
Database Driver–ODBC

Release 4.25

May 2000

3

Database Driver for
ODBC

ODBC (Open Database Connectivity) defines a library of function calls and SQL
syntax based on the X/Open and SQL Access Group specification. It provides
application builders with a standard programming interface, standard set of error
codes, standard way to connect to a DBMS, and a standard repository of data
types.

The ODBC architecture has four components:

� Application — Calls ODBC functions to submit SQL statements and fetch
results. This includes Prolifics, Prolifics’s ODBC driver, and the applications
screens, JPL scripts, and menus.

� Driver Manager — Loads ODBC drivers for an application. This software is
usually supplied by Microsoft or Visigenics. On Windows, Microsoft supplies
a dynamically linked library ODBC.DLL. This software is not supplied with
Prolifics.

� ODBC Driver— Processes ODBC function calls, submits SQL statements to a
data source, and fetches results to an application. The ODBC driver is supplied
by any of a number of third–party vendors. In some cases, the database vendor
might supply an ODBC driver. Other companies, such as Intersolv, supply a
package of drivers for several DBMS products. This software is not supplied
with Prolifics.

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

� Data source — Comprises the data and its operating system, DBMS, and any
network software. For example, a data source might be a local xBase file, a
SYBASE RDMBS running on Unix workstation accessed by TCP/IP, or an
Oracle RDBMS running on Windows NT accessed by Windows sockets. This
software is not supplied with Prolifics.

The ODBC API defines a set of core functions that correspond to the functions in
the X/Open and SQL Access Group CLI (Call Level Interface) specification.
ODBC also defines two sets of extended functions, Level 1 and Level 2. Unless
otherwise documented, Prolifics functions use ODBC core functions. If Prolifics
requires a Level 1 or 2 function for some feature, the application’s ODBC driver
must support the function to use the feature.

This chapter provides documentation specific to ODBC. It discusses the following:

� Engine initialization (page 4)

� Connection declaration (page 6)

� Import conversion (page 8)

� Formatting for colon-plus processing and binding (page 12)

� Cursors (page 13)

� Errors and warnings (page 14)

� Stored procedures (page 16)

� Database transaction processing (page 16)

� Transaction manager processing (page 19)

� ODBC-specific DBMS commands (page 19)

� Command directory for Prolifics for ODBC (page 25)

� ODBC-specific C functions (page 28)

This document is designed as a supplement to information found in the Develop-
er’s Guide.

Initializing the Database Engine

Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the

Initializing the Database Engine

Chapter 51 Database Driver for ODBC

makevars file. In Prolifics for ODBC, this results in the following vendor_list
structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”odbc”, dm_odbsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

odbc Engine name. May be changed.

dm_odbsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for ODBC, the settings can be changed by editing the makevars.odb
file.

Engine Name
You can change the engine name associated with the support routine dm_odbsup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.odb file:

ODB_ENGNAME=tracking

Using ODBC, your application can access multiple DBMS products. However, in
such cases, Prolifics views the application as accessing one database engine, odbc.
The information to access each of the subsequent database engines is set in the
DBMS DECLARE CONNECTION statement using the DATASOURCE keyword. For
more information, refer to page 6.

Support Routine Name
dm_sup is the name of the support routine for ODBC. This name should not be
changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting

Connecting to the Database Engine

6 Database Drivers: Panther 4.25

is used when comparing ODBC column names to either a Prolifics variable name
or to a column name in a DBMS ALIAS statement.

When the case flag is set to DM_DEFAULT_CASE, Prolifics for ODBC tests for the
value of SQL_IDENTIFIER_CASE using the ODBC SQLGetInfo function. For
case sensitive engines, Prolifics then sets the case flag to DM_PRESERVE_CASE.
This matches the engine column name to a Prolifics variable of the same name and
case when processing SELECT results. For case insensitive engines, it sets the case
flag to DM_FORCE_TO_LOWER_CASE. This means that Prolifics attempts to match
the engine column names to lower case Prolifics variables when processing
SELECT results. If your application is using this default, use lower case names
when creating Prolifics variables.

The case setting can be changed. If you wish to use upper case Prolifics variable
names, use the u option in the makevars file for the DM_FORCE_TO_UPPER_CASE
flag.

ODB_INIT=u

If you edit makevars.odb, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

ODBC allows your application to use one or more connections. The application
can declare any number of named connections with DBMS DECLARE CONNECTION
statements, up to the maximum number permitted by the ODBC driver and data
source.

To access multiple database engines using ODBC, there needs to be a data source
for each database engine. Refer to your ODBC database driver documentation for
additional information.

The following options are supported for connections to ODBC:

Table 1. Database connection options.

Option Argument Conformance Level

USER user-name core

PASSWORD password core

DATABASE database-name 1 using SQLDriverConnect

DATASOURCE data-source-name core

Connecting to the Database Engine

Chapter 71 Database Driver for ODBC

Option Conformance LevelArgument

CONN_STRING connection-parameters 1 using SQLDriverConnect

COMPLETION connection–mode 1 using SQLDriverConnect

The USER, PASSWORD and DATASOURCE options are supported by all ODBC
database drivers. The CONN_STRING and COMPLETION options are available if the
ODBC driver has Level 1 conformance. The DATABASE option is only available
with certain ODBC drivers. If you are unsure of the driver’s conformance level,
use only the core conformance arguments.

DATASOURCE specifies the data source entered in the ODBC Administrator to use
for connecting to the database. This data source entry typically contains the name
of the data source, the virtual node, and the full path of the database files. A data
source is created with the ODBC utility ODBCADM.

The application must supply the DATASOURCE using this flag or by prompting the
user with a COMPLETION dialog.

Some drivers support or require additional logon arguments. The program might
supply them with the argument CONN_STRING. Alternately, the application might
prompt the user for the data using the dialogs of the ODBC driver manager and the
ODBC database driver. The connection flag COMPLETION determines whether or
not dialogs are used.

CONN_STRING allows you to enter any number of driver-defined keywords and
values. The format for the connection string is:

”keyword=value;keyword=value”

If, for example, the driver supports the attribute MS to determine whether the driver
modifies SQL statements to conform to ODBC specifications and the attribute
LANG to specify national language, the CONN_STRING argument is:

CONN_STRING ”MS=1;LANG=FRENCH”

Consult your ODBC driver documentation about the supported connection
attributes for your database. Note that Prolifics does not attempt to validate the
CONN_STRING value.

COMPLETION specifies the mode used by the Driver Manager and the ODBC
database driver to establish a connection to a data source. The mode can be set to
any of the following:

COMPLETE NOPROMPT

COMPLETE_REQUIRED PROMPT

Importing Database Tables

8 Database Drivers: Panther 4.25

For PROMPT, the ODBC Driver Manager always initiates a dialog box containing
the installed data source names and prompts for information.

For COMPLETE, the ODBC Driver Manager initiates a dialog box only if there is
not enough information in the connection string to connect to the data source.

COMPLETE_REQUIRED is similar to COMPLETE. The ODBC Driver Manager
initiates a dialog box only if there is not enough information in the connection
string to connect to the data source. It also grays and disables any prompts on the
dialog that are not required.

For NOPROMPT, the ODBC Driver Manager attempts to connect to the data source
and does not display a dialog box. NOPROMPT is the default.

Prolifics for ODBC also supports the argument DATABASE. This argument
corresponds to the connection attribute DB. Driver vendors, such as Intersolv, often
use DB to supply the database name. If your driver supports the DB attribute, the
application can set it using the CONN_STRING keyword:

DECLARE c1 CONNECTION FOR DATASOURCE ”SYB49” \
CONN_STRING ”DB=pubs2”

or with the DATABASE keyword:

DECLARE c1 CONNECTION FOR DATASOURCE ”SYB49” \
DATABASE ”pubs2”

If the Driver Manager finds the data source specification, it loads the driver. If the
Driver Manager cannot find the data source specification and if there is no default
specification, it returns an error.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for ODBC, it is
treated as an error.

If you get the error message “Login Denied” when you issue the connection
statement, check the data source name. This message is issued when the data
source name is invalid.

Importing Database Tables

The Import⇒Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an ODBC database. When the import
process is complete, each selected database table has a corresponding repository
entry screen.

Importing Database Tables

Chapter 91 Database Driver for ODBC

The Prolifics importer requires the ODBC catalog functions:

� SQLTables — Level 1

� SQLColumns — Level 1

If these functions are not supported, the importer will fail.

In Prolifics for ODBC, the following database objects can be imported as
repository entries:

� database tables

� database views

� synonyms

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys or unique
indexes for the database table. The importer calls SQLPrimaryKeys or

Importing Database Tables

10 Database Drivers: Panther 4.25

SQLStatistics to find a primary key. If the ODBC driver does not support
either function, the importer cannot set this property.

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, this information is automatically imported.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

If the database engine does not support foreign key definitions or if the ODBC
driver does not support SQLForeignKeys, the links needed by the transaction
manager will have to be created manually if the application screen contains more
than one table view.

If you are using the screen wizard to create screens, the links must also be added to
the repository entries in order for the wizard to allow more than one table view in
each section of a screen.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

Importing Database Tables

Chapter 111 Database Driver for ODBC

The following table lists the values for the C Type, Length, and Precision
properties assigned to each ODBC data type.

Table 2. Importing Database Tables

ODBC Data Type Code Prolifics Type C Type Widget Length Widget Preci-
sion

SQL_BIGINT –5 FT_LONG Long Int column length + 1

SQL_BINARY –2 DT_BINARY Hex Dec column length * 2

SQL_BIT –7 FT_INT Int column length + 1

SQL_CHAR 1 FT_CHAR Char String column length

SQL_DATE 9 DT_DATETIME Default 20

SQL_DECIMAL 3

 (ODBC scale = 0) FT_INT Int column length

 (ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as col-
umn scale

SQL_DOUBLE 8 FT_DOUBLE Double 22 2

SQL_FLOAT 6 FT_DOUBLE Double 22 2

SQL_INTEGER 4 FT_LONG Long Int column length + 1

SQL_LONGVARBINARY –4 DT_BINARY Hex Dec column length * 2

SQL_LONGVARCHAR –1 FT_CHAR Char String column length

SQL_NUMERIC 2

 (ODBC scale = 0) FT_INT Int column length

 (ODBC scale > 0) FT_DOUBLE Double column length + 2 Same as col-
umn scale

SQL_REAL 7 FT_FLOAT Float 13

SQL_SMALLINT 5 FT_INT Int column length + 1

SQL_TIME 10 DT_DATETIME Default 20

SQL_TINYINT –6 FT_INT Int column length + 1

SQL_TIMESTAMP 11 DT_DATETIME Default 20

Formatting for Colon Plus Processing and Binding

12 Database Drivers: Panther 4.25

ODBC Data Type Widget Preci-
sion

Widget LengthC TypeProlifics TypeCode

SQL_VARBINARY –3 DT_BINARY Hex Dec column length * 2

SQL_VARCHAR 12 FT_CHAR Char String column length

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

If a column’s length is defined as larger than 254 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to
that column. Because widgets in Prolifics have a maximum length of 254, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types, such as the
timestamp column in SYBASE.

DT_DATETIME widgets also have the Format/Display⇒Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding
This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates
Prolifics uses the ODBC standard formats for converting Prolifics date values to
valid ODBC values. If the Prolifics widget has date and time edits, it is formatted

Other Widget
Properties

UseInUpdate property

DT_DATETIME

Null Field property

Declaring Cursors

Chapter 131 Database Driver for ODBC

as a timestamp; if the widget has only time edits, it is formatted as a time; and if
the widget has only date edits, it is formatted as a date. The formats are:

Column Type Format

Date {d ’YYYY:MM:DD’}

Time {t ’HH:MM:SS’}

Timestamp {ts ’YYYY:MM:DD HH:MM:SS’}

where YYYY, MM, DD, HH, MM, and SS are specified as integers.

Declaring Cursors

When a connection is declared to an ODBC engine, Prolifics automatically
declares a default cursor for SQL SELECT statements executed with the JPL
command DBMS SQL. For all non-SELECT operations performed with DBMS SQL,
Prolifics uses ODBC’s SQLExecDirect function rather than another default
cursor. This feature is also known as EXECUTE IMMEDIATE. If the application
needs to select multiple rows and update the rows one at a time, the application
does not need to declare named cursors.

If the driver is unable to perform the operation using SQLExecDirect, Prolifics
returns the error DM_CANNOT_EXEC_IMMED. In this case, the application should
declare and execute a named cursor for the operation.

Applications should also use a named cursor to execute a catalog function or a
stored procedure.

Prolifics does not put any limit on the number of cursors an application may
declare to an ODBC engine. Because each cursor requires memory and ODBC
resources, however, it is recommended that applications close a cursor when it is
no longer needed.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Scrolling

Even though ODBC does not have native support for non-sequential scrolling in a
select set, Prolifics scrolling is available. Before using any of the following
commands:

Error and Status Information

14 Database Drivers: Panther 4.25

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with this
command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for ODBC.

Errors

Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode ODBC error code.

@dmengerrmsg ODBC error message.

@dmengwarncode Not used in Prolifics for ODBC.

@dmengwarnmsg Not used in Prolifics for ODBC.

@dmengreturn Not used in Prolifics for ODBC.

Error and Status Information

Chapter 151 Database Driver for ODBC

ODBC returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes ODBC
error codes to the global variable @dmengerrcode and writes ODBC messages to
@dmengerrmsg.

All ODBC errors are Prolifics errors. Therefore, Prolifics always calls the default
error handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”:engine error is ” @dmengerrcode ” ” @dmengerrmsg

return 1

For additional information about engine errors, refer to your ODBC documenta-
tion. For more information about error processing in Prolifics, refer to Chapter 36
in the Developer’s Guide and Chapter 12 in the Programming Guide.

Row Information
Prolifics initializes the following global variables for row information:

@dmrowcount Count of the number of ODBC rows affected by
an operation.

ODBC returns a count of the rows affected by an operation. Prolifics writes this
value to the global variable @dmrowcount.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

16 Database Drivers: Panther 4.25

As explained on the manual page for @dmrowcount, the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to Prolifics variables. This
number is less than or equal to the total number of rows in the select set. The value
of @dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

The syntax for executing a stored procedure in ODBC is:

DBMS DECLARE cursor-name CURSOR FOR \
{ CALL procedure-name [(::parameter [, ::[parameter]...)]}

In the current release of Prolifics for ODBC, an application cannot execute a stored
procedure containing output parameters or return codes. Normal select result sets
are supported.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. ODBC has one transaction for each connection. Therefore, in a Prolifics
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on ODBC:

� Executing DBMS COMMIT.

The following events roll back a transaction on ODBC:

� Executing DBMS ROLLBACK.

Transactions are not available for all database drivers using ODBC. Refer to your
ODBC database driver documentation for more information.

Using Transactions

Chapter 171 Database Driver for ODBC

Transaction Control on a Single Connection

ODBC supports the following transaction commands:

� Set availability of autocommit processing.

DBMS [WITH CONNECTION connection] AUTOCOMMIT { ON | OFF }

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The setting for autocommit processing also determines the availability of other
transaction commands. If the setting is AUTOCOMMIT ON, every statement is
committed immediately. The other transaction commands—COMMIT, ROLLBACK—
are invalid. If the setting is AUTOCOMMIT OFF, the statements in a transaction must
be committed in order for the work to be saved and visible to the rest of the
application or other users. AUTOCOMMIT ON is the default setting for drivers that
support this feature.

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

Example

Using Transactions

18 Database Drivers: Panther 4.25

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After
performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates

Transaction Manager Processing

Chapter 191 Database Driver for ODBC

the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Manager Processing

Transaction Model for ODBC
Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For ODBC, the name of the standard transaction model is tmodb1.c.

SAVE Commands
If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

ODBC-Specific Commands
Prolifics for ODBC provides commands for ODBC-specific features. This section
contains a reference page for each command. If you are using multiple engines or
are porting an application to or from another engine, please note that these
commands may work differently or may not be supported on some engines.

Retrieving System Information

DECLARE CURSOR FOR
CATALOG_FUNCTION

Declare a cursor for retrieving system infor-
mation.

Using Transactions

AUTOCOMMIT Turn autocommit processing on or off.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

ODBC-Specific Commands

20 Database Drivers: Panther 4.25

AUTOCOMMIT
Turn autocommit transaction processing on or off

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT ON

DBMS [WITH CONNECTION connection-name] AUTOCOMMIT OFF

Specify the connection for this command. If this clause is not included, Prolifics
issues the command on the default connection.

Some ODBC drivers and data sources do not support this command. This com-
mand requires a level 1 conformance function, SQLSetConnectOption.

This command controls whether changes to a database occur immediately upon
execution of an INSERT, UPDATE, or DELETE command, or whether they occur
when a DBMS COMMIT is explicitly executed.

Prolifics sets the value to AUTOCOMMIT OFF. This means that the engine
automatically starts a transaction after an application declares a connection. When
a recoverable statement (INSERT, UPDATE, and DELETE) is executed, it is not
automatically committed. The effects of the statement are not visible until the
transaction is terminated. If the transaction is terminated by DBMS COMMIT, the
updates are committed and visible to other users. If the transaction is terminated by
DBMS ROLLBACK, the updates are not committed, and the database is restored to its
state prior to the start of the transaction. After a transaction is terminated, the
engine automatically begins a new transaction.

If the setting is changed to AUTOCOMMIT ON, a statement is committed automati-
cally upon successful execution. Its effects are immediately visible to other users,
and it cannot be rolled back.

proc new_title
DBMS WITH CONNECTION xxx1 AUTOCOMMIT ON
call update_title
msg emsg ”New title data successfully entered.”
DBMS WITH CONNECTION xxx1 AUTOCOMMIT OFF

return 0

WITH CONNECTION
connection-name

Environment

Description

Example

ODBC-Specific Commands

Chapter 211 Database Driver for ODBC

proc update_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

return 0

COMMIT

ROLLBACK

See Also

ODBC-Specific Commands

22 Database Drivers: Panther 4.25

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the commit on the default connection.

Some ODBC drivers and data sources do not support this command.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 16.

Using Transactions on page 16

ROLLBACK

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

ODBC-Specific Commands

Chapter 231 Database Driver for ODBC

DECLARE CURSOR FOR CATALOG_FUNCTION
Declare a named cursor for an ODBC system catalog function

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR \
FOR CATALOG_FUNCTION function-name [::parameter [::parameter ...]]

Specify the connection for this command. If this clause is not included, Prolifics
associates the cursor with the default connection.

Specify the name of the ODBC function. The name is not case-sensitive. Supported
functions include:

SQLColumns SQLPrimaryKeys SQLStatistics

SQLColumnPrivileges SQLProcedures SQLTablePrivileges

SQLForeignKeys SQLProcedureColumns SQLTables

SQLGetTypeInfo SQLSpecialColumns

Specify a valid parameter name for the function. The parameter must begin with a
double colon, which is the Prolifics syntax for cursor parameters.

Some ODBC drivers and data sources do not support this command.

Use this command to create a named cursor to call an ODBC function and retrieve
information from the system catalog. The keyword CATALOG_FUNCTION is re-
quired. Following the keyword are the name of the function and the function’s pa-
rameters. For more information on each function, including the function’s parame-
ters, refer to your ODBC documentation.

DBMS DECLARE x CURSOR FOR CATALOG_FUNCTION sqltables \
::parm1 ::parm2 ::parm3 ::parm4

DBMS WITH CURSOR x EXECUTE USING ’’, ’%’, ’%’, ’’

WITH CONNECTION
connection-name

function-name

parameter

Environment

Description

Example

ODBC-Specific Commands

24 Database Drivers: Panther 4.25

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the rollback on the default connection.

Some ODBC drivers and data sources do not support this command.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it might
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 16.

Using Transactions on page 16

COMMIT

WITH CONNECTION
connection-name

Environment

Description

Example

See Also

Command Directory for ODBC

Chapter 251 Database Driver for ODBC

Command Directory for ODBC

The following table lists all commands available in Prolifics’s database driver for
ODBC. Commands available to all database drivers are described in the Program-
ming Guide.

Table 3. Commands for ODBC

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

AUTOCOMMIT Turn on/off autocommit
processing

page 20

BINARY Create a Prolifics variable for
fetching binary values

page 810

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 22

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for ODBC

26 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
CATALOG_FUNCTION

Declare a cursor to execute
an ODBC catalog function

 page 23

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FORMAT Format the results of a CAT-
QUERY

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

ROLLBACK Roll back a transaction page 24

START Set the first row for Prolifics
to return from a select set

Command Directory for ODBC

Chapter 271 Database Driver for ODBC

Command Name Documentation
Location

Description

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

UNIQUE Suppress repeating values in
a selected column

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

Library Functions for ODBC

28 Database Drivers: Panther 4.25

Library Functions for ODBC

Prolifics for ODBC provides an additional C function in order to obtain the
connection information. This function is described in this section.

Library Functions for ODBC

Chapter 291 Database Driver for ODBC

dm_odb_get_dbhandle
Get the current connection handle

#include <dmodbsup.h>

HDBC dm_odb_get_dbhandle(char *connection);

Prolifics for ODBC connection name.

• If connection is valid, return associated HDBC.
• If connection is NULL or an empty string, return HDBC of the current con-

nection.
• Otherwise, return SQL_NULL_HDBC.

dm_odb_get_dbhandle returns the ODBC connection handle (HDBC) for the
named Prolifics connection. This handle is needed if you wish to call ODBC SDK
functions, such as SQLGetInfo.

The Prolifics for ODBC distribution includes a sample file that is located in
$SMBASE\ODBC\ODBCSAMP.C. It defines some sample functions that use
dm_odb_get_dbhandle. To call these sample functions from JPL or from control
strings, copy the sample file to your working directory, add the file name to the
SRCMODS macro in the makevars.odb file, install the functions in the prototyped
function list, and rebuild the executable. For more information about installing
functions in the prototyped function list, refer to Chapter 43 in the Application
Development Guide.

#include <smdefs.h>
#include <dmodbsup.h>

SWORD
sm_odbinfo (connection, flag)
char *connection;
UWORD flag;
{

HDBC dbhandle;
SWORD value;
RETCODE retcode;

connection

Returns

Description

Example

Library Functions for ODBC

30 Database Drivers: Panther 4.25

dbhandle = dm_odb_get_dbhandle(connection);

if (dbhandle != SQL_NULL_HDBC)
{

retcode = SQLGetInfo(dbhandle, flag, (PTR)&value,
 sizeof(value), NULL);

if (retcode == SQL_SUCCESS)
{

return value;
}

}
return –1;

}

The following example is in JPL and it assumes you have installed sm_odbinfo in
the function list:

include <odbcgbls>

vars cursor_stat(5)
cursor_stat=sm_odbinfo(”dm_odb_0conn”, \

SQL_CURSOR_COMMIT_BEHAVIOR)
if (cursor_stat < 2)
{

Cursors are closed after commit. Application must
re–execute SELECT cursors.

}
else
{

Cursors remain open after commit. Application may
call CONTINUE.

}

