Panther

Database Driver—-MS SQL
Server

Release 4.25

Prolifics, May 2000

©c 00 0 0 0 0 0 ¢ © ¢ o0 ©

Database Driver for
SOQL Server

Engineinitiaization (page 4)

Connection declaration (page 5)

Import conversion (page 6)

Formatting for colon-plus processing and binding (page 10)
Cursors (page 11)

Locking behavior (page 12)

Errors and warnings (page 15)

Stored procedures (page 17)

Database transaction processing (page 25)
Transaction manager processing (page 32)

SQL Server-specific DBMVS commands (page 33)

Command directory for Prolifics for SQL Server (page 64)

Initializing the Database Engine

This document is designed as a supplement to information found in the Devel op-

er's Guide.

Initializing the Database Engine

Engine Name

Database engine initialization occurs in the source file dbi i ni t . ¢. This source
fileisunique for each database engine and is constructed from the settings in the
makevar s file. In Prolifics for SQL Server, thisresultsin the following ven-
dor _|i st structureindbiinit.c:

static vendor_t vendor_list[] =

{
{"sql srvr”, dm nsssup, DM DEFAULT_CASE , (char *) 0},

{ (char *) 0, (int (*)()) O, (int) O, (char *) 0}

The settings are as follows:

sql srvr Engine name. May be changed.

dm nsssup Support routine name. Do not change.

DM DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for SQL Server, the settings can be changed by editing the make-
var s. nss file,

You can change the engine name associated with the support routine dm nsssup.
The application then uses that namein DBMS ENG NE statementsand in W TH
ENG NE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevar s. nss file:

MSS_ENGNAME=t r acki ng

If the application is accessing multiple engines, it makes SQL Server the default
engine by executing:

where sqglsrvr-engine-name isthe string used in vendor _| i st . For example,
DBMS ENG NE sql srvr
or

DBMS ENG NE tracki ng

Database Drivers: Panther 4.25

Connecting to the Database Engine

Support Routine Name

Case Flag

dm sup isthe name of the support routine for SQL Server. This name should not
be changed.

The case flag, DM_DEFAULT_CASE, determines how Prolifics's database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing SQL Server column names to either a Prolifics variable
name or to acolumn namein aDBMS ALI AS statement.

SQL Server is case-sensitive. SQL Server uses the exact case of a SQL statement
when creating database objects like tables and columns. In subsegquent SQL
statements, you must use the same exact case when referring to these objects. The
default setting for case-sensitive engines is DM PRESERVE_CASE. This means that
the SQL Server column name is matched to a Prolifics variable with the same
name and case when processing SELECT results.

The case setting can be changed. You can force Prolifics to perform case-insensi-
tive searches. Substitute the | option in the makevar s file to match SQL Server
column names to lower case Prolifics variables, or use the u option to match to
upper case Prolifics variables.

MBS | NI T=I
or
MBS_I NI T=u

If you edit makevar s. nss, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Devel oper’s Guide.

Connecting to the Database Engine

SQL Server allows your application to use one or more connections. The
application can declare any humber of named connections with DBMS DECLARE
CONNECTI ON statements, up to the maximum number permitted by the server.

Chapter 1 Database Driver for SQL Server 5

Importing Database Tables

The following options are supported for connectionsto SQL Server:

Tablel. Database connection options.

Option Argument

USER user-name

| NTERFACES interfaces-file-pathname
SERVER server-name
DATABASE database-name
PASSWORD password

APPLI CATI ON application-name
CHARSET character-set-name
CURSORS 1|12

TI MEQUT seconds

HOST host-name

SQLTI MEQUT seconds

DBMS [W TH ENG NE engine] DECLARE connection CONNECTI ON \
[FOR [USER user-name] [PASSWORD password] \
[DATABASE database] [SERVER server] \
[APPLI CATI ON application-name] [CURSORS number-of-cursors] \
[HOST host-name] [NTERFACES interface-file-pathname] \
[SQ.TI MEQUT seconds] [TI MEQUT seconds] [CHARSET character-set]]

For example:

DBMS DECLARE dbi _sessi on CONNECTI ON FOR \
USER ": unanme” PASSWORD ”: pword” DATABASE "sal es” \
SERVER " sybasel0” APPLI CATI ON "sal es” HOST "oak” \
I NTERFACES "/ usr/sybase/interfaces. app” \
CURSORS 72" SQLTI MEQUT " 120" TI MEQUT " 15"

Additional keywords are available for other database engines. If those keywords
areincluded in your DBMS DECLARE CONNECTI ON command for SQL Server, itis

treated as an error.

Importing Database Tables

The Importd Database Objects option in the screen editor creates Prolifics
repository entries based on database tablesin an SQL Server database. When the

Database Drivers: Panther 4.25

Table Views

Importing Database Tables

import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for SQL Server, the following database objects can be imported as
repository entries:

Q database tables
Q database views
After theimport processis complete, the repository entry screen contains:

Q A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

QO A labe for each column based on the column name.
QO A tableview named for the database table or database table view.
Q Linksthat describe the relationship between table views.

Each import session alows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. Asa
genera rule, the members of atable view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

Theimport process inserts values in the following table view properties:
QO Name— The name of the table view, generally the same as the database table.
Q Table— The name of the database table.

Q Primary Keys— The columns that are defined as primary keys or unique
indexes for the database table.

Q Columns— A list of the columns in the database table is displayed when you
click on the More button. However, thislist is for reference only. It cannot be
edited.

Q Updatable — A setting that determinesiif the data in the table can be modified.
The default setting for Updatableis Yes.

Chapter 1 Database Driver for SQL Server 7

Importing Database Tables

Links

Widgets

For each repository entry based on a database view, the primary key widgets must
be availableif you want to update datain that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, thisinformation is automatically imported.

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check thelink propertiesto see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @GXATABASE

indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each SQL Server data type.

SQL Server Data Code Prolifics Type C Type Widget Length Widget
Type Precision
bi nary 45 DT_BI NARY Hex Dec column length * 2
bi t 50 FT_INT I nt 1
char 47 FT_CHAR Char column length
String
dateti me 61 DT_DATETI ME Def aul t 17
deci mal 55
scae>0 FT_FLOAT Fl oat column precision + column
column scale + 1 scale
else FT_LONG Long I nt column precision

Database Drivers: Panther 4.25

Importing Database Tables

SQL Server Data Code Prolifics Type C Type Widget Length Widget
Type Precision
doubl e preci- 62 FT_FLOAT Fl oat 16 2
sion
fl oat 62 FT_FLOAT Fl oat 16 2
i mage 34 DT_BI NARY Hex Dec column length
i nt 56 FT_LONG Long I nt 11
noney 60 DT_CURRENCY Def aul t 26
nchar 47 FT_CHAR Char column length
String
nvar char 47 FT_CHAR Char column length
String
numeric 63
scae>0 FT_FLOAT Fl oat column precision + column
column scale+ 1 scale
else FT_LONG Long I nt column precision
real 59 FT_FLOAT Fl oat 16 2
smal | datetine 58 DT_DATETI ME Def aul t 17
smal | i nt 52 FT_INT I nt 6
smal | noney 122 DT_CURRENCY Def aul t 14
t ext 35 FT_CHAR Char 254
String
ti mestanp 80 DT_BI NARY Hex Dec column length
tinyint 48 FT_INT I nt 3
var bi nary 37 DT_BI NARY Hex Dec column length * 2
var char 39 FT_CHAR Char column length
String
Other Widget Based on the column’s data type or on the Prolifics type assigned during the import
Properties process, other widget properties might be automatically set when importing
database tables.
UselnUpdate property If acolumn’s length is defined as larger than 254 in the database, then the database

importer setsthe Use In Update property to No for the widget corresponding to

Chapter 1 Database Driver for SQL Server

Formatting for Colon Plus Processing and Binding

DT_CURRENCY

DT_DATETIME

Null Field property

that column. Because widgets in Prolifics have a maximum length of 254, the data
originally in the database column could be truncated as part of a SAVE command in
the transaction manager.

The Use In Update property is also set to No for certain data types. In SQL Server,
this applies to the datatypest ext , i mage, and for any numer i ¢ columnthatis
defined asi dentity.

DT_CURRENCY widgets have the Format/Display[] Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETI ME widgets a so have the Format/Display(] Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM DD/ YY HH: MM

If acolumn isdefined to be NOT NULL, the Null Field property is set to No. For
example, ther ol es tableinthevi deobi z database contains three columns:
title_id,actor_idandrole.title_idandactor_id aredefined as NOT
NULL so the Null Field property is set to No. r ol e, without aNOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolificstype and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates

10

Prolifics uses SQL Server’'sconvert function and the SQL Server format string,
yyyymrdd hh: nm ss to convert a Prolifics date-time format to a SQL Server
format.

In order for conversion to take place, the widget must have the C Type set to
Default and the Format/Displayd Data Formatting property set to Date/Time. Any
date-time Format Type is appropriate.

Thisisthe format for literal dates. It is compatible with SQL Server national
language support.

Database Drivers: Panther 4.25

Declaring Cursors

Formatting Currency Values

SQL Server requires aleading dollar sign for valuesinserted in anmoney columnin
order to ensure precision. Prolifics will use aleading dollar sign when it formats
widgets with a Prolifics type of DT_CURRENCY. Any other amount formatting
characters are stripped. Therefore, if a currency field contained

500, 000. 00
Prolificswould format it as

$500000. 00

Using Text and Image Data Types

Note that when the select list includes the values of text and image data types, the
limit on the length of the data returned depends on the server setting of t ext si ze.
The SQL Server server default is 32K; however, this value can be changed on the
server viathe SQL Server set command. The global variable @G@ ext si ze
contains the current maximum.

Declaring Cursors

Each Prolifics cursor uses a SQL Server dbpr ocess. By default, Prolifics for SQL
Server uses one cursor (dbpr ocess) for operations performed by DBMS SQL.
Therefore, if an application executes the sequence:

DBMS SQL SELECT ...
DBMS SQL UPDATE . ..

the following command to display additional rows in the select set:
DBMS CONTI NUE
will fail because SQL Server discards the select set when the cursor is re-used.

Prolifics for SQL Server supports a connection option of CURSORS 2 for
simulating two default cursors. When this option is used, Prolifics for SQL Server
opens two default cursors on each connection. It uses one cursor for all SELECT
statements. It uses the second cursor for all non-SELECT statements; this includes
| NSERT, UPDATE, DELETE, and all stored procedure calls. Transaction commands
(BEG N, COW T, ROLLBACK) are also issued for the non-SELECT cursor.

If you use the CURSORS 2 connection option, you will need to declare a named
cursor to execute a stored procedure (or SQL batch command) that returns select
rows. The second default cursor never returns select rows.

Chapter 1 Database Driver for SQL Server 11

Scrolling

Scrolling

Prolifics does not put any limit on the number of cursors an application may
declare to an SQL Server engine. Because each cursor requires memory and SQL
Server resources, however, it is recommended that applications close a cursor when
it is no longer needed.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

SQL Server has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to Prolifics
scrolling. Both systems allow you to use the following commands:

DBMS [W TH CURSCR cursor-name] CONTI NUE_BOTTOM

DBVS [W TH CURSOR cursor-name | CONTI NUE_TOP

DBMS [W TH CURSCR cursor-name] CONTI NUE_UP

For native scrolling, use this command:

DBMS [W TH CURSCR cursor-name] SET_BUFFER number-of-rows

This command sets the DB-Library option DBBUFFER. When this command is
used, SQL Server buffers the specified number of select rowsin the program’s
memory.

For Pralifics scrolling, use this command::

DBMS [W TH CURSCR cursor-name] STORE FI LE [filename]

To turn off Pralifics scrolling and close the continuation file, use this command:
DBMS [W TH CURSCR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Locking Behavior

12

Prolifics developers using SQL Server should consider locking issues when
building applications that select large amounts of data.

Database Drivers: Panther 4.25

Locking Behavior

When an application executes a SQL SELECT that returns many rows, SQL Server
might use a“ shared lock” on each data page to preserve read-consistency. That is,
to preserve the state of the selected data, SQL Server might prevent other
applications or users from changing the data until the application has received all
the rows. This behavior is usually seen for select sets that contain several hundred
rows.

Asapart of developing and testing an application, you should monitor SQL
Server’s behavior by running the SQL Server command sp_| ock from another
terminal when the application executes a SELECT. If a SELECT executed by a
Prolifics application is holding alock, the cursor’s spid will be listed.

Because a shared lock prevents other users from updating data, it isimportant to
release shared locks as soon as possible. To release a shared locked, you must
either:

QO Get all therowsin the select set.

Q Flush pending rowsin the select set.

An application has two ways of getting the entire select set:

Q Create Prolifics arrays that are large enough to hold the entire select set.

Q UseDBMS STORE FI LE and DBMS CONTI NUE_BOTTOMto buffer all the rows
in atemporary file on disk.

For example, an application might set up a continuation file before executing a
SELECT. Before returning control to the user, the application might execute DBVS
CONTI NUE_BOTTOM Which forces Prolifics get al the rows from the select set and
buffer them in atemporary file. Thisaso forces SQL Server to release any shared
lock it is holding for the SELECT.

In the following example, the application puts a message on the status line and
flushes the display. Next it sets up a continuation file and executes the SELECT. It
calls DBMS CONTI NUE_BOTTOMto force Prolifics to get all the rows. Finally, it
calls DBMS CONTI NUE_TOP to ensure that the select set’sfirst page (rather than its
last page) of rowsis displayed when control is returned to the user.

proc big_sel ect
msg setbkstat ”"Processing. Please be patient...”
flush
DBMS STORE FI LE
DBMS SQL SELECT
DBVS CONTI NUE_BOTTOM
DBMS CONTI NUE_TOP
msg d_nsg " "
return

Chapter 1 Database Driver for SQL Server 13

Locking Behavior

14

An application can also limit the number of rows a user can view at atime by using
the DBMB FLUSH command. When this command is executed, SQL Server discards
any pending rows and releases all associated locks. For example,

proc big_sel ect
DBM5S SQL SELECT
if @nretcode != DM NO MORE_RONS
DBMS FLUSH
return

To monitor lock information within the application, the application can query SQL
Server for the spi d (server processid) number of acursor and the number of locks
held by the cursor. Note that each cursor hasits own spi d and it keeps the same
spi d number until the application closes the cursor. To get acursor’sspi d
number, an application must use the cursor to select the global SQL Server variable
@spi d.

Get the SQ Server spid for a Prolifics cursor
before SELECTIi ng rows.
proc get_spid (cursor)
vars spid
if cursor ==
DBMS SQL SELECT spid = @®pid
el se

nn

DBMS DECLARE : cursor CURSCR FOR \
SELECT spid = @®pi d
DBMS EXECUTE : cursor
}

return spid

Get the nunber of |ocks held by a SQL Server spid.
proc | ockstatus (spid4dsel ect)
vars | count
DBMS DECLARE | ock_cursor CURSCOR FOR \
SELECT COUNT(*) FROM naster. dbo. sysl ocks \
VWHERE spid = :spid4sel ect
DBMS W TH CURSCOR | ock_cursor ALI AS | count
DBVS W TH CURSOR | ock_cursor EXECUTE
DBMS CLOSE CURSOR | ock_cursor
return | count

An application can get a cursor’s spid before executing a SELECT for rows. After
fetching rows the application can query SQL Server for the number of locks. Note
that the order of these statements isimportant: if an application attempts to get a
cursor’s spid after fetching rows, the SELECT for the cursor’s spid will release any
locks and any pending rows. For this reason, be sure to get the cursor’s spid before
fetching rows. Refer to the example below.

Database Drivers: Panther 4.25

Error and Status Information

proc sel ect
vars cursor_spid, |ocks_before, |ocks_after

cursor_spid = get_spid ("cl”)
| ocks_before = | ockstatus (cursor_spid)

DBMS DECLARE c1 CURSOR FCR SELECT ...
DBM5 W TH CURSCR c1 EXECUTE

| ocks_after = | ockstatus (cursor_spid)
if locks_after > | ocks_before
nsg ensg "The SELECT has | ocked data.”

return O

Error and Status Information

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for usein
other engines and for use in future releases of Prolifics for SQL Server.

Errors

Prolificsinitializes the following global variables for error code information:

@inr et code Standard database driver status code.

@Inr et nsg Standard database driver status message.
@lmenger r code SQL Server error code.

@lnmenger r nsg SQL Server error message.

@inmengreturn Return code from an executed stored procedure.

SQL Server returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes SQL
Server error codes to the global variable @menger r code and writes SQL Server
messages to @menger r msg.

All SQL Server errors with a severity greater than 10 are Prolifics errors.
Otherwise, they are considered warnings.

Chapter 1 Database Driver for SQL Server 15

Error and Status Information

Using the
Default Error
Handler

Using an
Installed Error
Handler

Warnings

16

The default error handler displays adialog box if thereisan error. Thefirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Dat abase i nt erface appearsintheReported by list along
with the database engine. The error number and message contain the values of
@Iinr et code and @inr et nsg. If the error comes from the database engine, only
the name of the engine appearsin the Repor t ed by list. The error number and
message contain the values of @menger r code and @imenger r nsg.

Aninstalled error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBVS DECLARE dbi _sessi on CONNECTI ON FOR ...

proc errors (stnt, engine, flag)
i f @nmengerrcode ==

nmsg ensg "JAM error: " @nretnsg
el se

nmsg enmsg "JAMerror: " @nretnsg " 9N \

".engine error is " @nmengerrcode " " @nengerrnsg
return 1

For additional information about engine errors, refer to your SQL Server
documentation. For more information about error processing in Pralifics, refer to
Chapter 36 in the Devel oper’s Guide and Chapter 12 in the Programming Guide.

Prolificsinitializes the following global variables for warning information:

@inmengwar ncode SQL Server warning code.

@Imengwar nimsg SQL Server warning message.

Prolifics writes the code to @mengwar ncode and the message to @ neng-
war nnsg.

A warning usually describes some non-fatal change in the SQL Server environ-
ment. For example, SQL Server issues awarning when the application changes a
connection’s default database.

You might wish to use an exit hook function to process warnings. An exit hook
function isinstalled with DBMS ONEXI T. A sample exit hook function is shown
below.

Database Drivers: Panther 4.25

Using Stored Procedures

proc check_status (stnt, engine, flag)

i f @nmengwar ncode
nmsg enmsg ":engine Warning is
return

”

@mengwar nisg

Row Information

Prolificsinitializes the following global variables for row information:

@inT owcount Count of the number of SQL Server rows affected
by an operation.
@inseri al Not used in Prolifics for SQL Server.

SQL Server returns a count of the rows affected by an operation. Prolifics writes
this value to the global variable @nr owcount .

As explained on the manual page for @inT owcount , the value of @nr owcount
after a SQL SELECT isthe number of rows fetched to Prolifics variables. This
number isless than or equal to the total number of rows in the select set. The value
of @nr owcount after a SQL | NSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBVS
statement is executed, including DBMS COVM T.

The value of @inr owcount might be unexpected after executing a stored
procedure. Thisis documented SQL Server behavior. If you need this information,
SQL Server recommends that you test for it within the stored procedure and return
it as an output parameter or return code. @@ owcount isaSQL Server global
variable. For example:

create proc update_ship_fee @l ass int, @hange fl oat
as
declare @_count int
updat e cost set ship_fee = ship_fee * @hange
where class = @l ass
sel ect @_count = @@ owcount
return @_count

//—/_/\/_/_/—\/’_/

Refer to your SQL Server Command Reference Manual for more information.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and

Chapter 1 Database Driver for SQL Server 17

Using Stored Procedures

syntax checking for a stored procedure are performed when the procedureis
created, executing a stored procedure is faster than executing the same group of
SQL statementsindividually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
i f statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differencesin the engine implementation.

Executing Stored Procedures

Example

18

An application can execute a stored procedure with DBMS SQL and the engine's
command for execution, EXEC. For example:

DBMS SQL [DECLARE parameter data-type \
[DECLARE parameter data-type...]] \
EXEC procedure-name [parameter [QUT][, parameter [OUT]...]]

An application can also use anamed cursor to execute a stored procedure:

DBMS DECLARE cursor CURSCR FOR \
[DECLARE parameter data-type [DECLARE parameter data-type...]] \
EXEC procedure-name [parameter [QUT][, parameter [OUT]...]]

The cursor can then be executed with the following statement:

DBMS [W TH CURSCOR cursor] EXECUTE [USI NG values]

For example, updat e_t apes isastored procedure that changes the video tape
status to Owhenever avideo is rented.

create proc update_tapes @arml int, @arn2 int
as

update tapes set status ='O
where title_id = @arml and copy_num = @ar n2

The following statement executes this stored procedure, updating the st at us
column of thet apes table using the onscreen values of thewidgetstit!l e_i d and
copy_num

DBMS SQL EXEC update_tapes :+title_id, :+copy_num

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USI NG
clause that gets the onscreen values of thewidgetstit1e_i d and copy_num

Database Drivers: Panther 4.25

Using Stored Procedures

DBMS DECLARE x CURSOR FOR EXEC updat e_t apes \
ciparml, ::parng
DBMS W TH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in aDECLARE CURSOR statement for cursor
parameters. If asingle colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter

NO TAG in the Devel oper’s Guide for more information.

Getting Output Parameter Values

If the DBM S supports output parameters, the keyword OUT traps the value of an
output parameter in a Prolifics variable. For example, the stored procedure

rent _sunmary calculates the total number of rentals for the day and the total
price paid for those rentals.

create proc rent_summary
@umrented int output, @ot_price output, @ay datetine
as
create table rentsum (price noney)
insert into rentsum select rentals.price fromrentals
where rental _date = @lay
sel ect @umrented = count(*) fromrentsum
select @ot_price = sum (price) fromrentsum
drop table rentsum

M/

The application should declare a cursor for the procedure:

DBMS DECLARE curl CURSCOR FOR \
declare @1 int declare @2 noney \
EXEC rent _sunmmary @um rented=@1 OUT, \
@ot _price=@2 OUT, @lay =::today

DBMS W TH CURSOR curl EXECUTE USI NG t oday = day

Notethatt 1 andt 2 are temporary SQL Server variables, not Prolifics variables.
SQL Server requires that output values be passed as variables, not as constants. If
num rented andt ot _pri ce are Prolifics variables, the procedure returns the
number of videos rented on a specific day and the total price paid for those videos.
The application can use DBMS ALI AS to map the values of output parameters to
Prolifics variables. You can modify the previous procedure so that it maps the
value of of num r ent ed to the Pralifics variable vi d_count and the value of

tot _pri ce totheProlificsvariablet ot al _pai d:

Chapter 1 Database Driver for SQL Server 19

Using Stored Procedures

Using Remote

Declaring the
rpc Cursor

20

DBMS DECLARE curl CURSCOR FOR \
declare @1 int declare @2 noney \
EXEC rent _summary @umrented=@1 OUT, \
@ot_price=@2 OUT, @lay =::today

DBMS W TH CURSOR curl ALIAS numrented vid_count, \
tot_price total _paid

DBMS W TH CURSOR cur1l EXECUTE USI NG t oday = day

Procedure Calls

In addition to the EXEC command, SQL Server supports a remote procedure call
(“rpc”) for executing a stored procedure. You should consider using rpc rather than
EXEC when either the following occur:

Q One or more of the stored procedure’s parameters has a data type that is not
char. Anrpc is more efficient in these cases because it is capable of passing
parameters in their native data types rather than only as ASCII characters. This
reduces the amount of data conversion for the application and the server.

Q The stored procedure returns output parameters. An rpc provides afaster and
simpler mechanism for accommodating output parameters.

To make aremote procedure call, an application performs the following steps:
Must declare an rpc cursor.

Must declare the data type of each parameter that has a non-char data type.

®

Q May specify aiasesfor output parameters or selected columns.

Q Must execute the cursor, supplying in the USI NG clause a Prolifics variable for
each parameter.

The sections below describe these stepsin detail. Examples follow.

Prolifics uses binding to support rpc’s. Therefore, to execute a stored procedure
with an rpc, the application must declare an rpc cursor. The syntax is the following:

DBMS [W TH CONNECTI ON connection] \
DECLARE cursor CURSOR FOR RPC procedure \
[::parameter [QUT] [, ::parameter [OUT]..]]

The keyword RPC is required. Following the keyword is the name of the procedure
and the names of the procedure’s parameters. All parameters must begin with a
double colon, the Prolifics syntax for cursor parameters. The name of the bind
parameter must be the same parameter name used in the procedure. If a parameter
isan output parameter, the keyword QUT should follow the parameter name if the
application isto receiveitsvalue.

Database Drivers: Panther 4.25

Datatyping the
rpc Parameters

Redirecting the
Value of Output
Parameter

Executing the
rpc Cursor

Example

Using Stored Procedures

To pass parameters in their native data types, the application must specify a data
type for each non-character parameter. The syntax for DBVS TYPE is the following:

DBMS [W TH CURSCR cursor] TYPE [parameter] engine-data-type \
[, [parameter] engine-data-type ...]

parameter is a parameter in the DECLARE CURSOR statement. engine-data-type is
the data type of a parameter in the procedure. If parameter names are not given, the
types are assigned by position.

Prolifics uses the information in the DBMS TYPE statement to make the required
callsto add parameters to an rpc. Please note that DBMS TYPE has no effect on the
data formatting that is performed for binding.

By default, when an rpc cursor with an output parameter is executed, asearchis
performed for a Prolifics variable with the same name as the output parameter. To
write the output value to a Prolifics variable with another name, use the DBVS

ALI AS command.

DBMS [W TH CURSCOR cursor] ALI AS [output_parameter] variable \
[, [output_parameter] variable ...]

If the procedure selects rows, aliases can be given for the tables' columns. If the
procedure returns output parameters and column values, aliases should be given by
name rather than by position.

The application executes the stored procedure by executing the rpc cursor. The
USI NG clause must provide a Prolifics variable for each parameter. The syntax is
the following:

DBMS [W TH CURSOR cursor] EXECUTE \
USI NG [parameter =]variable [, [parameter =] variable ...]

Prolifics passes the name of the parameter given in the DBMS DECLARE CURSOR
statement, the data type of the parameter given in the DBMS TYPE statement, and
the parameter’s value which is the value of variable.

Parameters and Prolifics variables can be bound either by name or by position. The
two forms should not be mixed, however, in one statement.

cust _rent calculatesthe new total r ent _anount columninthecust onmers
table.

CREATE PRCC cust _rent
@id int, @rent noney, @price noney,
@ew ent noney out put

AS

SELECT @rent = (select rent_anount from custoners
where cust_id = @id)

SELECT @ewrent = @rent + @price

//—//\—/,_//—\//

Chapter 1 Database Driver for SQL Server 21

Using Stored Procedures

An rpc is more efficient than an exec cursor because the procedure has an input
parameter with a non-character data type, and because it returns an output
parameter.

The following statement declares an rpc cursor for the stored procedure. The
names of the bind parameters match the parameters in the stored procedure. Note
that the keyword OUT follows the output parameter.

DBMS DECLARE cur2 CURSOR FOR RPC cust _rent ::cid, ::crent, \
iirprice, ::newent OUT

Before executing the cursor, the application must specify the SQL Server data
types for any non-character data types.

DBMS W TH CURSOR cur 2 TYPE \
cid int, crent noney, rprice noney, new ent noney

When executing the cursor, the application must provide a Prolifics variable for
each parameter. Prolifics passes the name, data type, and value of the parametersto
the procedure. Note that the procedure does not use the input value of the
parameter newr ent . Prolifics's binding mechanism, however, requires avariable
in the USI NG clause for each parameter.

DBMS W TH CURSOR cur 2 EXECUTE cust _rent \
USI NG cust _id, rent_anmount, price, new ent

The procedure passes its output, the new total, to the Prolifics variable newr ent .

If instead, you wish to put the output value in the widget r ent 1, execute the
following:

DBMS W TH CURSOR cur2 ALIAS newent rentl
DBMS W TH CURSOR cur 2 EXECUTE cust _rent USI NG ci d=cust _id, \
crent=rent _anount, rprice=price, newent=rentl

Note that the variable names in the USI NG clause do not affect the destination of
output values when the cursor is executed. Only aDBMS ALI AS statement can
remap the output variables to other Prolifics variables.

Of course, this procedure can also be executed with the standard EXEC cursor. It
would require the following declaration,

DBMS DECLARE cur3 CURSOR FOR \
decl are @ noney \
EXEC cust _rent @id = ::cust_id, @rent = ::rent_anount, \
@price = ::price, @ewent = @ output

DBMS W TH CURSOR cur 3 EXECUTE cust _rent \

USI NG cid=cust _id, crent=rent_amount, rprice=price, \
newr ent =newr ent

22 Database Drivers: Panther 4.25

Using Stored Procedures

Getting a Return Code from a Stored Procedure

Prolifics provides the global variable @ mengr et ur n to trap the return status code
of astored procedure. This variable is empty unless a stored procedure explicitly
setsit. Note that the variable will not be set until the procedure has completed
execution. Therefore, an application should evaluate the value of @nmengr et ur n
when @inr et code = DM END_OF_PROCC.

Executing a new DBMS statement clears the value of @imengr et ur n.

If mul ti ply isthefollowing stored procedure,

create proc multiply @i int, @m® int,
@uess int output, @esult int output
as
select @esult = @i * @R
if @esult = @uess
return 1
el se
return 2

////—\/,_//\//

the application should set up variables for the output parameters.

Either an rpc cursor or an exec cursor can be declared and executed for the
procedure that cal culates the valuesin the Prolifics variables il and n2 and then
writes the values of the output parametersguess andr esul t to the Prolifics
variablesat t enpt and answer.

RPC cursor
DBMS DECLARE x CURSOR FOR \

RPC mul tiply ::ml, ::n2, ::guess OUT, ::result OUT
DBMS WTH CURSOR x TYPE mlL int, n2 int, \

guess int, result int
DBMS W TH CURSOR x ALI AS guess attenpt, result answer
DBMS W TH CURSOR x EXECUTE USI NG nil, nR, attenpt, answer

EXEC cursor
DBMS DECLARE y CURSOR FOR \

declare @yb_tnmpl int \

declare @yb_tnmp2 int \

sel ect @yb_tnpl = ::user_guess\

EXEC mul tiply @=::pl, @R=: :p2, \

@uess= @yb_tnpl OQUT, @esult= @yb_tnmp2 OUT

DBMS W TH CURSOR y ALI AS guess attenpt, result answer
DBMS W TH CURSCOR y EXECUTE \

USI NG user _guess = attenpt, pl = nl, p2 = n

After executing the cursor, the application can test the value of @imengr et urn
and display a message based on the return status code.

Chapter 1 Database Driver for SQL Server 23

Using Stored Procedures

proc check_ret
if @nretcode == DM END_OF_PRCC

{
if @mengreturn == 1
nsg ensg "Good job!”
else if @nmengreturn ==
nmsg ensg "Better luck next time.”
}
el se
{
DBVS NEXT
call check_ret
}
return

Controlling the Execution of a Stored Procedure

24

Prolifics's database driver for SQL Server provides a command for controlling the
execution of a stored procedure that contains more than one SELECT statement.
The command is:

DBMS [W TH CURSCR cursor] SET behavior
behavior can have one of these values:
STOP_AT_FETCH

EXECUTE_ALL

If behavior is STOP_AT_FETCH, Prolifics stops each time it executes a non-scalar
SELECT statement in the stored procedure. Therefore, a SELECT from atable will
halt the execution of the procedure. However, a SELECT of asingle scalar value
(i.e., using the SQL functions SUM COUNT, AVG, MAX. or M N) does not halt the
execution of a stored procedure.

The application can execute
DBMS [W TH CURSCOR cursor] CONTI NUE

or any of the CONTI NUE variants to scroll through the selected records. To abort the
fetching of any remaining rows in the select set, the application can execute

DBMS [W TH CURSCR cursor] FLUSH
To execute the next statement in the procedure the application must execute
DBMS [W TH CURSCR cursor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

Database Drivers: Panther 4.25

Using Transactions

To abort the execution of any remaining statements in the stored procedure or the
sql statement, the application can execute

DBMS [W TH CURSCOR cursor] CANCEL

All pending statements are aborted. Canceling the procedure also returns the
procedure’s return status code. The return code DM _END_OF _PROC signals the end
of the stored procedure.

If behavior is EXECUTE_ALL, Prolifics executes all statementsin the stored
procedure without halting. If the procedure selects rows, Prolifics returns as many
rows as can be held by the destination variables and continues executing the
procedure. The application cannot use the DBMS CONTI NUE commands to scroll
through the procedure’s select sets.

Note that SQL Server does not support SI NGLE_STEP as an option for stored
procedure execution; however, it is available for execution of multi-statement
CUrsors.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
al. SQL Server has one transaction for each cursor. Therefore, in aProlifics
application, atransaction controls al statements executed with a single named
cursor or the default cursor.

Applications that need transaction control on multiple cursors should use
two-phase commit service.

The following events commit a transaction on SQL Server:
Q [Executing DBMS COWM T.

Q Executing adata definition command such as CREATE, DROP, RENAME, or
ALTER.

The following events roll back atransaction on SQL Server:
Q [Executing DBM5 ROLLBACK.

Q Closing the transaction’s cursor or connection before the transaction is
committed.

Note that SQL Server will not rollback remote procedure calls (rpcs) or data
definition commands that create or drop database objects. Refer to the SQL Server
documentation for more information on these restrictions.

Chapter 1 Database Driver for SQL Server 25

Using Transactions

Transaction Control on a Single Cursor

After an application declares a connection, an application can begin atransaction
on the default cursor or on any declared cursor.

SQL Server supports the following transaction commands:
Q Begin atransaction on adefault or named cursor.

DBMS [W TH CONNECTI ON connection] BEG N
DBMS [W TH CONNECTI ON cursor] BEG N

QO Commit the transaction on a default or named cursor.

DBMS [W TH CONNECTI ON connection] COW T
DBMS [W TH CONNECTI ON cursor] COWM T

Q Roallback to a savepoint or to the beginning of the transaction on a default or
named cursor.

DBMS [W TH CONNECTI ON connection] ROLLBACK [savepoint]
DBMS [W TH CONNECTI ON cursor] ROLLBACK [savepoint]

Q Create asavepoint in the transaction on a default or named cursor.

DBMS [W TH CONNECTI ON connection] SAVE [savepoint]
DBMS [W TH CONNECTI ON cursor] SAVE [savepoint]

A transaction on a default cursor controls all inserts, updates, and del etes executed
with the JPL command DBMS SQL. The application can set the default connection
before beginning the transaction or it can use the W TH CONNECT! ON clause in
each statement.

If anamed cursor is declared for multiple statements, it might be useful to execute
the cursor in atransaction. This way, the application can ensure that SQL Server
executes either al of the cursor’s statements or none of the cursor’s statements. A
simple transaction on a named cursor might appear like this:

DBMS DECLARE cursor CURSOR FOR statement [statement...]
DBVMS W TH CURSOR cursor BEG N

DBMS W TH CURSOR cursor EXECUTE [USI NG parm [parm ...]]
DBMS W TH CURSOR cursor COW T

If necessary, the cursor can be executed more than once in the transaction. The
application should not, however, redeclare a cursor within a transaction.

Exam ple The following example contains a transaction on the default connection with an
error handler.

26 Database Drivers: Panther 4.25

Using Transactions

Call the transaction handler and pass it the nane
of the subroutine containing the transacti on conmands.

call tran_handle "new title()”

proc tran_handl e (subroutine)

{

Declare a variable jpl_retcode and

set it to call the subroutine.
vars jpl _retcode

jpl _retcode = :subroutine
Check the value of jpl _retcode. If it is 0, all statenents
in the subroutine executed successfully and the transaction
was conmitted. If it is 1, the error handl er aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.
if jpl_retcode ==
{
nsg ensg " Transaction succeeded.”
}
el se
{
nmsg ensg "Aborting transaction.”
DBMS ROLLBACK
}
}
proc new_ title
DBVMS BEQ N
DBM5S SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
c+dir_last_name, :+dir_first _name, :+filmmnutes, \
:+rating_code, :+release_date, :+pricecat)
DBM5S SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBM5S SQL | NSERT | NTO tapes VALUES \
(:+title_id, :+copy_num :+status, :+tinmes_rented)
DBMS COWM T
return O

The proceduret r an_handl e isageneric handler for the application’s transac-
tions. The procedurenew_t i t | e contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle "new title()”

The proceduret r an_handl e receives the argument “new_title” and writesit to
thevariable subr out i ne. It declaresa JPL variable, j pl _r et code. After

Chapter 1 Database Driver for SQL Server 27

Using Transactions

performing colon processing, : subr out i ne isreplaced with its value,
new_titl e, and JPL calsthe procedure. The procedurenew tit | e beginsthe
transaction, performs three inserts, and commits the transaction.

If new titl e executes without any errors, it returns O to the variablej pl _ret -
code inthe caling proceduret r an_handl e. JPL then evaluatesthei f statement,
displays a success message, and exits.

If however an error occurs while executing new ti t | e, Prolifics callsthe
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume thefirst | NSERT innew_t i t | e executes successfully but the
second | NSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new _ti t | e (therefore, the third | NSERT is not attempted). Prolifics
returns1toj pl _r et code inthe caling proceduret r an_handl e. JPL evauates
thei f statement, displays a message, and executes arollback. The rollback undoes
theinsert to thetableti t| es.

Transaction Control on Multiple Cursors

28

SQL Server provides two-phase commit service for distributed transactions. In a
two-phase commit, one main transaction controls two or more subtransactions on
one or more servers. A subtransaction is atransaction on single cursor, like those
described in the section above.

With two-phase commit service using Microsoft SQL Server, the commit server
and the target server must be different.

The main transaction must be declared with this command:

DBMS [W TH CONNECTI ON connection] \
DECLARE transaction-name TRANSACTI ON FOR \
APPLI CATI ON application Sl TES sites

Q connection: if No connection is given, the default connection is used; the
connection data structure stores a user login name, a server name, and an
interface file name. Because SQL Server requires that a particular server be
responsible for coordinating a two-phase commit, the connection declaration
must include a server name.

Q transaction: the name of the transaction; SQL Server does not permit periods
(.) or colons (;) in atransaction name. Becauset r ansactionandtran are
keywords for both Prolifics and SQL Server, do not use these words for this
argument.

Database Drivers: Panther 4.25

Using Transactions

Q application: the name of the application; it can be any character string that is
not a keyword.

Q sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit. Thisvalueis used by the SQL Server commit and recovery
systems and must be set appropriately.

After the transaction is declared, its name is used to begin and to commit or to
rollback the transaction. The syntax is

DBMS BEGQ N transaction-name
DBMS COMM T transaction-name
DBMS ROLLBACK transaction-name

Aswith cursors and connections, Prolifics uses a data structure to manage a
two-phase commit transaction. This structure should be closed when the
transaction is completed. When the structure is closed, Prolifics calls the support
routine to close the connection with the SQL Server commit service:

DBMS CLOSE TRANSACTI ON transaction-name

Operations on a single cursor are subtransactions. To control a subtransactionin a
two-phase commit transaction, the following commands can be used:

DBMS [W TH CURSCR cursor] BEG N

DBMS [W TH CURSCOR cursor] SAVE savepoint

DBMS [W TH CURSCOR cursor] PREPARE_COVM T
DBMS [W TH CURSCR cursor] COVWM T

DBMS [W TH CURSCOR cursor] ROLLBACK [savepoint |

The command DBMS PREPARE_COMM T is an additional command required by the
two-phase commit service. Executing it signals that the subtransaction has been
performed and that the server isready isto commit the update. After the
application has “ prepared” all the subtransactions, it issues a COMM T to the main
transaction and each subtransaction.

The sequence of eventsin a SQL Server two-phase commit transaction isthe
following:

Q Declare any necessary connections and cursors.
QO Declare the main transaction.

DBMS DECLARE t name TRANSACTI ON FOR SI TES sites \
APPLI CATI ON appl i cation

Chapter 1 Database Driver for SQL Server 29

Using Transactions

30

Q Begin the main transaction.

DBVS BEG N t nanme

For each subtransaction cursor, begin the subtransaction and execute the
desired operations. When all subtransactions are complete, execute a
PREPARE_COW T for each. In the pseudo code below there are three
subtransactions (using cur sor 1, the default cursor, and cur sor 2):

DBVS W TH CURSOR cursorl BEG N
DBVS W TH CURSOR cursor1l EXECUTE USI NG parm

DBVMS BEG N

DBMS SQL st at enment

DBMS SAVE savepoi nt

DBVS SQL st at enent

if error
DBMS ROLLBACK savepoi nt
DBVMS SQL st at enent

DBMS W TH CURSCR cursor2 BEG N
DBVMS W TH CURSOR cur sor2 EXECUTE USI NG par m

DBVS W TH CURSOR cursorl PREPARE_COW T

DBMS PREPARE COW T

DBVS W TH CURSOR cur sor 2 PREPARE_COW T

Commit the main transaction.

DBMS COMWM T t nane

Commit each subtransaction indicating a named or default cursor.
DBVS W TH CURSOR cursorl COM T

DBVS COWM T

DBMS W TH CURSOR cursor2 COW T

Close the transaction.

DBMS CLOSE TRANSACTI ON t nane

It is strongly recommended that the application use an error handler while the
transaction is executing. If an error occurs while executing a command in the
subtransaction (i.e., executing a SQL statement or a named cursor), the application
should not continue executing the transaction.

An example with an error handler follows.

Database Drivers: Panther 4.25

Using Transactions

HH R
Decl are connections and specify servers.
DBMS DECLARE c1 CONNECTI ON \
FOR USER :uid PASSWORD : pwd SERVER mapl e \
| NTERFACES '/ usr/ sybase/ i nterfaces. ny’
DBMS DECLARE c2 CONNECTI ON \
FOR USER :uid PASSWORD : pwd SERVER j uni per

Decl are cursors.

Use :: to insert a value when the cursor is executed,

not when the cursor is declared.

DBMS W TH CONNECTI ON c1 DECLARE x CURSOR FOR | NSERT \
emp (ss, last, first, street, city, st, zip, grade) \
VALUES (::ss, ::last, ::first, ::street, ::city, \
tist, :zip, ::grade)

DBMS W TH CONNECTI ON c2 DECLARE y CURSOR FOR | NSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

HHBHBH R HAE SRS RS R R R R SRR
proc 2phase
vars retval
retval = sms_val ()
if retval
{
msg reset "lnvalid entry.”
return

}

DBMS W TH CONNECTI ON c1 DECLARE new_enp TRANSACTI ON \
FOR APPLI CATI ON personnel SITES 2

DBMS ONERROR JPL tran_error

call do_tran

if I'(retval)
nmsg enmsg "Transaction succeeded.”

el se

DBVS ROLLBACK newenp
if retval >= 100

DBMS W TH CURSOR x ROLLBACK
if retval >= 200

DBMS W TH CURSOR y ROLLBACK

}

DBMS ONERROR CALL generic_errors

DBMS CLOSE TRANSACTI ON new_enp

return

proc do_tran

Begin new enp and set the flag tran_level (LDB variable)
DBMS BEG N new_enp

DBM5 W TH CURSCR x BEG N

Chapter 1 Database Driver for SQL Server 31

Transaction Manager Processing

tran_|l evel = "1"
DBVS W TH CURSOR x EXECUTE USI NG \
ss, last, first, street, city, st, zip, grade

DBVMS W TH CURSCR y BEG N

tran_| evel = "2"

DBMS W TH CURSCR y EXECUTE USI NG \
ss, startsal, exenptions

DBVS W TH CURSOR x PREPARE_COWM T
DBVS W TH CURSOR y PREPARE_COWM T

Execute commts.

DBVMS COM T new_enp
DBVS W TH CURSOR x COW T
DBMS WTH CURSOR y COW T

nsg ensg "Insert conpleted.”
tran_level =""
return

B g g g s
proc tran_error

vars fail _area [2](20), tran_err(3)

fail _area[1l] = ”address”

fail _area[2] = "accounting data”

if tran_level I=""

Display an error nessage describing the failure.
nmeg ensg "9%Mransaction failed. Unable to insert \
:fail_area[tran_l evel] because of " @nengerrnsg
math tranerr = tran_|l evel * 100
tran_|l evel = ""
return :tranerr
}
neg ensg @nengerrnsg
return 1

Transaction Manager Processing

Transaction Model for SQL Server

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this

Database Drivers: Panther 4.25

SQL Server-Specific Commands

program; however, be aware that the transaction model is subject to change with
each release. For SQL Server, the name of the standard transaction model is
tmssl. c.

The standard transaction model for SQL Server callsDBVS FLUSH instead of DBVS
CANCEL as part of the processing for the FI NI SHcommand. If aquery has returned
avery large select set, closing the screen might be longer with the FLUSH
command. You can change this behavior by editing the model; however, the model
is subject to change in future releases, so you should track your changes in order to
update future versions.

Using Version Columns

For a SQL Server timestamp column, you can set the In Update Where and In
Delete Where properties to Yes. Thisincludes the value fetched to that widget in
the SQL UPDATE and DELETE statements that are generated as part of the SAVE
command.

SAVE Commands

If you specify a SAVE command with atable view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COVM T.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

SQL Server-Specific Commands

Prolificsfor SQL Server provides commands for SQL Server-specific features.
This section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Browse Mode

BROWSE Execute a SELECT for browsing.
UPDATE Update a table while browsing.

Chapter 1 Database Driver for SQL Server 33

SQL Server-Specific Commands

Using Scrolling

BUFFER_DEFAULT

SET_BUFFER

Set buffer size for scrolling for entire ap-
plication.

Control availability of SQL Server-based
scrolling for DBMS CONTI NUE_BOTTOM
DBMS CONTI NUE_TOPR, DBMS CON-

T1 NUE_UP.

Using Stored Procedures

CANCEL

DECLARE CURSCR FOR RPC

FLUSH
NEXT

SET

TYPE

Abort execution of a stored procedure.

Declare a cursor to execute a stored proce-
dure using aremote procedure call.

Abort execution of a stored procedure.

Execute the next statement in a stored proce-
dure.

Set execution behavior for a procedure (exe-
cute all, stop at fetch, etc.).

Set data types for parameters of a stored pro-
cedure executed with an rpc cursor.

Using Transactions

BEGA N

CLOSE_ALL_TRANSACTI ONS

CLOSE_TRANSACTI ON

COW T

DECLARE TRANSACTI ON

PREPARE_COW T

ROLLBACK
SAVE

Begin atransaction.

Close al transactions declared for two-phase
commit.

Close atwo—phase transaction.
Commit atransaction.
Declare a transaction for two-phase commit.

Indicate that a subtransaction is ready to
commit.

Rollback atransaction.

Set a savepoint in atransaction.

34

Database Drivers: Panther 4.25

BEGIN

Start a transaction

SQL Server-Specific Commands

DBMS [W TH CONNECTI ON connection-name] BEG N
DBVMS [W TH CURSOR cursor-name | BEG N

DBMS [W TH CONNECTI ON connection-name] BEG N two-phase-transaction-name

two-phase-transaction Specify an existing two phase transaction.

-name
W TH CURSOR
cursor-name

W TH CONNECTI ON
connection-name

Description

Specify the named cursor for the transaction. If no W TH CURSOR or W TH
CONNECTI ON clause is used, Pralifics begins atransaction on the default cursor of
the default connection.

If aw TH CONNECTI ON clauseis used, Pralifics begins a transaction on the default
cursor of the named connection. If noW TH CURSOR or W TH CONNECTI ON clause
is used, Prolifics begins a transaction on the default cursor of the default
connection.

This command sets the starting point of atransaction. It is available in two con-
texts. It can start atransaction on asingle cursor, or it can start a distributed trans-
action that can involve multiple cursors on one or more servers.

A transaction isalogical unit of work on a database contained within DBMS BEG N
and DBMS COWMM T statements. DBMS BEG N defines the start of atransaction.
After atransaction is begun, changes to the database are not committed until a
DBMS COWM T is executed. Changes are undone by executing DBMS ROLLBACK.

To begin adistributed transaction (two-phase transaction), first declare a named
transaction with DBMS DECLARE TRANSACTI ON. Because this statement supports
aW TH CONNECTI ON clause, Prolifics associates the transaction name with a
particular connection; the connection’s server is the coordinating server for the
distributed transaction. When the application executes DBMS BEG N transaction-
name where transaction-name is the name of the declared transaction, Prolifics
starts the transaction on the coordinating server.

Be sure to terminate the transaction with a DBMS ROLLBACK or DBMS COVWM T
before logging off. Note that Prolifics will not close a connection with a pending
two-phase commit transaction.

Chapter 1 Database Driver for SQL Server 35

SQL Server-Specific Commands

Example Refer to the example in Using Transactions on page 25.

See Also Using Transactions on page 25
CLCSE_ALL_TRANSACTI ONS
CLCSE TRANSACTI ON
COW T
DECLARE TRANSACTI ON
PREPARE_COW T
ROLLBACK

SAVE

36 Database Drivers: Panther 4.25

BROWSE

SQL Server-Specific Commands

Retrieve SELECT results one row at a time

DBM5 BROWSE SELECTstmt

Description

See Also

This command allows an application to execute a SELECT in “browse” mode. This
means that SQL Server will return the SELECT rows one at atime to the Prolifics
application; SQL Server will not set any shared locks for the SELECT. The applica-
tion can use the companion command DBMS UPDATE to update the current row.
SQL Server will verify that the row has not been changed before it i ssues the UP-
DATE.

To update in browse mode, the table being updated must have a timestamp column
and aunique index. A row’s timestamp indicates the last time the row was updated.
If the timestamp has not changed since DBMS BROWSE was executed, the
application can update the row. If the timestamp has changed, then some other user
or application has updated the row after DBMS BROWSE was executed. The update
is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must
open the browse mode connection by setting the CURSORS option to 2. Prolifics
uses one default cursor to select the rows and the other default cursor to update the
rows.

It isthe programmer’s responsibility to determine whether atableis browsable. If
thetable is not browsable, Prolifics returns the DM _BAD_ARGS error. If atableis
browsable, Prolifics returns the first row in the select set when DBMS BROWSE is
executed. Note that only onerow isreturned at atime.

To view the next row, the application must execute DBMS CONTI NUE.

CONTI NUE
FLUSH

UPDATE

Chapter 1 Database Driver for SQL Server 37

SQL Server-Specific Commands

BUFFER_DEFAULT

Specifies setting for engine-based non-sequential scrolling

DBMS [W TH CONNECTI ON connection-name] BUFFER_DEFAULT value

value Specifies the size of the buffer for SQL Server-based scrolling, if it is non-zero.

Description A Prolifics application can use either Prolifics-based or SQL Server-based scroll-
ing to execute DBMS CONTI NUE, DBMS CONTI NUE_TOP, DBMS CONTI NUE_UP, and
DBVS CONTI NUE_BOTTOM

The size of the buffer is determined by the value specified with these commands.

See Also SET_BUFFER

38 Database Drivers: Panther 4.25

SQL Server-Specific Commands

CANCEL

Cancel the execution of a stored procedure or discard select rows

DBMS [W TH CURSCR cursor-name | CANCEL

W TH CURSOR Specify anamed cursor for the command. If this clauseis not included, Prolifics
cursor-name issues the command on the default cursor of the default connection.
Description This command cancels any outstanding work on the named cursor. In particular,

this command can be used to cancel a pending stored procedure or discard un-
wanted select rows. When the statement is executed, the following operations are
performed:

Q Any rowsto be fetched are flushed.

Q Any remaining unexecuted statements are ignored.

Q The procedure'sreturn status code is returned.

Prolifics callsthe SQL Server routinedbcancel () to perform this operation.

If the W TH CURSOR clause is not used, Prolifics executes the command on the
default cursor.

See Also Using Stored Procedures on page 17

FLUSH

Chapter 1 Database Driver for SQL Server 39

SQL Server-Specific Commands

CLOSE_ALL_TRANSACTIONS

Close all transactions declared for two-phase commit

DBMS CLOSE_ALL_TRANSACTI ONS

Description

Example

40

This command attempts to close all transactions declared for two-phase commit
with DBMS DECLARE TRANSACTI ON. If the transaction has not been terminated by
aCOW T or ROLLBACK, Prolifics will return the error DM TRAN_PENDI NG

Prolifics will not close a connection unless all two-phase commit transactions have
been closed. Furthermore, Prolifics will not close a two-phase commit transaction
unless the application explicitly terminated the transaction with aDBMS COVMM T
transaction-name or DBMS ROLLBACK transaction-name.

This helps prevent the application from terminating with a pending two-phase
transaction. For if this happens, SQL Server marks the transaction’s process as
“infected.” You will need the system administrator to delete the infected process.

Because this command verifies that al two-phase commit transactions were
terminated, you must call this command before logging off.

The JPL procedurecl eanup checksthat al declared transactions have been closed
before closing the database connections. If there is a transaction pending, the error
handler callsthe JPL procedure cl eanup_f ai | ur e, which in turn cals the
proceduret r an_cl eanup.

proc cl eanup
DBMS ONERROR JPL cl eanup_failure
DBM5S CLOSE_ALL_TRANSACTI ONS
DBVS CLOSE_ALL_CONNECTI ONS
return

Control string for APPl is:
APP1 = ~tran_cl eanup

proc cleanup_failure (stnt, engine, flag)
if @inretcode == DM TRAN_PENDI NG

call jmkeys APP1
}

return O

Database Drivers: Panther 4.25

SQL Server-Specific Commands

proc tran_cl eanup
DBMS W TH CURSOR c1 ROLLBACK
DBMS W TH CURSOR c2 ROLLBACK
DBVS ROLLBACK tr1
DBMS CLOSE TRANSACTION tr1
return

See Also Using Transactions on page 25
BEA N
CLCSE TRANSACTI ON
COW T
DECLARE TRANSACTI ON

ROLLBACK

Chapter 1 Database Driver for SQL Server 41

SQL Server-Specific Commands

CLOSE TRANSACTION

Close a declared transaction structure

DBMS CLOSE TRANSACTI ON two-phase-transaction-name

two-phase-transaction Specify an existing two phase transaction.
-name

Description This command closes the main transaction that was previously defined using DBVS
DECLARE TRANSACTI ON. A main transaction controls the execution of atwo-
phase commit process. This command signals the completion of the main transac-
tion and closes the SQL Server structures associated with the transaction.

An error code isreturned if a transaction was pending. An application cannot close
a connection with an open transaction.

See Also Using Transactions on page 25
BEG N
CLOSE_ALL_TRANSACTI ONS
COWM T
DECLARE TRANSACTI ON
PREPARE_COWM T
ROLLBACK

SAVE

42 Database Drivers: Panther 4.25

COMMIT

SQL Server-Specific Commands

Commit a transaction

DBMS [W TH CONNECTI ON connection-name] COWM T

DBMS [W TH CURSOR cursor-name] COW T

DBMS COW T two_phase_transaction_name

W TH CONNECTI ON
connection-name

W TH CURSOR
cursor-name
two-phase-transaction
-name

Description

Specify the connection for this command. If the command does not contain aw TH
CONNECTI ON clause, Prolifics issues the commit on the default connection.

Specify anamed cursor for the command.

Specify an existing two phase transaction.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COVMM T. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

This command is available in two contexts. It can commit atransaction on asingle
cursor or it can commit a two-phase commit transaction. If awW TH CURSOR clause
isused inaDBMs COWM T statement, Prolifics commits the transaction on the
named cursor. If aw TH CONNECTI ON clause is used, Prolifics commits the
transaction on the default cursor of the named connection. If no W TH clause or no
distributed transaction name is used, Prolifics commits the transaction on the
default cursor of the default connection.

This command is available depending on the setting of various parametersin your
environment. Refer to the section on transactions and your documentation for
more information.

If adistributed transaction name is used, Prolifics issues the commit to the
coordinating server. If thisis successful, the application should issue a DBVS
COW T for each subtransactions. A W TH CURSOR or W TH CONNECTI ON clause

Chapter 1 Database Driver for SQL Server 43

SQL Server-Specific Commands

isrequired for a subtransaction on a named cursor or a subtransaction on the
default cursor of a non-default connection. A W TH CONNECTI ON clauseis
required for a subtransaction on a named connection.

Example Refer to the example in Using Transactions on page 25.
See Also Using Transactions on page 25
BEG N

CLOSE TRANSACTI ON
DECLARE TRANSACTI ON
PREPARE_COW T
ROLLBACK

SAVE

44 Database Drivers: Panther 4.25

SQL Server-Specific Commands

DECLARE CURSOR FOR RPC

Declare a named cursor for a remote procedure

DBMS [W TH CONNECTI ON connection-name] DECLARE cursor-name CURSOR FOR RPC \
procedure [:: parameter [QUT] [data-type] [, ::parameter [OQUT] [data-type]...]]

W TH CONNECTI ON
connection-name

Description

Example

See Also

Specify the connection for this command. If this clause is not included, Prolifics
associates the cursor with the default connection.

Use this command to create or redeclare a named cursor to execute a remote proce-
dure call (rpc). Because Prolifics uses its binding mechanism to support rpc’s, the
default cursor cannot execute an rpc.

The keyword RPC s required. Following the keyword is the name of the procedure
and the names of the procedure’s parameters. All parameters must begin with a
double colon, which is the Prolifics syntax for cursor parameters. If a parameter is
an output parameter, the keyword OUT should follow the parameter name if the
application isto receiveitsvalue. A parameter’s data type can be given in the DBMVS
DECLARE CURSOR statement, or in aDBMS TYPE statement. Parameter namesin
the DECLARE CURSOR statement must exactly match the parameter names defined
by the stored procedure.

The application executes an rpc cursor as it executes any named cursor, with DBVS
EXECUTE.

Refer to the example in Using Stored Procedures on page 17.

Using Stored Procedures on page 17
@lmengreturn

CLCSE CURSOR

EXECUTE

TYPE

Chapter 1 Database Driver for SQL Server 45

SQL Server-Specific Commands

DECLARE TRANSACTION

Declare a named transaction

DBMS [W TH CONNECTI ON connection-name] DECLARE transaction-name TRANSACTI ON FOR \
SI TES sites APPLI CATI ON application

application

sites

transaction-name

W TH CONNECTI ON
connection-name

Description

Example

See Also

46

Optional argument that identifies the name of the transaction.

Determines the number of subtransactions involved in the distributed transaction.
Each cursor where a BEG Nisissued is a subtransaction. This number is critical to
recovery if the transaction fails.

Specify the name of the two-phase commit transaction. Do not use the keywords
“tran” or “transaction” for this argument. The application must use this nameto
begin, to commit or rollback, and to close the transaction.

| dentify the server that will coordinate the distributed transaction. If the clauseis
not used, the server of the default connection is used. Be sure to name the server
when declaring the connection.

This command declares a two-phase commit transaction structure. After declaring
the transaction, start the transaction using DBMS BEG N and include the transaction
name in that command. When the transaction is complete, close the transaction
using either DBVS CLOSE TRANSACTI ONor DBMS CLOSE_ALL_TRANSACTI ONS.
An application must close all declared transactions before closing their connec-
tions.

Refer to the example in Using Transactions on page 25.

BEG N
CLOSE_ALL_TRANSACTI ONS

CLOSE TRANSACTI ON

Database Drivers: Panther 4.25

FLUSH

SQL Server-Specific Commands

Flush any selected rows not fetched to Prolifics variables

DBMS [W TH CURSCR cursor-name | FLUSH

W TH CURSCR
cursor-name

Description

Example

Specify anamed cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

Use this command to throw away any unread rows in the select set of the default or
named cursor.

This command is often useful in applications that execute a stored procedure. If the
stored procedure executes a SELECT, the procedure will not return the

DM _END_OF_PROC signal if the select set is pending. The application can execute
DBMS CONTI NUE until the DM_NO_MORE_ROWS signal is returned, or it can execute
DBMS FLUSH, which cancels the pending rows.

This command is also useful with queries that fetch very large select sets. The
application can execute DBMS FLUSH after executing the SELECT, or after a
defined time-out interval. This guarantees a release of the shared locks on all the
tables involved in the fetch. Of course, after the rows have been flushed, the
application cannot use DBMS CONTI NUE to view the unread rows.

Prolifics callsthe SQL Server routine dbcanquer y() to perform this operation.

proc | arge_sel ect
Do not allow the user to see any nore rows than
can be held by the onscreen arrays.
DBMS SQL SELECT * FROM titles
i f @Inretcode ! = DM NO _MORE_RONS
DBMS FLUSH
return O

Chapter 1 Database Driver for SQL Server 47

SQL Server-Specific Commands

See Also

48

DECLARE CURSOR

CANCEL

CONTI NUE

NEXT

Database Drivers: Panther 4.25

NEXT

SQL Server-Specific Commands

Execute the next statement in a stored procedure

DBMS [W TH CURSOR cursor-name] NEXT

W TH CURSOR
cursor-name

Description

Example

See Also

Specify a named cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

UnlessDBMS SET equals EXECUTE_ALL, an application must execute DBVS NEXT
after a stored procedure returns one or more SELECT rowsto Prolifics. DBMS NEXT
executes the next statement in the stored procedure. If the application executes
DBMs NEXT and there are no more statements to execute, Prolifics returns the

DM _END_OF_PROC code.

If acursor is associated with two or more SQL statements and DBVS SET equals
STOP_AT_FETCH, the application must execute DBMS NEXT after each SELECT that
returns rows to Prolifics. If DBMS SET equals SI NGLE_STEP, the application must
execute DBMS NEXT after each statement, including non-SELECT statements. If the
application executes DBMS NEXT after all of the cursor’s statements have been
executed, Prolifics returns the DM_END_OF PROC code.

Refer to the example in Using Stored Procedures on page 17.

Using Stored Procedures on page 17
DECLARE CURSOR

CANCEL

CONTI NUE

FLUSH

SET [EXECUTE_ALL | SINGLE_STEP | STOP_AT_FETCH]

Chapter 1 Database Driver for SQL Server 49

SQL Server-Specific Commands

PREPARE_COMMIT

Prepare a two phase commit

DBMS [W TH CURSOR cursor-name | PREPARE_COW T

W TH CURSOR Specify anamed cursor for the command. If this clauseis not included, Prolifics
cursor-name issues the command on the default cursor of the default connection.
Description Use of this command is required during the two-phase commit service. It is execut-

ed for each subtransaction when the subtransaction has been performed. Execution
of this command signals the application that the server is ready to commit the up-
date. After the application has “prepared” all the subtransactions, it needstoissue a
DBMs COMM T to the main transaction and to each subtransaction.

If theW TH CURSOR clause is not used, Prolifics issues the command on the

default cursor.
Example Refer to the example in Using Transactions on page 25.
See Also Using Transactions on page 25

BEG N

CLOSE TRANSACTI ON
cowl T

DECLARE TRANSACTI ON
ROLLBACK

SAVE

50 Database Drivers: Panther 4.25

ROLLBACK

SQL Server-Specific Commands

Roll back a transaction

DBMS [W TH CONNECTI ON connection-name] ROLLBACK savepoint

DBMS [W TH CURSOR cursor-name | ROLLBACK savepoint

DBMS ROLLBACK two_phase_transaction_name

W TH CONNECTI ON
connection-name

W TH CURSOR
cursor-name

savepoint

two-phase-transaction
-name

Description

Example

Specify the connection for this command. If the command does not contain awW TH
CONNECTI ON clause, Prolificsissues the rollback on the default connection.

Specify anamed cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

If included, only the statements that were issued after the specified savepoint are
rolled back.

Specify an existing two phase transaction.

Use this command to rollback atransaction and restore the database to its state
prior to the start of the transaction or at the time of the specified savepoint.

This command is available in two contexts. It can rollback atransaction on asingle
cursor, or it can rollback a two-phase rollback transaction. If aw TH CURSOR
clauseisused inaDBMS ROLLBACK statement, Prolifics rolls back the transaction
on the named cursor. If aW TH CONNECTI ON clause is used, Prolificsrolls back
the transaction on the default cursor of the named connection. If no W TH clause or
no distributed transaction name is used, Prolifics rolls back the transaction on the
default cursor of the default connection.

Refer to the example in Using Transactions on page 25.

If adistributed transaction name is used, Prolifics issues the rollback to the
coordinating server. The application should also issue aDBVS ROLLBACK for each
subtransaction. A W TH CURSOR or W TH CONNECTI ON clause isrequired for a

Chapter 1 Database Driver for SQL Server 51

SQL Server-Specific Commands

subtransaction on a named cursor or a subtransaction on the default cursor of a
non-default connection.

See Also Using Transactions on page 25
BEG N
COW T
DECLARE TRANSACTI ON
PREPARE_COW T

SAVE

52 Database Drivers: Panther 4.25

SAVE

SQL Server-Specific Commands

Set a savepoint within a transaction

DBMS [W TH CONNECTI ON connection-name] SAVE savepoint
DBMS [W TH CURSOR cursor-name] SAVE savepoint

savepoint

W TH CURSOR
cursor-name

Description

Example

Specify the name of the savepoint.

Specify a named cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

This command creates a savepoint in the transaction. A savepoint is a place-marker
set by the application within a transaction. When a savepoint is set, the statements
following the savepoint can be cancelled using DBMS ROLLBACK savepoint. A
transaction can have multiple savepoints.

When the transaction is rolled back to a savepoint, the transaction must then either
be completed or rolled back to the beginning.

Thisfeature is useful for any long, complicated transaction. For example, an order
entry application might involve many screens where an end-user must enter data
regarding the order. Asthe user completes each screen, the application can issue a
savepoint. Therefore, if an error occurs on the fifth screen, the application can
simply rollback the procedures on the fifth screen.

proc new title
DBM5S SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
c+dir_last_name, :+dir_first_nane, :+filmmnutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SAVE si
call new dscr
call new_tapes
DBMS COW T
return O

proc new_dscr
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SAVE s2
return O

Chapter 1 Database Driver for SQL Server 53

SQL Server-Specific Commands

proc new_t apes
DBM5S SQL | NSERT | NTO t apes VALUES \
(:+title_id, :+copy_num :+status, :+times_rented)
return O

See Also Using Transactions on page 25
BEG N
COWM T
DECLARE TRANSACTI ON
PREPARE_COWMM T

ROLLBACK

54 Database Drivers: Panther 4.25

SET

SQL Server-Specific Commands

Set handling for a cursor that executes a stored procedure or multiple statements

DBMS [W TH CURSCOR cursor-name] SET EXECUTE_ALL

DBMS [W TH CURSCR cursor-name] SET S| NGLE_STEP

DBMS [W TH CURSCOR cursor-name] SET STOP_AT_FETCH

W TH CURSOR
cursor-name

Description

Specify a named cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

This command controls the execution of a stored procedure or a cursor that con-
tains multiple SQL statements. This command allows the following options:

EXECUTE_ALL

Specifies that the DBM S return control to Prolifics only when all statements have
been executed or when an error occurs. If a SQL SELECT is executed, only the first
pageful of rows isreturned to Prolifics variables. This option can be set for a
multi-statement or a stored procedure cursor.

SI NGLE_STEP

Specifiesthat the DBM S return control to Prolifics after executing each statement
belonging to the multi-statement cursor. After each SELECT, the user can pressa
function key to execute aDBMS CONTI NUE and scroll the select set. To resume
executing the cursor’s statements, the application must execute DBMS NEXT. This
option can be set for a multi-statement cursor. If this option is used with a stored
procedure cursor, Prolifics uses the default setting STOP_AT_FETCH.

STOP_AT_FETCH

Specifies that the DBM S return control to Prolifics after executing a SQL SELECT
that fetches rows. (Note that control is not returned for a SELECT that assigns a
valueto alocal SQL Server parameter.) The application can use DBMS CONTI NUE
to scroll through the select set. To resume executing the cursor’s statements or
procedure, the application must execute DBMS NEXT. This option can be set for a
multi-statement or a stored procedure cursor.

Chapter 1 Database Driver for SQL Server 55

SQL Server-Specific Commands

The default behavior for both stored procedure and multi-statement cursorsis
STOP_AT_FETCH. Executing DBMS SET with no arguments restores the default

behavior.
Example DBVS DECLARE x CURSCR FOR \
SELECT cust _id, first_nane, |ast_nanme, nenber_status \
FROM custoners WHERE cust_id = ::cust_id \

INSERT INTO rentals (cust_id, title_id, copy_num \
rental _date, price) \
VALUES (::cust_id, ::title_id, ::copy_num \
::rental _date, ::price)

nsg d_nsg "WKPF1 START %KPF2 SCROLL SELECT\
YKPF3 EXECUTE NEXT STEP”

proc f1

This function is called by the PFl key.

DBMS W TH CURSOR x SET_BUFFER 10

DBMS W TH CURSCR x SET SI NGLE_STEP

DBMS W TH CURSOR x EXECUTE USI NG cust _id, cust_id, \
title_id, copy_num rental _date, price

DBMS W TH CURSCOR x SET

return

proc f2
This function is called by the PF2 key.
DBMS W TH CURSOR x CONTI NUE
i f @nretcode == DM NO MORE ROWS
nsg enmsg "All rows displayed.”
return
proc f3
This function is called by the PF3 key.
DBMS W TH CURSCR x NEXT
if @nretcode == DM END_OF_PRCC
nmsg ensg "Done!”
return

See Also Using Stored Procedures on page 17
CANCEL
CONTI NUE
DECLARE CURSOR
DECLARE CURSOR FOR EXEC

DECLARE CURSCR FOR RPC

56 Database Drivers: Panther 4.25

SQL Server-Specific Commands

FLUSH

NEXT

Chapter 1 Database Driver for SQL Server 57

SQL Server-Specific Commands

SET_BUFFER

Use engine-based scrolling

DBMS [W TH CURSOR cursor-name | SET_BUFFER [number-of-rows]

W TH CURSCR
cursor-name

Description

58

Specify anamed cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBVS
CONTI NUE_BOTTOM DBMS CONTI NUE_TOP, and DBVS CONTI NUE_UP. In one
method, an application uses Prolifics-based scrolling by setting up a continuation
filewith DBMS STORE FI LE. In the other method, an application uses SQL Serv-
er-based scrolling by setting aflag for a cursor with DBMS SET_BUFFER.

SQL Server supports non-sequential scrolling if the application has set up a buffer
for result rows. This command sets the SELECT cursor to use SQL Server-based
scrolling. If an application does not need DBMS CONTI NUE_UP or isusing a
continuation file (DBMS STORE FI LE), this command is not needed.

If theW TH CURSOR clauseis used, Pralifics sets the flag for the named cursor. If
theW TH CURSOR clauseis not used, Prolifics sets the flag for the default SELECT
cursor.

number-of-rows is the number of rows SQL Server will buffer. To be useful,
number-of-rows should be greater than the number of occurrencesin the Prolifics
destination fields.

When this command is used with a SELECT cursor, SQL Server saves the specified
number of result rows in memory. When the application executes DBVS CON-

TI NUE_BOTTOMV| DBMS CONTI NUE_TOP, or DBMVS CONTI NUE_UP commands, the
result rowsin memory are returned.

The buffer is maintained for the life of the cursor, or until the buffer is released
with this command:

DBMS [W TH CURSCR cursor-name] SET_BUFFER

Executing the command without supplying the number-of-rows argument turns off
the feature for the named or default cursor and frees the buffer. Note that

Database Drivers: Panther 4.25

Example

See Also

SQL Server-Specific Commands

re-declaring the cursor does not free the buffer. Closing the cursor does release the
buffer.

Because the use of this command is expensive (approximately 2K of memory per
row), it should be used only if the application needs non-sequential scrolling but
cannot use scrolling arrays or a continuation file. The application should turn off
DBMS SET_BUFFER when finished with the select set.

Note the following restrictions:

Q Only afew engines support native scrolling. Therefore, this command might
not be supported with other engines. Prolifics-based scrolling is supported on
all engineswith DBMS STORE FI LE.

QO Each DBMS CONTI NUE_BOTTOM DBMS CONTI NUE_TOP, and DBVS
CONTI NUE_UP requires atrip to the server. With Prolifics-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, Prolifics reads them from the continuation file rather than requesting
them from the server.

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS W TH CURSCR t _cursor SET_BUFFER 500

proc scroll _up

DBVS W TH CURSOR t_cursor CONTI NUE_UP
return

proc scroll_down

DBMS W TH CURSCOR t _cursor CONTI NUE_DOAN
return

CONTI NUE_BOTTOM
CONTI NUE_TOP
CONTI NUE_UP

STORE

Chapter 1 Database Driver for SQL Server 59

SQL Server-Specific Commands

TRANSACTION

Set a default transaction for use in two-phase commits

DBMS TRANSACTI ON two-phase-transaction-name

Description If an application has declared more than one two-phase commit transaction, it can
use this command to set the default two-phase commit transaction for a subtransac-
tion.

See Also BEG N
COMW T

DECLARE TRANSACTI ON
PREPARE_COW T
ROLLBACK

SAVE

60 Database Drivers: Panther 4.25

SQL Server-Specific Commands

TYPE

Declare parameter data types for an rpc cursor

DBMS W TH CURSCOR cursor-name TYPE parameter data-type [, parameter data-type ...]

W TH CURSOR Specify anamed cursor for the command.
cursor-name

Description If an application has declared a cursor for aremote procedure call (“rpc”) but has
not declared the data types of the procedure's parameters, it should use the DBMVS
TYPE command.

parameter isthe name of a parameter in the stored procedure and in the DBVS
DECLARE CURSOR statement. data-type is the data type of the parameter in the
stored procedure. Prolifics uses the information supplied with this command to
execute the remote procedure call. Please note that these data types have no effect
on any data formatting performed by colon-plus processing or binding.

Executing this command with no arguments deletes al type information for the
named cursor.

Example HHHTHHHH R
#procedure newprice:
#create proc newprice @ricecat char(l), @ercent float,
@rice noney output, @roposed_price noney output

as
select @rice = (select price frompricecats
where pricecat = @ricecat)

select @roposed_price = @rice + (@rice * @ercent)
B B g g g LRz

DBMS DECLARE nc CURSOR FOR \
RPC newprice ::pricecat, ::percent, ::price QUT, \
:: proposed_price OUT

DBMS W TH CURSOR nc TYPE \
percent float, price noney, proposed_price noney

DBMS W TH CURSOR nc EXECUTE \
USI NG pricecat, percent, price, proposed_price

See Also Using Stored Procedures on page 17
DECLARE CURSOR FOR RPC

Chapter 1 Database Driver for SQL Server 61

SQL Server-Specific Commands

UPDATE

Update a table while browsing

DBMS UPDATE table-name SET column = value [, column = value...]

Description

Example

See Also

62

Browse mode permits an application to browse through a select set, updating a row
at atime. Browse mode is useful for an application that wants to ensure that a row
has not been changed in the interval between the fetch and the update of the row.

When DBMS BROWSE is executed, it fetches the rows in the select set one at atime.
The application should provide other JPL procedures to execute DBMS CONTI NUE
and DBMS UPDATE commands.

Please note that the DBMS UPDATE statement has no WHERE clause. Prolifics callsa
SQL Server routine to build a WHERE clause using the unique index of the current
row and the value of its timestamp column when the row was fetched. If the
timestamp value has not been changed, the row is updated. However, if the
timestamp value has changed, then another user has modified the row since the
application executed DBMS BROWSE. In this case, SQL Server will not perform the
update.

Refer to the manual page for BROASE.

BROWSE
CANCEL
CONTI NUE

FLUSH

Database Drivers: Panther 4.25

USE

SQL Server-Specific Commands

Open an existing database

DBMS [W TH CONNECTI ON connection-name] USE database-name

W TH CONNECTI ON
connection-name

database-name

Description

Example

See Also

Specify the connection for this command. If this clause is not included, Prolifics
issues the command on the default connection.

Specify an existing database.

This command changes a connection’'s default database. database-name must ref-
erence an existing database, and the user must have the appropriate permissions to
access the database or else Prolifics returns an error.

DBMS DECLARE c1 CONNECTI ON FOR \
USER ' :uname’ PASSWORD ' : pword’ SERVER ':server’ \
DATABASE '’ vi deobi z’

DBMS SQL SELECT * FROM titles

DBVS W TH CONNECTI ON ¢c1 USE projects

DBMS SQL SELECT * FROM new obs

Connecting to a Database Engine on page 5

Chapter 1 Database Driver for SQL Server 63

Command Directory for SQL Server

Command Directory for SQL Server

64

Table 2.

Thefollowing table lists all commands available in Prolifics's database driver for
SQL Server. Commands available to all database drivers are described in the

Programming Guide.

Commands for SQL Server

Command Name Description Documentation
Location
ALl AS Name aProlificsvariableas Programming
the destination of aselected Guide
column or aggregate function
BEG N Begin atransaction page 35
BI NARY Create a Prolificsvariablefor page 810
fetching binary values
BROWSE Execute a SQL SELECT for page 37
browsing
BUFFER_DEFAULT Set the size of the buffer for ~ page 38
engine-based scrolling
CANCEL Abort execution of a stored page 39
procedure
CATQUERY Redirect select resultsto a
file or aProlifics variable
CLOSE_ALL_CONNECTI ONS Close all connections on all
engines
CLOSE_ALL_TRANSAC Close al transactions page 40
TI ONS
CLOSE CONNECTI ON Close a named connection
CLOSE CURSOR Close a named cursor
CLOSE TRANSACTI ON Close a named transaction page 42
COLUWN_NANMES Return the column name, not
column data, to a Prolifics
variable
COW T Commit atransaction page 43

Database Drivers: Panther 4.25

Command Directory for SQL Server

Command Name Description Documentation
Location
CONNECTI ON Set a default connection and
engine for the application
CONTI NUE Fetch the next screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_BOTTOM Fetch the last screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_DOWN Fetch the next screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_TOP Fetch the first screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_UP Fetch the previous screenful ~ Database Guide &
of rows from a select set Database Drivers
DECLARE CONNECTI ON Declare anamed connection Database Guide &
to an engine Database Drivers
DECLARE CURSOR Declare a named cursor Database Guide &

DECLARE CURSOR FOR
RPC

DECLARE TRANSACTI ON

ENG NE

EXECUTE
FLUSH
FORVAT

NEXT

OCCUR

Declare a cursor to execute a
stored procedure using are-
mote procedure call

Declare a transaction for two
phase commit

Set the default engine for the
application

Execute a named cursor
Flush any selected rows

Format the results of a CAT-
QUERY

Execute the next statement in
astored procedure

Set the number of rows for
Prolificsto fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

Database Drivers

page 45

page 46

page 47

page 49

Chapter 1 Database Driver for SQL Server

65

Command Directory for SQL Server

66

Command Name

Description

Documentation
Location

ONENTRY

ONERROR

ONEXI T

PREPARE_COWM T

ROLLBACK
SAVE

SET parameter

SET_BUFFER

START

STORE

TRANSACTI ON

TYPE

UNI QUE

UPDATE

USE

Install aJPL procedure or C
function that Prolifics will
call before executing a DBMVS
Statement

Install aJPL procedure or C
function that Prolifics will
call when a DBVS statement
fals

Install aJPL procedure or C
function that Prolifics will
call after executing a DBVS
statement

Indicate that atransaction is
ready to commit

Roll back atransaction

Set a savepoint in atransac-
tion

Set execution behavior for a
stored procedure

Set engine-based scrolling
for acursor

Set the first row for Prolifics
to return from a select set

Store the rows of a select set
in atemporary file so the ap-
plication can scroll through
the rows

Set the default transaction

Set data types for parameters
of a stored procedure execut-
ed with an rpc cursor

Suppress repeating valuesin
aselected column

Update a table while brows-
ing
Open an existing database

Database Guide &
Database Drivers

page 50

page 51
page 53

page 55

page 58

page 60
page 61

page 62

page 63

Database Drivers: Panther 4.25

Command Directory for SQL Server

Command Name

Description Documentation
Location

W TH CONNECTI ON

W TH CURSCR

W TH ENG NE

Specify the connection to use
for acommand

Specify the cursor to use for
acommand

Specify the engine to use for
acommand

Chapter 1 Database Driver for SQL Server

67

