
Database Driver–Sybase
CT Library

Release 4.25

May 2000

3

Database Driver for
SYBASE CT Library

The SYBASE Open Client product provides software for communicating with
SYBASE SQL Server and SYBASE Open Server. Open Client has two compo-
nents: programming interfaces and network services. Prolifics for SYBASE is
written using the programming interfaces of Open Client.

SYBASE has two programming interfaces, DB-Library and Client-Library.
Prolifics provides a version of its support routine for each programming interface.
You choose one of the programming interfaces when you you install the Prolifics/
SYBASE product on Windows or when you edit the Prolifics/SYBASE makevars
file on any platform.

In most cases you will notice no difference between Prolifics applications using
DB-Library and those using Client-Library. However, some advanced features
might be available in only one interface. DB-Library is recommended for
applications using complicated stored procedures, remote procedure calls, or
two–phase commits.

Client-Library is recommended for applications requiring SYBASE 10 native
cursor support. DB-Library does not have native cursor support; Prolifics uses
SYBASE dbprocesses to simulate cursor support with DB-Library. Unlike a
dbprocess, a native cursor allows an application to select data and update rows in
the select set without risking a deadlock. This problem can be avoided in
DB-Library applications but Client-Library’s native cursors are recommended for
applications selecting 500 or more rows for update.

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

This chapter provides documentation specific to SYBASE using CT Library. It
discusses the following:

� Engine initialization (page 4)

� Connection declaration (page 6)

� Import conversion (page 7)

� Formatting for colon-plus processing and binding (page 11)

� Cursors (page 12)

� Errors and warnings (page 14)

� Database transaction processing (page 17)

� Transaction manager processing (page 20)

� SYBASE-specific DBMS commands (page 21)

� Command directory for Prolifics for SYBASE (page 33)

This document is designed as a supplement to information found in the Develop-
er’s Guide.

Initializing the Database Engine
Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the
makevars file. In Prolifics for SYBASE, this results in the following ven-
dor_list structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”sybase”, dm_sybsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

sybase Engine name. May be changed.

dm_sybsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

Initializing the Database Engine

Chapter 51 Database Driver for SYBASE CT Library

For Prolifics for SYBASE, the settings can be changed by editing the make-
vars.syb file.

Engine Name

You can change the engine name associated with the support routine dm_sybsup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.syb file:

SYB_ENGNAME=tracking

If the application is accessing multiple engines, it makes SYBASE the default
engine by executing:

DBMS ENGINE sybase-engine-name

where sybase-engine-name is the string used in vendor_list. For example,

DBMS ENGINE sybase

or

DBMS ENGINE tracking

Support Routine Name

dm_sup is the name of the support routine for SYBASE. This name should not be
changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing SYBASE column names to either a Prolifics variable
name or to a column name in a DBMS ALIAS statement.

SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when
creating database objects like tables and columns. In subsequent SQL statements,
you must use the same exact case when referring to these objects. The default
setting for case-sensitive engines is DM_PRESERVE_CASE. This means that the
SYBASE column name is matched to a Prolifics variable with the same name and
case when processing SELECT results.

Connecting to the Database Engine

6 Database Drivers: Panther 4.25

The case setting can be changed. You can force Prolifics to perform case-insensi-
tive searches. Substitute the l option in the makevars file to match SYBASE
column names to lower case Prolifics variables, or use the u option to match to
upper case Prolifics variables.

SYB_INIT=l

or

SYB_INIT=u

If you edit makevars.syb, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

SYBASE allows your application to use one or more connections. The application
can declare any number of named connections with DBMS DECLARE CONNECTION
statements, up to the maximum number permitted by the server.

Each Prolifics connection has its own SYBASE Client-Library context structure
and connection structure.

The following options are supported for connections to SYBASE:

Table 1. Database connection options.

Option Argument

USER user-name

INTERFACES interfaces-file-pathname

SERVER server-name

DATABASE database-name

PASSWORD password

APPLICATION application-name

CHARSET character-set-name

CURSORS ignored with CT-Library

TIMEOUT seconds

HOST host-name

SQLTIMEOUT seconds

Importing Database Tables

Chapter 71 Database Driver for SYBASE CT Library

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORD password] \
[DATABASE database] [SERVER server] \
[APPLICATION application-name] \
[HOST host-name] [INTERFACES interface-file-pathname] \
[SQLTIMEOUT seconds] [TIMEOUT seconds] [CHARSET character-set]]

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER ”:uname” PASSWORD ”:pword” DATABASE ”sales” \
SERVER ”sybase10” APPLICATION ”sales” HOST ”oak” \
INTERFACES ”/usr/sybase/interfaces.app” \
SQLTIMEOUT ”120” TIMEOUT ”15”

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for SYBASE, it is
treated as an error.

Importing Database Tables

The Import⇒ Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an SYBASE database. When the
import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for SYBASE, the following database objects can be imported as
repository entries:

� database tables

� database views

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table or database table view.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Importing Database Tables

8 Database Drivers: Panther 4.25

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys or unique
indexes for the database table.

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, this information is automatically imported.

Links
Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets
A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE

Importing Database Tables

Chapter 91 Database Driver for SYBASE CT Library

indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each SYBASE data type.

Table 2. Importing Database Tables

SYBASE Data
Type

Code Prolifics Type C Type Widget Length Widget
Precision

binary 45 DT_BINARY Hex Dec column length * 2

bit 50 FT_INT Int 1

char 47 FT_CHAR Char
String

column length

datetime 61 DT_DATETIME Default 17

decimal 55

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

double preci-
sion

62 FT_FLOAT Float 16 2

float 62 FT_FLOAT Float 16 2

image 34 DT_BINARY Hex Dec column length

int 56 FT_LONG Long Int 11

money 60 DT_CURRENCY Default 26

nchar 47 FT_CHAR Char
String

column length

nvarchar 47 FT_CHAR Char
String

column length

numeric 63

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

real 59 FT_FLOAT Float 16 2

smalldatetime 58 DT_DATETIME Default 17

Importing Database Tables

10 Database Drivers: Panther 4.25

SYBASE Data
Type

Widget
Precision

Widget LengthC TypeProlifics TypeCode

smallint 52 FT_INT Int 6

smallmoney 122 DT_CURRENCY Default 14

text 35 FT_CHAR Char
String

254

timestamp 80 DT_BINARY Hex Dec column length

tinyint 48 FT_INT Int 3

varbinary 37 DT_BINARY Hex Dec column length * 2

varchar 39 FT_CHAR Char
String

column length

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

If a column’s length is defined as larger than 254 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Because widgets in Prolifics have a maximum length of 254, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types. In SYBASE,
this applies to the data types text, image, and for any numeric column that is
defined as identity.

DT_CURRENCY widgets have the Format/Display⇒ Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETIME widgets also have the Format/Display⇒ Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Other Widget
Properties

UseInUpdate property

DT_CURRENCY

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

Chapter 111 Database Driver for SYBASE CT Library

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates

Prolifics uses SYBASE’s convert function and the SYBASE format string,
yyyymmdd hh:mm:ss to convert a Prolifics date-time format to a SYBASE
format.

In order for conversion to take place, the widget must have the C Type set to
Default and the Format/Display⇒ Data Formatting property set to Date/Time. Any
date-time Format Type is appropriate.

This is the format for literal dates. It is compatible with SYBASE national
language support.

Formatting Currency Values

SYBASE requires a leading dollar sign for values inserted in a money column in
order to ensure precision. Prolifics will use a leading dollar sign when it formats
widgets with a Prolifics type of DT_CURRENCY. Any other amount formatting
characters are stripped. Therefore, if a currency field contained

500,000.00

Prolifics would format it as

$500000.00

Using Text and Image Data Types

Note that when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server setting of textsize.
The SYBASE server default is 32K; however, this value can be changed on the
server via the SYBASE set command. The global variable @@textsize contains
the current maximum.

Declaring Cursors

12 Database Drivers: Panther 4.25

Declaring Cursors

Each cursor in Prolifics for SYBASE has its own Client-Library command
structure whose parent is the connection structure associated with Prolifics’s
connection.

Prolifics Cursor SYBASE Default
Representation

Sample JPL

default select native cursor DBMS SQL SELECT ...

default non-select command structure DBMS SQL INSERT ...
DBMS SQL UPDATE ...
DBMS SQL DELETE ...

named native cursor DBMS DECLARE cursor CURSOR

You can change the SYBASE representation of a Prolifics cursor if necessary. For
more information, refer to the following section.

The following SQL operations are not available in this version of Prolifics for
SYBASE Client-Library:

� Browse mode

� SELECT statements containing a COMPUTE clause

� UPDATE statements containing a WHERE CURRENT OF clause

� DELETE statements containing a WHERE CURRENT OF clause

� Stored procedures using remote procedure calls (rpc)

� Output parameters and return codes from stored procedures

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Setting Cursor Options

You can specify which type of Client-Library structure is to be used for SQL
statements with the following SET commands:

� SET RUN CT_CURSOR — Force a particular Prolifics cursor to be run on a
Client-Library cursor.

Scrolling

Chapter 131 Database Driver for SYBASE CT Library

� SET RUN CT_COMMAND — Force a particular Prolifics cursor to be run on a
Client-Library command structure.

� SET RUN_DEFAULT CT_CURSOR — Force all Prolifics cursors on a
connection to be run as Client-Library cursors.

� SET RUN_DEFAULT CT_COMMAND — Force all Prolifics cursors on a
connection to be run as Client-Library command structures.

More than one Client-Library cursor can be active per connection.

However, a Client-Library cursor can only be created for a Transact-SQL
command batch that either contains a single SELECT statement or calls a stored
procedure that contains only a single SELECT statement. A command batch that
contains more than a single SELECT statement or that calls a stored procedure
containing more than a single SELECT statement must run on a Client-Library
command structure. However, the results from a command structure must be
processed in their entirety before any other cursor or command structure on a
connection can process its results.

For example, a SQL command batch containing two SELECT statements must be
run on a Client-Library command structure resulting in the following JPL
procedure:

proc select2
DBMS SET RUN CT_COMMAND
DBMS SQL SELECT xx, xx FROM pubs2..xxx SELECT xx, xx \

FROM pubs2..xxx

In this example, executing DBMS SET RUN CT_COMMAND sets the default cursor in
Prolifics to run on a Client-Library command structure so that the SELECT
statement can execute without error.

For more information on the behavior of Client-Library cursors and command
structures, refer to your SYBASE documentation.

Scrolling

Even though SYBASE Client-Library does not have native support for non-se-
quential scrolling in a select set, Prolifics scrolling is available. Before using any of
the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

Error and Status Information

14 Database Drivers: Panther 4.25

the application must set up a continuation file for the cursor. This is done with this
command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for SYBASE.

Errors
Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode SYBASE error code.

@dmengerrmsg SYBASE error message.

SYBASE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes SYBASE
error codes to the global variable @dmengerrcode and writes SYBASE messages
to @dmengerrmsg.

In Prolifics for SYBASE Client-Library, @dmengerrcode and @dmengerrmsg
can be arrays containing both client and server information. If both members of the
array contain data, the error message from the client operation is in the first
occurrence and the error message from the server operation is in the second
occurrence. If only one occurrence has data, it can be either from the client or
server operation.

Using Stored Procedures

Chapter 151 Database Driver for SYBASE CT Library

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”SYBASE error is %N” \
@dmengerrcode[1] ” ” @dmengerrmsg[1] ”%N”\
@dmengerrcode[2] ” ” @dmengerrmsg[2]

return 1

For additional information about engine errors, refer to your SYBASE documenta-
tion. For more information about error processing in Prolifics, refer to Chapter 36
in the Developer’s Guide and Chapter 12 in the Programming Guide.

Using Stored Procedures

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Executing Stored Procedures

An application can execute a stored procedure with DBMS SQL and the engine’s
command for execution, EXEC. For example:

DBMS SQL [DECLARE parameter data-type \
[DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [, parameter ...]]

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

16 Database Drivers: Panther 4.25

An application can also use a named cursor to execute a stored procedure:

DBMS DECLARE cursor CURSOR FOR \
[DECLARE parameter data-type [DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [, parameter ...]]

The cursor can then be executed with the following statement:

DBMS [WITH CURSOR cursor] EXECUTE [USING values]

Output parameters and return codes are not supported for stored procedures in this
release of Prolifics for SYBASE Client-Library.

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create proc update_tapes @parm1 int, @parm2 int
as
update tapes set status = ’O’

where title_id = @parm1 and copy_num = @parm2

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num.

DBMS SQL EXEC update_tapes :+title_id, :+copy_num

DBMS DECLARE x CURSOR FOR EXEC update_tapes \
::parm1, ::parm2

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter
NO TAG in the Developer’s Guide for more information.

Controlling the Execution of a Stored Procedure

Prolifics’s database driver for SYBASE provides a command for controlling the
execution of a stored procedure that contains more than one SELECT statement.
The command is:

DBMS [WITH CURSOR cursor] SET behavior

behavior can have one of these values:

Example

Using Transactions

Chapter 171 Database Driver for SYBASE CT Library

STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCH, Prolifics stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from a table will
halt the execution of the procedure. However, a SELECT of a single scalar value
(i.e., using the SQL functions SUM, COUNT, AVG, MAX. or MIN) does not halt the
execution of a stored procedure.

The application can execute

DBMS [WITH CURSOR cursor] CONTINUE

or any of the CONTINUE variants to scroll through the selected records. To abort the
fetching of any remaining rows in the select set, the application can execute

DBMS [WITH CURSOR cursor] FLUSH

To execute the next statement in the procedure the application must execute

DBMS [WITH CURSOR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application can execute

DBMS [WITH CURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedure’s return status code. The return code DM_END_OF_PROC signals the end
of the stored procedure.

If behavior is EXECUTE_ALL, Prolifics executes all statements in the stored
procedure without halting. If the procedure selects rows, Prolifics returns as many
rows as can be held by the destination variables and continues executing the
procedure. The application cannot use the DBMS CONTINUE commands to scroll
through the procedure’s select sets.

Note that SYBASE does not support SINGLE_STEP as an option for stored
procedure execution; however, it is available for execution of multi-statement
cursors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. SYBASE has one transaction for each cursor. Therefore, in a Prolifics

Using Transactions

18 Database Drivers: Panther 4.25

application, a transaction controls all statements executed with a single named
cursor or the default cursor.

The following events commit a transaction on SYBASE:

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER.

The following events roll back a transaction on SYBASE:

� Executing DBMS ROLLBACK.

� Closing the transaction’s cursor or connection before the transaction is
committed.

Transaction Control on a Single Cursor

After an application declares a connection, an application can begin a transaction
on the default cursor or on any declared cursor.

SYBASE supports the following transaction commands:

� Begin a transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] BEGIN

� Commit the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to a savepoint or to the beginning of the transaction on a default or
named cursor.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] SAVE [savepoint]

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

Example

Using Transactions

Chapter 191 Database Driver for SYBASE CT Library

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After
performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

Transaction Manager Processing

20 Database Drivers: Panther 4.25

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates
the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Manager Processing

Transaction Model for SYBASE
Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For SYBASE, the name of the standard transaction model is
tmsyb1.c.

The standard transaction model for SYBASE calls DBMS FLUSH instead of DBMS
CANCEL as part of the processing for the FINISH command. If a query has returned
a very large select set, closing the screen might be longer with the FLUSH
command. You can change this behavior by editing the model; however, the model
is subject to change in future releases, so you should track your changes in order to
update future versions.

Using Version Columns
For a SYBASE timestamp column, you can set the In Update Where and In Delete
Where properties to Yes. This includes the value fetched to that widget in the SQL
UPDATE and DELETE statements that are generated as part of the SAVE command.

SAVE Commands
If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the

SYBASE-Specific Commands

Chapter 211 Database Driver for SYBASE CT Library

standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

SYBASE-Specific Commands

Prolifics for SYBASE provides commands for SYBASE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Cursors

SET RUN Specify whether a cursor or command struc-
ture is used to execute SQL statements.

Using Stored Procedures

CANCEL Abort execution of a stored procedure.

FLUSH Abort execution of a stored procedure.

NEXT Execute the next statement in a stored proce-
dure.

SET Set execution behavior for a procedure (exe-
cute all, stop at fetch, etc.).

Using Transactions

BEGIN Begin a transaction.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

SYBASE-Specific Commands

22 Database Drivers: Panther 4.25

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics begins a transaction on the default connection.

A transaction is a logical unit of work on a database contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
After a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.

Refer to the example in Using Transactions on page 17.

Using Transactions on page 17

COMMIT

ROLLBACK

SAVE

WITH CONNECTION
connection-name

Example

See Also

SYBASE-Specific Commands

Chapter 231 Database Driver for SYBASE CT Library

CANCEL
Cancel the execution of a stored procedure or discard select rows

DBMS [WITH CURSOR cursor-name] CANCEL

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

If the named cursor is a native cursor, this command closes the cursor. If the named
cursor is a command structure, this command cancels any outstanding work on the
named cursor. In particular, this command can be used to cancel a pending stored
procedure or discard unwanted select rows. When the statement is executed, the
following operations are performed:

� Any rows to be fetched are discarded.

� Any remaining unexecuted statements are ignored.

Prolifics calls the SYBASE routine ct_cancel() with the CS_CANCEL_ALL flag
to perform this operation.

If the WITH CURSOR clause is not used, Prolifics executes the command on the
default cursor.

Using Stored Procedures on page 15

FLUSH

WITH CURSOR
cursor-name

Description

See Also

SYBASE-Specific Commands

24 Database Drivers: Panther 4.25

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 17.

Using Transactions on page 17

BEGIN

ROLLBACK

SAVE

WITH CONNECTION
connection-name

Description

Example

See Also

SYBASE-Specific Commands

Chapter 251 Database Driver for SYBASE CT Library

FLUSH
Flush any selected rows not fetched to Prolifics variables

DBMS [WITH CURSOR cursor-name] FLUSH

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor. The named cursor can be a native cursor or a command structure.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executes a SELECT, the procedure will not return the
DM_END_OF_PROC signal if the select set is pending. The application can execute
DBMS CONTINUE until the DM_NO_MORE_ROWS signal is returned, or it can execute
DBMS FLUSH, which discards the pending rows.

This command is also useful with queries that fetch very large select sets. The
application can execute DBMS FLUSH after executing the SELECT, or after a
defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, after the rows have been flushed, the
application cannot use DBMS CONTINUE to view the unread rows.

Prolifics calls the SYBASE routine ct_cancel() with the CS_CANCEL_ALL to
perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return 0

WITH CURSOR
cursor-name

Description

Example

SYBASE-Specific Commands

26 Database Drivers: Panther 4.25

DECLARE CURSOR

CANCEL

CONTINUE

NEXT

See Also

SYBASE-Specific Commands

Chapter 271 Database Driver for SYBASE CT Library

NEXT
Execute the next statement in a stored procedure

DBMS [WITH CURSOR cursor-name] NEXT

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Unless DBMS SET equals EXECUTE_ALL, an application must execute DBMS NEXT
after a stored procedure returns one or more SELECT rows to Prolifics. DBMS NEXT
executes the next statement in the stored procedure. If the application executes
DBMS NEXT and there are no more statements to execute, Prolifics returns the
DM_END_OF_PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that
returns rows to Prolifics. If DBMS SET equals SINGLE_STEP, the application must
execute DBMS NEXT after each statement, including non-SELECT statements. If the
application executes DBMS NEXT after all of the cursor’s statements have been
executed, Prolifics returns the DM_END_OF_PROC code.

Refer to the example in Using Stored Procedures on page 15.

Using Stored Procedures on page 15

DECLARE CURSOR

CANCEL

CONTINUE

FLUSH

SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]

WITH CURSOR
cursor-name

Description

Example

See Also

SYBASE-Specific Commands

28 Database Drivers: Panther 4.25

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK [savepoint]

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it might
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 17.

Using Transactions on page 17

BEGIN

COMMIT

SAVE

WITH CONNECTION
connection-name

savepoint

Description

Example

See Also

SYBASE-Specific Commands

Chapter 291 Database Driver for SYBASE CT Library

SET
Set handling for a cursor that executes a stored procedure or multiple statements

DBMS [WITH CURSOR cursor-name] SET EXECUTE_ALL

DBMS [WITH CURSOR cursor-name] SET SINGLE_STEP

DBMS [WITH CURSOR cursor-name] SET STOP_AT_FETCH

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor that con-
tains multiple SQL statements. This command allows the following options:

EXECUTE_ALL

Specifies that the DBMS return control to Prolifics only when all statements have
been executed or when an error occurs. If a SQL SELECT is executed, only the first
pageful of rows is returned to Prolifics variables. This option can be set for a
multi-statement or a stored procedure cursor.

SINGLE_STEP

Specifies that the DBMS return control to Prolifics after executing each statement
belonging to the multi-statement cursor. After each SELECT, the user can press a
function key to execute a DBMS CONTINUE and scroll the select set. To resume
executing the cursor’s statements, the application must execute DBMS NEXT. This
option can be set for a multi-statement cursor. If this option is used with a stored
procedure cursor, Prolifics uses the default setting STOP_AT_FETCH.

STOP_AT_FETCH

Specifies that the DBMS return control to Prolifics after executing a SQL SELECT
that fetches rows. (Note that control is not returned for a SELECT that assigns a
value to a local SYBASE parameter.) The application can use DBMS CONTINUE to
scroll through the select set. To resume executing the cursor’s statements or
procedure, the application must execute DBMS NEXT. This option can be set for a
multi-statement or a stored procedure cursor.

WITH CURSOR
cursor-name

Description

SYBASE-Specific Commands

30 Database Drivers: Panther 4.25

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default
behavior.

DBMS DECLARE x CURSOR FOR \
SELECT cust_id, first_name, last_name, member_status \

FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \

rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
::rental_date, ::price)

msg d_msg ”%KPF1 START %KPF2 SCROLL SELECT\
 %KPF3 EXECUTE NEXT STEP”

proc f1
This function is called by the PF1 key.
DBMS WITH CURSOR x SET_BUFFER 10
DBMS WITH CURSOR x SET SINGLE_STEP
DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \

title_id, copy_num, rental_date, price
DBMS WITH CURSOR x SET
return

proc f2
This function is called by the PF2 key.
DBMS WITH CURSOR x CONTINUE
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ”All rows displayed.”
return

proc f3
This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT
if @dmretcode == DM_END_OF_PROC

msg emsg ”Done!”
return

Using Stored Procedures on page 15

CANCEL

CONTINUE

DECLARE CURSOR

DECLARE CURSOR FOR EXEC

FLUSH

NEXT

Example

See Also

SYBASE-Specific Commands

Chapter 311 Database Driver for SYBASE CT Library

SET
Force a SQL statement to be run on a Client–Library cursor or command structure

DBMS [WITH CURSOR cursor-name] SET RUN CT_COMMAND

DBMS SET RUN_DEFAULT CT_COMMAND

DBMS [WITH CURSOR cursor-name] SET RUN CT_CURSOR

DBMS SET RUN_DEFAULT CT_CURSOR

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

The SET command can specify whether SQL statements will run on a Client-Li-
brary cursor or command structure. By default, Prolifics cursors run on Client-Li-
brary cursors. This command allows the following options:

RUN CT _COMMAND

Specifies that any subsequent DBMS statements be run on a Client-Library
command structure instead of a Client-Library cursor.

RUN_DEFAULT CT_COMMAND

Specifies that for any Prolifics cursors on subsequent DBMS DECLARE CURSOR
statements, the Prolifics cursor will be created on a Client-Library command
structure instead of a Client-Library cursor.

RUN CT_CURSOR

Specifies that any subsequent DBMS statements be run on a Client-Library cursor
instead of a Client-Library command structure.

RUN_DEFAULT CT_CURSOR

Specifies that for any Prolifics cursors on subsequent DBMS DECLARE CURSOR
statements, the Prolifics cursor will be created as a Client-Library cursor on top of
a command structure.

WITH CURSOR
cursor-name

Description

SYBASE-Specific Commands

32 Database Drivers: Panther 4.25

By default, Prolifics uses RUN_DEFAULT CT_CURSOR for the default select cursor
and any named cursors and RUN CT_CURSOR for the default non-select cursor.

Command Directory for SYBASE

Chapter 331 Database Driver for SYBASE CT Library

Command Directory for SYBASE

The following table lists all commands available in Prolifics’s database driver for
SYBASE. Commands available to all database drivers are described in the
Programming Guide.

Table 3. Commands for SYBASE

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

BEGIN Begin a transaction page 22

BINARY Create a Prolifics variable for
fetching binary values

page 810

CANCEL Abort execution of a stored
procedure

page 23

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 24

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for SYBASE

34 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FLUSH Flush any selected rows page 25

FORMAT Format the results of a CAT-
QUERY

NEXT Execute the next statement in
a stored procedure

page 27

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

ROLLBACK Roll back a transaction page 28

Command Directory for SYBASE

Chapter 351 Database Driver for SYBASE CT Library

Command Name Documentation
Location

Description

SET parameter Set execution behavior for a
stored procedure

page 29

SET RUN Set statement execution on a
cursor or command structure

page 31

START Set the first row for Prolifics
to return from a select set

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

UNIQUE Suppress repeating values in
a selected column

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

