
Database Driver–Oracle

Release 4.25

May 2000

3

Database Driver for
ORACLE

This chapter provides documentation specific to ORACLE. It discusses the
following:

� Engine initialization (page 4)

� Connection declaration (page 5)

� Import conversion (page 7)

� Formatting for colon-plus processing and binding (page 11)

� Cursors (page 12)

� Errors and warnings (page 13)

� Stored subprograms (page 15)

� Database transaction processing (page 19)

� Transaction manager processing (page 21)

� XA library interface (page 22)

� ORACLE-specific DBMS commands (page 23)

� Command directory for Prolifics for ORACLE (page 32)

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

This document is designed as a supplement to information found in the Develop-
er’s Guide.

Initializing the Database Engine

Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the
makevars file. In Prolifics for ORACLE, this results in the following ven-
dor_list structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”oracle”, dm_orasup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

oracle Engine name. May be changed.

dm_orasup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for ORACLE, the settings can be changed by editing the make-
vars.ora file.

Engine Name

You can change the engine name associated with the support routine dm_orasup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.ora file:

ORA_ENGNAME=tracking

If the application is accessing multiple engines, it makes ORACLE the default
engine by executing:

Connecting to the Database Engine

Chapter 51 Database Driver for ORACLE

DBMS ENGINE oracle-engine-name

where oracle-engine-name is the string used in vendor_list. For example,

DBMS ENGINE oracle

or

DBMS ENGINE tracking

Support Routine Name
dm_sup is the name of the support routine for ORACLE. This name should not be
changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing ORACLE column names to either a Prolifics variable
name or to a column name in a DBMS ALIAS statement.

ORACLE is case insensitive. Regardless of the case in a SQL statement, ORACLE
creates all database objects—tables, views, columns, etc.—with upper case names.
For ORACLE, the DM_DEFAULT_CASE setting is treated as DM_FORCE_TO_LOW-
ER_CASE. This means that Prolifics attempts to match ORACLE column names to
lower case Prolifics variables when processing SELECT results. If your application
is using this default, use lower case names when creating Prolifics variables.

The case setting can be changed. If you wish to use upper case Prolifics variable
names, use the u option in the makevars file for the DM_FORCE_TO_UPPER_CASE
flag.

ORA_INIT=u

If you edit makevars.ora, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

ORACLE allows your application to use one or more connections. The application
can declare any number of named connections with DBMS DECLARE CONNECTION
statements, up to the maximum number permitted by the server.

Connecting to the Database Engine

6 Database Drivers: Panther 4.25

The following options are supported for connections to ORACLE:

Table 1. Database connection options.

Option Argument

USER user-name

PASSWORD password

DEFERRED_PARSING ON | OFF

USER and PASSWORD have different configurations for SQL*Net V1 and SQL*Net
V2.

For SQL*Net V1, a Prolifics application connects to the default ORACLE database
unless the program supplies an ORACLE connect string or an ORACLE connect
alias. This connect string or alias is appended to the user-name argument. For
example:

Connect string for TCP/IP
DBMS DECLARE c CONNECTION FOR USER ”scott@T::nysales::P” \

PASSWORD ”tiger”

Connect alias
DBMS DECLARE c CONNECTION FOR USER ”scott@ny” \

PASSWORD ”tiger”

In the connect string example, the network-prefix is T for TCP/IP, the host-name is
nysales, and the system-ID is P. In connect strings, use two colons between the
parameters, instead of one, to prevent Prolifics from performing colon expansion
on the names.

Even though you can specify a connect string as part of your user-name or
password, better error messages are returned from ORACLE if it is part of the
user-name.

For SQL*Net 2, the user-name argument contains the logon name and the service
name or connect descriptor found in your TNSNAMES.ORA file.

Service name for SQL*Net V2
DBMS DECLARE c CONNECTION FOR USER ”scott@listener” \

PASSWORD ”tiger”

Refer to your SQL*Net documentation for more information on connect strings
and connect descriptors.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for ORACLE, it is
treated as an error.

Importing Database Tables

Chapter 71 Database Driver for ORACLE

Connecting to the XA Library
In ORACLE 7, distributed transaction processing (DTP) can be handled by a
transaction manager using ORACLE as one of its resource managers. ORACLE’s
XA library provides an interface to this environment.

Prolifics for ORACLE provides a special logon syntax for programs operating as
application servers in an X/Open distributed processing environment. These logon
options indicate that Prolifics should use ORACLE’s XA library to set connection
information.

In order to access the XA library, you must specify the following options in the
DBMS DECLARE CONNECTION statement:

Option Argument

XA_CONN ON | OFF

XA_DBNAME character_string

XA_CONN ON tells Prolifics to use the ORACLE XA library. XA_DBNAME should be
used when connecting to an open string with the DB field set.

For example, the following string does not set the DB field:

Oracle_XA+Acc=P/scott/tiger+SesTm=30

To connect using this open string:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN

For example, the following string sets DB to resources:

Oracle_XA+DB=resources+Acc=P/scott/tiger+SesTm=30

To connect using this open string:

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN ON XA_DBNAME ”resources”

or

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
FOR XA_CONN ON XA_DBNAME ”RESOURCES”

Importing Database Tables
The Import⇒Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an ORACLE database. When the

Importing Database Tables

8 Database Drivers: Panther 4.25

import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for ORACLE, the following database objects can be imported as
repository entries:

� database tables

� database views

� synonyms

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys for the
database table.

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

Importing Database Tables

Chapter 91 Database Driver for ORACLE

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, this information is automatically imported.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each ORACLE data type.

Importing Database Tables

10 Database Drivers: Panther 4.25

Table 2. Importing Database Tables

ORACLE Data Type Prolifics Type C Type Widget Length Widget Precision

CHAR FT_CHAR Char
String

Column length

DATE DT_DATETIME Default 20

LONG FT_CHAR Char
String

36

LONG RAW DT_BINARY Hex Dec

NUMBER
(ORACLE scale = 0)

FT_LONG Long Int Column length plus 1 for
sign

NUMBER
(ORACLE scale > 0)

FT_DOUBLE Double Column length plus 2 for
+/– sign and decimal
point

Same as column
precision (scale)

RAW DT_BINARY Hex Dec Column length * 2

ROWID FT_CHAR Char
String

18

VARCHAR2 FT_CHAR Char
String

Column length

Precision in ORACLE is equivalent to length in Prolifics, and scale in ORACLE is equivalent to precision in Prolifics.

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

If a column’s length is defined as larger than 254 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Because widgets in Prolifics have a maximum length of 254, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

In Prolifics for ORACLE, this is applied to LONG RAW and RAW data types.

DT_DATETIME widgets also have the Format/Display⇒Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:

Other Widget
Properties

UseInUpdate property

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

Chapter 111 Database Driver for ORACLE

title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates

Prolifics uses ORACLE’s built-in TO_DATE function and the ORACLE format
string, ddmmyyyy hh24miss to convert a Prolifics date-time format to an
ORACLE format.

Formatting Character Strings

ORACLE 6 does not permit quoted character strings longer than 255 characters.
Furthermore, in all versions of ORACLE, there is a 64K limit on the size of a SQL
statement. Therefore, you should not use colon-plus processing to supply long
character string values (e.g., LONG, VARCHAR2) in a SQL INSERT or UPDATE
statement. Instead, you should use binding to supply the character string. For
example:

DBMS DECLARE x CURSOR FOR INSERT INTO mytable \
(code, comments) VALUES (::code, ::comments)

DBMS WITH CURSOR x EXECUTE USING code–fld, comments–fld

Typically, a word-wrapped multi-text array is used for these long strings.

In Prolifics for ORACLE, colon plus processing expands an empty character string
(’’) to a quoted space (’ ’) if the widget’s Null Field property is set to No. This is
to circumvent ORACLE’s behavior. Since ORACLE converts an empty character
string to NULL, null values were being entered into the database even though they
were not specified.

Long Character
String Values

Empty
Character
Strings

Declaring Cursors

12 Database Drivers: Panther 4.25

Specifying Optimization Hints
In ORACLE, you can specify the optimization of a SQL statement by including
hints in the statement itself. Because the syntax for hints matches Prolifics’s syntax
for comments, you must escape the first slash to prevent the hint from being
interpreted as a comment.

For example, to include the hint /*+ ALL ROWS */ in the SQL statement, the
statement would be written as follows:

DBMS SQL SELECT \/*+ ALL ROWS */ empno, ename, job FROM emp

Refer to your ORACLE documentation for more information on using hints.

Declaring Cursors
When a connection is declared to an ORACLE engine, Prolifics automatically
declares a default cursor for SQL SELECT statements executed with the JPL
command DBMS SQL. For all non-SELECT operations performed with DBMS SQL,
Prolifics uses ORACLE’s EXECUTE IMMEDIATE feature rather than another
default cursor. If the application needs to select multiple rows and update the rows
one at a time, the application does not need to declare named cursors.

Declaring a named cursor might improve the performance of some SELECT
statements. In particular, if an application is executing a SELECT statement more
than once and the SELECT fetches 40 or more columns from a remote server, a
named cursor is recommended. In this case, the parse and describe is done just
once when the cursor is declared, not each time the cursor is executed.

For OCI applications, Prolifics does not put any limit on the number of cursors an
application can declare to an ORACLE engine. For Pro*C applications, Prolifics
defines 10 cursors for an application accessing ORACLE. It reserves one for itself
(i.e., the “default” cursor); the other nine are available for the application’s use. If
the application attempts to declare a tenth cursor, Prolifics returns the
DM_MANY_CURSORS error. In this case, the application must close a cursor using
DBMS CLOSE CURSOR before it can declare a new one. If nine cursors are not
enough for your application, you must modify the distributed source file
oraemb.pc.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Scrolling
Even though ORACLE does not have native support for non-sequential scrolling in
a select set, Prolifics scrolling is available. Before using any of the following
commands:

Error and Status Information

Chapter 131 Database Driver for ORACLE

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with this
command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for ORACLE.

Errors

Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode ORACLE error code.

@dmengerrmsg ORACLE error message.

@dmengwarncode Not used in Prolifics for ORACLE.

@dmengwarnmsg Not used in Prolifics for ORACLE.

@dmengreturn Not used in Prolifics for ORACLE.

Error and Status Information

14 Database Drivers: Panther 4.25

ORACLE returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes ORACLE
error codes to the global variable @dmengerrcode and writes ORACLE messages
to @dmengerrmsg.

All ORACLE errors are Prolifics errors. Therefore, Prolifics always calls the
default error handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”:engine error is ” @dmengerrcode ” ” @dmengerrmsg

return 1

For additional information about engine errors, refer to your ORACLE documenta-
tion. For more information about error processing in Prolifics, refer to Chapter 36
in the Developer’s Guide and Chapter 12 in the Programming Guide.

Row Information

Prolifics initializes the following global variables for row information:

@dmrowcount Count of the number of ORACLE rows affected
by an operation.

@dmserial Not used in Prolifics for ORACLE.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

Chapter 151 Database Driver for ORACLE

ORACLE returns a count of the rows affected by an operation. Prolifics writes this
value to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to Prolifics variables. This
number is less than or equal to the total number of rows in the select set. The value
of @dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using Stored Procedures

A stored subprogram is a precompiled set of SQL statements that are recorded in
the database and executed by calling the subprogram name. Since the SQL parsing
and syntax checking for a stored subprogram are performed when the subprogram
is created, executing a stored subprogram is faster than executing the same group
of SQL statements individually. By passing parameters to and from the stored
subprogram, the same procedure can be used with different values. In addition to
SQL statements, stored subprograms can also contain control flow language, such
as if statements, which gives greater control over the processing of the statements.

Database engines implement stored subprograms very differently. If you are
porting your application from one database engine to another, you need to be aware
of the differences in the engine implementation.

ORACLE as part of its PL/SQL language has two types of subprograms: stored
procedures and stored functions. Prolifics support for each type of subprogram is
discussed in the following sections. To access to stored subprograms, you must use
ORACLE’s OCI Interface with Version 7 of ORACLE. Consult the file $SMBASE/
notes/readme.ora for the file names and versions of ORACLE libraries needed.
For more information on writing stored subprograms, refer to your ORACLE
PL/SQL documentation.

Executing Stored Procedures
To execute a stored procedure, you must declare a named cursor. The DECLARE
CURSOR statement must include the keyword STORED_SUB. All parameters to the
stored procedure must have corresponding bind parameters in the DECLARE
CURSOR statement.

PL/SQL defines three modes for parameters: input, output and input/output. An
input parameter can be a constant, literal, initialized variable, or expression. Arrays
are not supported as input parameters in this release. Output and input/output
parameters must be variables.

Using Stored Procedures

16 Database Drivers: Panther 4.25

The output parameters in a stored procedure must be a table data type. Record data
types are not supported as output parameters in this release.

The syntax for the DECLARE CURSOR statement is as follows:

DBMS DECLARE cursor-name CURSOR FOR STORED_SUB \
[package-name.]procedure-name [(::parameter [, ::[parameter]...)]

When the cursor is executed, the Prolifics variables named in the USING clause
must have enough occurrences to hold all the rows that are returned. You cannot
use a DBMS CONTINUE command to fetch additional rows.

The Prolifics variables must also be equal to, or greater than, the length of the
output parameter. Otherwise, ORACLE returns error 6502.

Use one of the following formats to execute the cursor:

DBMS [WITH CURSOR cursor] EXECUTE [USING variable [, variable ...]]

DBMS [WITH CURSOR cursor] EXECUTE [USING parameter=variable \
[, parameter=variable ...]]

ORACLE stored procedures, by definition, do not have return codes.

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

PROCEDURE update_tapes (tid IN INTEGER, copy IN INTEGER) IS
BEGIN

UPDATE tapes SET status = ’O’
WHERE title_id = tid AND copy_num = copy;

END update_tapes;

The following JPL procedure executes this stored procedure. First, a DECLARE
CURSOR statement identifies the parameters. Then, the cursor is executed with a
USING clause that gets the onscreen values of the widgets title_id and
copy_num.

proc sp1
DBMS DECLARE x CURSOR FOR STORED_SUB update_tapes \

(::parm1, ::parm2)
DBMS WITH CURSOR x EXECUTE USING parm1=title_id,\

parm2=copy_num
return

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied

Return Codes

Example

Using Stored Procedures

Chapter 171 Database Driver for ORACLE

when the cursor was declared, not when it was executed. Refer to Chapter
NO TAG in the Developer’s Guide for more information.

rent_history is a stored procedure containing both input and output parameters,
which finds the video rentals for a customer.

CREATE PACKAGE rentals AS
TYPE charArrayTyp IS TABLE OF CHAR(30)

INDEX BY binary_integer;
TYPE dateArrayTyp IS TABLE OF DATE

INDEX BY binary_integer;
TYPE numArrayTyp IS TABLE OF INTEGER

INDEX BY binary_integer;
PROCEDURE rent_history (

cid IN INTEGER,
tid OUT numArrayTyp,
tname OUT charArrayTyp,
rstatus OUT charArrayTyp,
due_date OUT dateArrayTyp,
ret_date OUT dateArrayTyp) IS

BEGIN
SELECT rentals.title_id, titles.name,
rentals.rental_status, rentals.due_back,
rentals.return_date
INTO tid, tname, rstatus, due_date, ret_date
FROM rentals, titles

WHERE rentals.title_id = titles.title_id AND
cust_id = cid;

END rent_history;

The following JPL procedure executes the stored procedure. First, a DECLARE
CURSOR statement identifies the name of the stored procedure and its parameters.
Then, the cursor is executed with a USING clause that gets the onscreen value of
cust_id and returns the output parameters to arrays having a maximum number
of occurrences large enough to hold the select results.

proc sp3
DBMS DECLARE y CURSOR FOR STORED_SUB rentals.rent_history \

(::parm1, ::parm2, ::parm3, ::parm4, ::parm5, ::parm6)
DBMS WITH CURSOR y EXECUTE USING parm1=cust_id,\

parm2=title_id, parm3=name, parm4=rental_status, \
parm5=due_back, parm6=return_date

return

Executing Stored Functions
To execute a stored function, you must also use a DECLARE CURSOR statement
including the keyword STORED_SUB. However, since a stored function has a return
code, the syntax of the statement differs from the syntax used for stored proce-
dures.

Example

Using Stored Procedures

18 Database Drivers: Panther 4.25

In the current version of Prolifics for ORACLE, the return code must be one of the
scalar data types (CHAR, INT, REAL, etc.).

DBMS DECLARE cursor-name CURSOR FOR STORED_SUB \
::parameter1 ::= function-name (::parameter [, ::[parameter]...])

In this statement, parameter1 holds the return code. function-name is any existing
ORACLE stored function. Any other parameters follow the function name. All
parameters to the stored function must have corresponding bind parameters in the
DECLARE CURSOR statement.

When the cursor is executed, the return code is written to variable1. Any additional
parameters follow the return code.

DBMS [WITH CURSOR cursor] EXECUTE USING variable1 [, variable# ...]

The return code from an ORACLE stored function is not written to the Prolifics
variable @dmengreturn. Because the @dmengreturn is designed to hold integer
values and the return code from a stored function can be of any data type, it is
written to the first Prolifics variable in an EXECUTE USING statement as illustrated
in the preceding examples.

cust_rent calculates the new total rent_amount column in the customers
table.

FUNCTION cust_rent (cid IN INTEGER, total IN REAL) RETURN
REAL IS

old_rent REAL;
calc_rent REAL;

BEGIN
SELECT rent_amount INTO old_rent FROM customers

WHERE cust_id = cid;
calc_rent := total + old_rent;

RETURN calc_rent;
END cust_rent;

The following JPL procedure executes the stored function. First, a DECLARE
CURSOR statement identifies the parameters and return code. Then, the cursor is
executed with a USING clause that gets the onscreen value of cust_id and total
and returns the title_id and copy_num.

proc sp3
DBMS DECLARE z CURSOR FOR STORED_SUB ::a \

::=cust_rent (::b, ::c)
DBMS WITH CURSOR z EXECUTE USING calc_rent, cust_id, total
return

Return Codes

Example

Using Transactions

Chapter 191 Database Driver for ORACLE

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. ORACLE has one transaction for each connection. Therefore, in a Prolifics
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ORACLE:

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER, which causes an implicit commit.

� Closing the connection.

The following events roll back a transaction on ORACLE:

� Executing DBMS ROLLBACK.

When an application closes a connection with CLOSE_ALL_CONNECTIONS or
CLOSE CONNECTION, ORACLE commits any pending transactions on those
connections. If an application terminates without explicitly closing its connections,
ORACLE rolls back any pending transactions on those connections. However,
these procedures are not recommended. Instead, it is strongly recommended that
applications use explicit COMMIT and ROLLBACK statements to terminate
transactions.

For information on transaction processing for ORACLE XA connections, refer to
page 22.

Transaction Control on a Single Connection

After an application declares a connection, a transaction automatically starts on
that connection.

ORACLE supports the following transaction commands:

� Set availability of autocommit processing.

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

Using Transactions

20 Database Drivers: Panther 4.25

� Rollback to a savepoint or to the beginning of the transaction on a default or
named connection.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] SAVE [savepoint]

The setting for autocommit processing also determines the availability of other
transaction commands. If the setting is AUTOCOMMIT ON, every statement is
committed immediately. The other transaction commands—COMMIT, ROLLBACK—
are invalid. If the setting is AUTOCOMMIT OFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other users. AUTOCOMMIT OFF is the default setting.

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

Example

Transaction Manager Processing

Chapter 211 Database Driver for ORACLE

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After
performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates
the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Manager Processing

Transaction Model for ORACLE
Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the

Using the XA Interface

22 Database Drivers: Panther 4.25

main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For ORACLE, the name of the standard transaction model is
tmora1.c.

In Tuxedo, the transaction model for Oracle supports database transactions using
the XA interface. For XA connections, the transaction model can call sm_tp_exec
to begin, rollback, or commit the database transaction instead of using DBMS
commands.

Specifying FOR UPDATE Clauses

The dm_gen_change_select_suffix function appends text to SQL SELECT
statements generated by the transaction manager. You can use this function to
append a FOR UPDATE clause during SQL generation.

SAVE Commands

If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

Using the XA Interface

With the XA interface, the transaction processing monitor provided by the
transaction manager vendor starts and ends a transaction that can include
operations on several resource managers, including ORACLE.

Since ORACLE does not control the transaction processing in the XA environ-
ment, the following commands should not be used with ORACLE XA connections:

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

DBMS [WITH CONNECTION connection] COMMIT

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]

DBMS [WITH CONNECTION connection] SAVE [savepoint]

ORACLE-Specific Commands

Chapter 231 Database Driver for ORACLE

Also, because SQL data definition statements such as CREATE TABLE cause an
implicit commit in , these statements should not be executed on ORACLE XA
connections.

For additional information about ORACLE’s XA library, refer to your ORACLE 7
Server for UNIX Administrator’s Reference.

ORACLE-Specific Commands

Prolifics for ORACLE provides commands for ORACLE-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Stored Procedures

DECLARE CURSOR FOR
STORED_SUB

Declare a cursor to execute a stored subpro-
gram.

Using Transactions

AUTOCOMMIT Turn autocommit processing on or off.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

ORACLE-Specific Commands

24 Database Drivers: Panther 4.25

AUTOCOMMIT
Turn autocommit transaction processing on or off

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT ON

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT OFF

Specify the connection for this command. If this clause is not included, Prolifics
issues the command on the default connection.

This command is not available for ORACLE XA connections.

This command controls whether changes to a database occur immediately upon
execution of an INSERT, UPDATE, or DELETE command, or whether they occur
when a DBMS COMMIT is explicitly executed.

The default setting is AUTOCOMMIT OFF. This means that the engine automatically
starts a transaction after an application declares a connection. When a recoverable
statement (INSERT, UPDATE, and DELETE) is executed, it is not automatically
committed. The effects of the statement are not visible until the transaction is
terminated. If the transaction is terminated by DBMS COMMIT, the updates are
committed and visible to other users. If the transaction is terminated by DBMS
ROLLBACK, the updates are not committed, and the database is restored to its state
prior to the start of the transaction. After a transaction is terminated, the engine
automatically begins a new transaction.

If the setting is changed to AUTOCOMMIT ON, a statement is committed automati-
cally upon successful execution. Its effects are immediately visible to other users,
and it cannot be rolled back.

ORACLE recommends AUTOCOMMIT OFF mode to improve performance.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg ”New title data successfully entered.”
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF

return 0

WITH CONNECTION
connection-name

Environment

Description

Example

ORACLE-Specific Commands

Chapter 251 Database Driver for ORACLE

proc update_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

return 0

COMMIT

ROLLBACK

SAVE

See Also

ORACLE-Specific Commands

26 Database Drivers: Panther 4.25

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the commit on the default connection.

This command is not available for ORACLE XA connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT or SAVE. Changes made by the transaction
become visible to other users. If the transaction is terminated by ROLLBACK, the
updates are not committed, and the database is restored to its state prior to the start
of the transaction.

After a transaction is terminated, the engine automatically begins a new transac-
tion.

Before beginning a transaction, the application should ensure that the connection is
using AUTOCOMMIT OFF mode; this is usually the default. It should COMMIT or
ROLLBACK any pending transactions before starting a new one.

If an application is using AUTOCOMMIT ON mode, this command is not needed.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 19.

Using Transactions on page 19

AUTOCOMMIT

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

ORACLE-Specific Commands

Chapter 271 Database Driver for ORACLE

ROLLBACK

SAVE

ORACLE-Specific Commands

28 Database Drivers: Panther 4.25

DECLARE CURSOR FOR STORED_SUB
Declare a named cursor for a stored subprogram

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB \
[package-name.]procedure-name [(::parameter[, ::parameter]...)]

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR STORED_SUB \
::return-code ::function-name (::parameter [, ::[parameter]...])

Specifies the stored function name.

Specifies the PL/SQL package containing the stored subprogram.

For stored procedures, specifies an input or output parameter used in the stored
procedure. For stored functions, specifies input parameter used in the stored
function.

Specifies the stored procedure name.

Specifies the name of the return code in the stored function.

Specify the connection for this command. If this clause is not included, Prolifics
associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a stored sub-
program. The keyword STORED_SUB is required and can be used for both stored
procedures and stored functions. However, the format of the command varies for
these two types of subprograms. The first format shown is for stored procedures.
The second format is for stored functions.

All parameters must begin with a double colon, which is the Prolifics syntax for
cursor parameters.

The application executes a cursor associated with a stored subprogram as it
executes any named cursor, with DBMS EXECUTE. However, the format of this
command differs for stored procedures and stored functions. Refer to the examples
in Using Stored Subprograms on page 15.

Refer to the example in Using Stored Subprograms on page 15.

Using Stored Subprograms on page 15

function-name

package-name

parameter

procedure-name

return-code

WITH CONNECTION
connection-name

Description

Example

See Also

ORACLE-Specific Commands

Chapter 291 Database Driver for ORACLE

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK [savepoint]

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the rollback on the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

This command is not available for ORACLE XA connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it might
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 19.

Using Transactions on page 19

AUTOCOMMIT

COMMIT

SAVE

WITH CONNECTION
connection-name

savepoint

Environment

Description

Example

See Also

ORACLE-Specific Commands

30 Database Drivers: Panther 4.25

SAVE
Set a savepoint within a transaction

DBMS [WITH CONNECTION connection-name] SAVE savepoint

Specify the name of the savepoint.

Specify the connection for this command. If this clause is not included, Prolifics
issues the command on the default connection.

This command is not available for ORACLE XA connections.

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled using DBMS ROLLBACK savepoint. A
transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then either
be completed or rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application might involve many screens where an end-user must enter data
regarding the order. As the user completes each screen, the application can issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application can
simply rollback the procedures on the fifth screen.

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SAVE s1
call new_dscr
call new_tapes
DBMS COMMIT
return 0

savepoint

WITH CONNECTION
connection-name

Environment

Description

Example

ORACLE-Specific Commands

Chapter 311 Database Driver for ORACLE

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \

(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2

return 0

proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
return 0

Using Transactions on page 19

AUTOCOMMIT

COMMIT

ROLLBACK

See Also

Command Directory for ORACLE

32 Database Drivers: Panther 4.25

Command Directory for ORACLE

The following table lists all commands available in Prolifics’s database driver for
ORACLE. Commands available to all database drivers are described in the
Programming Guide.

Table 3. Commands for ORACLE

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

AUTOCOMMIT Turn on/off autocommit
processing

page 24

BINARY Create a Prolifics variable for
fetching binary values

page 810

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 26

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for ORACLE

Chapter 331 Database Driver for ORACLE

Command Name Documentation
Location

Description

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
STORED_SUB

Declare a cursor to execute a
stored subprogram

 page 28

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FORMAT Format the results of a CAT-
QUERY

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

ROLLBACK Roll back a transaction page 29

SAVE Set a savepoint in a transac-
tion

page 30

Command Directory for ORACLE

34 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

START Set the first row for Prolifics
to return from a select set

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

UNIQUE Suppress repeating values in
a selected column

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

