
Database Driver–MS SQL
Server

Release 4.25

May 2000

3

Database Driver for
SQL Server

� Engine initialization (page 4)

� Connection declaration (page 5)

� Import conversion (page 6)

� Formatting for colon-plus processing and binding (page 10)

� Cursors (page 11)

� Locking behavior (page 12)

� Errors and warnings (page 15)

� Stored procedures (page 17)

� Database transaction processing (page 25)

� Transaction manager processing (page 32)

� SQL Server-specific DBMS commands (page 33)

� Command directory for Prolifics for SQL Server (page 64)

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

This document is designed as a supplement to information found in the Develop-
er’s Guide.

Initializing the Database Engine
Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the
makevars file. In Prolifics for SQL Server, this results in the following ven-
dor_list structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”sqlsrvr”, dm_msssup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

sqlsrvr Engine name. May be changed.

dm_msssup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for SQL Server, the settings can be changed by editing the make-
vars.mss file.

Engine Name
You can change the engine name associated with the support routine dm_msssup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.mss file:

MSS_ENGNAME=tracking

If the application is accessing multiple engines, it makes SQL Server the default
engine by executing:

where sqlsrvr-engine-name is the string used in vendor_list. For example,

DBMS ENGINE sqlsrvr

or

DBMS ENGINE tracking

Connecting to the Database Engine

Chapter 51 Database Driver for SQL Server

Support Routine Name

dm_sup is the name of the support routine for SQL Server. This name should not
be changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing SQL Server column names to either a Prolifics variable
name or to a column name in a DBMS ALIAS statement.

SQL Server is case-sensitive. SQL Server uses the exact case of a SQL statement
when creating database objects like tables and columns. In subsequent SQL
statements, you must use the same exact case when referring to these objects. The
default setting for case-sensitive engines is DM_PRESERVE_CASE. This means that
the SQL Server column name is matched to a Prolifics variable with the same
name and case when processing SELECT results.

The case setting can be changed. You can force Prolifics to perform case-insensi-
tive searches. Substitute the l option in the makevars file to match SQL Server
column names to lower case Prolifics variables, or use the u option to match to
upper case Prolifics variables.

MSS_INIT=l

or

MSS_INIT=u

If you edit makevars.mss, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

SQL Server allows your application to use one or more connections. The
application can declare any number of named connections with DBMS DECLARE
CONNECTION statements, up to the maximum number permitted by the server.

Importing Database Tables

6 Database Drivers: Panther 4.25

The following options are supported for connections to SQL Server:

Table 1. Database connection options.

Option Argument

USER user-name

INTERFACES interfaces-file-pathname

SERVER server-name

DATABASE database-name

PASSWORD password

APPLICATION application-name

CHARSET character-set-name

CURSORS 1 | 2

TIMEOUT seconds

HOST host-name

SQLTIMEOUT seconds

DBMS [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR [USER user-name] [PASSWORD password] \
[DATABASE database] [SERVER server] \
[APPLICATION application-name] [CURSORS number-of-cursors] \
[HOST host-name] [INTERFACES interface-file-pathname] \
[SQLTIMEOUT seconds] [TIMEOUT seconds] [CHARSET character-set]]

For example:

DBMS DECLARE dbi_session CONNECTION FOR \
USER ”:uname” PASSWORD ”:pword” DATABASE ”sales” \
SERVER ”sybase10” APPLICATION ”sales” HOST ”oak” \
INTERFACES ”/usr/sybase/interfaces.app” \
CURSORS ”2” SQLTIMEOUT ”120” TIMEOUT ”15”

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for SQL Server, it is
treated as an error.

Importing Database Tables
The Import⇒ Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an SQL Server database. When the

Importing Database Tables

Chapter 71 Database Driver for SQL Server

import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for SQL Server, the following database objects can be imported as
repository entries:

� database tables

� database views

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table or database table view.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views
A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys or unique
indexes for the database table.

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

Importing Database Tables

8 Database Drivers: Panther 4.25

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, this information is automatically imported.

Links
Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets
A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each SQL Server data type.

SQL Server Data
Type

Code Prolifics Type C Type Widget Length Widget
Precision

binary 45 DT_BINARY Hex Dec column length * 2

bit 50 FT_INT Int 1

char 47 FT_CHAR Char
String

column length

datetime 61 DT_DATETIME Default 17

decimal 55

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

Importing Database Tables

Chapter 91 Database Driver for SQL Server

SQL Server Data
Type

Widget
Precision

Widget LengthC TypeProlifics TypeCode

double preci-
sion

62 FT_FLOAT Float 16 2

float 62 FT_FLOAT Float 16 2

image 34 DT_BINARY Hex Dec column length

int 56 FT_LONG Long Int 11

money 60 DT_CURRENCY Default 26

nchar 47 FT_CHAR Char
String

column length

nvarchar 47 FT_CHAR Char
String

column length

numeric 63

 scale > 0 FT_FLOAT Float column precision +
column scale + 1

column
scale

 else FT_LONG Long Int column precision

real 59 FT_FLOAT Float 16 2

smalldatetime 58 DT_DATETIME Default 17

smallint 52 FT_INT Int 6

smallmoney 122 DT_CURRENCY Default 14

text 35 FT_CHAR Char
String

254

timestamp 80 DT_BINARY Hex Dec column length

tinyint 48 FT_INT Int 3

varbinary 37 DT_BINARY Hex Dec column length * 2

varchar 39 FT_CHAR Char
String

column length

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

If a column’s length is defined as larger than 254 in the database, then the database
importer sets the Use In Update property to No for the widget corresponding to

Other Widget
Properties

UseInUpdate property

Formatting for Colon Plus Processing and Binding

10 Database Drivers: Panther 4.25

that column. Because widgets in Prolifics have a maximum length of 254, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types. In SQL Server,
this applies to the data types text, image, and for any numeric column that is
defined as identity.

DT_CURRENCY widgets have the Format/Display⇒ Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETIME widgets also have the Format/Display⇒ Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates
Prolifics uses SQL Server’s convert function and the SQL Server format string,
yyyymmdd hh:mm:ss to convert a Prolifics date-time format to a SQL Server
format.

In order for conversion to take place, the widget must have the C Type set to
Default and the Format/Display⇒ Data Formatting property set to Date/Time. Any
date-time Format Type is appropriate.

This is the format for literal dates. It is compatible with SQL Server national
language support.

DT_CURRENCY

DT_DATETIME

Null Field property

Declaring Cursors

Chapter 111 Database Driver for SQL Server

Formatting Currency Values
SQL Server requires a leading dollar sign for values inserted in a money column in
order to ensure precision. Prolifics will use a leading dollar sign when it formats
widgets with a Prolifics type of DT_CURRENCY. Any other amount formatting
characters are stripped. Therefore, if a currency field contained

500,000.00

Prolifics would format it as

$500000.00

Using Text and Image Data Types
Note that when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server setting of textsize.
The SQL Server server default is 32K; however, this value can be changed on the
server via the SQL Server set command. The global variable @@textsize
contains the current maximum.

Declaring Cursors

Each Prolifics cursor uses a SQL Server dbprocess. By default, Prolifics for SQL
Server uses one cursor (dbprocess) for operations performed by DBMS SQL.
Therefore, if an application executes the sequence:

DBMS SQL SELECT ...
DBMS SQL UPDATE ...

the following command to display additional rows in the select set:

DBMS CONTINUE

will fail because SQL Server discards the select set when the cursor is re-used.

Prolifics for SQL Server supports a connection option of CURSORS 2 for
simulating two default cursors. When this option is used, Prolifics for SQL Server
opens two default cursors on each connection. It uses one cursor for all SELECT
statements. It uses the second cursor for all non-SELECT statements; this includes
INSERT, UPDATE, DELETE, and all stored procedure calls. Transaction commands
(BEGIN, COMMIT, ROLLBACK) are also issued for the non-SELECT cursor.

If you use the CURSORS 2 connection option, you will need to declare a named
cursor to execute a stored procedure (or SQL batch command) that returns select
rows. The second default cursor never returns select rows.

Scrolling

12 Database Drivers: Panther 4.25

Prolifics does not put any limit on the number of cursors an application may
declare to an SQL Server engine. Because each cursor requires memory and SQL
Server resources, however, it is recommended that applications close a cursor when
it is no longer needed.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Scrolling

SQL Server has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to Prolifics
scrolling. Both systems allow you to use the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

For native scrolling, use this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER number-of-rows

This command sets the DB-Library option DBBUFFER. When this command is
used, SQL Server buffers the specified number of select rows in the program’s
memory.

For Prolifics scrolling, use this command::

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Locking Behavior

Prolifics developers using SQL Server should consider locking issues when
building applications that select large amounts of data.

Locking Behavior

Chapter 131 Database Driver for SQL Server

When an application executes a SQL SELECT that returns many rows, SQL Server
might use a “shared lock” on each data page to preserve read-consistency. That is,
to preserve the state of the selected data, SQL Server might prevent other
applications or users from changing the data until the application has received all
the rows. This behavior is usually seen for select sets that contain several hundred
rows.

As a part of developing and testing an application, you should monitor SQL
Server’s behavior by running the SQL Server command sp_lock from another
terminal when the application executes a SELECT. If a SELECT executed by a
Prolifics application is holding a lock, the cursor’s spid will be listed.

Because a shared lock prevents other users from updating data, it is important to
release shared locks as soon as possible. To release a shared locked, you must
either:

� Get all the rows in the select set.

� Flush pending rows in the select set.

An application has two ways of getting the entire select set:

� Create Prolifics arrays that are large enough to hold the entire select set.

� Use DBMS STORE FILE and DBMS CONTINUE_BOTTOM to buffer all the rows
in a temporary file on disk.

For example, an application might set up a continuation file before executing a
SELECT. Before returning control to the user, the application might execute DBMS
CONTINUE_BOTTOM, which forces Prolifics get all the rows from the select set and
buffer them in a temporary file. This also forces SQL Server to release any shared
lock it is holding for the SELECT.

In the following example, the application puts a message on the status line and
flushes the display. Next it sets up a continuation file and executes the SELECT. It
calls DBMS CONTINUE_BOTTOM to force Prolifics to get all the rows. Finally, it
calls DBMS CONTINUE_TOP to ensure that the select set’s first page (rather than its
last page) of rows is displayed when control is returned to the user.

proc big_select
msg setbkstat ”Processing. Please be patient...”
flush
DBMS STORE FILE
DBMS SQL SELECT
DBMS CONTINUE_BOTTOM
DBMS CONTINUE_TOP
msg d_msg ” ”

return

Locking Behavior

14 Database Drivers: Panther 4.25

An application can also limit the number of rows a user can view at a time by using
the DBMS FLUSH command. When this command is executed, SQL Server discards
any pending rows and releases all associated locks. For example,

proc big_select
DBMS SQL SELECT
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return

To monitor lock information within the application, the application can query SQL
Server for the spid (server process id) number of a cursor and the number of locks
held by the cursor. Note that each cursor has its own spid and it keeps the same
spid number until the application closes the cursor. To get a cursor’s spid
number, an application must use the cursor to select the global SQL Server variable
@@spid.

Get the SQL Server spid for a Prolifics cursor
before SELECTing rows.
proc get_spid (cursor)
vars spid

if cursor == ””
DBMS SQL SELECT spid = @@spid

else
{

DBMS DECLARE :cursor CURSOR FOR \
SELECT spid = @@spid

DBMS EXECUTE :cursor
}
return spid

Get the number of locks held by a SQL Server spid.
proc lockstatus (spid4select)

vars lcount
DBMS DECLARE lock_cursor CURSOR FOR \

SELECT COUNT(*) FROM master.dbo.syslocks \
WHERE spid = :spid4select

DBMS WITH CURSOR lock_cursor ALIAS lcount
DBMS WITH CURSOR lock_cursor EXECUTE
DBMS CLOSE CURSOR lock_cursor
return lcount

An application can get a cursor’s spid before executing a SELECT for rows. After
fetching rows the application can query SQL Server for the number of locks. Note
that the order of these statements is important: if an application attempts to get a
cursor’s spid after fetching rows, the SELECT for the cursor’s spid will release any
locks and any pending rows. For this reason, be sure to get the cursor’s spid before
fetching rows. Refer to the example below.

Error and Status Information

Chapter 151 Database Driver for SQL Server

proc select
vars cursor_spid, locks_before, locks_after

cursor_spid = get_spid (”c1”)
locks_before = lockstatus (cursor_spid)

DBMS DECLARE c1 CURSOR FOR SELECT ...
DBMS WITH CURSOR c1 EXECUTE

locks_after = lockstatus (cursor_spid)
if locks_after > locks_before

msg emsg ”The SELECT has locked data.”

return 0

Error and Status Information

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for SQL Server.

Errors
Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode SQL Server error code.

@dmengerrmsg SQL Server error message.

@dmengreturn Return code from an executed stored procedure.

SQL Server returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes SQL
Server error codes to the global variable @dmengerrcode and writes SQL Server
messages to @dmengerrmsg.

All SQL Server errors with a severity greater than 10 are Prolifics errors.
Otherwise, they are considered warnings.

Error and Status Information

16 Database Drivers: Panther 4.25

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”:engine error is ” @dmengerrcode ” ” @dmengerrmsg

return 1

For additional information about engine errors, refer to your SQL Server
documentation. For more information about error processing in Prolifics, refer to
Chapter 36 in the Developer’s Guide and Chapter 12 in the Programming Guide.

Warnings

Prolifics initializes the following global variables for warning information:

@dmengwarncode SQL Server warning code.

@dmengwarnmsg SQL Server warning message.

Prolifics writes the code to @dmengwarncode and the message to @dmeng-
warnmsg.

A warning usually describes some non-fatal change in the SQL Server environ-
ment. For example, SQL Server issues a warning when the application changes a
connection’s default database.

You might wish to use an exit hook function to process warnings. An exit hook
function is installed with DBMS ONEXIT. A sample exit hook function is shown
below.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Stored Procedures

Chapter 171 Database Driver for SQL Server

proc check_status (stmt, engine, flag)

if @dmengwarncode
msg emsg ”:engine Warning is ” @dmengwarnmsg

return

Row Information
Prolifics initializes the following global variables for row information:

@dmrowcount Count of the number of SQL Server rows affected
by an operation.

@dmserial Not used in Prolifics for SQL Server.

SQL Server returns a count of the rows affected by an operation. Prolifics writes
this value to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to Prolifics variables. This
number is less than or equal to the total number of rows in the select set. The value
of @dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

The value of @dmrowcount might be unexpected after executing a stored
procedure. This is documented SQL Server behavior. If you need this information,
SQL Server recommends that you test for it within the stored procedure and return
it as an output parameter or return code. @@rowcount is a SQL Server global
variable. For example:

create proc update_ship_fee @class int, @change float
as
declare @u_count int
update cost set ship_fee = ship_fee * @change

where class = @class
select @u_count = @@rowcount
return @u_count

Refer to your SQL Server Command Reference Manual for more information.

Using Stored Procedures
A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and

Using Stored Procedures

18 Database Drivers: Panther 4.25

syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Executing Stored Procedures
An application can execute a stored procedure with DBMS SQL and the engine’s
command for execution, EXEC. For example:

DBMS SQL [DECLARE parameter data-type \
[DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]

An application can also use a named cursor to execute a stored procedure:

DBMS DECLARE cursor CURSOR FOR \
[DECLARE parameter data-type [DECLARE parameter data-type ...]] \
EXEC procedure-name [parameter [OUT][, parameter [OUT]...]]

The cursor can then be executed with the following statement:

DBMS [WITH CURSOR cursor] EXECUTE [USING values]

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create proc update_tapes @parm1 int, @parm2 int
as
update tapes set status = ’O’

where title_id = @parm1 and copy_num = @parm2

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num.

DBMS SQL EXEC update_tapes :+title_id, :+copy_num

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USING
clause that gets the onscreen values of the widgets title_id and copy_num.

Example

Using Stored Procedures

Chapter 191 Database Driver for SQL Server

DBMS DECLARE x CURSOR FOR EXEC update_tapes \
::parm1, ::parm2

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter
NO TAG in the Developer’s Guide for more information.

Getting Output Parameter Values

If the DBMS supports output parameters, the keyword OUT traps the value of an
output parameter in a Prolifics variable. For example, the stored procedure
rent_summary calculates the total number of rentals for the day and the total
price paid for those rentals.

create proc rent_summary
@num_rented int output, @tot_price output, @day datetime

as
create table rentsum (price money)
insert into rentsum select rentals.price from rentals
 where rental_date = @day
select @num_rented = count(*) from rentsum
select @tot_price = sum (price) from rentsum
drop table rentsum

The application should declare a cursor for the procedure:

DBMS DECLARE cur1 CURSOR FOR \
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR cur1 EXECUTE USING today = day

Note that t1 and t2 are temporary SQL Server variables, not Prolifics variables.
SQL Server requires that output values be passed as variables, not as constants. If
num_rented and tot_price are Prolifics variables, the procedure returns the
number of videos rented on a specific day and the total price paid for those videos.
The application can use DBMS ALIAS to map the values of output parameters to
Prolifics variables. You can modify the previous procedure so that it maps the
value of of num_rented to the Prolifics variable vid_count and the value of
tot_price to the Prolifics variable total_paid:

Using Stored Procedures

20 Database Drivers: Panther 4.25

DBMS DECLARE cur1 CURSOR FOR \
declare @t1 int declare @t2 money \
EXEC rent_summary @num_rented=@t1 OUT, \
@tot_price=@t2 OUT, @day =::today

DBMS WITH CURSOR cur1 ALIAS num_rented vid_count, \
tot_price total_paid

DBMS WITH CURSOR cur1 EXECUTE USING today = day

Using Remote Procedure Calls
In addition to the EXEC command, SQL Server supports a remote procedure call
(“rpc”) for executing a stored procedure. You should consider using rpc rather than
EXEC when either the following occur:

� One or more of the stored procedure’s parameters has a data type that is not
char. An rpc is more efficient in these cases because it is capable of passing
parameters in their native data types rather than only as ASCII characters. This
reduces the amount of data conversion for the application and the server.

� The stored procedure returns output parameters. An rpc provides a faster and
simpler mechanism for accommodating output parameters.

To make a remote procedure call, an application performs the following steps:

� Must declare an rpc cursor.

� Must declare the data type of each parameter that has a non-char data type.

� May specify aliases for output parameters or selected columns.

� Must execute the cursor, supplying in the USING clause a Prolifics variable for
each parameter.

The sections below describe these steps in detail. Examples follow.

Prolifics uses binding to support rpc’s. Therefore, to execute a stored procedure
with an rpc, the application must declare an rpc cursor. The syntax is the following:

DBMS [WITH CONNECTION connection] \
DECLARE cursor CURSOR FOR RPC procedure \
[::parameter [OUT] [, ::parameter [OUT]..]]

The keyword RPC is required. Following the keyword is the name of the procedure
and the names of the procedure’s parameters. All parameters must begin with a
double colon, the Prolifics syntax for cursor parameters. The name of the bind
parameter must be the same parameter name used in the procedure. If a parameter
is an output parameter, the keyword OUT should follow the parameter name if the
application is to receive its value.

Declaring the
rpc Cursor

Using Stored Procedures

Chapter 211 Database Driver for SQL Server

To pass parameters in their native data types, the application must specify a data
type for each non-character parameter. The syntax for DBMS TYPE is the following:

DBMS [WITH CURSOR cursor] TYPE [parameter] engine-data-type \
[, [parameter] engine-data-type ...]

parameter is a parameter in the DECLARE CURSOR statement. engine-data-type is
the data type of a parameter in the procedure. If parameter names are not given, the
types are assigned by position.

Prolifics uses the information in the DBMS TYPE statement to make the required
calls to add parameters to an rpc. Please note that DBMS TYPE has no effect on the
data formatting that is performed for binding.

By default, when an rpc cursor with an output parameter is executed, a search is
performed for a Prolifics variable with the same name as the output parameter. To
write the output value to a Prolifics variable with another name, use the DBMS
ALIAS command.

DBMS [WITH CURSOR cursor] ALIAS [output_parameter] variable \
[, [output_parameter] variable ...]

If the procedure selects rows, aliases can be given for the tables’ columns. If the
procedure returns output parameters and column values, aliases should be given by
name rather than by position.

The application executes the stored procedure by executing the rpc cursor. The
USING clause must provide a Prolifics variable for each parameter. The syntax is
the following:

DBMS [WITH CURSOR cursor] EXECUTE \
USING [parameter =] variable [, [parameter =] variable ...]

Prolifics passes the name of the parameter given in the DBMS DECLARE CURSOR
statement, the data type of the parameter given in the DBMS TYPE statement, and
the parameter’s value which is the value of variable.

Parameters and Prolifics variables can be bound either by name or by position. The
two forms should not be mixed, however, in one statement.

cust_rent calculates the new total rent_amount column in the customers
table.

CREATE PROC cust_rent
@cid int, @crent money, @rprice money,
@newrent money output

AS
SELECT @crent = (select rent_amount from customers

where cust_id = @cid)
SELECT @newrent = @crent + @rprice

Datatyping the
rpc Parameters

Redirecting the
Value of Output
Parameter

Executing the
rpc Cursor

Example

Using Stored Procedures

22 Database Drivers: Panther 4.25

An rpc is more efficient than an exec cursor because the procedure has an input
parameter with a non-character data type, and because it returns an output
parameter.

The following statement declares an rpc cursor for the stored procedure. The
names of the bind parameters match the parameters in the stored procedure. Note
that the keyword OUT follows the output parameter.

DBMS DECLARE cur2 CURSOR FOR RPC cust_rent ::cid, ::crent, \
::rprice, ::newrent OUT

Before executing the cursor, the application must specify the SQL Server data
types for any non-character data types.

DBMS WITH CURSOR cur2 TYPE \
cid int, crent money, rprice money, newrent money

When executing the cursor, the application must provide a Prolifics variable for
each parameter. Prolifics passes the name, data type, and value of the parameters to
the procedure. Note that the procedure does not use the input value of the
parameter newrent. Prolifics’s binding mechanism, however, requires a variable
in the USING clause for each parameter.

DBMS WITH CURSOR cur2 EXECUTE cust_rent \
USING cust_id, rent_amount, price, newrent

The procedure passes its output, the new total, to the Prolifics variable newrent.

If instead, you wish to put the output value in the widget rent1, execute the
following:

DBMS WITH CURSOR cur2 ALIAS newrent rent1
DBMS WITH CURSOR cur2 EXECUTE cust_rent USING cid=cust_id, \

crent=rent_amount, rprice=price, newrent=rent1

Note that the variable names in the USING clause do not affect the destination of
output values when the cursor is executed. Only a DBMS ALIAS statement can
remap the output variables to other Prolifics variables.

Of course, this procedure can also be executed with the standard EXEC cursor. It
would require the following declaration,

DBMS DECLARE cur3 CURSOR FOR \
declare @x money \
EXEC cust_rent @cid = ::cust_id, @crent = ::rent_amount, \
@rprice = ::price, @newrent = @x output

DBMS WITH CURSOR cur3 EXECUTE cust_rent \
USING cid=cust_id, crent=rent_amount, rprice=price, \
newrent=newrent

Using Stored Procedures

Chapter 231 Database Driver for SQL Server

Getting a Return Code from a Stored Procedure
Prolifics provides the global variable @dmengreturn to trap the return status code
of a stored procedure. This variable is empty unless a stored procedure explicitly
sets it. Note that the variable will not be set until the procedure has completed
execution. Therefore, an application should evaluate the value of @dmengreturn
when @dmretcode = DM_END_OF_PROC.

Executing a new DBMS statement clears the value of @dmengreturn.

If multiply is the following stored procedure,

create proc multiply @m1 int, @m2 int,
@guess int output, @result int output

as
select @result = @m1 * @m2
if @result = @guess

return 1
else

return 2

the application should set up variables for the output parameters.

Either an rpc cursor or an exec cursor can be declared and executed for the
procedure that calculates the values in the Prolifics variables m1 and m2 and then
writes the values of the output parameters guess and result to the Prolifics
variables attempt and answer.

RPC cursor
DBMS DECLARE x CURSOR FOR \

RPC multiply ::m1, ::m2, ::guess OUT, ::result OUT
DBMS WITH CURSOR x TYPE m1 int, m2 int, \

guess int, result int
DBMS WITH CURSOR x ALIAS guess attempt, result answer
DBMS WITH CURSOR x EXECUTE USING m1, m2, attempt, answer

EXEC cursor
DBMS DECLARE y CURSOR FOR \

declare @syb_tmp1 int \
declare @syb_tmp2 int \
select @syb_tmp1 = ::user_guess\
EXEC multiply @m1=::p1, @m2=::p2, \

@guess= @syb_tmp1 OUT, @result= @syb_tmp2 OUT
DBMS WITH CURSOR y ALIAS guess attempt, result answer
DBMS WITH CURSOR y EXECUTE \

USING user_guess = attempt, p1 = m1, p2 = m2

After executing the cursor, the application can test the value of @dmengreturn
and display a message based on the return status code.

Using Stored Procedures

24 Database Drivers: Panther 4.25

proc check_ret
if @dmretcode == DM_END_OF_PROC
{

if @dmengreturn == 1
msg emsg ”Good job!”

else if @dmengreturn == 2
msg emsg ”Better luck next time.”

}
else
{

DBMS NEXT
call check_ret

}
return

Controlling the Execution of a Stored Procedure
Prolifics’s database driver for SQL Server provides a command for controlling the
execution of a stored procedure that contains more than one SELECT statement.
The command is:

DBMS [WITH CURSOR cursor] SET behavior

behavior can have one of these values:

STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCH, Prolifics stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from a table will
halt the execution of the procedure. However, a SELECT of a single scalar value
(i.e., using the SQL functions SUM, COUNT, AVG, MAX. or MIN) does not halt the
execution of a stored procedure.

The application can execute

DBMS [WITH CURSOR cursor] CONTINUE

or any of the CONTINUE variants to scroll through the selected records. To abort the
fetching of any remaining rows in the select set, the application can execute

DBMS [WITH CURSOR cursor] FLUSH

To execute the next statement in the procedure the application must execute

DBMS [WITH CURSOR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

Using Transactions

Chapter 251 Database Driver for SQL Server

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application can execute

DBMS [WITH CURSOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedure’s return status code. The return code DM_END_OF_PROC signals the end
of the stored procedure.

If behavior is EXECUTE_ALL, Prolifics executes all statements in the stored
procedure without halting. If the procedure selects rows, Prolifics returns as many
rows as can be held by the destination variables and continues executing the
procedure. The application cannot use the DBMS CONTINUE commands to scroll
through the procedure’s select sets.

Note that SQL Server does not support SINGLE_STEP as an option for stored
procedure execution; however, it is available for execution of multi-statement
cursors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. SQL Server has one transaction for each cursor. Therefore, in a Prolifics
application, a transaction controls all statements executed with a single named
cursor or the default cursor.

Applications that need transaction control on multiple cursors should use
two-phase commit service.

The following events commit a transaction on SQL Server:

� Executing DBMS COMMIT.

� Executing a data definition command such as CREATE, DROP, RENAME, or
ALTER.

The following events roll back a transaction on SQL Server:

� Executing DBMS ROLLBACK.

� Closing the transaction’s cursor or connection before the transaction is
committed.

Note that SQL Server will not rollback remote procedure calls (rpcs) or data
definition commands that create or drop database objects. Refer to the SQL Server
documentation for more information on these restrictions.

Using Transactions

26 Database Drivers: Panther 4.25

Transaction Control on a Single Cursor

After an application declares a connection, an application can begin a transaction
on the default cursor or on any declared cursor.

SQL Server supports the following transaction commands:

� Begin a transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] BEGIN
DBMS [WITH CONNECTION cursor] BEGIN

� Commit the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] COMMIT
DBMS [WITH CONNECTION cursor] COMMIT

� Rollback to a savepoint or to the beginning of the transaction on a default or
named cursor.

DBMS [WITH CONNECTION connection] ROLLBACK [savepoint]
DBMS [WITH CONNECTION cursor] ROLLBACK [savepoint]

� Create a savepoint in the transaction on a default or named cursor.

DBMS [WITH CONNECTION connection] SAVE [savepoint]
DBMS [WITH CONNECTION cursor] SAVE [savepoint]

A transaction on a default cursor controls all inserts, updates, and deletes executed
with the JPL command DBMS SQL. The application can set the default connection
before beginning the transaction or it can use the WITH CONNECTION clause in
each statement.

If a named cursor is declared for multiple statements, it might be useful to execute
the cursor in a transaction. This way, the application can ensure that SQL Server
executes either all of the cursor’s statements or none of the cursor’s statements. A
simple transaction on a named cursor might appear like this:

DBMS DECLARE cursor CURSOR FOR statement [statement...]
DBMS WITH CURSOR cursor BEGIN
DBMS WITH CURSOR cursor EXECUTE [USING parm [parm ...]]
...
DBMS WITH CURSOR cursor COMMIT

If necessary, the cursor can be executed more than once in the transaction. The
application should not, however, redeclare a cursor within a transaction.

The following example contains a transaction on the default connection with an
error handler.

Example

Using Transactions

Chapter 271 Database Driver for SQL Server

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After

Using Transactions

28 Database Drivers: Panther 4.25

performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates
the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Control on Multiple Cursors

SQL Server provides two-phase commit service for distributed transactions. In a
two-phase commit, one main transaction controls two or more subtransactions on
one or more servers. A subtransaction is a transaction on single cursor, like those
described in the section above.

With two-phase commit service using Microsoft SQL Server, the commit server
and the target server must be different.

The main transaction must be declared with this command:

DBMS [WITH CONNECTION connection] \
DECLARE transaction-name TRANSACTION FOR \
APPLICATION application SITES sites

� connection: if no connection is given, the default connection is used; the
connection data structure stores a user login name, a server name, and an
interface file name. Because SQL Server requires that a particular server be
responsible for coordinating a two-phase commit, the connection declaration
must include a server name.

� transaction: the name of the transaction; SQL Server does not permit periods
(.) or colons (;) in a transaction name. Because transaction and tran are
keywords for both Prolifics and SQL Server, do not use these words for this
argument.

Using Transactions

Chapter 291 Database Driver for SQL Server

� application: the name of the application; it can be any character string that is
not a keyword.

� sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit. This value is used by the SQL Server commit and recovery
systems and must be set appropriately.

After the transaction is declared, its name is used to begin and to commit or to
rollback the transaction. The syntax is

DBMS BEGIN transaction-name

DBMS COMMIT transaction-name

DBMS ROLLBACK transaction-name

As with cursors and connections, Prolifics uses a data structure to manage a
two-phase commit transaction. This structure should be closed when the
transaction is completed. When the structure is closed, Prolifics calls the support
routine to close the connection with the SQL Server commit service:

DBMS CLOSE TRANSACTION transaction-name

Operations on a single cursor are subtransactions. To control a subtransaction in a
two-phase commit transaction, the following commands can be used:

DBMS [WITH CURSOR cursor] BEGIN

DBMS [WITH CURSOR cursor] SAVE savepoint

DBMS [WITH CURSOR cursor] PREPARE_COMMIT

DBMS [WITH CURSOR cursor] COMMIT

DBMS [WITH CURSOR cursor] ROLLBACK [savepoint]

The command DBMS PREPARE_COMMIT is an additional command required by the
two-phase commit service. Executing it signals that the subtransaction has been
performed and that the server is ready is to commit the update. After the
application has “prepared” all the subtransactions, it issues a COMMIT to the main
transaction and each subtransaction.

The sequence of events in a SQL Server two-phase commit transaction is the
following:

� Declare any necessary connections and cursors.

� Declare the main transaction.

DBMS DECLARE tname TRANSACTION FOR SITES sites \
APPLICATION application

Using Transactions

30 Database Drivers: Panther 4.25

� Begin the main transaction.

DBMS BEGIN tname

� For each subtransaction cursor, begin the subtransaction and execute the
desired operations. When all subtransactions are complete, execute a
PREPARE_COMMIT for each. In the pseudo code below there are three
subtransactions (using cursor1, the default cursor, and cursor2):

DBMS WITH CURSOR cursor1 BEGIN
DBMS WITH CURSOR cursor1 EXECUTE USING parm

DBMS BEGIN
DBMS SQL statement
DBMS SAVE savepoint
DBMS SQL statement
if error

DBMS ROLLBACK savepoint
DBMS SQL statement

DBMS WITH CURSOR cursor2 BEGIN
DBMS WITH CURSOR cursor2 EXECUTE USING parm

DBMS WITH CURSOR cursor1 PREPARE_COMMIT
DBMS PREPARE_COMMIT
DBMS WITH CURSOR cursor2 PREPARE_COMMIT

� Commit the main transaction.

DBMS COMMIT tname

� Commit each subtransaction indicating a named or default cursor.

DBMS WITH CURSOR cursor1 COMMIT
DBMS COMMIT
DBMS WITH CURSOR cursor2 COMMIT

� Close the transaction.

DBMS CLOSE TRANSACTION tname

It is strongly recommended that the application use an error handler while the
transaction is executing. If an error occurs while executing a command in the
subtransaction (i.e., executing a SQL statement or a named cursor), the application
should not continue executing the transaction.

An example with an error handler follows.

Using Transactions

Chapter 311 Database Driver for SQL Server

##
Declare connections and specify servers.
DBMS DECLARE c1 CONNECTION \

FOR USER :uid PASSWORD :pwd SERVER maple \
INTERFACES ’/usr/sybase/interfaces.ny’

DBMS DECLARE c2 CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER juniper

Declare cursors.
Use :: to insert a value when the cursor is executed,
not when the cursor is declared.
DBMS WITH CONNECTION c1 DECLARE x CURSOR FOR INSERT \

emp (ss, last, first, street, city, st, zip, grade) \
VALUES (::ss, ::last, ::first, ::street, ::city, \
::st, ::zip, ::grade)

DBMS WITH CONNECTION c2 DECLARE y CURSOR FOR INSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

##
proc 2phase
vars retval
retval = sm_s_val ()
if retval
{

msg reset ”Invalid entry.”
return

}
DBMS WITH CONNECTION c1 DECLARE new_emp TRANSACTION \

FOR APPLICATION personnel SITES 2
DBMS ONERROR JPL tran_error
call do_tran
if !(retval)

msg emsg ”Transaction succeeded.”
else
{

DBMS ROLLBACK newemp
if retval >= 100

DBMS WITH CURSOR x ROLLBACK
if retval >= 200

DBMS WITH CURSOR y ROLLBACK
}
DBMS ONERROR CALL generic_errors
DBMS CLOSE TRANSACTION new_emp
return

proc do_tran
Begin new_emp and set the flag tran_level (LDB variable)
DBMS BEGIN new_emp

DBMS WITH CURSOR x BEGIN

Transaction Manager Processing

32 Database Drivers: Panther 4.25

tran_level = ”1”
DBMS WITH CURSOR x EXECUTE USING \

ss, last, first, street, city, st, zip, grade

DBMS WITH CURSOR y BEGIN
tran_level = ”2”
DBMS WITH CURSOR y EXECUTE USING \

ss, startsal, exemptions

DBMS WITH CURSOR x PREPARE_COMMIT
DBMS WITH CURSOR y PREPARE_COMMIT

Execute commits.
DBMS COMMIT new_emp

DBMS WITH CURSOR x COMMIT
DBMS WITH CURSOR y COMMIT

msg emsg ”Insert completed.”
tran_level = ””
return

##
proc tran_error
vars fail_area [2](20), tran_err(3)
fail_area[1] = ”address”
fail_area[2] = ”accounting data”

if tran_level != ””
{

Display an error message describing the failure.
msg emsg ”%WTransaction failed. Unable to insert \

:fail_area[tran_level] because of ” @dmengerrmsg
math tranerr = tran_level * 100
tran_level = ””
return :tranerr

}
msg emsg @dmengerrmsg
return 1

Transaction Manager Processing

Transaction Model for SQL Server
Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this

SQL Server-Specific Commands

Chapter 331 Database Driver for SQL Server

program; however, be aware that the transaction model is subject to change with
each release. For SQL Server, the name of the standard transaction model is
tmmss1.c.

The standard transaction model for SQL Server calls DBMS FLUSH instead of DBMS
CANCEL as part of the processing for the FINISH command. If a query has returned
a very large select set, closing the screen might be longer with the FLUSH
command. You can change this behavior by editing the model; however, the model
is subject to change in future releases, so you should track your changes in order to
update future versions.

Using Version Columns

For a SQL Server timestamp column, you can set the In Update Where and In
Delete Where properties to Yes. This includes the value fetched to that widget in
the SQL UPDATE and DELETE statements that are generated as part of the SAVE
command.

SAVE Commands

If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

SQL Server-Specific Commands

Prolifics for SQL Server provides commands for SQL Server-specific features.
This section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Browse Mode

BROWSE Execute a SELECT for browsing.

UPDATE Update a table while browsing.

SQL Server-Specific Commands

34 Database Drivers: Panther 4.25

Using Scrolling

BUFFER_DEFAULT Set buffer size for scrolling for entire ap-
plication.

SET_BUFFER Control availability of SQL Server-based
scrolling for DBMS CONTINUE_BOTTOM,
DBMS CONTINUE_TOP, DBMS CON-
TINUE_UP.

Using Stored Procedures

CANCEL Abort execution of a stored procedure.

DECLARE CURSOR FOR RPC Declare a cursor to execute a stored proce-
dure using a remote procedure call.

FLUSH Abort execution of a stored procedure.

NEXT Execute the next statement in a stored proce-
dure.

SET Set execution behavior for a procedure (exe-
cute all, stop at fetch, etc.).

TYPE Set data types for parameters of a stored pro-
cedure executed with an rpc cursor.

Using Transactions

BEGIN Begin a transaction.

CLOSE_ALL_TRANSACTIONS Close all transactions declared for two-phase
commit.

CLOSE_TRANSACTION Close a two–phase transaction.

COMMIT Commit a transaction.

DECLARE TRANSACTION Declare a transaction for two-phase commit.

PREPARE_COMMIT Indicate that a subtransaction is ready to
commit.

ROLLBACK Rollback a transaction.

SAVE Set a savepoint in a transaction.

SQL Server-Specific Commands

Chapter 351 Database Driver for SQL Server

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN
DBMS [WITH CURSOR cursor-name] BEGIN

DBMS [WITH CONNECTION connection-name] BEGIN two-phase-transaction-name

Specify an existing two phase transaction.

Specify the named cursor for the transaction. If no WITH CURSOR or WITH
CONNECTION clause is used, Prolifics begins a transaction on the default cursor of
the default connection.

If a WITH CONNECTION clause is used, Prolifics begins a transaction on the default
cursor of the named connection. If no WITH CURSOR or WITH CONNECTION clause
is used, Prolifics begins a transaction on the default cursor of the default
connection.

This command sets the starting point of a transaction. It is available in two con-
texts. It can start a transaction on a single cursor, or it can start a distributed trans-
action that can involve multiple cursors on one or more servers.

A transaction is a logical unit of work on a database contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
After a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.

To begin a distributed transaction (two-phase transaction), first declare a named
transaction with DBMS DECLARE TRANSACTION. Because this statement supports
a WITH CONNECTION clause, Prolifics associates the transaction name with a
particular connection; the connection’s server is the coordinating server for the
distributed transaction. When the application executes DBMS BEGIN transaction-
name where transaction-name is the name of the declared transaction, Prolifics
starts the transaction on the coordinating server.

Be sure to terminate the transaction with a DBMS ROLLBACK or DBMS COMMIT
before logging off. Note that Prolifics will not close a connection with a pending
two-phase commit transaction.

two-phase-transaction
-name
WITH CURSOR
cursor-name

WITH CONNECTION
connection-name

Description

SQL Server-Specific Commands

36 Database Drivers: Panther 4.25

Refer to the example in Using Transactions on page 25.

Using Transactions on page 25

CLOSE_ALL_TRANSACTIONS

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Example

See Also

SQL Server-Specific Commands

Chapter 371 Database Driver for SQL Server

BROWSE
Retrieve SELECT results one row at a time

DBMS BROWSE SELECTstmt

This command allows an application to execute a SELECT in “browse” mode. This
means that SQL Server will return the SELECT rows one at a time to the Prolifics
application; SQL Server will not set any shared locks for the SELECT. The applica-
tion can use the companion command DBMS UPDATE to update the current row.
SQL Server will verify that the row has not been changed before it issues the UP-
DATE.

To update in browse mode, the table being updated must have a timestamp column
and a unique index. A row’s timestamp indicates the last time the row was updated.
If the timestamp has not changed since DBMS BROWSE was executed, the
application can update the row. If the timestamp has changed, then some other user
or application has updated the row after DBMS BROWSE was executed. The update
is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must
open the browse mode connection by setting the CURSORS option to 2. Prolifics
uses one default cursor to select the rows and the other default cursor to update the
rows.

It is the programmer’s responsibility to determine whether a table is browsable. If
the table is not browsable, Prolifics returns the DM_BAD_ARGS error. If a table is
browsable, Prolifics returns the first row in the select set when DBMS BROWSE is
executed. Note that only one row is returned at a time.

To view the next row, the application must execute DBMS CONTINUE.

CONTINUE

FLUSH

UPDATE

Description

See Also

SQL Server-Specific Commands

38 Database Drivers: Panther 4.25

BUFFER_DEFAULT
Specifies setting for engine-based non-sequential scrolling

DBMS [WITH CONNECTION connection-name] BUFFER_DEFAULT value

Specifies the size of the buffer for SQL Server-based scrolling, if it is non-zero.

A Prolifics application can use either Prolifics-based or SQL Server-based scroll-
ing to execute DBMS CONTINUE, DBMS CONTINUE_TOP, DBMS CONTINUE_UP, and
DBMS CONTINUE_BOTTOM.

The size of the buffer is determined by the value specified with these commands.

SET_BUFFER

value

Description

See Also

SQL Server-Specific Commands

Chapter 391 Database Driver for SQL Server

CANCEL
Cancel the execution of a stored procedure or discard select rows

DBMS [WITH CURSOR cursor-name] CANCEL

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

This command cancels any outstanding work on the named cursor. In particular,
this command can be used to cancel a pending stored procedure or discard un-
wanted select rows. When the statement is executed, the following operations are
performed:

� Any rows to be fetched are flushed.

� Any remaining unexecuted statements are ignored.

� The procedure’s return status code is returned.

Prolifics calls the SQL Server routine dbcancel() to perform this operation.

If the WITH CURSOR clause is not used, Prolifics executes the command on the
default cursor.

Using Stored Procedures on page 17

FLUSH

WITH CURSOR
cursor-name

Description

See Also

SQL Server-Specific Commands

40 Database Drivers: Panther 4.25

CLOSE_ALL_TRANSACTIONS
Close all transactions declared for two-phase commit

DBMS CLOSE_ALL_TRANSACTIONS

This command attempts to close all transactions declared for two-phase commit
with DBMS DECLARE TRANSACTION. If the transaction has not been terminated by
a COMMIT or ROLLBACK, Prolifics will return the error DM_TRAN_PENDING.

Prolifics will not close a connection unless all two-phase commit transactions have
been closed. Furthermore, Prolifics will not close a two-phase commit transaction
unless the application explicitly terminated the transaction with a DBMS COMMIT
transaction-name or DBMS ROLLBACK transaction-name.

This helps prevent the application from terminating with a pending two-phase
transaction. For if this happens, SQL Server marks the transaction’s process as
“infected.” You will need the system administrator to delete the infected process.

Because this command verifies that all two-phase commit transactions were
terminated, you must call this command before logging off.

The JPL procedure cleanup checks that all declared transactions have been closed
before closing the database connections. If there is a transaction pending, the error
handler calls the JPL procedure cleanup_failure, which in turn calls the
procedure tran_cleanup.

proc cleanup
DBMS ONERROR JPL cleanup_failure
DBMS CLOSE_ALL_TRANSACTIONS
DBMS CLOSE_ALL_CONNECTIONS
return

Control string for APP1 is:
APP1 = ^tran_cleanup

proc cleanup_failure (stmt, engine, flag)
if @dmretcode == DM_TRAN_PENDING
{

call jm_keys APP1
}
return 0

Description

Example

SQL Server-Specific Commands

Chapter 411 Database Driver for SQL Server

proc tran_cleanup
DBMS WITH CURSOR c1 ROLLBACK
DBMS WITH CURSOR c2 ROLLBACK
DBMS ROLLBACK tr1
DBMS CLOSE TRANSACTION tr1
return

Using Transactions on page 25

BEGIN

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

ROLLBACK

See Also

SQL Server-Specific Commands

42 Database Drivers: Panther 4.25

CLOSE TRANSACTION
Close a declared transaction structure

DBMS CLOSE TRANSACTION two-phase-transaction-name

Specify an existing two phase transaction.

This command closes the main transaction that was previously defined using DBMS
DECLARE TRANSACTION. A main transaction controls the execution of a two-
phase commit process. This command signals the completion of the main transac-
tion and closes the SQL Server structures associated with the transaction.

An error code is returned if a transaction was pending. An application cannot close
a connection with an open transaction.

Using Transactions on page 25

BEGIN

CLOSE_ALL_TRANSACTIONS

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

two-phase-transaction
-name

Description

See Also

SQL Server-Specific Commands

Chapter 431 Database Driver for SQL Server

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

DBMS [WITH CURSOR cursor-name] COMMIT

DBMS COMMIT two_phase_transaction_name

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the commit on the default connection.

Specify a named cursor for the command.

Specify an existing two phase transaction.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

This command is available in two contexts. It can commit a transaction on a single
cursor or it can commit a two-phase commit transaction. If a WITH CURSOR clause
is used in a DBMS COMMIT statement, Prolifics commits the transaction on the
named cursor. If a WITH CONNECTION clause is used, Prolifics commits the
transaction on the default cursor of the named connection. If no WITH clause or no
distributed transaction name is used, Prolifics commits the transaction on the
default cursor of the default connection.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

If a distributed transaction name is used, Prolifics issues the commit to the
coordinating server. If this is successful, the application should issue a DBMS
COMMIT for each subtransactions. A WITH CURSOR or WITH CONNECTION clause

WITH CONNECTION
connection-name

WITH CURSOR
cursor-name
two-phase-transaction
-name

Description

SQL Server-Specific Commands

44 Database Drivers: Panther 4.25

is required for a subtransaction on a named cursor or a subtransaction on the
default cursor of a non-default connection. A WITH CONNECTION clause is
required for a subtransaction on a named connection.

Refer to the example in Using Transactions on page 25.

Using Transactions on page 25

BEGIN

CLOSE TRANSACTION

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Example

See Also

SQL Server-Specific Commands

Chapter 451 Database Driver for SQL Server

DECLARE CURSOR FOR RPC
Declare a named cursor for a remote procedure

DBMS [WITH CONNECTION connection-name] DECLARE cursor-name CURSOR FOR RPC \
procedure [::parameter [OUT] [data-type] [, ::parameter [OUT] [data-type] ...]]

Specify the connection for this command. If this clause is not included, Prolifics
associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a remote proce-
dure call (rpc). Because Prolifics uses its binding mechanism to support rpc’s, the
default cursor cannot execute an rpc.

The keyword RPC is required. Following the keyword is the name of the procedure
and the names of the procedure’s parameters. All parameters must begin with a
double colon, which is the Prolifics syntax for cursor parameters. If a parameter is
an output parameter, the keyword OUT should follow the parameter name if the
application is to receive its value. A parameter’s data type can be given in the DBMS
DECLARE CURSOR statement, or in a DBMS TYPE statement. Parameter names in
the DECLARE CURSOR statement must exactly match the parameter names defined
by the stored procedure.

The application executes an rpc cursor as it executes any named cursor, with DBMS
EXECUTE.

Refer to the example in Using Stored Procedures on page 17.

Using Stored Procedures on page 17

@dmengreturn

CLOSE CURSOR

EXECUTE

TYPE

WITH CONNECTION
connection-name

Description

Example

See Also

SQL Server-Specific Commands

46 Database Drivers: Panther 4.25

DECLARE TRANSACTION
Declare a named transaction

DBMS [WITH CONNECTION connection-name] DECLARE transaction-name TRANSACTION FOR \
SITES sites APPLICATION application

Optional argument that identifies the name of the transaction.

Determines the number of subtransactions involved in the distributed transaction.
Each cursor where a BEGIN is issued is a subtransaction. This number is critical to
recovery if the transaction fails.

Specify the name of the two-phase commit transaction. Do not use the keywords
“tran” or “transaction” for this argument. The application must use this name to
begin, to commit or rollback, and to close the transaction.

Identify the server that will coordinate the distributed transaction. If the clause is
not used, the server of the default connection is used. Be sure to name the server
when declaring the connection.

This command declares a two-phase commit transaction structure. After declaring
the transaction, start the transaction using DBMS BEGIN and include the transaction
name in that command. When the transaction is complete, close the transaction
using either DBMS CLOSE TRANSACTION or DBMS CLOSE_ALL_TRANSACTIONS.
An application must close all declared transactions before closing their connec-
tions.

Refer to the example in Using Transactions on page 25.

BEGIN

CLOSE_ALL_TRANSACTIONS

CLOSE TRANSACTION

application

sites

transaction-name

WITH CONNECTION
connection-name

Description

Example

See Also

SQL Server-Specific Commands

Chapter 471 Database Driver for SQL Server

FLUSH
Flush any selected rows not fetched to Prolifics variables

DBMS [WITH CURSOR cursor-name] FLUSH

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executes a SELECT, the procedure will not return the
DM_END_OF_PROC signal if the select set is pending. The application can execute
DBMS CONTINUE until the DM_NO_MORE_ROWS signal is returned, or it can execute
DBMS FLUSH, which cancels the pending rows.

This command is also useful with queries that fetch very large select sets. The
application can execute DBMS FLUSH after executing the SELECT, or after a
defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, after the rows have been flushed, the
application cannot use DBMS CONTINUE to view the unread rows.

Prolifics calls the SQL Server routine dbcanquery() to perform this operation.

proc large_select
Do not allow the user to see any more rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
if @dmretcode != DM_NO_MORE_ROWS

DBMS FLUSH
return 0

WITH CURSOR
cursor-name

Description

Example

SQL Server-Specific Commands

48 Database Drivers: Panther 4.25

DECLARE CURSOR

CANCEL

CONTINUE

NEXT

See Also

SQL Server-Specific Commands

Chapter 491 Database Driver for SQL Server

NEXT
Execute the next statement in a stored procedure

DBMS [WITH CURSOR cursor-name] NEXT

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Unless DBMS SET equals EXECUTE_ALL, an application must execute DBMS NEXT
after a stored procedure returns one or more SELECT rows to Prolifics. DBMS NEXT
executes the next statement in the stored procedure. If the application executes
DBMS NEXT and there are no more statements to execute, Prolifics returns the
DM_END_OF_PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that
returns rows to Prolifics. If DBMS SET equals SINGLE_STEP, the application must
execute DBMS NEXT after each statement, including non-SELECT statements. If the
application executes DBMS NEXT after all of the cursor’s statements have been
executed, Prolifics returns the DM_END_OF_PROC code.

Refer to the example in Using Stored Procedures on page 17.

Using Stored Procedures on page 17

DECLARE CURSOR

CANCEL

CONTINUE

FLUSH

SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]

WITH CURSOR
cursor-name

Description

Example

See Also

SQL Server-Specific Commands

50 Database Drivers: Panther 4.25

PREPARE_COMMIT
Prepare a two phase commit

DBMS [WITH CURSOR cursor-name] PREPARE_COMMIT

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Use of this command is required during the two-phase commit service. It is execut-
ed for each subtransaction when the subtransaction has been performed. Execution
of this command signals the application that the server is ready to commit the up-
date. After the application has “prepared” all the subtransactions, it needs to issue a
DBMS COMMIT to the main transaction and to each subtransaction.

If the WITH CURSOR clause is not used, Prolifics issues the command on the
default cursor.

Refer to the example in Using Transactions on page 25.

Using Transactions on page 25

BEGIN

CLOSE TRANSACTION

COMMIT

DECLARE TRANSACTION

ROLLBACK

SAVE

WITH CURSOR
cursor-name

Description

Example

See Also

SQL Server-Specific Commands

Chapter 511 Database Driver for SQL Server

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK savepoint

DBMS [WITH CURSOR cursor-name] ROLLBACK savepoint

DBMS ROLLBACK two_phase_transaction_name

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the rollback on the default connection.

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Specify an existing two phase transaction.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

This command is available in two contexts. It can rollback a transaction on a single
cursor, or it can rollback a two-phase rollback transaction. If a WITH CURSOR
clause is used in a DBMS ROLLBACK statement, Prolifics rolls back the transaction
on the named cursor. If a WITH CONNECTION clause is used, Prolifics rolls back
the transaction on the default cursor of the named connection. If no WITH clause or
no distributed transaction name is used, Prolifics rolls back the transaction on the
default cursor of the default connection.

Refer to the example in Using Transactions on page 25.

If a distributed transaction name is used, Prolifics issues the rollback to the
coordinating server. The application should also issue a DBMS ROLLBACK for each
subtransaction. A WITH CURSOR or WITH CONNECTION clause is required for a

WITH CONNECTION
connection-name

WITH CURSOR
cursor-name

savepoint

two-phase-transaction
-name

Description

Example

SQL Server-Specific Commands

52 Database Drivers: Panther 4.25

subtransaction on a named cursor or a subtransaction on the default cursor of a
non-default connection.

Using Transactions on page 25

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

SAVE

See Also

SQL Server-Specific Commands

Chapter 531 Database Driver for SQL Server

SAVE
Set a savepoint within a transaction

DBMS [WITH CONNECTION connection-name] SAVE savepoint
DBMS [WITH CURSOR cursor-name] SAVE savepoint

Specify the name of the savepoint.

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled using DBMS ROLLBACK savepoint. A
transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then either
be completed or rolled back to the beginning.

This feature is useful for any long, complicated transaction. For example, an order
entry application might involve many screens where an end-user must enter data
regarding the order. As the user completes each screen, the application can issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application can
simply rollback the procedures on the fifth screen.

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SAVE s1
call new_dscr
call new_tapes
DBMS COMMIT
return 0

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \

(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2

return 0

savepoint

WITH CURSOR
cursor-name

Description

Example

SQL Server-Specific Commands

54 Database Drivers: Panther 4.25

proc new_tapes
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
return 0

Using Transactions on page 25

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

See Also

SQL Server-Specific Commands

Chapter 551 Database Driver for SQL Server

SET
Set handling for a cursor that executes a stored procedure or multiple statements

DBMS [WITH CURSOR cursor-name] SET EXECUTE_ALL

DBMS [WITH CURSOR cursor-name] SET SINGLE_STEP

DBMS [WITH CURSOR cursor-name] SET STOP_AT_FETCH

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor that con-
tains multiple SQL statements. This command allows the following options:

EXECUTE_ALL

Specifies that the DBMS return control to Prolifics only when all statements have
been executed or when an error occurs. If a SQL SELECT is executed, only the first
pageful of rows is returned to Prolifics variables. This option can be set for a
multi-statement or a stored procedure cursor.

SINGLE_STEP

Specifies that the DBMS return control to Prolifics after executing each statement
belonging to the multi-statement cursor. After each SELECT, the user can press a
function key to execute a DBMS CONTINUE and scroll the select set. To resume
executing the cursor’s statements, the application must execute DBMS NEXT. This
option can be set for a multi-statement cursor. If this option is used with a stored
procedure cursor, Prolifics uses the default setting STOP_AT_FETCH.

STOP_AT_FETCH

Specifies that the DBMS return control to Prolifics after executing a SQL SELECT
that fetches rows. (Note that control is not returned for a SELECT that assigns a
value to a local SQL Server parameter.) The application can use DBMS CONTINUE
to scroll through the select set. To resume executing the cursor’s statements or
procedure, the application must execute DBMS NEXT. This option can be set for a
multi-statement or a stored procedure cursor.

WITH CURSOR
cursor-name

Description

SQL Server-Specific Commands

56 Database Drivers: Panther 4.25

The default behavior for both stored procedure and multi-statement cursors is
STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default
behavior.

DBMS DECLARE x CURSOR FOR \
SELECT cust_id, first_name, last_name, member_status \

FROM customers WHERE cust_id = ::cust_id \
INSERT INTO rentals (cust_id, title_id, copy_num, \

rental_date, price) \
VALUES (::cust_id, ::title_id, ::copy_num, \
::rental_date, ::price)

msg d_msg ”%KPF1 START %KPF2 SCROLL SELECT\
 %KPF3 EXECUTE NEXT STEP”

proc f1
This function is called by the PF1 key.
DBMS WITH CURSOR x SET_BUFFER 10
DBMS WITH CURSOR x SET SINGLE_STEP
DBMS WITH CURSOR x EXECUTE USING cust_id, cust_id, \

title_id, copy_num, rental_date, price
DBMS WITH CURSOR x SET
return

proc f2
This function is called by the PF2 key.
DBMS WITH CURSOR x CONTINUE
if @dmretcode == DM_NO_MORE_ROWS

msg emsg ”All rows displayed.”
return

proc f3
This function is called by the PF3 key.
DBMS WITH CURSOR x NEXT
if @dmretcode == DM_END_OF_PROC

msg emsg ”Done!”
return

Using Stored Procedures on page 17

CANCEL

CONTINUE

DECLARE CURSOR

DECLARE CURSOR FOR EXEC

DECLARE CURSOR FOR RPC

Example

See Also

SQL Server-Specific Commands

Chapter 571 Database Driver for SQL Server

FLUSH

NEXT

SQL Server-Specific Commands

58 Database Drivers: Panther 4.25

SET_BUFFER
Use engine-based scrolling

DBMS [WITH CURSOR cursor-name] SET_BUFFER [number-of-rows]

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBMS
CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS CONTINUE_UP. In one
method, an application uses Prolifics-based scrolling by setting up a continuation
file with DBMS STORE FILE. In the other method, an application uses SQL Serv-
er-based scrolling by setting a flag for a cursor with DBMS SET_BUFFER.

SQL Server supports non-sequential scrolling if the application has set up a buffer
for result rows. This command sets the SELECT cursor to use SQL Server-based
scrolling. If an application does not need DBMS CONTINUE_UP or is using a
continuation file (DBMS STORE FILE), this command is not needed.

If the WITH CURSOR clause is used, Prolifics sets the flag for the named cursor. If
the WITH CURSOR clause is not used, Prolifics sets the flag for the default SELECT
cursor.

number-of-rows is the number of rows SQL Server will buffer. To be useful,
number-of-rows should be greater than the number of occurrences in the Prolifics
destination fields.

When this command is used with a SELECT cursor, SQL Server saves the specified
number of result rows in memory. When the application executes DBMS CON-
TINUE_BOTTOM, DBMS CONTINUE_TOP, or DBMS CONTINUE_UP commands, the
result rows in memory are returned.

The buffer is maintained for the life of the cursor, or until the buffer is released
with this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER

Executing the command without supplying the number-of-rows argument turns off
the feature for the named or default cursor and frees the buffer. Note that

WITH CURSOR
cursor-name

Description

SQL Server-Specific Commands

Chapter 591 Database Driver for SQL Server

re-declaring the cursor does not free the buffer. Closing the cursor does release the
buffer.

Because the use of this command is expensive (approximately 2K of memory per
row), it should be used only if the application needs non-sequential scrolling but
cannot use scrolling arrays or a continuation file. The application should turn off
DBMS SET_BUFFER when finished with the select set.

Note the following restrictions:

� Only a few engines support native scrolling. Therefore, this command might
not be supported with other engines. Prolifics-based scrolling is supported on
all engines with DBMS STORE FILE.

� Each DBMS CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS
CONTINUE_UP requires a trip to the server. With Prolifics-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, Prolifics reads them from the continuation file rather than requesting
them from the server.

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 500

proc scroll_up
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE_BOTTOM

CONTINUE_TOP

CONTINUE_UP

STORE

Example

See Also

SQL Server-Specific Commands

60 Database Drivers: Panther 4.25

TRANSACTION
Set a default transaction for use in two-phase commits

DBMS TRANSACTION two-phase-transaction-name

If an application has declared more than one two-phase commit transaction, it can
use this command to set the default two-phase commit transaction for a subtransac-
tion.

BEGIN

COMMIT

DECLARE TRANSACTION

PREPARE_COMMIT

ROLLBACK

SAVE

Description

See Also

SQL Server-Specific Commands

Chapter 611 Database Driver for SQL Server

TYPE
Declare parameter data types for an rpc cursor

DBMS WITH CURSOR cursor-name TYPE parameter data-type [, parameter data-type ...]

Specify a named cursor for the command.

If an application has declared a cursor for a remote procedure call (“rpc”) but has
not declared the data types of the procedure’s parameters, it should use the DBMS
TYPE command.

parameter is the name of a parameter in the stored procedure and in the DBMS
DECLARE CURSOR statement. data-type is the data type of the parameter in the
stored procedure. Prolifics uses the information supplied with this command to
execute the remote procedure call. Please note that these data types have no effect
on any data formatting performed by colon-plus processing or binding.

Executing this command with no arguments deletes all type information for the
named cursor.

##
#procedure newprice:
#create proc newprice @pricecat char(1), @percent float,
@price money output, @proposed_price money output
as
select @price = (select price from pricecats
where pricecat = @pricecat)
select @proposed_price = @price + (@price * @percent)
##

DBMS DECLARE nc CURSOR FOR \
RPC newprice ::pricecat, ::percent, ::price OUT, \
 ::proposed_price OUT

DBMS WITH CURSOR nc TYPE \
percent float, price money, proposed_price money

DBMS WITH CURSOR nc EXECUTE \
USING pricecat, percent, price, proposed_price

Using Stored Procedures on page 17

DECLARE CURSOR FOR RPC

WITH CURSOR
cursor-name

Description

Example

See Also

SQL Server-Specific Commands

62 Database Drivers: Panther 4.25

UPDATE
Update a table while browsing

DBMS UPDATE table-name SET column = value [, column = value ...]

Browse mode permits an application to browse through a select set, updating a row
at a time. Browse mode is useful for an application that wants to ensure that a row
has not been changed in the interval between the fetch and the update of the row.

When DBMS BROWSE is executed, it fetches the rows in the select set one at a time.
The application should provide other JPL procedures to execute DBMS CONTINUE
and DBMS UPDATE commands.

Please note that the DBMS UPDATE statement has no WHERE clause. Prolifics calls a
SQL Server routine to build a WHERE clause using the unique index of the current
row and the value of its timestamp column when the row was fetched. If the
timestamp value has not been changed, the row is updated. However, if the
timestamp value has changed, then another user has modified the row since the
application executed DBMS BROWSE. In this case, SQL Server will not perform the
update.

Refer to the manual page for BROWSE.

BROWSE

CANCEL

CONTINUE

FLUSH

Description

Example

See Also

SQL Server-Specific Commands

Chapter 631 Database Driver for SQL Server

USE
Open an existing database

DBMS [WITH CONNECTION connection-name] USE database-name

Specify the connection for this command. If this clause is not included, Prolifics
issues the command on the default connection.

Specify an existing database.

This command changes a connection’s default database. database-name must ref-
erence an existing database, and the user must have the appropriate permissions to
access the database or else Prolifics returns an error.

DBMS DECLARE c1 CONNECTION FOR \
USER ’:uname’ PASSWORD ’:pword’ SERVER ’:server’ \
DATABASE ’videobiz’

DBMS SQL SELECT * FROM titles
DBMS WITH CONNECTION c1 USE projects
DBMS SQL SELECT * FROM newjobs

Connecting to a Database Engine on page 5

WITH CONNECTION
connection-name

database-name

Description

Example

See Also

Command Directory for SQL Server

64 Database Drivers: Panther 4.25

Command Directory for SQL Server

The following table lists all commands available in Prolifics’s database driver for
SQL Server. Commands available to all database drivers are described in the
Programming Guide.

Table 2. Commands for SQL Server

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

BEGIN Begin a transaction page 35

BINARY Create a Prolifics variable for
fetching binary values

page 810

BROWSE Execute a SQL SELECT for
browsing

page 37

BUFFER_DEFAULT Set the size of the buffer for
engine-based scrolling

page 38

CANCEL Abort execution of a stored
procedure

page 39

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE_ALL_TRANSAC-
TIONS

Close all transactions page 40

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

CLOSE TRANSACTION Close a named transaction page 42

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 43

Command Directory for SQL Server

Chapter 651 Database Driver for SQL Server

Command Name Documentation
Location

Description

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

DECLARE CURSOR FOR
RPC

Declare a cursor to execute a
stored procedure using a re-
mote procedure call

 page 45

DECLARE TRANSACTION Declare a transaction for two
phase commit

page 46

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FLUSH Flush any selected rows page 47

FORMAT Format the results of a CAT-
QUERY

NEXT Execute the next statement in
a stored procedure

page 49

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

Command Directory for SQL Server

66 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

PREPARE_COMMIT Indicate that a transaction is
ready to commit

page 50

ROLLBACK Roll back a transaction page 51

SAVE Set a savepoint in a transac-
tion

page 53

SET parameter Set execution behavior for a
stored procedure

page 55

SET_BUFFER Set engine-based scrolling
for a cursor

page 58

START Set the first row for Prolifics
to return from a select set

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

TRANSACTION Set the default transaction page 60

TYPE Set data types for parameters
of a stored procedure execut-
ed with an rpc cursor

page 61

UNIQUE Suppress repeating values in
a selected column

UPDATE Update a table while brows-
ing

page 62

USE Open an existing database page 63

Command Directory for SQL Server

Chapter 671 Database Driver for SQL Server

Command Name Documentation
Location

Description

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

