select values from the option menu.

7 Click on the option menu to display its drop-down list, and select Yes. Press
Enter or choose OK.
10-6 Setting Properties to Query the Database

Yes tells Panther to use the field in the WHERE clause of the database query.
When you change the Use In Where property to Yes, two other changes occur:

" Related subproperties display, including the Operator property. By default,
the Operator property is set to = (equal sign).

" The Use In Where property value no longer displays in reverse video. This
indicates that the inheritance link no longer exists for this property—in
other words, the property no longer gets its value from the repository.

Database property settings give Panther's transaction manager the information it
needs to build an SQL statement to fetch, display, and update the requested
record. At runtime now, when a distributor ID is entered in the distrib_id
widget and a View or Select command is issued, Panther searches the
distrib_id column in the distributors database table for a record with a
matching ID.

More About Inherited Property Values

The Properties window uses reverse video to show which property settings are
inherited. The Inherit From property under the Identity heading identifies the
source of inheritance. Objects within the repository that are imported directly
from a database have their Inherit From property set to @DATABASE.
Getting Started - JetNet/Oracle Tuxedo 10-7

Screens that are created by the screen wizard inherit screen, push button, and
grid property values from prototype wizard-specific repository entries, while
labels and data entry-type widgets inherit their property values from
database-derived repository entries.

8 With focus on the dstord.scr client screen, choose File→Save or .

The screen is saved to client.lib on the application server.

Edit the service component

It is important to keep the service component and its calling client screen
synchronized, because the service component must perform the actual passing of data
to and from the database server. In general, all property settings that affect processing
of data must be made to both the client screen and its corresponding service
component.

9 Repeat steps 5 through 8 for the distrib_id single line text widget on the
dstord.scr service component.

10 Choose File→Save or .

The service component is saved to server.lib on the application server.

View specific records

Now test the client screen to find a specific distributor's records.

11 Bring focus to the dstord.scr client screen.

12 Choose File→Test Mode or .

The Distributor Orders screen opens in test mode.

13 Enter 3 in the distrib_id field.

14 Choose .
10-8 Setting Properties to Query the Database

The distributor record that contains ID number 3 displays.

15 Choose .

The Reset button executes a Close command, which closes the search
transaction and clears all fields of data so that you can search for another
record.

16 Enter 7 in the distrib_id field.

17 Choose .

The distributor record that you added to the database in Lesson 9 displays and
can be edited.

18 Type 5551234567 in the Phone field.
Getting Started - JetNet/Oracle Tuxedo 10-9

19 Choose .

The service distributor_u is called to update the database with the changes.

20 Choose .

The transaction closes. You can try all the buttons on the screen. However, you must
remember to choose Reset to close each transaction and clear the fields.

Note: Using the Delete button on this particular screen deletes the selected
distributor and its orders. However, this also orphans records in the
order_items table that are associated with the deleted orders records.
Therefore, you should not delete distributors via the dstord.scr screen.

21 Press Shift+F5 (Esc twice or choose Options→Editor) to exit test mode and
Return to the editor.
10-10 Setting Properties to Query the Database

What did you do?

In this lesson, you created a query screen that lets a user enter data that is used to search
for a specific database record. You did this by performing these tasks:

! Define a query field on both the client screen and service component by setting
their Use In Where property.

! Test the resulting screen by entering search criteria.

What did you learn?

You learned:

! The Properties window lets you set an object's behavior.

! Inherited property values can be selectively overridden, without affecting
inheritance links for other properties.

! It is important to keep client screens and their corresponding service
components synchronized with the same data entry widgets.
Getting Started - JetNet/Oracle Tuxedo 10-11

10-12 Setting Properties to Query the Database

Module 3—
Connecting the
Screens
Getting Started - JetNet/Oracle Tuxedo 1

OVERVIEW
Getting Started - JetNet/Oracle Tuxedo 2

LESSSON
11 Enhancing the
Screen

An additional client screen and its corresponding service component are provided in
tutorial.lib. They use a grid format to display a list of distributors. In this lesson,
you enhance the screen and service component so users can query the database for a
specific distributor record through two different search criteria: either a distributor ID
number or a partial or full name string. The transaction manager uses user input to
generate automatically the appropriate SQL query statement. If a query field is empty,
the transaction manager excludes its data from the SQL generation.

In this lesson you learn how to:

! Resize the screen and copy widgets to it from a repository entry.

! Specify and define more than one widget to act as a query-by-example field, so
users can use a variety of search criteria to query the database.

orditm.scr

dstord.scr
dstslect.scr

titles.itm
Getting Started - JetNet/Oracle Tuxedo 11-1

! Copy widgets from the client screen to the service component so both have the
same data entry widgets and are thereby synchronized.

In this lesson, you open a wizard-built client screen and service component from the
local tutorial library. You then save them to their appropriate libraries on your remote
application server, and enhance the user interface by including query fields.

1 If necessary, reactivate the application, invoke the editor, and open a middleware
session.

2 Choose View→Library TOC.

The Library TOC opens.

3 If tutorial.lib is not among the list of open libraries:

" From the Library Table of Contents, choose Open under the list of open
libraries. The Open Library dialog opens.
11-2 Enhancing the Screen

" Select tutorial.lib.

" Choose Open. The Library TOC redisplays.

4 Select tutorial.lib from the list of open libraries and lesson10.clt from
the list of library members. Choose Open.

The lesson10.clt screen opens in the editor workspace.
Getting Started - JetNet/Oracle Tuxedo 11-3

This screen is a master-only screen for the distributors table and uses a grid
format. The grid contains three of the table's columns: distrib_id,
distrib_name, and distrib_phone.

5 Choose File→Save As→Library Member. The Save Screen dialog opens.

6 Save the screen as dstslect.scr in client.lib on the application server.

7 From the Library Table of Contents dialog, select lesson10.svr from the list
of library members.

The service component, lesson10.svr, opens in the editor workspace.

This screen contains the same grid as the client screen.

8 Choose File→Save As→Library Member and save lesson10.svr as
dstslect.scr in server.lib on the application server.
11-4 Enhancing the Screen

Access table view properties

Since the client screen and service component were created using the screen wizard,
the services that will be requested by the client screen were also generated. These
values are properties of the client screen's table view. Select the screen's invisible table
view widget and determine the names of its Service properties so that you can define
those services in the JIF.

More About Table Views

A table view widget is automatically created on a repository screen when you
import database objects. Table views store the following types of database
information:

" Primary key

" List of table columns

" Database attributes such as, sort order, distinct, etc.

" Service specifications

Panther's transaction manager uses the information stored in table views (and
links which specify the join relationships between multiple table views) to
determine what SQL statements should be generated for each transaction
command.

The JetNet transaction model uses the service information to determine how to
respond to service calls.

In addition, table views provide you with a quick entry point for modifying the
default transaction manager behavior.

You can select the table view widget by using either the Widget List or the DB
Interactions window in order to gain access to its properties.

9 Bring focus to the dstslect.scr client screen and choose View→Widget List.

The Widget List opens and lists all the widgets on the current screen: the
widget's name, field number or contents is in the middle column and its type in
the right column.
Getting Started - JetNet/Oracle Tuxedo 11-5

More About the Widget List

You can use the Widget List as an alternative way to select widgets. All widgets
on the current screen are listed in the Widget List, including invisible widgets,
such as selection groups, synchronization groups and table views.

When you select an item from the list, the widget on the screen is also selected.
The Properties window displays the properties common to the widgets that are
currently selected, or of the screen if no widgets are selected.

You can select multiple contiguous widgets in the list with a click+drag or
Shift+click; Ctrl+click to toggle membership in the selection set or to select
non-contiguous items.

10 Select distributors from the list of names. It is identified as the distributors
table view widget.

The table view properties are displayed in the Properties window (Table View
displays in the Type field).

11 Expand the Service heading in the Properties window.
11-6 Enhancing the Screen

The Delete Service, Insert Service, Select Service, and Update Service
properties use the dstslect prefix for the names of the services used by this
screen.

More About Wizard-Generated Service Names

When the screen wizard generates screens for a three-tier model, you will recall
that it also creates services that the screen will use. It uses the master table on
the client screen to determine the name of the services. Since the client screen,
in this case, uses the distributors table as its master table, the services, by
default, would have distributor as the prefix. Service names must be unique
within the JIF, and since services with this prefix were already defined for a
screen you created earlier, different services needed to be specified.

The services used by a screen are specified in the Service properties associated
with the client screen's root table view. The screen wizard automatically sets
Getting Started - JetNet/Oracle Tuxedo 11-7

these property values based on input you provide on the screen wizard Service
Definition dialog box.

Refer to Chapter 31, “Building a Transaction Manager Screen.” of the
Developer's Guide for more information on root table views and table view
processing.

Update the JIF

When you add or change services in the JIF, Panther rereads the JIF, which in turn,
causes the application server to readvertise services (assuming the server was
configured to do so).

In the case of the tutorial, you did configure the standard server to advertise all services
in the JIF. Therefore, when you add services to the JIF, they are made immediately
available to your application.

12 Invoke the JIF editor and connect to the middleware (refer to Lesson 8 for
details on using the JIF editor).

The services in jif.bin, located in the remote common.lib, are displayed in
the View Services dialog box.

13 Define the four services needed for the dstslect client screen: dstslect_d,
dstslect_i, dstslect_s, and dstslect_u (refer to Lesson 8 for details on
creating services). In each case, name the service component dstslect.
11-8 Enhancing the Screen

14 Choose File→Save.

15 Choose File→Exit to close the JIF editor and return to the editor workspace.

Resize the screen

Increase the screen's vertical dimension so you can add other widgets to it.

16 In the editor workspace, resize the dstslect.scr client screen in one of the
following ways:

" Drag on the upper or lower edge of the screen until it is the size you want.

" Click in an empty area of the client screen to deselect all widgets.

The screen properties are displayed in the Properties window. Under
Geometry, set the screen's Height property to the desired size (default is in
grid units).
Getting Started - JetNet/Oracle Tuxedo 11-9

Move widgets

Make room for more widgets above the grid widget by moving the grid widget and
push buttons down to the screen's lower portion.

17 Choose Edit→Select All and drag the widgets to the bottom of the screen,
leaving space at the top for more widgets.

Open a repository entry

You want to populate the screen with widgets that are associated with a particular
database table. You can access these widgets in the repository, just as the screen wizard
does.

18 If the repository is not open, choose File→Open→Repository, and select
data.dic in the proltut directory.

19 Choose File→Open→Repository Entry.

The Open Repository Entry dialog opens and displays the contents of the
data.dic repository.
11-10 Enhancing the Screen

20 Select the distributors repository entry and choose OK.

The distributors@[Repository] window opens.

Copy widgets

You can use widgets from the repository to serve as query fields on the dstslect.scr
screen. When you create a copy of a repository widget, the copy has an inheritance link
to its parent in the repository. You can use inheritance to propagate changes from the
repository to application screens and service components, as shown in the next lesson.
Getting Started - JetNet/Oracle Tuxedo 11-11

In the following steps, you copy distrib_id and distrib_name from the repository
to the client screen dstslect.scr. The copies inherit their property values from the
repository.

21 With focus on the distributors repository screen, Shift+click to select the
Distrib_id label and its corresponding text widget (distrib_id), and the
Distrib_name label and its corresponding text widget (distrib_name).

Selecting multiple widgets creates a selection set, which is useful for defining
common property values. The first widget you select is the dominant widget.
You can Ctrl+click on another widget in the selection set to make it dominant.

More About Selecting More than One Widget

When more than one widget is selected, the first one you select is considered
the dominant selection and is indicated by little solid black squares around its
border (square brackets in character mode); all other widgets in the selection set
are indicated with hollow boxes (curly braces ({}) in character mode). The
position and size of the dominant widget determines how the other widgets in
your selection set will align or resize when you use Edit menu or toolbar options.

There are a variety of ways to select multiple widgets:

" Press Shift+click on a widget to add or remove it in the selection set.

" Press Cntl+click to select a new widget and make it dominant

" With the mouse button pressed, drag a bounding box, also known as a
rubber band, around the desired widgets. Any widgets that fall within the
rubber band boundary are selected.

" Use the Widget List (refer to page 10-3) in Using the Editors.

22 Drag the widgets from the repository screen distributors to the top of the
screen dstslect.scr.
11-12 Enhancing the Screen

23 (Optional) Bring focus to the distributors repository entry and choose
File→Close→distributors. The repository window closes.

24 Arrange the widgets so they are horizontally aligned at the top of the screen, as
shown below. Use alignment options from the Edit menu or toolbar.
Getting Started - JetNet/Oracle Tuxedo 11-13

Name the widgets

It is good practice to name all data entry widgets, especially if you need to access them
programmatically. Names of all widgets on a screen must be unique. Because the
dstslect.scr screen already contains widgets named distrib_id and
distrib_name, the copies from the repository are left unnamed. You need to assign
different names to the copies via their Name property.

25 Select the copied text widgets on the client screen dstslect.scr and set each
one's Name property (under Identity) as follows:

" distid_qbe—This widget will serve as a query-by-example field.

" distname_qbe—This widget will serve as an alternative
query-by-example field where users can enter a full or partial name string.

Define the query fields

Use database properties to provide the transaction manager with information it needs:
identify the query fields, define the data to retrieve, and ensure that query field data is
not used to update the database.

26 Select the distid_qbe and distname_qbe widgets.

27 Under Database, select CHANGE DATA. Under CHANGE DATA, set the following
property for both widgets:

" Use In Update = No

These settings ensure that the data in these widgets is ignored by SELECT
or UPDATE statements of automatically generated SQL.

28 Under Database, select NEW DATA. Under NEW DATA, set the following property
for both widgets:

" Use In Insert = No

29 Under Database, select FETCH DATA. Under FETCH DATA, set these properties
for both widgets:
11-14 Enhancing the Screen

" Use In Select = No

" Use In Where = Yes

Related subproperties display. Leave the Operator property set to =. At
runtime, when an ID is entered in distid_qbe, Panther searches the
distrib_id column in the distributors table for a record (or row) with
the same distributor ID.

30 Select the distname_qbe widget.

31 Under the Use In Where property, set the Operator property to %like%.

The percent sign (%) sign is a wildcard matching any sequence of zero or more
characters. This pattern matching operator tells Panther to search the database
for all records that contain the string in the distname_qbe field.
Getting Started - JetNet/Oracle Tuxedo 11-15

Synchronize the service component

Because this is a three-tier model, the service component associated with the
dstslect.scr client screen must include the new query-by-example widgets that you
just copied and modified. Simply copy them from the client screen to the service
component; the properties you defined are copied with the widgets. Users never see the
service component, so you don't have to worry about how it looks.

32 Select text widgets distid_qbe and distname_qbe on client screen
dstslect.scr.

33 Drag the widgets to any area of the dstslect.scr service component.

34 Save both the screen and the service component (press F6).
11-16 Enhancing the Screen

Query the database

You can try it out!

35 Bring focus to the dstslect.scr client screen.

36 Choose File→Test Mode or .

37 Type Vid in the Distrib_name field.

38 Choose .

All distributors that have Vid in their name are listed in the grid.

39 Choose .

40 Type 6 in the Distrib_id field and choose .

Panther looks for a record with an exact match—a distrib_id with a value of
6. The record corresponding to ID 6 is displayed in the grid.

41 Now return to the editor.
Getting Started - JetNet/Oracle Tuxedo 11-17

What did you do?

You enhanced a screen so users can search for distributors by name or ID. You did this
by performing these actions:

! Opened the distributors repository entry and copied the desired widgets to your
client screen.

! Assigned the appropriate database properties to the copied widgets.

! Copied the query-by-example widgets to the service component.

What did you learn?

You learned:

! Widget names must be unique on a screen.

! Copying widgets copies their property settings as well.

! The editor provides the editing tools you need to enhance the user interface.
11-18 Enhancing the Screen

LESSSON
12 Inheriting from the
Repository

The repository provides a development team with a central storage mechanism and
access point for commonly used application objects and database-derived widgets.
You can easily modify the contents of the repository and propagate changes
throughout an application to client screens and service components alike.

In this lesson you learn how to:

! Control user input by defining an edit mask.

! Edit a repository screen and propagate the changes from the repository to client
screens and service components.

! Create a widget on the client screen and copy it to a repository entry for later
use.

1 If necessary:

" Reactivate your application, invoke the editor, and open a middleware
session.

" Reopen the dstslect.scr client screen and service component from client.lib
and server.lib respectively.

" Reopen the distributors repository entry: choose File→Open→Repository
Entry and select distributors from the Open Repository Entry dialog.
Getting Started - JetNet/Oracle Tuxedo 12-1

Define user input

You can apply an input filter to a widget so it conforms to specific data requirements,
such as restricting the length of data or allowing only numeric input. Or, in the case of
a telephone number, apply an edit mask so users have a visual cue as to what format is
expected when entering data.

2 Select the phone single line text widget (next to the Phone label) on the
distributors repository entry.

3 Under Input, set the Keystroke Filter property to Edit Mask.

An Edit Mask subproperty appears, where you define the edit mask. In an edit
mask, a character that is preceded by a backslash allows a data character to be
entered in this position. A character that has no leading backslash is treated as a
literal. For example, the string (\9\9\9) specifies to display open and close
parentheses around three spaces in which the user can only enter digits, such as
(415).

4 Define the Edit Mask subproperty as (\9\9\9)\9\9\9-\9\9\9\9.
12-2 Inheriting from the Repository

The widget displays () - and accepts only numbers as input.

More About Input Filters

Panther provides built-in input filters to help guide user input and, at the same
time, reduce validation requirements. Some input controls include:

" Digits-only—Allows entry of the digits 0 through 9 only.

" Alphanumeric—Allows entry of any digits, the letters a-z and A-Z, and the
space character.

" Yes/No fields—Allows entry of the initial letters of "yes" and "no."

" Case style—Enforces upper-case, lower-case, mixed case conversion.

" Required data—Requires at least one non-blank character for validation to
succeed.

" Minimum/maximum value specifications—Specifies a range of values.

" Various protection modes—Protects data from being cleared, or the field
from receiving focus, thereby protecting it from data entry.

" Edit masks—Imposes a pattern of symbols or characters that limit the kinds
of characters a user can type into a field.
Getting Started - JetNet/Oracle Tuxedo 12-3

" Regular expressions—Enforces or excludes a specific pattern of letters
and/or numbers.

" Table lookups—Verifies input against a list of possible values.

Define what the user sees

You can set properties to enhance specific widgets, for instance, using more
descriptive label text or using a different font for data entry widgets. These next few
steps show how to set a variety of properties on different widgets. By setting these
properties once in the repository, you ensure that they affect the entire application.

5 Select the Distrib_name label widget on the distributors repository entry.

6 Under Identity, change the Label property to Distributor.

7 Select single line text widget distrib_name.

8 Under Identity, change the Column Title property to Distributor.

This property controls the label that appears within the grid widget.

9 Select label widget Ldistrib_id (Distrib_id).

10 Under Identity, change the Widget Type property to Dynamic Label.

Dynamic label widgets have a broader scope of properties; therefore, they are
more easily manipulated programmatically (more on this in the next lesson).

11 Under Geometry, set the Size to Contents property to Yes.
12-4 Inheriting from the Repository

This property lets the widget resize dynamically according to its label content.
If the label changes at runtime, the widget size automatically adjusts. This
feature is useful for labels that display a name or date whose length is variable.

Propagate changes to screens and service
components

Changes made to parent widgets in the repository are visible in child widgets on
screens and service components that are open in the editor when the repository entry
is saved. To propagate changes to child widgets on other screens and service
components, open those screens and service components in the editor, or run the utility
binherit to propagate changes as a batch process to all the application's screens.

12 While the distributors@[Repository] entry has focus, choose File→Save.

Notice that the mask you added to the phone widget in the repository entry
appears in the phone grid member on both the client screen and service
component. Also, the label next to the query field is updated, as is the column
title in the grid widget.

More About Inheritance

When you import a table from a database, the text widgets in the resulting
repository entry represent columns in the table. These widgets inherit
database-related properties from the database. Like the screen wizard, you can
use these widgets to build application screens by copying them from repository
entry to screen. The result is an inheritance hierarchy of database to repository
to screen (and service component). Also, the next time you use the screen
wizard, these changes are implemented.

If changes in the database occur such as length specifications, the changed
table can be reimported to the repository. These changes are automatically
propagated to all application objects that are copies of those repository objects.
Also, any custom attributes that you apply to repository objects, such as color,
font specification, and validation, can also be defined and propagated to the
screens that inherit from these widgets.

Importation and inheritance simplify application maintenance and facilitate the
enforcement of a consistent look and feel to an application's interface.

13 Choose File→Close→distributors.

The repository entry closes.
Getting Started - JetNet/Oracle Tuxedo 12-5

Edit inherited property values

You can modify the behavior established by the screen wizard by writing your own
procedure to carry out a particular action. For example, the dstslect.scr client
screen acts as a search or query screen for finding distributor records, so you might
consider using a different screen for adding new distributors to the database. You can
change the way the New button behaves through its control string, so it invokes a
procedure that opens another screen for adding new records.

More About Control Strings and Control String Syntax

You can attach actions to widgets, menu items, and specific logical keys through
control strings. Control strings are a shorthand notation for doing common tasks:

" Execute a function—A caret (^) precedes function names. It tells Panther to
search for and execute the named function.

" Display another screen—Supply the screen name to tell Panther to search
for and open the named screen, and close all other screens.

" Display another screen as a stacked or child window—An ampersand (&)
precedes a screen name. It tells Panther to search for and open the named
screen as a stacked window. A stacked window becomes the top window
and is the only window that can have focus

" Display another screen as a sibling window—A double ampersand (&&)
precedes a screen name. It tells Panther to search for and open the named
screen as a sibling of the calling screen. Users can bring focus to any
window that is a sibling of the active window.

" Invoke a system command or program—An exclamation point (!) precedes
commands. It tells Panther to invoke the specified operating system
command.

14 Select the New button on the dstslect.scr client screen.
12-6 Inheriting from the Repository

15 Under Validation, change the Control String property from its inherited property
value ^do_new to ^send_dst_data("NEW").
Getting Started - JetNet/Oracle Tuxedo 12-7

When the user chooses the New button with this control string, Panther invokes
the send_dst_data procedure and supplies NEW as an argument. Lesson 13
describes this procedure.

The inheritance link no longer exists for this property, as indicated by the
absence of reverse-video display.

More About Flexible Inheritance

You can override inherited values on individual properties. For instance, to
enforce application standards, all application widgets can inherit colors and fonts
from their parent widgets in the repository, but you can also define a font or
validation routine for a child widget that differs from its parent. This breaks the
inheritance link for the given property.

To reestablish inheritance for a property, select the property and choose the Inh
button on the Properties window.

Create a push button widget

Create a push button on the client screen that executes a procedure to send data from
this screen to client screen dstord.scr, which you created in Module 2.

You can create widgets with either the Create menu or the Create toolbar. The next
several steps show how to use the Create toolbar.

16 If the Create toolbar is not open:

" Windows Choose Options→Configure Toolbars. Select Create.

" UNIX Choose View→Tool Box
12-8 Inheriting from the Repository

17 Choose the Push button tool on the Create toolbar.

18 Click near the right side of the dstslect.scr client screen.

A default-sized push button appears at the cursor position.

19 With the button selected, set its Name property to order_pb.
Getting Started - JetNet/Oracle Tuxedo 12-9

20 Set the Label property to Orders.

The button now has this label:

21 Set the Default/Cancel property to Default.

A push button defined as the Default button can be activated at runtime by
pressing Enter.

22 Resize the Order button to match other buttons on the screen:

" Ctrl+click on one of the other buttons (such as the View button) whose size
you want to match. This adds the button to the selection set as the selection
set's dominant widget.

" With both buttons selected, choose Edit→Size→Adjust Both.

The Orders button resizes to the same height and width as the dominant
selection.

Define push button behavior

Attach a control string to the push button so it performs the desired action. At run time,
the control string executes when the Order button is clicked—in this case, it calls the
send_dst_data procedure and is supplied an argument of SELECT.

23 Select the Orders push button.

24 In the Control String property (under Validation), enter
^send_dst_data("SELECT").

25 Choose File→Save.

The dstslect.scr screen is saved to the remote client.lib library.
12-10 Inheriting from the Repository

Create a buttons repository entry

You can copy commonly used objects from a screen to a repository, thereby providing
the entire development team with application objects and code and facilitating
consistent behavior and appearance across the application. In this case, you copy the
Orders push button from the client screen to a repository entry. An inheritance link is
automatically established between the client object and its parent in the repository.

26 Choose File→New→Repository Entry.

The New Repository Entry dialog box opens.

27 Enter buttons as the name of the entry. Choose OK.

An empty screen with the name buttons@[Repository] opens in the
workspace.

28 Select the order_pb push button on the client screen dstslect.scr and drag it
to the buttons repository entry.
Getting Started - JetNet/Oracle Tuxedo 12-11

29 Return to the client screen dstslect.scr and select its order_pb push button
again. Check the Inherit From property (under Identity). It is now set to
inherit its property values from the buttons repository entry
(buttons!order_pb).

30 Give the buttons repository screen focus and choose File→Save.

The buttons repository screen is saved to the open repository.

31 (Optional) Bring focus to each of the screens and service components and
choose File→Close.

What did you do?

You applied global and local changes to specific widgets, performing these tasks:

! Set properties on widgets in the repository and then propagated those changes
to the widgets on client screens and service components that inherit from the
repository.

! Selectively changed properties at the screen level to override inherited property
values.

! Created a prototype push button and then copied it to a repository entry where it
can be used and reused by all members of the development team.
12-12 Inheriting from the Repository

What did you learn?

You learned:

! How to define input filters and control what the user sees and can do in the
application interface.

! You can copy application objects to and from repository entries. In either case,
the repository objects are the parents, and the child objects on the application
screens inherit from them.

! How to write a control string to alter the default behavior of wizard-generated
push buttons.
Getting Started - JetNet/Oracle Tuxedo 12-13

12-14 Inheriting from the Repository

LESSSON
13 Writing and
Executing JPL

You can embed special processing in your application screens with Panther scripting
language JPL. Because the JPL is saved with the screen or service component, it is
accessible to the screen and its widgets.

In this lesson you learn how to:

! Attach JPL procedures to screens: one procedure to send data and the other to
receive the transmitted data.

! Implement error handling by displaying a message to the user.

! Use the DB Interactions window to view database objects and their
relationships on your application screens, and to gain access to their properties.

! Write transaction manager hook functions: one for the service component that
automatically generates a distributor ID number when a distributor is added to
the database, and one for the client screen that displays the generated ID.

This lesson shows how to use the JPL editor and describes its capabilities. The JPL
procedures that you need are already written and stored in tutorial.lib. The
following diagram illustrates the JPL procedures you will enter in this lesson.
Getting Started - JetNet/Oracle Tuxedo 13-1

1 If necessary:

" Reactivate your application, invoke the editor, and connect to the
middleware.

" Reopen client screen dstslect.scr from the remote client.lib
library.

1. JPL to send data to dstord.scr

2. JPL to receive data

3. JPL to generate ID

4. JPL to unhide ID field

dstslect.scr

dstord.scr

dstord.scr
13-2 Writing and Executing JPL

Write a procedure to access a distributor’s orders

Write a JPL procedure that is called when a user chooses the New or Orders button on
the dstslect.scr client screen. Both buttons call a JPL procedure that opens the
Distributor Orders screen; each button passes to this procedure a different parameter
(NEW or SELECT), which determines whether the screen is used to add a new distributor
to the database, or view orders of an existing distributor.

Because the same procedure is called by two different screen objects, make the
procedure available to both by attaching the JPL code to the screen's JPL Procedures
property.

2 Select the dstslect.scr client screen—click on an empty area in the screen to
deselect all widgets.

The Properties window displays screen properties.

3 Under Focus, select the JPL Procedures property.

Panther opens the edit window for this screen's JPL:

The screen entry procedure enter_screen, produced by the screen wizard, is
already attached to the screen's JPL. It calls the public command, which makes

JPL to send data

dstslect.scr
Getting Started - JetNet/Oracle Tuxedo 13-3

the code in the smwizard.jpl module available to all application screens.
Leave the wizard JPL code unchanged and add new procedures to this module.

4 Position the cursor a line or two below the return line of the enter_screen
procedure. Insert the JPL procedure send_dst_data, which is stored in
tutorial.lib:

" Choose Edit→Insert From Library. The Open JPL Module dialog opens.

" If necessary, open tutorial.lib by choosing Open and selecting it from
the Open Library dialog.

" From the Open JPL Module dialog, select tutorial.lib from the list of
open libraries, and select send_dst.jpl from the list of members. Choose
OK.

The send_dst_data procedure is read into the JPL edit window:

proc send_dst_data(cmd)
{

vars occ
if (cmd == "NEW")
{

send DATA cmd, ""
}
else
13-4 Writing and Executing JPL

{
occ= Master->grid_current_occ
if (distrib_id[occ] == "")
{

msg emsg "First select a distributor."
return 1

}
else
{

send DATA cmd, distrib_id[occ]
}

}
call sm_jwindow("(+5,+5)dstord.scr")
return 0

}

More About the send_dst_data Procedure

The send_dst_data procedure is called when a user chooses either the New
button or Orders button on the Select Distributor (dstslect.scr) screen. Each
button supplies a different string argument to the procedure's cmd parameter,
which controls how the procedure executes:

" If New is chosen, NEW is supplied as an argument. The send command puts
this string into a specialized global buffer, or bundle. Bundle data is
accessible to any other screen through the receive command.

" If the Orders button is chosen, SELECT is supplied as an argument. In this
case, the send command puts two items into the bundle: the SELECT string,
and the distributor ID in the selected distributor record. To ensure that a
distributor ID is supplied, the procedure checks whether a record is selected
from the grid, and issues an error message if one is not.

In both cases, the dstord.scr screen is opened through the call to sm_jwindow,
which opens the Distributor Orders (dstord.scr) screen at the specified
(+5,+5) position: five grid units right and five grid units down from the calling
screen.

5 Choose OK to save the procedure and close the JPL editor.

6 Choose File→Save.

7 (Optional) Close the dstslect.scr client screen.

More About the JPL Edit Window

You can write and edit JPL procedures within Panther’s own edit window. This
window offers access to JPL that is attached to a screen or stored in a library.
Getting Started - JetNet/Oracle Tuxedo 13-5

You can also use any text editor that your system offers and that is specified in
the application variable SMEDITOR—for example, Notepad on Windows or vi on
UNIX. To access this editor:

" Bypass the JPL edit window and go directly to the system editor by
choosing Options→Direct to External Editor.

" Invoke the system editor from the JPL edit window by choosing
Edit→External Editor.

When you exit the system editor, you resume in the JPL edit window, where you
save your changes back to its source by choosing File→Save. You can also
save library JPL modules to a new library member by choosing File→Save
As→Library Member.

To save the current module's contents to a disk file, choose File→Save
As→ASCII Text File. Use this option in order to print JPL code from your
system, or to send it in an email.

You can insert the contents of other JPL modules into the current one: choose
Edit→Insert From Library to insert from a library module, or Edit→Read File to
read from a disk file. Panther inserts the file's contents at the cursor's current
position.

Write a procedure to receive data

The send_dst_data procedure sends data that is needed by the dstord.scr screen.
Now you must write a screen entry procedure for dstord.scr that captures this data
and uses it to determine the screen's behavior when it is opened by the dstslect.scr
screen's New or Orders buttons.

8 If the dstord.scr client screen and service component are not open, choose
View→Library TOC and open them from the client.lib and server.lib
libraries, respectively.

JPL to receive data

dstord.scr
13-6 Writing and Executing JPL

9 Select the dstord.scr client screen by clicking in an empty space within its
borders, so no widgets are selected.

10 Under Focus, choose JPL Procedures.

The JPL edit window opens and displays screen wizard-generated comments
and code. Replace this with code that is in tutorial.lib.

11 Comment out the original enter_screen procedure by placing // at the
beginning of each of the three lines.
Getting Started - JetNet/Oracle Tuxedo 13-7

12 Position the cursor a line or two below the return line of the commented
procedure.

13 Choose Edit→Insert From Library.

14 From the Open JPL Module dialog, select se_dst.jpl from tutorial.lib
and insert the file by double-clicking on its name or choosing OK.
13-8 Writing and Executing JPL

The enter_screen procedure is read into the JPL edit window:

proc enter_screen (screen_name, context)
{

public smwizard.jpl
vars cmd

if ((context & K_EXPOSE) || !(sm_is_bundle("")))
{

return 0
}
else
{

receive DATA cmd, distrib_id
if (cmd == "NEW")
{

LDistrib_id->hidden=PV_YES
distrib_id->hidden=PV_YES

}
call sm_tm_command(cmd)
return 0

}
}

Getting Started - JetNet/Oracle Tuxedo 13-9

The enter_screen procedure is invoked as the dstord.scr screen's entry
procedure. First, the public command makes the wizard-generated JPL module
smwizard.jpl available to the application. Next, the procedure determines
whether a user can add a distributor record or edit an existing one:

" The first if statement checks for two conditions: the screen is already open
and is reexposed—(context & K_EXPOSE); or no data was sent from the
dstslect.scr screen—!(sm_is_bundle("")). If either condition is
true, the procedure returns.

" If both if conditions are false, the receive command captures the bundle
data sent from the dstslect.scr screen. If data is received for
distrib_id, it is placed in that widget.

" An if statement tests the value of cmd. If it evaluates to the string NEW, text
widget distrib_id and its label LDistrib_id are hidden.
sm_tm_command passes the value of cmd to call the appropriate transaction
manager command, NEW or SELECT. If the NEW command is called, it
prepares the screen to accept new data. If the SELECT command is called, it
fetches the appropriate data using the value in distrib_id.

15 Choose Apply.

16 Save the client screen (choose File→Save).

More About Sharing Information Across Screens

The send and receive commands let you transfer data between screens in an
application. The send command specifies the data items to send and stores
them in a buffer. When the target screen executes the corresponding receive
command, the buffered data is retrieved.

Panther provides several ways for screens to access each other's data:

" JPL can directly reference variables and widgets on other open screens with
the syntax convention screen_name!widget_name. However, this syntax
is invalid for referencing between client screens and service components.

" JPL global variables, created with the global command, can store data that
is accessible to the entire application.

" Local Database Blocks (LDB) contain widgets whose values are
automatically written to same-named widgets on a screen when it opens or
regains focus, and which read the values of those widgets when the screen
exits.
13-10 Writing and Executing JPL

For more information about using send and receive commands and LDBs,
CLICK HERE.

Generate a unique ID number

The JPL that you have so far written opens the dstord.scr screen when a user
chooses the New button on the dstslect.scr (Select Distributor) screen, and opens
dstord.scr (Distributor Orders) in insert mode. You can now write a JPL hook
function for the dstord.scr service component that generates a unique distributor ID
number. This hook function executes during transaction manager processing and
supplements the default transaction model.

17 Select the dstord.scr service component by clicking in an empty space within
its borders (no widgets should be selected).

18 Under Focus, choose JPL Procedures.

19 Position the cursor after the enter_service procedure and before the
comments to the select procedure.

20 Choose Edit→Insert From Library.

JPL for unique ID

dstord.scr
Getting Started - JetNet/Oracle Tuxedo 13-11

21 From the Open JPL Module dialog, select evnt_svr.jpl from tutorial.lib
and choose OK.

The tm_events_svr procedure is read into the JPL edit window:

proc tm_events_svr (event_id)
{

if ((event_id == TM_INSERT_EXEC) && (distrib_id == ""))
{

DBMS ALIAS distrib_id
DBMS QUERY SELECT MAX(distrib_id)+1 from distributors
DBMS ALIAS // Clears prior aliasing

}
return TM_PROCEED

}

The tm_events_svr procedure checks whether an Insert transaction manager
event occurred and the distributor ID is blank. If both conditions are true, the
first DBMS ALIAS command ensures that the database value from the DBMS
QUERY statement is written to the variable distrib_id.

To generate a unique identification number, the second DBMS ALIAS statement
specifies a SELECT to find the highest distributor ID in the distributors database
table and increments that number by one. The service component returns that
number to the client.

22 Choose Apply.

More About DBMS QUERY and DBMS RUN Statements

In general, you'll use the transaction manager to automatically generate SQL
statements. However, you can also write your own SQL. The Panther DBMS
statements let you:

" Declare open connections.

" Manage cursors explicitly.

" Execute SQL statements, stored procedures, RPC calls.

" Execute a variety of database-related tasks.

Refer to the Application Development Guide for more information.
13-12 Writing and Executing JPL

Insert the ID in the Database

When a user adds the necessary distributor information and chooses the Save but ton
on the Distributor Orders screen, the record must be inserted into the database. Here
you modify the insert JPL procedure on the dstord.scr service component to
explicitly add the distrib_id into the distributors database table.

23 In the JPL edit window, scroll down to the insert procedure. Find the statement
with the service_return command.

24 Insert distrib_id within the braces of the service_return command:

service_return success ({distrib_id})

25 Save your changes: choose OK.

26 Save the service component.
Getting Started - JetNet/Oracle Tuxedo 13-13

Invoke the hook function on the server

When you used the screen wizard to create the dstord.scr service component and
client screen in Lesson 7, you specified two tables as their data source. When the
wizard created these screens, it copied an invisible table view widget from each table's
corresponding repository screen, distributors and orders. Each table view widget
contains information about its repository screen's source table; it is created
automatically when you import the table into the repository (Lesson 6).

Also, because dstord.scr is based on two tables, it also contains a link widget that
specifies their join relationship. Like table widgets, link widgets are automatically
created during the import process for each foreign key that is defined for a database
table. When the screen wizard creates a screen with multiple table views, it copies from
the repository the links that describe their relationship.

More About Table Views

Table views store the following types of database information:

" Primary key

" List of table columns

" Database attributes such as, sort order, distinct, etc.

" Service specifications

Panther's transaction manager uses the information stored in table view and link
widgets to determine the SQL statements to generate for each transaction
command. The JetNet transaction model uses the service information to
determine how to respond to service calls.

Also, table views let you easily modify the default transaction manager behavior.

At runtime, the transaction manager traverses all screen table views in the order that
they are linked, and issues transaction commands to populate the master and detail
sections accordingly. If a table view has a hook function attached to it, the transaction
manager executes the function when it traverses that table view.

You attach a hook function to a table view through its Function property. In this case,
you want to attach a hook function to the distributors table view. You can select a table
widget and view its properties through either the Widget List or the DB Interactions
window. In this instance, use the DB Interactions window to select the table view
widget and access its Function property.
13-14 Writing and Executing JPL

More About the Database Interactions Window

The Database Interactions window displays an interactive, graphical
representation of a screen's table view widgets and link widgets. You can view
the relationships between parent and child table views and the links that connect
them. By selecting the toggle buttons representing these database objects you
gain access to their properties.

27 With focus on the dstord.scr service component, choose View→DB
Interactions.

The DB Interactions window opens, displaying a graphical representation of
table views and links on the dstord.scr service component.

More About Sequential and Server Links

Link widgets are not visible at runtime, but are visible in the editor so that you
can access their properties.

There are two type of links—sequential and server:

" Sequential links (denoted by an arrow < in the DB Interaction window) join
two tables with a one-to-many relationship. SQL SELECT statements for the
parent table view are generated and executed before any SQL statements
are generated for the child table view.

" Server links (denoted by an equal sign = in the DB Interaction window) join
two tables with a one-to-one relationship. The database server is used to
join the two tables, and a single SQL SELECT statement is generated to
retrieve the data.
Getting Started - JetNet/Oracle Tuxedo 13-15

28 In the DB Interactions window, select the button that represents the distributors
table view.

The Properties window now displays table view properties.

29 Under Transaction, set the Function property to tm_events_svr.

30 Save all the open screens and service components (press F6).

Write a hook function for the client event

So far, the service component dstord.scr determines whether to generate an ID, and
saves it to the database if a new one is indicated. But the corresponding client screen
is unaware of the new ID. Because the distributor ID field and its corresponding label
are hidden when a new record is added, you can programmatically unhide these fields
and display the new ID by changing their Hidden property when the record is saved.

31 Give focus to the JPL edit window of the dstord.scr client screen.

JPL to unhide ID

dstord.scr
13-16 Writing and Executing JPL

32 Scroll to the end of the enter_screen screen entry procedure and press Enter
twice to insert blank lines between procedures.

33 Choose Edit→Insert From Library.

34 From the Open JPL Module dialog, select evnt_clt.jpl in the tutorial.lib
and choose OK.

The tm_events_clt procedure is read into the JPL edit window:

proc tm_events_clt (event_num)
{

if (event_num == TM_POST_SAVE)
{

distrib_id->hidden=PV_NO
LDistrib_id->hidden=PV_NO

}
return TM_PROCEED

}

The tm_events_clt hook function checks whether a transaction manager Save
command executed and, if so, unhides widgets distrib_id and LDistrib_id
by changing their Hidden property to No.

35 Save the procedure: choose OK.

More About Accessing Properties

All Panther objects and their properties can be accessed and most can be
modified programmatically through JPL or C functions. You get or set properties
for any screen or widget, or the application itself.

Refer to “Setting Properties Using the Property API” in Chapter 19 of Application
Development Guide for information about JPL syntax for identifying screens and
widgets, their properties, and property values. For a list of properties and their
values, refer to Chapter 1, “Runtime Properties,” in Quick Reference.

Invoke the hook function for the client event

Now that the function tm_event_clt has been added to the dstord.scr client
screen, this hook function needs to be attached to the screen's table view widget via its
Function property. At runtime, the transaction manager uses this function to display
the results to the user, confirming visually that a new distributor was added to the
database.
Getting Started - JetNet/Oracle Tuxedo 13-17

36 Using the DB Interactions window, select the button representing the distributors
table view on the dstord.scr client screen.

37 Under Transaction, enter tm_events_clt in the Function property.

If a Save command executes and the new distributor record is committed to the
database, the new distributor ID displays.

38 Close the DB Interactions window: use its system menu or choose View→DB
Interactions to toggle the display.

39 Save the changes in the dstord.scr client screen.

Add a new database record

You now have a working application. You can now test whether the application flow
functions as designed.

40 Bring focus to the dstslect.scr client screen.

41 Choose File→Test Mode or .

The Select Distributor screen opens.
13-18 Writing and Executing JPL

42 Choose .

All distributors in the vidsales database are listed.

43 Choose .

The Distributor Orders screen opens with all data fields clear. The distributor ID fields
are not visible.
Getting Started - JetNet/Oracle Tuxedo 13-19

44 Enter Movie Time in the Distributor field.

45 Choose .

The distributor is added to the database and the ID is displayed in the
Distrib_id field.
13-20 Writing and Executing JPL

46 Close the Distributor Orders screen (choose Close from the system menu).

The Select Distributor screen regains focus. If you scroll down the list of
distributors, notice that the new distributor is not listed. The next lesson shows
how to enhance the screen entry procedure on this screen so users can see the
latest data changes.

View orders

Select one of the distributors and then gain access to all of their orders.

47 Select the row in the grid associated with Distrib_id 3 and choose the Orders
button.

The Distributor Orders screen opens and displays all orders for the selected
distributor. The screen entry procedure (enter_screen) on the dstord.scr
client screen receives the ID you selected (3) and the SELECT command, and
calls sm_tm_command to select the specified database record.
Getting Started - JetNet/Oracle Tuxedo 13-21

48 When done, return to the editor and save any unsaved screens.

What did you do?

You inserted several screen-level JPL procedures: a pair of procedures that send data
from one screen and capture it to another; and two other JPL procedures that tell the
transaction manager how to handle database transactions. You did this by writing these
procedures:

! A procedure that submits a specific command and the appropriate data about a
selected distributor to another screen. You attached the procedure to the
dstslect.scr client screen so that it is called whenever a user chooses either
the Orders or New button. These buttons invoke this procedure via their Control
String property, passing as an argument the command to issue. If a NEW
command is issued, the dstord.scr client screen opens and is ready to accept
new data. If a SELECT command is issued, primary key data for the selected
distributor is submitted to the dstord.scr client screen.

! A screen entry procedure for the called screen—the dstord.scr client screen—
that receives a NEW or SELECT command and accordingly determines the
screen's behavior.

! A transaction manager hook function in JPL for the dstord.scr service
component that automatically generates a unique ID when a new distributor
record is added to the database.

! A transaction manager hook function in JPL for the dstord.scr client screen
that displays the new distributor ID to the user.

What did you learn?

You learned:

! The JPL edit window provides several ways to attach JPL to screens—inserting
a JPL module/procedure from another library, inserting a file from a disk, and
typing it directly in the edit window. You can also use your favorite text editor.
13-22 Writing and Executing JPL

! Depending on the application, there are advantages to storing all the JPL
procedures at screen-level where they are available to the entire screen and all
widgets on it. The procedures can be called from a widget property such as
Control String or Entry/Exit properties.

! You can control application behavior and database transactions with JPL
procedures.

! You can customize transaction manager behavior with hook functions that the
transaction manager calls while it processes database transactions.

! The DB Interactions window offers a graphical representation of a screen's table
views and links, and access to their properties.
Getting Started - JetNet/Oracle Tuxedo 13-23

13-24 Writing and Executing JPL

LESSSON
14 Customizing
Screen Behavior

After an application's basic functionality is in place, you typically continue to work on
it to fine tune its behavior and usability. This lesson shows how to:

! Define a hook that handles double-click events. In this lesson, double-clicking
in a grid row calls a procedure that opens a screen and sends the row data to it.

! Write a JPL procedure that executes a database query conditionally.

1 If necessary:

" Reactivate your application, invoke the editor, and connect to the
middleware.

" Reopen the dstslect.scr and dstord.scr client screens from
client.lib on the application server.

Add double-click functionality

A widget's Double-click property can be set to a control string that determines what
happens when users double-click on that widget. In this lesson, you edit the client
screen dstslect.scr to control what happens when a user double-clicks on a distributor
record in the grid widget. The grid widget columns' Double-click property is set to call
Getting Started - JetNet/Oracle Tuxedo 14-1

the send_dst_data procedure, which displays the selected distributor's record for
editing. Thus, double-clicking on any grid widget field emulates the behavior of the
Orders button (described in lessons 12 and 13).

2 Bring focus to the dstslect.scr client screen and in the grid widget, select widgets
distrib_id, distrib_name, and phone by selecting grid columns
Distrib_id, Distributors, and Phone columns:

" Windows Shift+click on the column titles.

" Motif Shift+click directly within a cell in each column.

3 Under Validation, set these widgets' Double Click property to
^send_dst_data("SELECT").

When the user double-clicks in any of the columns in the grid widget, the
send_dst_data procedure executes (as it also does when the Orders push
button is chosen) and sends the selected ID to the dstord.scr client screen.

4 Bring focus to the dstord.scr client screen and select all the columns in the
grid widget.

5 Under Validation, set the Double Click property to ^send_order_data().

When the user double-clicks on a specific order, the send_order_data
procedure, which is associated with the dstord.scr screen, is called. This
procedure is described later (page 16-20).

6 Save all open screens (press F6).
14-2 Customizing Screen Behavior

Write a screen entry function that executes only on
screen exposure

When you edit an existing distributor's data or add a distributor on the dstord.scr
(Distributor Orders) screen, it is not immediately visible when you return to the
dstslect.scr (Select Distributor) screen. You can enhance the screen entry
procedure on the dstslect.scr client screen so that when the screen redisplays
(after the Distributor Orders screen closes), a View command automatically executes.
This causes the updated database records to redisplay.

7 If necessary, reopen the JPL edit window for the dstslect.scr client screen:

" Select the dstslect.scr client screen (deselect all widgets).

" Under Focus, select the JPL Procedures property.

8 In the JPL edit window, delete the screen wizard screen entry procedure—
everything up to the send_dst_data procedure.

9 Get the new screen entry procedure from the tutorial library:

" Choose Edit→Insert From Library. The Open JPL Module dialog opens.

" If necessary, open tutorial.lib by choosing Open and selecting it from the
Open Library dialog.

" From the Open JPL Module dialog, select tutorial.lib and select
se_slect.jpl from its list of members. Choose OK.
Getting Started - JetNet/Oracle Tuxedo 14-3

The enter_screen procedure for the dstslect.scr client screen is read into
the JPL Program text window.

proc enter_screen (screen_name, context)
{

public smwizard.jpl
if (K_EXPOSE & context)

 {
if (sm_tm_command("VIEW")!=0)
return 1

}
return 0

}

The expression in the if statement tests the K_EXPOSE bit in the context
argument. If the expression evaluates to true (the screen was reexposed), the
View command executes and the updated database records are displayed.
Otherwise, the procedure returns without performing any actions.

10 Save the procedure: choose File→Save.
14-4 Customizing Screen Behavior

Test the JPL

Now when you add or edit a distributor record, those changes should display
immediately after you return to the Select Distributor screen.

11 Bring focus to the dstslect.scr client screen.

12 Choose File→Test Mode or .

The Select Distributor screen opens.

13 Enter M in the Distributor field and choose .

All distributors having an uppercase M in their name are displayed, including the one
you added in Lesson 13.

14 Double-click anywhere on the Movie Time row.

The Distributor Orders screen opens, overlaying the Select Distributor screen.
Getting Started - JetNet/Oracle Tuxedo 14-5

15 Enter (555) 345-6000 in the Phone field and choose Save.

16 Close the Distributor Orders screen (choose Close from the system menu).

The Select Distributor screen regains focus. The phone number shows the new
data that you just saved to the vidsales database.

17 Return to the editor when you're done. Remember to save your screens
(File→Save All).
14-6 Customizing Screen Behavior

What did you do?

You enhanced the user interface by performing these tasks:

! Implemented double-click events. Now in addition to choosing push buttons, a
user can invoke the send_dst_data procedure by double-clicking on a specific
distributor record on the Select Distributor screen. This action invokes the
procedure and sends the selected ID to the Distributor Orders screen.

! Wrote a screen entry procedure for the dstslect.scr client screen that
executes only when the screen is reexposed.

What did you learn?

You learned:

! Double-click events are a useful enhancement to the user interface.

! Screen entry procedures can force a database transaction command to be issued
without requiring any input from the user.
Getting Started - JetNet/Oracle Tuxedo 14-7

14-8 Customizing Screen Behavior

Module 4—
Extending the
Application
Getting Started - JetNet/Oracle Tuxedo 1

2 Module 4—Extending the Application

LESSSON
15 Implementing
Selection Screens

In Lesson 7, you created a master-detail screen that joined two tables: distributors
and orders. In this lesson, you create another master-detail screen that joins the orders
table as the primary master table to the order_items table. In addition to columns
from the order_items table, the screen's detail section also includes data from the
titles table. Thus, it can display the titles of the videos.

Because the screen's detail section contains multiple tables, the screen wizard:

! Provides the link widgets that define the relationships between all tables on
your screen.

! Assigns the name (in the Validation Service property) of the link operation to
the link widget. The service validates new or changed data. So, for the screen
you create in this lesson, when a user adds a new order item ID, the information
returned from the database is, in fact, valid.

! Lets you generate a selection screen where users can pick from valid choices,
and a corresponding selection service component. In this lesson, the titles.cit
selection screen and selection service component are created.

! Assigns the name of the Select service on the master table view of the selection
screen. This service is called by the selection screen to populate the selection
screen with valid options from which a user can choose. For this lesson, it lets
you add an order item to an order by selecting from a list of video titles (on the
selection screen).

In this lesson you learn how to:
Getting Started - JetNet/Oracle Tuxedo 15-1

! Tell the screen wizard to include columns from an additional table on the
screen, and build a selection screen and its corresponding selection service
component.

! Test the behavior of selection screens when adding new records to the database.

1 If necessary:

" Restart the application now, invoke the editor, and connect to the
middleware.

" Reopen the repository, data.dic. (On Windows, File→Open→Remote

Repository. On UNIX, File→Open→Repository.)

Join multiple tables

When you use the screen wizard, the first table you select for a section—master, detail,
or subdetail—is considered the first (primary) table view for that section. For the
screen you create here, select orders as the first master table and join it to
order_items as the first detail table

2 Choose File→New→Screen or .

The New Screen Tool dialog opens.

3 Choose Yes to use the screen wizard.

The Format Selection dialog opens.

4 Select the Master-Detail option (the default) to define the sections.

5 Deselect the Web Friendly Output option.

6 Choose Next.The First Master dialog opens.

7 Select orders from the list of Tables To Pick From.

8 Choose .
15-2 Implementing Selection Screens

This specifies to include all columns in the orders table on the completed
screen.

9 Choose Next.The First Detail dialog opens.

10 Select order_items from the list of tables.

11 Double-click on price.

The selected column is added to the list of those already chosen.

Add details from another table

The screen wizard lets you include information from other database tables in the same
section, as long as the corresponding repository screens specify links to the section's
first table. By selecting the titles tables in addition to the order_items table, the
screen's detail section can display the name, number of available copies, and standard
unit price of each video, along with the price and quantity data from order_items.
The screen wizard includes links that define the relationship between order_items
and titles.

12 Select the Include Columns from Related Tables check box.
Getting Started - JetNet/Oracle Tuxedo 15-3

13 Choose Next.

The Additional Detail dialog opens and shows which tables can be joined to the
order_items table.

14 Select titles from the list of tables.

The list of columns belonging to the titles table displays.

15 Select (Ctrl+click) name, order_price, and quantity_avail.

16 Choose .

17 Reorder the columns (use the up/down position arrows) as shown:
15-4 Implementing Selection Screens

18 Choose Next.

The Layout Selection dialog opens.

19 Choose Next to accept the default layout specification: single row for the master
and grid display for the detail.

The Application Model dialog opens.

Generate selection screens

When you include columns from additional tables, the screen wizard lets you decide
whether to generate selection screens (and selection service components). The
usefulness of selection screens depends on the client screen's function. For example, a
data entry screen might make good use of a selection screen, while a display-only
client screen probably would not.
Getting Started - JetNet/Oracle Tuxedo 15-5

More About Selection Screens

When the Generate Selection Screens check box is selected, the screen wizard
automatically creates a selection screen for every additional table that you
include on your client screen. At the same time, the screen wizard also creates
selection screen service components (for three-tier models). As a result,
additional services are required to carry out the appropriate requests.

Selection screens, sometimes called pick lists, are useful when a user is adding
a new record to the database. The selection screen displays a list of acceptable
values for a field when the user requests help.

20 Choose Next to accept the default architecture (three-tier) and components
(client screen and service component, and selection screens). The Generate
Selection Screens check box is selected by default.

The Service Definition dialog opens.

21 Change the Service Prefix to orditm and press TAB.

22 Choose Next.

The Style and Finish dialog opens.

23 Change the screen title to Order Item Detail and choose Done.
15-6 Implementing Selection Screens

A preview of the client screen displays:

24 Choose Yes to confirm the contents of the screen.

When the wizard finishes building the screens (notice the status bar), the results
include four screens:

" Client screen

" Corresponding service component

" Selection screen for the titles table titles.cit

" Corresponding selection service component titles.sit for the server

The screens are stacked, so you need to move or minimize the top screen to see
the one beneath it.
Getting Started - JetNet/Oracle Tuxedo 15-7

Save the wizard output

Save the client screens to client.lib and the server screens to server.lib.

25 Bring focus to the client screen (Client1) and choose Save.

The Save Screen dialog opens.

26 Save the screen as orditm.scr in remote library client.lib.

27 Repeat steps 25 and 26 for the service component (Server1), saving it to remote
library server.lib. You can close the service component after saving it.

28 Save the other screens to their appropriate remote libraries: titles.cit to
client.lib and titles.sit to server.lib. You can close these screens also
after saving them.
15-8 Implementing Selection Screens

Define link and validation services

In addition to defining services to handle client requests made on the orditm.scr
screen, you need to define the service that validates the data returned from the titles
table, and a service that populates the titles.cit selection screen. De fine all the services
in the JIF.

29 Invoke the JIF editor and connect to the middleware (refer to Lesson 8 for
details on using the JIF editor).

30 Create the following services (press TAB after entering the service name, and
accept or set the appropriate values):

31 Save the JIF back to the remote common.lib, exit from the JIF editor, and
release the reservation on the JIF.

The application knows (as long as you are connected to the middleware) about
these services as soon as you save the JIF and, therefore, you can test the client
screen and the selection screen functionality immediately.

Test the selection screen

Now test the screens.

32 Give focus to client screen orditm.scr.

Service Name Routine Name Service Component

orditm_d delete orditm

orditm_i insert orditm

orditm_s select orditm

orditm_u update orditm

orditm_l1
(lowercase L +
number one)

val_link orditm

titles_c choose titles.sit (include the
extension)
Getting Started - JetNet/Oracle Tuxedo 15-9

33 Choose File→Test Mode or .

The Order Item Detail screen opens.

34 Choose .

The first record in the orders table displays. Several order_item records are
associated with this order. They are displayed in the grid.

35 Click in the Title_id field of the first empty row in the grid.

36 Press F1 (or HELP).
15-10 Implementing Selection Screens

The Titles Selection screen opens and displays all video records in the titles
database table. The service titles_c, which is defined as the Select Service
property of the table view on the selection screen, is called and populates the
screen.

37 Scroll down to the title Cinema Paradiso and double-click on the ID to select
that video.

The selection screen closes and the record you selected appears in the grid on
the Order Item Detail screen. The cursor advances to the next data entry field in
the grid (qty).
Getting Started - JetNet/Oracle Tuxedo 15-11

38 Enter 3 in the Qty column.

Validate the data

Add another item to this order, but this time, enter the title identification number.
Panther uses the validation service (titles_l1) to ensure that the entry is valid.

39 Press TAB to advance to the next empty row and type 55 in the Title_id
column. Press Enter or TAB.
15-12 Implementing Selection Screens

Willie Wonka and the Chocolate Factory is the name of the video associated
with the specified ID number.

40 Choose .

This action saves the new items to the selected distributor's order.

41 Return to the editor.

What did you do?

You created an order entry screen that provides an easy way to add items to an order.
You did this by performing these tasks:

! Used the screen wizard to create a master-detail screen that includes
information from three database tables.

! Requested that the screen wizard generate selection screens for the additional
table specifications.
Getting Started - JetNet/Oracle Tuxedo 15-13

! Tested the selection screen by picking a video record from the list of valid
choices.

! Used the validation service by typing an ID on the client screen and verified
that a valid video title is selected.

What did you learn?

You learned:

! The screen wizard lets you build screens that include data from multiple
database tables, and provides the links needed to populate the client screen at
runtime.

! Selection screens provide users with a list of valid database choices for a field
and eliminate the need to type in already defined information.

! The screen wizard generates selection screens for all additional database tables
represented on a client screen.

! The screen wizard identifies the services needed to validate data and populate
selection screens.
15-14 Implementing Selection Screens

LESSSON
16 Calculating Data
from Database
Values

For this lesson, you are provided with an enhanced client screen and service
component based on the Order Item Detail screen that you created in Lesson 15. You
continue to add to this screen and ultimately connect it with the other screens that you
built in the tutorial.

In general, this lesson provides additional ideas and methods for enhancing screen
wizard-generated JPL procedures and extending the application's database interaction
capabilities.

In this lesson you learn how to:

! Add a widget (item_total) to the detail section (in the grid widget) of the
screen that derives its data from database values.

! Implement JPL procedures that calculate and recalculate item totals and the
grand total as order items are added, deleted, or changed.

! Specify the item_total and order_total widgets as members of the
appropriate table views. Because these widgets are not defined in the source
database table, they are known as virtual fields. Its inclusion in the table view
allows a virtual field to participate in SQL generation and in transaction
manager events.

! Define a new control string and procedure for the screen wizard-generated
Delete push button, so a user can delete one detail record from order_items.
Getting Started - JetNet/Oracle Tuxedo 16-1

1 If necessary;

" Reactivate the application now, invoke the editor, and connect to the
middleware.

" Reopen tutorial.lib (File→Open→Library).

2 Open lesson15.clt and lesson15.svr from tutorial.lib. Use either the
Library TOC or menu bar (File→Open→Screen).

lesson15.clt includes a single-record master section, an Order Total label
and corresponding data entry widget, a Delete Order push button, a grid display
detail section, and wizard-generated push buttons.

3 Choose File→Save As→Library Member and save:

" lesson15.clt as orditm.scr in the client.lib library on the
application server.

" lesson15.svr as orditm.scr in the server.lib library on the
application server.
16-2 Calculating Data from Database Values

This overwrites the orditm.scr screen and service component that you created
in Lesson 15.

Note: If you prefer not to overwrite the original orditm.scr client screen and
service component,, open them and save them under different names
before saving the new versions of orditm.scr.

Add a column to the grid widget

Enhance the Order Item Detail screen so the grid widget shows a total for each order
item. You do so by adding a column to the grid widget.

4 Give focus to the orditm.scr client screen.

5 Choose Create→Single Line Text and click inside the grid widget.

A new, default-sized grid member is added at the rightmost position of the grid
widget (next to the Price grid member).

6 With the new grid member selected, set these properties:

" Name property: item_total

" Column Title property: Total
Getting Started - JetNet/Oracle Tuxedo 16-3

This property displays a column title in the grid widget's first row.

" Length property (under Geometry): 8

This changes the onscreen size of the widget, so it is the same length as the
Price grid member.

Note: Use the grid’s horizontal scroll bar to view offscreen columns. Or resize
the grid to display all seven columns: select the grid widget and under
Geometry, set the Onscreen Columns property to 7.

Define a currency format

To display totals in currency format, set the Data Formatting property.

7 With the item_total grid member still selected, under Format/Display, set its
Data Formatting property to Numeric.

Numeric format subproperties are displayed. The Format Type property
specifies Local currency. This specifies to display the data in the form $0.00.

More About Data Formatting Options

A variety of formatting options let you control how widget data appears. You can
choose from ten predefined date/time formats and ten numeric formats. You can
also create custom formats for both data types. The format is automatically
applied when data is entered into fields that have their format properties set
accordingly.

Default formats are defined in the Panther message file. You can define your
own set of format standards by editing the message file. For more information
about the message file and custom formats, click here.

Define a math expression (for server processing)

You want the new item_total widget to display the total value of each order. This
value can be calculated by multiplying values in two other widgets: qty*price. You
can direct the transaction manager to perform this calculation via the SQL that it
generates. To do this, you must set item_total’s Use In Select property so it is included
in the select list of the generated SQL SELECT statement, and provide the appropriate
math expression.
16-4 Calculating Data from Database Values

Because the server actually performs this processing, the necessary settings for
item_total must be defined on the service component, where they are accessible to
the transaction manager. However, you can set all the properties on the client screen
and copy the widget to the service component later. In most cases, redundant property
settings are ignored.

8 Under Database, in the Fetch Data subcategory, set the Use In Select property to
Yes.

Related subproperties are displayed.

9 In the Expression subproperty, enter: qty*price.

The expression uses the values from both widgets belonging to the
order_items table to yield a calculated result.
Getting Started - JetNet/Oracle Tuxedo 16-5

Add the widget to a table view

The transaction manager includes item_total in the SQL generation only if the
widget is part of the appropriate table view—in this case, order_items. Widgets that
are outside a table view are excluded from SQL generation.

The next few steps show how to identify widgets that are table view members and how
to change table view membership. To do so, you must select the order_items table
view widget via the DB Interactions window or the Widget List and access its
properties.

10 Give focus to the client screen and choose View→Widget List.

The Widget List opens and lists all the components on the current screen: the
widget's name in the right-hand column and its type in the left column.

More About the Widget List

You can use the Widget List as another way to select widgets. All widgets on the
current screen are listed in the Widget List, including invisible widgets, such as
selection groups, synchronization groups and table views.

When you select an item from the list, the widget on the screen is also selected.
The Properties window displays the properties common to the widgets that are
currently selected, or of the screen if no widgets are selected.

You can select multiple contiguous widgets in the list with a click+drag or
Shift+click; Ctrl+click to toggle membership in the selection set or to select
non-contiguous items.

11 Select the order_items table view from the list of names.
16-6 Calculating Data from Database Values

If the Properties window displays table view properties, it confirms the table
view is selected.

12 Choose Edit→Group→Select Members.
Getting Started - JetNet/Oracle Tuxedo 16-7

All members of the order_items table view are selected: ID (title_id), Qty
(qty), and Price (price).

More About Groups and Group Membership

Widgets can belong to several types of groups. Each group type has its own set
of properties that control group behavior:

" Synchronization—Controls how widgets scroll together. By default, all
members of a grid widget belong to a synchronization group and therefore
scroll together. Synchronized group properties can specify, for example,
scroll increment and scroll behavior when the last item has focus.

" Table view—Contains one or more related widgets, usually associated with
and named for a single database table. Table view members can also
include widgets that are not part of the database table in order to display
derived data. Table view properties give the transaction manager the
information it needs to generate SQL statements—for example, sort order,
or whether the table view is updatable.

" Selection—Comprises specific widget types (multiple radio buttons, toggle
buttons, or check boxes, and single list boxes) that enhance the user
interface by providing users with visual choices. You can define selection
group properties such as the number of selections that a user can make,
the tabbing order, and the group's entry, exit and validation functions.
16-8 Calculating Data from Database Values

13 Add the item_total (Total) grid member to the selection set:

" Windows Shift+click on the column's title.

" Motif Shift+click within a cell in the column.

14 With all four members selected, choose Edit→Group→Update Group
Members.

The Update Group Members dialog opens.

The Update Group Members dialog lists all groups to which the selected
widgets belong.

15 Select order_items as the group to update and choose OK.

All members are deselected.

Note: To confirm the new membership, repeat steps 11 and 12. The Total grid
member should be selected along with title_id, qty, and price. If it is
not, repeat steps 13-15.

16 Save the screen.
Getting Started - JetNet/Oracle Tuxedo 16-9

Calculate results on the server

The transaction manager generates SQL statements on the server. Therefore, you need
to copy the item_total widget to the orditm.scr service component so its SELECT
expression is used. Maintaining the same property settings on both the client and its
service component ensures that the client screen and its service component remain
synchronized.

17 Select the Total (item_total) grid member on the orditm.scr client screen.

18 Choose Edit→Copy, then paste it (Edit→Paste) on the orditm.scr service
component.

An array of single line text widgets is pasted onto the screen.

19 Drag the array to the grid widget.

The Total column appears as the rightmost column in the grid widget.
16-10 Calculating Data from Database Values

20 Save and close the orditm.scr service component.

Calculate results on the client

Order entry screens often include a grand total as well as item totals. In order to display
grand totals, the orditm.scr client screen has a single line text widget order_total
and a corresponding Order Total label. The value in order_total is calculated from
the sum of all values in the item_total column. The procedure that performs this
calculation must be called on three occasions:

! When data is selected from or saved to the database.

! A row of order item data is deleted from the grid widget.

! A value in the qty or price columns changes.

Because the values required to calculate a total are already retrieved from the database,
the results can be calculated solely on the client—no service call is needed. Therefore,
the procedure that perform this operation should be in the screen's JPL Procedures
property so it is accessible to all other client procedures.

21 Select the orditm.scr client screen (deselect all widgets).

22 Under Focus, select the JPL Procedures property.

The JPL edit window opens. It currently contains the screen entry procedure
enter_screen, which behaves like the screen entry procedure that you
implemented on the dstord.scr client screen. It receives the order
identification number (order_num) from the calling screen (dstord.scr) and
executes a sm_tm_command("SELECT") to fetch the specified order.

23 Scroll to the bottom of the JPL edit window and insert upd_total.jpl from
tutorial.lib. The upd_order_totals procedure is read into the JPL edit
window:

proc upd_order_total()
{

order_total = @sum(item_total)
return 0

}

This procedure calculates the order's total with the aggregate function @sum.
Getting Started - JetNet/Oracle Tuxedo 16-11

Update totals on transaction manager events

The grand total in order_total needs to be updated whenever the transaction
manager performs a SELECT or SAVE command. To do this, attach a transaction
manager hook function to the client screen's root table view.

24 Scroll to the bottom of the JPL edit window and insert evnt_ord_clt.jpl from
tutorial.lib. The tm_events_clt function is read into the JPL edit window:

proc tm_events_clt(event_id)
{

if (((event_id == TM_POST_SELECT) || (event_id == \
TM_POST_SAVE)))

{
call upd_order_total()

}
return TM_PROCEED

}

The tm_events_clt procedure determines whether a SELECT or SAVE
transaction manager command has executed. If either condition is true, it calls
the upd_order_total procedure. The TM_PROCEED return value tells the
transaction manager to resume processing.

25 Choose OK.

26 Return to the orditm.scr client screen and select its root table view orders, via
the DB Interactions window or Widget List.

27 Under Transaction, enter tm_events_clt in the Function property.

The root table view now has tm_events_clt set as its hook function. The
transaction manager executes this function when it starts traversing the screen's
table views.

Delete a detail record

The screen wizard-generated Delete button was copied and renamed
delete_order_pb on the lesson15.clt screen. Its label was changed to Delete
Order and its Pixmap properties were removed. However, its behavior remains the
same: it calls a wizard-generated procedure that deletes the master and related details.
16-12 Calculating Data from Database Values

To allow a user to delete a single order item instead of the entire order, modify the
Delete button at the bottom of the orditm.scr client screen: rename the button and
assign a new control string to invoke the appropriate procedure.

28 Select the Delete button at the bottom of the orditm.scr client screen.

29 Change the widget's name to delete1_pb.

30 Under Validation, set the Control String property to ^do_delete1("title_id").

When a user chooses the Delete push button, ^do_delete1 is called and is
passed the argument title_id, the name of a widget to use in the procedure.

31 Return to the JPL edit window for orditm.scr client screen.

32 Scroll to the bottom and insert delete1.jpl from the tutorial.lib library.
Getting Started - JetNet/Oracle Tuxedo 16-13

The delete1.jpl library member is read into the JPL edit window. It contains two
procedures: do_delete1, which calls delete_selected_row:

proc do_delete1(fld)
{

call delete_selected_row(fld)
call upd_order_total()
return 0

}

proc delete_selected_row(fld)
vars grid_name occ
{

grid_name = @widget(fld)->grid
occ = @widget(grid_name)->grid_current_occ
call sm_i_doccur(fld, occ, 1)
return 0

}

do_delete1 first calls delete_selected_row.

delete_selected_row deletes the selected row from the detail grid as
follows:

" Gets title_id's grid property, which returns the name of the grid in which
title_id is member.
16-14 Calculating Data from Database Values

" Gets the grid's grid_current_occ property, which returns the occurrence
number of the current grid row selection.

" Calls sm_i_doccur to delete the grid row selection.

After the grid row is deleted, delete_selected_row returns to do_delete1, which
next calls upd_order_total. This procedure recalculates the value in order_total.

When the user saves changes to the database by choosing Save, the record in
order_items that corresponds to the deleted grid row is deleted.

33 Choose OK.

Validate client data

Item totals and the grand total must be recalculated whenever a value in quantity or
price changes. To detect changes in either column, you need to set their Validation
Func property. The function that this property specifies executes whenever an
occurrence in either column loses focus—for example, the user presses TAB.

More About Widget Validation

When a widget loses focus at runtime (the user presses TAB for example),
Panther calls the widget's validation function, then its exit function, and finally the
automatic field function.

Validation functions are also called under the following conditions:

" As part of screen validation. Screen validation occurs when the XMIT key
(for example, an OK button) is pressed or when the screen closes. At that
time, all fields on the screen are validated via the function sm_s_val.

" When the application code calls library functions for field validation or
screen validation.

CLICK HERE for more information about screen and field validation, and group
and grid validation

34 Select the Qty (qty) and Price (price) grid members.

35 Under Validation, enter valid_item_total in the Validation Func property.
Getting Started - JetNet/Oracle Tuxedo 16-15

36 Return to the JPL edit window.

37 Scroll to the bottom of the window and insert order_valid.jpl from the
tutorial.lib library.

The order_valid.jpl library member is read into the JPL edit window and
includes the procedure valid_item_total:

proc valid_item_total(field_no, data, occ, context)
{

item_total[occ]=price[occ] * qty[occ]
if (!(context & K_SVAL) || \

occ == @widget("Detail")->num_occurrences))
{

call upd_order_total()
}
return 0

}

The valid_item_total procedure updates item_total for the selected item
using the expression price[occ] * qty[occ]. The if command checks the
context in which the procedure is invoked. It also specifies two conditions, one
of which must be satisfied to execute the if statement block, which calls
upd_order_total:
16-16 Calculating Data from Database Values

" The first condition !(context & K_SVAL)—the negation of the screen
validation bit K_SVAL) states that if the procedure is called on widget
validation, update the order total by calling upd_order_total.

" On the other hand, if the widget is being validated as part of the screen's
validation, the order total will only be updated after validating a grid
member in the last row of the grid.

38 Choose OK to save all changes in the JPL edit window.

Clearing data in a virtual field

The order_total widget is not derived from a database table so it is not included in
transaction manager transactions. Therefore, when you add a new order, delete an
existing one, or choose the Reset button, the content of the order_total widget
doesn't clear. To clear order_total when these transaction manager events occur,
you must add this widget to the screen's root table view orders.

39 Select the orders table view with the Widget List or the DB Interactions window.

40 Choose Edit→Group→Select Members.

All members on the screen that belong to the orders table view are selected.

41 Add the order_total single line text widget to the selection group
(Shift+click).
Getting Started - JetNet/Oracle Tuxedo 16-17

42 Choose Edit→Group→Update Group Members.

The order_total widget is now controlled by the same display styles and
transaction behavior as other widgets that belong to the orders table view.

43 Save orditm.scr to client.lib on the application server.

Update a detail record

Test it out! When you go into test mode, the orditm.scr screen entry procedure
executes a SELECT command and displays the first order record in the database.

44 Choose File→Test Mode (press F2) or .

The first order record is displayed.

Item totals and the order total are calculated on screen. Rows that lack quantity
or price data also omit total data.

45 Click in the price field for Cinema Paradiso. Enter 20.00 and press TAB.

The totals are immediately updated when you tab out of the field.
16-18 Calculating Data from Database Values

46 Click in the row with the ID 70 and choose .

The row data clears and the order's total is adjusted. The total is recalculated
from the client screen's current values and so does not require any database
transaction.

47 Choose .

The database is updated with the changed data in order 1001.

48 Choose .

All fields including order_total are cleared of data.

49 Type 1003 in the order_num field and choose .

The order associated with distributor 6 displays.

50 Click into the ID field of the first empty row. Enter 9 and press TAB.

The video displays and the cursor advances to the qty field.

51 Enter 2 for the quantity, press TAB, and enter 25.00 in the price field. Press TAB
again.
Getting Started - JetNet/Oracle Tuxedo 16-19

The totals are immediately recalculated.

52 Choose .

53 Return to the editor to add some final touches.

Connect two screens

To connect the orditm.scr (Order Item Detail) screen with the dstord.scr
(Distributor Orders) screen created in Module 3, you must include the
send_order_data procedure on the dstord.scr client screen. The send_order_data
procedure calls the orditm.scr screen.

54 Open the dstord.scr client screen from client.lib.

55 With the screen selected, under Focus, select the JPL Procedures property.

56 Scroll to the bottom of the JPL edit window and insert send_order.jpl from
tutorial.lib.

proc send_order_data()
{

vars occ
occ = Detail->grid_current_occ
if (order_num[occ] == "")
{

msg emsg "First select an order."
return 1

}
send DATA order_num[occ]
call sm_jwindow("(+5,+5)orditm.scr")
return 0

}

The send_order_data procedure is called when you double-click on a specific
order on the Distributor Order screen (you implemented this behavior in Lesson
14). The data required to execute the appropriate SQL is sent and the orditm.scr
screen opens.

57 Choose OK.

58 Save all open screens and proceed to the tutorial finale.
16-20 Calculating Data from Database Values

What did you do?

You enhanced the order entry screen to display totals for each item in the order and a
grand total for the entire order. You did this by performing these tasks:

! Added a virtual database column to the order_items table view so the
transaction manager can build a SQL SELECT statement using the appropriate
math expression on the service component. As a result, when the Order Item
Detail screen first opens, the total for each item in the order is tallied and
displayed in the grid widget.

! Implemented field validation and screen validation to ensure that totals, for both
individual order items and for the order as whole, are recalculated when an
order_items record is updated, inserted, or deleted.

! Added a virtual database column to the orders table view so order_total
clears when the screen is cleared of data.

What did you learn?

You learned:

! Adding a widget to a table view group allows a “virtual” widget to behave as
though it belongs to a database table. It can be included in transaction manager
events and behave as other database-derived widgets from the same table view
behave.

! The screen-wizard Delete procedure deletes the master and its detail items. You
can replace this with a delete procedure that deletes only one detail item.

! Processing can take place on the server and on the client. By using data that is
already displayed on the client screen, your application can handle simple
processing to give end users immediate results. On the other hand, if database
information is needed to compute particular events, a service is required to
invoke the request for data, and business logic is applied on the application
server. The results are then returned to the client.
Getting Started - JetNet/Oracle Tuxedo 16-21

16-22 Calculating Data from Database Values

LESSSON
17 The Finale

Congratulations! You have created a fully functional, three-tier Panther application.
So, now take it from the top!

1 If you have not started up your application, boot your application now, invoke the
editor and open a middleware session.

2 Choose File→Test Mode (press F2) or .

3 Choose Options→Open Screen. The Enter Screen Name dialog box opens.

4 Enter dstslect and choose OK.

Any screen that might have been open in test mode closes, and the Select
Distributor screen opens.
Getting Started - JetNet/Oracle Tuxedo 17-1

5 Choose .

All distributors in the vidsales database are displayed.

6 Scroll down the list and double-click on the row for distributor ID.

The Distributor Orders screen opens and displays the information associated
with the distributor Video Signs, Inc.—this is the record you added in Lesson 9.
17-2 The Finale

7 Double-click on the Order_num 1211.
Getting Started - JetNet/Oracle Tuxedo 17-3

There are no order items associated with the order, so now you can add some.

8 Enter the following order items, pressing TAB between each entry. he totals are
updated appropriately.

9 You can add, update, or delete order items. Or delete the entire order by
choosing the Delete Order button.

You can always find something more to do that will improve an application. Continue
to enhance the screens—for instance, add a Details push button to invoke the
send_data procedure from the Distributor Orders screen, or add a Done button to the
Order Item Detail screen that will take the user back to the Select Distributor screen.

You have successfully completed the tutorial!

ID Qty Price

15 3 20.00

30 2 29.00
17-4 The Finale

APPENDIX
A Setting Up the Tutorial

The tutorial steps assume that the Panther development client, Panther application
server, and Panther web application server are installed on the same machine. The
following diagrams illustrate typical configurations for the tutorial using a Panther
web application named vidstore.

For a three-tier JetNet application on a UNIX server using UNIX development clients,
a typical configuration for the tutorial would be:

The tutorial directory created in your home directory serves as the application
directory and contains a setup file, the application libraries, the environment files, and
the database.

For a three-tier JetNet application on Windows, a typical configuration would be:
Getting Started - JetNet/Oracle Tuxedo A-1

The JetNet application can use a Windows development client with a UNIX web
application server if the application libraries and database are available on the UNIX
HTTP server. The following diagram illustrates the Panther application server and web
application server installed on the UNIX server:
A-2 Setting Up the Tutorial

Getting Started - JetNet/Oracle Tuxedo A-3

A-4 Setting Up the Tutorial

APPENDIX
B Troubleshooting

This section describes problems you might encounter when setting up the Panther
environment, or when running Panther, and tells you where to look for more
information.

Error Files

The following files are used to record errors in the various Panther components. If you
have problems during the setup procedure, check the directory from which you run the
tutorial (proltut) for the existence of any of the files below and check its contents.

! stderr—Errors from the Panther application server are written to this file and
include errors about environment variables and licensing problems.

! stdout—Includes errors specific to the application server.

! ULOG.*—Lists all middleware session activity and errors, particularly IPC
resource errors. A new ULOG.* is started each day, with the date contained in the
file name, in the format ULOG.ddmmyy.

! error.log—Contains errors generated by the Web application server.

If these files provide no clear direction, contact Prolifics Technical Support Services.
Getting Started - JetNet/Oracle Tuxedo B-1

Setup and Connection Problems
Setup and Connection Problems

This section describes some of the more common areas where you might encounter
problems while setting up the Panther environment or using Panther, and provides
hints for resolving them. If you need more assistance, contact Prolifics Customer
Support.

Starting the application or servers

Booting the application

If you are unable to boot your application with rbboot (indicated by a FAILURE
message), check the ULOG.* file in the proltut directory. Usually, a failure at this
point indicates inadequate IPC resources. If the ULOG indicates IPC resource errors,
refer to the JetNet Guide/Oracle Tuxedo Guide for more information.

If only the server running the proserv executable fails to start, check the stderr and
stdout files.

Before attempting to restart the application, you need to shut down the servers, even
if you received errors, by typing (in the window in which you ran rbboot):

rbshutdown

This utility shuts down the Panther application, including all active servers.

Activating a server

If you are unable to activate an application server using the JetNet Manager, check the
following files in your proltut directory on the server, in the order in which they are
listed:

stderr, stdout, and ULOG.*.
B-2 Troubleshooting

Setup and Connection Problems
Setting up the Web application server

If you are unable to start the Web application server from your Web browser, check
the files ULOG.* and error.log in the proltut directory.

If you have any problems that require changes to the proltut.ini file, or if
error.log contains an error message indicating that you failed to connect to the
server, you must stop and restart your Web application server to have the changes take
effect. Shut down the server by typing:

$SMBASE/util/monitor -stop proltut

Starting the client

Starting a UNIX client

If you are unable to start a Panther client workstation when typing prodev at the
command line, make sure you have applied the client environment settings to the
current window by typing:

. ./setup.sh

Connecting the client

Connecting to the server remotely

If you receive an error message when you attempt to connect to the middleware from
a PC client and cancel out of the Connect dialog, the editor workspace opens but you
are not connected to the server. Check that the application and its servers are running
and if not, start them up using rbboot. Once they have successfully started, choose
File→Open→Middleware Session in the editor. You will also need to open the
remote libraries and remote repositories.
Getting Started - JetNet/Oracle Tuxedo B-3

Setup and Connection Problems
Connecting to the server locally

If you attempt to open a middleware session on a local UNIX client and receive the
message that the TUXCONFIG file does not exist, most likely your SMRBCONFIG setting
does not exactly match the Local JetNet Configuration File value in JetMan. The usual
cause of this is that the value of SMRBCONFIG in setup.sh contains a symbolic link as
part of your home directory location, and that JetMan used the actual disk location.

Accessing remote libraries

! If the Remote button is grayed out in the Library Table of Contents dialog box,
and therefore you cannot access remote libraries, you are probably not
connected to the middleware. Make sure the application and servers are
running—see the section above on connecting to the server.

! The Remote button will also be grayed out if there is no file access server
(devserv) running for the application. Check the status in JetMan of the file
access server.

! If you attempt to open a remote library and the Library Table of Contents dialog
box displays an error next to the library name, or if you get a library format
error when you try to save a library member, the client machine may have
timed out.

If a client sits idle for a default period of 60 minutes, it is disconnected from the
server; check the ULOG.* error file to verify that this is the case. If so, save any
open modified screens to a local library, close the remote libraries using
File→Close→Library, and reconnect to the application by choosing

File→Open→Middleware Session. Once you reconnect, you can open the
remote libraries again; you can then open your modified screens and choose
Save As to save them to the remote libraries.
B-4 Troubleshooting

INDEX
Index

Symbols

% (percent sign) 11-15
\ (backslash) 12-2

A

Additional table 15-1, 15-3
Application

booting 1-11, 1-25
connecting to 1-13, 1-26
naming 1-8, 1-21
restarting 1-13, 1-26

Application architecture
specifying 7-8

Application directory
creating 1-2, 1-16

Auto Advertised Services option 2-3

B

binherit 12-5
Boot

application 1-11, 1-25
unable to B-2

Bourne shell 3-10
broker.bin

creating 1-7, 1-20
specifying location of 1-11, 1-24

C

Calculation expression 16-4
CGI (Common Gateway Interface) 5-1
Clearing data 16-17
Client screens

testing 9-3
Client setup 3-1, B-3

under UNIX 3-2
Client/server

comparison 3-2
Column Title property 12-4
Configuration

for the tutorial A-1
Control string

property 16-13
Currency format 16-4

D

Data Formatting property 16-4
Database

adding data to 9-6
connecting directly to 6-6
connecting via server initialization 2-4
importing from 6-7
saving changes to 9-6
updating 9-5
viewing data 9-4

Database connections 3-14
Getting Started - JetNet/Oracle Tuxedo I-1

Index
Database properties 10-5
DB Interactions window 13-14
Debugger

description 3-11
Default/Cancel property 12-10
Delete Order push button 16-12
Delete Service property 11-7
delete_selected_row procedure 16-14
delete1.jpl 16-14
Detail section

defining contents of 7-5
Development access server 2-5
devserv 1-17

setting the environment 1-5
do_delete1 procedure 16-14
Dominant widget 11-12
Double Click property 14-2
Double-click event 14-2
Dynamic label widget 12-4

E

Edit Mask property 12-2
Editor

description 3-6, 3-8
invoking from command line 5-19

enter_screen procedure
on dstord client screen 13-9
on dstslect client screen 14-4
on orditm client screen 16-11

Environment setup 1-4
Error files B-1
error.log file B-1
evnt_ord_clt.jpl 16-11, 16-12
Executables

for development access server 1-5, 1-17
for standard server 1-5, 1-17

Expression property 16-5

F

Format Type property 16-4
Function property 13-14, 16-12

G

Generate unique ID 13-12, 13-16
Grid widget

adding member to 16-3
copying from one grid to another 16-10
delete row in 16-14
selecting 14-2
viewing offscreen columns in 16-4

Group widgets
confirming membership 16-9

H

Hidden property 13-16
Hook functions

invoking 13-14, 13-17
on dstord client screen 13-16
on dstord service container 13-11
on orditm client screen 16-12

I

Import 6-7
Inherit From property 12-12
Initialization file

for Web 5-3
Insert procedure 13-13
Insert Service property 11-7

J

JetNet 1-6, 1-19
features 3-16

JetNet configuration file
naming application 1-8, 1-21
I-2 Getting Started - JetNet/Oracle Tuxedo

Index
specifying location 1-9, 1-22
JetNet manager

activate server 2-6
JIF 4-1, 8-1

description 3-11
JIF editor

invoking 8-2
JPL 13-1, 13-23

delete procedures 16-14
enter_screen procedure

on dstord client screen 13-9
on dstslect client screen 14-4
on orditm client screen 16-11

hook functions 13-11
insert procedure 13-13
send_data procedure 13-4, 16-20
tm_events_clt hook function 13-17, 16-11,

16-12
tm_events_svr hook function 13-12
validation function 16-16

JPL edit window 13-22
JPL Procedures property 13-3

K

K_EXPOSE flag 14-4
K_SVAL 16-17
Keystroke Filter property 12-2
Korn shell 3-10

L

Label property 12-4
Layout specifications 7-7
LD_LIBRARY_PATH 1-3
Length property 16-4
Library

accessing remote B-4
application 1-4, 1-16
defined 3-6
opening from JPL Program Text dialog 13-4

opening from TOC 11-2
Library TOC 11-2
Link service 15-9
LM_LICENSE_FILE 1-3
Local currency 16-4
Local JetNet Configuration File property 1-9,
1-22

M

Master section
specifying contents of 7-5

Math expression
calculating on the server 16-4

Menus
description 3-10

Middleware
configuring 1-6
in three-tier architecture 3-16

Minimum Instances 2-3, 2-5

N

Name property 11-14
Naming conventions

for selection screens 15-7
for services 8-4

New command 9-6
newapp directory 1-4, 1-16

O

Onscreen Columns property 16-4
Operator property 11-15
Order total 16-11
order_valid.jpl 16-16

P

Panther
components of 3-6
Getting Started - JetNet/Oracle Tuxedo I-3

Index
overview 3-1
Password 1-14, 1-27
Permissions

changing for shared files 5-21
Primary keys 9-5
Programming

in Panther applications 3-12
proltut

creating 1-2, 1-16
Properties

setting 10-1
Properties window 10-3
proserv 1-17

setting the environment 1-5
Push button widget 12-9

R

rbconfig 1-6
rbshutdown 3-7, 3-14, 4-7
Reading path 3-10
Rearrange database columns 15-4
Remote library B-4

configuring server to access 2-5
Repository

creating 6-5
description 3-6, 3-9
opening 7-2
opening by default 6-5
opening screen in 11-10
propagating changes from 12-5
remote 6-5
table of contents 6-9

Repository entry
creating 12-11

Request broker
connecting to on the Web 5-18

Requirements 3-10
Reservation 4-5, 8-6
Resize screen 11-9
Resize widget 12-10, 16-4

S

Save command 9-6
Screen entry 13-6
Screen entry procedure 14-3
Screen wizard 7-1

and additional tables 15-1
generated push buttons 9-4
specifying service routine name in 7-9

Select command 9-5
SELECT expression 16-4
Select Service property 11-7
Selection screen 15-5, 15-14

testing 15-9
Selection service container 15-1
send_data procedure

invoking by double-click event 14-2
invoking from push button 12-8
listStep 13-4

send_ord.jpl 16-20
Server

activating 2-6
configuring 2-1
development access 2-5
instantiations of 2-3, 2-5
shutdown 1-13, 1-26
standard 2-2
unable to activate B-2
Web application 5-1

Server environment 1-4, 1-16
defining 1-5, 1-17

Service
advertising 4-5, 8-6
creating 8-4
defining 4-3

Service container
appearance of 7-14
editing 10-8

Service name 4-4, 8-4, 11-7
Service operations 7-9
Service properties 11-7
I-4 Getting Started - JetNet/Oracle Tuxedo

Index
Setup errors B-2
setup.sh

copying 1-3
editing 1-3

Size to Contents property 12-4
SMDICNAME 6-5, 7-2
SMTERM 1-3
SQL generation 16-10
Standard server 2-2

properties of 2-3
Styles 9-5

description 3-10

T

Table of contents
of repository 6-9

Table view widget 11-5, 13-16
Table views

adding widget to 16-9
selecting members of 16-6

Test
connection 4-6, 5-22
screens 9-1
validation 16-18

Test mode
exiting 9-8

Three-tier architecture 3-4
tm_events_clt procedure 13-17, 16-11, 16-12
tm_events_svr procedure

on dstord service container 13-12
Toolbar

Tool box
Create 12-9

Transaction manager 13-23
description 3-14

Transport Methods 4-4
Tutorial

configuring the A-1
tutorial directory

contents 1-5, 1-17

Tutorial requirements 3-10
TUXEDO

features 3-17
Two-tier architecture 3-3

U

ULOG file B-1
UNIX client

setting up 3-2
upd_order_total 16-16
Update Service property 11-7
Use In Select property 16-4
Use In Where property 10-6

V

valid_item_total 16-15, 16-16
Validation Func property 16-15
Validation service 15-9, 15-12
Validation Service property 15-1
vidsales database 6-6

importing 6-8
View command 9-4
Virtual field 16-1

including in SQL generation 16-6

W

Web application architecture 3-5
in the tutorial A-1

Web application server 5-1
errors B-1
shutting down 5-23
unable to start B-3

web_shutdown 5-18
web_startup 5-18
Widget List 11-5, 16-6
Widget Type property 12-4
Widgets

copying 11-11
Getting Started - JetNet/Oracle Tuxedo I-5

Index
determining dominant 11-12
moving 11-10
naming 11-14
I-6 Getting Started - JetNet/Oracle Tuxedo

	Copyright
	Contents:
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	Introducing Panther
	About Panther
	Solutions and Application Scalability
	Simple Applications Use a Two-Tier Solution
	Figure 1 In two-tier architecture, each client has direct connection to the database server.

	Enterprise-wide Applications Use a Three-Tier Solution
	Figure 2 The client requests a service and the appropriate server responds.
	Figure 3 Three-tier clients have a connection to the database by way of the Panther application s...

	Web Applications
	Figure 4 In Panther web applications, the web application server generates HTML for your web clie...

	Product Components
	Visual Object Development
	Figure 5 The editor workspace in Panther.
	Editor
	Screen Wizard Development
	Repository
	Menu Bar Editor
	Styles Editor
	JIF Editor
	Debugger

	Development Tools
	Source Control Support
	Programming Interfaces
	Built-in SQL Database
	Database Connectivity

	Behind the Screens
	Transaction Manager
	Figure 6 Application built for three-tier architecture with the screen wizard takes advantage of ...

	Middleware Support
	JetNet
	Oracle Tuxedo
	COM/MTS
	IBM WebSphere

	Introducing the Tutorial
	About this Tutorial
	Accessing Lessons in the Tutorial
	About Each Module
	Module 1—Preparing the Server and the Client
	Module 2—Creating and Testing Screens
	Module 3—Connecting the Screens
	Module 4—Extending the Application

	Hints for Completing the Tutorial
	Before You Start
	For More Information...

	Module 1— Preparing the Server and the Client
	1 Setting Up the Server
	UNIX Application Server
	Create an application directory
	Edit the environment setup file
	Get new application components
	Get tutorial components
	Define the server environment
	Link to the server executables
	Create a middleware configuration file
	Name the application
	Get the machine’s name and configuration file
	Get the machine’s port number
	Provide the configuration file’s location
	Boot the application
	Connect to the application
	If you take a break
	To resume the tutorial
	To continue the tutorial

	Windows Application Server
	Create an application directory
	Get new application components
	Get tutorial components
	Define the server environment
	Copy the server executables
	Start the JetNet manager
	Create a middleware configuration file
	Name the application
	Get the machine’s name and configuration file
	Get the machine’s port number
	Provide the configuration file’s location
	Boot the application
	Connect to the application
	If you take a break
	To resume the tutorial
	What did you do?
	What did you learn?

	2 Configuring the Servers
	Add servers to the application
	Configure the standard server
	Define server properties
	Configure the file access server
	Activate servers
	If you take a break
	What did you do?
	What did you learn?

	3 Setting Up the Client
	UNIX Client
	Apply environment settings
	Connect to the middleware
	Open a library and access library members
	Save members to appropriate libraries
	If you take a break
	To continue the tutorial

	Windows Client
	Edit initialization files
	Connect to the middleware
	Open a library and access library members
	Save members to appropriate libraries
	If you take a break
	What did you do?
	What did you learn?

	4 Defining a Test Service
	Invoke the JIF editor
	Define a service by connecting to the middleware
	Are you connected?
	For the next lesson
	What did you do?
	What did you learn?

	5 Setting Up the Web Application Server
	Before starting this lesson
	Start the Web Setup Manager
	Enter the program locations
	Check the settings for your Web Application Server
	General environment settings
	3-Tier Configuration
	Specify database settings and workstation jserver
	Add JPL routines to the client library
	Change permissions of shared files (UNIX only)
	Test the connection
	Stop and restart server after making any changes
	Shut down the server
	What did you do?
	What did you learn?

	Module 2— Creating and Testing Screens
	6 Creating a Repository
	Connect to the middleware
	Create a repository
	Connect to the database
	Import database tables
	View repository contents
	What did you do?
	What did you learn?

	7 Using the Screen Wizard
	Open the repository
	Create screens with the screen wizard
	Specify the contents of the master section
	Define the detail columns
	Specify application architecture
	Determine service operations
	Customize the output screen
	Save the screens
	What did you do?
	What did you learn?

	8 Defining Services
	Invoke the JIF Editor
	Define a service
	What did you do?
	What did you learn?

	9 Testing the Screens
	Access test mode
	View data
	Edit the data
	Save the changes
	Add a new record
	What did you do?
	What did you learn?

	10 Setting Properties to Query the Database
	Using the Properties window
	Change properties locally
	Edit the service component
	View specific records
	What did you do?
	What did you learn?

	Module 3— Connecting the Screens
	11 Enhancing the Screen
	Access table view properties
	Update the JIF
	Resize the screen
	Move widgets
	Open a repository entry
	Copy widgets
	Name the widgets
	Define the query fields
	Synchronize the service component
	Query the database
	What did you do?
	What did you learn?

	12 Inheriting from the Repository
	Define user input
	Define what the user sees
	Propagate changes to screens and service components
	Edit inherited property values
	Create a push button widget
	Define push button behavior
	Create a buttons repository entry
	What did you do?
	What did you learn?

	13 Writing and Executing JPL
	Write a procedure to access a distributor’s orders
	Write a procedure to receive data
	Generate a unique ID number
	Insert the ID in the Database
	Invoke the hook function on the server
	Write a hook function for the client event
	Invoke the hook function for the client event
	Add a new database record
	View orders
	What did you do?
	What did you learn?

	14 Customizing Screen Behavior
	Add double-click functionality
	Write a screen entry function that executes only on screen exposure
	Test the JPL
	What did you do?
	What did you learn?

	Module 4— Extending the Application
	15 Implementing Selection Screens
	Join multiple tables
	Add details from another table
	Generate selection screens
	Save the wizard output
	Define link and validation services
	Test the selection screen
	Validate the data
	What did you do?
	What did you learn?

	16 Calculating Data from Database Values
	Add a column to the grid widget
	Define a currency format
	Define a math expression (for server processing)
	Add the widget to a table view
	Calculate results on the server
	Calculate results on the client
	Update totals on transaction manager events
	Delete a detail record
	Validate client data
	Clearing data in a virtual field
	Update a detail record
	Connect two screens
	What did you do?
	What did you learn?

	17 The Finale
	A Setting Up the Tutorial
	B Troubleshooting
	Error Files
	Setup and Connection Problems
	Starting the application or servers
	Booting the application
	Activating a server
	Setting up the Web application server

	Starting the client
	Starting a UNIX client

	Connecting the client
	Connecting to the server remotely
	Connecting to the server locally
	Accessing remote libraries

	Index

