
TABLE OF
CONTENTS
Contents:

About This Document

1. Building a Panther Application
Application Development Steps .. 1-2

Part I. Preparing for Development

2. Understanding the Panther Distribution

3. Defining the Project Requirements

4. Defining Application Architecture
Components of a Panther Application... 4-1

Building Two-Tier Applications ... 4-4

Building Distributed Applications... 4-5

5. Preparing the Application Server
JetNet Application Server.. 5-2

Oracle Tuxedo Application Server.. 5-4

WebSphere Application Server ... 5-4

6. Preparing the Development Clients
Copy Your Panther Distribution.. 6-1

Configure Your Panther Application... 6-2

7. Initializing the Database
Initializing One or More Engines .. 7-2

Initializing the Database via the Executable ... 7-3

Dynamic Database Initialization ... 7-7
Application Development Guide 1

8. Connecting to Databases
Connecting to the Database in the Screen Editor .. 8-2

Programmatically Connecting to the Database ... 8-3

Checking the Status of Connections .. 8-6

Verifying Database Access.. 8-7

9. Connecting to the Middleware
Using JetNet and Oracle Tuxedo... 9-2

Using MTS .. 9-5

Using WebSphere Application Server... 9-6

10. Accessing Libraries
Configuring Your Library Access ... 10-2

Managing Library Access.. 10-3

Part III. Creating Application Building Blocks

11. Creating and Using a Repository
About Repositories and Inheritance .. 11-2

Using the Repository ... 11-3

Using Inheritance... 11-9

12. Creating Service Components
Service Components for JetNet and Oracle Tuxedo.. 12-1

Service Components for COM Components and EJBs 12-5

13. Developing Client Screens
Creating Screens .. 13-2

Opening Screens .. 13-3

Closing Screens ... 13-7

Setting Screen Properties... 13-7

14. Identifying Screen Widgets
Widget Types... 14-1

Widget Identifiers .. 14-3

Arrays .. 14-5
2 Application Development Guide

Groups ... 14-8

ActiveX Controls... 14-9

15. Including Menus and Toolbars
Loading Menus into Memory.. 15-2

Installing Menus .. 15-3

Displaying Toolbars .. 15-7

Changing Menus at Runtime ... 15-9

Uninstalling and Unloading Menus... 15-12

Invoking Popup Menus.. 15-13

Calling Menu Functions From JPL ... 15-14

Outputting Menu Definitions to ASCII... 15-14

16. Building Reports

Part IV. Preparing the Programming Interface

17. Understanding Application Events
Screen and Widget Events... 17-2

Programming User-initiated Events .. 17-22

Transaction Manager Events ... 17-24

Database Interface Events ... 17-25

Web Application Events.. 17-25

Middleware Events.. 17-26

18. Programming Control Strings
Associating Control Strings with the Application... 18-1

Displaying Screens .. 18-3

Executing Functions ... 18-5

Invoking Operating System Commands.. 18-8

19. Programming in JPL
JPL Modules and Procedures .. 19-1

Module Types.. 19-8

Writing JPL in the Editor .. 19-14

Calls... 19-19
Application Development Guide 3

Variables .. 19-24

Constants ... 19-31

Setting Properties Using the Property API .. 19-33

Data Types, Operators, and Expressions ... 19-46

JPL Commands.. 19-55

Optimization .. 19-56

20. Writing C Functions
Types of C Functions... 20-1

Writing C Functions .. 20-4

Calling C Functions ... 20-6

21. Java Event Handlers and Objects
Java Overview ... 21-1

Using Java in Panther .. 21-2

Event Handler Interfaces ... 21-4

Object Interfaces.. 21-14

Implementing Service Component Methods in Java 21-15

Working with Java Objects.. 21-17

Java Samples.. 21-23

22. Using XML Data
Defining XML Properties .. 22-1

Processing XML Properties... 22-2

Generating XML.. 22-3

Importing XML ... 22-4

Sample XML File .. 22-5

23. Using Widgets
Changing Widget Display ... 23-1

Controlling Input ... 23-2

Traversing Widgets.. 23-3

Getting Widget Data .. 23-5

Changing Widget Data .. 23-7

Making Widget Selections... 23-9

Accessing Tab Controls... 23-12
4 Application Development Guide

Accessing ActiveX Controls ... 23-13

Checking Validation.. 23-14

24. Setting the Screen Sequence
Forms and Windows.. 24-1

25. Moving Data Between Screens
Sending and Receiving Data ... 25-1

Using Global Variables ... 25-6

Accessing Values on Other Screens .. 25-6

Using Local Data Blocks... 25-7

26. Displaying Messages
Window Versus Status Line Display... 26-1

Acknowledging Messages ... 26-2

Disabling Messages ... 26-2

Setting Display Defaults.. 26-3

Message Functions .. 26-3

Broadcasting Messages ... 26-5

Status Line Usage .. 26-7

Error Hook Function.. 26-9

Part V. Accessing the Database

27. Performing Database Operations
How Database Operations are Processed .. 27-2

About the Transaction Manager .. 27-5

About the SQL Generator.. 27-6

About the Database Interface .. 27-7

28. Writing SQL Statements
Database Development Process... 28-1

Database Interface Commands .. 28-2

Using Database Cursors .. 28-3

Database Transaction... 28-10
Application Development Guide 5

29. Reading Information from the Database
Fetching Data Using SELECT Statements .. 29-2

Targets for a SELECT Statement .. 29-3

Fetching Multiple Rows ... 29-8

Format of Select Results.. 29-15

30. Writing Information to the Database
Colon Preprocessing .. 30-1

Using Parameters in a Cursor Declaration... 30-11

31. Building a Transaction Manager Screen
Development Process for Transaction Manger.. 31-2

Copying Repository Objects ... 31-3

Specifying the Traversal Order.. 31-6

Specifying Widget Properties .. 31-12

Specifying Transaction Manager Commands.. 31-13

Adding a Transaction Event Function ... 31-15

32. Writing Transaction Event Functions
The Nature of TM Event Functions... 32-2

33. Using Automated SQL Generation
Guidelines for Automated SQL Generation .. 33-2

Generating SELECT Statements ... 33-7

Generating INSERT Statements .. 33-32

Generating UPDATE Statements .. 33-36

Generating DELETE Statements... 33-38

Implementing Optimistic Locking... 33-39

Viewing the SQL Statements .. 33-43

Validating Input Data against the Database... 33-46

34. Specifying Transaction Manager Commands
Transaction Manger Commands.. 34-2

Setting the Transaction Mode.. 34-7
6 Application Development Guide

35. Generating Transaction Manager Events
Generating Transaction Manager Events .. 35-2

Traversing the Table Views... 35-4

Generating Events in the Transaction Model .. 35-5

Using the Transaction Model with JetNet/Oracle Tuxedo 35-12

36. Runtime Transaction Manager Processing
Running Transaction Manager .. 36-1

Displaying Data ... 36-3

Updating the Database... 36-7

Transaction Modes .. 36-12

Accessing Transaction Information... 36-17

Processing Errors in the Transaction Manager.. 36-27

37. Processing Application Errors
Default Error Handlers .. 37-2

Variables for Logging Error and Status Information 37-4

Database Error Event Functions ... 37-6

Custom Error Handlers.. 37-9

Part VI. Testing Your Application

38. Testing Application Components
Test Mode Menu Bar... 38-1

Testing Application Components .. 38-4

39. Using the Debugger
Debugging Services and Service Components.. 39-2

How the Debugger Works ... 39-3

Configuring the Debugger... 39-6

Debugger Menu Bar .. 39-8

Viewing JPL .. 39-11

Viewing Application Screen Information ... 39-16

Stepping through Program Execution ... 39-19

Setting Breakpoints ... 39-20
Application Development Guide 7

Monitoring Variables and JPL Expressions .. 39-26

40. Identifying Users
Two-tier Applications.. 40-1

JetNet Applications.. 40-1

MTS Applications.. 40-2

41. Optimizing Applications

Part VII. Deploying the Application

42. Building Application Executables
Steps for Creating an Executable... 42-2

Customizing Source Code for an Application ... 42-6

43. Preparing Applications for Release
Basic Deployment Steps .. 43-2

Required Files.. 43-4

Optional Files .. 43-6

Specifying Files and Directories.. 43-7

Customizing the Distribution... 43-7

Part VIII. Advanced Development Topics

44. Installed Event Functions
Installed Function Types ... 44-1

Standard versus Non-standard Arguments .. 44-3

Installation ... 44-4

Prototyped Functions ... 44-8

Screen Functions.. 44-10

Field Functions .. 44-14

Grid Functions ... 44-20

Tab Control Functions ... 44-24

Group Functions .. 44-25

Client Authentication Functions .. 44-28

Client Post-Connection Functions ... 44-30
8 Application Development Guide

Help Function .. 44-32

Timeout Functions... 44-33

Timer Functions... 44-34

Key Change Function .. 44-36

Error Function ... 44-37

Insert Toggle Function .. 44-39

Check Digit Function .. 44-40

Initialization and Reset Functions ... 44-41

Record and Playback Functions .. 44-43

Control Functions .. 44-44

Status Line Function.. 44-45

Video Processing Function.. 44-47

Database Driver Hook Functions .. 44-49

Transaction Manager Event Functions.. 44-50

Sample Functions .. 44-52

45. Customizing the User Interface
Using Message Files.. 45-2

Configuration Map File ... 45-25

Translating Applications ... 45-45

46. Processing the Mouse Interface
Trapping Mouse Events... 46-1

Getting Mouse Data... 46-4

Changing the Mouse Pointer State .. 46-9

47. Dynamic Data Exchange
Panther as a DDE Server ... 47-1

Panther as a DDE Client.. 47-5

Execute Transactions... 47-9

Poke Transactions.. 47-10

48. Writing Portable Applications
Panther Header Definitions ... 48-1

Terminal Dependencies ... 48-2

Language Dependencies.. 48-3
Application Development Guide 9

49. Sending Mail in Panther
Defining Global Mail Properties ... 49-1

Creating and Sending Email .. 49-4

A. Development Utilities

B. VideoBiz
Starting VideoBiz ... B-2

VideoBiz Components.. B-3

The User's Guide to VideoBiz .. B-8

C. Panther Java Calculator
Repository Contents ... C-2

Calculator Screen.. C-3

Java Classes .. C-5

D. Deployment Checklist for Two-tier Applications
Directory Structure for Two-tier Applications ... D-1

Checklist for Deployment... D-2

Index
10 Application Development Guide

Panther
Application Development

Guide

R e l e a s e 5 . 5 1

M a r c h 2 0 1 7
D o c u m e n t 0 4 0 4

Copyright

This software manual is documentation for Panther® 5.51. It is as accurate as possible at this time; however, both
this manual and Panther itself are subject to revision.

Prolifics, Panther and JAM are registered trademarks of Prolifics, Inc.
Adobe, Acrobat, Adobe Reader and PostScript are registered trademarks of Adobe Systems Incorporated.
CORBA is a trademark of the Object Management Group.
FLEXlm is a registered trademark of Flexera Software LLC.
HP and HP-UX are registered trademarks of Hewlett-Packard Company.
IBM, AIX, DB2, VisualAge, Informix and C-ISAM are registered trademarks and WebSphere is a trademark of

International Business Machines Corporation.
INGRES is a registered trademark of Actian Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Oracle Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, MS-DOS, ActiveX, Visual C++ and Windows are registered trademarks and Authenticode, Microsoft

Transaction Server, Microsoft Internet Explorer, Microsoft Internet Information Server, Microsoft Management
Console, and Microsoft Open Database Connectivity are trademarks of Microsoft Corporation in the United States
and/or other countries.

Motif, UNIX and X Window System are a registered trademarks of The Open Group in the United States and other
countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.
Netscape is a registered trademark of AOL Inc.
Oracle, SQL*Net, Oracle Tuxedo and Solaris are registered trademarks and PL/SQL and Pro*C are trademarks of

Oracle Corporation.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the

United States and other countries.
Sybase is a registered trademark and Client-Library, DB-Library and SQL Server are trademarks of Sybase, Inc.
VeriSign is a trademark of VeriSign, Inc.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective
owners, and are used for identification purposes only.

Send suggestions and comments regarding this document to:

© 1996-2017 Prolifics, Inc.

All rights reserved.

Technical Publications Manager http://prolifics.com

Prolifics, Inc. support@prolifics.com

24025 Park Sorrento, Suite 405 (800) 458-3313

Calabasas, CA 91302

http://prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us

TABLE OF
CONTENTS
Contents:

About This Document
Documentation Website .. xl

How to Print the Document.. xli

Documentation Conventions .. xli

Contact Us! ... xliii

1. Building a Panther Application
Application Development Steps .. 1-2

Installing Panther.. 1-2

Designing the Project Requirements .. 1-2

Define the Application Architecture ... 1-2

Define the Database Access .. 1-3

Define the Client Platforms... 1-3

Define the Development Team ... 1-3

Configuring the Server Environment ... 1-4

Setup the COM Component Server .. 1-6

Preparing the Development Environment .. 1-6

Connect to the Database.. 1-6

Setup the Application Client ... 1-7

Configure Library Access ... 1-7

Connecting to the Middleware ... 1-7

Defining Services ... 1-7

Services in JetNet/Oracle Tuxedo... 1-8

Services in COM and EJB Components ... 1-9
Application Development Guide iii

Building a Repository from a Database.. 1-11

Table Views and Links.. 1-12

Creating Application Components ... 1-12

Repository Development... 1-13

Graphical Editor .. 1-15

Screen Wizard ... 1-15

Enhancing the Interface.. 1-15

Modify Properties.. 1-16

Define User Actions .. 1-16

Define Event Functions... 1-16

Fetch Database Information .. 1-17

Add Reports... 1-19

Integrating Application Components ... 1-20

Define Screen Interaction.. 1-21

Share Data Between Screens... 1-21

Setting Application Security... 1-22

Deploying on the Web.. 1-22

Configure the Web Application .. 1-23

Create the Web Client Screens.. 1-23

Program Web Events... 1-24

Testing and Debugging... 1-24

User Interface .. 1-24

Service Components.. 1-24

Fine-Tuning the Application .. 1-25

Using C and Java Code ... 1-25

Improving Performance... 1-25

Deploying the Application ... 1-26

Part I. Preparing for Development

2. Understanding the Panther Distribution

3. Defining the Project Requirements
What Is the Application Architecture—Two-tier or Three-tier? 3-1

For Three-tier Applications, Which Middleware Meets Your
iv Application Development Guide

Requirements? ... 3-2

Will the Application Be Deployed on the Web?................................. 3-2

What Is the Best Database Schema for this Application?................... 3-3

Is a Database Based on that Schema Currently Available? 3-3

How Will the Repository Be Used During Application Development? ...
3-4

How Will the Database Be Accessed? .. 3-4

How Will Service Components Be Used in Your Application? 3-5

What Are the Hardware Platforms for the Application Clients? 3-5

How Computer Literate Is the Application Audience?....................... 3-5

In What Language Will the Programming Code Be Written? 3-5

What Method Will Be Used for Handling Errors? 3-6

What Type of Network Access Is Available? 3-6

How Will the Work Be Distributed Among the Development Team?3-6

4. Defining Application Architecture
Components of a Panther Application... 4-1

Building Two-Tier Applications ... 4-4

To build a two-tier application:... 4-4

Building Distributed Applications... 4-5

Building a JetNet/Oracle Tuxedo Application ... 4-5

To build a three-tier JetNet/Oracle Tuxedo application: 4-5

Building a Component-based Application ... 4-7

To build a component-based application: ... 4-7

5. Preparing the Application Server
JetNet Application Server.. 5-2

Create the Application Directory ... 5-2

Configure the Application Servers ... 5-3

See Also.. 5-3

Oracle Tuxedo Application Server.. 5-4

WebSphere Application Server ... 5-4

6. Preparing the Development Clients
Copy Your Panther Distribution.. 6-1

Configure Your Panther Application... 6-2
Application Development Guide v

Specify Your Panther Environment.. 6-2

Configure Your Project Requirements ... 6-3

Colors .. 6-3

Message File.. 6-4

Multiple Platforms... 6-4

Programming Functionality... 6-4

Remote Library Access ... 6-5

Distribute the Setup to the Client Workstations ... 6-5

Create an Application Directory... 6-5

7. Initializing the Database
Initializing One or More Engines .. 7-2

Initialization Procedure .. 7-2

Setting the Default Engine.. 7-3

Initializing the Database via the Executable.. 7-3

Database Interface Initialization Routine ... 7-4

Changing Static Initialization ... 7-6

How to Create a New Version of dbiinit.c .. 7-6

Options and Arguments... 7-6

Dynamic Database Initialization ... 7-7

How to Identify the Database Engines in the Initialization File 7-7

8. Connecting to Databases
Connecting to the Database in the Screen Editor .. 8-2

How to Make a Direct Connection to the Database from Within the
Screen Editor.. 8-2

How to Close a Database Connection Within the Screen Editor 8-3

Programmatically Connecting to the Database ... 8-3

How to Close Database Connections .. 8-4

Setting Default and Current Connections... 8-4

How to Set a Default Connection.. 8-4

How to Override a Default Connection... 8-4

Multiple Connections to a Single Engine... 8-5

How to Make Multiple Connections to the Database 8-5

How to Close All Connections on an Engine...................................... 8-5
vi Application Development Guide

Connecting to Multiple Engines... 8-5

Checking the Status of Connections.. 8-6

How to Find out If a Database Connection is Open 8-6

How to Find out the Database Connection Assigned to a Database Cursor
8-7

How to Find out the Handles to a Database Connection 8-7

Verifying Database Access.. 8-7

UNIX.. 8-7

Windows... 8-8

9. Connecting to the Middleware
Using JetNet and Oracle Tuxedo... 9-2

Opening a Middleware Session in the Editor... 9-3

How to Open a Middleware Session... 9-3

Opening a Middleware Session Programmatically 9-5

Using MTS .. 9-5

Using WebSphere Application Server... 9-6

10. Accessing Libraries
Configuring Your Library Access ... 10-2

Managing Library Access.. 10-3

Accessing Library Members Outside of Source Control 10-3

Opening Library Members.. 10-3

Closing Library Members ... 10-4

Releasing a Reservation .. 10-4

Maintaining Libraries Under Source Control... 10-4

How to Provide an Interface to Your Source Control Manager 10-5

Library Members Under Source Control Management............................ 10-7

How to Edit a Library Member Under Source Control Management.......
10-8

How to Save a Read-only Library Member and Store It Under Source
Control Management ... 10-10

How to Delete a Library Member that Is Under Source Control.... 10-11
Application Development Guide vii

Part III. Creating Application Building Blocks

11. Creating and Using a Repository
About Repositories and Inheritance .. 11-2

What You Need to Know ... 11-2

Using the Repository ... 11-3

Creating the Repository.. 11-3

Opening a Default Repository... 11-3

Creating Repository Entries ... 11-4

Creating Repository Objects... 11-4

Creating Screen Templates... 11-5

Storing Database Information... 11-5

Reimporting Your Database Tables .. 11-6

Database Import Properties ... 11-6

Column Edits... 11-7

Storing Widget Templates.. 11-7

Storing Widget Definitions... 11-7

Using the Wizards .. 11-8

Using Inheritance... 11-9

Controlling Property Inheritance.. 11-9

Updating Inheritance in Application Screens... 11-10

Finding the Source of Inheritance .. 11-10

12. Creating Service Components
Service Components for JetNet and Oracle Tuxedo.. 12-1

Creating Service Components in JetNet/Oracle Tuxedo.......................... 12-2

Writing Service Requests in JetNet/Oracle Tuxedo................................. 12-2

Creating Client Screens .. 12-3

Updating the JIF ... 12-4

Service Components for COM Components and EJBs 12-5

Creating Service Components in Component Applications..................... 12-6

Creating Client Screens in Component Applications............................... 12-7

Deploying Components in COM Applications 12-8

Deploying Components in WebSphere Application Server..................... 12-9

Using the Common Component Interface.. 12-9
viii Application Development Guide

13. Developing Client Screens
Creating Screens.. 13-2

Creating Dialog Boxes ... 13-2

Understanding Screen Scope.. 13-2

Opening Screens.. 13-3

Search Path... 13-4

Screen Display Defaults ... 13-4

Displaying Screens in Viewports .. 13-4

Overriding Display Defaults .. 13-5

Specifying Viewports at Runtime ... 13-5

Opening Screens in Windows Applications... 13-6

Specifying the Window Style ... 13-6

Closing Screens ... 13-7

Setting Screen Properties... 13-7

Using JPL to Set Screen Properties.. 13-8

Runtime Properties for Screens.. 13-8

14. Identifying Screen Widgets
Widget Types... 14-1

Widget Identifiers.. 14-3

Object IDs .. 14-3

Widget Names .. 14-4

Field Numbers .. 14-4

Arrays .. 14-5

Non-Scrolling and Scrolling Arrays... 14-6

Synchronized Scrolling Arrays ... 14-6

Element and Occurrence Numbering ... 14-6

Groups ... 14-8

ActiveX Controls... 14-9

15. Including Menus and Toolbars
Loading Menus into Memory.. 15-2

Installing Menus .. 15-3

Installing Menus with Shared Content ... 15-5

Installing Menus with Unique Content .. 15-6
Application Development Guide ix

Referencing External Menus .. 15-6

Displaying Toolbars .. 15-7

Changing Menus at Runtime ... 15-9

Getting and Setting Properties.. 15-9

Dockable Toolbar Properties... 15-10

Changing the State of Toggle Items ... 15-10

Creating and Deleting Menus.. 15-11

Inserting and Deleting Menu Items... 15-12

Uninstalling and Unloading Menus ... 15-12

Invoking Popup Menus.. 15-13

Calling Menu Functions From JPL ... 15-14

Outputting Menu Definitions to ASCII ... 15-14

Keywords.. 15-14

Menu Properties.. 15-15

16. Building Reports

Part IV. Preparing the Programming Interface

17. Understanding Application Events
Screen and Widget Events ... 17-2

Screen Entry ... 17-4

Open Events .. 17-5

Exposure Events.. 17-6

Frameset Events.. 17-12

Widget Events .. 17-12

Automatic Field Function.. 17-13

Event-specific Functions and Arguments 17-13

Field Entry... 17-14

Field Validation... 17-14

Field Exit ... 17-17

Grid Column Label Click.. 17-17

Tab Control Events.. 17-18

Screen Exit.. 17-19

Screen Exit Processing .. 17-20
x Application Development Guide

Closing Screens .. 17-21

Exiting an Application ... 17-22

Programming User-initiated Events .. 17-22

Transaction Manager Events ... 17-24

Database Interface Events ... 17-25

Web Application Events.. 17-25

Middleware Events.. 17-26

JetNet and Oracle Tuxedo Events .. 17-26

18. Programming Control Strings
Associating Control Strings with the Application... 18-1

Control String Types .. 18-2

Displaying Screens .. 18-3

Search Path... 18-3

Viewport Arguments .. 18-3

Executing Functions ... 18-5

Using Built-in Functions .. 18-7

Invoking Operating System Commands.. 18-8

19. Programming in JPL
JPL Modules and Procedures .. 19-1

Module Structure.. 19-2

Parameters .. 19-2

Passing Standard Arguments to JPL Procedures 19-3

Return Types .. 19-4

Procedure Execution .. 19-4

Control Flow Statements... 19-4

Included Modules.. 19-5

Comments ... 19-5

Sample JPL Module ... 19-7

Module Types.. 19-8

Widget Modules ... 19-8

Executing Widget Modules... 19-9

Screen Modules .. 19-9

Executing Screen Modules.. 19-10
Application Development Guide xi

Report Modules .. 19-10

External Modules.. 19-11

Library Modules.. 19-11

File Modules.. 19-12

Module Compilation ... 19-12

Memory-Resident Modules... 19-13

Writing JPL in the Editor... 19-14

Screen- and Report-Level JPL ... 19-14

Widget-Level JPL... 19-16

Library Modules ... 19-16

Using Your Own Editor.. 19-17

Inserting JPL To and From Disk .. 19-18

Compiling and Saving .. 19-18

Calls ... 19-19

Arguments .. 19-20

Returns.. 19-20

Calls from Screens and Widgets... 19-21

Using a Memory-resident Screen.. 19-22

Calls from Control Strings.. 19-22

JPL Call Command... 19-23

Inline Calls.. 19-23

Precedence of Called Objects... 19-24

Variables .. 19-24

Declaring JPL Variables... 19-25

Declaring Global Variables .. 19-26

Panther Variables.. 19-26

Variable Scope and Lifetime .. 19-27

Colon Preprocessing... 19-27

Syntax.. 19-28

Expansion .. 19-28

Controlling Expansion with Parentheses... 19-29

Substring Expansion.. 19-29

Array Expansion.. 19-30

Reexpansion .. 19-31

Constants ... 19-31
xii Application Development Guide

Non-Decimal Number System Formats ... 19-32

Quoted String Constants... 19-32

Setting Properties Using the Property API.. 19-33

Object Specification ... 19-33

Object Modifiers .. 19-34

Array Subscripts.. 19-36

Signed and Unsigned Subscripts... 19-37

References to Element Field Numbers.. 19-37

Precedence of Object Types.. 19-38

Compound Object Strings ... 19-38

Object Values ... 19-39

Properties.. 19-40

Editor Properties ... 19-40

Runtime and Application Properties ... 19-41

Multi-item Properties .. 19-41

Property Substrings ... 19-42

Property Value Types.. 19-42

Implicit Properties... 19-43

Properties of Elements and Occurrences .. 19-43

Selection Group Data ... 19-44

Grid Properties ... 19-45

Traversal Properties.. 19-45

Global Variables... 19-46

Data Types, Operators, and Expressions ... 19-46

Data Types.. 19-46

Operators .. 19-47

Operator Precedence ... 19-49

Conversion of Operands.. 19-49

Concatenation.. 19-50

Substring Specifiers .. 19-50

@date .. 19-51

@length ... 19-51

@sum... 19-52

Bitwise Operators.. 19-52

Expressions... 19-53
Application Development Guide xiii

String Expressions... 19-53

Numeric Expressions... 19-53

Bitwise Expressions .. 19-54

Logical Expressions .. 19-55

JPL Commands.. 19-55

Optimization .. 19-56

20. Writing C Functions
Types of C Functions... 20-1

Using Automatic Functions.. 20-2

Using Demand Functions ... 20-3

Writing C Functions .. 20-4

Calling C Functions ... 20-6

Calling Panther Library Functions ... 20-6

21. Java Event Handlers and Objects
Java Overview ... 21-1

Using Java in Panther .. 21-2

Writing Java Code .. 21-2

Determining the Java Event Handler.. 21-3

Event Handler Interfaces ... 21-4

Screen Event Handlers ... 21-5

ActiveX Control Event Handlers.. 21-6

Check Box Event Handlers .. 21-7

Combo Box Event Handlers... 21-7

Dynamic Label Event Handlers.. 21-8

Grid Event Handlers ... 21-8

Group Event Handlers .. 21-9

List Box Event Handlers .. 21-9

Option Menu Event Handlers... 21-10

Push Button Event Handlers... 21-11

Radio Button Event Handlers... 21-11

Scale Event Handlers.. 21-12

Tab Card Event Handlers ... 21-12

Toggle Button Event Handlers ... 21-13
xiv Application Development Guide

Text Field Event Handlers.. 21-13

Object Interfaces.. 21-14

Implementing Service Component Methods in Java..................................... 21-15

Service Component Methods in Oracle Tuxedo and JetNet 21-16

Service Component Methods in COM/DCOM/MTS............................. 21-16

Service Component Methods in WebSphere ... 21-17

Working with Java Objects ... 21-17

Instantiating Java Objects... 21-17

Type-Specifiers and Arguments... 21-18

Destroying Java Objects... 21-19

Calling Java Object Methods ... 21-19

Accessing Panther Functions From a Java Method 21-21

Accessing Java Object Properties .. 21-22

Designating an Error Handler .. 21-22

Java Samples ... 21-23

22. Using XML Data
Defining XML Properties.. 22-1

Defining XML Screen Properties... 22-2

Processing XML Properties... 22-2

Processing XML for Multiple Occurrences 22-3

Processing Hidden Widgets .. 22-3

Generating XML ... 22-3

Importing XML ... 22-4

Sample XML File .. 22-5

23. Using Widgets
Changing Widget Display ... 23-1

Controlling Input ... 23-2

Setting Data Entry Formats .. 23-2

Setting Date and Currency Formats ... 23-3

Traversing Widgets ... 23-3

Traversing Sets of Widgets .. 23-3

Getting Widget Data.. 23-5

Getting Widget and Array Data ... 23-5
Application Development Guide xv

Getting Properties... 23-6

Changing Widget Data .. 23-7

Writing Data to Widgets... 23-7

Clearing Widget Data ... 23-8

Inserting and Deleting Occurrences ... 23-8

Making Widget Selections... 23-9

Getting Selections... 23-9

Changing Selections ... 23-11

Manipulating Grids... 23-11

Making Selections in List Boxes.. 23-11

Accessing Tab Controls... 23-12

Accessing ActiveX Controls ... 23-13

Checking Validation .. 23-14

24. Setting the Screen Sequence
Forms and Windows .. 24-1

Forms and the Form Stack.. 24-2

Windows and the Window Stack ... 24-3

Window Stack Organization ... 24-3

Sibling Windows ... 24-4

Window Stack Manipulation... 24-4

25. Moving Data Between Screens
Sending and Receiving Data.. 25-1

Bundles ... 25-2

Sending Data .. 25-2

JPL send .. 25-3

Library Function Calls .. 25-3

Receiving Data ... 25-4

JPL receive .. 25-4

Library Function Calls .. 25-4

Using Global Variables ... 25-6

Accessing Values on Other Screens .. 25-6

Using Local Data Blocks ... 25-7

Selection Groups .. 25-8
xvi Application Development Guide

Restrictions... 25-8

Invalid Targets .. 25-8

Data Overflow... 25-8

Interaction with Screen Modules .. 25-9

Loading and Activating LDBs ... 25-9

Default Activation... 25-10

Runtime Loading and Activation.. 25-10

Read-only LDBs ... 25-10

Getting Information on LDBs .. 25-11

26. Displaying Messages
Window Versus Status Line Display... 26-1

Acknowledging Messages ... 26-2

Disabling Messages ... 26-2

Setting Display Defaults.. 26-3

Message Functions .. 26-3

Broadcasting Messages ... 26-5

Status Line Usage .. 26-7

Message Display .. 26-7

Error messages .. 26-8

sm_d_msg_line messages ... 26-8

Ready/Wait.. 26-8

Widget/Menu item status .. 26-8

Screen status.. 26-8

Background status ... 26-9

Other Status Line Information.. 26-9

Error Hook Function.. 26-9

Part V. Accessing the Database

27. Performing Database Operations
How Database Operations are Processed .. 27-2

Developing Database Operations for your Application 27-3

Differences in Application Architecture .. 27-4

About the Transaction Manager .. 27-5
Application Development Guide xvii

About the SQL Generator.. 27-6

About the Database Interface... 27-7

28. Writing SQL Statements
Database Development Process... 28-1

Database Interface Commands .. 28-2

Using Database Cursors... 28-3

Using a Default Cursor... 28-3

Using a Named Cursor ... 28-4

Declaring a Cursor.. 28-5

Supplying Values Using Colon Expansion 28-5

Supplying Values Using Binding.. 28-6

Executing a Cursor with Multiple Connections 28-7

Modifying a Cursor ... 28-8

Using Cursors in the Transaction Manager .. 28-8

Closing a Cursor ... 28-9

To close a cursor and free its data structure, execute:....................... 28-9

To close the default cursor, execute: ... 28-9

Database Transaction... 28-10

Engine-Specific Behavior... 28-10

Error Processing for a Transaction ... 28-12

29. Reading Information from the Database
Fetching Data Using SELECT Statements .. 29-2

Targets for a SELECT Statement .. 29-3

Automatic Mapping.. 29-3

Aliasing... 29-4

Using DBMS ALIAS .. 29-5

Aliasing by Column Names .. 29-5

Aliasing by Column Positions... 29-6

Aliasing with the Engine’s SELECT Syntax 29-7

Fetching Multiple Rows ... 29-8

Determining the Number of Occurrences... 29-8

Scrolling Through a SELECT Set .. 29-9

Using Scrolling Arrays.. 29-10
xviii Application Development Guide

Using Non-scrolling Arrays .. 29-11

Scrolling Commands... 29-12

Remapping Logical Keys for Scrolling .. 29-14

Controlling the Number of Rows Fetched 29-14

Choosing a Starting Row in the SELECT Set................................. 29-15

Format of Select Results.. 29-15

Character Column ... 29-15

Date-time Column... 29-16

Numeric Column... 29-16

Binary Columns .. 29-17

Fetching Unique Column Values .. 29-18

Redirecting Select Results to Other Targets .. 29-19

30. Writing Information to the Database
Colon Preprocessing.. 30-1

Colon-plus Processing.. 30-2

Perform Standard Colon Preprocessing .. 30-2

Determine the Variable's Panther Type .. 30-3

Format a Non-null Value .. 30-5

Colon-equal Processing.. 30-7

Writing Character String Data to the Database .. 30-8

Writing Date/Time or Null Data to the Database..................................... 30-9

Writing Numbers as Character Strings to the Database......................... 30-10

Writing Hexadecimal Values to the Database.. 30-10

Using Parameters in a Cursor Declaration .. 30-11

Parameter Substitution and Formatting.. 30-12

Writing Currency Values to the Database.. 30-14

Writing Data from Arrays .. 30-14

31. Building a Transaction Manager Screen
Development Process for Transaction Manger ... 31-2

Copying Repository Objects ... 31-3

Sequence for Copying Objects... 31-4

Specifying the Traversal Order ... 31-6

Table Views.. 31-7
Application Development Guide xix

Links ... 31-7

How to Gain Access to Table View and Link Properties 31-7

How to View the Table Views and Links for a Screen..................... 31-8

Setting Link Properties ... 31-8

Determining the Root Table View .. 31-8

Determining the Order of Processing.. 31-8

Specifying the Link Type.. 31-9

Tree Traversal ... 31-10

Setting Table View Properties.. 31-11

Specifying Widget Properties .. 31-12

Changing SQL Generation ... 31-12

Using Grids... 31-12

Using Validation Links... 31-13

Specifying Transaction Manager Commands.. 31-13

Changing the Transaction Mode .. 31-14

Adding a Transaction Event Function ... 31-15

32. Writing Transaction Event Functions
The Nature of TM Event Functions... 32-2

Specifying a Return Code... 32-3

Specifying TM_PROCEED .. 32-3

Specifying TM_OK... 32-4

Checking for Database Errors ... 32-4

Specifying TM_FAILURE.. 32-5

Performing Error Checking... 32-5

Unsupported Events .. 32-6

Modifying SELECT Statement Processing .. 32-6

Replacing a SQL SELECT Statement... 32-7

Modifying SQL Generation .. 32-8

Replacing Other SQL Statements... 32-9

33. Using Automated SQL Generation
Guidelines for Automated SQL Generation .. 33-2

Specifying Tables ... 33-2

Specifying Columns ... 33-3
xx Application Development Guide

Generating SQL in the Transaction Manager .. 33-3

Sample Tables .. 33-6

Generating SELECT Statements ... 33-7

Fetching Data from the Database ... 33-10

Defining a Widget’s Participation in SELECT Statements 33-10

Implementing a SELECT expression.. 33-10

Controlling How Data Is Selected.. 33-11

Validating Data ... 33-12

Eliminating Duplicate Rows in a Result Set .. 33-13

How to Implement the DISTINCT or UNIQUE Keyword............. 33-14

Determining What Tables to Select From.. 33-14

Defining the Where Condition ... 33-14

How to Define a Widget's Participation in the WHERE Clause..... 33-14

Fetching an Exact Match... 33-16

Fetching Records Matching a Partial String 33-16

Fetching Records Matching One of a List of Values...................... 33-16

Fetching Null Values .. 33-17

Grouping SELECT Statement Results ... 33-17

Grouping Results Automatically... 33-18

Specifying a GROUP BY Clause.. 33-19

Grouping Multiple Columns ... 33-20

Applying Search Conditions to the Result Set................................ 33-20

Sorting the Results from a SELECT Statement 33-21

Specifying a Sort Order for a Specific Table View 33-21

Example: Sorting Results.. 33-22

Selecting Data from Multiple Database Tables...................................... 33-22

How to Specify the Join Relationship... 33-23

Specifying Joins in the Where Condition 33-25

Implementing an Equi-join: one-to-one relationship 33-25

Generating Multiple SELECT Statements: One-to-many Relationship ...
33-26

Specifying the Join Type... 33-28

Modifying SELECT Statements... 33-31

Generating INSERT Statements.. 33-32

Inserting Data to Specific Columns .. 33-33
Application Development Guide xxi

Defining a Widget's Participation in an INSERT Statement 33-33

Inserting Specific Values.. 33-34

Expression (insert_expression) Property... 33-34

Inserting Data Using an INSERT Expression 33-34

Generating UPDATE Statements .. 33-36

Identifying Columns to Update .. 33-37

Defining a Widget's Participation in an UPDATE Statement......... 33-37

Expression (update_expression).. 33-37

Specifying the Record to Update.. 33-38

Generating DELETE Statements... 33-38

Implementing Optimistic Locking... 33-39

Implementing Optimistic Locking using the Version Column Property .
33-41

Examples of Optimistic Locking... 33-42

Viewing the SQL Statements .. 33-43

Viewing SELECT Statements .. 33-44

Viewing INSERT Statements... 33-44

Viewing UPDATE Statements ... 33-45

Validating Input Data against the Database... 33-46

Implementing a Validation Link .. 33-47

Specifying a Validation Link .. 33-47

Validation Link Processing .. 33-48

Adding a Lookup to a Validation Link... 33-49

Specifying the Lookup .. 33-49

How to Define a Lookup Specification... 33-49

34. Specifying Transaction Manager Commands
Transaction Manger Commands.. 34-2

Command Syntax ... 34-4

Limiting the Number of Table Views .. 34-5

Implementing Full and Partial Commands... 34-6

Setting the Transaction Mode.. 34-7

35. Generating Transaction Manager Events
Generating Transaction Manager Events... 35-2
xxii Application Development Guide

Traversing the Table Views... 35-4

Generating Events in the Transaction Model .. 35-5

Invoking Event Functions and Models ... 35-6

Event Processing Steps ... 35-8

Controlling the Event Stack ... 35-9

Transaction Models and the Event Stack.. 35-9

Adding Your Own Transaction Events .. 35-10

Example .. 35-10

Logging Transaction Events... 35-11

Using the Transaction Model with JetNet/Oracle Tuxedo 35-12

36. Runtime Transaction Manager Processing
Running Transaction Manager .. 36-1

Opening the Screen .. 36-2

Closing the Screen.. 36-2

Viewing the Generated SQL .. 36-2

Disabling the Transaction Manager ... 36-3

Displaying Data ... 36-3

Executing the Select Statement .. 36-3

Scrolling Through the Select Set.. 36-5

Controlling the Number of Rows ... 36-6

Customizing Select Processing .. 36-6

Updating the Database... 36-7

Traversal for Database Updates ... 36-7

Updating Data .. 36-8

Updating Data in Arrays ... 36-8

Using Multi-text Widgets.. 36-9

Changing the Primary Key.. 36-9

Deleting Data.. 36-9

Clearing Data in Arrays .. 36-10

Inserting Data ... 36-10

Saving Data .. 36-11

Customizing Database Updates.. 36-11

Transaction Modes .. 36-12

Transaction Styles and Classes .. 36-13
Application Development Guide xxiii

Applying Styles ... 36-13

Accessing Transaction Information... 36-17

Using Functions to Set Transaction Manager Behavior......................... 36-17

Using Transaction Manager Variables ... 36-17

Using Traversal Properties ... 36-19

Reading the Current Transaction... 36-21

Identifying a Widget's Table View ... 36-24

Identifying Links ... 36-25

JPL Properties for Transaction Manager Operations 36-26

Determining How Screen Data Has Changed .. 36-26

Processing Errors in the Transaction Manager.. 36-27

Identifying the Value of the TM_STATUS Variable............................. 36-28

Setting the Value of TM_STATUS... 36-28

Event Processing after Errors ... 36-28

Processing the Event Stack ... 36-29

Controlling Error Messages.. 36-29

Error Message Display .. 36-30

Error Message Content.. 36-30

Error Message Numbers.. 36-31

Suppress Error Messages .. 36-32

37. Processing Application Errors
Default Error Handlers .. 37-2

Server Activity.. 37-3

Client Output .. 37-3

Variables for Logging Error and Status Information....................................... 37-4

Database Error Event Functions ... 37-6

Writing an Error Event Function.. 37-8

Custom Error Handlers .. 37-9

Example... 37-10

Part VI. Testing Your Application

38. Testing Application Components
Test Mode Menu Bar ... 38-1
xxiv Application Development Guide

Edit menu .. 38-2

Options menu .. 38-2

Keys menu... 38-2

Windows menu ... 38-2

Transaction menu.. 38-3

Database menu .. 38-3

Middleware Session menu .. 38-3

Report menu.. 38-4

Testing Application Components .. 38-4

Testing Screens and Service Components ... 38-5

Service Components... 38-5

How to Test a Service Component with a Direct Database Connection ..
38-5

Three-tier Client Screens.. 38-6

How to Test Client Screens with a Remote Database Connection ... 38-7

Two-tier Client Screens.. 38-7

How to Test Client Screens with a Direct Database Connection...... 38-7

Closing and Exiting.. 38-8

How to Close a Screen, but Remain in the Editor 38-8

How to Exit from the Editor ... 38-9

How to Exit Application Mode... 38-9

39. Using the Debugger
Debugging Services and Service Components.. 39-2

How the Debugger Works ... 39-3

Starting and Stopping the Debugger .. 39-3

Views into Your Application ... 39-4

Configuring the Debugger... 39-6

Setting Log File Preferences .. 39-6

Setting Debugger Preferences .. 39-7

Debugger Menu Bar .. 39-8

File.. 39-9

Tools... 39-9

View ... 39-10

Windows... 39-10
Application Development Guide xxv

Edit ... 39-10

Trace ... 39-11

Breaks ... 39-11

Options ... 39-11

Viewing JPL .. 39-11

Opening a Source Module .. 39-12

Viewing Application Screen Information.. 39-16

Stepping through Program Execution.. 39-19

Using Animation .. 39-20

Setting Breakpoints.. 39-20

Setting Location Breakpoints ... 39-21

Setting Breakpoints on Execution Events .. 39-21

Break on Change in Expression .. 39-25

To call a specified function (in expert mode): 39-26

Monitoring Variables and JPL Expressions .. 39-26

Modifying and Monitoring Application Data... 39-27

40. Identifying Users
Two-tier Applications.. 40-1

JetNet Applications.. 40-1

MTS Applications.. 40-2

41. Optimizing Applications
Database Fetches .. 41-1

Web Applications ... 41-1

LDBs... 41-2

Part VII. Deploying the Application

42. Building Application Executables
Steps for Creating an Executable... 42-2

Prepare the Application Directory.. 42-2

Determine the Executables to Build .. 42-3

Link the Database Engine... 42-3

To link your database engine: ... 42-4
xxvi Application Development Guide

To exclude the JDB database from the executable: 42-4

To link JDB and your database engine: .. 42-4

Include C Modules in the Executable .. 42-4

To link your own C modules to the executable: 42-4

Identify the Database Version .. 42-5

To verify (or update) database-specific information: 42-5

Compile the Changes ... 42-5

Customizing Source Code for an Application... 42-6

Source Code Structure.. 42-7

Specifying an Application Startup Screen ... 42-7

Specifying an Application Icon.. 42-8

Including Memory-Resident Components ... 42-8

To make screens, menus, or JPL modules memory-resident:........... 42-9

To make configuration files memory-resident:............................... 42-11

Rename the Distributed Panther Library.. 42-11

To rename the Panther library:.. 42-12

Subsystem Installation.. 42-12

Oracle Tuxedo Executables.. 42-12

43. Preparing Applications for Release
Basic Deployment Steps.. 43-2

How to Deploy your Application.. 43-2

Required Files.. 43-4

Optional Files .. 43-6

Specifying Files and Directories ... 43-7

Customizing the Distribution .. 43-7

Configuration Support.. 43-8

Specifying a Startup File .. 43-8

Specifying a Title Screen ... 43-8

Specifying Your Own Icon .. 43-9

Part VIII. Advanced Development Topics

44. Installed Event Functions
Installed Function Types ... 44-1
Application Development Guide xxvii

Demand Functions.. 44-2

Automatic Functions .. 44-3

Standard versus Non-standard Arguments .. 44-3

Installation ... 44-4

Preparing Functions for Installation ... 44-4

SM_*FNC Macro.. 44-4

Function Name .. 44-5

Function Address... 44-5

Installing Functions .. 44-5

func_type... 44-6

funcs .. 44-7

num_funcs ... 44-7

Prototyped Functions ... 44-8

Accessing Standard Argument Information ... 44-8

Installing Prototyped Functions.. 44-9

Screen Functions.. 44-10

Screen Function Arguments ... 44-11

K_ENTRY... 44-11

K_EXIT... 44-11

K_EXPOSE... 44-11

K_KEYS.. 44-12

K_NORMAL... 44-12

K_OTHER... 44-12

Screen Function Returns... 44-12

Installation of an Automatic Screen Function .. 44-13

Installation of Demand Screen Functions... 44-13

Field Functions .. 44-14

Execution.. 44-14

Entry .. 44-14

Exit .. 44-15

Validation .. 44-15

Field Function Arguments.. 44-15

VALIDED ... 44-16

MDT.. 44-16

K_ENTRY... 44-16
xxviii Application Development Guide

K_EXIT... 44-17

K_EXPOSE... 44-17

K_EXTEND.. 44-17

K_EXTEND_LAST.. 44-17

K_KEYS ... 44-17

K_NORMAL .. 44-17

K_BACKTAB... 44-18

K_ARROW... 44-18

K_SVAL ... 44-18

K_USER.. 44-18

K_OTHER .. 44-18

K_INSDEL.. 44-18

Field Function Returns ... 44-19

Installation of an Automatic Field Function .. 44-19

Installation of Demand Widget Functions ... 44-20

Grid Functions ... 44-20

Grid Function Arguments... 44-21

K_ENTRY .. 44-21

K_EXIT... 44-21

K_EXPOSE... 44-21

K_KEYS ... 44-22

K_NORMAL .. 44-22

K_BACKTAB... 44-22

K_ARROW... 44-22

K_SVAL ... 44-22

K_USER.. 44-22

K_OTHER .. 44-23

K_INSDEL.. 44-23

Grid Function Returns.. 44-23

Installation of Demand Grid Functions .. 44-23

Tab Control Functions... 44-24

Tab Control Function Arguments .. 44-24

K_ENTRY .. 44-25

K_EXIT... 44-25

K_EXPOSE... 44-25
Application Development Guide xxix

Group Functions .. 44-25

Group Function Arguments.. 44-26

Group Function Returns ... 44-27

Installation of an Automatic Group Function... 44-27

Installation of Demand Group Functions ... 44-27

Client Authentication Functions .. 44-28

Client Authentication Arguments... 44-28

Client Authentication Returns .. 44-28

Installation .. 44-29

Client Post-Connection Functions ... 44-30

Client Post-Connection Arguments.. 44-30

Client Post-Connection Returns ... 44-30

Installation .. 44-31

Help Function .. 44-32

Help Function Arguments .. 44-32

Help Function Returns.. 44-32

Installation .. 44-32

Timeout Functions ... 44-33

Timeout Function Arguments... 44-33

TF_TIMEOUT .. 44-33

TF_RESTART .. 44-33

Timeout Function Returns.. 44-33

TF_KEEP_CALLING... 44-34

TF_STOP_CALLING... 44-34

Installation .. 44-34

Timer Functions... 44-34

Timer Function Arguments .. 44-35

TF_TIMEOUT .. 44-35

TF_RESTART .. 44-35

Timer Function Returns.. 44-35

TF_KEEP_CALLING... 44-35

TF_STOP_CALLING... 44-35

Installation .. 44-36

Key Change Function .. 44-36

Key Change Function Arguments .. 44-37
xxx Application Development Guide

Key Change Function Returns ... 44-37

Installation.. 44-37

Error Function ... 44-37

Error Function Arguments ... 44-38

Error Function Returns... 44-38

Installation.. 44-38

Insert Toggle Function .. 44-39

Arguments .. 44-39

Returns ... 44-39

Installation.. 44-39

Check Digit Function .. 44-40

Arguments .. 44-40

Returns ... 44-40

Installation.. 44-41

Initialization and Reset Functions ... 44-41

Arguments .. 44-42

Returns ... 44-42

Installation.. 44-42

Record and Playback Functions .. 44-43

Arguments .. 44-43

Returns ... 44-43

Installation.. 44-44

Control Functions .. 44-44

Arguments .. 44-44

Returns ... 44-45

Installation.. 44-45

Status Line Function.. 44-45

Arguments .. 44-46

Returns ... 44-46

Installation.. 44-46

Video Processing Function.. 44-47

Arguments .. 44-47

Returns ... 44-49

Installation.. 44-49

Database Driver Hook Functions .. 44-49
Application Development Guide xxxi

Transaction Manager Event Functions .. 44-50

Arguments .. 44-50

Returns.. 44-50

Installation .. 44-51

Errors .. 44-51

Sample Functions .. 44-52

Prototyped... 44-52

Example 2.. 44-54

Automatic Screen ... 44-62

Automatic Widget .. 44-65

Example 1.. 44-66

Example 2.. 44-67

Demand Widget.. 44-69

Automatic Group .. 44-71

External Help.. 44-73

Timeout... 44-78

Key Change .. 44-79

Error.. 44-81

Insert Toggle... 44-81

Initialization and Reset ... 44-82

Record and Playback .. 44-84

Control .. 44-87

Status Line .. 44-96

45. Customizing the User Interface
Using Message Files .. 45-2

Creating and Modifying Message Files.. 45-2

How to Create or Add to a Message File .. 45-3

Message Entry Syntax .. 45-4

Reserved Characters .. 45-5

Missing Entries.. 45-6

Message Classes ... 45-6

Defining a Message Class ... 45-7

Setting Message Display and Behavior Options 45-8

Customizing Date and Time Formats... 45-12
xxxii Application Development Guide

Date/Time Defaults ... 45-13

Date/Time Tokens... 45-14

Creating Date and Time Defaults.. 45-16

Translating Defaults for Developers ... 45-18

Literal Dates in Calculations... 45-19

Numeric Formats.. 45-19

Numeric Format Syntax .. 45-20

Formats in Provided Message File.. 45-20

Creating a Default Numeric Format.. 45-21

Translating Defaults for Developers ... 45-22

Decimal Symbols ... 45-23

Customizing Push Button Labels for Message Boxes 45-23

How to Change/Translate Push Button Labels 45-24

Setting Yes/No Values ... 45-24

Using Alternate Message Files... 45-24

Configuration Map File ... 45-25

Defining Colors .. 45-26

Defining Color Aliases... 45-26

Editor Colors ... 45-28

Sample Colors Section .. 45-29

Defining Color Schemes .. 45-30

Default Schemes ... 45-30

Scheme Syntax.. 45-31

Defining Line and Box Styles .. 45-34

Character Mode Styles .. 45-35

GUI Styles... 45-35

Setting Display and Printing Fonts... 45-36

Point Sizes... 45-37

Default Font .. 45-37

Default Font Size .. 45-38

Panther Font Aliases ... 45-38

Sample Configuration Map File ... 45-41

Translating Applications ... 45-45

8-Bit Character Data... 45-45

Translating Screens in Application Programs.. 45-46
Application Development Guide xxxiii

Distribution Translation .. 45-47

Installation Translation.. 45-48

Runtime Translation.. 45-48

46. Processing the Mouse Interface
Trapping Mouse Events... 46-1

Using Key Change Functions... 46-2

Trapping Double Clicks on a Widget... 46-3

Getting Mouse Data... 46-4

Determining Mouse Click Location ... 46-4

Identifying Mouse Coordinates ... 46-4

Mouse and Widgets... 46-5

Mouse and Screen ... 46-6

Determining Mouse Button State ... 46-6

Identifying Keyboard Modifiers... 46-7

Reporting Elapsed Time between Mouse Clicks...................................... 46-9

Changing the Mouse Pointer State .. 46-9

47. Dynamic Data Exchange
Panther as a DDE Server ... 47-1

Enabling Connections... 47-2

Creating Links .. 47-2

Paste Links .. 47-2

Links Specified in Client Syntax... 47-2

Microsoft Word ... 47-3

Microsoft Excel ... 47-3

Processing Links... 47-3

Updating Client Data.. 47-3

Hot Links... 47-4

Warm Links... 47-4

Cold Links ... 47-4

Array Data ... 47-4

Data Conversion.. 47-4

Disabling Panther as a DDE Server.. 47-5

Panther as a DDE Client .. 47-5
xxxiv Application Development Guide

Enabling Connections .. 47-5

Creating Links .. 47-6

Paste Links .. 47-6

Explicit Links Through Library Functions 47-6

Links Specified in Initialization File... 47-7

Processing Link Requests... 47-8

Updating Data from the Server .. 47-8

Array Data... 47-9

Destroying Links to a DDE Server .. 47-9

Disconnecting from a DDE Server... 47-9

Execute Transactions... 47-9

Poke Transactions.. 47-10

48. Writing Portable Applications
Panther Header Definitions ... 48-1

Terminal Dependencies ... 48-2

Display Area and Attributes ... 48-2

Key Translation and Labels.. 48-3

Language Dependencies.. 48-3

Keystroke Filter Translation... 48-3

Case Conversion... 48-4

Range Checks ... 48-4

Numeric Data .. 48-4

Alphabetic Data... 48-5

Non-Language Data .. 48-5

49. Sending Mail in Panther
Defining Global Mail Properties ... 49-1

Defining Multiple Addresses ... 49-3

Creating and Sending Email .. 49-4

Creating a Mail Message Object .. 49-4

Sending Mail .. 49-5

Sending a Screen Image.. 49-5

Sending Mail Using a Field .. 49-5

Sending Mail from a Text File .. 49-6
Application Development Guide xxxv

Sending Simple Mail Messages .. 49-6

Sending Attachments.. 49-6

A. Development Utilities
bin2c .. A-2

bin2hex .. A-4

binherit... A-6

cmap2bin ... A-8

f2asc... A-11

formlib ... A-14

jif2asc .. A-19

jpl2bin.. A-20

m2asc... A-22

msg2bin ... A-29

msg2hdr ... A-34

s2asc .. A-40

B. VideoBiz
Starting VideoBiz ... B-2

How to Start VideoBiz .. B-2

VideoBiz Components.. B-3

The Database ... B-4

The Repository .. B-4

Imported Database Tables.. B-4

Other Repository Entries.. B-5

Application Screens... B-5

Menu Bar/Toolbar ... B-6

JPL Code ... B-6

Styles Sheet ... B-7

Sample Reports.. B-7

Pixmap Files .. B-7

The User's Guide to VideoBiz .. B-8

What is VideoBiz?... B-8

Starting VideoBiz .. B-8

How to Log into VideoBiz as an Employee....................................... B-9
xxxvi Application Development Guide

How to Exit VideoBiz...B-10

Identify the Customer...B-11

How To Search for a Customer Record ..B-12

Add/Update Customer Records..B-15

How to Insert a Customer Record...B-15

How to Update a Customer Record ..B-16

Video Rental Listing ..B-17

How to Return a Video ...B-18

Rent Videos ..B-19

How to Rent a Video...B-20

Customer Profile ..B-21

How to Obtain a Customer Profile..B-21

Video Lookup...B-24

Querying the Database and Selecting a Video..................................B-24

How to Search for a Video..B-25

View Video Details ..B-27

Marketing ...B-28

How to Run Marketing Reports ..B-28

C. Panther Java Calculator
Repository Contents ..C-2

Calculator Screen...C-3

Java Classes ...C-5

D. Deployment Checklist for Two-tier Applications
Directory Structure for Two-tier Applications ... D-1

Checklist for Deployment... D-2

Preparing a Windows Distribution.. D-2

Preparing a UNIX Distribution ... D-4

Index
Application Development Guide xxxvii

xxxviii Application Development Guide

PREFACE
About This
Document

Application Development Guide describes an application development path, starting
with project setup and configuration through to packaging and deployment. Covering
various topics related to application development, it discusses approaches to
development, strategies for using Panther effectively, and the order in which tasks
should be performed.

This guide is organized in the following sections:

Overview: Building a Panther Application
A comprehensive overview of Panther and its application development
process.

Section One: Preparing for Development
Topics include the organization of your Panther distribution, a discussion of
project requirements, how to set up your application servers and development
clients, how to initialize and connect to your database engine and middleware,
how to access your application libraries.

Section Two: Creating Application Building Blocks
An introduction to Panther's application components, including screens,
widgets, repositories, menu bars, reports and service components.

Section Three: Preparing the Programming Interface
Information about programming events in Panther and how to use JPL, C and
Java for event processing, accessing widgets programmatically and
manipulating the screen sequence in your Panther application.
Application Development Guide xxxix

Documentation Website
Section Four: Accessing the Database
The protocol for Panther's interaction with your database engine-how data
and status information is fetched from, or written to, the database, how to
build screens that use the transaction manager, how the transaction manager
gets its information and processes transactions, and how to customize your
transaction manager applications.

Section Five: Testing Your Application
Description of Panther's built-in debugger and instructions for using it to
debug your application.

Section Six: Deploying the Application
Information on building Panther development and production executables
and for packaging your Panther application for distribution.

Section Seven: Advanced Development Topics
Topics related to Panther's hook functions, portability and
internationalization.

Section Nine: Appendices
Information about development utilities. Also includes descriptions of
Panther's sample applications.

Documentation Website

The Panther documentation website includes manuals in HTML and PDF formats and
the Java API documentation in Javadoc format. The website enables you to search the
HTML files for both the manuals and the Java API.

Panther product documentation is available on the Prolifics corporate website at
http://docs.prolifics.com/panther/.
xl About This Document

http://docs.prolifics.com/panther/

How to Print the Document
How to Print the Document

You can print a copy of this document from a web browser, one file at a time, by using
the File→Print option on your web browser.

A PDF version of this document is available from the Panther library page of the
documentation website. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
website at https://get.adobe.com/reader/otherversions/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously. Initial
capitalization indicates a physical key.

italics Indicates emphasis or book titles.

UPPERCASE
TEXT

Indicates Panther logical keys.

Example:

XMIT

boldface text Indicates terms defined in the glossary.
Application Development Guide xli

https://get.adobe.com/reader/otherversions/

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, directories, and file
names and their extensions. Monospace text also indicates text that you
must enter from the keyboard.

Examples:

#include <smdefs.h>

chmod u+w *

/usr/prolifics

prolifics.ini

monospace
italic
text

Identifies variables in code representing the information you supply.

Example:

String expr

MONOSPACE
UPPERCASE
TEXT

Indicates environment variables, logical operators, SQL keywords,
mnemonics, or Panther constants.

Examples:

CLASSPATH

OR

{ } Indicates a set of choices in a syntax line. One of the items should be
selected. The braces themselves should never be typed.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

formlib [-v] library-name [file-list]...

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

formlib [-v] library-name [file-list]...

Convention Item
xlii About This Document

Contact Us!
Contact Us!

Your feedback on the Panther documentation is important to us. Send us e-mail at
support@prolifics.com if you have questions or comments. In your e-mail message,
please indicate that you are using the documentation for Panther 5.50.

If you have any questions about this version of Panther, or if you have problems
installing and running Panther, contact Customer Support via:

! Email at support@prolifics.com

! Prolifics website at http://profapps.prolifics.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address and phone number

! Your company name and company address

! Your machine type

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Application Development Guide xliii

http://profapps.prolifics.com
mailto:support@prolifics.com?subject=Contact%20Us
mailto:support@prolifics.com?subject=About%20Panther%205.50%20Application%20Development%20Guide

Contact Us!
xliv About This Document

CHAPTER
1 Building a Panther
Application

Panther provides a framework for application development—for a simple, single client
and server operating on one machine, or for distributed applications that are more
complex and demanding in terms of architecture and performance requirements.
Panther is designed to suit your immediate needs and can grow with the enterprise's
requirements.

This chapter provides a summary of the steps for developing a Panther application.
Although the information in this overview describes a particular stream of
development, the Panther framework is flexible and makes no demands on exactly
Application Development Guide 1-1

Application Development Steps
how, or in what order, the development process is approached. Its open style of
development allows you to use the methods needed by your application and your
development team.

Application Development Steps

Installing Panther

The Installation Guide provides instructions for installing the following Panther
products:

! Two- or three-tier Panther clients, either UNIX or Windows.

! Panther web application server.

! Panther application server for your chosen middleware.

! Panther database drivers.

Designing the Project Requirements

Define the Application Architecture

With Panther you can start with a simple, client/server, two-tier architecture
application and when your application requirements increase, convert your application
to n-tier architecture. Or, begin with a distributed application structure—create both
the client and server components at the same time.

A two-tier application is distributed between client machine and the database server.
The client machine controls the presentation logic and all or most of the application
logic. The client can access data in the database through SQL interactions (coded or
application-generated) or by making calls to the database's stored procedures.
1-2 Building a Panther Application

Application Development Steps
Distributed applications separate the business logic of the application from the user
interface. The application logic is built into service components that reside on the
application or component server. The client workstations provide the presentation
interface, some application logic, and can make requests to the application servers to
perform commonly used logic and access a database. Using service requests, there is
no need for a continuous connection between the client and the database server.

Define the Database Access

Before starting development, you need to design your database schema and decide
which type of database access you will use in your Panther application. Panther's
database interface allows you to write your own SQL statements or call the database's
stored procedures. You can also use the transaction manager to automatically generate
the SQL statements needed for a screen.

Define the Client Platforms

You need to decide which client environment is needed by the application. Panther
applications support a wide variety of interfaces including Windows, Motif, Unix
character-terminals and web browsers.

Define the Development Team

Panther facilitates team development and enables a development organization to
leverage the individual skills of their team members:

! Design Team—The designers are responsible for modeling the business
processes that will be reflected in the application and for defining the project
requirements. For component-based development, the business processes are
then translated into application components.

! Server Developers—The application developers responsible for the server-side
of the application focus on working with the database engine using SQL and
stored procedures, the application coordination with the middleware, and the
business logic of the application. Panther provides application building blocks,
in the form of class libraries, that will jump-start development and enable
application developers to focus on the business logic of the application rather
than writing the low level code for the underlying architectural technologies.
Application Development Guide 1-3

Application Development Steps
! Client Developers—The application developers responsible for the client-side
of the application focus on presentation and user interfaces.

! Web HTML and Graphics Page Design—When creating web applications, the
presentation layer can be created by a distinct team that uses any industry-
popular web page publisher (for example, Microsoft FrontPage) to create the
HTML and graphics for the visual browser display. Because Panther allows you
to encapsulate Panther objects into pre-built HTML pages, the application
development team can be separate from the HTML and graphics team.

! Quality Assurance—QA is involved when entering the testing and debugging
phase of a project cycle.

Configuring the Server Environment

In three-tier applications, the application server contains the application logic
segmented into service components and makes those services available to the
application clients as well as connecting to the data resources the application needs.
1-4 Building a Panther Application

Application Development Steps
Figure 1-1 Components of an application server in a Panther JetNet application.

You will need to create an application directory for each application on the application
server machine. In that directory you can find:

! Application libraries, such as server.lib.

! Environment files used to specify the location of the Panther installation with
its Panther software tools, the license file, and any other settings needed by the
application server.

! For the JetNet and Oracle Tuxedo applications, a middleware configuration file.
By default, this file is named broker.bin.
Application Development Guide 1-5

Application Development Steps
For JetNet and Oracle Tuxedo applications, you must also configure the types of
servers: standard servers for three-tier development and production environments, a
conversion server to run any three-tier applications you converted from a two-tier
architecture, and file access servers used for both two- and three-tier development to
provide the development team access to remote libraries and repositories.

Refer to Chapter 5, “Preparing the Application Server,” for additional information on
preparing the application directory and the server environment.

Setup the COM Component Server

For COM/MTS applications, set up the machine for deploying your COM components
during development. Create the application directory containing server.lib and specify
that directory in the editor so that the DLLs, type library files and client registration
files will be saved to the proper location.

Start with Chapter 1, “Overview,” in COM/MTS Guide for information about COM
settings and deploying COM components.

Preparing the Development Environment

You need to prepare the development environment for your chosen application
architecture.

Connect to the Database

In order to access a database, the database engine must be initialized in the Panther
executable, and the application must declare a connection to the database. In two-tier
applications, the application client makes a direct connection to the database. In
three-tier applications, the Panther application server maintains the database
connection.

For more information, refer to Chapter 7, “Initializing the Database,” and Chapter 8,
“Connecting to Databases.”
1-6 Building a Panther Application

Application Development Steps
Setup the Application Client

The application client in both two-tier and distributed applications contains the
presentation portion of the application. After installing the Panther client pertaining to
your application architecture, you need to specify the location of Panther setup files
and application libraries. You can also set variables that control the behavior of part of
a Panther application, such as how the cursor behaves.

Configure Library Access

Developers work using local client libraries located on the client workstation or host
machine. In JetNet and Oracle Tuxedo applications, developers also have the option of
using remote client libraries located on the application server.

Refer to Chapter 10, “Accessing Libraries,” for information about libraries and using
source code control programs.

Connecting to the Middleware

For three-tier applications, the middleware allows the application's clients to interact
with the application's servers. The clients and servers can reside on different machines,
connected by a network; the middleware API interfaces with the middleware, allowing
interaction between machines.

The main tasks performed by the middleware are:

! Establish client connections to the application. For the JetNet and Oracle
Tuxedo middleware adapters, use the client_init command.

! Forward service requests to the middleware, where they are forwarded to an
appropriate application server for processing.

! Return data and status messages to a client following a service request.

For more information, refer to Chapter 9, “Connecting to the Middleware.”

Defining Services

For three-tier and COM applications, you need to build service components that
implement the interface and business logic of your application.
Application Development Guide 1-7

Application Development Steps
Services in JetNet/Oracle Tuxedo

In JetNet and Oracle Tuxedo applications, services are subroutines that do the work
required for an application to access a resource manager, usually a database. They are
invoked by service requests made by clients or other services.

Service routines are responsible for receiving data from the client (if sent), performing
some task, and returning data to the client (if requested).

To expedite responses to service requests, the application can run multiple
instantiations of a server. Service requests are routed to servers in the way that provides
the fastest response.

A service can consist of three parts:

! A routine that implements the service.

! A service component (optional) that provides a physical means of sending,
receiving, and processing data.

! A service definition in the JIF.

To send and receive data between a client and application server, use service_call
and service_return in conjunction with the receive command. The
service_call command initiates a service request, as illustrated in this excerpt from
a deposit process:

For JetNet and Oracle Tuxedo applications, the JIF is the central storage file of
information about your application's services and queues. Panther accesses it at
runtime to determine the requirements and specification of services and queues for
three-tier processing.
1-8 Building a Panther Application

Application Development Steps
A service is defined in the JIF by its name, the type of transport buffers it uses—that
is, in what form information is passed to and from clients—and the name of the service
component that uses the service.

You can also create service groups which can facilitate how services are made
available on servers. For the Oracle Tuxedo middleware adapter, you can define
reliable queues. Reliable queue definitions include their transport buffers and the
names of associated reply and failure queues, if appropriate.

Figure 1-2 The JIF editor defines the service: its service name, corresponding
routine name, service component, and transport methods.

Once you determine what services are required for your application, use the JIF editor
to create the JIF for your application. For instructions on how to use the JIF editor, refer
to Chapter 24, “JIF Editor,” in Using the Editors.

Services in COM and EJB Components

For COM components and Enterprise JavaBeans (EJBs), you create service
components in the editor and save them in a server library. Part of that editor process
is defining the component interface and specifying the properties and methods
implemented by the component. Once the service component is available, client
screens can use JPL, C, or Java to instantiate the service component and access its
methods and properties.
Application Development Guide 1-9

Application Development Steps
Since you specify the type of component system before instantiating the component,
you can use the same programming interface for COM and EJB components.

A client calls the component's methods using sm_obj_call and accesses its properties
using sm_obj_get_property and sm_obj_set_property. The component uses the
receive_args and return_args commands to receive the client's data and pass data
back to the client.

For more information about building and deploying COM components in a Panther
application, refer to Chapter 3, “Building COM Components,” in COM/MTS Guide.

For more information about building and deploying Enterprise JavaBeans in a
Panther/WebSphere environment, start with Chapter 5, “Building Enterprise
JavaBeans,” in Panther for IBM WebSphere Developer's Studio.

Figure 1-3 In the Panther editor, you can define a service component's methods,
properties, and JPL programming.
1-10 Building a Panther Application

Application Development Steps
Building a Repository from a Database

Once you define your database contents, that is, the tables, columns, and primary and
foreign keys, and you are connected to the database from within the editor, you can
import the definitions into Panther.

The import process populates the open repository with one repository entry for each
imported table. Figure 1-4 illustrates three repository entries that are the result of a
database import.

Figure 1-4 Repository entries created from database tables.

The repository entry that results from an import contains one text widget and one label
widget for each database column in a table. Properties are automatically set to reflect
the properties of the column in the database. You can reimport data definitions
whenever you need to, and thereby update the information stored in the repository. In
turn, any application objects you built using repository objects are also updated—
changes to database column properties can be propagated throughout your application
via inheritance relationships.

Refer to “Creating and Opening a Repository” on page E-19 in Using the Editors for
details on creating a repository.
Application Development Guide 1-11

Application Development Steps
Refer to Chapter 11, “Creating and Using a Repository,” for information on uses of the
repository.

Table Views and Links

Database table information is stored in a table view widget. This provides Panther with
the information it needs to access the database and understand how database tables are
related. Table view properties include the name of the database table, the table's
columns, and the columns that compose the table's primary key. The import process
creates a table view for each imported table, and adds the widgets corresponding to
columns to each table view.

Table relationship information is stored in link widgets. The import process creates
links based upon foreign key information contained in the database. If the database
contains no foreign key information, then you can create the links manually in the
editor.

Figure 1-5 The DB Interactions window displays the table views used on the
screen and their relationships.

Creating Application Components

Use the editor to gain access to all of Panther's authoring tools. Either with the wizards
or from scratch with the editor, build the client screens that define the application's user
interface, the service components, and the reports needed by your application.
1-12 Building a Panther Application

Application Development Steps
A Panther application consists of libraries to which you should have direct access when
you start up the editor:

! The client library (client.lib) for storing the objects that make up the user
interface, such as screens, menu bars and tool bars, JPL procedures used by the
client, a styles file (styles.sty) and images that illustrate push buttons and
toolbar items.

! The server library (server.lib), required only for distributed and three-tier
applications, for storing service components and service-specific JPL
procedures.

! (JetNet/Oracle Tuxedo only) The common library (common.lib) for storing
objects that are needed application-wide, such as the JIF and JPL that is used by
both client and server.

Libraries can be named anything you wish and configured to be available during
development and/or deployment of your application.

Repository Development

The visual object repository is used during development to define and store a set of
objects needed to build screens, service components, and reports. Once the repository
is populated, you can easily make a new application component by copying the
necessary objects from the repository.
Application Development Guide 1-13

Application Development Steps
Figure 1-6 Inheritance from database to repository to screens.

In addition to the development time saved by creating objects only once, the repository
can be used to easily update application objects by using inheritance. When you copy
an object from the repository, the copy, or child, retains the property definitions of the
original object, the parent. If you change the properties of the parent object in the
repository, the properties that the child has inherited are also updated.

You can enhance repository members without breaking the ability to reimport database
tables. Your enhancements might include:

! Changing the widget size.

! Changing the labels.

! Adding new widgets.

For example, you could include a total price widget to hold the product of the unit price
and the quantity database columns; the code associated with the widget to make the
calculation is stored with the widget.
1-14 Building a Panther Application

Application Development Steps
You can also enhance the repository by storing commonly used application objects,
such as OK and Cancel push buttons. These frequently used objects can be made
available to the development team through shared libraries.

Graphical Editor

Invoke the editor to create screens, reports and service components. To facilitate the
process of building database-related screens, you can use the screen wizard. In addition
to building the user interface, you can build service components to handle the
processing of service requests in distributed applications. You store the client and
server components in their appropriate Panther libraries.

Typically, the editor starts with a single, empty, screen. The screen can be enhanced
by adding widgets from tools you select from the tool bar or from the menu bar. Since
you can have many screens open at once, you can easily copy objects between screens
via drag and drop.

Screen Wizard

The easiest way to create new screens is by using the screen wizard. This option is
available each time you choose to create a new screen in the editor. The screen wizard
takes full advantage of the contents of your repository when you use it to build screens
and, for JetNet/Oracle Tuxedo applications, service components.

The screen wizard can create three basic types of screens: master, master-detail, and
master-detail-subdetail. In each section of the screen, you can have one or more table
views using either a single row or grid layout. When the screen is completed, it
contains the widgets and their labels, a series of push buttons or a menu bar for
commands, selection screens to facilitate data entry at runtime, and a JPL module
containing the procedures needed to execute basic database transaction commands.

For JetNet/Oracle Tuxedo applications, you can choose to create both a client screen
and service component using the screen wizard. They look very similar, but the client
screen resides on the client, describes the user interface, and interfaces with the
database by way of service requests, while the service component resides on the server.

Enhancing the Interface

Once the basic screen design is complete, you can:
Application Development Guide 1-15

Application Development Steps
! Modify properties to set default appearance and behavior of widgets; for
example, implement double-click events in a list box, alter the automatic SQL
generation by changing database properties, add colors to widgets or
decorations to the screen, such as boxes or lines.

! Add additional widgets: push buttons to define user actions or radio buttons and
check boxes to present a group of available options.

! Include business graphs or ActiveX controls as another means of displaying
data.

! Create menus and toolbars using the menu bar editor.

For a description of available widget types, refer to “Types of Widgets” on page 2-19
in Using the Editors.

Modify Properties

Widget, screen, report and service component properties can be modified during
development in the editor or programmatically at runtime. Even though most
properties are available through the Properties window, runtime-only properties must
be changed programmatically. At runtime, there are also application properties which
set the default behavior for the entire application.

For an alphabetical list of runtime properties, refer to Chapter 1, “Runtime Properties,”
in Quick Reference.

Define User Actions

Screens created by the screen wizard already include push buttons and/or menu bars to
fetch and update data using the transaction manager, the Panther component that
handles database events. Additional widgets can be created, or the functionality of
existing widgets can be modified as necessary according to your application needs.

Define Event Functions

In addition to defining user actions, you can specify processing to occur on application
events. One way of looking at a Panther application is as a series of application events.
When a screen opens, a sequence of screen events occur. Then the first widget on the
screen gets focus; a sequence of widget events occurs. Only then is the screen ready
for user input, which in turn launches another sequence of application events.
1-16 Building a Panther Application

Application Development Steps
Each of these application events can have JPL, C, or Java processing associated with
it, to be invoked when the event occurs. The processing can be for a specific object,
such as a single screen, or application-wide for all objects. When processing is
application-wide, the function must be written in C and installed in funclist.c.

When processing is specified for a specific object in JPL or C, then the name of the C
or JPL function is entered as a property of the object. For example, to invoke myfunc
whenever a widget gains focus, specify myfunc as the value of the Entry Function
property of the widget.

For Java, the Java Tag property allows you to associate the name of a Java class to a
Panther object. The specified Java class is an event handler specifying methods for the
events supported by the object.

For the JetNet middleware adapter, there are additional events and event handlers.
Event handlers are called when middleware API events take place in your application,
for example, when a client makes a service request or when a service is advertised.
Handlers can invoke other services as well as open, select, or close service components
as needed. Default event handlers are provided; you can also write and install your own
event handlers.

For more information:

! Chapter 17, “Understanding Application Events.”

! Chapter 20, “Writing C Functions.”

! Chapter 21, “Java Event Handlers and Objects.”

! Chapter 6, “JetNet/Oracle Tuxedo Event Processing,” in JetNet/Oracle Tuxedo
Guide.

Fetch Database Information

Database operations in Panther applications are processed by the following software
components and provide you with different levels of database access:

! Transaction manager—Determines what SQL must be generated and executed,
and asks the next level to do the work.

! SQL generator—Constructs SQL statements and asks the next level to execute
them.
Application Development Guide 1-17

Application Development Steps
! Database interface—Passes SQL requests to the database, and returns formatted
results to Panther. The database interface is implemented via the dbms verb in
JPL and the C library function dm_dbms.

! Database API—Provided by the database vendor.

Figure 1-7 The relationship between your application, Panther components, and
your database.

Screens built with the screen wizard use the transaction manager to fetch and update
database information. From the widget properties, events in the transaction manager
can generate the SQL needed to populate the screen. When the data is displayed on the
client, the transaction manager keeps track of any changes made to the data and
generates the SQL needed to update the database.

For applications not using the transaction manager, you can write your own SQL
statements or use the database interface to call stored procedures on the database
engine.

For more information about database operations, start with Chapter 27, “Performing
Database Operations.”
1-18 Building a Panther Application

Application Development Steps
Add Reports

With Panther, you can build reports to supplement your application processing. Once
created, a report can be invoked from an application, from a web browser, or on the
command line, and can be output to the screen, to a printer or to a file.

A report definition has two windows in the editor: the report layout window and the
report structure window. The report layout window, containing one or more layout
areas, defines the report content. Each layout area contains widgets whose properties
define the source of report data. A widget's position in the layout area determines its
position in the report output.

The report structure window, consisting of a series of nodes, determines the order of
report processing. Each layout area must have a corresponding print node in the report
structure in order to appear in report output. Other nodes define the format of the
report, the properties of report groups, and the programming actions to take during
report processing.

For information on using the report wizard, refer to Chapter 5, “Report Wizard,” in
Using the Editors. To build reports in Panther, start with Chapter 1, “Overview of
Panther Reports,” in Reports.
Application Development Guide 1-19

Application Development Steps
Figure 1-8 The report layout window and the report structure window work
together to define a report.

Integrating Application Components

To integrate your application components, you can:

! Define screen interaction by connecting your screens to one another, invoking
functions, and initiating communications between clients and servers.

! Use a variety of methods to share data between screens.

! Attach event functions or event handlers to control specific events.
1-20 Building a Panther Application

Application Development Steps
Define Screen Interaction

Menu items, push buttons, and function keys can be associated with processing logic.
In all three cases, this association can be defined with Panther control strings. Push
buttons and menu items have a Control String property. You can also define control
strings for the screen or application by associating a control string with a function key
or Panther logical key.

When a user of your application chooses a menu item or clicks on a push button, the
control string attached to the object can:

! Execute a function or JPL procedure.

! Close the current screen and open another.

! Open another screen on top of the current one.

! Invoke a system command or program.

For detailed information about using control strings, refer to Chapter 18,
“Programming Control Strings.” For details on screen management, refer to
Chapter 24, “Setting the Screen Sequence.”

Share Data Between Screens

Panther applications typically require data to be shared between screens. There are
several methods you can use.

Sending and Receiving
This technique, used only for client screens and implemented by the JPL
statements send and receive, is the most modular of the data sharing
techniques. The sender specifies exactly what data is sent. The receiver
specifies exactly what data is received. The order of the data items determines
the correspondence between items sent and received. There are also Panther
library functions you can use for sending and receiving.

Explicit Reference
In JPL you can refer explicitly to a data item on an open window by using the
notation @scr(screenName)->widgetName. For example, you could copy
data from empid on the empsrch screen to empid on the active screen by
writing:

empid = @scr(empsrch)->empid
Application Development Guide 1-21

Application Development Steps
Local Data Block
The local data block (LDB) enables sharing of data automatically based on
widget names. Each time a screen becomes active, its widgets are populated
with data from those LDB fields that have corresponding names. When the
screen is made inactive, Panther copies widget data back into the LDB. This
eliminates the need to write code to move data between screens.

You can create multiple LDBs. An LDB exists until it is explicitly destroyed.
This allows access to data regardless of whether or not it is on the active
screen, or on any open screen.

The LDB contains data that is local to each user, but that is globally shared
within a user's invocation of an application. Use the LDB to store data that is
shared between many screens when you want changes on any one screen to
cause changes on all screens that share the same widget name.

JPL and C Variables
You can move data between screens by saving the data in JPL or C variables,
opening the destination screen, and copying the data into the destination
screen.

For details on moving data between screens, refer to Chapter 25, “Moving Data
Between Screens.”

Setting Application Security

In three-tier applications, the application server connects to the database resources,
allowing access to the data needed for your application. To make the application
secure, you need to control the client's access to the application.

In two-tier applications, the database engine specifies the users and passwords that
must be used to access the database.

Deploying on the Web

In web applications, screens are requested via a URL in a web browser. Then, if the
screen is submitted back to the web application server, the screen is processed, any
service requests or SQL needed to fetch information are generated, and then the data
is sent back to the browser requesting the information. In n-tier applications, the web
application server operates as a Panther client.
1-22 Building a Panther Application

Application Development Steps
Figure 1-9 When the HTTP server receives a request from a browser for a
Panther screen, the request is sent to Panther for processing.

Configure the Web Application

The Web Setup Manager creates an application directory on the web application server
and creates the initialization file needed for each web application. This initialization
file contains the settings used by the web application.

For information on running the Web Setup Manager, refer to Appendix B, “Web Setup
Manager,” in Web Development Guide; on setting up a Panther web application,
Chapter 2, “Web Application Setup,” in Web Development Guide.

Create the Web Client Screens

You can view any of your application screens on the web, but you might want to build
separate screens which take advantage of web-specific features and cache data in order
to operate in the web's stateless environment.

For more information on building web applications, including how screen and widget
properties operate differently in the web environment, refer to Chapter 3, “Setting
Properties for Web Applications,” in Web Development Guide.
Application Development Guide 1-23

Application Development Steps
Program Web Events

Application logic for web-specific events can be written in JavaScript or VBScript and
performed in the browser at runtime. In addition, JPL, C and Java programming can be
run on the web application server. For more information, refer to Chapter 9, “Using
JavaScript and VBScript,” in Web Development Guide.

Testing and Debugging

User Interface

In the editor, you can test the behavior and appearance of client screens built for both
two- and three-tier architecture. For two-tier architecture, you can connect directly to
the database, and see how your screen interacts with "live" data. For three-tier
architecture, you need a connection to the database by way of the middleware. The
service component, if there is one, must also be saved to the server library, so that
three-tier access is possible.

You can also use Panther's debugger to examine the internal behavior of the client
screens—for example, walk through JPL procedures and watch values being set in
variables and fields on the screen.

For instructions on using the debugger, refer to Chapter 39, “Using the Debugger.”

Service Components

For three-tier applications, the service components reside on an application server.
There is, in practice, no visible way from the user's perspective to see what is
happening on the server. However, you can test and debug a service component's
behavior in much the same way you test a client's. Connect directly to a database, and
go into test mode from the editor.

To test whether the service component and its JPL routines function with its
corresponding client screen, you must save the service component to the server library
and test the client screen that calls the service provided on the service component.

For JetNet/Oracle Tuxedo applications, if you have a debuggable server running, you
can view the service component or walk through JPL service routines.
1-24 Building a Panther Application

Application Development Steps
Fine-Tuning the Application

Using C and Java Code

Panther provides an interface to functions written in C and Java so that you can:

! Integrate third-party software with Panther applications.

! Write event functions in C or Java.

! Extend the functionality of Panther tools by writing library functions for JPL
programmers.

! Write transaction models in C.

! Use Panther tools without JPL.

You can edit Panther's source code and build an executable that incorporates your C
functions. You can also install event functions in Panther's source file fun clist.c.
The full set of Panther library functions is described in Programming Guide.

Improving Performance

Consider some of the following possibilities for improving application performance:

! Link objects into the executable.

! Public JPL on the client and/or server.

! Cache service components on the server.

! Minimize the number of service requests.

! Move application logic from the client to the server or vice versa.

! Write C routines or Java methods for common or expensive functions.

! Reduce logging and per service processing on the server.

! Fine tune queries (transaction manager events) or write your own SQL.
Application Development Guide 1-25

Application Development Steps
Deploying the Application

Once you are ready to deploy the application, you will probably rebuild executables to
meet your deployment requirements.

When the process of developing your application is complete, you can easily gather it
together, since all components—screens, reports, JPL modules, menus, and bitmaps—
are in libraries.

For information on building application executables, refer to Chapter 42, “Building
Application Executables.” For information on deploying Panther applications, refer to
Chapter 43, “Preparing Applications for Release.”
1-26 Building a Panther Application

Part I Preparing for
Development

This section is for the senior developer who, in conjunction with the application
architect and database administrator, will be setting up the development environment
for the application development team and defining the project requirements.

Tasks associated with setting up a development environment are:

Understanding the Panther Distribution

Defining the Project Requirements

Defining Application Architecture

Preparing the Application Server (three-tier only)

Preparing the Development Clients

Initializing the Database

Connecting to Databases

Connecting to the Middleware (three-tier only)

Accessing Libraries

CHAPTER
2 Understanding the
Panther
Distribution

The directory into which Panther software tools are installed is called the Panther
installation directory and set in the machine's environment as SMBASE.

After installation, your Panther distribution can consist of the following directories:

! bin—for JetNet, administrative executables; for COM, DLLs for COM
component operations

! comlink—for COM, files to rebuild the template DLL

! config— configuration files

! docs—Panther online documentation

! include—header files

! jdb— JDB libraries

! lib—Panther libraries

! licenses—license files

! link— makefiles for recompiling the executables

! locale—for JetNet distributions, localization of system messages

! nls—files for Native Language Support
Application Development Guide 2-1

! notes—release notes

! samples— sample applications and the tutorial's setup files

! udataobj— JetNet required files

! util—Panther executables and utilities. For a more complete list of files in
each directory, see the packlist.txt file located in the notes directory.

If you install Panther software on different machines, it is possible for each machine
to have its own value for SMBASE. When you set the Panther installation directory for
applications, be aware of which value is needed.
2-2 Understanding the Panther Distribution

CHAPTER
3 Defining the Project
Requirements

Before building the application, the architect in your development team needs to
consider the project requirements. With Panther, you can build two-tier or three-tier
applications and deploy those applications in a variety of environments. You need to
choose the best environment and structure for each application.

Following are questions you should consider.

What Is the Application Architecture—Two-tier or Three-tier?

Two-tier applications are useful for smaller-scale applications. Client workstations
contain the presentation and much of the business logic of the application; they have a
direct connection to a database server to provide them with data.

The disadvantages of two-tier applications are:

! A client workstation takes up a constant connection to the database even though
it only needs that connection a small percentage of the time.

! Users need to update some of the same data concurrently. Depending on the
version of database locking, a user will have to wait for the database to release
the locks or will have to process the update a second time because the version
of data they selected is no longer available.

Three-tier applications address these problems by having three levels: presentation,
application logic, and data. Client workstations contain the presentation logic and
focus on user interaction. They send service requests to the application server. The
application server maintains the connection to the database server and is able to
process service requests from multiple clients.
Application Development Guide 3-1

Another advantage of three-tier applications is that the server components can be
replicated to run on multiple machines simultaneously. This distributes the client load
across multiple machines.

For more discussion of application architecture, refer to Chapter 4, “Defining
Application Architecture.”

For Three-tier Applications, Which Middleware Meets Your
Requirements?

JetNet and Oracle Tuxedo are TP monitor systems using messages and buffers to pass
information to and from clients and application servers. You create client screens and
service components in the editor, write the services in C or JPL, and install the services
in the JIF. The application server's bulletin board advertises which services are
available. JetNet and Oracle Tuxedo are available on UNIX and Windows systems.

MTS is a component-based middleware using components that conform to Microsoft's
COM (Component Object Model) specifications. A COM component can support
multiple interfaces; each interface is a collection of methods. When you create a COM
component in Panther, you define its methods, the parameters expected by those
methods, and its properties. In addition, Panther assigns the component a CLSID, a
globally unique identifier, and creates a Panther service component which is then
installed on the application server. MTS is available on Windows systems.

Panther for IBM WebSphere can be used to build Enterprise JavaBeans which can be
deployed on WebSphere Application Server. Enterprise JavaBeans are server-side
components written in Java that perform the business logic of an application. Like
COM components, Enterprise JavaBeans have a defined public interface of methods
and properties that application clients can use to interact with the components. Being
written in Java, they are platform independent.

Will the Application Be Deployed on the Web?

Since the web was originally a text-based delivery system, HTML only dealt with a
few widget types and did not contain mechanisms for positioning those widgets.
Screens designed in a GUI environment, such as Windows, will appear slightly
different on the web.

The application processing also needs to be handled differently since web applications,
by default, are stateless. For its web applications, Panther provides mechanisms for
saving application state information for each user of a web application.
3-2 Defining the Project Requirements

What Is the Best Database Schema for this Application?

Database diagrams illustrate the structure of the database tables, the primary key
columns for each table, and the relationships and foreign key relationships between
database tables. By examining the diagram, you can see if the database is normalized—
whether the data is only entered once—in the database tables.

The following diagram illustrates a portion of the vbizplus database that was used as
a basis for some sample reports.

Is a Database Based on that Schema Currently Available?

The development steps outlined in this manual suggest having a database available
when you start development. This database is used to populate the repository with
repository entries corresponding to the database tables and widgets on each entry
corresponding to the database columns.
Application Development Guide 3-3

How Will the Repository Be Used During Application Development?

If a database is used to populate the repository, the database tables and columns are
represented in the repository. In addition, you can store screen templates and widget
templates in the repository and use those templates throughout the application.

Objects copied from the repository, manually or by using the wizards, inherit the
properties of the parent object in the repository. If you change the properties of the
parent object, the properties of the child objects can get updated automatically.

How Will the Database Be Accessed?

Panther contains the following software components for database access:

! Middleware API (three-tier only)—Passes service requests through the
middleware to the application server.

! Transaction manager—A high level command interpreter that determines what
SQL or services must be generated and executed, and asks the next level to do
the work.

! SQL generator—Constructs SQL statements and asks the next level to execute
them.

! Database interface—Passes SQL requests or stored procedures to the database,
and returns formatted results to Panther. The database interface is implemented
via the dbms verb in the JPL language or the library function dm_dbms.

! Database API— Provided by the database vendor.

You can write your own SQL statements, call stored procedures in your database, or
have the transaction manager generate SQL statements. In two-tier applications, the
client workstation has a direct connection to the database. In three-tier and web
applications, the application server maintains the database connections.

Although database access via the transaction manager is usually easiest, you can use
any combination in your application. For example, you might allow the transaction
manager to handle some access itself, but supply specific SQL statements (for
example, stored procedure or RPC calls) for some operations.

If you are upgrading a two-tier application to be a three-tier or a web application, you
need to be aware of how database transactions differ in those environments. Since
clients running the application do not have a direct database connection, database
3-4 Defining the Project Requirements

transactions must be rolled back or committed as part of the service request in
three-tier applications or as part of the screen submission processing in web
applications.

How Will Service Components Be Used in Your Application?

You can use components:

! To implement all of your database access and business logic.

! To implement repeated tasks in a portion of your application.

One way to organize components in your application is to have one group of
components that correspond to database tables and another group of components that
implement the business logic. A component in the business logic group could access
several database components as it completes a task.

What Are the Hardware Platforms for the Application Clients?

If the client screens run on only one hardware platform, you know that the screen will
look the same during development and deployment (provided you use that platform
during development).

If the application's screens are to run on multiple platforms, consider which platform
is the hardest to please. Usually, it is character mode, followed by Windows, then
followed by Motif.

How Computer Literate Is the Application Audience?

If the target audience is the general population, the user interface must be as simple as
possible. If the target audience is more knowledgeable, you can design a more
powerful and intricate system.

In What Language Will the Programming Code Be Written?

Within the Panther framework, you can code your application in a variety of
languages. Panther has its own scripting language, JPL, which can be used for runtime
processing. You can also include your own C, C++, or Java code or, for web
applications, JavaScript and VBScript functions. You can use any of these languages
as you see fit.
Application Development Guide 3-5

What Method Will Be Used for Handling Errors?

Errors that occur remotely may have no meaning to a user, but in most cases, you want
to determine which errors should be posted or broadcast from server to client, and what
information should be displayed that will be most useful to a user of your application.

During the development process, you will also need a process for logging and updating
application problems.

What Type of Network Access Is Available?

The size and speed of the network available when the application is deployed affects
how you divide the work in the different tiers.

It is recommended that you devise a prototype going across all tiers of the application
to test the network setup and estimate network traffic.

How Will the Work Be Distributed Among the Development Team?

The following development tasks can be assigned to people on the development team:

! Designing the application flow.

! Writing SQL statements and/or stored procedures.

! Programming in C, C++, Java, JPL, JavaScript, or VBScript.

! Designing the user interface/client screens.

! Designing the reports.

! Creating the service components and defining their properties and methods.

! Testing the network access.
3-6 Defining the Project Requirements

CHAPTER
4 Defining
Application
Architecture

With Panther, you can start with a simple, client/server, two-tier architecture
application and when your application requirements increase, convert your application
to three-tier architecture. Or, begin with an distributed application structure—create
both the client and server components at the same time.

Components of a Panther Application

A typical three-tier Panther application, consisting of the following Panther tools and
application components, is illustrated in Figure 4-1.
Application Development Guide 4-1

Components of a Panther Application
Figure 4-1 Components of an enhanced, three-tier client/server Panther
application.

! A database—JDB is Panther's built-in prototyping database which you can use
to get started. Interfaces to other database engines are available; one or more of
these interfaces is included in each Panther distribution.

! A client executable—Panther provides both basic development and production
executables for your client platforms.

! Distributed application environment—The middleware and middleware
adapters control three-tier processes and communication between client and
application server components.

JetNet is Panther's middleware product; middleware adapters are also available
for Oracle Tuxedo and WebSphere Application Server. On Windows, you can
deploy COM components in your Panther application using COM, DCOM, and
MTS.

! Server executables to support three-tier architecture—Panther provides the
server executables you need for your choice of middleware.

! Client library—Contains the application components that make up the user
interface portion of your application. It can store screens, reports, service
4-2 Defining Application Architecture

Components of a Panther Application
components, menus, and JPL modules that you create using the editor as well as
any other elements, such as bitmaps, that the interface uses.

! Server library—Contains the service components of a distributed application
and their related JPL modules.

! Configuration files—Reside on client machines and, in a three-tier application
on server machines, and are used by Panther to interpret your environment.

A three-tier JetNet/Oracle Tuxedo application also has:

! Common library—Contains application-wide objects, such as the JIF, which is
the binary file you update to define your application's services, plus any code or
objects shared by clients and servers.

Some of these components also exist in simpler, two-tier applications: the database,
client executables, client library, and configuration files.

Figure 4-2 Components of a two-tier client/server Panther application.
Application Development Guide 4-3

Building Two-Tier Applications
Building Two-Tier Applications

A two-tier application is distributed between client machine and the database server.
The client machine controls the presentation logic and all or most of the application
logic. The client can access data in the database through SQL interactions (coded or
application-generated) or by making calls to the database's stored procedures.

To build a two-tier application:

! Create an application directory on the client machine.

! Set up the client. Modify prol5w32.ini, prol5w64.ini or the Prolifics
resource file and the environment settings as needed to recognize the
installation and locate files needed by Panther.

! (JetNet only) If you are providing shared access to remote libraries and
repositories, set up a file access server (refer to JetNet Guide/Oracle Tuxedo
Guide for details on configuring a server), and create an application directory
on the server machine.

! Invoke the editor (prodev/prodev32.exe), and create a repository (default
name is data.dic).

! From within the editor, connect to the database, and import database definitions
into the repository.

! Build the application screens using the screen wizard or editor.

! Add programming logic to the screens.

! Add additional application components, such as tool bars, menus, and reports.

! Integrate application components; make the screens work with other screens or
reports using push buttons, control strings, and function keys.

! Test and debug the screens within the authoring environment.

! Performance tune.
4-4 Defining Application Architecture

Building Distributed Applications
! Package and deploy the application.

Building Distributed Applications

Distributed applications separate the business logic of the application from the user
interface. The application logic is built into service components that reside on the
application or component server. The client workstations provide the presentation
interface, some application logic, and can make requests to the application servers to
perform commonly used logic and access a database. Using service requests, there is
no need for a continuous connection between the client and the database server.

Building a JetNet/Oracle Tuxedo Application

The following steps summarize the process for JetNet/Oracle Tuxedo applications:

To build a three-tier JetNet/Oracle Tuxedo application:

! Create an application directory on the Panther application server.

! Create or copy the necessary libraries, such as server.lib, client.lib and
common.lib.

! Set up your application server or servers (refer to JetNet/Oracle Tuxedo Guide).

! Set up the client. Modify prol5w32.ini, prol5w64.ini or the Prolifics
resource file and the environment settings as needed to recognize the
installation and locate files needed by Panther.

! Invoke the editor (prodev/prodev32.exe), and create a repository that resides
on the server machine (default name is data.dic).

! From within the editor, connect to the database, and import database definitions
into the repository.
Application Development Guide 4-5

Building Distributed Applications
! Build client screens, reports, and/or service components using the editor or the
wizards. Save objects to their appropriate libraries (on the server machine for
shared access and in local libraries for nonshared access).

! Update the JIF with service definitions.

! Add client and server processing; add logic for service components and for
client screens. Implement C, Java, or JPL code as needed; for C functions,
rebuild executables to incorporate functions.

! Add additional application components, such as tool bars, menus, and reports.

! Integrate application components; for example, make client screens work with
other screens or reports by implementing push buttons, control strings, and
function keys.

! Test and debug both the client and server portions of the application.

! Performance tune your application to improve event processing.

! Package and deploy the finished application.

Figure 4-3 Components of a Panther JetNet/Oracle Tuxedo development
environment includes access to local and remote libraries as well as direct and
remote access to the database.
4-6 Defining Application Architecture

Building Distributed Applications
Building a Component-based Application

The following steps summarize the process for component-based applications:

To build a component-based application:

! Set up the client. Modify prol5w32.ini and the environment settings as
needed to recognize the installation and locate files needed by Panther.

! Invoke the editor (prodev32.exe), and create a repository (default name is
data.dic).

! From within the editor, connect to the database, and import database definitions
into the repository.

! Build client screens, reports, and/or service components using the editor or the
wizards.

! Add client and server processing. Add business logic to service components;
add user interface functionality to client screens. Implement C, Java, or JPL
code as needed; for C functions, rebuild client executables to incorporate
functions.

! Save objects to their appropriate libraries (to client.lib for client screens and to
server.lib for service components). Saving service components will generate the
DLLs and type library files needed for COM components or the Java files
needed for EJBs.

! Add additional application components, such as tool bars, menus, and reports.

! Integrate application components; for example, make client screens work with
other screens or reports by implementing push buttons, control strings, and
function keys.

! Create an application directory on the application server machine (or the
machine acting as the COM component server).

! Create or copy the necessary application libraries, such as server.lib, and the
component's files to the server machine. For COM components, you need to
copy the DLLS and type libraries. For EJBs, you need to copy the jar file
containing the Java class files, interfaces, and deployment descriptor.
Application Development Guide 4-7

Building Distributed Applications
! Based on your deployment needs, install the components. For COM
components, you need to register the components on client machines.

! Test and debug both the client and server portions of the application.

! Performance tune your application to improve event processing.

! Package and deploy the finished application.
4-8 Defining Application Architecture

CHAPTER
5 Preparing the
Application Server

In three-tier applications, the application server:

! Contains the application logic segmented into services or business components.

! Makes services and business components available to the application clients.

! Connects to the data resources needed by the application.

The chapter summarizes the preparation steps needed for:

! JetNet Application Server (page 5-2)

! Oracle Tuxedo Application Server (page 5-4)

! WebSphere Application Server (page 5-4)

In COM/MTS applications, distributed application processing is achieved by
deploying COM components and their Panther service components on remote
machines using DCOM or MTS. Refer to Chapter 5, “Deploying COM Components”
in COM/MTS Guide for information.
Application Development Guide 5-1

JetNet Application Server
JetNet Application Server

For the JetNet middleware adapter, the Panther application server can run on a
Windows or UNIX machine. To prepare the application server for each application,
you need to create the application directory, populate it with the necessary files, apply
your environment settings, and configure the types of servers needed for the
application.

Create the Application Directory

Create the application directory and populate it with the necessary files.

! For UNIX servers, a setup file with the location of the Panther installation, the
license file, and the middleware configuration file at your site. For the default
setup file, copy setup.sh from the config directory of your Panther installation.

! Three standard application libraries: client.lib, server.lib and
common.lib. Copies of these libraries are in the samples/newapp directory of
your Panther server installation.

! Three standard environment files:

" machine.env for machine-specific settings used for all servers.

" proserv.env for the standard server.

" progserv.env for the conversion server (only used with applications
converted from two-tier).

Copies of these files are in the samples/newapp directory of your Panther
server installation.

! The middleware configuration file. To create a middleware configuration file,
use JetMan or the utility rbconfig, and record the settings for SMRBHOST,
SMRBPORT, and/or SMRBCONFIG.
5-2 Preparing the Application Server

JetNet Application Server
Configure the Application Servers

Panther provides you with the ability to configure three types of servers: standard
servers for three-tier development and production environments, a conversion server
to service three-tier applications you converted from a two-tier architecture, and file
access servers used for both two- and three-tier development to provide the
development team access to remote libraries, repositories, and report generation
facilities.

The application servers in Panther for JetNet:

! Are designed to access built-in event handlers to accommodate and facilitate
development and productions needs.

! Offer debuggable capabilities for development.

! Automatically connect to a database.

An application server invokes an executable that contains one or more services that can
be called by clients and other servers. Server executables are provided and can easily
be initialized using the JetNet manager provided with Panther.

As you develop your application you might find that you'll need to build new
executables to incorporate your own C functions, or configure a standard server for
production purposes as opposed to development.

See Also

For additional information on configuring the application directory and the server
environment, refer to Chapter 2, “Setting the Enterprise Environment,” in
JetNet/Oracle Tuxedo Guide.

The tutorial also contains a lesson on setting up the server environment (refer to
Lesson 2 in Getting Started-JetNet).
Application Development Guide 5-3

Oracle Tuxedo Application Server
Oracle Tuxedo Application Server

For the Oracle Tuxedo middleware adapter, refer to Chapter 2, “Setting the Enterprise
Environment,” in JetNet Guide/Oracle Tuxedo Guide and follow the directions
provided with Oracle Tuxedo for setting up and initializing servers.

WebSphere Application Server

WebSphere Application Server provides a full-featured distributed application
environment for component-based systems using Java-based technologies. Enterprise
JavaBeans created in the Panther editor can be deployed on WebSphere in both web
and GUI environments.

For complete information on setting up your WebSphere application server, refer to
“How to Set Up the Application Server Engine” on page 2-1 in Panther for IBM
WebSphere Developer's Studio.
5-4 Preparing the Application Server

CHAPTER
6 Preparing the
Development
Clients

In both two-tier and three-tier applications, you need to prepare your client
workstations for development. This chapter describes the steps and the changes you
can make to the default Panther settings for your project.

For information on setting up web application servers (which operate as Panther clients
in a three-tier environment), refer to Chapter 2, “Web Application Setup,” in Web
Development Guide.

For information about setting up development clients using Panther for IBM
WebSphere, refer to “How to Set Up the Development Client” on page 2-8 in Panther
for IBM WebSphere Developer's Studio.

Copy Your Panther Distribution

You need to make a copy of your Panther distribution for each project. This has the
following benefits:
Application Development Guide 6-1

Configure Your Panther Application
! You can make modifications to the contents of the distribution without
modifying the original files.

! At any point, you can compare the distribution file to the working version of
the file to see what modifications you made for the project.

! When you install or re-install Panther, it will not overwrite the project-specific
versions of files.

For a description of the directory structure in a Panther distribution, refer to Chapter 2,
“Understanding the Panther Distribution.”

Configure Your Panther Application

To configure your Panther application, you need to perform the following steps:

! Specify the environment needed for Panther software components.

! Distribute that environment to your client workstations.

! For JetNet or Oracle Tuxedo applications, configure remote access to libraries
and repositories.

! Create an application directory on the client.

Specify Your Panther Environment

Panther uses setup variables to point to the Panther installation, other setup files, and
other files required by the application, such as libraries. Each developer must set the
following setup variable either in their environment or in the Windows initialization
file for Panther:

SMBASE

(mandatory) The directory path to your Panther distribution. This setting is
used to locate Panther software components, particularly smvars.bin, the
file containing your configuration settings, in the config subdirectory of this
6-2 Preparing the Development Clients

Configure Your Panther Application
location. If smvars.bin is not located at $SMBASE/config/smvars.bin,
then you also need to set the variable SMVARS.

Other common variables are:

SMSETUP

Project-specific variable settings.

SMPATH

Directories to search for application files.

SMFLIBS

The libraries to open when you start Panther.

SMTERM

The video driver to use with Panther.

SMUSER

The user name to use in development processes.

Configure Your Project Requirements

You can change other configuration settings as needed by your project:

Colors

Colors in your Panther application can be set by:

! Changing the color properties of objects in the Editor.

! Changing the color scheme of the GUI desktop. For Windows, the Display
section of the Control Panel has an Appearance card which sets the color
scheme. Versions of X Windows using the Common Desktop Environment have
desktop settings.

! Changing the settings of Panther components in the configuration map file. In
GUI environments, the default settings match the color scheme of the GUI
desktop.

! Defining extended colors in the configuration map file. Once defined, the
names will appear in the Extended Color property in the editor and can be used
to define colors in Panther components in the configuration map file.
Application Development Guide 6-3

Configure Your Panther Application
! Changing the color palette settings for the sixteen basic colors in the Motif
resource file or Windows initialization file.

The name of the configuration map file varies for the different environments:

! Windows: wincmap

! X Windows: xwincmap

! Character-mode: bwcmap, clrcmap

! Web: webcmap

Run cmap2bin after making any changes to these files.

Message File

Panther messages are defined in msgfile.bin. (The ASCII equivalent is msgfile.).
Refer to “Using Message Files,” on page 45-2 in Application Development Guide for
details about message files.

Multiple Platforms

If you are going to deploy your application on multiple platforms, such as Windows
and character-mode, you need to be aware of the following settings.

! Colors—Character mode applications have a maximum of sixteen colors—eight
basic colors and their highlighted equivalents—while GUI platforms have a
much larger color palette.

! Fonts—Character mode applications use a fixed width font while GUI
applications generally use a proportional font. With multiple platforms, you will
want to coordinate the font settings.

Programming Functionality

If you want to write your own C functions, you will need access to a C compiler so that
you can rebuild your Panther executable after installing the functions.
6-4 Preparing the Development Clients

Configure Your Panther Application
To use Java methods for event processing, you must have access to the JDK during
development. When the application is deployed, the application clients must have
access to the JRE. The location of the Panther classes ($SMBASE/config/pro5.jar)
is automatically added at runtime; however, you must specify the location of your own
class files in the CLASSPATH environment setting.

Remote Library Access

In JetNet and Oracle Tuxedo environments, you can have remote access for libraries
and the repository. This allows for greater conformity during application development.

Distribute the Setup to the Client Workstations

In a UNIX environment, you need to distribute the environment settings and create
symbolic links or scripts in order to run the executables for each local client. For
JetNet/Oracle Tuxedo applications, there are setup files available in
$SMBASE/samples/newapp.

In a Windows environment where each developer can have a separate copy of the
programs, you need to devise a method for each developer to access the master copy
of the application files.

Create an Application Directory

It is suggested that you create an application directory for the project on the client, the
web application server, and the application server (for JetNet, Oracle Tuxedo and
WebSphere). This provides a default location for all your libraries and external
programming code (C, Java, JPL).
Application Development Guide 6-5

Configure Your Panther Application
6-6 Preparing the Development Clients

CHAPTER
7 Initializing the
Database

Before your application can access data stored in your database, you must connect to
an initialized database engine. Database initialization tells Panther which database
driver and which support routine to use to access the database engine.

There are two types of initialization:

! Static initialization—Compiles the database driver and the DBMS interface
libraries into the Panther executables. This is the preferred method when
developing an application and is generally performed as a part of installing
Panther.

! Dynamic initialization—The application loads the support routines at runtime
(for example, via the initialization file).

This chapter describes how to implement both initialization types as well as how to
initialize one or more database engines.

For information about connecting to a database once it is initialized, refer to Chapter 8,
“Connecting to Databases.”
Application Development Guide 7-1

Initializing One or More Engines
Initializing One or More Engines

A database engine is a DBMS (Database Management System) product. It is identified
by a specific vendor and version. For example, SYBASE 10, ORACLE 6.0, and
ORACLE 7.0 are three distinct engines. A Panther database driver is a C library or
DLL that handles all communication between Panther and the DBMS. A Panther
support routine is the name of the main entry point, or function, in a Panther database
driver.

By default, Panther is distributed with a driver for Panther's database engine, JDB, and
for additional database engines. On request, drivers are available for other database
engines.

Refer to “Database Drivers” for specific information about each Panther database
driver.

A Panther application can access zero or more database engines. The application must
have a driver for each engine, and it must initialize the engine before declaring a
connection.

Initialization Procedure

As a part of initialization, Panther calls the support routine for information on the
particular DBMS. The information provides:

! Engine capabilities, for example, whether it can execute stored procedures or
support multiple connections.

! Formatting requirements for character, date, and null strings when passed from
Panther to the database.

! Default for case handling.

In addition, Panther sets up some structures at initialization, including structures for
tracking the number and names of all connections to an engine.
7-2 Initializing the Database

Initializing the Database via the Executable
Setting the Default Engine

An application with two or more initialized engines sets the default engine with the
command:

DBMS ENGINE engineName

or sets the current engine for a statement by including the WITH ENGINE clause. If an
application initializes more than one engine, it must set the default or current engine
when declaring connections to different engines. Once a connection is declared, the
default connection determines the default engine.

Initializing the Database via the
Executable

In static initialization, an application identifies the support routines it will use at
compile time, and it links with both the Panther database driver libraries and the
DBMS interface libraries.

A list of the support routines available for your application is included in the module
dbiinit.c, which is automatically created from settings found in the makevars file
for your database when you build Panther executables. When you run Panther, the
function dm_init is called for each support routine listed in dbiinit.c.

When initialization is successful, the support routine returns zero. If the support
routine rejects the initialization and returns an error code, it might be because there is
insufficient memory, the engine might not be installed, or the application might have
initialized the same support routine more than once. If such an error occurs when
executing the Panther initialization routines, jmain or jxmain, an error message is
displayed and Panther terminates.

If necessary, you can create a new version of dbiinit.c. For more information on
building a new executable and changing static initialization, refer to page 7-6,
“Changing Static Initialization.”
Application Development Guide 7-3

Initializing the Database via the Executable
Database Interface Initialization Routine

The file dbiinit.c contains:

! A function declaration for one or more support routines and a corresponding
transaction model for your specific database engine.

! A list of engines to initialize in the structure vendor_list.

! A list of default transaction models in the structure pfuncs.

A sample vendor_list structure appears as follows:

static vendor_t vendor_list[] =
{
/* {"engineName", supportRoutine, caseFlag, (char *) 0}, */

{"jdb", dm_jdbsup, DM_DEFAULT_CASE, (char *) 0},
{ 0 }

};

engineName
Can contain any character string that is not a keyword; and is case-sensitive.
If an application uses two or more database engines, the engineName
specification tells Panther which database engine to use. Most of the
examples in this guide use a vendor name as the engineName mnemonic, for
example sybase or oracle.

supportRoutine

Is usually in the form dm_vendorCodesup where vendorCode is an
abbreviated vendor name. For example:

" dm_orasup for ORACLE

" dm_sybsup for SYBASE

" dm_infsup for Informix

caseFlag
Determines how Panther uses case when mapping column names to Panther
variables for SQL SELECT statements. Variables can be widgets on the screen,
JPL variables, or LDB variables. Using the case setting lets you create all
your Panther variables in a particular case and Panther does the conversion to
the desired case for you. caseFlag values are described in Table 7-1.
7-4 Initializing the Database

Initializing the Database via the Executable
ORACLE, for example, returns column names in upper case.

" If the case flag is set to DM_PRESERVE_CASE, the application needs
Panther variables with upper case names.

" To map columns to Panther variables with lower case names, set the
case flag to DM_FORCE_TO_LOWER_CASE.

SYBASE, on the other hand, is case sensitive and can return column names
in upper, lower, or mixed cases. To map SYBASE columns to single case
Panther variables, set the case flag to either DM_FORCE_TO_UPPER_CASE or
DM_FORCE_TO_LOWER_CASE.

char

The last argument, (char *)0, is provided for future use.

Table 7-1 caseFlag options

caseFlag Option Description

DM_PRESERVE_CASE p(reserve) No conversion is done; uses the
case returned by the engine.
Column names must match the
Panther variable names.

DM_FORCE_TO_LOWER_CASE l(ower) Force column names returned by
engine to lower case. Use lower
case for Panther variable names.

DM_FORCE_TO_UPPER_CASE u(pper) Force column names returned by
engine to upper case. Use upper
case for Panther variable names.

DM_DEFAULT_CASE d(efault) Use the default value specified by
the Panther support routine. Refer
to “Database Drivers” to find the
value for a specific engine.
Application Development Guide 7-5

Initializing the Database via the Executable
Changing Static Initialization

When you compile a new executable, the mkinit command is executed which creates
a new version of dbiinit.c, if one does not already exist.

How to Create a New Version of dbiinit.c

1. Delete the current version in your application directory.

2. Edit the database engine settings in the makevars.dbs file (where dbs is a
three-letter abbreviation for your database). Provide the appropriate arguments:

dbs_INIT={ d | n | l | u | p }

You need to enter one of the command flags. Refer to “Database Drivers” to
find the correct dbs abbreviation string; an invalid abbreviation results in an
unresolved external error when you try to link.

3. Run make (or nmake in Windows).

For details on creating new executables, refer to Chapter 42, “Building Application
Executables.”

Options and Arguments

Most of the command flags deal with the case conversion for column names. When a
query retrieves a column value, Panther looks for a Panther variable with the same
name as the column name and places the value in that variable. However, some
database engines only create column names in a specific case or allow mixed cases.
Using the case setting, you can create all your Panther variables in a particular case and
Panther handles the conversion for you.

d

Use the default case conversion set in the support routine. Refer to “Database
Drivers” to find the setting for a particular database engine.

n

Do not install this engine in dbiinit.c.

l

Convert column names to lower case.

u

Convert column names to upper case.
7-6 Initializing the Database

Dynamic Database Initialization
p

Preserve the case of the column names when converting to Panther variable
names.

dbs

Three-letter abbreviation that Panther specifies for the database. For example,
jdb is for JDB and syb for SYBASE.

Refer to “Database Drivers” to find the abbreviation for a particular database
engine.

Dynamic Database Initialization

In dynamic initialization, the application identifies the desired support routines at
runtime. No compilation is needed to change the initialization.

Under Windows, you have two methods of initializing a database engine. One method
is to compile the database into the executable (refer to “Changing Static Initialization”
on page 7-6 for details on static initialization); the other method uses specifications in
your Panther initialization file (PROL5W32.INI or PROL5W64.INI) to initialize
database engines at runtime when the Panther program is started.

How to Identify the Database Engines in the Initialization File

Add a database-specific section to the file. The syntax is:

[databases]
installed = engineName [engineName]
default = engineName

[dbms engineName]
case={upper | lower | preserve | default}
driver=driver DLL
model=model DLL

engineName
(Required) The name assigned to the database engine. It can contain any
character string that is not a keyword; it is case-sensitive. If an application
Application Development Guide 7-7

Dynamic Database Initialization
uses two or more database engines, the engineName specification tells
Panther which database engine to use. Most of the examples in this guide use
a vendor name as the engineName mnemonic, for example sybase or
oracle.

The default engineName specification is optional and lets you name a default
database engine. If there is no specification, JDB is the default database
engine.

case

(Optional) Determines how Panther uses case when mapping column names
to Panther variables for SQL SELECT statements. Variables can be widgets on
the screen, JPL variables, or LDB variables. Using the case setting lets you
can create all your Panther variables in a particular case and Panther converts
to that case for you. The case options are described on page 7-5 in Table 7-1.

driver DLL

(Required) The DLL provided by Panther for use with a particular database
engine and set by the installation program. For additional information about
DLLs for a specific engine, refer to the README.vendorCode file in the
distributed NOTES directory. (vendorCode is a three-letter abbreviation for
the vendor, for example, syb for SYBASE).

model DLL

The name of the transaction model provided by Panther for use with the
transaction manager, and is required if you are using the transaction manager
(for example, building screens withe screen wizard) and are not compiling a
custom transaction model. For information about the transaction model for a
specific engine, refer to the README.vendorCode file in the distributed
NOTES directory.
7-8 Initializing the Database

CHAPTER
8 Connecting to
Databases

Once the engine is initialized, you need to establish a connection before your
application can access any data. There are three ways to connect your application to
the database, depending on your specific development requirements, the application
architecture, and your application's requirements. You can connect to a database:

! Via server initialization (for JetNet/Oracle Tuxedo applications)—Set the
Database Connect String option from the Server Configuration dialog in the
JetNet manager.

(Refer to “Database Connect String” on page 3-26 in JetNet/Oracle Tuxedo
Guide for details on setting server properties and database connections using the
JetNet manager. For Oracle Tuxedo, refer to “Initializing Servers” on page 8-17
in JetNet/Oracle Tuxedo Guide).

! Directly through the screen editor (or in test mode).

! Programmatically—Make runtime connections using the DBMS DECLARE
CONNECTION command in a JPL procedure or C function.

In addition, the database engine must recognize your application users and grant them
proper permissions, which can involve changes by your database administrator.
Application Development Guide 8-1

Connecting to the Database in the Screen Editor
Connecting to the Database in the Screen
Editor

While you are designing your application, you need a direct connection to the database
server if you are:

! Developing a two-tier application—to import data definitions into a repository
and to test your screens using "real" data.

! Developing a three-tier application—to import from the database to a repository
and, for JetNet and Oracle Tuxedo applications, to test service components.
(Refer to Chapter 38, “Testing Application Components,” for instructions on
how to test service components).

Notes: During JetNet and Oracle Tuxedo development, making a direct connection to
the database server does not affect a database connection made via server
initialization.

How to Make a Direct Connection to the Database from Within the
Screen Editor

1. Choose File→Open→Database or in test mode, choose Database→Connection.
The Choose Engine dialog opens.

2. Select the desired engine and enter a connection name, if the default name is not
appropriate.

3. For some engines, a Connect to Database dialog opens where you can enter
connection options. The options vary according to the selected engine. For JDB,
an engine-specific Open File dialog is displayed from which you can select the
desired JDB database file.
8-2 Connecting to Databases

Programmatically Connecting to the Database
How to Close a Database Connection Within the Screen Editor

Choose File→Close→Database or in test mode, choose Database→Disconnect. Both
options close direct connections on a specified engine. They do not close connections
that have been established via the application server.

Programmatically Connecting to the
Database

A declared connection is a named structure describing a session about an engine.
Two-tier applications contain the dbms commands to make direct connections to the
database; in three-tier JetNet and Oracle Tuxedo applications, the dbms command is
part of the application server initialization.

The syntax for DBMS DECLARE CONNECTION is:

DBMS [WITH ENGINE engineName] \
DECLARE connectionName CONNECTION WITH \
OPTION=argument[, OPTION=argument ...]

The information provided about the engine includes:

! A connection name—If a WITH ENGINE clause is not specified, the connection
is declared for the default engine. Connection names specified in the statement
are case-sensitive.

! Logon information supplied by the option arguments—Different engines
support different options. Common options include USER, PASSWORD,
DATABASE, and SERVER. If an option is not supported by the engine, the
database driver reports an error—Bad arguments. To see a list of options for a
specific engine, refer to “Database Drivers.”

! Arguments that contain the value assigned to the option. The argument can be a
screen variable, a JPL variable or a quoted string.

! A data structure for a default SELECT cursor.
Application Development Guide 8-3

Programmatically Connecting to the Database
! Pointers to other structures associated with the connection, including named
cursors (thus when an application closes a connection, Panther is able to close
all open cursors on the connection). For more information about database
cursors, refer to page 28-3, “Using Database Cursors.”

Once a connection is opened, the application can operate on the database tables.

A sample statement for JDB is:

DBMS DECLARE vid_conn CONNECTION WITH DATABASE="videobiz"

How to Close Database Connections

At runtime, the application can execute the following command for each declared
connection:

DBMS CLOSE CONNECTION connectionName

or

DBMS CLOSE_ALL_CONNECTIONS

Setting Default and Current Connections

A connection is always associated with an initialized engine. Setting a connection as
the default or current connection also sets the default or current engine. When using
multiple connections, you should set a default connection.

How to Set a Default Connection

Use the following command:

DBMS CONNECTION connectionName

How to Override a Default Connection

Use a WITH CONNECTION clause to specify the connection to use for a single statement.
For example

DBMS WITH CONNECTION oracon QUERY SELECT * FROM customers
8-4 Connecting to Databases

Programmatically Connecting to the Database
Multiple Connections to a Single Engine

Some database engines permit two or more simultaneous connections.

Refer to “Database Drivers” to see if this option is available for your engine.

How to Make Multiple Connections to the Database

Declare a named connection for each session on the engine. (The engine must support
this feature.) For example:

DBMS ENGINE sybase
DBMS DECLARE s1 CONNECTION WITH \

USER=:+uname, PASSWORD=:+pword, SERVER='birch'
DBMS DECLARE s2 CONNECTION WITH \

USER=:+uname, PASSWORD=:+pword, SERVER='maple'
DBMS CONNECTION s1

This example declares two connections on the sybase engine and sets the default
connection to be s1. Panther gets the values for USER and PASSWORD from the variables
uname and pword at runtime.

If you execute an additional connection statement for an engine supporting multiple
connections, the support routine opens the additional connection and Panther keeps a
count of the number of active connections for the engine.

If the engine does not support multiple connections or if the connection name is not
unique, Panther returns the error DM_ALREADY_ON.

How to Close All Connections on an Engine

Executing the following command:

DBMS [WITH ENGINE engineName] CLOSE_ALL_CONNECTIONS

Connecting to Multiple Engines

If a two-tier application uses two or more database engines, a connection must be
declared for each. You can then set a default connection. For example:

DBMS WITH ENGINE sybase DECLARE sybcon CONNECTION WITH \
USER=:+uname, PASSWORD=:+pword, SERVER='birch'
Application Development Guide 8-5

Checking the Status of Connections
DBMS WITH ENGINE oracle DECLARE oracon CONNECTION WITH \
USER=:+uname, PASSWORD=:+pword

DBMS CONNECTION sybcon
DBMS QUERY SELECT * FROM titles WHERE title_id = :+title_id

In the example, connections are declared on the engines sybase and oracle. Panther
gets the values for USER and PASSWORD from the variables uname and pword at
runtime. The connection sybcon is identified as the default engine. Therefore, Panther
performs the SQL SELECT on connection sybcon and uses the support routine
associated with the sybcon engine to execute the query.

In three-tier applications, connections to multiple database engines is usually handled
by having a different application server for each database engine.

Checking the Status of Connections

How to Find out If a Database Connection is Open

Check whether a database connection is open using the library function
dm_is_connection. For example:

// This procedure finds out if the connection is
// open and if not, declares the connection.

proc check_connect
vars retcode
retcode=dm_is_connection("app_connect")
if retcode == 0
{

DBMS DECLARE app_connect CONNECTION WITH ...
}
return
8-6 Connecting to Databases

Verifying Database Access
How to Find out the Database Connection Assigned to a Database
Cursor

Find out which database connection is assigned to a database cursor using the library
function dm_cursor_connection. For example:

// This procedure finds the connection for a cursor
// and makes it the default connection.

proc check_cursor
vars retcode
retcode=dm_cursor_connection("select_data")
DBMS CONNECTION :retcode
return

How to Find out the Handles to a Database Connection

In order to interface with some database engine programs, you need information about
the Panther database connection structure. Use the library function
dm_get_db_conn_handle to obtain this information.

Verifying Database Access

Depending on your application architecture, you need to verify that users, processes,
and services have database access and appropriate permissions on database tables or
views.

UNIX

For two-tier UNIX applications, verify that:

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.
Application Development Guide 8-7

Verifying Database Access
! The owner of the application process sets the environment variables needed for
database access.

For two-tier UNIX web applications, verify that:

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.

! The web application's initialization file contains the environment variables
needed for database access. (At runtime, the web application runs under an http
process.)

For three-tier JetNet and Oracle Tuxedo UNIX applications, verify that:

! The user specified in the DBMS DECLARE CONNECTION statement (part of the
proserv configuration or JPL initialization) is configured for database access.

! The owner of the application process sets the environment variables needed for
database access.

Windows

On Windows, you can install applications as a service. Windows assigns that service
a user (owner) name; that user name must be configured for database access. Verify
that the service has database access by:

! Logging into the machine as the user (owner) of the service.

! Starting a database vendor's program.

Some database engines have special installation instructions. For example, Informix
requires that you run setnet32 to add the service user and then run the demo login
program to check that the user was added correctly.

For two-tier Windows applications, verify that:

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.

! The PC has the database vendor's client program installed.

For two-tier Windows web applications, verify that:
8-8 Connecting to Databases

Verifying Database Access
! The user of the web application's service is configured for database access. That
user can be specified as part of the monitor command that installs the
application as an service.

! The user specified in the DBMS DECLARE CONNECTION statement is configured
for database access.

! The PC has the database vendor's client program installed.

! The web application's initialization file contains the environment variables
needed for database access.

For three-tier JetNet and Oracle Tuxedo Windows applications, the application uses
the TUX IPC Helper service. Verify that:

! The user that the TUX IPC Helper service runs under is configured for database
access.

! The user specified in the DBMS DECLARE CONNECTION statement (part of the
proserv configuration or JPL initialization) is configured for database access.

If the three-tier Windows application includes a web application client, the web
application can be installed as a service. Verify that:

! The user of the web application's service is configured for database access. That
user can be specified as part of the monitor command that installs the
application as a service.
Application Development Guide 8-9

Verifying Database Access
8-10 Connecting to Databases

CHAPTER
9 Connecting to the
Middleware

Panther is a complete three-tier product containing all the client and server components
needed in building applications. Clients and servers can reside on different machines
connected by a network. The middleware controls communication between client and
server components, making it possible for an application's clients to interact with the
application's servers.

Panther can work with your choice of the following middleware packages:

! JetNet, Panther's own middleware package.

! Oracle Tuxedo

! MTS, 32 bit Windows only

! WebSphere Application Server

JetNet and Oracle Tuxedo are TP monitor systems using messages and buffers to pass
information to and from clients and application servers.

MTS for Windows, one of the deployment options for COM components, controls
database connection pooling, transactions and security access for COM component
packages.

IBM's WebSphere Application Server deploys Enterprise JavaBeans (EJBs),
Java-based components, in a distributed application environment.

This chapter describes:

! What tasks the middleware performs.
Application Development Guide 9-1

Using JetNet and Oracle Tuxedo
! Where the middleware fits into your application.

Using JetNet and Oracle Tuxedo

In JetNet and Oracle Tuxedo applications, the middleware performs the following
tasks:

! Establishes client connections to the application. These connections have the
option of making use of several client authentication mechanisms. Refer to the
client_init command for further information on client initialization and refer
to “Client Authentication Functions” on page 44-28 for more information on
client authentication.

If you are in the editor, refer to page 9-3, “Opening a Middleware Session in the
Editor.”

! Forwards service requests to an appropriate server for processing. Making a
service call is similar to making a function call, but the function can be
executed on a remote machine, and the code making the service call does not
need to include any information about the remote machine.

When no server is immediately available, service requests are queued up for the
next available server.

Service calls can be made either synchronously where further processing is
blocked until the reply is received or asynchronously where client processing
continues. In the asynchronous case, a reply is received by the client at a later
time. Refer to the service_call command for detailed information on service
calls.

! Returns data and status to a client following a service request.

! On the client, it can instruct the transaction manager to access the services that
will carry out the database requests made by the client.

! Allows client and server agents to send messages to other agents. Refer to the
broadcast and notify commands for more information.
9-2 Connecting to the Middleware

Using JetNet and Oracle Tuxedo
! Permits a server to advertise its services to clients. Refer to the advertise
command for more information. Servers can also dynamically change their
service offerings.

! Automatically restarts servers if they fail, providing the servers have been
configured for automatic restart. For more information, refer to “Server Restart
Frequency” on page 3-21 in JetNet/Oracle Tuxedo Guide.

Opening a Middleware Session in the Editor

In JetNet/Oracle Tuxedo applications, you open a middleware session to connect to a
middleware and access the libraries and repositories on the application server. The
middleware controls processes and communication between the application's clients
and servers. To test an application screen that uses services, you must have a valid
middleware connection.

How to Open a Middleware Session

1. Choose File→Open→Middleware Session. The Connect dialog box appears.

Figure 9-1 Connect to the middleware for a client on a server machine, also
called a local or native client.
Application Development Guide 9-3

Using JetNet and Oracle Tuxedo
For a local client on a server machine, the Connect dialog box has the following
fields and specifications:

" Config File—By default, displays the value of SMRBCONFIG variable.
Otherwise, use the Browse button to select your configuration file.

" Client—Specify client type by name (default is DEVELOPMENT). The client
name can be no greater than 31 characters.

" User—Specify user account (login) name. The user name can be no greater
than 31 characters.

" Password—Specify application password. The password can be no greater
than 8 characters.

Figure 9-2 Connect to the middleware for a client not on a server machine, also
called a remote client.

For a client not on a server machine, a remote client, the Connect dialog box
has the following fields and specifications:

" Host Name—By default, displays the value of the SMRBHOST variable. This
variable provides the network address of the machines to which the client
will connect.

" Port—By default, displays the value of the SMRBPORT variable. This
variable provides the port numbers associated with the machines to which
the client will connect.

" Client—Specify client type by name (default is DEVELOPMENT).

" User—Specify user account (login) name.

" Password—Specify application password.
9-4 Connecting to the Middleware

Using MTS
2. Enter the information required in the appropriate fields depending on whether
you are a client on a server machine or a PC client.

If the application requires level-two authentication, then you must enter the
application password in the Password field.

Note: The level of authentication is decided at design time. Thus, a user should
be aware of the decided authentication level.

Opening a Middleware Session Programmatically

To establish a middleware session programmatically, use the client_init command.
For example, this statement opens a client connection and specifies an application
password:

client_init PASSWORD appPassword

Refer to client_init for more information.

Using MTS

Since a COM component's entry in the Windows registry also specifies its machine
location, the client application uses the same processing to call components on local
and remote machines.

MTS is just one of the deployment options. COM components can be deployed using
the following technologies:

! COM—Component Object Model. For COM applications, you install the
component on each application client.

! DCOM—Distributed COM. For DCOM applications, you install the component
on one machine and run a registration program on each application client to
point to the component's remote location.
Application Development Guide 9-5

Using WebSphere Application Server
! MTS—Microsoft Transaction Server. For MTS applications, you install the
component using the Microsoft Management Console and export an installation
file to install and register components on an application client.

For detailed information about deploying COM components, refer to Chapter 5,
“Deploying COM Components,” in COM/MTS Guide.

Using WebSphere Application Server

In WebSphere Application Server, you deploy EJBs on the WebSphere server
machine. Clients in your application can then call methods and set properties on those
EJBs. Clients in a Panther application can specify the WebSphere server using the
provider_url application property.

For information on setting up Panther software in a WebSphere environment, refer to
Chapter 2, “Configuring Machines,” in Panther for IBM WebSphere Developer's
Studio.
9-6 Connecting to the Middleware

CHAPTER
10 Accessing Libraries

Panther's libraries and repositories store screens, reports, binary JPL files and other
application components. To ensure that all members of your development and design
team have access to the same information and sets of standards, you want to allow
everyone access to these libraries and repositories. For the purpose of this discussion,
the term library describes both libraries and repositories.

The development process often depends on coordinating write-access to these files—
allowing access by several people and providing a means of knowing when changes
were made.

In addition to providing its own mechanism for controlling multi-user access to
libraries and repositories, Panther also provides an interface to source control
management systems, specifically SCCS, PVCS and MSSCCI, that let you take
advantage of source management systems while in the editor environment.

Panther provides:

! Its own support of multi-user access to libraries that are not under a third-party
source control management system.

! Support for your source control management system to maintain libraries and
repositories.

! Access to members under source control directly in the screen editor.

Libraries provide a convenient way to distribute a large number of screens with an
application, and improves efficiency by eliminating paths searches at runtime and the
number of files that are open. You can have multiple Panther libraries open during
development and at runtime. As for repositories, while you can create multiple
repositories, you can only have one open at a time during an editor session, and its
contents should be accessible to the entire development team.
Application Development Guide 10-1

Configuring Your Library Access
Configuring Your Library Access

Two-tier applications
For two-tier applications, application objects are stored in libraries, such as
client.lib. To provide access to the entire team, store the libraries on a
common file server.

JetNet and Oracle Tuxedo applications
For the JetNet and Oracle Tuxedo middleware adapters, there are three basic
libraries: client.lib, common.lib and server.lib.

You can open the appropriate libraries for the application servers, application
clients, and developers by setting SMFLIBS.

During development, the libraries can be stored on the application server and
accessed remotely by the developers, in order to be available to the entire
development team. For remote access, the application must be configured
with a file access server (devserv). For more information on configuring
servers, refer to Chapter 3, “Configuring the Enterprise,” in JetNet/Oracle
Tuxedo Guide.

COM and MTS applications
For COM/MTS applications, a client library (by default client.lib)
contains the user interface elements of the application. A server library (by
default server.lib) contains the service components and is generally
located in the application directory. For more information, refer to Chapter 5,
“Deploying COM Components,” in COM/MTS Guide.
10-2 Accessing Libraries

Managing Library Access
Managing Library Access

Accessing Library Members Outside of Source Control

If you do not use or have a source control management system, Panther provides
support for controlling multi-user access to screens, reports, menus, and JPL modules
in libraries.

Panther's approach to multi-user access is to inform rather than enforce. To prevent
inadvertent damage, Panther informs you if another user currently has a "reservation"
on (that is, write-access to) a file you are trying to open, save, or delete; but you are
given the opportunity to "steal" the reservation.

This method pre-supposes a high degree of communication and cooperation among the
members of your development team. For example, a user who initially has a
reservation on a screen might later find, when attempting to save or delete it, that
another user now has the reservation. The first user can, of course, steal the reservation
back, but stealing reservations without adequate communication between users can
result in the loss of someone's work.

While Panther provides enough information to prevent inadvertently damaging
another's work in progress, it does not enforce file locking. Users are responsible for
checking with the holder of a reservation before deciding whether or not to steal it.

If you require a more secure file-locking method to control multi-user access, use one
of the third-party source control management systems that Panther supports.

Opening Library Members

Panther warns you if you choose to open a library member (screen, report, JPL module,
or menu file) that is being edited (open with read/write privileges) by another user. You
can choose to steal the reservation or open the library member with read-only
privileges. If you choose Yes to steal the reservation; the requested library member
opens with read and write privileges; choose No to open the member with read-only
privileges.
Application Development Guide 10-3

Managing Library Access
A read-only library member is displayed with the last saved changes. If you edit a
read-only file, you can use File→Save As to save the library member with a different
name.

Closing Library Members

When you choose to close a library member (having read-write privileges) that you
have been editing, Panther displays the following message:

Do you want to release your reservation of <filename@lib>?

Choose Yes to release the reservation; the library member closes and is available for
editing (write-access) by other developers.

Choose No to keep the reservation; the library member closes and can be open as
read-only by other developers.

Releasing a Reservation

To automatically release a reservation whenever you close library members, choose
Options→Auto Release on Screen Close. The message for releasing a reservation no
longer displays; the reservation is automatically removed and the closed screen is
available with read/write privileges to developers.

Maintaining Libraries Under Source Control

The process of putting a library under source control places the contents—its library
members—under source control management. Therefore, you must check library
members into a source controlled library (more on check-in later) to actually place the
individual members under source control. For the purpose of this discussion, it is
assumed that library members or repository entries—screens, reports, JPL modules, or
menu files—when checked in, are stored by the source control management system.

Use of source control management systems requires that your path allows you to run
the Panther utilities f2asc, jpl2bin and m2asc if you are not storing the screens in
binary. These utilities converts the screens, reports, JPL and menus to ASCII before
they are checked in. Additionally, users of PVCS must set the VCSID and VCSCFG
variables. For more information, refer to your vendor's documentation.
10-4 Accessing Libraries

Managing Library Access
Before putting a library under source control, you must have a new or populated library
(created within the screen editor or by formlib using the -c option).

How to Provide an Interface to Your Source Control Manager

1. From the command line, type:

formlib -g "sourceMgr [-b] mgrArgs" library

For example, for SCCS support, use:

formlib -g "sccs devdir" dev.lib

Or for PVCS, use:

formlib -g "pvcs c:\DEV\ARCHIVE" dev.lib

Or for MSSCCI (Microsoft Source Code Control Interface), use:

formlib -g "scpi Provider='Jazz MSSCCI Provider'
ProjectName='Panther First Project' LocalProjPath='c:\Panther
First Project sandbox'" dev.lib

sourceMgr Name of the installed source control management driver—either
sccs, pvcs or scpi (lowercase).

-b Optional flag that causes Panther to store files in the configuration
management system in binary.
Application Development Guide 10-5

Managing Library Access
mgrArgs A string that is used by the sourceMgr-specified driver.

For SCCS, supply the name of the source control directory—either
relative to the library's directory or an absolute path—where the
application-related files are to be stored.

For PVCS, supply the name of the archive directory—either
relative to the library's directory or an absolute path—where the
screens and revised files are to be stored.

For MSSCCI, a list of tokens and values separated by equal signs.
The values can be quoted using single, double or back quotes;
otherwise, spaces and backslashes should be escaped with
backslashes. The supported tokens are:

! Provider - required. It is used to find the DLL that
provides access to the source control system using the
MSSCCI API.

! ProjectName - used to connect to a project.

! LocalProjPath - used to specify the base directory where
files will be exchanged with the MSSCCI provider. If
ProjectName and/or LocalProjPath is omited, the
MSSCCI provider will be asked what they should be. Many
providers have a dialog allowing the user to select the
needed values. Panther will update mgrArgs with the values.

! WorkingDir - can specify a subdirectory of LocalProjPath
where the members of this library are to be exchanged with
the MSSCCI provider.

! User - used by some providers to supply the user name.
There is no way to supply a password, so that there may be a
dialog if a password is needed.

! CallerName - a name to be used in MSSCCI provider
dialogs, The default is 'Panther'.

! AuxPathLabel, AuxProjPath - usage depends on the
MSSCCI provider.
10-6 Accessing Libraries

Managing Library Access
2. If the library already contains members, invoke the screen editor so that you can
check in screens, reports, JPL and menus to the source control management
system:

" If the library is not open, choose File→Open→Library or Repository.

" Open the screens that you want under source control. Choose
File→Open→Screen or Repository Entry.

" Choose File→Source Mgmt→Check In. The screen is stored in the
specified source directory.

3. If you want to check in a screen from another library:

" Open the desired screen.

" Choose File→Save As and save the screen to the library that is under
source control.

Library Members Under Source Control Management

There are three features of source control management available to you when you open
a library whose contents are being maintained under source control management. You
can open a copy of a file so that you can edit it or you can open it read-only. You can
also check changes in and take full advantage of the features offered by your source
control manager to monitor those changes.

The following options are available from within the editor workspace so that you can
update and view library members (screen, reports, menus, styles, and JPL modules) by
choosing the desired option:

! Check Out—Available by choosing File→ ²Source Mgmt. The Check Out
option opens a writable copy of the selected library member. Other users trying
to access the same library member for edit/update are notified when attempting
to edit the library member. Moreover, a library member can be opened
read-only when it is checked out by another user.

library Name of the Panther library or repository that you are putting under
source control management.
Application Development Guide 10-7

Managing Library Access
Panther automatically checks out a library member under source control
management when you choose File→Open.

! Check In—Available by choosing File→Source Mgmt. The Check In option
specifies that changes to the selected member be checked into the source
management directory. If the member is not already checked out, the source
control manager determines how to handle the check in request.

! Cancel Check Out—Available by choosing File→ ²Source Mgmt. The Cancel
Check Out option cancels the check out request. The library member is made
read-only and the lock is released. Another user can check out the same
member for edit/update purposes.

Warning: Panther normally converts the library members to ASCII on Check In and
from ASCII on Check Out. If binary versions of the library members are
stored in the library, instead of ASCII, error messages will result unless
the -b option is specified in the library’s configuration string.

How to Edit a Library Member Under Source Control Management

1. If the library or repository is not open, choose File→Open→Library or
Repository.

2. Select the desired library/repository to view its contents.

All members of the selected library/repository are listed in the appropriate Open
dialog. Those members currently checked out are listed along with the name of
the user and date and time of check out.
10-8 Accessing Libraries

Managing Library Access
Figure 10-1 Checked out library members are identified on the Open dialog
boxes.

Note: Ownership information, that is, the user who has the library member
checked out, might not reflect the latest source control management
status. This is due to the fact that source control can be executed outside
Panther. Panther updates the status once you make a selection.

3. Select the desired member from the list. If multiple revisions of the library
member are stored in the source management directory, you can choose which
revision to open.

" If you choose to open a member that is checked out by someone else, a
message informs you who the user is and the date and time of check out.
You can choose to open the member read-only.

" If Panther finds a library lock, a message is issued. You can choose to wait
for the lock to clear or cancel the check out. While Panther continues to
check for the removal of the lock, the message is redisplayed five more
times. If you choose to continue, Panther allows you to override the lock.

In the event that the lock cannot be released, check for read/write
permissions on the library and on the directory in which it resides. If that
fails, check for a *.jlk file in the directory where the library resides.

4. Edit the library member as required.
Application Development Guide 10-9

Managing Library Access
You can make changes, and save (choose File→Save) those changes as often as
you need to without checking the member back into source control. As long as
the member is checked out to you, other users can only retrieve a read-only
copy. Moreover, the read-only copy is created from the last check_in; it does
not reflect the latest changes saved to the library. Once you are done with the
library member, and are satisfied with the edits, you can check it back into the
source control management system.

Note: Choosing File→Save does not perform a check into source control. You
must proceed to step 5 to update the source copy.

5. Choose File→Source Mgmt→Check In. The library member closes and the
lock is released.

If you made changes since the member was last saved, you are prompted to
save those changes to the library:

" Choose Yes to save to the library. The revised copy is saved to the source
control manager, and the source control manager handles the rest of the
check-in, such as prompting for comments, and displaying update
information.

" Choose No to check in the last saved copy. Your current changes are not
saved to the library or source control management directory.

How to Save a Read-only Library Member and Store It Under Source
Control Management

1. Make sure the open repository or selected library is under source control
management (converted with the formlib utility).

2. Choose the appropriate File→Save As option. The Save As dialog box opens.

3. Enter a name for the library member. If you want to save the member with the
name as one that already exists, enter the name or select it from the list.

4. If there are multiple revisions of the member in source control, you can choose
which revision should get the latest changes. Choose OK.

Note: Saving a library member does not check it into the source control
management system.

5. Choose File→Source Mgmt→Check In.
10-10 Accessing Libraries

Managing Library Access
How to Delete a Library Member that Is Under Source Control

You can remove the working version of a screen (or other member) from the library
under source control, but the source (previous versions) are not removed. To remove
all traces of an entry, you must access your source control management system directly
(outside of Panther).

Cancelling a Check Out

When you open a library member that is in a library under source control management,
a write-lock is enforced on that member. Another user cannot edit the file.

In the event that you do not want to edit the member, or you don't want to save the
changes you've made since you checked it out, choose File→Source Mgmt→Cancel
Check Out.

A cancelled check out means that your current edits, even saved edits, are not saved to
the source control management system. The library member in source control
management remains unchanged. The write-lock is removed and another user can now
check out the member.

Note: Choosing File→Revert restores a screen to its last saved copy as it exists in
the library; it does not restore to the copy that was last checked into the source
control management system.
Application Development Guide 10-11

Managing Library Access
10-12 Accessing Libraries

Part III Creating
Application
Building Blocks

This section describes the building blocks of your Panther application.

Creating and Using a Repository

Creating Service Components (three-tier only)

Developing Client Screens

Identifying Screen Widgets

Including Menus and Toolbars

Building Reports

CHAPTER
11 Creating and Using
a Repository

The visual object repository is used during development to define and store a set of
objects needed to build screens, service components, and reports. Once the repository
is populated, you can easily make a new application component by copying the
necessary objects from the repository.

In addition to the development time saved by creating objects only once, the repository
can be used to easily update application objects by using inheritance. When you copy
an object from the repository, the copy, or child, retains the property definitions of the
original object, the parent. If you change the properties of the parent object in the
repository, the properties that the child has inherited are also updated.

The visual object repository provides:

! A mechanism to assure consistency and control among all application
components.

! A single reference for data elements and templates used in an application.

! A facility for propagating database table and column information to your
application.

! A single access method for propagating changes to widget and screen properties
without having to individually edit each application screen.
Application Development Guide 11-1

About Repositories and Inheritance
About Repositories and Inheritance

A repository can consist of one or more entries; you can create, view, and edit
repository entries with the editor. Like Panther libraries, other developers can access
the repository concurrently. The repository can provide consistency and control over
the look and feel of your application, and its data elements.

By copying an object, such as a text widget, from the repository to your application
screen, you create an inheritance relationship between the repository object, or parent,
and the application object, or child. If you want to change the object throughout your
application, change the parent in the repository entry. The change is then inherited and
propagated to the children of that parent repository object throughout your application.

Inheritance propagation happens automatically when you do all of the following:

! Name the parent objects (in the Name property under Identity in the Properties
window); imported database objects are automatically named as a result of the
import process.

! Copy the named parent widgets to your application screens, or identify the
source of inheritance in your screen's and/or widget's InheritFrom property.

! Save the repository entry. Screens, service components, and widgets that inherit
from the repository entry are updated appropriately.

You can also propagate inheritance by using the batch inherit utility binherit
(page A-6).

What You Need to Know

The following items represent general information about repositories and inheritance
as well as recommendations for using repositories to build applications:

! Although you can have multiple repositories, only one repository can be open at
a time. Therefore, it is recommended that you create one repository per
application.
11-2 Creating and Using a Repository

Using the Repository
! The InheritFrom property identifies the parent source of inheritance.

! Repository entries that are automatically created when you import database
tables have the Inherit From property (under Identity) setting of @DATABASE.

! Repositories are a design-time tool. You don't need the repository to run your
application.

Using the Repository

One of the first steps in your application development process should be to decide the
role of the repository in your application. You need to decide what types of information
will be stored in the repository, how that information will be used, and what properties
need to be inherited.

Creating the Repository

Create a repository from options found in the editor. Since you can only have one
repository open at a time, it is recommended that you create one repository per
application. For the steps used to create a repository, refer to “How to Create a
Repository” on page E-20 in Using the Editors.

In general, repositories are shared between all members of the development team.
Therefore, you want to ensure that all users have access (and permissions) to read
and/or write to the repository.

Opening a Default Repository

If the repository is named data.dic and is located in your application directory,
Panther automatically opens it when you invoke the editor. You can also set the
application variable SMDICNAME to open the repository of your choice.
Application Development Guide 11-3

Using the Repository
Creating Repository Entries

Once the repository is created, you can populate it. A repository is like a Panther
library, in that it is a collection of screens, service components, and reports that contain
frequently used application objects. The screens, service components and reports that
are placed in a repository are called repository entries.

There are several ways to create repository entries:

! Choose File→New→Repository Entry.

! Save any Panther screen, report or service component as a repository entry.

! Import your database tables, views or synonyms by choosing Tools→Import
Database Objects. This creates a repository entry for each database table.

Creating Repository Objects

When you import database tables, the repository entries contain widgets corresponding
to the database columns, and labels corresponding to the column names, but for other
repository entries, you might want to create new objects. For example, you might have
a repository screen containing push button templates for use throughout the
application.

Since repository entries have complete access to all of the editor functionality, you can
open a repository entry and make new objects from options on the Create menu.
Alternatively, you can copy objects to the repository from any application component.

When you create objects on repository entries, make sure that the parent objects have
a value in the Name property (under Identity). It is this name that is used in the Inherit
From property in the child object to establish inheritance.

To view the repository entries in the current repository, choose View→Repository
TOC.
11-4 Creating and Using a Repository

Using the Repository
Creating Screen Templates

If a series of application screens will share the same screen properties, a repository
entry can be a screen template. For example, you might want a series of screens to
share:

! Entry and/or exit functions

! JPL procedures

! Control strings

! Menu bars

Another use of screen templates in the repository would be to provide the definition
for a screen that is used throughout the application, like an error screen or a dialog box.

Once an application component is created (screen, report, service component), it can
inherit properties by setting the Inherit From property to the repository entry. The
dialog box asks whether you want to inherit all properties. If you select Yes, all the
properties for the application component are taken from the repository entry,
overwriting any values you have set. If you select No, the Inherit From property is set
to the repository entry but no property values are inherited. You can then set
inheritance individually on a property-by-property basis by choosing the Inh button in
the Properties window.

The widgets on the repository entry are not copied to the application component, just
its properties.

Note: To define the colors for application screens, you might choose to define and
edit settings in the configuration map file. Refer to “Configuration Map File”
on page 45-25 for more information about cmap files.

Storing Database Information

Using the database importer in the editor (Tools→Import Database Objects), you can
import a database table with all of its column definitions and primary and foreign key
relationships into a Panther repository. If the database engine supports views or
synonyms, those database objects can be imported as well.
Application Development Guide 11-5

Using the Repository
When you import a database table to a repository, Panther creates a repository entry
which includes a label and single line text widget for each column in the database table.
The text widget has the column name as one of its properties in addition to other
properties that are used for automatic SQL generation. A table view, available through
the Widget List or the DB Interactions screen, is created which lists the columns in the
database table and the primary key definitions for that database table. A link is created
for each foreign key defined for that database table.

Once you have repository entries with your database information, you can copy those
widgets to application components or use the wizards to build screens and reports for
you.

One advantage of importing your database tables to the repository is that any changes
to the database, such as the column length or column type, can be easily propagated
throughout the application. The import database facility can be used to update the
database repository entries. If the widgets on those screens are the parents of the
widgets used in your application screens, changes in the column information are
redefined for each child of that widget.

If you are planning to use the transaction manager, it is recommended that you copy
the widgets corresponding to the database columns from database-derived repository
entries. Repository entries created from the database import facility contain the
necessary settings for SQL generation needed by the transaction manager.

Reimporting Your Database Tables

When you reimport your database tables to the repository, you can:

! Add new database columns to the repository entry for that table.

! Update the column length or column type for any database column.

However, if you delete database columns in your database, the widgets corresponding
to those columns will not be deleted from the repository entry. You have the capability
of adding widgets to a table view; the importer cannot distinguish between widgets that
are former database columns and widgets that are table view additions.

Database Import Properties

The following properties are specified via the database import:
11-6 Creating and Using a Repository

Using the Repository
Column Edits

A subheading under Database provides access to additional properties that are
acquired from the database column as opposed to Panther specifications for the widget.

! Length property—Specifies the column length (as a string) as defined in the
database, if available.

! Scale property—Specifies the scale (as a string) of the column as defined in the
database, if applicable. Scale determines the length of some numeric columns.
This edit is currently unused by the SQL generator.

! Precision property—Specifies the precision (as a string) of the column as
defined in the database, if applicable. Precision determines the number of
decimal places in some numeric columns.

! Type property—Specifies the column type as defined in the database.

Storing Widget Templates

The repository can contain a master copy of any widget. For example, to use the same
push button on several screens, you store a definition of that push button on a
repository screen with the color of the push button, the pixmap and the control string
that is invoked when that push button is selected. Then you can copy that push button
to the applicable screens.

You can define widget templates on a repository entry, or you can copy a widget from
one of your application screens to the repository. If you copy a named widget to the
repository, the inheritance is automatically set for the widget on the application screen.

Storing Widget Definitions

If several screens share a set of widgets that work together throughout an application,
you can create a repository entry for the widget set. In this case, either the widgets
involved need property definitions that differ from the database repository entry or all
of the widgets in the set are not located on the same repository entry.
Application Development Guide 11-7

Using the Repository
First, import the database tables to the repository. Copy widgets from the database
repository entry to a new repository entry. The widgets will inherit all the Database and
Transaction properties. Set the properties that will not be inherited. Copy the widgets
to application screens.

For example, in the Videobiz application, the title_id and name fields are often used
together as a scrolling array. Instead of editing the array properties each time these
widgets are used in an application screen, the widgets can be copied to a new
repository entry, the necessary properties changed, and then the widgets can be copied
to an application screen.

Using the Wizards

The first time you create a screen or report with the wizard, Panther copies the
following entries into the open repository:

! smwizard—The template for the screen itself as well as the template for
several objects found on the finished screen, including push buttons and grid
widget.

! smwizis—The template for item selection screens. It contains push buttons and
a grid widget; you can modify the properties for those objects or for the screen
itself.

! smwizsrv—The template for service components using the JetNet/Tuxedo
middleware adapter.

! smwizrw—The template for reports.

! smwizweb—The template for screens with Web-enabled output.

Since objects inherit from these templates, you can change the properties in the
repository so that every new screen or report made with the wizard would inherit the
desired settings.

If your repository is read-only, the wizard cannot make the necessary entries in the
repository. Speak to your system administrator about adding these entries to the
repository if you want to use the screen or report wizard.
11-8 Creating and Using a Repository

Using Inheritance
Using Inheritance

For a screen or widget to inherit from a repository entry, the Inherit From property
must be set to the designated object in the repository. This property is set automatically
when objects are copied from the repository. For screens, the Inherit From property
contains the name of the repository entry, for example, msg_screen. For widgets, the
Inherit From property contains the name of the repository entry followed by the name
of the object. For example, titles!title_id indicates that the widget inherits its
properties from an object whose Name property is title_id on the repository entry
titles.

For repository entries imported directly from the database, the Inherit From property
for each widget is set to @DATABASE. When those widgets are copied to screens, the
Inherit From property changes to the repository entry and object.

The repository object named in the Inherit From property is known as the parent. The
widget containing the Inherit From value is known as the child. If a child inherits a
property setting which is later changed in the parent, the change is propagated to the
child when the screen is opened in the screen editor or after you update the screen using
the binherit utility (page A-6).

An object in the repository can inherit from another repository object. An object on the
screen can inherit from only one repository object.

Controlling Property Inheritance

To control the propagation of changes from parent objects to their children, use any of
the following methods:

! Turn inheritance off for selected properties by selecting the property and
toggling the Inh (Inherit) push button in the Properties window. Highlighted
properties will still inherit changes.

You can reinstate inheritance by selecting the property and choosing the Inh
(Inherit) push button.
Application Development Guide 11-9

Using Inheritance
! Remove the Inherit From property value for the selected application object.
Leaving a blank value removes the inheritance relationship for all properties; it
does not remove the values. All future changes made to the repository entry are
not propagated to the selected widget or screen.

! Choose Options→Inherit to temporarily turn inheritance off. When Inherit is
active, the properties of each widget are updated and displayed in the editor as
you work. When Inherit is inactive, the properties that are inherited are
highlighted, but the values of those properties are not updated or displayed on
the screen until inheritance is activated.

This option is useful if you are in the process of changing or designing
repository entries and don't want changes to propagate at design time. When
you toggle the Inherit option back on, inheritance is restored and all changes are
propagated appropriately to open screens and child widgets that inherit from the
open repository.

Updating Inheritance in Application Screens

Use the binherit utility to update screens and reports from property values stored in
the repository. binherit can also be used to report on the differences in the properties
between the screens/reports and the repository.

Inheritance is updated each time you open a screen in the screen editor workspace and
then save it. binherit performs this operation in batch mode, opening specified
screens and saving them. Detailed information is located in the documentation for the
binherit utility (page A-6).

Finding the Source of Inheritance

You can find a parent widget or screen (the one that inherits from) as well as find child
widgets or screens (the ones that inherit).

The Edit→Find→Parent option opens the parent repository entry of the selected

object. The Edit→Find→Children option finds the children of a repository object
according to the specified criteria. For more information, refer to “Finding the Source
of Inheritance” on page E-31 in Using the Editors.
11-10 Creating and Using a Repository

CHAPTER
12 Creating Service
Components

After creating the repository, distributed applications can create service components.
These service components can be called by any client screen in your application.

All distributed application architectures in Panther use service components. However,
the steps taken in the editor to define the service components and the coding required
to call those service components can differ for each technology. For developers, this
means that a service component created for one product can need modifications before
it can work with another technology.

This chapter summarizes how a service component is created for different application
architectures.

Service Components for JetNet and
Oracle Tuxedo

In a Panther JetNet/Oracle Tuxedo application, a service can consist of three parts:

! A routine that implements the service.

! A service component (optional) that provides a physical means of sending,
receiving, and processing data.
Application Development Guide 12-1

Service Components for JetNet and Oracle Tuxedo
! A service definition in the JIF.

To create a service, you can: Use the screen editor or the screen wizard to create a
service component—the graphical or visual representation of a service.

! Write the service routine that implements the service.

! Define the service in the JIF.

Creating Service Components in JetNet/Oracle Tuxedo

A service component is a graphical service. It looks, for the most part, like the client
screen it is servicing. However, service components reside on the server (in a server
library such as server.lib) and so are not visible to the user at runtime.

To create a service component using the editor, you must include and identify all the
components necessary to implement the service. In addition to building the screen, you
must code the service routines and set the appropriate property values on the client
screens that will use the service component.

For the most part, service components must have the same contents and property
values as the client screens that use them so that it can handle the data that flows
between the client screen and the service. Therefore, changes you make on a client
screen must also be made to its corresponding service component (if the changes are
not implemented by a shared repository).

You can create new service components in the editor by choosing
File→New→Service Component.

Alternatively, you can use the screen wizard to build service components as you build
your client screens.

Writing Service Requests in JetNet/Oracle Tuxedo

Service routines are responsible for receiving data from the client (if sent), performing
some task, and returning data to the client (if requested).
12-2 Creating Service Components

Service Components for JetNet and Oracle Tuxedo
Service routines are built for you when you use the screen wizard to create the service
components. You can also write service routines the same way you write any other
Panther application code. JPL is most convenient, but you can code a service as a C or
Java function if that suits your application needs.

For information on writing service requests, refer to Chapter 12, “Creating Service
Components,” in JetNet/Oracle Tuxedo Guide.

Creating Client Screens

When creating client screens, before any service requests are made, a screen must have
a valid middleware connection. In order to open a middleware session for an
application user, call client_init, as illustrated in the login screen from the EntBank
sample ATM:

The service_call command initiates a service request, as illustrated in this excerpt
from the deposit process:
Application Development Guide 12-3

Service Components for JetNet and Oracle Tuxedo
In order to close the middleware connection, call client_exit.

Updating the JIF

After you complete a service request, you must update the JIF to let the application
know that the service is available. The JIF contains information about services and
service groups and is used when a client makes a service call to determine the
parameters, when a server needs to determine which C or JPL procedure should be
executed to process the service call, and when a service forwards data to another
service.
12-4 Creating Service Components

Service Components for COM Components and EJBs
Figure 12-1 The JIF editor defines the service: its service name, corresponding
routine name, service component, and transport methods.

For information on using the JIF editor, refer to Chapter 24, “JIF Editor,” in Using the
Editors.

Service Components for COM
Components and EJBs

COM+ and Enterprise JavaBeans (EJBs) are object-oriented, component-based
technologies. A COM component or an EJB has a public interface consisting of
methods and properties that other objects or client applications can use to access the
component. COM components can be deployed on any Windows system; EJBs can be
deployed on IBM's WebSphere Application Server.
Application Development Guide 12-5

Service Components for COM Components and EJBs
Creating Service Components in Component
Applications

With Panther, you use a similar process to build service components deployed in these
technologies. In fact, on Windows systems, saving your service component allows you
to generate both the DLL needed for the COM component and the Java files needed
for the EJB.

! In the editor, create a new service component by choosing
File→New→Service Component.

! Define its properties and methods on the Component Interface window,
available by choosing View→Component Interface.

! For COM components, define the application directory and other COM-specific
settings on the COM section of the Component Interface window.

! For EJBs, define the target directory and other EJB-specific settings on the EJB
section of the Component Interface window.

! Write the programming for each method using JPL, C/C++ or Java. Using the
JPL verbs receive_args and return_args (or their corresponding C
functions sm_receive_args and sm_return_args) you can pass data to and
from the client screen.
12-6 Creating Service Components

Service Components for COM Components and EJBs
Figure 12-2 In the editor, you can create the service component, define its
interface, and write the programming needed for its methods.

For more information about creating service components in the editor, refer to
Chapter 7, “Defining Service Components,” in Using the Editors or to the following
chapters: Chapter 3, “Building COM Components,” in COM/MTS Guide or Chapter 5,
“Building Enterprise JavaBeans,” in WebSphere Developer's Studio.

Creating Client Screens in Component Applications

In the client screen, you first set the current_component_system property to specify
the type of service components, PV_SERVER_COM for COM components or
PV_SERVER_EJB for EJBs. You can then call the library functions which:

! Create the component, sm_obj_create.

! Call the component's methods, sm_obj_call.
Application Development Guide 12-7

Service Components for COM Components and EJBs
! Get or set the component's properties, sm_obj_get_property and
sm_obj_set_property.

! Destroy the component, sm_obj_delete_id.

! Control error messages, sm_obj_onerror, sm_com_result and
sm_com_result_msg.

Figure 12-3 In the client screen, you can instantiate a COM component or
Enterprise JavaBean and access its methods and properties.

For more information about creating client screens which call COM components, refer
to Chapter 4, “Building Client Screens,” in COM/MTS Guide. For more information
about creating client screens which call EJBs, refer to Chapter 7, “Building Client
Screens,” in WebSphere Developer's Studio.

Deploying Components in COM Applications

In a Panther COM/MTS application, a service component consists of:

! A service component, stored in a Panther application library

! A DLL file for the COM component
12-8 Creating Service Components

Service Components for COM Components and EJBs
When you save the service component in a library, you are prompted to build the DLL
for the COM component. Creating the DLL also creates the component's type library
and the client registration file that is needed for DCOM deployment. Once built, COM
components can be deployed under COM, DCOM, or MTS.

In a Panther COM application, both the Panther library containing the service
component and the DLL file for the COM component must reside on the COM
component server. The COM component must be installed on each server machine;
each client must install either the COM component or its location in the registry.

For information about deploying service components in a COM+ environment, refer
to Chapter 5, “Deploying COM Components,” in COM/MTS Guide.

Deploying Components in WebSphere Application
Server

For information about deploying service components and EJBs, refer to Chapter 6,
“Deploying Enterprise JavaBeans in WebSphere,” and Chapter 8, “Deploying Your
Application,” in WebSphere Developer's Studio.

Using the Common Component Interface

In order to provide a common programming interface for service components
deployed under different technologies, the following C functions will work for both
COM components and Enterprise JavaBeans:

! sm_log—Write a message to a server log.

! sm_obj_call—Call a service component's method.

! sm_obj_create—Instantiate the service component.

! sm_obj_delete_id—Destroy the component.

! sm_obj_get_property—Get the component's properties.

! sm_obj_set_property—Set the component's properties.

! sm_obj_onerror—Install an error handler.

! sm_raise_exception—Send an error code back to the client.
Application Development Guide 12-9

Service Components for COM Components and EJBs
! sm_receive_args—Receive a method's parameters from the client.

! sm_return_args—Return a list of parameters back to the client.

You must first specify the current_component_system property to determine the type
of components currently in use: PV_SERVER_COM for COM components or
PV_SERVER_EJB for EJBs deployed in WebSphere Application Server.
12-10 Creating Service Components

CHAPTER
13 Developing Client
Screens

The client side of a Panther application is largely composed of screens: client screens
that users open as forms or windows and screens that are saved as repository entries or
that are used to merge data into other screens or widgets as LDBs.

In two-tier applications, client screens contain both the application logic and the
presentation interface. In three-tier applications, client screens are primarily concerned
with the presentation interface and send service requests to the application server for
processing.

This chapter discusses:

! How to open and close screens

! How a screen can be opened as a dialog box

! The size and position of screens

! The scope of screen processing

! Screens' runtime properties

Other chapters in this manual discuss:

! How to move data between screens (Chapter 25)

! How the stack of screens is maintained (Chapter 24)

! How to display messages in a window, on the status line, or as a dialog
(Chapter 26)
Application Development Guide 13-1

Creating Screens
Creating Screens

You can build screens with the screen wizard or from scratch in the editor. Once the
screen is created, save it in the appropriate library.

For information on creating screens and saving them in libraries, refer to Chapter 6,
“Defining Screen Properties,” in Using the Editors. For instructions on using the
screen wizard, refer to Chapter 4, “Screen Wizard,” in Using the Editors.

Creating Dialog Boxes

A screen that has its Dialog (dialog) property set to Yes:

! Cannot be resized, maximized, or minimized at runtime. These options are not
available on the screen's system menu, and the border (specifically in GUIs) has
no maximize/minimize buttons. However, it can be moved.

! Is modal at runtime, the user is forced to enter data, respond to, or acknowledge
the dialog box before proceeding with the application. The menu bar and
controls strings outside of the dialog box cannot be accessed while the modal
dialog box is active.

Any stacked or sibling windows that are invoked from a dialog box are also opened as
modal dialog boxes.

To prevent users from closing a dialog box from the system menu, set the screen's
Close Item (close_item) property to No.

For an example of a dialog box using tab widgets, refer to “Creating a Tab Dialog
Screen” on page 16-5 in Using the Editors.

Understanding Screen Scope

A screen provides a namespace for widgets, JPL procedures and Panther variables.
13-2 Developing Client Screens

Opening Screens
For widgets, this means that all widgets on a screen must be uniquely named, even
though a widget with the same name can appear on other screens.

For variables and JPL procedures, this means that Panther searches the current screen
for the variable or procedure before going to public modules.

A screen is also one of the levels for menu scope. Setting the screen's Menu Name
(menu_name) property overrides the application-level menu.

Opening Screens

Applications typically let users open screens by pressing a key, choosing a menu item,
or a selection-type widget or push button. You specify the screen to open through the
control string property of the screen, menu item, or widget; the control string specifies
which screen to display and whether to open it as a form or window. For example:

For information about the form stack and the window stack, refer to Chapter 24,
“Setting the Screen Sequence.”

You can also use Panther runtime functions to open a screen and give it focus:

! sm_jform opens the specified screen as a form. It first closes all open
screens—that is, the previous top form and any windows in the window stack.

! sm_jwindow and sm_r_window open the specified screen as a window.

This control string: Opens the screen as a:

screen-name Form

&screen-name Stacked window

&&screen-name Sibling window
Application Development Guide 13-3

Opening Screens
Notes: Avoid calling sm_jform in a screen entry or exit function. Doing so can yield
unpredictable results. To open a form at screen entry, use the built-in function
jm_keys; pass as its argument a function key with a control string that brings
up the desired window. You can call sm_jwindow and sm_r_window in screen
entry and exit functions if you close the window before the function returns.

For information about screen entry events, refer to page 17-4, “Screen Entry.”

Search Path

Panther looks for the named screen in the following places in this order:

! The memory-resident screen list.

! All open libraries.

If all searches fail, Panther displays an error message and returns.

Screen Display Defaults

Unless otherwise specified, Panther tries to display the entire screen. If a screen is
opened as a form, Panther displays it at the physical display's upper-left corner; in
GUIs, this excludes the menu bar, which remains visible. If a screen is opened as a
window, Panther tries to leave the calling screen's last cursor position visible. In GUI
environments, the displayed form always leaves the menu bar visible.

Displaying Screens in Viewports

Panther automatically handles screens whose size exceeds the actual dimensions of the
viewing area—for example, the screen is larger than the physical display. When a
screen's dimensions exceed its display area, Panther displays the screen in a viewport
with vertical and horizontal scroll bars, so users can scroll out-of-view data into view.
By default, the viewport's upper-left corner (1,1) initially displays the screen's
upper-left contents, unless this prevents display of the cursor. Panther always ensures
that the cursor's initial position in a viewport—usually the first field—is visible. If
necessary, it adjusts the screen offset within the viewport accordingly.
13-4 Developing Client Screens

Opening Screens
The viewport itself can only be as large as the system's physical or virtual display. In
character mode, the two are identical; thus, a viewport can only be as large as the
screen. In contrast, under some GUIs—for example, Motif—a viewport can be larger
than the physical display. The offscreen portions of the viewport can be brought into
view either by the user or programmatically.

Overriding Display Defaults

The control string that you use to open a screen can specify the screen's position and
dimensions. If the specified dimensions are unable to display the entire screen, you can
also specify the offset of the screen within the viewport. The full control string syntax
is as follows:

[lead-char] (row, col, height, width, vrow, vcol) screen-name

If you omit lead-char, Panther opens the screen as a form. A single ampersand (&)
opens the screen as a stacked window, while a double ampersand (&&) opens it as a
sibling window. If you use ampersands (& or &&) to open a screen as a window, they
must precede the viewport arguments. Parentheses must enclose all viewport
arguments.

For example, the following control string specifies the PF1 key to open the
new_customer screen at the upper left corner of the physical display:

PF1 = (1,1)new_customer

For more information, refer to Chapter 18, “Programming Control Strings.”

Specifying Viewports at Runtime

The runtime functions sm_jform, sm_r_window, and sm_jwindow can specify
viewport parameters. For example, the following calls to sm_jwindow and
sm_r_window are equivalent: each opens myscreen as a stacked window at
coordinates 4,4 on the physical display:

ret = sm_jwindow("&(4,4)myscreen");
ret = sm_r_window("myscreen", 4, 4);
Application Development Guide 13-5

Opening Screens
Opening Screens in Windows Applications

In a Windows application, screens are implemented inside an MDI (multiple document
interface) frame. MDI allows several windows to be opened inside a main application
window.

Your Windows initialization file contains several settings controlling the use of the
MDI frame. For more information, refer to Chapter 3, “Windows Initialization File,”
in Configuration Guide.

The following library functions deal specifically with MDI frames:

! sm_mw_get_client_wnd gets a handle to the client section of an MDI frame.

! sm_mw_get_frame_wnd gets a handle to the MDI frame of an application.

! sm_mw_PrintScreen sends either the current Panther screen or all the screens
in the MDI frame to the printer.

Specifying the Window Style

As of Panther 4.5, there are new options for opening windows under the Windows
operating system. The new options are implemented by the properties Keep in Frame
and Topmost. These are screen-level properties and are found under the Identity
section in the Properties window.

Previously, windows could either be opened as MDI windows or as dialogs. An MDI
window cannot be moved outside the MDI frame. A dialog can be moved outside the
MDI frame, but blocks access to the MDI frame – when a dialog is opened, focus
cannot be given to any MDI windows, nor can the MDI menu bar be accessed until the
dialog is closed.

With the new options, a screen can open as a non-MDI window, moving outside the
MDI frame, but not blocking access to the MDI windows or to the MDI menu bar. You
can also specify this screen to be the topmost window.

For more information, refer to “Specifying Styles under Windows” on page 6-25 in
Using the Editors.
13-6 Developing Client Screens

Closing Screens
Closing Screens

You can close a screen with jm_exit and sm_jclose. The two functions are
equivalent; jm_exit is a built-in function, while sm_jclose is an installed library
function.

By default, the EXIT logical key calls jm_exit and causes the current screen, whether
a window or form, to close. If you leave EXIT unassociated with any control string, you
can make it available to users to exit the current screen—for example, by pressing its
physical key (Esc on most terminals) or by attaching it to a menu item or push button.

For information about screen exit events, refer to page 17-19, “Screen Exit.”

Setting Screen Properties

By setting properties in the Properties window, you can define the appearance of the
screen in your application. For more information, refer to Chapter 6, “Defining Screen
Properties,” in Using the Editors.

When you create a screen, Panther initializes its properties according to internally set
defaults. You can set a screen to inherit properties from a repository entry through the
screen's Inherit From property. When you do this, Panther writes the entry's properties
to the target screen. You can subsequently turn inheritance on and off for individual
properties, or turn off inheritance for the entire screen by emptying its Inherit From
property.

Some screen properties listed in the editor are accessible at runtime. In addition, there
are runtime-only properties for screens. There are also runtime properties for screens;
For a list of all runtime screen properties, refer to “Screen and Frameset Properties” on
page 1-107 in Quick Reference.
Application Development Guide 13-7

Setting Screen Properties
Using JPL to Set Screen Properties

You can get and set all screen properties at runtime through JPL, which contains two
screen objects:

For example, this statement gets the title property for screen vidlist.scr:

cur_title = @screen("vidlist.scr")->title

The following example sets the title property:

@screen("vidlist.scr")->title = "Current Title List"

For more information about accessing properties at runtime, refer to page 19-33,
“Setting Properties Using the Property API.”

Runtime Properties for Screens

In addition to the properties listed for screens in the Properties window, there are
screen properties that are only available at runtime. The screen will also be affected by
the application's runtime properties.

numflds

Returns the number of fields on the current screen.

numgrps

Returns the number of groups on the current screen.

@screen The name of a Panther screen that is on the window stack. To
specify the active window, supply @current as a string.

@screen_num The number of a Panther screen that is on the window stack,
where 0 is the active window, -1 is the window below it, and so
on.

Positive numbers number from the bottom of the window
stack: 1 is the base window, 2 refer to the window above it, and
so on.
13-8 Developing Client Screens

Setting Screen Properties
sibling

Set the screen as a sibling window. Refer to “Sibling Windows” on page 24-4
for the discussion of sibling windows.
Application Development Guide 13-9

Setting Screen Properties
13-10 Developing Client Screens

CHAPTER
14 Identifying Screen
Widgets

Manipulating widgets at runtime requires that you be able to uniquely identify each
widget. In order to identify widgets, it is recommended that you name each widget.

 This chapter describes how to identify each widget on the screen, how to identify each
occurrence of a widget, and how to determine the contents of a group and of an
ActiveX control.

Functions described in this section are documented in the Programming Guide; refer
to that manual for the syntax and specific behavior of each function.

Widget Types

You can create widgets in the editor by choosing the widget type on the Create menu
or on the Create toolbar. Table 14-1 lists the widget types, their availability and their
description in the Using the Editors; that manual also contains instructions for setting
property values in the Properties window.
Application Development Guide 14-1

Widget Types
Table 14-1 Widget types and their platform availability

Widget type Motif Windows Web Char mode

ActiveX controls " "

Boxes " " " "

Check boxes " " " "

Combo boxes " " "

Dynamic labels " " " "

Graphs " " "

Grids " " " "

Lines " " " "

Links " " " "

List boxes " " " "

Multiline text " " " "

Option menus " " " "

Push buttons " " " "

Radio buttons " " " "

Scales " " "

Single line text " " " "

Static labels " " " "

Tab controls " "

Table views " " " "

Toggle buttons " " "
14-2 Identifying Screen Widgets

Widget Identifiers
Widget Identifiers

JPL and most runtime functions let you identify widgets by object ID, name, or
number. Panther provides three widget identity properties, accessible through JPL or
the library function sm_prop_get. All three properties are read-only. In JPL, these
properties are:

! id—Set to the integer identifier that Panther assigns to each widget at runtime.

! name—Set to the name that the developer assigns to this widget in the screen
editor.

! fldnum—Set to the widget's base field number.

In JPL, you can identify the current widget (the widget that has focus) with statements
that use the @current object identifier as follows:

@widget("@current")->widgetProperty

For example, the following statement sets variable cur_widget to the current widget's
id property:

cur_widget = @widget("@current")->id

You can also get a widget's id property by calling sm_prop_id, as in this statement:

cur_widget = sm_prop_id(@widget("@current"))

For more information on referencing widgets in JPL, refer to page 19-33, “Setting
Properties Using the Property API.”

Object IDs

At runtime, Panther assigns each widget a unique object ID, which provides the most
reliable way to reference and manipulate that widget. Widget and screen IDs are set
when a screen initially opens and remain valid as long as the screen remains on the
window stack. All object ID assignments during an application's life span are unique;
IDs that are no longer valid are not reused.
Application Development Guide 14-3

Widget Identifiers
You can get a widget's ID through its id property or by calling sm_prop_id.

Widget Names

Each widget can be assigned a name through its Name property in the screen editor.
Widgets that are created as the result of importing database tables are automatically
named—corresponding to the database column. A widget name can be up to 31
characters and can start with an alphabetic character, an underscore, a dollar sign, or a
period. Names are case-sensitive; thus, city and City are two distinct names.

Names must be unique within a screen. Widgets on different screens can share the
same name, but they should use the same name only when they share data through an
LDB entry or inherit the same properties.

A widget must be named when one of these conditions is true:

! Its contents are shared with other screens through a local data block (LDB).

! It inherits its properties from a repository entry of the same name.

For more information about mapping database columns to widgets, refer to
Chapter 29, “Reading Information from the Database.”

Field Numbers

Widgets that allow data entry all have internally assigned field numbers. Field numbers
are assigned automatically when you add a widget to a screen, and are reassigned
whenever the widget position changes. Panther numbers widgets as follows:

! Widgets are numbered sequentially from left to right, and top to bottom—as
Field #1, Field #2, and so on.

! Each onscreen occurrence, or element, of an array has a unique field number.
The number of the first element in an array, or the array's base field, is the
number by which the widget as a whole is identified.

Notes: Elements in an array might not be numbered contiguously, depending on
whether other widgets are positioned on the array's right side. Refer to the next
section on arrays for more information about element numbering.

If you rely upon field numbers, be aware of two potential drawbacks:
14-4 Identifying Screen Widgets

Arrays
! Because a widget's position determines its number, changing design
considerations and runtime repositioning make referencing widgets by number
problematic.

! Widgets that do not contain data, such as static labels, boxes, lines, and grid
widgets, are not numbered and so have no fldnum property that you can use to
reference them.

In general, names and object IDs are more reliable handles for identifying widgets and
controlling their behavior at runtime; named widgets are also easier to identify in your
code.

Arrays

Panther identifies an array as any widget that can contain one or more occurrences of
data. In this sense, any Panther widget type that can contain data can be regarded as an
array. Typically, however, there are three widget types regarded as arrays: single line
text, multiline text, and list box. In all three cases, you can modify the Geometry
properties of these widgets to allow more occurrences than are visible onscreen.
Widgets thus defined are scrolling arrays.

An array consists of elements and occurrences:

! The number of elements in an array is determined either by its array_size
property or, if within a grid widget, by the grid widget's onscreen_rows
property. All elements in an array are visible whether or not they contain data.

! Occurrences are the data that populate an array, visible via the array elements.
Occurrences are numbered independently of elements, between 1 and the
number of occurrences that currently populate the array—obtained through the
runtime property num_occurrences.

Panther allocates memory only for occurrences that have data; trailing occurrences that
are empty are discarded. Information is maintained about the number of occurrences
allocated for an array and the offset of occurrences within an array's elements.
Application Development Guide 14-5

Arrays
Non-Scrolling and Scrolling Arrays

If an array is non-scrolling—its scrolling property is set to PV_NO—it can only have as
many occurrences as elements. For example, if a non-scrolling array's array_size
property is set to 3, the array can contain a maximum of three occurrences of data.

In a scrolling array— scrolling is set to PV_YES—occurrences can outnumber elements
if its max_occurrences property is greater than its array_size property. A scrolling
array can contain up to max_occurrences occurrences; if this property is set to NULL,
the array can contain an unlimited number of occurrences.

Synchronized Scrolling Arrays

Scrolling arrays can be synchronized so that they scroll together. This helps manage
related information in table-like screens.

Panther automatically synchronizes arrays when they meet either of the following
conditions:

! The widgets are grid members within a grid widget.

! They are database-derived widgets that belong to the same table view or to
different table views that are joined by a server link.

You can manually synchronize arrays that do not meet the above conditions by making
the widgets members of a synchronized scrolling group.

Refer to “Synchronizing Scrolling Arrays” on page 8-20 in Using the Editors for
instructions on creating synchronized arrays.

Element and Occurrence Numbering

At runtime, Panther numbers all occurrences between 1and n, where n has the value of
the array's runtime property num_occurrences. In a non-scrolling array, the first
occurrence—referenced in JPL as array-spec[1]—is always visible in the array's first
element—in JPL, array-spec[[1]]; the second occurrence is in the second element; and
so on.

In a scrolling array, the first occurrence and first element coincide when the first
occurrence is visible in the first element; if the first occurrence scrolls out of view, the
occurrence that is visible in the array's first element can be any number up to and
14-6 Identifying Screen Widgets

Arrays
including array-spec->num_occurrences. For example, Figure 14-1 shows scrolling
array pid in which the first occurrence—pid[1]—is visible in the array's first
element—pid[[1]]:

Figure 14-1 The first occurrence is displayed in the array's first element.

Figure 14-2 shows the same array; however, the data has scrolled up one occurrence
so the first occurrence pid[1] is out of view; the first element pid[[1]] now contains
the second occurrence pid[2]:

Figure 14-2 The first occurrence is scrolled offscreen; the second occurrence is
therefore displayed in the array's first element.
Application Development Guide 14-7

Groups
You can obtain the current occurrence in an array's first element through the array's
first_occurrence property. For example, given array pid's state in the first figure,
its first_occurrence property is set to 1; in the second figure, first_occurrence
is set to 2. You can also use this property to programmatically scroll an array's
occurrences. For example, the following JPL statement resets a scrolling array so that
its first element displays the first occurrence of data:

pid->first_occurrence=1

If an array is referenced in a JPL procedure without an occurrence being specified,
Panther uses the default occurrence. When executing a field entry, field exit, or
validation function, the default occurrence is the occurrence currently being processed.
Otherwise, the default occurrence is 1.

Groups

You can group widgets of the same or different types together. This allows you to
perform such tasks as allowing synchronized scrolling among several arrays or
allowing selection among radio buttons or check boxes. Widgets within each group
retain their separate identities; however, Panther also recognizes groups as unique
components that can be named, and identifies their constituent widgets by their relative
offset within the group. All group properties are accessible at runtime through JPL and
by Panther library functions sm_prop_get and sm_prop_set.

If a widget is a member of a group, the following runtime properties return the group's
object ID:

! group— the widget is a member of a selection group.

! sync_group—the widget is a member of a synchronized scrolling group.

If a widget is not a member of that type of group, these properties return an empty
string.

Two library functions let you identify groups and their widgets:
14-8 Identifying Screen Widgets

ActiveX Controls
! sm_i_gtof converts a group name and group occurrence into a field number
and occurrence. This function lets you use other Panther library functions to
manipulate group widgets by converting group references into widget
references. For example, to access text from a specific widget within a group,
use sm_i_gtof to get the field and occurrence number, then call
sm_o_getfield to retrieve the text.

! sm_ftog converts field references to group references. It returns the name of
the group that contains the referenced widget and the widget's offset within the
group.

For information on traversing members of a group, refer to page 23-3, “Traversing
Widgets.”

Table views are also considered group widgets. Refer to “Identifying a Widget's Table
View” on page 36-24 for information on identifying the table view at runtime.

ActiveX Controls

Active X controls, available for Windows and Web applications, are considered
separately since the ActiveX control itself is not a Panther' widget, only the ActiveX
container is. The Active X container's CLSID property (clsid) determines which
ActiveX control is located inside the container. If the ActiveX control specified in that
CLSID property is registered on your system, the control will be displayed in the editor
and the Properties window's ActiveX category will display the control's property
names and settings.

For more information on ActiveX controls, refer to Chapter 18, “ActiveX Controls,”
in Using the Editors.
Application Development Guide 14-9

ActiveX Controls
14-10 Identifying Screen Widgets

CHAPTER
15 Including Menus
and Toolbars

Menu bars, popup menus, and toolbars are all instantiated from menus that you define
through the menu bar editor and save to a binary resource file, or menu script. Because
menu bars, popup menus, and toolbars are created from the same menu definition,
runtime access to all three is provided through the same set of library functions. In this
chapter, all references to menus apply equally to menu bars, popup menus, and
toolbars, unless otherwise noted.

Menu definitions are saved in menu scripts. When you save a menu through the menu
bar editor, the menu and its submenus are saved to a binary script. At runtime, Panther
can load one or more scripts into memory; it can then install menus from these scripts
at different levels of the application. Depending on how a menu is installed, it can
display as a menu bar on a screen or be invoked as a popup from a screen or widget. If
the menu is installed as a menu bar and one or more of its items have their
MNI_DISPLAY_ON property set to DISPLAY_TOOL or DISPLAY_BOTH, Panther also
displays a toolbar with the menu bar.

You can specify to load a menu script and install a menu from the Properties window
of a screen or widget. Alternatively, you can use Panther runtime functions to load and
display menus.

This chapter shows how to perform the following tasks:

! Load menus into memory.

! Install menus for display with a screen or widget.

! Display menu items on a toolbar.

! Change menu properties at runtime.
Application Development Guide 15-1

Loading Menus into Memory
! Remove menus from display and unload them from memory.

! Use m2asc to convert menus from binary to ASCII format, and vice versa.

! Read menu definitions in ASCII format.

Loading Menus into Memory

When you load a menu script, all of its menus are stored in memory and are available
for installation and display. Panther applications have three levels of memory for
loading menus:

! Application memory. Menus that are loaded into application memory are
accessible throughout the application.

! Screen memory. Each screen has its own memory; menus that are loaded into a
screen's memory are available only to that screen and its widgets.

! Field memory. Most widget types have their own memory; menus that are
loaded into a widget's field memory are available only to that widget.

A script can be loaded only once in each memory location—that is, a given script can
be loaded only once into application memory, and once into the memory location of a
screen or widget. So, if several screens have the same menu installed from a script in
application memory, they display identical menus—if one menu changes, those
changes are written to the same memory and immediately propagated to the other
menus. Alternatively, if each screen has the same menu installed from its own
memory—each screen has its own instance of the script loaded into screen memory—
each instance of that menu is unique: changes to one are written only to its own
memory and have no effect on the other screen menus. This chapter contains sections
on “Installing Menus with Shared Content” on page 15-5 and “Installing Menus with
Unique Content” on page 15-6.

You can load a menu script in two ways:

! Enter its name in the screen's Menu Script File property or a widget's Popup
Script File property.
15-2 Including Menus and Toolbars

Installing Menus
! Call the library function sm_mnscript_load.

The first method loads the menu script into the screen or widget's memory and makes
its menus available to that screen or widget. sm_mnscript_load can load the
specified script into any memory location that is the same or higher than its caller, as
shown in the following table:

For example, the application's startup routines in jmain.c can only load menu scripts
into application memory, while a screen's entry procedure can load scripts into
application memory and its own memory.

Installing Menus

After you load a menu script, you can install any of its menus for display. When a menu
is installed, Panther finds it in the specified script and reads its definition. If the menu
contains external references—the menu is defined in another script—Panther resolves
these; it then makes the menu available for display.

Except for Motif versions, Panther applications can display only one menu bar and its
corresponding toolbar at a time. For example, if an application contains multiple
screens and each screen has its own menu, only the menu bar and toolbar of the active
screen are displayed. Under Motif, an application menu and a screen menu can display
simultaneously if you set the baseWindow and formMenus resources to true.

sm_mnscript_load caller Valid memory locations

Application Application

Screen Current screen
Application

Widget Current widget
Current screen
Application
Application Development Guide 15-3

Installing Menus
You can install a menu at four scopes:

! Application scope. A menu that is installed at application scope displays with
all screens unless the active screen has its own menu. Under Motif, the
application menu displays with the base window if the baseWindow resource is
set to true. You can install an application menu only from application memory.

! Screen scope. A menu that is installed with a screen displays whenever its
screen is opened or reexposed. This menu is also used by successive screens
that lack their own menu. You can install a screen menu from application or
screen memory.

! Screen popup scope. A menu that is installed as a screen's popup can be
invoked by the user when the cursor is outside a field or in field that has no
menu associated with it. You can install a screen popup menu from application
or screen memory.

! Field scope. A menu that is installed with a widget displays as a popup that the
user invokes when that widget has focus. You can install a menu for a widget
from any level of memory—application, screen, or field.

You can install a menu in two ways:

! Enter its name in the screen's Menu Name property or in the widget's Popup
Menu property. You can also enter a menu name in the screen's Popup Menu
property.

! Call the library function sm_menu_install. You must use this function to
install menus at application scope.

When a screen opens, Panther looks at its Menu Name property and installs the menu
specified there, if any, as that screen's menu bar. If any of the menu items have their
Toolbar property set to Yes, Panther creates a toolbar from the images associated with
those items and displays it below the menu bar.

If the screen's Popup Menu property specifies a menu, Panther also installs this menu
at screen scope. Panther displays the screen's popup menu when the user invokes it
from the screen. If no entry exists for Popup Menu, Panther also uses the Menu Name
property for the screen's popup menu.

At screen open, Panther also checks the Menu Popup property of each widget; Panther
installs each menu specified by a widget at field scope and displays it as a popup when
invoked from that widget.
15-4 Including Menus and Toolbars

Installing Menus
With sm_menu_install, you can install a menu at any scope that is the same or higher
than the calling environment, from any memory location that is valid for that scope.
Thus, a screen's entry procedure can install a menu for the current screen or for the
application, while a widget's entry procedure can install a menu for the current widget,
its screen, or the application. If another menu is already installed at the specified scope,
it is removed. If the same menu is already installed from the same memory location,
Panther does not try to reinstall it.

Installing Menus with Shared Content

Because a script can be loaded only once into a given memory location, all menus
installed from that location are identical. Panther provides only one memory location
at the application level. So, all scripts in application memory are unique, and all
instances of a menu installed from application memory are the same: changes in one
are immediately propagated to all others.

You can install the same menu from application memory for different screens and
widgets; if you do, all instances of this menu are always the same. If you install the
same menu for different widgets from screen memory, all popup menus of those
widgets are identical.

For example, the following entry procedure in an application's startup screen loads a
menu script into application memory; it then installs the menu scr_mn for the startup
screen from application memory:

proc install_menu
if (sm_mnscript_load(MNL_APPLIC, "mnscript_myprog") == 0)

{
call sm_menu_install \

(MNS_SCREEN, MNL_APPLIC,"mnscript_myprog", "scr_mn")
}

else
{

msg emsg "No menu found for application. Goodbye"
call jm_exit

}
return

Subsequently, other screens in the application can install their own instances of this
menu with this call:

call sm_menu_install \
(MNS_SCREEN, MNL_APPLIC, "mnscript_myprog", "scr_mn")
Application Development Guide 15-5

Installing Menus
All screens that display scr_mn as a menu bar and toolbar display the same menu and
toolbar. Thus, if one screen makes a menu item inactive, that item is inactive on the
other screens.

Installing Menus with Unique Content

You can install multiple copies of the same menu for screens and widgets, where each
copy is unique. Because screens and widgets can load menu scripts into their private
memory locations, each location can maintain its own copy of a menu; changes to one
have no effect on the others.

To install unique copies of the same menu for several screens, repeat these steps for
each screen:

1. Load the menu script into screen memory—specify the script in the screen's Menu
Script File property; or call sm_mnscript_load at screen entry with an argument
of MNL_SCREEN.

2. Install the menu from screen memory—specify the menu in the screen's Menu
Name property or Popup Menu property; or call sm_menu_install at screen
entry with arguments of MNS_SCREEN (for a menu bar) or MNS_SCRN_POPUP (for
a popup menu), and MNL_SCREEN.

Similarly, you can make sure that widgets have unique copies of the same popup menu.
Repeat these steps for each widget:

1. Load the menu script into field memory for the widget—specify the script in the
widget's Menu Script File property; or call sm_mnscript_load at widget entry
with an argument of MNL_FIELD.

2. Install the menu from the widget's memory—specify the menu in the widget's
Menu Name property; or call sm_menu_install at widget entry with arguments
of MNS_FIELD and MNL_FIELD.

Referencing External Menus

A menu definition can specify submenus whose contents are defined outside the
current script—that is, the submenu's External property is set to Yes. For maximum
flexibility, the external flag contains no information about this menu's script name.
15-6 Including Menus and Toolbars

Displaying Toolbars
Consequently, when you install a menu, Panther resolves external references by
searching first among scripts in the same memory location, then among scripts in the
next highest memory location, and so on.

For example, given a menu installed from screen memory, Panther tries to resolve each
of its external references first by searching among other scripts in screen memory; if
no match is found in screen memory, Panther continues the search among the scripts
loaded into application memory. If no menu is found in either memory location,
Panther displays an empty submenu.

Displaying Toolbars

A screen can display a toolbar alongside or in place of a menu bar. Both the toolbar
and menu bar are instantiations of the same menu: any item that can be displayed on
the screen's menu bar can also be displayed on its toolbar, and vice versa.

Display of a toolbar depends on two conditions being true:

! Toolbar display is enabled.

! At least one screen menu item is set for toolbar display.

You enable toolbar display through the setup variable TOOLBAR_DISPLAY, which can
be set to TOOLBAR_ON (the default) or TOOLBAR_OFF. This variable can be changed at
runtime by calling sm_option to toggle toolbar display for the entire application.

Display of individual items on a screen's menu bar and/or toolbar is determined by
their MNI_DISPLAY_ON property, which is set to one of these values:

! DISPLAY_MENU: Display the item only on the screen's menu bar (default).

! DISPLAY_TOOL: Display the item only on the toolbar.

! DISPLAY_BOTH: Display the item on both the menu bar and toolbar.

! DISPLAY_NEITHER: Suppress display on menu bar and tool bar.
Application Development Guide 15-7

Displaying Toolbars
You can set a menu item's initial display in the menu bar editor and change it at
runtime.

Panther for Windows can dock the current toolbar to the MDI frame. Runtime
application properties control the position and appearance of the toolbar; refer to
page 15-10, “Dockable Toolbar Properties.”

If a menu item is set to display on a toolbar, you should set its pixmap properties to
determine the item's display in its different states. You must also set pixmap properties
for all toolbar items.

Panther for Windows uses MFC to control toolbar display, which sets the item's
inactive and armed display from the MNI_ACT_PIXMAP (active) property and the
display for MouseOver events from the MNI_HOT_PIXMAP (hot) property.

For more information about setting pixmap properties, refer to “Displaying Pictures on
Toolbar Items” on page 25-14 in Using the Editors.

You can set an item's tooltip text, which displays when the cursor remains above that
item; tooltip display is enabled or disabled for the entire application through the setup
variable TOOLTIP_DISPLAY. You can toggle tooltip display on and off by using
sm_option to set it to TOOLTIP_ON (default) and TOOLTIP_OFF, respectively.

You can control the font type and size for tooltips in Motif applications through the
Panther resource file. For example, this statement sets tooltip text to 18 point
Helvetica:

Panther*toolbar*tooltip.fontList: *-helvetica-*-18-*

On Windows, the appearance of tooltip text is under MFC control.

Pixmap property Platform availability

MNI_ACT_PIXMAP active Motif, Windows

MNI_INACT_PIXMAP inactive Motif

MNI_ARM_PIXMAP armed Motif

MNI_HOT_PIXMAP hot Windows
15-8 Including Menus and Toolbars

Changing Menus at Runtime
Changing Menus at Runtime

Panther provides a set of library functions that let you change menus and their items at
runtime. You can:

! Get and set menu and menu item properties.

! Change the state of toggle items.

! Create and delete menus and menu items from memory.

Getting and Setting Properties

All properties that are available through the menu bar editor also are accessible and
modifiable through Panther library functions.

You can get the current setting of a menu property by calling either sm_menu_get_int
or sm_menu_get_str. To get a menu item's property setting, call either
sm_mnitem_get_int or sm_mnitem_get_str. Use the _int variant for those
properties that have an integer value—for example, MN_TEAR or MNI_ACTIVE; use the
_str variant for properties that take string values, such as MN_TITLE and
MNI_CONTROL.

sm_menu_bar_error lets you test error conditions generated by the aforementioned
_get functions. These functions return the value of the specified property when
successful; otherwise, they return -1 for failure of the _get_int variants and NULL for
the _get_str variants. sm_menu_bar_error returns the error code generated by the
last call to one of these variants.

sm_menu_change and sm_mnitem_change set menu and menu item properties,
respectively. These properties are derived from a memory-resident script. Because
these functions change the specified script, all instances of menus installed from this
script get the requested property change.sm_mnitem_change and its variant
sm_n_mnitem_change cannot be called directly from JPL; consequently, a number of
wrapper functions are declared and installed, which you can use to modify menu items
in JPL modules.
Application Development Guide 15-9

Changing Menus at Runtime
Dockable Toolbar Properties

For Panther for Windows, the following runtime application properties control the
position and appearance of the toolbar in relation to the MDI frame:

PR_TOOLBAR_ALLOWED_SITES

Set the frame placements allowed for the toolbar using one or more of the
following bit flags:

PR_TOOLBAR_CURRENT_SITE

Set the current placement of the toolbar using one of the defined bit flags:
PV_TOOLBAR_FLOAT, PV_TOOLBAR_TOP (default), PV_TOOLBAR_BOTTOM,
PV_TOOLBAR_LEFT, or PV_TOOLBAR_RIGHT.

PR_TOOLBAR_HIDDEN

Set whether the toolbar is currently displayed using PV_YES and PV_NO. Users
can hide the toolbar by clicking on the X in the upper-right corner of the
menu.

PR_TOOLBAR_X_POSITION and PR_TOOLBAR_Y_POSITION
Specify the screen coordinates of the upper-left corner of the floating toolbar.
Double clicking on a floating toolbar at runtime docks the toolbar to the
frame.

Changing the State of Toggle Items

Toggle items—on a menu and a toolbar—are initially set to the state specified in the
menu script. Toggle items alternatively show or hide a system-specific indicator to
show whether the item's state is on or off. If the toggle item is included in the toolbar,
Panther uses its MNI_ARM_PIXMAP or MNI_ACT_PIXMAP property to show whether its
state is on or off.

PV_TOOLBAR_FLOAT

PV_TOOLBAR_TOP

PV_TOOLBAR_BOTTOM

PV_TOOLBAR_LEFT

PV_TOOLBAR_RIGHT
15-10 Including Menus and Toolbars

Changing Menus at Runtime
The function that you associate with a toggle item through its control string property
should perform these tasks:

! Test the current setting of the item's MNI_INDICATOR property—set to either
PROP_ON or PROP_OFF

! Execute the appropriate action.

! Change the item's MNI_INDICATOR property to PROP_ON or PROP_OFF.

For example, the following code examines the state of menu item tgl2 and changes
its MNI_INDICATOR property accordingly.

vars ind, ret
ind = sm_n_mnitem_get_int \
 (MNL_SCREEN, "toggle", "sub1", "tgl2", MNI_INDICATOR)
if (ind_state == PROP_ON)
{
 ret = tgl2_proc(PROP_ON)
 if ret > 0
 {
 call sm_n_mnitem_change_i_screen \
 ("toggle", "sub1", "tgl2", MNI_INDICATOR, PROP_OFF)
 }
}
else if (ind_state == PROP_OFF)
{
 ret = tgl2_proc(PROP_OFF)
 if ret > 0
 {
 call = sm_n_mnitem_change_i_screen \
 ("toggle", "sub1", "tgl2", MNI_INDICATOR, PROP_ON)
 }
}

Creating and Deleting Menus

! sm_menu_create defines a menu and loads it into memory as part of the
specified script. After you create this menu, you can set its properties and create
items for it through sm_menu_change and sm_mnitem_create, respectively.
Like other menus that are loaded into memory, you can attach this menu to an
application component—screen or widget—and make it available for display
through sm_menu_install.

! sm_menu_delete removes a menu from memory at runtime and frees the
memory allocated for it. This function also destroys all items in the menu and
Application Development Guide 15-11

Uninstalling and Unloading Menus
frees the memory associated with them. After you call this function, you can
restore this menu only by reloading its script, provided the script's source file
already contains the menu definition.

Inserting and Deleting Menu Items

! sm_mnitem_create inserts a new menu item into a menu. After you create this
item, you can set its properties through sm_mnitem_change. The menu
displays this item at the next delayed write.

! sm_mnitem_delete removes an item from a menu and frees the memory
associated with it. Panther updates the menu display at the next delayed write.

Uninstalling and Unloading Menus

Menus and their scripts remain in memory until Panther frees their memory location—
for example, when a screen with its own menu is removed from the form or window
stack. Panther automatically removes all menus and frees their memory when the
application exits.

You can explicitly remove a menu from display by calling sm_menu_remove. This
function takes a single argument that specifies the scope from which to remove the
current menu. Because the menu script remains in memory, subsequent changes to the
menu's properties become visible when you reinstall it. This function has no effect on
other instances of the menu that are installed from the same memory location.

You can remove a script from memory with sm_mnscript_unload. This function
takes two arguments—the script's name and memory location. Panther removes the
script from the specified memory location and destroys all menus that are installed
from it. If any of those menus are currently displayed, Panther removes them
immediately. If a menu is referenced as an external menu, Panther displays an empty
menu in its place.
15-12 Including Menus and Toolbars

Invoking Popup Menus
Invoking Popup Menus

Panther displays a popup menu when the user presses the right mouse button or when
sm_popup_at_cur is called. Panther uses one of the following two algorithms for
finding and displaying a popup menu:

! If a field has focus, Panther displays the first menu that it finds from the
following:

a. The field's popup menu.

b. The screen's popup menu.

c. The menu installed for the screen's menu bar and toolbar.

d. The application-level menu.

! If the screen has focus, Panther displays the first menu that it finds from the
following:

e. The menu installed for the screen's menu bar and toolbar.

f. The application-level menu.

You can let users invoke popup menus from the keyboard with sm_popup_at_cur.
For example, the following control string assignment lets the user invoke a popup
menu by pressing the PF1 key:

PF1 = ^sm_popup_at_cur
Application Development Guide 15-13

Calling Menu Functions From JPL
Calling Menu Functions From JPL

All menu functions that can be prototyped are installed and can be called from a JPL
procedure. However, three functions cannot be prototyped because their parameter
lists do not conform to current requirements. These are:

! sm_menu_change

! sm_mnitem_create

! sm_mnitem_change

Wrapper functions for these routines are provided and installed in funclist.c; you
can call these from JPL to change menu and menu item properties and to create menu
items.

Outputting Menu Definitions to ASCII

You can save menu definitions to ASCII format through the m2asc utility. ASCII
menu definitions define a menu as a hierarchy, where the top-level menu and its items
are defined first along with global menu properties, followed by submenus and their
items. You can edit the ASCII file using a text editor, and then convert it to binary
format using the same utility. Refer to m2asc for an example of a menu file's ASCII
output.

Keywords

Each component of a menu definition is identified by a keyword (refer to Table A-1
on page A-23 and, optionally, a unique name. In some cases, Panther uses these names
to resolve references—for example, given a submenu item that sets its SUBMENU
15-14 Including Menus and Toolbars

Outputting Menu Definitions to ASCII
property to myEditSub, at runtime, Panther looks for a MENU:myEditSub item in the
same script to build that submenu. In all cases, you can use these identifiers to get and
set item properties at runtime.

Menu Properties

Each menu and menu item definition has properties; these properties are specified
immediately below the component's identifier in the ASCII output. For example, the
following statements define a submenu item myoption: its label is Options with a
keyboard mnemonic of O; it invokes the menu myoptionsub; and it is initially
available for selection (ACTIVE=YES):

SUBMENU:myoption
 LABEL=&Options
 SUBMENU=myoptionsub
 ACTIVE=YES

Table 15-1 lists all menu property mnemonics and their valid values. For additional
information about the properties, refer to Chapter 25, “Menu Bar Editor,” in Using the
Editors.

Table 15-1 Menu properties and valid assignments

Property Values

ACCEL Accelerator string that specifies the keyboard equivalent for selecting this
menu item.

ACCEL-ACTIVE Specifies whether the menu item accelerator is active (PROP_ON) or inactive
(PROP_OFF).

ACTIVE Allows (YES) or disallows (NO) user access to this menu item. If ACTIVE=NO,
the menu item is greyed out.

ACTIVE_PIXMAP* Name of image file whose contents are shown for active toolbar item—that is,
accessible but not pressed. Refer to “Image File Types” on page 25-15 in
Using the Editors for valid file types, and for information about path and
extension options.
Application Development Guide 15-15

Outputting Menu Definitions to ASCII
ARM-PIXMAP* Name of image file whose contents are shown for armed toolbar item—that
is, in its pressed state. If the property is blank, Motif uses the
MNI_ACT_PIXMAP property for the item's armed state; Windows uses a
modified version of the Active Pixmap property to display a toolbar item's
armed state and ignores this property.

CONTROL Control string that specifies the action that occurs when the item is selected.

DISPLAY-ON Specifies whether to display the menu item on the menu and/or the tool bar.
Supply one of these arguments:

! MENU: Menu only (default).

! TOOL: Tool bar only.

! BOTH: Menu and tool bar.

! NEITHER: Neither.

EXTERNAL Specifies whether to find this menu's definition in another menu script (YES),
or not (NO). External references are resolved at runtime only.

EXT-HELP-TAG String expression that specifies the help text to invoke for this item.

HOT-PIXMAP* In Windows, name of image file whose contents are shown when a mouse
passes over the item.

INACTIVE-PIXMAP* Name of image file whose contents are shown for an in active or unavailable
(grayed) item. If blank, Motif displays an empty toolbar item; Windows uses
a grayed version of the Active Pixmap property to display the item's inactive
state and ignores this property.

INDICATOR Specifies whether to show (YES) or hide (NO) the toggle indicator.

IS-HELP Specifies whether to display (YES) this item as the right most item on the menu
bar, or not (NO).

LABEL String expression to display as menu item's label. To specify a keyboard
mnemonic for a menu item, place an ampersand (&) in front of the desired
character.

MEMO String expression for the Memo Text property.

Table 15-1 Menu properties and valid assignments (Continued)

Property Values
15-16 Including Menus and Toolbars

Outputting Menu Definitions to ASCII
A subset of these properties is valid for each menu component except WINOP and
WINLIST. Figure 15-1 shows which properties are valid for each component:

MNI_ORDER* Order in which the item appears on the toolbar. Enter any value between 0 and
200 (default is 100), inclusive. If all toolbar items have the same value, they
appear in the same order as they do in the menu.

SEP-STYLE Style used by item separators, one of the following:

SINGLE
DOUBLE
DOUBLE-DASHED
SINGLE-DASHED
ETCHED-IN
ETCHED-OUT
ETCHED-IN-DASHED
ETCHED-OUT-DASHED
NOLINE
MENUBREAK

SHOW-ACCEL Specifies whether the menu item displays (YES) or does not display (NO) the
accelerator key next to the label.

STAT-TEXT String expression to display on status line for this item.

SUBMENU Name of submenu to invoke when the item is selected.

TEAR Enables (YES) or disables (NO) the submenu as a tear-off menu.

TITLE Title to display with tear-off submenus.

TM-CLASS Transaction manager property. Refer to “Setting Classes for Menu Items and
Push Buttons” on page 23-7 in Using the Editors for valid arguments.

TOOL-TIP* Balloon help to display when the cursor remains over the toolbar item.

* Ignored in character-mode.

Table 15-1 Menu properties and valid assignments (Continued)

Property Values
Application Development Guide 15-17

Outputting Menu Definitions to ASCII
Figure 15-1 Menu components and their properties
15-18 Including Menus and Toolbars

CHAPTER
16 Building Reports

With Panther, you can build reports to supplement your application processing. Once
created, a report can be invoked from an application, from a web browser, or on the
command line, and can be output to the screen, to a printer or to a file.

A report definition has two windows in the editor: the report layout window and the
report structure window.

The report layout window, containing one or more layout areas, defines the report
content. Each layout area contains widgets whose properties define the source of report
data. A widget's position in the layout area determines its position in the report output.

The report structure window, consisting of a series of nodes, determines the order of
report processing. Each layout area must have a corresponding print node in the report
structure in order to appear in report output. Other nodes define the format of the
report, the properties of report groups, and the programming actions to take during
report processing.

Figure 16-1 illustrates the two report windows, report layout and structure, and how
those parts of the report definition combine to produce the report output.

For information on creating and customizing reports, start with Chapter 1, “Overview
of Panther Reports,” in Reports.
Application Development Guide 16-1

Figure 16-1 The report layout window and the report structure window work
together to define a report.
16-2 Building Reports

Part IV Preparing the
Programming
Interface

After creating your application components, you need to program your application
behavior. This section explains Panther's application events and how to call C, Java
and JPL functions in your application. Later chapters describe how to specify the
screen sequence and move data between screens.

Understanding Application Events

Programming Control Strings

Programming in JPL

Writing C Functions

Java Event Handlers and Objects

Using XML Data

Using Widgets

Setting the Screen Sequence

Moving Data Between Screens

Displaying Messages

CHAPTER
17 Understanding
Application Events

Almost everything that happens during the life span of a Panther application is
identified by Panther as one type of event or another. At one level, events occur as the
result of user interaction with the interface—for example, pressing a push button
widget, or double-clicking on a dynamic label. These events and the control strings that
determine the application's response are discussed in Chapter 18, “Programming
Control Strings.”

This chapter initially focuses on application events that are not always connected to
user actions. For example, a Panther application always starts by opening a screen.
Whenever a screen opens, the same sequence of events occurs, such as initialization of
the transaction manager and execution of the screen's entry function. Functionality can
be associated with an event, such as screen opening, by means of various properties or
by installing C or Java functions.

Your ability to control application behavior largely depends on knowing the order in
which events occur and what options, or hooks, are available that allow you to
intervene. This chapter describes events that typically occur during a Panther
application, and the hooks that are available for each one. For purposes of this
discussion, events are broadly grouped according to the following application
components:

! Screens and widgets

! Transaction manager

! Database interface

! Web
Application Development Guide 17-1

Screen and Widget Events
! Middleware API

The final section of the chapter discusses these event categories in relation to
user-initiated actions.

This chapter assumes that you are already familiar with the basics of Panther
application development, as covered by Chapter 1, “Building a Panther Application”
and the tutorial in Getting Started 2-Tier or Getting Started JetNet/Oracle Tuxedo.

Screen and Widget Events

Screens and widgets provide the foundation of a Panther application. All user
interaction takes place via a client screen and its widgets; and application code is
typically accessible, either directly or indirectly, through client screens or, in three-tier
applications, the service components that they invoke. Thus, much of the processing
that takes place in a Panther application occurs at the screen and widget level, and can
be decomposed into distinct screen and widget events.

The following drawing schematically depicts screen and widget events as they occur
in an application that consists of two screens, Screen1 and Screen2:
17-2 Understanding Application Events

Screen and Widget Events
Application workflow and accompanying events consist of these steps:

1. Screen1 opens on application startup; this triggers screen entry and widget entry
events, as focus is given to the first widget on the screen, Widget1.

2. When the user tabs out of Widget1, Panther performs validation and exit
processing for Widget1, then executes widget entry for Widget2.

3. The user opens Screen2 while Widget2 has focus. Screen2 is opened as a
stacked window, so Screen2 remains visible but is focus-protected. This action
causes several events:

" Validation and exit processing for the third occurrence in Widget2—
Widget2[3]

" Screen exit for Screen1

" Screen entry for Screen2

" Widget entry for the first widget on Screen2
Application Development Guide 17-3

Screen and Widget Events
4. When the user exits from Screen2 and returns to Screen1, these events occur:

" Validation and exit processing for the Screen2 widget that has focus

" Screen exit for Screen2

" Screen entry for Screen1

" Widget entry for the last occurrence on Screen1 to have focus, Widget2[3]

5. When the user exits the application from Screen1, Panther performs validation
and exit processing for the widget that has focus, then screen exit for Screen1.

Most screen and widget events can be monitored and controlled programmatically and
through Panther properties. Functions that execute on events are called event
functions. An event function can be installed in the application as an automatic
function, which executes on all events of a given object type (screen or widget); or it
can be named in an event-specific property of a given screen or widget, so it executes
only for that object on a specific event. For example, an automatic screen function
executes on all entry and exit events for every screen in the application; however, a
function that is named in a screen's Entry Function property executes only when that
screen opens or regains focus.

Properties can also be used to control validation processing or check a widget's status.
For example, you can set a widget's required property to force user input; and you can
check whether a widget's data has changed through its runtime mdt property.

Getting your application to behave as you wish depends on knowing the sequence in
which screen and widget events occur and what options are valid for each one. The
following sections discuss these events in the order of occurrence. In addition, the
Panther debugger can be used to determine the sequence of events for a particular
screen.

Screen Entry

Screen entry occurs when a screen opens or regains focus. Because an application
begins by opening a screen as its base form, the processing that is associated with
screen open provides the first—and, often, the most important—set of opportunities to
determine an application's behavior. Screen exposure occurs when a screen regains
focus from a screen that previously overlay it. The set of events that occur on screen
exposure is a subset of the set of events that occur on screen open.
17-4 Understanding Application Events

Screen and Widget Events
Open Events

When a screen opens, events occur in the following order:

1. The screen's unnamed JPL procedure executes. (A public or include statement
in this procedure also executes that module's unnamed JPL procedure.)

2. Transaction manager is initialized.

3. Automatic screen function executes.

4. Screen entry function executes.

5. LDB write-through occurs (if there's an open LDB).

6. valided and mdt properties are cleared (set to PV_NO) for all data input widgets.

7. Automatic group, grid or tab control function executes, if the first field on the
screen is in a container.

8. Group, grid or tab control entry function executes, if the first field on the screen
is in a container.

9. Automatic field function executes for the first field on the screen.

10. Field entry function executes for the first field on the screen.

11. Pushed keys in input stack are processed.

12. Keyboard opens, screen displays.

All processing that should occur before the user sees the screen must take place during
these steps. The nature of the processing itself dictates the specific step at which it
should occur. For example, transaction manager commands can be issued only after
the transaction manager is initialized (step 2).

Always allow all steps on this list to complete. Specifically, avoid opening a screen
while opening another screen; doing so can prevent the original screen from
completing its open processing and yield unpredictable results.
Application Development Guide 17-5

Screen and Widget Events
Exposure Events

At different times during an application, the active window can open another screen as
a sibling or stacked window; the newly opened window overlays its caller. When the
original window regains focus, screen exposure processing takes place. Screen
exposure processing also occurs when a report returns to the invoking screen (refer to
the runreport command).

Screen exposure processing is a subset of open processing, and consists of these steps:

1. Automatic screen function executes.

2. Screen entry function executes.

3. LDB write-through occurs.

4. Automatic field function executes (for the field that gains focus).

5. Field entry function executes (for the field that gains focus).

6. Pushed keys in input stack processed.

7. Keyboard opens, screen is redrawn.

When a screen is exposed, focus returns to the last field on the screen to have had
focus. If this field is in a group, grid or tab control, there will be entry events associated
with the container prior to the automatic field function.

A screen's unnamed procedure executes and the transaction manager is initialized only
once for a given screen, when it opens. Also, the valided and mdt properties for the
screen's data input widgets are cleared (set to PV_NO) only when a screen opens.
Subsequent exposures of the screen leave these properties unaffected.

Unnamed Procedure

A screen's JPL (accessed through its JPL Procedures property) is accessible to the
entire screen. When the screen initially opens, its unnamed procedure—the code that
precedes the first proc statement—executes first.

A screen executes its unnamed procedure only when it opens; subsequent exposures of
the screen ignore this code. Thus, the unnamed procedure of an application's opening
screen is the appropriate place to make public those JPL library modules that are
required by the entire application or make other JPL modules available for this screen.
17-6 Understanding Application Events

Screen and Widget Events
The public command makes these modules' procedures accessible to this and other
application screens and their widgets. A public module's procedure can be named in
screen or widget properties—for example, in a widget's Entry Function property—or
called from other JPL procedures with the call command.

When Panther loads a public module, it loads the module's procedures into memory
and executes its unnamed procedure, if any. During its life span, an application can call
any named procedure in a public module, unless the module is explicitly removed from
memory with the unload command.

A public module's unnamed procedure executes only once; and a module can be made
public only once. (Panther ignores any public command that is issued on a module that
is already public.) Thus, any code in a public module's unnamed procedure is virtually
guaranteed to execute only once during the life span of an application.

The include command makes a modules' procedures accessible to the current
application screen.

In general, it is good programming practice to public only the procedures that you need
to be global to the entire application. Procedures specific to individual screens should
be in modules that are included by the screens to which they refer.

It is suggested that you maintain JPL code in libraries for the following reasons:

! Library JPL is independent of a given screen binary, so it is available to any
application and its screens.

! Library JPL can be put under source control. (Refer to page 10-4, “Maintaining
Libraries Under Source Control.”)

! It is easier to locate and update library JPL than code that is embedded in a
screen or widget.

! For JetNet/Oracle Tuxedo applications, if the library resides on a file access
server, its JPL is accessible to other Panther developers, and subject to the
safeguards of Panther libraries. (Refer to Chapter 10, “Accessing Libraries.”)

Transaction Manager Initialization

The transaction manager is initialized only once for a given screen. You can issue
transaction manager commands such as SELECT (via sm_tm_command) only after this
step is complete. Thus, it is an error to issue this or any other transaction manager
command in a screen's unnamed procedure. Use a later stage of screen open processing
to issue these commands—for example, the screen's entry function.
Application Development Guide 17-7

Screen and Widget Events
To disable transaction manager initialization, set the screen's Root property to None.

Screen Automatic and Entry Functions

A screen's automatic function and entry function are called successively on screen
entry:

! The automatic screen function written in C must be specifically installed via the
source file funclist.c. This function is called automatically on all screen
entry and exit events. For more information about installing automatic screen
functions, refer to page 44-13, “Installation of an Automatic Screen Function.”

If the screen function is written in Java, the Java Tag property must specify
either a screen-specific Java class, which would access a corresponding Java
function, or the default screen Java class, which would access the screen entry
processing in the current class factory. For more information about writing Java
functions, refer to Chapter 21, “Java Event Handlers and Objects.”

! The screen entry function is explicitly named in the screen's Entry Function
property. You can write screen entry functions in JPL, in C, or in Java. If
written in C, a screen entry function must be installed either as a demand screen
function (refer to page 44-13, “Installation of Demand Screen Functions”) or as
a prototyped function (refer to page 44-9, “Installing Prototyped Functions”).
Because they are explicitly named, you can write multiple entry functions that
are individually tailored to specific screens. Screen entry functions are typically
used for processing that should occur every time a screen opens or is exposed.

To write screen functions in Java, you must specify an event handler class for
the screen in the Java Tag property. If a screen has both the Java Tag and Entry
Function properties specified, both types of processing will occur; first the Java
event handler, then the named function.

Panther always executes the automatic and named entry functions on screen open. It
also executes these functions on screen exposure if the setup variable
EXPHIDE_OPTION is set to ON_EXPHIDE (the default). If so, the screen's automatic and
entry functions are the first events to occur on screen exposure.

Panther automatically supplies two arguments to screen functions: the screen's name;
and an integer bitmask that indicates the screen's current state and why the function
was called. (For information on using these arguments in a JPL procedure, refer to
page 19-3, “Passing Standard Arguments to JPL Procedures.”) Screen functions can
use these arguments to control execution that is specific to a given screen; or (more
17-8 Understanding Application Events

Screen and Widget Events
typically) to distinguish between screen event types.Panther provides three mnemonics
that can be bit-wise AND'ed with the context argument to determine which screen
event caused the screen function to be called:

! context & K_ENTRY — screen entry

! context & K_EXIT — screen exit

! context & K_EXPOSE — screen hidden or exposed

! context & (K_EXPOSE | K_APP_FOCUS) — Windows application has lost or
gained focus. This only happens when the property
@app()->hook_app_focus_change is set to PV_YES (Panther 5.20 and later).

For example, the following screen function code tests whether the function is called on
screen open or screen exposure:

int scr_entry_func(char *scr_name, int context)
{

if(context & K_ENTRY)
{

if(context & K_EXPOSE)
{

// expose processing
}
else
{

// open processing
} } }

The following example tests if the screen is being opened for the first time, instead of
just being exposed:

int scr_entry_func(char *scr_name, int context)
{

if !(context & K_EXPOSE)
{

// only the first screen open processing
} }

LDB Write-through

Panther screens can be used as vehicles for initializing and saving values on other
screens. A screen that performs this background role is called a local data block, or
LDB. When a screen serves as an LDB, Panther uses its data input widgets, or LDB
Application Development Guide 17-9

Screen and Widget Events
entries, to transfer data to and from corresponding widgets on the current screen.
Panther matches LDB entries and screen widgets by name. By using LDBs,
applications can transfer data between screens automatically.

LDB write-through occurs on both screen open and expose events. No hook is
provided to intervene in this process; however, it is important to know that any attempt
before this step to set a screen widget's value is actually written to the corresponding
LDB entry and so might overwrite any previous value in it. Note also that on screen
open, the LDB respects initial widget data that is specified through the screen editor—
for example, the value set in a push button's Label property. Initial widget data also is
written to the corresponding LDB entry.

For more information about LDB processing, refer to page 25-7, “Using Local Data
Blocks.”

Clearing of Valided and Mdt Properties

Panther provides two widget-level runtime properties, valided and mdt, which are
automatically cleared (set to PV_NO) on screen open for all data input widgets. In other
words, when the screen first opens, all data input widgets are regarded as requiring
validation and as unmodified.

A widget's valided property remains clear until it passes validation. This sets the
valided property to PV_YES until the widget's data changes again.

A widget's mdt property remains clear until its data changes. Thereafter, the widget's
mdt property is set to PV_YES unless it is explicitly cleared, either individually or with
all data input widgets on the screen by a call to sm_cl_all_mdts.

No hook is provided to intervene in this processing; however, it is important to know
that Panther sets these properties after the screen's automatic and entry functions
execute and LDB write-through occurs—in other words, after the stages in which
widget data is typically initialized, either from a database or LDBs. So, Panther marks
as potentially invalid widgets whose initial data is probably valid. By testing both the
valided and mdt properties, you can determine whether a widget actually requires
validation.

For more on using the valided and mdt properties, refer to “Field Validation” on page
17-14 and “How to Validate All Screen Widgets” on page 17-20.
17-10 Understanding Application Events

Screen and Widget Events
Field Automatic and Entry Functions

The automatic field function and a field's own entry function are called successively
on field entry. The automatic field function is called on all field events; a field's entry
function is named in the field's Entry Function property and is there fore specific to that
field and event. Field entry functions are typically used for processing that should
occur every time a given field gains focus.

For more information about automatic field functions, refer to “Field Functions” on
page 44-14; for more about field event functions, refer to “Event-specific Functions
and Arguments” on page 17-13.

Input Stack Processing

Just after Panther opens the keyboard and before it displays the screen to the user, it
checks the input stack for unprocessed keys; if any are found, it pops them off the stack
and processes them. You can push keys onto the input stack earlier during screen entry
by calling jm_keys. Because application keys can be associated with control strings
through a screen's Control Strings property, the input stack can be used to defer any
processing that cannot safely be called earlier during screen entry, such as calls to open
a screen.

For example, on application startup you might want to display a login screen that
appears simultaneously with the application's base screen and overlays it. As noted
earlier, a screen should never try to open another screen until its own open processing
is complete. You can implement this behavior in two steps:

1. In the base screen's Control Strings property, attach the appropriate control string
to an unused application key. For example:

APP1 = &login.scr

2. At an appropriate stage of the base screen's entry processing, enter this
statement:

call jm_keys APP1

Because a login screen appears only at application startup, this call should be
made at a stage of the base screen's entry processing that is not repeated on later
exposures of the same screen. The unnamed procedure of a module that the
base screen makes public (in its own unnamed procedure) executes only once,
so it should issue the call to open the login screen.
Application Development Guide 17-11

Screen and Widget Events
Now, when the application starts and opens its base screen, the call to jm_keys pushes
APP1 onto the keystack, where it remains until the keyboard opens; Panther pops
APP1 off the keystack and in doing so executes APP1's control string and opens the
login screen as a stacked window. This done, Panther draws the display and shows
both screens as if they opened simultaneously, with login.scr as the topmost, active
window.

Frameset Events

Frameset event processing is described in “Cursor Movement and Window
Management using Framesets” on page 17-7 in Using the Editors.

Widget Events

Fields, or data entry widgets, can undergo three events: entry, validation, and exit.
Dynamic labels are the exception to field event processing; since dynamic labels
cannot be entered, they only have validation events.

The following widget types are not fields, so other exceptions in event processing
apply:

! Widget types that have no data content and cannot gain focus have no event
processing: boxes, lines, static labels, graphs, links, and table views.

! A grid widget or a selection group have no data—the data that appears in these
containers actually belongs to their member widgets—so it is not subject to
validation; however, these containers can be entered and therefore have entry
and exit events. In addition, grid widgets have row entry and exit events.

! Tab cards are not fields; however, the tabs that can be used to select a given
card are fields and support entry, validation and exit events.

Panther provides various properties that let you control entry, validation and exit
processing; properties that are specific to each event are described in later sections. All
three events share these features:
17-12 Understanding Application Events

Screen and Widget Events
Automatic Field Function

All fields initially call the automatic field function if one is installed. The automatic
field function must be written in C, and it must be installed via the source file funclist.c.
For more information about installing an automatic field function, refer to page 44-14,
“Field Functions.”

Event-specific Functions and Arguments

Almost all widgets provide properties that let you name functions to execute on
specific events—Entry Function, Validation Func, and Exit Function. Some widget
types have a Control String property, which can name a function to execute on
validation events.

The functions that you name in these properties can be written in JPL, in C, or in Java.
If written in C, the function must be installed either as a demand field function
(applicable only to data input widgets or as a prototyped function. Because they are
specified using individual properties of a given widget, you can write functions that are
tailored to specific widgets or events. For example, a function that should execute
every time a widget gains focus should be attached to that widget's Entry Function
property. For more information, refer to “Installation of Demand Widget Functions”
on page 44-20 and “Installing Prototyped Functions” on page 44-9.

If written in Java, the Java Tag property must specify the Java event handler. If a
widget has both the Java Tag and Entry Function properties specified, both types of
processing will occur; first the Java event handler, then the named function. For more
information, refer to Chapter 21, “Java Event Handlers and Objects.”

Panther automatically supplies four arguments to any event function that is specified
for a data input widget:

! Field number.

! Field value.

! Occurrence number.

! An integer bitmask that indicates the field's validation state and why the
function was called.
Application Development Guide 17-13

Screen and Widget Events
Panther supplies these arguments if the event function property contains only the
function's name. The function can use these arguments to control execution that is
specific to a given widget, or to identify widget event types—for example, to
differentiate between close and hide events.

Panther also supplies arguments for grid widgets, selection groups, and tab cards. For
more information, refer to page 19-21, “Calls from Screens and Widgets.”

Field Entry

When a screen opens or is exposed, the first field that can gain focus undergoes entry
processing. Thereafter, a field gains focus either because of user action such as tabbing
or mouse-clicking into it, or through programmatic manipulation—for example, a call
to sm_tab or sm_gofield.

Entry processing for a field can comprise two stages: first, the automatic field function
(if one is installed) executes; then the field's own entry function executes. A field's
entry function is a named function that you set in the field's Entry Function property.
This property is available for all data input widgets such as single line text; it is also
available for grid widgets and selection groups.

Field Validation

When a field loses focus or it is selected or deselected, it undergoes validation
processing unless its no_validation property is set to PV_YES; the default is PV_NO.
Field validation can occur as a result of various events or actions, including the
following:

! The user moves the cursor out of the field by pressing the Tab or Enter key, or
fills a field that has its Autotab property set to PV_YES.

! The user selects or deselects a selection widget, such as a radio button, or one
of the items in an action list box. Selecting an item in an action list box where
another item is already selected causes both the deselected item and the selected
item to undergo validation.

! You programmatically force validation for a given field by calling sm_fval, or
for all fields and their occurrences on a screen by calling sm_s_val or
sm_validate. You typically call sm_s_val or sm_validate in a screen's exit
function, or when you attempt to save screen data.
17-14 Understanding Application Events

Screen and Widget Events
Avoid Unnecessary Validation

Field validation always occurs on the aforementioned events regardless of the widget's
valided property setting. You can avoid unnecessary processing by checking the
widget's validation state in any function that executes during validation. This JPL
function tests the current field's valided property:

proc wdg_valid_func()

if (@widget("@current")->valided)
{

return
}
else
{

//do validation processing
}

As mentioned earlier, Panther sets all widgets' valided property to PV_NO on screen
open; inasmuch as a screen's entry function might initialize these widgets from
database values, the valided setting might not reliably tell whether a widget's data is
valid. In this case, you can also test a widget against its mdt property setting:

proc wdg_valid_func()
vars valid = @widget("@current")->valided
vars modified = @widget("@current")->mdt

if (valid || !modified) //data either valid or unchanged
{

return //no further processing required
}
else
{

//do validation processing
}

Note: You can also test a widget's validation and modified states by bit-wise
AND'ing the VALIDED and MDT mnemonics with the fourth standard
argument received by widget functions, as in this code:

proc wdg_valid_func(fldno, data, occ, context)
if(context & VALIDED || !context & MDT)...
Application Development Guide 17-15

Screen and Widget Events
Properties Tested During Validation

During field validation, Panther tests a field's data against a number of formatting and
input property settings, in the order shown in the following table. Some fields are
skipped if the field is empty or its valided property is set to PV_YES—that is, there is
no data to verify or the data already passed verification.

The JPL in a field's Validation Func and JPL Validation property must return 0 to
indicate success. Other values indicate failure: a return value of 1 leaves the cursor at
its last position; any other non-zero value repositions the cursor at the widget's first
position.

Table 17-1 Properties tested during field validation

Property setting Skip if valid Skip if empty

required = PV_YES y n

must_fill = PV_YES y y

regular_exp = expr y y

minimum_value = value y y

maximum_value = value y y

Check Digit = value* y y

data_formatting = PV_DATE_TIME y y

table_lookup = expr* y y

data_formatting = PV_NUMERIC y y**

Validation Function* n n

Auto Field Function* n n

JPL Validation* n n

calculation n n

*Properties that are not accessible at runtime.
**If the field has a numeric format, the empty_format property also is tested;
refer to “Defining a Numeric Format” on page 10-20 in Using the Editors.
17-16 Understanding Application Events

Screen and Widget Events
Non-validation Events

Field validation does not typically occur when the user uses a cursor key to move out
of the widget, or mouse clicks into another widget. To force validation also to occur
on these events, set the application setup variable IN_VALID to OK_NOVALID. Because
users expect to move freely within a GUI application screen, validation is typically
suppressed until they explicitly submit the screen data—for example, by pressing a
Save push button. Therefore, IN_VALID is by default set to OK_NOVALID.

Field Exit

Exit processing occurs for a field that has focus when the user moves the cursor out of
the field, or the screen closes or is hidden. All methods of moving the cursor out of the
field, including mouse clicking, trigger exit processing. If the exit event is also one that
requires validation processing, exit processing begins only when the widget's valided
property is set to PV_YES.

Exit processing for a field can comprise two stages: first, the field's own exit function
executes; then the automatic field function (if one is installed) executes. A field's exit
function is a named function that you set in the field's Exit Function property. This
property is available for all data input fields such as single line text; it is also available
for grid widgets and selection groups.

Grid Column Label Click

When a widget is a grid member, what happens when its column label is clicked
depends on its Click Column Action property, which can be None, Sort or Custom.

When Click Column Action is Sort, the Sort Order should be set. The order can be
Lexicographic for an alphabetic sort; Numeric for a numeric value sort; Date/Time
for sort by date and time; and Custom to allow you to use your own sort function. The
Sort Order Func property names this function. It can be written in JPL or can be
installed as a prototyped function. The function is passed two strings to compare. The
return value should be COMPARE_LESS if the first string is less than the second,
COMPARE_EQUAL if the two strings are equal, COMPARE_GREATER if the first string is
greater than the second or COMPARE_ERROR if an error has occurred.

When Click Column Action is Custom, a Column Click Func can be specified that will
be called when the widget’s column label is been clicked. This function can be written
in JPL or can be installed as a prototyped function. The function is passed the object
ID of the widget. Its return is ignored.
Application Development Guide 17-17

Screen and Widget Events
Tab Control Events

Events occur for the index tab on a tab card and for the tab card itself; the tab deck has
no events. Cards in a tab deck have expose and hide events along with entry and exit
events.

A tab card expose event occurs when a card becomes the topmost card in the deck and
during screen entry for the topmost card in the deck, even if the tab deck is hidden. A
hide event occurs when another card on the deck becomes the topmost card, when the
card is deleted, or when the screen is closed.

When moving to a new topmost card, a card exit event will not precede a card hide
event if a widget outside the tab deck has focus. The following drawing schematically
depicts the events that would occur in this context:

Panther provides three mnemonics that can be bit-wise AND'ed with the context
argument to determine which event caused the tab card's function to be called:

! context & K_ENTRY — tab card entry

! context & K_EXIT — tab card exit

! context & K_EXPOSE — tab card exposed
17-18 Understanding Application Events

Screen and Widget Events
If all three bits are clear, the tab card hide event was called. For more information, refer
to page 44-24, “Tab Control Functions.”

Screen Exit

Screen exit occurs when a screen closes or is hidden by another screen. Because an
application typically ends by closing the screen that is its base form, exit processing
for this screen can perform any cleanup that the application requires, such as closing
database or middleware connections. Screen hide events occur when a screen loses
focus to another screen, or invokes a report by calling the runreport command. Screen
hide events are a subset of close events.

When a screen closes or is hidden, the following events occur:

1. Exit processing for the current widget, as described on page 17-17 under “Field
Exit.”

2. LDB write-through. All widget data is written to corresponding entries in active
LDBs.

3. Screen exit function executes. The screen exit function, like the screen entry
function, is a named function; specify the function in the screen's Exit Function
property. Screen exit functions are typically used for processing that should
occur every time a screen is hidden or closed.

The functions that you name in these properties can be written in JPL, in C, or
in Java. If written in C, a screen entry function must be installed either as a
demand screen function or as a prototyped function. Because they are explicitly
named, you can write exit functions that are individually tailored to specific
screens.

To write screen functions in Java, you must specify an event handler class for
the screen in the Java Tag property. If a screen has both the Java Tag and Entry
Function properties specified, both types of processing will occur; first the Java
event handler, then the named function. Panther automatically supplies the same
two arguments to screen exit functions that it supplies to screen entry functions.

4. Automatic screen function executes as described earlier. This function must be
written in C.

5. Transaction manager closes (only on screen close).
Application Development Guide 17-19

Screen and Widget Events
Note: Panther always executes the screen's automatic screen function and the
screen's named exit function on screen close. It also executes these functions
on screen expose if setup variable EXPHIDE_OPTION is set to ON_EXPHIDE (the
default).

Screen Exit Processing

Screen exit processing often tests widget data, either by forcing validation processing
or by testing whether widget data has changed. However, you should not open another
screen during screen exit.

How to Validate All Screen Widgets

Call sm_s_val or sm_validate which traverses the screen, testing each widget
occurrence and setting its valided property to PV_YES. If it encounters an occurrence
with invalid data, the function returns, posts an error message, and positions the cursor
there. The valided property remains unchanged for all untested widgets.

How to Test Screen Data Changes

Call sm_tst_all_mdts which checks the mdt property for each data input widget
and its occurrences. When the function encounters an occurrence that contains
modified data, it returns with information that identifies the widget and occurrence
number. For example, the following function alerts users to changed data on the
current screen:

int dataChanged()
{

int fldno, occ, wdg;
char *nm;

fldno = sm_tst_all_mdts(&occ);
if(fldno >= 0)
{

// get the widget's name
wdg = sm_prop_id("@field_num(fldno)");
nm = sm_prop_get_str(wdg, PR_NAME);
if (sm_message_box

 ("New data in "##nm##" field--Continue?",
 "", SM_MB_YESNO) == SM_IDNO)

return sm_o_gofield(fldno, occ);
}

17-20 Understanding Application Events

Screen and Widget Events
return 1;
}

Because sm_tst_all_mdts is not callable from JPL, you must either use it in a C
function, or write a wrapper function that you install as a prototyped function and call
from JPL. Alternatively, you can write JPL code that traverses all screen widgets and
test each one's mdt property, as in this example:

proc tst_mdts()

vars nextObj, answer, wdg, ctObjs, occ, wdgOccs, nm
vars objList = sm_list_objects_start(@screen("@current")->id)

if(objList > 0)
{
 // get the number of widgets on screen
 ctObjs = sm_list_objects_count(objList)

 // start traversal
 for wdg = 1 while wdg <= ctObjs
 {
 nextObj = sm_list_objects_next(objList)
 nm = @id(nextObj)-> name

 // get all the occurrences of this widget
 wdgOccs = @id(nextObj)-> num_occurrences

 // test mdt property of each widget occurrence
 for occ = 1 while occ <= wdgOccs
 {
 if(@id(nextObj)[occ]-> mdt)
 {
 if (sm_message_box \
 ("New data in "##nm##" field--Continue?",\
 "", SM_MB_YESNO) == SM_IDNO)
 {
 call sm_o_gofield \
 (@id(nextObj)->fldnum, occ)
 return 0
} } } } }
return 1

Closing Screens

The following actions close a screen:
Application Development Guide 17-21

Programming User-initiated Events
! Choosing Close on the system menu.

! Calling jm_exit in a function or control string.

If you call jm_exit in a JPL procedure, no other JPL programming should
follow that statement. Otherwise, this subsequent programming will execute on
the underlying screen in the stack.

! Pressing the EXIT key with its default setting.

By default, the EXIT logical key is set to call jm_exit, which means that
pressing Esc on most terminals closes the screen. However, if a control string is
defined for the EXIT key, Panther executes the control string instead of calling
jm_exit.

Exiting an Application

You can exit an application by:

! Closing the final screen in the form stack.

! Pressing the CLAPP key.

CLAPP is the Panther logical key that closes an application. For example, the following
control string attached to the final screen calls jm_keys to issue the CLAPP key and a
Y response to the termination message:

^jm_keys CLAPP 'Y'

Programming User-initiated Events

Table 17-2 lists common user-initiated events and the associated event hooks where
application processing can be specified. This table references many widget events
described on page 17-12, under “Widget Events.”
17-22 Understanding Application Events

Programming User-initiated Events
Table 17-2 Typical user events and their associated event hooks

Key/mouse events Best event hook Alternate event hooks

User enters grid Grid Focus→Entry Function
property

Widget Focus→Entry Function
property of a grid member
Widget Validation→Control String
property of a listbox in the grid
Widget Validation→Validation
Function property of a listbox in the
grid

User enters text widget Widget Focus→Entry
Function property

Default field function

User enters text keyfilter routine logical keys that are mapped to
physical keys

User clicks on push button Widget Validation→Control
String property

Widget Validation→Validation
Function property
Widget Focus→Entry Function
property

User enters list box (Select
Any)

Widget Focus→Entry
Function property

Group Validation→Validation
Function property of listbox' group
Group Focus→Entry Function
property of listbox' group

User enters list box
(Action)

Widget Validation→Control
String property

Widget Validation→Validation
Function property
Widget Focus→Entry Function
property

User double clicks Widget Validation→Double
Click property

Screen Focus→Control String
property—MOUS/MDBL
Application Development Guide 17-23

Transaction Manager Events
Transaction Manager Events

The transaction manager generates a series of events in order to fetch database data,
track any modifications to that data, and update the database with any modifications.
The events are divided into two levels: requests and slices.

When you call a transaction manager command, such as VIEW or SAVE, the transaction
manager generates that command's requests. For the VIEW command, the request
events would be PRE_VIEW, VIEW, and POST_VIEW. The transaction manager then
accesses the transaction model to determine what processing to perform for each
request. Since a single request could have several steps, each request can be
sub-divided into slices. The transaction model also determines the processing
necessary for each slice.

For more information on transaction manager operations, refer to Chapter 31,
“Building a Transaction Manager Screen.” For descriptions of transaction manager
commands and their requests and slices, refer to Chapter 8, “Transaction Manager
Commands,” in Programming Guide.

User leaves field Widget Focus→Exit Function
property

Widget Validation→Validation
Function property
Widget Focus→Entry Function
property of next/previous field

User leaves grid Grid Focus→Exit Function
property

Widget Focus→Exit Function
property of a grid member

User clicks grid column Widget Format/Display->Sort
Order Func

Widget Format/Display->Column
Click Func

User does nothing timeout function timer function

Table 17-2 Typical user events and their associated event hooks (Continued)

Key/mouse events Best event hook Alternate event hooks
17-24 Understanding Application Events

Database Interface Events
Database Interface Events

Database requests can generate errors that are reported by Panther's database drivers
and the database engine itself. Panther provides global variables and hook functions
that can help identify and manage these errors. Default error handlers are installed to
report errors from Panther's database drivers and from the database engine. You can
also write and install your own error handlers. With the JetNet/ Oracle Tuxedo
middleware adapter, these errors can be logged to your application server.

For full information about database error handlers, refer to Chapter 37, “Processing
Application Errors.”

Web Application Events

The online Web Development Guide describes the events that occur at runtime for a
Panther web application. For more information, refer to Chapter 5, “Web Events,” in
Web Development Guide.

You can also include JavaScript or VBScript programming in your client screens for
events occurring in the web browser. For more information, refer to Chapter 9, “Using
JavaScript and VBScript,” in Web Development Guide.
Application Development Guide 17-25

Middleware Events
Middleware Events

In three-tier applications, the type of middleware determines the specification and type
of events.

JetNet and Oracle Tuxedo Events

In JetNet and Oracle Tuxedo applications, events have been defined for service
requests and as those events occur, they are forwarded to handlers for processing.

Panther provides built-in event handlers for all middleware event types. You can also
write and install your own handlers in JPL or C. These handlers can perform all
required processing on their own, or they can call the built-in handlers and overlay
these with desired enhancements.

The following table lists event types for JetNet and Oracle Tuxedo applications:

Event type Description

advertise A service has been advertised

exception An error or unusual change in the normal flow of program execution

JIF_changed The JIF has been changed

message A client receives an unsolicited message

post_request A service request is completed

post_service A service completes execution

pre_request A service request is initiated

pre_service A service is about to begin execution

request_received A service request is received by the server
17-26 Understanding Application Events

Middleware Events
Middleware events in JetNet and Oracle Tuxedo applications occur independently of
screen and field events and transaction management events; however, their handlers
can initiate actions that themselves precipitate events of these types. For example, an
exception handler might respond to an error by aborting a service request, which in
turn causes the transaction manager to report an error.

For more information about JetNet/Oracle Tuxedo event types and their handlers, refer
to Chapter 6, “JetNet/Oracle Tuxedo Event Processing,” in JetNet Guide/Oracle
Tuxedo Guide.

server_exit A server is brought down in an orderly fashion

unadvertise A service has been unadvertised

unload Data is received from an external source that can be written
(unloaded) to Panther variables

Event type Description
Application Development Guide 17-27

Middleware Events
17-28 Understanding Application Events

CHAPTER
18 Programming
Control Strings

User interaction with an application generally consists of entering data and making
choices with function keys and menus, and with action widgets such as push buttons.
You associate actions with these application objects through control strings.

Control strings can perform these tasks:

! Open a screen as a form or window.

! Execute a function.

! Invoke an operating system command.

For a table for user-initiated events, refer to Table 17-2 on page 17-23.

Associating Control Strings with the
Application

A Panther application has various hooks from which it can execute control strings. You
can associate control strings with push buttons, list boxes, and menu items through
their Control String property. Some widget types can be double-clicked on; their
Double Click property also takes a control string: dynamic labels, single- and multiline
Application Development Guide 18-1

Associating Control Strings with the Application
text widgets, list boxes, and combo boxes. For example, a push button widget specifies
to exit the current screen when it is pressed if its Control Strings property is set to
execute the built-in function jm_exit:

^jm_exit

You can also attach control strings to function keys. Each screen has its own Control
Strings property, which lets you list Panther logical keys and a corresponding control
string. For example, the following control string list lets users open two screens as
windows through the logical keys PF1 and PF2, and leave the current screen through
EXIT:

PF1 = &custInfo
PF2 = &orderDetail
EXIT = ^jm_exit

You can globally associate control strings with function keys at application startup
through the setup variable SMINICTRL. For example, the following statement in your
setup file globally associates the EXIT key with your own exit routine:

SMINICTRL = EXIT = ^myExit

Control String Types

Panther uses the leading character of a control string to determine what type of action
to perform—whether to open a screen, execute a function, or invoke a system
command. Table 18-1 summarizes these leading characters and actions.

Table 18-1 Control string types and leading characters

Character Action Example

None Open screen as a form. mainmenu

& Open screen as a stacked window. &(5,20)status

&& Open screen as a sibling window. &&(5,20)status

^ Execute C function or JPL
procedure.

^drop acctno

! Invoke operating system
command.

!ls "*.jpl"
18-2 Programming Control Strings

Displaying Screens
The following sections explain each type in detail.

Displaying Screens

A control string can open a client screen as a form, as a stacked window, or as a sibling
window. Control strings that open screens have the following syntax:

*[leadChar] [(viewportArgs)] screenName

If you omit leadChar, Panther opens the screen as a form. A single ampersand (&)
opens the screen as a stacked window, while a double ampersand (&&) opens it as a
sibling window.

Refer to Chapter 13, “Developing Client Screens,” and Chapter 24, “Setting the
Screen Sequence,” for more information about how Panther manages screens as forms
and windows.

Search Path

Panther looks for the named screen in the following places in this order:

! The memory-resident screen list.

! All open libraries.

If all searches fail, Panther displays an error message and returns.

Viewport Arguments

You can optionally specify arguments for the screen's viewport—that is, the window
in which the screen is displayed. Viewport arguments determine the screen's position
on the physical display, the viewport's dimensions, and the offset of the screen's
contents within its viewport as follows:

(row, col, len, width, vRow, vCol)
Application Development Guide 18-3

Displaying Screens
Note: All viewport arguments are optional. However, if you specify any one
argument, you must supply all leading arguments; trailing arguments are
optional.

row, col

The position of the viewport's top left corner on the physical display, where
row and col are one-based offsets from the physical display's top left corner.
The physical display excludes any area already used either by the screen
manager, such as a base window border, or by the application's menu bar.
Thus, arguments of 1,1 start the screen at the first line and leftmost column
that are available.

Signed integer values (negative or positive) specify the viewport's position
relative to the previously active screen. For example, the following control
string invokes newWindow.scr as a sibling window whose viewport is two
rows higher and two rows left of the current screen's viewport:

&&(-2,-2)newWindow.scr
If the window does not fit on the display at the specified location, Panther
adjusts it as needed. Panther does not allow viewports to be positioned
completely offscreen.

len, width

The viewport's dimensions in rows and columns. A value of 0 or less
specifies to use the screen's actual dimensions if the physical display is large
enough. Note that the border is counted as part of the screen.

vRow, vCol

The row and column of the screen to display on the viewport's first row and
column.

If you specify vRow or vCol, the cursor appears in the upper-left corner of the
viewport, whether or not a field is there. The cursor responds to the cursor
keys until it encounters an unprotected field, or the TAB key is pressed. When
it is in a field, the cursor uses the normal tabbing order among fields.

Table 18-2 contains several examples of control strings that open screens.

Table 18-2 Control strings that open screens

Control string Action

mainmenu Open mainmenu as a form at the physical
display's top left corner.
18-4 Programming Control Strings

Executing Functions
Executing Functions

A control string that executes a function has the following syntax:

^ [(targetString [; targetString])] funcName [(arglist)]

funcName

The name of an installed or built-in function or a JPL procedure or module.
An installed function can be one of Panther's library functions or your own.
For information about function installation, refer to page 44-5, “Installing
Functions.” Built-in functions are preinstalled in Panther and begin with the
prefix jm_. For descriptions of built-in functions, refer to Table 18-4 on page
18-7 or Chapter 3, “Built-in Control Functions,” in Programming Guide.

Panther looks first among the installed functions for funcName, then among
the JPL procedures modules. For detailed information about this search
algorithm, refer to page 19-24, “Precedence of Called Objects.”

The function must return an integer. If the integer corresponds to the value of
a Panther logical key, then that key is processed. For example, if a function
returns PF4, then Panther behaves as if PF4 had been pressed by the user. The
function should return 0 if there is no key to process.

arglist

One or more arguments to pass to parameters in funcName. Arguments for
installed functions—Panther library functions and your own—must be

&(5,20)custInfo Open custInfo as a stacked window at row 5,
column 20 of the physical display.

&&(1,1,10,40,5,5)detail Open detail as a sibling window in a 10 row x 40
column viewport at the physical display's top left
corner. Row 5, column 5 of the screen is initially
displayed at the top left corner of the viewport.

Table 18-2 Control strings that open screens

Control string Action
Application Development Guide 18-5

Executing Functions
enclosed in parentheses and delimited by commas or spaces. Arguments
supplied to the built-in function jm_keys should not be enclosed in
parentheses.

targetString

The control string can optionally test the return value against one or more
semicolon-delimited target strings. Each target string has this syntax:

[testValue =] controlString

Panther compares funcName's return value to each testValue, reading from
left to right. If it finds a match, it processes the specified control string. If you
omit a test value, Panther processes the control string unconditionally. The
control string can itself contain a JPL call with its own target strings; you can
thereby nest multiple control strings with recursive calls.

For example, given this control string:

^(-1=^(^jm_exit)cleanup; 1=&welcome_scr)process

Panther processes the string as follows:

1. Calls the JPL module or procedure process.

2. Evaluates the return value from process to determine its next action:

" If process returns -1, Panther executes cleanup. When cleanup returns,
the built-in function jm_exit is called.

" If process returns 1, Panther opens the welcome_scr screen.

Table 18-3 shows several control strings that call functions:

Table 18-3 Control strings that call functions

Control string Action

^verify(name,idnum) Execute the user-written function verify, passing
variables name and idnum as arguments.

^sm_cl_unprot() Execute the library function sm_cl_unprot.

^jm_exit Execute the built-in function jm_exit.
18-6 Programming Control Strings

Executing Functions
Using Built-in Functions

Table 18-4 lists a summary of the built-in functions. For detailed information on each
function, refer to Chapter 3, “Built-in Control Functions,” in Programming Guide.

Note: The control string jm_keys XMIT when attached to a push button causes an
infinite loop, This occurs because the act of pressing XMIT actually activates a
push button.

Table 18-4 Built-in function summary

Function Description

jm_exit Close active screen and return to previous
screen.

jm_gotop Return to the top level screen.

jm_goform Open a window that prompts for the name
of a screen to display.

jm_keys logicalKey/strings Place the specified Panther logical keys on
the keyboard input queue, to be processed
by Panther as if each logical key were
pressed in order.

jm_system Open a window that prompts for a
program to be executed by the operating
system.

jm_winsize Allow user to interactively resize a screen.
Application Development Guide 18-7

Invoking Operating System Commands
Invoking Operating System Commands

A control string that starts with an exclamation point (!) temporarily passes control to
the operating system. At runtime, Panther passes the string after the exclamation point
to the operating system for execution. After program execution is complete, control
returns to the application.

Note: In character-mode, Panther displays a message that the user must acknowledge
before control returns to the application.

If you include variables in the control string, they must be prefixed by a colon(:).
Panther's colon preprocessor expands colon-prefixed variables to their literal values
before passing the string to the operating system.

Table 18-5 shows several operating system control strings:

Table 18-5 Control strings that call system commands

Control String Action

!ls Display a directory listing.

!vi "newdoc" Invoke vi to edit newdoc.

!rm :rmData Remove the file whose name matches the contents of
variable rmData.
18-8 Programming Control Strings

CHAPTER
19 Programming in
JPL

JPL is an interpreted language with a C-like syntax. Because you can write and edit
JPL code within the editor, you can write and execute procedures without interrupting
your development work flow. You can also write JPL procedures directly to a library
and call them via event-type properties provided in the Properties window for screens
and widgets. Use JPL for rapid prototyping and later rewrite the procedures in C. Or
leave the code unchanged; JPL can get most jobs done quickly and efficiently.

JPL Modules and Procedures

JPL modules contain one or more procedures written in JPL. You create modules
through Panther's own JPL editor (described on page 19-14 under “Writing JPL in the
Editor”) or in a text editor. Screen modules are created through the Focus→JPL

Procedures property; widget modules through the Validation→JPL Validation

property; and report modules through the Inclusions→JPL Procedures property.
Widget, screen and report JPL modules are saved in the screen binaries; Panther
automatically reads these at the appropriate stage of program execution. You can also
create library modules directly in the editor workspace. For faster access, you can
install library modules in the application's memory-resident list.
Application Development Guide 19-1

JPL Modules and Procedures
Module Structure

A module contains one or more procedures. The first procedure of a module can be
unnamed. All subsequent procedures are named through JPL's proc command. For
example, the following module has two procedures; the first is unnamed, the second
named warning:

if actual_cost > forecast_cost
 call warning()

proc warning()
msg emsg "Value exceeds budget forecast."

Unnamed and named procedures are different in two ways:

! A module's named procedures must be called explicitly, while a module's
unnamed procedure is called automatically at specific events of program
execution. Read “Calls” on page 19-19 to learn how JPL calls named and
unnamed procedures.

! Variables that you declare in the unnamed procedure are visible to all
procedures in the same module, while variables in a named procedure are
visible only to that procedure. You typically declare variables in an unnamed
procedure in order to initialize them and make them accessible to all named
procedures in the same module.

Refer to Figure 19-1 on page 19-7 to view a sample JPL module.

Parameters

The proc command can specify parameters that receive arguments passed by the
procedure's caller. You specify parameters as a comma-delimited argument list within
parentheses. The procedure's caller can pass in constants, global constants, variables,
or colon-expanded variables as arguments. Panther passes arguments by value—that
is, the called procedure gets its own private copies of the values in the calling
procedure's arguments. This means that the called procedure cannot directly alter
variables in its caller; it can only alter its own copies.

For example, the earlier warning procedure is modified below; it now expects its
caller to supply two arguments that are copied to actual and forecast. A more
informative message is produced by using the colon-expanded values of these
variables:
19-2 Programming in JPL

JPL Modules and Procedures
if actual_cost > forecast_cost
call warning(actual_cost, forecast_cost)

proc warning (actual, forecast)

vars diff = actual - forecast

msg emsg "Value in :actual exceeds budget forecast by $:diff"

Passing Standard Arguments to JPL Procedures

If a procedure is called as an event function for a widget or screen—for example, as a
screen's exit function—and the function name omits parentheses, Panther
automatically passes standard arguments to the procedure. These arguments indicate
the current status of the widget or screen. Their number and type vary; for example,
two arguments are passed for screens, four for widgets, and three for grid widgets. The
procedure's proc statement must contain the appropriate number of parameters in
order to receive these arguments.

For example, you might define the following procedure in a screen's JPL module in
order to handle grid data:

proc gridProc(basefld, occ_no, status)

You can set gridProc in any of several grid properties. When Panther calls this
procedure at runtime, it sets parameters basefld, occ_no and status with the three
standard arguments associated with grids. So, if a grid's Row Entry Function
(row_entry_func) property contains the string gridProc, Panther calls the
procedure each time the cursor enters a new row and sets its three parameters to the
grid's base widget number, the number of the current occurrence, and an integer
bitmask that describes why the procedure was called.

Note: Precedence is always given to arguments that are specified in the property
string. For example, if a grid widget's Entry Function property contains the
string gridEntry(val), Panther supplies the contents of val to procedure
gridEntry. If arguments are explicitly omitted through empty parentheses (),
Panther does not supply the standard arguments.

The unnamed procedure of the module for a screen or widget module is always
supplied standard arguments that indicate the current status of the screen or widget. To
receive these arguments, the unnamed procedure must have a parms statement.
Application Development Guide 19-3

JPL Modules and Procedures
For more information about the standard arguments available for screens and widgets,
refer to page 19-21, “Calls from Screens and Widgets.” The parms command
description shows how to declare parameters in an unnamed procedure.

Return Types

An unqualified proc command returns an integer value. You can specify to return a
string or double precision value by qualifying the proc command with the keywords
string or double, respectively. For example, the following sequence of statements
passes data from variables data1 and data2 to procedure process_input, which is
defined to return a double precision value. This return value is used to determine
whether the if statement evaluates to true or false:

if process_input(data1, data2) > 0.16667
...

double proc process_input(d1, d2)
vars retval
//process d1 and d2 values
return retval

Procedure Execution

Procedure execution begins with the first statement of the procedure and continues to
the end of the procedure, or until a return statement executes. If an execution error
occurs, Panther aborts execution of the current procedure, posts an error message, and
returns to the procedure's caller. In all cases, a procedure returns to its caller when
execution ends.

Panther interprets each physical line as a separate statement, unless the line ends with
the backslash (\) continuation character. JPL physical lines can be up to 253 characters
in length.

Control Flow Statements

By default, Panther executes JPL procedures sequentially from start to finish. You can
use JPL's if, else, for, while, switch, case, default , break, and next
statements to manipulate the order of statement execution. JPL has no limit to how
many levels deep you can nest control flow statements.
19-4 Programming in JPL

JPL Modules and Procedures
Conditional and loop statements (if, else, for, while, switch) allow curly braces
{ } as blocking characters so you can conditionally execute multiple statements. Each
blocking character must have its own line except to specify a null statement—{}. If
you nest multiple blocks, make sure that all block characters are paired correctly.

The following example shows an if statement that contains a block of two statements:

if cost > 1000
{
 exceptions = exceptions + 1
 msg emsg "The cost is very great."
}

A left and right brace on the same line indicate a null statement. In the following
example, the for statement keeps count while testing a condition. Because no other
statements are required, the for block consists of a null statement:

for i = 1 while str(i, 1) != " "
 { }

Included Modules

Panther procedures (including the unnamed procedure) can contain include
statements that specify a JPL library module. At runtime, Panther compiles and inserts
this module within the calling procedure before execution begins.

Include statements have the following syntax:

include module

where module is any JPL library module. The included module can also contain its
own include statements. You can nest up to eight include statements.

Panther looks for module in this order:

1. Memory-resident modules.

2. Library module in all open libraries.

Comments

You can enter commented text in JPL in three ways:

! Prefix the commented string with two slash (//) characters. JPL treats all
remaining text on that line as a comment.
Application Development Guide 19-5

JPL Modules and Procedures
! Enclose the commented string with the block specifiers /* and */. JPL treats
all text within this block as a comment. Use /* */ comment characters to
comment contiguous lines of text.

Note: You cannot embed comments within a line of code; all text on a line that
follows a comment character, including */, is ignored at runtime.

! Begin the line with a pound (#) character. JPL treats the entire line as a
comment.

Note: The # character must be the first non-blank character of a line in order to
be interpreted as a comment character. If it is embedded within a line, JPL
interprets it as a reference to a widget by number.
19-6 Programming in JPL

JPL Modules and Procedures
Sample JPL Module

Figure 19-1 This sample screen-level JPL module makes a JPL module public
and displays additional options for front desk employees.
Application Development Guide 19-7

Module Types
Module Types

Panther lets you create the following types of JPL modules:

! Widget, screen, and report modules that you create through the editor by way of
their respective JPL properties. These are saved along with their screen or
report binaries.

! Library modules that you can create using the editor or any text editor outside
the editor workspace (and then include it in a library). You can also extract
library modules, convert them to data structures, and install them in the
application's memory-resident list.

! File modules that you can create using any text editor. If desired, these modules
can be compiled with jpl2bin to be in a binary format.

An application's ability to access the procedures in a JPL module depends on its type
and how it is loaded and called. For instance, Panther executes a widget module only
during widget validation. The procedures in this module can only be called by each
other and are invisible to the rest of the program. Conversely, named procedures in
screen modules are available to the entire application while the screen is active.

Panther's ability to access library and memory-resident modules depends on how they
are loaded and called. If you load a module into memory as a public module, its named
procedures are visible to the entire application and can be called directly. If a module
is not public, the library in which it resides must be open and the module can only be
called by its filename; this invokes the module's unnamed procedure. The named
procedures in this module are accessible only through its unnamed procedure.

The following sections describe each module type and how Panther executes it.

Widget Modules

Widget modules are associated with individual widgets. You create and modify widget
modules through the widget's JPL Validation property. This property is available for
most widget types, including grids and groups. When you select this property, the JPL
19-8 Programming in JPL

Module Types
Program Text dialog box opens. You use the dialog box's editing window to enter and
modify JPL code. For more information on using this editing window, refer to
page 19-14, “Writing JPL in the Editor.”

Panther executes a widget module only when it performs validation for the widget. In
the case of data entry widgets such as text widgets, validation occurs when the user
exits via TAB. For push buttons, radio buttons, check boxes, list boxes, and toggle
buttons, validation occurs when the widget is clicked with the mouse or otherwise
activated, for example, by the NL key. Because a widget module is accessible only to
its widget, use it to perform tasks that are specific only to that widget.

The first procedure of a widget module must be unnamed. The unnamed procedure in
a widget module is always this module's entry point. The module can also include
named procedures; however, these can only be called by other procedures in the same
module. When you save the module, the editor automatically compiles it. If an error
prevents compilation, Panther issues a message and returns you to the JPL Program
Text dialog box, where you must correct the error.

Because Panther saves the module as part of the widget, you can view and edit this
module only through the editor. When you copy this widget to another screen or to the
repository, Panther copies the module along with other widget data.

Executing Widget Modules

Panther calls a widget module after it executes the widget's validation function, if one
exists. Panther first executes the module's unnamed procedure and passes the standard
arguments associated with widget processing. For widgets such as single line text
widgets, four arguments are passed that describe the widget and its current status: its
field number, contents, occurrence number, and a set of context-sensitive flags. The
unnamed procedure must have a parms statement in order to receive these arguments.
For more information about arguments for different widget types, refer to page 19-21,
“Calls from Screens and Widgets.”

Screen Modules

Screen modules are associated with specific screens. All the named procedures in a
screen module are available to the application while the screen remains active. You
create and modify screen modules through the screen's JPL Procedures property. When
Application Development Guide 19-9

Module Types
you select this property, the JPL Program Text dialog box opens. You use this dialog
box's editing window to enter and modify JPL code. For more information on using
this editing window, refer to page 19-14, “Writing JPL in the Editor.”

The first procedure of a screen module can be unnamed; an unnamed procedure is
optional. All subsequent procedures must be named. When you save the module, the
editor automatically compiles it. If an error prevents compilation, Panther issues a
message and returns you to the JPL Program Text dialog box, where you can correct
the error.

Because Panther saves the module as part of the screen, you can view and edit this
module only through the editor. If you save the screen as another file or as a repository
entry, Panther copies the module along with all other screen data.

Executing Screen Modules

When you open a screen at runtime, Panther loads all its named procedures into
memory. It then executes the screen module's unnamed procedure, if any. Panther
passes the two standard arguments associated with screen processing to this procedure:
the name of the screen and a set of context-specific flags. The unnamed procedure must
have a parms statement in order to receive these arguments. For more information
about these arguments, refer to page 19-21, “Calls from Screens and Widgets.”

While the screen is active—that is, displayed on top—every named procedure in its
JPL module can be called. You can use these procedures to perform any task required
by the screen.

Panther executes the unnamed procedure only when the screen first opens, after which
it executes the global screen function and the screen's entry function, if any. Panther
does not execute a screen module's unnamed procedure on subsequent exposures of an
already open screen—for example, when a child or sibling screen closes.

Report Modules

Report modules are similar to screen modules; each report module is associated with
a report and saved with the report binary. All named procedures in a report module are
available while the report is running.

Unlike screen modules, all report procedures should be named and can be accessed by
a corresponding call node in the report structure or called as a subroutine by another
process.
19-10 Programming in JPL

Module Types
You create and modify report modules through the report's JPL Procedures property.
When you select this property, the JPL Program Text window opens. For more
information on using this editing window, refer to page 19-14, “Writing JPL in the
Editor.” When you save the module, the editor automatically compiles it. If an error
prevents compilation, Panther issues a message and returns you to the JPL Program
Text window, where you can correct the error.

External Modules

External modules are modules saved to disk in libraries or in a file and are therefore
not saved or associated with any particular Panther screen. You can extract library
modules and install them in the application's memory-resident list. Unlike widget and
screen modules, external modules are available to the entire application at any time.
Panther finds the modules in memory, in open libraries, or on disk. For details on the
search order for library modules, refer to page 19-24, “Precedence of Called Objects.”

External modules are accessible to the application in two ways:

! Call the module by name. Panther executes its first, unnamed procedure. If a
module is not loaded through the public command, its library must be open or
it must be findable along the path set by the SMPATH variable and you must call
the module by name. An unloaded module has only one entry point, its
unnamed procedure.

! Call the named procedures in a public module, that is, a module loaded through
JPL's public command. When Panther loads a public module, it loads the
module's procedures into memory and executes its unnamed procedure, if any.
The application can call any named procedure in a public module until it is
removed from memory through the unload command.

Library Modules

You can create library JPL modules from within the editor (choose File→New→JPL)
or with any text editor (and add them to a library). You can also write the contents of
widget and screen JPL modules to a library, thereby making them accessible to other
screens and to the application as a whole if necessary.
Application Development Guide 19-11

Module Types
File Modules

File modules can be stored in ASCII, in binary, or in an ASCII/binary format. Modules
that are stored as ASCII files are easy to modify and are available to the entire
application. However, because Panther must recompile the module each time it is
called, an ASCII file module also incurs more processing time than screen or widget
modules. To improve performance, precompile the module with jpl2bin. If an error
occurs during compilation, Panther issues an error message and returns to the module's
caller.

Module Compilation

Panther compiles library modules when you save them from within the editor. The
module is saved in binary format and Panther uses this compiled format at runtime. If
the compiler finds syntax errors, it issues a warning and lets you save the module in an
uncompiled format.

The source file is also stored to the library. Library module names should conform to
operating system conventions. For filtering purposes, use a .jpl extension on library
modules that you create within the editor.

You can call a library module only if its library is already open (via sm_l_close or on
startup via the SMFLIBS variable). Panther loads the module into memory each time
you call it.

If you create the JPL module outside of the Panther environment, you can later store
the module in a Panther library. To store a disk file module in an application library,
you can perform either of the following procedures:

From the editor:

1. Be sure a library is open (choose File→Open→Library).

2. Choose File→New→JPL. An untitled JPL dialog box opens.

3. Choose Edit→Read File. The Insert JPL File dialog box opens.

4. Select the desired JPL file and choose OK. The text is inserted at the cursor
position in the JPL editing window.

5. Choose File→Save. The Save JPL Module dialog box opens, where you can
choose the library in which to store the module.
19-12 Programming in JPL

Module Types
From the library table of contents:

1. Compile the module with the jpl2bin utility from the command line (on page
A-20).

2. Be sure a library is open (choose File→Open→Library).

3. Open the Library Table of Contents dialog box (choose View→Library TOC).

4. Choose Add...

5. Select the desired JPL file and choose OK.

From the command line:

1. Compile the module with the jpl2bin utility (on page A-20).

2. Add the module to the library using the formlib utility (on page A-14).

Memory-Resident Modules

You can add a JPL module to an application's memory-resident list. Making a JPL
module memory-resident reduces I/O time. The module is held in memory during the
life of the application; therefore, ample memory might be required to run your
application.

You add a module to the memory-resident list in these steps:

1. Extract the module from its library with formlib.

2. Compile the module with jpl2bin.

3. Convert the binary file to source with bin2c.

4. Install the array with the function sm_formlist.

You must recompile your application after creating or editing a memory-resident list.
For more information on memory-resident lists, refer to page 42-8, “Including
Memory-Resident Components.”
Application Development Guide 19-13

Writing JPL in the Editor
Writing JPL in the Editor

JPL modules are created within the editor:

! Widget and screen modules are accessed through their JPL Validation and JPL
Procedures properties, respectively.

! Report modules are accessed via their JPL Procedures property.

! Library modules can be created and accessed via the File menu.

The JPL modules created through these properties are saved with the screen binary in
an ASCII and binary format. The ASCII version allows you to view and edit the JPL;
the binary version is used at runtime.

Screen- and Report-Level JPL

Selection of the screen and report JPL property invokes the JPL Program Text window,
where you can examine and edit the JPL code currently stored with that property:
19-14 Programming in JPL

Writing JPL in the Editor
Figure 19-2 Create or edit screen-and report-level JPL in the JPL Program Text
dialog box.

Screen- and report-level JPL is compiled and saved with the screen binary. Therefore,
if the JPL compiler detects a syntax error, you must correct the error before you can
save the module. However, you can save it to disk by choosing File→Save

As→ASCII Text File.

When writing or editing screen-and report-level JPL, you can take full advantage of
the editor's File and Edit menu options.

To access the default text editor, choose Editor, or select the Direct to External Editor
option to automatically open the window using the default text editor.
Application Development Guide 19-15

Writing JPL in the Editor
Widget-Level JPL

Figure 19-3 Create or edit widget-level JPL code in the JPL Program Text dialog
box.

Widget-level JPL is compiled and saved with the screen binary. Therefore, if the JPL
compiler detects a syntax error, you must correct the error before you can save the
module. However, you can save it to disk by choosing the Save File button.

Since the widget-level JPL dialog box is modal, you cannot access the editor
workspace menus.

Library Modules

You can create and edit library JPL modules within the editor by opening a library and
then choosing File→New→JPL of File→Open→JPL to access an existing module.
The JPL text dialog box opens.
19-16 Programming in JPL

Writing JPL in the Editor
Figure 19-4 Library JPL modules can be created and updated from within the
editor.

The name of the module and the library in which it resides are displayed in the title bar
in the form: module@library_name.

Use the Edit menu options to copy, cut, and paste text, use File→Save options to save

the module to an open library, or use File→Save As→ASCII Text File to save the
module as a disk file.

The JPL is compiled when you save the module to a library. If the compiler detects a
syntax error, a warning is issued and you can choose to correct the error or save the
module in an uncompiled format (Save As→ASCII Text File) which you can collect
later.

Using Your Own Editor

You can type your JPL directly into the dialog box, or you can invoke your local editor,
for example, Notepad in Windows or vi in UNIX, by choosing Edit→External Editor
(for widget-level JPL, choose the Editor button in the JPL Program Text window). If
Application Development Guide 19-17

Writing JPL in the Editor
the Options→Direct to External Editor option is selected, your preferred text editor is
invoked immediately on entry into the JPL dialog box. The local editor is defined by
the configuration variable SMEDITOR. When you exit the editor, you are returned to the
JPL dialog box, which contains your latest edits.

You can also use your favorite text editor outside of the Panther workspace to write
your JPL modules. Later you can compile the modules and import them to the
appropriate library.

Note: If you exceed the maximum line length of 253 characters, Panther issues an
error message when you try to return to the dialog box and returns you to your
editor to make the necessary corrections.

Inserting JPL To and From Disk

You can write and read code to and from disk files as well. To read a disk file into the
JPL window, choose Edit→Read File (for widget-level JPL, choose the Insert File

button). To save a JPL module to disk, choose File→Save As→ASCII Text File (for
widget-level, choose the Save File button. These invoke the Insert JPL Text File and
save JPL Text File dialog boxes, respectively. When you read a disk file into a module,
Panther inserts its contents at the cursor's current position.

To insert JPL from another library, choose Edit→Insert From Library (for
widget-level, choose the Insert button).

The dialog box accepts line lengths of up to 253 characters. If you try to read from a
file that contains longer lines, Panther copies all text preceding the erroneous line into
the editing window, then issues an error message.

Compiling and Saving

To compile and save a JPL module to its originating library, choose File→Save

As→Library Member (for widget-level, choose the Insert button). If an error prevents
compilation of a library module, a message is issued and you can correct the error or
save the module in an uncompiled format which you can correct later.
19-18 Programming in JPL

Calls
To compile and save screen- and report-level JPL, choose File→Close→JPL (for
widget-level, choose the OK button). If an error prevents compilation while compiling
screen_ or widget-level JPL, the editor issues a message and returns you to the JPL
dialog box.

Note: Library modules that are referenced (by an include statement) within a module
are not checked for compilation errors.

Calls

An application can call JPL modules and their named procedures from various screen
and widget hooks, and from control strings. The same calling options are available for
any installed C or built-in function. Unless otherwise indicated, all references to
procedures in this section apply equally to JPL procedures and installed C functions.
For more information about installing C functions, refer to Chapter 20, “Writing C
Functions.”

Panther provides several ways of issuing calls:

! Enter the name of the module or procedure to execute in the Properties window
of a screen or widget—for example, in a widget's Validation Function property,
or a screen's Entry Function property.

! Call a module or procedure from a control string.

! Explicitly call a module or procedure through the call command.

! Issue an inline call, where the name of the procedure or module name to call is
embedded inside a JPL expression and is evaluated to its return value.

You can also call JPL from C through the library function sm_jplcall.

A screen module's named procedures can be called from outside the module while the
screen is active. Named procedures in library modules are accessible if the module is
public; otherwise, the procedures can be called only by the module's unnamed
procedure. Named procedures in a widget module can be called only by the module's
unnamed procedure.
Application Development Guide 19-19

Calls
Arguments

All calls can supply comma-delimited arguments to their corresponding parameters.
Enclose the arguments in parentheses. If the procedure takes no arguments, use the
void argument specifier (). You can pass the following as arguments:

! Variables, including those declared by the vars command, widget names, and
LDB entries.

! String and numeric constants.

! Global constants.

! @NULL for any parameter in a C function that accepts NULL as an argument.

! Colon-expanded variables.

Panther passes arguments by value, so changes to the receiving parameter's value leave
its corresponding caller's argument unchanged. If you call an installed C function, you
must prepare it for installation with the correct macro (SM_INTFNC, SM_STRFNC,
SM_DBLFNC, or SM_ZROFNC) in order to pass arguments by value to that function. Refer
to Chapter 20, “Writing C Functions,” for more information about installing functions.

Note: If the message file sets SM_DECIMAL to a comma (,), insert a space between
numeric constant arguments; otherwise, JPL interprets the comma that
separates these arguments as a decimal point. Both methods shown in the
following examples are equally successful in avoiding this problem:

ret = (1, 2)
ret = (3 ,4)

Returns

A procedure always returns to its caller with a return value—either integer, string, or
double, according to the procedure definition. If the procedure lacks an explicit
return statement, or the return statement omits a return argument, the procedure
returns to its caller with a value of 0 or an empty string. If an execution error causes
the procedure to return prematurely, it returns with -1.
19-20 Programming in JPL

Calls
Calls from Screens and Widgets

You can specify modules and procedures in various properties of screens and
widgets—for example, in a screen's Exit Function property. If you call a JPL module
or procedure and supply no arguments, Panther automatically passes arguments that
describe the state of the calling screen or widget. The called procedure must define the
parameters needed to receive these arguments.

You can supply the same arguments to a C function if it is installed appropriately for
the object that calls it. For example, if a C function is installed as a screen function, it
can be called on screen entry and exit and receive arguments that describe the state of
the screen. You can install C functions to be called from a screen, widget, group, or
grid. For more information, refer to Chapter 44, “Installed Event Functions.”

Table 19-1 describes the properties that can specify calls to a JPL procedure and the
default arguments that are passed:

Table 19-1 Default arguments passed to procedure

Caller Property Arguments

Screen Entry Function
Exit Function

screenName, flag

Widget Entry Function
Exit Function
Validation Function

widgetNum, widgetContents,
occurrenceNum, flags

Grid widget Entry Function
Exit Function
Row Entry Function
Row Exit Function
Validation Function

baseWidgetNum, occurrenceNum,
flags

Tab card widget Card Entry Function
Card Exit Function
Hide Function
Expose Function

cardObjectId, flags

Group Entry Function
Exit Function

groupName, flag
Application Development Guide 19-21

Calls
For example, if a widget's Exit Function property specifies the procedure fld_xt and
no arguments are specified, Panther automatically passes in four arguments to this
procedure; the second of these arguments is the widget's current value. fld_xt gets
this value in parameter val and tests it as follows:

proc fld_xt (num, val, occ, flg)
{
if val = 'MR' sex = 'M'else sex = 'F'
return
}

The flag or flags that Panther passes are bit values, which you manipulate through
JPL's bitwise operators & (AND), | (OR), and ~ (one's complement). You can test these
flags for conditional processing when you use the same procedure to handle different
execution stages of a Panther object—for example, entry and exit of a widget. For
information on flags that are set:

! For a screen, page 44-10, “Screen Functions”

! For a widget, page 44-14, “Field Functions”

! For a grid widget, page 44-20, “Grid Functions”

! For a group, page 44-25, “Group Functions”

Using a Memory-resident Screen

If a screen is memory-resident, Panther passes a null string to the called procedure
instead of the screen's name.

Calls from Control Strings

You can use control strings to call procedures on specific input, for example, keyboard
input or menu choices. You issue calls from a control string as follows:

^[(target-string [; target-string])] name [(arg-spec)]

where name can be the name of a procedure or module, and arg-spec is one or more
comma- or space-delimited arguments to pass to parameters in name. The control
string can optionally test the return value against one or more semicolon-delimited
target strings. Each target string has this syntax:

[test-value =] control-string
19-22 Programming in JPL

Calls
Panther compares name's return value to each test-value, reading from left to right.
If it finds a match, it executes the specified control string. If you omit a test value,
Panther executes the control string unconditionally. The control string can itself
contain a JPL call with its own target strings; you can thereby nest multiple control
strings with recursive calls.

For example, given this control string for a push button:

^(-1=^(^jm_exit)cleanup; 1=&welcome_scr)process

Panther calls the JPL module or procedure process when the user chooses this push
button. It then evaluates the return value from process to determine its next action:
either to call cleanup, or to invoke the welcome_scr screen. On return from cleanup,
Panther unconditionally calls the built-in function jm_exit.

Refer to Chapter 18, “Programming Control Strings,” for more detailed information
about control string syntax.

JPL Call Command

You call a JPL procedure or module through the call command from other procedures
or modules. The call command uses this syntax:

call executable ([arg-spec])

where executable can be the name of a module or procedure, and arg-spec is one
or more comma-delimited arguments optionally to pass to parameters in executable.
The entire argument list is enclosed in parentheses.

Inline Calls

Because JPL evaluates a procedure call to its return value, you can embed a procedure
call within any expression. The following statement embeds a call to the credit_eval
procedure:

if credit_eval() == 1
 msg emsg "Creditworthy applicant"
else if credit_eval() == 0
 msg emsg "Reject application"
Application Development Guide 19-23

Variables
You can also specify a procedure as an argument to another procedure. In the following
statement, JPL first calls foobar, then passes its return value into foo as that
procedure's second argument:

ret = foo(a, foobar(b), c)

Precedence of Called Objects

When Panther processes a call, it cannot know whether the called object is a JPL
module, a JPL procedure, or an installed function. Panther attempts to execute a JPL
call by searching for functions and JPL modules or procedures in this order:

1. An installed C or built-in function.

2. If the call is issued from a JPL module, a named procedure in that module.

3. A named procedure in the current screen's module.

4. A named procedure in a public module. If the procedure name exists in more
than one public module, Panther uses the procedure in the most recently loaded
module.

5. A memory-resident module.

6. A library module in an open library.

Variables

JPL recognizes four kinds of variables:

! JPL module variables declared by the vars, proc, or parms commands.

! Global JPL variables declared by the global command.

! Screen variables—widgets, groups, and LDB entries.

! Panther variables, which begin with the @ character.
19-24 Programming in JPL

Variables
This chapter shows how to declare and reference variables in JPL.

Declaring JPL Variables

Earlier sections in this chapter showed how JPL declares parameter variables through
the proc and parms commands. You can also declare a JPL variable with the vars
command. JPL variables are not typed; you can assign a variable any string or numeric
value. All values are stored as strings.

The vars command declares one or more JPL variables:

vars var-spec [, var-spec]

var-spec specifies the variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

The following sections describe required and optional elements in a variable
declaration.

var-name

The name of the variable, where var-name is a string that contains up to 31
characters. JPL variable names can use any combination of letters, digits, or
underscores, where the first character is not a digit. Panther also allows usage
of two special characters, the dollar sign ($) and period (.).

[num-occurs]

Optionally declares var-name as an array of num-occurs occurrences. The
default number of occurrences is 1. For example the following statement
declares dependents as an array of ten occurrences:

vars dependents[10]

(size)
Optionally specifies the number of bytes allocated for this variable; Panther
allocates an extra byte for the terminating null character. The default size is
255 bytes. For example, the following statement declares the variable fname
with a size of 15 bytes:

vars fname (15)

If the value assigned to a variable is too large for its allocated size, Panther
truncates it. For example, if fname is programmatically assigned a value of
Russell-Carrington, it accepts only the first 15 characters,
Russell-Carring.
Application Development Guide 19-25

Variables
= init-value

Optionally initializes the variable to init-value, where init-value can be
any constant, variable, or string or numeric expression. For example:

vars workweek = 5
vars avg_sale = @sum(sale_amt) / sale_amt->num_occurrences
vars name = fname##lname

If the variable is declared as an array, you can initialize its occurrences. For
example:

vars ratings[5] = {"G", "PG", "PG-13", "R", "NC-17"}

Occurrence values are comma-delimited.

If no value is assigned, Panther initializes the variable to an empty string ("").

Declaring Global Variables

You can declare global variables that are recognized throughout the application with
the following syntax:

global var-spec [, var-spec]

where var-spec specifies the variable's name and properties as follows:

var-name [[num-occurs]] [(size)] [= init-value]

Like the vars command, global can declare multiple comma-delimited variables;
each declaration can optionally declare the global as an array, specify its size (1 to 255
bytes), and assign its initial value.

To reinitialize or clear a global variable, declare it again.

Panther Variables

Panther supplies several predefined variables where it stores application status
information. These global variables (beginning with the character @) are automatically
defined at application startup and maintained by Panther.

After each dbms statement is executed, one group of global variables contains any
error, warning, or status information returned by the database engine. Refer to
“Variables for Logging Error and Status Information” on page 37-4 for information on
the variables, such as @dmengerrmsg, available through the database interface.
19-26 Programming in JPL

Variables
In the transaction manager, global variables contain information about transaction
manager processing, such as the occurrence being processed. For more information,
refer to Chapter 36, “Runtime Transaction Manager Processing.”

When a Web browser makes a request in a Web application, the HTTP header fields
are stored in global variables starting with the characters @cgi. Refer to Chapter 11,
“HTTP Variables,” in the Web Development Guide for more information.

The @NULL variable can be used for any parameter in a C function that accepts NULL as
an argument.

Caution: The Panther @ variables can be updated frequently. If a variable's value is
needed for further processing, copy its value to another location.

Variable Scope and Lifetime

JPL's ability to reference a variable depends on the variable's scope and lifetime. LDB
entries, widgets, and groups can be referenced by any module. LDB entries are
available as long as their LDB remains loaded in memory. Widgets and groups are
available as long as their screen is in memory. Global variables are available for the
duration of the application.

Variables declared in an unnamed procedure are accessible to all procedures in the
module; those declared in a named procedure are known only to that procedure.

Variables declared inside a procedure remain in memory until the procedure returns,
while variables declared in the unnamed procedure remain in memory until the module
returns. Two exceptions apply: variables declared in a screen module's unnamed
procedure remain in memory until the screen exits; variables in a public module's
unnamed procedure remain in memory until the module itself is removed from
memory.

Colon Preprocessing

JPL's colon preprocessor expands any colon-prefixed variable to its literal value. This
lets you reference variables in any JPL statement whose syntax otherwise excludes
variables; for example, you can embed variables in a string. You can also supply JPL
variables as arguments for several JPL commands that take only literal values as
arguments, for example dbms and public.
Application Development Guide 19-27

Variables
The preprocessor expands colon-prefixed variables to their literal values before JPL
executes the statement. For example, you can reference the variable acctno in a msg
command, even though the command takes only a string value. For example:

msg emsg "I cannot find account number :acctno."

The colon preprocessor expands :acctno to its assigned value before execution. Thus,
if acctno has a value of 91956, Panther executes the statement by displaying this
message:

I cannot find account number 91956.

Conversely, the following statement:

msg emsg "I cannot find account number acctno."

yields this message:

I cannot find account number acctno.

Notes: The colon preprocessor always expands a variable to a string value. You can
use this in order to force treatment of numeric values as strings.

Syntax

A colon variable begins with a colon and ends with any non-expandable character,
such as a blank or newline, as shown in the following syntax:

:var-name

Panther has two variations of colon variable syntax for applications that use its
database interface, :+ and :=. For more information on these, refer to page 30-1,
“Colon Preprocessing.”

To prevent expansion of variables that contain colons, prefix the colon with another
colon (::) or backslash (\:), or follow it with a space. In the first two cases, the colon
preprocessor discards the first colon or the backslash. In the third case, the colon and
following space are preserved.

Expansion

After Panther compiles and loads a JPL module, the colon preprocessor scans each
statement from right to left for colons. When it finds one, it starts expansion during
which it:
19-28 Programming in JPL

Variables
1. Checks for a left parenthesis immediately after the colon, then begins to
accumulate characters from left to right.

2. If a left parenthesis exists, the preprocessor accumulates characters until it
encounters a right parenthesis. Otherwise, it continues until it encounters a
character that cannot be expanded, such as space or a quote character.

3. Tries to identify this string as a variable according to the precedence rules
described earlier on page 19-24 under “Precedence of Called Objects.”

4. Expands the variable to its current value, then returns control to JPL for
statement execution.

Controlling Expansion with Parentheses

Parentheses explicitly delimit three scope of expansion. For example:

vars ref x4
vars alpha[3] = {"bits", "centuri", "rays"}

ref = "alpha"
x4 = :(ref)[3] // Now x4 = rays

The colon preprocessor expands :(ref) to alpha. JPL then assigns the value of
alpha[3]—rays—to the variable x4.

Substring Expansion

If a substring specifier immediately follows a variable name, the colon preprocessor
gets the specified characters from the expanded value. If you enclose the variable name
with parentheses, the colon preprocessor ignores the specifier, and JPL uses the
specifier when it executes the statement.

For example, given these variables and assignments:

vars xyz = "Belgium"
vars xy = "New Zealand"
vars abc = "xyz"
vars m

the following statement assigns the value New Zealand to variable m:

m = :abc(1, 2)
Application Development Guide 19-29

Variables
The colon preprocessor expands :abc(1, 2) to the first two characters of the
expanded value that is, it expands :abc to xyz, then extracts xy from that value. After
the expansion, JPL assigns to m the value of xy, which is New Zealand.

By contrast, examine the following statement, where the expanded variable is enclosed
by parentheses:

m = :(abc)(1, 2)

This time, the colon preprocessor expands :abc to xyz. After the expansion, JPL
executes the substring specifier on the value of xyz—Belgium—and assigns its first
two characters Be to m.

For more information, refer to page 19-50, “Substring Specifiers.”

Array Expansion

Colon preprocessing recognizes the subscript, or index, of an array reference as part of
the variable and expands it accordingly. If an array reference omits the array's
occurrence number, the colon preprocessor concatenates all the non-blank array
occurrences and inserts a space between each pair of occurrence values.

The following examples show how Panther expands array references, given these
variable declarations and assignments:

vars xyz[3] = {"alpha", "beta", "gamma"}
vars alpha[3] = {"bits", "centuri", "rays"}
vars v = "alpha"
vars w = "xyz"
vars x1 x2 x3 x4 x5
x1 = xyz[3] // x1 = gamma

1. The colon preprocessor expands :xyz[1] to alpha. Thus, :xyz[1][3] becomes
alpha[3]. JPL changes the value of x2 to rays:

x2 = :xyz[1][3] // x2 = alpha[3] = rays

2. The colon preprocessor expands v to alpha. x3 then equals the third occurrence
of alpha, which is rays. The parentheses enclosing v prevent the colon
preprocessor from trying to expand the third occurrence of v:

x3 = :(v)[3] // x3 = alpha [3] = rays

3. The colon preprocessor tries to replace :v[3] with the third occurrence of v.
Because v has only one occurrence, Panther displays an error message:
19-30 Programming in JPL

Constants
x5 = :v[3] // error occurs because v[3] does not exist

4. The colon preprocessor concatenates all non-blank occurrences of xyz,
separating the occurrences with single blank spaces. :xyz must be enclosed in
quotes; otherwise, Panther displays an error message because beta and gamma
are not variables:

x4 = ":xyz"
// x4 = ":xyz[1] :xyz[2] :xyz[3]" = "alpha beta gamma"

Reexpansion

By default, the colon preprocessor evaluates colon-expanded text only once, even if
the expanded text itself contains another colon reference. For example, the following
code yields display of the message Thank Goodness, it's :day:

vars day = "Friday"
vars period = "day"
msg emsg "Thank goodness it's :period"

To display the message Thank goodness it's Friday, append an asterisk (*) to the
colon:

msg emsg "Thank goodness it's :*period"

When the colon preprocessor finds a reexpansion operator, it repeats expansion from
the rightmost character of the expanded text. You can nest reexpansion operators to
reexpand the same text more than once.

Constants

JPL has the following constant types:

! Numeric: an optionally signed sequence of digits with an embedded decimal
point. Because JPL performs data type conversions when necessary, you can
represent a numeric constant without decimals.
Application Development Guide 19-31

Constants
! Date: a literal date enclosed in parentheses. Date constants must use the date
format specified in the message file entry SM_CALC_DATE. The default in the
message file is %m/%d/%4y—that is, MON/DATE/YR4.

! String: Zero or more characters enclosed by single or double quotation
characters.

Non-Decimal Number System Formats

In addition to decimal numeric constants, Panther supports octal, hexadecimal, and
binary numeric formats. Panther recognizes these formats through a number's leading
characters, shown in Table 19-2:

If your application requires decimal numbers with leading zeros, you can turn off
support for octal numbers by setting the setup variable OCTAL_SUPPORT to
OCTAL_SUPPORT_OFF. The default setting is OCTAL_SUPPORT_ON.

Quoted String Constants

String constants are widely used in JPL, especially in msg and invocation statements.
At runtime, JPL strips off the quote characters. You can use single or double quote
symbols; however, the same symbol must open and close the string constant:

"55 Baker St."
'(212) 555-1212'

A quoted constant with no characters—"" or '' is a null string.

To reference variable values in a string constant, use the colon preprocessor:

"The amount is :total"

Table 19-2 Non-decimal numeric formats supported by Panther

Numeric format Leading characters Example

Binary 0b, 0B 0b1 + 0b2 = 11

Octal 0 02 * 04 = 10

Hexadecimal 0x, 0X 0x3 * 0x5 = E
19-32 Programming in JPL

Setting Properties Using the Property API
To use a special character in a quoted constant—colon, quote character, or backslash—
prefix the character with a backslash.

Setting Properties Using the Property API

Panther objects and their properties can be referenced through JPL. For example, this
if statement conditionally unhides a widget (emp_salary) at runtime by changing its
hidden property to PV_NO:

if (login == "super")
 emp_salary->hidden = PV_NO

The basic JPL syntax for referencing a Panther object and, optionally, any of its
properties is as follows:

object-spec[-> property-spec]

The following sections describe syntactical elements and options.

Object Specification

You specify a Panther object either by its name or with object modifiers as follows:

object-name
@object-modifier(object-identifier)

For example, you can refer to the widget named last_name as follows:

last_name
@widget("last_name")
Application Development Guide 19-33

Setting Properties Using the Property API
Object Modifiers

Object modifiers make explicit the type of object required. Panther provides an @
modifier for each type of Panther object (except JPL variables): @widget for widgets,
@screen for screens, and so on. Use these modifiers to avoid name conflicts—for
example, between a screen that is being used simultaneously for data input and as an
LDB. They are also useful for referencing objects whose names are otherwise
considered illegal—for example, a screen whose name begins with a number. Thus,
you can reference a screen with the name 1001.frm as follows:

@screen("1001.frm")

Each object modifier takes either a string or integer argument. The argument can be a
constant or variable, or an expression that evaluates to a string or integer. Table 19-3
lists the available modifiers and valid arguments for each.

Table 19-3 Object type modifiers in JPL

Modifier Argument Examples

@app Always @app(). The string identifier
@app() always refers to the current
program and allows access to
application-wide properties. Use @app()
to reference the application directly.

gui = @app()->in_gui
ms_fld = @app()->mouse_field

@id An integer handle that uniquely identifies
an application object. This integer can be
obtained from an object's id property or
by calling sm_prop_id.

Because each object's id property is
unique, you can use @id to reference
objects that have the same name—for
example, multiple instances of the same
screen, or widgets on different screens
that have the same name.

nextObj = \
 sm_list_objects_next(objList)

@id(nextObj)-> mdt = PV_NO

@screen The name of a Panther screen that is on
the window stack. To specify the active
window, supply @current as a string.

@screen("custlist.frm")
@screen("@current")
19-34 Programming in JPL

Setting Properties Using the Property API
@screen_num The number of a Panther screen that is on
the window stack, where 0 is the active
window, -1 is the window below it, and so
on.

Positive numbers number from the
bottom of the window stack: 1 is the base
window, 2 refer to the window above it,
and so on.

@screen_num(0)
@screen_num(sm_wcount())

@ldb The name of an LDB screen. @ldb("sales_data.ldb")

@widget The name of a widget or group on a screen
that is on the window stack or in an active
LDB. To specify the current widget,
supply @current as a string.

@widget("city")
@widget("@current")

@field_num The number of a widget on a screen that is
on the window stack or in an active LDB.
Panther consecutively numbers all
widgets that accept data from top to
bottom and from left to right.

If a widget has more than one element
(array_size > 1),
@field_num(element_num) always
evaluates to the first element. Refer to
“References to Element Field Numbers”
on page 19-37 for more information.

@field_num cannot be used to reference
static labels, boxes, lines, graphs, and
grid widgets.

@field_num(1)

@field_num(numflds - n)

Table 19-3 Object type modifiers in JPL (Continued)

Modifier Argument Examples
Application Development Guide 19-35

Setting Properties Using the Property API
Array Subscripts

If a widget or JPL variable is an array, you can reference occurrences and elements
within that array. Occurrences are specified with the following syntax:

object-name[n]
@object-modifier(object-identifier)[n]

Array elements are specified with the following syntax:

object-name[[n]]
@object-modifier(object-identifier)[[n]]

The subscripts [n] and [[n]] indicate the occurrence and element to reference,
respectively, where n can be a signed (and for occurrences, unsigned) integer constant
or expression. Occurrences and elements are both one-based. For example,
@widget("customer")[3] refers to the third occurrence in customers, while
@widget("customer")[[1]] refers to the array's first element.

If a widget or JPL variable is an array but no occurrence is specified, Panther uses the
default occurrence. When executing a field entry, field exit, or validation function, the
default occurrence is the occurrence currently being processed. Otherwise, the default
occurrence is 1.

@tp_req (JetNet/Oracle Tuxedo only) A string
identifier (callid) associated with a
service request. The identifier is stored in
the tp_return application property
immediately after a service call is
initiated.To specify the current service,
supply @current as a string.

@tp_req("@current")->property

@obj An object reference to be used in the
following functions to specify a method's
parameter or a property's value:
sm_obj_call and
sm_obj_set_property

@obj(object-spec)

a=sm_com_load_picture("a.bmp")
ret=sm_com_call_method(images,
"Add", 1, '', @obj(a))

Table 19-3 Object type modifiers in JPL (Continued)

Modifier Argument Examples
19-36 Programming in JPL

Setting Properties Using the Property API
Signed and Unsigned Subscripts

Panther interprets an unsigned subscript as an absolute offset within an array. An
unsigned subscript must be between 1 and the array's max_occurrences property.
Because references to an array element must be absolute, subscripts for element
references are always unsigned.

Panther treats a signed subscript as a relative offset from the array's current occurrence.
You can reference the current occurrence as array-name[+0] or array-name[-0].
For example, the following JPL procedure, called as array steps's exit function,
increments by 1 the value in steps's current occurrence and puts it into the next
occurrence:

proc nextOccData(widget_num, data, occ, context)

if (occ < steps->max_occurrences)
{

steps[+1] = steps[+0] + 1
}
return

Relative references that use an expression for a subscript must enclose the expression
in parentheses. For example steps[+(n)] refers to the nth occurrence after the
current one in array steps, while steps[(+n)] refers to the array's nth occurrence.

References to Element Field Numbers

Although Panther assigns unique field numbers to elements within an array, any
reference to these elements through their field number always evaluates to the array
itself—that is, its first element. For example, the following array has three elements,
which are numbered 1 through 3:

Given this array, the following statement puts Wilma into variable data:

data = @field_num(3)

To use field numbering to reference a given element's data, you must translate that field
number into an occurrence number. For example:
Application Development Guide 19-37

Setting Properties Using the Property API
proc getElemData()
vars cur_elem, i, elem_data, occ_no

// get the current element's field number
cur_elem = @screen()->fldnum

// get occurrence number of data in current element
for i = 1 while i <= @field_num(cur_elem)->array_size
{

if @field_num(cur_elem)[[i]]->fldnum = current_elem
{

occ_no = @field_num(cur_elem)->first_occurrence + i - 1
elem_data = @field_num(cur_elem)[occ_no]

}
}

Precedence of Object Types

If a named object's type is not made explicit, Panther searches for that object among
the following Panther types, in this order:

1. Local variables already declared in the current JPL procedure

2. Variables that are global to the current JPL module

3. Widgets or groups on the current screen

4. Widgets in an active LDB (local data block)

5. Global JPL variables

6. Screens in the window stack, starting with the active screen

7. Active LDBs

Compound Object Strings

You can join multiple object strings in a compound object string with the ! character.
Compound object strings have this syntax:

object-string !object-string [!object-string]...

For example, the following object string specifies the customer widget on the active
window:

@screen("@current")!@widget("customer")
19-38 Programming in JPL

Setting Properties Using the Property API
Compound object strings let you make the context of a Panther object as specific as
you like and avoid possible ambiguity among different objects with the same name.
For example, if two screens on the window stack—custqry.frm and
custedit.frm—both have a cust_id widget, you can uniquely identify each one as
follows:

custqry.frm!cust_id
custedit.frm!cust_id

You can achieve even greater specificity within a compound object string by including
object modifiers. For example, all of the following object strings are variants of
custqry.frm!cust_id:

custqry.frm!@widget("cust_id")
@screen("custqry.frm")!cust_id
@screen("custqry.frm")!@widget("cust_id")

Note: You can reference objects through their object IDs with the @id modifier;
these unique handles provide a way to identify an object that is independent of
its name and context.

Object Values

An object's value is implicit in all references to it. In practice, this applies only to
widgets that can have values. For example, you can get and set the contents of a text
widget or a push button's label; widgets such as lines and boxes have no equivalent
values that you can access.

In the case of arrays, subscripted references return the value of the specified
occurrence or element; non-subscripted references return the first element. Thus, these
two statements put the same data into variable cust:

cust = @widget("customer")[[1]]
cust = @widget("customer")

You can get portions of an object's value by appending substring specifiers to the
object's reference. For example, this statement gets the first eight characters from
customer's second occurrence:

cust = @widget("customer")[2](1, 8)

For more information about substrings, refer to page 19-50, “Substring Specifiers.”
Application Development Guide 19-39

Setting Properties Using the Property API
Properties

All Panther objects have properties that can be accessed with this syntax:

object-spec ->property-spec

The string that you supply for property-spec contains at a minimum the JPL
mnemonic for the desired property. For example, you can reference the current screen's
title as follows:

@screen("@current")->title

If a property can be set to multiple values, property-spec can specify one of them;
for more information, refer to page 19-41, “Multi-item Properties.” You can also
specify a portion of a string property's setting; this is described on page 19-42 in
“Property Substrings.”

Property specification can include the @property modifier. For example, you can
reference the current screen's title as follows

@screen("@current")->@property("title")

The @property modifier is optional if you use the property's actual mnemonic; it is
typically used in order to reference a property through a variable. For example, an
all-purpose procedure that changes a widget's properties at runtime might look like
this:

proc change_props (widg_name, prop, value)

@widget(widg_name)->@property(prop) = value

Editor Properties

If a property is accessible through the editor, its JPL mnemonic is usually a variant of
the name used in the Properties window, where all characters are in lower case, and
non-alpha characters such as spaces, dashes, and slashes are replaced with
underscores. For example, the Menu Name property is referenced as menu_name.

A number of exceptions exist, usually for properties that share the same label in the
Properties window. For example, if you set a widget's FG Color Type and BG Col or
Type properties to Basic, both properties get Color Name as a subproperty. To
differentiate these two properties, their runtime names are fg_color_name and
bg_color_name, respectively. For a full list of runtime property names, refer to
Chapter 1, “Runtime Properties,” in Quick Reference.
19-40 Programming in JPL

Setting Properties Using the Property API
Note: Several properties that are visible in the Properties window are not accessible
at runtime—for example, the Inherit From and Columns properties.

Runtime and Application Properties

Panther also provides access to a number of properties that are not available in the
editor, either because they are accessible only at runtime or because they are
application-wide (@app) properties. For example, selected is a runtime property that
returns true or false for a specified occurrence in a list box or selection group; in_gui
is an application property that returns true if the application is running on a GUI
platform and false if in character mode.

Refer to Chapter 1, “Runtime Properties,” in Quick Reference for a list of all properties
and their definitions.

Multi-item Properties

Some properties have an array of values, for example, the Drop-Down Data property
of combo boxes and option menus. To reference multi-item properties, specify the
offset into that property's values as follows:

object-spec ->property-name [prop-item]

For example, the following code changes the selected item in an option menu that has
its Drop-Down Source property set to constant data:

#replace current item with contents of "substitute"
vars count
for count = 1 \
 while flavors->drop_down_data[count] != flavors
{}
flavors->drop_down_data[count] = substitute
flavors = flavors->drop_down_data[count]

To access control string assignments for a screen or for the application, use the desired
logical key as the control_string property's offset. For example, the following
statement gets the screen-level control string assigned to the PF5 key:

ctrlstr = @screen("@current")->control_string[PF5]

Although properties cannot have properties, you can call sm_n_num_occurs and
sm_n_max_occur for property expressions. For example:

drop_down_size = sm_n_num_occurs("optmenu->drop_down_data")
Application Development Guide 19-41

Setting Properties Using the Property API
Property Substrings

You can get and set a portion of a string property's value with the following syntax:

object-spec ->property-name(offset, length)
object-spec ->property-name [prop-item](offset, length)

For example, the following code conditionally assigns the first eight characters of a
widget's name to its column_title property:

if @field_num(i)->column_title = ""
 @field_num(i)->column_title = @field_num(i)->name(1, 8)

Property Value Types

Properties can be grouped into three general categories according to the types of values
that they take:

Literal Properties

Literal properties take any value—string, integer, or numeric, depending on the
property. For example:

@widget("customers")->first_occurrence = 1
@screen("@current")->control_string[XMIT] = "^verify_acct"

Some properties have implied or explicit ranges. For example, you cannot set an
array's first_occurrence property to a value greater than the number of occurrences
in the array.

Logical Properties

Logical properties take a value of PV_YES (1) or PV_NO (0). For example:

@widget("salary")->focus_protection = PV_YES

Enumerated Properties

Enumerated properties can only be set to one of several predefined integer constants.
For example, a widget's hidden property can be set to one of three constants: PV_YES,
PV_NO, or PV_ALWAYS.
19-42 Programming in JPL

Setting Properties Using the Property API
For a full listing of runtime JPL property names and valid values, refer to Chapter 1,
“Runtime Properties,” in Quick Reference.

Implicit Properties

All widgets that contain data have a property that let you set its initial value—Initial
Text for text widgets, Label for push buttons and check boxes, and so on. For most
widget types, these need not be referenced explicitly. To access a widget's data, refer
to the widget itself. For example, the following statements change the labels of check
boxes day1 through day7 to the values found in successive elements of array lang:

for count = 1 while count <= 7
 @widget("day"##count) = @widget(lang)[count]

Table 19-4 shows which widget types are referenced directly in order to change their
data, and the editor properties that set their initial data. There are accessible at runtime
as implicit properties.

Notes: Graph widget data is set by its Value Source property; this multi-item property
must be explicitly referenced, for example,
@widget("sales")->y_value_source[1].

Properties of Elements and Occurrences

Properties of an array's occurrences and elements can be accessed by subscripting the
array reference—a single pair of square brackets refer to occurrences [], double
square brackets to elements [[]]. For example, this statement toggles the reverse
property of an array's first element:

salaries[[1]]->reverse = !salaries[[1]]->reverse

Table 19-4 Editor properties setting a widget's initial data

Property name Widget types

Initial Text
(Format/Display)

single line and multiline text, list box, combo box,
option menu

Initial Value (Input) scale

Label (Identity) dynamic label, push button, check box, radio button,
toggle button
Application Development Guide 19-43

Setting Properties Using the Property API
Selection Group Data

In the editor, you can group together multiple radio buttons, check boxes or toggle
buttons into a selection group. JPL identifies a selection group name as an array whose
number of occurrences is equal to the number of selections from the group. Each array
occurrence contains the number of the selected item: the first element contains the
number of the first selected item, the second element contains the number of the next
selection, and so on.

Groups can be set up to accept one, multiple, or no selections. If the group allows only
one selection—its num_of_selections property is set to PV_0_OR_1 or PV_1—its
corresponding JPL variable is an array with one occurrence of data, where
group-name [1] contains the number of the selected item. Because single-selection
groups have only one occurrence, JPL lets you omit the subscript. Thus,
group-name[1] and group-name are equivalent.

For example, days is a selection group that allows multiple selections. It contains
seven check box widgets with these labels:

[] MON [] TUE [] WED [] THU [] FRI [] SAT [] SUN

Panther numbers widgets in this group in order of their placement on the screen: MON
has a value of 1, TUE a value of 2, and so on. If the user selects THU and SUN, days[1]
has a value of 4, while days[2] has a value of 7.

You can programmatically evaluate and manipulate the contents of the group array.
For example, the following code returns the number of items selected from days, then
passes each selection to the routine days_off:

occurs = days->num_occurrences
for count = 1 while count <= occurs
{
 call days_off(days[count])
}

You can programmatically change group selections by setting group array occurrences
to the desired values. The following code selects members 6 and 7—SAT and SUN—in
group days:

days[1] = 6
days[2] = 7

You can also use library functions sm_select and sm_deselect to change group
selections. The following code is equivalent to the previous JPL:
19-44 Programming in JPL

Setting Properties Using the Property API
call sm_select("days", 6)
call sm_select("days", 7)

Grid Properties

If you place a widget inside a grid widget, the widget becomes an array whose size is
determined by the number of occurrences assigned to the grid widget.

At runtime, the current selection inside of a grid widget can be determined by
grid_current_occ, a read-only property. The following JPL statement returns the
number of the selected row in a grid named Detail:

myvar=@widget("Detail")->grid_current_occ

Traversal Properties

When you use the transaction manager, it builds a tree of all table views that are linked
to the root table view. It traverses this tree to issue transaction manager commands to
each table view or server view. You can query traversal properties to get information
about the table views, server views, and links that are a part of the current transaction.

The following JPL procedure queries the sv property to ascertain the server view for
the current widget on widget entry. It then executes the VIEW command to specify that
server view:

proc get_sv_query
if K_ENTRY
{
 vars value1
 value1 = name->sv
 call sm_tm_command("VIEW :value1")
}
return 0

If the specified property references an object that does not participate in the current
transaction, Panther returns an error. For more information on traversal properties,
refer to page 36-19, “Using Traversal Properties.”
Application Development Guide 19-45

Data Types, Operators, and Expressions
Global Variables

You can reference any JPL variable declared by the global command at any time
during the application. JPL also recognizes global variables defined in Panther header
files—for example, logical key names such as XMIT and EXIT, and bit mask settings
such as K_EXPOSE and K_ENTRY. You can reference these variables in any JPL
expression and pass them as arguments to another procedure or function.

Caution: Because Panther uses these variables internally, avoid changing their
values; doing so can yield unpredictable and possibly harmful results.

Data Types, Operators, and Expressions

Data types describe how JPL uses the values of variables and constants. Operators
specify what to do or how to manipulate variables and constants. Expressions combine
variables and constants to produce new values.

Data Types

JPL determines the data type of a variable or expression according to its value or usage.
All variable values are stored as character strings; JPL converts those values when
required.

JPL recognizes four data types:

! String: zero or more characters. Because all variable values are stored as
character strings, no conversion is required. Maximum string lengths are
system-dependent.

! Integer: a sequence of digits with no decimal point; the value can be signed or
unsigned. JPL converts values of this type to integers. If a numeric value
contains a decimal point followed by zeros, JPL treats it is an integer.
19-46 Programming in JPL

Data Types, Operators, and Expressions
! Numeric: a sequence of digits, either signed or unsigned, that contains a
decimal point. JPL converts values of this type to floating point.

! Logical: a string, integer, or numeric that evaluates to a logical value—that is,
either true or false. If a string, it evaluates to true if it starts with the value of
message entry SM_YES—for example, y or Y. The string evaluates to false if it
starts with any other character. A numeric or integer evaluates to a logical false
if it is 0, and a logical true for all other numbers.

Operators

The following sections summarize JPL operators, their operands, and the data type of
the value after the operation. Associativity is left to right except for exponentiation,
where it is right to left.

String
JPL string operators evaluate to a string. Operands must also be strings.

Numeric
Evaluate to an integer or float. Operands must be either an integer or float.

() substring specifier

concatenation

@date date calculation

@length string length calculation

@sum array sum

^ exponentiation

/ division

* multiplication

+ addition

- subtraction
Application Development Guide 19-47

Data Types, Operators, and Expressions
Assignment =
Evaluates to numeric or string, according to the operand types. Both operands
must be of the same data type.

Relational
Evaluate to true or false; both operands must be of the same data type.

Logical
Evaluate to true or false; operands must be logical values.

Bitwise
Evaluate to integer; operands must be integer types:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

! NOT (unary operator)

&& Logical AND

|| Logical OR

~ one's complement

& bitwise AND

| bitwise OR
19-48 Programming in JPL

Data Types, Operators, and Expressions
Operator Precedence

JPL operators have the following precedence, in decreasing order:

() [] @date @length @sum

^
~ !
/ *
+ -
> >= < <=
== !=
&
&&
|
||
=

Conversion of Operands

Some operators require operands of specific data types. If the operand's data type is
different, JPL tries to convert it; otherwise an error occurs. In the case of relational and
logical operators, JPL checks whether the operand data types are the same; if they are
different but compatible—for example, integer and numeric—JPL converts them to
one or the other; if they are incompatible, an error occurs.

Table 19-5 shows the data type that JPL uses for operands of compatible data types in
relational and logical expressions:

Table 19-5 Data type conversion in relational and logical expressions

Operand type String Float Integer Logical

String string error error logical*

Float error float float logical**

Integer error float integer logical**

Logical logical* logical** logical** logical
Application Development Guide 19-49

Data Types, Operators, and Expressions
Concatenation

Use the concatenation operator ## to join multiple values into a single string. For
example, these statements concatenate the string Blue Moon into variable a.

vars a = "Blue "
vars b = "Moon"
a = a##b

Substring Specifiers

Substring specifiers let you reference any part of a string that is in a variable or
property. Specify a substring with the following syntax:

obj-name (offset, length)

obj-name

The name of a JPL variable, widget, or LDB entry, or a property that takes
string values.

offset

The offset of the first character of the substring to get from obj-name, where
the first character in obj-name is 1. A value for offset is required, and can
be an integer or integer expression.

length

An integer expression that evaluates to the substring's length. If length
exceeds the substring's actual length, JPL reads only up to the last byte of
data. A value for length is optional: if no argument is supplied, JPL operates
on all characters from offset to the end of the string.

The following examples show some common uses for substring specifiers:

! Extract a country code from an international phone number.

* A string evaluates to a logical true or false if it begins with the value
of SM_YES or SM_NO.
** A numeric or integer evaluates to a logical true if it is non-zero or or
to a logical false if 0.

Table 19-5 Data type conversion in relational and logical expressions

Operand type String Float Integer Logical
19-50 Programming in JPL

Data Types, Operators, and Expressions
if int_phone(1, 3) == "039"
 country = "Italy"

! Find the first blank in a string.

for i = 1 while string(i, 1) != " "
{ }

! Append a zip code extension.

zip(6) = "-"##extension

Notes: If the message file sets SM_DECIMAL to a comma (,), insert a space between
numeric constant arguments; otherwise, JPL interprets the comma that
separates these arguments as a decimal point. The space can either precede the
comma or follow it.

@date

The @date operator lets you compare and perform arithmetic on dates. This operator
uses a date as its operand—either a widget with a date format, or a date string constant
or expression. @date converts a date constant to a numeric by counting the number of
days between the date constant and January 1, 1753—the standard for date
calculations.

For example, if widgets order-date and ship-date have date edits, you can add 30
days to order-date's value and assign it to ship-date:

ship-date = @date(order-date) + 30

In the next example, today is a widget with the current date, and days is a variable
that gets the number of days between today and 4/1/96:

days = @date("4/1/1996") - @date(today)

If an operand includes a time value—for example, 02/22/94 10:15—@date ignores
the time value and outputs only a date value.

@length

The @length operator counts the number of characters in one or more string
arguments. You can supply string constants or variables as arguments. You can use a
substring specifier on any argument that is a variable.
Application Development Guide 19-51

Data Types, Operators, and Expressions
@length counts all characters and embedded blanks. Leading blanks in right-justified
widgets and trailing blanks in left-justified widgets are ignored. In quoted string
constants, leading blanks are counted but trailing blanks are ignored.

For example, the following statement gets the total number of characters in fname and
lname:

vars ln
ln = @length(@widget("fname"), @widget("lname"))

@sum

The @sum operator calculates the sum of all non-blank occurrences in an array. In the
next statement, quantities is an array and total is a widget that gets the sum of
occurrences in quantities:

total = @sum(quantities)

Bitwise Operators

JPL provides three operators for bit manipulation: AND (&), OR (|), and one's
complement (~). Bitwise operators let you examine and set the flags that are set on bit
masks.

For example, this procedure tests the value of widget status flags K_ENTRY and K_EXIT
to determine whether the widget is being entered or exited:

proc field_func (number, data, occ, flags)
if flags & K_ENTRY
 jpl do_process
else if flags & K_EXIT
 jpl do_exit_process
return

The next procedure examines the settings of K_KEYS to determine which key the user
pressed to exit a widget:

proc field_func2(num, dat, occ, flags)
if (flags & K_KEYS) == K_NORMAL
 return
else if (flags & K_KEYS) == K_ARROW
 msg emsg "Please use the tab key to move between fields."
return
19-52 Programming in JPL

Data Types, Operators, and Expressions
For more information on the flag settings that Panther passes into widget and screen
modules and hook functions, refer to “Calls from Screens and Widgets” on page 19-21
and Chapter 44, “Installed Event Functions.”

Expressions

An expression produces a new value by combining constants, variables, and operators.
In all statements, Panther's colon preprocessor evaluates colon-expand ed variables. In
all expressions, JPL's statement processor replaces variable names with values.
Evaluation is generally from left to right; however, you can affect order of evaluation
through parentheses.

JPL evaluates an expression as one of four data types: string, numeric, bitwise, or
logical. However, it is an error to combine a string assignment with a numeric
assignment for a single variable within one expression. The following sections discuss
these data types.

String Expressions

A string expression combines one or more quoted string constants or values of string
variables. Substring specifiers and ## are string operators. The following examples are
all string expressions:

'Montreal'
"Processed :i items"
fname##' '##lname
telephone(1, 3)

Numeric Expressions

A numeric expression combines variables and numeric constants with one or more of
the numeric operators. The following examples are numeric expressions:

y + z
@sum(quantities)
@length(fname,lname)
x^y + y * (z^3/4 + 1) - x/2
86
Application Development Guide 19-53

Data Types, Operators, and Expressions
If the setup variable DECIMAL_PLACES is set to a number, JPL rounds the value of a
numeric expression to that number of decimal places. You can change this with a
format specifier to declare the total length and the number of decimal places. Format
specifiers have this syntax:

%[t] [m] [.n] var-name

where m and n are integer constants or variables. m specifies the total number of
characters, including leading spaces, sign, digits, and decimal place. If you omit m, or
m is too small to output the variable's value, JPL uses the variable's size. n specifies the
number of digits after the decimal place. If you omit n, JPL uses 2 decimal places.

For example, the following statement assigns 1.667 to i.

%6.3 i = 10/6 // rounds value to 1.667

t overrides rounding and truncates to the specified number of decimal places, if any.
For example, the following statements truncate the values assigned to variables i and
n:

%t1.2 i = 10/6 // truncates i to 1.66
%t1.0 n = 10/6 // truncates n to 1

Notes: Panther uses the sprintf() function to perform rounding. Because this
function's behavior is compiler-specific, rounding results for 0.5 decimals can
vary among different platforms.

If var-name is a widget or LDB entry, you can define its floating point precision by
setting Data Formatting (data_formatting) to PV_NUMERIC and setting its Format
Type property. At validation, Panther uses this property to format the widget's value.

Bitwise Expressions

A bitwise expression uses variables or constants which have the data type integer, and
any of the bitwise operators. The following examples are bitwise expressions:

flag1 & flag2
x | mask
19-54 Programming in JPL

JPL Commands
Logical Expressions

A logical expression uses logical and relational operators to evaluate variables,
numeric constants, integer constants, string expressions, numeric expressions, or
integer expressions. Operands must be of the same data type; otherwise, JPL tries to
convert them according to Table 19-5 on page 19-49. For example, you can compare
a numeric literal to a variable or expression only if JPL can evaluate the variable or
expression to a numeric. Otherwise, it displays an error message.

The following examples are logical expressions:

y
x != 7
(total * (1 + tax)) <= max_value
flag > ~flag

In contrast to C, the JPL interpreter always fully evaluates a boolean expression. In the
following example, JPL calls myFunc even though the expression already evaluates to
true:

vars a = 1
if (a || myFunc())
...

JPL Commands

All the JPL commands are fully described in Chapter 2, “JPL Command Reference,”
in Programming Guide. In general, command arguments can be either variables or
strings. String arguments must be enclosed in single or double quotes. To use a
variable's value within a string, you can append a colon to the variable (colon
preprocessing). For more information, refer to page 19-27, “Colon Preprocessing.”
Application Development Guide 19-55

Optimization
Optimization

You can improve performance of JPL procedures in several ways:

! Library JPL procedures can be made memory-resident. Convert the binary JPL
to a C data structure with bin2c, and then add it to Panther's memory-resident
list with sm_formlist.

! Load a library module into memory as public. Panther keeps its procedures in
memory. Modules thus loaded incur some memory overhead, but execute more
efficiently.

! Execute loops with for instead of while. For example, this for construct
executes more efficiently than the while construct that follows it:

for i = 1 while i < 10
 {
 ...
 }

while i < 10
 {
 ...

 i = i + 1
 }

! Prevent expansion of a string that contains colons by appending a space to the
colon. Using a space is more efficient than prepending a backslash (\) or an
extra colon (:) because Panther avoids copying the argument to a buffer to
remove extra characters.
19-56 Programming in JPL

CHAPTER
20 Writing C Functions

This chapter presents an overview on:

! Writing your own C or C++ functions.

! Linking your C or C++ functions into your Panther executables.

! Calling your C or C++ functions.

! Calling Panther library functions.

Additional information is in Chapter 44, “Installed Event Functions.”

Types of C Functions

Your own C code can be written in external files and linked to your Panther clients
(prodev[.exe], or prorun[.exe]), your Panther application servers, or your Panther
Web application servers (jserver[.exe]).

There are two types of C functions in Panther:

! Automatic functions for certain Panther events. Panther automatically calls the
pre-installed function when that event occurs. For each event type, only one
function can be installed at a time (with the exception of time-out functions).
For example, an automatic screen function would execute on screen entry and
screen exit of every screen.
Application Development Guide 20-1

Types of C Functions
! Demand functions. You must explicitly call the function from a Panther
component through one of its event properties, such as a widget's Exit property,
or call the function in a JPL procedure or C function.

Even though there can only be one automatic function for each event type, a Panther
object can have both an automatic function and a demand function. For example, when
a screen opens, any automatic screen function executes, and the screen can have a
demand function specified in the Screen Entry property which also executes.

Using Automatic Functions

Each type of automatic function, such as an automatic screen function or automatic
group function, must be:

! Located in a data structure in funclist.c.

! Installed in funclist.c with a call to sm_install with the appropriate
function type.

The following data structure from funclist.c is for an automatic screen function:

struct fnc_data autosc_struct = SM_OLDFNC(0, auto_sfunc);

For a list of the SM_*FNC macros, refer to page 44-4, “SM_*FNC Macro.”

funclist.c also contains the function sm_do_uinstalls, which is called internally
by Panther at the beginning of program execution. This function should contain calls
to sm_install for all the types of functions you install. Calls for all of the automatic
functions must be added to the sm_do_uinstalls function.

For example, placing the following line of code in the sm_do_uinstalls function
would install the automatic screen function listed above.

sm_install (DFLT_SCREEN_FUNC, &autosc_struct, (int *)0);

For a further explanation of the arguments to this function and a list of function types,
refer to Table 44-1 on page 44-6.
20-2 Writing C Functions

Types of C Functions
Using Demand Functions

Demand functions must also be located in a data structure in funclist.c.
funclist.c provides empty data structures for screen, group, field, tab card, grid,
control string, and prototyped functions. By adding your demand function to the
appropriate data structure, you will insure that the function is automatically installed.
All the data structures provided in funclist.c already have calls to install them into
Panther inside the sm_do_uinstalls function, that is also in funclist.c.

To determine the appropriate structure, you need to determine whether the function
uses standard arguments or non-standard arguments. Any function using non-standard
arguments must be installed into the prototyped functions data structure.

For example, if you write a screen function which needs to know that the screen is
being opened (rather than closed, since the automatic screen function executes on both
screen entry and screen exit), that information can be found in the screen function's
standard parameters. Since the function would use the default parameters, you could
add the function to the screen data structure and the function would not need to be
prototyped. However, the function's parameters would need to match the number and
data type of all the standard arguments passed by default to standard screen functions.
Also, this function could only be called on screen entry and exit, because only then will
the automatic parameters be generated appropriately.

For prototyped functions, you declare the number and type of arguments. Panther
supports a function receiving any combination of strings and integers from zero to five
arguments, and functions with six integer arguments.

(If you wish to pass floating point values, pass them as strings and then convert
appropriately inside your function. The same method of passing the parameter as a
string must be used for all non-integer data-types.) Functions return types can be either
character string, integer, double or void.

If a function's arguments do not conform to these requirements—for example, there are
more than six, or they include an unsupported data type—you can call it indirectly
through a wrapper function.
Application Development Guide 20-3

Writing C Functions
Writing C Functions

To add your own C code to your application, you must:

! Write the C modules. Additional C files should all begin with:

#include smdefs.h

! Create any needed header files, containing prototypes of your functions.

! Modify funclist.c.

! Modify the makefile.

! Make the executable.

It is strongly suggested that you copy your Panther distribution and work in the copy
of the distribution when adding C code. At a minimum you should always make a
backup of the link directory before making changes to any file in that directory. Or,
alternatively, work with a copy of the link directory and leave the original link
directory unchanged.

For example, to write a simple C function that opens a dialog box to say “Hello World”
and link it to Panther, perform the following steps:

1. In the link directory, create the C code in an external file. The sample file,
mycode.c, contains:

#include "smdefs.h"

int printhello()

{

sm_message_box("Hello World", "My Installed Function",

 SM_MB_OK, "")

return (0);

}

20-4 Writing C Functions

Writing C Functions
2. In the include directory, create the header file. The sample header file, myapp.h,
contains:

extern int printhelloPROTO(());

Notes: PROTO is a macro function designed to generate prototypes compatible with
both ANSI and pre-ANSI C compilers. If you know your compiler is
ANSI-compatible, you could also write this as "extern int printhello(
void);".

3. In the link directory, edit funclist.c. First, at the top of funclist.c, list your
header file with the other header files. The header files listed in the sample
funclist.c are:

#include "smdefs.h"

#include "smkeys.h"

#include "myapp.h" /* my installed function */

4. In funclist.c, add your function to one of the Panther C structures. Since this
function does not use standard arguments, it is entered as a prototyped function.
With this new function, the data structure appears as follows:

static struct fnc_data pfuncs[] =

{

 SM_INTFNC ("pdummy(i)", pdummy),

 SM_INTFNC ("printhello()", printhello)

};

5. In funclist.c, the call to sm_install already occurs for prototyped
functions, so there is no need to make your own call.

6. In the link directory, modify your makefile to compile and link your code into
Panther:

SRCMODS = funclist.o mycode.o

7. Compile and link your application:

UNIX: make
Windows: nmake

8. Restart your development executable:

prodev
Application Development Guide 20-5

Calling C Functions
Additional information on writing and installing C functions is in Chapter 44,
“Installed Event Functions.”

Calling C Functions

Once your C routine is linked into Panther, you can use the JPL call command in JPL
procedures, such as:

call printhello()

Or you can call your function from one of the widget or screen event properties, by
setting the property value to match your C function name.

Entry Function printhello()

Since your function does not take the standard arguments for screen or widget
functions, including the ()'s overrides the standard arguments and the function will be
called with no arguments.

You can also use C functions in JPL to assign values to variables using the following
syntax:

x = getsum(1, 3)

Calling Panther Library Functions

Panther has an extensive C function library. By default, the entire Panther C library is
linked into your development and runtime executables. Most of the C function names
start with the prefix sm_; some database interface functions start with dm_.

A given C function can have several variants. For example, sm_gofield has the
following variants:

! sm_n_gofield — Specify the field name.

! sm_e_gofield — Specify the field name and the element number.
20-6 Writing C Functions

Calling C Functions
! sm_i_gofield — Specify the field name and the occurrence number.

! sm_o_gofield — Specify the field number and the occurrence number.

In functions having an object name as one of the arguments, the object's name, the
object's identifier or the object's property specifier can be entered. For example:

sm_n_getfield ("@id(15)")

sm_n_getfield ("@screen("@current")->title_id")

sm_n_intval("field3->length")

Refer to Chapter 5, “Library Functions,” in Programming Guide for documentation
about each Panther C function.
Application Development Guide 20-7

Calling C Functions
20-8 Writing C Functions

CHAPTER
21 Java Event
Handlers and
Objects

You can use the Java programming language as an alternative to JPL or C by writing
Java event handlers for the screens, service components and widgets in your Panther
applications. Panther 5.40 also has enhanced support for working with Java objects.

Support for the Java language has been implemented differently than Panther's C
language support. Unlike C functions, you cannot enter the name of a Java method in
widget or screen event properties. With Java, you assign a Java class to the Panther
object (screen, service component, widget) in the Java Tag property. This Java class
will serve as the event handler for the object.

Java Overview

Java is an object-oriented programming language. Unlike C, in which you write
functions to manipulate data stored in separate structures, Java objects are a
combination of data and methods (functions) that manipulate that data. The data and
Application Development Guide 21-1

Using Java in Panther
methods define a class for the objects that can be constructed from that class. A class
is not an object, but is a blueprint for an object. At runtime, a class factory creates, or
instantiates, instances of the object from the class definition.

Classes are arranged in a hierarchy, which allows a subclass to inherit from a parent
class, or superclass. A set of classes is called a package.

Using Java in Panther

By default, Java support is enabled in Panther as determined by the behavior variable
JAVA_USE. When this variable is set to JAVA_IN_USE, on startup, Panther dynamically
loads a library to initialize Java support. If the library cannot be found, Panther reports
an error that Java support is not enabled.

Since the location of the Java library can vary on different platforms, you can override
the default location by setting the variable SMJAVALIBRARY to the correct location in
your environment or in an initialization file.

Writing Java Code

Within the Panther editor, options on the File menu allow you to open, create and save
Java files. You can use the text editor specified by SMEDITOR or specify a special Java
editor with SMJAVAEDITOR.

You can compile Java programs in the editor using Tools→Compile Java. The
compilation command can be specified by setting SMJAVACOMPILE.
21-2 Java Event Handlers and Objects

Using Java in Panther
Determining the Java Event Handler

Screens, service components and widgets in Panther have a Java Tag property, which
can be found under Identity in the Properties window. This property identifies the Java
class that is to serve as the event handler for that screen, service component, or widget.
At runtime, the Java Tag is passed to a function in the class specified by
SMJAVAFACTORY, which then provides the event handler itself.

The default SMJAVAFACTORY is ClassTagFactory.java, which simply assumes that
the Java tags are the names of classes. If you want to write another method for
matching the Java tags to classes, you can write a your own class factory and specify
it using SMJAVAFACTORY.

Figure 21-1 The Java Tag property identifies the Java class that is the event
handler.

The event handler classes must provide methods that correspond to the various kinds
of events supported by the object (screen, service component or widget) that it is
associated with. To this end, predefined interfaces have been provided for the event
handler classes to implement. If a class that does not implement the appropriate
interface is named as the event handler for a given object, an error will be returned.
Application Development Guide 21-3

Event Handler Interfaces
At runtime, when an event occurs on an object that has a Java tag set, Panther will send
a message to the class that is serving as the object's event handler. The event handler
will then perform the action that is programmed for that event. This method will be
passed a series of parameters when invoked. Refer to the next section for
documentation of each event and a list of the parameters it will receive.

If there is a JPL procedure or C function also associated with the event (in the
Properties window), that procedure will be called after the Java event handler has
returned. In this way one can associate both methods written in Java and procedures
written in C or JPL with the same events, though the Java methods will always be
invoked first.

Panther appends the location of its classes ($SMBASE/config/pro5.jar) to the
CLASSPATH environment variable at runtime. As part of your application setup, you
must also specify the location of your Java classes in that variable.

Event Handler Interfaces

There are interfaces defined for screens and for the various widget types. In addition
to these interface definitions, adapter classes have been provided that provide null
implementations of these interfaces. These are located in the distribution at
$SMBASE/config/pro5.jar. The HTML listing of the interfaces in Javadoc format
is at $SMBASE/config/java, along with the source class files.

To implement an event handler for a given screen or widget, you would typically
subclass the appropriate adapter class, and locally redefine those methods that you
wish the screen or widget to support in a non-null manner. For an example, refer to
page 21-23, “Java Samples.”

Table 21-1 The interface and adapter class files for widgets and screens

Object Interface file Adapter class

ActiveX controls ActivexHandler.java ActivexHandlerAdapter.java

Check boxes CheckboxHandler.java CheckboxHandlerAdapter.java
21-4 Java Event Handlers and Objects

Event Handler Interfaces
Screen Event Handlers

An event handler for a screen must implement the ScreenHandler interface, either
explicitly or by subclassing ScreenHandlerAdapter. As such it must support the
following methods:

screenEntry
void screenEntry(ScreenInterfaces, int context);

screenExit
void screenExit(ScreenInterfaces, int context);

screenKey
void screenKey(ScreenInterfaces, int key);

Combo boxes ComboboxHandler.java ComboboxHandlerAdapter.java

Dynamic labels DynamicLabelHandler.java DynamicLabelHandlerAdapter.java

Grids GridHandler.java GridHandlerAdapter.java

Groups GroupHandler.java GroupHandlerAdapter.java

List boxes ListboxHandler.java ListboxHandlerAdapter.java

Option menus OptionmenuHandler.java OptionmenuHandlerAdapter.java

Push buttons ButtonHandler.java ButtonHandlerAdapter.java

Radio buttons RadiobuttonHandler.java RadiobuttonHandlerAdapter.java

Scales ScaleHandler.java ScaleHandlerAdapter.java

Screens ScreenHandler.java ScreenHandlerAdapter.java

Tab cards TabCardHandler.java TabCardHandlerAdapter.java

Text fields TextHandler.java TextHandlerAdapter.java

Toggle buttons TogglebuttonHandler.java TogglebuttonHandlerAdapter.java

Table 21-1 The interface and adapter class files for widgets and screens (Continued)

Object Interface file Adapter class
Application Development Guide 21-5

Event Handler Interfaces
screenWebEnter
void screenWebEnter(ScreenInterfaces);

screenWebExit
void screenWebExit(ScreenInterfaces);

The first parameter passed to each of these methods is a handle to the screen itself. The
second parameter passed to the methods screenEntry and screenExit is an integer
bitmask containing the context flags for the event. The second parameter passed to the
method screenKey is an integer that corresponds to a logical key. This method is used
to respond to logical keys, such as the PF-keys (typically pressed by user action) or
APP-keys (typically pressed programmatically).

The methods screenWebEnter and screenWebExit do not receive a second
parameter.

ActiveX Control Event Handlers

Event handlers for ActiveX controls only handle the events for the Panther containers
used to house the controls. Any events supported by the controls themselves will be
implemented by the controls; use sm_com_set_handler in the
CFunctionsInterface to specify event handlers for those events.

An event handler for an ActiveX control must implement the ActiveXHandler
interface, either explicitly, or by subclassing ActiveXHandlerAdapter. As such it
must implement the following methods:

activexEntry
int activexEntry(FieldInterface f, int item, int context);

activexExit
int activexExit(FieldInterface f, int item, int context);

activexValidate
int activexValidate(FieldInterface f, int item, int
context);

Each of these methods receives three parameters. The first is a handle to the ActiveX
control itself. The second is an integer containing the control's occurrence number. The
third is an integer bitmask containing the context flags for the event.
21-6 Java Event Handlers and Objects

Event Handler Interfaces
Check Box Event Handlers

An event handler for a check box must implement the CheckboxHandler interface,
either explicitly or by subclassing CheckboxHandlerAdapter. As such it must
support the following methods:

checkboxEntry
int checkboxEntry(FieldInterface f, int item, int context);

checkboxExit
int checkboxExit(FieldInterface f, int item, int context);

checkboxValidate
int checkboxValidate(FieldInterface f, int item, int
context);

Each of these methods receives three parameters. The first is a handle to the check box
itself. The second is an integer corresponding to the check box's occurrence number.
The third is an integer bitmask containing the context flags for the event.

Combo Box Event Handlers

An event handler for a combo box must implement the ComboboxHandler interface,
either explicitly or by subclassing ComboboxHandlerAdapter. As such it must
support the following methods:

comboboxDoubleClick
int comboboxDoubleClick(FieldInterface f, int
item);comboboxEntryint

comboboxEntry
(FieldInterface f, int item, int context);comboboxExit

int comboboxExit
(FieldInterface f, int item, int context);

comboboxValidate
int comboboxValidate(FieldInterface f, int item, int
context);
Application Development Guide 21-7

Event Handler Interfaces
The first two parameters received by each of these methods are a handle to the combo
box itself, and an integer corresponding to the combo box's occurrence number. The
method comboboxDoubleClick receives only these two parameters; the methods
comboboxEntry, comboboxExit and comboboxValidate also receive a third
parameter, which is an integer bitmask containing the context flags for the event.

Dynamic Label Event Handlers

An event handler for a dynamic label must implement the DynamicLabelHandler
interface, either explicitly or by subclassing DynamicLabelHandlerAdapter. As
such it must support the following methods:

labelDoubleclick
int labelDoubleClick(FieldInterface f, int item);

labelValidate
int labelValidate(FieldInterface f, int item, int context);

The first two parameters received by each of these methods are a handle to the dynamic
label itself and an integer corresponding to the dynamic label's occurrence number.
The method labelDoubleClick receives only these two parameters; the method
labelValidate also receives a third parameter, which is an integer bitmask
containing the context flags for the event.

Grid Event Handlers

An event handler for a grid widget must implement the GridHandler interface, either
explicitly or by subclassing GridHandlerAdapter. As such it must support the
following methods:

gridEntry
int gridEntry(GridInterface g, FieldInterface f, int item,
int context);

gridExit
int gridExit(GridInterface g, FieldInterface f, int item,
int context);

gridValidate
int gridValidate(GridInterface g, FieldInterface f, int
item,int context);
21-8 Java Event Handlers and Objects

Event Handler Interfaces
gridRowEntry
int gridRowEntry(GridInterface g, FieldInterface f, int
item, int context);

gridRowExit
int gridRowExit(GridInterface g, FieldInterface f, int item,
int context);

The GridHandler methods gridEntry, gridExit and gridValidate are passed
four parameters. The first is a handle to the grid itself. The second is a handle to the
grid member (field) that currently has focus. The third is an integer corresponding to
the grid member's occurrence number. The fourth is an integer bitmask containing the
context flags for the event. The methods gridRowEntry and gridRowExit receive
five parameters. The first is a handle to the grid itself. The second is an integer,
corresponding to the row number. The third is a handle to the grid member that is
gaining or losing focus. The fourth is an integer corresponding to the occurrence
number for the grid member that is gaining or losing focus. The fifth is an integer
bitmask containing the context flags for the event.

Group Event Handlers

An event handler for a group must implement the GroupHandler interface, either
explicitly or by subclassing GroupHandlerAdapter. As such it must support the
following methods:

groupEntry
int groupEntry(GroupInterface g, int context);

groupExit
int groupExit(GroupInterface g, int context);

groupValidate
int groupValidate(GroupInterface g, int context);

Each of these methods receives two parameters. The first is a handle to the group itself.
The second is an integer bitmask containing the context flags for the event.

List Box Event Handlers

An event handler for a list box must implement the ListboxHandler interface, either
explicitly or by subclassing ListboxHandlerAdapter. As such it must support the
following methods:
Application Development Guide 21-9

Event Handler Interfaces
listboxActivate
int listboxActivate(FieldInterface f, int item);

listboxDoubleClick
int listboxDoubleClick(FieldInterface f, int item);

listboxEntry
int listboxEntry(FieldInterface f, int item, int context);

listboxExit
int listboxExit(FieldInterface f, int item, int context);

listboxValidate
int listboxValidate(FieldInterface f, int item, int
context);

The first two parameters received by each of these methods are a handle to the list box
itself and an integer corresponding to the list box's occurrence number. The methods
listboxDoubleClick and listboxActivate receive only these two parameters; the
methods listboxEntry, listboxExit and listboxValidate also receive a third
parameter, which is an integer bitmask containing the context flags for the event.

Option Menu Event Handlers

An event handler for an option menu must implement the OptionmenuHandler
interface, either explicitly or by subclassing OptionmenuHandlerAdapter. As such
it must support the following methods:

optionmenuEntry
int optionmenuEntry(FieldInterface f, int item, int
context);

optionmenuExit
int optionmenuExit(FieldInterface f, int item, int context);

optionmenuValidate
int optionmenuExit(FieldInterface f, int item, int context);

Each of these methods receives three parameters. The first is a handle to the option
menu itself. The second is an integer corresponding to the option menu's occurrence
number. The third is an integer bitmask containing the context flags for the event.
21-10 Java Event Handlers and Objects

Event Handler Interfaces
Push Button Event Handlers

An event handler for a push button must implement the ButtonHandler interface,
either explicitly or by subclassing ButtonHandlerAdapter. As such it must support
the following methods:

buttonActivate
int buttonActivate(FieldInterface f, int item);

buttonEntry
int buttonEntry(FieldInterface f, int item, int context);

buttonExit
int buttonExit(FieldInterface f, int item, int context);

buttonValidate
int buttonValidate(FieldInterface f, int item, int context);

The first parameter passed to each of these methods is a handle to the push button itself.
The second parameter is an integer corresponding to the occurrence number of the
push button. The buttonActivate method receives only these two parameters; the
methods buttonEntry, buttonExit, and buttonValidate also receive a third
parameter that is an integer bitmask containing the context flags for the event. Note
that the buttonActivate event is invoked when the button is clicked on. It
corresponds to the hook accessed in the Properties window by means of the Control
String property.

Radio Button Event Handlers

An event handler for a radio button must implement the RadiobuttonHandler
interface, either explicitly or by subclassing RadiobuttonHandlerAdapter. As such
it must support the following methods:

radiobuttonEntry
int radiobuttonEntry(FieldInterface f, int item, int
context);

radiobuttonExit
int radiobuttonExit(FieldInterface f, int item, int
context);

radiobuttonValidate
int radiobuttonValidate(FieldInterface f, int item, int
context);
Application Development Guide 21-11

Event Handler Interfaces
Each of these methods receives three parameters. The first is a handle to the radio
button itself. The second is an integer corresponding to the radio button's occurrence
number. The third is an integer bitmask containing the context flags for the event.

Scale Event Handlers

An event handler for a scale must implement the ScaleHandler interface, either
explicitly or by subclassing ScaleHandlerAdapter. As such it must support the
following methods:

scaleEntry
int scaleEntry(FieldInterface f, int item, int context);

scaleExit
int scaleExit(FieldInterface f, int item, int context);

scaleValidate
int scaleValidate(FieldInterface f, int item, int context);

Each of these methods receives three parameters. The first is a handle to the scale itself.
The second is an integer corresponding to the scale's occurrence number. The third is
an integer bitmask containing the context flags for the event.

Tab Card Event Handlers

An event handler for a tab card must implement the TabCardHandler interface, either
explicitly or by subclassing TabCardHandlerAdapter. As such it must support the
following methods:

cardCardEntry
void cardCardEntry(FieldInterface f, int context);

cardCardExit
void cardCardExit(FieldInterface f, int context);

cardExpose
void cardExpose(FieldInterface f, int context);

cardHide
void cardHide(FieldInterface f, int context);

cardTabEntry
int cardTabEntry(FieldInterface f, int item, int context);
21-12 Java Event Handlers and Objects

Event Handler Interfaces
cardTabExit
int cardTabExit(FieldInterface f, int item, int context);

cardValidate
int cardValidate(FieldInterface f, int item, int context);

The first parameter passed to each of these methods is a handle to the tab card itself.
The methods cardTabEntry, cardTabExit and cardTabValidate receive as a
second parameter an integer corresponding to the tab cards card_number property,
and as a third parameter an integer bitmask containing the context flags for the event.
The methods cardCardEntry, cardCardExit, cardExpose and cardHide receive
only two arguments, the second being an integer bitmask containing the context flags
for the event.

Toggle Button Event Handlers

An event handler for a toggle button must implement the TogglebuttonHandler
interface, either explicitly or by subclassing TogglebuttonHandlerAdapter. As
such it must support the following methods:

togglebuttonEntry
int togglebuttonEntry(FieldInterface f, int item, int
context);

togglebuttonExit
int togglebuttonExit(FieldInterface f, int item, int
context);

togglebuttonValidate
int togglebuttonValidate(FieldInterface f, int item, int
context)

Each of these methods receives three parameters. The first is a handle to the toggle
button itself. The second is an integer corresponding to the toggle button's occurrence
number. The third is an integer bitmask containing the context flags for the event.

Text Field Event Handlers

An event handler for a text field (either single-line or multi-line) must implement the
TextHandler interface, either explicitly or by subclassing TextHandlerAdapter. As
such it must support the following methods:
Application Development Guide 21-13

Object Interfaces
textDoubleClick
int textDoubleClick(FieldInterface f, int item);

textEntry
int textEntry(FieldInterface f, int item, int context);

textExit
int textExit(FieldInterface f, int item, int context);

textValidate
int textValidate(FieldInterface f, int item, int context);

The first two parameters passed to each of these methods are a handle to the text field
itself, and an integer corresponding to the text field's occurrence number. The method
textDoubleClick receives only these two parameters; the methods textEntry,
textExit and textValidate also receive a third parameter, which is an integer
bitmask containing the context flags for the event.

Object Interfaces

The object handles passed to the event handler methods are handles to Java objects that
correspond to the Panther objects on the screen. These objects themselves support a
variety of methods, and the event handlers that you write will typically make use of
these methods.

The interfaces supported by these objects are defined in the files:

ScreenInterface.java
FieldInterface.java
GridInterface.java
GroupInterface.java

Each of these interfaces extends WidgetInterface, which is defined in:

WidgetInterface.java

Therefore the methods in WidgetInterface are common to all the objects that
correspond to Panther objects.
21-14 Java Event Handlers and Objects

Implementing Service Component Methods in Java
The objects corresponding to text fields, push buttons, toggle buttons, check boxes,
radio buttons, dynamic labels, tab cards, option menus, combo boxes, listboxes, and
scales are all of type FieldInterface, and hence support all the methods defined in
FieldInterface.java and WidgetInterface.java.

In addition to the objects that corresponds to the various widgets and screens, there is
also an Application object that supports a few methods. The interface for the
Application object is defined in ApplicationInterface.java.

Implementing Service Component
Methods in Java

In general the event handlers for service components are like those of screens. But
service components have to respond to a special class of events that the Screen Handler
interface doesn't predefine. Service components have to respond to client-initiated
requests for methods.

The methods supported by a component are named functions. In COM components or
Enterprise JavaBeans, the method names are specified in the editor, in the Component
Interface window. In JetNet or Oracle Tuxedo the procedure names are associated with
component names in the JIF; each component/procedure pair corresponds to a
“service” as far as the middleware is concerned.

At runtime, if a service component has its Java tag property set, the server will attempt
to invoke a method with a name corresponding to the name of the method invoked by
the client (the name specified either in the Component Interface View or the JIF).
Hence if a server component is to implement methods in Java, its event handler must
implement methods with names that correspond to the component's public methods. If
a Java method with a name corresponding to the method name is found, the Panther
server will not continue to look for JPL or C functions with the same name. (This
behavior differs from event calls for screen and widget events.) When methods are
invoked in this fashion, they will receive two parameters. The first is a handle to the
service component itself, this is an object of type ScreenInterface. The second is a
handle to an interface that supports the middleware-specific functions needed to
implement a service.
Application Development Guide 21-15

Implementing Service Component Methods in Java
Service Component Methods in Oracle Tuxedo and
JetNet

The methods of JetNet or Oracle Tuxedo service component handlers receive as their
second parameter an object that implements TPFunctionsInterface. Such an object
supports the following methods:

int sm_tp_exec(String a1);

WidgetInterface getTpRequest();

WidgetInterface getTpRequest(String callid);

The method getTpRequest returns a handle to an object that represents a service
request. These objects implement WidgetInterface. Interactions with such an object
will generally only be for the purpose of querying its property values. The method
sm_tp_exec corresponds to the Panther library function of the same name.

Service Component Methods in COM/DCOM/MTS

The methods for service components in COM applications receive as their second
parameter a handle to an object that implements ComFunctionsInterface. Such an
object supports the following methods:

int receive_args (String text);

int return_args (String text);

int raise_exception (int code);

int log (String text, int code);

int sm_mts_CreateInstance (String text);

int sm_mts_SetComplete ();

int sm_mts_SetAbort ();

int sm_mts_EnableCommit ();

int sm_mts_DisableCommit ();

int sm_mts_IsInTransaction ();

int sm_mts_IsSecurityEnabled ();
21-16 Java Event Handlers and Objects

Working with Java Objects
int sm_mts_IsCallerInRole (String role);

The functions receive_args, return_args, raise_exception and log
correspond to the JPL verbs of those names. The rest of the methods correspond to the
Panther library functions of the same names.

Service Component Methods in WebSphere

The methods of a service component and Enterprise JavaBean deployed in WebSphere
Application Server receive as their second parameter an object that implements
WSFunctionsInterface. Such an object supports the following methods:

public PantherSessionBean get_bean();

public int log (String message);

public void raise_exception (String message);

public int receive_args (String args);

public int return_args (String args);

These methods correspond to the JPL verbs with the same names.

Working with Java Objects

Instantiating Java Objects

Starting with Panther 5.40, there is an alternative to using Java event handlers to
integrate Java with your Panther application. Perhaps you want to embed a J2SE class,
such as a HashMap, into your JPL code. You can do this by making use of the Panther
Component subsystem. Although there aren't any non-EJB Java-based Panther
Components, the client API for working with Panther Components allows it to work
with ordinary Java classes. To do this you set the current_component_system
property to PV_SERVER_JAVA before calling sm_obj_create. If your application also
uses COM or EJB support, you can change this property as needed.
Application Development Guide 21-17

Working with Java Objects
To access a Java class, you must create an object of the class by calling
sm_obj_create. This function takes one or more parameters. The first parameter is
a string containing the fully qualified class name. This string may also contain a
type-specifier that describes the types of any arguments that are needed by the
constructor if the constructor is overloaded. If there are arguments needed for the
constructor, they are supplies as additional parameters to the sm_obj_create call.
For example, this is JPL code to create a HashMap using the default no-arg constructor:

 vars hashmap_id = sm_obj_create("java.util.HashMap")

Another example, using the HashMap constructor that takes an int for the initial
capacity:

 vars hashmap_id = sm_obj_create("java.util.HashMap(int)", 100)

Type-Specifiers and Arguments

The names passed to sm_obj_create and sm_obj_call can indicate the types of the
parameters to ensure that the correct method is used. The syntax is:

 <classname-or-methodname>(type[, type] ...)

Type-specifiers may follow the class name passed to sm_obj_create and the method
name passed to sm_obj_call. When used, they are included in the class name or
method name. Type-specifiers do not conform to Java conventions, but have a custom
syntax. The type-specifier is a comma separated list of types, enclosed in parentheses.
White space is ignored between the class name or method name and the type-specifier,
and between tokens within the parentheses. Types may be primitive or fully qualified
class names. There is an exception. For classes in the java.lang package, such as
String, the package name may be left off. The primitive type names supported are:
boolean, byte, char, double, float, int, long, and short.

Arrays may be used in type-specifiers. To indicate an array, the type name, primitive
or class name, must be followed by square brackets containing the size of the array.
For example int[5] represents an int array of size 5. The argument corresponding to
this type must, therefore, be an array field or JPL array variable containing at least 5
occurrences. Multidimensional arrays are not supported.

When a class name is used as a type, the argument may be a Panther constant, variable,
or field name only if the value of the constant, or content of the field or variable can be
converted into a Java object of the specified type. For example, Panther will
automatically convert a primitive into its wrapper type (for example, int to
21-18 Java Event Handlers and Objects

Working with Java Objects
java.lang.Integer) and a Panther value will be converted into a
java.lang.String if needed. For other types, use the @obj() syntax to refer to an
existing Java object by its Panther object ID. For example,

 vars newid = sm_obj_create(\
 "java.util.HashMap(java.util.Map)", @obj(hashmap_id))

The return value from sm_obj_create is a Panther Object ID on success, or
PR_E_OBJID or PR_E_OBJECT on error. A Java global reference is created for the
instantiated Object, so that the instance is not garbage collected by the JVM until
sm_obj_delete_id is called for the Object ID.

The use of the Panther Object ID for a Java Object is limited to Panther's sm_obj_xxx
family of functions for accessing the object's properties and methods.

Destroying Java Objects

After creating and working with the methods and properties of a Java Object, you
should destroy it by calling sm_obj_delete_id. This function takes one parameter,
the object ID for the object to destroy. If you don't call this function, the instance will
continue to exist until the application terminates, even if the application goes from test
to edit mode. In other words, the object will not be garbage collected by the JVM until
sm_obj_delete_id is called.

For example, sm_obj_delete_id can be called to delete the HashMap created in the
previous code as follows:

 call sm_obj_delete_id(hashmap_id)

Calling Java Object Methods

To access a Java object's methods, you need to call the function sm_obj_call. The
syntax in JPL is:

ret = sm_obj_call (objid, methodName(OptionalTypeSpecifier) \
 [, parm] ...)

The first parameter to sm_obj_call is the Panther object ID of the Java object whose
method you wish to use. The second parameter is the name of the method you are
calling. A type-specifier may be used within this name. The type-specifier is needed
if the method is overloaded. The remaining parameters are a comma-separated list of
Application Development Guide 21-19

Working with Java Objects
the parameters to the method itself. Field names, variable names, constants, and
@obj() may be used, exactly as described above in the section Instantiating Java
Objects.

If a type-specifier is not used, Panther will try to locate a method in the class with the
provided name and number of arguments and will attempt to convert the parm
arguments to the parameter types needed for the method that was located.

If a method called by sm_obj_call returns a String or a value that has a primitive
type, Panther will return that value. If the method returns a Java object, a Panther
object ID will be returned by sm_obj_call. Such object IDs can be used in the same
way as those returned by sm_obj_create. They can be passed in as the first argument
of calls to sm_obj_call, and must be deleted by calling sm_obj_delete_id when
they are no longer needed.

Below is JPL code demonstrating the concepts discussed so far:

// Initialize the component system to for Java
@app()->current_component_system = PV_SERVER_JAVA

vars a = 1234567891

/* Create a BigInteger using the constructor that takes a
 * String argument. Since JPL can treat the content of
 * 'a' as a String if it is used as such, there is no
 * potential loss of preceision.
 */
vars bigInteger1 = sm_obj_create("java.math.BigInteger(String)",a)

/* Call the 'multiply' method.In this case the 'pow'
 * method could have been used instead. If 'multiply' were
 * overloaded, we could use multiply(java.math.BigInteger)
 * as the second argument below.
 */
vars bigInteger2 = sm_obj_call(bigInteger1, \
 "multiply", @obj(bigInteger1))

// Convert the result to a string.
vars b = sm_obj_call(bigInteger2, "toString")

// Delete the Object IDs to allow JVM garbage collection.
call sm_obj_delete_id(bigInteger1)
call sm_obj_delete_id(bigInteger2)

msg emsg b // Displays 1524157877488187881
21-20 Java Event Handlers and Objects

Working with Java Objects
Accessing Panther Functions From a Java Method

The class com.prolifics.jni.Application contains the static method
getInstance. This method returns an ApplicationInterface for the Application
Object. Using this instance, one can call getCFunctions, getDMFunctions,
getRWFunctions and getTMFunctions. For example, here is Java code showing this
technique:

 package com.prolifics.samples;
 import com.prolifics.jni.*
 import java.util.*;
 import javax.naming.*;
 import javax.naming.directory.*;

 public class LdapAuthentication
 {
 DirContext ctx = null;

 public int authenticate() {
 int ret = -1;
 ApplicationInterface ai = Application.getInstance();
 CFunctionsInterface cf = ai.getCFunctions();

 String ldapURL = c.sm_n_fptr("ldap_url");
 String username = c.sm_n_fptr("username");
 String password = c.sm_n_fptr("password");

 try {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL, ldapURL);
 env.put(Context.SECURITY_PRINCIPAL, username);
 env.put(Context.SECURITY_CREDENTIALS, password);
 ctx = new InitialDirContext(env);
 ret = 0;
 } catch (Exception e) {
 c.sm_message_box(e.toString(),
 "Authentication Failure", 0, "");
 }
 return ret;
 }
 }

The above Java code above can be used from JPL as follows:

 vars ldapAuth = sm_obj_create(
 "com.prolifics.samples.LdapAuthentication")
Application Development Guide 21-21

Working with Java Objects
 vars ret = sm_obj_call(ldapAuth, "authenticate")
 call sm_obj_delete_id(ldapAuth)
 if (ret == 0)
 msg emsg "Login Successful"

The code shown above is not the best integration of Java with JPL, nor does it handle
exceptions very well. It is designed only for demonstrating the techniques discussed in
this section.

Panther Library Functions are generally not thread safe. Therefore, avoid creating
threads within Java code with the potential to invoke Panther library functions
simultaneously from different threads.

Accessing Java Object Properties

Properties of Java objects are class member variables, also called fields. It is
recommended with Java Beans that you use the sm_obj_call function with setter and
getter methods. If this is not an option, you can use the sm_obj_set_property and
sm_obj_get_property functions for this purpose. The following example sets a
property on the Java object associated with the id variable:

 ret = sm_obj_set_property(id, "PropName", "PropSetting")

A type-specifier cannot be used with sm_obj_set_property, and the property type
may only be a primitive, a primitive wrapper type, or a String. Arrays are not
supported. Also, @obj() is not supported for the third argument of
sm_obj_set_property, nor can sm_obj_get_property return an object ID.

Designating an Error Handler

You can define an error handler for Java method invocations. For example:

 call sm_obj_onerror("ErrorHandlerName")

The string passed to sm_obj_onerror is the name of the function that you want to use
as the error handler. This may be the name of a JPL function, a C prototyped function,
or a C control function. If a Java operation (method call, property access, or object
creation) fails for some reason, including if a Java method throws an exception, the
error handler function will be called. This function is passed three parameters: the
property value of the current_component_system property - for Java it is
PV_SERVER_JAVA, the message number, in decimal format, of a message from the
21-22 Java Event Handlers and Objects

Java Samples
Panther message file for the error, and the corresponding message describing the error.
In the case of a C control function, the three parameters are concatenated into one
string parameter. The handler does not receive the Java exception string nor the Java
stack trace. It only receives a message that there was an unhandled Java exception. It
may, therefore, be advisable to cache Java exceptions in a Java object that has methods
for retrieving the exception string and stack trace.

Java Samples

The Java methods in these samples are taken from a Panther-built calculator program.
The calculator contains a screen event handler for the calculator window and several
classes of button event handlers for the push buttons which perform the calculator's
operations. The calculator is located in the distribution at
$SMBASE/samples/javacalc; refer to Appendix C, “Panther Java Calculator,” for
development notes.

The screen event handler initializes global JPL variables and reprograms some keys.
The Java Tag for the screen is CalcScreen.

import com.prolifics.jni.*;

// This class provides the Screen Entry and Screen Exit
// functions for the Calculator.
// It initializes JPL globals and re-programs
// the BS,DELE and ENTER keys.

public class CalcScreen
extends ScreenHandlerAdapter

{
public void screenEntry(ScreenInterface si, int context)
{

CFunctionsInterface c = si.getCFunctions();

// Set JPL global variables
c.sm_n_putfield("op_just_done","1");
c.sm_n_putfield("operation","");
c.sm_n_putfield("memory","0");
c.sm_n_putfield("register","0");
Application Development Guide 21-23

Java Samples
c.sm_n_putfield("degrees","0");
c.sm_n_putfield("currency","0");

// Set <Enter> to generate '=' Key press,
// Backspace to generate "<",
// and Delete to Generate "E"(clear Entry)

c.sm_keyoption(Keys.NL, KEY_XLATE, '=');
c.sm_keyoption(Keys.BKSP, KEY_XLATE, '<');
c.sm_keyoption(Keys.DELE, KEY_XLATE, 'E');

}

public void screenExit(ScreenInterface si, int context
{

CFunctionsInterface c = si.getCFunctions();

// Restore default functions of Backspace, Delete and Enter
c.sm_keyoption(Keys.NL, KEY_XLATE, Keys.NL);
c.sm_keyoption(Keys.BKSP, KEY_XLATE, Keys.BKSP);
c.sm_keyoption(Keys.DELE, KEY_XLATE, Keys.DELE);

}
}

One of the button event handlers is for the push buttons that implement the memory
functions of the calculator. The push buttons using this event handler have a Java Tag
of CalcMem.

import com.prolifics.jni.*;

// This class provides A Handler for all calculator
// operations which implement the memory operations.
// There is an if-else-if block which implements
// the individual functions based on the button labels.

public class CalcMem
extends ButtonHandlerAdapter

{
public int buttonActivate(FieldInterface fi,int item)
{

ScreenInterface si = fi.getScreen();
CFunctionsInterface c = si.getCFunctions();

// Save Handle to display since it is used a few times
FieldInterface fiDisplay = si.getField("display");
// Get value of Display widget and Key Pressed
String key = fi.getfield();
double dDisplay = fiDisplay.dblval();
// Get values from JPL global vars
double mem = c.sm_n_dblval("memory");
21-24 Java Event Handlers and Objects

Java Samples
if (key.equalsIgnoreCase("MC"))
c.sm_n_putfield("memory","0");

else if (key.equalsIgnoreCase("MR"))
{
fiDisplay.putfield(String.valueOf(mem));
fiDisplay.fval();
}

else if (key.equalsIgnoreCase("M+"))
{
mem += dDisplay;
c.sm_n_putfield("memory",String.valueOf(mem));
}

c.sm_n_putfield("op_just_done","1");
return 0;

}
}

Application Development Guide 21-25

Java Samples
21-26 Java Event Handlers and Objects

CHAPTER
22 Using XML Data

As of Panther 5, you can import and export data from a Panther screen in XML format.

Defining XML Properties

To use the XML feature available as of Panther 5, the screen and its widgets must have
the appropriate XML properties set. There are four XML properties that can be
specified for widgets or screens:

XML Tag
A tag associated with the screen, container, or widget.

XML Attributes
Additional information to be output in the opening tag following the XML
Tag value.

For example, if the XML Tag is gadget and the XML Attributes is magnetic
color='blue', the opening tag in the generated XML would be:

<gadget magnetic color='blue'>

Note: If you use special characters, such as > or <, they must be escaped.

XML Prefix
Data to be output before the opening tag. This property can contain more than
one line of text and will be output even if the widget does not have the XML
Tag property set.
Application Development Guide 22-1

Processing XML Properties
XML Postfix

Data to be output after the closing tag. This property can contain more than
one line of text and will be output even if the widget does not have the XML
Tag property set.

Defining XML Screen Properties

The screen being used for XML generation must either have the XML Tag property
specified or both the XML Prefix and the XML Postfix properties specified.

For screens, if the XML Prefix property is empty, the generated XML starts with the
following line:

<?xml version='1.0'?>

If a different opening line is needed, specify it in the screen’s XML Prefix property.

Processing XML Properties

For screens and other containers (boxes, tab decks, tab cards and grids), Panther
generates the following:

! If specified, the XML Prefix property value is output.

! The opening tag and any attributes are output.

! XML is generated for the widgets within the container.

! The closing tag is output.

! If specified, the XML Postfix property value is output.

Note: Even if the container does not have any XML properties specified, widgets in
it will be included in the generated XML when they have XML properties set.
22-2 Using XML Data

Generating XML
For data entry and selection widgets (dynamic labels, single line text widgets, multiline
text widgets, option menus, combo boxes and list boxes), Panther generates the
following :

! If specified, the XML Prefix property value is output.

! The opening tag and any attributes are output.

! The data from the widget is output.

! The closing tag is output.

! If specified, the XML Postfix property value is output.

Processing XML for Multiple Occurrences

When a grid is converted to XML, the maximum number of occurrences of each grid
member having an XML Tag property determines the number of occurrences to output.
All offscreen data will be written to the XML.

Processing Hidden Widgets

It is recommended that all widgets used in the XML generation have the same value
for Hidden Always. Either all of the widgets must be set to Hidden Always, or none
of the widgets must be set to Hidden Always.

Generating XML

You can generate XML by calling one of the following functions:

! sm_xml_export and its variants generate the XML to a buffer. Since the buffer
can contain TAB and NL characters, sm_ww_write should be called put the
output in a word wrapped array when calling these functions from JPL.

! sm_xml_export_file and its variants write the generated XML to a file.
Application Development Guide 22-3

Importing XML
The form of the function depends on how you specify the screen or LDB.

! To generate XML for the current screen, call sm_xml_export or
sm_xml_export_file.

! To specify the screen by GSD, call sm_n_xml_export or
sm_n_xml_export_file.

! To specify the screen by Object ID, call sm_obj_xml_export or
sm_obj_xml_export_file.

The following JPL procedure generates XML for the current screen to the file
titles.xml:

proc export
call sm_xml_export_file("titles.xml")
return

Importing XML

You can import XML by calling one of the following functions:

! sm_xml_import and its variants import XML from a buffer. Since the buffer
can contain TAB and NL characters, sm_ww_read.can be used to provide this
buffer when calling these functions from JPL.

! sm_xml_import_file and its variants import XML from a file.

The form of the function depends on how you specify the screen or LDB.

! To import XML into the current screen, call sm_xml_import or
sm_xml_import_file.

! To specify the screen by GSD, call sm_n_xml_import or
sm_n_xml_import_file.

! To specify the screen by Object ID, call sm_obj_xml_import or
sm_obj_xml_import_file.
22-4 Using XML Data

Sample XML File
The following JPL procedure reads in XML for the current screen from the file
titles.xml:

proc import
call sm_xml_import_file("titles.xml")
return

Notes:

! In order to write data values into fields, the names of the fields and their
corresponding containers must match the names specified in the XML file.

! Data originally exported from a multi-line text widget must be imported back
into a multi-line text widget.

Sample XML File

S

The following file contains the data from one of the videobiz database screens:

<?xml version='1.0'?>
<titles>
<title_id>2</title_id>
<name>Aliens</name>
<genre>SCFI</genre>
<rating>R</rating>
<release_year>1986</release_year>
<title_id>4</title_id>
<name>All the President's Men</name>
<genre>DRAM</genre>
<rating>PG</rating>
<release_year>1976</release_year>
<title_id>26</title_id>
<name>Moonstruck</name>
<genre>COM</genre>
<rating>PG</rating>
<release_year>1987</release_year>
</titles>
Application Development Guide 22-5

Sample XML File
22-6 Using XML Data

CHAPTER
23 Using Widgets

Panther lets you access and manipulate most widgets at runtime, get and modify their
data and properties, ascertain the current selection within a radio button group or list
box, and determine whether data has changed or passed validation. Panther
differentiates between data entry widgets that can be thus accessed and manipulated,
and other widgets that are static in nature, like lines, boxes, and static labels.

In order to access widgets, you must know how widgets are identified; for information
on widget naming and array/occurrence numbering, refer to Chapter 14, “Identifying
Screen Widgets.”

Functions described in this section are documented in the Programming Guide; refer
to that manual for the syntax and specific behavior of each function.

Changing Widget Display

Widget display is determined by the setting for the Hidden property. By default, this
property is set to No. You can change the setting to:

! Yes if you want the ability to display the widget at runtime.

! Always if you want to store data in the widget but never display it.

For tab decks, the topmost_card runtime property sets the topmost card in the deck
or returns the object id of the card that is topmost in the tab deck.
Application Development Guide 23-1

Controlling Input
Controlling Input

You can control what type of input in allowed for the widget by setting the widget's
properties in the screen editor and, if necessary, changing those properties at runtime.

Setting Data Entry Formats

The Keystroke Filter property sets the criteria for data entry: the keys that can be used
(numbers, letters, or a combination) and the format of the entered data.

For example, the following entry in the Edit Mask subproperty would force the user to
enter three digits followed by six letters:

ID#\9\9\9-\X\X\X\X\X\X

ID# and the hyphen are only display characters. Display characters are stripped before
sending the value to a database or copying the value with sm_getfield§. For more
information, refer to “Edit Masks” on page 14-5 in Using the Editors.

The Regular Expression property can also enforce a specific pattern of letters or
numbers, and in addition, it can restrict the range of characters available. For example,
the following expression defines a code of three digits ranging from 1-5, followed by
a hyphen and minimum of three letters, but no more than six.

[1-5]\{3\}-[a-zA-Z]\{3,6\}

For more information, refer to “Regular Expressions” on page 14-7 in Using the
Editors.

If you want to suggest a format pattern and have that format pattern saved to the
database, you can use the Keystroke Filter property in combination with the Initial
Text property. For example, an initial text entry of - - in combination with a setting
of Numeric in the Keystroke Filter property would allow the user to enter groups of
numbers separated by hyphens.
23-2 Using Widgets

Traversing Widgets
Other properties in the Input category determine if entry in the widget is required and
if data in the widget is protected. For more information, refer to Chapter 14, “Data
Entry Widgets,” in Using the Editors.

Setting Date and Currency Formats

Under Format/Display, properties determine if a widget's contents are right or left
justified, a password, a date format, or a currency format. You can also specify the date
or currency format which will be used to enter data. For a description of properties in
the Format/Display category, refer to Chapter 10, “Controlling the Way Things Look,”
in Using the Editors.

Traversing Widgets

You can traverse widgets on the screen using the mouse or the TAB key.

Traversing Sets of Widgets

Panther provides a set of library functions that enable you to traverse the contents of a
container widgets. These are screens (including ones used as LDBs), grid widgets, box
widgets, selection groups, synchronized scrolling groups, tab decks, tab cards and
table views. Follow these steps:

1. Obtain the container object's id property through JPL or by calling sm_prop_id.

2. Call sm_list_objects_start to create a list of all widgets that are currently
contained by the specified object. This function returns a handle to the list so
you can access its contents.

3. reverse the list of objects created by sm_list_objects_start through
repeated calls to sm_list_objects_next. This function, when first called, on a
given list returns the object ID of the first widget in the list; each subsequent call
returns the object ID of the next widget in the list.
Application Development Guide 23-3

Traversing Widgets
When the list is completely traversed, the function returns PR_E_ERROR. You
can use this error code to test whether a list is fully traversed; or use
sm_list_objects_count to set a counter within a for loop.

4. Call sm_list_objects_end to destroy the object contents list and deallocate
the memory associated with it.

For example, the following procedure creates an objects contents list for all members
in a grid and traverses the list:

proc traverse_grid(grid_name)
vars grid_list, ct, member_ct, member_id

// create list of all members in grid

grid_list = sm_list_objects_start(sm_prop_id(grid_name))
if grid_list > 0
{

// get count of listed object IDs
member_ct = sm_list_objects_count(grid_list)

for ct = 1 while ct <= member_ct
// traverse list
{

member_id = sm_list_objects_next(grid_list)
// use member's object ID to perform some action on it

}
call sm_list_objects_end(grid_list)
return 1

}
return 0

The following example hides a box widget and the widgets positioned within its
borders:

proc hide_box (name)
{

vars box_list, count, i, item_id
@widget(name)->hidden = PV_YES
box_list = sm_list_objects_start (sm_prop_id (name))
if box_list >0
{
count = sm_list_objects_count (box_list)
for i = 1 while i <= count

{
item_id = sm_list_objects_next (box_list)
// don't try to hide static labels
if @id(item_id)->widget_type != PV_STATIC_LABEL
23-4 Using Widgets

Getting Widget Data
{
// don't try to hide always-hidden widgets
if @id(item_id)->hidden != PV_ALWAYS
{

@id(item_id)->hidden = PV_YES
}

}
}
call sm_list_objects_end (box_list)
return 0

}
return -1

}

In JPL, the member property can be used to find the members of a container. The
following example cycles through the cards in the specified tab deck:

for i = 1 while i <= my_deck->number_of_cards
{

a = my_deck->member[i]
@id(a)-> ...

//some JPL programming

}

Getting Widget Data

Panther library functions let you obtain the data in a widget or its occurrences; they
also let you ascertain the widget's current property settings.

Getting Widget and Array Data

The following functions copy data from widgets and arrays:

! sm_getfield copies data from the specified widget or occurrence to the
supplied parameter. Panther strips leading or trailing blanks.
Application Development Guide 23-5

Getting Widget Data
! sm_fptr returns the contents of the specified widget. Panther strips leading or
trailing blanks.

! sm_ww_read copies word-wrapped text from a multiline text widget into a
string buffer.

! sm_ww_length gets the number of characters in a word wrap widget.

! sm_dblval returns the contents of the specified widget as a real number.

! sm_intval returns the integer value of the data contained in the specified
widget, including its sign. All other punctuation characters are ignored.

! sm_lngval returns the contents of the specified widget as a long integer. It
recognizes only digit characters and a leading plus or minus sign.

You can also get information about the data in a widget with these functions:

! sm_dlength returns the length of the data in the specified widget or occurrence
of a widget. The length includes any data that is shifted offscreen and therefore
out of view. The length excludes leading blanks in right-justified widgets, and
trailing blanks in left-justified widgets.

! sm_is_no and sm_is_yes compare the first character of the data in the
specified widget or occurrence to the first letter of the SM_NO and SM_YES
entries in the message file, ignoring case.

! sm_null lets you test whether a widget's value is null or not. This function
checks whether a widget's Null Field property is set to Yes; if it is, sm_null
gets the widget's null indicator and compares it to the widget's value.

Getting Properties

You can access all widget properties at runtime through JPL or the property functions:
sm_prop_get, sm_prop_set, and sm_prop_id. For example, this JPL if statement
conditionally unhides a widget at runtime by changing its hidden property to PV_NO:

if (login == "super")
 emp_salary ->hidden = PV_NO

For more information about getting and setting widget properties in JPL, refer to
Chapter 19, “Programming in JPL.”
23-6 Using Widgets

Changing Widget Data
Changing Widget Data

Writing Data to Widgets

The following library functions let you move data directly into widgets:

! sm_putfield moves the supplied string into the specified widget. If the string
is too long, Panther truncates it without warning. If the string is shorter than the
destination widget, Panther blank fills it according to the widget's justification.
If the data is a null string, Panther clears the field. This refreshes date and time
fields that take system values.

! sm_ww_write copies text from a string buffer into a multiline text widget
whose Word Wrap property is set to Yes. sm_ww_write wraps at the end of
words and leaves a space at the end of each line. If a word is equal to or longer
than the length of the widget, sm_ww_write breaks the word one character
before the end of the field, appends a space, and wraps the rest of the word on
the next line.

! sm_dtofield converts a real number value to user-readable format as specified
by format. It then moves this value into the specified widget with a call to
sm_amt_format. If the format string is empty, Panther determines the number
of decimal places from the widget's C Type property specification, or from its
numeric_type property specification. If neither exists, it uses two decimal
places.

! sm_itofield converts the supplied value to a string and places it in the
specified widget.

! sm_ltofield converts a long integer passed to user-readable form and places it
in the specified widget.

! sm_amt_format writes data to a widget, first checking whether the widget has
a Data Formatting specification of Numeric. If it does, it formats the data
accordingly.
Application Development Guide 23-7

Changing Widget Data
! sm_upd_select updates the contents of an option menu or combo box with
data from another screen. The widget must be defined to accept data from an
external screen; otherwise, the function returns an error.

Clearing Widget Data

To clear widget data:

! Use the FERA logical key to clear a widget's data.

! With the transaction manager, call the CLEAR command to clear data
throughout, or in a portion of, the transaction tree.

! Use the following library functions to clear data from widgets and arrays:

! sm_cl_unprot erases onscreen and offscreen data from all widgets that are
unprotected from clearing (CPROTECT). Date and time fields that take system
values are reinitialized. Widgets with the null edit are reset to their null
indicator values.

! sm_clear_array clears all data from the array that contains the specified
widget. The array is cleared even if it is protected from clearing (CPROTECT).
sm_clear_array and sm_n_clear_array also clear arrays synchronized with
the array unless they are protected from clearing. Variants sm_1clear_array
and sm_n_1clear_array only clear the specified array.

Inserting and Deleting Occurrences

You can insert rows in using the logical key INSL and delete rows using DELL.

Two functions let you delete and insert occurrences from arrays:

! sm_doccur removes one or more occurrences, starting with the specified
occurrence.

! sm_ioccur inserts one or more blank occurrences. Before it inserts the
occurrences, Panther checks the new total of occurrences is greater than the
maximum number of occurrences set for the array.
23-8 Using Widgets

Making Widget Selections
If other arrays are synchronized with the one specified, sm_doccur and sm_ioccur
perform the same operation on them, provided their Clearing Protect property is set to
No. If a synchronized array is protected from clearing, Panther leaves it unchanged.
Thus, you can synchronize a protected array that contains an unchanging sequence of
numbers with an adjoining unprotected array whose data grows and shrinks.

Both functions ignore the target array's Clearing Protect setting.

Making Widget Selections

Panther has a set of functions that let you check the current selection or selections
within a selection group, and change the selections.

Getting Selections

Two functions, sm_isselected and sm_getfield, let you determine whether a
selection has been made within a selection group and what those selections
are.sm_isselected checks whether a selection has been made in a selection group. The
selection is referenced by the group name and occurrence number.

If you call sm_n_getfield on a radio button group that allows one selection, the
buffer that you pass into this function gets the group occurrence number of the selected
item. For example, the radio button group rating has the third occurrence, PG-13,
selected:
Application Development Guide 23-9

Making Widget Selections
Given this selection, the following call to sm_n_getfield puts the string “3” into the
string buffer pointed to by buffer:

ret =

sm_n_getfield (buffer, "rating");

If you call sm_n_getfield on a group of widget types that allows multiple selections,
for example, a check box group. Panther puts the numbers of the selected occurrences
into buffer. For example, the genre check box group has occurrences 1, 3, and 4
selected:

If you call sm_n_getfield on genre, buffer gets the string 1 3 4.

Panther sees a group's value as an array whose elements contain the offsets of the
selected items. Thus, Panther stores the value of genre as follows:

genre[1] = "1"
genre[2] = "3"
genre[3] = "4
genre[4] = " "
23-10 Using Widgets

Making Widget Selections
sm_i_getfield gets the specified selection in the group. For example, this call gets
the second-selected item in genre and puts its value, 3, into buffer:

retvar = sm_i_getfield (buffer, "genre", 2);

Changing Selections

sm_select lets you select an occurrence within a selection widget group. If the
group's # of Selections property allows no more than one selection, Panther first
deselects the current selection before it selects the specified group occurrence. For
more information about selection widgets, refer to Chapter 20, “Selection Widgets,” in
Using the Editors.

To deselect an occurrence, call sm_deselect.

The selected runtime property specifies whether a selection-type widget is selected.

Manipulating Grids

For grid widgets, the grid_current_occ runtime property contains the grid widget's
current (or selected) occurrence. The following JPL procedure uses this property to
delete the selected row.

proc delete_selected_row(fld)
vars grid_name occ
{

grid_name = @widget(fld)->grid
occ = @widget(grid_name)->grid_current_occ
call sm_i_doccur(fld, occ, 1)
return 0

}

Making Selections in List Boxes

Inside a list box, you can select multiple occurrences or change the application
behavior to only allow a single choice. The LISTBOX_SELECTION behavior variable
determines the behavior of list boxes in your application with its settings of
SIMPLE_SELECTION and EXTENDED_SELECTION (default). The value for
LISTBOX_SELECTION must remain constant during the running of the application.
Application Development Guide 23-11

Accessing Tab Controls
For extended list boxes, the Listbox Type property must be set to Select Any. If it
belongs to a selection group, the # of Selections property must also be set to Any.
Extended selections pertain to selections within the list box, not the selection group.
Therefore, if you have two list boxes in the group, the selection within one list box will
have no effect on the other.

One of the field function arguments, K_EXTEND, can determine if the widget is an
extended list box. Another field function argument, K_EXTEND_LAST, can determine if
the cursor is in the last item of an extended selection list box.

The ADDM logical key toggles in and out of add mode within the list box.

Accessing Tab Controls

A tab control, available for Windows and Motif applications, consists of a tab deck and
its associated cards. The tab deck is like a box; any widget within its boundaries is
assigned to one of its cards. The number_of_cards read-only property gets the
number of cards in the deck, including hidden ones.

Each tab card can have widgets which can be grouped as needed. The card property of
each widget appearing on a tab card is set to the object ID of that card.

Tab cards are numbered sequentially within the tab deck. The Card Number property
(card_number) determines the sequence of the cards. You can move to another card
by clicking on its index tab or with the NCARD and PCARD logical keys.

The tab card currently on display in the screen is the topmost card. At runtime, you can
set which card is topmost using the tab deck's topmost_card property. The following
JPL statement set a new topmost card:

// my_deck has three cards named card1, card2, and card3.
// This call sets the second card as topmost card.

my_deck->topmost_card="card2"
23-12 Using Widgets

Accessing ActiveX Controls
Accessing ActiveX Controls

Active X controls, available for Windows and Web applications, are considered
separately since the ActiveX control itself is not a Panther' widget, only the ActiveX
container is. However, Panther can access the ActiveX control's properties, events, and
methods. This allows you to manipulate the ActiveX control at runtime.

The Active X container's CLSID property (clsid) determines which ActiveX control
is located inside the container. If the ActiveX control specified in that CLSID property
is registered on your system, the control will be displayed in the screen editor and the
Properties window will display the control's property names and settings.

To get and set property values at runtime:

! Use the JPL property syntax with ax_ prepended to the Active X control's
property name. The ax_ prefix insures that there are no conflicts between
Panther properties and ActiveX control properties.

! Call the C functions sm_obj_get_property and sm_obj_set_property.

! For Web applications only, set the properties on the web browser using
JavaScript or VBScript.

The author of an ActiveX control specifies what methods can be used to access the
control, the arguments needed for those methods, and the events that are applicable to
the control. Those methods can then be called in Windows applications using
sm_obj_call and in Web applications using VBScript or JavaScript. An event
handler can then be written for those events using sm_com_set_handler in Windows
applications and VBScript functions in Web applications.

For more information and an example of an ActiveX control, refer to Chapter 18,
“ActiveX Controls,” in Using the Editors.
Application Development Guide 23-13

Checking Validation
Checking Validation

Panther maintains two runtime properties that can be checked to determine the
validation and modification status of a widget or group:

valided

Indicates whether or not the widget or group has passed validation:

" PV_YES—the widget has passed validation.

" PV_NO—the widget has not passed validation.

The valided property is initially set to PV_NO when a screen is displayed. It is
reset to PV_NO each time the content of the widget is changed. It is set to
PV_YES each time the widget passes its validation tests; for example when
sm_fval forces validation processing on the widget. You can also explicitly
set a widget's valided property to PV_YES or PV_NO.

During field validation, Panther tests a field's data against a number of
formatting and input property settings. Refer to Table 17-1 on page 17-16 for
a list of these properties.

In order to allow users to move freely within a GUI application screen,
validation is typically suppressed until they explicitly submit the screen data,
for example, by pressing a Save push button. Field validation does not
typically occur when the user uses a cursor key to move out of the widget, or
mouse clicks into another widget. To force validation also to occur on these
events, set the application behavior variable IN_VALID to OK_NOVALID.

For information on validating widgets during screen exit processing, refer to
page 17-20, “Screen Exit Processing.”

mdt

Indicates whether the data of a widget or group have been modified:

" PV_YES—the data is changed.

" PV_NO—the data is unchanged.

The mdt property is initially set to PV_NO after the screen's entry function is
called and is set PV_YES when the content of the widget or group changes.
23-14 Using Widgets

Checking Validation
Once set to PV_NO, a widget's mdt property remains unchanged while the
screen is displayed; however, you can explicitly reset it to PV_YES.

Panther performs validation on a widget no matter how its valided property is
set. If a widget's validation requires significant processing such as a database
lookup, you can avoid redundant validation and significant overhead by
setting its no_validation property to PV_YES and test the state of its data
only when necessary, for example, through the widget's own exit function.
The following JPL code tests the mdt property of widget cust_id, to
determine whether to force validation processing through sm_fval. Because
this widget has validation initially disabled (no_validation = PV_YES), its
no_validation property must be reset before the call to sm_fval:

/* If the data has changed, force-validate the widget */
if cust_id->mdt == PV_YES
{
 /* reenable validation */
 cust_id->no_validation = PV_NO

 /* validate widget data */
 if (sm_n_fval("cust_id") == 0)
 {
 cust_id->mdt = PV_NO /* reset mdt flag */
 cust_id->no_validation = PV_YES /* disable validation */
 }
}

The following functions let you check and reset the mdt properties for all
widgets:

" sm_cl_all_mdts resets the mdt property of all widgets and
occurrences to PV_NO.

" sm_tst_all_mdts tests the mdt property of all on- and offscreen
occurrences of all widgets on the current screen. If it finds an
occurrence with its mdt bit set to PV_YES, the function returns with the
base field and occurrence number. Use this function to ascertain
whether any occurrence has been modified on the screen since the
screen was displayed or its mdt was last cleared by sm_cl_all_mdts
or by resetting the mdt property.
Application Development Guide 23-15

Checking Validation
23-16 Using Widgets

CHAPTER
24 Setting the Screen
Sequence

When developing a screen, you need to keep in mind a number of issues relating to the
visual appearance of the screen, the type of data being displayed or manipulated, and
what your users will do with the data.

These issues can include whether more than one screen can be open at a time. This is
a main factor in deciding if you open the screen as a form or as a window.

This chapter discusses the underlying sequence of client screens and how Panther
manipulates them.

Forms and Windows

User interaction with a Panther application typically begins with a startup screen, or
base form. The base form is often the gateway to other screens, which can be opened
in one of two ways:

! As another form. Panther maintains a list of forms, called the form stack. The
top form of that stack is the only one that is open.

! As a window that is opened either from the top form or another window. This
window can itself open another window, either as a child or a sibling. Panther
maintains a stack of all open windows, where the window at the top of the stack
Application Development Guide 24-1

Forms and Windows
is the active window that is, the window with focus. Panther maintains the
window stack only as long as its parent form remains on top of the form stack.
The rest of this chapter refers to child windows as stacked windows.

Forms and the Form Stack

Panther maintains a form stack which lists forms previously opened by the application.
The application's startup screen is the base form—that is, the first screen to be pushed
onto the form stack. Panther pushes onto the stack each screen that is subsequently
opened as a form in the application. The top screen is the only form that is open and
whose data is accessible.

The form stack retains the names of the screens saved to it and some information about
each one's save state—for example, the cursor's last position. However, the stack does
not save screen data. Consequently, changes entered earlier on a form might not
reappear when the form is reactivated. You can save form data changes through the
local data block (LDB). All changes in fields with corresponding LDB entries are
written to the LDB when a new form is opened, and can be restored when the earlier
form is reactivated. You can also send screen data to a named location in memory, or
bundle, for later retrieval; bundles are created and accessed through Panther's send and
receive commands and library functions. For more information on LDB processing
and send/receive facility, refer to Chapter 25, “Moving Data Between Screens.”

Panther stacks forms in last-in/first-out (LIFO) order. All screens in the form stack
must be unique. If a form is opened and its name is already in the stack, Panther
assumes that you want to return to that form; it pops off the stack all screens above the
specified form and discards them.

For example, an application might consist of three screens, screen1, screen2, and
screen3, which open each other as forms. This creates a form stack in which screen1
is the application's base form and screen3 is the top form:
24-2 Setting the Screen Sequence

Forms and Windows
screen3 has a menu item that allows users to open screen1 as a form through the control
string screen1. On selection of that menu item, Panther finds screen1 already exists in
the form stack and returns to that instance. All intervening screens in the form stack—
in this case, screen3 and screen2—are destroyed. If the user now exits from screen1,
the form stack is empty. If the setup variable CLOSELAST_OPT is set to NO_CLOSELAST,
the application terminates; otherwise, the application continues to run without an open
screen.

Windows and the Window Stack

The top form always has its own window stack, in which it serves as the base window.
Only the top form maintains a window stack. The window stack remains in memory
until Panther gets a request to open another form. It then closes all windows and purges
that window stack from memory. Finally, it opens the form and creates a new window
stack.

Window Stack Organization

Panther stacks windows in last-in/first-out (LIFO) order. The top screen in the window
stack is the active window and is the only window to have focus. When the application
issues a request to close the active window—through EXIT or an explicit function
call—Panther pops the active window off the window stack. The top window in the
stack now becomes the active window with its saved data restored.

For example, given the form stack shown earlier, the top form screen3 can open
screen1 as a window; screen1 can in turn open another window, and so on, yielding a
window stack as shown in the following illustration:
Application Development Guide 24-3

Forms and Windows
In this example, screenY is the top window in the window stack and therefore the
active window; only it has focus. If the user closes screenY, for example, through the
EXIT key, screenX becomes the active window.

Panther uses the window stack to maintain information about all open windows—
which one is active, the order in which they were opened, whether they have a sibling
or stacked relationship, and the data of inactive windows. Because the window stack
saves inactive window data, Panther can reactivate a window in its previous state, and
thus avoids the overhead and processing otherwise incurred by reopening and
redisplaying the screen.

The window stack can hold as many windows as system memory allows. You can get
the number of windows in the window stack through sm_wcount.

In contrast with the form stack, the window stack can contain multiple instances of the
same screen. Be careful to avoid recursive designs that might use large amounts of
memory.

Sibling Windows

You can open a screen as a sibling of the current window. Unlike stacked windows,
users can bring focus to any window that is a sibling of the active window.

A window cannot directly open any screen as a sibling that is already a sibling. To open
multiple instances of the same screen as sibling windows, call sm_setsibling to
force sibling status onto the next screen opened as a window. You can also reset an
existing window's sibling property (PV_YES to define the window as a sibling, PV_NO
to reinstate its stacked window state).

Window Stack Manipulation

Panther provides these library functions to manipulate the window stack:

! sm_wselect move any window to the top of the window stack; this window
becomes the active window. In character-mode, any siblings of the selected
window are also brought forward in the display.

! sm_deselect restores a window previously selected by sm_wselect to its
former position in the window stack. Panther only saves information about the
screen last-selected by sm_wselect call; consequently, you can restore a screen
to its previous place in the window stack only if no other windows have
subsequently been selected by sm_wselect.
24-4 Setting the Screen Sequence

Forms and Windows
! sm_setsibling forces sibling status onto the next screen opened as a window.
Usually, you can open a screen as a sibling window by prepending the screen
name with double ampersands (&&) in a control string, for example, in a
widget's Control String property or as an argument to sm_jwindow. This
operation fails if the specified screen is already open as the current window or
as a sibling of the current window. If you want to open multiple instances of the
same screen as sibling windows, precede each call to open these windows with
a call to sm_setsibling.

You can also programmatically rotate sibling windows in order to change the active
one.

sm_wrotate rotates sibling windows according to the supplied step value. For
example, the following illustration shows sibling windows A, B, and C, where C is the
active window:

The following function call rotates the top sibling window C to the bottom of the
sibling stack and leaves screen B on top as the active window:

sib_windows = sm_wrotate (1);
Application Development Guide 24-5

Forms and Windows
24-6 Setting the Screen Sequence

CHAPTER
25 Moving Data
Between Screens

Panther lets you move data between screens by:

! Issuing JPL send and receive commands or their equivalent library functions.
These let you explicitly write and read screen data to and from temporary
buffers.

! Creating JPL global variables.

! Accessing values on any open application screen.

! Loading and activating screens as local data blocks, or LDBs. LDBs
automatically initialize and capture widget data on screen entry and exit,
respectively.

Sending and Receiving Data

Panther provides JPL commands and equivalent library functions to transfer data
between screens without LDBs. You typically perform send and receive operations as
follows:

1. Write data—JPL variables, string constants, and widget values—to a buffer, or
bundle.
Application Development Guide 25-1

Sending and Receiving Data
2. Read data from the bundle into receiving widgets.

advantages over

LDBs

Send and receive operations have several advantages over LDB usage:

! A finer level of control over data transfer. You can use any screen- and
widget-level hook—entry, exit, and validation—to send and receive data. As
developer, you explicitly tell Panther what data to send and when to send it.
You also avoid unintentionally overwriting widget data with the LDB, and
vice-versa.

! More economical use of memory. This can be especially important in
environments with limited memory like MS-DOS.

! Sent data is always delivered to the receiving screen intact. Only the receiving
widget length decides whether incoming data is received whole or is truncated.

! Send/receive operations do not require the source and target widgets to share
the same name.

The following sections describe send and receive operations in general terms. For
detailed information on relevant JPL and library function calls and options, refer to
Programming Guide.

Bundles

JPL’s send and receive commands and Panther API functions act on bundles, which
provide temporary storage for the data you wish to transfer between screens. You can
name bundles for explicit access. Panther maintains up to ten bundles by default,
including one that can be unnamed. If you send data without specifying a bundle name,
Panther writes the data to an unnamed bundle; this data is available to the next receive
request that omits specifying a bundle name.

You can set the number of available bundles with the application property,
max_bundles.

Sending Data

JPL’s send command and its library function counterparts write screen data to a buffer
that is accessible to other screens.
25-2 Moving Data Between Screens

Sending and Receiving Data
JPL send

JPL’s send command initializes a bundle and populates it with one or more data items.
You can send widget and array values, a specific range of occurrences, variables, and
constants.

For example, the following send command initializes bundle1 and sends three data
items to it. The third data argument, credit[1..], specifies all occurrences in the
array:

send bundle "bundle1" data credit_acctno, "1000", credit[1..]

Library Function Calls

If you use Panther library functions, you must issue at least three calls in this order:

1. Create a new bundle with a call to sm_create_bundle.

2. Create items in the bundle through successive calls to
sm_append_bundle_item.

3. Populate each bundle item with one or more occurrences of data through
sm_append_bundle_data. Each call to sm_append_bundle_data appends a
single occurrence of data to the specified item.

When you are finished sending data to a bundle, you can optionally call
sm_append_bundle_done to optimize memory allocated for a send bundle.

For example, the following function iterates over all screen-resident widgets and sends
their data to the bundle myBundle:

include <smdefs.h>

int sendScreenDataToBundle(int numFields)
{
 int i, ret;
 if (0 != (ret = sm_create_bundle("myBundle")))
 return ret;
 for (i = 1; i <= numFields; i++)
 {
 sm_append_bundle_item("myBundle");
 sm_append_bundle_data("myBundle",i,sm_fptr(i));
 }
 sm_append_bundle_done("myBundle");
Application Development Guide 25-3

Sending and Receiving Data
 return 0;
}

Receiving Data

JPL’s receive command and its counterpart sm_get_bundle_data read data from a
bundle. The receive command reads bundle data directly into the specified widgets;
sm_get_bundle_data reads a single occurrence from the specified bundle item into
a buffer and returns with a pointer to that buffer.

JPL receive

JPL’s receive command specifies the bundle to read and reads its data items into the
target widgets. For example, the following receive command reads bundle1 and puts
its data into three widgets:

receive bundle "bundle1" data acctno, credit_amt, credit

receive reads data in the same order that it was sent. Because the bundle retains no
information about its data sources, the send and receive calls should sequence widgets
in the same order to ensure that the receiving widgets get the correct data. Panther does
not check whether receive data is valid for the target widgets.

Unless the receive command includes the keep argument, when it returns, Panther
destroys the bundle and frees the memory allocated for it. The keep argument keeps
the bundle and its data in memory and available for later receive operations.

Library Function Calls

You can use Panther library functions to ascertain a bundle's state and get individual
occurrences of data from it. In the next example, sm_get_bundle_item_count and
sm_get_bundle_occur_count, respectively, get the number of items in a bundle and
the number of occurrences in each item. This example also gets the data from each
specified item occurrence through successive calls to sm_get_bundle_data.

include <smdefs.h>

/*get the bundle item count and pass it along*/

getNumBundleItems(void)
{

25-4 Moving Data Between Screens

Sending and Receiving Data
 if !(is_bundle("myBundle"))
 return -1

 getNumOccurs(sm_get_bundle_item_count("myBundle"));
 sm_free_bundle("myBundle");
 return 0;
}

/*get the occurrence count for each bundle item
 *and put occurrence data into screen widgets
 */

void getNumOccurs(int numItems)

{
 int itemCt, oCt, item[numItems];

 for (itemCt = 1; itemCt <= numItems; itemCt++)
 {
 item[itemCt] =
 sm_get_bundle_occur_count("myBundle", itemCt);
 for (oCt = 1; oCt <= item[itemCt]; oCt++)

 /*get data from, each item occurrence, put it into
 *corresponding widget occurrence
 */

 sm_o_putfield
 (itemCt, /*widget number */
 oCt, /*occurrence offset*/

 sm_get_bundle_data("myBundle", itemCt, oCt));

}

When you finish reading bundle data, destroy the bundle and free its memory by
calling sm_free_bundle.

Panther also provides these library functions:

! sm_get_next_bundle_name gets the name of the bundle created before the
one specified. You can use this function to traverse the list of all existing
bundles.

! sm_is_bundle verifies the existence of a bundle. Use this function to save
processing overhead.
Application Development Guide 25-5

Using Global Variables
Using Global Variables

Use the JPL global command to create variables which can be accessed from anywhere
in your application. If desired, you can specify the number of occurrences or an initial
value.

The following statement taken from a screen's unnamed procedure creates two global
variables: one for the user name and one for an array of divisions.

global username, divisions[3] = {"Sales", "HR", "DP"}

In Web applications, there are additional types of global variables. For more
information, refer to Chapter 7, “JPL Globals in Web Applications,”in the Web
Development Guide.

Accessing Values on Other Screens

If your application has more than one open screen, you can access a value in another
screen using the following syntax:

variableName@
screenName

For example, the following screen entry procedure writes the value of the user name
from a screen named main.scr to the current screen:

proc screen_entry
call sm_n_putfield(username, username@main.scr)
return

Note: In Web applications, this syntax is not available.
25-6 Moving Data Between Screens

Using Local Data Blocks
Using Local Data Blocks

Panther screens can be used as vehicles for initializing and saving values on other
screens. A screen that performs this background role is called a local data block, or
LDB. When a screen serves as an LDB, Panther uses its widgets, or LDB entries, to
transfer data to and from corresponding widgets on the current screen. By using LDBs,
applications can transfer data between screens automatically.

Panther matches LDB entries and screen widgets by name. Only named widgets and
LDB entries take part in LDB processing, or write-through. One or more screens can
be loaded into memory as LDBs and activated. When Panther enters or exits a screen,
it checks whether any LDBs are active. If one or more LDBs are active, Panther
performs LDB write-through as follows:

! At screen entry, Panther initializes or overwrites widgets from their matching
LDB entries. Screen entry occurs when a screen opens and, optionally, when it
is reexposed, depending on the value of EXPHIDE_OPTION. In both cases,
Panther writes LDB values to the screen after it executes the screen's entry
function.

The LDB always overwrites existing screen data, even if the widget has input
protection. One exception applies: at screen open, the LDB respects initial
widget data specified through the screen editor—for example, the value set in a
push button's Label property. Initial widget data also is written back to the
corresponding LDB entry.

! At screen exit, Panther writes data back to the LDB entries. Screen exit occurs
when a screen closes and, optionally, when it is overlaid by another screen,
depending on the value of EXPHIDE_OPTION. Panther writes screen data to the
LDB before it executes the screen's exit function.

If data is transferred between arrays, Panther allocates for the target array the number
of occurrences required to accommodate the incoming data, up to the array's maximum
number of occurrences.
Application Development Guide 25-7

Using Local Data Blocks
Selection Groups

Panther regards the selections that the user make in a selection group—radio buttons,
toggle buttons, check boxes, and list boxes—as the value of that group. You can use
LDBs to propagate that value—that is, repeat the selections—from one screen to
another. To ensure consistent results, make sure that the screen selection groups and
their corresponding LDB entry have the same number of widgets arranged in the same
order, and have the same contents.

Restrictions

In general, you should regard LDBs as passive recipients of data. Although an LDB is
created and edited as a screen, at runtime, Panther does not perform most of the
processing that is otherwise associated with screens. Screen entry and exit functions
are not executed; and no validation or formatting is performed on entry data. For
example, no updates occur for an LDB entry that is formatted as a date/time widget
with system_update set to PV_YES.

Invalid Targets

Panther does not move values between an LDB and the screen when an error window
opens or closes, because these windows do not allow data entry. LDB write-through is
invalid for any widget type that is read-only, such as static labels, lines, and boxes.

Data Overflow

LDB entries and their corresponding widgets should have the same data length and
number of occurrences. Otherwise, data might be lost for one of these reasons:

! If the length of the target LDB entry or widget is shorter than the source data,
Panther truncates the data.

! If the maximum number of occurrences specified for the target LDB entry or
widget is less than the number of occurrences allocated for the source, Panther
discards the overflow occurrences.
25-8 Moving Data Between Screens

Using Local Data Blocks
Interaction with Screen Modules

LDB write-through occurs after execution of the screen entry function and the screen
module's unnamed procedure. Avoid using either venue to write values directly to
widgets if the LDB also writes to those widgets. However, you can circumvent this
restriction as follows:

4. Write a procedure or function that populates the widgets with the desired values.

5. Attach this procedure or function to an unused logical key—for example,
APP22=^myproc.

6. In the screen entry procedure, push this key onto the input queue with the
built-in function jm_keys. For example:

call jm_keys APP22

After the LDB writes its values to the screen, Panther's screen manager pops all data
off the input queue. Given the previous example, when Panther gets APP22, it calls
myproc and executes its contents.

Loading and Activating LDBs

Multiple LDBs can be loaded into memory; of these, one or more can be active at any
time. You can activate an LDB only if it is already loaded; only active LDBs are open
to read and write operations. If several LDBs are active and have entries with the same
name, Panther uses the entry on the most recently loaded LDB. Use

sm_ldb_get_active to determine which active LDB is most recently loaded and
therefore has precedence.

LDB Handles Panther assigns a unique integer handle to each loaded LDB. Most runtime functions
that access loaded LDBs have variants that let you specify the LDB by its handle or by
its name. In this chapter, references to functions use name variants only.

loading multiple

instances of an

LDB

You can load multiple instances of the same LDB. For example, you might do this to
prevent data from multiple invocations of the same screen from overwriting each other.
Because Panther assigns a unique handle to each loaded LDB, you can reference these
LDBs either collectively by their common name, or individually by their separate
handles.
Application Development Guide 25-9

Using Local Data Blocks
using displayed

screens as LDBs

A displayed screen can act as an LDB, but only if it is loaded and activated as such.
Note that displayed LDB screens offer numerous opportunities for changing LDB data
before it reaches its destination—for example, through user input or widget- and
screen-level processing. If you display LDB screens, be careful to safeguard this
transitional data.

Default Activation

At application startup, Panther tries to load and activate LDBs as follows:

1. Looks for the configuration variable SMLDBLIBNAME and opens all screens in the
specified libraries as LDBs.

2. Looks for the configuration variable SMLDBNAME. For example:

SMLDBNAME = screen1.scr | screen2.scr | screen3.scr

3. Looks for the library ldb.lib and the screens stored in it.

Runtime Loading and Activation

Panther provides several functions for loading and activating, and deactivating and
unloading LDBs at runtime:

sm_ldb_load loads an LDB into memory and returns its integer handle.

sm_ldb_state_set lets you activate a loaded LDB and make it available for LDB
write-through. Use this function also to deactivate an LDB; the LDB remains loaded
but inaccessible to LDB write-through.

sm_ldb_unload removes an LDB from memory, whether active or not.

Read-only LDBs

You can change the state of an LDB from read/write to read-only through
sm_ldb_state_set. Screens can read from this LDB on screen entry but cannot
modify it on exit; consequently, a read-only LDB cannot be used to transfer values
from one screen to another. You can use read-only LDBs to maintain constant values
for initializing widget data.
25-10 Moving Data Between Screens

Using Local Data Blocks
push and pop

LDBs

Panther has an LDB save stack for push and pop operations. You can remove all loaded
LDBs from memory and push them onto the LDB stack with sm_ldb_push. Each push
operation creates a new entry in the stack, which lists the LDB names and their
status—whether active or not. Panther maintains stack entries in first-in/last-out order.
The number of lists you can save depends on the amount of memory available on your
system.

To restore the last-pushed list of LDBs to memory, call sm_ldb_pop. This function
removes all loaded LDBs from memory. It then restores to memory the LDBs in the
LDB save stack's topmost—that is, most recently pushed—list. If any LDBs were
active at the time they were unloaded, sm_ldb_pop restores them to active status.

Getting Information on LDBs

Panther provides several functions that let you get information about loaded and active
LDBs and manipulate their values:

! sm_ldb_get_active and sm_ldb_get_next_active let you iterate over all
active LDBs in order of most to least recently loaded. If several LDBs are
active, the most recently loaded one has precedence during LDB write-through.

! sm_ldb_get_inactive and sm_ldb_get_next_inactive let you iterate over
all inactive LDBs in order of most to least recently loaded.

! sm_ldb_state_get tells whether an LDB is active or whether it is read-only.

! sm_ldb_is_loaded tests whether an LDB is loaded.

! sm_ldb_getfield gets the current values in an LDB entry.

! sm_ldb_handle returns the handle of the specified LDB. Use this with

! sm_ldb_next_handle to get the handles of an LDB that is loaded more than
once.

! sm_ldb_name gets the name of a handle-specified LDB.

! sm_ldb_putfield changes the value of an LDB entry.

widget references

and LDB entries

Library functions and JPL procedures that reference widgets by name—for example,
sm_n_getfield and sm_n_putfield—seek them first on the screen, then in the
LDB. However, on two occasions, Panther reverses the search order: on screen entry
Application Development Guide 25-11

Using Local Data Blocks
or exit, Panther reverses the search order and first looks in the LDB for the requested
data. LDB data is written to the screen after screen entry and written back to the LDB
before screen exit. Reversing the search order ensures retrieval of the latest data. If the
LDB does not contain the requested entry, Panther looks for a corresponding widget
on the screen.

You can directly specify LDB entries through sm_ldb_getfield and
sm_ldb_putfield and their respective variants. These functions require you to
specify an entry's LDB screen by its name or handle. In JPL, you can reference LDB
entries as follows:

@ldb(ldb-screen)!ldb-entry
25-12 Moving Data Between Screens

CHAPTER
26 Displaying
Messages

Panther provides commands and functions that let you display Panther messages in a
window or on the status line, or as dialogs. Three-tier applications can send messages
between clients and from a server to the client. You can also write a hook function that
executes every time one of the error message display functions is called.

This chapter describes the different mechanisms for displaying and handling
messages. For information on how to handle errors that occur on a server, refer to
Chapter 37, “Processing Application Errors.” For information about event processing
and error handling for JetNet and Oracle Tuxedo middleware events, refer to
Chapter 6, “JetNet/Oracle Tuxedo Event Processing,” in the JetNet/Oracle Tuxedo
Guide.

Window Versus Status Line Display

GUI versions of Panther always display messages in a popup window with an OK
button. Character-mode Panther always displays messages in a window only if the
configuration variable MESSAGE_WINDOW is set to ALWAYS. If you set this variable to
WHEN_REQUIRED (the default), character-mode Panther displays messages on the status
line except when these conditions occur:
Application Development Guide 26-1

Acknowledging Messages
! The message overflows the status line. Note that Panther prevents the message
from overlapping the cursor row/column display, if it is turned on.

! The message wraps to multiple lines.

! You specify window display with the %W format option.

Notes: You can force display of a message to the status line on all GUI and
character-mode platforms, regardless of the MESSAGE_WINDOW setting, if the
message contains the %Mu option, or the setup variable ER_KEYUSE is set to
ER_USE. Also, the setbkstat and d_msg modes always display messages on
the status line.

Acknowledging Messages

Users can dismiss an error message by pressing the acknowledgement key. In a
window-displayed message, OK and space bar also serve to dismiss the error message.
The acknowledgement key (by default, spacebar) can be set through the setup variable
ER_ACK_KEY. If the user acknowledges the message through the keyboard, Panther
discards the key. You can modify this behavior for individual messages by embedding
the %Mu option in the message string (refer to this section on page 45-12).

Disabling Messages

You can control whether the application displays error messages by setting I_NOMSG
with the sm_iset function.

proc no_msg
call sm_iset(I_NOMSG, 1) //Turn off error messages

return
26-2 Displaying Messages

Setting Display Defaults
Setting Display Defaults

Several setup variables determine default message presentation and behavior. For
more information about these variables, refer to “Message Display” on page 2-20 in
the Configuration Guide. You can change these defaults at runtime through
sm_option. You can change message behavior and appearance for individual messages
by embedding percent escape options in the message text. For more information on
these, refer to page 45-8, “Setting Message Display and Behavior Options.”

Message Functions

Table 26-1 describes library functions that display errors, messages, and status
information. Other functions are related to message storage and retrieval. Message
display functions such as sm_ferr_reset and sm_fquiet_err can either supply a
string argument for the message content, or specify a message that is defined in the
message file:: For example, this JPL call to sm_ferr_reset specifies the string to
display in a message window:

call sm_ferr_reset (1, "ZIP CODE INVALID FOR THIS STATE.")

The next statement supplies a constant (defined in smerror.h) to invoke the application
message Entry is required.

call sm_ferr_reset (SM_RENRY, @NULL)

Application messages are defined in a binary message file and are loaded into memory
at initialization. For more information about message files, refer to page 45-2, “Using
Message Files.”
Application Development Guide 26-3

Message Functions
Table 26-1 Message related functions

Function Description

Message display (window or status line):

sm_femsg Displays a message and awaits user acknowledgement.

sm_ferr_reset Identical to sm_femsg when displayed in window. When displayed
on status line, puts cursor on at current widget.

sm_fqui_msg Identical to sm_femsg except that it prepends a tag—for example,
ERROR:—to the specified message. Gets the tag from the SM_ERROR
entry in the message file.

sm_fquiet_err Identical to sm_ferr_reset except that it prepends a tag —for
example, ERROR:—to the specified message. Gets the tag from the
SM_ERROR entry in the message file.

sm_inimsg Creates a displayable error message on failure of an initialization
function For example, if attempts to initialize a message file fail,
supply sm_inimsg with the error code returned from the failed
function and a description of the function itself.

sm_inimsg uses this information to return a string that you can
display—for example, by passing it to sm_fqui_msg.

Dialog box display:

sm_message_box Displays a message in a dialog box and requests the user to choose
a button such as Yes/No, Abort/Retry/Cancel. Pre vents further
interaction with the application until the function returns with the
user's selection.

Status line display:

sm_d_msg_line Can change display attributes of message.

sm_m_flush Forces display of updates to the status line. Useful if you want to
display the status of an operation with sm_d_msg_line without
flushing the entire display (e.g., with sm_flush).
26-4 Displaying Messages

Broadcasting Messages
Notes: GUI applications should avoid posting message dialog boxes while the mouse
button is down. For example, do not call sm_femsg from a widget's exit
function if the user can mouse click out of that widget into a push button.
Doing so can confuse Motif and cause unexpected behavior.

Broadcasting Messages

In JetNet and Oracle Tuxedo applications, two JPL commands enable transmission of
unsolicited messages between clients and servers:

! broadcast sends a message to all clients that match the specified criteria, or to
all clients. Both clients and servers can broadcast messages.

sm_msg Merges the specified message with the current contents of the status
line and displays it at the specified column.

sm_setbkstat Saves the contents of a message for display on the status line when
there is no other message with a higher priority to display.

sm_setstatus Toggle status line flags. The alternating messages are stored in
message file variables SM_READY and SM_WAIT.

Message file access:

sm_msg_get, sm_msgfind Gets the contents of an application message. Application messages
are defined in a binary message file, referenced by the application
variable SMMSGS.

sm_msg_read Reads into memory a set of application messages from the message
file.

sm_msg_del Removes from memory a set of application messages.

Table 26-1 Message related functions

Function Description
Application Development Guide 26-5

Broadcasting Messages
! notify sends a message to the client whose service request the server is
currently processing. Only servers can use notify to send messages.

Messages are embedded in one of the service message data types that Panther supports,
such as JAMFLEX or FML (Oracle Tuxedo only). For example, the following command
broadcasts a message to a client supervisor. It uses source to identify itself as the
source of the message:

broadcast CLIENT "supervisor" TYPE JAMFLEX \
({source="bcast_security", ACCOUNT=acct, DATE=date,\
SECURITY=code, MSG=message})

One message handler, installed at application scope, processes all broadcast messages,
whether sent by broadcast or notify. The contract for the default message handler
sm_tp_message_print_string specifies STRING-type message data; this data type
is valid only in Oracle Tuxedo applications, and limits the broadcast data to a single
string. To broadcast complex data, you must write and install a message handler that
accepts buffer-type data; to broadcast messages in JetNet applications, this data must
be of type JAMFLEX.

If your application needs to broadcast messages with variable content and handling
requirements, you should write and install a message handler that receives data from a
buffer-type message type such as JAMFLEX. For example, the following message
handler uses the first field of a JAMFLEX message to determine the nature of the
message and how to handle its contents.

// Message handler for all unsolicited messages

proc msg_handler(type, subtype)
vars source, account, date, security, message
vars companyNews, teamNews, stock, stock_quote
vars fileStream, acctMsg

// Identify message sender.

receive MESSAGE ({source})
if (source == "bcast_security")
{

// receive security violation data
receive MESSAGE ({account, date, security, message})

// Alert the supervisor
msg emsg "%A004Security alert: " ## message ## \

"%NDate: " ## date ## \
"%NAccount No. " ## account ## \
"%NCode: " ## code

}

26-6 Displaying Messages

Status Line Usage
else if (source == "bcast_acct_data")
{

// receive account data
receive MESSAGE ({account, date, message})
acctMsg = account##" "##date##" "##message

// write message data to log file
fileStream = sm_fio_open("/u/acct/logfile", "a")
if fileStream > 0
{

 call sm_fio_puts(acctMsg)
 call sm_fio_close(fileStream)

}
}

...

else if (source == "post_comp_news")
{

// receive posted company news message data
receive MESSAGE ({ companyNews })
msg emsg "Latest company news: " ## companyNews

}

...

return 0

Status Line Usage

When running in character-mode, Panther reserves one line on the display for error and
other status messages. The rightmost part of the status line can display the cursor's
current screen position; this can be controlled by calls to sm_c_vis.

Message Display

Several types of messages can use the status line; they are described here in order of
their priority from highest to lowest.
Application Development Guide 26-7

Status Line Usage
Error messages

Several functions can be executed to display a message on the status line, wait for
acknowledgment from the operator, and then reset the status line to its previous state:
sm_ferr_reset, sm_femsg, sm_fquiet_err, and sm_fqui_msg. As noted earlier,
these functions display messages on the status line only under certain conditions
(page 26-1, “Window Versus Status Line Display”). If displayed on the status line,
these functions wait for the message to be acknowledged. Messages displayed with
these functions have highest precedence.

sm_d_msg_line messages

The library functions sm_d_msg_line and sm_msg cause the display attributes and
message text you pass to remain on the status line until erased by another call to the
same function or overridden by a message of higher precedence.

Ready/Wait

The library function sm_setstatus provides an alternating pair of background
messages. Whenever the keyboard is open for input the status line displays Ready;
Wait is displayed when your program is processing and the keyboard is not open. You
can change (translate, rephrase, etc.) the display text by editing the SM_READY and
SM_WAIT entries in the Panther message file.

Widget/Menu item status

When the status line has no higher priority text, Panther checks the current widget or
selected menu item for text to be displayed on the status line. If the cursor is not in a
widget or on a menu item, or if the current widget or item has no status text, Panther
uses the string that is set for the screen's status_line_text property.

Screen status

When the status line has no higher priority text, Panther checks the current screen's
status_line_text property for text to display on the status line. If this property is
not set, Panther looks for background status text.
26-8 Displaying Messages

Error Hook Function
Background status

Background status text, the lowest priority of message display, can be set by calling
the library function sm_setbkstat and passing it the message text and display
attributes.

Other Status Line Information

In addition to messages, the status line can hold other information such as cursor
position coordinates and debugging information.

The rightmost part of the status line can display the cursor's current screen position as,
for example, C 2,18. The display is controlled by calls to sm_c_vis.

sm_fquiet_err (sm_msg_get (SM_MALLOC));

Key constants can be found in the file smkeys.h or another of the key header files.

Error Hook Function

Panther calls its installed error function whenever you call one of its error message
display routines, such as sm_fquiet_err or sm_ferr_reset. You can use the error
function for special error handling—for example, to write all error messages to a log
file. For more information on writing and installing your own hook function, refer to
page 44-37, “Error Function.”
Application Development Guide 26-9

Error Hook Function
26-10 Displaying Messages

Part V Accessing the
Database

In Panther, you have different methods of accessing the database. This section gives
an overview of database operations as well as instructions on writing SQL statements
and using the transaction manager.

Performing Database Operations

Writing SQL Statements

Reading Information from the Database

Writing Information to the Database

Building a Transaction Manager Screen

Writing Transaction Event Functions

Using Automated SQL Generation

Specifying Transaction Manager Commands

Generating Transaction Manager Events

Runtime Transaction Manager Processing

Processing Application Errors

CHAPTER
27 Performing
Database
Operations

Panther provides an interrelated set of tools and software components to help you
quickly design applications that perform sophisticated database operations. In order to
take advantage of these features, you should have a basic understanding of how
database operations are performed in runtime applications, and the steps in your
development process which effect these operations.

This chapter describes the different levels of database access that are available in a
Panther application.

For information on initializing access to a database engine in an executable, refer to
Chapter 7, “Initializing the Database.”

For information on connecting to a database engine, refer to Chapter 8, “Connecting
to Databases.”
Application Development Guide 27-1

How Database Operations are Processed
How Database Operations are Processed

Database operations in Panther applications are processed by the following software
components and provide you with different levels of database access:

! Transaction manager—Determines what SQL must be generated and executed,
and asks the next level to do the work.

! SQL generator—Constructs SQL statements and asks the next level to execute
them.

! Database interface—Passes SQL requests to the database, and returns formatted
results to Panther. The database interface is implemented via the dbms verb in
JPL and the C library function dm_dbms.

! Database API—Provided by the database vendor.

Although access via the transaction manager is usually easiest, you can use any
combination of levels in your application. For example, you might allow the
transaction manager to handle most access itself, but supply specific SQL statements
for stored procedure or RPC calls.

Figure 27-1 illustrates how database operations are initiated from the application's
event functions by commands that call either the transaction manager or the database
interface. The transaction manager relies on additional software components such as
the transaction models and the SQL generator to process database transactions.
27-2 Performing Database Operations

How Database Operations are Processed
Figure 27-1 The relationship between your application, Panther components,
and your database.

Developing Database Operations for your Application

Panther's developments tools such as the screen wizard, screen editor, and repository
let you to develop fully functional database applications without writing any code.
These tools rely on the transaction manager and the database interface to process your
database operations.

However, you are not limited to capabilities provided by the Panther development
tools. You can also write your own event functions to directly invoke either the
transaction manager or the database interface.

Alternatively or in addition, the database interface has a series of DBMS commands
which allow you to send SQL statements to the database server and to control how
select sets are displayed. You can write your own SQL statements using onscreen
values for the database interface to process.
Application Development Guide 27-3

How Database Operations are Processed
Differences in Application Architecture

In two-tier applications, the client screens can contain:

! SQL statements that are sent to the database.

! Transaction manager commands that generate transaction manager events and
subsequent SQL commands.

Figure 27-2 In two-tier architecture, each client has direct connection to the
database server.

In three-tier applications, client screens can contain service requests or calls to the
service component's methods. Both are sent to the application server for processing.
For some middlewares, the service requests can be generated by the transaction
manager.
27-4 Performing Database Operations

About the Transaction Manager
On the application server, the transaction manager can generate the events and SQL
needed for database operations, or you can write SQL statements as part of the service
component.

Figure 27-3 Three-tier clients have a single connection to the database by way of
the Panther server.

About the Transaction Manager

The transaction manager is a software mechanism that, via property assignments,
automatically generates SQL commands for your application's database transactions.
In this way, Panther can interact with the database according to user actions. The
screen wizard and the screen editor help you develop applications that use the
transaction manager to carry out database transactions.

The screen wizard provides transaction manager commands in the event functions
associated with the automatically generated screens; however, using just the screen
editor, you can copy and manipulate database-derived objects from the repository that
Application Development Guide 27-5

About the SQL Generator
contain elements used by the transaction manager. The repository should include most
of the information needed for transaction management, either due to the database
import or due to custom enhancements made to the repository.

Refer to Chapter 31, “Building a Transaction Manager Screen,” for instructions on
building a transaction manager screen.

The transaction manager is controlled by a set of high-level instructions, referred to as
transaction manager commands, that are called from the application's event functions
(JPL procedures or C functions).

The most common commands are typically invoked from push buttons on your client
screens. For example, the VIEW command is typically invoked when the user chooses
the View button (on a wizard-generated screen), causing the transaction manager to
fetch data from a database to display to a user of your application.

After a command is invoked, the transaction manager does suitable traversals of the
trees of table views involved in your application, doing the appropriate processing at
each table view it reaches. Its default behavior is provided by a distributed common
model and database-specific models (collectively referred to as “transaction models”).
However, transaction manager processing is ultimately controlled by you, the
application developer.

Refer to Chapter 34, “Specifying Transaction Manager Commands,” for an
explanation of command syntax.

Refer to Chapter 35, “Generating Transaction Manager Events,” for more information
about how the transaction manger generates events for each command.

About the SQL Generator

The SQL generator is called by the transaction models or transaction event functions
to generate the appropriate commands to carry out a specific transaction. You can
control the composition of the generated commands by setting Database properties for
the screen's table views, links, and data entry widgets. The SQL generator uses these
property values to form the SQL commands.
27-6 Performing Database Operations

About the Database Interface
Refer to Chapter 33, “Using Automated SQL Generation,” for information on how the
property settings affect the generated SQL statements.

About the Database Interface

The database interface layer interacts with the database to cause SQL commands to be
executed. The database interface (DBMS) commands are a set of generalized
database-type constructs that allow you to design database-independent applications.
These constructs also allow you to specify native SQL commands (using a special
syntax), pass them directly through to the database, and, if necessary, pass data back
to the client screen.

A special JPL syntax is available for sending onscreen values to the database: colon
plus processing. For a description, refer to page 30-1, “Colon Preprocessing.”

When the database interface is initialized in your application, it creates two database
cursors for application usage: one is used to fetch data, the other to update data. You
can use those default cursors for your SQL statements or create new cursors and assign
SQL statements to them.

Refer to page 28-3, “Using Database Cursors” for information on declaring new
database cursors.

In addition to SQL statements, the database interface commands:

! Map database column names to variables in your Panther application.

! Control database transactions by committing or rolling back a series of SQL
statements.

! Write database results to a file.

! Control the appearance of database error messages.

Refer to Chapter 11, “DBMS Statements and Commands,” in the Programming Guide
for a complete description of each DBMS command.
Application Development Guide 27-7

About the Database Interface
Each time a DBMS command is executed, it updates a series of status variables. Errors
derived from executing commands or SQL statements are displayed through the
default error handler. You can also write your own error handler to handle errors or
check the status variables. For more information, refer to Chapter 37, “Processing
Application Errors.”
27-8 Performing Database Operations

CHAPTER
28 Writing SQL
Statements

You can write the SQL statements needed to access the database for the entire
application or for a single screen in the application.

Database Development Process

For database applications where you write the SQL statements, the following steps
outline a possible application development process:

Table 28-1 Development process and database operations

Step Effect on database operations

Import database tables into
the repository.

Repository information is used at all stages of screen
design and database operation development.

Edit widget properties on
repository entries.

Change data formatting and input.

Use the repository entries to
create your client screens.
Application Development Guide 28-1

Database Interface Commands
Database Interface Commands

Two database interface commands can be used to construct your own SQL statements:
DBMS QUERY and DBMS RUN. DBMS QUERY is used for SQL SELECT statements and for
stored procedures that return result set data to the application. For more information on
fetching database information, refer to Chapter 29, “Reading Information from the
Database.”

DBMS RUN is used for data modification statements, such as SQL UPDATE, that do not
return data to the application. For more information on writing information to a
database, refer to Chapter 30, “Writing Information to the Database.”

Edit widget properties on
your client screens.

Change data formatting and input.

Write event functions. Invokes the database interface to perform database
operations.

If needed, create database cursors and assign the SQL
statements to those cursors.

If needed, map Panther variables to database col-

umns.

Manage database transactions.

Optimize database fetching.

Table 28-1 Development process and database operations (Continued)

Step Effect on database operations
28-2 Writing SQL Statements

Using Database Cursors
Using Database Cursors

A cursor is a SQL object associated with a specific query or operation. Panther stores
information on each cursor, including:

! The cursor's name.

! The cursor's connection.

! Any cursor attributes assigned with the following DBMS commands: ALIAS,
CATQUERY, COLUMN_NAMES, FORMAT, OCCUR, START, STORE, and UNIQUE.

! Other operation-specific information (for example, the number of rows to fetch,
information on target variables or binding parameters, etc.).

Every connection has one or two default cursors which Panther automatically creates.
Your application can also declare named cursors on a connection; Panther can use
either or both types.

DBMS commands are provided for changing the default behavior for a cursor associated
with a SELECT statement. The commands are ALIAS, CATQUERY, COLUMN_NAMES,
FORMAT, OCCUR, START, and UNIQUE. For descriptions of these commands, refer to
Chapter 11, “DBMS Statements and Commands,” in Programming Guide.

This section describes the use of cursors, default and named cursors, in an application.
For information on how data are passed between an application and a database, refer
to Chapter 29, “Reading Information from the Database,” and Chapter 30, “Writing
Information to the Database.”

Using a Default Cursor

Default cursors are convenient for SQL statements that are executed once, and for
applications using only one select set at a time. Database commands executed with the
JPL commands DBMS QUERY, DBMS RUN, and DBMS SQL use default cursors unless a
different cursor is specified.
Application Development Guide 28-3

Using Database Cursors
For most engines, Panther automatically declares two default cursors—one for SQL
SELECT statements and one for non-SELECT statements (such as UPDATE). In a few
cases, where the engine's standard is a single default cursor, Panther adheres to that
standard and declares one default cursor. On such engines, an additional option,
CURSORS, is supported in the engine's DECLARE CONNECTION statement. It permits you
to choose between one or two default cursors for the connection. For more information
on how cursors are handled for each engine, refer to Database Drivers.

A default SELECT cursor is associated with a particular connection, namely the
connection in effect when a SELECT statement is executed. For example:

DBMS CONNECTION c2

DBMS WITH CONNECTION c1 QUERY \
SELECT title_id, name FROM titles \
WHERE genre_code = 'ADV'

DBMS RUN UPDATE titles SET pricecat = :+pricecat \
WHERE title_id = :+title_id

The first statement sets c2 as the default connection. The second statement uses WITH
CONNECTION to set c1 as the current connection for the SELECT statement. In the
UPDATE statement, no connection is specified. Therefore, Panther uses the default
connection c2.

An application can also close the default cursor if it is not needed. For more
information, refer to page 28-9, “Closing a Cursor.”

Using a Named Cursor

Named cursors are convenient for SQL statements that are executed several times. A
cursor is declared for a statement; executing the cursor, executes the statement. Named
cursors often improve an application's efficiency because the same statement does not
need parsing each time it is executed. Named cursors are also necessary for
applications using more than one select set at a time.

When a cursor is declared, Panther creates a structure for it and adds its name to a list
of open cursors. The cursor is available throughout the application until the application
closes the cursor or closes the cursor's connection. Panther frees the structure when the
cursor is closed.

You can create one or more named cursors to access and manipulate data. The
sequence is as follows:
28-4 Writing SQL Statements

Using Database Cursors
! Declare one or more named cursors.

! Execute cursor.

! Close cursor.

Declaring a Cursor

Named cursors are created with a declaration statement. The statement names the
cursor and associates it with a connection and a SQL statement. If a connection is not
named in the declaration, Panther uses the default connection.

DBMS [WITH CONNECTION connectionName] \
DECLARE cursorName CURSOR FOR SQL_statement

An application can declare a named cursor for any valid SQL statement. For example:

DBMS DECLARE c1 CURSOR FOR SELECT * FROM rentals

The SQL statement is not executed until the cursor is executed:

DBMS WITH CURSOR c1 EXECUTE

The cursor can be executed any number of times. The name of the cursor must be a
valid Panther identifier. The cursor name is case-sensitive, so CUR1 and cur1 are two
distinct names.

For more information on writing data to the database and using parameters in a cursor
declaration, refer to page 30-11, “Using Parameters in a Cursor Declaration.”

Supplying Values Using Colon Expansion

A cursor can use colon-variables in the DECLARE CURSOR statement. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM rentals WHERE rental_date = :+today

The variable today is dereferenced when the cursor is declared. It is not dereferenced
when the cursor is executed. An application can use colon variables or colon-plus
variables anywhere in the statement.
Application Development Guide 28-5

Using Database Cursors
Supplying Values Using Binding

To dereference variables each time the cursor is executed, use bind tags in the DECLARE
CURSOR statement. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM rentals WHERE rental_date = ::rental_date

DBMS WITH CURSOR c1 EXECUTE USING rental_date = today

The bind tag is two colons followed by any valid identifier; the bind tag is not an actual
variable. When the cursor is executed, the application must provide a literal value, a
valid variable name, or a Panther expression for each bind tag. When this particular
example is executed, the application fetches all rentals where rental_date is the
value of today. To execute the select again where rental_date is another value,
change the contents of today and reexecute the cursor:

today = @date(today) - 1
DBMS WITH CURSOR c1 EXECUTE USING rental_date = today

You can supply a new variable for the bind tag:

DBMS WITH CURSOR c1 EXECUTE USING rental_date = yesterday

Literals and expressions are valid values for a bind tag. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM titles WHERE title LIKE ::title_qbe

DBMS WITH CURSOR c1 EXECUTE USING title_qbe = "Citizen Kane"

or

DBMS WITH CURSOR c1 EXECUTE USING \
title_qbe = title_val ## "%"

The first example supplies the literal “Citizen Kane” as the value for the bind tag. The
second example uses the concatenation operator (##) to append the contents of the
title_val variable with the literal percent sign (%) as the value for the bind tag.

It is not required to supply the bind tag names in the EXECUTE USING statement. If the
tag names are not supplied, Panther associates the first variable with the first tag, the
second variable with the second tag, etc. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM customers \
WHERE first_name LIKE ::first_qbe \
AND last_name LIKE ::last_qbe
28-6 Writing SQL Statements

Using Database Cursors
DBMS WITH CURSOR c1 EXECUTE USING f1, f2

Panther uses the contents of f1 as the value for bind tag ::first_qbe and uses the
contents of f2 as the value for bind tag ::last_qbe.

A bind tag is valid for any column value in a DECLARE CURSOR statement. A bind tag
is not permitted for SQL keywords, table names, or columns names. Therefore, bind
tags are valid for column values in any of the following:

! WHERE clause of SELECT, UPDATE, and DELETE statements.

! SET clause of UPDATE statements.

! VALUES clause of INSERT statements.

For example:

DBMS DECLARE c1 CURSOR FOR \
UPDATE pricecats SET price = ::newprice \
WHERE pricecat = ::pricecat

DBMS WITH CURSOR c1 EXECUTE USING \
newprice = price_fld, pricecat = pricecat_fld

DBMS DECLARE c1 CURSOR FOR \
INSERT INTO pricecats \
(pricecat, pricecat_dscr, rental_days, price, late_fee) \
VALUES (::p1, ::p2, ::p3, ::p4, ::p5)

DBMS WITH CURSOR c1 EXECUTE USING \
p1 = pricecat, p2 = pricecat_dscr, p3 = rental_days, \
p4 = price, p5 = late_fee

Bind tags are also valid for stored procedure parameter values.

Executing a Cursor with Multiple Connections

The command DBMS EXECUTE does not permit the WITH CONNECTION clause. The
cursor remains associated with the connection specified by name or by default in the
DECLARE statement. For example:

DBMS CONNECTION sybcon

DBMS DECLARE cur1 CURSOR FOR SELECT * FROM titles

DBMS CONNECTION oracon

DBMS WITH CURSOR cur1 EXECUTE
Application Development Guide 28-7

Using Database Cursors
DBMS RUN UPDATE

When cursor cur1 is declared, Panther associates it with the default connection
sybcon. Although the default connection is changed to oracon before the cursor is
executed, the connection associated with cur1 does not change. When the cursor is
executed, Panther performs the SELECT on connection sybcon. The default connection
oracon performs the subsequent UPDATE.

Modifying a Cursor

A cursor can be redeclared on the same connection for another SQL statement. For
example:

DBMS DECLARE abc CURSOR FOR \
SELECT cust_id, title_id FROM rentals \
WHERE return_date IS NULL

DBMS WITH CURSOR abc EXECUTE

DBMS DECLARE abc CURSOR FOR \
SELECT * FROM titles WHERE title_id = ::title_num

DBMS WITH CURSOR abc EXECUTE USING title_num

If the cursor is associated with a SQL SELECT statement, you can modify its behavior
by using additional DBMS commands These commands include ALIAS, CATQUERY
which can be used with FORMAT, COLUMN_NAMES, OCCUR, START, and UNIQUE. Refer to
Chapter 11, “DBMS Statements and Commands,” in the Programming Guide for more
information about each command. These settings are not lost when a cursor is
redeclared, but only when the cursor is closed. A cursor cannot be redeclared for a
different connection.

Using Cursors in the Transaction Manager

Generally, the transaction manager declares and closes cursors as needed. Once the
transaction manager creates the select cursor during a TM_GET_SEL_CURSOR event, the
variable @tm_sel_cursor contains the name of the select cursor. Using this variable,
you can write a transaction event function to declare the cursor and to execute any
additional processing. Then, subsequent transaction events attach the SQL statement
by redeclaring the cursor.

In the following example, the make_cursor event function declares the cursor and sets
a variable to hold select results with the DBMS CATQUERY command. Then, if you
choose the VIEW or SELECT command in the transaction manager, this event function
28-8 Writing SQL Statements

Using Database Cursors
is called and is followed by the transaction events that redeclare and execute the cursor
with the applicable SQL statement, writing the select results to the title_all
variable.

In addition, the RELEASE command gives up cursors in the transaction manager.

proc make_cursor (event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR
DBMS WITH CURSOR :@tm_sel_cursor CATQUERY title_all
return TM_PROCEED

}
return TM_PROCEED

Closing a Cursor

Cursors are closed when the application closes the connection. However, if you want
to reuse a named cursor, redeclare a cursor on a different connection or free the
resources needed by the cursor, you must close the cursor.

To close a cursor and free its data structure, execute:

DBMS CLOSE CURSOR cursorName

or

DBMS WITH CURSOR cursorName CLOSE

To close the default cursor, execute:

DBMS CLOSE CURSOR

The default cursor remains closed unless the application executes a DBMS QUERY,
DBMS RUN or DBMS SQL statement without specifying a cursor using the WITH CURSOR
clause. Panther automatically reopens the default cursor if it is needed.
Application Development Guide 28-9

Database Transaction
Database Transaction

A database transaction is a logical unit of work on a database. The unit of work is
usually a set of statements that update a database in a consistent way. Either all of the
statements in the unit must be completed or none of the statements should be
completed at all.

In the VideoBiz sample application, there are a least two transactions:

! A video rental transaction—The first statement in the transaction inserts a row
into the rentals table supplying a customer identification code, title code, copy
number, rental date, and due date. The second statement of the transaction,
updates the customers table for the rental amount and the number of rentals.
The third statement updates the tapes table by increasing the number of times
the tape (increment of 1) has been rented and changing the status of the rental.

! A new video transaction—Inserts data into four tables: titles, tapes, title_dscr,
and roles. The insert into the titles table supplies the name, title code, director
information, film length, price category, and film type code. Multiple inserts
into the tapes table enters information about each copy of the video. Multiple
inserts into the title_dscr table store the film description. Multiple inserts are
made into the roles table, each one supplying an actor code and a role for the
new video.

Transaction processing is engine dependent and requires an understanding of the
engine's behavior. For some errors, the application must explicitly tell the engine to
undo the transaction. The application must test for these errors.

Engine-Specific Behavior

Transaction processing is not implemented consistently among SQL databases.
Review the documentation on transaction processing supplied by your database
vendor.
28-10 Writing SQL Statements

Database Transaction
Database transaction processing, in general, occurs when changes are being made to a
database. The transaction begins (with a DBMS BEGIN statement), and the changes are
not permanently effective until the transaction is committed (with a DBMS COMMIT
statement). The alternative to committing a transaction is rolling it back (with a DBMS
ROLLBACK statement), which essentially throws away the changes. Usually, database
engines support either explicit transactions, as described here, or auto transactions,
which generally start with the first recoverable statement after a logon, COMMIT, or
ROLLBACK.

On engines supporting explicit transactions, each COMMIT or ROLLBACK must have a
matching BEGIN. On engines supporting autocommit modes, the application can use
any number of COMMIT or ROLLBACK statements; if there is no recoverable statement,
the COMMIT or ROLLBACK is ignored.

Engines have different ways of handling transactions that are not terminated by an
explicit commit or rollback. Some automatically commit or rollback the transaction;
others can leave the database in an inconsistent state. Under no circumstances should
your application use the engine's default behavior to terminate a transaction.

Use explicit rollbacks and commits to:

! Protect the integrity of the database.

! Make new and updated data available to the rest of the application and other
users at the logical end of the transaction.

! Release locks set on tables by the transaction which would otherwise be held
until the connection closes, permitting the rest of the application and other users
to begin new transactions on the tables.

! Reduce the chances for unrelated operations to interfere with one another.

! Produce applications which are more database-independent.

Finally, although vendors supply commands for transaction processing in their SQL
language, use DBMS COMMIT, DBMS ROLLBACK, and other transaction commands
provided with Panther database drivers. Using DBMS RUN to specify engine-specific
commit and rollback processing is not recommended. Using the DBMS versions permits
Panther to establish necessary structures and it provides better error handling if a
transaction fails.
Application Development Guide 28-11

Database Transaction
Error Processing for a Transaction

There are various kinds of errors that can occur during an application. The engine is
responsible for recovery from system failures such as power loss. Also, if a single
statement fails for some reason in the middle of execution, the engine is responsible
for rolling back the effects of that statement. If that statement was executed in a
transaction, however, the application must execute an explicit rollback to undo any
work done between the start of the transaction and the failed statement.

At the very least, a Panther application must execute a rollback when the engine returns
an error to the application. An example of this would be when the engine rejects an
insert because the row's primary key is not unique. If the insert were part of a
transaction, the application should stop executing the transaction and execute a
rollback to undo any work done by previous statements in the transaction.

As an additional precaution, it is recommended that you execute a rollback for any
error that occurs during the transaction, including an error detected by Panther before
a statement is passed to the engine. An error detected by Panther rather than the engine
is usually the result of a development or maintenance error rather than bad user input
(for example, a statement's colon-plus or binding variable cannot be found because a
widget was renamed). While these errors are rare, the application should provide
handling for them.

If the transaction processing is done with the C library functions provided by Panther's
database drivers, error codes from Panther are returned to the calling function, either
directly or via an installed error handler. If a transaction requires very sophisticated
error handling, it might be easier to use these Panther library functions rather than JPL.

One method for transaction processing in JPL uses a generic JPL procedure as a
transaction handler. This JPL procedure could perform the following:

! Define and declare a JPL variable, jpl_retcode.

! Call a JPL subroutine that contains the actual transaction statements.

! On return from the subroutine, examine the JPL variable, jpl_retcode. If it is
0, the subroutine, and therefore the transaction, executed successfully. If it is
not zero, the subroutine was aborted by a Panther or by the error handler. For
either type of error, it executes a rollback.
28-12 Writing SQL Statements

Database Transaction
A sample of such a procedure is shown in the JPL code below. The actual transaction
statements are executed in the subroutine whose name is passed to this procedure. This
transaction handler can be used with the default error handler or with an installed error
handler that returns the abort code (1) for all errors.

proc tran_handle (subroutine)
{

vars jpl_retcode

Call the subroutine.
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all
statements in the subroutine executed successfully
and the transaction was committed. If it is 1,
the error handler aborted the subroutine. If it
is -1, Panther aborted the subroutine. Execute a
ROLLBACK for all non-zero return codes.

if jpl_retcode
{

msg emsg "Aborting transaction."
DBMS ROLLBACK

}
else
{

msg emsg "Transaction succeeded."
}
return 0

}

In this application, there are JPL procedures containing transactions which update the
database. The new_cust procedure adds a new customer to the database:

proc new_cust()
{

DBMS RUN INSERT INTO customers
DBMS COMMIT
return 0

}

To execute this new customer transaction, the application should execute the following
JPL statements:

vars newCust = "new_cust()"
call tran_handle (newCust)
Application Development Guide 28-13

Database Transaction
Once tran_handle has set up the variable, it calls the procedure new_cust. Whether
new_cust is successful or unsuccessful, control is always returned to tran_handle.

Refer to the Database Drivers for a list and description of the supported transaction
commands for each engine.
28-14 Writing SQL Statements

CHAPTER
29 Reading
Information from
the Database

The database interface provides access to a database engine through one of Panther's
database drivers. You can enter SQL statements using the SQL syntax supported by
your database engine. With the database interface, you also have access to a series of
commands to help you return the information to Panther variables. These commands
are included in each of Panther's database drivers and can be used in either JPL
procedures or C functions.

A Panther application receives two types of information from a database:

! Data requested by a SELECT statement.

! Error and status codes.

This chapter discusses how this information flows from one or more databases to
variables in a Panther application, in particular the destination and format of data
returned by SQL SELECT statements. For information about error and status codes,
refer to Chapter 37, “Processing Application Errors.”

The SQL SELECT statements would be part of a client screen in a two-tier application
and a service component in a three-tier application. In a three-tier application, client
screens obtain database information by sending service requests to the application
server. For information about writing service requests in a JetNet or Oracle Tuxedo
application, refer to Chapter 5, “Defining Services in JetNet and Oracle Tuxedo
Applications,” in the JetNet/Oracle Tuxedo Guide.
Application Development Guide 29-1

Fetching Data Using SELECT Statements
An application can also receive data as the result of executing a stored procedure. Since
all engines do not support stored procedures, and the syntax of commands varies
among those that do, refer to the Database Drivers for more information.

The information on how data is mapped to Panther variables also applies to processing
in the transaction manager even though most of the examples in this chapter use the
DBMS QUERY command to construct the SQL SELECT statements.

Fetching Data Using SELECT Statements

When a SELECT statement is passed to an engine, Panther performs several steps
before transferring data to Panther variables.

1. Panther counts the number of columns in the query and records information on
each column's name, length, and data type, noting whether it is a character, date
or numeric data type.

2. For each column, it searches for a Panther variable destination. If a destination
exists, Panther records the length of the variable. If no Panther destination exists
for a column, or if the destination is an LDB variable with initial content,
Panther does no fetches for the column. Refer to the following section for more
information on Panther destinations.

3. It determines the number of rows to fetch. This number usually equals the
number of occurrences in the smallest Panther destination variable, or 0 if there
are no target variables. Refer to “Fetching Multiple Rows” on page 29-8 for
more information.

4. Finally, Panther formats data before writing it to the destination variables if the
database column has a date data type, or if the destination variable has a null,
currency, or precision property specification. Refer to “Format of Select
Results” on page 29-15 for more information.

The sequence above describes a SQL SELECT that writes database column values to
occurrences of a widget, JPL variable, or LDB variable. You can also direct the results
of a SELECT to a text file or concatenate all the values in a row to a single Panther
variable. Refer to page 29-19 for more information.
29-2 Reading Information from the Database

Targets for a SELECT Statement
Targets for a SELECT Statement

For an application to retrieve data from a database, there must be an unambiguous
mapping between a selected database column and its Panther destination. There are
two ways of associating Panther target variables with database columns.

! Give a Panther target variable the same name as a database column. This is
called automatic mapping.

! Explicitly declare a Panther variable as the target of a database column. This is
called aliasing.

Automatic Mapping

By default when executing a SELECT statement, Panther will search for variables with
the same names as the specified columns. These Panther variables can be widgets, JPL
variables, or LDB variables. For the statement,

DBMS QUERY SELECT title_id, name, pricecat FROM titles

to return values to Panther variables, the table titles must have at least three
columns: title_id, name, and pricecat. If any of these columns does not exist in
the table titles, the engine returns an error.

The application can have a Panther destination variable for none, some, or every
named column in the SQL SELECT statement. To return the values of all three columns
to the application, there must be a Panther variable for each column. The variables can
be named title_id, name and pricecat. If one of these variables does not exist,
Panther ignores the values belonging to that particular column.

Panther also permits the use of the * in the SELECT statement,

DBMS QUERY SELECT * FROM titles

Using automatic mapping, Panther looks for a variable for each column in the table
titles. Columns without matching variables are simply ignored. This is not treated
as an error.
Application Development Guide 29-3

Targets for a SELECT Statement
using qualified

column names

You can use one or more qualified column names in SELECT statements. For example,

DBMS QUERY SELECT titles.title_id, titles.name,
titles.pricecat FROM titles

The Panther targets, however, must be given unqualified names: title_id, name, and
pricecat.

matching the

engine’s case flag

When using automatic mapping, the case of the Panther variable names should
correspond to the case flag used in the engine initialization. If the engine's case flag is
DM_FORCE_TO_LOWER_CASE, the Panther variables for a SELECT statement should
have lower case names. If the case flag is DM_FORCE_TO_UPPER_CASE, the Panther
variables should have upper case names. If the case flag is DM_PRESERVE_CASE, the
Panther variables should match the exact case of the database columns. For
information on a particular engine's case flag, refer to the Database Drivers.

Aliasing

Aliasing is used when automatic mapping is inconvenient or impossible to use. In
particular, aliasing is necessary when selecting any of the following:

! A column whose name is not a legal Panther variable name.

! A column whose name conflicts with other Panther variable names in the
application.

! A computed column or the result of an aggregate function (e.g., COUNT, SUM,
AVG, MAX, MIN).

Aliasing is not limited to these conditions. Any or all columns can be aliased if desired.
For example, you can alias a column if its name is not descriptive or if you wish to
name target variables for a particular table and column.

Panther provides the command DBMS ALIAS to specify aliases. On some engines, you
can also use the engine's SELECT syntax to specify aliases.
29-4 Reading Information from the Database

Targets for a SELECT Statement
Using DBMS ALIAS

DBMS ALIAS is associated with a SELECT cursor, either a named cursor or the default
SELECT cursor. If a cursor is not named, the aliases affect all SELECT statements
executed with the default cursor. You can assign aliases by name or by position. The
following syntax aliases a column name to a Panther variable:

DBMS [WITH CURSOR cursor] ALIAS column1 pantherVar1 \
[, column2 pantherVar2 ...]

The following syntax aliases a column position to a Panther variable:

DBMS [WITH CURSOR cursor] ALIAS pantherVar1 [, pantherVar2 ...]

Only one DBMS ALIAS statement can apply at any one time to any named or default
cursor. In that statement, either named or positional aliasing can be used, but both
forms can not be used in a single DBMS ALIAS statement.

turning off

aliasing

To turn off aliasing, execute DBMS ALIAS without any arguments. Again, if a cursor
name is given, aliasing is turned off on the named cursor. If no cursor name is given,
aliasing is turned off on the default cursor.

The case of the column names in the DBMS ALIAS statement should correspond to the
case flag used in the engine initialization. If the engine's case flag is
DM_FORCE_TO_LOWER_CASE, the column names should be in lower case. If the case
flag is DM_FORCE_TO_UPPER_CASE, the column names should be upper case. If the
case flag is DM_PRESERVE_CASE, the column names should use the exact case of the
database columns. The case of pantherVar should always match the exact case of the
Panther variable name. For information on a particular engine's case flag, refer to the
Database Drivers.

If an application aliases a column to a Panther variable that does not exist, Panther
ignores the column's values. This is not treated as an error.

Aliasing by Column Names

First, consider an example that aliases column names to Panther variables. For
example:

DBMS ALIAS first_name first, last_name last
DBMS QUERY SELECT cust_id, first_name, last_name FROM customers
Application Development Guide 29-5

Targets for a SELECT Statement
Panther writes the values from the column first_name to the variable first and it
writes the values of column last_name to the variable last. Since no alias was given
for cust_id, it maps it to a variable of the same name. This is illustrated in
Figure 29-1.

Figure 29-1 The mapping of a SELECT statement when aliases are used.

Aliases can also be given after declaring a named cursor. For example:

DBMS DECLARE cust_cursor CURSOR FOR SELECT \
cust#, member_date, member_status FROM customers

DBMS WITH CURSOR cust_cursor ALIAS "cust#" cust_num
DBMS WITH CURSOR cust_cursor EXECUTE

Since cust# is not a legal Panther variable name, the application must declare an alias
for the column if it is to receive the column's value. Before executing the cursor, the
application aliases column cust# to variable cust_num. The cursor keeps this alias
until the application turns it off with DBMS ALIAS or closes the cursor with DBMS
CLOSE CURSOR. If a column name is not a valid Panther identifier, enclose it in quote
characters; this ensures that Panther parses it correctly.

Aliasing by Column Positions

Consider an example that uses positional aliases. For example:
29-6 Reading Information from the Database

Targets for a SELECT Statement
DBMS ALIAS min_rent, max_rent, avg_rent
DBMS QUERY SELECT MIN(num_rentals), MAX(num_rentals),
AVG(num_rentals) FROM customers

Panther writes the aggregate function values to the alias variables. The value of
MIN(num_rentals) is written to the variable min_rent, MAX(num_rentals) is
written to the variable max_rent, and AVG(num_rentals) is written to the variable
avg_rent. There is no automatic mapping available for values resulting from
calculations or aggregate functions. If the application had not declared aliases, the
values would not be written to Panther variables.

Of course, the application should turn off the positional aliases when it is finished. If
it does not turn them off before executing the next SELECT statement on that cursor,
Panther will attempt to write the values of the first three columns to the three positional
alias variables. If those variables are no longer available, Panther will ignore the first
three columns in the select set.

Aliasing with the Engine’s SELECT Syntax

Many engines support aliasing in their SELECT statement syntax. In interactive mode,
this permits the user to specify for a view a column heading that is different than the
database column name. Typically, the syntax is

SELECT column1 heading1, column2 heading2...FROM table

In interactive mode, the values of column1 are placed under the heading heading1,
and the values of column2 are places under the heading heading2. In this syntax, a
space separates a column from its alias, and a comma separates the column-alias set
from the next column or column-alias set. Some engines might support another syntax.
Refer to your database engine documentation for details.

If an engine supports aliasing in a SELECT statement, Panther will also support it. You
can follow the syntax of the engine, replacing heading with the name of the appropriate
Panther variable.

For example, if the syntax shown above is supported by the engine, than the following
could be used in a Panther application,

DBMS QUERY SELECT title_id id, name, pricecat price
 FROM titles
Application Development Guide 29-7

Fetching Multiple Rows
When this statement is executed, the DBMS tells Panther that the columns id, name,
and price were selected. Panther looks for variables with those names. If there is a
variable title_id available, this SELECT statement will not write to it because the
engine has aliased it to id.

Although this form is supported, using DBMS ALIAS is recommended, especially for
applications accessing more than one engine. Panther provides identical support for
DBMS ALIAS on all engines.

Fetching Multiple Rows

Since a select set often contains more than one row, you must specify how many rows
to fetch at one time. In addition, the application architecture determines whether you
can fetch additional rows from the database. In two-tier applications with a direct
connection to the database, DBMS CONTINUE commands can be used to fetch
subsequent rows. In three-tier applications, all rows must be fetched at once.

Determining the Number of Occurrences

Panther uses the following guidelines in determining the number of rows to fetch:

! If an occurrence number was specified with a target variable name, only one
row is fetched.

! If a target is a multitext widget with the word_wrap property set to PV_YES,
only one row is fetched.

! If using browse mode, only one row is fetched. (Refer to Database Drivers to
see if the engine supports browse mode.)

! The number of rows that the database interface will return to arrays with an
unlimited number of occurrences is controlled by the max_fetches property.
The default value is 1000. You can increase or decrease this value. Changing
the property affects any subsequent SELECT or CONTINUE statements.
29-8 Reading Information from the Database

Fetching Multiple Rows
! Otherwise, Panther examines the number of occurrences in each of the targeted
variables. Usually, all the target variables have the same number of occurrences.
If this is true, Panther fetches a row for each occurrence. If the targets do not
have the same number of occurrences, Panther finds the target variable with the
least number of occurrences and fetches that number of rows.

Therefore, if the targets for the SELECT statement contain both a single line text
widget and an array, only one occurrence is fetched. Similarly, if the target
variables are multitext widgets and one of those widgets has the word_wrap
property set to PV_YES, only one occurrence is fetched for the entire set.

Be careful of LDB variables that are unintentional targets of a SELECT especially when
using the wild card * in a SELECT or when executing a SELECT in a screen entry
function.

For example, consider an application using the wild card:

DBMS QUERY SELECT * FROM table

The application has onscreen widgets for some of the columns in the table. The LDB,
however, contains an entry with the name of one of these unrepresented columns. If
the onscreen fields have 20 occurrences and the LDB entry has 5 occurrences, only five
rows will be fetched.

Also, consider an application that executes a SELECT in a screen entry function. By
default, Panther first searches the LDB and then the screen for Panther variables when
executing screen entry functions. Therefore, if a variable is represented both as an
onscreen field and as an LDB variable, a screen entry function will write to the LDB
variable before the LDB merge writes to the onscreen field. If the LDB variable and
the field do not have the same number of occurrences, data is lost or appears lost when
the LDB merge updates the screen fields.

Scrolling Through a SELECT Set

Most applications must be capable of handling a fluctuating number of data rows.
Based on the type of data selected and the hardware in use, you can use either or both
types of scrolling—scrolling arrays or non-scrolling arrays.

If scrolling arrays are used as the destination variables of a SELECT statement, the
entire select set is fetched in a single step. To view the rows, press the page up and page
down keys (logical keys SPGU and SPGD).
Application Development Guide 29-9

Fetching Multiple Rows
Otherwise, the application uses single-element fields or non-scrolling arrays as the
destination variables of a SELECT statement. The select set is fetched incrementally. To
permit the user to scroll backward and forward in the set, the application must set up a
method to execute the Panther scrolling commands.

The two methods are described in detail below.

Using Scrolling Arrays

Scrolling arrays are useful for small to mid-sized sets. Set the scrolling property (under
Geometry) to PV_YES. Set the # of Occurrences (num_occurrences) property or leave
it blank, in which case the number of occurrences is determined by the max_fetches
property. By default, this property is set to 1000. Because the application must keep
the entire select set in memory, you might want to lower the maximum number of
occurrences depending on the platform or for a SELECT involving many columns.

With this approach, you create large scrolling arrays with more occurrences than the
number of rows you expect to be in the select set. When the SELECT is executed at
runtime, there is no penalty for unused occurrences; Panther allocates only whatever
memory is needed to hold the returned rows. Therefore, a Panther screen might contain
variables each with 10 elements and 1000 occurrences. If a select set contained only
75 rows, Panther would allocate memory for 75 occurrences in each of the variables;
it would not allocate memory for the 925 unused occurrences.

There are several ways of verifying that the arrays actually contained enough
occurrences to hold the entire select set. Most often the application examines the value
of the global variable @dmretcode. Panther writes a no-more-rows status code to this
variable when the engine signals that it has returned all requested rows. The value of
this variable can be examined after a SELECT statement.

Refer to Table 37-1 for more information on @dmretcode and related variables. An
example procedure is shown below:

proc select_all
DBMS QUERY SELECT cust_id, first_name, last_name, member_status

FROM customers
if @dmretcode == DM_NO_MORE_ROWS

msg esmg "All rows returned."
else

msg emsg "Application could not display all customers."
return
29-10 Reading Information from the Database

Fetching Multiple Rows
This approach is very easy to use. Since all the rows are fetched at once, the application
makes only one request of the database server and it is free to use the default SELECT
cursor to make new selects.

It is not the best method for large SELECT sets. If the application is too slow displaying
the data or is sluggish after the rows have been fetched, you should consider using
non-scrolling arrays or some other alternative scroll driver.

Using Non-scrolling Arrays

Non-scrolling arrays are useful for mid-sized to large select sets. Panther does not
impose any limit on the number of rows that can be displayed with this method.

For widgets to be non-scrolling arrays, the array_size property is set to > 1 and
scrolling is set to PV_NO. At least two JPL procedures are needed to view the select set.
The first procedure executes the SELECT statement and fetches the first screenful of
rows. The second procedure executes a DBMS CONTINUE to fetch the next screenful of
rows from the select set. The second procedure might be executed many times before
the user sees all the rows.

Notes: In multi-user environments, you should know how the engine ensures read
consistency—the guarantee that data seen by a SELECT does not change during
statement execution. The engine might be using rollback segments or shared
locks to provide read consistency. Since a shared lock prevents other users
from updating locked rows, applications on these engines should release the
lock as soon as possible.

For example, the current screen has widgets named for the columns in the table titles.
Each widget has array_size set to 5. The application uses procedures like the
following to select data from a table and view additional rows:

proc select_video
DBMS QUERY SELECT * FROM titles
return

proc continue_select
DBMS CONTINUE
return

as well as control strings like the following to execute the procedures:

PF1=^select_video
PF2=^continue_select
Application Development Guide 29-11

Fetching Multiple Rows
Assume that table titles contains 12 rows. When you press the PF1 key, the application
executes the JPL procedure select_video and writes rows 1 through 5 to the screen.
If you press PF2, the application executes the procedure continue_select which
clears the arrays and writes rows 6 through 10 to the screen. If you press PF2 again,
the application executes continue_select again which clears the arrays and writes
rows 11 and 12 to the screen. If you press PF2 a third time, the application does nothing
because there are no more rows in the select set.

Non-scrolling arrays use less memory than scrolling arrays. With non-scrolling arrays,
the application needs only enough memory for the rows displayed on screen. The other
rows are buffered either in a binary disk file or by the database server. With large select
sets, this approach often improves the application's performance and response time.

This approach requires a little more work. The application needs procedures to handle
the scrolling and possibly the remapping of cursor control keys. Also, the method
restricts the SELECT cursor. If the application needs to perform other SELECT
statements while scrolling through this set, the application must declare named cursors
to execute additional SQL statements.

Scrolling Commands

In addition to DBMS CONTINUE, an application can simulate scrolling through a SELECT
set by using the following commands:

Some engines have native support for these commands. For example, the engine might
buffer the rows in memory on the server. However, Panther also provides its own
support for these commands. Use DBMS STORE FILE to set up a continuation file for
a named or default SELECT cursor. When it is used, Panther buffers SELECT rows in a
temporary binary file. The syntax of the command is:

DBMS [WITH CURSOR cursor] STORE FILE [filename]

DBMS CONTINUE_BOTTOM Scrolls to the last screenful of rows

DBMS CONTINUE_DOWN Does the same as DBMS CONTINUE

DBMS CONTINUE_TOP Scrolls to the first screenful of rows

DBMS CONTINUE_UP Scrolls up a screenful of rows
29-12 Reading Information from the Database

Fetching Multiple Rows
The command is supported on all engines. To select and view data, an application uses
procedures like the following:

proc select_video
DBMS STORE FILE vidlist
DBMS QUERY SELECT * FROM titles
return

proc scroll_down
DBMS CONTINUE
return

proc scroll_up
DBMS CONTINUE_UP
return

proc scroll_top
DBMS CONTINUE_TOP
return

proc scroll_end
DBMS CONTINUE_BOTTOM
return

Then, you attach these procedures to push buttons or function keys. The following
example attaches the procedures to function keys:

PF1=^select_video
PF2=^scroll_down
PF3=^scroll_up
PF4=^scroll_top
PF5=^scroll_end

Using the same number of rows and occurrences as earlier, when you press the PF1
key, the application executes the JPL procedure select_video and writes rows 1
through 5 to the screen. If you press PF2, the application executes the procedure
scroll_down which clears the arrays and writes rows 6 through 10 to the screen. If
you press PF3, the application executes scroll_up which clears the arrays and writes
rows 1 through 5 to the screen. If you press PF5 the application executes scroll_end
which clears the arrays and writes the last 5 rows in the SELECT set, rows 8 through 12,
to the screen.
Application Development Guide 29-13

Fetching Multiple Rows
Remapping Logical Keys for Scrolling

Instead of using function keys or push buttons to call the JPL procedures which
execute the Panther scrolling commands, you might prefer the standard page up and
page down keys to the PF keys. The values of the logical keys SPGU and SPGD can be
reassigned with the Panther library function sm_keyoption. Therefore, the
application might use an entry and exit function to change how SPGU and SPGD work
on a screen or in a field. The entry function calls sm_keyoption so that SPGD acts
like the function key that calls the scroll up procedure, and calls sm_keyoption so that
SPGU acts like the function key that calls the scroll down procedure. The exit function
calls sm_keyoption to restore the default behavior.

An example of this behavior in a widget entry and exit function is shown below. The
widget's entry_function and exit_function properties are set to entry_exit
which calls sm_keyoption. The function keys APP1 and APP2 are set to call the JPL
procedures scroll_up and scroll_down described above. When you click on the
widget, the standard page up and page down keys can be used to scroll through the
data.

// APP1=^scroll_up
// APP2=^scroll_down

proc entry_exit(f_no f_data, f_occ, f_flag)
if (f_flag & K_ENTRY)
{

call sm_keyoption (SPGD, KEY_XLATE, APP1)
call sm_keyoption (SPGU, KEY_XLATE, APP2)

}
else if (f_flag & K_EXIT)
{

call sm_keyoption (SPGU, KEY_XLATE, SPGU)
call sm_keyoption (SPGD, KEY_XLATE, SPGD)

}
return

Controlling the Number of Rows Fetched

If you use widget or LDB arrays as the destinations of a SELECT, you can specify the
maximum number of rows to fetch and the first occurrence to write to in the array
destination. The command is

DBMS [WITH CURSOR cursor-name] OCCUR int [MAX int]

DBMS [WITH CURSOR cursor-name] OCCUR CURRENT [MAX int]
29-14 Reading Information from the Database

Format of Select Results
Refer to page 11-38 in the Programming Guide for more information on this
command.

Choosing a Starting Row in the SELECT Set

You can also change the number of rows fetched by using the command

DBMS [WITH CURSOR cursor-name] START int

The command tells Panther to read and discard int - 1 rows before writing the rest of
the select set to Panther variables.

Refer to page 11-50 in the Programming Guide for more information on this
command.

Format of Select Results

Before writing a database column value to a Panther variable occurrence, Panther
determines the data type of the database column.

In all cases, if the value equals the engine's null (for example, NULL), Panther clears the
variable. If the variable has the null_field property set to PV_YES, Panther
automatically converts the null string to the one assigned by the widget's property
specification.

If any value is longer than the variable, the data is truncated.

Character Column

If a column has a character data type, the value is simply written to the target variable.
If the variable has the word_wrap property set to PV_YES or the justification property
set to PV_RIGHT, the property is applied.
Application Development Guide 29-15

Format of Select Results
Date-time Column

If a column has a date data type, Panther formats the value before writing it to a Panther
variable. If the variable has a date-time specification, Panther uses it. If the variable
does not, Panther uses the format assigned to the message file entry SM_0DEF_DTIME.
By default, the entry is

SM_0DEF_DTIME = %m/%d/%2y %h:%0M

For example, April 1, 2015 10:05:03 would be formatted as 4/1/15 10:05. When the
message file default is used, Panther assumes a 12-hour clock.

For information on date and time formats, refer to page 10-17 in the Using the Editors.

Numeric Column

If a column has an integral type, Panther converts the value to a long. Panther then
converts the value to ASCII and writes it to the variable, truncating any data longer
than the destination variable. If data_formatting is set to PV_NUMERIC and c_type
is set to PV_DEFAULT, the numeric format is applied to the data.

If a column has a real type, Panther converts the value to a double. Before writing the
value to a Panther variable, Panther examines the widget's Data Formatting and C Type
properties to help determine the precision.

! Numeric format (data_formatting = PV_NUMERIC) and default data type
(c_type = PV_DEFAULT)

If the value is less precise than that specified in the Min Decimal
(min_decimals) property (defines the minimum number of decimal places),
the value is padded to the minimum number of decimal places. If the value is
more precise, it is rounded or adjusted to the numeric type's maximum number
of decimal places (max_decimals property). The Rounding (rounding) property
specification (round up, round down, or adjust) of the numeric format is
applied.

! None numeric data (data_formatting = PV_NONE) and the data type is
either float, double, integer, long integer, short integer (c_type = PV_FLOAT |
PV_DOUBLE | PV_INT | PV_LONG_INT | PV_SHORT_INT)

If the C type is one of the integer types, the value is adjusted by standard
rounding to 0 places. If the C type is float or double, the value is padded or
adjusted to the type's precision.
29-16 Reading Information from the Database

Format of Select Results
! Data Formatting, C Type and Precision properties conflict

" If the value is less precise than the numeric format's number of decimal
places (min_decimals), the value is padded to the number of decimal
places specified.

" If the value is more precise than the numeric format's number of decimal
places (max_decimals), Panther compares the numeric format of places
and the C type's precision, and uses the less precise of the two. If the C
type precision is less precise, the numeric property specifications still
controls how the value is displayed and therefore, the value is padded if
necessary.

" If it uses the numeric format's maximum number of places
(max_decimals), then it also uses the Rounding property specification
(round up, round down, or adjust) as well as any fill characters
(fill_character).

" If it uses the C type precision specification, it adjusts by standard rounding
to the precision.

! None numeric data (data_formatting = PV_NONE) and a default data type
(c_type = PV_DEFAULT).

The precision is taken from the data type being returned.

Refer to page 10-20 in the Using the Editors for more information on currency
formats.

Binary Columns

If a column has an binary data type, Panther sets the column type to be DT_BINARY.
Before writing data to the widget, Panther checks the c_type property. If the setting
is PV_HEX_DEC, then Panther converts the binary data to a hexadecimal string.
Otherwise, Panther passes the binary data as is.

Generally, binary data is fetched either into variables declared with DBMS BINARY or
into widgets with a c_type property of PV_HEX_DEC. Otherwise, incorrect binding
might result.
Application Development Guide 29-17

Format of Select Results
Fetching Unique Column Values

By default, when a column is selected, Panther returns all values. There is also a
command for displaying only a column's unique values,

DBMS [WITH CURSOR cursor-name] UNIQUE column [, column ...]

Panther replaces a repeating value with an empty string.

This command is useful if an application is selecting values from a table which uses
two or more columns as the primary key. For example, if the table projects has the
columns project_id, staff, task_code and the columns project_id and staff
constitute the primary key, an application could suppress the repeating values in one
of the columns of the primary key to improve readability on the screen. Figure 29-2
illustrates the data in the project table.

Figure 29-2 The primary key of the projects table is (project_id, staff).

The following commands select the data and format it to suppress repeating values:

DBMS DECLARE proj_cur CURSOR FOR \
SELECT * FROM projects ORDER BY project_id

DBMS WITH CURSOR proj_cur UNIQUE project_id
DBMS WITH CURSOR proj_cur EXECUTE

Figure 29-3 is a sample screen displaying the results.
29-18 Reading Information from the Database

Format of Select Results
Figure 29-3 The Panther layout is easier to read than the table layout.

Refer to page 11-54 in the Programming Guide for more information.

Redirecting Select Results to Other Targets

If you need other destinations for SELECT statements, DBMS CATQUERY allows you to
concatenate a full result row and write it to either a text file or to a Panther variable:

DBMS [WITH CURSOR cursor] CATQUERY TO FILENAME file \
[SEPARATOR "text"] [HEADING [ON | OFF]]

DBMS [WITH CURSOR cursor] CATQUERY TO pantherVar \
[SEPARATOR "text"] [HEADING [ON | OFF]]

There is also a command for formatting the results,

DBMS [WITH CURSOR cursor-name] FORMAT [column] format

For more information on these commands, refer to page 11-10 and to page 11-36 in the
Programming Guide.
Application Development Guide 29-19

Format of Select Results
29-20 Reading Information from the Database

CHAPTER
30 Writing Information
to the Database

This chapter discuss how Panther passes data from an application screen to a database.
The topics are:

! Colon preprocessing—Using the colon preprocessor to put Panther values into
SQL statements. Its forms are:variable, :+variable, and :=variable.

! Parameters—Binding values to SQL parameters when executing a named
cursor. The form is ::variable.

The DBMS RUN command is used to execute SQL statements if no data is being returned
to Panther, for example, for UPDATE, INSERT, and DELETE statements.

For information on sending data in service requests and calling methods in three-tier
applications, refer to Chapter 5, “Defining Services in JetNet and Oracle Tuxedo
Applications,” in JetNet/Oracle Tuxedo Guide.

Colon Preprocessing

Panther supports colon preprocessing as part of its standard JPL syntax.
Application Development Guide 30-1

Colon Preprocessing
Refer to “Colon Preprocessing” on page 19-27 for a description of standard colon
preprocessing. One or more colon variables can appear anywhere in a DBMS statement;
however, The first word in the statement cannot be colon-expanded. Therefore, the
following two statements are illegal:

:verb SELECT * FROM students

:command EXECUTE cursor1

JPL must know the command word to perform syntax checking and compilation before
executing a JPL statement.

In addition to the standard forms of colon preprocessing, Panther's database drivers
support special forms of colon preprocessing for values sent to a database. The forms
are:

These forms of colon preprocessing replace a variable with its value and format it in a
style that is appropriate for a column value in an INSERT statement, an UPDATE
statement, or a WHERE clause (described below).

Colon-plus Processing

Before colon preprocessing a statement, JPL determines which engine to use. If
executing a DBMS statement, the JPL parser examines the statement for a WITH ENGINE
clause. If it finds the clause, it uses the specified engine. If it finds a WITH CONNECTION
clause, it uses the connection's engine. If neither clause is used, JPL uses the engine of
the default connection. Colon-plus processing is not necessary in statements using the
WITH CURSOR clause. The only WITH CURSOR statement that uses column values is
DBMS EXECUTE and this statement uses binding, not colon-plus processing, to supply
column values.

For each :+variable used in a JPL statement, the following steps are performed:

Perform Standard Colon Preprocessing

Panther searches for variable in the following places:

:+variable Colon plus for preprocessing of column values

:=variable Colon equal for preprocessing of operator and column values
30-2 Writing Information to the Database

Colon Preprocessing
! JPL variables local to the procedure that JPL is executing.

! JPL variables local to the module containing the procedure that JPL is
executing.

! Widgets on the current screen.

! LDB variables.

When it finds the variable, it copies its value to an internal work buffer. Any formatting
is performed on this copy. The variable's contents remained unchanged.

When a screen entry function is executed, it, by default, searches for variable in the
LDB before searching the current screen. For more information on variables and their
scope, refer to page 19-24, “Variables.”

Determine the Variable's Panther Type

Specific widget properties are examined to determine the variable's Panther type,
which in turn, determines how to format the data. Since a variable can have more than
one qualifying property specification, Panther uses some precedence rules when
assigning a Panther type.

A widget or LDB variable has exactly one Panther type (one of the following):

The following properties—Null Field, C Type, Data Formatting, and Keystroke
Filter—are examined to determine the Panther type. If the property specifications do
not resolve the variable's (including JPL variables) type, it is assigned FT_CHAR as the
Panther type.

Notes: You can use the c_type property to determine a variable's Panther type.

Null Field (null_field)
Panther checks to see if the widget has null_field set to PV_YES. If the
value of the variable equals the null value assignment (specified in the Null

DT_BINARY FT_CHAR FT_INT FT_UNSIGNED

DT_CURRENCY FT_DOUBLE FT_LONG FT_VARCHAR

DT_DATETIME FT_FLOAT FT_PACKED FT_ZONED

DT_YESNO FT_HEX FT_SHORT
Application Development Guide 30-3

Colon Preprocessing
Text (null_text) property), the processor replaces the variable's value with
the database engine's null string. On most engines, it is the string NULL. When
a variable's value is null, it is not necessary to determine the Panther type.

If a numeric field is blank or empty, Panther substitutes NULL as the column's
value for that field, even if the Null Field property is set to No. If the column
is specified as NOT NULL in the database, the engine returns an error.

Consider a widget having the following Format/Display property settings:
null_field set to PV_YES, null_text set to * (a single asterisk), and the
repeating property set to PV_YES. At runtime, the user enters no data in the
field represented by this widget; it is considered null, and Panther displays a
repeating string of asterisks (****) as the widget's content. The database
driver converts the string **** to NULL (that is, the value of the engine's null
string) before passing it to the database engine.

On the other hand, if the user enters a text in the widget, the processor
proceeds to determine the variable's Panther type from other widget
properties.

C Type (c_type)
This property's value has the highest priority in determining the variable's
Panther type; its value is used to assign a Panther type, unless it is set to
PV_DEFAULT or PV_OMIT.

A newly created widget, one you create with the screen editor, is
automatically assigned PV_DEFAULT as its C type property value. However,
widgets that are database-derived (from the repository), are assigned, via the
import process, a C type based on the column's data type. You can also
explicitly set a C type.

Be aware of C type property settings that conflict with other properties. For
example, if a widget has a C Type setting of PV_INT and a Data Formatting
setting of PV_DATE_TIME, its Panther type is FT_INT. The date/time format
is enforced for data entry, but Panther's database drivers do not convert the
date/time format string into a format the engine would recognize.

The Panther type for the C Type property values are as follows:

C type Panther type

Char String FT_CHAR

Hex Dec FT_HEX
30-4 Writing Information to the Database

Colon Preprocessing
Data Formatting
Checks this property to determine if the widget expects date/time
(PV_DATE_TIME) or numeric data (PV_NUMERIC), determining if the Panther
type is DT_DATETIME or DT_CURRENCY, respectively.

If the Data Formatting property is set PV_NONE, Panther examines the
Keystroke Filter property.

Keystroke Filter
Checks this property if the variable is neither a date/time or numeric field. If
the Keystroke Filter property is set to PV_DIGITS_ONLY, the Panther type
assignment is FT_UNSIGNED; if it is set to PV_YES_NO (accepts Yes/No
values), the Panther type assignment is DT_YESNO; if it is set to PV_NUMERIC
(accepts numbers only), the type assignment is FT_DOUBLE.

Format a Non-null Value

Once a non-null variable's Panther type is determined, this classification is used to
perform any necessary formatting before returning the formatted text to JPL.

DT_DATETIME Variables

The processor calls the support routine to format the text in the engine's default syntax
for date/time. Some support routines store a Panther format string (defined in the
date_format property) in the style of the engine. When formatting a field value, it can

Int FT_INT

Unsigned Int FT_UNSIGNED

Short Int FT_SHORT

Long Int FT_LONG

Float FT_FLOAT

Double FT_DOUBLE

Zoned Dec FT_ZONED

Packed Dec FT_PACKED

C type Panther type
Application Development Guide 30-5

Colon Preprocessing
simply pass the format string and value to Panther's date/time routines to reformat the
string. Other support routines can call a conversion function from the DBMS library to
perform the task.

The actual result is dependent on the engine. For example, if the value in a date/time
field is December 31, 2019 3:05 PM and the current engine is using the ORACLE
support routine, Panther formats the date as:

TO_DATE('31122019 150500', 'ddmmyyyy hh24miss')

If the engine is using the SYBASE support routine, Panther formats the date as:

'Dec 31,2019 3:5:0:000PM'

Some engines support more than one data type for date-time columns. For more
information, refer to the Database Drivers.

FT_CHAR Variables

The processor checks if the engine uses quote and escape characters. By default, an
engine uses a single quote for quote_char, and a single quote for escape_char.

The processor first determines the size of the formatted text by adding the length of the
unformatted text and the number of embedded quote_chars in the text (and for the
enclosing quote characters). If it cannot allocate a buffer large enough for the text, the
processor returns the SM_MALLOC error. If the allocation is successful, the processor
writes the formatted text to the buffer. It puts a quote_char at the first position in the
buffer and, as it copies each character from the source string to the buffer, it compares
the character with quote_char. If the character equals quote_char the processor puts
an escape_char before the embedded quote_char. A final enclosing quote_char
is put at the end of the text.

For example, Panther formats the value: Ms. Penelope O'Brien to

'Ms. Penelope O''Brien'

Panther formats the value: Reported record sales for "The Novice's Guide
to PC's" to:

'Reported record sales for "The Novice''s Guide to PC''s"'

A few engines do not support both single and double quotes within a character string.
For engine-specific information, refer to the Database Drivers.
30-6 Writing Information to the Database

Colon Preprocessing
FT_HEX Variables

Panther converts the widget's hexadecimal string to a binary format before writing it
to the database. The valid hexadecimal string must be an even-length, null-terminated
string consisting only of the following letters and numbers: 0-9, A-F, a-f. No character
validation on the string is performed on field exit, but if the string cannot be converted,
an error occurs when the SQL statement is executed.

For FT_HEX data, colon plus and colon equal processing are not available. However,
regular colon expansion can be used.

Single line text widgets containing binary data have a maximum size of 127 bytes. To
successfully write data longer than 127 bytes, either declare a variable using DBMS
BINARY or in the screen editor, change the Widget Type to Multitext and set the Word
Wrap property to Yes.

FT_NUMERIC and DT_CURRENCY Variables

The processor calls the function sm_strip_amt_ptr to strip editing characters from
the numerical string. The function strips all non-digit characters (such as dollar signs)
except for an optional leading negative sign and a decimal point. The colon
preprocessor does not use precision edits when formatting numeric values.

For example, Panther formats the value $500,000.00 as 500000.00. The value
(-89.003) as -89.003, and a value of 001-02-0003 as 001020003.

To preserve embedded punctuation in numeric fields, set the widget's C Type property
to Char String (PV_CHAR_STRING).

For engine-specific information, refer to Database Drivers.

If a widget, defined to accept numeric or currency data, is empty or blank, Panther
substitutes NULL as the column's value for that widget, even if the Null Field property
is set to No. If the corresponding column is specified as NOT NULL in the database, the
engine returns an error.

Colon-equal Processing

To specify a null value in a search criteria, most engines require the syntax

SELECT select_list FROM table WHERE column IS NULL
Application Development Guide 30-7

Colon Preprocessing
To select rows where a column value is either known or unknown (that is, NULL), use
the colon-equal processor. For example:

DBMS QUERY SELECT * FROM titles \
WHERE rating_code :=rating_code

If the widget named rating_code has the following Format/Display property
settings: Null Field set to Yes, Null Text set to * (a single asterisk), and the Repeating
property set to Yes. Panther formats the widget's data value PG as ‘PG’and executes
the SELECT statement:

SELECT * FROM titles WHERE rating_code = 'PG'

It formats the widget’s “null” value, **** (repeating asterisks), as:

IS NULL

and executes the SELECT statement:

SELECT * FROM titles WHERE rating_code IS NULL

Writing Character String Data to the Database

Consider a widget named last_name (from the VideoBiz database) on a screen having
the following property settings:

c_type = PV_DEFAULT
null_field = PV_NO
data_formatting = PV_NONE
keystroke_filter = PV_UN FILTERED

Therefore, the Panther type is FT_CHAR.

If the widget last_name contains the text D’Angelo when the following statement is
executed:

DBMS QUERY SELECT * FROM customers \
WHERE last_name = :+last_name

Panther passes the query:

SELECT * FROM customers WHERE last_name = 'D''Angelo'

If last_name is empty, Panther passes the empty string, not a null string:

SELECT * FROM employee WHERE last_name = ''
30-8 Writing Information to the Database

Colon Preprocessing
Null conversion is performed only on variables having the null_field property set to
PV_YES.

Writing Date/Time or Null Data to the Database

Consider that the widget member_date, from the VideoBiz database, is defined to
accept a date (in the form MM/DD/YYYY) and also allow for null data. Given these
property settings:

The Date/Time setting has a higher precedence than the Keystroke Filter setting,
therefore, the Panther type for the widget is DT_DATETIME. If widget contains the date
12/31/2015, and the following function is executed:

DBMS WITH CONNECTION oracle_conn RUN \
INSERT INTO customers (cust_id, last_name member_date) \
VALUES (:+cust_id, :+last_name, :+member_date)

Panther passes the following statement to the engine (in this example, ORACLE is the
engine):

INSERT INTO customers (cust_id, member_date) VALUES \
(43, 'D''Angelo', \
 TO_DATE('31122015 000000', 'ddmmyyyy hh24miss')

If no date is entered in the member_date field, its content is 00/00/0000 and Panther
passes the following statement to the engine:

INSERT INTO customers (cust_id, last_name, member_date) \
VALUES (43, 'D''Angelo', NULL)

Property/Subproperty Setting

c_type PV_DEFAULT

keystroke_filter PV_DIGIT_ONLY

data_formatting

date_format

custom_format

PV_DATE_TIME

PV_DATE4

MON2/DATE/YR4

null_field PV_YES

null_text 00/00/0000
Application Development Guide 30-9

Colon Preprocessing
Writing Numbers as Character Strings to the Database

If a widget accepts only numeric values (keystroke_filter = PV_DIGITS_ONLY),
such as a telephone number, the colon-plus processor formats the widget's value as an
unsigned integer, removing embedded punctuation and leading zeros. However, if the
C Type property is set to PV_CHAR_STRING, the colon-plus processor formats the
widget's contents as a character string, preserving embedded punctuation and leading
zeros. The C Type property takes precedence over other property specifications.

For example, if the number 00912 is entered in the postal_code widget whose C
Type is Char String, and the following statement is executed:

DBMS QUERY SELECT * FROM customers \
WHERE postal_code = :+postal_code

Panther passes the following query, submitting the data as a character string, to the
engine:

SELECT * FROM customers WHERE postal_code = '00912'

On the other hand, if the Keystroke Filter property is set to Digits Only, and the C Type
is not set to Char String, the following query, using numeric data, is passed to the
engine:

SELECT * FROM customers WHERE postal_code = 912

Writing Hexadecimal Values to the Database

Setting a widget's C Type property to Hex Dec is one method used to fetch binary
values to screens. With this setting, when binary data are fetched in a SQL SELECT
statement, Panther converts the binary value to a hexadecimal string. If any subsequent
database updates use the data, it is converted back to a binary format before being
passed to the database engine.
30-10 Writing Information to the Database

Using Parameters in a Cursor Declaration
Using Parameters in a Cursor Declaration

Some engines permit parameters in the SQL statement of a cursor declaration
statement. Therefore, they permit one or more values to be supplied when the cursor is
executed. On those engines that do not support binding (for example, SYBASE),
Panther internally supports cursors with parameters.

When Panther executes a DECLARE CURSOR statement, it scans the statement for
parameters. For all engines, Panther recognizes the following syntax to be a parameter:

::parameter

Many vendors use a single colon to begin a parameter name. Since this form conflicts
with the colon preprocessor, two colons must be used in JPL. The second colon
prevents the colon processor from performing variable substitution. Some vendors,
such as Informix, use a single question mark to represent a parameter. Panther also
recognizes these engine-specific forms.

If Panther finds a parameter, it sets up a data structure for it. It attempts to find a value
for the parameter when the cursor is executed. Parameters can be used to supply
column values for any SELECT, INSERT, UPDATE, or DELETE statement. For example,

DBMS DECLARE a_cursor CURSOR FOR \
SELECT * FROM customers WHERE last_name = ::xyz

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO actors VALUES (::actor_id, ::last_name, \
::first_name)

DBMS DECLARE c_cursor CURSOR FOR \
UPDATE customers SET address1=::address1, \
address2=::address2, city=::city, \
state_prov=::state_prov,postal_code=::postal_code \
WHERE cust_id=::cust_id

DBMS DECLARE d_cursor CURSOR FOR \
DELETE FROM users WHERE logon_name=::id

The binding data structures are stored with an individual cursor. Therefore, the
application should give a unique name to each parameter belonging to a single cursor.
A cursor cannot have two parameters with the same name.
Application Development Guide 30-11

Using Parameters in a Cursor Declaration
A value for a parameter is supplied in the USING clause of an EXECUTE statement,

DBMS WITH CURSOR cursor EXECUTE USING arg [, arg ...]

Panther looks for the keyword USING before passing the cursor's query to the DBMS.
If it finds the keyword, it assumes the arguments which follow are parameter values.
If an arg is not quoted, Panther assumes it is a variable and performs variable
substitution and formatting. Values and parameters can be bound by position. For
example,

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO roles VALUES (::p1, ::p2, ::p3)
....
DBMS WITH CURSOR b_cursor EXECUTE \

USING title_id, actor_id, role

Values and parameters can be bound explicitly by name:

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO roles VALUES (::p1, ::p2, ::p3)

....
DBMS WITH CURSOR b_cursor EXECUTE \

USING p3=role, p1=title_id, p2=actor_id

The preceding declaration, p3, p1, and p2 are not Panther variables but role,
title_id, and actor_id are. Panther uses the values of role, title_id, and
actor_id to execute the INSERT. To supply a literal value to the INSERT, enclose the
value in quotes:

DBMS WITH CURSOR b_cursor EXECUTE \
USING p3=role, p1="89", p2=actor_id

Panther formats binding values in a method similar to the colon-plus processor. This
is discussed in detail in the next section.

On those engines that support parameters, using them can improve the efficiency of the
application, especially when a cursor is executed several times. On engines where
Panther simulates support, such as SYBASE, the use of parameters is less efficient.
However, the convenience and the greater ease of portability can compensate for the
additional processing.

Parameter Substitution and Formatting

An arg in a USING clause can be:
30-12 Writing Information to the Database

Using Parameters in a Cursor Declaration
! A quoted string

! A Panther variable

Colon-plus processing is not necessary because Panther automatically formats the
value of parameter variables. If the variable is an array, an occurrence number can be
given. If no occurrence is given, Panther concatenates all the non-empty occurrences
in the array, separating the occurrences with a single space. Substrings are not
permitted.

For each cursor, Panther maintains binding information. When a cursor's statement
uses parameters, Panther stores the names of the parameters. When a cursor is
executed, Panther compares the values in the DBMS EXECUTE statement with the
binding information from the cursor's declaration. This permits both positional and
explicit binding.

Panther uses a data structure to store the formatted text and Panther type of arg. If arg
is not quoted, Panther assumes it is a variable and determines the variable's data type.
Like the colon-plus processor, the binding routine distinguishes between empty and
null variables; a variable is null if it the Null Field (null_field) property is set to
PV_YES and the variable contains the null string.

If the Panther type is DT_DATETIME, Panther calls the support routine to convert the
value to a binary date/time value. For more information, refer to page 30-9, “Writing
Date/Time or Null Data to the Database.”

No processing is done on the values of FT_CHAR variables or quoted strings.

For all other types, Panther strips characters other than digits, the decimal point, and a
leading negative sign from the value.

The following examples show the different formats for arg in a USING clause:

DBMS DECLARE x CURSOR FOR \
SELECT * FROM titles \
WHERE title_id=::p1 OR genre_code=::p2

newid and newtype are LDB variables
DBMS WITH CURSOR x EXECUTE \

USING p1=newid, p2=newtype

For p1, a literal value is supplied.
For p2, code is a JPL variable with the initial text
"film_type." film_type is also a widget on the current
screen and this widget supplies the parameter's value.
DBMS WITH CURSOR x EXECUTE USING p1='92', p2=:code
Application Development Guide 30-13

Using Parameters in a Cursor Declaration
id and vid_type are field arrays. i is a JPL variable
DBMS WITH CURSOR x EXECUTE \

USING p1=id[i], p2=vid_type[i]

Writing Currency Values to the Database

Consider a widget, rent_amount from the videobiz database, with the following
property settings: c_type = PV_DEFAULT, keystroke_filter = PV_NUMERIC,
data_formatting = PV_NUMERIC, and numeric_type = PV_DEFAULT_0 (Format
Type is set to Local Currency). Its Panther type is DT_CURRENCY.

If the data entered in the widget is $1,000.99, and the following statements are
executed:

DBMS DECLARE sales_cursor CURSOR FOR \
SELECT * FROM customers WHERE rent_amount > ::x

...
DBMS WITH CURSOR sales_cursor EXECUTE USING x=rent_amount

the engine executes:

SELECT * FROM customers WHERE rent_amount > 1000.99

Writing Data from Arrays

Consider the widget named notes, a multiline text widget, with its Word Wrap property
set to Yes and with the following property settings:

This widget is a Panther type FT_CHAR. If you execute the following statements:

Property/Subproperty Setting

c_type PV_DEFAULT

keystroke_filter PV_UNFILTERED

data_formatting PV_NONE

null_field

 null_text

PV_YES

no specification
30-14 Writing Information to the Database

Using Parameters in a Cursor Declaration
DBMS DECLARE ins_cursor CURSOR FOR \
INSERT INTO customers (cust_id, notes) \
VALUES (::p1, ::p2)...

DBMS WITH CURSOR ins_cursor EXECUTE USING cust_id, notes

when the widget is empty, the DBMS executes:

INSERT INTO customers (cust_id, notes) VALUES (123, '')

If, however, the widget contains text, Panther concatenates the non-empty occurrences
into one long string which the DBMS inserts into the column notes.

INSERT INTO customers (cust_id, notes) \
VALUES (123, 'This customer wants to be notified \

when A River Runs Through It is available for rental.')

Notes: For multiline text widgets, the Max Occurrences property should also be set to
avoid memory allocation errors.
Application Development Guide 30-15

Using Parameters in a Cursor Declaration
30-16 Writing Information to the Database

CHAPTER
31 Building a
Transaction
Manager Screen

The screen wizard is the easiest way to build screens that use the transaction manager.
The wizard leads you through choosing your root table view, selecting widgets from
that table view, adding additional table views and their widgets, and it automatically
changes the property settings.

Even so, if you want to modify screens created by the screen wizard or to build your
own screens or service components that use the transaction manager, you need to
understand how the transaction manager uses property settings, links and table views
in order to automatically generate SQL statements and to perform database processing.
This chapter summarizes how you can build a two-tier application screen in the editor.

To help explain the transaction manager concepts, a sample screen based on the
videobiz database is used. The screen lets you enter a video title by name or
identification code, and view the names of actors and their roles in that video. A picture
of the screen appears on page 31-4 as Figure 31-1.
Application Development Guide 31-1

Development Process for Transaction Manger
Development Process for Transaction
Manger

Database operations are integrated into the overall development of your application.
Table 31-1 shows how database operations are effected by each step in developing a
transaction manager application.

Table 31-1 Application development process and the effect on database operations

Step Effect on database operations

Import database tables into the repository. Repository information is used at all stages of screen
design and database operation development.

Create a screen. Using the screen wizard: widgets, table views, and links
are copied from the repository to the screen being
generated. Default properties are set. Default
transaction manager commands are included.

Using the editor: copy widgets and links from the
repository to the screen being created. Table views will
automatically be copied. Link properties will need to be
updated as part of the next step.

Edit table views and links. Changes transaction manager processing. For example,
you can change the order in which table views are
processed, or make a table view non-updatable.

Edit widget database properties. Changes SQL generation. For example, you can
exclude a column from SQL SELECT statements or
specify a validation link.

Create push buttons or menu items (on
non-wizard screens).

Calls to transaction manager commands.
31-2 Building a Transaction Manager Screen

Copying Repository Objects
Copying Repository Objects

Building the sample screen was accomplished by using the database importer and the
repository. The videobiz database was created in JDB and imported into the repository.
The database importer created a repository entry for each database table. The name of
the repository entry corresponds to the database table name so that entries can be easily
identified. Since objects copied from the repository inherit property settings, the
application screen contains much of the information needed for SQL generation and
database access automatically.

Each repository entry contains:

! A widget corresponding to each database column. (One of the properties for the
widget is the column name.)

! A label for each database column.

! A table view containing database table information.

! Links based on any foreign key definitions for the database table.

Write event functions. Invokes the transaction manger or database interface to
perform database operations.

Edit transaction styles and class. Changes the behavior of data entry widgets on your
screen for specified operations.

Assign a transaction event function or a
transaction model to a table view.

Changes transaction manager processing for the
specified table view.

Assign a screen-level transaction model or
edit a database-specific model.

Changes transaction manager processing for all table
views in a screen or application.

Table 31-1 Application development process and the effect on database operations

Step Effect on database operations
Application Development Guide 31-3

Copying Repository Objects
Figure 31-1 Sample screen used to explain transaction manager processing.

Sequence for Copying Objects

When you create a screen with multiple table views, the order used to copy objects
from the repository is important. You need to copy the information for the major table
views in the screen first. This ensures that any primary key widgets copied to the
screen are in the master, or parent, table view.

Since the focus of the sample screen is information about each video title, widgets and
links from the titles repository entry are copied first.
31-4 Building a Transaction Manager Screen

Copying Repository Objects
Actor information is in two different database tables, actors and roles. The roles
table with its a title_id column and link to the titles table view must be copied next.
(Note that it is not necessary to copy the title_id widget itself from the roles entry;
the transaction manager uses the title_id widget in the titles table view for SQL
generation.) Just the actor_id and the role widgets are copied to the screen—
actor_id because it is part of the primary key.

Table 31-2 Objects copied from the titles repository entry

Repository entry Type of Widget Name

titles Text title_id, name, genre_code,
pricecat

Labels

Table View titles (copied automatically with
the text widgets)

Link K1titles (pricecats+titles)

Table 31-3 Objects copied from the roles repository entry

Repository Entry Type of Widget Name

roles Text actor_id, role

Table View roles (copied automatically with
the text widgets)

Link K1roles (titles+roles)
K2roles (actors+roles)
Application Development Guide 31-5

Specifying the Traversal Order
Since actor_id is already onscreen, all that is needed from the actors entry are
first_name and last_name.

Finally, since the price category codes are not self-explanatory, pricecat_dscr is
copied from pricecats to provide better descriptions.

Specifying the Traversal Order

Since the screen contains widgets from several database tables, you must specify in
which order the tables will be processed. Copying the objects from the repository in
the correct sequence is the first step. The next step is to modify table view and link
properties.

Table 31-4 Objects copied from the actors repository entry

Repository Entry Type of Widget Name

actors Text first_name, last_name

Table View actors (copied automatically with
the text widgets)

Table 31-5 Objects copied from the pricecats repository entry

Repository Entry Type of Widget Name

pricecats Text pricecat_dscr

Table View pricecats (copied automatically
with the text widget)
31-6 Building a Transaction Manager Screen

Specifying the Traversal Order
Table Views

A table view is a group of related widgets, generally belonging to the same database
table. Table view properties include the name of the database table, the names of
columns that belong to the database table, and the columns that comprise the table's
primary key. The import process creates a table view, an invisible widget type, for each
imported table, and includes the widgets corresponding to the database columns in
each table view.

If a widget is a member of a table view in the repository, Panther automatically adds
the widget to a table view of the same name in the destination. If the table view does
not exist, Panther creates it using the properties of the table view in the repository.
Thus, most table views are created automatically by the database importer and copied
from the repository as the widgets are copied.

However, just knowing the table views on a screen does not tell the transaction
manager which table view should be processed first. To obtain this information, the
transaction manager looks at the link properties for the screen.

Links

A link defines the relationship between two table views. The link properties list the
columns or widgets connecting the two table views, the type of link—server or
sequential, and the parent and child table view designations.

The import process creates links based upon foreign key information contained in the
database. If the database contains no foreign key information, then you can create the
links manually in the screen editor. Link widgets are only visible in the screen editor
workspace, not at runtime.

How to Gain Access to Table View and Link Properties

You can select the table view or link either from the Widget List or the DB Interactions
window.
Application Development Guide 31-7

Specifying the Traversal Order
How to View the Table Views and Links for a Screen

Choose View→DB Interactions. The DB Interactions window provides a graphical
representation of the table viers and links on your screen. You can also click on any of
the objects in the window in order to gain access to its properties.

Setting Link Properties

Determining the Root Table View

The table view listed at the top of the DB Interactions screen is the root table view, the
first table view to process for this screen. The transaction manager determines the root
table view from the Parent and Child properties of all of the links on a screen. Since
the purpose of the sample screen is to provide information about each video title,
titles is the root table view, as illustrated in Figure 31-2 (page 31-10).

If you get an error message that the root table view cannot be determined, check the
Parent and Child properties for the link. Often, these properties need to be reversed for
one or more links. If changing these properties does not resolve the error, you can set
the root table view manually in the screen properties.

Determining the Order of Processing

In a link widget, two table views are identified: one table view is designated as the
parent table view and the other is designated as the child. This designation helps
determine the root table view and the order of processing for the table views.

Generally, the database table associated with the Parent table view is different than the
one associated with the Child table view. One exception to this condition is for SQL
self-joins where the same database table (using different table view names) is
associated with both the Parent and Child table views.

When you copy links from the repository, the settings for the Parent and Child
properties might need to be reversed for a particular screen. You can easily determine
the current values by looking at the link in the editor. The link is displayed as the parent
table view name plus (+) the child table view name.
31-8 Building a Transaction Manager Screen

Specifying the Traversal Order
In the sample screen, some of the Parent and Child properties had to be edited. Since
titles is the root table view, it must be the parent table view for any link in which it
appears. Since the K1titles link had titles as the child table view, the Parent and
Child properties of that link were changed for this screen. titles became the Parent
and pricecats the Child.

At the next level, roles needs to be the parent table view for any link in which it
appears. For the K2roles link, roles became the Parent, and actors the Child.

Notes: When you reverse the Parent and Child settings, you must also edit the
Relations property if the columns joining the two tables do not have the same
name. This was not needed for our sample screen since the pricecat column
in the titles table has the same name as the pricecat column in the
pricecats table.

Restrictions

You cannot have a cycle appearing in the link specifications. For example, if link1
declares the titles table to be the parent and the roles table to be the child, link2 cannot
have the roles table be the parent and titles be the child. That constitutes a circular link.
Remember, however, that links are specific to one screen. On another screen, the
relationship specified in link2 could exist.

You cannot have the same table view in both the Parent and Child properties. If this
occurs, the error message “Maximum depth exceeded” is displayed.

Specifying the Link Type

There are two types of links:

! Sequential link represents a one-to-many relationship between two table views.

! Server link represents a one-to-one relationship between two table views.

A group of table views connects by server links is referred to as a server view.
Therefore, a table view can also be a server view which means that it is either the root
table view or is connected to a parent table view by a server link.

The transaction manager uses server views to process your database operations more
efficiently. When the transaction manager retrieves data from the database (invoking
the SQL SELECT command), it processes all of the table views in a server view as a
Application Development Guide 31-9

Specifying the Traversal Order
single SQL SELECT, rather than repeating the SELECT once for each table view. Other
database operations (such as those that update the database) are processed differently;
refer to page 36-7 for more information.

In the sample screen, a sequential link between the titles and roles table views was
appropriate, but the Type property had to be updated to Server for the links between
the titles and pricecats table views and the roles and actors table views.

Tree Traversal

The DB Interactions screen graphically illustrates the tree of table views and links that
the transaction manager uses to perform its processing. On this screen, < (less than)
designates a sequential link; = (equals) designates a server link.

Figure 31-2 DB Interactions screen for the sample screen showing the linked
table views and the link type.

When a command is selected, the transaction manager traverses this table view tree,
issuing statements to each table view, or server view, in order to fetch or update data
in the database.

In our sample screen, there are two server views:

! titles (which includes the pricecats table view)

! roles (which includes the actors table view)
31-10 Building a Transaction Manager Screen

Specifying the Traversal Order
For server links, you can specify the Join Type—the join operation the SELECT
statement will use to combine information from the database tables. In order to be
available, the database engine must support outer joins. The Join Type property can be
set to: Inner (default), Left Outer, Right Outer, or Full Outer. For more information on
how the Join Type affects data retrieval, refer to page 33-28.

Setting Table View Properties

For a widget to participate in transaction manager processing and SQL generation, the
widget must be a member of a table view. In addition, if members of the table view
participate in SQL INSERT, UPDATE and DELETE statements, all members must have
the same number of onscreen occurrences and the same number of maximum
occurrences.

Typically, widgets are automatically assigned to a table view when you copy them
from the repository to your screen. You can add members to an existing table view in
order to:

! Include a widget in the SQL generation.

! Create a “virtual” column—that is, use a widget on the screen to display
information from the database even though the widget does not have an
associated column in the database.

! Add a database column back to the table view that you previously removed
from the table view.

Refer to page 22-10 in the Using the Editors for details on how to define a widget's
membership in a table view.

You can specify whether a widget or a table view participates in SQL generation and
database updates. For table views, the Updatable property determines if data in the
corresponding table can be updated. If set to No, widgets in that table view are
protected from focus and data entry.
Application Development Guide 31-11

Specifying Widget Properties
Specifying Widget Properties

Once the screen contains the necessary widgets, table views and links, you might
choose to edit some of the Database or Transaction properties. Editing the properties
can change the transaction manager processing or SQL generation performed for
commands.

Changing SQL Generation

For the sample screen, properties were changed for the title_id and name widgets
in order to fetch a specific video title.

With these changes, when a user enters an identification code or part of a video title
followed by the SELECT or VIEW commands, the transaction manager will display the
desired information. For more information on setting properties for SQL generation,
refer to page 33-1.

Using Grids

For the grid widget containing the actor information, the following Format/Display
properties were changed:

Table 31-6 Property Changes

Widget name Database - Fetch Data category

title_id Use In Where property set to Yes

Operator set to =

name Use In Where property set to Yes

Operator set to %link%
31-12 Building a Transaction Manager Screen

Specifying Transaction Manager Commands
! The Column Titles property was changed to Per Column in order to display the
column name set by the importer in the widget's Column Title property.

! The Row Titles property was set to None.

Using Validation Links

The links that are defined for a screen can also be used to specify validation links.
When a validation link exists, you can enter a value in a widget, in either new or update
mode, and the transaction manager looks up that value in the linked database table. If
the value exists, it displays data for any widgets in the child table view. If the value
does not exist, it displays the error Invalid Entry.

It is very simple to specify a validation link. Create the desired link if it does not exist.
Then, set the Validation Link property for the widget containing the entered value to
that link.

To view a sample validation link, refer to page 33-46.

Specifying Transaction Manager
Commands

Transaction manager processing is implemented by invoking transaction manager
commands. In the sample screen, the commands are called via control strings on the
screen's push buttons. When a transaction manager command is activated at runtime,
the events associated with that command are generated, which in turn perform the
processing needed.

On the sample screen, the push buttons are associated with the following commands:

! View—The VIEW command generates the SQL SELECT statements necessary to
display data for all table views. If a video name or id is entered, the SQL
generation is modified to display data for that entry only.
Application Development Guide 31-13

Specifying Transaction Manager Commands
Control String property: ^sm_tm_command(“VIEW”)

! Next—The CONTINUE command displays the next title and all its associated
data.

Control String property: ^sm_tm_command(“CONTINUE”)

! Reset—Two transaction manager commands are used to reset the screen. The
CLEAR command clears data in all the screen's widgets; the CLOSE command
resets the screen to initial mode in order to allow user input for the video name
or id.

Control String property:

^(^sm_tm_command(“CLEAR”))sm_tm_command(“CLOSE”)

Refer to page 31-13 for information on specifying transaction manager commands.

Refer to page 35-2 for information on how the transaction manager generates events
for each command.

Refer to page 33-43 for information on viewing the SQL that the transaction manager
generates for each command.

Changing the Transaction Mode

Not only does calling a command generate the events for that command, it also sets the
transaction mode for the screen. The transaction mode helps determine whether fields
are protected from data entry and if push buttons and menu items are active.

The behavior of widgets in the current transaction mode is determined by the Class
property setting. The push buttons were assigned the following values in order to make
them inactive for certain modes:

! View—view_button—active in initial and view mode

! Next—continue_view_button—active in view mode

! Reset—clear_button—active in all modes

Refer to page 36-12 for more information on transaction modes and Class property
settings.
31-14 Building a Transaction Manager Screen

Adding a Transaction Event Function
Adding a Transaction Event Function

Part of the transaction manager's power is that it allows you, the developer, to modify
its processing as needed. One way of customizing the transaction manager is to write
an transaction event function and modify or replace the default processing for a
transaction manager event. In our sample screen, an additional field was desired,
stating whether a copy of the video is available.

Figure 31-3 An additional field, processed by a transaction manager event
function, displays whether the video is available for rental.

In order to display this information, the following steps were taken:

! From the tapes repository entry, the title_id field and the titles+tapes link
were copied to the sample screen. This automatically created the tapes table
view.
Application Development Guide 31-15

Adding a Transaction Event Function
! The title_id widget was renamed title_avail, since each widget's name
on the screen must be unique.

! For the title_avail widget, the Use in Select property (under
Database→Fetch Data) was set to No.

Figure 31-4 The field named title_avail, which also corresponds to the title_id
widget, contains the results of the transaction manager event function.

! Under JPL Procedures, the following event function was added for the main
request of the VIEW command:

// TM event functions are passed one parameter:
// the event name.

proc find_tapes (event)

// The VIEW command's major request is TM_VIEW.

if event == TM_VIEW
{
// Create a JPL variable and alias it to receive
// the value from the subsequent SELECT statement.

vars numtitles
DBMS ALIAS numtitles
31-16 Building a Transaction Manager Screen

Adding a Transaction Event Function
DBMS QUERY SELECT count (distinct title_id) \
FROM tapes \
WHERE title_id = :+title_id and status = 'A'

// Update the title_avail field based on the value.

if numtitles>0
{
call sm_n_putfield("title_avail", "Yes")
}
else
{
call sm_n_putfield("title_avail", "No")
}

// Event processing is self-contained. No further
// processing is needed.

return TM_OK
}
return

! The event function was attached to the tapes table view in its Function property.

Refer to page 32-1 for more information on writing transaction manager event
functions.

Refer to page 36-1 for information about transaction manager processing at runtime.
Application Development Guide 31-17

Adding a Transaction Event Function
31-18 Building a Transaction Manager Screen

CHAPTER
32 Writing Transaction
Event Functions

A transaction manager event function replaces part of the functionality provided by a
transaction model. You can write transaction event functions to:

! Modify generated SQL.

! Supply hand-coded SQL or stored procedure calls to replace generated SQL.

! Modify or query properties using the property API.

! Change error handling.

In order to use a transaction manager event function, you need to:

! Write a function which includes:

" The event whose functionality you want to modify or replace.

" Processing to be added to the event.

" Return codes which tells the transaction manager how to proceed.

! Install the event function by:

" Setting the table view's Function property to the name of the JPL module
containing the function.

" Modifying the transaction model.

This section explains how to write a simple event function, how to specify the
appropriate return code, how to modify processing for SQL SELECT statements, and
how to modify processing for SQL INSERT, UPDATE and DELETE operations.
Application Development Guide 32-1

The Nature of TM Event Functions
The Nature of TM Event Functions

Transaction manager event functions can allow you to replace Panther's automatically
generated SQL with your own, hand-coded SQL. The following example, a simple
event function, executes a custom SQL statement:

proc simpleEventFunc (event)
if event == TM_VIEW || event == TM_SELECT
{

DBMS QUERY \
SELECT title_id, name, genre_code

call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_CHECK

}
return TM_PROCEED

To invoke the event function, the function property on the titles table view is set
to simpleEventFunc. The function is called each time an event is processed for this
table view. You can have an event function for each table view; however, for database
queries, the event function must be specified in the first table view of a server view.

Since transaction event functions are passed one argument, specifically the transaction
event, you need to identify which events you want to modify. In the
simpleEventFunc function, the SQL statement replaces the processing for TM_VIEW
or TM_SELECT events. For all other events, the return code TM_PROCEED tells the
transaction manager to go ahead and call the transaction model, as if the event function
had not been called, so that the transaction model's processing is performed.

However, the simpleEventFunc function specifies that if the event is TM_VIEW or
TM_SELECT, the transaction manager uses the database driver's DBMS QUERY command
to retrieve data from titles table. Calling sm_tm_iset sets the number of rows
returned for this server view. The return code TM_CHECK tells the transaction manager
to test for an error; the transaction manager can check for database errors from the
SELECT statement.
32-2 Writing Transaction Event Functions

The Nature of TM Event Functions
Specifying a Return Code

Specifying the correct return code at the end of an event function tells the transaction
manager what to do next. Table 32-1 summarizes possible return values.

Specifying TM_PROCEED

TM_PROCEED tells the transaction manager to go ahead and call the transaction model
as if the event function had not been called. In the following code example, the
transaction model's processing is performed after the DBMS QUERY statement is
executed.

if event == TM_VIEW || event == TM_SELECT
{

DBMS QUERY \
SELECT title_id, name, genre_code FROM titles

Table 32-1 Return codes used by the transaction manager

Return value Means

TM_CHECK Test to determine if an error occurred. (Used in data base-specific
transaction models to check for SQL execution errors.)

TM_CHECK_ONE_ROW Test to determine if an error occurred; event processing is
considered successful only if exactly one row was affected.

TM_CHECK_SOME_ROWS Test to determine if an error occurred; event processing is
considered successful only if one or more rows were affected by the
processing.

TM_FAILURE Event processing failed.

TM_OK Event processing succeeded. Further processing of the event is
skipped.

TM_PROCEED Proceed to the next step; after completing the event function,
proceed as if the function was never called. In the case of a
transaction manager event function, this means that the transaction
model is called.

TM_UNSUPPORTED Event was not recognized.
Application Development Guide 32-3

The Nature of TM Event Functions
call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_PROCEED

}

The processing for these requests in the transaction models creates a select cursor,
builds the structures to bring back data for all the members of the table view whose Use
In Select (use_in_select) property is set to Yes, generates the SQL for the SELECT
statement, and then executes the statement.

The processing for all the events takes place quickly, so you might not visually notice
that both sets of processing are being performed unless you view the processing in the
debugger and break on each transaction manager event.

If both an event function and a transaction model are called for a single event by using
TM_PROCEED, the processing in the event function takes place before the processing in
the model.

Specifying TM_OK

TM_OK is used when the processing is contained in itself; therefore, the transaction
model is not required for processing and no checking for database errors is required.
Since the following statement does not require any processing in the model, the TM_OK
return code is a possible setting.

if event == TM_VIEW || event == TM_SELECT
{

DBMS QUERY \
SELECT title_id, name, genre_code FROM titles

call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_OK

}

Checking for Database Errors

Even though TM_OK does not check for database errors, the transaction models set
TM_STATUS to -1 whenever the database error handler returns an error. If the statement
causes the database error handler to be invoked, for example by specifying an invalid
column name, the database error handler returns an error. Then, the transaction
manager returns an error that the transaction model or event function had an error.

Three return codes are designed specifically for checking for errors from the database
engine and from Panther's database drivers: TM_CHECK, TM_CHECK_ONE_ROW, and
TM_CHECK_SOME_ROWS.
32-4 Writing Transaction Event Functions

The Nature of TM Event Functions
! TM_CHECK—Used to check for any error from Panther's database drivers. If one
is found, the transaction manager displays a message to that effect. The event
TM_TEST_ERRORS is pushed onto the event stack for this return code. This is the
best return code for the sample statement.

if event == TM_VIEW || event == TM_SELECT
{
DBMS QUERY \
 SELECT title_id, name, genre_code \
 FROM titles WHERE title_id = :+title_id
call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_CHECK

! TM_CHECK_ONE_ROW—Pushes the TM_TEST_ONE_ROW event onto the event
stack. This event checks the value of @dmrowcount (global variable) to make
sure its value is equal to 1. This return code is used following SQL statements
that modify the database to make sure that only one row was affected.

! TM_CHECK_SOME_ROWS—Pushes the TM_TEST_SOME_ROW event onto the event
stack. This event checks the value of @dmrowcount to make sure its value is
greater than or equal to 1. This can be used to make sure that SQL SELECT
statements return rows from the database.

Specifying TM_FAILURE

TM_FAILURE pushes the TM_NOTE_FAILURE event onto the event stack. The type of
error message displayed by the transaction manager depends on the value of various
transaction manager variables, like TM_STATUS or TM_EMSG_USED. For more
information, refer to page 36-27, “Processing Errors in the Transaction Manager.”

Performing Error Checking

In the following event function, checkingEvent, the variant does its own checking
for errors. It is only checking the @dmretcode, which would also be checked when
TM_CHECK is returned. When checking for errors from database access, it is always
important to check @dmretcode.

proc checkingEvent(event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT actor_id, first_name, last_name \
FROM actors \
WHERE actor_id = ::actor_id
Application Development Guide 32-5

The Nature of TM Event Functions
DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING actor_id
if @dmretcode != 0 return TM_FAILURE
call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_OK

}
return TM_PROCEED

Unsupported Events

The database-specific transaction models use TM_UNSUPPORTED to indicate that the
event is not supported in the transaction model. This is important to note in case you
add transaction events to the model. This return code pushes the
TM_NOTE_UNSUPPORTED event onto the event stack.

Modifying SELECT Statement Processing

The following slices are generated for TM_VIEW and TM_SELECT events:

! TM_GET_SEL_CURSOR—Allocates a Panther cursor for use by the SELECT
statement. Depending on the database, a Panther cursor may or may not
correspond to a database cursor.

! TM_PREPARE_CONTINUE—Checks the value of the Fetch Directions property for
the table view.

! TM_SEL_GEN—Generates data structures that are used to build the SQL
statements needed to view the data. This slice and the next slice are separated to
enable “tweaking” of the SQL that is about to be built.

! TM_SEL_BUILD_PERFORM—Builds and executes the SQL statements needed to
view the data. Uses the Panther cursor allocated in the TM_GET_SEL_CURSOR
slice event.

! TM_SEL_CHECK—Check to determine whether to give up the Panther cursor
allocated in the TM_GET_SEL_CURSOR step. This cursor is given up here only if
the select set is exhausted.
32-6 Writing Transaction Event Functions

The Nature of TM Event Functions
Replacing a SQL SELECT Statement

The following event function, myEvent, uses the transaction model's cursor
management and error reporting capabilities. The variable @tm_sel_cursor contains
the name of the cursor to be used to execute the SQL SELECT statement.

proc myEvent (event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT title_id, name, genre_code \
FROM titles \
WHERE title_id = ::title_id

DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING title_id
call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_CHECK

}
return TM_PROCEED

The event function is called for the TM_SEL_BUILD_PERFORM event. This event builds
and executes the SQL statements. Since this slice is generated for both TM_SELECT and
TM_VIEW requests, the event function is called for either request.

In some cases, you might want to check for errors by writing error checking code
within the event function. In that case, you should return TM_FAILURE if an error is
encountered, and TM_OK if there is no error.

The myEvent function permits the TM_SEL_GEN slice to be handled by the transaction
model, which (in the case of the database-specific transaction models) has Panther
build unneeded data structures. For slightly better performance, that slice could be
skipped as follows:

proc fasterEvent (event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT title_id, name, genre_code \
FROM titles \
WHERE title_id = ::title_id

DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING title_id
call sm_tm_iset(TM_OCC_COUNT, @dmrowcount)
return TM_CHECK

}
if event == TM_SEL_GEN

return TM_OK
return TM_PROCEED
Application Development Guide 32-7

The Nature of TM Event Functions
Modifying SQL Generation

In addition to writing event functions which replace the SQL SELECT statement, you
can also write event functions to modify the automatic SQL generation. Use one or
more of the following C functions that are prototyped in tmusubs.h:

! dm_gen_change_execute_using—Modifies the bind parameters in the
EXECUTE USING statement.

! dm_gen_change_select_from—Modifies the table list in a SQL SELECT
statement.

! dm_gen_change_select_group_by—Modifies the GROUP BY clause in a
SQL SELECT statement.

! dm_gen_change_select_having—Modifies the HAVING clause in a SQL
SELECT statement.

! dm_gen_change_select_list—Modifies the select list in a SQL SELECT
statement.

! dm_gen_change_select_order_by—Modifies the ORDER BY clause in a SQL
SELECT statement.

! dm_gen_change_select_suffix—Adds the specified text to the end of a
SQL SELECT statement.

! dm_gen_change_select_where—Modifies the WHERE clause in a SQL
SELECT statement.

A sample event function which adds a column and its corresponding table to the
SELECT statement is shown below:

proc titlesEvent(event)
vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
{
retval = dm_gen_change_select_list("", "name", "name", \

DM_GEN_APPEND)

retval = dm_gen_change_select_from \
("", "titles", "titles", DM_GEN_APPEND)

if (retval != 0)
return TM_FAILURE
32-8 Writing Transaction Event Functions

The Nature of TM Event Functions
}
return TM_PROCEED

Replacing Other SQL Statements

SQL INSERT, UPDATE, and DELETE statements are generated as part of the processing
of the transaction manager SAVE command, but only if data is modified or new data is
entered. In total, the transaction manager can generate up to six types of requests when
processing a SAVE command. They are generated in the following order:

! TM_PRE_SAVE—Indicates that save processing has started.

! TM_SAVE—The transaction models do nothing.

! TM_DELETE—Transaction models generate SQL DELETE statements for records
to be deleted; one per modified record.

! TM_UPDATE—Transaction models generate SQL UPDATE statements for records
to be updated; one per modified record. Note that changing the primary key is
implemented by deleting the record with the old value and inserting a record
with the new value.

! TM_INSERT—Transaction models generate SQL INSERT statements for records
to be updated; one per entered record.

! TM_POST_SAVE—Transaction models do commit and rollback processing here.
Rollback processing occurs if there was an error in the saving process. Commit
processing occurs only for full implementations of the SAVE command, not
partials.

TM_DELETE is generated before TM_UPDATE and TM_INSERT in order to prevent
duplicate record errors. This is also why TM_UPDATE is generated before TM_INSERT.
Also, a single cursor is used for all SAVE operations. This permits all SAVE operations
to be part of the same database transaction.

The transaction models further slice the TM_DELETE, TM_UPDATE, and TM_INSERT
requests. However, the slicing is performed only if slices are needed. For example,
when a row is inserted, no slices are generated for the TM_DELETE request. The three
slices for each of these requests are:

! TM_GET_SAVE_CURSOR—Generated only if this is the first TM_INSERT,
TM_UPDATE, or TM_DELETE event for the SAVE command. Allocate a cursor for
Application Development Guide 32-9

The Nature of TM Event Functions
use as the save cursor, and, if needed by the database, begin a database
transaction.

! TM_request_DECLARE—Generates the SQL statement and uses the generated
statement in the declaration of the cursor. The processing of this slice avoids
cursor re-declaration if the proper SQL statement is already declared.

! TM_request_EXEC—Executes the declared cursor.

Supplying custom INSERT, UPDATE, and DELETE statements should normally be done
in the TM_request_DECLARE events, since they occur only when a new cursor must
be declared (which can be a somewhat expensive operation, depending on the
database).

The following event function provides custom SQL INSERT, UPDATE, and DELETE
statements:

proc saveEvent(event)
if (event == TM_DELETE_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
DELETE FROM actors WHERE actor_id=::w_actor_id

return TM_CHECK
}
if (event == TM_UPDATE_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
UPDATE actors SET first_name=::s_first_name, \
last_name=::s_last_name \
WHERE actor_id=::w_actor_id

return TM_CHECK
}
if (event == TM_INSERT_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
INSERT INTO actors (actor_id, first_name, last_name)\
VALUES(::v_actor_id, ::v_first_name, ::v_last_name)\
WHERE actor_id=::w_actor_id

return TM_CHECK
}
return TM_PROCEED

The variable @tm_save_cursor contains the name of the cursor to be used to perform
the save operations. During the handling of these events, the transaction models
execute the cursor whose name is stored in @tm_save_cursor.
32-10 Writing Transaction Event Functions

The Nature of TM Event Functions
In the execution of the cursor, the bind variables (for example,::v_first_name) are
matched to actual data by assuming that the bind variable name is the column name
preceded by a prefix, as follows:

For information about how the bind variables are used in SQL generation, refer to
page 33-43, “Viewing the SQL Statements.”

Use Prefix Example

WHERE clause w_ w_actor_id

SET clause s_ s_actor_id

VALUES clause v_ v_actor_id
Application Development Guide 32-11

The Nature of TM Event Functions
32-12 Writing Transaction Event Functions

CHAPTER
33 Using Automated
SQL Generation

SQL commands are generated by the SQL generator during normal transaction
manager processing. The transaction models used by the transaction manager call the
SQL generator to create the appropriate SQL statements at runtime. This chapter
briefly discusses the transaction manager commands corresponding to the major SQL
statements.

In addition, this chapter discusses:

! How Panther uses database tables and columns to build SQL statements.

! How the SQL generator builds SQL statements using various screen and widget
property values.

! Each type of SQL data manipulation statement: SELECT, INSERT, UPDATE, and
DELETE, the syntax of the statement and what properties are used to define the
statement construction.

! How to implement optimistic database locking.

! How to view and modify the generated SQL.

! How the transaction manager can validate data entry with the appropriate SQL
generation.

For basic information about SQL and SQL construction, refer to Chapter 3,
“Introduction to SQL,” in the JDB SQL Reference.
Application Development Guide 33-1

Guidelines for Automated SQL Generation
For information about how Panther reads data from the database, refer to Chapter 29,
“Reading Information from the Database,” and for information about how Panther
writes data to a database, refer to Chapter 30, “Writing Information to the Database.”

Guidelines for Automated SQL
Generation

Panther uses information it gathers about your database to provide the SQL generator
with the information it needs to build the appropriate SQL statements. It gathers this
information via property specifications. These guidelines describe the types of
information that reside in specific widgets.

Specifying Tables

Table view widgets contain most of the database table information. The following
guidelines describe how Panther interprets database tables:

! The database table name used in the SQL statement is determined via the Table
property (table) setting (under Database) for the table view widget associated
with the database table.

! A table view corresponding to the database table must exist on the screen to
ensure that the database table is included in a SQL statement.

! If there is more than one table view on a screen, links defining the relationship
between table views must reside on the screen for automatic SQL generation to
occur.

! The table view must have its Updatable (updatable) property under Transaction
set to Yes in order to generate SQL INSERT, UPDATE and DELETE statements for
its corresponding database table.
33-2 Using Automated SQL Generation

Guidelines for Automated SQL Generation
! Since you can apply a transaction manager command to one or more table
views, all table views on a screen do not necessarily participate in each
command.

Specifying Columns

The widgets in each table view generally correspond to database columns. The
Database properties provide information to the SQL generator that it uses to construct
the appropriate SQL statements. The following guidelines apply to database columns:

! The widget's Column Name (column_name) property under Database should
correspond to the database column name. The column name is assigned
automatically as a result of the import process.

! A correlation name (generally tableName.columnName) is used in the SQL
statement unless database Expression subproperties are set to other values. A
correlation name is used in case the column is a member of two different
database tables.

! To update a column in a database table, a widget corresponding to that column
must belong to the table view associated with that database table. Refer to
“Manipulating Table View Members” on page 22-10 in Using the Editors for
details on how to define a widget's membership in a table view.

! In addition to belonging to a table view, in order to participate in SQL SELECT,
INSERT and UPDATE statements, the widget associated with the database column
must have its Database subproperties set appropriately: Use In Select
(use_in_select) under Fetch Data; Use In Insert (use_in_insert) under
New Data, and Use In Update (use_in_update) under Change Data,
respectively. By default, a widget that is the result of an import from the
database, has Yes settings for each of these properties.

Generating SQL in the Transaction Manager

When you use the transaction manager, the SQL statements are automatically
generated from the various property settings. To control or change the generated SQL,
you can change the properties associated the widgets representing the database tables
Application Development Guide 33-3

Guidelines for Automated SQL Generation
and their columns, or you can add event functions to handle certain transaction
manager requests. For more information on writing event functions, refer to
Chapter 32, “Writing Transaction Event Functions.”

The SQL generator uses Database properties to construct SELECT, INSERT, UPDATE,
and DELETE statements. The transaction manager, via table view's and widget's
Transaction property specifications, tells the SQL generator which of these statements
to generate. Table 33-1 outlines which transaction manager commands are needed to
generate the different types of SQL statements.

Many of these properties are automatically defined and set via the import process and
by the screen wizard when you use it to build screens for your application. In general,
Database, Transaction, and Service (JetNet and Oracle Tuxedo only) property
specifications are used by the transaction manager to effect SQL generation.

The Database properties listed in Table 33-2 are associated with table views and
provide the SQL generator with information it needs to generate the appropriate SQL
statement for a specific table view.

Table 33-1 SQL statements generated via the transaction manager

SQL statement Transaction manager command

DELETE Generated via SAVE command after rows are deleted or
cleared of data in update mode. Table view must be
updatable.

INSERT Generated via SAVE command after new rows are inserted
in update or new modes. Table view must be updatable.

SELECT Generated via VIEW and SELECT commands. In order to
update selected data, the SELECT command must be used.

UPDATE Generated via SAVE command after data are modified in
update mode. Table view must be updatable.
33-4 Using Automated SQL Generation

Guidelines for Automated SQL Generation
Table 33-3 lists service properties, used with the JetNet/Oracle Tuxedo middleware
adapter, that specify the service to carry out each of the corresponding transaction
manager commands. These Service properties are automatically set for Master table
view widgets on client screens and selection screens (if any) when you use the screen
wizard to generate screens.

Table 33-2 Table view Database properties for generated SQL

Property Description

Table (table) Name of the database table. Automatically provided
if the table view was copied from a repository entry
generated by the import process.

Primary Key
(primary_key)

Columns composing database table's primary key.
Generated automatically if it was avail able from the
database engine.

Sort Widget
(sort_widgets)

Sort order by which data are displayed (in ascending
or descending order).

Distinct (distinct) Include or omit duplicate rows from query results.

Table 33-3 Table view Service properties for SQL statements in JetNet

Property Description

Select Service Name of service that implements Select operation to
retrieve information stored in database table.

Insert Service Name of service that implements Insert operation to add
data to database table.

Update Service Name of service that implements Update operation to
change data stored in database table.

Delete Service Name of service that implements Delete operation to re
move rows from database table.
Application Development Guide 33-5

Guidelines for Automated SQL Generation
Sample Tables

To illustrate SQL generation, many of the examples in this chapter use the following
database tables which are part of a database called vacation. The database includes
three database tables: vacations, customers, and cust_trips.

CREATE TABLE vacations
(

destination CHAR (30) NOT NULL,
num_days INTEGER,
type_id CHAR (10),
travel_costs FLOAT,
hotel FLOAT,
meals FLOAT,
PRIMARY KEY (destination)

)

CREATE TABLE customers
(

cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (15),
PRIMARY KEY (cust_id)

)

CREATE TABLE cust_trips
(

cust_id INTEGER NOT NULL,
destination CHAR (30) NOT NULL,
paid_flag CHAR (1),
paid_date DATETIME,
PRIMARY KEY (cust_id, destination),
FOREIGN KEY (cust_id) REFERENCES customers (cust_id),
FOREIGN KEY (destination)

REFERENCES vacations (destination)
)

Note: The SQL examples might not match the SQL generated by Panther, because
the SQL might be for a specific database engine, or the sequence of items in
the statements might reflect the order in which widgets are added to a screen.
However, the order should not affect the results.

The examples describe which properties you need to set for each widget and table view
in order to produce the necessary SQL. Most of these properties can be set in the
Properties window.
33-6 Using Automated SQL Generation

Generating SELECT Statements
Generating SELECT Statements

The SQL generator generates one SELECT statement per server view. A server view
consists of a table view and all other table views linked to that table view with a server
link. Therefore, a master-detail situation, which requires a sequential link, generates at
least two SELECT statements, one for the master (parent) table view, and one for the
detail (child) table view.

The SELECT statement retrieves data from a database and returns it to the user in the
form of query results. The following is an example of the syntax of the SQL SELECT
statements that can be generated by the SQL generator:

SELECT [distinct-keyword] select-list
FROM table-list
[WHERE where-condition]
[GROUP BY group-by-list]
[HAVING having-condition]
[ORDER BY order-by-list]

Setting widget properties determines how each element of the SQL statement is, in
fact, generated.

Table 33-4 lists the major elements of a SQL SELECT statement, and briefly describes
what properties trigger generation of those elements. Table 33-5 lists additional SQL
elements that can be generated via property specifications, event functions, or with
calls to specific functions. More detailed information about SQL SELECT elements is
presented in the sections following the tables.

Table 33-4 SELECT statement SQL element properties

SQL element Property settings

distinct-keyword For the table view, Distinct (distinct) property is set to Yes.

select-list For each widget in the server view whose Use In Select
(use_in_select) property is set to Yes. The value in the
Column Name (column_name) property is used unless a select
Expression (select_expression) is defined.
Application Development Guide 33-7

Generating SELECT Statements
tableName For the table view, value set in Table (table) property.

WHERE clause In applicable widgets, those having Use In Where
(use_in_where) set to Yes and the Operator
(where_operator) property is one of the following:

=, <>, <, <=, >, >=, in, like, like%, %like%, not in, not like, not
like%, not %like%

Joins: For link widgets, type is set to PV_LNK_SERVER. The
Relations (relations) property must contain the column names
to be joined and must list join as the relation type.

GROUP BY clause For aggregate functions, this clause is automatically generated.
Otherwise, for applicable widgets, the column name is
specified in the Group By (group_by) property.

HAVING clause For applicable widgets, the Having (having) property specifies
the search condition.

ORDER BY clause For the table view, the Sort Widgets (sort_widgets) property
specifies the widgets' name associated with the data base
columns, followed by ASC or DESC.

Table 33-5 Additional SQL elements in SELECT statements

SQL element Property settings

Aggregate functions For applicable widgets, the aggregate function is
specified in the select Expression (select_expression)
property when Use In Where (use_in_where) is set to
Yes.

BETWEEN predicate Use an event function to call the function
dm_gen_change_select_where.

Table 33-4 SELECT statement SQL element properties (Continued)

SQL element Property settings
33-8 Using Automated SQL Generation

Generating SELECT Statements
COUNT(*) function For the table view, Count Select (count_select) is set to
Yes. This replaces the select clause and returns a row
count before actually fetching records.

EXISTS clause Use an event function to call the function
dm_gen_change_select_where.

IN clause For the applicable array, set Use In Where
(use_in_where) to Yes and specify in (PV_WHERE_IN)
for the Operator (where_operator) property. At run
time, the widget should have a value before executing the
SELECT statement.

LIKE predicate For applicable widgets, Use In Where (use_in_where) is
set to Yes and one of the like operators is specified in the
Operator property (refer to the available values for the
where_operator property). At runtime, the widget
should have a value before executing the SELECT
statement.

Null values For applicable widgets, Use If Null
(where_use_if_null) and Null Field (null_field)
properties are set to Yes. Supply a value to Null Text
(null_text).

Operators Can only be set for WHERE clauses in SELECT statements.
For applicable widgets, Use In Where (use_in_where) is
set to Yes, and an Operator (where_operator) is
specified.

Stored procedures Use an event function.

Subqueries Use an event function to call the function
dm_gen_change_select_where.

Table 33-5 Additional SQL elements in SELECT statements (Continued)

SQL element Property settings
Application Development Guide 33-9

Generating SELECT Statements
If a desired SQL statement cannot be generated automatically, you can write a
transaction event function either to supply the custom SQL or to call the SQL
modification functions. For more information on writing transaction event functions,
refer to Chapter 32, “Writing Transaction Event Functions.”

Fetching Data from the Database

The select-list is a list of columns, expressions or aggregate functions whose values
you want to fetch from the database. The select-list is derived from all of the widgets
in the server view whose Use In Select property is set to Yes. Each of these widgets
contributes one item to the select-list—either the value of the widget's select
Expression property, if set, or the widget's Column Name.

Defining a Widget’s Participation in SELECT Statements

To have the widget be a part of the select-list in a SELECT statement, set the
widget's Use In Select (use_in_select) property, under Fetch Data, accordingly:

! Yes (default for database-derived widgets)—The database column associated
with the selected widget (as specified in the Column Name property) is
included in the select list of an SQL SELECT statement. The value in the
Column Name (column_name) property is used unless a select Expression is
defined (select_expression).

If the widget's Column Name is used, it appears in the SQL statement in the
following format: tableviewName.columnName

Additional SELECT-specific subproperties are available.

! No—The database column is excluded from the select list of the SELECT
statement.

Implementing a SELECT expression

A subproperty under the Use In Select property when Use In Select is set to Yes.
Include an expression in the select list instead of the column name. The expression
calculates the value to be included in the query results. The expression can be specific
to a particular database engine. If you do not include an expression, the column name
associated with the selected widget is used as a select item. A select expression can be,
33-10 Using Automated SQL Generation

Generating SELECT Statements
for example, an aggregate function. If you include an aggregate function, the SQL
generator automatically builds a GROUP BY clause based on the column associated
with the selected widget.

Controlling How Data Is Selected

In this example, you want the total cost of each vacation. The desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations

Figure 33-1 includes five widgets, all of which are members of a table view associated
with the vacations table. Widget #5, named total_cost, is a derived column (that is,
it is not represented in the database, but derives its data from other database columns).
Widget #5 has the following property settings:

! Use In Select is set to Yes. Because a select Expression property is defined for
this widget, the expression is included in the select-list of the SELECT statement.

! Use In Insert and Use in Update properties are set to No which prevents this
derived column from being included in INSERT and UPDATE statements.
Application Development Guide 33-11

Generating SELECT Statements
Figure 33-1 The widgets all belong to the tview1 table view, therefore, even
Widget #5, which does not have a corresponding column in the vacations
database table, can be included in SQL generation.

Validating Data

There are two properties you can set which will effect what happens when data are
written to a widget as the result of a SELECT statement:

! Set Valid property—Sets the widget's content as valid so that validation is not
rerun for the widget's data,

! Force Valid property—Invokes the validation function.
33-12 Using Automated SQL Generation

Generating SELECT Statements
Setting the Widget’s Contents as Valid

The Set Valid (select_set_valid) property is a subproperty under the Use In Select
property when Use In Select is set to Yes. If the Set Valid property is set to Yes, when
the SELECT statement fetches data to the widget, Panther sets the widget's runtime
valided property. This can ensure that the content of the widget is not revalidated upon
screen exit.

The valided property, when set to PV_YES, indicates to Panther that the widget has
passed its validation tests. This occurs when the data is written to the widget, not when
it finishes writing the row.

If you use the Set Valid property in conjunction with the Force Valid property, it is
executed before Force Valid.

Forcing Validation of the Widget's Contents

Set the widget Force Valid (select_force_valid) property to Yes, a subproperty
under the Use In Select property if Use In Select is set to Yes. This specification tells
Panther to call the field validation function sm_fval after data is written to the widget.
If validation displays messages, the errors are ignored and the SELECT statement is
allowed to continue. If this property is used in conjunction with the Set Valid property,
Set Valid is executed first.

Consider a client screen that fetches phone numbers from the database. You want to
display those numbers in a particular format (with parentheses and hyphens, for
example). By default, validation on this widget is only invoked when a user exits the
field or when the screen closes. So, the format (or Keystroke Filter property
specification) won't be applied to the widget's content until the user enters or exits the
widget. By writing a JPL procedure that imposes a format (and specifying the
procedure in the widget's Validation Function property) and setting the Force Valid
property to Yes, you force the validation function, and in this case, the format, to be
applied to the data when it is written to the widget.

Eliminating Duplicate Rows in a Result Set

When the select-list of a SELECT statement includes the primary key of a table, every
row of the result set is unique (because the primary key has a different value for each
row). However, if the primary key is not included in the result set, duplicate values can
be returned.
Application Development Guide 33-13

Generating SELECT Statements
How to Implement the DISTINCT or UNIQUE Keyword

Set the table view's Distinct (distinct) property, under Database, to Yes. Panther
supplies the correct keyword for your database, DISTINCT or UNIQUE, and applies it to
the server view, thereby eliminating duplicate values from the query results.

Determining What Tables to Select From

The table-list is a comma-separated list of all table views in the server view. The list
comprises the all Table (table) property specifications. For each table, a correlation
name, or alias, pairs the database table with its associated table view name.

For many databases, when a database table is imported to the repository by a user who
is not the owner of the table, two table view properties, Name (under Identity) and
Table (under Database), also list the owner name. In this case, the owner name appears
in the table list in the format: owner.tableName

Defining the Where Condition

The where-condition is derived from the widgets whose Use In Where property is set
to Yes. A where-condition compares data in the widget with data in the database
column—specifying the rows that you want to retrieve. The Use In Where property
defines how the database column associated with a selected widget is treated when the
SQL SELECT statement is constructed and whether it is included in the statement's
WHERE clause.

In addition, when a widget's select Expression (select_expression) property
contains an expression and its Column Name property is blank, then the SQL generator
uses the expression in the where-condition. This enables the where-condition to
contain comparisons involving computed columns.

How to Define a Widget's Participation in the WHERE Clause

To have a widget participate in the WHERE clause of a SELECT statement:

1. Set the widget's Use In Where (use_in_where) property (under Fetch Data)
accordingly:
33-14 Using Automated SQL Generation

Generating SELECT Statements
" Yes—The data in the widget is compared to the data in its associated
database column. If more than one widget on the screen has this setting, the
AND keyword is used to join the conditions to build the WHERE clause.
Related subproperties are displayed.

" No (default)—The widget's data is not included in the WHERE clause of the
SELECT statement.

2. Set the Operator (where_operator) subproperty to the desired operator to use
in the WHERE condition. The default operator is = (equal to). The supported
operators are:

" For comparison tests, = (equal to), > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to), or <> (not equal).
Comparison tests compute and compare values of two SQL expressions for
each row of data.

" For set membership tests, not or not in. The WHERE clause tests for a data
value that matches the target value.

" For pattern matching, like, like%,%like%, not like, not like%, or
not%like%. The percent sign (%) wildcard character matches any sequence
of zero or more characters. Use the “not like” operators to locate strings
that do not match a pattern.

Note: Pattern matching can only be performed if the widget's C Type property
specification is character string (PV_CHAR_STRING).

3. Set the Use If Null (where_use_if_null) subproperty to desired setting to
define how null values should be treated:

" Yes—If the widget has a null value, it is included in the WHERE condition.
In which case, blank data are treated as a null database value. You can
change the widget's representation of null data by changing the widget's
Null Field (null_field) property under Format/Display.

" No—(default) If the widget has blank or null (where null is defined by the
widget's null edit) data, the widget does not contribute to the WHERE
condition.

 he column name is derived from the widget's Column Name (column_name) property.
The comparison operator is the value specified in the Operator (where_operator)
property when Use In Where is set to Yes.
Application Development Guide 33-15

Generating SELECT Statements
If the widget is an array, the value used for the operator must be entered in the first
occurrence of the array, except for the in operator. The in operator uses the data in all
of the array occurrences to construct the IN clause.

Fetching an Exact Match

For example, to get the total cost for a particular destination, the desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination = destination

Using Figure 33-1 on page 33-12, Widget #1 (associated with the column destination)
has its Use In Where property set to Yes and the Operator set to =. This allows a user
of the application to enter a desired destination, execute a SELECT or VIEW command,
and as a result fetch only those rows from the vacations table where the destination
column data matches (or equals) the value entered in Widget #1, destination.

Fetching Records Matching a Partial String

If you specify the Operator property to be like%, you can use the pattern matching
capability of the database to search for the desired destination. Changing the example
for using the = operator to like results in:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination LIKE destination%

This allows the user to enter a partial string in Widget #1, for example Lon. When the
SELECT or VIEW command is executed, all destinations beginning with those letters are
fetched from the database.

Fetching Records Matching One of a List of Values

If you specify in for the where Operator, and change the single line text destination
widget to an array greater than one, a series of destinations can be entered for database
searches. Your query tests whether the database values match one of the listed values
in the WHERE clause.

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
33-16 Using Automated SQL Generation

Generating SELECT Statements
FROM vacations
WHERE destination IN (destination, destination, ...)

The user can enter a destination in each occurrence before executing the SELECT or
VIEW command, and the fetched data will be for all specified destinations.

Fetching Null Values

Normally, widgets whose Null Field property is set Yes and whose data are blank or
null do not contribute to the where-condition. To force widgets containing null data to
contribute, set the Use If Null (where_use_if_null) property to Yes. Blank, or
empty data are treated as null database values and a WHERE clause is generated.

The text of the WHERE clause depends on the setting for the Operator property. To test
for a null value, the operator should be set to = (equal to), then the query checks for
NULL values and builds that WHERE clause as: WHERE column IS NULL. To query for
those rows that do no contain null values, set the operator to <> (not equal to), the SQL
generator builds the WHERE clause as: WHERE column IS NOT NULL.

Selecting Null Data

List those rows where a hotel cost has not be determined. The desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE hotel IS NULL

To ensure that all rows are returned in the result set, including those where hotel costs
are not specified, the widget corresponding to the database column hotel should have
its Use In Where property set to Yes, the Operator property set to =, and the Use If Null
property set to Yes.

Grouping SELECT Statement Results

The SQL generator automatically builds a GROUP BY clause if any widget's select
Expression (select_expression) property uses one of the aggregate functions: AVG,
COUNT, SUM, MIN, MAX (no other aggregate functions are automatically detected). When
an aggregate function is detected, the group-by-list automatically includes the column
name of every widget in the server view whose Use In Select (use_in_select)
property is set to Yes and select Expression does not implement an aggregate function.
Application Development Guide 33-17

Generating SELECT Statements
Warning: If any one widget contains an automatically detected aggregate function,
and a second widget on the screen contains an undetected aggregate
function, then Panther adds the second widget's column name to the
group-by-list. To prevent this from happening, clear that widget's Column
Name property.

Grouping Results Automatically

Get the average travel, hotel and meal costs, grouped by type of trip. The desired SQL
is:

SELECT type_id, AVG(travel_costs), AVG(hotel), AVG(meals)
FROM vacations
GROUP BY type_id

Figure 33-2 includes four widgets, all are members of a table view associated with the
table vacations. The table view's Updatable (updatable) property is set to No to prevent
update and insert attempts to that database table. Widgets 2, 3, and 4 all implement an
aggregate function (AVG), therefore, they are included in the select_list and the
remaining column is automatically included in the GROUP BY clause.
33-18 Using Automated SQL Generation

Generating SELECT Statements
Figure 33-2 The SELECT statement groups the results by type_id, since the other
three widgets specify a select Expression that use the AVG aggregate function.

Specifying a GROUP BY Clause

When the SQL generator cannot detect the presence of an aggregate function in one of
the widgets' select Expression property, you must set a widget's Group By (group_by)
property, under Fetch Data. Enter the names of the columns whose values are to be
used to group the data.

For example, get the standard deviation of the total cost, grouped by type of trip. The
desired SQL is:

SELECT type_id, STDDEV(travel_costs+hotels+meals)

FROM vacations

GROUP BY type_id
Application Development Guide 33-19

Generating SELECT Statements
Consider an application screen that contains two widgets, both are members of a table
view associated with the vacations database table. The table view's Updatable
(updatable) property is set to No to prevent updates and inserts to the database table.
One widget on the screen, named standard, simply displays the standard deviation of
the total cost of a trip. It does this by having a select Expression setting of
STDDEV(travel_costs+hotel+meals). The widget associated with the type_id
column has its Use In Select property set to Yes, and must also have its Group By
(group_by) property explicitly set to type_id, because widget standard contains an
aggregate function that is not automatically detected by the SQL generator.

Grouping Multiple Columns

To group query results based on the contents of two or more columns, specify multiple
column names in the Group By property. You can also designate columns not included
in the SELECT statement's select-list.

For example, get the average total cost of each destination, grouped by their travel
costs and their type. The desired SQL is:

SELECT travel_costs, AVG(travel_costs+hotel+meals)

FROM vacations

GROUP BY travel_costs, type_id

Consider an application screen that contains two widgets: travel_costs and
travel_total; both are members of the table view associated with the vacations
database table. The travel_costs widget has its Use In Select property set to Yes; it
will be included in the group-by-list of the SELECT statement. The travel_total
widget also has its Use In Select property set to Yes and a select Expression defined as
AVG (travel_costs+hotel+meals). Even though Panther detects the presence of an
aggregate function (AVG), the Group By property on this widget needs to be set to
type_id, because none of the widgets in the table view correspond to the type_id
column. The column associated with the travel_total widget will not be included
in the group-by-list, but its group-by specification is.

Applying Search Conditions to the Result Set

The having-condition of the SELECT statement applies an additional search condition
once the result rows have been determined. Generally, the HAVING clause appears in
conjunction with a GROUP BY clause.
33-20 Using Automated SQL Generation

Generating SELECT Statements
The having-condition is derived from the widgets in the server view whose Having
(having) property is set. If more than one widget in the server view has this setting, the
AND keyword is used to join these conditions.

Specifying an Aggregate Function in the HAVING Condition

Get the average vacation cost, grouped by type and only report those types whose
average cost is below 1000. The desired SQL is:

SELECT type_id, AVG(travel_costs+hotel+meals)
FROM vacations
GROUP BY num_days
HAVING AVG(travel_costs+hotel+meals) < 1000

The widget that will display the total results has its Having property, under Fetch Data,
set to AVG(travel_costs+hotel+meals) < 1000.

Sorting the Results from a SELECT Statement

The order-by-list sorts the result rows according to the values in specified columns.
The order-by-list is built from the table view's Sort Widgets (sort_widgets)
property.

Specifying a Sort Order for a Specific Table View

Under Database, in the Sort Widgets property, enter a list of widget names and an
optional order specifier (case-insensitive), one per line. The order specifier should be
separated from the widget name by a space. Valid order specifiers are:

DESC—Descending order
ASC—Ascending order

When the SQL is generated, Panther specifies the sorting order in a manner acceptable
to the database engine. If no order specifier is entered, the results display in ascending
order. The SQL generator uses the widget name to determine the associated column or
select expression to be sorted.
Application Development Guide 33-21

Generating SELECT Statements
Example: Sorting Results

Get the total cost of each vacation and order the costs in ascending order. The desired
SQL is:

SELECT destination, travel_costs, hotel, meals, total_cost
FROM vacations
ORDER BY total_cost ASC

The screen illustrated in Figure 33-3 includes widgets in a grid that represent four
database columns: destination, travel_costs, hotel, and meals. The screen also
includes a widget (total_cost) that derives its data from its select Expression
(travel_costs+hotel+meals). All five widgets have their Use In Select property set
to Yes and are members of the vacations table view which has its Sort Widgets
property set to total_cost desc. The result set lists all vacations, by cost, in
ascending order—the least expensive listed first.

Figure 33-3 Results to the query can display the total_cost in descending order.

Selecting Data from Multiple Database Tables

In general, joins are built by comparing pairs of columns from two joined tables by
testing the data from both columns for equality or other comparisons. Sometimes these
joins have a one-to-one relationship while others have a one-to-many relationship.
Most common multi-table queries use parent/child relationships created by primary
keys and foreign keys. Via the link widget's properties, Panther lets you define the join
33-22 Using Automated SQL Generation

Generating SELECT Statements
relationship and the join type between table views. The Relations property specifies the
columns or widgets that connect two table views and the Join Type property (for server
links) lets you define the type of join: inner, right or left outer, or full outer.

The number of SELECT statements issued by the SQL generator depends on the type of
link specified in the link widget properties. For instance, table views that are joined by
server links cause Panther to issue a single statement with a join in the WHERE clause
of the SELECT statement. For table views that are connected by sequential links,
Panther issues multiple statements using values fetched in the parent table view to
create the where-condition in the child table view.

The database column or columns needed to construct a SQL join for the two table
views are defined by three link widget properties: Type, Join Type (a subproperty of
the Type property, and Relations property.

How to Specify the Join Relationship

1. Under Transaction, specify the link widget's Type property as one of the
following:

" Sequential—To join tables that have a one-to-many relationship.

" Server—To join tables that have a one-to-one relationship, or to display
multiple records using a single condition.

The Join Type property is displayed where you can specify inner or outer
join types (refer to “Specifying the Join Type” on page 33-28 for details on
specifying join types).

2. Select the Relations property to define the join relationship. In the Relations
dialog box, specify the Parent (rel_parent) and Child (rel_child) column
names (column names are case-sensitive). The column specifications are used to
build the SQL join condition in the WHERE clause.

Choose Help to display and select from a list of columns associated with parent
and/or child database tables.

For sequential links, if the column specified in the Parent list of the Relations
property is represented by more than one widget in the table view or on the
screen, the widget's name is used instead of the column name; using the
following format (including the square brackets and the literal +0):

::widgetName[+0]
Application Development Guide 33-23

Generating SELECT Statements
This ensures that the value returned to the named widget (belonging to the
parent table view) is used in the SQL statement for the child table view.

Figure 33-4 The Relations dialog box lists the parent and child relationships for
the selected link.

3. Define the type of relationship—join—in the Rel (rel_op) list of the Relations
dialog box. The only relationship that can be specified for joins is the word join.

The WHERE clause of the statement will include for each join relation specified, one
expression of the form:

! For sequential links: widgetData_in_parentTableview =
childTable.childColumn

! For server links: parentTable.parentColumn = childTable.childColumn

If there are multiple joined columns, then the expressions are connected by the
keyword AND. If more than one table view in the server view represents the same
database table, the SQL generator automatically supplies table alias names as needed.
Therefore, self-join expressions are automatically handled.
33-24 Using Automated SQL Generation

Generating SELECT Statements
Specifying Joins in the Where Condition

For equi-joins, joins where the operator is = (which includes self-joins), the link
between the joined table views specifies Server as the type of link and Inner has the
join type. The Relations property contains the names of the columns included in the
WHERE clause. Specify the relationship between the parent and child columns as join.
For each join relation specified, the where condition includes one expression of the
formparentTable.parentColumn = childTable.childColumn

Implementing an Equi-join: one-to-one relationship

Join each customer's name and trip destination. The desired SQL is:

SELECT customers.cust_id, first_name, last_name, destination
FROM customers, cust_trips
WHERE customers.cust_id = cust_trips.cust_id

In Figure 33-5, the screen contains three widgets, all of which are members of the
tview1 table view which is associated with the customers database table: cust_id,
first_name, and last_name. A fourth widget, destination, belongs to the tview2
table view which is associated with the cust_trips database table.

The link (tview1+tview2) between the two table views has a Type property setting of
Server. The Relations property sets cust_id in the parent table view is to be joined
with cust_id in the child table view. The result of these specifications causes a single
SELECT statement to be generated which populates both the parent and child table
views. Therefore, for every customer ID, a destination is displayed.
Application Development Guide 33-25

Generating SELECT Statements
Figure 33-5 A server link defines a one-to-one relationship between two table
views.

Generating Multiple SELECT Statements: One-to-many
Relationship

List each customer's trip destinations. The desired SQL is:

SELECT cust_id, first_name, last_name, phone FROM customers

SELECT destination FROM cust_trips

WHERE cust_trip.cust_id = value in customers.cust_id
33-26 Using Automated SQL Generation

Generating SELECT Statements
When the link's Type property is specified as Sequential, Panther generates one SQL
SELECT statement for the parent table view, and one for the child. Sequential links
must be specified for master-detail screens where there are several detail rows
associated with one master row. For sequential links, the SQL for the child's
where-condition contains an expression similar
to:widgetData-in-parentTableview = childTable.childColumn

The link's Relations property must specify both a column in the child table view, and
a widget or column in the parent table view.

In Figure 33-6, the screen contains three widgets, all of which are members of the
tview1 table view which is associated with the customers database table: cust_id,
first_name, and last_name. A fourth widget, destination, is grid widget that
displays more than one occurrence, and belongs to the tview2 table view which is
associated with the cust_trips database table.

The link (tview1+tview2) between the two table views has a Type property setting of
Sequential. The Relations property sets cust_id in the parent table view is to be
joined with cust_id in the child table view. The result of these specifications causes
a single SELECT statement to be generated for the parent table view which populates
the parent table view, and given that result, uses the value returned to generate the next
SELECT statement to populate the child table view. Therefore, for every customer ID,
all destinations associated with that customer ID are displayed.
Application Development Guide 33-27

Generating SELECT Statements
Figure 33-6 A sequential link defines a one-to-many relationship between two
table views.

Specifying the Join Type

A join operation combines information from two database tables by forming pairs of
related rows. Since the matching columns in each table must be specified in the
where-condition, you can only specify a join type (that is, a Join Type property value)
if the link widget is defined as a Server type.

The link's Join Type (join_type) property lets you define: inner, left outer, right
outer, and full outer joins. Each type returns some or all rows that meet the
where-condition of the SELECT statement. These results can be particularly useful for
calculations and aggregate functions.
33-28 Using Automated SQL Generation

Generating SELECT Statements
Notes: Support of outer joins is dependent, and varies, on each database engine. In
addition, some databases define outer joins in the FROM clause and some in the
WHERE clause. If the database engine does not support the specified join type,
Panther's database driver returns an error.

To illustrate the differences between the join types, consider two database tables, T1
and T2; each have two columns (Name and State):

A SELECT statement that joins the two tables where T1.State=T2.State would
produce different results depending on the join type.

Implementing an inner join

An inner join (default) compares two tables and fetches all possible pairs, but excludes
those rows that do not meet the matching column condition for the join. For example,
in Figure 33-5 on page 33-26, the results will include only those customers who have
actually specified a destination; that is, the results do not include those customers
where a corresponding cust_trip record does not exist.

In the example of joining tables T1 and T2, the results would be:

Table T1: Name State Table T2: Name State

Alice NY Joe MA

Joan ME Fred NY

Paula MA Paul CT

Lynn NY Mike NH

Alice NY Fred NY

Paula MA Joe MA

Lynn NY Fred NY
Application Development Guide 33-29

Generating SELECT Statements
Implementing a full outer join

A full outer join treats both database tables in the where-condition equally. While an
inner join would result in only those rows that have a match, an outer join includes
rows from both tables even if when there is no (NULL) match.

Given tables T1 and T2 where the SELECT statement specifies a full outer join, the
results include all rows from both tables and substitutes NULL values for those rows
that do not have a match:

Implementing a left outer join

A left outer join specification makes the left database table (the table referenced on the
left of the equal sign in the where-condition) dominant. It compares the two tables,
fetches all possible pairs and also those rows from the left table having no matching
value in the right database table (NULL values are used). If the link's Join Type is set to
Left Outer, the screen illustrated in Figure 33-5 on page 33-26 will display all customer
records, even those that have not named a destination. In other words, there is no
matching customer ID in the cust_trips database table, and therefore the destination
field will be blank for some customers.

In the example of joining tables T1 and T2 where the SELECT statement specifies a left
outer join, the results include all rows from the T1 table that have a match in T2 as well
as those rows that do not—substituting NULL values for those rows that do not have a
match in table T2:

Alice NY Fred NY

Joan ME NULL NULL

Paula MA Joe MA

NULL NULL Paul CT

Lynn NY Fred NY

NULL NULL Mike NH

Alice NY Fred NY

Joan ME NULL NULL
33-30 Using Automated SQL Generation

Generating SELECT Statements
Implementing a right outer join

A right outer join specification makes the right database table (the one on the right of
the equal sign in the where-condition) dominant by fetching all possible pairs and
including unmatched rows from the rightmost database table using NULL values if no
match is found in the left table.

In the example of joining tables T1 and T2 where the SELECT statement specifies a
right outer join, the results include all rows from the T2 table that have a match in T1
as well as those rows that do not—substituting NULL values for those rows that do not
have a match in table T1:

Modifying SELECT Statements

Automatically generated SQL statements might require additional modifications that
cannot be set with widget, table view, or link properties. You can write a transaction
event function to provide the desired SQL.

For SQL SELECT statements, you can also use the C functions Panther provides, listed
in Table 33-6.

Paula MA Joe MA

Lynn NY Fred NY

Alice NY Fred NY

Paula MA Joe MA

NULL NULL Paul CT

Lynn NY Fred NY

NULL NULL Mike NH
Application Development Guide 33-31

Generating INSERT Statements
For more information on each function, refer to the Programming Guide. For more
information on writing transaction event functions, refer to Chapter 32, “Writing
Transaction Event Functions.”

Generating INSERT Statements

An INSERT statement enters a new row into a database table. The SQL generator
executes an INSERT statement for a single table, and only for table views that are
updatable (updatable property is set to Yes).

If a screen contains more than one table view, the link's Insert Order (insert_order)
property determines whether the statement for the parent table view or the child table
view is generated first.

Table 33-6 C functions that modify generated SELECT statements

Function Description

dm_gen_change_execute_using Add or replace a bind value in DBMS EXECUTE statement.

dm_gen_change_select_from Edit FROM clause in SELECT statement.

dm_gen_change_select_group_by Edit GROUP BY clause in SELECT statement.

dm_gen_change_select_having Edit HAVING clause in SELECT statement.

dm_gen_change_select_list Edit select list in SELECT statement.

dm_gen_change_select_order_by Edit ORDER BY clause in SELECT statement.

dm_gen_change_select_suffix Append text to the end of SELECT statement.

dm_gen_change_select_where Edit WHERE clause in SELECT statement.
33-32 Using Automated SQL Generation

Generating INSERT Statements
The INSERT statement can be generated; the SQL elements are specified in various
widget and table view properties. If a certain SQL element is not supported, you can
write a statement to utilize that element as part of a transaction event function.

INSERT INTO tableName [(column-list)] VALUES (value-list)

Inserting Data to Specific Columns

The column-list determines which database columns will have data entered into the
database. To be included in the column-list, the widget's Use In Insert property must
be set to Yes and its database column listed in the Column Name property (it cannot
be blank).

Defining a Widget's Participation in an INSERT Statement

Set the widget's Use In Insert (use_in_where) property (under New Data):

! Yes (default)—The widget is included in the INSERT statement and, therefore,
its datum is added to the database table with which it is associated. An
Expression subproperty is displayed.

If the selected widget is in a non-updatable table view, the Use in Insert
specification is ignored.

Table 33-7 INSERT statement SQL element properties

SQL Element Property Settings

tableName For the table view, value of the Table (table) property.

column-list For each widget in the table view whose Use In Insert property
is set to Yes, the value in the Column Name (column_name)
property.

value-list Contains a value for each column in the column list taken from
the current widget data. If an insert Expression property
specification is provided, it is used in place of the data in the
widget. If the data in a widget is null, then Panther supplies an
appropriate representation of null for the database.

Subqueries Use transaction event function.
Application Development Guide 33-33

Generating INSERT Statements
! No—The widget is not included in the INSERT statement. Its datum is not add
to the database.

Inserting Specific Values

If a column is included in the column-list, a value is entered for that column in the
value-list. The value is taken from the current widget data unless an insert Expression
property is defined.

Expression (insert_expression) Property

A subproperty under the Use in Insert property when Use In Insert is set to Yes. You
can define an expression that is included in the value list of an INSERT statement. If
you do not include an expression, the widget's data is used in the value list of the
generated SQL statement.

An insert expression can be used, for example, to insert the current time, as determined
by the database server. The expression can be any SQL expression that is valid for the
database engine and for the database column into which data is being inserted.

Inserting Data Using an INSERT Expression

Figure 33-7 illustrates how data values can be inserted into the customers and
cust_trips tables. To provide an example of an insert expression, the paid_flag
widget's data will always be entered as Y. The desired SQL is:

INSERT INTO customers (cust_id, first_name, last_name, phone)
VALUES (cust_id, first_name, last_name, phone)

INSERT INTO cust_trips

(cust_id, destination, paid_flag, date_paid)
VALUES (cust_id, destination, 'Y', date_paid)

The screen in Figure 33-7 includes four widgets in the master section all belonging to
the table view associated with the customers table: cust_id, first_name,
last_name, and phone. Since data is to be inserted into the database table, the table
view (tview1) must have its Updatable property set to Yes, and the widgets
corresponding to the table's primary keys (cust_id) must be on screen.
33-34 Using Automated SQL Generation

Generating INSERT Statements
The detail section of the screen includes three widgets who are members of a table
view (tview2) associated with the cust_trips table. Since data is to be inserted into
the database table, the table view must be updatable and the widgets corresponding to
the primary keys (cust_id and destination) must be on screen. All widget's in the
detail section have their Use In Insert property set to Yes. The data entered at runtime
will be inserted into the database. However, the paid_flag widget Expression
property specifies that its value is “Y.”

Figure 33-7 Property settings used to insert data into the database
Application Development Guide 33-35

Generating UPDATE Statements
Generating UPDATE Statements

An UPDATE statement updates column values in a database table. The standard models
in the transaction manager generate UPDATE statements for each updatable table view
if widget data in that table view has been changed.

If a screen contains more than one table view, the link's Update Order property
determines whether the statement for the parent table view or the child table view is
generated first.

The UPDATE statement can be automatically generated; the SQL elements are specified
via various widget and table view properties. If a certain SQL element is not supported,
you can write a statement to utilize that element as part of a transaction event function.

UPDATE tableName SET columnName = value [, ...]
WHERE primary-key = before-image-data

The UPDATE statement modifies existing data in the database; a SET clause specifies
the column or columns to update and an expression. The columns listed in the SET
clause of the statement are derived from all of the widgets in the table view whose Use
In Update property, under Change Data, is set to Yes. The SQL generator uses the
named table view's primary key to build the WHERE clause.

Table 33-8 UPDATE statement SQL element properties

SQL Element Property Settings

tableName For the table view, value of the Table (table) property.

columnName For each widget in the table view, the value in the Column
Name (column_name) property. Use In Update property
must be set to Yes.

value Current widget data. If an update Expression is provided,
then it is used in place of the data in the widget. If the data in
a widget is null, Panther supplies an appropriate
representation of null for the database.
33-36 Using Automated SQL Generation

Generating UPDATE Statements
Identifying Columns to Update

The SET clause of an UPDATE statement specifies the column or columns to update.

Defining a Widget's Participation in an UPDATE Statement

Set the widget's Use In Update (use_in_update) property:

! Yes (default for database-derived widgets)—The column associated with the
selected widget is included in the SET clause of an UPDATE statement. If the
selected widget is in a non-updatable table view, the Use in Update
specification is ignored.

! No—The column associated with the selected widget is not included in the
UPDATE statement and, therefore, the column's datum is not changed in the
database.

The columnName in the SQL statement is derived from the widget's Column Name.
The new-value is the value currently in the widget, unless an update Expression
property is set. If the Expression is set, it overrides the value in the widget.

Expression (update_expression)

A subproperty under the Use In Update property when Use In Update is set to Yes.
Define an expression that is used in the SET clause of the UPDATE statement. An update
expression can be any SQL expression that is valid for the database engine and for the
database column being updated.

WHERE clause Columns specified in the table view's Primary Key property.

before-image-da
ta

Data in the widgets which correspond to the primary key of
the table before changes were made. This might not be the
values currently stored in the widget.

Table 33-8 UPDATE statement SQL element properties

SQL Element Property Settings
Application Development Guide 33-37

Generating DELETE Statements
Specifying the Record to Update

The primary-key is derived from the table view's Primary Key (primary_key)
property. The primary key (or combination) listed in the property is included in the
WHERE clause of the UPDATE statement.

For example, to update the phone number for a given customer, the desired SQL is:

UPDATE customers SET phone = new_phone,
WHERE cust_id = cust_id

When updating records, the screen must contain the widgets that represent each
member of the primary key specification. In this example, the screen needs a minimum
of two data widgets: one for the customer ID (cust_id), the primary key, and one for
the customer's phone number. It also needs the table view widget associated with the
customers database table.

Generating DELETE Statements

A DELETE statement removes rows from a database table. The SQL generator executes
a DELETE statement only for updatable table views.

If a screen contains more than one table view, the link's Delete Order property
determines whether the statement for the parent or child table view is generated first.

The DELETE statement can be automatically generated; the SQL elements are specified
via various widget and table view properties. If a certain SQL element is not supported,
you can write a statement to utilize that element as part of a transaction event function.

DELETE FROM tableName WHERE primary-key = before-image-data

Table 33-9 DELETE statement SQL element properties

SQL element Property settings

tableName For the table view, value of the Table (table) property.
33-38 Using Automated SQL Generation

Implementing Optimistic Locking
Refer to the element details for generating UPDATE statements.

Implementing Optimistic Locking

Applications, which access a multi-user database, use locking to solve concurrence
problems, ensure data integrity, and data consistency. A lock is a mechanism that
prevents destructive interaction between users accessing the same data. For example,
two users of the application select the same customer record. The first user modifies
some data and then saves the changes. The second user, unaware that the customer
record has changed, makes other changes and saves those edits. Without proper
locking, the second user's changes overwrite the first user's changes. To solve this
problem, applications typically use one of the following locking styles:

! Pessimistic locking—The application requires an exclusive lock on data.
Typically, a DBMS-specific SQL statement is executed to establish the lock
before the select is executed. This prevents the second user from reading or
changing the data until the application ends its transaction.

! Optimistic locking—The application does not set any database locks on the
data, but checks that the selected record has not changed before it updates the
record. This ensures that changes are not overwritten.

WHERE clause The columns specified in the table view's Primary Key
(primary_key) property.

before-image-d
ata

Data in the widgets corresponding to the primary key of the
table before changes were made. These might not be the
values currently displayed in the widget.

Table 33-9 DELETE statement SQL element properties

SQL element Property settings
Application Development Guide 33-39

Implementing Optimistic Locking
Using an exclusive lock prevents concurrent transactions from overwriting a user's
changes, but it also prevents read-only transactions from viewing data. This can cause
performance degradation if many users are trying to access and use the same data. An
optimistic lock requires some additional setup, but it improves access and
performance.

There are several ways to implement optimistic locking. Typically, as a database
designer, you assign a special column to each table that will use optimistic locking.
The column maintains a version number which is updated each time a row is changed.
A version number is usually an integer, float, or character string, and is supported by
any database. Other database-specific data types, such as time-stamping, can be useful
for optimistic locking.

Refer to the Database Drivers for your database's information on data types.

The transaction manager provides automatic support for numeric version columns.
When you set the Version Column property on a widget, Panther ensures when any of
the following transaction manager statements are executed, optimistic locking is
implemented as described:

! An INSERT statement for the widget's table view initializes the version column
to 1.

! An UPDATE statement for the widget's table view increments the version number
and includes the version number in the WHERE clause. Therefore, if the select
returns cust_id=100 and version_id=1, and then the customer record is
updated with a new address, the UPDATE statement would be: update customer
set address2=“Suite 200”, version_id=2 where cust_id=100 and
version_id=1;

If another user has just updated the same customer record, the version_id
would have incremented to 2 for that update transaction. So, the preceding
UPDATE statement would fail, because the version_id 1 no longer exists.

! A DELETE statement for the widget's table view includes the version number in
the WHERE clause.
33-40 Using Automated SQL Generation

Implementing Optimistic Locking
Implementing Optimistic Locking using the Version Column
Property

When you import database columns from the database, the version column is also
imported and is represented as a widget, just like any other widget, on your screens.
Make the following changes to those widgets in repository entries that represent the
database version column:

1. Under Identity, ensure that the C Type property is sent to either Int, Long Int,
Float, Double, Char String.

If the column is of another type, refer to the Database Drivers for your
database's information on data types.

2. Under Database, set the Version Column (version_column) property to Yes.

3. To control concurrent insert transactions, under New Data, ensure that Use In
Insert is set to Yes.

4. To control concurrent update transactions, under Change Data, ensure that:

" Use In Update is set to Yes.

" Expression subproperty for the Use In Update property is empty. Any
expression will override Panther default handling of optimistic locking, and
transaction processing might produce unpredictable results.

" In Update Where property is set to No. This causes Panther to
automatically handle concurrent update transactions.

Another method of optimistic locking is to set the In Update Where
property to Yes. With this method, the value in the widget is included in the
WHERE clause of the SQL UPDATE statement. However, the widget acting as
the version column must have its Version Column property set to No.

5. To control concurrent deletion transactions, under Remove Data, ensure that the
In Delete Where property is set to No.

Another method of optimistic locking would be to set the In Delete Where
property to Yes. With this method, the value in the widget is included in the
WHERE clause of the SQL DELETE statement. However, the widget acting as the
version column must have its Version Column property set to No.
Application Development Guide 33-41

Implementing Optimistic Locking
Notes: Since users will not modify the version number, consider setting the Hidden
property (under Identity) to Always.

If used with the transaction manager, the default class setting for the version column
is updatable and the styles corresponding to this class are applied.

Examples of Optimistic Locking

The following example, describes the customers table, which has a defined version
column:

CREATE TABLE customers (
cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (12),
version INTEGER,
primary key (cust_id));

Inserting Data

In SQL INSERT statements, if a widget's Version Column is set to Yes, the database
column corresponding to that widget is included in the column list and in the VALUES
clause. The column's value is automatically set to 1.

When inserting data into the customers table, the generated SQL statement would be:

INSERT INTO customers
(cust_id, first_name, last_name, phone, version)
VALUES (cust_id, first_name, last_name, phone, 1)

Updating Data

In SQL UPDATE statements, if the widget's Version Column is set to Yes, the database
column corresponding to that widget is added to the SET clause and to the WHERE
clause. In the SET clause, the column value automatically increments 1. In the WHERE
clause, the previous value of the column is listed. Therefore, if someone else has
updated or deleted the row, the version column in the WHERE clause would no longer
match the database value and the statement fails.

The generated SQL statement would be:

UPDATE tableName SET columnName = value [, ...],
version-column = before-image-value + 1
33-42 Using Automated SQL Generation

Viewing the SQL Statements
WHERE primary-key = before-image-value
AND version-column = before-image-value

Updating values in the customers table, generates the following SQL:

UPDATE customers
SET first_name = first_name, last_name = last_name,
phone = phone
WHERE cust_id = cust_id AND version = version

Deleting Data

In SQL DELETE statements, if the widget's Version Column is set to Yes, the database
column corresponding to that widget and its before image value are included in the
WHERE clause. Therefore, if someone else has updated or deleted the row, the version
column in the WHERE clause would no longer match the database value and the
statement fails.

The generated SQL statement would be:

DELETE FROM tableName
WHERE primary-key = before-image-value
AND version-column = before-image-value

Deleting a record from the customers table, generates the following SQL:

DELETE FROM customers
WHERE cust_id = cust_id AND version = version

Viewing the SQL Statements

You can view the statements made by the SQL generator by:

! Choosing Database→Trace On option in test mode. This option is less flexible,
but is quicker and is often sufficient.

! Choosing Tools→Generate TM SQL in the editor. For the current screen, the
SQL statements that the transaction manager generates for the screen are
written to a file.
Application Development Guide 33-43

Viewing the SQL Statements
! Using the debugger. This option provides the greatest flexibility. You can even
output the generated SQL statements to a log file.

The examples in this section provide sample SQL and the actual SQL from the SQL
generator. These statements were prepared for JDB, and might appear differently for
other database engines.

Viewing SELECT Statements

The following example selects rows where the column destination matches a value
entered on the client screen:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination = destination

The SQL generator declares a cursor for the SELECT statement. The where-condition
is specified using a binding parameter (:w0) so that the value is supplied when the
cursor is executed, not when it is declared.

declare dm_jdb1_19 cursor for select tview1.destination,
tview1.travel_costs, tview1.hotel, tview1.meals,
travel_costs+hotel+meals
from vacations tview1 where ((tview1.destination = :w0))

Then, an ALIAS statement matches the column name with the widget name. If the
widget is not named, the widget number is used in the ALIAS statement. The following
statement matches widget #1 with the first column in the SELECT statement,
tview1.destination, etc.

with cursor dm_jdb1_19 alias #1, #2, #3, #4, #5

Finally, it executes the SELECT statement. The value of the binding parameter w0 is set
to be data currently in the first occurrence of widget destination.

with cursor dm_jdb1_19 execute using w0 = destination[1]

Viewing INSERT Statements

The following example inserts rows into both the parent and child table views:
33-44 Using Automated SQL Generation

Viewing the SQL Statements
INSERT INTO customers (cust_id, first_name, last_name, phone)
VALUES (cust_id, first_name, last_name, phone)

INSERT INTO cust_trips (cust_id, destination, paid_flag,
paid_date)
VALUES (cust_id, destination, 'Y', paid_date)

The SQL generator first declares a cursor for the first INSERT statement. The
values-list is specified using binding parameters that have a prefix v_ preceding the
column name (for instance, :v_cust_id).

declare dm_jdb1_18 cursor for insert into customers
(cust_id, first_name, last_name, phone)
values (:v_cust_id, :v_first_name, :v_last_name,
:v_phone)

Then, the SQL generator executes the INSERT statement. The value for the parameter
v_cust_id is the data currently in the first occurrence of widget cust_id.

with cursor dm_jdb1_18 execute using v_cust_id = cust_id[1],
v_first_name=first_name[1], v_last_name=last_name[1],
v_phone=phone[1]

In the INSERT statement for the second table view, binding parameters are only needed
for three of the columns. The value for the third column is provided by its insert
Expression property.

declare dm_jdb1_18 cursor for insert into cust_trips
(cust_id, destination, paid_flag, paid_date)
values (:v_cust_id, :v_destination, 'Y', :v_paid_date)

 with cursor dm_jdb1_18 execute using v_cust_id = cust_id[1],
v_destination = destination[1], v_paid_date = paid_date[1]

Viewing UPDATE Statements

The following example updates a customer's phone number. The desired SQL is:

UPDATE customers SET phone = new_phone
WHERE cust_id = cust_id

The SQL generator first declares a cursor for the UPDATE statement. The bind
parameters for where-condition use the prefix w_ and the parameters for the SET
clause use the prefix s_. Bind parameters are used so that the values are supplied when
the cursor is executed, not when it is declared.
Application Development Guide 33-45

Validating Input Data against the Database
declare dm_jdb1_2 cursor for update customers
set phone = :s_phone
where cust_id = :w_cust_id

Then, the SQL generator executes the UPDATE statement. The value for the parameter
s_phone is set to be data currently in widget new_phone. The values for the parameter
w_cust_id is in the before image data for this row, indicated by @bi. In the following
statement, @bi(#1)[1] indicates that the parameter's value is in the before image data,
from widget #1, in occurrence 1.

with cursor dm_jdb1_2 execute using
s_phone = new_phone[1],
w_cust_id= @bi(#1)[1]

Validating Input Data against the
Database

The screen in Figure 33-8 includes a validation link that checks data entry for a valid
price category. The Validation Link property on the pricecat widget identifies the link
that joins the titles and pricecats table views. At runtime, when a new video title is
entered and a valid price category is entered in the pricecat widget, the description of
that category is displayed in the pricecat_dscr widget. The child table view (in this
case, pricecats) is non-updatable, ensuring that only valid data are entered in the titles
table.

A validation link enforces a foreign key integrity constraint. When a link widget is to
used to enforce a foreign key, the parent table view “references” the child table view.
The parent table view is updatable; the child table view must be non-updatable.
33-46 Using Automated SQL Generation

Validating Input Data against the Database
Figure 33-8 A validation link on Pricecat checks for a valid entry and displays
information in the Pricecat_dscr data widget.

Implementing a Validation Link

Use a link widget on your screen to specify a validation link for the contents of a data
entry widget. The validation link lets a user of your application enter or update data in
a widget, and ensures that the SQL generator builds a SQL statement to look up that
value in the linked database table. If the value exists, it displays data for any widgets
in the child table view. If the value does not exist, it displays an Invalid Entry error.

Specifying a Validation Link

1. Ensure that the link widget identifies the two table views that are joined:

" The Parent property should specify the table view to which the data entry
belongs (the widget that requires validation).

" The Child property should specify the table view that contains the
predefined values.

2. For JetNet and Oracle Tuxedo applications, under Service in the link's
Validation Service property, specify the name of the service the transaction
manager uses to implement the validation operation.

3. Select the data entry widget that requires the validation link, and under Database
in the Validation Link property, specify the name of the link widget.

The named link is used to validate the data in the selected widget.

4. Ensure that the child table view (named in the Child property of the link widget)
has its Updatable property, under Transaction, set to No.
Application Development Guide 33-47

Validating Input Data against the Database
If you want to implement a validation link in an array, set the link's Link Type property
to Server. If the Link Type property is Sequential, SQL generation assumes a
one-to-many (1:n) relationship instead of a one-to-one (1:1).

Validation Link Processing

Validation link processing is only performed in new and update modes, as part of the
NEW, COPY, COPY_FOR_UPDATE, or SELECT commands, when entering or updating
data. And only after all other widget-level validation have been performed. Therefore,
Panther executes the widget validation function and widget-level JPL before it calls the
validation link processing.

A foreign key in a table references the primary key columns of another table. For
example, the titles table contains the column pricecat; the pricecat column is a foreign
key that references the pricecat column in the pricecats table. This ensures that no new
value, or nonexistent value, is entered for pricecat in the titles table unless the value
already exists in the pricecats table.

The first step verifies that the value in the widget (pricecats) with the validation link
is valid. To test it, the following statement is generated and executed:

DBMS DECLARE cursor CURSOR for SELECT 1 FROM pricecats
WHERE ((pricecats.pricecat == ::l0))

DBMS WITH CURSOR cursor ALIAS @dmtmp

DBMS WITH CURSOR cursor EXECUTE USING l0 = pricecat[1]

DBMS CLOSE CURSOR cursor

If the value in the widget pricecat[1] exists, @dmrowcount is set, and the
transaction manager knows the value is valid. The transaction manager deliberately
avoids selecting any data to the application, so that the data entry widget is not cleared
if no data are found. Instead, it fetches to @dmtmp, and does not overwrite the user's
data entry.

If the first select is successful, a second select is generated and executed which
populates any widgets belonging to the pricecats table view:

DBMS DECLARE cursor for SELECT pricecats.pricecat_dscr
FROM pricecats WHERE ((pricecats.pricecat == ::l0))

DBMS WITH CURSOR cursor ALIAS pricecat_dscr
33-48 Using Automated SQL Generation

Validating Input Data against the Database
DBMS WITH CURSOR cursor OCCUR 1 MAX 1

DBMS WITH CURSOR cursor EXECUTE USING l0 = pricecat[1]

If the first select fails, Panther displays an Invalid Entry error.

Adding a Lookup to a Validation Link

A validation link might also, optionally, select columns from the referenced table to
widgets in the updatable table view. This allows the validation link to supply some
suggested values for other widgets belonging to the updatable table view.

Specifying the Lookup

The link's Relations (rel_op) property can specify Lookup as well as a Join as a type
of relation. With this setting, a widget in the child table view can supply a suggested
value for a widget in the parent table view. When you execute a validation link in the
transaction manager, the widget in the parent table view is supplied with the suggested
data. This suggested value can then be edited, if necessary, in order to save the correct
information to the database. The Lookup specification is used only when adding
(INSERT) and updating (UPDATE) database records; lookup relations are ignored when
executing VIEW and SELECT operations.

Note: The parent and the child table views must relate to each other directly, without
any table views between them when specifying Lookup as a relations type.

Optionally, you can lookup a child column in the database based on a value the user
enters into the widget associated with the Parent column. The lookup is based on the
relationship that you define for server or sequential links.

How to Define a Lookup Specification

1. Under Transaction, select the link's Relations property.

2. In the Relations dialog box, specify the parent column name under Parent. If the
parent column is represented on the screen by two different widgets, use the
widget's name instead. Use the following format (include the square brackets
and the literal +0):::widget_name[+0]
Application Development Guide 33-49

Validating Input Data against the Database
3. Specify lookup in the center (rel_opproperty) column of the Relations dialog
box.

4. Specify the Child column name under Child.

5. Select the widget that will receive the data, and under Validation Link, enter the
name of the link widget.

Figure 33-9 This lookup specification uses the customer id entered by the user to
find the corresponding last name in the database table.

For example, consider that the titles table contains a preview_days column. A
value for rental_days (number of days video can be rented) is stored in the
pricecats table, but the video store wants to allow the store manager to alter the
number of rental days for very popular new titles without changing the title's price
category. The store uses the preview_days value to override the default number of
rental days. When the store manager enters a new title, the application gives the
manager an opportunity to supply a new value (for preview_days), but fetches the
current pricecats value as the suggested value. To support this, the application must
modify the Relations (relations) property for the link widget named in the validation
link to include a lookup relations type specification:

(titles.)pricecat join (pricecats.)pricecat

should be changed to

(titles.)pricecat join (pricecats.)pricecat
(titles.)preview_days lookup (pricecats.)rental_days

The following SELECT statements are generated to enforce the foreign key:
33-50 Using Automated SQL Generation

Validating Input Data against the Database
DBMS DECLARE cursor CURSOR for SELECT pricecats.rental_days
FROM pricecats WHERE ((pricecats.pricecat == ::l0))

DBMS WITH CURSOR cursor ALIAS preview_days

DBMS WITH CURSOR cursor OCCUR 1 MAX 1

DBMS WITH CURSOR cursor EXECUTE USING l0 = pricecat[1]

DBMS CLOSE CURSOR cursor

Instead of fetching to @dmtmp, the transaction manager selects the price category's
rental days to the preview_days widget in the updatable table view titles. If it is
successful, it continues with the select to populate the non-updatable table view
pricecats:

DBMS DECLARE cursor for SELECT pricecats.pricecat_dscr
FROM pricecats WHERE ((pricecats.pricecat == ::l0))

DBMS WITH CURSOR cursor ALIAS pricecat_dscr

DBMS WITH CURSOR cursor OCCUR 1 MAX 1

DBMS WITH CURSOR cursor EXECUTE USING l0 = pricecat[1]

The store manager can use the suggested value or change the value in preview_days.
When the title information is saved, the preview_days value is saved in the titles
table, not in the pricecats table, where the values remain unchanged.
Application Development Guide 33-51

Validating Input Data against the Database
33-52 Using Automated SQL Generation

CHAPTER
34 Specifying
Transaction
Manager
Commands

The transaction manager is controlled by a set of high-level instructions, referred to as
transaction manager commands, that are called from the application's event functions.
After a command is invoked, the transaction manager traverses the table views
involved in your application, doing the appropriate processing at each table view it
reaches.

This chapter describes:

! How to specify transaction manager commands.

! How to apply a transaction manager command to a portion of the transaction
tree.

! How to change transaction modes using the commands.
Application Development Guide 34-1

Transaction Manger Commands
Transaction Manger Commands

Transaction manger commands (listed in Table 34-1) are used in JPL procedures and
C functions (automatically provided by the screen wizard) and are invoked from your
application's event functions to execute different types of database operations. For
example, there is a command that selects data from the database and a command that
clears data from the screen. When a user of your application chooses a command, for
instance, via a push button, the transaction manager executes the transaction events
associated with the command.

While developing your application with the screen editor, you can access a subset of
transaction manager commands via the Transaction menu available in test mode.

A transaction manager transaction must be in progress in order to call a command. A
transaction is automatically started on screen entry at which time the transaction
manager also verifies that a transaction tree can be built.

Refer to “Screen Entry” on page 17-4 for a list of events that occur when a screen is
opened.

Warning: A transaction manager command cannot be called in the screen's unnamed
JPL procedure. The transaction manager has not yet been initialized.
However, a command can be called as part of a screen entry procedure.

Table 34-1 Transaction manager commands and the associated transaction mode change

Command Description Mode
change

CHANGE Change to another transaction.

CLEAR Clear the data from the screen.

CLOSE Abort the current processing. initial

CONTINUE Fetch the next group of selected rows (two-tier only).
34-2 Specifying Transaction Manager Commands

Transaction Manger Commands
CONTINUE_BOTTOM Fetch the last set of rows using a continuation file (two-tier only).

CONTINUE_DOWN Fetch the group set of rows using a continuation file (two-tier
only).

CONTINUE_TOP Fetch the first set of rows using a continuation file (two-tier only).

CONTINUE_UP Fetch the previous set of rows using a continuation file (two-tier
only).

COPY Copy the data currently on the screen, allowing the user to change
it in order to enter a new row.

new

COPY_FOR_UPDATE Change the transaction mode to update, allowing the user to
change the data currently on the screen.

update

COPY_FOR_VIEW Change the transaction mode to view so the data is for viewing
purposes only.

view

FETCH Retrieve one or more rows for a single table view (not
recommended).

FINISH End the current transaction.

FORCE_CLOSE Abort the current processing.

NEW Clear the screen so that the user can enter new data. new

REFRESH Reapply the styles and classes to the screen.

RELEASE Release transaction manager cursors.

SAVE Update the database with the new or edited information.

SELECT Retrieve one or more rows from the database for possible
updates.

update

START Start a new transaction. initial

Table 34-1 Transaction manager commands and the associated transaction mode change

Command Description Mode
change
Application Development Guide 34-3

Transaction Manger Commands
Command Syntax

Transaction manager commands are called using the function sm_tm_command. The
syntax for sm_tm_command varies slightly depending upon the command being called.
Common syntax is:

sm_tm_command ("commandName [tableView [tableViewScope]]")

commandName—one of the following (other commands, not included here, use a
slightly different syntax):

VIEW Retrieve one or more rows from the database for viewing
purposes only.

view

WALK_DELETE Traverse the transaction tree using the order specified in the
Delete Order property.

WALK_INSERT Traverse the transaction tree using the order specified in the
Insert Order property.

WALK_SELECT Traverse the transaction tree by server view.

WALK_UPDATE Traverse the transaction tree in using the order specified in the
Update Order property.

Table 34-1 Transaction manager commands and the associated transaction mode change

Command Description Mode
change

CLEAR CONTINUE_UP VIEW

CLOSE COPY WALK_DELETE

CONTINUE FORCE_CLOSE WALK_INSERT

CONTINUE_BOTTOM NEW WALK_SELECT

CONTINUE_DOWN SAVE WALK_UPDATE

CONTINUE_TOP SELECT
34-4 Specifying Transaction Manager Commands

Transaction Manger Commands
Refer to page 8-3 in the Programming Guide for syntax and detailed information on
all of the transaction manager commands.

tableView (optional)—Name of a table view on the screen; it must be the first table
view in a server view.

tableViewScope (optional)—Generally one of the following values:

! TV_AND_BELOW—Applies the command to the specified table view and all
server views below it in the tree. This is the default setting if no
tableViewScope parameter is supplied.

! BELOW_TV—Applies the command to the server views below the specified table
view.

! TV_ONLY—Applies the command to the specified table view only.

! SV_ONLY—Applies the command to the specified server view only.

Limiting the Number of Table Views

Most transaction manager commands let you to limit the scope of the transaction by
specifying a table view or server view from which to begin the traversal. In this case,
the portion of the transaction tree over which the command operates begins with the
specified table or server view, rather than the default. If a table view is specified, it
must be the first table view in a server view.

Consider the transaction tree in Figure 34-1, the command:

sm_tm_command("VIEW tapes")

limits the VIEW operation to the table view tapes and any other table views below it
in the transaction tree, in this case, titles and pricecats.
Application Development Guide 34-5

Transaction Manger Commands
Figure 34-1 Limit the scope of a transaction by identifying the table view in the
transaction tree.

Refer to page 31-10 to learn more about how transaction trees are used during event
generation.

Implementing Full and Partial Commands

The transaction models use the concept of full and partial commands to determine how
to process certain commands. A full command is applied to all table views on the
screen and is issued with a single argument, the commandName. For example:

sm_tm_command("VIEW")

In this case, the variable TM_FULL is set to 1.

A partial command is applied to a limited number of table views and is issued by a
command statement that includes a table view or server view parameter. For example:

sm_tm_command("VIEW roles TV_ONLY")

In this case, TM_FULL is set to 0.

In the transaction tree (in Figure 34-1), the following two commands would be
equivalent since the partial command specifies the root table view:
34-6 Specifying Transaction Manager Commands

Setting the Transaction Mode
sm_tm_command("VIEW")

sm_tm_command("VIEW rentals")

In this case, TM_FULL is set to 1 for the full command and to 0 for the partial (second)
command.

All models use the variable TM_FULL to determine when to fully commit a save
operation (in two-tier only). Some models use TM_FULL to determine the transaction
mode after a SAVE command.

You can query for the current value of TM_FULL using sm_tm_inquire.

When executing partial SELECT and VIEW commands (and related FETCH and
CONTINUE commands), specify the first table view of the server view as the table view.
Otherwise, testing for the parent table view is performed on the first table of the server
view instead of on a table view at a higher level.

Setting the Transaction Mode

table with mode descriptions also in TMRuntime

When a transaction manager command is executed, the transaction mode for the screen
is also defined. The transaction mode defines the protection settings and display
attributes of widgets on the screen. For more information about transaction modes and
how they give visual and application behavioral cues to users of your application, refer
to page 31-14

Table 34-2 lists the transaction modes set by the transaction manager and the
commands that initiate those modes.

Table 34-2 Transaction modes and the commands that initiate them

Mode Description Command selection

initial Indicates that no processing is in progress. START, CLOSE and FORCE_CLOSE
Application Development Guide 34-7

Setting the Transaction Mode
Table 34-3 shows which transaction manager commands are available in each mode.

new Allows new data to be entered. NEW and COPY

update Allows existing data to be modified. SELECT and COPY_FOR_UPDATE

view Allows existing data to be displayed. VIEW and COPY_FOR_VIEW

Table 34-2 Transaction modes and the commands that initiate them

Mode Description Command selection

Table 34-3 Transaction manager commands available for each transaction mode

Command Initial New Update View

CHANGE Y Y Y Y

CLEAR Y Y Y Y

CLOSE Y Y Y Y

CONTINUE N P Y Y

CONTINUE_BOTTOM N P Y Y

CONTINUE_DOWN N P Y Y

CONTINUE_TOP N P Y Y

CONTINUE_UP N P Y Y

COPY Y Y Y Y

COPY_FOR_UPDATE F F F F

COPY_FOR_VIEW F F F F

FETCH N N Y Y

FINISH Y Y Y Y

FORCE_CLOSE Y Y Y Y

NEW F Y F F

REFRESH Y Y Y Y
34-8 Specifying Transaction Manager Commands

Setting the Transaction Mode
RELEASE Y Y Y Y

SAVE N Y Y N

SELECT Y Y Y Y

START Y Y Y Y

VIEW Y Y Y Y

WALK_DELETE Y Y Y Y

WALK_INSERT Y Y Y Y

WALK_SELECT Y Y Y Y

WALK_UPDATE Y Y Y Y

Y=Available; N=Not available; F=Valid for full commands only;
P=Valid for partial commands only.

Table 34-3 Transaction manager commands available for each transaction mode

Command Initial New Update View
Application Development Guide 34-9

Setting the Transaction Mode
34-10 Specifying Transaction Manager Commands

CHAPTER
35 Generating
Transaction
Manager Events

Once a transaction manager command is invoked, the transaction manager generates a
series of events.

This chapter describes:

! How transaction manager components process events.

! How the transaction models work.

! How requests and slices are generated.

! How to control the event stack.

! How the transaction manager processes service requests in JetNet applications.
Application Development Guide 35-1

Generating Transaction Manager Events
Generating Transaction Manager Events

When a transaction manager command is called, the transaction manager processes the
command as a series of events, using information entered in the application screen, as
well as information defined in screen properties, and in table view and link widget
properties. The control flow of events within the transaction manager (on a three-tier
application server or on a two-tier client) is illustrated in Figure 35-1.

Figure 35-1 The transaction manager processes a command as a series of events.
35-2 Generating Transaction Manager Events

Generating Transaction Manager Events
As shown in Figure 35-1, the events are characterized as either request events or slice
events. When the transaction manager is called, a command interpreter generates a set
of request events for the specified command. For several of the more important
requests, a sequence of more specialized events, referred to as slices, are generated by
the transaction model and/or event functions. Table 35-1 describes this processing
sequence for events, requests and slices.

For example, consider the VIEW command which fetches database information, the
command interpreter generates the following request events for the command:

TM_PRE_VIEW
TM_VIEW
TM_POST_VIEW

Each request event, for example, TM_PRE_VIEW, is sent to the traversal controller,
where the request is mapped over the table views for the current screen. When the
traversal controller completes the processing for one request, the next request is sent.

Table 35-1 Stages of transaction manager processing

Processing stage Description Event
type
generated

Command
interpreter

Generates request events for the specified command. Sends
requests to the traversal controller, one at a time.

Requests

Traversal
controller

Traverses the transaction tree (derived from the screen’s table
views and links) for the specified request event. How the tree is
traversed depends upon the type of request, the transaction tree it
self, and the data on the screen. In general, the traversal controller
calls the model invoker to process the request for each table view.

Model invoker Invokes an event function (if one is specified) and the appropriate
model for the specified table view. For information on how event
functions are invoked, refer to page 35-6.

TM models and
event functions

Processes request and slice events for the specified table view.
Processing can include calling the SQL generator or database
interface, or generating slice events that are routed back to the
model invoker and then sent to the model or event function.

Slices
Application Development Guide 35-3

Traversing the Table Views
Refer to page 9-3 in the Programming Guide for a list of the request and slice events
for all transaction manager commands.

Traversing the Table Views

After the command interpreter generates the request events, the next step is to traverse
the transaction tree, applying those requests to the database tables that are a part of the
screen.

To support automatic database access, Panther needs to know which widgets are
associated with which database tables, and how the tables are related. Database table
information is stored in a table view widget. Text widgets derived from the database
table's columns are members of the table view.

The database table's relationship information is stored in link widgets; they define the
relationship between two table views. Based on these relationships, a transaction tree
can be generated. The DB Interactions window, shown in Figure 35-2, illustrates a
sample transaction tree for event processing.

SQL generator Generates SQL commands or sends the statement to the database
interface.

Database interface Interfaces with the DBMS.

Table 35-1 Stages of transaction manager processing

Processing stage Description Event
type
generated
35-4 Generating Transaction Manager Events

Generating Events in the Transaction Model
Figure 35-2 The DB Interactions window shows the link relationships between
table views on a screen.

Generating Events in the Transaction
Model

As the transaction manager traverses the table views, it needs to determine what
processing to perform for each event. The processing is defined in event functions and
transaction models.

There are two layers of transaction models: the common model and a database-specific
model. The common model typically processes most of the events; it provides
plausible processing for every event known to the transaction manager and contains
the functionality common to all of the database engines. The database-specific model
contains processing necessary for a specific database engine.
Application Development Guide 35-5

Generating Events in the Transaction Model
Invoking Event Functions and Models

Table 35-2 lists the models and event functions that might be invoked for an event
(request or slice), and how you invoke functions or specify a particular model.

The source code for the database-specific transaction models is provided and can be
modified to make global changes in transaction manager functionality. The common
model should not be modified; however, the source code is available for reference.

Figure 35-3 shows how events are processed with the transaction manager via the
model invoker. If an event function is specified for the current table view, then the
event function is invoked first. If the event function returns a return code of
TM_PROCEED, then the invoker also invokes the database-specific transaction model. If
the transaction model returns a return code of TM_PROCEED, then the common model
is invoked.

Table 35-2 How to invoke transaction manager event functions or transaction models

Type Description How to specify

Event function Applied to a specific table view. You can
use an event function to affect the
processing of either the database-specific
model or the common model.

Table view's Function
(function) property (under
Transaction).

Database-specific
transaction model

Applied by default to a table view.
Alternatively, a custom model can be
identified for a specific table view which
would supersede the default
database-specific model. You can also
modify a distributed model in order to
customize its behavior.

Custom model called via table
view's or screen's Model
(model) property (under
Transaction). If a custom
model is not specified, a
database-specific model is
applied.

Common model Applied to all table views, unless
superseded by a database-specific model
(default or custom) or event function that
processes TM_OK event.

Not applicable; called by
default on TM_PROCEED event
35-6 Generating Transaction Manager Events

Generating Events in the Transaction Model
Figure 35-3 Transaction manager event processing and transaction models.

A request event is sent from the traversal controller, that is, as the transaction manager
traverses the transaction tree from table view to table view, to the model invoker. The
invoker invokes the appropriate event function or transaction model, and passes the
request along. The event function or transaction model can then generate slice events
for the request and push these events onto the event stack. The model invoker then
processes the slice events from the stack in a last-in, first-out order.

The slice events are processed in the exact same manner as the original request event,
making no distinction between the two. For example, consider the request event
TM_DELETE which generates several slice events, including TM_GET_SAVE_CURSOR.
The model invoker does not know which event is a request and which is a slice.

Any slice event can also generate additional slice events, which are then pushed onto
the top of the event stack. After all slice events are processed and the stack is empty,
processing control returns to the traversal controller, to continue walking the traversal
tree, to the next table view.
Application Development Guide 35-7

Generating Events in the Transaction Model
Event Processing Steps

The invoker uses the following priorities and precedence when processing events:

1. Read the next event from the stack. If the stack is empty, return to the traversal
controller.

2. Invoke the event function, if one is specified for the current table view.
Otherwise go to step 4.

3. Check the event function return code. If the return value is:

" TM_PROCEED, then continue to next step.

" TM_OK, then event processing is complete. Go to step 1.

" An error or diagnostic code, then push the relevant error or diagnostic
event onto the stack. Go to step 1.

4. Invoke the database-specific transaction model.

The transaction model can be specified as one of the following and the model
invoker determines which model to use based on the order of precedence:

" Table view's Model property (if specified).

" Screen's Model property (if specified and if no table view model is
specified).

" Default transaction model (if the table view and screen models are not
specified).

The default transaction model is determined by the target database for that table
view. (For example, the default model for JDB databases is tmjdb1.c.) For a
typical application, one transaction model suffices for all the table views.

5. Check the transaction model return code. If the return value is:

" TM_PROCEED, then continue to next step.

" TM_OK, then event processing is complete. Go to step 1.

" An error or diagnostic code, then push the relevant error or diagnostic
event onto the stack. Go to step 1.

6. Invoke the common transaction model.

7. Check the common model return code. If the return value is:
35-8 Generating Transaction Manager Events

Generating Events in the Transaction Model
" TM_PROCEED or TM_OK, then event processing is complete. Go to step 1.

" An error or diagnostic code, then push the relevant error or diagnostic
event onto the stack. Go to step 1.

Typically, a few of the events in a transaction can be processed by an event function
or database-specific transaction model, while most transaction events are processed by
the common model.

Controlling the Event Stack

The following library functions allow you to push and pop events from the stack:

! sm_tm_push_model_event—Place an event on the stack.

! sm_tm_pop_model_event—Remove an event from the stack to prevent it from
occurring. sm_tm_pop_model_event returns the event number, or 0 if the stack
is empty.

! sm_tm_clear_model_events—Clear the event stack.

Transaction Models and the Event Stack

The following example illustrates how the requests TM_SELECT and TM_VIEW are
further subdivided into slices and those slices are pushed onto the event stack in
reverse order.

case TM_SELECT:
case TM_VIEW:

/* Put slices onto the stack only if it is the current
 * server view
 */

tv = sm_tm_pinquire(TM_TV_NAME);
sv = sm_tm_pinquire(TM_SV_NAME);
if (tv && sv && *sv && !strcmp(tv,sv))
{

sm_tm_push_model_event(TM_SEL_CHECK);
sm_tm_push_model_event(TM_SEL_BUILD_PERFORM);
sm_tm_push_model_event(TM_SEL_GEN);
if (!sel_cursor[0])
{

sm_tm_push_model_event(TM_GET_SEL_CURSOR);
Application Development Guide 35-9

Generating Events in the Transaction Model
}
}

For a list of the transaction events associated with each command and a description of
the processing performed by those events, refer to page 9-3 in the Programming
Guide.

Adding Your Own Transaction Events

It is possible for you to define your own transaction events and push them onto the
stack as long as you specify them correctly and understand how the event stack
performs its processing.

All transaction events have an integer associated with them. For user supplied events,
the integer must be greater than 2047. The specification of the event can be in a header
file or in the transaction model.

The transaction model must also list the event in the case statements at the beginning
of the file. Otherwise, the model considers the event to be invalid. As part of that
operation, you can write your own function to add to the model. Be sure to track any
changes you make to the transaction model since it could change in future Panther
releases.

Example

An example of adding transaction events appears in the transaction model for JDB.
Since referential integrity is not implemented in JDB, the transaction model checks for
duplicate rows when you add new data. This is accomplished by adding two events to
the JDB model and calling those events after an insert.

#define DUP_GEN 9901
#defineDUP_BUILD_PERFORM 9902
.
.
.

case TM_INSERT_EXEC:
if (check_pkey)
{

sm_tm_push_model_event(TM_SEL_CHECK);
sm_tm_push_model_event(DUP_BUILD_PERFORM);
sm_tm_push_model_event(DUP_GEN);

}
retcode = nsel_exec(EXEC_INSERT);
35-10 Generating Transaction Manager Events

Generating Events in the Transaction Model
break;
case DUP_GEN:
retcode = dup_gen();
break;
case DUP_BUILD_PERFORM:
retcode = dup_build_perform();
break;

Logging Transaction Events

As an example, create a log of all the select requests made to your database. You can
write an event function (my_eventLog) to intercept the slice event
TM_SEL_BUILD_PERFORM, which is generated by the request TM_SELECT and
TM_VIEW.

proc my_eventLog (event)
vars stream, err
{
if event == TM_SEL_BUILD_PERFORM

{
stream = sm_fio_open("mylog", "a")
err = sm_fio_puts("Perform select.", stream)
err = sm_fio_close(stream)
}

return TM_PROCEED
}

This event function ignores all other events, but when TM_SELECT or TM_VIEW is
encountered, it will log the appropriate information. This event function is applied to
the current table view (via its Function property).

The model invoker process the events as follows:

1. TM_SELECT or TM_VIEW is passed to the model invoker from the traversal
controller.

2. The invoker submits the TM_SELECT or TM_VIEW event to the event function
(my_eventLog) named in the table view's Function property. The event function
performs no processing and sends a return code TM_PROCEED.

3. The invoker checks the return code and continues processing.

4. The invoker sends TM_SELECT or TM_VIEW to the transaction model, which (for
this example) also sends a return code of TM_PROCEED.
Application Development Guide 35-11

Using the Transaction Model with JetNet/Oracle Tuxedo
5. The invoker checks the return code and continues processing.

6. The invoker sends TM_SELECT or TM_VIEW to the common model, which
generates several slice events, including TM_SEL_BUILD_PERFORM and pushes
them onto the event stack. The event TM_SEL_BUILD_PERFORM is pushed near
the bottom of the stack.

7. The invoker processes the other events on the stack, just as it did for the original
request—invoking the event function and then the transaction model—until
TM_SEL_BUILD_PERFORM moves to the top of the stack.

8. The invoker reads TM_SEL_BUILD_PERFORM from the top of the stack and sends
it to the event function.

9. The event function recognizes the event TM_SEL_BUILD_PERFORM and logs the
appropriate information. It sends a return code TM_PROCEED.

10. The invoker checks the return code and continues processing the event—first to
the database-specific transaction model and then to the common model.

11. The next event is called.

Using the Transaction Model with
JetNet/Oracle Tuxedo

On a three-tier client using the JetNet middleware adapter, the transaction manager
performs many of the same steps, but it uses the middleware API model, instead of the
transaction model, to determine the processing for each event. The middleware API
model generates service requests which can then be passed to the middleware for
processing.
35-12 Generating Transaction Manager Events

Using the Transaction Model with JetNet/Oracle Tuxedo
Figure 35-4 A three-tier JetNet client uses the middleware API model.

jetrb1 is the transaction model provided for three-tier applications using the JetNet
middleware adapter. When a client uses the transaction manager, jetrb1 determines
which service request to make to satisfy the transaction manager command and
provides default processing for the following transaction manager events:
TM_SELECT, TM_VIEW, TM_DELETE, TM_DELETE_EXEC, TM_INSERT,
TM_UPDATE, TM_UPDATE_EXEC, TM_PRE_SAVE, TM_POST_SAVE,

TM_PRE_CLOSE, TM_POST_CLOSE, TM_POST_CLEAR, and TM_VAL_LINK.

The transaction manager can then be used on the application server to generate the
SQL for the service request.

Figure 35-5 shows how the transaction manager is used in a three-tier application to
generate and process a client request.
Application Development Guide 35-13

Using the Transaction Model with JetNet/Oracle Tuxedo
Figure 35-5 The transaction manager can be invoked on both client and server
ends of the application.

The application property, tm_transaction, determines if a service is
transaction-manager enabled and, if so, which transaction manager operation to
perform.

For information on using FML buffers with the transaction manager in the middleware
adapter for Oracle Tuxedo, refer to page 8-2 in the JetNet/Oracle Tuxedo Guide.
35-14 Generating Transaction Manager Events

CHAPTER
36 Runtime
Transaction
Manager
Processing

This chapter describes transaction manager processing at runtime. It includes:

! How the transaction manager selects data.

! How database updates are performed.

! What runtime properties are available for the transaction manager.

! How to process transaction manager errors.

Running Transaction Manager

Once the application screen is created and its widgets, table views and links are
properly defined, the screen is ready to use.
Application Development Guide 36-1

Running Transaction Manager
Refer to Chapter 31, “Building a Transaction Manager Screen,” for instructions on
building a transaction manager screen.

Opening the Screen

Processing for the transaction manager begins when you open an application screen.
On screen entry, the transaction manager automatically executes the following steps:

! Calls the START command which assigns a transaction name to this session with
the transaction manager.

! Checks the tree traversal of the table views and links to make sure that the root
table view can be determined and that there are no circular links.

! Verifies that the functions specified in the table views' Function property are
available.

! Sets the screen to initial mode and applies any styles specified for that mode.

If a named function cannot be found or if the root table view cannot be determined, an
error message is issued and the transaction manager stops its processing.

Closing the Screen

When you close a screen, the transaction manager performs the necessary exit
processing. This includes:

! Calling the FINISH command which closes any open cursors and closes the
current transaction manager transaction.

! Verifying that the functions specified in the table view's Function property are
available, in case they are needed for the FINISH command.

If a named function cannot be found, an error message is issued.

Viewing the Generated SQL

The following options are available for viewing the generated SQL:
36-2 Runtime Transaction Manager Processing

Displaying Data
! On the Database menu, the Trace On option displays the DBMS command or
SQL statement generated for each event.

! On the Editor’s Tools menu, the Generate TM SQL option generates the SQL
for the screen and writes it to a file. These statements can be used as a basis for
writing stored procedures.

! The Panther debugger allows you to step through each event.

Disabling the Transaction Manager

If you want to disable the transaction manager, change the screen's Root property to
"-none-".

Displaying Data

The transaction manager uses two commands to display data from a database, VIEW
and SELECT. These commands can be invoked whenever a database connection is
active.

VIEW displays information; SELECT allows the user to modify the selected data.

Executing the Select Statement

In general, when a VIEW or SELECT command is executed, data is fetched from the
database and displayed in appropriate widgets using dbms commands (as part of the
TM_SEL_BUILD_PERFORM event):

! DBMS DECLARE CURSOR—Creates a named cursor for the SQL SELECT
statement.

! DBMS ALIAS—Maps the column name or select expression to the Panther
destination variable. This allows you to have widget names that are different
from the database column from which the widgets were derived.
Application Development Guide 36-3

Displaying Data
! DBMS EXECUTE—Performs the SQL statement associated with the cursor named
in the WITH CURSOR clause.For example:

DBMS DECLARE jdb1 CURSOR FOR SELECT ...

DBMS WITH CURSOR jdb1 ALIAS ...

DBMS WITH CURSOR jdb1 EXECUTE USING ...

This series of dbms statements is performed for each server view, which includes the
table view (defined as a server view) and all table views joined to it via server links.

If the Panther targets for the select set are arrays, the first retrieved row populates the
first occurrence, the second row populates the second occurrence, and so on.

Figure 36-1 illustrates a screen that lets users enter a video title by name or
identification number, and view the names of the actors and their roles for the specified
video. In addition, new videos can be added with the corresponding actors and roles.

Figure 36-1 Data are displayed by executing a series of DBMS statements.

The screen in Figure 36-1 contains two server views; therefore, the statements are
executed twice. The first series fetches a video title and its associated price category
from the titles and pricecats tables. The second series fetches the actors appearing in
the video and the name of their roles.
36-4 Runtime Transaction Manager Processing

Displaying Data
Figure 36-2 illustrates the DB Interactions window for this screen. The titles table view
has a sequential link with the roles table view; therefore, values in the titles table view
(which is the parent) are used to fetch data for the child table view. The Relations
property of the sequential link tells the transaction manager which widget to use to
supply the value. In this example, the value in title_id is used to build a WHERE
clause which fetches only the actors in that video.

Figure 36-2 The DB Interactions window displays the table views and their
associated links.

Scrolling Through the Select Set

The CONTINUE command (only available on two-tier processing) in the transaction
manager fetches the next set of data for the screen. For the root table view, the next
row, or set of rows, is fetched. For any child table views connected by sequential links,
additional SQL SELECT statements are issued, using the values from the parent table
view in the WHERE clause. For each subsequent CONTINUE command, another set of
data is fetched. If there are no additional rows, nothing is done.

There are two ways to allow users to scroll forward and backward through a select set.
You can create scrolling widgets or a grid for displaying the data. In environments
where memory is limited, you can fetch only a small number of rows to the application
and buffer the rest in a disk file. This is known as using a continuation file or a store
file.
Application Development Guide 36-5

Displaying Data
To use a continuation file with transaction manager, you need to edit the Fetch
Directions property for either the screen or the table view. If Fetch Directions is set to
Up/Down-all modes or Up/Down-view mode, the transaction manager fetches the data
to a continuation file. Then, issuing a CONTINUE_UP command displays the previous
set of data, and issuing a CONTINUE_TOP command displays the first set of data.

Panther does not set backward scrolling via continuation files as the default since
Panther does not update the continuation file when the onscreen data is changed.
Scrolling backward shows the original, fetched data. If you set Fetch Directions to be
Up/Down in all modes, be aware that once a SAVE command is issued, you need to
re-execute SELECT in order to see any updated data.

Controlling the Number of Rows

The number of occurrences fetched for transaction manger is set in the Maximum
Occurrences (max_occurrences) property.

The Count Select property of each server view allows you to request that the
transaction manager count the number of rows in a result set and compare it to a
specified threshold value before actually fetching data.

In the server view's properties, set the Count Select property and its subproperty, Count
Warning, to Yes. In the Count Threshold property, specify the maximum number of
rows to fetch in a result set. If the size of a result set (stored in the server view's runtime
count_result property) exceeds this value, the user is prompted before the data is
actually fetched.

For any command which can modify the database, such as SELECT, the transaction
manager must synchronize the widgets in a server view. For more information, refer
to page 36-8, “Updating Data in Arrays.”

Customizing Select Processing

In order to customize the processing done for any table view, you can:

! Write a transaction event function for a request or slice event and specify the
name of the function in the table view's Function property. (See Chapter 32,
“Writing Transaction Event Functions.”)
36-6 Runtime Transaction Manager Processing

Updating the Database
! Modify the SQL Generation properties for widgets, table views, or links. (See
Chapter 33, “Using Automated SQL Generation.”)

! Specify the system for selecting data in the Method property:

" SQL Statement Generation— (default) The transaction manager generates
SQL statements based on the current property settings.

" Function Call—Specify the JPL procedure or C function which will
perform select processing.

" Nothing—Do not perform any select processing for this table view.

! Call the functions which modify the generated SQL statements. (See
page 33-31, “Modifying SELECT Statements.”)

Updating the Database

If you execute a command that modifies data, such as NEW, SELECT, COPY or
COPY_FOR_UPDATE, the transaction manager initiates before-image processing for all
updatable table views. Panther's before image remembers the original values of the
fetched data. Then, when you execute SAVE, the transaction model generates the
necessary statements so that the database matches the current data on the screen.

The NEW command prepares the screen for data entry; it does not insert information into
the database. Similarly, the SELECT command retrieves data from the database and
prepares the screen to be edited by changing the screen to update mode. The changes
made on the screen are not saved to the database until a SAVE command is executed.

Traversal for Database Updates

Specialized traversal patterns are used for the TM_INSERT, TM_UPDATE, and
TM_DELETE requests. For these requests, the traversal pattern is determined by the link
properties for the transaction tree and the operation being performed.
Application Development Guide 36-7

Updating the Database
You can change the traversal order for the TM_INSERT, TM_UPDATE, and TM_DELETE
requests by modifying the link widget's Insert Order (insert_order), Update Order
(update_order), and Delete Order (delete_order) properties, indicating whether
the parent (PV_PARENT_FIRST) or child (PV_CHILD_FIRST) table view should be
processed first.

Updating Data

The transaction manager SELECT command queries the database for information so
that it can be updated. When you execute the SELECT command, the transaction
manager fetches the first screenful of data for each of the linked table views. (If you
then execute the CONTINUE command, the transaction manager fetches the next
screenful of data.)

Panther keeps track of the changes the user makes while the screen is in update mode.
When the application executes SAVE, the transaction manager generates the statements
to update the database. If the application attempts any other transaction manager
operation, the transaction manager prompts the user if it should discard the changes. If
the user chooses to discard, the transaction manager proceeds to the next command
without changing the database. If the user chooses not to discard, transaction manager
returns control to the screen. You can modify this behavior if you wish.

When before image processing is activated, each time a field is modified in some way
(data is edited, data is cleared, new data is entered), the data previously in the widget
is copied into memory and the transaction manager is notified that data on the screen
has changed. Then, when the SAVE command is selected, the transaction manager
looks at the changes and determines which statements are necessary to update the
database so that it matches what is currently on the screen.

Updating Data in Arrays

For any command which can modify the database, such as SELECT, NEW, COPY and
COPY_FOR_UPDATE, the transaction manager must synchronize the widgets in a server
view. This ensures that any updates occur on the same occurrence of each widget in
the server view. Each time the SELECT, NEW, COPY and COPY_FOR_UPDATE commands
are chosen, the transaction manager attempts to synchronize the widgets in a server
view if:

! The table view is updatable.
36-8 Runtime Transaction Manager Processing

Updating the Database
! The widgets' Synchronization property is set to Default or Yes.

! If the Synchronization property is set to Default, then if the widgets' Use In
Select, Use In Insert, and Use In Update properties are set to Yes.

If you get a synchronization error, check to see if the widgets can be set to the same
number of occurrences. If this is not possible, review the Use In Select, Use In Insert,
and Use In Update properties for each widget to see if they can be changed. Another
property change you can make is setting the Synchronization property to No.

However, changing the Synchronization property to No does not change the way
Panther fetches data to arrays. The number of rows fetched from the database equals
the least number of occurrences set for any widget in the server view whose Use In
Select property is set to Yes.

Using Multi-text Widgets

For multi-text widgets with the Word Wrap property set to Yes (the default setting),
you need to set the Maximum Occurrences (max_occurrences) property.

Changing the Primary Key

If you change value of a primary key, the transaction manger first deletes the row
associated with the old value and then inserts a row with the new value.

You can change this behavior by setting the application property
primary_key_update to Yes which performs a SQL UPDATE for the primary key
change. Deleting the row can lead to data loss when there are database columns that
are not in the table view.

In both cases, if you change the value of a primary key to a null value, the transaction
manager deletes the row.

Deleting Data

To delete data in the transaction manager, execute the CLEAR command, followed by
SAVE. This removes all the data displayed on the screen from the database. The
TM_DELETE request usually processes child table views first. The resulting SQL
DELETE statement contains a WHERE clause built from the before image values of the
primary key widgets.
Application Development Guide 36-9

Updating the Database
The user can also use the logical key DELL to delete a line. Since the transaction
manager synchronizes the arrays in a server view, using this key deletes the same
occurrence in every array in the server view. You can program a delete line event by
calling the function sm_doccur or sm_1clear_array.

Clearing Data in Arrays

For the CLEAR command, the transaction manager clears the fields in each table view
(by calling sm_1clear_array). To have the transaction manager clear the fields in
each server view (the equivalent of calling sm_clear_array), you need to either:

! Set the runtime property tm_clear_fast to PV_YES.

! Call the dm_set_tm_clear_fast function.

However, setting tm_clear_fast to Yes can be over-inclusive, clearing too much
data, or under-inclusive, clearing too little data. In particular, widgets in the
synchronization group that do not belong to the table view will get cleared.

If widgets have been excluded from synchronization (via the synchronization
property) or if widgets are members of a non-updatable table view, they will not be
cleared.

If tm_clear_fast is set to Yes, it is not recommended that you call CLEAR before the
synchronization of tables views occurs.

Do not change this property while the transaction manger is traversing table views for
a CLEAR command. The current setting applies to the entire application; you cannot
apply the setting per table view.

Inserting Data

To insert data in the transaction manager, execute the NEW command, let the user
complete the data entry, and then execute SAVE. This inserts a row in each table view
that was modified on the screen.

If the data is in arrays or grids, the user can use the logical key INSL, which inserts a
line. Since the transaction manager synchronizes the arrays in a server view, using this
key inserts a line in each array in the server view. You can program an insert line event
by calling the function sm_ioccur.
36-10 Runtime Transaction Manager Processing

Updating the Database
For inserts, the transaction models call the SQL generator to build a values list for the
widgets in the table view whose Use In Insert property is set to Yes.

Saving Data

Since the SAVE command generates different types of statements, depending on
whether it needs to insert, update or delete data, the transaction manager checks the
value of the variable TM_OCC_TYPE to determine what kind of change was made to the
row or occurrence. (Refer to “Determining How Screen Data Has Changed” on page
36-26 for a description of TM_OCC_TYPE values; the values are defined in tmusubs.h.)

To check the status of changes generated by the SAVE command, you can call
sm_tm_inquire(TM_SAVE_COUNT) which returns the number of rows that were saved
to the database.

Note: The value returned is not equivalent to the number of SQL statements issued,
since multiple SQL statements can be issued for each row.

If at any time in this process, you wish to abort the edits to the screen, you can execute
the CLOSE command which discards the user's changes and puts the screen in initial
mode.

Customizing Database Updates

In order to customize the processing done for any table view, you can:

! Write a transaction event function for a request or slice event and specify the
name of the function in the table view's Function property. (See Chapter 32,
“Writing Transaction Event Functions.”)

! Modify the SQL Generation properties for widgets, table views, or links. (See
Chapter 33, “Using Automated SQL Generation.”)

! Specify the system for selecting data in the Method property:

" SQL Statement Generation—(default) The transaction manager generates
SQL statements based on the current property settings.

For update and insert processing, the Regenerate SQL sub-property
specifies whether the transaction manger should include every database
column in the SQL statements or only the columns that have changed.
Application Development Guide 36-11

Transaction Modes
This property, named regenerate_ins_sql and regenerate_upd_sql at
runtime, can be set at the table view level or at the application level. Table
views, by default, use the application level property value.

" Function Call—Specify the JPL procedure or C function.

" Nothing—Do not perform any database updates for this table view.

Transaction Modes

The transaction manager uses a set of transaction modes to help monitor and control
your application's appearance and behavior. Transaction modes are initiated by
associated transaction manager commands.

At a given point in time, the transaction mode determines:

! Which transaction manager commands are available.

! The behavior of the widgets on your screen.

For example, in a typical client screen the Save button is disabled when you first enter
the screen. In this case, the initial transaction mode causes the Save button to be
disabled (grayed) and precludes use of the SAVE command.

Table 36-1 lists the transaction modes set by the transaction manager and the
commands that initiate those modes.

Table 36-1 Transaction modes and the commands that initiate them

Mode Description Command selection

initial Indicates that no processing is in progress. START, CLOSE and FORCE_CLOSE

new Allows new data to be entered. NEW and COPY

update Allows existing data to be modified. SELECT and COPY_FOR_UPDATE

view Allows existing data to be displayed. VIEW and COPY_FOR_VIEW
36-12 Runtime Transaction Manager Processing

Transaction Modes
The following commands do not change the transaction mode, but are available in
certain modes:

! CONTINUE (and its variants) and FETCH are available in update or view modes.

! SAVE is available in new or update modes.

! CLEAR, which clears the screen, is available in all modes and has no effect on
the mode setting.

When you execute a command, the transaction manager checks the current transaction
mode and either changes the mode or reports an error if the current mode is invalid for
the command. Each screen can have its own mode at any given time.

In addition, when the mode changes, the appearance and protection of widgets can also
change depending on the style and class settings for the widget.

Transaction Styles and Classes

As some of the transaction commands are executed, widget behavior is automatically
affected. For instance, data entry type widgets can prevent input, menu choices might
be deactivated, and push buttons can go from gray (inactive) to becoming accessible.
These changes occur because predefined style and class settings exist for each
transaction mode.

The style and class settings give a consistent user interface to an application. Data entry
widgets can have the same focus and protection settings; the same color changes. This
takes place without having to write any source code or set any properties in the screen
editor.

The definitions for the styles and classes are defined in the styles.sty file in the
distributed client.lib and, for JetNet /Oracle Tuxedo applications, in the distributed
server.lib. You can use the predefined styles and classes, or edit style and classes
settings or define your own styles and classes using the styles editor (for details on
using the styles editor, refer to page 23-1 in the Using the Editors).

Applying Styles

In general, when a SELECT command is executed, rows from the database are retrieved
for possible edit, and the transaction mode is set to update. On the screen illustrated in
Figure 36-1 on page 36-4, the title_id and actor_id widgets are automatically
Application Development Guide 36-13

Transaction Modes
protected from input, preventing any edits to primary key fields. The pricecat_dscr,
first_name, and last_name widgets are also protected since they members of
non-updatable table views. The remaining data entry widgets can be updated.

For a given transaction mode, certain types of widget behavior are determined by:

! The widget's class property setting, and

! The transaction style, defined by a styles widget (created and edited via the
styles editor).

Therefore, a widget's class property specification determines the style, that is, the
behavior/appearance of that widget given a particular mode.

Default transaction styles
A transaction style defines a limited set of widget properties. Table 36-2 lists
the property settings for the default transaction styles.

In addition, there are other predefined styles to use with menu selections and push
buttons. For more information on these styles, refer to page 23-6 in the Using the
Editors.

Default transaction classes
Each of a default transaction classes already has a style assigned to each of
the transaction modes. If you specify a new class, you must assign a style to
each of the modes.

Table 36-3 lists a description for the default transaction classes and the style
assignments in each mode. To see how these transaction classes are applied
to the data widgets in the sample screen, refer to Figure 36-3.

Table 36-2 Property settings associated with transaction styles

Style Property Settings

change Allows focus, input, clearing, and validation

edit Allows focus, input, clearing, and validation

show Prevents focus, input, and clearing; allows
validation

visit Allows focus and validation; prevents input and
clearing
36-14 Runtime Transaction Manager Processing

Transaction Modes
Table 36-3 Transaction classes and their style assignments

Transaction class Description initial new view update occ update

non-updatable Widget can only be
entered in initial mode.
Data cannot be edited in
any mode if the widget is a
part of a non-updatable
table view.

edit show visit show show

primary key Data cannot be edited in
update or view modes if
the widget is part of the
table's primary key in an
updatable table view.

edit edit visit visit edit

updatable Data can be edited except
in view mode if the widget
is a member of an
updatable table view and
is not part of the table's
primary key.

edit edit visit change edit
Application Development Guide 36-15

Transaction Modes
Figure 36-3 A sample screen with the default transaction classes.

In the sample screen, the default class assignments are as follows:

! primary key: title_id and actor_id

! non-updatable: first_name, last_name, and pricecat_dscr are members of
table views where the Updatable property is set to No.

! updatable: all remaining widgets is updatable.

You can change the class of any widget by editing the Class property.
36-16 Runtime Transaction Manager Processing

Accessing Transaction Information
Accessing Transaction Information

When you customize transaction manager behavior, you might need to access various
property settings or obtain information about the current transaction. Information is
available via:

! Library functions

! Transaction manager variables

! JPL access to property values

Using Functions to Set Transaction Manager Behavior

Several library functions are used by the transaction manager, but two of the functions
are provided specifically to obtain information about the current transaction—
sm_tm_pinquire and sm_tm_inquire. For example, the name of the current
transaction and the root table view of the current transaction are two of the transaction
attributes. Some of these attributes can be set by calling the functions sm_tm_pset and
sm_tm_iset. For a complete list of the attributes, refer to the functions
sm_tm_pinquire and sm_tm_inquire.

Using Transaction Manager Variables

Table 36-4 lists the transaction manager variables available for transaction event
functions written in JPL.
Application Development Guide 36-17

Accessing Transaction Information
Example of using transaction manager variables

The following event function performs a “logical” delete on a database row. Instead of
physically removing the row from the database, the two slices from the TM_DELETE
event, TM_DELETE_DECLARE and TM_DELETE_EXEC, mark the row as deleted so that it
can be excluded from selection.

proc logicalDeleteEvent (event)
{

Table 36-4 Transaction manager variables for writing transaction event functions

Variable Description Availability

@bi(field)
[occurrence]

Access the before image value of the
specified field and occurrence. field can be
the widget name or field number. The
variable @tm_occ can be used to specify the
current occurrence.

In an event function during
TM_DELETE_EXEC,
TM_INSERT_EXEC, or
TM_UPDATE_EXEC events.

@tm_occ Occurrence number being processed.
Equivalent to sm_tm_inquire (TM_OCC).
Negative value indicates a deleted
occurrence.

In any event function

@tm_occ_type Code reflecting the change, if any, from its
before image. Equivalent to
sm_tm_inquire(TM_OCC_TYPE). Refer to
page 36-26 for the code values.

In any event function

@tm_pocc Parent occurrence number. Equivalent to
sm_tm_inquire (TM_PARENT_OCC).

In any event function

@tm_save_cursor Name of the cursor used for non-SELECT
statements. Equivalent to sm_tm_pinquire
(TM_SAVE_CURSOR).

In any event function

@tm_sel_cursor Name of the cursor used for SELECT
statements. Equivalent to sm_tm_pinquire
(TM_SV_SELECT_CURSOR).

In any event function

Results are unpredictable if these variables are called outside of a transaction event function.
36-18 Runtime Transaction Manager Processing

Accessing Transaction Information
if (event == TM_DELETE_DECLARE)
{

if (@tm_occ < 0)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
UPDATE customers \
SET deleted = 1 \
WHERE cust_id = ::p1

return TM_CHECK
}

}
else if (event == TM_DELETE_EXEC)
{

if (@tm_occ < 0)
{

DBMS WITH CURSOR :@tm_save_cursor \
EXECUTE USING @bi(cust_id)[:@tm_occ]
return TM_CHECK_ONE_ROW

}
}
return TM_PROCEED

}

In this example, the customers table view includes a column named deleted. The
column is used to flag the record so that it is excluded from selection. Also, the use of
@tm_save_cursor supplies the cursor name, @bi obtains the before image value for
cust_id, and @tm_occ supplies the occurrence number.

Using Traversal Properties

In addition to the properties available through the screen editor's Properties window
for each object, there are properties associated with the transaction manager which
contain information about the current traversal tree. These properties, known as
traversal properties, are accessible programmatically using JPL. All transaction
manager related properties are readable at runtime, and some of them are settable as
long as they are not currently participating in transaction.

The traversal properties provide information about the application (or current
transaction), server views, table views, links, and widgets. Some of the properties can
apply to more than one object type and return different information depending on what
is specified. For example, the property sv, when specified for the application with
@app()->sv, returns the name of the server view participating in the current
transaction. When specified for a widget, for example title_id->sv, it returns the
name of the server view associated with the widget title_id.
Application Development Guide 36-19

Accessing Transaction Information
To use traversal properties effectively, you need to know when a table view is also a
server view. A table view is defined as a server view if:

! A sequential link connects the table view to its parent.or

! It is the root table view. To determine the root table view of the current
transaction, call sm_tm_pinquire(TM_ROOT_NAME). The root property is a
screen property and does not necessarily describe an active transaction.

Many of these properties allow you to programmatically iterate through all
occurrences of widgets or table views that are participating in the current transaction
or all occurrences of widgets belonging to a particular table view. In addition, many
properties identify an object (widget, table view, or link) by returning its ID. Panther
converts the ID to a string if one is provided; for example, a widget's field number is
returned if its Name property has no value.

If a table view or link is not in the current traversal tree, no information is available. If
this is specified in a JPL procedure, you receive the message:

Bad field name, #, or subscript.

Table 36-5 lists application-level traversal properties that are available for identifying,
at runtime, the participants associated with the root table view of the current
transaction.

Table 36-5 Application traversal properties

Property Description

field_below[int] Identifies widgets participating in current transaction.

num_fields_below Number of widgets participating in current transaction.

num_svs_below Number of server views participating in current
transaction.

num_tvs_below Number of table views participating in current transaction.

sv Root table view of current transaction.

sv_below[int] Names of server views participating in current transaction.

tv_below[int] Names of table views participating in current transaction.
36-20 Runtime Transaction Manager Processing

Accessing Transaction Information
Reading the Current Transaction

The DB Interactions window, accessible via the screen editor, can illustrate how the
you can monitor and control the processing of table views and server views via runtime
access to properties through JPL.

Figure 36-4 DB Interactions window illustrates the tree of table views, server
views, and their links.

Figure 36-4 shows the current screen having three server views:

! rentals, because it is the root table view, and

! users and titles, because they each have sequential links to their respective
parent table views.

The property num_svs_below provides the number of server views at and below the
specified server view. Therefore, if rentals is specified, the num_svs_below value
is 3 and the sv_below property can provide the names of the server views: rentals,
users, and titles. If customers is specified, the num_svs_below property value
returned is 1 even though customers is part of a server view which has server views
below it, customers itself is not a server view and has no children with sequential
links. The 1 is returned for the customers table view itself.
Application Development Guide 36-21

Accessing Transaction Information
In general, to identify the objects in transaction, that is, the objects participating in the
traversal tree of the transaction that contain a specified table or server view, you might
determine the number of objects in the traversal tree prior to seeking the identity of a
particular object.

Getting and Setting Property Values via JPL

The following JPL procedure illustrates how, on field entry, to determine to which
server view the current field is a member. Given that, the procedure executes the
transaction manager VIEW command for that specific server view.

proc get_sv_query

if K_ENTRY
{

vars value1
value1 = name->sv
call sm_tm_command("VIEW :value1")

}
return

If you use server view-specific properties to refer to a table view that is not a server
view, no error is reported. Instead, it returns the information for that table view; for
example if you use num_svs_below on a table view that is not a server view, instead
of returning the number of server views that participate in the current server view, the
value returned is 1 which is derived from the table view itself.

Table 36-6 Table view traversal properties

Property Definition

bi_status[int] Reports statuses (fetched data, changed data, or empty) of
rows or occurrence in specified table view.

child[int] Names of child table views (from 1 to num_children) in
specified table view.

field[int] Identifies widgets (from 1 to num_fields) in specified
table view.

field_below[int] Identifies widgets (from 1 to num_fields_below) in
specified server view and in its child table views.
36-22 Runtime Transaction Manager Processing

Accessing Transaction Information
key_constant[int] Identifies primary key constants (from 1 to
num_key_columns) in specified table view (updatable
table views only, after SELECT, NEW, COPY or
COPY_FOR_UPDATE command).

key_field[int] Identifies primary key fields (from 1 to
num_key_columns) in specified table view (updatable
table views only, after SELECT, NEW, COPY or
COPY_FOR_UPDATE command).

num_children Number of child table views in specified table view.

num_columns Number of columns in the specified table view, derived
from the number of occurrences of the Columns property.

num_fields Number of widgets in specified table view.

num_fields_below Number of widgets in specified table view and in its child
table views.

num_key_columns Number of widgets that comprise the primary key
(indicated in Primary Key property) of the specified table
view (updatable table views only, after SELECT, NEW,
COPY or COPY_FOR_UPDATE command.

num_sorts Number of widgets in the specified table view that have a
sort_widgets property specifications.

num_sv_fields Number of widgets in specified server view (as identified
by the sv property) or in direct or indirect child table
views connected via server links to the specified server
view.

num_svs_below Number of server views connected to specified server
view; the number includes the specified one and all direct
and indirect child table views connected to parent table
views via sequential links.

Table 36-6 Table view traversal properties (Continued)

Property Definition
Application Development Guide 36-23

Accessing Transaction Information
Identifying a Widget's Table View

A widget must be a member of a table view in order to participate in a database
transaction in order to get values for its traversal properties. The properties listed in
Table 36-7 return the name of the table view to which the widget is a member.

num_tvs Number of child table views connected directly or
indirectly, via server links, to the specified server view (as
identified by the sv property).

num_tvs_below Number of table views, including the specified server
view, that are direct or indirect child table views of the
specified server view.

parent Name of parent table view (if any) of specified table view.
There is at most one parent to any table view; the root
table view of a transaction has no parent.

parent_link Name of link in which specified table view is the child.
The root table view of a transaction has no parent.

source_occ Occurrences in server view that were valid when child
table view was fetched.

sv Name of server view containing specified table view.

sv_below [int] Name of specified server view and all direct or indirect
child server views (from 1 to num_svs_below) to which
it is connected.

sv_field[int] Identifies widgets (from 1 to num_sv_fields) in
specified server view.

tv[int] Name of specified server view and all table views
connected directly or indirectly (from 1 to num_tvs) via
server links to the specified server view.

tv_below[int] Names of table views connected directly or indirectly
(from 1 to num_tvs_below) to the specified table view.

Table 36-6 Table view traversal properties (Continued)

Property Definition
36-24 Runtime Transaction Manager Processing

Accessing Transaction Information
The term server view is defined as the table view containing the specified widget and
is considered to be a server view if it is joined to its parent table view by a sequential
link. If the table view not a server view, the value returned is the closest table view, in
the chain of successive parent table views of the transaction above the specified
widget, that is not joined to its parent table view by a server link. (The root table view
of the transaction, since it has no parent, is never joined to a parent by a server link.
Every widget having membership in a table view in a transaction is a member of some
server view.)

Identifying Links

To identify the link between two table views, use the parent_link property, which
identifies the link that connects a specified table view with its parent table view. Once
you identify of the link, you can obtain its property definitions.

Table 36-7 Widget traversal properties

Property Definition

sv Name of server view containing specified widget.

tv Name of table view containing specified widget.

Table 36-8 Link traversal properties

Property Definition

rel_child Identifies a column belonging to the child table view with
which the link connects to a column belonging to the parent
table view.

rel_op Identifies type of relationship between the parent and child
components of the link: PV_JOIN (refer to page 33-22 for
details on joining two database tables) or PV_LOOKUP (refer to
page 33-46 for details on defining a lookup for validation
links)

rel_parent Identifies a column belonging to the parent table view with
which the link connects to a column belonging to the child
table view.
Application Development Guide 36-25

Accessing Transaction Information
JPL Properties for Transaction Manager Operations

There are additional application properties for other aspects of transaction manager
operations.

In JetNet/Oracle Tuxedo applications, additional application properties are available:

Determining How Screen Data Has Changed

Use the function sm_tm_inquire to determine the current value of TM_OCC_TYPE.
The transaction models use the sm_bi_compare function to query for the type of
change made to a row or occurrence. The values of TM_OCC_TYPE are:

num_relations Number of entries defined in the relations property. Each entry
defines the relationship between a parent and child table view.

Table 36-8 Link traversal properties

Property Definition

Table 36-9 Transaction manager application properties

Property Definition

primary_key_update Generate a SQL UPDATE statement for primary key
changes (instead of a SQL DELETE and INSERT).

Table 36-10 Service request application properties

Property Definition

tm_transaction Determine whether a service is transaction
manager-enabled, and if so, which transaction manager
operation is to be performed.

BI_DELETED Occurrence was deleted.
36-26 Runtime Transaction Manager Processing

Processing Errors in the Transaction Manager
Processing Errors in the Transaction
Manager

A transaction manager command is composed of a series of transaction events. If an
error occurs while processing an event, the TM_STATUS variable is set to a value other
than zero. When the transaction manager completes all the event processing for a
command, it then displays an error message.

This section includes information about:

! How to determine if an error has occurred by using the value of TM_STATUS.

! What happens to a transaction event when an error occurs.

! Controlling error messages issued by the transaction manager.

For a listing of common transaction manager errors, refer to page 10-1. For
information about how event functions deal with errors, refer to page 32-4.

BI_INSERTED New data was entered.

BI_KEY_CHANGED Primary key was edited. The before image and the current
value of a key field are different.

BI_KEY_NULLED Primary key was changed to NULL.

BI_UPDATED Data was updated. The before image and the current value
of a non-key field are different.

BI_UNCHANGED No changes were made.

BI_UNDETERMINED Error occurred since change was undetermined.
Application Development Guide 36-27

Processing Errors in the Transaction Manager
Identifying the Value of the TM_STATUS Variable

You can test for the current value of TM_STATUS by using the function
sm_tm_inquire(TM_STATUS).

The default processing by the transaction manager sets TM_STATUS to -1 if there is an
error, but you can define other non-zero values for errors if needed.

Generally, the transaction manager sets TM_STATUS to a non-zero value only if its
current value is zero. In this way, the value set by the first error is not overwritten by
errors in later events.

Setting the Value of TM_STATUS

TM_STATUS can be set to return a certain value in all conditions or only to return that
value if its previous value is zero.

A transaction model or event function can set the return value unconditionally by
calling:

sm_tm_iset(TM_STATUS, return_value)

However, the database-specific models set the TM_PROPOSE_STATUS parameter:

sm_tm_iset(TM_PROPOSE_STATUS, return_value)

This sets the TM_STATUS variable only if the previous value was zero. This prevents a
non-zero return value resulting from a previous error from being overridden. The
transaction models also use this after calling the function dm_dbms to execute SQL
statements. This preserves non-zero values that might have been set by a error handler
(if some other non-zero value had not already been set in TM_STATUS).

Event Processing after Errors

Most transaction manager commands are subdivided into three transaction requests:

TM_PRE_commandName

TM_commandName

TM_POST_commandName
36-28 Runtime Transaction Manager Processing

Processing Errors in the Transaction Manager
For example, the VIEW command is divided into three requests: TM_PRE_VIEW,
TM_VIEW, and TM_POST_VIEW.

Generally, an error does not prevent the processing of the TM_PRE_ and TM_POST_
requests, but does prevent processing of the “main” request. Even if an error occurs in
TM_PRE_ or TM_POST_ request processing, it does not interfere with table view
traversal. However, traversal for the main request ceases when an error is encountered,
and never even begins if an error is encountered in TM_PRE_ processing. Traversal for
TM_POST_ processing begins immediately after main processing ceases.

Consider the processing of the three requests associated with the VIEW command.
Normally, each table view processes TM_PRE_VIEW. Next, each table view processes
TM_VIEW. Then, each table view processes TM_POST_VIEW. If an error is encountered
during TM_PRE_VIEW, then processing continues to the TM_POST_VIEW request, but no
TM_VIEW processing is done. In particular, this allows TM_POST_VIEW to clean up
actions taken by TM_PRE_VIEW. However, if an error is encountered during TM_VIEW
processing, the processing immediately switches to TM_POST_VIEW.

Processing the Event Stack

When an error occurs (setting TM_STATUS to a non-zero value), transaction events on
the event stack continue to be processed. Since all slices for a request can be pushed
onto the stack at the same time, processing for each slice would occur even if there is
an error.

If there are no events on the stack, then processing continues as if the original event
had failed. You can clear the event stack by calling sm_tm_clear_model_events.

Controlling Error Messages

If the TM_STATUS variable is not zero when sm_tm_command completes its processing
of a command, the transaction manager displays an error message. The content of the
message indicates the first error that the transaction manager encountered.

This is the standard behavior for errors in the transaction manager. You can change this
behavior by setting the following variables:

! TM_EMSG_USED—Controls whether the error message is displayed.

! TM_MSG_TEXT—Unconditionally sets error message text.
Application Development Guide 36-29

Processing Errors in the Transaction Manager
! TM_PROPOSE_MSG_TEXT—Sets error message text only if a message text has
not already been set.

! TM_MSG—Unconditionally sets the error message number.

! TM_PROPOSE_MSG—Sets the error number only if a previous error number was
not set.

Error Message Display

To set whether the transaction manager error message be displayed, use:

sm_tm_iset(TM_EMSG_USED, flag)

If flag is zero, then sm_tm_command displays an error message. If flag is non-zero, then
sm_tm_command does not display an error message, even if an error is encountered.

The most common use of this facility is to disable the transaction manager error
message in cases where the error message has already been reported to the user and the
transaction manager error message is merely a duplicate.

An example of this could be part of a database error handler as illustrated in the
following JPL procedures. The entry procedure is called on screen entry and activates
the error handler. The dberror procedure specifies the content of the error handler and
tests for a connection error. If a database connection does not exist, the error handler
displays the database driver error, but disables the duplicate transaction manager error.

proc entry
DBMS ONERROR JPL dberror

return 0
proc dberror
if @dmretcode == DM_NO_CONNECT
{

call sm_tm_iset(TM_EMSG_USED, 1)
msg emsg "Panther DB: " @dmretcode " " @dmretmsg "%N"\
"Engine Error: " @dmengretcode " " @dmengretmsg}

else
msg emsg "Panther DB Error: " @dmretcode " " \

@dmretmsg "%N"\
"Engine Error: " @dmengretcode " " @dmengretmsg

Error Message Content

You can specify the text of an error message using the following:
36-30 Runtime Transaction Manager Processing

Processing Errors in the Transaction Manager
sm_tm_pset(TM_MSG_TEXT, text)

sm_tm_pset(TM_PROPOSE_MSG_TEXT, text)

Setting TM_MSG_TEXT specifies the content of the message in all conditions. Setting
TM_PROPOSE_MSG_TEXT specifies the content of the message only if a message has not
already been specified.

When an error occurs in a transaction event, the transaction manager always sets
TM_PROPOSE_MSG_TEXT which in turn sets TM_MSG_TEXT only if it is empty. It is the
value of TM_MSG_TEXT that is displayed when sm_tm_command finishes.

The transaction models also use this call after calling dm_dbms to execute SQL
statements. They thus preserve non-empty values that might have been set by an error
handler (if some other non-empty value had not already been set in TM_MSG_TEXT).

To change the message displayed for a transaction manager error, you must set these
error message variables. The error message variables take precedence over the error
number variables.

Error Message Numbers

If no message text has been set by a call to sm_tm_pset or by an error in the
transaction manager itself, error message display can be specified by calling:

sm_tm_iset(TM_MSG, msg_nbr)

sm_tm_iset(TM_PROPOSE_MSG, msg_nbr)

The msg_nbr parameter would correspond to a message number defined in a message
file.

! TM_MSG sets the message number in all conditions.

! TM_PROPOSE_MSG sets the message number if no previous message number has
been established. When sm_tm_command finishes processing the command, the
message corresponding to the specified number is displayed.

The text of associated with error messages can be defined in a message file.

Refer to page 45-2 for details on how to create a message file for your application.
Application Development Guide 36-31

Processing Errors in the Transaction Manager
Suppress Error Messages

To suppress transaction manager messages, set:

sm_tm_iset

(TM_EMSG_USED, flag)

in a customized transaction model, in the database error handler, or in an event
function. If flag is set to a non-zero value, the transaction manager does not display an
error message.
36-32 Runtime Transaction Manager Processing

CHAPTER
37 Processing
Application Errors

While users of your application need to be notified when errors occur, it is also
important to know what is happening on your servers, both during development and at
runtime. Errors that occur remotely may have no meaning to a user, but in most cases,
you want to determine which errors should be posted or broadcast from server to client,
and what information should be displayed that will be most useful to a user of your
application.

Panther provides global variables and hook functions to help you manage errors that
result from requests made to a database. Default error handlers are installed to log
errors on your server from Panther's database drivers and from the database engine. In
addition, you can write (in JPL or C) and install customized error handlers. With a
single JPL procedure, you can change the way errors are handled and control which
messages are logged.

This chapter discusses:

! Built-in handlers for logging database errors that occur on the server; and the
built-in error handler for handling database errors that occur when the client
makes direct calls to a database.

! Global variables that contain error and status information from Panther's
database drivers and from the database engine.

! Database hook functions and information for writing your own hook functions.

! Custom database error handlers for your application.
Application Development Guide 37-1

Default Error Handlers
Default Error Handlers

The behavior of the default error handlers depends on where the database interaction
occurs, that is, on which agent (client or server) and whether, particularly for servers,
the application is in development or production.

Figure 37-1 By default, database errors are logged on the server. The application
client outputs database errors only if database calls were made directly from
client to database.

When database requests are submitted to the database via a service request from an
application server, error processing takes place on the server. Therefore, there is no
direct output to the client. To ensure that your application reports these errors, error
handlers are installed on the server at initialization. The handlers let you monitor the
results of DBMS events on the server by logging server activity to a central event log.
37-2 Processing Application Errors

Default Error Handlers
Depending on the outcome, you might also want to display pertinent information on
the client by including status/error information with service call results (refer to
page 26-1 for information on displaying messages to a user).

If calls are made directly to a database from the client, the Panther default hook
function provides output directly to the user.

Server Activity

Panther installs different default handlers for the development environment and for
your production application. The handlers log messages to the central event log. One
handler logs each DBMS command, the other logs errors if they occur as the result of
DBMS commands.

The default development handler for the DBMS ONENTRY function is
sm_tp_dbms_cmd_log, which logs each DBMS command. To minimize overhead and
since no logging of commands is required at runtime, no handler is installed for
production applications.

The default development and production error handler for the DBMS ONERROR function
is sm_tp_dbms_error_print_all which logs all DBMS command errors to the central
event log.

You can override the default handlers by installing your own function to handle errors.
The application can also install an exit function to process all error and status
information and to display this information in the application as well as log it to the
central event log. Writing and installing your own handler is covered later in this
chapter.

Client Output

Panther installs a default error handler which is used when executing DBMS commands
directly from the client to a database, that is, without access to the request broker. In
general, direct access to the database is not recommended in three-tier architecture
since your application cannot take advantage of three-tier features, such as routing,
during basic client/server processing.

If an error occurs, the default error handler displays the following information in a
dialog box:
Application Development Guide 37-3

Variables for Logging Error and Status Information
! An engine-independent error message from Panther's database driver.

! The first 255 characters of the statement which caused the error.

! The engine that reported the message, if applicable.

! The engine's error number and error message, if applicable.

Figure 37-2 Sample error message from the client's default error handler.

For this type of error, the default error handler returns a -1 to its caller. If an error
occurs while executing JPL, Panther aborts the JPL procedure where the error
occurred. An aborted JPL procedure always returns -1 to its caller.

An application can override the default handler by installing its own function to handle
errors. It can also install an exit function to process all error and status information and
to display this information in the application.

Variables for Logging Error and Status
Information

Panther supplies several predefined variables where it stores database error and status
data for the application. These global variables (begin with the characters @dm) are
automatically defined at initialization and maintained by Panther.
37-4 Processing Application Errors

Variables for Logging Error and Status Information
Before executing a DBMS statement, Panther clears the contents of all DBMS global
variables. After executing a DBMS statement, Panther updates these variables with any
error, warning or status information returned by the engine.

In addition to engine-specific codes and messages, Panther also supplies
engine-independent codes and messages. These messages are defined in dmerror.h.

The variables and their values are available in JPL and in C via Panther library
functions like sm_n_getfield and sm_n_fptr.

Table 37-1 Database global variables

Variable Description

@dmretcode Status of the last executed DBMS statement; value is 0 or one
of the codes defined in dmerror.h.

@dmretmsg Engine-independent message associated with last executed
DBMS statement; value is either empty or one of the messages
(defined in Panther's message file. If @dmretcode is 0, this
variable is empty.

@dmengerrcode Engine-specific error code for last executed DBMS statement;
value is 0 (engine did not detect any errors) or an
engine-specific code.

@dmengerrmsg Engine-specific error message for last executed DBMS
statement. If @dmengerrcode is 0, this variable is empty.

@dmengwarncode Engine-specific warning code or bit setting for last executed
DBMS statement. If empty, the engine did not detect any
warning conditions.

@dmengwarnmsg Engine-specific warning message for last executed DBMS
statement. If @dmengwarncode is a byte or is blank, this
variable is empty.

@dmengreturn Return code from last executed stored procedure; value is
either blank (engine did not supply a return code) or an
integer.
Application Development Guide 37-5

Database Error Event Functions
For more information on these variables, refer to page 12-1 in the Programming
Guide.

Database Error Event Functions

Panther provides the following database-specific error event functions which are
invoked when specific database events occur:

The error event functions receive three arguments:

! A copy of the first 255 characters of the command line. If the command is
executed from JPL, this is the first 255 characters after the JPL command word
DBMS or DBMS SQL.

! The name of the current engine. If the command used a WITH ENGINE or WITH
CONNECTION clause, the argument identifies this engine. If no WITH clause is
used, the argument identifies the default engine.

@dmrowcount Number of rows fetched to Panther variables by last SELECT
or CONTINUE statement. It can also contain the number of
rows affected by INSERT, UPDATE or DELETE statements.

@dmserial Engine-generated value for a serial column; value is 0 or an
appropriate serial value for the column.

Table 37-1 Database global variables

Variable Description

ONENTRY Called before executing any DBMS command from JPL or C.

ONEXIT Called after executing any DBMS command from JPL or C.

ONERROR Called if an error occurs while executing any DBMS command
from JPL or C.
37-6 Processing Application Errors

Database Error Event Functions
! A context flag identifying why the function was called. For an ONENTRY
function, its value is 0; for an ONEXIT function, the value is 1; and for an
ONERROR function, the value is 2.

ONENTRY Function
Before executing a DBMS command from JPL or C, Panther executes the
application's installed ONENTRY function. An ONENTRY function is useful for
logging or debugging statements. The default handler for development
servers is sm_tp_dbms_cmd_log which logs each command to the central
event log.

If you are supplying your own ONENTRY function, you can also use it to
modify the Panther environment, for instance, to remap cursor control keys
or change protection-type properties on widgets on client screens with a direct
connection to a database.

ONEXIT Function
After executing a DBMS command from JPL or C, Panther executes the
application’s installed ONEXIT function. An ONEXIT function is useful for
logging or debugging statements. This function is also useful for checking
error and status codes after each command.

If you are supplying a custom ONEXIT function, you can use it to modify the
Panther environment, for instance, to remap cursor control keys or change
protection-type properties on widgets on client screens with a direct
connection to a database.

ONERROR Function
If an error occurs in the database driver while executing a DBMS command
from JPL or C, Panther executes the application's installed ONERROR function.
All errors are logged to the event log with the default handler
sm_tp_dbms_error_print_all. An ONERROR function can log the values
of the global DBMS error variables. It might also log the text of the command
that failed.

If the error occurred while executing a command from JPL, the ONERROR
function determines whether control is returned to the procedure or to the
procedure's caller.

If you are using JPL, it is recommended that you install an ONERROR function.
This ensures consistent error handling throughout the application and reduces
the amount of code needed to handle errors. If an ONEXIT function is also
installed, Panther calls the ONEXIT function before the ONERROR function.
Application Development Guide 37-7

Database Error Event Functions
Writing an Error Event Function

You can write database error event functions in JPL or C.

A JPL error event function is installed as follows:

DBMS { ONENTRY | ONEXIT | ONERROR } JPL entryPoint

where entryPoint is an entry point to a JPL module. The entry point can be a
procedure name, a file name, or the name of your custom error handler. Refer to the
JPL section of the Programming Guide for more information.

A C error event function is installed as follows:

DBMS { ONENTRY | ONEXIT | ONERROR } CALL function

where function is a prototyped function that takes three arguments: two strings and an
integer. For example, the following entry in the pfuncs structure installs myfunc as a
prototyped function that returns an integer:

static struct fnc_data pfuncs[] =
{

...
SM_INTFNC("myfunc(s,s,i)", myfunc),
...

};

For more information on installing prototyped functions, refer to page 44-9.

To turn off a custom error event function and reinstate the default handler, execute the
command with no arguments. For example:

DBMS ONERROR

For more information and examples of each event function, refer to page 11-42 in the
Programming Guide.

ONENTRY

The return code from an ONENTRY function is ignored if the current command
was executed from JPL. If the command was executed from C, the return code
is returned to the calling function. It is recommended that this function return
0.

ONEXIT

The return code from an ONEXIT function is ignored unless an error occurred
while executing a DBMS command using JPL. If the return code from the
37-8 Processing Application Errors

Custom Error Handlers
function is non-zero, Panther aborts the JPL procedure where the error
occurred and returns -1 to the caller. If the command is executed from C, the
return code is returned to the calling function.

If the application is also using an ONERROR function, the return code from the
ONERROR function overrides the return code from the ONEXIT function.

ONERROR

If an application is using an installed error handler, the error handler
determines the handling for errors that occur while using JPL.

If an error occurs in Panther's database interface while executing JPL, a
non-zero return code aborts the JPL procedure where the error occurred. The
procedure's caller (either Panther or another JPL procedure) gains control. If
the return code is 0, the JPL procedure resumes control; Panther executes the
next statement in the JPL procedure.

If an error occurs in Panther's database interface while executing a C function,
the ONERROR return code is returned to the calling function.

The return code from an ONERROR function overrides the return code from an
ONEXIT function.

Custom Error Handlers

It is recommended that your Panther application use an error handler. If the default
handlers do not accomplish what you desire, you can write a custom error handler in
JPL or C. In this way you can customize the error messages appearing in your
application. You can use any of the global variables as part of an error handler. For
example, it can use @dmretmsg to display a message from Panther's database driver or
@dmengerrmsg to display an engine-specific error message. It might also display its
own messages depending on the values in @dmretcode and @dmengerrcode.

The procedure's return code determines whether or not JPL continues or aborts the
procedure it was executing.

There are two classes of errors in Panther's database drivers:
Application Development Guide 37-9

Custom Error Handlers
! Syntax or logic error in a DBMS statement—This might include: executing a
DBMS command that is not supported by the current engine, using an invalid
keyword, executing a cursor that has not been declared, or failing to declare a
connection before executing a DBMS statement that requires one. These errors
are detected by Panther's database driver which updates the global variables
@dmretcode and @dmretmsg.

! Engine error—This might include: attempting to SELECT from a non-existent
table or column, inserting invalid data in a column, logging on with invalid
arguments, or attempting to connect to a server that is not running. These errors
are detected by the engine and passed to Panther's database driver which
updates the global variables @dmretcode, @dmretmsg, @dmengerrcode,
@dmengerrmsg, @dmengwarncode, and @dmengwarnmsg.

There are also Panther and JPL errors which are not a part of Panther's database driver.
A JPL procedure might fail because of JPL syntax or colon preprocessing errors. If a
JPL error occurs, Panther outputs an error message describing the error, the source of
the JPL statement, and the statement that failed. Furthermore, it aborts the JPL
procedure where such an error occurred and returns control to the procedure's caller. It
is assumed that JPL and Panther errors are detected and corrected during application
development. The only time that an application might need special handling for these
errors is during transaction processing. For more information, refer to page 28-10.

An ONERROR function overrides Panther's default DBMS error handler. The function
controls the display of error messages. If the error occurred while executing a
command from JPL, the ONERROR function also determines whether control is returned
to the procedure or to the procedure's caller.

If you using JPL, install an ONERROR function. This ensures consistent error handling
throughout the application and reduces the amount of code needed to handle errors. If
an ONEXIT function is also installed, Panther calls the ONEXIT function, then the
ONERROR function.

Example

This procedure checks if the error is DM_ALREADY_ON. In this case, it logs a message
and returns 0. For all other errors, it checks for an engine error code. If there is an
engine error, it logs the statement and engine-specific error message.

proc screen_entry
DBMS ONERROR jpl dbi_error_handler
...
37-10 Processing Application Errors

Custom Error Handlers
return

proc dbi_error_handler (statement, engine)

if (@dmretcode == DM_ALREADY_ON)
{

msg emsg "You are already logged on."
return 0

}

if (@dmengerrcode != 0)
{

msg emsg @dmretmsg "%N" "Statement :statement" "%N" \
":engine Error :@dmengerrcode :@dmengerrmsg"

}
else
{

msg emsg "Application Error: :@dmretmsg " \
"See the DBA for assistance."

}
return 1

The following example illustrates how a database engine error is logged to the central
event log.

proc dbi_error_handler(statement, engine)
{

vars message1, message2, message3

message1 = "DBMS ERROR " ## statement
message2 = "Database code " ## @dmretcode ## \

", Database message " ## @dmretmsg
message3 = "DBMS code " ## @dmengerrcode ## \

", DBMS message " ## @dmengerrmsg

log message1
log message2
log message3

// On DBMS failure, terminate service request with failure
service_return failure ()

}

Application Development Guide 37-11

Custom Error Handlers
37-12 Processing Application Errors

Part VI Testing Your
Application

After building the application, you need to test it. This section gives instructions on
using Test Mode in the editor and on using the debugger. It also lists some guidelines
for optimizing your application.

Testing Application Components

Using the Debugger

Identifying Users

Optimizing Applications

CHAPTER
38 Testing Application
Components

In the process of development, Panther allows you to simulate how your application
behaves and appears to end users via test mode. From test mode, you can return to the
editor, make changes to your application, and resume testing without exiting from the
executable.

There are two Panther executables, prodev and prorun (prodev32/64.exe and
prorun32/64.exe in Windows).

! When starting prodev, you are in the editor where you can begin creating your
Panther application. To test an application component, bring focus to it and
choose File→Test Mode (or the Test Mode button on the toolbar). The status
bar displays Test Mode.

! When starting prorun, you are in application mode. Access to the editor is not
available.

Test Mode Menu Bar

Once test mode or application mode is entered, the menu displays the default
application toolbar. If your application has its own menu bar/toolbar, the Panther menu
is not displayed.
Application Development Guide 38-1

Test Mode Menu Bar
The following menu options are available while in test mode:

Edit menu

Provides basic editing commands (not available in character-mode platforms) that you
can use while you are testing your applications.

Options menu

Includes the following options:

! Top Screen—Accesses the top-level screen of your application, or the initial
screen displayed when you entered test mode. This option clears all other
screens from the form and window stacks.

! System Commands—Available only in character mode platforms. Allows you
to execute operating system commands from within Panther. Enter the
command, and choose OK to execute it. When the command terminates, press
any key to return to test mode.

! Open Screen —Invokes the dialog box where you can choose to open any
screen—as a form, a window, or sibling window. This allows you to jump
anywhere within your application.

! Editor —Invokes the editor.

! Debugger —Invokes the Panther debugger. For instructions, refer to Chapter 39,
“Using the Debugger.”

Keys menu

Provides access to Panther's logical keys and their functions. These are useful if your
application screen does not provide other methods for carrying out commands, such as
Exit, Transmit, Switch scope, or Zoom keys.

Windows menu

Allows you to bring focus to any screens that are currently open.
38-2 Testing Application Components

Test Mode Menu Bar
Transaction menu

Provides access to transaction manager commands that you can use with screens that
are derived from your database. The commands are:

! View—Select one or more records for display purposes only.

! Select—Select one or more records for possible update.

! Continue—Fetch the next group of selected records (in two-tier applications
only).

! New—Close the current transaction (if any), and clear existing data, to allow a
user to enter information to create a new record.

! Copy—Close the current transaction (if any), without clearing existing data, to
allow a user to create a new record from the existing data.

! Save—Update the database to reflect the changes or additions made by a user.

! Close—Terminate the transaction in progress

! Clear—Clear transaction data (that is, data entered in a field) from the screen.
This applies only when adding a new record or when entering criteria for
selecting records.

Refer to Chapter 34, “Specifying Transaction Manager Commands,” for information
on writing transaction manager commands.

Database menu

Allows you to connect to, as well as disconnect from, databases. The Trace On/Off
command allows you to toggle the display of SQL statements that are automatically
generated by way of the transaction manager commands.

Refer to Chapter 33, “Using Automated SQL Generation,” for information on setting
properties that take advantage of Panther's automatic SQL generation.

Middleware Session menu

(JetNet/Oracle Tuxedo only) Allows you to open, as well as close, a middleware
session.
Application Development Guide 38-3

Testing Application Components
Report menu

Allows you to run, view or print out a report previously saved in a metafile (refer to
“Running Reports from the Report Menu” on page 9-1 in Reports).

Testing Application Components

You can test your client screens and service components through a direct or remote
connection to the database. You need to be in test mode to test how your application
components and their contents function.

Notes: If the screen you are testing references other screens, the referenced screens
will not be viewable unless you saved them to a library before entering test
mode. Also, if you go into test mode without saving changes to the referenced
screens, you will only see the last saved version of the referenced screen and
not the unsaved changes.

When you want to test a screen, you bring focus to it and choose File→Test Mode (or
the Test Mode button on the toolbar). If you have other open screens in your
Workspace with unsaved changes, you are prompted:

Do you want to save changes to <screenName>@libraryName?

Choose the desired action:

! Yes—Saves the screen with its given name to the appropriate library.

! Yes to all—Saves all open screens (except for the one you want to test and
untitled screens).

! No—Does not save the changes, but the changes are not lost. You can save the
changes when you return from Test mode.

! No to all—Does not save the changes of any of the open screens, but the
changes are not lost. You can save the screens when you return from Test mode.

! Cancel—Cancels the test request.
38-4 Testing Application Components

Testing Application Components
The active screen opens in Test mode.

Notes: Test mode is virtually identical in appearance and function to Application
mode, except that when you exit Test mode you return to the screen editor.

Testing Screens and Service Components

In a two-tier architecture, you need a direct connection to the database to test your
screens; however, in a three-tier architecture, you need a remote connection to the
database to completely test your client screens.

Before you test your three-tier client screens, you must save the corresponding service
components and selection service components (if any) to their appropriate libraries.
For JetNet and Oracle Tuxedo applications, you must also define the services in the
JIF.

You can test client screens and service components via a direct or remote connection
to the database. You can test your service components with a direct database
connection to check whether the appropriate data is passed from the database. A
remote database connection is established by configuring and running servers which
access the database and provide services.

Service Components

You can test a service component to see if the appropriate data is passed from the
database to the service component. This requires a direct database connection rather
than connecting to the database by way of the application server.

How to Test a Service Component with a Direct Database
Connection

1. Bring focus to the screen you want to test by clicking on it.

2. Choose File→Test Mode (or the Test Mode button on the toolbar).

The active service component opens in Test mode. Any changes (saved or not)
made to the service component are reflected in Test mode.

3. Choose Database→Connect to connect to the database.
Application Development Guide 38-5

Testing Application Components
While in test mode you can:

" Test database transactions via the Transaction menu option.

" If the Panther debugger is linked into your application or authoring
executable, invoke the debugger window by pressing the DBUG logical key.
(Refer to Chapter 39, “Using the Debugger,” for more information.)

4. Choose Options→Editor or press the Panther Exit key twice to exit Test mode.
You return to the editor, with the workspace restored to the way it was when you
exited to Test mode.

Save the service component to the server library and then you can test it with client
screens.

Three-tier Client Screens

The main purpose of testing a client screen with a remote database connection is to see
whether service requests are carried out and the appropriate data is returned to the
client. However, to test a client screen in this manner, you must do the following as
prerequisites:

! Test and save the corresponding service component to the server library.

Notes: It is recommended that you adopt a naming convention that identifies client
screens with their corresponding service components or vice-versa.

! Update the JIF as follows (JetNet/Oracle Tuxedo only):

" Ensure that the service name specified in the JIF is the same as the service
name specified in the Service property for table view widgets and link
widgets on the client screen and selection screens (if any).

" Check to see if the procedure name is accurate.

" Check to see if the name of the service component is accurate.

" Ensure that the service routine specified in the Service property for table
view widgets on the client screen and selection screens (if any) matches the
transaction type specified in the JIF.

Now, test the client screen.
38-6 Testing Application Components

Testing Application Components
How to Test Client Screens with a Remote Database Connection

1. Bring focus to the screen.

2. Choose File→Test Mode (or the Test Mode button on the toolbar).

The active screen opens in Test mode.

3. Choose Middleware Session→Connect to connect to the middleware if you are
not already connected.

While in test mode you can:

" Try out the screen to see if it operates as planned. Check the tabbing order,
data entry formats, control strings, expressions, etc.

" Invoke screens attached to the current screen; however, unsaved changes
made to other screens are not reflected in Test mode.

" Test a menu bar and toolbar that you attached to this screen.

" Test database transactions via the Transaction menu option, Commands
menu option (if you specified a menu bar), or push buttons.

" If the Panther debugger is linked into your application or authoring
executable, invoke the debugger window by pressing the DBUG logical key.
(Refer to Chapter 39, “Using the Debugger,” for more information.)

4. Choose Options→Screen Editor or press the Panther Exit key twice to exit Test
mode. You return to the screen editor, with the workspace restored to the way it
was when you exited to Test mode.

Two-tier Client Screens

The main purpose of testing a client screen with a direct database connection is to test
database transactions via the Transaction menu. You check to see if the appropriate
data is passed from the database to the client screen.

How to Test Client Screens with a Direct Database Connection

1. Bring focus to the screen by clicking on it.

2. Choose File→Test Mode (or the Test Mode button on the toolbar).
Application Development Guide 38-7

Testing Application Components
The active screen opens in Test mode.

3. Choose Database→Connect to directly connect to the database if you are not
already connected.

While in test mode you can:

" Try out the screen to see if it operates as planned. Check the tabbing order,
data entry formats, control strings, expressions, etc.

" Invoke screens attached to the current screen; however, unsaved changes
made to other screens are not reflected in Test mode.

" Test a menu bar and toolbar that you attached to this screen.

" Test database transactions via the Transaction menu option, Commands
menu option (if you specified a menu bar), or push buttons.

" If the Panther debugger is linked into your application or authoring
executable, invoke the debugger window by pressing the DBUG logical key.
(Refer to Chapter 39, “Using the Debugger,” for more information.)

4. Choose Options→Editor or press the Panther Exit key twice to exit Test mode.
You return to the editor, with the workspace restored to the way it was when you
exited to Test mode.

Closing and Exiting

How to Close a Screen, but Remain in the Editor

1. Bring focus to the screen by clicking on it.

2. Choose File→Close→Screen.

If you made changes to the screen, and have not saved them, the following
message appears:

Do you want to save changes to <screenName>?

" Choose Yes to save the screen. If the screen is new, the Save As dialog box
opens where you can name the screen in a library.

" Choose No to close the screen without saving your changes.

" Choose Cancel to keep the screen open.
38-8 Testing Application Components

Testing Application Components
How to Exit from the Editor

1. Choose File→Exit.

If you have changed any open screens and have not saved them, Panther prompts you
to save them now.

How to Exit Application Mode

Choose Close or Quit from the system menu.
Application Development Guide 38-9

Testing Application Components
38-10 Testing Application Components

CHAPTER
39 Using the Debugger

Panther's debugger provides you with the ability to view and analyze all application
components. You can view the application's execution from various perspectives with
varying degrees of detail. You can examine and debug client and server components.
You can:

! Step through events, stopping to examine data.

! Set breakpoints at events or JPL code on which to interrupt program execution.
Breakpoints can be set on screen and widget events, program execution events
such as database and transaction manager events, as well as source code
locations. Breakpoints on screen, widget, group, and grid events can be further
restricted to specific subevents.

Note: Events in the JetNet middleware API are not recognized in the debugger.

! Examine application data in Panther variables and arrays, screen and service
component properties, widget properties, and JPL variables or expressions

! Step through your JPL code. You can view source code modules from open
libraries, memory resident modules, public JPL modules, the window stack, and
the program stack—as well as set breakpoints on their contents.

! Call installed functions and JPL procedures and evaluate a JPL expressions.

! Stop at a change in a variable or expression.

! Review debugger activity in the log file. Debugger messages can be written to a
user-specified log file.
Application Development Guide 39-1

Debugging Services and Service Components
This chapter describes the features of the Panther debugger and how to use it. If you
are developing a two-tier application, the debugger is already linked in with your
development executable (prodev) so you can debug client screens. If you are
developing a JetNet or a Oracle Tuxedo application, you need to run a standard server
in debug mode to debug service components and services.

Debugging Services and Service
Components

If you are developing a JetNet or Oracle Tuxedo application, you can run a debuggable
server so that you can monitor what the server is doing while it is processing service
requests. Running the debugger on a server lets you see the service components that
are on the server machine.

You can run the debugger on a server provided the following two conditions are true:

! A standard server is initialized in debug mode. For information on initializing a
debuggable server in JetNet, refer to “Server Details” on page 3-22 in
JetNet/Oracle Tuxedo Guide; if you are using Oracle Tuxedo, refer to
“Initializing Servers” on page 8-17 in JetNet/Oracle Tuxedo Guide.

! The server environment file sets the DISPLAY variable to tell the X server
where to display debuggable service components. For example:

DISPLAY=mimosa:0.0

When running a debuggable server, your client might timeout waiting for a response
from the server while you are in debugging mode.

To ensure that the client does not timeout while debugging the server:

Set the appropriate timeout options in your client code. For example:

! For xa_begin, set the TIMEOUT parameter to specify a large or infinite timeout.

! For service_call, use the NOTIMEOUT option to prevent blocking timeouts.
39-2 Using the Debugger

How the Debugger Works
! For wait, set the TIMEOUT parameter to specify a large or infinite timeout.

The application's default blocking timeout is established for the application as part of
the server configuration. For information on setting the Default Blocking Timeout
parameter, refer to “Default Blocking Timeout” on page 3-12 in JetNet/Oracle Tuxedo
Guide. For Oracle Tuxedo users, refer to your Oracle Tuxedo documentation for
information on SCANUNIT and BLOCKTIME configuration parameters.

How the Debugger Works

Many debuggers do their work by invoking the applications they analyze. The Panther
debugger is invoked by your application, that is, by Panther itself. Panther notifies the
debugger of each significant event in the application, as it occurs. Each time it is called
in this way, the debugger analyzes the event and saves any information it needs. In
most cases, the debugger then immediately returns control to the application. Some
events, however, cause it to emerge or awaken from the background to halt the
application and display its state.

Panther is shipped with the debugger already linked in for client executables. To
enable debugging for server executables, your standard server (refer to “Server
Details” on page 3-22 in JetNet/Oracle Tuxedo Guide) must be initialized as a
debuggable server.

Starting and Stopping the Debugger

The debugger runs in the background during test and application modes, you can direct
the debugger to run automatically, or you can manually break execution. The debugger
follows the directions you give it and awakens accordingly—for instance, if an event
triggers a breakpoint you have defined, or if the value of an expression you are
monitoring has changed. The debugger comes to the foreground and awaits your
action: provide additional analysis of the application, modify data, set breakpoints, or
put it back to sleep and return control to your application.
Application Development Guide 39-3

How the Debugger Works
To enable the debugger from the screen editor:

Choose Options→Enable Debugger. This instructs the debugger to awaken
immediately upon entry into test mode.

To enable and access the debugger in test or application mode:

Choose Options→Debugger, or press the DBUG key. To put the debugger to sleep and

return to test mode, choose File→Resume Application.

If your application's menu bar is displayed, you can enter the debugger by pressing the
DBUG key or switch menu bar scope by pressing the SFTS logical key, from where you
will have access to Options→Debugger.

To end a debugger session

Do either of the following:

! Choose File→Resume Application to put the debugger to sleep and continue
running/testing your application. Panther preserves the debugger state; if the
debugger is reentered, all breakpoints and configuration preferences remain
unchanged. Moreover, all breakpoints and break events are ignored until you
explicitly reactivated the debugger.

! Choose File→Exit Application to about the current JPL execution and quit the
debugger. If you entered the debugger from application mode, you can choose
to resume in application mode or exit Panther to the operating system. If you
were in test mode, you return to the screen editor. Use this option to break out
of infinite loops.

Views into Your Application

The debugger provides several windows to monitor application execution, each
offering a different view into the application. The windows can be opened and closed
from the debugger's View menu by choosing from these options:

Status
Displays the current debugger operation or event being traced.

Source Code
Displays screen- or widget-level JPL, library or external module JPL in the
Source Code window. You can set or unset a breakpoint at the current line in
39-4 Using the Debugger

How the Debugger Works
the displayed code (at the cursor position) by choosing Breaks→Toggle
Location Break or by double clicking anywhere in the line. Breakpoints are
identified by an asterisk following the line number. For more information on
using the Source Code window, refer to page 39-11, “Viewing JPL.”

Breakpoints
Lists all breakpoints. In normal mode, predefined breakpoints are listed:
screen events, LDB events, control strings, JPL trace, field events, group
events, installed functions, database events, TM events and grid events.
Location breakpoints that are set as well as breakpoints you create in expert
mode are also listed. In expert mode, the predefined list of breakpoints are not
displayed. A plus sign (+) preceding a breakpoint indicates active, and a
minus sign indicates inactive.

Figure 39-1 The Breakpoints window shows currently identified breakpoints.

Activate or deactivate a selected breakpoint by choosing Breaks→Enable or

Breaks→Disable or by double clicking on the item. Use Breaks→Select All if you
want to enable or disable all listed breakpoints.

Choose Breaks→Show Source to view the source code associated with a location
breakpoint.

For more information on setting breakpoints, refer to page 39-20, “Setting
Breakpoints.”
Application Development Guide 39-5

Configuring the Debugger
Data Watch
Monitor the values of any variables, JPL expressions, or values of properties.
Enter the name of the variable or the expression. The values are updated and
displayed as execution proceeds.

Event Stack
Displays the hierarchy of nested calls to procedures and/or control strings
during JPL or control string execution.

Figure 39-2 View the call hierarchy in the Event Stack window.

Pending Keys
Displays which keys are pushed onto the input queue.

Configuring the Debugger

You set debugger operation preferences via the Options menu, and they are saved in
the file prodebug.cfg in the current working directory. You should not manually
modify this file.

Setting Log File Preferences

Debugger activity can be logged to a user-specified file.

To access the log file preferences:

Choose Options→Status Log. The Status Log Options dialog box opens.
39-6 Using the Debugger

Configuring the Debugger
Figure 39-3 The Status Log Options dialog allows you to specify your log file
preferences.

From the Status Log options dialog, you can:

! Enable the log file—from the start of the session, all events are logged.

! Specify the log file to which debugger activity messages should be logged. The
default file is prodebug.log in the current working directory.

! Specify whether or not to append to the existing log file or overwrite it.

! Specify whether to log a date/time stamp to each new entry in the log file.
Setting a date/timestamps can affect performance on some platforms.

To view the contents of the log file:

Choose File→Open→Log File anytime while using the debugger.

Setting Debugger Preferences

The following debugger preferences are available from the Options menu:

Save Preferences on Exit
Saves window configurations and other debug settings that are in effect when
you exit this session. This option also saves the contents of any Data Watch
and Breakpoints settings.
Application Development Guide 39-7

Debugger Menu Bar
Expert Mode
Runs the debugger in expert mode.

Auto Raise/Close
Provides automatic window management. When set, the debugger determines
which windows contain any relevant data at the moment, and raises them
accordingly. It also closes those that were open during the last debugger
invocation if they do not have any relevant data.

When this option is disabled, the debugger, when awakened, restores its
windows exactly as you left them.

Animation
Executes the debugger in animation mode. The debugger shows changes to
its windows as they occur, while waiting for a breakpoint to be executed.

Trace Database Warnings
Includes all warnings in database events tracked by the debugger.

Trace TM Warnings
Includes all warnings in transaction manager events tracked by the debugger.

Debugger Menu Bar

The debugger menu bar provides easy access to debugging operations. Following is a
brief overview of the File, View and Tools menu options. The features controlled by
the remaining menu options are described in their own task-defined sections; a
cross-reference is defined for these options.

Figure 39-4 The debugger menu bar includes a Tools menu option when the
debugger is run in expert mode.
39-8 Using the Debugger

Debugger Menu Bar
File

The operations associated with the File menu are:

Open
Allows you to open a source module, the current source code, or the log file.
Information is displayed in the Source Code window. For more information
on Source Code window operations, refer to page 39-11, “Viewing JPL.”

Close Window
Closes the active window. If you attempt to close the last remaining window,
the debugger prompts for a confirmation that you want to quit the debugger.

Save Preferences
Saves window configuration and other debug settings that are in effect at the
present time for future debugger sessions. With this option, you can establish
overall preferences, but make changes in the present session that will not
affect those saved. Contrast with Options→Save Preferences on Exit, which
saves them at the state they are in when you exit. For more information on
setting debugger configurations, refer to page 39-6, “Configuring the
Debugger.”

Resume Application
Puts the debugger to sleep and lets you continue executing your application.

Exit Application
Exits the debugger; terminates execution of your application.

Tools

The Tools menu is only available when running the debugger in expert mode, and
includes the following features:

Application Data
View and access any variable displayed in the Source Code window. For
information on using the Application Data window, refer to page 39-27,
“Modifying and Monitoring Application Data.”

Call
Invokes the Call Installed Function window where you can enter the name of
any available prototyped function along with any arguments. The return
Application Development Guide 39-9

Debugger Menu Bar
value, if any, is displayed in the status window after the function returns. The
function call is logged to the log file if it has been enabled.

Sort Breakpoints
Sorts all breakpoints listed in the Breakpoints window. Activated breakpoints
are listed alphabetically, followed by inactive breakpoints.

Sort Watch Data
Sorts all variables and/or expressions listed in the Data Watch window. For
further information on this window, refer to page 39-26 .

Write Windows to Log
Writes the contents of debugger windows to the log file. The log file must be
enabled; to enable the log file, choose Options→Status Log Options and set
Enable Status Log on the Status Log Options dialog.

View

The View menu provides several windows to monitor your application's execution.
Refer to page 39-4 for a full description of the options available from the View menu.

Windows

Options available from the Windows menu allow you to:

! Bring a chosen window into focus.

! Arrange debugger windows.

! Choose an application window to examine its programmatic components. For
information on viewing application screen information, refer to page 39-16.

Edit

The Edit menu commands provide standard file editing operations, such as Copy,
Paste, and string search commands Find and Find Next, that you can use when
accessing text data in the Source Code window. For more information on the Source
Code window, refer to page 39-11.
39-10 Using the Debugger

Viewing JPL
Trace

The Trace options allow you to step through program execution one event or
breakpoint at a time. For more information on tracing, refer to page 39-19.

Breaks

Breaks menu commands let you establish and manipulate breakpoints in your
application—places where execution will be interrupted and the debugger will assume
control. For further information on setting breakpoints, refer to page 39-20.

Options

Provides options for setting debugger preferences. For information on debugger
preferences and configuration, refer to page 39-6 .

Viewing JPL

To access JPL in libraries, the module must be in binary format and must also include
the JPL source code. For information on compiling JPL source code, refer to
page A-20.

To view screen- and widget-level JPL validation, or library JPL modules:

Choose View→Source Code. The Source Code Window opens.
Application Development Guide 39-11

Viewing JPL
Figure 39-5 The Source Code window displays a JPL module with a breakpoint
set at line 48.

The Source Code window can display any JPL code contained within your application.
It can be:

! Current source code — Source currently being executed. Current source code is
automatically displayed when the debugger is stepping through it.

! Active source code — Code that is on the program stack, where it might be
waiting for current or intermediate JPL or some other event to complete.

! Inactive source code — JPL procedures that are part of the application but have
not yet been called or have already returned. If inactive source code is read into
the Source Code window, it is referred to as called-up source code. To read
called-up source code into the Source Code window, choose File→Open
Source Module. The debugger’s file browsing mechanism is displayed. In this
way you can also view any text files in the Source Code Window (including C
source code files), but you cannot set breakpoints in them.

You can set breakpoints on any line of code that is displayed in the window. The Edit
menu provides string search capabilities.

Opening a Source Module

From the Open Source Module dialog box you can specify a module to read into the
Source Code window. You can also select a module from which to establish a location
breakpoint.
39-12 Using the Debugger

Viewing JPL
Figure 39-6 Specify a module to read into the Source Code window or select a
module for the Edit Breakpoint window in Location mode.

To read a JPL module into the Source Code window:

1. Choose File→Open→Source Module. The Open Source Module Window opens.

2. Choose the Browse In button and select the location of the module:

" Open Libraries — Select the JPL module or screen from among any open
library.

Figure 39-7 The Browse Library Member window shows open libraries and their
members.

" Memory Resident Modules—Screens compiled into your application.

" Public Files—JPL files loaded by the public command.

" Program Stack—Currently active JPL.

" Window Stack—Open screens.
Application Development Guide 39-13

Viewing JPL
A Browser dialog opens. The title bar on the browser window reflects the
location chosen. If no source code is available for the chosen location, the
debugger informs you.

JPL modules stored in libraries must include the source as well as the binary
format. By default, JPL modules created within the screen editor are stored with
both formats. However, if compiled JPL is put in a library outside of the editor
(using the jpl2bin and formlib utilities), do not use the -r flag with
jpl2bin.

Figure 39-8 The Browse window displays the available JPL code corresponding
to the browser location selection.

3. Select the JPL module from the library or the browser and choose OK. The type
of the module selected is displayed set in the Load Module As option menu, and
indicates one of the following types: JPL file, screen JPL, field (widget) JPL,
grid JPL, or text file.

If a request to open a screen contains JPL modules of more than one type, for
instance screen- and widget-level JPL, the choices are listed in the Load
Module As option menu. Select the desired type of JPL module.
39-14 Using the Debugger

Viewing JPL
Figure 39-9 Screen JPL associated with a screen or service component can be
selected for viewing.

4. Choose OK. The Source Code window displays the contents of the specified
module.

Figure 39-10 The Source Code window displays screen JPL code from a specific
screen.

on page 39-24To set breakpoints in the Source Code window:

Choose Breaks→Toggle Location Break, or double-click anywhere in the line. This
option toggles a breakpoint on or off on the current line of code. Breakpoints are
identified by an asterisk following the line number.
Application Development Guide 39-15

Viewing Application Screen Information
Viewing Application Screen Information

The debugger provides access to the programmatic components of your application,
such as screens and service components. To view the programmatic details, choose
Windows→Application and select the desired item from the list. The selected item
comes to the foreground and you can access details for the following options from the
Application Window menu:

Screen JPL
Displays JPL in the Source Code window. This is an alternative to using
File→Open→Source Module (refer to page 39-12).

Screen Information
Displays screen information in the Screen Inquire window. If the screen has
its own JPL, the Show JPL button is enabled.

Figure 39-11 The Screen Inquire window displays useful information about the
selected screen.
39-16 Using the Debugger

Viewing Application Screen Information
Field Information
Displays information related to widgets on your screen in the Field Inquire
window. If the widget has its own JPL, the Show JPL button is enabled.

Figure 39-12 The Field Inquire window displays useful information about
widgets on a screen.

Group Information
Displays information related to groups on the screen in the Group Inquire
window.
Application Development Guide 39-17

Viewing Application Screen Information
Figure 39-13 The Group Information window.

Control Strings
Invokes the Control Strings window, which shows all function keys and
Panther logical keys that are assigned control strings at the application- and
screen-levels.

Figure 39-14 The Control Strings window shows that Ctrl+E is mapped to the
Esc key.

Done
Returns to the debugger menu bar.
39-18 Using the Debugger

Stepping through Program Execution
Notes: To see additional properties or attributes of any screen or widget you can use
the JPL properties syntax to define an expression in the Data Watch or
Application Data windows.

Refer to page 39-26 for information on using the Application Data window.

Refer to page 39-27 for information on using the Data Watch window. For
information on JPL properties syntax, refer to page 19-33.

You can use Data Watch to inspect a property of the application, a screen, or widget,
with an expression using the JPL properties syntax.

Stepping through Program Execution

When the debugger breaks program execution and comes to the foreground, you can
step through the execution of your application with the options provided by Trace
menu (or via the debugger toolbar):

To Any Event
If the current context is a JPL procedure or control string, the debugger steps
to the next executable statement or string and stops. Otherwise, the debugger
stops at the next event.

To Breakpoint
Program execution resumes until the next breakpoint is reached.

If you run the debugger in expert mode you can fine tune tracing to differentiate
between parent, child, and same-level events. Choose the appropriate level:

To Event→Any Level

If the current context is a JPL procedure or control string, the debugger steps to the next
executable statement or string and stops. Otherwise, the debugger stops at the next
event. This option is the same as Trace→To Any Event in normal mode.
Application Development Guide 39-19

Setting Breakpoints
To Event→This Level

If the current context is a JPL procedure call, the debugger “steps over” that
procedure's statements, and breaks on the next statement at the same level, if any. If
the context is a control string, the debugger steps over any strings embedded within it.
Otherwise, the debugger breaks at the next event ignoring sub-events.

To Event→Higher Level

Breaks only at the next level up in the event stack. If execution is already at the topmost
level, program execution resumes, breaking only for JPL breakpoints.

Using Animation

You can set the debugger to run on automatic pilot, where application execution events
can be observed hands-off in the various View windows.

To enable automatic stepping:

1. Choose Options→Animation.

2. Choose Trace→To Breakpoint. The debugger refreshes all open windows on
each execution event until the next breakpoint occurs.

For example, if the Source Code window is open, the debugger scrolls through
each line in the current JPL procedure as it executes; if the Data Watch window
is open, variable values are refreshed whenever they change.

Animation proceeds until you toggled it off from the Options menu or interrupt it with
the EXIT key.

Setting Breakpoints

The debugger recognizes all major execution events in a Panther application as
potential breakpoints, with the exception of request broker events.
39-20 Using the Debugger

Setting Breakpoints
Breakpoints can be set at:

! Locations in code: JPL statements (screen- and widget-level as well as in
library modules).

! Program execution events and subevents.

! Value changes in a variable or expression.

The debugger gets control at every execution event and potential breakpoint. It then
decides whether or not to awaken, and whether or not to break execution. The decision
is based on your Trace choice, and whether breakpoint conditions are satisfied.

If you are not running the debugger in normal mode, you can set location breakpoints
in the Source Code window and modify the predefined execution events in the
Breakpoints window. In expert mode, you can you can add and modify breakpoints of
both types via the Edit Breakpoint window.

Setting Location Breakpoints

Location breakpoints are JPL statements that are marked in order to stop program
execution. The debugger comes to the foreground whenever Panther encounters them.
You can set breakpoints on any JPL code that is displayed in the Source Code
window—on both called-up source code as well as current (active) source code.

Refer to page 39-11 for information on viewing JPL.

To set or clear a location breakpoint:
Select a line of code in the Source Code window and choose Breaks→Toggle
Location Break, or double click on the line. The breakpoint is toggled on or
off. Breakpoints are indicated with an asterisk (*).

Setting Breakpoints on Execution Events

You can set breakpoints at a variety of execution events. A finer control of event
filtering is available for certain GUI events when running the debugger in expert mode.
Request broker events are not recognized by the debugger.

Table 39-1 list the types of execution events on which you can set breakpoints
Application Development Guide 39-21

Setting Breakpoints
To set a breakpoint on a specific event type:

1. Choose View→Breakpoints. The Breakpoints window is displayed with the
predefined events listed.

Table 39-1 Predefined execute events on which to set breakpoints

Event type Description

Screen events Breaks on all screen entry and exit events. Screen events have subevents
defined, which you can selectively enable in expert mode.

LDB events Breaks on each LDB read or write operation.

Control strings Breaks on execution of each control string. If you have em bedded control
strings, the debugger breaks on each depending on the current step level.

JPL trace Breaks on every line of JPL execution. To step through each line of code,
choose Trace→Breakpoint. To break at a specific line, toggle break on the line
in the Source Code window and turn off JPL Trace in the Breakpoints window.
Trace to Breakpoint continues execution and breaks at the specific line of code.

Field events Breaks on all widget entry, validation, and exit events. Field events have
subevents defined, which can be accessed in expert mode.

Group events Breaks on all group entry and exit events. Group events have subevents defined.

Installed functions Breaks when Panther is about to call any C function (installed by calling
sm_install or identified in fun clist.c). The debugger recognizes calls to
automatic functions, for example, the automatic screen function that is called
on all screen entry and exit events, as well as other contexts where a C function
can be called, such as in a control string with a JPL call statement, or upon field
entry.

Database events Breaks on any database interface event, including DBMS commands and SQL
statements.

TM events Breaks on any transaction manager event: transaction manager commands,
requests, and slices.

Grid events Breaks on any grid widget events. Grid events have subevents defined, which
can be accessed in expert mode.
39-22 Using the Debugger

Setting Breakpoints
2. Select the event from the list. Do either of the following:

" Choose Breaks→Enable.

" Double-click on the item.

Disable a breakpoint by double-clicking on it or choose Breaks→Disable. An
activated event breakpoint is indicated by a plus sign (+) prefix; an inactivate
breakpoint is prefixed with a minus sign (-).

To add and modify breakpoints (in export mode):

1. Choose Options→Expert Mode. Choose Breaks→Add or Edit. The Edit
Breakpoint dialog opens.

You can add and edit both location and event breakpoints, and perform other actions.
There are two modes: Event and Location. Select the appropriate check box: Break At
Event for events (the default setting), and Break At Location to edit source code
breakpoints.

Figure 39-15 In expert mode, use the Edit Breakpoints dialog to add or modify
breakpoints of all types.

To break on specific events or subevents (in expert mode):

1. From the Edit Breakpoints dialog box, choose the Break at Event radio button.
Application Development Guide 39-23

Setting Breakpoints
2. Select the event from the At option menu. If the selected event has subevents
defined, a subevent option menu is available. The events and their subevents are
listed in Table 39-2.

3. (Optional) Indicate by checking or unchecking the Active Breakpoint check box
if the item should be added to the list of breakpoints in an active or inactive
state.

4. Choose OK. The event is added to the list of breakpoints (in the Breakpoints
window).

To set a breakpoint at a specific location (in expert mode):

In general, it is easier to set location breakpoints by reading the code into the Source
Code dialog box and double-click directly on the specific line of code to set the
breakpoint.

Refer to page 39-16 for details on setting breakpoints in the Source Code window. Or,
you can set a breakpoint from the Edit Breakpoint dialog box:

1. From the Edit Breakpoint dialog box, choose the Break at Location radio button.

2. Enter a line number and module at which to establish a breakpoint in the Line
and Module fields, or choose Browse to select the module from the Open Source
Module.

Table 39-2 Events and corresponding subevents available for breakpoints

Screen events Field events Group events Grid events

Any subevent Any subevent Any subevent Any subevent

Entry Entry Entry Grid entry

Exit Exit Exit Grid exit

Validation Validation Row entry

Calculation Row exit

Validation
39-24 Using the Debugger

Setting Breakpoints
For instruction on how to identify source code from the Open Source Module,
refer to page 39-12. Once you choose the module from Open Source Module,
the Edit Breakpoint dialog box redisplays.

Figure 39-16 Use the Edit Breakpoint dialog box in Location mode to set a code
location breakpoint.

3. (Optional) Indicate by checking or unchecking the Active Breakpoint check box
if the item should be added to the list of breakpoints in an active or inactive
state.

4. Choose OK. The location breakpoint is added to the list of breakpoints (in the
Breakpoints dialog).

Break on Change in Expression

You can direct the debugger, in expert mode, to make activation of a breakpoint
dependent upon the value of an expression.

To create a breakpoint on an expression value (in expert mode):

1. Choose Breaks→Add or Edit. The Edit Breakpoint dialog box opens.
Application Development Guide 39-25

Monitoring Variables and JPL Expressions
2. Enter a valid JPL expression in the On Change in Expression field. This causes
the debugger to only stop at the event/location breakpoint (assuming it has been
activated) if the value of the expression changes, that is, if the value changes
from what it was when Trace→To Breakpoint was chosen.

3. Set break at Any Event if you want the debugger to awaken as soon as the
change occurs.

To call a specified function (in expert mode):

From the Edit Breakpoints dialog box, enter the JPL or installed function to be
executed in the Call on Break field. The debugger calls the specified function each time
the breakpoint is reached.

To instruct the debugger to call the function without stopping execution, check
Continue After Call.

Monitoring Variables and JPL
Expressions

When running the debugger you can examine the contents of variables or expressions
and observe runtime changes. Use the Data Watch window to inspect a property of the
application, a screen, or widget, with a JPL expression. For more information on
referencing Panther objects and properties, refer to page 19-33 .

To view data changes:

1. Choose View→Data Watch. The Data Watch window opens and displays the
names of variables and expressions along with their current values (if defined).

If variable is an array and you have defined as a range of values to watch, the
variable is represented as

@range("

variable
39-26 Using the Debugger

Monitoring Variables and JPL Expressions
",

 startOcc

,

endOcc). For example,

@range("title_id",2,4)

displays the title_id values associated with the second through
fourth occurrence of an array.

2. Enter the names of the variables or expressions you want to observe.

The debugger displays the values of the variables/expressions in the Data Watch
window, updating them as execution proceeds. The location of any variables
specified is also identified.

To clear a variable/expression, delete it from the list. To clear all variables/expression,
press CLR.

Modifying and Monitoring Application Data

Run the debugger in expert mode to take advantage of the data watching abilities
available with the Application Data window.

To view and access data from any variable used in source code (in expert mode):

1. Access the desired source module (refer to page 39-12 for details on opening the
Source Code window).

2. Position the cursor in the desired variable.

3. Choose Tools→Application Data to open the Application Data window.

4. From the Application Data window, you can:

" Display the current value of specific variable. If the variable is an array,
you can specify the range of occurrences to view.

" Choose Break to set a breakpoint. The breakpoint is added to the list of
breakpoints and occurs whenever the value of the variable or expression
changes.

" Choose Watch to add the variable or expression to the Data Watch window.
Application Development Guide 39-27

Monitoring Variables and JPL Expressions
" Choose Modify to change the value of the variable.
39-28 Using the Debugger

CHAPTER
40 Identifying Users

An application must be able to identify its users and to prevent users without proper
identification from its use.

Two-tier Applications

In two-tier applications, user authentication is needed for database access. When you
connect to most database engines, you must supply a user name and password.

Panther applications use DBMS DECLARE CONNECTION statements to connect to a
database engine. The documentation for each database engine lists the connection
options available for that engine; refer to Database Drivers .

JetNet Applications

JetNet applications have two levels of identification:

! Connections to the middleware by the application users in the client_init
command.
Application Development Guide 40-1

MTS Applications
! Connections to the database by the application server using DBMS DECLARE
CONNECTION.

MTS Applications

MTS offers two types of security for component packages: programmatic security,
which uses interfaces to call within the application, and declarative security, which
assigns users, or groups of users, to roles.

A role is the name assigned to a group of users that will access a component package.
For example, a human resources application could define roles for Manager and
Employee.

Panther MTS applications can implement programmatic security using the following
functions which call methods of the IObjectContext interface:

! sm_mts_IsCallerInRole—Determines if a caller is assigned to a role, where
caller is the identity of the process calling into the server.

! sm_mts_IsSecurityEnabled—Determines if security checking is enabled.

Refer to Microsoft’s MTS Documentation for additional information about MTS
package security.
40-2 Identifying Users

CHAPTER
41 Optimizing
Applications

Once the application is developed, you can optimize the performance in several key
areas.

Database Fetches

The following items can affect the response time of database fetches:

! dm_set_max_rows_per_fetch—Sets the number of rows in each packet.

! Database indexes—Generate indexes, or additional indexes, on the database.

! Database access method—Instead of using the transaction manager, you can
call stored procedures or SQL statements.

! Database locking method—In order to avoid having users waiting for database
locks to be released, change to an optimistic locking scheme or deploy the
application in a three-tier environment.

Web Applications

The following items can improve the performance of your Web application:

! Requester executable—Use the ISAPI or the NSAPI version of the requester
executable, instead of the CGI version.

! Windows Web application servers—Use NTFS as the file locking system.
Application Development Guide 41-1

! Graphics—Place your graphics in the directory specified in the ImageDir
variable to improve the loading of graphics files.

LDBs

The following items can affect the response time when using LDBs:

! Number of widgets in the LDB.
41-2 Optimizing Applications

Part VIIDeploying the
Application

This section lists guidelines to follow when building application executables and
preparing them for release.

Building Application Executables

Preparing Applications for Release

CHAPTER
42 Building
Application
Executables

Several executables are provided to get Panther and Panther applications up and
running. Depending on your application's architecture and the way Panther itself
resides on your network, you will probably build and rebuild executables to meet a
variety of development and deployment requirements.

There are executables (include .exe extension under Windows) used solely by the
client:

! prorun—Invokes a production application.

! prodev—Invokes the development version of Panther.

And for JetNet/Oracle Tuxedo executables that are specific to the server:

! proserv—Invokes a Panther server.

! prodserv—Invokes a debuggable Panther server used for development.

! progserv—Invokes a conversion server specifically for use with applications
that have been converted from two- to three-architecture.

For the most part, you can use the executables provided with your installation.
However, if any of the following conditions apply, either at the outset or during
development, or when you are ready to deploy your application, you need to build new
executables:
Application Development Guide 42-1

Steps for Creating an Executable
! Under UNIX, to link in your database engine.

! To create a debuggable server executable for use with your database engine.

! Under Windows, if DLLs for your specific database engine are not included in
your Panther installation and you or users of your application require direct (as
opposed to remote) connections to the database.

! To incorporate user-written C modules.

! To include memory-resident components.

! Whenever you modify Panther's source code (for example, jmain.c).

This chapter describes:

! Steps for building Panther executables for UNIX and Windows.

! What to modify in Panther's source code so that you can create executables
specifically for your application. For example, you can specify your
application's start up screen or make files memory-resident.

! How to specify your own application icon for Windows.

Steps for Creating an Executable

The steps for building an executable assume that SMBASE, SMVARS, and SMPATH
settings are the same as your development setup (for prodev) and are in effect.

Prepare the Application Directory

1. Create an application directory (if one doesn't already exist).

2. Copy all files from the distributed link directory to your application directory.

3. If you want to link your own C modules to the executable, copy them to your
application directory.
42-2 Building Application Executables

Steps for Creating an Executable
Determine the Executables to Build

To specify which executables to build, either edit the makefile in your application
directory or specify the target.

If you edit the makefile, make sure the appropriate client executables are commented
or uncommented as needed (these are uncommented by default):

For JetNet and Oracle Tuxedo which support application servers, make sure the
appropriate server executables are commented or uncommented as needed:

Notes: To use Panther's debugger on an application server with your particular
database, uncomment PRODSERV.

Link the Database Engine

You must link in your database engine to the executable if you are:

! Building UNIX executables, or

! The Windows installation did not include database DLLs for your engine.

Edit the makefile in order to identify the desired database for the executable.
Uncomment the appropriate include statement for your particular database. The
include statements are listed under the SELECT DATABASE SOFTWARE heading.

PRORUN=prorun Runtime executable (prorun32.exe under Windows)

PRODEV=prodev Development executable (prodev32.exe under
Windows)

PROSERV=proserv Server executable (uncommented by default)

PRODSERV=prodserv Debuggable server executable (commented out by
default)

PROGSERV=progserv Conversion server executable (commented out by
default)
Application Development Guide 42-3

Steps for Creating an Executable
To link your database engine:

Uncomment the appropriate include statement for your database. You will
also need to edit the file you uncomment (makevars.dbs) to indicate the
correct version of your database software (refer to page 42-5 for details on
editing makevars.dbs).

To exclude the JDB database from the executable:

Comment out the JDB include statement.

To link JDB and your database engine:

Leave the JDB database specification uncommented and uncomment the appropriate
include statement for your database.

Include C Modules in the Executable

If your application uses user-written C modules, you'll want to link them into the
application's executable.

To link your own C modules to the executable:

1. Copy the modules to the application directory.

2. Add the filenames to the SRCMODS macro of the makefile.

For example, if your application's C source code modules are mymod1.c and
mymod2.c, change the SRCMODS line of the makefile to list the modules. For example:

UNIX: SRCMODS = mymod1.o mymod2.o funclist.o

Windows: SRCMODS = mymod1.obj mymod3.obj funclist.obj

When you include files within the executable, you don't have to include them in the
deployed distribution.
42-4 Building Application Executables

Steps for Creating an Executable
Identify the Database Version

When you build an executable to include your database, once you edit the makefile,
you must also ensure that the uncommented makevars file includes the appropriate
information.

Refer to Database Drivers for your specific engine before changing these values.

To verify (or update) database-specific information:

Access the makevars.dbs, and ensure that the following settings are correct for your
database engine:

! Case handling—Set the flag dbs_INIT to one of the following: d (default case
conversion set), l (lowercase), u (uppercase), p (preserve case). The default is d.
This specification deals primarily with the case conversion of database column
names. Some database engines only create column names in a specific case or
allow mixed cases. This case setting specification allows you to create all
Panther variables in a particular case and Panther handles the conversion for
you.

Refer to the online Database Drivers for find out what the Panther default is for
your database engine.

! Engine name—Set the flag dbs_ENGNAME to specify the default engine name.
Refer to the online Database Drivers for your specific engine.

! Version—In the databaseName PARAMETERS section of the makevars, verify
your database engine's version. Uncomment the appropriate block of parameters
based upon this version. Also, verify and correct path names if necessary.

Compile the Changes

Once you have copy all required files to your application directory, and make the
appropriate edits to the makefile (and optionally, to makevars and jmain.c), from the
application directory, run the appropriate compiler utility at the command line: make
under UNIX; nmake under Windows.
Application Development Guide 42-5

Customizing Source Code for an Application
A compiling message and then the linking message are displayed. When the operating
system returns you to the command prompt (with no errors), the executables have been
built.

For more about makefiles, refer to your compiler's documentation on make or nmake.

If you are building executables for distribution, you can package them with the other
required files for application release. Refer to page 43-1 for details.

Rename the

Executables

The result of running the make or nmake utility is compiled executables ready for
distribution. You can rename executables to reflect your application's name; there are
no naming restrictions, except perhaps those imposed by your specific operating
system.

Customizing Source Code for an
Application

You can edit the source, jmain.c, for the Panther executable to change the default
behavior of your application. jmain.c is located in the link directory and you should
copy it to your application directory. Edit the source file prior to creating the
executable if you want to do any of the following:

! Specify a startup screen for your application, such as, a welcome or login
screen.

! Specify an icon for your application.

! Make Panther binary files memory-resident: screens, JPL modules, menus.

! Make configuration files used by Panther memory-resident.

! Rename the Panther library.

Whenever you edit jmain.c you must remember to rebuild your runtime executable
(prorun) in order for changes to take effect.
42-6 Building Application Executables

Customizing Source Code for an Application
Source Code Structure

jmain.c has three functions defined in it:

! main, initialize and clean_up which you can modify: main is defined
globally and is the entry point to the entire application program. main calls the
statically defined functions

! initialize and clean_up. Code necessary to your application can be inserted
into the main routine. Any code inserted before initialize is executed before
any Panther functions have been executed. initialize allocates internal data
structures and sets the terminal characteristics. Code inserted after initialize
is executed after Panther allocates internal data structures and sets the terminal
characteristics, but before there are any screens and before there is a local data
block.

! clean_up exits back to the operating system and restores the terminal's display
state. Code called after clean_up is executed after all Panther functions have
been executed.

If a finer granularity is needed, you can edit initialize and clean_up themselves.
Do so only if you understand Panther thoroughly.

Notes: In general, you should not modify jmain.c to install event functions. You can
declare most event functions in funclist.c. A few event function types,
however, must be installed before or during initialization in jmain.c. For
more information on event function installation, refer to page 44-4.

Specifying an Application Startup Screen

To identify a startup screen that will display when your application is first initialized,
you must edit the jmain.c file you copied to your application directory.

Change the start_screen_name setting from 0 to the name of your top screen; for
example, start_screen_name = “login.scr”; Include the specification after the
comment for TOPSCREEN:

/* to hard code the name of the first screen, for */
/* example, “TOPSCREEN”, replace the following line */
/* with start_screen_name = "TOPSCREEN"; */
Application Development Guide 42-7

Customizing Source Code for an Application
start_screen_name = "login.scr";
start_up (argc, argv);

Rebuild your runtime executable to have the change in jmain.c take effect.

Specifying an Application Icon

To ensure that an icon that will display when your application is installed on a
Windows client machine, specify the name of the application icon in the prorun.rc
resource file that you copied to your application directory.

In jmain.c, change the ICONFILE specification from prolific.ico to the name of
your icon image.

Rebuild your runtime executable to have the change in jmain.c take effect.

Including Memory-Resident Components

All Panther components can be made memory resident: screens, menus, configuration
files, and JPL modules. When a component is made memory resident, it means it is
compiled as part of the executable. This can enhance application performance by
minimizing its need to access the disk. It can also reduce the number of files in the
distribution. Once these components are compiled into the executable, the individual
components can then be eliminated from the distribution.

In function, memory residency means the component is loaded into memory when
your application starts up. However, it's also important to recognize that your
application would consume more memory at startup.

In general, the process of making a component memory-resident involves:

! Copying or extracting the desired component in its binary format from its
library using formlib.

! Converting the component from binary format to a C data structure with the
bin2c utility.

! Editing the source file, jmain.c, to include the desired C structure.

! Compiling the application to build the components into the application's
executable.
42-8 Building Application Executables

Customizing Source Code for an Application
Screens, Menus,

and JPL

Panther creates binary files that are stored in Panther libraries. These include your
screens and service components, JPL modules, menus, and any file created with and
used by Panther (such as an application setup file named in SMSETUP).
Memory-resident files are installed by way of a memory-resident list. The list is
maintained by Panther and specifies the components you indicate in the source file.

To make screens, menus, or JPL modules memory-resident:

1. Extract the desired binary component from its library using formlib. Or run
jpl2bin against the ASCII version of the component to get a binary file.

2. Convert the binary file to a C structure with bin2c, for example:

bin2c filename.h filename.bin

3. In jmain.c, after the lines:

#include "smdef.h"
#include "smerror.h"
#include "smuprdb.h"

add the filename.h specification

#include filename.h

4. In jmain.c, before the line:

/* THE FOLLOWING FUNCTIONS ARE IN THIS MODULE */

include the C structure:

struct form_list mrforms[] =
{

"source_filename.ext", filename
 "", (char *)0
};

All memory-resident files, modules, etc. should be listed, one per line,
immediately before the line:

 "", (char *)0

This last entry in the list indicates the end of the list and is required.

5. In jmain.c, after the line:

/* Place code...any Panther initializations here */

add the following line:
Application Development Guide 42-9

Customizing Source Code for an Application
sm_formlist(mrforms);

The call to sm_formlist dynamically adds the specified components in the
form_list structure to Panther's internal memory-resident list.

6. Make sure the edited jmain.c source is in your application directory and create
your application executable (refer to page 42-2, “Steps for Creating an
Executable”).

Notes: Because the screen editor can only operate on library files, altering
memory-resident screens and JPL during program development requires a
cycle of test—edit—extract from library—reconvert with bin2c—recompile.
Therefore you should make components memory-resident only at the very end
of your development process.

At runtime, when Panther attempts to open a screen, it first looks in the
memory-resident screen list for the requested screen; if found there, it's displayed from
memory, while screens not in the list are sought in open libraries. In this way, you can
open screens irrespective of their actual location—for example, with sm_r_form. You
can later change the location of the screen without changing the calls to open them,
simply by changing the memory-resident list.

filename

extensions and

case conversion

If you have specified the setup variable SMFEXTENSION, Panther appends its value to
screen names that do not already contain an extension; take this into account when
creating the screen list. For UNIX systems, Panther can also convert the name to
uppercase before searching the screen list, as determined by the FCASE variable.

Alternatively, if you are using a custom executive, sm_d_form and related library
functions can be used to display memory-resident screens; each takes as one of its
parameters the address of the global array containing the screen data, which usually
have the same name as the file in which the original screen was originally stored.

Configuration

Files

Any or all of the required configuration files as well as optional configuration files
used by Panther can be made memory-resident. These files include:

! Message files (msgfile.bin)

! Video file (*vid.bin)

! Configuration map file (*cmap.bin)

! Key translation file (*keys.bin)
42-10 Building Application Executables

Customizing Source Code for an Application
To make configuration files memory-resident:

1. Copy the desired binary files from the config directory or extract (using
formlib) them from the common library (if they are already associated with your
application).

2. Convert the binary file to C structure with bin2c, for example:

bin2c filename.h filename.bin

3. In jmain.c, after the lines:

#include "smdef.h"
#include "smerror.h"
#include "smuprdb.h"

add the filename.h specification:

#include "filename.h"

4. In jmain.c, after the line:

/* Place code to...any Panther initializations here */

add the following line or lines, specific to each configuration file type:

sm_n_msg_read ("SM", SM_MSGS, MSG_MEMORY|MSG_INIT,
msgfile);
sm_vinit (videofile);
sm_load_colormap (cmapfile);
sm_keyinit (keyfile);

If a configuration file is memory-resident, the corresponding environment variable or
SMVARS entry is unnecessary and the binary files needn't be included in the common
library of your distribution.

Rename the Distributed Panther Library

The distributed library, prorun5.lib, contains the support routines and screens used
by Panther. It is required in your application's distribution as well. In addition to
renaming executables, you can also rename this library to conform to your
application's name.
Application Development Guide 42-11

Customizing Source Code for an Application
To rename the Panther library:

1. Copy prorun5.lib from the config directory to your application directory and
rename the copied file.

2. In jmain.c, replace the line:

if ((lib = sm_l_open (p = RUNTIME_LIBRARY)) < 0)

with:

if ((lib = sm_l_open (p = "myapp.lib")) < 0)

Subsystem Installation

After the definition of the main function, there is a JTERM_COMPRESSION subsystem
macro definition. This subsystem increases the communication efficiency and
execution speed for applications when they are accessed by the Panther terminal
emulator. It increases the application's memory requirements. By default, it is set to 0.
To turn the subsystem on, set the macro to 1.

Oracle Tuxedo Executables

You need to update the Oracle Tuxedo XA RM file before you can use the provided
makefile to relink executables. This is done by appending the contents of
$SMBASE/samples/Oracle Tuxedo/RM to $TUXDIR/udataobj/RM and confirming
the appropriate section for your database and version.
42-12 Building Application Executables

CHAPTER
43 Preparing
Applications for
Release

Before delivering an application to its users, you need to package it for delivery. There
are some basic constructions to remember that will make packaging your application
more modular. This chapter describes general information about:

! The steps to be completed for deployment.

! Which files are needed for distribution.

! What customizations you can make.

The list of files that you must include in a distribution varies depending on the
application's components and the platform or platforms on which it runs. In addition,
there are variations in distribution depending on your application's architecture. The
documentation includes checklists for the major architectures:

! Two-tier applications—See Appendix D, “Deployment Checklist for Two-tier
Applications,” in this manual.

! JetNet and Oracle Tuxedo applications—See Appendix E, “Application Setup
Checklist,” in the JetNet/Oracle Tuxedo Guide.
Application Development Guide 43-1

Basic Deployment Steps
Basic Deployment Steps

How to Deploy your Application

1. Create application executables (refer to page 42-1).

2. Make sure all binary files—screens, JPL modules, menu bars/toolbars—used by
your application are stored in libraries (refer to page A-14 for details on using
the formlib).

Your Panther application consists of at least one to three Panther libraries,
depending on the application's architecture: a library for storing the objects that
define the user interface (client.lib); a library for storing the objects
required by application servers (server.lib); and, for JetNet/Oracle Tuxedo, a
common library (common.lib) for the objects that are needed by both client
and server.

If, however, the components are to be made memory-resident, extract the
desired components from their respective libraries before building your
executables.

3. Make sure all graphical elements referenced, via property settings, by your
Panther screens, such as pixmaps and icons, are included in a client library.

For web applications, alternatively, you can place your graphics files in the
htdocs directory on your HTTP server and set the ImageDir variable in the
web initialization file to point to that location.

4. When the libraries are complete, use formlib -o to lock the libraries. This step
is irreversible. (After locking the library, you must use formlib -x to extract
the contents and formlib -c to create a new library for editing or formlib -m
to condense and unlock the library).

5. Create an application directory and copy all of the required files, libraries, and
subdirectories to this directory.

6. Make sure the environment variables SMBASE, SMVARS, SMTERM are set correctly:

! UNIX:
43-2 Preparing Applications for Release

Basic Deployment Steps
" SMBASE should point to your application directory (for example, setenv
SMBASE /usr/myapp).

" SMVARS should point to smvars.bin in your config subdirectory of your
application directory (for example, setenv SMVARS /usr/myapp/
config/smvars.bin).

" SMTERM should define the platform (for example, setenv SMTERM X).

! Windows:

" Set SMVARS to point to smvars.bin in the config subdirectory of your
application directory. The variables can be defined in your application's
initialization file (prol5w32.ini) or in autoexec.bat.

" (Optional) Set SMPATH to point to other application directories.

" (Optional) Set the directory for your application's startup icon to the
application directory.

Note: Remember to run var2bin if you edit the smvars file. Then include the newly
compiled smvars.bin in your distribution.

7. Make sure the appropriate libraries are open on startup of your application, set
the SMFLIBS variable (in smvars or in the initialization file for clients).

On Windows, libraries are delineated with a ; or |.

On UNIX, libraries are delineated with a : or a |.

8. JetNet/Oracle Tuxedo:

" Create or copy the JetNet configuration file (refer to the JetNet
Guide/Oracle Tuxedo Guide for details). For Oracle Tuxedo applications,
create or copy your Oracle Tuxedo configuration file.

" Make sure connections to the middleware are defined in the setup variables
SMRBCONFIG on local UNIX clients and SMRBHOST and SMRBPORT on
Windows and remote clients.

" Make sure the appropriate libraries are open on startup for the servers in
proserv.env, progserv.env, and machine.env using SMFLIBS.

9. COM/DCOM/MTS:

" For COM: on each application client, copy the DLLs (and type libraries) to
the application directory and register the COM component.
Application Development Guide 43-3

Required Files
" For DCOM: on the machine that is the COM component server, copy the
DLLs (and type libraries) to the application directory and register the COM
component. On the application clients, run the client registration file.

" For MTS: on the server running MTS, copy the DLLs (and type libraries)
to the application directory and install the COM components in the
Microsoft Management Console. Create an export file for each component
package and have the application clients run that file.

10. Then run your application's executable.

11. Test the application.

12. And ship it!

Required Files

All Panther applications require the following files:

! Panther executables (refer to page 42-2 for details on creating your application's
executables).

! Library or libraries containing application components that define the user
interface. client.lib is the suggested name, but another common practice is
to create libraries based on their content, such as images.lib for graphics
files.

! Panther library (prorun5.lib) containing all screens and JPL used by Panther.

! The following files placed in one of the application libraries:

" Panther message file (msgfile.bin).

" Keyboard files for the platforms on which your application will run; for
example, if your Panther application runs on xterm, copy xterm keys.bin
to your distribution directory.

" Configuration map file for the desired platform; for example, copy
wincmap.bin for Windows or xwincmap.bin for Motif.
43-4 Preparing Applications for Release

Required Files
" Character-mode platforms need the video files for the platforms on which
your application will run.

! Motif resource files, for example, the Prolifics resource file.

! Windows-specific initialization files, for example, prol5w32.ini.

! Windows-specific Dynamic Link Libraries (DLLs). All *.dll files in the
distributed util directory except for dtext.dll, cgmzv.dll, and ctl3d.dll
which are only used by the online help system.

! Setup information in the form of smvars.bin, or specified in the system's
initialization file.

! JetNet and Oracle Tuxedo applications also require the following files:

" JetNet shared libraries for UNIX (for example, lib/*.so.* on Sun).

" JetNet administrative executables. All files in the distributed bin directory.

" The contents of the distributed locale and udataobj directories.

" Panther utilities (for example, jetman, rbboot, rbshutdown).

" JetMan resource file for Motif (Jetman) or initialization file for Windows
(jetman.ini).

" Library (common.lib) containing application components used by the
client and server for JetNet and Oracle Tuxedo applications.

" Library (server.lib) or libraries containing service components and
service-related objects that define the server.

" Environment definition files* for application servers (*.env files)

! COM/MTS applications also require the following files in the application
directory:

" Panther DLLs for the COM component server.

" For each service component, a DLL (.dll).
Application Development Guide 43-5

Optional Files
Optional Files

The following files are optional, depending on your application's components,
requirements, and how it is configured:

! Graph requirements. If your application displays or uses business graphs and
charts, include grafcap, symbold, and symbols1 in your distribution. Include
any graph-specific font files that are used in your application (for example,
aldine.fnt, centry.fnt, duplex.fnt from the distributed config
directory).

You also need the following platform-specific files:

" Under UNIX: the executables, gdsp and swsdrvr.

" Under Windows: libsti.ini (belongs in the Windows directory),
libsti32/64.dll (copy to your application directory).

! LDB screens. If you have any LDB screens that are used for data transfer or
initialization (usually named ldb.scr), include them in the appropriate library.

! Message file. If you have stored messages in message files, they need to be in
binary format and copied to the appropriate library.

! Graphics files. Images that are defined as pixmap properties to display on
buttons and screens in your application. Include these in the client library, and
for web applications, in the htdocs directory.

! ActiveX controls (for Windows and Web applications). ActiveX controls in
Web applications should be digitally signed and used in accordance with the
control's licensing scheme. Since Windows applications will not be deployed on
a Web browser, it is not necessary to digitally sign the control; however, your
application's installation program should install your ActiveX control and
register the control on the user's system.
43-6 Preparing Applications for Release

Specifying Files and Directories
Specifying Files and Directories

For the client portion of your application, you can use the smvars file to specify all the
libraries and directories that Panther needs to run. The only variables that must be set
by the user would be SMTERM and SMVARS, which tell Panther which binary
configuration files to use and where to find the application's files. Refer to page 2-1 in
the Configuration Guide for more information about setting up the system
environment.

Alternatively, your application can specify required files through calls to Panther
functions:

! sm_keyinit initializes the key translation file from the specified key file.

! sm_vinit initializes the video translation file from the specified video file.

! sm_soption supplies the search path for Panther binaries.

! sm_msg_read reads a message file into memory.

! sm_l_open opens a Panther library.

Detailed information on each function and their variants is available in the
Programming Guide.

Customizing the Distribution

This section describes additional measures you can take when you package your
application. To ensure that these changes take effect, it is best to build your executable
after customizing the appropriate files.
Application Development Guide 43-7

Customizing the Distribution
Configuration Support

For JetNet/Oracle Tuxedo applications, if you are administering the setup of your
deployed application, you can provide a middleware configuration file that is similar
to the one built when the application was being developed. If the application is being
setup by your customer, you can provide documentation for using the JetNet manager
and/or scripts for defining the number of client workstations, the number of machines,
and the number of application servers that will be used to run your application.

Specifying a Startup File

When your application starts up it uses an initialization file (prol5w32.ini or
prol5w64.ini) under Windows and a resource file (Prolifics) under Motif. For
Motif, instead of using the distributed files, you can change the name to reflect your
application's name and specify the file in piinit.c (found in the link directory). To
include the name of your resource file, for example:

sm_pi_xm__setup("myAppSetup");

For Windows, you can specify the name of the ini file on the Start Menu command line.
For example, the PlayMusic application would place PlayMusic.ini in the
Windows directory and call that ini file with the following command setting:

C:\Prolifics\Panther\prorun.exe -ini PlayMusic

Specifying a Title Screen

You can design your own splash screen, just like the one that displays when you startup
the screen editor, that will display when your application is initialized. The screen can
be a BMP, JPEG, or GIF format. You specify the name of the screen in your startup
file:

! For Motif: In your resource file (Prolifics), add the line:

Prolifics*introPixmap: "titleScreen.ext"

! For Windows: In your initialization file (prol5w32.ini), include the name on
the line:

IntroPixmap="titleScreen.ext"
43-8 Preparing Applications for Release

Customizing the Distribution
Specifying Your Own Icon

When you minimize your application in Windows, the default Panther icon is used.
You can replace the default icon with one of your own. Edit the prorun.rc file located
in the link directory to include the name of your .ico file, for example:

#define ICONFILE myIcon.ico
Application Development Guide 43-9

Customizing the Distribution
43-10 Preparing Applications for Release

Part VIIIAdvanced
Development
Topics

This section lists some advanced development topics:

Installed Event Functions

Customizing the User Interface

Dynamic Data Exchange

Processing the Mouse Interface

Writing Portable Applications

Sending Mail in Panther

CHAPTER
44 Installed Event
Functions

Installed event functions are functions that are written in C and are called at specific
events during program execution. Panther recognizes many different stages of
program execution as events that can invoke functions—for example, screen entry and
exit, widget entry and exit, and client initialization.

All installed functions must be compiled into the application so that Panther can find
and execute them at the proper time. Most Panther library functions are already
installed for immediate access during the design process.

This chapter shows how to write event functions in C and install them in your
application. For information about Panther events and event processing, refer to
Chapter 17, “Understanding Application Events.”

Installed Function Types

Installed functions can be divided into two general types: those that are called
explicitly and those that are called automatically on specific stages of program
execution:
Application Development Guide 44-1

Installed Function Types
! Demand functions are explicitly called from a Panther component through one
of its event properties, such as a field's Exit Function property. Demand
functions can also be called by JPL using the call command.

! Automatic functions execute on all occurrences of an event type. Each
automatic function is identified with a single event type. For example, you can
install an automatic screen function that executes on entering and exiting all
screens. These functions are never explicitly called in the application code or
screens; instead, they are called automatically at the appropriate stage of
program execution.

Panther can call automatic and demand functions for the same object. For example, on
screen entry, the automatic screen function is always called if one is installed. If a
screen's Entry Function property also specifies a function, this function is called and
executed, too.

Demand Functions

A demand function can be called by name from event properties of any component in
a Panther application: groups, screens, menu items, logical keys, and JPL modules.
Except for library JPL modules, function calls are stored with the application's screens
and can be edited through the screen editor. For example, each widget's properties
window lets you specify entry, exit, and validation functions.

Demand functions usually perform tasks that are specific to their callers. For example,
you might write an exit function for a widget whose data requires special validation.
You then specify this function through the widget's Validation Func property. At
runtime, the function is invoked when the user tabs out of the widget.

You can also write demand functions in a JPL module and make the module available
to the application through the public command. You can then call that module's
procedures—for example, as a widget's entry function, or from a control string;
Panther executes the JPL code if no C function of the same name is installed. For more
information about JPL, refer to Chapter 19, “Programming in JPL.”
44-2 Installed Event Functions

Standard versus Non-standard Arguments
Automatic Functions

Automatic functions are called automatically at specific event types. For example, an
automatic screen function executes anytime a screen opens and closes. Unlike demand
functions, automatic functions are independent of any one widget, screen, or other
application component. Automatic functions cannot be written in JPL. However, you
can call a JPL procedure from an automatic function through sm_jplcall.

In general, an application can have only one automatic function of each type installed
at a time. Thus, there can be only one automatic screen function, one insert toggle
function, and so on. Timeout and timer functions are the exception among automatic
functions: you can install multiple timeout and timer functions, where each one is
called when its own interval expires.

Standard versus Non-standard
Arguments

Panther automatically supplies a fixed number of arguments for all installed function
types except those that are installed as type PROTO_FUNC (prototyped functions).
Arguments that are automatically supplied by Panther are called standard arguments.
For example, screen functions get two standard arguments: the screen's name, and a
bitmask that tells when and how this function was called. If you use these arguments,
you must ensure that function definition parameters correspond in number and type to
those supplied by Panther.

You can also write functions whose arguments are explicitly supplied by the
application. These functions must be installed as prototyped functions. Panther expects
calls to any functions thus installed to supply their own arguments.
Application Development Guide 44-3

Installation
Installation

Most functions are typically installed in the source file funclist.c. The coding
required to install a function consists of two steps:

1. Prepare the function for installation by including it in a fnc_data structure. If the
function type allows installation of multiple functions, declare an array of
fnc_data structures, where each data structure specifies a function.

2. Install the function with a call to sm_install in the sm_do_uinstalls
function.

The following sections describe each of these steps.

Notes: For greater efficiency, prototyped function declarations should be
#include’d in funclist.c.

Preparing Functions for Installation

Before you can install a function, you must first include it in a fnc_data structure. The
following statements prepare two prototyped functions and one automatic screen
function for installation:

struct fnc_data proto_list[] = {
 SM_INTFNC ("mark_flds(i,i)", mark_flds),
 SM_INTFNC ("report(s,s)", report)
};

struct fnc_data autosc_struct = SM_OLDFNC(0, auto_sfunc);

Each fnc_data structure is initialized with the following information:

SM_*FNC Macro

Prefix a fnc_data structure with one of several macros that determines the function's
return type and whether it dereferences its arguments. Use one of these macros:
44-4 Installed Event Functions

Installation
! SM_INTFNC specifies that the function dereferences arguments supplied from
JPL and returns an integer value.

! SM_STRFNC specifies that the function dereferences arguments supplied from
JPL and returns a string value.

! SM_DBLFNC specifies that the function dereferences arguments supplied from
JPL and returns a double precision value.

! SM_ZROFNC specifies that the function dereferences arguments supplied from
JPL and always returns 0 to its caller.

! SM_OLDFNC specifies that the function does not dereference JPL-supplied
arguments and returns an integer value. Use this macro for all non-prototyped
functions and for any function written for pre-Panther applications.

Function Name

The first value of a SM_*FNC macro specifies the function's name. Names of prototyped
functions must include their argument types. In the previous example, mark_flds
takes two integer arguments, while report takes two strings.

If the function type allows installation of only one function, supply 0.

Strings and integers are the only two data types that can be passed. If the value is not
an integer, pass the value as a string and do the appropriate conversions in your code.

Function Address

The second value of a SM_*FNC macro is the address of the function—that is, its C
identifier.

Installing Functions

You install functions through the library function sm_install. For example, given the
earlier fnc_data structures, these statements install the functions in proto_list and
autosc_struct:

int ct = sizeof (proto_list) / sizeof (struct fnc_data);

sm_install (PROTO_FUNC, proto_list, &ct) ;
Application Development Guide 44-5

Installation
sm_install (DFLT_SCREEN_FUNC, &autosc_struct, (int *)0) ;

This function takes three arguments:

func_type

Specifies the function type, one of the constants in Table 44-1. In this table, function
types are divided into two groups: those that allow installation of multiple functions;
and those that allow installation of only one function. Each type is discussed later in
this chapter.

Table 44-1 Installed function types

Multiple function installation

SCREEN_FUNC Screen Functions

FIELD_FUNC Field Functions

GRID_FUNC Grid Functions

GROUP_FUNC Group Functions

CARD_FUNC Tab Control Functions

PROTO_FUNC Prototyped Functions

TIMER_FUNC Timer Functions

TIMEOUT_FUNC Timeout Functions

CONTROL_FUNC Control Functions

TP_INITDATA_FUNC Client Authentication Functions

TP_INITPOST_FUNC Client Post-Connection Functions

Single function installation

DFLT_SCREEN_FUNC Default Screen Function

DFLT_FIELD_FUNC Default Field Function

DFLT_GROUP_FUNC Default Group Function

KEYCHG_FUNC Key Change Function
44-6 Installed Event Functions

Installation
funcs

The name of the fnc_data structure that includes the functions to install.

num_funcs

The address of a variable that contains the number of functions included in funcs. If
funcs is an array of fnc_data structures, get the number of functions declared in the
array before calling sm_install. If the function type allows installation of only one
function, supply a null integer pointer—(int *)0.

For example, this statement gets the number of functions installed in the fnc_data
array proto_list.

int pct = sizeof (proto_list) / sizeof (structfnc_data);

ERROR_FUNC Error Function

INSCRSR_FUNC Insert Toggle Function

EXTERNAL_HELP_FUNC Help Function

CKDIGIT_FUNC Check Digit Function

UINIT_FUNC Initialization Function

URESET_FUNC Reset Function

RECORD_FUNC Record Function

PLAY_FUNC Playback Function

STAT_FUNC Status Line Function

VPROC_FUNC Video Processing Function

Table 44-1 Installed function types (Continued)
Application Development Guide 44-7

Prototyped Functions
Prototyped Functions

Prototyped functions are functions that get only the number and type of arguments that
you specify. Prototyped functions are demand functions—that is, they must be
specified by name from a Panther component, such as a widget or screen. Prototyped
functions can also be called or referenced in JPL via commands such as call or
service_call.

All prototyped functions are installed together in their own function list. When a
prototyped function is called, it is supplied the arguments that you specify instead of
the standard arguments otherwise supplied by its caller. Thus, if a screen entry event
calls a function, and Panther finds this function on the list of prototyped functions,
Panther passes the arguments that follow the function's name instead of the two
standard arguments otherwise supplied to a screen function. As developer, you must
make sure that prototyped function calls supply the correct number and type of
arguments.

You can specify prototyped function calls through the screen editor. For example, the
screen properties window lets you specify prototyped functions for screen entry and
exit. Prototyped functions can also be called in JPL procedures.

Accessing Standard Argument Information

Although prototyped functions that are called by widgets and groups do not get
standard arguments, Panther has several library functions that let you get equivalent
information about a widget or group.

sm_inquire can return a widget's number, validation state, and occurrence number,
and a group's validation state, according to the argument that you supply:

Argument Return Value

SC_AFLDNO Number of the widget calling a prototyped function. Corresponds
to the first standard argument supplied to a widget function.
44-8 Installed Event Functions

Prototyped Functions
You can get the second standard argument of a widget function, a pointer to a copy of
the widget's contents, through sm_*getfield§ or sm_*fptr.

You can also get the first standard argument of a group function, a pointer to the group
name, through sm_getcurno and sm_*ftog at group entry and exit. Access to the
group name at group validation is not supported because the group might be
undergoing validation as part of screen validation.

Prototyped functions cannot access the standard arguments of a screen. If a function
requires this information, you should install it as a demand or automatic screen
function.

Installing Prototyped Functions

Prototyped functions are listed with their argument types as members of a fnc_data
data structure. The list of argument types is enclosed in parentheses: Panther supports
string and integer arguments, specified by s and i, respectively. The following
declarations and definitions support the installation of two functions:

struct fnc_data pfuncs[] = {
 SM_INTFNC ("mark_flds(i,i)", mark_flds),
 SM_INTFNC ("report(s,s)", report)
};

int pfuncs = sizeof (pfuncs) /
 sizeof (struct fnc_data) ;

SC_AFLDMDT Bit mask that indicates the widget's validation state and why the
function was called. Corresponds to fourth standard argument of
a widget function.

SC_AFLDOCC Occurrence number of the widget that called the function.
Corresponds to the third standard argument of a widget function.

SC_AGRPMDT Bit mask that indicates the group's validation state and why the
function was called. Corresponds to the second standard
argument of a group function.

Argument Return Value
Application Development Guide 44-9

Screen Functions
In this example, marks_flds is prototyped to take two integer arguments and report
takes two string arguments.

The macro SM_INTFNC specifies that the function dereferences its arguments and
returns an integer value. For string returns, substitute SM_STRFNC; for double precision
returns, substitute SM_DBLFNC.

Panther supports any combination of strings and integers from zero to five arguments,
and functions with six integer arguments. If a function's arguments do not conform to
these requirements—for example, there are more than six, or they include an
unsupported data type—you can call it indirectly through a wrapper function.

The following library call to sm_install installs these functions.

sm_install is usually called in sm_do_uinstalls, found in the source module
funclist.c:

sm_install(PROTO_FUNC, pfuncs, &pcount) ;

Screen Functions

You can install an automatic screen function that is called on screen entry and exit.
You can also install one or more demand screen functions that can be called explicitly
at different stages of program execution. Both automatic and demand screen functions
get arguments that describe the screen's current state.

Panther executes the automatic screen function on both entry and exit for that screen.
On entry, the automatic screen function is executed before the screen's entry function.
If a screen has a JPL module, its unnamed procedure is executed on screen entry before
the automatic function. On exit, the screen's exit function is executed before the
automatic screen function.

Panther optionally recognizes overlay and reexposure of a screen as exit and entry
events, respectively. This depends on how Panther setup variable EXPHIDE_OPTION is
set. If the variable is set to ON_EXPHIDE, screen exit and entry functions are invoked
44-10 Installed Event Functions

Screen Functions
on screen overlay and reexposure. Overlay of a screen can occur because another
screen opens or is selected; reexposure can occur because an overlying screen closes
or is deselected.

Notes: It is not advisable to open a screen from a screen entry function, since such an
event yields undefined results.

Screen Function Arguments

All screen functions receive two arguments in this order:

! A pointer to a null-terminated character string that contains the screen's name.

! An integer bitmask that indicates the screen's current state and why the function
was called.

The second parameter can have one or more of the following flags set:

K_ENTRY

The function was called on screen entry.

Equivalent:

if(param2 & K_ENTRY)

K_EXIT

The function was called on screen exit.

Equivalent:

if (param2 & K_EXIT)

K_EXPOSE

The function was called for one of these reasons:

! The screen was selected.

! The screen was deselected.
Application Development Guide 44-11

Screen Functions
! The screen is hidden because a window popped over it—K_EXIT and K_EXPOSE

are set.

! The screen is reexposed because a window that overlay it closed—K_ENTRY and
K_EXPOSE are set.

Equivalent:

if (param2 & K_EXPOSE)

K_KEYS

Mask for the bits that indicate which event caused the screen to exit. You should test
the intersection of this mask and the second parameter against K_NORMAL or K_OTHER.

K_NORMAL

A “normal” call to sm_close_window caused the screen to close.

Equivalent:

if ((param2 & K_KEYS) == K_NORMAL)

K_OTHER

The screen closed because another form is displayed or because sm_resetcrt is
called.

Equivalent:

if ((param2 & K_KEYS) == K_OTHER)

Screen Function Returns

Screen functions should return 0 if they do not reposition the cursor or change the
screen. If a screen function does move the cursor, it should have a non-zero return
value, which prevents sm_input from repositioning the cursor.
44-12 Installed Event Functions

Screen Functions
Installation of an Automatic Screen Function

You can install only one function as the automatic screen function. The following
statement, typically found in funclist.c, includes the automatic screen function
auto_sfunc in the fnc_data structure autoscr_struct. To see the code for this
function, refer to page 44-62.

struct fnc_data autoscr_struct = SM_OLDFNC(0, auto_sfunc) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs auto_sfunc as the default screen function:

sm_install (DFLT_SCREEN_FUNC, &autoscr_struct, (int *)0) ;

Installation of Demand Screen Functions

You can install multiple functions as demand screen functions. The following
statements, typically found in funclist.c, include two all-purpose screen entry and exit
functions sEntry and sExit in the fnc_data structure sfuncs:

struct fnc_data sfuncs[] =
{
 SM_OLDFNC("sEntry", sEntry),
 SM_OLDFNC("sExit", sExit),
};

int scount = sizeof (sfuncs) / sizeof (struct fnc_data) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs the functions in sfuncs as demand screen functions:

sm_install (SCREEN_FUNC, sfuncs, &scount) ;
Application Development Guide 44-13

Field Functions
Field Functions

You can install an automatic field function that is called on field entry, exit, and
validation. You can also install one or more demand field functions that can be called
explicitly at different stages of program execution. Both automatic and demand field
functions get arguments that describe the field's current state.

Panther executes the automatic field function on field entry, exit, and validation. You
can install an automatic field function that is invoked on any of these events for all
fields. You can separately install demand field functions, which individual fields can
explicitly invoke for entry, exit, or validation. These functions are installed in the field
function list; a field specifies one of these through its properties window as its entry,
exit, or validation function.

Automatic field functions can access non-standard information for specific fields
through the field's memo text properties. For an example, see page 44-65.

Execution

Panther executes the automatic field function on all field events. On entry, the
automatic field function is executed before the field's entry function. On exit, Panther
first calls the field's validation function, then its exit function, and finally the automatic
field function. If the field has JPL validation, this module is executed after the
validation function.

Entry

Panther can recognize two events as field entry: when the cursor enters a field; and
when the screen's current field is reactivated because an overlying window closes, if
setup variable EXPHIDE_OPTION is set to ON_EXPHIDE.
44-14 Installed Event Functions

Field Functions
Notes: It is not advisable to bring up a dialog box, such as a message dialog, from a
field entry function, since opening a screen between a mouse down and a
mouse up event yields undefined results.

Exit

Panther can recognize two events as field exit: when the cursor leaves a field; and when
a window overlays the field's screen, if setup variable EXPHIDE_OPTION is set to
ON_EXPHIDE (the default).

Validation

Validation functions are called under the following conditions:

! As part of field validation, when you exit the field or scroll to the next
occurrence by filling it, or by pressing TAB or NL. Widget functions are called
for validation only after the field's contents pass all other validations for the
field.

BACKTAB, arrow keys, and mouse clicks outside the field trigger field validation
only if the setup variable IN_VALID is set to OK_VALID. The default setting is
OK_NOVALID

! When the application code calls sm_fval or sm_s_val to force field or screen
validation.

! As part of screen validation when XMIT is pressed. By default, this logical key
is mapped to the function sm_s_val, which validates all fields on the screen.
The setup variable XMIT_LAST can also be set so screen validation occurs when
TAB and/or NL are pressed in a screen's last field.

If a field calls a validation function and belongs to a menu, radio button group, or check
box group, this function is called when the field is selected. The validation function of
a check box is also called when the field is deselected.

Field Function Arguments

All field functions receive four arguments in this order:

! An integer that contains the field's number.
Application Development Guide 44-15

Field Functions
! A pointer to a null-terminated character string that contains a copy of the field's
contents.

! An integer that contains the occurrence number of the data.

! An integer bitmask that indicates the field's validation state and why the
function was called.

The last parameter can have one or more flags set. The following sections describe
these flags:

VALIDED

The field has passed validation and remains unmodified. Note that Panther always calls
field functions for validation whether or not the field already passed validation. You
can test this flag and the MDT flag to avoid redundant validation. This flag setting can
also be accessed and modified through the field's valided property.

Equivalent: if(param4 & VALIDED)

MDT

The field's data changed since the current screen opened. If the screen entry function
modifies the field's data when the screen opens, the MDT flag remains unset. However,
if the same screen entry function executes because the screen is reexposed—for
example, through closure of an overlying window—modification of the field's data
sets the MDT flag. This flag setting can also be accessed and modified through the
field's mdt property.

Panther never clears this flag once it is set, unless you explicitly clear it by setting the
field's mdt property to PV_NO, or clear all fields on the screen by calling
sm_cl_all_mdts.

Equivalent: if(param4 & MDT)

K_ENTRY

The field function was called on field entry.

Equivalent: if(param4 & K_ENTRY)
44-16 Installed Event Functions

Field Functions
K_EXIT

The field function was called on field exit. Note that if neither K_ENTRY nor K_EXIT
are set, the field is undergoing validation.

Equivalent: if(param4 & K_EXIT)

K_EXPOSE

The field function was called because a window overlying this field's screen opened or
closed:

K_EXPOSE and K_ENTRY are set: the overlying window closed and the
field is exposed.K_EXPOSE and K_EXIT are set: the overlying window opened and
the field is hidden.

Equivalent: if(param4 & K_EXPOSE)

K_EXTEND

The field is an extended selection list box.

K_EXTEND_LAST

For extended selection list boxes, the field is the last item in the list box.

K_KEYS

Mask for the flags that tell which keystroke or event caused field entry, exit, or
validation. The intersection of this mask and the fourth parameter to the field function
should be tested for equality against one of the next six flags.

K_NORMAL

A “normal” key caused the cursor to enter or exit the field in question. For field entry,
“normal” keys are NL, TAB, HOME, and EMOH. For field exit, only TAB and NL are
considered “normal.”

Equivalent: if((param4 & K_KEYS)==K_NORMAL)
Application Development Guide 44-17

Field Functions
K_BACKTAB

The BACKTAB key caused the cursor to enter or exit the field.

Equivalent: if((param4 & K_KEYS)==K_BACKTAB)

K_ARROW

An arrow key caused the cursor to enter or exit the field.

Equivalent: if((param4 & K_KEYS)==K_ARROW)

K_SVAL

The field is being validated as part of screen validation.

Equivalent: if((param4 & K_KEYS)==K_SVAL)

K_USER

The field is being validated directly from the application with sm_fval or
sm_validate.

Equivalent: if((param4 & K_KEYS)==K_USER))

K_OTHER

A key other than BACKTAB, an arrow key, or a “normal” key caused the cursor to enter
or exit the field. For field entry, “normal” keys are NL, TAB, HOME, and EMOH. For field
exit, only TAB and NL are considered “normal.”

Equivalent: if((param4 & K_KEYS)==K_OTHER)

K_INSDEL

The INSL or DELL key caused field exit or entry. Use this flag in field exit or entry
processing to determine whether the entry or exit event resulted from the user inserting
or deleting an occurrence. For example, the following code differentiates between field
exit events that are caused by INSL or DELL inserting or deleting an occurrence, and
other actions that might cause field exit, such as the user pressing TAB:
44-18 Installed Event Functions

Field Functions
if (param4 & K_EXIT)
{

if((param4 & K_KEYS) == K_INSDEL)
 // if exit occurred because user inserted or deleted

// occurrence, do nothing
{

return
}
// 'real' exit occurred, so perform exit processing
...

}

Field Function Returns

Field functions called on entry or exit should return 0 if they leave the cursor position
unchanged. Field functions called for validation should return 0 if the field contents
pass the validation criteria. A non-zero return code in a validation function should
indicate that the field does not pass validation.

If the returned value from a field function is 1, the cursor position remains unchanged.
Any other non-zero return value repositions the cursor to the field. This repositioning
is useful when an entire screen is undergoing validation, because the field that fails
validation might not have the cursor in it. It is generally good design practice to use the
field validation function to reposition the cursor before you display an error message.
This reinforces the link between the error message and the offending field.

Installation of an Automatic Field Function

You can install only one function as the automatic field function. The following
statement, usually found in funclist.c, includes the automatic field function
auto_ffunc in the fnc_data structure autofld_struct. To see the code for this
function, refer to page 44-65.

struct fnc_data autofld_struct = SM_OLDFNC(0, auto_ffunc) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs auto_ffunc as the default field function:

sm_install (DFLT_FIELD_FUNC, &autofld_struct, (int *) 0) ;
Application Development Guide 44-19

Grid Functions
Installation of Demand Widget Functions

You can install multiple functions as demand field functions. The following
statements, usually found in funclist.c, include two all-purpose field entry and
validation functions fentry and fvalid in the fnc_data structure ffuncs. To see
the code for these functions, refer to page 44-69.

struct fnc_data ffuncs[] =
{
 SM_OLDFNC("fentry", fentry),
 SM_OLDFNC("fvalid", fvalid),
};

int fcount = sizeof (ffuncs) / sizeof (struct fnc_data) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs the functions in ffuncs as demand field functions:

sm_install (FIELD_FUNC, ffuncs, &fcount) ;

Grid Functions

You can install one or more demand grid functions that can be called explicitly at
different stages of grid execution:

! Grid entry and exit.

! Grid row entry and exit.

! Grid validation.

Panther can recognize two events as grid entry: when the cursor enters a grid; and when
the screen's current grid is reactivated because an overlying window closes, if setup
variable EXPHIDE_OPTION is set to ON_EXPHIDE.

On grid entry, the grid's entry function is executed first, then the grid's row entry
function. The grid row exit and entry functions are repeatedly called each time the
cursor exits the current row and enters another one.
44-20 Installed Event Functions

Grid Functions
Panther can recognize two events as grid exit: when the cursor leaves a grid; and when
a window overlays the grid's screen, if setup variable EXPHIDE_OPTION is set to
ON_EXPHIDE. On exit, the grid row exit function is called before the grid exit function.

Grid Function Arguments

All grid functions receive three arguments in this order:

! An integer that contains the grid's base widget number—that is, the base widget
number of the grid's leftmost array, whether or not it is hidden or the grid uses
the first row as a title row.

! An integer that contains the occurrence number of the current grid row. This
argument is supplied only to grid row entry or row exit functions; otherwise this
argument is 0.

! An integer bitmask that indicates why the function was called.

The last parameter can have one or more flags set. The following sections describe
these flags:

K_ENTRY

The function was called on grid or row entry.

Equivalent: if (param3 & K_ENTRY)

K_EXIT

The function was called on grid or row exit. Note that if neither K_ENTRY nor K_EXIT
are set, the grid is undergoing validation.

Equivalent: if (param3 & K_EXIT)

K_EXPOSE

The function was called because a window overlying this grid's screen opened or
closed:

K_EXPOSE and K_ENTRY are set: the overlying window closed and the grid is exposed.
Application Development Guide 44-21

Grid Functions
K_EXPOSE and K_EXIT are set: the overlying window opened and the grid is hidden.

Equivalent: if(param3 & K_EXPOSE)

K_KEYS

Mask for the flags that tell which keystroke or event caused entry, exit, or validation
for the grid or grid row. The intersection of this mask and the third parameter to the
function should be tested for equality against one of the next six flags.

K_NORMAL

A “normal” key caused the cursor to enter or exit the grid or grid row in question. For
grid or grid row entry, “normal” keys are NL, TAB, HOME, and EMOH. For grid exit, only
TAB and NL are considered “normal.”

Equivalent: if((param3 & K_KEYS)==K_NORMAL)

K_BACKTAB

The BACKTAB key caused the cursor to enter or exit the grid or grid row.

Equivalent: if((param3 & K_KEYS)==K_BACKTAB)

K_ARROW

An arrow key caused the cursor to enter or exit the grid or grid row.

Equivalent: if((param3 & K_KEYS)==K_ARROW)

K_SVAL

The grid is being validated as part of screen validation.

Equivalent: if((param3 & K_KEYS)==K_SVAL)

K_USER

The grid is being validated directly from the application with sm_fval.
44-22 Installed Event Functions

Grid Functions
Equivalent: if((param3 & K_KEYS)==K_USER))

K_OTHER

A key other than BACKTAB, an arrow key, or a “normal” key caused the cursor to enter
or exit the grid or grid row. For entry, “normal” keys are NL, TAB, HOME, and EMOH. For
exit, only TAB and NL are considered “normal.”

Equivalent: if((param3 & K_KEYS)==K_OTHER)

K_INSDEL

The INSL or DELL key caused grid row exit or entry. Use this flag in row exit or entry
processing to determine whether the entry or exit event resulted from the user inserting
or deleting a grid row. For example, the following code differentiates between row exit
events that are caused by INSL or DELL inserting or deleting a gird row, and other
actions that might cause row exit, such as the user pressing TAB:

if (param4 & K_EXIT)
{

if((param3 & K_KEYS) == K_INSDEL)
 // if exit occurred because user inserted or deleted

// row, do nothing
{

return
}
// 'real' exit occurred, so perform exit processing
...

}

Grid Function Returns

Grid functions return meaningful values only if called as the grid's validation
function—0 if successful, non-zero if not.

Installation of Demand Grid Functions

You can install multiple functions as demand grid functions. The following statements,
typically found in funclist.c, include two all-purpose grid entry and exit functions
gridEntry and gridExit in the fnc_data structure grdfuncs:
Application Development Guide 44-23

Tab Control Functions
struct fnc_data grdfuncs[] =
{
 SM_INTFNC("gridEntry", gridEntry),
 SM_INTFNC("gridExit", gridExit),
};

int gcount = sizeof (grdfuncs) / sizeof (struct fnc_data) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs the functions in grdfuncs as demand grid functions:

sm_install (GRID_FUNC, grdfuncs, &gcount) ;

Tab Control Functions

You can install one or more demand tab card functions that can be called explicitly at
different events:

! Tab card entry and exit.

! Tab card hide and expose.

Since the index tab on each card is a field, refer to refer to page 44-14 for information
on field functions.

Tab Control Function Arguments

All tab card functions receive two arguments in this order:

! The object id of the tab card.

! An integer bitmask that indicates why the function was called.

The last parameter can have one or more flags set. The following sections describe
these flags:
44-24 Installed Event Functions

Group Functions
K_ENTRY

The function was called on tab card entry.

Equivalent: if(param2 & K_ENTRY)

K_EXIT

The function was called on tab card exit.

Equivalent: if(param2 & K_EXIT)

K_EXPOSE

The function was called because the screen containing this card opened or was
exposed, because the overlying tab card was hidden, or because this tab card is the new
topmost card.

Equivalent: if(param2 & K_EXPOSE)

For the card hide event, all three flags are clear.

Group Functions

Panther calls group functions on entry, exit, and validation of groups. You can install
an automatic group function is invoked on entry, exit, and validation for all groups.
Each group can invoke its own functions for these events through its entry, exit, and
validation functions. You can specify these event functions in the group's properties
window, accessed through the screen editor.

The automatic group function is executed on all group events. On entry, the automatic
group function is executed before the group's entry function. On exit, the group's exit
and validation functions is called first, and then the automatic group function. If the
group has a JPL group module, this module is executed only after the group functions.
Application Development Guide 44-25

Group Functions
Two events are recognized as group entry: when the cursor enters a group; and when
the screen's current group is reactivated because an overlying window closes.

Two events are recognized as group exit: when the cursor leaves a group; and when a
window overlays the group's screen.

Group validation functions are called under the following conditions:

! As part of group validation, when you exit the group by pressing TAB or
selecting from an autotab group. BACKTAB, arrow keys and mouse clicks outside
the group also cause validation, unless the setup variable IN_VALID is changed
from its default setting to OK_NOVALID.

! As part of screen validation when the user presses XMIT.

! When the application code calls library functions for group validation.

Note that if a group contains a widget that has its own validation function, this function
is called when the widget is selected. The validation function of a check box is also
called when the widget is deselected.

Notes: It is not advisable to bring up a dialog box, such as a message dialog, from a
group entry function, since opening a screen between a mouse down and a
mouse up event yields undefined results.

Group Function Arguments

All group functions receive two arguments:

! A pointer to a null-terminated character string that contains the group's name.

! An integer bitmask that indicates whether the group has been validated and why
the function was called.

The flags that can be set on a group's bitmask are the same as for a single widget. For
a description of these flags, refer to page 44-16.

Group functions are called for validation whether or not the group has already been
validated. You can test the VALIDED and MDT bits to avoid redundant processing.
44-26 Installed Event Functions

Group Functions
Group Function Returns

Group functions called on entry or exit should return 0. Group functions called for
validation should return 0 if the group selections pass the validation criteria. A
non-zero return code should indicate that the group failed validation. If the return value
is 1, the cursor position remains unchanged. Any other non-zero return value
repositions the cursor to the group that failed validation.

Installation of an Automatic Group Function

You can install only one function as the automatic group function. The following
statement, usually found in funclist.c, includes the automatic group function
auto_gfunc in the fnc_data structure autogrp_struct. To see the code for this
function, refer to page 44-71.

struct fnc_data autogrp_struct = SM_OLDFNC(0, auto_gfunc) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs auto_gfunc as the default group function:

sm_install (DFLT_GROUP_FUNC, &autogrp_struct, (int *) 0) ;

Installation of Demand Group Functions

You can install multiple functions as demand group functions. The following
statements, usually found in funclist.c, include two all-purpose group entry and
exit functions gEntry and gExit in the fnc_data structure gfuncs:

struct fnc_data gfuncs[] =
{
 SM_OLDFNC("gEntry", gEntry),
 SM_OLDFNC("gExit", gExit),
};

int gcount = sizeof (gfuncs) / sizeof (struct fnc_data) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs the functions in gfuncs as demand widget functions:

sm_install (GROUP_FUNC, gfuncs, &gcount) ;
Application Development Guide 44-27

Client Authentication Functions
Client Authentication Functions

With the JetNet/Tuxedo middleware adapters, a client authentication function is used
by the middleware’s authentication server during client initialization. This function,
specified by client_init’s DATAFUNC option, provides the data required to authorize
the client connection. For more information about client authentication options in
JetNet and Tuxedo, refer to page 2-11 in the Programming Guide.

Client Authentication Arguments

A client connection authentication (DATAFUNC) function requires five arguments:

! A pointer to the address where the client authentication data is located. This
address is set by the function and must remain valid on return. The type of the
user data contained at the address depends on the authentication server.

! A string containing the argument passed to client_init for the USER option,
if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the CLIENT
option, if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the PASSWORD
option, if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the GROUP option,
if used; otherwise NULL. This value must not be changed.

Client Authentication Returns

DATAFUNC functions should return a long containing the non-negative length of the
authentication data at the address (first argument). A positive value must be
accompanied by a non-zero address in the authentication data address. If the function
returns a negative value, or if the address is NULL when a positive value is returned,
client_init raises a TP_DATAFUNC_FAILED exception.
44-28 Installed Event Functions

Client Authentication Functions
Installation

You can install multiple DATAFUNC functions. The following statements, typically
found in funclist.c, includes the DATAFUNC function user_datafunc in the
fnc_data structure authpre. Examples are given for both a single DATAFUNC and
multiple functions.

Install a single DATAFUNC function as follows:

struct fnc_data authpre =

SM_STRFNC ("user_datafunc", user_datafunc);

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs user_datafunc as the default client authentication connection
function:

sm_install (TP_INITDATA_FUNC, authpre, (int *)0);

You cam install multiple DATAFUNC functions by defining them in an array of
fnc_data structures:

static struct fnc_data authpre[] =
{

SM_STRFNC ("user_datafunc1", user_datafunc1),
SM_STRFNC ("user_datafunc2", user_datafunc2)

};

static int acount =

sizeof(authpre) / sizeof (struct fnc_data);

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs the functions in authpre as DATAFUNC functions, to be called
depending on the argument supplied by client_init's DATAFUNC option:

sm_install (TP_INITDATA_FUNC, authpre, &acount);
Application Development Guide 44-29

Client Post-Connection Functions
Client Post-Connection Functions

With the JetNet/Tuxedo middleware adapters, client_init can include a POSTFUNC
option that specifies a function to be paired with its DATAFUNC function. A POSTFUNC
function is always called whether or not the client authentication is successful. For
more information about client authentication options in JetNet and Tuxedo, refer to
page 2-13 in the Programming Guide.

Client Post-Connection Arguments

All POSTFUNC functions require six arguments:

! The address of the authentication data, as obtained from the prior call to the
DATAFUNC function.

! A long containing the length of the authentication data, as obtained by the
return value from the DATAFUNC function.

! A string containing the argument passed to client_init for the USER option,
if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the CLIENT
option, if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the PASSWORD
option, if used; otherwise NULL. This value must not be changed.

! A string containing the argument passed to client_init for the GROUP option,
if used; otherwise NULL. This value must not be changed.

Client Post-Connection Returns

void (none)
44-30 Installed Event Functions

Client Post-Connection Functions
Installation

You can install multiple POSTFUNC functions. The following statements, typically
found in funclist.c, includes the POSTFUNC function user_postfunc in the
fnc_data structure authpost. Installation instructions are shown for both a single
POSTFUNC and multiple functions.

Install a single POSTFUNC function as follows:

Define the function in a fnc_data structure.

struct fnc_data authpost =

SM_STRFNC ("user_postfunc", user_postfunc);

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs user_postfunc as the default client authentication
post-connection function:

sm_install (TP_INITPOST_FUNC, authpost, (int *)0);

You can install multiple POSTFUNC functions by defining them in an array of
fnc_data structures:

static struct fnc_data authpost[] =
{

SM_STRFNC ("user_postfunc1", user_postfunc1),
SM_STRFNC ("user_postfunc2", user_postfunc2)

};

static int acount =

sizeof(authpost) / sizeof (struct fnc_data);

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs the functions in authpost as client authentication post-connection
functions, to be called depending on the argument to the POSTFUNC option used in a
call to the client_init command.

sm_install (TP_INITPOST_FUNC, authpost, &acount);

For further information on client authentication, refer to client_init.
Application Development Guide 44-31

Help Function
Help Function

A help function installs a driver to invoke an external help facility such as WINHELP
from your application. This driver gets a single argument from its caller, which
contains a help context identifier. It is the responsibility of the help driver to pass this
identifier to the help facility.

Help Function Arguments

The help function gets a single string that contains the help context identifier.

Help Function Returns

PI_ERR_NONE (success) or
PI_ERR_NO_MORE (failure).

Installation

You can install only one function as a help function. The following statement, usually
found in funclist.c, include the help function sm_PiXmDynaHook in the fnc_data
structure hlp_struct. To see the code for this function, refer to page 44-73.

struct fnc_data hlp_struct = SM_OLDFNC(0, sm_PiXmDynaHook);

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs sm_PiXmDynaHook as the default help function:

sm_install (EXTERNAL_HELP_FUNC, &hlp_struct, (int *) 0);
44-32 Installed Event Functions

Timeout Functions
Timeout Functions

Panther periodically calls the installed timeout functions while the keyboard input
function awaits user input. You can use timeout functions to poll or otherwise
manipulate communications resources, or to update the screen display. You can install
multiple timeout functions with different time lapse specifications, measured in
minutes, seconds, or tenths of seconds. Each timeout function is called when its
timeout interval elapses.

Timeout functions are called from the lowest level of keyboard or mouse input. When
they are installed, the device driver clock on the terminal input device is set to time out
on its character read operation. If Panther does not read any character in the time
interval specified by a timeout function, it calls that function before it tries to read
another character.

Timeout Function Arguments

Timeout functions get one integer argument that tells why the function was called:

TF_TIMEOUT

No keyboard activity occurred for the amount of time specified by this function's
timeout interval.

TF_RESTART

Keyboard input was received during execution of the timeout function.

Timeout Function Returns

A timeout function should return a code that indicates whether Panther should keep
calling the timeout function after each lapse of the timeout interval:
Application Development Guide 44-33

Timer Functions
TF_KEEP_CALLING

Keep calling the user function each timeout the interval elapses.

TF_STOP_CALLING

Do not call the timeout function again until keyboard input is received.

Installation

You can install multiple timeout functions. The following statements, usually found in
funclist.c, installs a single timeout function screen_saver in the fnc_data
structure timeout_funcs. To see the code for this function, refer to page 44-78. The
first member of this structure specifies units of measurement: TF_TENTHS (tenths of
seconds), TF_SECONDS, or TF_MINUTES. The fifth member specifies the timeout
interval as a multiple of these units.

struct fnc_data timeout_funcs[] =
{
 { TF_MINUTES, screen_saver, 0, 0, 10, 0 }
};

int tcount = sizeof (timeout_funcs)
 / sizeof (struct fnc_data) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs the function in timeout_funcs as a timeout function:

sm_install (TIMEOUT_FUNC, timeout_funcs, &tcount) ;

Timer Functions

Panther periodically calls installed timer functions while the keyboard input function
awaits user input. Timer functions differ from timeout functions in that the interval for
timer functions is not reset after user input. You can use timer functions to poll or
44-34 Installed Event Functions

Timer Functions
otherwise manipulate communications resources, or to update the screen display. You
can install multiple timer functions with different time lapse specifications, measured
in minutes, seconds, or tenths of seconds. Each timer function is called when its
interval elapses.

Timer Function Arguments

Timer functions get one integer argument that tells why the function was called:

TF_TIMEOUT

The timer's interval has expired.

TF_RESTART

There was a timer interval expiration for which the function was not called. This could
happen, for example, during a long database operation. TF_RESTART calls only occur
after TF_TIMEOUT calls. If the timer function returns TF_STOP_CALLING, no more
TF_RESTART calls will occur before the next TF_TIMEOUT call.

Timer Function Returns

A timer function should return a code that indicates whether Panther should keep
calling the function after each lapse of the timer interval:

TF_KEEP_CALLING

Call the timer function extra times if timer expiration calls were missed.

TF_STOP_CALLING

Do not call the timer function again until the next timer expiration.
Application Development Guide 44-35

Key Change Function
Installation

You can install multiple timer functions. The following statements installs a single
timer function poll_database in the fnc_data structure timer_funcs. The first
member of this structure specifies units of measurement: TF_TENTHS (tenths of
seconds), TF_SECONDS, or TF_MINUTES. The fifth member specifies the timer interval
as a multiple of these units.

struct fnc_data timer_funcs[] =
{
 { TF_MINUTES, poll_database, 0, 0, 10, 0 }
};

int tcount = sizeof (timer_funcs)
 / sizeof (struct fnc_data) ;

The following line of code installs the function in timer_funcs as a timeout function:

sm_install (TIMER_FUNC, timer_funcs, &tcount) ;

Key Change Function

A key change function can be called whenever Panther reads a key from the keyboard.
You can use key change functions to intercept, process, or translate keystrokes at the
logical key level. Key change functions can be useful alternatives to using
sm_keyoption.

Panther calls the key change function once for each key that it gets from the keyboard
or the playback function.

Note: The key change function ignores any keys placed on the input queue by
sm_ungetkey or jm_keys.
44-36 Installed Event Functions

Error Function
Key Change Function Arguments

A key change function gets one integer argument, the Panther logical key that is read
from the keyboard or received from a playback function.

Note: The key change function is not called for the following keys: MNBR, ALSYS, and
ALT keys.

Key Change Function Returns

A key change function returns the key to be input into the application by sm_getkey.
If the key change function returns 0, sm_getkey gets the next key from the keyboard.

Installation

You can install only one key change function. The following statement, usually found
in funclist.c, includes key change function keychg in the fnc_data structure
keychg_struct. To see the code for this function, refer to page 44-79.

struct fnc_data keychg_struct = SM_OLDFNC(0, keychg) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs keychg as the key change function:

sm_install (KEYCHG_FUNC, &keychg_struct, (int *) 0) ;

Error Function

Panther calls the installed error function when it issues an error message—invoked
either by a Panther error or by a call to one of Panther's error message functions—for
example, sm_fquiet_err or sm_ferr_reset. You can use the error function for
special error handling—for example, to write all error messages to a log file.
Application Development Guide 44-37

Error Function
Error Function Arguments

The error function gets three arguments in this order:

! The number of the message to display—for Panther messages, as defined in
smerror.h; for user-defined messages, as defined in user-created message
header files. If the calling function passes a text string to display, this argument
is -1.

! The text of the message to display. If the calling function passes a message
number, this argument is 0.

! Tells whether to display the message in quiet mode: a value of 1 specifies yes, a
value of 0 specifies no. The value will be 1 for messages displayed by JPL calls
to msg qui_msg and msg quiet and the message functions sm_fquiet_err,
sm_fqui_msg, sm_quiet_err and sm_qui_msg.

Error Function Returns

If the error function returns 0 to its caller, the calling message function continues
processing. If this function returns a non-zero value, the calling message function
returns immediately.

Installation

You can install only one error function. The following statement, usually found in
funclist.c, includes error function myerr in the fnc_data structure err_struct.

struct fnc_data err_struct = SM_OLDFNC(0, myerr) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs myerr as the error function. To see the code for this function,
refer to page 44-81 .

sm_install (ERROR_FUNC, &err_struct, (int *) 0) ;
44-38 Installed Event Functions

Insert Toggle Function
Insert Toggle Function

An insert toggle function is called when the data entry mode switches between insert
and overstrike mode—for example, when the user chooses Insert. You can use this
function to display a message that indicates the current mode.

Panther automatically installs an insert toggle function that changes the cursor style
when the mode is changed. If an application has its own insert toggle function
installed, Panther uninstalls its insert toggle function; the insert toggle function that
you install can call Panther's insert toggle function directly.

Arguments

This function gets one integer argument, which specifies the new mode:

! 1—Insert mode

! 0—Overstrike mode

Returns

The insert toggle function should return 0.

Installation

You can install only one insert toggle function. The following statement, usually found
in funclist.c, includes the insert toggle function inscrsr in the fnc_data structure
keychg_struct. To see the code for this function, refer to page 44-81.

struct fnc_data instgl_struct = SM_OLDFNC(0, inscrsr) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs inscrsr as the insert toggle function:
Application Development Guide 44-39

Check Digit Function
sm_install (INSCRSR_FUNC, &instgl_struct, (int *) 0) ;

Check Digit Function

A check digit function is called during validation of any widget whose Check Digit
property is set. You use a check digit function to perform your own check digit
algorithm. If no check digit function is installed, the library function sm_ckdigit is
used, whose source is distributed in source form.

Because sm_ckdigit source is available, you can implement your own algorithm by
directly modifying this library function and linking it to your application. However, if
your linker does not let you override library functions, you must install your own check
digit function.

Arguments

The check digit function gets these arguments:

! A pointer to a null-terminated string that contains the widget's contents.

! The occurrence number for the current widget.

! The modulus as specified in the Check Digit property.

! The minimum number of digits as specified in the Minimum Digits property.

Returns

The check digit function should return 0 if the widget passes check digit validation. If
the function returns a non-zero value, the cursor is repositioned to the offending widget
and the widget is not marked as validated.
44-40 Installed Event Functions

Initialization and Reset Functions
Installation

You can install only one check digit function. The following statement, usually found
in funclist.c, includes the check digit function ckdigit in the fnc_data structure
ckdgt_struct.

`struct fnc_data ckdgt_struct = SM_OLDFNC(0, ckdigit) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs ckdgt as the check digit function:

sm_install (CKDIGIT_FUNC, &ckdgt_struct, (int *) 0) ;

Initialization and Reset Functions

The initialization and reset functions are called on display setup and reset, respectively.
You can use the initialization function to set the terminal type, and the reset function
to handle any cleanup that the application requires on exit.

The initialization function is called from the library function sm_initcrt. It is called
before Panther allocates its own memory structures or sets the physical display. Unlike
other installed functions, the initialization function should be installed before
sm_initcrt is called. Consequently, you cannot place the installation code for this
function in the funclist.c function sm_do_uinstalls.

The reset function is called from the library function sm_resetcrt after Panther
releases its memory and resets the physical display. Because Panther's abort function
sm_cancel calls sm_resetcrt before the application terminates, it calls the reset
function at application exit whether the exit is graceful or not.

You might need to set interrupt handlers to ensure that sm_cancel is called at all the
necessary hardware and software interrupt signals. You should set these either in the
funclist.c function sm_do_uinstalls, or in the function installed as an
initialization function.
Application Development Guide 44-41

Initialization and Reset Functions
Arguments

The initialization function is passed a single argument, a 30-byte character buffer that
contains a null-terminated string mnemonic for the terminal type in use. This is mainly
used for operating systems without an environment. You can use this function to get
the terminal type in some system-specific way.

The reset function is passed no arguments.

Returns

Both the initialization and reset functions should return 0.

Installation

You can install only one initialization and one reset function. Initialization functions
are called by sm_initcrt and so must be installed in jmain.c before the call to
sm_initcrt:

struct fnc_data uninit_struct = SM_OLDFNC(0, uinit) ;

sm_install (UINIT_FUNC, &uinit_struct, (int *) 0) ;

The reset function can be installed like other functions in funclist.c. This function
is called from sm_resetcrt, and is consequently called even if the application
terminates abnormally:

struct fnc_data ureset_struct = SM_OLDFNC(0, ureset) ;

sm_install (URESET_FUNC, &ureset_struct, (int *) 0) ;

To see sample initialization and reset functions, refer to page 44-82.
44-42 Installed Event Functions

Record and Playback Functions
Record and Playback Functions

Panther provides hooks for recording and playing back keystrokes. You can use this
facility to create simple macros, or to perform regression testing on a Panther
application. Be careful that record and playback functions are not in use
simultaneously:

! sm_getkey calls the record function just before it returns a translated key value
to the application.

! sm_getkey also calls the playback function in place of a read from the
keyboard.

Characters are recorded after the key change function processes them, but are played
back before key change translation; consequently, some key change functions might
prevent accurate playback of recorded keystrokes. Refer to the description of
sm_getkey for more information.

Accurate regression testing might require the playback function to pause and flush the
output, in order to simulate a realistic rate of typing, and to call a timeout function.

Arguments

The record function gets a single integer argument, the Panther logical key to record.
This key is usually recorded in some fashion for later playback.

The playback function gets no arguments.

Returns

The record function should return 0. The playback function should return the logical
key previously recorded.
Application Development Guide 44-43

Control Functions
Installation

You can install only one record and one playback function. The following statements,
usually found in funclist.c, include the record and playback functions record and play
in the fnc_data structures record_struct and play_struct, respectively. To see
the code for these functions, refer to page 44-84.

struct fnc_data record_struct = SM_OLDFNC(0, record) ;

struct fnc_data play_struct = SM_OLDFNC(0, play) ;

The following lines of code, usually found in the function sm_do_uinstalls in
funclist.c, install record and play as the record and playback functions:

sm_install (RECORD_FUNC, &record_struct, (int *) 0) ;

sm_install (PLAY_FUNC, &play_struct, (int *) 0) ;

Control Functions

Control functions are called either through control strings or by the call command in a
JPL procedure. Because control functions take only one argument—a pointer to a copy
of the control string that invoked it—you can install as control functions those
functions whose argument list is especially long or complex—for example, a SQL
statement.

All control functions are demand types—that is, they must be explicitly named by one
of the aforementioned callers.

Arguments

A control function receives one argument, a pointer to a copy of the control string or
call command that invoked it. This string is stripped of its leading caret ^ or call verb.
Panther identifies only the first word of the control string as the function name; the rest
of the string can be parsed and used as arguments by the function.
44-44 Installed Event Functions

Status Line Function
Returns

Control functions can return any integer. You can use the return value for conditional
control branching in a control string's target lists. If the function returns a function key
that is not a value in the target list, Panther processes the key and executes its control
string, if any.

Installation

You can install multiple functions as control functions. The following statements,
typically found in funclist.c, include two control functions mark_low and
mark_high in the fnc_data structure mark_funcs. To see the code for these
functions, refer to page 44-87.

struct fnc_data mark_funcs[] =
{
 SM_OLDFNC("mark_low", mark_low),
 SM_OLDFNC("mark_high", mark_high),
};

int markcount = sizeof (mark_funcs)
 / sizeof (struct fnc_data) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c, installs the functions in mark_funcs as control functions:

sm_install (CONTROL_FUNC, mark_funcs, &markcount) ;

Status Line Function

Panther calls the status line function just before the status line is flushed or physically
written to the terminal display. Because of delayed write, this might not coincide with
calls to functions that specify message line text. You typically use this function for
terminals that require special status line processing.
Application Development Guide 44-45

Status Line Function
Arguments

The status line function gets no arguments. It can access copies of the text and
attributes about to be flushed to the status line through the following calls to library
functions:

stat_attr = sm_pinquire(SP_STATLINE);

stat_attr = sm_pinquire(status, SP_STATATTR);

Note that in the case of the status text and status attribute globals, sm_pinquire
returns a pointer to a temporary copy of the arrays. You should copy these to a save
location before using them.

Returns

If the status line function returns 0, Panther continues its usual processing and writes
out the status line. If the function returns a non-zero value, Panther assumes that the
function handles the physical write of the status line.

Installation

You can install only one status line function. The following statement, usually found
in funclist.c, includes the status line function statln in the fnc_data structure
stat_struct. To see the code for this function, refer to page 44-96.

struct fnc_data stat_struct = SM_OLDFNC(0, statln) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs statln as the status line function:

sm_install (STAT_FUNC, &stat_struct, (int *) 0) ;
44-46 Installed Event Functions

Video Processing Function
Video Processing Function

A character-based application can use the video processing function for special
handling of various video sequences. GUI applications ignore the video processing
function. Use your own video processing function only if Panther has no video file that
supports a specific terminal type. Panther's output function calls the video processing
function just before it displays data on a Panther screen; consequently, this function
should perform only low-level processing.

Video processing functions should not call Panther library functions.

Arguments

The video processing function receives two arguments:

! An integer video processing code defined in the header file smvideo.h and
outlined in Table 44-2.

! A pointer to an array of integers with parameters for the video processing code.
The number of parameters passed depends on the operation as shown in
Table 44-2. For video processing codes that require no arguments, supply NULL.

Table 44-2 Video processing codes

Code Parameters Action

V_ARGR Remove area attribute.

V_ASGR 11 Set area graphics rendition.

V_BELL Visible alarm sequence.

V_CMSG Close message line.

V_COF Turn cursor off.

V_CON Turn cursor on.
Application Development Guide 44-47

Video Processing Function
V_CUB 1 Cursor back (left).

V_CUD 1 Cursor down.

V_CUF 1 Cursor forward (right).

V_CUP 2 Set cursor position (absolute).

V_CUU 1 Cursor up.

V_ED Erase entire display.

V_EL Erase to end of line.

V_EW 5 Erase window to background.

V_INIT Initialization string.

V_INSON Set insert cursor style.

V_INSOFF Set overstrike cursor style.

V_MODE0 Set graphics mode (also
V_MODE1,2,3).

V_MODE4 Single character graphics mode
(also V_MODE5,6).

V_OMSG Open message line.

V_RCP Restore cursor position.

V_REPT 2 Repeat character sequence.

V_RESET Reset string.

V_SCP Save cursor position.

V_SGR 11 Set latch graphics rendition.

Table 44-2 Video processing codes

Code Parameters Action
44-48 Installed Event Functions

Database Driver Hook Functions
Returns

If the function returns 0, normal processing is continued. If it returns a non-zero value
is returned, Panther assumes that the function handled the operation. This lets you
implement only necessary operations.

Installation

You can install only one video processing function. The following statement, usually
found in funclist.c, includes the video processing function video in the fnc_data
structure video_struct.

struct fnc_data video_struct = SM_OLDFNC(0, video) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c, installs video as the video processing function:

sm_install (VPROC_FUNC, &video_struct, (int *) 0) ;

Database Driver Hook Functions

Panther's database drivers have three hook functions that can be used to write database
error handlers: ONERROR, ONENTRY, and ONEXIT. For more information about using
these commands, refer to page 11-42 in the Programming Guide.
Application Development Guide 44-49

Transaction Manager Event Functions
Transaction Manager Event Functions

When the transaction manager traverses the transaction tree in order to issue
commands to each table view or server view, it checks to see if any of these table or
server views have a function property specified. If so, the transaction manager looks
for it among the installed functions and calls it. If the function contains processing for
the current transaction event, that processing is completed.

If the return code is TM_PROCEED, the transaction manager then calls the
database-specific and the common models for the same transaction event.

If the return code is TM_OK, the transaction manager continues to the next table view or
the next transaction event. If the return code is TM_CHECK, TM_CHECK_ONE_ROW, or
TM_CHECK_SOME_ROWS, the transaction manager pushes an event onto the stack to
check for database errors.

For information about writing transaction event functions, refer to page 32-1.

Arguments

Transaction manager functions are passed a single integer argument that corresponds
to the transaction event. Transaction events and their integer values are listed in
tmusubs.h.

Returns

Table 44-3 summarizes possible return codes for transaction manager functions:

Table 44-3 Return codes for transaction manager functions

Return value Description

TM_OK Event processing succeeded.
44-50 Installed Event Functions

Transaction Manager Event Functions
Installation

You can specify a transaction manager function for each table view or server view in
a screen for insert, update, or delete processing. With the table view selected, enter the
name of the function in the Function property (under Transaction). If the function
affects the SQL generation of SELECT statements, the function must be entered on the
appropriate server view.

The function itself can be either a JPL procedure or C function that is installed in the
prototyped function list.

Errors

When a screen is opened, the transaction manager reports an error if the function
cannot be found. As a result of this error, the transaction manager does not start its
transaction.

TM_FAILURE Event processing failed.

TM_PROCEED After completing the function, proceed to call the
transaction model for this event, as if this function
had never been called.

TM_CHECK Test to see if an error occurred. This is used in data
base-specific transaction models to check for SQL
execution errors.

TM_CHECK_ONE_ROW In addition to an error test, test that exactly one
row was affected by the processing.

TM_CHECK_SOME_ROWS In addition to an error test, test that one or more
rows were affected by the processing.

TM_UNSUPPORTED Event was not recognized.

Table 44-3 Return codes for transaction manager functions

Return value Description
Application Development Guide 44-51

Sample Functions
Sample Functions

The following sections show sample code for commonly used function types.

Prototyped

This section has two sample functions:

! mark_flds gets a range of values and highlights all widgets whose data is
within that range.

report generates a report whose type and output device vary according to the
supplied arguments.

! mark_flds gets a range of values and highlights all widgets whose data is
within that range. This function takes two integer arguments which specify the
low and high ends of the range. If the first argument is less than the second, all
widgets on the screen with numeric values between the two arguments are
temporarily highlighted. If the first argument is greater than the second, all
widgets on the screen with numeric values that are not between the two widgets
are highlighted.

For example, this control string highlights all values on the screen between zero and
500:

^mark_flds (0, 500)

The next control string highlights all values on the screen that are greater than 1000 or
less than -300:

^mark_flds (1000, -300)

The following code comprises the entire mark_flds function.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */
44-52 Installed Event Functions

Sample Functions
/* Macro Definitions... */
/* Attributes used to mark fields */

#define MARK_ATTR REVERSE | HILIGHT | BLINK

int
mark_flds (bound1, bound2)

int bound1 ; /* First Boundary on fields to mark */
int bound2 ; /* Second Boundary on fields to mark */

{
 int fld_num ; /* Field Number */
 char *fld_data; /* Field Data */
 double fld_val ; /* Field Value */
 int num_of_flds ;/* Number of Fields */
 int *old_attrib ;/* Array of old attributes */

 /* Determine number of fields */

 num_of_flds = sm_inquire (SC_NFLDS) ;

 /* Allocate memory for attribute array */

 old_attrib = (int *)calloc (num_of_flds,
 sizeof (int)) ;

 /* Cycle through all the fields on the screen */

 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Store away old attributes */

 old_attrib[fld_num-1] =
 sm_finquire (fld_num, FD_ATTR) ;

 /* Make sure it is a field with numbers */

 fld_data = sm_strip_amt_ptr (fld_num, NULL) ;
 if (! *fld_data) continue ;

 /* Create a double from it */

 fld_val = sm_dblval(fld_num) ;

 /* See if fld_val is in bounds */

 if (bound1 <= bound2)
 {
 /* Mark fields between bounds. */
Application Development Guide 44-53

Sample Functions
 if ((fld_val >= (double)bound1) &&
 (fld_val <= (double)bound2))
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }
 }
 else
 {

 /* Mark fields outside bounds. */

 if ((fld_val >= (double)bound1) ||
 (fld_val <= (double)bound2))
 {
 sm_chg_attr (fld_num, MARK_ATTR) ;
 }
 }
 }

 /* Wait for acknowledgement */

 sm_ferr_reset ("Hit <space> to continue") ;

 /* Cycle again through all the fields on the screen */

 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Reset field attributes */

 sm_chg_attr (fld_num,
 old_attrib[fld_num - 1]) ;

 }

 /* Release memory */

 free ((char *)old_attrib) ;
 return (0) ;
}

Example 2

report generates a report whose type and output device vary according to the supplied
arguments. This function takes two string arguments:

! The first argument specifies the report type with one of these values: field,
screen, wstack, or term.
44-54 Installed Event Functions

Sample Functions
! The second argument specifies where to output the report. If you supply a null
string, the requested report is shown in a message window. For example, the
following control string causes a widget report to pop up in a message window:

^report(“field”, “”)

If the second argument starts with an exclamation point (!), the remainder is interpreted
as an operating system command. The report is created in a temporary file, and the
name of the file is passed as an argument to the operating system command. If a tilde
(~) is embedded in the command, the name of the temporary file is substituted for the
tilde, otherwise the name is just appended at the end. These two control strings both
cause a screen report to print on a UNIX system:

^report (“screen”,"!lp -c -s")

^report ("screen", "!date | cat - ~ | lp -s")

If the second argument starts with a vertical bar (|), the remainder is also interpreted as
an operating system command. In this case, however, the report is piped into the
standard input of that command. This control string prints out the last twenty lines of
a window stack report on a UNIX system:

^report ("wstack", "| tail | lp -s")

Finally, if the second argument is a valid file name, the report is appended to the named
file. This control string causes a display terminal report to be appended to the file
report.fil:

^report("term", "report.fil")

The following code comprises the entire report function.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */

int

report (report_type, report_out)
char *report_type ; /* Type of report: field, screen,
 wstack, or term. */
char *report_out ; /* Output designation. */

{
 char *fn = NULL ; /* Name of output file */
 char *ptr, *ptr1 ; /* Character pointers */
 char msg_buf[128]; /* Message buffer */
 FILE *fp ; /* File pointer for output */
Application Development Guide 44-55

Sample Functions
 int size ; /* Size of output file */
 int cur_no ; /* Current field number */
 int select ; /* Current window stack index */

 /* If an output designation was made... */

 if (report_out && *report_out)
 {
 /* Based on what output type we designated: */

 switch (*report_out)

 {
 case '!' :
 /* OS command. Open temp file */
 fn = tempnam (NULL, "rprt") ;
 fp = fopen (fn, "w") ;
 break ;

 case '|' :

 /* Pipe. Open the pipe */

 fp = popen (report_out + 1, "w") ;
 break ;

 default :

 /* Other. Open the file */

 fp = fopen (report_out, "a+") ;
 break ;

 }

 /* If we could not open the file, show error */

 if (! fp)
 {
 sprintf (msg_buf,
 "Cannot open stream for %s.",
 report_out) ;
 sm_ferr_reset (msg_buf) ;
 return (-1) ;
 }
 }

 /* If no report output specified, open temp file for
 storing message window stuff. */

 else
 {
44-56 Installed Event Functions

Sample Functions
 fn = tempnam (NULL, "rprt") ;
 fp = fopen (fn, "w+") ;
 report_out = "" ;
 }

 fprintf (fp, " REPORT TYPE: %s ", report_type) ;

 /* Now, based on the report_type, which is the name
 with which the function was invoked, create
 the reports. Note that all newlines are
 preceded with spaces, this is so that in the
 case of the message windows we can replace
 all space-newlines with %N, the newline
 indicator for Panther windows. */

 switch (*report_type)
 {
 case 'F':
 case 'f':
 /* Output a field report */

 fprintf (fp, " Field Report: ") ;

 /* Field Identifier and contents */

 cur_no = sm_getcurno ();
 fprintf (fp, "FIELD: %d (%s[%d]) = %s ",
 cur_no,
 sm_name (cur_no),
 sm_occur_no (),
 sm_fptr (cur_no)) ;

 /* Field sizes */

 size = sm_finquire (cur_no, FD_LENG) ;
 fprintf (fp, "LENGTH: onscreen: %d "
 "Max: %d ",
 size, sm_finquire (cur_no,
 FD_SHLENG)
 + size) ;

 fprintf (fp, "# OCCURRENCES: onscreen: %d "
 "Max: %d ",
 sm_finquire (cur_no, FD_ASIZE),
 sm_max_occur (cur_no)) ;

 break;

 case 'S':
 case 's':
Application Development Guide 44-57

Sample Functions
 /* Output screen report */

 fprintf (fp, " Screen Report: ") ;

 /* Screen Name */

 fprintf (fp, "SCREEN: %s ",
 sm_pinquire (SP_NAME)) ;

 /* How much of screen is visible */

 fprintf (fp, "%% VISIBLE IN VIEWPORT: %d ",
 100 *
 (sm_inquire (SC_VNLINE) *
 sm_inquire (SC_VNCOLM)) /
 (sm_inquire (SC_NCOLM) *
 sm_inquire (SC_NLINE))) ;

 break ;

 case 'w':
 case 'W':

 /* Output Window stack report */

 fprintf (fp, " Window Stack Report: ") ;

 /* Cycle through all the windows. */

 for (select = 0 ;
 sm_wselect (select) == select ;
 select++)
 {
 /* Window number... */

 fprintf (fp, " Window %d: ",
 select) ;

 /* Screen name */

 fprintf (fp, "Screen: %s ",
 sm_pinquire (SP_NAME)) ;

 /* Number of fields and groups */

 fprintf (fp, "# of Fields: %d "
 "# of Groups: %d ",
 sm_inquire (SC_NFLDS),
 sm_inquire (SC_NGRPS)) ;
 sm_wdeselect () ;
 }
44-58 Installed Event Functions

Sample Functions
 sm_wdeselect () ;
 break ;

 case 'T':

 case 't':

 /* Output display terminal report */

 fprintf (fp, " Terminal Report: ") ;

 /* Terminal Type */

 fprintf (fp, "TERM TYPE: %s ",
 sm_pinquire (P_TERM)) ;

 /* Display mode */

 if (sm_inquire (I_NODISP))
 fprintf (fp, "DISPLAY OFF ") ;
 else
 fprintf (fp, "DISPLAY ON ") ;

 /* Input mode */

 if (sm_inquire (I_INSMODE))
 fprintf (fp, "INSERT MODE ") ;

 else
 fprintf (fp, "TYPEOVER MODE ") ;

 /* Block mode */

 if (sm_inquire (I_BLKFLGS))
 fprintf (fp, "BLOCK MODE ") ;

 /* Physical display size */

 fprintf (fp, "DISPLAY SIZE: %d x %d ",
 sm_inquire (I_MXLINES),
 sm_inquire (I_MXCOLMS)) ;
 break;

 default:

 /* Unrecognized report type */

 fprintf (fp, "Illegal Report Type ") ;
 return (-3) ;
 }

 /* Once again, based on the type output... */
Application Development Guide 44-59

Sample Functions
 switch (*report_out)
 {
 case '|' :

 /* It was a pipe, so close it. */

 pclose (fp) ;
 sm_ferr_reset ("Pipe successful") ;
 break ;

 case '!' :

 /* It was an O/S command. Close file... */

 fclose (fp) ;

 /* Gobble up the exclamation point */

 report_out++;

 /* Look for tildes */

 if (ptr = strchr (report_out, '~'))
 {
 /* Found the tilde. Substitute the
 file name for it. */

 *ptr = '';
 sprintf (msg_buf, "%s%s%s",
 report_out, fn, ptr+1) ;
 }

 else

 {
 /* No tilde. Append file name to
 O/S command. */

 sprintf (msg_buf, "%s %s",
 report_out, fn) ;
 }

 /* Do the command. */

 system (msg_buf) ;

 /* Delete temp file and free its name. */

 remove (fn) ;
 free (fn) ;
 sm_ferr_reset ("Command Invoked") ;
 break ;
44-60 Installed Event Functions

Sample Functions
 case '':

 /* Message window. Get size of file... */

 size = ftell (fp) ;

 /* Allocate memory for it. */

 ptr = malloc (size + 1) ;

 /* Rewind the file */

 fseek (fp, SEEK_SET, 0) ;

 /* Read it into the malloced buffer. */

 fread (ptr, sizeof (char), size, fp) ;

 /* Close and delete file, free file name */

 fclose (fp) ;
 remove (fn) ;
 free (fn) ;

 /* null terminate memory buffer of report */

 ptr[size] = '';

 /* Replace all space-newlines with %N */

 for (ptr1 = ptr ;
 ptr1 = strchr (ptr1, '') ;
 ptr1++)
 {
 ptr1[-1]='%';
 ptr1[0]='N';
 }

 /* Pop up the message window */

 sm_message_box
 (ptr, 0, SM_MB_OK|SM_MB_ICONNONE, 0) ;

 /* Free up the malloced buffer. */

 free (ptr) ;
 break ;

 default :

 /* File appended, just close it. */
Application Development Guide 44-61

Sample Functions
 fclose (fp) ;
 sm_ferr_reset ("File appended") ;
 break ;
 }
 return (0) ;
}

Automatic Screen

The following screen function, intended as the application's automatic screen function,
maintains information on how long screens are open, and the total amount of time they
are active. Note the use of the P_USER pointer, a general purpose pointer that you can
manipulate, which is associated with an open screen.

This function keeps track of the length of time that the user has spent with a screen
open and active. It is intended to be installed as the default screen function for an
application. Note that in the example, the times are shown on the status line, but they
could be logged to a file for time management analysis.

For this function to operate correctly, the setup variable EXPHIDE_OPTION must be set
to ON_EXPHIDE, so Panther calls functions on screen overlay and reexposure.

The time() call used in this function is ANSI C. On UNIX platforms it returns the
number of seconds elapsed since January 1, 1970, GMT.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */
#include <time.h> /* ANSI time() Header File */

/* Data structure to hold aggregate times by screen */

struct my_info
{
 time_t opentime ; /* Time screen was opened */
 time_t acttime ; /* Time screen was activated */
 double usedtime; /* Aggregate time active */
 double totaltime ;/* Aggregate time open */
};

int
auto_sfunc (name, context)
char *name ; /* Screen Name */
int context ; /* Context for function call */
44-62 Installed Event Functions

Sample Functions
{
 struct my_info *my_info_ptr ; /* Time buf pointer */
 char *action_verb = /* Text of context */
 "inspecting" ;
 time_t current_time ;
 int do_free = 0 ; /* Flag, set to free
 memory */

 char msg_buf[128] ; /* Message buffer */

 /*
 * We make assumptions here: screens that are not named
 * are unimportant and should not have logging done.
 * This will exclude dynamically created message
 * windows.
 */

 if ((! name) || (! *name))
 {
 return (0) ;
 }

 /* Get the current time. (ANSI Standard call) */
 current_time = time ((time_t *)0) ;

 /* Get the pointer to time structure
 associated with this screen */
 my_info_ptr = (struct my_info *)sm_pinquire (P_USER) ;

 /* Figure out which context we are called in. */
 if (context & K_ENTRY)
 {
 if (context & K_EXPOSE)
 {
 /*
 * Screen exposed (activated) when
 * overlying window was closed.
 * Set context string verb and
 * add to the aggregate open time.
 */

 action_verb = "activating" ;
 my_info_ptr->totaltime =
 my_info_ptr->totaltime +
 difftime (current_time,
 my_info_ptr->opentime) ;

 }
Application Development Guide 44-63

Sample Functions
 else
 {
 /* Screen opened. */
 action_verb = "opening" ;

 /* Allocate memory for time structure */
 my_info_ptr =
 (struct my_info *)
 malloc (sizeof (
 struct my_info)) ;
 if (! my_info_ptr)
 {
 sm_ferr_reset ("No memory") ;

 sm_cancel (0) ;
 }

 /* Associate the buffer with screen */
 sm_pset (P_USER, (char *)my_info_ptr) ;

 /* Set initial time values */
 my_info_ptr->opentime = current_time ;
 my_info_ptr->usedtime = 0 ;
 my_info_ptr->totaltime = 0 ;
 }

 /* Set initial value of aggregate active time */
 my_info_ptr->acttime = current_time ;
 }
 else
 {
 if (context & K_EXPOSE)
 {
 /* Screen overlaid with window. */
 action_verb = "deactivating" ;
 }

 else
 {
 /* Screen closed. */
 action_verb = "closing" ;
 /* Set flag to free the time structure */

 do_free = 1 ;

 }

 /* Calculate new aggregates. */
44-64 Installed Event Functions

Sample Functions
 my_info_ptr->usedtime =
 my_info_ptr->usedtime +
 difftime (current_time,
 my_info_ptr->acttime) ;

 my_info_ptr->totaltime =
 my_info_ptr->totaltime +
 difftime (current_time,
 my_info_ptr->opentime) ;

 }

 /* Format the message. */

 sprintf (msg_buf, "Now %s screen %s."
 " Seconds active: %.1f."
 " Seconds open: %.1f.",
 action_verb, name,
 my_info_ptr->usedtime,
 my_info_ptr->totaltime) ;

 /* If time structure memory should be freed, free it. */

 if (do_free)
 {
 free (my_info_ptr) ;
 }

 /* Output the message. Could be to log file,
 here it is to stat line */

 sm_ferr_reset (msg_buf) ;

 return (0) ;
}

Automatic Widget

This section has two sample functions:

! auto_ffunc puts general information about the current widget on the status
line.

! memoval uses a widget's memo edits to pass non-standard information to that
widget's automatic widget function.
Application Development Guide 44-65

Sample Functions
Example 1

This function puts general information about the current widget on the status line. This
function is installed as the automatic widget function in a Panther application; it is
called on entry, exit, and validation for all widgets.

On widget entry, the function places information about the widget on the status line:
its name, if any, number, and occurrence offset. If the widget is a selected member of
a group—for example, radio buttons or a list box—the status line shows the text of the
selected widget, the group name, and the group occurrence.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */

int
auto_ffunc (f_number, f_data, f_occurrence, context)
int f_number ; /* Field Number */
char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int context ; /* Context Bits */

{
 char *f_name ; /* Field Name */
 char *g_name ; /* Group Name */
 char *slct ; /* selected or deselected */
 int g_occurrence ; /* Group Number */
 char stat_line[128];/* Status line string */

 /* If called on field exit, clear the status line. */
 if (context & K_EXIT)
 {
 sm_setbkstat ("", WHITE) ;
 }

 /* If called on entry, format and display status line */
 else if (context & K_ENTRY)
 {

 /* Obtain the field name */
 f_name = sm_name (f_number) ;

 /* Format the status line */
 if (f_name && *f_name)
 sprintf (stat_line, "Current Field: "
 "%s[%i] (#%i[%i])",
 f_name, f_occurrence,
 f_number, f_occurrence) ;
 else
 sprintf (stat_line,
44-66 Installed Event Functions

Sample Functions
 "Current Field: #%i[%i]",
 f_number, f_occurrence) ;

 /* Display the status line */
 sm_setbkstat (stat_line, BLUE | HILIGHT) ;
 }

 /*
 * If we get here, it is neither entry nor exit so it must
 * be validation. In this case, see if the field is the
 * member of a group. If it is, the validation function
 * was called because the field was selected, or in the
 * case of checklists, deselected. Note that
 * menu selection events will not be flagged, because
 * menus are not groups.
 */

 else if (g_name = sm_o_ftog (f_number,
 f_occurrence,
 &g_occurrence))

 {
 /* Determine if selected or deselected */

 if (sm_isselected (g_name, g_occurrence))
 slct = "selected" ;
 else
 slct = "deselected" ;

 /* Format and print status line message */

 sprintf (stat_line, "%s %s, group %s[%d]",
 f_data, slct, g_name, g_occurrence) ;

 sm_setbkstat (stat_line, BLUE | HILIGHT) ;
 }

 /* Return code of zero means that everything is fine. */

 return (0) ;
}

Example 2

This second example of an automatic widget function shows how to use a widget's
memo edits to pass non-standard information to that function. This function validates
each widget against the contents of its memo edits.
Application Development Guide 44-67

Sample Functions
This function is to be installed as a non-prototyped widget validation function in a
Panther application, either on the

FIELD_FUNC list or as the

DFLT_FIELD_FUNC.

The function validates widgets according to a list of values that
are found in the first memo text edit. Possible values in the memo
text edit are separated by spaces.

/* Include Files */

#include "smdefs.h" /* screen manager Header File */

int
memoval (f_number, f_data, f_occurrence, context)
int f_number ; /* Field Number */
char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int context ; /* Context Bits */

{
 char *memo_text ; /* Memo text string */
 char *token_ptr ; /* Token */
 char msg[128] ; /* message string */

 /* If called on field entry or exit, or if already
 validated, or if empty, just exit right off. */

 if ((context & K_EXIT) ||
 (context & K_ENTRY) ||
 (context & VALIDED) ||
 (! *f_data))

 {
 return (0) ;
 }

 /* Get the first memo text edit string. */

 if (! (memo_text = sm_edit_ptr (f_number, MEMO1)))
 {
 /* There is no memo text edit string. */
 return (0) ;
 }

 /* Duplicate the string. (Note: pass over the two length
 bytes returned by sm_edit_ptr) */
44-68 Installed Event Functions

Sample Functions
 if (! (memo_text = strdup (memo_text + 2)))
 {
 /* Memory allocation error. */
 return (0) ;
 }

 /* Cycle down the memo text string grabbing tokens.
 If we have a match, break out of loop. */

 for (token_ptr = strtok (memo_text, " ") ;
 token_ptr && strcmp (token_ptr, f_data) ;
 token_ptr = strtok (NULL, " ")) ;

 /* Free up memory. */
 free (memo_text) ;

 /* If we found matching token, validate OK. */
 if (token_ptr)
 return (0) ;

 /* Error condition. Create error string. */

 sprintf (msg, "Invalid value %s in field. "
 "Valid values are: %s.", f_data,
 sm_edit_ptr (f_number, MEMO1) + 2) ;

 sm_ferr_reset (0, msg) ;

 /* Return and reset cursor. */

 return (2) ;
}

Demand Widget

The following local widget functions can be called by individual widgets to perform
initialization and validation based on external criteria:

Two widget functions to include on the widget function list are defined here. The first
one, fentry, initializes the value in a widget provided that it has not changed since the
screen was opened. The second one, fvalid, validates the contents of a widget. The
functions that retrieve the initialization data and lookup the validation data are
externally defined and are application-specific.

/* Include Files */

#include "smdefs.h" /* screen manager Header File */
Application Development Guide 44-69

Sample Functions

/* Externally defined functions */
extern char *do_my_initialize () ; /* Get data for field
 initialization */
extern int my_lookup () ; /* Lookup data for field
 validation */

int
fentry (f_number, f_data, f_occurrence, f_context)
int f_number ; /* Field Number */
char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int f_context ; /* Context bits */

{
 /* Initialize if the field has not been modified
 since the screen was opened. */

 if (! (f_context & MDT))
 {
 sm_putfield (f_number, do_my_initialize ()) ;
 }

 return (0) ;
}

int
fvalid (f_number, f_data, f_occurrence, f_context)
int f_number ; /* Field Number */
char *f_data ; /* Field Contents */
int f_occurrence ; /* Occurrence number for field */
int f_context ; /* Context bitmask */

{
 char msg_buf[80];/* Message line buffer */

 /* If the field is already valid, merely return. */
 if (f_context & VALIDED)
 return (0) ;

 /* If the field is invalid based on external
 lookup, return error. */
 if (my_lookup (f_data))
 {
 /* Error, so reposition field. */

 sm_gofield (f_number) ;
44-70 Installed Event Functions

Sample Functions
 sprintf (msg_buf, "Invalid data %s.", f_data) ;
 sm_ferr_reset (0, msg_buf) ;

 /* Return code of 1 indicates validation fail */

 return (1) ;
 }
 return (0) ;
}

Automatic Group

The group function auto_gfunc is installed as the automatic group function—that is,
a function that is called whenever group entry, exit, or validation occurs. On entry, this
function installs the keychange function keychg, which lets users select group widgets
by pressing the X key. On group exit, auto_gfunc uninstalls keychg.

Note that preexisting keychange functions should be stacked by auto_gfunc.
keychg also chains existing keychange functions along, but it is assumed that they are
written in C. Preexisting keychange functions in some other supported 3GL language
may not be properly chained by this function.

For a more extended example of keychange functions, see page 44-79.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smkeys.h" /* screen manager Logical Keys */

static int keychg () ;
static struct fnc_data o_keychg ; /* Old keychg */
static struct fnc_data *fnc_ptr ; /* Event Pointer */
static struct fnc_data keychg_struct/* New keychg */
 = { 0, keychg, 0, 0, 0, 0 };

int
auto_gfunc (name, context)
char *gp_name ; /* Group Name */
int context ; /* Context bits */

{
 /* If called on group entry.... */
 if (context & K_ENTRY)
 {
 /* Install the new keychange function */
 fnc_ptr = sm_install (KEYCHG_FUNC,
Application Development Guide 44-71

Sample Functions
 &keychg_struct,
 (int *)0) ;

 /* If there was an old one, store it away. */
 if (fnc_ptr)
 {
 memcpy ((char *)&o_keychg,
 (char *) fnc_ptr,
 sizeof (struct fnc_data)) ;
 }

 else
 {
 memset ((char *)&o_keychg, 0,
 sizeof (struct fnc_data)) ;
 }
 }

 /* If called on group exit...... */
 else if (context & K_EXIT)
 {
 /* If there was an old keychange function */
 if (fnc_ptr)
 {
 /* Re-install it. */
 sm_install (KEYCHG_FUNC, &o_keychg,
 (int *)0) ;
 }

 else
 {
 /* Get rid of the current one anyway. */
 sm_install (KEYCHG_FUNC, NULL,
 (int *) 0) ;
 }
 }
 return (0) ;
}

static int
keychg (key)
int key ;

{
 /* If there was an old keychange function */
 if (o_keychg.fnc_addr)
 {
 /* Chain the old keychange function. */
 key = (o_keychg.fnc_addr)(key) ;
44-72 Installed Event Functions

Sample Functions
 /* WARNING: This is not completely general, since
 old keychange functions not written in C
 may not be called properly. */

 }

 /*
 * Now do the new keychange. Basically, we want to select
 * group members by typing "x", move the cursor to the
 * next group member immediately after selection, and have
 * the NL key move to the next selection.
 */

 switch (key)
 {
 case 'x' :
 case 'X' :
 key = NL ;
 break ;

 case NL :
 key = ' ' ;
 break ;
 }

 return (key) ;

}

External Help

sm_PiXmDynaHook is a help function that Panther uses to invoke its own help
facilities. Use the External Help Tag property of screens, menus, and screen-resident
widgets to specify help context identifiers. This identifier is passed to the help function
when the user invokes help from an application component.

The following help driver is supplied with Panther; it invokes context-sensitive help
from the screen editor.

/*** sample client code for dyna help server ***/
/** Includes **/
#include "smmach.h"
#include "smproto.h"
#include "smxmuser.h"
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
Application Development Guide 44-73

Sample Functions
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <sys/wait.h>
#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/StringDefs.h>
#include "xmhelphk.h"

/* typedef */
typedef struct PiXmDynaPath_s PiXmDynaPath_t;
struct PiXmDynaPath_s
{

char *pszDynaCollection;
char *pszDynaBook;

};

/** statics **/
static Atom xaServer = (Atom)0;
static Atom xaRequest = (Atom)0;
static PiXmDynaPath_t dynaPath = {NULL, NULL};
static XtResource xresDyna[] =

{
{ "helpPath", "HelpPath", XtRString, sizeof(char *),
 XtOffsetOf(PiXmDynaPath_t, pszDynaCollection),

XtRString,
 "/u/apps/ebt22" },
{ "editorHelpFile", "EditorHelpFile", XtRString,

sizeof(char *), XtOffsetOf
(PiXmDynaPath_t, pszDynaBook), XtRString, "editors" },

};

int sm_PiXmDynaHook PROTO((char *));
static int PiXmInitHelp PROTO((Display *));
static void PiXmSendMsg PROTO((Display *, Window, char *));
/*

NAME
The event function to the Dyna Server. Takes "Tag" string
and makes a help server request. However if the "Tag" is
the string "SM_RESERVED_QUIT_TAG" then server is killed.

SYNOPSIS
iRetVal = sm_PiXmDynaHook(pszTag);
char *pszTag; The "Tag" identification string
int iRetVal;

DESCRIPTION
0) If tag is "SM_RESERVED_QUIT_TAG" the quit. Otherwise.
44-74 Installed Event Functions

Sample Functions
1) Get the path of the help file
2) Initialize the server (if needed)
3) Build the server request
4) send the request

RETURNS
Returns

PI_ERR_NONE on success
PI_ERR_NO_MORE on failure

*/

int
sm_PiXmDynaHook PARMS((pszTag))
LASTPARM(char *pszTag)

{
char pszMessage[512];
Display *dpy = sm_xm_get_display();
Boolean bQuiting = strcmp(pszTag, "SM_RESERVED_QUIT_TAG");

if (dynaPath.pszDynaBook == NULL)
{

XtGetApplicationResources(sm_xm_get_base_window(),
&dynaPath, xresDyna, XtNumber(xresDyna), NULL, 0);

}

if (!PiXmInitHelp (dpy))
return(PI_ERR_NO_MORE);
sprintf(pszMessage,
"command=ebt-link collection=%s book=%s
target=ancestor(ancestor(idmatch('Tagname','%s')))
stylesheet=fulltext.v showtoc=true",
dynaPath.pszDynaCollection, dynaPath.pszDynaBook,
pszTag);
PiXmSendMsg (dpy, DefaultRootWindow(dpy), pszMessage);

return(PI_ERR_NONE);
}

/*

NAME
PiXmInitHelp - Start the server if needed. Set server atoms.

SYNOPSIS
iRetVal = PiXmInitHelp(dpy);
Display *dpy;
int iRetVal;

DESCRIPTION
 Start the server if needed. Set the server atoms.
Application Development Guide 44-75

Sample Functions
RETURNS
Returns

PI_ERR_NONE on success
PI_ERR_NO_MORE on failure

*/

static
int
PiXmInitHelp PARMS((display))
LASTPARM(Display *display)

{
int iPid;
int iDummy;
char *pszShellPath; /* pointer to SHELL environment var */
char *pszShell; /* the last segment of the path */
void (*pfuncIntr)(), (*pfuncQuit)(), (*pfuncTstp)();
char *server_name = "SM_JAM_DYNA_HELP_SERVER";
char *selection_name = "SM_JAM_DYNA_HELP_SELECTION";
char *request_name = "SM_JAM_DYNA_HELP_REQUEST";
int iRetVal = 1;
static Boolean bCreatedServer = FALSE;

XInternAtom (display, selection_name, False);
xaServer = XInternAtom (display, server_name, False);

if (!bCreatedServer)
XSetSelectionOwner(display, xaServer, None,
CurrentTime);

if ((!bCreatedServer) || XGetSelectionOwner(display,
xaServer) == None)

{
#ifdef SIGTSTP
#define SIGNAL(a,b) signal(a,b)

pfuncTstp = SIGNAL(SIGTSTP, SIG_DFL);

#else

#define SIGNAL(a,b)

#endif

/* see if there is a SHELL variable */
pszShellPath = getenv ("SHELL");

if (!pszShellPath || !pszShellPath[0])
pszShellPath = "/bin/sh";
if (!(iPid = fork()))

{
pszShell = strrchr(pszShellPath, '/');
if (!pszShell || !pszShell[1])

pszShell = pszShellPath;
execlp (pszShellPath, pszShell, "-c",
44-76 Installed Event Functions

Sample Functions
"xmjxhelp", (char *)0);
exit (-1);

}
}

bCreatedServer = TRUE;
pfuncIntr = signal(SIGINT, SIG_IGN);

pfuncQuit = signal(SIGQUIT, SIG_IGN);
while (XGetSelectionOwner(display, xaServer) == None)

{
if(waitpid(iPid, &iDummy, WNOHANG))
{

/* server failed */
iRetVal = PI_ERR_NO_MORE;
break;

}

else
{

sleep(1);
}

}

signal (SIGINT, pfuncIntr);
signal (SIGQUIT, pfuncQuit);
SIGNAL (SIGTSTP, pfuncTstp);

xaRequest = XInternAtom(display, request_name, False);
return(iRetVal);

}

/*

NAME
PiXmSendMsg - Send the msg request to the help server.

SYNOPSIS
PiXmSendMsg(dpy, xwin, pszMsg);
Display *dpy;
Window xwin;
char *pszMsg;

DESCRIPTION
Send the msg request to the help server.

*/

static
void
PiXmSendMsg PARMS((dpy, xwin, pszMsg))
PARM(Display *dpy)
Application Development Guide 44-77

Sample Functions
PARM(Window xwin)
LASTPARM(char *pszMsg)

{
XChangeProperty(dpy, xwin, xaRequest, XA_STRING, 8,
PropModeReplace, (unsigned char *) pszMsg,

strlen(pszMsg)+1);
XConvertSelection(dpy, xaServer, XA_STRING, xaRequest,

xwin, CurrentTime);
XFlush(dpy);

}

Timeout

screen_saver is a timeout function that acts as a screen saver that is invoked after ten
minutes of keyboard inactivity. The same function restores the screen when a key is
typed.

/* Include files */
#include "smdefs.h"

int screen_saver(int why_called)
{
 if (why_called == TF_TIMEOUT) /*clear the screen
 after timeout */

 {
 sm_clrviscreen ();
 }
 else if (why_called == TF_RESTART) /*restore screen
 after key hit */

 {
 sm_rescreen ();
 }

 /* Returning STOP_CALLING means this function is not
 * called again every ten minutes
 */

 return (TF_STOP_CALLING)
}

44-78 Installed Event Functions

Sample Functions
Key Change

The following key change function intercepts each occurrence of the user entering an
exclamation point or striking the EXIT key.

This application keychange function causes sm_getkey to intercept two keys, the
exclamation point and the logical EXIT key. When the user types an exclamation point,
this function asks if an operating system shell is wanted. If so, a shell is provided. If
the user types EXIT, the function ensures that the user really wants to EXIT before
returning the EXIT back to sm_getkey.

Note that if the user escapes to the shell or does not want to EXIT, the keychange
function swallows the keystroke. If the user does not want the shell or wants to EXIT,
the keystroke is passed back to sm_getkey.

Note also preprocessor directives on whether or not the Panther executive is in use. If
the executive is in use, we do not query about the EXIT if there are control strings
associated with EXIT. Also, we can use the standard Panther operating system escape.

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smkeys.h" /* screen manager Logical Keys */

#define EXIT_CONFIRM "Do you want to EXIT? (y/n)"
#define SHELL_CONFIRM "Do you want to go to OS? (y/n)"

int keychg (int the_key)/* Key read from keyboard by
 * sm_getkey */

{
 static int recursive ; /* Flag ensuring no recursion. */

 /* First ensure that we are not called recursively */
 if (recursive) return (the_key) ;

 /* Set recursive flag */
 recursive++ ;

 /* Based on the key read from the keyboard..... */
 switch (the_key)

 {
 case EXIT:
 /*
 * If the read key is an EXIT, make sure that there are
 * no control strings associated with EXIT and confirm
 * that the user really wants to EXIT. If the user does
Application Development Guide 44-79

Sample Functions
 * not want to, set the key to zero. The PROL_EXECUTIVE
 * macro is not defined in any Panther header file. It
 * is used here to distinguish between applications that
 * use the Panther executive and those that don't.
 */
 if (
#ifdef PROL_EXECUTIVE
 ! sm_getjctrl (EXIT, 0) &&
 ! sm_getjctrl (EXIT, 1) &&
#endif
 (sm_query_msg (EXIT_CONFIRM)
 == 'n'))
 {
 the_key = 0 ;
 }
 break ;

 case '!':
 /*
 * If the read key is an exclamation point, confirm
 * that the user really wants to escape to the shell
 * If so, escape to the shell and gobble up the key.
 * If not, merely pass the key on back
 */
 if (sm_query_msg (SHELL_CONFIRM) == 'y')
 {
 sm_leave () ;

 /* SHELL UNDER UNIX */
 system ("sh -i") ;

 sm_return () ;
 sm_rescreen () ;

 the_key = 0 ;
 }
 break ;
 }

 /* Clear the recursion flag. */
 recursive = 0 ;

 /* Pass the key back up. (If it is changed to zero,
 we gobbled it.) */
 return (the_key) ;
}

44-80 Installed Event Functions

Sample Functions
Error

The following error function writes all user messages to a log file.

#include <smdefs.h>

/* log all messages sent to the user to the file "err.txt" */

int myerr(int msgno, char *msgtxt, int quiet_mode)
{
 FILE *fp;

 /* by default, use 'msgtxt' param & no prepended
 * "ERROR " string
 */
 char *err_msg = msgtxt;
 char *quiet_txt = "";

 /* if msgno != -1, retrieve msg text from msg file */
 if (msgno != -1)
 err_msg = sm_msg_get(msgno);

 /* if called via the 'quiet' variety of error function */
 if (quiet_mode)
 quiet_txt = "ERROR: ";

 fp = fopen("err.txt", "a+");

 if (fp == NULL) {
 perror("error opening 'err.txt'");
 exit(1);
 }

 fprintf(fp, "myerr: %s'%s'", quiet_txt, err_msg);

 fclose(fp);
 return 0;
}

Insert Toggle

The following example shows a function that displays the current insert/overwrite
mode at the end of the status line. This function is installed as the INSCRSR_FUNC
function, called whenever Panther moves from insert to overstrike mode or vice versa.
The status line displays INS when in insert mode, and OVR when in overstrike mode.
Application Development Guide 44-81

Sample Functions
This routine assumes that cursor position display is not in use. You may also need a
STAT_FUNC function for this, as Panther overwrites the status line with messages, thus
destroying the INS/OVR message.

The last column of the status line is not written; Panther does not permit writing to the
last position of a screen if it causes automatic hardware scrolling.

/* Include Files */

#include "smdefs.h" /* screen manager Header File */

/* Buffer Sizes */

#define STAT_LINE_LEN 80

int inscrsr (int enter_ins_mode);
 /* enter_ins_mode is non-zero if about to
 * enter insert mode, zero if about
 * to enter overstrike mode
 */
{
 if (enter_ins_mode)
 sm_d_msg_line ("INS", 0) ;
 else
 sm_d_msg_line ("OVR", 0) ;
 return (0) ;
}

Initialization and Reset

The following code shows an example of initialization and reset functions. Note that
most of the initialization need not be done in the initialization event. It could be done
before sm_initcrt is called.

The two functions below, uinit and ureset, are to be installed as the initialization
and reset functions respectively.

! uinit is used to initialize the automatic variable start_time. Then uinit
asks the user to enter a terminal type, and passes the string back to sm_initcrt
for processing. Finally, uinit establishes error handling that causes the
application to terminate gracefully on a number of software signals.

! ureset calculates the elapsed time that the user has been in the application and
prints it to the terminal.
44-82 Installed Event Functions

Sample Functions
Note that ssignal is ANSI C. The signals SIGINT, SIGABRT, and SIGTERM are all part
of ANSI C and the Posix standard, and are meaningful on most but not all platforms.

/* Include Files */

#include "smdefs.h" /* screen manager Header File */
#include <signal.h> /* software signals */

 static time_t start_time ; /* Application start time */

int
uinit (term)
char * term ; /* 30-byte buffer with terminal type */
{
 char * ptr ;

 /* Determine current time as starting time. */
 start_time = time ((time_t*)0) ;

 /* Get terminal type from user. (If nothing entered,
 system will use the environment.) */
 printf ("Please enter terminal type: ") ;

 if (! fgets (term , 29 , stdin)) * term = '' ;
 term[29] = '' ;

 if (ptr = strchr (term , '')) * ptr = '' ;

 /* Establish necessary signal handling. */
 ssignal (SIGINT , sm_cancel) ;
 ssignal (SIGABRT , sm_cancel) ;
 ssignal (SIGTERM , sm_cancel) ;
 return (0) ;
}

int
ureset ()
{
 int hours , minutes , seconds ;

 /* Determine elapsed time since start of application
 and calculate hours, minutes, and seconds
 elapsed. */

 seconds = (int)difftime (time ((time_t *)0),
 start_time) ;
 minutes = seconds / 60 ;
 seconds %= 60 ;
 hours = minutes / 60 ;
 minutes %= 60 ;
Application Development Guide 44-83

Sample Functions
 /* Print out time report. */

 printf ("Application active for %d hours, %d minutes, "
 "%d seconds.", hours, minutes, seconds) ;

 return (0) ;
}

Record and Playback

The following example shows how record and playback might work together in a
regression test.

The two functions record and play implement a simple mechanism for recording and
later playing back keystrokes in a Panther application. The keystrokes are recorded to
and played back from a file. The interval in seconds between keystrokes is also saved
so that the playback function can pause to simulate real user behavior.

The following lines can be included in the main function to allow for conditional
record and playback, assuming that the first parameter passed to the program was an
optional indicator for record or playback:

if (argc > 1)
{

 switch (argv[1][0])
{

case 'r' :
case 'R' :

sm_install(RECORD_FUNC, &record_struct,(int *)0);
break ;

case 'p' :
case 'P' :

sm_install (PLAY_FUNC, &play_struct, (int *)0) ;
break ;

}
}

It is preferable for the main function to initialize the variable r_time rather than
counting on this record/playback system to do it. Used as written, the interval before
the very first key that the user types is not accurately recorded, and hence not
accurately played back.

/* Include Files */
44-84 Installed Event Functions

Sample Functions
#include "smdefs.h" /* screen manager Header Files */
static int intbuf[2] ; /* Buffer for read/write of
 * keystroke data */

static FILE *fp ; /*File pointer for keystroke file */

static time_t r_time ; /*Time first character was gotten */

static time_t c_time ; /* Current time;
 * interval=difftime(c_time, r_time)
 */

static char key_file[] /* Name of keystroke file */
= "recplay.key" ;

int
record (key)
int key ; /* Key to be recorded */
{
 /* If the file has not been opened, open it and
 initialize r_time */
 if (! fp)
 {
 /* Set the initial time. */
 r_time = time ((time_t *)0) ;

 /* Open file */
 fp = fopen (key_file, "w") ;

 /* Turn on record/playback system */
 sm_keyfilter (1) ;
 }

 /* Get the current time */
 c_time = time ((time_t *)0) ;

 /* Store the key to record in the data buffer */
 intbuf[0] = key ;

 /* Store the time interval in the data buffer */
 intbuf[1] = floor (difftime (c_time, r_time)
 + 0.5) ;

 /* Now write the data buffer to the keystroke file */
 if ((! fp) ||
 (fwrite ((char *) intbuf, sizeof (int),
 2, fp) != 2))
 {
 /* Write failed. Close everything down.... */
 fclose (fp) ;
Application Development Guide 44-85

Sample Functions
 fp = NULL ;
 intbuf[0] = 0 ;
 sm_keyfilter (0) ;
 sm_ferr_reset ("Recording Terminated...") ;
 }

 return (0) ;
}

int
play ()
{
 /* If the file has not been opened, open it and
 initialize r_time */
 if (! fp)
 {
 r_time = time ((time_t *)0) ;
 fp = fopen (key_file , "r") ;
 sm_keyfilter (1) ;
 }

 /* Now read the keystroke file, one keystroke into
 the data buffer */
 if ((! fp) ||
 (fread ((char *) intbuf, sizeof (int),
 2, fp) != 2))
 {
 /* Read failed. Close everything down.... */
 fclose (fp) ;
 fp = NULL ;
 intbuf[0] = 0 ;
 sm_keyfilter (0) ;
 sm_ferr_reset ("Playback Terminated....") ;
 return (0) ;
 }

 /* Get the current time */
 c_time = time ((time_t *)0) ;

 /* Decrement interval from data buffer by measured
 interval */
 intbuf[1] -= floor (difftime (c_time, r_time)
 + 0.5) ;

 /* Sleep some more if we should. */
 if (intbuf[1] > 0)
 {
 sm_flush () ;
44-86 Installed Event Functions

Sample Functions
 sleep (intbuf[1]) ;
 }

 /* Return the key to sm_getkey for processing */
 return (intbuf[0]) ;
}

Control

The following example shows two closely related functions that you can include on a
control function list. The mark_low function marks all widgets on the current screen
with numeric values less than zero with an attribute change. The function mark_high
marks all widgets on the current screen with numeric values higher than 1000. The
same functionality is duplicated as the prototyped function mark_flds (see
page 44-52).

Note that both mark_low and mark_high call the static function mark_flds which
actually does the work. This may seem like unnecessary indirection, but it means that
the control strings used are very simple, as shown here:

^mark_low
^mark_high
/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */

/* Macro Definitions... */
/* Attributes used to mark fields */

#define MARK_ATTR REVERSE | HILIGHT | BLINK
#define MARK_GT 1 /* Indicates "Greater Than" */
#define MARK_LT -1 /* Indicates "Less Than " */

static int mark_flds () ;

int
mark_low (ctrl_str)
char *ctrl_str;/* control string text passed by Panther */
{
 /* Mark all fields less than zero */
 return (mark_flds (0, MARK_LT)) ;
}

int
mark_high (ctrl_str)
Application Development Guide 44-87

Sample Functions
char *ctrl_str;/* control string text passed by Panther*/
{
 /* Mark all fields greater than one thousand */
 return (mark_flds (1000, MARK_GT)) ;
}

static int
mark_flds (bound, operator)
int bound ; /* Boundary on fields to mark */
int operator ; /* Operator, MARK_GT or MARK_LT */
{
 int fld_num ; /* Field Number */
 int num_of_flds ; /* Number of Fields */

 /* Determine number of fields */
 num_of_flds = sm_inquire (SC_NFLDS) ;

 /* Cycle through all the fields on the screen */
 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Depending on the operator... */
 switch (operator)
 {
 case MARK_GT:
 /* Mark fields that are
 greater than the
 given bound. */
 if (sm_dblval (fld_num)
 > (double) bound)
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }

 break;

 case MARK_LT:
 /* Mark fields that are less
 than the given bound */
 if (sm_dblval (fld_num)
 < (double) bound)
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }
 break;
 }
 }
44-88 Installed Event Functions

Sample Functions
 return (0) ;
}

The next example shows how a number of entries in a control function list might map
to the same function, report, which uses the identifying string as an implied first
argument. Significant argument processing is done in this example.

! report creates a report about the state of the current widget, screen, window
stack, or display. The report can be appended to a file, passed as an argument to
an operating system command, piped to an operating system command, or
displayed in a message window.

! report is installed under four names in the CONTROL_FUNC function list for
Panther control functions. When a control string calling this function is
invoked, the entire control string is passed as an argument to this function. The
name used to invoke the function is an implied argument and specifies which
report to generate: widget, screen, window stack, or display. The remainder of
the control string specifies what to do with the report output. This can be one of
the following four categories:

1. If there is nothing on the control string following the name, the report is printed in
a popup message window. For example, the following control string will generate
a report about the current widget and display the report in a popup message
window:

^rep_field

2. If the arguments start with an exclamation point (!), the rest of the control string
is taken to be an operating system command. In this case, a temporary file with
the report will be created, and the file name will be appended to the operating
system command. However, if the operating system command has a tilde (~) in
it, the tilde will be replaced with the name of the file before the command is
invoked. In any event the file is deleted after the command is invoked. Two
example control strings that would cause a screen report to be printed on a
UNIX system are shown below:

^rep_screen !lp -c -s

^rep_screen !lp -c ~ > /dev/null 2>&1

3. If the arguments start with a vertical bar (|), the rest of the control string is taken
to be an operating system command. In this case, however, the report will be
created as the standard input of the specified command. Many operating systems
Application Development Guide 44-89

Sample Functions
call this piping. The example shown here will cause a window stack report to
piped through the UNIX command tail and printed, so that only 20 lines of
output will be printed:

^rep_wstack |tail -20 | lp -c -s

4. If the arguments do not start with a vertical bar or with an exclamation point, the
assumption is that it is a file that is named. The file will be created if it does not
exist, or appended to if it does exist. The following example will append a
display terminal report to the file report.fil:

^rep_term report.fil

This function installation is preceded with the following definitions and declarations,
commonly found in funclist.c:

extern int report () ;
struct fnc_data report_funcs[] = {
 SM_OLDFNC("rep_field", report),
 SM_OLDFNC("rep_screen", report),
 SM_OLDFNC("rep_wstack", report),
 SM_OLDFNC("rep_term", report)
} ;

int report_count = sizeof (report_funcs)
 / sizeof (struct fnc_data) ;

The actual installation of the function is done with the following call to sm_install,
usually found in sm_do_uinstalls, defined in funclist.c:

sm_install (CONTROL_FUNC, report_funcs, &report_count) ;

Note that the function list has four function entries with different names, all of which
refer to the same function pointer. In the case of CONTROL_FUNC functions, the entire
control string is passed to the called function in a string, the name used to invoke the
function can—and in this case does—serve as an implied argument.

/* Include Files */

#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */

int
report (report_type)
char *report_type ; /* Text of invoking control
 string -- later truncated to the
 name of the desired report */
44-90 Installed Event Functions

Sample Functions
{
 char *report_out; /* Report output designation */
 char *fn = NULL; /* Name of output file */
 char *ptr, *ptr1; /* Character pointers */
 char msg_buf[128];/* Message buffer */
 FILE *fp ; /* File pointer for output */
 int size ; /* Size of output file */
 int cur_no ; /* Current field number */
 int select ; /* Current window stack index */

 /* Set report output designator to control string
 * arguments
 */
 for (report_out = report_type ;
 *report_out && (! isspace (UNSIGN(*report_out))) ;
 report_out++) ;

 /* If control string has arguments.... */
 if (*report_out)
 {
 /* Truncate the report type with a terminator */
 *report_out = '';

 /* Gobble up unnecessary white space */
 for (report_out++ ;
 *report_out &&
 (isspace (*report_out)) ;
 report_out++) ;

 /* Based on what output type we designated: */
 switch (*report_out)
 {
 case '!' :
 /* OS command. Open temp file */
 fn = tempnam (NULL, "rprt") ;
 fp = fopen (fn, "w") ;
 break ;

 case '|' :
 /* Pipe. Open the pipe */
 fp = popen (report_out + 1,
 "w") ;
 break ;

 default :
 /* Other. Open the file */
 fp = fopen (report_out, "a+") ;
 break ;
 }
Application Development Guide 44-91

Sample Functions
 /* If we could not open the file, show error */
 if (! fp)
 {
 sprintf (msg_buf,
 "Cannot open stream for %s.",
 report_out) ;
 sm_ferr_reset (msg_buf) ;
 return (-1) ;
 }
 }

 /* If no report output specified, open temp file for
 storing message window stuff. */
 else
 {
 fn = tempnam (NULL, "rprt") ;
 fp = fopen (fn, "w+") ;
 report_out = "" ;
 }

 /* Now, based on the report_type, which is the name
 with which the function was invoked, create
 the reports. Note that all newlines are
 preceded with spaces, this is so that in the
 case of the message windows we can replace
 all space-newlines with %N, the newline
 indicator for Panther windows. */
 if (! strcmp (report_type, "rep_field"))

 {
 /* Output a field report */
 fprintf (fp, " Field Report: ") ;

 /* Field Identifier and contents */
 fprintf (fp, "FIELD: %d (%s[%d]) = %s ",
 cur_no = sm_getcurno (),
 sm_name (cur_no),
 sm_occur_no (),
 sm_fptr (cur_no)) ;

 /* Field sizes */
 fprintf (fp, "LENGTH: onscreen: %d "
 "Max: %d ",
 size = sm_finquire (cur_no, FD_LENG),
 sm_finquire (cur_no, FD_SHLENG)
 + size) ;

 fprintf (fp, "# OCCURRENCES: onscreen: %d "
 "Max: %d ",
 sm_finquire (cur_no, FD_ASIZE),
44-92 Installed Event Functions

Sample Functions
 sm_max_occur (cur_no)) ;
 }
 else if (! strcmp (report_type, "rep_screen"))
 {
 /* Output screen report */
 fprintf (fp, " Screen Report: ") ;

 /* Screen Name */
 fprintf (fp, "SCREEN: %s ",
 sm_pinquire (SP_NAME)) ;

 /* How much of screen is visible */
 fprintf (fp, "%% VISIBLE IN VIEWPORT: %d ",
 100 *
 (sm_inquire (SC_VNLINE) *
 sm_inquire (SC_VNCOLM)) /
 (sm_inquire (SC_NCOLM) *
 sm_inquire (SC_NLINE))) ;
 }
 else if (! strcmp (report_type, "rep_wstack"))
 {
 /* Output Window stack report */
 fprintf (fp, " Window Stack Report: ") ;

 /* Cycle through all the windows. */
 for (select = 0 ;
 sm_wselect (select) == select ;
 select++)
 {
 /* Window number... */
 fprintf (fp, " Window %d: ",
 select) ;

 /* Screen name */
 fprintf (fp, "screen: %s ",
 sm_pinquire (SP_NAME)) ;

 /* Number of fields and groups */
 fprintf (fp, "# of Fields: %d "
 "# of Groups: %d ",
 sm_inquire (SC_NFLDS),
 sm_inquire (SC_NGRPS)) ;

 sm_wdeselect () ;
 }
 sm_wdeselect () ;
 }
 else if (! strcmp (report_type, "rep_term"))
 {
Application Development Guide 44-93

Sample Functions
 /* Output display terminal report */
 fprintf (fp, " Terminal Report: ") ;

 /* Terminal Type */
 fprintf (fp, "TERM TYPE: %s ",
 sm_pinquire (P_TERM)) ;

 /* Display mode */
 if (sm_inquire (I_NODISP))
 fprintf (fp, "DISPLAY OFF ") ;
 else
 fprintf (fp, "DISPLAY ON ") ;

 /* Input mode */
 if (sm_inquire (I_INSMODE))
 fprintf (fp, "INSERT MODE ") ;
 else
 fprintf (fp, "TYPEOVER MODE ") ;

 /* Block mode */
 if (sm_inquire (I_BLKFLGS))
 fprintf (fp, "BLOCK MODE ") ;

 /* Physical display size */
 fprintf (fp, "DISPLAY SIZE: %d x %d ",
 sm_inquire (I_MXLINES),
 sm_inquire (I_MXCOLMS)) ;

}

 else
 {
 /* Unrecognized report type */
 sprintf (msg_buf, "Illegal report type %s",
 report_type) ;
 sm_ferr_reset (msg_buf) ;
 fprintf (fp, "%s ", msg_buf) ;
 return (-3) ;
 }

 /* Once again, based on the type output... */
 switch (*report_out)
 {
 case '|' :
 /* It was a pipe, so close it. */
 pclose (fp) ;
 sm_ferr_reset ("Pipe successful") ;
 break ;
44-94 Installed Event Functions

Sample Functions
 case '!' :
 /* It was an O/S command. Close file... */
 fclose (fp) ;

 /* Gobble up the exclamation point */
 report_out++;

 /* Look for tildes */
 if (ptr = strchr (report_out, '~'))
 {
 /* Found the tilde. Substitute the
 file name for it. */
 *ptr = '';
 sprintf (msg_buf, "%s%s%s",
 report_out, fn, ptr+1) ;

 }
 else
 {
 /* No tilde. Append file name to
 O/S command. */
 sprintf (msg_buf, "%s %s",
 report_out, fn) ;
 }

 /* Do the command. */
 system (msg_buf) ;

 /* Delete temp file and free its name. */
 remove (fn) ;
 free (fn) ;
 sm_ferr_reset ("Command Invoked") ;
 break ;

 case '':
 /* Message window. Get size of file... */
 size = ftell (fp) ;

 /* Allocate memory for it. */
 ptr = malloc (size + 1) ;

 /* Rewind the file */
 fseek (fp, SEEK_SET, 0) ;

 /* Read it into the malloced buffer. */
 fread (ptr, sizeof (char), size, fp) ;

 /* Close and delete file, free file name */
 fclose (fp) ;
 remove (fn) ;
 free (fn) ;
Application Development Guide 44-95

Sample Functions
 /* null terminate memory buffer of report */
 ptr[size] = '';

 /* Replace all space-newlines with %N */
 for (ptr1 = ptr ;
 ptr1 = strchr (ptr1, '') ;
 ptr1++)
 {
 ptr1[-1]='%';
 ptr1[0]='N';
 }

 /* Pop up the message window */
 sm_message_box
 (ptr, 0, SM_MB_OK|SM_MB_ICONNONE, 0) ;

 /* Free up the malloced buffer. */
 free (ptr) ;
 break ;

 default :
 /* File appended, just close it. */
 fclose (fp) ;
 sm_ferr_reset ("File appended") ;
 break ;
 }
 return (0) ;
}

Status Line

The following example shows how to write a status line function. It is called whenever
the logical status line is about to be flushed to the physical display, and ensures that the
status line is always printed highlighted and in uppercase.

This function is to be installed as a status line function. The following declarations and
definitions, generally found in funclist.c or in the main routine source module
prepare this routine for installation:

/* Include Files */
#include "smdefs.h" /* screen manager Header File */
#include "smglobs.h" /* screen manager Globals */

int
statln ()
{
 int n_columns ; /* Physical display width */
44-96 Installed Event Functions

Sample Functions
 char * stat_text ; /* Status line text */
 unsigned short * stat_attr;/* Status line attributes */
 int i ; /* Loop counter */
 int c; /* Upper case stat text char */

/* Determine width of display */
n_columns = sm_inquire (I_MXCOLMS) ;

 /* Allocate memory for local buffers */
 stat_text = malloc (n_columns + 1) ;
 stat_attr = (short *)calloc (n_columns,
 sizeof (short)) ;

 /* Copy status text and attributes into buffers */
 strcpy (stat_text , sm_pinquire (SP_STATLINE)) ;
 memcpy ((char *) stat_attr ,
 sm_pinquire (SP_STATATTR) ,
 n_columns * sizeof (short)) ;

 /* Loop through every character on the status line */
 for (i = 0 ; i < n_columns ; i++)
 {
 /* Set character to upper case */
 /* Note UNSIGN is defined in smmachs.h to
 remove sign extension */
 c = stat_text [i];
 if (islower (UNSIGN(c)))
 c = toupper (UNSIGN(stat_text[i])) ;
 stat_text[i] = c ;

 /* Add hilight attribute */
 stat_attr[i] |= HILIGHT ;
 }

 /* copy local buffer into Panther internal buffers */
 sm_pset (SP_STATLINE , stat_text) ;
 sm_pset (SP_STATATTR , (char *) stat_attr) ;

 /* Free memory */
 free (stat_text) ;
 free (stat_attr) ;

 return (0) ;

}

Application Development Guide 44-97

Sample Functions
44-98 Installed Event Functions

CHAPTER
45 Customizing the
User Interface

This chapter shows how to set up an interface that is suitable to a GUI platform or user
environment. It also discusses strategies for writing applications for
non-English-speaking users.

Two distributed files are especially important in designing the user interface:

! The message file contains messages that are seen by end users. It also defines
default constants and formats—for example, text labels for message window
push buttons, numeric/currency formats, date and time formats, and Panther
error messages. You can also use the message file to customize screen editor
features for specific languages and format conventions.

! The configuration map file lets you define system-independent aliases for
colors, fonts, and line and box styles.

Both files exist independently of the application; this facilitates development and
deployment in several ways:

! Definitions are in a single location, so they are easy to access and modify.

! You can edit the source and recompile it independently of the application
executables.

! Different parts of an application can access the same definitions, which saves
space and development time.

! You can deploy the same executable in different environments, where each
distribution uses a different message and configuration map files that suits its
own environment. For example, if you need to deploy an application in
Application Development Guide 45-1

Using Message Files
different countries, you can create separate message files, which translate
message text, date/time formats, and numeric/currency formats to comply with
local languages and customs. Similarly, an application that runs on Motif and
Windows can use separate configuration files for each platform, which map
GUI-specific font and color names to aliases.

Using Message Files

Messages are stored in a binary file that is referenced by the application variable
SMMSGS, and are loaded into memory at startup. SMMSGS can be set in the environment
or Windows initialization file, or in a setup file. The Panther configuration directory
provides a file of message defaults in source (msgfile) and binary (msgfile.bin)
formats. You can edit the message file source to suit the needs of a given application,
then recompile it with the msg2bin utility.

Creating and Modifying Message Files

You can edit the source of the distributed message file; you can also supplement this
file with message files that contain your own application messages. If you must change
the Panther message file, first create a copy of the distributed message file and edit it
instead of the original. By doing so, you avoid losing changes with new releases; you
also have recourse to the original message file contents.

If you create custom application messages, maintain them in a separate file for these
reasons:

! Custom messages are easier to maintain if they are kept in their own file.

! You avoid corrupting Panther messages.

! Custom message files are not overwritten by the new message file that is
supplied with each new Panther release.
45-2 Customizing the User Interface

Using Message Files
After you modify an ASCII message file, you must convert it to binary format with
msg2bin. If the message file includes new entries, you must also create a C header file
with msg2hdr.

! msg2bin converts ASCII message files to binary format for use by Panther. The
output of msg2bin is a binary file; the utility uses message tags to distinguish
between system and user messages. If you have multiple message files, you can
compile them into a single binary file by running msg2bin with the -o option.

! msg2hdr converts the message source file to a C header file, which contains
#define statements for each user message tag.

! msg2hdr can also define JPL global variables, which make the messages
accessible in JPL.

How to Create or Add to a Message File

1. Create or access the ASCII message file using a text editor.

2. Edit existing entries or add new entries using the syntax described in the next
section. For example:

#user messages

US_NOTAVAIL = All copies of this movie are unavailable.

US_ACTL = Enter an actors last name.

#administrator messages

ADM_INVALIDRC = Invalid rating code.

3. Convert the ASCII file to binary format with the msg2bin utility.

If you only edit the text of existing message tags, your work is done. If you add
new entries to the message file, continue with step 4.

4. Define new message tags in a C header file. This makes the messages available
to Panther functions such as sm_fquiet_err. Do this by running msg2hdr on
the message source file. Messages are numbered sequentially from 0x0 to 0xF.
For example:

#define US_NOTAVAIL 0x0

#define US_ACTL 0x1

#define ADM_INVALIDRC 0x2
Application Development Guide 45-3

Using Message Files
5. In order to access your messages in JPL, define your tags as global JPL variables
in a C header file. Do this by running msg2hdr with the -j option on the message
source file. For example:

global US_NOTAVAIL (1) 0

global US_ACTL (1) 1

global ADM_INVALIDRC (1) 2

6. Relink the Panther executable so it includes the new header files (refer to
page 42-2).

Note: The message file only contains messages for end users; Panther developer
messages are internally defined and cannot be modified.

Message Entry Syntax

Message file entries have the following format:

tag = msgString

tag

A string that can include letters, digits, and underscores; embedded blanks are
invalid. An equal (=) sign must follow tag. Blanks before and after the equal
sign are optional.

If you create your own messages, you can group them according to message
tag prefixes. Messages with prefixes can be selectively loaded into memory
with sm_msg_read. All system messages begin with a standard Panther
prefix. These prefixes are reserved and can not be used for messages that you
define:

SM Messages and strings used by the Panther runtime library.

FM Messages issued by the screen editor (prodev).

JM Additional runtime messages used by Panther.

UT Messages issued by some Panther utilities.

DM Messages issued by database interactions.
45-4 Customizing the User Interface

Using Message Files
msgString

If msgString defines a user message, it can contain any alphanumeric string
on a single line; the string must contain at least one non-numeric character.

Note: The strings that define formats for date/time and numeric/currency
have special syntax requirements.

Refer to page 45-12 for date/time syntax and page 45-19 for
numeric/currency syntax.

Leading and trailing spaces are ignored. Enclose embedded and trailing
spaces with quotation marks. Panther strips off the quotes when it displays the
message.

For example, the distributed message file contains these entries:

SM_DAYA6 = Fri

SM_DAYA7 = Sat

SM_MOREDATA = No more data.

SM_YES = y

SM_NO = n

SM_MONL1 = January

SM_MONL2 = February

SM_0DEF_DTIME = %m/%d/%2y %h:%0M

SM_MB_HELPLABEL= &Help

SM_YN_ERR = %MuPlease enter %Ky or %Kn into this field.

JM_HITACK = %MdHit acknowledge key to continue

Reserved Characters

The following characters have special usage in message file entries:

TP Messages issued by the middleware (JetNet and Oracle
Tuxedo only).
Application Development Guide 45-5

Using Message Files
Note: To use the backslash character in a message, enter two backslashes.
msgString can also contain percent sequences that specify appearance,
positioning, and acknowledgment information.

Refer to page 45-8 for information on these.

Missing Entries

If there is no tag for a message or msgString is missing from the message file and a
call is made to display the message, Panther displays the message section and number
from the #define statement. For example, if the entry for SM_HITANY is deleted from
the Panther message file, and user input invokes this particular message, the status line
displays <8-27>, which is the value for SM_HITANY from the include file smerror.h.

Message Classes

You can divide messages into message classes. You can define up to eight user classes,
numbered 0 to 7. Each class can contain up to 65529 characters. Within each class, you
can further differentiate messages through prefixes.

\ Continues the message string across multiple physical lines in
the source file. For example:
PQ_FATALERR = Application unable to post your \

transaction. Contact your system manager.

\n Forces a new line.

& Indicates a key mnemonic for push buttons. For example, the
following entry lets a user press the letter O on the keyboard
instead of choosing the Oui (Yes) acknowledgment push button:
SM_MB_YESLABEL = &Oui

If placed in a message file line, comments out that line when
msg2bin compiles the file.
45-6 Customizing the User Interface

Using Message Files
Use section classes and prefixes to divide messages into useful categories. A class of
messages or messages of a given prefix can be individually loaded and unloaded from
memory through sm_msg_read and sm_msg_del, respectively. Unclassified messages
default to class 0.

Because unclassified messages cannot exceed 65529 characters, an application that
requires many messages might require you to divide them into multiple classes.

Note: Panther reserves for its own use classes 8 through 15 and the prefixes
described earlier (page 45-4).

Defining a Message Class

Each message class is defined by a message class entry with this format:

"XY" = digit

"XY"
A two-character code enclosed in quotation marks. Reserved prefixes (refer
to page 45-4) cannot be used.

digit

A digit between 0 and 7, inclusive, that designates the class in library
functions such as sm_msg_read.

All entries below a message class entry are part of the same message class. For
example, the following message file excerpt defines two message classes with prefixes
U0 and U1:

"U0"= 0
U0_BADVAL = Bad value
U0_WRONGDATE = Date must be with 30 days of current date
...

"U1" = 1
WRONGRATE = This is not the applicable rate.
...

Given these entries, you can issue a command that reads all messages in class 0 that
begin with the prefix U0:

sm_msg_read ("U0", 0, MSG_FILENAME|MSG_NOREPLACE, "umsg.bin")

This command reads all messages in class 0, irrespective of prefixes:

sm_msg_read ("", 1, MSG_FILENAME|MSG_NOREPLACE, "umsg.bin")
Application Development Guide 45-7

Using Message Files
When the message file is compiled with msg2bin, tags are used to distinguish between
system and user messages. User-defined messages are numbered consecutively,
starting with the class number times 0x1000. Unclassified messages are numbered
from zero. For example, the fourth message in user class four is numbered 0x4004. As
a developer, you must remember to maintain the order of user messages and the
assignment of their identifiers.

Setting Message Display and Behavior Options

Several percent escape options let you control message content and presentation. The
character or characters that follow the percent sign are case-sensitive; type them
exactly as shown. This prevents conflicts with percent escape options used by printf
and the tokens used by date/time formats. Some percent escape options must appear at
the beginning of the message; others are valid only for display in a window or on the
status line.

Table 45-1 summarizes the available escape sequences, followed by detailed
information about each option.

Table 45-1 Percent escape options for messages

Option Description

%Ahhhh Change display attributes. Valid for status line messages only.

%K Display key label.

%B Beep the terminal. This option must precede the message text.

%N Use a carriage return in the message text. Forces message to
display in popup window.

%W Display message in a popup window.

%Md Force the user to press the acknowledgment key (ER_ACK_KEY)
in order to dismiss the error message. This option must precede
the message text.

%Mt[time-out] Force temporary display of message to the status line. Panther
automatically dismisses the message after the specified
timeout elapses and restores the previous status line display.
45-8 Customizing the User Interface

Using Message Files
%A attr-value—Change display attributes
Valid only for status line messages, you can place %Aattr-value anywhere
in the message text. It changes the display attributes of the text that follows
it. attr-value is a four-digit hexadecimal value that represents one display
attribute or the sum of two or more attributes.

If the string to get the attribute change starts with a hexadecimal digit (0...F),
pad attr-value with leading zeros to four digits. Refer to Table 45-2 for
valid attribute values.

Note: Monochrome terminals ignore color attributes. However, if you are
developing for color terminals, include a color code with the %A.
Otherwise, both the foreground and background colors default to
black when the %A is not followed by a color code.

Table 45-2 lists the display attributes and their hexadecimal codes as defined
in the include file smattrib.h.

%Mu Force message display to the status line and permit any key
board or mouse input to serve as acknowledgment. Panther
then processes the keyboard or mouse input. This option must
precede the message text.

Table 45-2 Display attributes and hexadecimal codes for status line messages

Foreground
Attributes*

Background
Attributes

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code

REVERSE 0010 B_HILIGHT 8000

UNDERLN 0020

BLINK 0040

HILIGHT 0080

Table 45-1 Percent escape options for messages

Option Description
Application Development Guide 45-9

Using Message Files
For example, the following message appears in red characters on the default
black background with Warning. in blinking characters.

SM_WARNBIG= %A44Warning.\
%A0004Form is larger than screen size.

%B — Beep terminal
Place %B in a status line or message so that the terminal beeps via sm_bel
when the message is displayed. This option must precede the message text.

%K—Display key label
Place %Klogical-key anywhere in the text of status line and error messages.
Panther interprets logical-key as a mnemonic defined in smkeys.h. If the key
translation file defines a key label for the logical key, the key label replaces

DIM 1000

Foreground Colors Background Colors

BLACK (colors are
additive)

0000 B_BLACK 0000

BLUE 0001 B_BLUE 0100

GREEN 0002 B_GREEN 0200

CYAN 0003 B_CYAN 0300

RED 0004 B_RED 0400

MAGENTA 0005 B_MAGENTA 0500

YELLOW 0006 B_YELLOW 0600

WHITE 0007 B_WHITE 0700

NORMAL_ATTR 0007 B_CONTAINER (inherit
color from container)

4000

*Attributes are additive. One or more foreground attributes can be added to a
background attribute, foreground color and background color.

Table 45-2 Display attributes and hexadecimal codes for status line messages

Foreground
Attributes*

Background
Attributes
45-10 Customizing the User Interface

Using Message Files
the percent sequence in the message text. If there is no key label or no such
logical key, %K is stripped off and logical-key remains in the message text.

Refer to page 6-2 in the Configuration Guide for more information about key
translation files.

Figure 45-1 The key label is defined in the key translation file; the message file
contains the message text. The result is displayed on the screen.

Note: If %K is used in a status line message, the user can push the
corresponding logical key onto the input queue by mouse-clicking
on the key label text.

%Md—Force user to acknowledge error message
Place %Md at the beginning of an error message so that the user is forced to
press the predefined acknowledgment key ER_ACK_KEY to clear the message.
If the user presses any other key, Panther displays an error message or beeps,
depending on how application variable ER_SP_WIND is set. The keypress is
not processed as data.

The %Md option corresponds to the default message behavior when
application variable ER_KEYUSE is set to ER_NO_USE. If ER_KEYUSE is set to
ER_USE—that is, your application default does not require use of the
acknowledgement key—set %Md in a message in order to force the user to
press the acknowledgment key to clear a message.

%M[time-out]—Display transient error message
Place %Mt at the beginning a transient status line message. Panther
automatically dismisses the message after the specified timeout elapses and
restores the previous status line display. Timeout specification is optional; the
Application Development Guide 45-11

Using Message Files
default timeout is one second. You can specify another timeout in units of
1/10 second with this syntax:

#(n)

where n is a numeric constant that specifies the timeout's length. If n is more
than one digit, the value must be enclosed with parentheses. For example, this
statement displays a message for 2 seconds:

msg emsg "%Mt(20)Changes have been saved to database."

The user can dismiss the message before the timeout by pressing any key or
mouse clicking. Panther then processes the keyboard or mouse input. When
the message is displayed in a window, users dismiss the message by choosing
OK or by pressing the acknowledgement key; and Panther discards any
keyboard input.

%Mu—Use any key to acknowledge error message
Valid only for error messages, you must place %Mu at the beginning of an error
message. Panther forces message display to the status line and permits any
keyboard or mouse input to serve as error acknowledgment. Panther then
processes the keyboard or mouse input. In the following example, entering y
or n acts as both message acknowledgment and data entry:

%MuPlease enter %Ky or %Kn into this field.

When the message is displayed in a window, users dismiss the message by
choosing OK or pressing the acknowledgement key. Panther then discards
any keyboard input.

%N—Insert line returns in message text
Insert one or more %N options in a message to force line returns in a windowed
message. By default, message text wraps within the window.

%W—Display message in a window
Valid only for error messages, forces display in a window. Place %W at the
beginning of the message.

Customizing Date and Time Formats

The Panther message file includes entries that establish date and time formats and text.
It also includes substitution variables that the screen editor displays as options for a
date/time widget's Format Type property.
45-12 Customizing the User Interface

Using Message Files
Modify date/time entries in the message file for these reasons:

! Translate the text (days of the week and names of months) to comply with local
customs.

! Customize the formats (SM_ date/time entries) to comply with local customs or
individual preferences.

! Customize the names of format mnemonics and format types for non-English
developers or for individual preferences.

This section describes the tags and their default entries and how you can change the
entries to meet the needs of both your development environment and your application.

Date/Time Defaults

When you choose Date/Time for the Data Formatting property of a widget, ten default
choices for Format Type are available. The message file defines these format types: a
name tag defines the name of a format type to appear on the Format Type option menu;
and a corresponding format tag specifies the format associated with that name. For
example FM_3MN_DEF_DT defines the name of the first format type as MON/DATE/YR4
HR:MIN2 and the corresponding format tag SM_3DEF_DTIME defines its format as
%m/%d/%4y%h:%0M.

Table 45-3 lists the date/time name tags as delivered with Panther and their
corresponding format type names, listed as they appear in the Properties window. The
entries in Table 45-4 define the formats that correspond to the date/time tags and
names in Table 45-3. (The tokens in the formats are defined in Table 45-5.)

Table 45-3 Default date/time entries

Date/Time tag Format type Formatting result

FM_3MN_DEF_DT MON/DATE/YR4 HR:MIN2 4/1/2016 13:13

FM_4MN_DEF_DT MON/DATE/YR4 4/1/2016

FM_0MN_DEF_DT MON/DATE/YR2 HR:MIN2 4/1/16 13:13

FM_1MN_DEF_DT MON/DATE/YR2 4/1/16

FM_2MN_DEF_DT DEFAULT TIME 13:13
Application Development Guide 45-13

Using Message Files
Tags FM_5MN_DEF_DT through FM_9MN_DEF_DT are undefined in the provided
message file; The Format Type property displays them as DEFAULT5 through
DEFAULT9; they have the same format specification as FM_5MN_DEF_DT. The
corresponding formats are defined in the message file, as shown in Table 45-4.

Date/Time Tokens

When specifying a format in the message file or as an argument to the library functions
sm_sdtime or sm_udtime, you must use some combination of tokens—not those in
the Properties window (MON or DEFAULT5). In this way, Panther does not need to parse
the message file, and the library functions can be used without knowing the names of
substitution variables defined in the message file. When Panther performs date
calculations using a format, it replaces tokens with their appropriate values. All other
characters in the format such as, commas, slashes, and colons are used literally. If you
wish to refer to one of the default format types, there are format tokens ranging from
%0f to %9f that correspond to each of the format tags (SM_ date/time entries).

The tokens are listed in Table 45-5. Most of these substitute a numeric value; message
entries are indicated for those that substitute text. For example, %4y might substitute
1999, whereas %*m would, depending on the date, substitute one of the values defined
by SM_MONL1 through SM_MONL12, perhaps July, perhaps Juillet.

Table 45-4 Default date/time formats

Date/Time format tag Tokenized format

SM_0DEF_DTIME %m/%d/%2y %h:%0M

SM_1DEF_DTIME %m/%d/%2y

SM_2DEF_DTIME %h:%0M

SM_3DEF_DTIME %m/%d/%4y %h:%0M

SM_4DEF_DTIME %m/%d/%4y

SM_5DEF_DTIME %m/%d/%2y %h:%0M

... ...

SM_9DEF_DTIME %m/%d/%2y %h:%0M
45-14 Customizing the User Interface

Using Message Files
Table 45-5 Definitions of date and time tokens

Description Token Message entries for text

Year:

4 digit %4y

2 digit %2y (Use setup file to specify century break)

Month:

numeric (1 or 2
digit)

%m

numeric (2 digit) %0m

abbreviated name
(3 char)

%3m SM_MONA1...SM_MONA12

full name %*m SM_MONL1...SM_MONL12

Day of the month:

numeric (1 or 2
digit)

%d

numeric (2 digit) %0d

Day of the week:

abbreviated name
(3 char)

%3d SM_DAYA1...SM_DAYA7

full name %*d SM_DAYL1...SM_DAYL7

numeric %.d

Day of the year:

numeric (1-366) %+d

Time:

hour (1 or 2 digit) %h
Application Development Guide 45-15

Using Message Files
Creating Date and Time Defaults

Ten date and time entries are available to define formats and the names that specify
them. The tokens for SM_5DEF_DTIME through SM_9DEF_DTIME are defined to have
the same format as SM_0DEF_DTIME. You can use these additional tags to create and
name your own date/time formats.

How to Change or Create a Default Date/Time Format

1. Open the ASCII version of the message file with a text editor.

hour (2 digit) %0h

minute (1 or 2
digit)

%M

minute (2 digit) %0M

second (1 or 2
digit)

%s

second (2 digit) %0s

AM and PM %p SM_AM, SM_PM

Ten default formats:

7. formats
specified in
message file
entries*

8. %0f - %9f 9. SM_0DEF_DTIME to
SM_9DEF_DTIME

10. Other:

11. literal percent
sign

12. %%

13. *Tokens provided so default formats can be used with library functions
sm_sdtime and sm_udtime.

Table 45-5 Definitions of date and time tokens

Description Token Message entries for text
45-16 Customizing the User Interface

Using Message Files
2. Change one of the SM_ date/time entries (SM_0DEF_DTIME through
SM_9DEF_DTIME) to define the desired format.

For example, the DEFAULT5 substitution variable has this initial format:

SM_5DEF_DTIME = %m/%d/%4y %h:%M0

You can change this entry as follows:

SM_5DEF_DTIME = %d %*m %4y %h:%M0 %p

Widgets that have their date Format Type property set to DEFAULT5 display
dates in the format:

30 November 2016 3:40 PM

3. Create the substitution variable with the corresponding FM_ tag:

FM_5MN_DEF_DT = DATE and TIME

DATE and TIME appears as an option for the Format Type property.

A widget whose Format Type is set to DATE and TIME displays dates in this
format:

30 November 2016 3:40 PM

4. Convert the ASCII message file to binary format with the msg2bin utility.

Note: Tokens are provided (refer to Table 45-5 on page 45-15) that correspond to
each of the default formats so that these defaults can be used with the library
functions sm_sdtime and sm_udtime.

Defaults for Non-English Applications

To customize the date and time entries in the Panther message file for non-English
applications, you can:

! Translate the text entries which name the days of the week and the months of
the year. This text is assigned to the tags SM_DAYA1 ... SM_DAYA7 (abbreviated
names of days), SM_DAYL1 ... SM_DAYL7 (full names of days), SM_MONA1 ...
SM_MONA12 (abbreviated names of months), SM_MONL1 ... SM_MONL12 (full
names of months).

! Change the formats associated with the SM_ date/time tags to comply with local
customs.

By translating text and changing formats, widgets using the Format Type specification
described in the example shown earlier on page 45-16, DEFAULT5 might appear as:
Application Development Guide 45-17

Using Message Files
30 Novembre 2016 3:40 PM

To develop an application for French users, translate the text assigned to
SM_DAYA1...SM_DAYA7, SM_DAYL1..SM_DAYL7, SM_MONA1...SM_MONA12, and

SM_MONL1...SM_MONL12, like this:

SM_DAYA1 = Dim
SM_DAYA2 = Lun
SM_DAYA3 = Mar
...

SM_DAYL3 = Mardi
SM_DAYL4 = Mercredi
SM_DAYL5 = Jeudi
SM_DAYL6 = Vendredi
SM_DAYL7 = Samedi
...

...

SM_MONA1 = Jan
SM_MONA2 = Fév
SM_MONA3 = Mar
...
SM_MONL7 = Juillet
SM_MONL8 = Août
SM_MONL9 = Septembre
SM_MONL10 = Octobre
SM_MONL11 = Novembre
SM_MONL12 = Décembre

This method can be useful if you are distributing the same application to users who
speak different languages. A user's SMMSGS variable in the local setup (smvars) file or
system environment can specify the name of the appropriate message file and screen
libraries. Date/time fields then display the date in a language and format familiar to the
user, while all programming code remains independent of the user's language.

Translating Defaults for Developers

In addition to translating the text for days of the week and months of the year, and
localizing formats, you can translate the names of substitution variables for
non-English speaking developers, These entries are adjacent to each other in the
Panther message file, beginning with FM_YR4 and ending with FM_9MN_DEF_DT.

For example, you might provide these entries for French-speaking developers:

FM_YR4 = ANNÉE4
45-18 Customizing the User Interface

Using Message Files
FM_YR2 = ANNÉE2

FM_MON = MOIS

FM_MON2 = MOIS2

FM_DATE = JOUR

...

Given these changes, French-speaking developers using Panther can create date/time
formats using substitution variables in their native language—MOIS2, ANNÉE4, and
JOURA, while Spanish-speaking developers might use substitution variables like MES2,
AÑO4, and DÍAA.

Literal Dates in Calculations

The Panther message file includes an entry to specify the format of literal dates used
in @date calculations. The tag SM_CALC_DATE specifies the format. The default format
is %m/%d/%4y (MON/DATE/YR4). For example, to count the number of days until the
millennium, the library function sm_calc can be used with a literal date:

sm_calc (0,0,'days = @date(1/1/2000)- @date(today)');

Numeric Formats

When you choose Numeric for the Data Formatting (data_formatting) property of
a widget, ten default choices for Format Type (numeric_type) are made available to
you. The message file contains the definitions for these format types: A name tag
defines the name of a format type to appear for the Format Type property in the
Properties window, and a corresponding format tag specifies the format associated
with that name. For example SM_0MN_CURR_DEF defines the name of the first format
type as Local Currency and the corresponding format tag SM_0DEF_CURR defines its
format as ".22,l$".

You can modify the message file to store ten different default numeric formats. Like
the date/time message entries, one entry (SM_0DEF_CURR through SM_9DEF_CURR)
defines the format, and a corresponding entry (SM_0MN_CURRDEF through
SM_9MN_CURRDEF) specifies what the screen editor displays as options for a numeric
widget's Format Type (numeric_type) property.
Application Development Guide 45-19

Using Message Files
Numeric Format Syntax

Numeric formats are defined as r m x t p c c c c c:

To specify leading or trailing blanks in a format, enter blank spaces before or after the
currency characters. The spaces become a part of the currency symbol.

For example, the format .22,l$ contains these specifications:

! period (decimal point) as the radix separator

! minimum of two decimal places

! maximum of two decimal places

! comma as the thousands separator

! the currency symbol precedes (to the left of) the number.

! the dollar sign ($) is the currency symbol

Formats in Provided Message File

Table 45-6 lists the numeric tags as delivered with Panther, their format type name,
and the corresponding format tag and the default format. Description names are
defined only for the first three format types. (Names for format types default to

r Radix separator or decimal symbol (usually a period or
comma)

m Minimum number of decimal places

x Maximum number of decimal places

t Thousands' separator (i.e., a comma or period; b for a
blank; or n to not use a thousands' separator)

p Placement of currency symbol (l = left, r = right, or m =
middle), or omit to not use a currency symbol

ccccc Currency symbol (up to 5 characters, including blank
spaces)
45-20 Customizing the User Interface

Using Message Files
`default'). The last seven names and formats are for other types you can custom define.
Therefore, the last seven format types are defined identically to SM1_DEF_CURR, which
is set to two decimal places with a comma as the thousands separator.

SM_0MN_CURRDEF defines the name of the format type as Local Currency, and the
corresponding format tag SM_0DEF_CURR defines its format as ".22,l$". A widget
with this property specification would have data formatted, for example, as
$5,100.75.

Creating a Default Numeric Format

A message file can specify ten numeric format entries. You can change any or all
formats to suit your application's requirements. To create a numeric format:

! Edit the numeric format associated with a format tag.

! Define its corresponding numeric tag to equal the name of your newly created
format variable.

How to Customize a Default Numeric Format

1. Open the ASCII version of the message file with a text editor.

Table 45-6 Default message entries for defining numeric formats

Numeric tag Format type name Corresponding format tag Default format

SM_0MN_CURRDEF Local Currency SM_0DEF_CURR ".22,l$"

SM_1MN_CURRDEF 2 decimal places with
commas

SM_1DEF_CURR ".22,"

SM_2MN_CURRDEF 0 decimal places with
commas

SM_2DEF_CURR ".00,"

SM_3MN_CURRDEF SM_3DEF_CURR ".22,"

SM_4MN_CURRDEF SM_4DEF_CURR ".22,"

... ...

SM_9MN_CURRDEF SM_9DEF_CURR ".22,"
Application Development Guide 45-21

Using Message Files
2. Change one of the SM_ numeric entries (SM_0DEF_CURR through
SM_9DEF_CURR) to define the desired format.

To specify leading or trailing blanks in a format, enter blank spaces before or
after the currency character. The spaces become a part of the currency symbol.

For example, you can add a format for the French franc with this change:

SM_9DEF_CURR = ',22.r F'

3. Add a descriptive definition in the corresponding SM_ numeric entry. For
example:

SM_9MN_CURRDEF = Franc

The Format Type property in the Properties window will display Franc as one
of the values you can assign to a widget with numeric data.

4. Convert the ASCII message file to binary format with the msg2bin utility.

Given the previous definition, the Format Type property in the Properties
window displays Franc as one of the values you can assign to widgets with
numeric data. Widgets thus formatted show currency data in the form:

999.999,99 F.

Translating Defaults for Developers

In addition to modifying the numeric formats to comply with local customs, you can
translate the names that appear on the numeric format type property menu for
non-English speaking developers. The first three entries are adjacent to each other in
the Panther message file, beginning with SM_0MN_CURRDEF and ending with
SM_3MN_CURRDEF.. SM_4MN_CURRDEF through SM_9MN_CURRDEF are also available
variables but not predefined in the message file.

For example, you might provide these entries for Spanish-speaking developers:

SM_0MN_CURRDEF = DINERO

SM_1MN_CURRDEF = NUMERO

Given these changes, Spanish-speaking developers see format type choices in their
own language.
45-22 Customizing the User Interface

Using Message Files
Decimal Symbols

Via the message file tag SM_DECIMAL you can define a default decimal symbol (or
radix separator). When you define a widget to have or accept numeric data, you can
also specify any decimal symbol (or radix separator). However, the SM_DECIMAL entry
enforces a default symbol. If SM_DECIMAL is not specified in the message file, Panther
tries to determine the appropriate symbol from the operating system.

Panther accommodates three types of decimal symbols. These decimals differ in scope
and function.

system
The character that is used by the operating system when translating characters
to internal values or vise versa—for example, in C functions atof and
sprintf. The default is period.

Note: Setting the system decimal symbol incorrectly can cause unexpected
results when Panther processes numeric values.

local
Defined by the message file entry for SM_DECIMAL, by default set to period.
This setting overrides the system symbol within a Panther application. Set
SM_DECIMAL according to local customs—for example, period in
English-speaking countries; comma in Europe. If the system and local
symbols are different, Panther translates appropriately when interacting with
system routines.

widget
Set for a specific widget through its decimal_symbol property (refer to on
page 10-20 in the Using the Editors). This symbol is used only for data entry
validation and for displaying widget values. Use widget-level decimal
symbols when you need to handle multiple decimal conventions within a
single application.

Customizing Push Button Labels for Message Boxes

The message file tags SM_MB_OKLABEL through SM_MB_HELPLABEL provide the text
for message box push buttons.
Application Development Guide 45-23

Using Message Files
Note: Microsoft Windows for other languages automatically translates standard
push buttons to the appropriate language.

How to Change/Translate Push Button Labels

1. Access the ASCII version of the message file with a text editor.

2. Change the label text. Place an ampersand before the character to serve as the
push button's key mnemonic.

3. Convert the ASCII message file to binary format with msg2bin.

For example, if you were converting your application to Spanish, you might include
the following in your message file:

SM_MB_OKLABEL = &Ok
SM_MB_CANCELLABEL = &Cancelar
SM_MB_YESLABEL = &Si
SM_MB_NOLABEL = &No
SM_MB_RETRYLABEL = &Re-intentar
SM_MB_IGNORELABEL = &Ignorar
SM_MB_ABORTLABEL = A&bortar
SM_MB_HELPLABEL = &Ayuda

Setting Yes/No Values

The values associated with the message tags SM_YES and SM_NO can be translated or
standardized to meet your development or application's requirements. For example,
you can translate the value for SM_YES to s (short for sí) for Spanish-speaking users.

Library functions such as sm_is_yes, and properties such as keystroke filter that use
the SM_YES and SM_NO entries expect and return the appropriate character as defined
in the message file. In the case of a Spanish-speaking user, entering s (for an
affirmative response) is recognized, whereas y is ignored.

Using Alternate Message Files

The SMMSGS application variable specifies the binary file to read into memory at
Panther's initialization. If you serve an international market, you can give users the
option of selecting from alternate message files. At runtime the user can set the SMMSGS
for the binary message file that is appropriate to his/her language.
45-24 Customizing the User Interface

Configuration Map File
Alternative files for an application (and for non-English versions of Panther) must be
identical in terms of the number and sequencing of all messages (refer to page 45-4 for
information about adding messages).

Configuration Map File

The configuration map file contains definitions for screens and widgets—colors, fonts,
lines and box styles—that you can tailor to different platforms. The file is divided into
several sections:

! [Colors] maps user-defined color names to system color names (page 45-26).

! [Schemes] maps color definitions to application components such as screens
and widget types (page 45-30).

! [Lines] defines line and box styles (page 45-34).

! Several font sections that tell Panther which fonts and font sizes to display in
the drop-down menus in the screen editor; they also define default fonts for
display and report output, and map system-specific font names to Panther font
aliases (page 45-36).

By defining these elements in GUI-specific files and using their names for screen and
widget properties, you can create applications that are easy to port across different
platforms. Instead of creating multiple instances of the same screens or reports that use
GUI-specific font and color names, you can create multiple configuration map files—
one for each platform on which your applications run. For example, you can create a
color alias PanicButtonRed that resolves to different colors in different configuration
maps.

Panther is installed with at least one configuration map file (*cmap) that suits your
environment. You can edit these or create your own with an ASCII text editor, then run
the utility cmap2bin to convert it to binary format.

During initialization, Panther looks for the application variable SMCOLMAP which can
be defined in the environment or in an SMVARS file. This variable gives the full path
name of the binary configuration map file.
Application Development Guide 45-25

Configuration Map File
Defining Colors

When you create a screen or widget, the screen editor seeks default color settings, or a
scheme, for that object's type, foreground and background. The editor automatically
sets the color property to Scheme and then resolves the scheme, looking first in the
configuration map file. If the file provides no scheme for the object, the editor looks
elsewhere for color defaults (refer to page 45-30).

Panther provides configuration map files with default schemes for screens and for each
widget type. You can define your own color schemes that suit your environment, style
preferences, or development and application requirements. Or you can rely on the local
GUI to assign colors to your application objects.

You can set the Color Type property to one of these three settings:

! Scheme—The defaults defined in the [Schemes] section of the configuration
map file, or if none, a set of default colors determined by settings defined either
in the native GUI or in Panther.

! Basic—Panther's eight highlighted and eight unhighlighted colors, plus the
Container option. (The Container option specifies that a widget within another
object has the same background color as the container.)

! Extended colors—GUI-specific colors that are specified by a string and are
resolved in the [Colors] section of the configuration map file, or directly by
the GUI.

Defining Color Aliases

The [Colors] section defines GUI-independent color aliases that you can use in the
Color Name property of screens and widgets. All color names, including Panther
palette color names like hilight_red, must be added to the list of color aliases. Each
entry appears on its own line in the following format: aliasColor = color

aliasColor

Any name you choose to identify a color.

color

One of the following:

" An RGB value in a platform-specific form:
45-26 Customizing the User Interface

Configuration Map File
For Windows, use the form "red/green/blue" where red, green and blue
are numbers between 0 and 255. For example:

PanicButtonRed = "205/92/92"

For Motif, use the form "#RedGreenBlue" where Red, Green, and Blue
are hex numbers between 00 and ff. For example:

PanicButtonRed = "#cd5c5c"

" A GUI specific name (in Motif only). For more information on Motif
color names, refer to page 4-5.in the Configuration Guide. For
example:

PanicButtonRed = "Indian Red"

" Panther keywords in the form basicColor (attributes); where
basicColor corresponds to one of Panther's 16 colors (or “container”)
and attributes is an optional display attribute (refer to Table 45-7). For
example:

NumberField = BLACK UNDERLN

This style of definition can create a GUI-independent color alias. For
example:

SpringGreen=Green Hilight
SummerGreen=Green Dim

If a widget had the Motif color SpringGreen specified and Panther could
not find it, it would substitute the Panther color Green Hilight, which is
always defined. A configuration map with similar aliases would allow a
Motif-specific screen to appear similarly when running in Panther's
character mode.

Note: Under Windows, Panther screens and widgets that have highlighted
background colors are different from those having unhighlighted background
colors. Panther display attributes have no effect in Motif.

Table 45-7 Panther color and attribute keywords

Color Color keyword Attribute Attribute keyword

Black BLACK Reverse video REVERSE

Blue BLUE Underline UNDERLN
Application Development Guide 45-27

Configuration Map File
The keyword CONTAINER specifies that a widget within another object has the same
background color as the container. Therefore CONTAINER cannot be used to specify a
foreground color. Also, because CONTAINER may contain attributes, you cannot
specify any additional attributes with it.

Editor Colors

A number of predefined color aliases control the editor's appearance. All editor color
aliases begin with se; entries use the same format as user-defined colors. For example,
this entry in a Windows configuration map file sets the background color of the design
screen:

seFormBg = "127/255/0"

Table 45-8 lists screen editor color aliases and the objects whose appearance they
control:

Green GREEN Blink BLINK

Cyan CYAN Highlight HILIGHT

Red RED Dim DIM

Magenta MAGENTA

Yellow YELLOW

White WHITE

Container CONTAINER

Table 45-7 Panther color and attribute keywords

Color Color keyword Attribute Attribute keyword

Table 45-8 Screen editor object constants (object keywords are case sensitive)

Color alias Description

seBorderFG Editor windows border foreground.

seCheckFG Property window option menu foreground.
45-28 Customizing the User Interface

Configuration Map File
Sample Colors Section

The following examples are from ASCII configuration map files; the aliases ensure
that colors specified for one platform display correctly on others without editing Color
Name properties of application components. Given the appropriate configuration map
file, an application displays colors that are correct for its environment.

The [Colors] section in the Motif configuration map defines these color aliases:

seEntryFG Property window text field foreground.

seFormBG Editor windows background.

seLabelFG Label foreground.

seListBG List background (except for Property window).

seListFG List foreground (except for Property window).

seMultiBG Multiline text background.

seMultiFG Multiline text foreground.

seOptionmenuBG Option menu background.

sePushBG Push button background.

sePushFG Push button foreground.

sePwListBG Property window list background.

sePwListFG Property window list foreground.

seTbBorderFG Tool box border foreground.

seTbFormBG Tool box background.

seTbTogFG Tool box toggle button foreground.

seTextBG Text background.

Table 45-8 Screen editor object constants (object keywords are case sensitive)

Color alias Description
Application Development Guide 45-29

Configuration Map File
Slate Gray = "#708090"
Olive Drab = "#6B8E23"
ButtonBlue = "#0938EE"

For character mode, the [Colors] section redefines these aliases with Panther color
names:

Slate Gray = HILIGHT WHITE
Olive Drab = GREEN
ButtonBlue = BLUE

For a Windows configuration map, these aliases are redefined with RGB values:

Slate Gray = "112/128/144"
Olive Drab = "107/142/35"
ButtonBlue = "09/38/240"

If you specify Slate Gray on the three platforms, the correct color is displayed. If you
alias the Motif color to map to a Panther-specific color, you ensure that when your
application runs in character-mode Panther, Slate Gray is displayed as the Panther
color hilight white.

Defining Color Schemes

You can decide on a set of default colors for each newly created object in the screen
editor. When the Color Type property is set to Scheme, Panther uses the configuration
map file to resolve the object's foreground and background colors, according to its
type.

The Schemes section of the configuration map file can include explicit settings or defer
to the GUIs resource database or initialization file.

Default Schemes

If the configuration map file omits a [Schemes] section, Panther uses the following
default schemes:

! Windows: Control Panel colors.

! Motif: the *fg and *bg settings in the resource database.

! Character-mode Panther: white foreground, black background.
45-30 Customizing the User Interface

Configuration Map File
Scheme Syntax

Each entry in the[Schemes] section appears on its own line in the following format:

object = color

object

Any widget type, including lines and boxes, screen, and borders, followed by
either a foreground (FG) or background (BG) mnemonic; for example,
ToggleButtonFG and ListBoxBG. Refer to Table 45-9 for a list of valid
object specifications.

color

One of the following specifications:

" An RGB value in a platform-specific form:

For Windows, use the form “red/green/blue” where red, green and blue
are numbers between 0 and 255. For example:

MultiTextFG = "0/0/255"

For Motif, use the form "#RedGreenBlue" where Red, Green, and Blue
are hex numbers between 00 and ff. For example:

MultiTextFG = "#0000ff"

" Panther keywords in the form basic_color [attribute]; where
basic_color corresponds to one of Panther's 16 colors (or
“container”) and attribute is an optional display attribute. (Refer to
Table 45-7.) You may not use the container color for foreground color
designations. For example:

 TEXTFG = BLACK UNDERLN

" A GUI independent color alias. For example, this entry sets LabelBg
to Panther blue, an alias that must be defined in the [Colors] section:

 LabelBG=Panther blue

" Use the keyword GUI to indicate the native GUI resource database or
initialization file. For example, the following indicates that the native
GUI resolves the foreground color for toggle buttons:

TogglebuttonFG=GUI
Application Development Guide 45-31

Configuration Map File
" Use the keyword GUI and the Motif or Windows screen element
scheme value. (Do not use any additional attributes with a GUI
keyword color designation.) For example, for Windows:

PushButtonFG = GUI Buttonface

For Motif:

PushButtonBG = Prolifics*background

" GUI-specific colors. These exist only in Motif; their usage limits the
scheme's color portability to other environments. For more information
on Motif color names, refer to page 4-5 in the Configuration Guide.

CheckBoxFg =tomato

Table 45-9 Objects for setting schemes (keywords are case-insensitive).

Object Specification Descriptions

BoxTopBg Top border background of box widget.

BoxTopFg Top border foreground of box widget.

CardBg Tab card widget background (ignored in Windows).

CardFg Tab card widget foreground (ignored in Windows).

CheckBoxBg Check box background.

CheckBoxFg Check box foreground.

ComboBoxBg Combo box background.

ComboBoxFg Combo box foreground.

DeckBg Tab deck widget background (ignored in Windows).

FormBg Screen color scheme.

FormBorderBg Screen border background.

FormBorderFg Screen border foreground.

GraphBg Graph widget background.

GraphFg Graph widget foreground.
45-32 Customizing the User Interface

Configuration Map File
GridBg Grid widget background.

GridFg Grid widget foreground.

LabelBg Static label background.

LabelFg Static label foreground.

LineBg Line widget background.

LineFg Line widget foreground.

ListBoxBg List box background.

ListBoxFg List box foreground.

MultiTextBg Multitext background.

MultiTextFg Multitext foreground.

OptionMenuBg Option menu background.

OptionMenuFg Option menu foreground.

OutputBg Dynamic label background.

OutputFg Dynamic label foreground.

PushButtonBg Push button background.

PushButtonFg Push button foreground.

RadioButtonBg Radio button background.

RadioButtonFg Radio button foreground.

ScaleBg Scale widget background.

ScaleFg Scale widget foreground.

TextBg Single line text background.

TextFg Single line text foreground.

Table 45-9 Objects for setting schemes (keywords are case-insensitive).

Object Specification Descriptions
Application Development Guide 45-33

Configuration Map File
Defining Line and Box Styles

[Lines] section entries map character-mode styles for lines and boxes to GUI styles.
Character-mode line and box styles are defined in the box and border entries of your
terminal's video file.

Each entry appears on its own line in the following format:

styleName = styleContent

styleName

A predefined or new style name. Spaces are allowed and case is irrelevant.

styleContent

A predefined style name or another alias style name defined in this file.
Spaces are allowed and case is irrelevant. Currently supported predefined
style names include:

You can use this section of the configuration map file to assign the styles 0 through 9
to GUI-specific line styles. For example, you might define the following entries for
Motif:

[Lines]

style 0 = etched in

ToggleButtonBg Toggle button background.

ToggleButtonFg Toggle button foreground.

Table 45-9 Objects for setting schemes (keywords are case-insensitive).

Object Specification Descriptions

Dash Dashdot Dashdotdot Default

Dot Double Dash Double Etched In

Etched In Dash Etched Out Etched Out Dash In

None Out Single

Style 0 Style 1 ... Style 9
45-34 Customizing the User Interface

Configuration Map File
style 1 = etched out

These entries tell Panther for Motif that when to interpret style 0 as an alias for
etched in, and style 1 as etched out.

Character Mode Styles

Styles 0 through style 9 are native to Panther running in character mode. Style 1 is
defined as the default line style. When you assign a character-specific style as the Style
property value for a line or box style in the screen editor, that style is mapped to style
1 on non-character Panther applications. GUI-specific styles map to style 1 when
running in character mode.

GUI Styles

The default line and box style for all GUI platforms is etched in. Table 45-10 shows
which styles are supported by different platforms, and how Panther displays styles that
are undefined or are not supported by the GUI. Supported styles are represented by
asterisks (*). Because Windows supports the same styles for lines and boxes, the table
does not differentiate between these two widgets; however, Motif supports a different
set of styles for each widget type, so these are depicted separately.

Note: Under Windows, screens that have their 3D property set to No display Etched
In and Etched Out as single lines.

Table 45-10 Mapping of Panther line and box styles on GUI platforms

Line styles Windows Motif line Motif box

Default etched in etched in etched in

Style 0 single no line etched in

None single no line etched in

Styles 1-9 single etched in etched in

Etched In * * *

Etched In Dash dash * etched in
Application Development Guide 45-35

Configuration Map File
To control mapping, assign the desired specification in the configuration map file.

Setting Display and Printing Fonts

Display font defaults and aliases are defined in a single section—[Windows Fonts]
for Windows and [Display Fonts] for other platforms.

Font defaults and aliases for printed reports are defined in one of four sections: in the
[Windows Fonts] font display section for output from Windows print drivers, a
[Postscript Fonts] section for PostScript and PDF output, a [PDF Fonts] section
for PDF output, and a [Text Fonts] section for ASCII output. For more information
about how to use fonts in reports, refer to page 8-11 in Reports.

Entries in these sections let you:

Etched Out * * *

Etched Out Dash dash * etched in

Single * * etched in

Dash * * etched in

Dot * dash etched in

Dashdot * dash etched in

Dashdotdot * dash etched in

In single etched in *

Out single etched out *

Double single * etched in

Double Dash single * etched in

* Style is supported by the GUI platform.

Table 45-10 Mapping of Panther line and box styles on GUI platforms

Line styles Windows Motif line Motif box
45-36 Customizing the User Interface

Configuration Map File
! Specify the fonts and point sizes that appear on drop-down menus for the Font
Name and Point Size properties.

! Specify the application's default font and point size.

Point Sizes

You can specify the point sizes that appear on the Point Size property's drop-down
menu with an entry that has this format:

point_sizes = size[size]...

For example:

point_sizes = 8 9 10 12 14 16 18 20 24 36 48 72

Note: Panther uses the point_sizes entry only for scalable fonts. For a
non-scalable font, Panther gets its available sizes from the GUI and displays
these on the drop-down menu.

Default Font

You can specify the application-wide font that Panther applies when you accept
Default for a screen's Font Name property with an entry that has this format:

default_font = font-spec

font-spec is a font specification that is valid for this configuration map file's
environment.

For applications running on Windows, specify the font name only. For example:

default_font = Arial

For Motif applications, specify fonts with the XLFD font naming convention; substitute
the wildcard character * for all weight, slant, and size properties. For example:

default_font = -*-Helvetica-*

For the PDF driver, you must specify the name of the TrueType or Type 1 font file.
The file name's extension will be used to determine the type of font. The extension
must be .ttf for TrueType fonts and either .pfa or .pfb for Type 1 fonts. For Type1 fonts,
there must also be the corresponding .afm file in the same directory. For example, in
Windows,
Application Development Guide 45-37

Configuration Map File
default_font = c:\windows\Fonts\times.ttf

and in Linux or UNIX,

default_font = /usr/share/fonts/default/Type1/n021003l.pfb

Note: At runtime, Panther uses the default font for any font specification that it
cannot resolve.

Default Font Size

The default_point_size entry specifies the application-wide font size that Panther
applies when you accept Default for a screen's Font Size property. Use the format:

default_point_size = size

Panther Font Aliases

Panther font aliases are especially useful in an application's portability across
platforms. Each platform has its own configuration map, and Panther font aliases map
to local font specifications. Panther font aliases appear on the Font Name property's
drop-down menu. In GUI environments, Panther resolves these with the names of fonts
supplied by the GUI itself.

Each Panther font alias is defined with the following format:

aliasName [(fontQualifier...)] = fontSpec
 [[(fontQualifier...)] = fontSpec]...

You can specify different qualifiers for the same font alias on separate lines, and
thereby map it to unique font specifications. For example, the following definition uses
different qualifiers to map the Prolifics font Helvetica to two different fonts, depending
on whether the Italic property is set:

Prolifics Helvetica (noitalic) = Arial
 (italic) = ArialItalic

If more than one entry matches a widget's properties, the first matching entry
determines which font is displayed.

The following sections discuss each component of a font definition.
45-38 Customizing the User Interface

Configuration Map File
aliasName

The name that you choose to identify a font alias. Panther font aliases are
defined in the configuration map file. They appear before the GUI-specific
font specifiers in the Font Name property option menu.

fontQualifier

Optionally limits usage of aliasName to those objects that also use the
specified qualifiers. You can AND together space-delimited font qualifiers
from each of the following columns, in any order:

For example, a Windows configuration map file might contain two
definitions for the Helvetica font, the first qualified, the second unqualified:

Prolifics Helvetica (italic 12 14) = ArialItalic
 = Arial

If a widget's Font Name property is set to Prolifics Helvetica, Panther uses
Arial unless two other conditions are also true: the Italic property is set to Yes,
and the Point Size property is set to either 12 or 14. In this case, Panther uses
ArialItalic.

Point size qualifiers can limit the number of choices available in the Point
Size property's option menu. For example, given the following Windows font
definition, choosing Prolifics Times Roman as a widget's Font Name property
limits the choices on the Point Size drop-down menu to Default, 8, and 10:

Prolifics Times Roman (8 10) = Times New Roman

Note: Point size qualifiers are used on the Point Size property's option
menu only if they are valid for the selected font.

fontSpec

fontSpec maps the font name to a font supported by the GUI environment.
For applications running on Windows, specify fonts with this syntax:

fontname[-point-size] [-bold] [-italic] [-underline]

For example:

Prolifics Helvetica = Arial-14-bold
Data Entry Text = Arial

bold italic underline pointSize[pointSize]...

nobold noitalic nounderline
Application Development Guide 45-39

Configuration Map File
For Motif applications, specify fonts with the XLFD font naming convention:

-foundry-family-weight-slant-width-style-pixel size
-point size-x resolution-y resolution-spacing
-average width-charset registry-charset encoding

You can substitute any component in an XLFD font name with the wildcard
character *. For example:

Prolifics Courier = -*-courier-*-r-*
Prolifics Courier (italic) = -*-courier-*-o-*

If fontSpec omits values for point size, slant, or weight, Panther supplies
these values from the corresponding property settings—Point Size, Italic, and
Bold. For example, the following entries for the Prolifics Helvetica font—
each in separate configuration map files for Windows and Motif—specify
only the font's family name:

Prolifics Helvetica = Arial
Prolifics Helvetica = -*-helvetica-*
Prolifics Helvetica = helvetica

Given these definitions, any widget using Prolifics Helvetica as its font can
also have its Point Size, Bold, and Italic properties set; these properties are
used to resolve the displayed font. So, if the widget's Bold and Italic
properties are set to Yes, Panther resolves the Prolifics Helvetica to
Arial-bold-italic on Windows and -*-helvetica-bold-i-* in Motif, and passes
on these specifications to their respective GUIs.

Conversely, these definitions of a font named HelvBold sets its weight to
bold:

HelvBold = Arial-bold

HelvBold = -*-helvetica-bold-*

The explicit weight specifications for HelvBold override the Bold properties
for a widget that uses this font; the font is always displayed as bold.

For the PDF driver, you must specify the name of the TrueType or Type 1 font
file. The file name's extension will be used to determine the type of font. The
extension must be .ttf for TrueType fonts and either .pfa or .pfb fir Type 1
fonts. For Type1 fonts, there must also be the corresponding .afm file in the
same directory. For example, in Windows,

Prolifics Courier = c:\windows\Fonts\cour.ttf

and in Linux or UNIX,
Prolifics Courier = /usr/share/fonts/default/Type1/n022003l.pfb
45-40 Customizing the User Interface

Configuration Map File
Sample Configuration Map File

The following configuration map file defines colors, fonts, and line styles for Windows
applications.

[Colors]

grape = MAGENTA # Prolifics color
Aquatic Blue = "64/32/200" # Windows-style RGB value

The following entries in the color map are for use in the
screen editor. If you remove them entirely, then SCHEME
colors are used, which may be desirable in Windows.

#seFormBG = GUI WindowBackground
#seBorderFG = Unused by Pi for Windows
#seLabelFG = GUI WindowText
#sePushFG = GUI ButtonText
#sePushBG = GUI ButtonFace
#seEntryFG = GUI WindowText
#seMultiFG = GUI WindowText
#seMultiBG = GUI WindowBackground
#sePwListFG = GUI WindowText
#sePwListBG = GUI WindowBackground
#seListFG = GUI WindowText
#seListBG = GUI WindowBackground
#seCheckFG = GUI WindowText
#seOptionmenuBG = GUI WindowBackground
#seComboboxBG = GUI WindowBackground
#seTextBG = GUI WindowBackground

The following definitions are for the tool box

seTbFormBG = BLACK
#seTbBorderFG = Unused by Pi for Windows
#seTbTogFG = Unused by Pi for Windows

[Schemes]

#OUTPUTFG = GUI WindowText
#TEXTFG = GUI WindowText
#MULTITEXTFG = GUI WindowText
#PUSHBUTTONFG = GUI ButtonText
#TOGGLEBUTTONFG = GUI ButtonText
#RADIOBUTTONFG = GUI WindowText
#OPTIONMENUFG = GUI WindowText
#COMBOBOXFG = GUI WindowText
#LISTBOXFG = GUI WindowText
#SCALEFG = GUI WindowText
Application Development Guide 45-41

Configuration Map File
#LABELFG = GUI WindowText
#BOXTOPFG = GUI WindowText
#LINEFG = GUI WindowFrame
#CHECKBOXFG = GUI WindowText
#FORMBORDERFG = Unused by Pi for Windows
GRAPHFG = BLACK
#GRIDFG = GUI WindowText
#FORMBG = GUI WindowBackground
OUTPUTBG = CONTAINER
#TEXTBG = GUI WindowBackground
#MULTITEXTBG = GUI WindowBackground
#PUSHBUTTONBG = GUI ButtonFace
#TOGGLEBUTTONBG = GUI ButtonFace
RADIOBUTTONBG = CONTAINER
#OPTIONMENUBG = GUI WindowBackground
#COMBOBOXBG = GUI WindowBackground
#LISTBOXBG = GUI WindowBackground
SCALEBG = CONTAINER
LABELBG = CONTAINER
#BOXTOPBG = CONTAINER
#LINEBG = Unused by Pi for Windows
CHECKBOXBG = CONTAINER
#FORMBORDERBG = Unused by Pi for Windows
#GRAPHBG = CONTAINER
#GRIDBG = CONTAINER
ACTIVEXBG = CONTAINER
#CARDBG = Unused by Pi for Windows
#DECKBG = Unused by Pi for Windows

[Lines]

Style 1 = Single
MyFavoriteStyle = Double

[Windows Fonts]

Point Size property drop-down

point_sizes = 8 9 10 12 13 14 16 18 20 22 24 26 28 36 48 72

Application defaults for Font Name and Point Size
properties

default_font (print) = Times New Roman
default_point_size (print) = 10

Font Name Qualifiers Windows font
------------------- ---------- ------------
Prolifics Courier = Courier New
Prolifics Times Roman = Times New Roman
45-42 Customizing the User Interface

Configuration Map File
Prolifics Helvetica = Arial
Prolifics Symbol = Symbol

[PostScript Fonts]

Rules in this section apply only to ReportWriter's editor and
printed output.

Point Size property drop-down

point_sizes = 8 9 10 11 12 13 14 16 18 20 22 24 26 28 36 48 72

Application defaults for Font Name and Point Size properties

default_font = Times-Roman
default_point_size = 10

Font Name Qualifiers PostScript font
--------- ---------- ---------------
Prolifics Courier (italic bold) = Courier-BoldOblique
 (italic) = Courier-Oblique
 (bold) = Courier-Bold
 = Courier

Prolifics Times Roman (italic bold) = Times-BoldItalic
 (italic) = Times-Italic
 (bold) = Times-Bold
 = Times-Roman

Prolifics Helvetica (italic bold) = Helvetica-BoldOblique
 (italic) = Helvetica-Oblique
 (bold) = Helvetica-Bold
 = Helvetica

Prolifics Symbol = Symbol

[Text Fonts]

Rules in this section apply only to ReportWriter's editor and
printed output.

Point Size property drop-down

point_sizes = 8 10 12 16 24 36
Application Development Guide 45-43

Configuration Map File

Application defaults for Font Name and Point Size properties

default_font = Times
default_point_size = 10

Font Name Qualifiers Text Font
--------- ---------- ---------
Prolifics Courier (10 italic) = Courier_i_10
Prolifics Courier (10 bold) = Courier_b_10
Prolifics Courier (10) = Courier_10
Prolifics Courier (italic) = Courier_i
Prolifics Courier (bold) = Courier_b
Prolifics Courier = Courier

Prolifics Times Roman (24 italic bold) = Times_i_b_24
Prolifics Times Roman (24 italic) = Times_i_24
Prolifics Times Roman (24 bold) = Times_b_24
Prolifics Times Roman (24) = Times_24
Prolifics Times Roman (18 italic bold) = Times_i_b_18
Prolifics Times Roman (18 italic) = Times_i_18
Prolifics Times Roman (18 bold) = Times_b_18
Prolifics Times Roman (18) = Times_18
Prolifics Times Roman (10 italic bold) = Times_i_b_10
Prolifics Times Roman (10 italic) = Times_i_10
Prolifics Times Roman (10 bold) = Times_b_10
Prolifics Times Roman (10) = Times_10
Prolifics Times Roman (italic bold) = Times_i_b
Prolifics Times Roman (italic) = Times_i
Prolifics Times Roman (bold) = Times_b
Prolifics Times Roman = Times

Prolifics Helvetica = Helvetica

Prolifics Symbol = Symbol
45-44 Customizing the User Interface

Translating Applications
Translating Applications

Panther provides the following capabilities for modifying application for international
usage:

! Panther uses 8-bit character data without appropriating a bit for internal use.

! The library functions sm_dblval and sm_dtofield, which read and write real
values, respectively, use the C standard library functions atof and sprintf to
interpret the system decimal symbol (radix character) correctly.

! The library function sm_is_yes uses the characters designated in the SM_YES
and SM_NO entries in the Panther message file. Therefore, if you translate the
message file, the screen use and display of those values are automatically
internationalized. The function uses toupper to recognize upper-case
variations.

You can also use the Panther message file to set date and time formats (page 45-17)
and currency formats (page 45-19) to conform to local usage.

8-Bit Character Data

Panther supports 8-bit character data. Video files specific to the terminal can give
special instructions, if necessary, on how to display international characters. This is
needed if the terminal requires shifting to a different character set to display
non-ASCII characters. Most terminals used in the international market do not need to
shift character sets.

The video file can also be used to translate between two different standards for
international characters. Thus, screens can be created with one standard and displayed
using a different one.

The use of 8-bit characters for international symbols does not necessarily preclude use
of graphics in character-mode applications. Unused entries in a character set, such as
0x01 through 0x1f or 0x80 through 0x9f, can be mapped to line graphics symbols.
Application Development Guide 45-45

Translating Applications
Unless a widget has a keystroke filter, Panther ignores the characters that are entered
into it from the keyboard. Internally, it only manipulates numbers. Cursor control keys
such as arrows and TAB, and function keys are all assigned logical values that are
outside the range 0x00 to 0xff, and thus cannot conflict with international characters.

Keyboards that support international character sets usually produce a single 8-bit byte
(perhaps with the high bit set) for each character. However, some terminals generate a
sequence to represent an international character. If so, you can use a text editor to map
the byte sequences to a logical value, just as the video file is used to map the logical
value to the sequence required by the display terminal.

For more information on how to display non-English characters or to receive them
from the keyboard, refer to page B-1 in the Upgrade Guide.

Translating Screens in Application Programs

There are a number of approaches to translating your application screens. If your
application requires translation for international distribution, consider the following
questions:

! How many translations are needed?

! Do users need access to multiple languages at runtime? When they start the
application only, or during a session?

! Is the application relatively complete and static, or are changes and
enhancements still be made?

The answers to these questions determine which method to use. In any event you must
provide the translator with the information that needs to be translated, and pictures of
the screens to provide some context. In addition, screen size and spacing should be
considered when translating screens to other languages.

There are essentially three different approaches you can take to provide an application
to a multilingual audience. Each approach requires some up-front planning, and some
development strategy. The localization process can be performed at:

! Distribution time

! Installation time

! Runtime, which can be either at startup or dynamically at the user's request.
45-46 Customizing the User Interface

Translating Applications
There are probably several ways to approach the development of a product that needs
to be translated and distributed in multiple languages. One of the most obvious
methods is to simply translate application screens to each of the languages that you
support.

Language-specific screens can be released in a variety of ways, regardless of when the
localization process takes places. For example, you can create multiple libraries; each
one contains a set of screens translated to a specific language. By setting the SMFLIBS
application variable either at distribution, installation, or runtime, you or a user can
access the desired language-specific library.

The following sections describe other methods to consider when you develop an
application.

Distribution Translation

A distribution translation means that when the application leaves your facility, it is
released with a specific set of screens. The end user receives exactly what you send.

Method One
Develop language-specific repositories. At distribution time, use the
binherit utility to update the content of each screen by using the appropriate
repository for the required language.

Method Two
At design time, define the initial text for all widgets as a variable or token, for
example %Name%, %Address%, etc. When the screens are completed, use the
f2asc utility to convert the binary screens to ASCII format. Provide your
translator with the tokenized references. Then develop a translation script that
will search the ASCII file and replace the token with the translated constant.
The function of the translation utility would be to find and replace tokenized
text, replacing %Name% with Name for English, or Nom for the French version.

Each ASCII translation can be easily maintained and updated as screens
change.

After the ASCII translations are made, they can be converted back to screens
in binary format with f2asc and distributed accordingly.

This method has these advantages and disadvantages:
Application Development Guide 45-47

Translating Applications
Installation Translation

In an installation translation, the application is packaged with more than one language
and the desired language is installed. You can provide an installation mechanism that
lets the user set SMFLIBS to point to and open a library of language-specific screens.

This method has the advantage of letting users decide which language to install. On the
other hand, it requires disk space to accommodate storage of multiple sets of screens;
and languages cannot be changed dynamically at runtime.

Runtime Translation

In a runtime translation, users can dynamically change languages at runtime.
Depending on their requirements, users might only need to select a preferred language
at start up, or they might need to change languages during a session.

Method One
A start up method can be implemented in the same way described for an
installation translation: you provide a mechanism that lets users choose which
language to display. For example, a logon screen can provide radio buttons
that correspond to each supported language, so users can choose the desired
language. Their choice sets SMFLIBS to point to and open the appropriate
library of screens.

Advantages File naming conventions can be adhered to across all libraries.

Screen dimensions and widgets can be easily adjusted and
repositioned to accommodate languages and sentence structure
that might require more space on a screen.

Adding a new language only requires a new translation.

Drawbacks Maintenance of many different languages can be time consuming.

You must distribute more than one library to an end user who
requires more than one language.

Languages cannot be changed dynamically at runtime.
45-48 Customizing the User Interface

Translating Applications
This method has the advantage of allowing multilingual organization to run
the application easily; users choose their preferred language without
requiring reinstallation of the software.

This method has one possible drawback, that installation requires enough
disk space to accommodate all translated screens.

Method Two
Design your screens to include all translations in one screen binary. You can
do this by creating dynamic labels as scrolling arrays with only one onscreen
occurrence, and then synchronizing all the label arrays on the screen, you can
provide an occurrence for each language you support. The user, via a
programmatic call, can scroll the array to the language of choice. For
example, the third occurrence might be Italian, while the fourth occurrence is
Japanese. So, if the user chooses Italian, via a screen entry function the third
occurrence is displayed. If Japanese is specified, the labels can be
programmatically scrolled to the fourth occurrence and so on.

This method has two advantages:

" All translations exist in one place with each screen binary.

" While working in the application, a user can choose which language to
display.

This method has one possible drawback, that some translations require more
space than others; screens must be designed with these limitations in mind.
Application Development Guide 45-49

Translating Applications
45-50 Customizing the User Interface

CHAPTER
47 Processing the
Mouse Interface

This chapter shows how to evaluate and process mouse events, mouse data, and
contextual information. Topics include:

! Trapping mouse events.

! Using Panther library functions to get mouse data, such as the location of the
mouse click and which buttons were pressed.

! Getting and modifying the mouse pointer's state.

Trapping Mouse Events

You can intercept single and double mouse clicks on an application-wide basis through
Panther's key change hook function. You can also intercept double clicking on an
individual widget through its Double Click property. Both techniques are discussed in
the sections that follow.
Application Development Guide 47-1

Trapping Mouse Events
Using Key Change Functions

With Panther's key change hook function, you can intercept single and double mouse
clicks throughout the program. Panther's key file (smkeys.h) defines these two events
through the logical keys MOUS for single mouse clicks, and MDBL for double clicks. A
key change function that tests for these logical keys can use Panther library functions
to examine the state of the mouse cursor and mouse buttons, and perform special
processing accordingly.

For example, the following code shows in skeletal format a key change function that
tests for a single click mouse event outside a field, and then determines which button,
if any, is down. It also conditionally tests for different combinations of mouse events
with keyboard modifiers, such as Shift+click versus Ctrl+click. Most of the processing
relies on sm_ms_inquire to test the mouse's state. For detailed information on using
this function, refer to page 47-4. For more information on key change functions, refer
to page 44-36.

int keychg (int which_key)

{

 int ms_btn;

 switch (which_key)

 {

 case MOUS:

 /*is mouse click outside field? */

 if (sm_ms_inquire(MOUSE_FIELD) < 0

 {

 ms_btn = (sm_ms_inquire(MOUSE_BUTTONS) & 0x49;

 /*is any button down?*/

 if (ms_btn > 0)

 {

 /*test which button is down*/
47-2 Processing the Mouse Interface

Trapping Mouse Events
 switch (mouse_button)

 {

 ...

 }

 /*is any keyboard modifier also down */

 if (sm_ms_inquire(MOUSE_SHIFT))

 {

 ms_kbd = sm_ms_inquire(MOUSE_SHIFT);

 switch (ms_kbd) /*which key is down? */

 {

 ...

 }

 ...

}

Trapping Double Clicks on a Widget

Several widget types have the double_click property, which lets you specify an
action that is triggered by double clicking on a widget. double_click gets a control
string as its value. This control string can specify to call a function, invoke an operating
system command, or open another screen.

The following widget types have the double_click property:

! Single line text

! Dynamic label

! Combo box

! List box that is a select-any type or is defined as a selection group

! Multiline text
Application Development Guide 47-3

Getting Mouse Data
Getting Mouse Data

Panther provides library functions and application properties that get information
about the mouse's current state:

! The mouse click's location

! The state of the mouse buttons

! Other keys that were pressed when the mouse click occurred

! The amount of elapsed time between mouse clicks

Determining Mouse Click Location

The library function sm_ms_inquire lets you test the last mouse click's line and
column location on a Panther screen or on the physical display. Several runtime
properties also offer access to the field and screen on which the last mouse click
occurred.

Identifying Mouse Coordinates

To determine the line and column location of the last mouse click, supply
sm_ms_inquire with arguments of MOUSE_LINE and MOUSE_COLM, respectively. To
get the mouse click's line and column within a Panther screen, supply
MOUSE_FORM_LINE and MOUSE_FORM_COLM. For example, the following routine gets
the mouse click coordinates on a map that is displayed on a static label:

void get_mouse_coords(void)

{

 int longitude, latitude;

 /* make sure the user clicked somewhere on the map */
47-4 Processing the Mouse Interface

Getting Mouse Data
 if (sm_ms_inquire(MOUSE_FIELD) > 0 &&

 sm_prop_get_str

 (PR_APPLICATION, PR_MOUSE_FIELD_NAME) == "mapLbl")

 {

 longitude = sm_ms_inquire(MOUSE_FORM_COLM);

 latitude = sm_ms_inquire(MOUSE_FORM_LINE);

 return get_map_location(longitude, latitude);

 }

}

Mouse and Widgets

The previous example also uses sm_ms_inquire and sm_prop_get_str to test
whether a mouse click occurred inside a field and the field's identity:

if (sm_ms_inquire(MOUSE_FIELD) > 0 &&

 sm_prop_get_str

 (PR_APPLICATION, PR_MOUSE_FIELD_NAME) == "mapLbl")

When supplied an argument of MOUSE_FIELD, sm_ms_inquire returns either the field
number in which the mouse click occurred, or -1 if the mouse click occurred outside
the field.

You can also use these runtime properties to get the name of the field and occurrence
in which a mouse click occurred:

! mouse_field and mouse_field_name respectively get the number and name
of the field in which the last mouse click occurred.

! mouse_field_occ gets the number of the occurrence in which the last mouse
click occurred.

All mouse properties are application-level properties, accessible through the @app()
modifier. For example, this all-purpose code obtains the data in the last clicked-on
occurrence of any field:
Application Development Guide 47-5

Getting Mouse Data
vars data

data = @widget(@app()->mouse_field_name)[@app()->mouse_field_occ]

Mouse and Screen

mouse_form_name is an application runtime property that gets the name of the screen
on which a mouse click occurred. Like other mouse properties, it is accessible through
the @app() modifier as in this example:

vars mouse_screen

mouse_screen = @app()->mouse_form_name

Determining Mouse Button State

You can get the state of each mouse button—up, down, just pressed, or just released—
by supplying sm_ms_inquire an argument of MOUSE_BUTTONS. If successful, the
function returns an integer bit mask. The function puts the requested data in three
segments of three bits each, where each segment represents one of three mouse
buttons—left, middle, and right. The three lowest-order bits contain left button data; if
the mouse has only one button, only these bit settings are significant. The middle three
bits contain right button data. The three highest-order bits contain data for the middle
button, if any.

Each bit within a three-bit segment can be set as follows, from lowest- to highest-order
bit:

! 0/1Up/down

! 1 Just pressed

! 1 Just released

For example, the bit settings returned for a just-initiated point and click operation—
left button is down and just pressed—can be represented as follows:

A click and drag operation that is in progress—right button is down—can be
represented like this:
47-6 Processing the Mouse Interface

Getting Mouse Data
Only four combinations of bit settings are meaningful to Panther and recognized as
representing valid button states:

! Up—0 0 0

! Down—0 0 1

! Down and just pressed—0 1 1

! Up and just released—1 0 0

For example, the following routine tests whether any mouse buttons are down: it
bitwise AND's sm_ms_inquire's return value with 0x49, thereby masking off all but
the first, fourth, and seventh-order bits:

/*find out whether any button is down */

int is_any_button_down(void)

{

 return sm_ms_inquire (MOUSE_BUTTONS) & 0x49;

}

Identifying Keyboard Modifiers

By supplying sm_ms_inquire with an argument of MOUSE_SHIFT, you can find out
whether a mouse click occurred with one or more of these keys pressed down: Shift,
Ctrl, and Alt. The function returns an integer bit mask whose three lowest-order bits
are set to indicate which of the three keys, if any, were pressed. These bits are set as
follows, from lowest- to highest-order bit:

! Shift key is down

! Ctrl key is down

! Alt key is down
Application Development Guide 47-7

Getting Mouse Data
For example, a return value of 2 (0 1 0) indicates that the Ctrl key is down, while a
return value of 5 (1 0 1) indicates that the Alt and Shift keys are both down. The second
of these returns can be represented as follows:

In the following example, the return value of sm_ms_inquire(MOUSE_FIELD) is
bitwise AND’s with 0x06 in order to mask off the lowest-order bit (Shift). This lets the
program determine whether Alt or Ctrl, or both, were pressed down during the last
mouse click:

if (sm_ms_inquire(MOUSE_SHIFT))

{

 /*test for Alt and Ctrl keys only */

 ms_kbd = sm_ms_inquire(MOUSE_SHIFT) & 0x06;

 switch (ms_kbd)

 {

 case 0x02: /*Ctrl key is down */

 ...

 break;

 case 0x04: /*Alt key is down*/

 ...

 break;

 case 0x06: /*Alt+Ctrl keys are down */

 ...

 break;

 }
47-8 Processing the Mouse Interface

Changing the Mouse Pointer State
Reporting Elapsed Time between Mouse Clicks

sm_mus_time reports the number of milliseconds that elapsed since an unspecified
time. You can compare this value to the value reported on previous or subsequent
mouse clicks—for example, to determine whether two successive mouse clicks should
be interpreted as a double mouse click.

Notes: Ordinarily, you can use the key change function to intercept double mouse
click events. For more information, refer to page 47-1.

Changing the Mouse Pointer State

sm_delay_cursor sets the mouse pointer to be either the default cursor or the delay
cursor, or gets the mouse pointer's current state, according to the supplied argument. It
can also specify to change the cursor's state automatically, depending on whether the
application is awaiting input or not.

For GUI platforms, you can set a screen's default cursor through its Pointer property.
In Windows and Motif, the default cursor is an arrow. The delay cursor in Windows is
an hourglass; in Motif, the delay cursor is usually a wristwatch icon. You can change
Motif's default cursor through the pointerShape resource.

Because character-mode Panther does not change the mouse pointer shape,
sm_delay_cursor resets the background status line message to the value of SM_WAIT
or SM_READY. Note that you can turn background status messages on and off through
sm_setstatus. sm_delay_cursor takes a single integer argument, one of these
constants:

SM_AUTO_BUSY_CURSOR

Sets the mouse pointer to toggle automatically between the default cursor and
the delay cursor, depending on whether the application is awaiting input or
not. The default cursor appears whenever Panther is awaiting input.

SM_BUSY_CURSOR

Changes the mouse pointer into the delay cursor.
Application Development Guide 47-9

Changing the Mouse Pointer State
SM_DEFAULT_CURSOR

Restores the default cursor.

SM_SAME_CURSOR

Leaves the mouse pointer unchanged. Use this argument to get the pointer's
current state.

SM_TEMP_BUSY_CURSOR

Temporarily changes the mouse pointer to the delay cursor. Panther restores
the mouse pointer to the default cursor after Panther refreshes the screen.
47-10 Processing the Mouse Interface

CHAPTER
46 Dynamic Data
Exchange

Panther supports Windows Dynamic Data Exchange (DDE), which lets applications
share data through client/server links. Panther supports both client and server links
with other applications. As a DDE server, a Panther application exports data from a
field. As a DDE client, it imports data from another application into a field.

Panther as a DDE Server

As a DDE server, Panther can export data from a named field to a client application.
The client application specifies a DDE service, topic and item. In Panther, these
correspond to the application name, screen name and field name, respectively.

For example, an Excel spreadsheet can request a link between one of its cells and a
Panther field. The request must include the name of the Panther server name, the
screen name, and the field name. If the request succeeds, a DDE connection is created
between that spreadsheet window and the Panther screen; this connection initially
consists of the requested link, and can also accommodate other links that the client
might request later.
Application Development Guide 46-1

Panther as a DDE Server
Enabling Connections

Before a client application can request links to a Panther application, two conditions
must be true:

! The Panther application must be running.

! The application must be enabled as a DDE server.

To enable Panther as a server, call sm_dde_server_on or include this setting in the
initialization file prol5w32.ini or prol5w64.ini:

DDEServer=on

Creating Links

Clients can create links to a Panther screen either through the clipboard or by explicitly
issuing a request.

Paste Links

You can use the Windows clipboard data to create a link to a Panther application:

1. Copy data from a Panther field to the clipboard. The clipboard data includes the
link information required by DDE: service, topic, and item.

2. Paste link the clipboard data into the client application. The link information that
is embedded in the pasted data initiates a link request from this client to the
originating Panther screen.

Links Specified in Client Syntax

You can also create links to a Panther screen through explicit requests in the client
application's DDE syntax. Refer to your client application's documentation for details
on its DDE syntax.

Notes: Prefix the topic name with ampersands (& or &&) if you want the Panther
screen to open as a stacked or sibling window.

The following examples show DDE syntax for two applications:
46-2 Dynamic Data Exchange

Panther as a DDE Server
Microsoft Word

{DDEAUTO myProlApp &mainScreen totalData }

Microsoft Excel

=myProlApp|mainScreen!totalData

Processing Links

It is the client application's responsibility to connect with a Panther screen and create
links to the required fields. Most client applications automatically establish a
connection when they request a link.

When DDE gets a link request that is intended for a Panther application, it processes it
as follows:

1. Finds a match between the specified service and a Panther application that is
already running.

2. Checks whether the Panther application is enabled as a DDE server.

3. Matches the specified topic to a screen and checks whether a connection already
exists.

4. Opens the screen, if necessary, and matches the specified item to a field.

5. Creates a link between the client and the field.

Links remain in effect until they are explicitly closed by the client or the Panther
application exits. Panther maintains links for a screen that is inactive or closed, and
resumes data updates when the screen reopens. The client's connection to a Panther
screen remains active until all links to the current screen are destroyed.

Panther destroys links only at the request of the client or when the Panther application
terminates. When the client destroys its last link to a screen, its connection to that
screen is broken.

Updating Client Data

A client can create three kinds of links to Panther fields:
Application Development Guide 46-3

Panther as a DDE Server
Hot Links

Panther automatically updates the client with new data as soon as linked field data
changes. Hot links are maintained only for fields on the active screen.

Warm Links

Panther notifies the client when linked field data changes. The client must then request
the data. Notice is sent only for fields on the active screen. Requests for data succeed
only if the linked field is on an active screen or in the LDB.

Cold Links

Panther updates the client with new field data only when the client requests it. Requests
for data succeed only if the linked field is on an active screen or in the LDB.

Array Data

If the linked field is an array, Panther supplies all occurrences in the array. Occurrences
are separated by carriage returns () and newlines (). Leading blanks in right-justified
fields and trailing blanks in left-justified fields are omitted.

Data Conversion

Panther supplies text data to client applications. It is the client's responsibility to
perform any necessary data conversion such as string to numeric. For example, if the
client is a Microsoft Excel spreadsheet, the spreadsheet cell should wrap the formula
for the DDE reference in a value function call as below; this converts the link text data
into a number:

=value(JAM|screen.jam!textdata)

Other methods are specific to each client application.
46-4 Dynamic Data Exchange

Panther as a DDE Client
Disabling Panther as a DDE Server

You can disable Panther as a server at runtime through sm_dde_server_off. Panther
continues to maintain all previous links to clients; however, it ignores all client
requests that are made after this call.

Panther as a DDE Client

When a Panther application acts as a DDE client, it imports data into fields from an
external server application. Panther can request hot, warm, and cold links.

DDE can maintain multiple connections between the Panther application and server
application; only one connection is allowed between a Panther screen and a given
server window. Each connection can maintain multiple links.

For example, a Panther screen can request a hot link between one of its fields and a cell
in an Excel spreadsheet. The request must include the name of the Excel program, the
spreadsheet's filename, and the cell identifier. If the request succeeds, a DDE
connection is created between the Panther screen and the specified spreadsheet; this
connection initially consists of the requested link, and can also accommodate other
links that the client might request later. Subsequent changes in the server cell data are
reported to Panther and automatically are written to its linked field.

Enabling Connections

Before Panther can connect to a server application, it must be enabled as a DDE client.
To enable Panther as a client, call sm_dde_client_on or include this setting in the
initialization file prol5w32.ini or prol5w64.ini:

DDEClient=on
Application Development Guide 46-5

Panther as a DDE Client
Creating Links

As a DDE client, Panther can request hot, warm, and cold links. For more on link types,
refer to page 46-3. You can create links in three ways:

! Call one of Panther's paste link functions, which get server data from the
clipboard.

! Specify server data with one of Panther's connect functions.

! Specify server data in the initialization file.

Paste Links

You can paste server data from the Windows clipboard into a Panther field on the
active screen with one of these Panther paste link functions:

! sm_dde_client_paste_link_hot

! sm_dde_client_paste_link_warm

! sm_dde_client_paste_link_cold

These functions take a single argument—the field to get server data. Panther gets the
actual data and link information from the clipboard—server, topic, and item—and
paste links the data into the specified field.

Explicit Links Through Library Functions

Panther also provides a set of library functions that explicitly specify the server data
required:

! sm_dde_client_connect_hot

! sm_dde_client_connect_warm

! sm_dde_client_connect_cold

These functions take four arguments: the server, topic, item, and target Panther field.
The format for server, topic, and item arguments is specific to each server application.
Refer to the server application's documentation for this information. on page 46-7
shows the syntax used by three widely used Windows applications.
46-6 Dynamic Data Exchange

Panther as a DDE Client
For example, the following JPL statement creates a cold link between a Panther client
and an Excel spreadsheet:

retval = sm_dde_client_connect_cold \
> ("Excel","C:\XL\SALES.XLS","R1C2","total")

Links Specified in Initialization File

You can use the initialization file to create hot links. This lets you specify and edit links
for an application without changing the screens themselves. Only hot links are
supported from the initialization file.

The initialization file for Panther contains a Panther DDE section, where you can
specify links to server applications as follows:

screenname !

 fieldname =

 service |

 topic !

 item

For example, a link to a Quattro Pro spreadsheet might look like this:

salesScrn!totalSales=QPW|C:\MyAcct\Sales.wb1!$A:$A$10..$A$10

The format for server, topic, and item arguments is specific to each server application.
Refer to the server application's documentation for this information. Table 46-1 shows
the syntax used by three widely used Windows applications.

Table 46-1 Sample server syntax for Windows applications

Quattro Pro MS Word for Windows MS Excel

Server QPW Winword Excel

Topic C:\SALES.WB1 C:\WORK\SALES.DOC C:\XL\SALES.XLS

Item $A:$B$1..$B$1 DDE_LINK1 R1C2
Application Development Guide 46-7

Panther as a DDE Client
Processing Link Requests

A link request from a Panther application consists of these steps:

1. DDE checks whether the server application is running and the specified topic is
open. Both conditions must be true; otherwise, the link request fails.

2. DDE checks whether a connection already exists between the server topic and
the requesting Panther screen. If none exists, DDE attempts to create one.

3. After DDE verifies or establishes a connection, it creates the specified link—hot,
warm, or cold—between the specified Panther field and the server item. It then
updates the field data according to the link type.

If a link request fails for any reason—for example, because the server application is
not running—Panther posts an error message.

Updating Data from the Server

Panther updates link data according to the link type:

! Hot link—Data is updated on the client whenever it changes on the server.

! Warm link—The server notifies the client of a change in data, but sends new
data only at the client's request.

! Cold link—Data is updated only at the client's request. The server does not
notify the client of data changes.

If a field has warm or cold link data, the application must explicitly request updates
from the server by calling sm_dde_client_request. This function can be called only
for fields on the active screen.

When warm link data changes, DDE notifies Panther that new data is available from
the server. Panther then calls a callback function—either its own or one installed by
the developer—and passes it the screen name and field name of the link. For
information about writing callback routines, refer to sm_dde_install_notify.

DDE does not notify the Panther client of any changes in cold link data.
46-8 Dynamic Data Exchange

Execute Transactions
Notes: Because sm_dde_client_request can be called only for widgets on the
active screen, an application that uses warm links should queue notices for
data on inactive screens.

Array Data

Panther tries to update all occurrences in the array with server data. Data flows into the
array starting with the first occurrence. When Panther reaches the end of the
occurrence or encounters a tab, carriage return, or newline in the server data, it skips
to the next occurrence. Panther eliminates leading white space—tabs, carriage returns,
and new lines—before writing the data. The process ends when there is no more data
or the end of the array is reached.

Destroying Links to a DDE Server

When a screen closes, Panther destroys all links on that screen. You can also explicitly
destroy links on the active screen with sm_dde_client_disconnect.

Disconnecting from a DDE Server

Panther maintains its connection to a server application as long as an open screen
contains a link to that application. When the last screen containing a link to a server
closes, Panther breaks the connection.

Execute Transactions

The execute transaction lets a client execute a command on a server. As a client,
Panther can initiate execute transactions on a server application; as a server, Panther
can be the recipient of commands issued by a client.

As a DDE client, Panther can execute a command on a server with which it already has
a connection by calling sm_dde_execute:
Application Development Guide 46-9

Poke Transactions
sm_dde_execute(server,topic,command);

The server decides whether to execute or ignore the command. You can check the
function's return value to determine the outcome of the call.

As a server, Panther can receive a command issued by a client. For example, a Quattro
Pro spreadsheet might contain this EXECUTE statement:

{EXECUTE B1, "^updateData.jpl"}

Panther executes the command string like any control string.

For information about specifying execute transactions from client applications, refer
to that application's documentation.

Poke Transactions

A poke transaction lets a client send data to a server. As a client, Panther can initiate
poke transactions on a server application; as a server, Panther can be the recipient of
commands issued by a client.

As a DDE client, Panther can poke data into a server with which it already has a
connection by calling sm_dde_poke:

sm_dde_poke(server,topic,item,data);

The server decides whether to execute or ignore the command. You can check the
function's return value to determine the outcome of the call.

As a server, Panther can be the target of a poke transaction issued by a client. For
information about executing poke transactions from client applications, refer to that
application's documentation.
46-10 Dynamic Data Exchange

CHAPTER
48 Writing Portable
Applications

This chapter describes features of hardware and operating system software that can
cause Panther to behave in a non-uniform fashion. If you want to create and write
programs that run across a variety of systems, you need to be aware of these factors.

Panther Header Definitions

The header files smmach.h and smcommon.h contain information that library
functions need in order to deal with certain machine, operating system, and compiler
dependencies. These include:

! The presence of certain C header files and library functions.

! Byte ordering in integers and support for the unsigned character type.

! Path name and command line argument separator characters.

! Pointer alignment and structure padding.

The header files are thoroughly commented. Follow the directions in the file and use
the information that applies to your machine and operating system.
Application Development Guide 48-1

Terminal Dependencies
Terminal Dependencies

Some general differences among terminals are described in this section.
Recommendations and considerations are included to help ensure that your application
can be ported to terminals that differ from your development environment.

Display Area and Attributes

Panther can run on display terminals of any size. On character-based terminals without
a separately addressable status line, Panther uses the bottom line of the display—
typically, line 24—for a status line, and status messages overlay that line's contents. To
ensure enough room for status line and screen displays, design for an average screen
size of 23 lines by 80 columns, including the border.

Different terminals support different sets of attributes. Panther makes sensible
compromises based on the attributes available. However, do not design programs that
rely extensively on attribute manipulation to highlight data, which might not be
evident on terminals with an insufficient number of attributes. For example, colors do
not display on monochrome terminals. On the other hand, consider designating the
appropriate color combinations in the event that your application is ported to terminals
that support color. Also, use of graphics character sets is especially
terminal-dependent.

Attribute handling can also affect the spacing of fields and text. In particular, if you
design screens to run on terminals with onscreen attributes, leave space between fields,
highlighted text, and reverse video borders for the attributes. Some terminals with area
attributes also limit the number of attribute changes permitted per line or per screen.

Use color aliases to ensure cross-GUI color compatibility.
48-2 Writing Portable Applications

Language Dependencies
Key Translation and Labels

The key translation table mechanism supports the assignment of any key or key
sequence to a particular logical character. However, if you make excessive use of
function keys for program control, the number and labelling of function keys on
particular keyboards can cause constraint. For instance, the standard VT100 has only
four function keys. In this case, consider using menus rather than function keys to
implement choice among alternatives.

Use key labels in your key translation file instead of hard-coded key names. This helps
ensure portability to a variety of terminals. With the %K escape, the key labels can be
automatically inserted in field status text and other status line messages. To include the
key name in a field, use sm_keylabel to return a printable name of the logical key.

Language Dependencies

To a large extent, Panther depends on the operating system to handle discrepancies
between different languages and their character sets. The following sections discuss
some of the system-related factors that you might need to account for when preparing
an application for different languages.

You can also support different languages by modifying Panther' message file. (See
page 45-2, “Using Message Files.”) For strategies to translate screens into different
languages, refer to page 45-46, “Translating Screens in Application Programs.”

Keystroke Filter Translation

Panther evaluates user input only when a widget's keystroke_filter property is set
to any value other than PV_UNFILTERED: A keystroke filter restricts user input—for
example, to digits only, yes/no, or to conform with an edit mask or regular expression.
To validate data as it is entered, Panther uses standard C macros, such as isdigit and
Application Development Guide 48-3

Language Dependencies
isalpha. Panther relies on the operating system to supply these macros in a form
suitable for international use. Absent operating system support, care should be taken
when using these capabilities.

Panther uses its own code to process numeric entry because C does not provide an
macro to evaluate real numbers. If the widget has its decimal_symbol property set,
Panther uses it to evaluate numeric input.; otherwise, Panther uses the decimal symbol
that is set in the message file or derived from the operating system.

Widgets that are restricted to yes/no entry use the characters that are specified by the
message file's SM_YES and SM_YES entries. (See page 45-24, “Setting Yes/No
Values.”) Although some vendors supply information about these characters, the
ANSI standard leaves the issue unresolved. Therefore, Panther relies on the message
file to evaluate this data.

If the keystroke filter specifies a regular expression (keystroke_filter =
PV_REGULAR_EXP), Panther uses the ASCII collating sequence to validate ranges of
characters. Therefore, this expression matches only English lower-case letters:

[a-z]*

The European character ä, for example, is not matched by this expression.

Case Conversion

Widgets that have their convert_case property set to PV_UPPER or PV_LOWER depend
on the toupper and tolower functions. The present code assumes that the return from
toupper is appropriate for conversion to upper case. A lower case letter that has no
upper case equivalent—for example, the German “double s”—remains in lower case.

Range Checks

Numeric Data

Range checks for numeric data are handled by the C library routine at of (assuming that
the “strip” routine works properly).
48-4 Writing Portable Applications

Language Dependencies
Alphabetic Data

Collating sequences can vary among different languages. This is especially true for
dictionary or telephone book processing. For example, upper- and lower-case letters
are compared equally. Also, a telephone book evaluates St. and Saint as equal and
ignores hyphens. Some languages can pose problems even for less demanding
applications. For example, ligatures compare equally to pairs of letters. The placement
of vowels with diacritical marks varies widely even among countries using the same
language.

The ANSI standard specifies the routine strcoll to expand a word into a format that
strcmp can use for comparisons. These routines assume that the data supplied is a
word in the local language. They can yield unexpected results on non-language data.

Panther is not designed to process languages in a way that involves such fine
distinctions. It does sort names of fields and other objects, but only to speed look-up.
As long as the sort routine and the search routine use the same algorithm, things will
work.

Non-Language Data

In Panther, range checks can be applied to non-language data. For example a menu
selection might have a range of a to d. In certain languages an umlaut falls into that
range if a language-specific comparison is made. In cases like these, you might need
to create different screens for each language.

The C routines strcmp and memcmp are used to range check on non-language data.
These routines compare the internal values of the characters, without regard to their
actual meaning.
Application Development Guide 48-5

Language Dependencies
48-6 Writing Portable Applications

CHAPTER
49 Sending Mail in
Panther

In Panther 5 for Windows, you can send mail. Mail is available to all Windows Panther
components including COM/MTS and EJB components. Starting with Panther 5.40
you can also use CDO (Collaborative Data Objects) to send mail. This may work better
than MAPI (the Windows Messaging API) on Windows Server systems.

This feature uses a combination of properties and functions. There is a global mail
object PR_MAIL_SYSTEM that accepts the information needed to communicate with
MAPI or CDO. Using the PR_MAIL_SYSTEM object, you can also set default values for
some mail properties.

The sm_mail_new function creates a new mail object; other functions attach files to
the message, get the message text from a field or a text file, and send the mail message.

The sm_mail_message function can send simple mail messages.

Defining Global Mail Properties

The global mail object PR_MAIL_SYSTEM is created at startup. You can set values for
the following properties:

PR_MAIL_PROFILE

Optional MAPI profile name for the MAPILogon function.
Application Development Guide 49-1

Defining Global Mail Properties
PR_MAIL_SERVER

The mail server to use by CDO, for example "smtp.gmail.com".

PR_MAIL_PORT

The port that CDO will use when connecting to the mail server. The default
is to use port 25. Other commonly used ports are 465 and 587.

PR_MAIL_USERNAME

The UserName CDO should use when connecting to the mail server. If
omitted, anonymous SMTP will be used. PR_MAIL_PASSWORD, when set,
will be used as the password for UserName.

PR_MAIL_PASSWORD

Optional password for the MAPILogon function and for CDO when the
PR_MAIL_USERNAME property is set.

PR_MAIL_FLAGS

Optional flags that describe how to logon to the MAPI session or the CDO
option to use. One or more can be used. Values are:

PV_MAPI_NEW_SESSION

Always create a new session. By default, logging into an existing
session will be attempted and if that fails, then a new session will be
created.

PV_MAPI_LOGON_UI

Display a logon dialog asking for the logon information when
logging onto a MAPI session. If PR_MAIL_PROFILE is set, it will be
used as the default profile name.

PV_MAPI_PASSWORD_UI

Display a password dialog when logging onto a MAPI session. This
setting is ignored if PV_MAPI_LOGON_UI is also set.

PV_MAPI_USE_CDO

Use CDO when sending mail. The flags
PV_MAPI_NEW_SESSION; PV_MAPI_LOGON_UI and
PV_MAPI_PASSWORD_UI must not be set. PR_MAIL_SERVER
and PR_MAIL_FROM must be set before mail can be sent.

PV_MAPI_USE_CDO_SSH

CDO should use SSH when communicating with the mail server.

PR_MAIL_CONNECTED

Indicates whether there is an active MAPI connection to the messaging system.
It can be set to PV_YES to attempt such a connection and PV_NO to sever the
current connection. Panther attempts to connect to a MAPI session when a
49-2 Sending Mail in Panther

Defining Global Mail Properties
message is being sent or when the PR_MAIL_CONNECTED property is set to
PV_YES. It will stay connected until any of the PR_MAIL_PROFILE,
PR_MAIL_PASSWORD or PR_MAPI_FLAGS properties are set; until
PR_MAIL_CONNECTED is set to PV_NO; or until Panther exits. It will have value
PV_NO when the PV_USE_CDO flag is set.

You can set default values for all mail communication for the following properties:

PR_MAIL_FROM

Default value for the From: line of mail messages.

PR_MAIL_TO

Default value for the To: line of mail messages.

PR_MAIL_CC

Default value for the CC: line of mail messages.

PR_MAIL_BCC

Default value for the BCC: line of mail messages.

PR_MAIL_REPLYTO

Default value for the Reply-to: line of mail messages. Ignored when using
MAPI.

PR_MAIL_SUBJECT

Default value for the Subject: line of mail messages.

PR_MAIL_RECEIPT

Default value for whether to ask for a receipt. This seemingly does not work
for most Mail Transfer Agents (Outlook and Outlook Express in particular).

Defining Multiple Addresses

PR_MAIL_TO, PR_MAIL_CC and PR_MAIL_BCC can include several addresses. For
example:

@id(PR_MAIL_SYSTEM)->mail_to = \
'John Doe <j.doe@somewhere.com>, Jane Roe <j.roe@elsewhere.com>'

Such items will be split up internally, so

vars first_to = @id(PR_MAIL_SYSTEM)->mail_to[1]

would return the value 'John Doe <j.doe@somewhere.com>' after the above.
Application Development Guide 49-3

Creating and Sending Email
Creating and Sending Email

Creating a Mail Message Object

A new mail message object is created by calling sm_mail_new:

int sm_mail_new (char *name);

sm_mail_new returns the object ID of a new message. If name is supplied, it can be
used to set properties of the message. Before the message is sent, the following
properties can be set:

PR_MAIL_SUBJECT

Text of the Subject: line.

PR_MAIL_TEXT

Text of the message. There are also several functions that also can be used to
set the message text.

PR_MAIL_FROM

Information for the From: line of mail messages. Some Mail Transfer Agents
ignore this property.

PR_MAIL_TO

Information for the To: line of mail messages.

PR_MAIL_CC

Information for the CC: line of mail messages.

PR_MAIL_BCC

Information for the BCC: line of mail messages.

PR_MAIL_REPLYTO

Information for the Reply-to: line of mail messages. Ignored when using
MAPI.

PR_MAIL_RECEIPT

Whether to ask for a receipt when the mail is first read. This will be ignored
by some Mail Transfer Agents (Outlook and Outlook Express in particular).
49-4 Sending Mail in Panther

Creating and Sending Email
PR_NAME

Name of the message.

When any of PR_MAIL_FROM, PR_MAIL_TO, PR_MAIL_CC, PR_MAIL_BCC,
PR_MAIL_RECEIPT or PR_MAIL_SUBJECT are not set, the corresponding value from
the PR_MAIL_SYSTEM object will be used when it is set. Setting a property to '' is treated
as setting the value, i.e.,

@id(my_first_message)->mail_bcc = ''

PR_MAIL_SUBJECT, PR_MAIL_FROM, PR_MAIL_TEXT, PR_MAIL_REPLYTO,
PR_MAIL_RECEIPT and PR_NAME have only one occurrence; the other properties can
occur several times.

Sending Mail

sm_mail_send sends the message identified by obj_id or name and deletes it.
Returns 0 if successful or an error code from smuprapi.h.

int sm_mail_send (int obj_id);

int sm_n_mail_send (char *name);

Sending a Screen Image

sm_mail_widget can only be used in prodev and prorun. The screen image of a
widget is converted to a JPEG file that is attached to the mail message.
PR_APPLICATION will send the complete MDI frame. Returns 0 if successful or an
error code from smuprapi.h, most likely PR_E_OBJECT or PR_E_OBJID.

int sm_mail_widget (int obj_id, char *widget_name,
char *attachment_name, int quality);

int sm_n_mail_widget (char *name, char *widget_name,
char *attachment_name, int quality);

Sending Mail Using a Field

sm_mail_text takes the message text from the specified field. If the field is not word
wrapped, each occurrence will be placed on a new line.

int sm_mail_text (int obj_id, char *field_name);
Application Development Guide 49-5

Creating and Sending Email
int sm_n_mail_text (char *name, char *field_name);

Sending Mail from a Text File

sm_mail_file_text takes the message text from a text file.

int sm_mail_file_text (int obj_id, char *file_name);

int sm_n_mail_file_text (char *name, char *file_name);

Sending Simple Mail Messages

sm_mail_message mails a message containing text with to as the address.

int sm_mail_message (char *to, char *subject, char *text);

The default values of PR_MAIL_FROM, PR_MAIL_CC, PR_MAIL_BCC and
PR_MAIL_RECEIPT will be used of they are set.

Sending Attachments

The following functions attach a file to the message:

int sm_mail_attach (int obj_id, char *pathname, char *filename,
int delete);

int sm_n_mail_attach (char *name, char *pathname, char *filename,
int delete);

pathname is the path to the file. filename is an optional filename to use when the file
is saved by the message recipient. If the null string or null pointer is passed, the
filename will be taken from pathname. If delete is not zero, the file will be deleted
when the message is sent or deleted.

File attachments can only be created with sm_mail_attach or sm_n_mail_attach.
Once created, these properties can be accessed and set.

PR_MAIL_ATTACHMENT_PATHNAME

File path and name to be sent as the attachment.

PR_MAIL_ATTACHMENT_FILENAME

File name to be sent with the attachment. If not set, the file name from
PR_MAIL_ATTACHMENT_SOURCE will be used. Not used when sending mail
using CDO
49-6 Sending Mail in Panther

Creating and Sending Email
PR_MAIL_ATTACHMENT_DELETE

If set to PV_YES, the file that is to be attached will be deleted when the mail
object is destroyed.

PR_MAIL_ATTACHMENT_ENCODING

Identifies the encoding used for the attached file.

PR_MAIL_ATTACHMENT_TAG

Indicates the application that generated the attachment. Typical values are
"text/html"; "text/plain"; "image/jpeg" and "application/pdf".
Application Development Guide 49-7

Creating and Sending Email
49-8 Sending Mail in Panther

APPENDIX
A Development
Utilities

This appendix describes utilities that are useful in the development process:

! bin2c—converts binary files into C data structures.

! bin2hex—converts binary screens to hexadecimal ASCII file.

! binherit—updates screens and reports with inherited property values from
repositories.

! cmap2bin—converts configuration map files to binary.

! f2asc—converts screens, service components and reports between binary and
ASCII format.

! formlib—creates and maintains libraries and repositories.

! jif2asc—converts JIF between binary and ASCII format (JetNet and Oracle
Tuxedo).

! jpl2bin—converts JPL modules between binary and ASCII format.

! m2asc—converts menu files between binary and ASCII format.

! msg2bin—converts ASCII message files to binary format.

! msg2hdr—creates header files for user messages.

! s2asc—converts styles files between binary and ASCII format.
Application Development Guide A-1

bin2c
bin2c

Converts binary files into C data structures

bin2c [-fluv] asciiFile inputFile ...

-f

Overwrite an existing output file.

-l

Convert filenames sent to output to lower case.

-u

Make array of unsigned chars instead of chars.

-v

Generate list of files processed.

asciiFile

Name of the output file.

inputFile

Name of the input file.

Description bin2c converts Panther binaries—such as screens, menus, and JPL modules—into C
character arrays. When bin2c creates the ASCII C file, it generate an array for each of
the input files. An array in the file has one of these two forms:

char inputFile[] = { contents of file };
unsigned char inputFile[] = { contents of file };

where inputFile is the name of the source binary file with its path and extension
stripped off. If you use the -l option, inputFile is converted to lower case.

Files created with bin2c arrays can be compiled, linked with your application, and
added to the memory-resident form list with sm_formlist. For more information on
memory-resident lists, refer to this function and to page 42-8. The following files can
be made memory-resident:

! Screens
A-2 Development Utilities

bin2c
! JPL modules

! Menus

! Key translation files

! Setup variable files

! Video files

! Message files

You cannot convert a file back to its original binary form after using bin2c. Panther
provides other utilities that permit two-way conversions between binary and ASCII
formats. For screens, these utilities are bin2hex and f2asc.
Application Development Guide A-3

bin2hex
bin2hex

Converts binary screens to hexadecimal ASCII file

bin2hex -c[flv] asciiFile screen ...

bin2hex -x[flv] asciiFile

-c

Create an ASCII file from one or more screens.

-f

Overwrite an existing file.

-l

Convert filenames in output to lower case.

-v

Generate list of files processed.

-x

Extract all screens contained in an ASCII source; selective extraction is not
supported.

asciiFile

Specifies the name of the ASCII output file or ASCII input file if using the -x
option.

screen

Name of a screen to convert to hexadecimal.

Description bin2hex converts binary files to and from hexadecimal to let you port Panther screens
across different systems. By default, the screen editor creates binary screen files.

With the -c option, all named binary input files (screen) are converted to hexadecimal
ASCII and added to asciiFile. Path names are stripped off; extensions are left intact.
With the -x option, bin2hex extracts each screen in the specified asciiFile and puts
each file, in binary format, in the current directory.
A-4 Development Utilities

bin2hex
Selective extraction of screens from asciiFile is not supported. Only one argument
is supported with the -x option; additional arguments are ignored.
Application Development Guide A-5

binherit
binherit

Updates screens and reports with inherited property values from repositories

binherit [-r repository] [-v level] [-u] -l library [
libMember ...]

-l library

Name of the library from which to read for updating all members or
individual library members (libMember).

-r repository
Name of the repository from which to inherit. If not specified, binherit
checks the value of SMDICNAME. If the variable is not set, the utility seeks a
repository named data.dic in the current directory and along SMPATH. If
unable to find the repository, an error is issued.

-u

Update the screens/reports as well as listing the differences.

-v level
Specify level of detail to report: 0: No reporting, 1: List screens as they are
processed (the default setting), 2: List screens and widgets as they are
processed, 3: List screens, widgets, and properties as they are processed.

Description binherit opens the named library and searches all or specified library members for
widgets having the Inherit From property set to a repository entry in the open
repository, for example, titles!title_id. For those widgets, it compares the
inherited property values with the values in the repository. The properties that have
inheritance disabled are ignored.

If the screen's Inherit From property is set, it compares the values in the inherited
screen properties with the corresponding values in the repository.

If the -u option is specified, it updates the file with the repository value; however, this
option will be ignored for members of libraries that can only be opened read-only.
A-6 Development Utilities

binherit
Errors The following table describes possible errors, their causes, and the corrective action to
take:

No repository is open.

Cause Repository could not be opened either because: the name specified
after the -r option could not be found or opened, the -r option was
not used and the value in SMDICNAME was not set or found, or a
repository having the name data.dic could not be found.

Action Use the -r option, ensuring that the spelling and location of the
specified repository is correct.

Not a Panther repository.

Cause File specified after the -r option was incorrect.

Action Check the spelling and location of the specified repository.

Unable to inherit property propertyName for objectId

Cause The object listed in the Inherit From property cannot be found in the
current repository.

Action Make sure the current repository was specified. Also, check the
Inherit From property for the object.

Unable to open Panther library.

Cause Unable to find or open the specified library.

Action If the library is not in the current directory, include the path name.

Unable to open Panther repository.

Cause Unable to find the specified repository.

Action If the repository is not in the current directory, include the path name.

Verbosity (-v) must be 0, 1, 2, or 3

Cause An invalid value followed the -v option.

Action Supply one of the listed values in the command line.
Application Development Guide A-7

cmap2bin
cmap2bin

Converts configuration map files to binary

cmap2bin [-pv] [-e ext] mapFile ...

-e ext
Use the specified ext extension in the output file name instead of the default
bin extension.

-p

Place the output file in the same directory as the input file.

-v

Generate a list of files processed.

mapFile

Name of ASCII configuration map file; more than one input file can be
specified.

Description cmap2bin converts one or more ASCII configuration map files to a binary format for
use by Panther.

cmap2bin automatically appends the binary file name with the bin extension unless
you specify a different extension with the -e option. It places the binary output file in
the directory where you run the utility unless you use the -p option.

Errors The following table describes possible errors, their cause, and the corrective action to
take:

Attribute %s not allowed in a background scheme.

Cause Attribute specification cannot be applied to a particular background
scheme.

Action Remove the attribute specification and rerun cmap2bin.
A-8 Development Utilities

cmap2bin
Background attributes %s in extended color definitions.

Cause Background attributes apply only to Panther basic colors.

Action Remove background attribute specification and rerun cmap2bin.

Background color %s in a foreground scheme

Cause A background color specification (begins with B_) was named in a
foreground scheme.

Action Edit foreground scheme to use a foreground color specification and
rerun cmap2bin.

CONTAINER attribute not allowed in foreground scheme

Cause Container specification was indicated in a foreground scheme.

Action Edit foreground scheme that uses CONTAINER specification and rerun
cmap2bin.

CONTAINER is used for background only.

Cause Container specification was indicated.

Action Edit foreground scheme that uses CONTAINER specification and rerun
cmap2bin.

Error opening file '%s'.

Cause An error was encountered when attempting open the specified file.

Action Confirm that the file is readable and that the target directory can be
written.

Extra equal sign

Cause A line in the configuration map file includes an extra equal sign in the
specification.

Action Correct the line and rerun cmap2bin.
Application Development Guide A-9

cmap2bin
Illegal color scheme name %s

Cause Color specification cannot be resolved.

Action Check mapFile for illegal color name, edit the file and rerun
cmap2bin.

Missing equal sign

Cause A line in the configuration map file has no equal sign following the
tag.

Action Correct the input and rerun cmap2bin.

No other attribute allowed if CONTAINER is specified

Cause A display attribute was assigned to a background color scheme
identified as CONTAINER. A CONTAINER specification means the
object adopts the color and attributes of it container.

Action Either remove the attribute specification or change the CONTAINER
specification to a specific color.
A-10 Development Utilities

f2asc
f2asc

Converts screens, service components and reports between binary and ASCII format

f2asc -a[cfn] [-i headerFile] asciiFile binaryFile ...

f2asc -b[f] asciiFile

-a

Create ASCII listing of one or more screens, service components and/or
reports.

-b

Extract all binary files (screens, service components, reports) from an ASCII
listing. This option does not accept an output filename.

-c

Do not generate comment lines (-a option only).

-f

Overwrite an existing file.

-i headerFile
Include specified headerFile at beginning of ASCII output.

-n

Do not sort PI edits in the ASCII file (backwards compatibility option).

asciiFile

With -a option, name of the file to receive ASCII version of binaryFile.
With -b option, name ASCII file to convert back to binary format.

binaryFile

Filename of screen, service component or report to convert to ASCII.

Description f2asc lets you create an ASCII listing of the contents of a screen, service component
or report (-a option); and convert it back to binary format using the -b option. The
editor creates and uses binary files only.
Application Development Guide A-11

f2asc
With -a, you must specify the name of at least one screen/component/report (or use
wildcard characters). With -b, names are ignored. The -b option automatically
extracts all files from the specified asciiFile.f2asc is typically used for
documenting applications. It is also useful for editing tasks that are best performed by
text editors—for example, global search and replace operations.

ASCII Output The text file generated by f2asc describes the contents of the screen, service
component or report—the widgets that compose it and their respective properties. It is
broken into sections by object type, starting with the screen/component/report itself,
and identifies the object by name, if it has one. Subsequent statements in the section
describe each object through attribute keywords.

A:layoutAreaName
A layout area in a report.

B:widgetName

A non-field widget: box, line, grid, graph, report area or tab deck.

C:logicalKey

Identifies a logical key that is associated with a control string. The
subsequent ACTION statement contains the control string itself.

F:fieldName

The name of a field (including text, check box, push button, link,
dynamic label, and dynamic output widgets).

G:groupName
Selection group.

I:

Service component's interface definition.

L:staticLabelName

Static label.

P:splitterName

Information about a splitter and the panes it contains.

R:reportName

Name of the report. All report files begin with this entry.

S:screenName

Name of the screen. All screen files begin with this entry.

T:tableViewName

Table view widget.
A-12 Development Utilities

f2asc
Y:syncGroup

Synchronized scrolling group.

Comment lines begin with a pound (#) character. For example:

NUMBER=1

Two types of expressions are used to specify the properties:

! A boolean expression is a string that sets a property to be on or off; its absence
implicitly sets the same property to the opposite value. For example, CIRCULAR
specifies that an array's circular property is set to PV_YES; its absence means
that circular is set to PV_NO. The following statements contain two boolean
expressions: the first sets a widget's autotab property to PV_NO; the second
sets its input_protection property to PV_YES:

NO-AUTOTAB
PROTECTED FROM DATA-ENTRY

! An assignment expression explicitly assigns a value to a property. For example,
the following statements assign values for several widget Geometry properties:

LENGTH=15 ARRAY-SIZE=5 VERT-DISTANCE=1
 MAX-LENGTH=255 SHIFT-INCR=8

There are two types of keywords describing object properties, flags and values:

! A flag keyword is by itself and requires no other information—for example the
NUMERIC keyword represents the numeric field type property and needs no
value. A flag keyword can appear on the same line as other keywords.

! A value keyword must be accompanied by more information—it is followed by
and equals sign (=) and a value represented by another keyword or a number or
string. For example GROUP=group1 shows that a field belongs to group1 of a
screen. Value keywords that begin with PI describe graphical properties of an
object.
Application Development Guide A-13

formlib
formlib

Creates and maintains libraries and repositories

formlib -c [-fluv] library [filename ...]

formlib -r [-luv] library filename [filename ...]

formlib -x [-fluv] library [memberName...]

formlib -{d|t} [-luv] library [memberName ...]

formlib -{e|i|m|o|s|w|z} [-v] library

formlib -g cfgStr [-v] library

-c

Create a new library/repository that optionally contains the files named
(filename ...). If no files are specified, an empty library is created.

-d

Delete the named members from the library/repository.

-e

Configure the library/repository for external file locking.

-f

Overwrite a library member or repository entry.

-g cfgStr

Define a configuration management string; begins with the name of your
configuration management system—either sccs, pvcs or scpi (in lower
case). For information about source control management options, refer to
page 10-5.

-i

Configure the library/repository for internal (operating system) file locking.

-l

Convert filenames to lowercase before processing.
A-14 Development Utilities

formlib
-m

Compact the library by removing unused space. The original library is kept
as libname.old. The compacted library will have read-write permissions
and be configured to use internal file locking.-l

Convert filenames to lowercase before processing.

-o

Configure the library/repository to be read-only. This operation is not
reversible unless the library is compacted using formlib’s -m option.

-r

Replace/add the named files to the library/repository.

-s

Synchronize the specified library with the source code management
directory.

-t

Generate a list of the library/repository contents.

-u

Convert filenames to uppercase before processing.

-v

Display information in verbose mode. Generates a list of files processed.
When used in conjunction with the -t option, produces a detailed listing of
the library contents.

-w

Upgrade a JAM library/repository to Panther format.

-z

Attempt to recover deleted library members. Since the library code reuses the
areas allocated to deleted library members before allocating new space, this
operation should be performed as soon as possible after a member is deleted
in error.

filename

Name of file to be included in library or repository.

library

Name of library/repository.

memberName

Name of library member or repository entries.
Application Development Guide A-15

formlib
Description formlib lets you create and maintain libraries/repositories in which you store
application components, such as screens, menus, and JPL files. You can store ASCII
files in a Panther library; however, only binary files are accessible at runtime or
through the screen editor.

formlib can also be used to maintain and get information about libraries and
repositories; for example, you can put a library/repository under source management
control, or get a list of its contents.

File specifications can include any wildcard or pattern-matching symbols that are valid
for your operating system. For example, this command puts all files with the .rpt
extension into the library screens.lib:

formlib -c screens.lib *.rpt

Library member specifications must be explicit; no wildcards can be used.

Case Sensitivity The -l and -u options are useful for operating systems like UNIX that are
case-sensitive. For example, the following UNIX command creates the library
new.lib and adds all .scr files in the current directory to it; all files receive lowercase
names—for example, MAIN.SCR becomes main.scr.

formlib -cl new.lib *.[Ss][Cc][Rr]

File Locking Access to libraries requires both read and write locking. Locking of libraries is
unrelated to source control management, as the latter affects access to individual
library members (and their archived versions) during development, whereas the former
controls access on an as-needed basis to the library file as a unit during development
and at runtime.

Libraries require write locks to provide exclusive access during the brief moments
when a library is being written to. Read locks allow others to read from the library, but
prevent the library from being written to while it is being read. Read-only libraries that
have been marked so (via the -o option) do not need any locking at all since they
cannot be written to under any circumstances.

You can configure a library to use either of two file-locking schemes. By default, the
internal (native operating system) file locking system is used. Use the -e option to use
an external locking scheme. External locking can be used if internal locking is not
available in your environment. It creates an empty exclusive-access file called
libname.jlk to implement write locking, and keeps a count of the current readers in
a shared read lock file called libname.rlk. The .jlk and .rlk files are created in the
same directory as the library. They are checked or modified when access to the library
A-16 Development Utilities

formlib
is attempted. The write lock file is deleted when access is completed; the read lock file
is not. Also, the library is marked so that it knows to use external locking. Use the -i
option to clear the external locking mark in the library, so that it will henceforth use
internal locking.

Though external locking is portable, it has two drawbacks that make internal locking
the preferable choice where available. First, it tends to be slower than internal locking.
Secondly, if processes die abruptly—due to signals, operator intervention, and so on—
write lock files can be left hanging around, or read locks can have counts that never go
to zero. This impedes further access until a recovery procedure (stop all processes,
delete the lock files) is performed. With internal locking, the operating system
automatically performs clean up when processes die unexpectedly.

By default, libraries are created to use internal file locking. However, if a library is
created on a platform where internal locking is not available, locking defaults to
external. On such platforms, attempts to set internal locking are ignored. External
locking might be necessary in cross-platform network environments where the
network locking facilities are inadequate. Refer to your operating system's installation
notes for further information about which file locking scheme is used on your platform
and/or network environment.

Marking a Library

Read-only

Use of the -o option makes a library read-only. This is not a reversible operation unless
the library has been compacted using the -m option.

When the read-only operation is not reversible, in order to write to a read-only library,
you have to create a new library, extract the members from the read-only library, and
move them into the new library. Read-only libraries generally provide quicker access.

Synchronize

Library with

Source Code

Management

Library copies of screens can become unsynchronized with source management
directories. This can happen if screens are extracted and edited directly with the source
code management tool as opposed to using the screen editor interface to check screens
in and out.

Run formlib with the -s option to ensure that your libraries are synchronized with the
source management directory. The specified library is moved to a new library with the
same name, but with a .jbl (backup library) extension, and a new library is created,
having the name of the original library. Any screens that were not under source code
management are copied from the backup library to the new library. Screens that were
under source management, but were checked out when formlib was executed are also
copied from the backup library to the new library.
Application Development Guide A-17

formlib
All screens that are under source code management and checked-in when formlib
was executed are copied from the source code management directory to the new
library. In this way, you can be assured that your libraries contain the latest revisions
before distributing your libraries.
A-18 Development Utilities

jif2asc
jif2asc

Converts JIF between binary and ASCII format for JetNet and Oracle Tuxedo applica-
tions

jif2asc -a [-fp] ascJIF binJIF

jif2asc -b [-fp] ascJIF binJIF

-a

Create ASCII JIF named ascJIF from specified binary binJIF.

-b

Create binary JIF named binJIF from specified ascJIF.

-f

Overwrite an existing file.

-p

Write the output file to the directory containing the input file.

ascJIF

Name of ASCII JIF to be converted or created.

binJIF

Name of binary JIF to be converted.

Description JetNet and Oracle Tuxedo applications require a binary JIF for execution. In the JIF
editor, the JIF is saved as binary. The jif2asc command-line utility lets you convert
a JIF between ASCII and binary formats.

Both input and output files must be named, there is no default naming convention. The
output file is created in the current directory, unless the -p option is used to indicate
that the output file is to be written in the same directory as the input file.

An attempt to overwrite an existing file without using the -f option produces an error
message and no file is written.
Application Development Guide A-19

jpl2bin
jpl2bin

Converts JPL modules between binary and ASCII formats

jpl2bin -a [-fpv] [-eext] binary ...

jpl2bin -b [-rfpv] [-eext] textFile ...

jpl2bin -s binary ...

-a

Convert compiled JPL to source (default extension is *.jpl).

-b

Compile JPL from source to binary format (default extension is *.bin).

-eext

Replace the default bin extension with the specified extension ext on the
binary output filename. There should be no space between the -e switch and
the extension name. To omit an extension, supply a value of - (dash) for ext;
i.e. -e-.

-f

Permit the output file to overwrite an existing file.

-p

Output the binary file to the same directory as input file.

-r

Exclude source from compiled binary. Useful for removing source from a
production distribution. However, without the source, the module cannot be
edited within the screen editor.

-s

Strip source from the compiled binary (overwrites input).

-v

List the name of each file as it is processed.

binary

Name of the compiled JPL file.

textFile

Name of the source text file.
A-20 Development Utilities

jpl2bin
Description jpl2bin lets you compile JPL modules before storing them in a library or before
making them memory-resident. Under UNIX, run jpl2bin from the command line;
under Windows, choose the jpl2bin icon or run it from a command prompt; makefile
or batch file.

Note: Panther always performs colon preprocessing at runtime; therefore, a module
is fully compiled only when it executes.

jpl2bin saves the module to a file of the same name with a *.bin extension, unless
you specify a different extension.
Application Development Guide A-21

m2asc
m2asc

Converts menu files between binary and ASCII formats

m2asc -a [-fv] [-i includeFile] asciiFile menuFile [menuFile ...]

m2asc -b [-fv] asciiFile [asciiFile ...]

-a

Convert specified binary menu files to ASCII.

-b

Convert the specified ASCII files to binary.

-f

Overwrite an existing file.

-i includeFile

Include specified includeFile at the beginning of ASCII output.

-v

Generate a list of files as they are processed.

asciiFile

Name of ASCII file as output with -a or as input file input with -b.

menuFile

Name of binary menu file (as extracted with formlib utility).

Description The m2asc utility lets you convert binary menu files to ASCII and vice versa. You
must extract the menu file from its library with the formlib utility before using m2asc.

ASCII menu definitions define a menu as a hierarchy, where the top-level menu and
its items are defined first along with global menu properties, followed by submenus
and their items. Each component of a menu definition is identified by a keyword (refer
to Table A-1 and, optionally, a unique name.
A-22 Development Utilities

m2asc
Table A-1 ASCII menu keywords

Menu keyword Description

ACTION Invokes an action through a control string.

EDCLEAR Replaces the selected text with spaces.

EDCOPY Copies selected text to the clipboard.

EDCUT Cuts selected text to the clipboard.

EDDEL Deletes the selected text.

EDPASTE Pastes the clipboard contents.

EDSELECT Selects the current widget's contents.

FILE Source file of the menu script. You can write multiple menu
scripts to the same ASCII text file; each script begins with a
FILE:script-name identifier. When m2asc converts the ASCII
file to binary format, each script is saved to its own file.

MENU Starts a menu or submenu definition. All keywords that follow
MENU identify the menu's items.

SEP Draws a separator between the previous and next menu items.

SUBMENU Invokes another menu. If the SUBMENU item is on the menu bar,
the submenu displays as a pulldown; otherwise, the submenu
displays to its right.

TOGGLE Invokes an action through a control string and toggles the
indicator on or off.

WINLIST Identifies the item as a menu that lists all open windows.

WINOP Identifies the item as the windows menu of the current plat
form—for example, under Windows, the Windows menu with
Arrange Icons, Tile, and Cascade. Applications running in
character-mode ignore this item.
Application Development Guide A-23

m2asc
Each menu and menu item definition has properties; these properties are specified
immediately below the component's identifier. For example, the following statements
define a submenu item myoption: its label is Options with a keyboard mnemonic of
O; it invokes the menu myoptionsub; and it is initially available for selection
(ACTIVE=YES):

SUBMENU:myoption
 LABEL=&Options
 SUBMENU=myoptionsub
 ACTIVE=YES

Refer to Table 15-1 on page 15-15 for a list of menu-specific properties.

Example The following menu script is the ASCII output of a truncated version of the menu bar
used by Panther's screen editor. The example includes two of the main menu options
and their associated submenus: File and Help.

FILE:semain

MENU:sm_se_main_menu
 ACTIVE=YES
 INDICATOR=NO
 SHOW-ACCEL=YES
 ACCEL-ACTIVE=YES

SUBMENU:sm_se_file
 LABEL=&File
 SUBMENU=sm_se_file_menu
 EXT-HELP-TAG=basicFilemenu
 STAT-TEXT=File Operations

SUBMENU:sm_se_help
 LABEL=&Help
 SUBMENU=sm_se_help_menu
 IS-HELP=YES
 STAT-TEXT=Get Help!

MENU:sm_se_file_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW-ACCEL=YES
 SEP-STYLE=SINGLE

SUBMENU:sm_se_new
 LABEL=&New
 SUBMENU=sm_se_new_menu
 IS-HELP=NO
A-24 Development Utilities

m2asc
 EXT-HELP-TAG=FileNew
 STAT-TEXT=Create new screen

SUBMENU:sm_se_open
 LABEL=&Open
 SUBMENU=sm_se_open_menu
 IS-HELP=NO
 EXT-HELP-TAG=FileOpen
 STAT-TEXT=Open existing screen

ACTION:sm_se_save
 LABEL=&Save
 CONTROL=^jm_keys PF5
 ACTIVE=YES
 IS-HELP=NO
 EXT-HELP-TAG=FileSave
 ACCEL=PF5
 ACCEL-ACTIVE=NO
 SHOW-ACCEL=YES
 DISPLAY-ON=BOTH
 STAT-TEXT=Saves the current screen
 ORDER=18
 ACTIVE-PIXMAP=save-act
 INACTIVE-PIXMAP=save-dis
 TOOL-TIP=Save

ACTION:sm_se_set_test
 LABEL=&Test Mode
 CONTROL=^jm_keys PF2
 IS-HELP=NO
 EXT-HELP-TAG=FileTestMode
 ACCEL=PF2
 ACCEL-ACTIVE=NO
 SHOW-ACCEL=YES
 DISPLAY-ON=BOTH
 STAT-TEXT=Switch to Test Mode
 ORDER=19
 ACTIVE-PIXMAP=test-act
 TOOL-TIP=Test Mode

SEP:sm_se_file_sep2
 SEP-STYLE=SINGLE

ACTION:sm_se_exit
 LABEL=E&xit
 CONTROL=^jm_keys CLAPP
 ACCEL=CLAPP
 IS-HELP=NO
 EXT-HELP-TAG=FileExit
 ACCEL-ACTIVE=NO
Application Development Guide A-25

m2asc
 SHOW-ACCEL=YES
 STAT-TEXT=Exit the editor

MENU:sm_se_new_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW-ACCEL=YES
 SEP-STYLE=SINGLE

ACTION:sm_se_new_screen
 LABEL=&Screen
 CONTROL=^filemenu new screen
 IS-HELP=NO
 EXT-HELP-TAG=FileNew
 SHOW-ACCEL=YES
 DISPLAY-ON=BOTH
 STAT-TEXT=Creates new untitled screen
 ORDER=11
 ACTIVE-PIXMAP=new-act
 INACTIVE-PIXMAP=new-dis
 TOOL-TIP=New Screen

ACTION:sm_se_new_jpl
 LABEL=&JPL
 CONTROL=^filemenu new jpl
 IS-HELP=NO
 EXT-HELP-TAG=FileNew
 SHOW-ACCEL=YES
 STAT-TEXT=Creates new jpl

ACTION:sm_se_new_dd_entry
 LABEL=Repository &Entry...
 CONTROL=^filemenu new ddentry
 IS-HELP=NO
 EXT-HELP-TAG=FileNew
 SHOW-ACCEL=YES
 STAT-TEXT=Create new repository entry

ACTION:sm_se_new_lib
 LABEL=&Library...
 CONTROL=^filemenu new lib
 IS-HELP=NO
 EXT-HELP-TAG=FileNew
 SHOW-ACCEL=YES
 STAT-TEXT=Create a new library

MENU:sm_se_open_menu
 TEAR=NO
A-26 Development Utilities

m2asc
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW-ACCEL=YES
 SEP-STYLE=SINGLE

ACTION:sm_se_op_lib
 LABEL=&Library...
 CONTROL=^filemenu open lib
 IS-HELP=NO
 EXT-HELP-TAG=FileOpen
 SHOW-ACCEL=YES
 STAT-TEXT=Open library

ACTION:sm_se_op_db
 LABEL=D&atabase...
 CONTROL=^dm_handle_connect 1
 ACTIVE=NO
 IS-HELP=NO
 EXT-HELP-TAG=FileOpen
 SHOW-ACCEL=YES
 STAT-TEXT=Open database

MENU:sm_se_help_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW-ACCEL=YES
 SEP-STYLE=SINGLE

ACTION:sm_se_hl_topic
 LABEL=Current &Topic ...
 CONTROL=^jm_keys HELP
 IS-HELP=NO
 STAT-TEXT=Shows help on what you're doing
 ORDER=191
 DISPLAY-ON=BOTH
 ACTIVE-PIXMAP=help-act
 INACTIVE-PIXMAP=help-dis
 TOOL-TIP=Help

SEP:sm_se_hl_sep1
 SEP-STYLE=SINGLE
 ORDER=190
 DISPLAY-ON=BOTH

ACTION:sm_se_hl_about
 LABEL=&About Panther ...
 CONTROL=^sm_message_box(\
Application Development Guide A-27

m2asc
 "Panther Version 5.5%NCopyright 1994-2016%NProlifics Inc.", \
 "About Panther",0,"")
 STAT-TEXT=Tells about this version of Panther
A-28 Development Utilities

msg2bin
msg2bin

Converts ASCII message files to binary format

msg2bin [-pv] [-e ext] msgFile...

msg2bin [-pv] [-o file] msgFile...

-e ext
Replace default bin extension on the output file with the given extension
(ext). If the -o option is used, -e is ignored.

-o file
Output is placed in a single specified file. Use this option to concatenate your
user messages to Panther-messages in a single binary file. This option will
overwrite an existing binary message file of the same name.

-p

Place each binary output file in the same directory as the corresponding input
file.

-v

List the name of each input message file as it is processed.

msgFile

Name of ASCII file containing named messages. More than one input file can
be specified.

Description msg2bin converts ASCII message files to a binary format for use by Panther library
functions. The output of msg2bin is a binary file; the utility uses the TAGs to
distinguish between system and user messages. It numbers user-defined messages
consecutively starting with the class number times 0x1000 (see page 45-7 for more
about defining user message classes). If no classes are defined, user-defined messages
are automatically numbered consecutively starting from zero; the definitions of system
messages are taken from smerror.h. Be sure to maintain the order of messages and
the assignment of their identifiers. Use these identifiers in the application programs to
select the desired messages at runtime. Then recompile and link any non-JPL source
that includes any files that contain newly defined messages.
Application Development Guide A-29

msg2bin
Errors The following table describes possible errors, their cause, and the corrective action to
take:

At least one file name is required.

Cause No message file was specified.

Action Specify the name of the message file.

Error in %s line %d: bad tag %s
Warning in %s line %d: bad tag %s

Cause The tag is missing or does not consist entirely of letters, digits and/or
underscores. An output file will be created and RET_SUCCESS will be
returned if warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2bin. Refer to smerror.h for a
list of tags.

Error in %s line %d: duplicate message tag %s
Warning in %s line %d: duplicatemessage tag %s

Cause An earlier line also contained the same system message tag. The
current line is skipped. An output file will be created and
RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action Fix the offending line and rerun msg2bin.

Error in %s line %d: duplicate user section class %s
Warning in %s line %d:duplicate user section class %s

Cause The user section or two letter prefix on a class indicator line is already
in use. Class zero is implicitly used if a user message is encountered
before any class indicator lines. An output file will be created and
RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action Fix the offending line and rerun msg2bin.
A-30 Development Utilities

msg2bin
Error in %s line %d: invalid user message class indicator line %s
Warning in %sline %d: invalid user message class indicator line %s

Cause A user class indicator line (which is used to start a new message User
Section) is defective. The programs assume that any tag starting with
a double quote is one of these. The tag must be a double quote
followed by two character alphanumeric code and a double quote.
The class indicator must be a digit between 0 and 7. An output file
will be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action Fix the offending line and rerun msg2bin..

Error in %s line %d: message tag exceeds 80 characters %s
Warning in %s line%d: message tag exceeds 80 characters %s

Cause Message name too long.

Action Shorten the message name and rerun msg2bin.

Error in %s line %d: missing final quote &s
Warning in %s line %d: missing final quote &s

Cause The message content starts with a quote character (" , ', ̀) but does
not contain a matching terminal quote character. An output file will
be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action Fix the offending message and rerun msg2bin.

Error in %s line %d: text after final quote %s
Warning in %s line %d: text after final quote %s

Cause The message content starts with a quote character (" , ', `) but there
are characters after the matching terminal quote character. Perhaps a
backslash is missing. An output file will be created and RET_SUCCESS
will be returned if warnings are encountered but no errors.

Action Fix the offending line and rerun msg2bin.
Application Development Guide A-31

msg2bin
Error processing file %s

Cause An error was encountered reading or writing the file.

Action Confirm that the file is available and that the target directory can be
written.

File '%s' not found.

Cause An input file was missing or unreadable.

Action Check the spelling, presence, and permissions of the file in question.

Insufficient memory available.

Cause The utility could not allocate enough memory for its needs.

Action None.

Invalid character(s) in -x option.

Cause The -x option (characters to prefix to the tag) starts with a digit or
contain a character that is not an alphanumeric or an underscore.

Action Specify a valid prefix and rerun msg2bin.

Line too long: %s

Cause The message has exceeded 1024 characters.

Action Split the message into two separate messages or edit the message
length.

Message tag exceeds 80 characters:%s

Cause Message name too long.

Action Shorten the message name and rerun msg2bin.

Missing '=' in line: %s

Cause The line in the message had no equal sign following the tag.

Action Correct the input and rerun msg2bin.
A-32 Development Utilities

msg2bin
Warning in %s line %d: message tag exceeds 31 characters %s

Cause The tag is longer than 31 characters but is shorter than 80.

Action None.

Warning in %s line %d: prefix does not match user section class %s

Cause The first two characters of a user message do not match the two
characters specified in the most recent user message class indicator
line. An output file will be created and RET_SUCCESS will be returned
if warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2bin.

Warning: no messages in user section \"%.2s\"

Cause The input file had a user message class indicator line that did not have
any user messages after it. That section will not be included in the
output file.

Action Remove the offending class indicator and rerun :msg2bin.
Application Development Guide A-33

msg2hdr
msg2hdr

Creates header files for user messages

msg2hdr [-dfjpv] [-n num] [-s pfix] [-x pfix] [-o file] [-e ext]
msgFile...

-d

Decimal base in the output header file. Default is base 16 (hexadecimal).

-e ext
Replace default extension (h or jpl) on the output file with the specified
extension ext.

-f

Output file may overwrite an existing file.

-j

Create a JPL global variable file from msgFile.

-n num

Start numbering messages with the specified num for the first #define or
global. If no number is entered, 0 (zero) is used.

-o file

Direct output to the named file.

-p

Place output file in the same directory as the corresponding input file.

-s pfix

Select only message names beginning with the specified prefix pfix.

-v

Generate list of the files processed.

-x pfix

Prepend the specified prefix pfix to the tag portion of the message.

msgFile

Name of ASCII file containing your application's messages.
A-34 Development Utilities

msg2hdr
Description msg2hdr converts an ASCII message file that contains your application's messages to
a C header file. The output of msg2hdr is a .h file with #define statements for each
user message tag. The messages are numbered sequentially starting with 0x0 to 0xF.
The message portion is copied to the header file as a comment.

For example, a user message file with multiple sections might look like this:

"U0" = 0
U0_BADVAL = Bad value
U0_WRONGDATE = Date must be within 30 days of current date
"U1" = 1
WRONGRATE = This is not the applicable rate

This yields the following output:

#define U0_BADVAL 0x0 /* Bad value */
#define UO_WRONGDATE 0x1 /* Date must be within 30 \
> days of current date */
#define WRONGRATE 0x1000 /* This is not the \
> applicable rate */

If you use the -j option, msg2hdr yields this output:

global U0_BADVAL(1) = 0 /* Bad value */
global U0_WRONGDATE(1) = 1 /* Date must be within 30 \
> days of current date */
global WRONGRATE(4) = 4096 /* This is not the \
> applicable rate */

Errors The following table describes possible errors, their causes, and the corrective action to
take:

At least one file name is required.

Cause No message file was specified.

Action Specify the name of the message file.
Application Development Guide A-35

msg2hdr
Error in %s line %d: bad tag %s
Warning in %s line %d: bad tag %s

Cause The tag is missing or does not consist entirely of letters, digits and/or
underscores. It can also indicate the first character of the tag is a digit.
An output file will be created and RET_SUCCESS will be returned if
warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2hdr. Refer to smerror.h for a
list of tags.

Error in %s line %d: duplicate message tag %s
Warning in %s line %d: duplicatemessage tag %s

Cause An earlier line also contained the same system message tag. An
output file will be created and RET_SUCCESS will be returned if
warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2hdr.

Error in %s line %d: duplicate user section class %s
Warning in %s line %d:duplicate user section class %s

Cause The user section or two letter prefix on a class indicator line is already
in use. An output file will be created and RET_SUCCESS will be
returned if warnings are encountered but no errors.

Action Fix the offending line and rerun msg2hdr.

Error in %s line %d: invalid user message class indicator line %s
Warning in %sline %d: invalid user message class indicator line %s

Cause A user class indicator line (which is used to start a new message User
Section) is defective. The programs assume that any tag starting with
a double quote is one of these. The tag must be a double quote
followed by two character alphanumeric code and a double quote.
The class indicator must be a digit between 0 and 7. An output file
will be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action Fix the offending line and rerun msg2hdr.
A-36 Development Utilities

msg2hdr
Error in %s line %d: message tag exceeds 80 characters %s
Warning in %s line%d: message tag exceeds 80 characters %s

Cause The message name (tag) is longer than 80 characters.

Action Shorten the message name and rerun msg2hdr.

Error in %s line %d: message tag exceeds 31 characters %s
Warning in %s line %d: message tag exceeds 31 characters %s

Cause The tag is longer than 31 characters but is shorter than 80. This causes
an error if the -j (JPL) option is selected, otherwise it causes a
warning. An output file will be created and RET_SUCCESS will be
returned if warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2hdr.

Error in %s line %d: prefix does not match user section class
Warning in %s line %d: prefix does not match user section class %s

Cause The first two characters of a user message do not match the two
characters specified in the most recent user message class indicator
line. An output file will be created and RET_SUCCESS will be returned
if warnings are encountered but no errors.

Action Fix the offending tag and rerun msg2hdr.

Error processing file %s

Cause An error was encountered reading or writing the file.

Action Confirm that the file is available and that the target directory can be
written.

Exactly one message file name is required.

Cause More than one input message file was specified.

Action Run msg2hdr separately for each message file. Consider using the -n
option on the subsequent messages to number the messages
consecutively.
Application Development Guide A-37

msg2hdr
File '%s' already exists; use '-f' to overwrite.

Cause An output file of the same name already exists.

Action Use the -o option to specify a different output name or use the -f
option to overwrite the existing header file.

If no number is entered, 0 will be used.

Cause You did not provide a number with the -n option and it defaulted to
zero.

Action Rerun msg2hdr providing a number.

Insufficient memory available.

Cause The utility could not allocate enough memory for its needs.

Action None.

Invalid all-numeric message name '%s'

Cause At least one non-numeric character must be in a message name.

Action Rename the offending message and rerun msg2hdr. (If you have
already converted the message file to binary, you will need to rerun
msg2bin.)

Invalid character(s) in -x option.

Cause The -x option (characters to prefix to the tag) starts with a digit or
contain a character that is not an alphanumeric or an underscore.

Action Specify a valid prefix and rerun msg2hdr.

Missing '=' in line: %s

Cause The line in the message had no equal sign following the tag.

Action Correct the input and rerun msg2hdr. (If you have already converted
the message file to binary, you will need to rerun msg2bin.)
A-38 Development Utilities

msg2hdr
Missing message name for '%s'

Cause The message had no characters before the equal sign.

Action Provide a name for the offending message and rerun msg2hdr. (If you
have already converted the message file to binary, you will need to
rerun msg2bin.)

Warning: no messages in user section \"%.2s\"

Cause The input file had a user message class indicator line that did not have
any user messages after it.

Action Remove the offending class indicator and rerun msg2hdr.
Application Development Guide A-39

s2asc
s2asc

Converts styles files between binary and ASCII formats

s2asc -a [-f] asciiFile styles.sty

s2asc -b [-f] asciiFile

-a

Create ASCII listing of styles.sty. The styles file must be named
styles.sty.

-b

Create a binary style file from an ASCII listing. The name of the binary file
corresponds to the name specified in the s:name option in the ASCII file. To
have this binary file accessed by your application, change the name of the file
to styles.sty.

-f

Overwrite an existing styles.sty file.

asciiFile

With the -a option, name of the file in which to place the ASCII styles
settings. With the -b option, name of the file containing ASCII text for
conversion to binary format.

Description The s2asc utility must be executed from the command line. With the utility, you can
convert your styles.sty file between binary and ASCII format. After converting an
ASCII file to binary with s2asc, use formlib to put it in the appropriate library. You
might do this in order to place the file under source control management or to
document or review the contents of the file.

The text files generated by s2asc contain a list of the property settings for each style,
followed by a list of the styles assigned to each class.
A-40 Development Utilities

APPENDIX
B VideoBiz

VideoBiz is a sample application that gives you a look at a working two-tier
application. Although all Panther features are not implemented in this application, it is
designed to illustrate some of the functionality that is possible. In addition, VideoBiz
can help point out how some things can be done—and can assist you in developing
your two-tier application.

VideoBiz is a database application that was built to take advantage of Panther’s
transaction manager capabilities. The application required very little coding—only a
minimal amount of SQL and JPL code. The application screens were constructed via
the screen wizard or by using widgets imported from the underlying database and
inherited from a repository. Properties of these widgets, along with those of table views
and links, provide the information that the transaction manager needs to drive the
automated SQL generation.

This chapter describes:

! Starting VideoBiz—The start up information you need to actually view and use
the VideoBiz application.

! What You Get with VideoBiz—A brief description of the components that make
up this application, such as the menu bar, the JPL code, and the screens that
comprise the application.

! The User’s Guide to VideoBiz—The functional specification to the user
interface which provides a “how-to-use” approach from a user’s perspective as
well as some insight into what’s happening in the background. This section
walks you through each screen and briefly describes how the screen works and
what actions the user can take.

Check out the “Behind the Scenes” section for each screen. These sections
outline what features are implemented, where you can find the JPL code, and
what mechanisms are used to make a behavior or event occur.
Application Development Guide B-1

Starting VideoBiz
Starting VideoBiz

To look at VideoBiz follow the directions below for your specific platform and
environment. Try the application (refer to page B-8 for more information on using the
application). In the process of looking at VideoBiz, you can also invoke the screen
editor to look behind the scenes to find out just how it works.

While VideoBiz is running, you are in Application mode. To see how the current
application screen looks behind the scenes, you must be in Edit mode. To do this,
simply access the screen editor by choosing panther→Screen Editor from the
application menu bar. The current screen will open in the screen editor workspace. In
this way, you can see all the property specifications for the screen and its widgets, look
at the JPL code that is attached to the specific screen, and see all the widgets on the
screen, including those that are hidden at runtime, like table view links. To return to
Application mode, choose File→Exit from the screen editor menu bar.

How to Start VideoBiz

For Windows:

To start VideoBiz, choose the VideoBiz icon in the Panther program group. The
VideoBiz Welcome screen opens.

For Motif and Character- Mode:

1. Know in what directory Panther is installed.

2. From your home or working directory (make sure the directory has write-per
missions), run the following script:

$SMBASE/samples/videobiz/vbizunix

The script copies the required files to your current directory. They include the
videobiz database and the styles file styles.sty.
B-2 VideoBiz

VideoBiz Components
3. When prompted, enter c or m to indicate whether you are using VideoBiz on a
color or monochrome monitor.

The VideoBiz Welcome screen opens.

Figure B-1 VideoBiz Welcome screen includes a menu bar, a graphical toolbar,
two logon options, and a display of the most frequently rented video.

VideoBiz Components

This section describes the contents of the $SMBASE/samples/videobiz directory and
how VideoBiz uses these elements. These include:

! The videobiz database

! Repository (supplied for reference; this is not runtime requirement)

! Application screens

! Menu bar/toolbar
Application Development Guide B-3

VideoBiz Components
! JPL code

! Styles sheet

! Sample reports

! Pixmap files

The Database

VideoBiz runs against a JDB relational database, videobiz, that has been normalized.
The primary and foreign key definitions were made in the SQL table creation
statements. The VideoBiz application depends on these definitions to drive the
transaction manager's access to the SQL generator.

The Repository

The repository data.dic that was created and used to build VideoBiz is provided so
that you can see what kinds of things are controlled via this mechanism. Panther's
visual object repository and its inheritance mechanism is a development tool used to
implement and maintain application consistency, to store reusable application
components, and to facilitate application maintenance as well as provide the screen
wizard with the information it needs to quickly create screens. This repository contains
three general types of screens: those created as the result of the database tables import
process, those created and used by the screen wizard, and one that was created simply
as a screen to hold frequently used objects, like push buttons.

Imported Database Tables

By importing database tables as repository screens, the widgets that were derived from
the database were used to build the VideoBiz application screens. Attributes of the
source database table are embedded in the corresponding widget's Database properties.
These properties are inherited by child copies of these widgets, and provide the SQL
generator with the information needed to dynamically generate SQL statements.
Changes in the underlying database tables can be re-imported into the repository and
then inherited by the child screens and widgets.
B-4 VideoBiz

VideoBiz Components
Many properties imported from the database do not exactly correspond to your
application's business requirements. For example, database tables imported from JDB
automatically assign a Length property of 11 to widgets imported from database
columns of type long. In VideoBiz, an ID number is never longer than 5 characters.
This was resolved, for example, by changing the Length property of the cust_id
widget from 11 to 5 in the repository. This ensures that wherever that widget is used
in the application, its length is 5 characters long.

Other properties that could reasonably be changed at the database table level were
considered, and some implemented. The things to consider are:

! Does it make sense to propagate the change to every child copy in the
application?

! Is it useful to control the settings of this property with inheritance?

Some of the property changes made in the repository include input keystroke filters,
the Length property, font specifications for data entry widgets, and data format
specifications (for instance, date formats).

Other Repository Entries

Repository-based inheritance was also used to define standard widget types (in this
case, push buttons). These are stored in the repository screen masters.wgt. The
appearance of the push buttons on the application screens is inherited from this
repository screen. In this manner, a consistent look is propagated and easily
maintained.

Wizard entries (smwizard and smwizis) were automatically created when the screen
wizard was first invoked.

Application Screens

The VideoBiz screens were created by using the screen wizard. The wizard uses the
database-derived widgets in the repository to build screens.

While you navigate through the VideoBiz application, you can also examine what’s
going on behind the scenes (or screens) by invoking the screen editor (choose
panther→Screen Editor). The current screen will open in the screen editor workspace
Application Development Guide B-5

VideoBiz Components
and you can see how the screen was put together, what properties were set, and which
properties are inherited from the repository (these are displayed in reverse video in the
Properties window).

When you are done, resume the VideoBiz application by choosing File→Exit from the
screen editor menu bar.

Menu Bar/Toolbar

The menu bar and toolbar in VideoBiz is used primarily for navigation among the
modules. Panther's menu bar editor was used to create the menu script file. The menu
script is read into memory when the Welcome screen opens. It remains in place for the
life of the application.

Items on the Options menu become active or inactive depending on the user’s
permissions and the currently active screen. For example, a user with customer
permissions will not be allowed to run reports or view customer profiles.

A Panther menu option is also provided on the menu bar to allow you to easily access
the Panther editors and to view the SQL that is being automatically generated for the
VideoBiz application. This menu bar item would normally not be part of a distributed,
runtime-only application, but is provided for your convenience.

JPL Code

All of the coding in VideoBiz is done with JPL and is well-documented. There is one
externally stored file, videobiz.jpl, which is called when the first screen
(main.jam) is opened. All the procedures contained in this file are then globally
available to the application. This is particularly useful when a procedure is used by
more than one screen. For example, the procedure init_menu is used throughout the
application.

All other JPL code is stored with the screens that use it.
B-6 VideoBiz

VideoBiz Components
Styles Sheet

The default Panther styles.sty file was modified to accommodate the VideoBiz
application. This file controls how widgets behave when different transaction modes
are executed.

Sample Reports

The Marketing portion of VideoBiz generates reports. If your Panther executable
includes ReportWriter, edit the videobiz.jpl file to let Panther know this. Change
the following line:

RW_INSTALL = 0

to

RW_INSTALL = 1

The report templates are provided as Panther screens by the ReportWriter installation.
You can see how they are constructed by opening them in the screen editor; they are:
duenote.jam, topten.jam, and genrecus.jam.

Pixmap Files

There are several pixmap files provided that serve to enhance the VideoBiz application
on GUI platforms. There are pixmap files used for push buttons, toolbar items, for the
screen when it is minimized, and for screen wallpaper.
Application Development Guide B-7

The User's Guide to VideoBiz
The User's Guide to VideoBiz

This section serves as a functional specification for the VideoBiz user interface. The
specification is usually where an application begins. A task is introduced and a solution
is sought. The user’s perspective introduces you to what VideoBiz is intended to do
and what functions it will perform.

What is VideoBiz?

VideoBiz is a small database application that is intended for use in a video rental store.
It serves three audiences and provides functions specific to those audiences:

! Customers—to look up information about videos.

! Front desk clerks—to add and change information about customers, to look up
video information, to rent videos and check them back in.

! Marketing personnel—to produce reports about customers and the videos they
rent.

Starting VideoBiz

VideoBiz runs on free-standing terminal kiosks in the video store for customer use as
well as on work stations behind the front desk for employee use.

The Welcome (main.jam) screen displays when the application is idle, that is, when
no one has logged on, and it shows the title and description of the most frequently
rented video.

The application’s menu bar offers two menu bar items: Options and Panther. The
toolbar includes all entries available via the Options menu. On initialization, the only
available choices under Options and on the toolbar are Video Search and Done/Exit.
The user can choose Video Search to search for a video by title ID, title, and/or
director.
B-8 VideoBiz

The User's Guide to VideoBiz
The Panther menu is provided for your convenience to give you access to the Panther
editors so that you can examine the internals of the application. This option would
normally not be part of a runtime application.

The Welcome screen also includes two radio buttons:

! Customer—The default radio button. When this button is selected, pressing
Enter or choosing the Start button invokes the Search for a Video screen.
(Under GUI platforms, the Start button displays a pixmap of a 35mm camera
reel on it.)

No log on information is required. The application navigates to the Video
Lookup screen when the Start button is chosen. Video Search and Done are the
only available menu options when the screen is in Customer mode.

! Employee—Requires the user to enter a user name and password. When this
button is selected and the required login data is provided, pressing Enter or
choosing the Start button invokes the Customer Search screen.

How to Log into VideoBiz as an Employee

1. Choose the Employee radio button. The log on fields (Name and Password) are
displayed.

Figure B-2 The Welcome screen displays logon and password fields for employee
access.
Application Development Guide B-9

The User's Guide to VideoBiz
2. Enter the name sheila in the Name field, and trade3 in the Password field.
(The password is echoed using asterisks (*).)

Both user name and password are required. An error message is posted if both
are not provided. Otherwise, logon information is compared to a list of valid
names and passwords. An invalid user name or password invokes an error
message and the user can try another.

3. Choose the Start button (or press Enter). The Search for a Customer screen
opens.

Connection to the database occurs upon initial screen entry. On entry, the screen is by
default in Customer mode. If a valid user/password is entered, the application switches
into Employee mode. While in Employee mode, the marketing menu/ toolbar items are
active. When a user returns to the Welcome screen, the application automatically
switches back to Customer mode.

How to Exit VideoBiz

Choose Close/Quit from the application's system menu. Panther prompts you to
confirm the termination of your session in VideoBiz.

Behind the Scenes

The main.jam screen includes the following features which you can examine by
accessing the screen editor:

! When the screen opens it calls videobiz.jpl to install the application menu
and JPL procedures, making them globally available to the application.

! Call to init_menu to turn on the applicable menu/toolbar selections.

! Silent connection to and disconnection from the videobiz database. Check out
the JPL Procedures property for the screen.

! The Name and Password fields are hidden in Customer mode and exposed
conditionally. This is controlled via the screen-level JPL (the procedure name is
display_login_fields). The screen-level JPL also handles the validation of
the user name and password.

! A pixmap (visible under GUI platforms) is attached to the Start button via its
Active Pixmap property under Format/Display.
B-10 VideoBiz

The User's Guide to VideoBiz
! An icon visible on GUI platforms displays when the screen is minimized. It is
defined in the screen's Icon property.

! Three database tables are linked on this screen so that the most popular movie
title and description are displayed. Check the DB Interactions window in the
screen editor to see how the table views are linked.

! The sm_tm_command(“VIEW”) in the screen-level JPL invokes the transaction
manager to execute the query that determines the most frequently rented video.
See the Database properties for the hidden widget times_rented. This widget
provides the aggregate expression used in the SQL that is automatically
generated on screen entry.

Identify the Customer

When the user successfully logs in as an employee, the Search for a Customer
(custlist.jam) screen opens.

Figure B-3 Customer search screen allows employee users to search for specific
customers.
Application Development Guide B-11

The User's Guide to VideoBiz
This screen allows the employee to search for an individual customer and select an
action for that customer. The screen includes two query fields and a grid widget which
displays the results of the query—the customer's ID, first and last names, and phone
number. A bounce bar can be moved up and down in the grid to indicate the currently
selected customer. The screen includes several push buttons and Customer Profile
menu bar/toolbar options that invoke other screens.

The top portion of the screen provides two fields on which the user can query.
Customer records can be searched in two ways: by customer ID or by full or partial last
name.

Figure B-4 Search for a specific customer record using an ID number or last
name.

How To Search for a Customer Record

1. Specify the search criteria by doing one of the following:

" Enter a customer ID in the Cust ID field at the top of the screen, and
choose the Search button (or press Enter).

If there is a corresponding customer record, the data are displayed in the
grid widget.

" Enter a full or partial string in the Last Name field at the top of the screen,
and then choose the Search button (or press Enter).
B-12 VideoBiz

The User's Guide to VideoBiz
All records that match the search criteria are displayed in the grid widget.
For example, if the user enters B into the Last Name field, all customers
whose last names begin with B are displayed.

" Choose the Search button (the screen’s default button) or press Enter.

All customer records are fetched, and are displayed in alphabetical order in
the grid widget.

Choosing the Search push button or pressing Enter (activates the screen’s
default button) triggers a search using the contents of the query fields as
criteria. At any point, the user can enter a new search string or customer ID in
the query fields and trigger a new search by selecting the Search button (or
pressing Enter).

If no records match the search criteria, the application prompts the user to add a
new customer. If the user chooses Yes to add a new customer, the Customer
Information screen opens. If the user chooses No, new search criteria can be
specified.

2. Select the desired record by doing any of the following:

" Click in any cell of the grid widget to highlight the record.

" Press the up and down arrow keys to position the bounce bar on the desired
record.

" Double-click in any cell of the grid widget to select the record and invoke
the Customer Information screen. The selected customer record is
displayed and ready for update.

The selected record is the target of any commands triggered by selecting a push
button or one of the Customer Profile menu bar/toolbar item (pie or bar chart).

3. Specify the kind of action to take by doing any of the following:

" Choose the Add button—Ignores any search criteria and opens the
Customer Information screen. The application is ready to insert a new
customer record (i.e., the screen is in New mode) into the database.

" Double-click on a customer record or choose the Change button—The
Change push button is inactive, or grayed, if a customer record is not
selected. On a customer record is selected and the Change option is armed,
the Customer Information screen opens and displays details of the selected
customer record. The application is ready to update this record (i.e., the
screen is in Update mode).
Application Development Guide B-13

The User's Guide to VideoBiz
" Choose the Rent button—The Rent push button is inactive, or grayed, if a
search has not been conducted; that is, if the grid widget displays no data.
The button becomes active once a customer record is selected in the grid
widget. It navigates to the Video Rentals screen where the selected
customer's current video rentals are displayed.

" Choose the Bar Chart/Pie Chart button or Options→Profile→Bar Chart or
Pie Chart—Brings up the customer's rental profile in the specified
chart_type format.

" Choose the Done button or Options→Done—Closes the Search for a
Customer screen and returns to the Welcome screen.

Behind the Scenes

The custlist.jam screen includes the following features which you can examine by
accessing the screen editor:

! Query by example allows the user to enter search criteria. The Use In Where
Operator property for query fields defines what data to fetch that matches the
search criteria.

! The menu/toolbar item's and push button's active/inactive behavior is controlled
by a style defined in the styles.sty file. See the Class property (under
Transaction) for the Rent and Change buttons.

! The Control String property under Validation for each of the push buttons on
this screen controls how each button behaves when it is selected.

! The Customer Profile options are activated on screen entry, but the code can be
changed easily to have them activated only when a customer is selected.

! The Double Click property is set on each of the grid members.

! The telephone number format is controlled by a JPL procedure that is invoked
as a validation function on the phone column grid member. The Force Valid
property (under Database) forces the validation when data are selected into this
field.

! The customer search procedure (custsearch) is invoked from the Search push
button. The procedure is stored as screen-level JPL.

! The screen-level JPL includes code to determine what should happen when a
customer query returns no records.
B-14 VideoBiz

The User's Guide to VideoBiz
Add/Update Customer Records

The Customer Information (custedit.jam) screen displays detailed information
about a selected customer. The user arrives at this screen for one of two reasons: to add
or to change a customer record. Once the record is inserted or updated, choosing OK
commits the additions/changes.

The Cancel button closes the Customer Information screen without saving any
changes, and returns the user to the customer search screen.

How to Insert a Customer Record

1. Choose the Add push button on the Search for a Customer (custlist) screen or
respond to the application prompt to add a new customer (when a query results in
no matches).

The Customer Information screen opens in New mode.

Figure B-5 Customer Information in New mode initializes the Membership Date
to the system date and the Status field to A, for active. Also, any string that the
user entered in Last Name query field on the Search for a Customer screen is
passed to this screen and is displayed in the Last Name field.

2. Tab or click to each field and enter the customer demographics and credit card
information.
Application Development Guide B-15

The User's Guide to VideoBiz
The Cust ID, Membership Date and Status fields are protected from input. All
other fields are ready for data entry.

3. Choose OK to accept the information. The application assigns a customer ID
number and displays a confirmation message.

The OK button executes a procedure to assign a customer identification number
and to insert (save) the new record to the database because a New command
was specified. Once the confirmation message is acknowledged, the screen
closes, and the user returns to the customer search screen.

How to Update a Customer Record

1. Select a customer in the grid and choose the Change button or double-click on a
customer record on the Search for a Customer (custlist) screen.

The Customer Information (custedit) screen opens.

Figure B-6 The Customer Information screen displays data associated with the
selected customer record.

2. Tab or click to the fields that require change.

All fields are updatable, except for the customer ID and the rental information
fields.

3. Choose OK to commit the changes to the database. An update confirmation
message is displayed.
B-16 VideoBiz

The User's Guide to VideoBiz
When updating an existing record, the OK button performs an update of the
database. Once the confirmation message is acknowledged, the screen closes,
and the user returns to the customer search screen.

Behind the Scenes

The custedit.jam screen includes the following features which you can examine by
accessing the screen editor:

! Receives a transaction manager command and data from the Search for a
Customer (custlist.jam) screen and performs a COPY or SELECT command,
depending on what action the user has specified.

! The Credit Card option menu is populated from the database via a screen called
credcard.jam. Look at the Identity properties for the option menu to see how
this lookup capability is implemented. Then open the credcard.jam screen in
the screen editor to see how selection screens are constructed. It's the credcard
screen's entry function that actually runs the query to fetch credit card
information.

! The customer ID is provided programmatically when a new customer record is
created. Review the screen-level JPL procedure (ok_proc) attached to this
screen.

! Fields are updatable based on the transaction class that the widget is assigned
to–look at the Class property under Transaction for the cust_id and
member_date text widgets.

Video Rental Listing

Users with “front desk” permissions can reach the Video Rental Listing screen by first
identifying and selecting a customer record from the Search for a Customer screen and
then choosing the Rent push button.
Application Development Guide B-17

The User's Guide to VideoBiz
Figure B-7 The Rental Listing screen displays videos currently rented by the
customer (indicated in the screen's title bar).

The selected customer’s identification number and name are sent to the Video Rentals
(rentlist.jam) screen; the customer's name is displayed in the screen’s title bar. All
videos that are currently rented by the selected customer are listed; if there are no
videos out, the grid is empty, and ready for Check out.

From the rentlist screen, the user can:

! Choose the Check Out button to rent additional video titles. The Video Rental
(rentvid.jam) screen is displayed.

! Choose the Check In button to return videos.

How to Return a Video

1. Select the video from the list.
B-18 VideoBiz

The User's Guide to VideoBiz
Figure B-8 The rental date and due date are indicated for each video title.

2. Choose the Check In button.

Repeat these steps for each return.

Behind the Scenes

The rentlist.jam screen includes the following features:

! The screen receives the cust_id and the customer name from the
custlist.jam screen and runs a query to find what videos the customer
currently has out.

! The customer’s name is received into the screen's title bar (this specification is
defined in the screen’s Title property under Identity).

! When the Check Out button is armed, it sends the cust_id to the New Rentals
(rentvid) screen and invokes the rentvid screen.

! The Check In button updates the rental status and redisplays the screen.

Rent Videos

It is expected that in this video store, the customer brings the video cassette to the front
desk when he or she wants to rent a movie. The video itself has the ID and copy number
printed on the container. The front desk clerk can just type that information into the
application.
Application Development Guide B-19

The User's Guide to VideoBiz
How to Rent a Video

1. From the Rentals (rentlist) screen, choose the Check Out button.

The New Rentals (rentvid.jam) screen opens.

Figure B-9 New rentals require a title ID.

2. Enter a title ID and press TAB.

The application displays the video title associated with the specified ID number.
If a title ID does not exist, an error message is displayed.

3. Enter the tape copy number (usually a number between 1 and 3 inclusively) and
press TAB.

Figure B-10 An available copy of the video automatically provides the due date
and price of the rental as well as the late fee charge.
B-20 VideoBiz

The User's Guide to VideoBiz
If the video associated with the specified ID and copy number is, in fact,
available, the cost of the rental, late fee rate, and due date are displayed.

If the specified copy number is not available (it’s already rented by another
customer or does not exist), an error message is displayed. Another number can
be entered.

4. Choose OK to record the rental. The New Rentals screen closes, and the Rentals
list is updated with the newly rented video titles.

Behind the Scenes

The rentvid.jam screen includes the following features:

! Receives the cust_id from the Rentals (rentlist) screen.

! After an available video tape is specified, the screen is prepared for an insert to
the database. It uses sm_tm_command(“SAVE rentals TV-ONLY”)

! A transaction event function rental_hook is invoked after a new rental is
inserted in the database. It updates the tapes database table by logging the tape
as “unavailable.”

! Review the screen-level JPL module; most of these procedures apply the
business logic required to make this screen work correctly.

Customer Profile

The Customer Profile options are only available to a user logged in as an Employee. A
customer profile provides two different graphical representations of the types of videos
a selected customer has rented.

How to Obtain a Customer Profile

1. Select a customer from the Search for a Customer (custlist) screen.

2. Choose the design chart format by doing either of the following:

" Choose Options→Profile→Bar Chart or

The selected customer's rental profile is displayed in the bar chart format.
Application Development Guide B-21

The User's Guide to VideoBiz
Figure B-11 Rental profile illustrates the customer's rental preferences by
category.

" Choose Option→Profile→Pie Chart or
B-22 VideoBiz

The User's Guide to VideoBiz
Figure B-12 The selected customer's rental profile is displayed in pie chart
format.

3. Choose Done to return to the Search for a Customer screen.

Behind the Scenes

The bar chart and pie chart screens include the following features:

! The cust_id is passed from the custlist screen and is used to execute the
query.

! The count of each video category (drama, comedy, etc.) is gathered from the
rentals table using the count(*) expression. Panther automatically performs
a group by category.
Application Development Guide B-23

The User's Guide to VideoBiz
Video Lookup

The user can access the video lookup portion of VideoBiz by doing either of the
following:

! Logging into VideoBiz as a customer (choosing the Customer radio button on
the Welcome screen)

! Choosing Options→Video Search or

The Video Lookup consists of two screens: Video Listing and Video Detail. The
Listing screen allows the user to search for a video by title ID, movie title, or director.
It fetches all records that match the search criteria and displays the results in scrolling
lists. From this screen, the user can access the Video Detail screen, which displays all
information about a selected video.

Querying the Database and Selecting a Video

The Search for a Video (vidlist.jam) screen allows the user to search for a video
and select one from the results. The screen consists of four query fields and a grid
widget that contains four columns for displaying query results.

The grid widget lists the video ID, movie title, director, genre, and rating. The grid
widget can be shifted from left to right to display offscreen columns. A bounce bar can
be moved up and down in the list to indicate the currently selected title. The screen
includes a Search button to execute the query, a Detail button that invokes the video
detail screen, and a Cancel button to return the user to the calling screen.
B-24 VideoBiz

The User's Guide to VideoBiz
Figure B-13 Query for videos using title, ID, or the director's name.

How to Search for a Video

1. Specify the search criteria by entering a title ID or a combination of one or more
of the following:

" Enter a full or partial string in the Title field at the top of the screen, and
then choose the Search button or press Enter.

" Enter a full or partial string in the Director Last Name field and choose the
Search button or press Enter.

" Enter a full or partial string in the Director First Name field and choose the
Search button.

All records that match the search criteria are displayed in the grid widget in
alphabetical order by title. In addition to the title and director's name, the rating
(e.g., PG (parental guidance), R (restricted), etc.) and genre (e.g., comedy,
science fiction) of each title are displayed. The arrays scroll to accommodate
more titles than can fit on the screen, and a bounce bar allows the user to select
a video title from the list. A horizontal scroll bar allows the user to display
offscreen columns in the grid widget.

If the user chooses the Search button without specifying any search criteria, all
videos in the database are displayed in alphabetical order by title.
Application Development Guide B-25

The User's Guide to VideoBiz
Figure B-14 Query results are displayed in a grid widget.

2. Select the desired record by doing any of the following:

" Click on any of the grid members.

" Use the up and down arrow keys to position the bounce bar on the desired
record.

" Double-click on the desired record. This invokes the Video Detail screen.

3. Choose the Detail button. The Detail button invokes the Video Detail screen.

4. Choose Done to close the Search for a Video screen. If the user is a customer,
the Welcome screen appears. Otherwise, the user resumes on the screen that was
open when he or she chose the Video Search option.

Behind the Scenes

The vidlist.jam screen includes the following features:

! Functions in the same way as the customer search screen (custlist.jam).

! The title_id selected in the grid widget is sent to the video detail screen.
B-26 VideoBiz

The User's Guide to VideoBiz
View Video Details

The Video Detail screen (viddtl.jam) displays detailed information about a selected
video title. The user arrives at this screen as a result of specifying search criteria,
querying the database, and selecting a video title from the results. The upper portion
of the screen displays general information about the selected video (for example, title,
length in minutes, rating code, and pricing category (displays only if the user is an
employee)). The middle portion displays a scrolling text area with a description of the
video. The grid widget in the lower portion of the screen displays the actors who
appear in the film and the roles they play.

Figure B-15 Video details display data from three database tables: titles,
title_desc, and actors.

When the user is finished reading the details of the video, choosing the Done push
buttons closes the Video Detail screen and returns the user to the Search for a Video
screen.

Behind the Scenes

The viddtl.jam screen includes the following features that you can examine by
accessing the screen editor:

! Open the DB Interactions window to see how the table views on this screen are
linked. The screen executes two server joins and two sequential joins.
Application Development Guide B-27

The User's Guide to VideoBiz
! A query is executed using title_id received from the vidlist.jam screen to
find the description associated with the selected video title.

! The title ID and its pricing category are displayed conditionally. When the
screen opens, the screen entry procedure (viddtl_se) checks the user_type.
If the user_type is Customer, the call to the expose_fields procedure will
hide these field. Otherwise, the fields are displayed to the video store employee.

! The director's first and last name are concatenated into a single field in the
procedure defined as this screen’s entry procedure (viddtl_se). This ensures
that when the screen opens, the data are displayed correctly.

Marketing

You can access the Marketing portion of VideoBiz by choosing Options→Marketing
from the menu bar or one of the corresponding toolbar items. Data are passed to reports
and displayed.

How to Run Marketing Reports

1. The user must log onto the application as an employee to active the marketing
menu/toolbar options.

2. Choose the desired report:

" Choose Option→Marketing→Top Ten or

Lists the ten most frequently rented videos.

" Choose Option→Marketing→Due Notice or

Produces a letter addressed to each customer who has overdue rentals as of
this reporting period. The letter lists each overdue rental by title and the
amount due.

" Choose Option→Marketing→Genre or

The user is prompted to select from a list of genre categories.
B-28 VideoBiz

The User's Guide to VideoBiz
Figure B-16 You can generate a report by choosing a particular category of
video.

" Select a category and choose Run Report.

The report lists all those customers who have rented videos having the
specified genre. For example, the user can specify the genre Drama. The
output lists all customers, in descending order of the number rented, who
have rented videos classified as Drama. The customers' phone numbers are
listed as well.
Application Development Guide B-29

The User's Guide to VideoBiz
B-30 VideoBiz

APPENDIX
C Panther Java
Calculator

This appendix contains the development notes for the Panther Java Calculator sample
that is located at $SMBASE/samples/javacalc.
Application Development Guide C-1

Repository Contents
Repository Contents

The repository, calc.dic, contains the following items.

Table C-1 Lower Buttons

Repository Name Function Java Class

num_pb Numeric Keys (also period and +/-) CalcNum

op_pb Arithmetic operations CalcFunc2

mem_pb Memory functions CalcMem

misc_pb Miscellaneous operations (Constants,
Clear, backspace)

CalcMisc

Table C-2 Upper Buttons

Repository Name Function Java Class

trig_pb Trigonometric functions CalcTrig

mode_pb Mode change CalcMode

func1_pb Single operand functions CalcFunc1

func2_pb Two operand functions CalcFunc2
C-2 Panther Java Calculator

Calculator Screen
Calculator Screen

The calculator screen, calc.scr, contains the following widgets and settings.

Table C-3 Screen Properties

Property Setting

IDENTITY→Title Calculator

IDENTITY→Java Tag CalcScreen

HELP→Help Screen help.scr

FOCUS->JPL Procedures global register, memory, operation,
op_just_done, degrees, currency

! register: Holds the "invisible" operand (last number
entered before performing operation)

! memory: storage for M+, MR, MC function

! operation: Storage of the last 2 operand operation
key pressed

! op_just_done: Used to determine if next number
entered should clear display first.

! degrees: flag for trig operations, 1=degrees, 0=radians

! currency: flag for display, 1=fixed decimal (2) places,
0=floating decimal

Table C-4 Display Widgets

Widget Name Widget Type Function Java Class

mode_display Dynamic Label Displays modes degrees /
radians, currency / normal

None

display Single line text Calculator display None
Application Development Guide C-3

Calculator Screen
The following table lists the types of push buttons, their names, the push button they
inherit from in the repository and the java class.

Table C-5 Button Widgets

Type Name Inherit From Java Class

Digits:

 0,1,2,3,4,5,6,7,8,9

nX_pb

(where X is the digit)

Num_pb CalcNum (Inherited)

. (period) dot_pb Num_pb CalcNum (Inherited)

+/- sign_pb Sign_pb CalcFunc1

C, CE c_pb, ce_pb misc_pb CalcMisc (Inherited)

*, / mult_pb, div_pb op_pb CalcFunc2 (Inherited)

+, - plus_pb, minus_pb op_pb CalcFunc2 (Inherited)

= (Equals) equls_pb op_pb

(size changed)

CalcFunc2 (Inherited)

MC, MR mc_pb, mr_pb mem_pb CalcMem (Inherited)

M+ mp_pb mem_pb CalcMem (Inherited)

Pi pi_pb misc_pb CalcMisc (Inherited)

_ (Backspace) bs_pb misc_pb CalcMisc (Inherited)

Dg/Rd angle_pb mode_pb CalcMode (Inherited)

#/$ currency_pb mode_pb CalcMode (Inherited)

X^Y, Mod power_pb, mod_pb func2_pb CalcFunc2 (Inherited)

Sin, Cos,

Tan, Atan

sin_pb, cos_pb,

tan_pb, atan_pb

trig_pb CalcTrig (Inherited)

1/x (Inverse) inv_pb func1_pb CalcFunc1 (Inherited)

Sqrt (Square root) sqr_pb func1_pb CalcFunc1 (Inherited)

Log, Exp log_pb, exp_pb func1_pb CalcFunc1 (Inherited)
C-4 Panther Java Calculator

Java Classes
Java Classes

The Java classes have been broken into handlers which handle either screen entry or
"classes" of buttons. This is a mid-way point between having a separate class for each
button and having a single class handle all the buttons.

CalcScreen:
Implements ScreenHandler interface

Screen entry function. Initialize global variables and allow backspace, delete
and Newline to be caught by ButtonHandler.

Screen exit function. Release backspace, delete, and Newline, restoring
normal behavior for those keys.

CalcFunc1:
Implements ButtonHandler interface.

Handles all single operand calculator functions (like Sqrt functions). Also
handles the Sign toggle (+/-)

CalcFunc2:
Implements ButtonHandler interface

Handles all dual operand calculator functions. This class actually performs
the last stored operation, and stores the next operation in the global variable
"operation."

CalcMem:
Implements ButtonHandler interface

Handles all memory functions.

CalcMisc:
Implements ButtonHandler interface

Handles C, CE, backspace and Pi button.

CalcMode:
Implements ButtonHandler interface
Application Development Guide C-5

Java Classes
Handle mode switching buttons, "Deg/Rad" and "#/$"

CalcTrig:
Implements ButtonHandler interface.

Even though these functions are similar to the CalcFunc1 operations, these
make use of the "degrees" setting, so a separate class was created.

CalcNum:
Implements ButtonHandler interface.

Handles all numeric keys, and period.
C-6 Panther Java Calculator

APPENDIX
D Deployment Checklist
for Two-tier
Applications

Directory Structure for Two-tier
Applications

Distribute the files and libraries used by your Panther application in a single directory,
call it the application directory. The directory should include such things as your
application's executables and Panther-specific libraries. In addition, it should include
the following subdirectories:

! configuration directory—Includes the runtime components that make up your
application, such as your application libraries and those files that are specific to
running your application.

! library directory for UNIX only—Includes JetNet shared libraries. Required for
three-tier processing.
Application Development Guide D-1

Checklist for Deployment
Checklist for Deployment

The tables in this section list the components you should include in a distribution for
the specific platform. Depending on your particular application, there might be other
considerations and files which you might include. Those considerations are covered
later in this chapter.

Preparing a Windows Distribution

Table D-1 lists the files and libraries required on a Windows installation. The table also
includes where these files can be found in the Panther distribution. In general, you
should make copies of those files as opposed to using the originals. In all likelihood,
your Panther application has been using the components it needs while you've been
developing it. This list will serve as a means of making certain all the pieces you need
are deployed to the application users.

Table D-1 Checklist for contents of a Panther application for Windows

File/Library Found in Panther Description

application directory contents:

cktbl32/64.dll util Panther-specific DLL

database DLLs util Support Panther database drivers—Informix, ODBC,
Oracle, Sybase

*.ini config Initialization file prol5w32/64.ini

libsti32/64.dll util Panther-specific DLL

libsti.ini config Graph-specific initialization file (copy this file to the
Windows directory)

libxml2.dll util Needed if XML files are to be imported.
D-2 Deployment Checklist for Two-tier Applications

Checklist for Deployment
msvcr80.dll util Microsoft Visual C++ 2005 runtime DLL. Needed if the
Redistributable Package will not be installed.

PanPDF32/64.dll util Needed if PDF reports will be created.

projpeg.dll util Needed to process JPEG images.

promfc32/64.dll util Contains status line and frameset code.

prores32/64.dll util Panther Windows resource DLL

prorun32/64.exe util Runtime executable (rename for your application)

rwres32/64.dll util Report Writer Windows resource DLL

config directory contents:

client.lib includes:

client screens Panther screens that make up the user interface

smwzmenu Binary menu script file; include if client screens created
with screen wizard use the prototype menu bar/toolbar

smwizard.bin JPL module made public by client screens created by the
screen wizard

JPL modules JPL code used by client screens

Graphics files Image files (such as *.ico, *.bmp, *.jpg)
referenced on client screens and/or toolbars

styles.sty Transaction manager styles file for your application

wincmap.bin config Binary configuration map file (maps Panther fonts to
Windows-specific fonts, etc.).

winkeys.bin config Binary key files for mapping physical keys to Panther
logical keys. Omit this file from the library if end-users can
modify key mapping on installation.

msgfile.bin config Contains messages and information used by Panther

Table D-1 Checklist for contents of a Panther application for Windows

File/Library Found in Panther Description
Application Development Guide D-3

Checklist for Deployment
Preparing a UNIX Distribution

*.fnt config Graph-specific fonts referenced in graphs in your
application

grafcap config Initialization file for graph support

prorun5.lib config Panther's runtime support library

prorw5.lib config Panther’s runtime library for reports

winkeys config ASCII key file for mapping physical keys to Panther
logical keys. Required if key mapping is user configurable;
include key2bin utility as well.

smvars.bin config Binary environment setup file

Table D-2 Checklist for contents of a Panther application for UNIX/Motif platforms

File/Library Found in Panther Description

application directory contents:

Prolifics config Resource file for Motif (installation should copy Prolifics
to the home directory of each user)

prorun util Client executable (rename for your application); required
only if supporting UNIX clients

config directory contents:

client.lib includes: Required only if supporting UNIX clients

client screens Panther screens that make up user interface

smwzmenu Binary menu script file; include if client screens created
with screen wizard use the prototype menu bar/toolbar

smwizard.bin JPL module made public by client screens created by the
screen wizard

Table D-1 Checklist for contents of a Panther application for Windows

File/Library Found in Panther Description
D-4 Deployment Checklist for Two-tier Applications

Checklist for Deployment
JPL files JPL files used by client screens

Graphics files Image files (e.g., *.xbm, *.xpm, *.bmp, *.jpg) referenced
on client screens and/or toolbars

styles.sty Transaction manager styles file

*cmap.bin config Binary configuration map file (maps Panther fonts to
Motif-specific fonts, etc.).

*key.bin config Binary key files for mapping physical keys to Panther
logical keys. Omit this file from the library if end-users can
modify key mapping on installation.

msgfile.bin config Contains messages and information used by Panther

*vid.bin config For character-mode only. Binary files that describe
terminal capabilities and attributes to Panther. Omit this
file from the library if end-users can modify video
specifications on installation.

*.fnt config Graph-specific fonts referenced in graphs in your
application; required if supporting UNIX clients

gdsp util Graph support utility

grafcap config Initialization file for graph support

prorun5.lib config Panther's runtime support library

prorw5.lib config Panther's runtime library for reports

smvars.bin config Binary environment setup file. Copy and modify for your
application.

swsdrvr util Graph support utility

Table D-2 Checklist for contents of a Panther application for UNIX/Motif platforms

File/Library Found in Panther Description
Application Development Guide D-5

Checklist for Deployment
D-6 Deployment Checklist for Two-tier Applications

INDEX
Index

Symbols

% (percent sign)
in message file 45-8

%A
display attributes in messages 45-9

%B
bell for messages 45-10

%K
key label in message 45-10

%Md
force user acknowledgment of messages

45-11
%Mu

acknowledgment of error messages 45-12
%N

carriage returns in messages 45-12
%W

popup window for messages 45-12
:+ (colon-plus processing) 30-2
:: (parameters)

in DECLARE CURSOR command 30-11
:= (colon-equal processing) 30-7
@ (at)

to reference database driver variable 37-4
@ object modifiers 19-34

@app 19-34
@field_num 19-35
@id 19-34
@ldb 19-35

@obj 19-36
@screen 19-34
@screen_num 19-35
@tp_req 19-36
@widget 19-35

@bi(field) global variable 36-18
@date

defining format for 45-19
in JPL 19-51

@length
in JPL 19-51

@property modifier 19-40
@range 39-26
@sum

in JPL 19-52
@tm global variables 36-18

@tm_sel_cursor
default select cursor name 28-8

A

ActiveX controls
event handler in Java 21-6
manipulating at runtime 23-13

Aggregate functions
aliasing to widgets 29-6
in automated SQL generation 33-17

ALIAS
dbms command

aliasing column names 29-4
Application Development Guide I-1

Index
Aliasing
colors 45-26
column names to widgets 29-4

Alphabetic data
range checking 48-5

Animation 39-8, 39-20
Application

customizing 43-7
debugging 39-19
defining project requirements 3-1
exiting base form 24-3
menu

attaching 15-4
optimizing 41-1
packaging checklist D-2

Windows D-2
specifying splash screen for 43-8
specifying startup file 43-8

Application architecture 1-2
defining 4-1

Application behavior
understanding events 17-1

Application components
building 1-12
integrating 1-20
referencing 19-33

with object modifiers 19-34
Application data 45-45
Application Data option

in debugger 39-9
Application development

accessing the database 27-1, 28-1
defining the project team 1-3
defining the requirements 1-2
development environment 1-6
programming application events 1-16
steps 1-2
with the transaction manager 31-2

Application messages 45-6
header file A-34

Application server

preparing 1-4, 5-1
Array

accessing in JPL 19-39
clearing all data 23-8

in transaction manager 36-10
defining 14-5
deleting occurrence 23-8
elements 14-4
inserting occurrence 23-8
numbering 14-6
scrolling 14-6
setting array size 14-6
sum of occurrences 19-52

ASC keyword
specifying data order 33-21

ASCII
non-ASCII display 45-45

ASCII output
menus A-22
reports A-11
screens A-11
service components A-11

Auto Raise/Close 39-8
Automatic functions

defined 44-2
example 44-65, 44-71
installing

field function 44-19
group function 44-27
screen function 44-13

screen function 17-8

B

Background status
displaying 26-9

Backward scrolling
viewing database rows 29-12

Base form
exiting 24-3

Basic colors
I-2 Application Development Guide

Index
keywords 45-27
Before image processing

modifying data in transaction manager 36-7,
36-26

Bell
setting in messages 45-10

bin2c A-2
bin2hex A-4
Binary columns

writing to database 30-10
Binding

supplying database column values 28-6,
30-11

binherit A-6
Bitwise expression 19-54
Bitwise operators 19-52
Breakpoint

clearing 39-21
listing of 39-5
setting 39-20

in JPL 39-15
on event 39-23

sorting 39-10
specifying location 39-24

Breaks menu
for debugger breakpoints 39-11

Built-in control functions 18-7

C

C functions
calling 20-6
executing from control string 18-5
linking to executable 20-4, 42-4
writing your own 20-1

C Type property 30-4
formatting fetched data 29-16
writing values to database

character strings 30-10
hexadecimal strings 30-10
numeric data 30-7

Calling Java Object Methods 21-19
Calling JPL procedure

as hook function 19-21
from control string 19-22
through call command 19-23
within expression 19-23

Cancel Check Out 10-8
Carriage return

in message
%N 45-12

Case sensitivity
alias names 29-5
column names 7-4, 7-8
connection names 8-3
cursor names 28-5
engine names 7-4, 7-7
specifying for library members A-16
widget names 29-3

CATQUERY
dbms command

writing results to widget or file 29-19
Character data

8-bit 45-45
Character mode

setting line and box style in cmap file 45-34
Character strings

reading from database 29-15
writing to database 30-6, 30-10

Check box widget
event handler in Java 21-7

Check digit function 44-40
return codes 44-40

Check In 10-8
Check Out 10-7
Child property

determining child table view 31-8
Class property 36-14
Client

configuring environment of 6-1
Client authentication

installing data function 44-28
Application Development Guide I-3

Index
installing post-connection function 44-30
Client executables 42-1
Client library 1-13
Clients

building screens for 13-1
CLOSE CONNECTION

dbms command
closing database connections 8-4

CLOSE CURSOR
dbms command

closing database cursor 28-9
Close Item property 13-2
CLOSE_ALL_CONNECTIONS

dbms command
closing database connections 8-5

Closing
screens 13-7

cmap2bin A-8
Colon preprocessing 19-27, 30-1

colon equal 30-7
colon plus 30-2
examples 30-8
substring specifier 19-29

Color properties
aliasing colors 45-26
display attributes

keywords 45-27
highlighted colors

in Windows 45-27
Panther basic colors

keywords 45-27
Color terminal

display attributes in messages 45-9
Column Click Action property 17-17
Column Click Func 17-17
Column Click Sort 17-17
Column Edits subproperties 11-7
Column Name property 33-3

in automated SQL generation 33-10, 33-33,
33-37

Column Titles property 31-13

COM components
deploying 1-6

Combo box widget
event handler in Java 21-7

Comments
in JPL 19-5

COMMIT
dbms command

committing transactions 28-10
Common library 1-13
Configuration

converting message files to binary A-29
of debugger 39-6
setting up development clients 6-1

Configuration map file
aliasing colors 45-26
colors section 45-26
converting to binary A-8
defining default fonts 45-36
making memory-resident 42-11
object specification keywords 45-32
scheme section 45-30

Connecting
to JetNet via the request broker 9-3

CONNECTION
dbms command

setting database connection 8-4
Constants in JPL 19-31
Continuation character 19-4
Continuation file

scrolling through select set 29-12
specifying

in the transaction manager 36-5
CONTINUE

dbms command
fetching next set of rows 29-11

Control flow
in JPL 19-4

Control function 44-44
example 44-87
return codes 44-45
I-4 Application Development Guide

Index
standard argument 44-44
Control string 18-2

calling JPL 18-5, 19-22
executing function from 18-5
executing OS command from 18-8
getting information in debugger 39-18
target string in 18-6

Conversion utilities
bin2c A-2
bin2hex A-4
cmap2bin A-8
f2asc A-11
jif2asc A-19
jpl2bin A-20
m2asc A-22
msg2bin (message files to binary) A-29
s2asc (styles file to/from ASCII) A-40

Count Select property 36-6
Count Threshold property 36-6
Creating

repository 11-3
service components 12-1

Currency format 45-19
default entries in message file 45-21
fetching from database 29-16
writing to database

colon-plus processing 30-7
Cursor

changing delay state 46-9
position

after check digit function 44-40
after field validation 44-19
after group validation 44-27
displaying 26-7, 26-9

Cursor (database) 28-3
closing 8-4, 28-9
declaring 28-4, 30-11
redeclaring 28-8
using bind values 28-6, 30-11
using colon expansion 28-5
using the default 28-3

D

Data
displaying

displaying in arrays 14-6
modifying

in the transaction manager 36-7
selecting

in the transaction manager 36-3
using a database driver 29-1
with warning message 36-6

writing to a database 30-1
Data Formatting property

formatting fetched data 29-16
using in database updates 30-5

Data Watch option 39-6
sorting variables

in debugger 39-10
Database

accessing 1-3, 1-6, 27-2
designing schema 3-3
importing database to a repository 11-5
reading information from 29-1
transaction processing 28-10
using in Panther 27-1
writing information to 30-1

Database columns
aliasing to widgets 29-4
automatic mapping to widgets 29-3
importing to a repository 11-5
in automated SQL generation 33-3, 33-10,

33-33, 33-37
Database connections

closing 8-3, 8-4
declaring 8-3
setting current 8-4
setting default 8-4

Database drivers
accessing 8-2
initializing 7-2

in Windows 7-7
Application Development Guide I-5

Index
selecting data 29-1
setting current 8-4
setting default 8-4
writing to a database 30-1

Database engines
adding support for an engine 7-6
initializing 7-2

in Windows 7-7
setting current 7-3
setting default 7-3
viewing error messages 37-4

Database events
trace warning in debugger 39-8

Database information
importing into Panther 1-12

Database properties
for SQL generator 33-4

Database version
identify in executable 42-5

Date
JPL @date operator 19-51

Date/time format
customizing 45-12
defaults 45-13
fetching from database 29-16
for non-English applications 45-17
literal format for @date calculations 45-19
tokens 45-14
writing to database 30-9

colon-plus processing 30-6
DB Interactions window

viewing transaction tree 31-10
dbiinit.c

creating new 7-6
DBUG key (debug) 39-4
DDE

callback function 47-8
cold links

creating for Panther client 47-6
updated from Panther server 47-4

cold paste links

creating for Panther client 47-6
destroying links on Panther client 47-9
disabling Panther as server 47-5
enabling Panther as client 47-5
enabling Panther as server 47-2
executing command from Panther client 47-9
executing command on Panther server 47-10
hot links

creating for Panther client 47-6
specifying in initialization file 47-7
updated from Panther server 47-4

hot paste links
creating for Panther client 47-6

links
created on Panther server 47-2
creating for Panther client 47-6
specifying in initialization file 47-7
updated from Panther server 47-3

paste links
creating for Panther client 47-6

poking data from Panther client 47-10
poking data into Panther server 47-10
requesting link data 47-8
updating Panther client data 47-8
warm links

creating for Panther client 47-6
updated from Panther server 47-4

warm paste links
creating for Panther client 47-6

Debuggable server
in JetNet applications 39-2

Debugger 38-2
accessing 39-3

from Test mode 38-6, 38-7, 38-8
animation 39-8, 39-20
Application Data window 39-27
calling a function 39-9
calling a function on breakpoint 39-26
configuring 39-6
Data Watch window 39-26
enabling in screen editor 39-4
I-6 Application Development Guide

Index
exiting 39-4
expert mode 39-8, 39-23
menu bar 39-8
module browsing 39-12
saving preferences 39-7
View menu 39-4
viewing control string assignments 39-18
viewing JPL 39-11

Decimal symbol
setting default 45-23

DECLARE CONNECTION
dbms command

making database connection 8-3
DECLARE CURSOR

dbms command
creating database cursor 28-5, 30-11
using bind values 28-6, 30-11
using colon expansion 28-5

Delay cursor 46-9
Delete Order property

in automated SQL generation 33-38
Delete Service property 33-5
DELETE statement

SQL generation from properties 33-38
Demand functions

example 44-69
installing

field function 44-20
group function 44-27
screen function 44-13

Deployment
directory structure D-1

DESC keyword
specifying data order 33-21

Destroying Java Objects 21-19
Dialog property 13-2
Display area

size for portability 48-2
Display attributes

keywords 45-27
portability 48-2

setting
in messages 45-8
in status line 45-9

Distinct property 33-13
Distribution

directories defined 2-1
Duplicate rows

eliminating 33-13
Dynamic label widget

event handler in Java 21-8

E

Edit menu
in debugger 39-10

Editor
invoking from JPL dialog box 19-17
using 1-15

Elements
numbering 14-6

Email 49-1
creating mail object 49-4
properties 49-1
sending 49-5

attachments 49-6
ENGINE

dbms command
setting database engine 7-3

Enterprise JavaBeans
service components for 12-5

Entry Function property
screen 17-8

Environment setup
development clients 6-1

Error function 44-37
example 44-81
return codes 44-38
standard arguments 44-38

Error handling 26-1
installing database error handler 37-9

Error hook function 26-9
Application Development Guide I-7

Index
Error messages
acknowledgment 45-11
disabling display of 26-2

Error messages (database) 37-1, 37-2
customized processing 37-6
default processing 37-2
engine-specific messages 37-4
error handler 37-7
exit handler 37-7
generic database driver messages 37-4
installing error handler 37-6, 37-9
transaction error handling 28-12
transaction hook functions 32-4
warning codes 37-4

Event function arguments
client authentication connection 44-28
client authentication post-connection 44-30
control 44-44
error 44-38
field 44-15
grid 44-21
group 44-26
initialization 44-42
key change 44-37
playback 44-43
record 44-43
reset 44-42
screen 44-11
tab control 44-24
timeout 44-33
timer 44-35
transaction manager 44-50
video processing 44-47

Event function return codes
transaction manager 32-3

Event function types
transaction manager 32-1

Event functions
in the transaction manager 31-15
programming for 1-16
transaction manager 32-1

Event handlers
in Java 21-4

Event stack
for transaction manager 35-7
in debugger 39-6

Events
in Panther applications 17-1
setting breakpoints on 39-21
user-initiated 17-22

Executables
building 42-1
including your C functions 20-1
renaming 42-6

EXECUTE
dbms command

executing statement 28-5
Exit

debugger 39-4
Exiting Panther 38-8
Expert mode 39-8, 39-19
Extended colors

aliasing colors 45-26
External menu 15-6

F

f2asc
generating ASCII output A-11

Fetch data properties 33-10
Fetch Directions property 36-6
Field

characteristics
internationalization 48-3

decimal symbol 45-23
displaying status of 26-8
getting current field number 14-3
getting screen's amount of 13-8

Field data
clearing all fields 23-8
clearing from array 23-8
getting length 19-51, 23-6
I-8 Application Development Guide

Index
reading 23-5
testing

all fields for changes 23-15
for no value 23-6
for yes value 23-6
if null 23-6

writing 23-7
Field function 44-14

example of automatic function 44-65
example of demand function 44-69
passing non-standard arguments into 44-67
standard arguments 44-15

Field number
assignment 14-4

Field validation 23-14
causes 44-15

File
required in deployment 43-4

File locking A-16
Font

setting display default 45-36
Force Valid property 33-12
Foreign keys

enforcing with validation link 33-48
Form

opening 13-3
Form stack 24-2
FORMAT

dbms command
formatting result set 29-19

Formatting text
for a database 30-12
from a database 29-15

formlib
with -g option 10-5

Function keys
associating with control string 18-2
setting default behavior 18-2

G

Global JPL variable
declaring 19-26

Grid Column Click 17-17
Grid function 44-20

return codes 44-23
standard arguments 44-21

Grid widgets
event handler in Java 21-8

Group
converting to field number 14-9
getting information in debugger 39-17
getting name from field reference 14-9
getting screen's amount of 13-8
identifying members of 23-3
validation 44-26

GROUP BY clause
in automated SQL generation 33-17

Group By property 33-17
Group function 44-25

example of automatic function 44-71
return codes 44-27
standard arguments 44-26

Group widgets
event handler in Java 21-9

H

HAVING clause
in automated SQL generation 33-20

Having property
in automated SQL generation 33-20

Header file
creating A-34
sample A-35

Help function 44-32
example 44-73
return codes 44-32

Hexadecimal strings
writing to database 30-7, 30-10
Application Development Guide I-9

Index
Hidden property
and version columns 33-42

Hook functions
invoking 19-21

I

Icon
for application 42-8

Import
of database objects to a repository 11-5

In Delete Where property 33-41
in automated SQL generation 33-41

IN keyword
in automated SQL generation 33-16

In Update Where property 33-41
in automated SQL generation 33-41

Included JPL modules 19-5
Infinite loops

breaking out in debugger 39-4
Inherit From property

removing specification 11-10
Inherit menu option 11-10
Inheritance 1-14, 11-9

ensuring 11-2
preventing propagation 11-9
propagating to screen (binherit) A-6
source

finding 11-10
Initialization

database engines 7-2
Initialization function 44-41

example 44-82
return codes 44-42
standard argument 44-42

Insert Service property 33-5
INSERT statement

SQL generation from properties 33-32, 33-44
Insert toggle function 44-39

example 44-81
return codes 44-39

Installed function return codes
check digit 44-40
client authentication connection 44-28
control 44-45
error 44-38
grid 44-23
group 44-27
help 44-32
initialization 44-42
insert toggle 44-39
key change 44-37
playback 44-43
record 44-43
reset 44-42
screen 44-12
status line 44-46
timeout 44-33
timer 44-35
transaction manager 44-50
video processing 44-49

Installed function types
check digit 44-40
client authentication connection 44-28
client authentication post-connection 44-30
control 44-44
database driver errors 44-49
error 44-37
field 44-14
grid 44-20
group 44-25
help 44-32
initialization 44-41
insert toggle 44-39
key change 44-36
playback 44-43
prototyped 44-8
record 44-43
reset 44-41
screen 44-10
status line 44-45
tab control 44-24
I-10 Application Development Guide

Index
timeout 44-33
timer 44-34
transaction manager 44-50
video processing 44-47

Installed functions
automatic 44-2
installing 44-4
standard arguments 44-3

Instantiating Java Objects 21-17
Interface

three-tier
between client and server 1-7

Internationalization
8-bit characters 45-45
alternate message files 45-24
currency formats 45-19
decimal symbol 45-23
keystroke filters 48-3
library functions 45-45
of application screens 45-46
range checks 48-4
yes/no values 45-24

Interrupt handler 44-41

J

Java
event handler interfaces 21-4
implementing event handlers 21-1
sample 21-23
samples C-1
setting environment variables 21-2

Java Tag property 21-3
JetNet

connecting to
via the request broker 9-3

creating service components 12-1
using with transaction manager 35-12

JIF
defining service availability 1-8

jif2asc A-19

jmain.c 42-6
Join 33-23

implementing
full outer join 33-30
inner join 33-29
left outer join 33-30
right outer join 33-31

Join Type property 33-28
JPL

choosing an editor 19-17
comments 19-5
constants 19-31
control flow 19-4
memory-resident 42-9
null statement 19-5
optimizing performance 19-56
setting breakpoint in 39-15
validation 19-8
viewing with debugger 39-11, 39-26

JPL calls
from control string 18-5, 19-22
from screen 19-21
from screen and report 19-14
from widget 19-21
inline calls 19-23
return value 19-20
search order 19-24

JPL commands
arguments 19-55

JPL expression
bitwise 19-54
numeric 19-53
numeric format 19-54
operand conversion 19-49
specifying substring in variable 19-50
string 19-53

JPL module 19-1
accessing with debugger 39-11, 39-12
compiling A-20
continuation character 19-4
include module 19-5
Application Development Guide I-11

Index
library modules 19-11, 19-16
line length 19-4
loading as public 17-6
memory-resident 19-13
named procedure 19-2
screen module 19-9
storing in library 19-11
types 19-8
unnamed procedure 19-2
widget validation 19-8

JPL operators 19-47
@date 19-51
@length 19-51
@sum 19-52
bitwise 19-52
concatenation 19-50
precedence 19-49
substring specifier 19-50

JPL procedure 19-1
attaching to screen and report 19-14
attaching to widget 19-16
declaring parameters 19-2
declaring return type 19-4
execution 19-4
named 19-2
returning from 19-20
unnamed 19-2

JPL text dialog box
compiling and saving 19-18
invoking local editor 19-17

JPL variable 19-24
declaring 19-25

global 19-26
expanding to literal value 19-27
resolving name ambiguity 19-38
scope and lifetime 19-27
substring specifier 19-50
watching through debugger 39-9, 39-26

jpl2bin A-20
Jterm

enabling data compression 42-12

K

K_ENTRY flag
set on field entry 44-16
set on grid entry 44-21
set on screen entry 44-11
set on tab card entry 44-25

K_EXIT flag
set on field exit 44-17
set on grid exit 44-21
set on screen exit 44-11
set on tab card exit 44-25

K_EXPOSE flag
set on screen exposure 44-11

K_KEYS bitmask 44-12, 44-17, 44-22
Key change function 44-36

example 44-79
return codes 44-37
standard argument 44-37

Key label
displaying in messages 45-10
portability 48-3

Key translation
internationalization 45-46
portability 48-3

Key translation file
making memory-resident 42-11

Keyboard
portability 48-3

Keystroke Filter property
translation support 48-3
using in database updates 30-5
using to format database values 30-9, 30-10

L

LDB 25-7
loading

multiple instances of 25-9
popping 25-11

Length property
I-12 Application Development Guide

Index
defined in database 11-7
Library

lock on 10-9
making read-only A-17
set file locking scheme A-16
source control management 10-4
storing JPL modules 19-12
synchronize with source code management

A-17
Library JPL module 19-16
Line length of JPL statement 19-4
Line styles

names of 45-34
setting in cmap file 45-34

Link widget
relationship properties 33-23

Links 31-7
in automated SQL generation 33-22
setting child table view 31-8
setting parent table view 31-8
setting the link type 31-9
validation 31-13, 33-46, 33-47

adding lookup 33-49
enforcing foreign keys 33-48

List box widget
event handler in Java 21-9

Local decimal symbol 45-23
Lock

on library/repository 10-9
Lock files A-16
Log file

debugger 39-6
writing to 39-10

Logical key
invoking control string from 18-2

Lookup specification 33-49
in Relations dialog box 33-49

M

m2asc A-22

Mail 49-1
creating mail object 49-4
properties 49-1
sending 49-5

attachments 49-6
makefile

list 42-3
makevars 42-4, 42-5
MDI frame

in Windows applications 13-6
with dockable toolbars 15-10

MDT bit 23-14
clearing for all fields 23-15
testing to find first modified field 23-15

Memory-resident
JPL modules 19-13, 42-9
screens 42-9

Menu
ASCII/binary conversion A-22
definition 15-1
deleting at runtime 15-11
deleting items at runtime 15-12
displaying as toolbar 15-1, 15-7
external reference 15-6
installing 15-3

for application 15-4
for screen 15-4
for widget 15-4
unique instances of 15-6

loading script into memory 15-2
popup for field

invoking 15-13
properties of

changing ar runtime 15-9
removing from display 15-12
scope assignment and display 15-4
testing 38-8

Menu bar
in application mode 38-2

Menu item
displaying status of 26-8
Application Development Guide I-13

Index
Menu Name property 15-4
Menu script

loading into memory 15-2
unloading from memory 15-12

Menu Script File property 15-2
Message

acknowledgment 26-2, 45-12
forcing 45-11

bell 45-10
creating 45-5
default display

in status line 26-1
in window 26-1

disabling display of 26-2
display attributes in 45-8, 45-9

hexadecimal codes for 45-9
displaying

background status 26-9
in window 45-12
on status line 26-7

error 26-1
forcing to status line

automatic dismissal 45-11
functions for displaying 26-4
key labels in 45-10
multiple lines in 45-12
Panther-specific 45-4
send via request broker 9-2

Message file 45-2
converting to binary (msg2bin) A-29
making memory-resident 42-11
modifying 45-2
multiple sections 45-6
size 45-6
syntax 45-4
text 45-5
translating 45-2
using alternate 45-24

Method property 36-7, 36-11
Middleware

connecting to 1-7, 9-1

Module type
specifying in debugger 39-14

Monochrome terminal 45-9
Motif

deploying application D-4
Motif resource file

specifying 43-8
splash screen 43-8

Mouse events
getting name of last clicked-on field 46-5
getting name of last clicked-on screen 46-6
getting state of buttons 46-6

msg2bin
errors A-30

msg2hdr A-34
errors A-35
sample output A-35

MSSCCI Support 10-1
MTS

creating service components 12-8
Multi-item properties

Multi-item properties
accessing in JPL 19-41

Multiple sections
in message file 45-6

Multi-user access 10-3

N

NCARD key (next card) 23-12
Null edit

colon-equal processing 30-7
writing null value to database 30-3, 30-9

Null Field property
in automated SQL generation 33-17
writing null values to database 30-3, 30-9

Null statement in JPL 19-5
Null value

writing to database 30-3, 30-9
Numbering

in arrays 14-6
I-14 Application Development Guide

Index
Numeric data
range checking 48-4
reading from database 29-16
writing to database 30-7

Numeric expression
JPL 19-53

Numeric format
JPL 19-54

O

Object ID
for widgets 14-3

OCCUR
dbms command

setting occurrence for SELECT 29-14
Occurrence

deleting 23-8
inserting 23-8
numbering 14-6
setting the number of 14-6

ONENTRY
dbms command

calling function before dbms command
37-7

ONERROR
dbms command

installing error handler 37-7
ONEXIT

dbms command
calling function after dbms command

37-7
Opening

screens 13-3
Operands

conversion in JPL 19-49
Operating system

accessing from control string 18-8
Operator property 33-15

in automated SQL generation 33-15
Operators

JPL operators 19-47
supported in WHERE clause 33-14

Optimistic locking
property settings 33-39

Option menu widget
event handler in Java 21-10

ORDER BY clause
in automated SQL generation 33-21

Output processing
messages 26-7

P

Panther
description 1-1
description of directories 2-1

Panther basic colors
keywords 45-27

Panther executables
building 42-1
including your C functions 20-1
modifying 42-6

Panther type
character strings

fetching from database 29-15
writing to database 30-6, 30-8

converting to C type 30-4
currency formats

writing to database 30-5, 30-7
date and time formats

fetching from database 29-16
writing to database 30-5, 30-6, 30-9

hexadecimal strings
writing to database 30-7

numeric data
fetching from database 29-16
writing to database 30-7, 30-10

using to format selected data 29-15
Parameters

declaring in JPL 19-2
for binding
Application Development Guide I-15

Index
in DECLARE CURSOR command 28-6,
30-11

Parent object
turning inheritance on/off for specific proper-

ties 11-9
Parent property

determining parent table view 31-8
Partial command 34-6
PCARD key (previous card) 23-12
Pending keys 39-6
Percent escapes

in message file 45-8
Playback function 44-43

example 44-84
return codes 44-43
standard argument 44-43

Popup menu
invoking 15-13

Popup Menu property
screens 15-4
widgets 15-4

Portability 48-1
aliasing colors 45-26
smmach.h 48-1

Precision
in SELECT results 29-16

Preferences
saving in debugger 39-7, 39-9
setting in debugger 39-6

Primary Key property
in automated SQL generation 33-38

Primary keys
updating

with transaction manager 36-9
Programming

modifying property values 1-16
sharing data 1-21
using application events 1-16

Project
defining requirements 3-1

Project requirements 1-2

defining the project team 1-3
Properties

accessing in JPL 19-40
application properties 19-41
multi-item properties 19-41
runtime properties 19-41
substring of setting 19-42

for dockable toolbars 15-10
for screens

runtime only 13-8
getting at runtime

for menus 15-9
multi-item properties 19-41
setting at runtime

for menus 15-9
transaction manager 36-19, 36-26
traversal 36-19
value types 19-42

Prototyped function 44-8
examples 44-52
get standard arguments 44-8
valid prototypes 44-10

Public module
loading 17-6

Push button widget
event handler in Java 21-11

PVCS support 10-1

R

Radio button widget
event handler in Java 21-11

Range
checking 48-4

Read-only library A-17
Read-only screen

saving 10-10
Ready/Wait status

displaying 26-8
Receive data

reading bundle data 25-4
I-16 Application Development Guide

Index
Record function 44-43
example 44-84
return codes 44-43
standard argument 44-43

Regenerate SQL property 36-11
Relations property 33-23, 36-5

in automated SQL generation 33-27
Report

JPL 19-14
Reports

ASCII/binary conversion A-11
overview 16-1
overview of 1-19

Repository
benefits 11-1
copying objects

for transaction manager 31-3
for application development 1-13
from a database

build with 1-11
importing database objects 11-5
lock on 10-9
making read-only A-17
screen wizard entries 11-8
set file locking scheme A-16
storing screen templates 11-5
synchronize with source code management

A-17
under source control management 10-4

Request broker 9-1
Request broker event handlers

defined 17-26
Request events

in transaction manager 35-3
Reservation

releasing 10-4
Reset function 44-41

example 44-82
return codes 44-42
standard argument 44-42

Return codes

transaction event functions 32-3
Return value 19-20

declaring type in JPL 19-4
Revision control 10-9
ROLLBACK

dbms command
engine-specific behavior

rolling back transactions 28-10,
28-12

Root table view
in the transaction manager 31-8

Row Titles property 31-13
Rows

determining number fetched 29-8
retrieving multiple rows 29-8
scrolling through result set 29-12
setting maximum number 36-6

Runtime properties
accessing in JPL 19-40

S

s2asc A-40
Sample applications

Java 21-23
Samples

two-tier application
VideoBiz B-1

using Java in Panther C-1
SAVE

transaction manager command
saving database changes 32-9

Scale property
defined in database 11-7

Scale widget
event handler in Java 21-12

SCCS support 10-1
Scheme

defining in configuration map file 45-30
object names for color mapping 45-32

Screen
Application Development Guide I-17

Index
about 13-1
as a dialog box 13-2
ASCII/binary conversion A-11
C data structure conversion A-2
calls to JPL from 19-21
closing 13-7, 38-8
control string 18-2
creating

screen templates 11-5
deleting under source control 10-11
display defaults 13-4

overriding 13-5
entry processing 17-4
event handler in Java 21-5
events 17-2

entry 17-4
exit 17-19
exposure 17-6

functions 44-10
hexadecimal conversion A-4
identifying members of 23-3
JPL 19-14
JPL module 19-9
memory-resident 42-9
menu

attaching 15-4
naming start up 42-7
opening 13-3

as a form 13-3, 24-2
as a sibling window 24-4
as a window 13-3, 24-3
at specific size/dimension 13-5
from control string 18-3

popup menu
attaching 15-4

read-only 10-9
saving 10-10

reserving 10-3
setting properties 13-8
status line text 26-8
testing 38-4

viewing in debugger 39-16
viewport 13-4

Screen editor
accessing from within Panther 38-2
exiting 38-8

Screen entry 17-4
executing screen's unnamed procedure 17-6

Screen events 17-2
Screen exit 17-19
Screen function

return codes 44-12
standard arguments 44-11

Screen functions 44-10
Screen module 19-9

viewing in debugger 39-16
Screen properties 13-7

number of fields 13-8
number of groups 13-8
runtime only 13-8

Screen wizard
description 1-15

Screens
creating 1-15

Scrolling
specifying backward scrolling 29-12

Select Service property 33-5
SELECT statement

aliasing columns to widgets 29-4
automatic mapping of column names 29-3
changing generated SQL 36-6
concatenating result row 29-19
destination of 29-3, 29-19

aggregate functions 29-6
formatting result set 29-15
generating SQL 36-3
scrolling through result set 29-8
specifying multiple tables

in automated SQL generation 33-22
SQL generation from properties 33-7, 33-44
suppressing repeating values 29-18
transaction manager
I-18 Application Development Guide

Index
writing hook function 32-6
unique column values 29-18
writing results

to a file 29-19
to a specific occurrence 29-8, 29-14
to word-wrapped arrays 29-8

Selection group
deselecting 23-11
getting selection data 23-9
identifying members of 14-8
selecting 23-11
testing for selection 23-9

Self-joins
in automated SQL generation 33-24
in the transaction manager 31-8

Send data 25-1
reading bundle data 25-4
writing data to bundle 25-2

Sequential link
in data fetches 36-5
setting the link type 31-9

sequential link 31-9
Sequential link type

in automated SQL generation 33-26
join specification 33-23

Server executables 42-1
Server library 1-13
Server link

setting the link type 31-9
server link 31-9
Server link type

join relationship 33-23
server view 31-9
Server views

traversal properties 36-21
Service

debugging 39-2
Service components

ASCII/binary conversion A-11
building 1-7
creating 12-1

for EJBs 12-5
in JetNet 12-1
in MTS 12-8
in TUXEDO 12-1

Service container
debugging 39-2

Service properties
link widgets 33-47
table view 33-5

Service request
finding the transaction manager operation

36-26
via request broker 9-2

SET clause
in automated SQL generation 33-37

Set Valid property 33-12
Sibling property 24-4
Sibling window

setting for next window 24-4
Single line text widget

event handler in Java 21-13
Slice events

in transaction manager 35-3
SM_CALC_DATE

setting default format 45-19
SM_DECIMAL

setting default 45-23
smmach.h 48-1
SMMSGS

setting alternate value 45-18, 45-24
Sort Order 17-17
Sort Order Func 17-17
Sort Widgets property

in automated SQL generation 33-21
Source code

main routines
modifying 42-6

platform-dependent 48-1
Source Code menu option

in debugger 39-4
Source control management
Application Development Guide I-19

Index
accessing screen outside of 10-3
deleting screens under 10-11
features of 10-7
in the editor 10-7, 10-8
setting up 10-5
synchronizing library A-17

Splash screen 43-8
SQL

automated 33-1
setting properties for 33-4

constructing SQL statements 28-1
declaring cursors for 28-4
modifying automated SQL 32-1, 33-31
sending to database 27-2
viewing generated SQL 36-2
viewing generated statements 33-43

SQL generation 33-1
modifying automated SQL 33-31

Standard arguments 44-3
client authentication connection function

44-28
client authentication post-connection func-

tion 44-30
control function 44-44
error function 44-38
field function 44-15
grid function 44-21
group function 44-26
initialization function 44-42
key change function 44-37
passing into unnamed procedure 19-3
playback function 44-43
prototyped function

getting for 44-8
record function 44-43
reset function 44-42
screen function 44-11
tab control function 44-24
timeout function 44-33
timer function 44-35
types 19-21

video processing function 44-47
START

dbms command
setting starting row 29-15

Startup file 43-8
Startup screen 42-7
Status

determining in debugger 39-4
Status line

default message
overriding 26-8

message functions 26-4
message priority 26-7
message types 26-7
terminal portability 48-2
text

background 26-9
for screen 26-8
for widget 26-8

Status line function 44-45
example 44-96
return codes 44-46

STORE
dbms command

setting continuation file 29-12
String

getting length 19-51
String expression

JPL 19-53
Substring specifier 19-50

colon variables 19-29
Support routine

Database drivers 7-1
database engines 7-4

Synchronization property 36-9
System decimal

defining symbol 45-23
interpreting 45-45
I-20 Application Development Guide

Index
T

Tab Card widget
event handler in Java 21-12

Tab control function 44-24
standard arguments 44-24

Tab controls
about 23-12
getting the number of cards 23-12
setting the card sequence 23-12
setting the topmost card 23-12

Table property
table view

in automated SQL generation 33-14
Table views 31-7

adding a virtual column 31-11
adding members to 31-11
identifying as root 31-8
limiting through commands 34-5
properties for SQL generation 33-2, 33-4,

33-14
setting child table view 31-8
setting parent table view 31-8
traversal properties 36-21
viewing properties 31-8

Tables
in automated SQL generation 33-2, 33-14,

33-36
joining multiple 33-22
storing in repository 11-5

Target string 18-6
Terminal

bell
in message 45-10

portability 48-2
status line 26-7

Test mode 38-4
exiting 38-8
menu bar 38-1
vs. application mode 38-5

Testing

overview of 1-24
Text

entry widgets
event handler in Java 21-13

formatting for a database 30-1
Text editor

invoking for JPL procedures 19-14
Three-tier applications 4-1
Three-tier architecture 1-3, 27-5
Timeout

server configuration 39-3
Timeout function 44-33

example 44-78
return codes 44-33
standard arguments 44-33

Timer function 44-34
return codes 44-35
standard arguments 44-35

Toggle button widget
event handler in Java 21-13

Toolbar 15-7
displaying 15-1
setting runtime properties 15-10

Top Screen option 38-2
Trace menu

in debugger 39-11
Transaction

error handling 28-12
processing database transactions 28-10

Transaction classes
defaults

widgets 36-14
Transaction events

adding to the stack 35-10
after an error 36-28
controlling the event stack 35-9
unsupported 32-6

Transaction manager
and debugger 39-8
before image processing 36-7
changing the transaction mode 31-14
Application Development Guide I-21

Index
closing a screen 36-2
commands 34-2
copying from repository 31-3

determining sequence 31-4
creating screens for 31-1
deleting data 36-9
development process for 31-2
disabling 36-3
error processing

controlling display 36-30
event functions 32-1

checking for database errors 32-4
DELETE statement 32-9
INSERT statement 32-9
SELECT statement 32-6
specifying return codes 32-3
UPDATE statement 32-9

event stack 35-7
fetching data 36-3

for update 36-8
with a maximum row count 36-6

generating SQL 1-17, 27-2
hook functions

return codes 44-50
standard arguments 44-50

in JetNet applications 35-12
initiating a transaction 17-7
installed event functions 44-50
opening a screen 36-2
processing at runtime 36-1
processing events 35-1
restrictions 34-2
specifying commands 31-13, 34-4
SQL generation 33-3
tree traversal 31-10
using in Panther 27-2
verifying changes 36-11
viewing generated SQL 36-2
writing event functions 31-15

Transaction manager commands 34-2
availability by mode 34-7

processing for 35-3
specifying full commands 34-6
specifying partial commands 34-6

Transaction mode 36-12
availability of commands 34-7

Transaction model 35-5
for JetNet 35-13
initializing 7-2
return codes 32-3
specifying in Windows 7-8

Transaction styles
ASCII A-40
converting to/from ASCII A-40
defaults 36-14
report

s2asc A-40
Translating 45-45

message file 45-2
substitution variables 45-16, 45-21

Traversal properties
for link widgets 36-25
for table views 36-22
for widgets 36-25

TUXEDO
creating service components 12-1

Two-tier applications 4-3
Two-tier architecture 1-2, 27-4
Type-Specifiers and Arguments 21-18

U

UNIQUE
dbms command

suppressing repeating values
suppressing repeating values 29-18

UNIX
deploying application D-4

Unnamed procedure 19-2
executing in screen JPL 17-6
getting standard arguments 19-3

Updatable property
I-22 Application Development Guide

Index
in automated SQL generation 33-32, 33-36,
33-38

Update Order property
in automated SQL generation 33-36

Update Service property 33-5
UPDATE statement

SQL generation from properties 33-36, 33-45
Use If Null property 33-15

in automated SQL generation 33-17
Use in Insert property 33-33

expression 33-34
in automated SQL generation 33-33

Use in Select property 33-10
Use in Update property

expression 33-37
in automated SQL generation 33-37

Use in Where property 33-14
in automated SQL generation 33-14
operator specification 33-15

Utilities
bin2c A-2
bin2hex A-4
binherit A-6
cmap2bin A-8
f2asc A-11
jpl2bin A-20
m2asc A-22
msg2bin A-29

V

Validation 23-14
clearing MDT bit 23-15
field 44-15
field function invocation 44-15
MDT bit 23-14
screen 44-15
setting mdt property 17-6
setting valided property 17-6, 23-14
testing screen for modified data 23-15
validation bit 23-14

XMIT key 44-15
Validation bit 23-14
Validation Link property 33-46, 33-47

setting on a widget 31-13
valided property

setting 23-14
Variables

monitoring through debugger 39-6
watching through debugger 39-26

Version Column property 33-41
in automated SQL generation 33-42

Video file
making memory-resident 42-11

Video mapping
internationalization 45-46

Video processing function 44-47
return codes 44-49
standard argument 44-47

View menu
in debugger 39-4

Viewport 13-4
Virtual column 31-11

W

Web application architecture 1-22
WHERE clause

in automated SQL generation 33-14, 33-38,
33-41

Widget events 17-2
Widget name

case sensitivity 29-3
getting 14-3

Widget runtime properties
getting 23-6

Widgets
attaching JPL procedure to

attaching JPL procedure 19-16
calls to JPL from 19-21
copying from repository

for transaction manager 31-3
Application Development Guide I-23

Index
identifying 14-3
including in SQL generation 31-11
JPL validation 19-8
mapping to database columns 29-3
menu

attaching 15-4
properties for SQL generation 33-3
storing templates in repository 11-7
validation 23-14

Window
changing focus among siblings 24-5
deselecting 24-4
displaying messages in 45-12
giving focus to 24-4
opening 13-3

as sibling 24-4
setting next as sibling 24-4

Window stack 24-3
changing order 24-4

Windows
deploying application D-2
using MDI frame 13-6

Windows initialization file
specifying 43-8
splash screen 43-8

WITH CONNECTION
dbms command

setting database connection 8-4
WITH ENGINE

dbms command
setting database engine 7-3

Word wrapped text
fetching column values 29-8

X

XMIT key (transmit)
and push buttons 18-7
screen validation 44-15

XML 22-1
generating 22-3

importing 22-4
properties 22-1

Y

Yes/No
setting default values 45-24
translating 45-45
I-24 Application Development Guide

	Contents:
	About This Document
	Documentation Website
	How to Print the Document
	Documentation Conventions
	Contact Us!

	1 Building a Panther Application
	Application Development Steps
	Installing Panther
	Designing the Project Requirements
	Define the Application Architecture
	Define the Database Access
	Define the Client Platforms
	Define the Development Team

	Configuring the Server Environment
	Setup the COM Component Server

	Preparing the Development Environment
	Connect to the Database
	Setup the Application Client
	Configure Library Access

	Connecting to the Middleware
	Defining Services
	Services in JetNet/Oracle Tuxedo
	Services in COM and EJB Components

	Building a Repository from a Database
	Table Views and Links

	Creating Application Components
	Repository Development
	Graphical Editor
	Screen Wizard

	Enhancing the Interface
	Modify Properties
	Define User Actions
	Define Event Functions
	Fetch Database Information
	Add Reports

	Integrating Application Components
	Define Screen Interaction
	Share Data Between Screens

	Setting Application Security
	Deploying on the Web
	Configure the Web Application
	Create the Web Client Screens
	Program Web Events

	Testing and Debugging
	User Interface
	Service Components

	Fine-Tuning the Application
	Using C and Java Code
	Improving Performance

	Deploying the Application

	Part I Preparing for Development
	2 Understanding the Panther Distribution
	3 Defining the Project Requirements
	What Is the Application Architecture—Two-tier or Three-tier?
	For Three-tier Applications, Which Middleware Meets Your Requirements?
	Will the Application Be Deployed on the Web?
	What Is the Best Database Schema for this Application?
	Is a Database Based on that Schema Currently Available?
	How Will the Repository Be Used During Application Development?
	How Will the Database Be Accessed?
	How Will Service Components Be Used in Your Application?
	What Are the Hardware Platforms for the Application Clients?
	How Computer Literate Is the Application Audience?
	In What Language Will the Programming Code Be Written?
	What Method Will Be Used for Handling Errors?
	What Type of Network Access Is Available?
	How Will the Work Be Distributed Among the Development Team?

	4 Defining Application Architecture
	Components of a Panther Application
	Building Two-Tier Applications
	To build a two-tier application:

	Building Distributed Applications
	Building a JetNet/Oracle Tuxedo Application
	To build a three-tier JetNet/Oracle Tuxedo application:

	Building a Component-based Application
	To build a component-based application:

	5 Preparing the Application Server
	JetNet Application Server
	Create the Application Directory
	Configure the Application Servers
	See Also

	Oracle Tuxedo Application Server
	WebSphere Application Server

	6 Preparing the Development Clients
	Copy Your Panther Distribution
	Configure Your Panther Application
	Specify Your Panther Environment
	Configure Your Project Requirements
	Colors
	Message File
	Multiple Platforms
	Programming Functionality
	Remote Library Access

	Distribute the Setup to the Client Workstations
	Create an Application Directory

	7 Initializing the Database
	Initializing One or More Engines
	Initialization Procedure
	Setting the Default Engine

	Initializing the Database via the Executable
	Database Interface Initialization Routine
	Changing Static Initialization
	How to Create a New Version of dbiinit.c
	Options and Arguments

	Dynamic Database Initialization
	How to Identify the Database Engines in the Initialization File

	8 Connecting to Databases
	Connecting to the Database in the Screen Editor
	How to Make a Direct Connection to the Database from Within the Screen Editor
	How to Close a Database Connection Within the Screen Editor

	Programmatically Connecting to the Database
	How to Close Database Connections
	Setting Default and Current Connections
	How to Set a Default Connection
	How to Override a Default Connection

	Multiple Connections to a Single Engine
	How to Make Multiple Connections to the Database
	How to Close All Connections on an Engine

	Connecting to Multiple Engines

	Checking the Status of Connections
	How to Find out If a Database Connection is Open
	How to Find out the Database Connection Assigned to a Database Cursor
	How to Find out the Handles to a Database Connection

	Verifying Database Access
	UNIX
	Windows

	9 Connecting to the Middleware
	Using JetNet and Oracle Tuxedo
	Opening a Middleware Session in the Editor
	How to Open a Middleware Session

	Opening a Middleware Session Programmatically

	Using MTS
	Using WebSphere Application Server

	10 Accessing Libraries
	Configuring Your Library Access
	Managing Library Access
	Accessing Library Members Outside of Source Control
	Opening Library Members
	Closing Library Members
	Releasing a Reservation

	Maintaining Libraries Under Source Control
	How to Provide an Interface to Your Source Control Manager

	Library Members Under Source Control Management
	How to Edit a Library Member Under Source Control Management
	How to Save a Read-only Library Member and Store It Under Source Control Management
	How to Delete a Library Member that Is Under Source Control

	Part III Creating Application Building Blocks
	11 Creating and Using a Repository
	About Repositories and Inheritance
	What You Need to Know

	Using the Repository
	Creating the Repository
	Opening a Default Repository

	Creating Repository Entries
	Creating Repository Objects
	Creating Screen Templates
	Storing Database Information
	Reimporting Your Database Tables
	Database Import Properties
	Column Edits

	Storing Widget Templates
	Storing Widget Definitions
	Using the Wizards

	Using Inheritance
	Controlling Property Inheritance
	Updating Inheritance in Application Screens
	Finding the Source of Inheritance

	12 Creating Service Components
	Service Components for JetNet and Oracle Tuxedo
	Creating Service Components in JetNet/Oracle Tuxedo
	Writing Service Requests in JetNet/Oracle Tuxedo
	Creating Client Screens
	Updating the JIF

	Service Components for COM Components and EJBs
	Creating Service Components in Component Applications
	Creating Client Screens in Component Applications
	Deploying Components in COM Applications
	Deploying Components in WebSphere Application Server
	Using the Common Component Interface

	13 Developing Client Screens
	Creating Screens
	Creating Dialog Boxes
	Understanding Screen Scope

	Opening Screens
	Search Path
	Screen Display Defaults
	Displaying Screens in Viewports

	Overriding Display Defaults
	Specifying Viewports at Runtime

	Opening Screens in Windows Applications
	Specifying the Window Style

	Closing Screens
	Setting Screen Properties
	Using JPL to Set Screen Properties
	Runtime Properties for Screens

	14 Identifying Screen Widgets
	Widget Types
	Widget Identifiers
	Object IDs
	Widget Names
	Field Numbers

	Arrays
	Non-Scrolling and Scrolling Arrays
	Synchronized Scrolling Arrays

	Element and Occurrence Numbering

	Groups
	ActiveX Controls

	15 Including Menus and Toolbars
	Loading Menus into Memory
	Installing Menus
	Installing Menus with Shared Content
	Installing Menus with Unique Content
	Referencing External Menus

	Displaying Toolbars
	Changing Menus at Runtime
	Getting and Setting Properties
	Dockable Toolbar Properties

	Changing the State of Toggle Items
	Creating and Deleting Menus
	Inserting and Deleting Menu Items

	Uninstalling and Unloading Menus
	Invoking Popup Menus
	Calling Menu Functions From JPL
	Outputting Menu Definitions to ASCII
	Keywords
	Menu Properties

	16 Building Reports

	Part IV Preparing the Programming Interface
	17 Understanding Application Events
	Screen and Widget Events
	Screen Entry
	Open Events
	Exposure Events

	Frameset Events
	Widget Events
	Automatic Field Function
	Event-specific Functions and Arguments
	Field Entry
	Field Validation
	Field Exit
	Grid Column Label Click
	Tab Control Events

	Screen Exit
	Screen Exit Processing

	Closing Screens
	Exiting an Application

	Programming User-initiated Events
	Transaction Manager Events
	Database Interface Events
	Web Application Events
	Middleware Events
	JetNet and Oracle Tuxedo Events

	18 Programming Control Strings
	Associating Control Strings with the Application
	Control String Types

	Displaying Screens
	Search Path
	Viewport Arguments

	Executing Functions
	Using Built-in Functions

	Invoking Operating System Commands

	19 Programming in JPL
	JPL Modules and Procedures
	Module Structure
	Parameters
	Passing Standard Arguments to JPL Procedures

	Return Types
	Procedure Execution
	Control Flow Statements
	Included Modules
	Comments

	Sample JPL Module

	Module Types
	Widget Modules
	Executing Widget Modules

	Screen Modules
	Executing Screen Modules

	Report Modules
	External Modules
	Library Modules
	File Modules
	Module Compilation
	Memory-Resident Modules

	Writing JPL in the Editor
	Screen- and Report-Level JPL
	Widget-Level JPL
	Library Modules
	Using Your Own Editor
	Inserting JPL To and From Disk
	Compiling and Saving

	Calls
	Arguments
	Returns
	Calls from Screens and Widgets
	Using a Memory-resident Screen

	Calls from Control Strings
	JPL Call Command
	Inline Calls
	Precedence of Called Objects

	Variables
	Declaring JPL Variables
	Declaring Global Variables
	Panther Variables
	Variable Scope and Lifetime
	Colon Preprocessing
	Syntax
	Expansion
	Controlling Expansion with Parentheses
	Substring Expansion
	Array Expansion
	Reexpansion

	Constants
	Non-Decimal Number System Formats
	Quoted String Constants

	Setting Properties Using the Property API
	Object Specification
	Object Modifiers
	Array Subscripts
	Signed and Unsigned Subscripts
	References to Element Field Numbers
	Precedence of Object Types
	Compound Object Strings

	Object Values
	Properties
	Editor Properties
	Runtime and Application Properties
	Multi-item Properties
	Property Substrings
	Property Value Types
	Implicit Properties
	Properties of Elements and Occurrences

	Selection Group Data
	Grid Properties
	Traversal Properties
	Global Variables

	Data Types, Operators, and Expressions
	Data Types
	Operators
	Operator Precedence
	Conversion of Operands
	Concatenation
	Substring Specifiers
	@date
	@length
	@sum
	Bitwise Operators

	Expressions
	String Expressions
	Numeric Expressions
	Bitwise Expressions
	Logical Expressions

	JPL Commands
	Optimization

	20 Writing C Functions
	Types of C Functions
	Using Automatic Functions
	Using Demand Functions

	Writing C Functions
	Calling C Functions
	Calling Panther Library Functions

	21 Java Event Handlers and Objects
	Java Overview
	Using Java in Panther
	Writing Java Code
	Determining the Java Event Handler

	Event Handler Interfaces
	Screen Event Handlers
	ActiveX Control Event Handlers
	Check Box Event Handlers
	Combo Box Event Handlers
	Dynamic Label Event Handlers
	Grid Event Handlers
	Group Event Handlers
	List Box Event Handlers
	Option Menu Event Handlers
	Push Button Event Handlers
	Radio Button Event Handlers
	Scale Event Handlers
	Tab Card Event Handlers
	Toggle Button Event Handlers
	Text Field Event Handlers

	Object Interfaces
	Implementing Service Component Methods in Java
	Service Component Methods in Oracle Tuxedo and JetNet
	Service Component Methods in COM/DCOM/MTS
	Service Component Methods in WebSphere

	Working with Java Objects
	Instantiating Java Objects
	Type-Specifiers and Arguments
	Destroying Java Objects
	Calling Java Object Methods
	Accessing Panther Functions From a Java Method
	Accessing Java Object Properties
	Designating an Error Handler

	Java Samples

	22 Using XML Data
	Defining XML Properties
	Defining XML Screen Properties

	Processing XML Properties
	Processing XML for Multiple Occurrences
	Processing Hidden Widgets

	Generating XML
	Importing XML
	Sample XML File

	23 Using Widgets
	Changing Widget Display
	Controlling Input
	Setting Data Entry Formats
	Setting Date and Currency Formats

	Traversing Widgets
	Traversing Sets of Widgets

	Getting Widget Data
	Getting Widget and Array Data
	Getting Properties

	Changing Widget Data
	Writing Data to Widgets
	Clearing Widget Data
	Inserting and Deleting Occurrences

	Making Widget Selections
	Getting Selections
	Changing Selections
	Manipulating Grids
	Making Selections in List Boxes

	Accessing Tab Controls
	Accessing ActiveX Controls
	Checking Validation

	24 Setting the Screen Sequence
	Forms and Windows
	Forms and the Form Stack
	Windows and the Window Stack
	Window Stack Organization
	Sibling Windows
	Window Stack Manipulation

	25 Moving Data Between Screens
	Sending and Receiving Data
	Bundles
	Sending Data
	JPL send
	Library Function Calls

	Receiving Data
	JPL receive
	Library Function Calls

	Using Global Variables
	Accessing Values on Other Screens
	Using Local Data Blocks
	Selection Groups
	Restrictions
	Invalid Targets
	Data Overflow
	Interaction with Screen Modules

	Loading and Activating LDBs
	Default Activation
	Runtime Loading and Activation
	Read-only LDBs

	Getting Information on LDBs

	26 Displaying Messages
	Window Versus Status Line Display
	Acknowledging Messages
	Disabling Messages
	Setting Display Defaults
	Message Functions
	Broadcasting Messages
	Status Line Usage
	Message Display
	Error messages
	sm_d_msg_line messages
	Ready/Wait
	Widget/Menu item status
	Screen status
	Background status

	Other Status Line Information

	Error Hook Function

	Part V Accessing the Database
	27 Performing Database Operations
	How Database Operations are Processed
	Developing Database Operations for your Application
	Differences in Application Architecture

	About the Transaction Manager
	About the SQL Generator
	About the Database Interface

	28 Writing SQL Statements
	Database Development Process
	Database Interface Commands
	Using Database Cursors
	Using a Default Cursor
	Using a Named Cursor
	Declaring a Cursor
	Supplying Values Using Colon Expansion
	Supplying Values Using Binding
	Executing a Cursor with Multiple Connections
	Modifying a Cursor

	Using Cursors in the Transaction Manager
	Closing a Cursor
	To close a cursor and free its data structure, execute:
	To close the default cursor, execute:

	Database Transaction
	Engine-Specific Behavior
	Error Processing for a Transaction

	29 Reading Information from the Database
	Fetching Data Using SELECT Statements
	Targets for a SELECT Statement
	Automatic Mapping
	Aliasing
	Using DBMS ALIAS
	Aliasing by Column Names
	Aliasing by Column Positions
	Aliasing with the Engine’s SELECT Syntax

	Fetching Multiple Rows
	Determining the Number of Occurrences
	Scrolling Through a SELECT Set
	Using Scrolling Arrays
	Using Non-scrolling Arrays
	Scrolling Commands
	Remapping Logical Keys for Scrolling
	Controlling the Number of Rows Fetched
	Choosing a Starting Row in the SELECT Set

	Format of Select Results
	Character Column
	Date-time Column
	Numeric Column
	Binary Columns
	Fetching Unique Column Values
	Redirecting Select Results to Other Targets

	30 Writing Information to the Database
	Colon Preprocessing
	Colon-plus Processing
	Perform Standard Colon Preprocessing
	Determine the Variable's Panther Type
	Format a Non-null Value

	Colon-equal Processing
	Writing Character String Data to the Database
	Writing Date/Time or Null Data to the Database
	Writing Numbers as Character Strings to the Database
	Writing Hexadecimal Values to the Database

	Using Parameters in a Cursor Declaration
	Parameter Substitution and Formatting
	Writing Currency Values to the Database
	Writing Data from Arrays

	31 Building a Transaction Manager Screen
	Development Process for Transaction Manger
	Copying Repository Objects
	Sequence for Copying Objects

	Specifying the Traversal Order
	Table Views
	Links
	How to Gain Access to Table View and Link Properties
	How to View the Table Views and Links for a Screen

	Setting Link Properties
	Determining the Root Table View
	Determining the Order of Processing
	Specifying the Link Type
	Tree Traversal

	Setting Table View Properties

	Specifying Widget Properties
	Changing SQL Generation
	Using Grids
	Using Validation Links

	Specifying Transaction Manager Commands
	Changing the Transaction Mode

	Adding a Transaction Event Function

	32 Writing Transaction Event Functions
	The Nature of TM Event Functions
	Specifying a Return Code
	Specifying TM_PROCEED
	Specifying TM_OK
	Checking for Database Errors
	Specifying TM_FAILURE
	Performing Error Checking
	Unsupported Events

	Modifying SELECT Statement Processing
	Replacing a SQL SELECT Statement
	Modifying SQL Generation

	Replacing Other SQL Statements

	33 Using Automated SQL Generation
	Guidelines for Automated SQL Generation
	Specifying Tables
	Specifying Columns
	Generating SQL in the Transaction Manager
	Sample Tables

	Generating SELECT Statements
	Fetching Data from the Database
	Defining a Widget’s Participation in SELECT Statements
	Implementing a SELECT expression

	Controlling How Data Is Selected
	Validating Data

	Eliminating Duplicate Rows in a Result Set
	How to Implement the DISTINCT or UNIQUE Keyword

	Determining What Tables to Select From
	Defining the Where Condition
	How to Define a Widget's Participation in the WHERE Clause
	Fetching an Exact Match
	Fetching Records Matching a Partial String
	Fetching Records Matching One of a List of Values
	Fetching Null Values

	Grouping SELECT Statement Results
	Grouping Results Automatically
	Specifying a GROUP BY Clause
	Grouping Multiple Columns
	Applying Search Conditions to the Result Set

	Sorting the Results from a SELECT Statement
	Specifying a Sort Order for a Specific Table View
	Example: Sorting Results

	Selecting Data from Multiple Database Tables
	How to Specify the Join Relationship
	Specifying Joins in the Where Condition
	Implementing an Equi-join: one-to-one relationship
	Generating Multiple SELECT Statements: One-to-many Relationship
	Specifying the Join Type

	Modifying SELECT Statements

	Generating INSERT Statements
	Inserting Data to Specific Columns
	Defining a Widget's Participation in an INSERT Statement

	Inserting Specific Values
	Expression (insert_expression) Property
	Inserting Data Using an INSERT Expression

	Generating UPDATE Statements
	Identifying Columns to Update
	Defining a Widget's Participation in an UPDATE Statement
	Expression (update_expression)

	Specifying the Record to Update

	Generating DELETE Statements
	Implementing Optimistic Locking
	Implementing Optimistic Locking using the Version Column Property
	Examples of Optimistic Locking

	Viewing the SQL Statements
	Viewing SELECT Statements
	Viewing INSERT Statements
	Viewing UPDATE Statements

	Validating Input Data against the Database
	Implementing a Validation Link
	Specifying a Validation Link

	Validation Link Processing
	Adding a Lookup to a Validation Link
	Specifying the Lookup
	How to Define a Lookup Specification

	34 Specifying Transaction Manager Commands
	Transaction Manger Commands
	Command Syntax
	Limiting the Number of Table Views
	Implementing Full and Partial Commands

	Setting the Transaction Mode

	35 Generating Transaction Manager Events
	Generating Transaction Manager Events
	Traversing the Table Views
	Generating Events in the Transaction Model
	Invoking Event Functions and Models
	Event Processing Steps
	Controlling the Event Stack
	Transaction Models and the Event Stack

	Adding Your Own Transaction Events
	Example

	Logging Transaction Events

	Using the Transaction Model with JetNet/Oracle Tuxedo

	36 Runtime Transaction Manager Processing
	Running Transaction Manager
	Opening the Screen
	Closing the Screen
	Viewing the Generated SQL
	Disabling the Transaction Manager

	Displaying Data
	Executing the Select Statement
	Scrolling Through the Select Set
	Controlling the Number of Rows
	Customizing Select Processing

	Updating the Database
	Traversal for Database Updates
	Updating Data
	Updating Data in Arrays
	Using Multi-text Widgets
	Changing the Primary Key

	Deleting Data
	Clearing Data in Arrays

	Inserting Data
	Saving Data
	Customizing Database Updates

	Transaction Modes
	Transaction Styles and Classes
	Applying Styles

	Accessing Transaction Information
	Using Functions to Set Transaction Manager Behavior
	Using Transaction Manager Variables
	Using Traversal Properties
	Reading the Current Transaction
	Identifying a Widget's Table View
	Identifying Links

	JPL Properties for Transaction Manager Operations
	Determining How Screen Data Has Changed

	Processing Errors in the Transaction Manager
	Identifying the Value of the TM_STATUS Variable
	Setting the Value of TM_STATUS

	Event Processing after Errors
	Processing the Event Stack

	Controlling Error Messages
	Error Message Display
	Error Message Content
	Error Message Numbers
	Suppress Error Messages

	37 Processing Application Errors
	Default Error Handlers
	Server Activity
	Client Output

	Variables for Logging Error and Status Information
	Database Error Event Functions
	Writing an Error Event Function

	Custom Error Handlers
	Example

	Part VI Testing Your Application
	38 Testing Application Components
	Test Mode Menu Bar
	Edit menu
	Options menu
	Keys menu
	Windows menu
	Transaction menu
	Database menu
	Middleware Session menu
	Report menu

	Testing Application Components
	Testing Screens and Service Components
	Service Components
	How to Test a Service Component with a Direct Database Connection

	Three-tier Client Screens
	How to Test Client Screens with a Remote Database Connection

	Two-tier Client Screens
	How to Test Client Screens with a Direct Database Connection

	Closing and Exiting
	How to Close a Screen, but Remain in the Editor
	How to Exit from the Editor
	How to Exit Application Mode

	39 Using the Debugger
	Debugging Services and Service Components
	How the Debugger Works
	Starting and Stopping the Debugger
	Views into Your Application

	Configuring the Debugger
	Setting Log File Preferences
	Setting Debugger Preferences

	Debugger Menu Bar
	File
	Tools
	View
	Windows
	Edit
	Trace
	Breaks
	Options

	Viewing JPL
	Opening a Source Module

	Viewing Application Screen Information
	Stepping through Program Execution
	Using Animation

	Setting Breakpoints
	Setting Location Breakpoints
	Setting Breakpoints on Execution Events
	Break on Change in Expression
	To call a specified function (in expert mode):

	Monitoring Variables and JPL Expressions
	Modifying and Monitoring Application Data

	40 Identifying Users
	Two-tier Applications
	JetNet Applications
	MTS Applications

	41 Optimizing Applications
	Database Fetches
	Web Applications
	LDBs

	Part VII Deploying the Application
	42 Building Application Executables
	Steps for Creating an Executable
	Prepare the Application Directory
	Determine the Executables to Build
	Link the Database Engine
	To link your database engine:
	To exclude the JDB database from the executable:
	To link JDB and your database engine:

	Include C Modules in the Executable
	To link your own C modules to the executable:

	Identify the Database Version
	To verify (or update) database-specific information:

	Compile the Changes

	Customizing Source Code for an Application
	Source Code Structure
	Specifying an Application Startup Screen
	Specifying an Application Icon
	Including Memory-Resident Components
	To make screens, menus, or JPL modules memory-resident:
	To make configuration files memory-resident:

	Rename the Distributed Panther Library
	To rename the Panther library:

	Subsystem Installation
	Oracle Tuxedo Executables

	43 Preparing Applications for Release
	Basic Deployment Steps
	How to Deploy your Application

	Required Files
	Optional Files
	Specifying Files and Directories
	Customizing the Distribution
	Configuration Support
	Specifying a Startup File
	Specifying a Title Screen
	Specifying Your Own Icon

	Part VIII Advanced Development Topics
	44 Installed Event Functions
	Installed Function Types
	Demand Functions
	Automatic Functions

	Standard versus Non-standard Arguments
	Installation
	Preparing Functions for Installation
	SM_*FNC Macro
	Function Name
	Function Address

	Installing Functions
	func_type
	funcs
	num_funcs

	Prototyped Functions
	Accessing Standard Argument Information
	Installing Prototyped Functions

	Screen Functions
	Screen Function Arguments
	K_ENTRY
	K_EXIT
	K_EXPOSE
	K_KEYS
	K_NORMAL
	K_OTHER

	Screen Function Returns
	Installation of an Automatic Screen Function
	Installation of Demand Screen Functions

	Field Functions
	Execution
	Entry
	Exit
	Validation

	Field Function Arguments
	VALIDED
	MDT
	K_ENTRY
	K_EXIT
	K_EXPOSE
	K_EXTEND
	K_EXTEND_LAST
	K_KEYS
	K_NORMAL
	K_BACKTAB
	K_ARROW
	K_SVAL
	K_USER
	K_OTHER
	K_INSDEL

	Field Function Returns
	Installation of an Automatic Field Function
	Installation of Demand Widget Functions

	Grid Functions
	Grid Function Arguments
	K_ENTRY
	K_EXIT
	K_EXPOSE
	K_KEYS
	K_NORMAL
	K_BACKTAB
	K_ARROW
	K_SVAL
	K_USER
	K_OTHER
	K_INSDEL

	Grid Function Returns
	Installation of Demand Grid Functions

	Tab Control Functions
	Tab Control Function Arguments
	K_ENTRY
	K_EXIT
	K_EXPOSE

	Group Functions
	Group Function Arguments
	Group Function Returns
	Installation of an Automatic Group Function
	Installation of Demand Group Functions

	Client Authentication Functions
	Client Authentication Arguments
	Client Authentication Returns
	Installation

	Client Post-Connection Functions
	Client Post-Connection Arguments
	Client Post-Connection Returns
	Installation

	Help Function
	Help Function Arguments
	Help Function Returns
	Installation

	Timeout Functions
	Timeout Function Arguments
	TF_TIMEOUT
	TF_RESTART

	Timeout Function Returns
	TF_KEEP_CALLING
	TF_STOP_CALLING

	Installation

	Timer Functions
	Timer Function Arguments
	TF_TIMEOUT
	TF_RESTART

	Timer Function Returns
	TF_KEEP_CALLING
	TF_STOP_CALLING

	Installation

	Key Change Function
	Key Change Function Arguments
	Key Change Function Returns
	Installation

	Error Function
	Error Function Arguments
	Error Function Returns
	Installation

	Insert Toggle Function
	Arguments
	Returns
	Installation

	Check Digit Function
	Arguments
	Returns
	Installation

	Initialization and Reset Functions
	Arguments
	Returns
	Installation

	Record and Playback Functions
	Arguments
	Returns
	Installation

	Control Functions
	Arguments
	Returns
	Installation

	Status Line Function
	Arguments
	Returns
	Installation

	Video Processing Function
	Arguments
	Returns
	Installation

	Database Driver Hook Functions
	Transaction Manager Event Functions
	Arguments
	Returns
	Installation
	Errors

	Sample Functions
	Prototyped
	Example 2

	Automatic Screen
	Automatic Widget
	Example 1
	Example 2

	Demand Widget
	Automatic Group
	External Help
	Timeout
	Key Change
	Error
	Insert Toggle
	Initialization and Reset
	Record and Playback
	Control
	Status Line

	45 Customizing the User Interface
	Using Message Files
	Creating and Modifying Message Files
	How to Create or Add to a Message File

	Message Entry Syntax
	Reserved Characters
	Missing Entries

	Message Classes
	Defining a Message Class

	Setting Message Display and Behavior Options
	Customizing Date and Time Formats
	Date/Time Defaults
	Date/Time Tokens
	Creating Date and Time Defaults
	Translating Defaults for Developers
	Literal Dates in Calculations

	Numeric Formats
	Numeric Format Syntax
	Formats in Provided Message File
	Creating a Default Numeric Format
	Translating Defaults for Developers

	Decimal Symbols
	Customizing Push Button Labels for Message Boxes
	How to Change/Translate Push Button Labels

	Setting Yes/No Values
	Using Alternate Message Files

	Configuration Map File
	Defining Colors
	Defining Color Aliases
	Editor Colors
	Sample Colors Section

	Defining Color Schemes
	Default Schemes
	Scheme Syntax

	Defining Line and Box Styles
	Character Mode Styles
	GUI Styles

	Setting Display and Printing Fonts
	Point Sizes
	Default Font
	Default Font Size
	Panther Font Aliases

	Sample Configuration Map File

	Translating Applications
	8-Bit Character Data
	Translating Screens in Application Programs
	Distribution Translation
	Installation Translation
	Runtime Translation

	47 Processing the Mouse Interface
	Trapping Mouse Events
	Using Key Change Functions
	Trapping Double Clicks on a Widget

	Getting Mouse Data
	Determining Mouse Click Location
	Identifying Mouse Coordinates
	Mouse and Widgets
	Mouse and Screen

	Determining Mouse Button State
	Identifying Keyboard Modifiers
	Reporting Elapsed Time between Mouse Clicks

	Changing the Mouse Pointer State

	46 Dynamic Data Exchange
	Panther as a DDE Server
	Enabling Connections
	Creating Links
	Paste Links
	Links Specified in Client Syntax
	Microsoft Word
	Microsoft Excel

	Processing Links
	Updating Client Data
	Hot Links
	Warm Links
	Cold Links
	Array Data
	Data Conversion

	Disabling Panther as a DDE Server

	Panther as a DDE Client
	Enabling Connections
	Creating Links
	Paste Links
	Explicit Links Through Library Functions
	Links Specified in Initialization File

	Processing Link Requests
	Updating Data from the Server
	Array Data

	Destroying Links to a DDE Server
	Disconnecting from a DDE Server

	Execute Transactions
	Poke Transactions

	48 Writing Portable Applications
	Panther Header Definitions
	Terminal Dependencies
	Display Area and Attributes
	Key Translation and Labels

	Language Dependencies
	Keystroke Filter Translation
	Case Conversion
	Range Checks
	Numeric Data
	Alphabetic Data
	Non-Language Data

	49 Sending Mail in Panther
	Defining Global Mail Properties
	Defining Multiple Addresses

	Creating and Sending Email
	Creating a Mail Message Object
	Sending Mail
	Sending a Screen Image
	Sending Mail Using a Field
	Sending Mail from a Text File
	Sending Simple Mail Messages

	Sending Attachments

	A Development Utilities
	bin2c
	bin2hex
	binherit
	cmap2bin
	f2asc
	formlib
	jif2asc
	jpl2bin
	m2asc
	msg2bin
	msg2hdr
	s2asc

	B VideoBiz
	Starting VideoBiz
	How to Start VideoBiz

	VideoBiz Components
	The Database
	The Repository
	Imported Database Tables
	Other Repository Entries

	Application Screens
	Menu Bar/Toolbar
	JPL Code
	Styles Sheet
	Sample Reports
	Pixmap Files

	The User's Guide to VideoBiz
	What is VideoBiz?
	Starting VideoBiz
	How to Log into VideoBiz as an Employee
	How to Exit VideoBiz

	Identify the Customer
	How To Search for a Customer Record

	Add/Update Customer Records
	How to Insert a Customer Record
	How to Update a Customer Record

	Video Rental Listing
	How to Return a Video

	Rent Videos
	How to Rent a Video

	Customer Profile
	How to Obtain a Customer Profile

	Video Lookup
	Querying the Database and Selecting a Video
	How to Search for a Video

	View Video Details
	Marketing
	How to Run Marketing Reports

	C Panther Java Calculator
	Repository Contents
	Calculator Screen
	Java Classes

	D Deployment Checklist for Two-tier Applications
	Directory Structure for Two-tier Applications
	Checklist for Deployment
	Preparing a Windows Distribution
	Preparing a UNIX Distribution

	Index

