Panther

Database Driver—-JDB

Release 4.25

Prolifics, May 2000

—]

Database Driver for
JDB

This chapter provides documentation specific to JDB. It discusses the following:
Engineinitiaization (page 4)

Connection declaration (page 5)

Import conversion (page 6)

Formatting for colon-plus processing and binding (page 8)

Cursors (page 8)

Errors and warnings (page 9)

Database transaction processing (page 11)

Transaction manager processing (page 13)

JDB-specific DBMS commands (page 14)

©c 0 0 0 0 ©0o 0 © © 0o

Command directory for Prolifics for JDB (page 17)

This document is designed as a supplement to information found in the Devel op-
er's Guide.

Initializing the Database Engine

Initializing the Database Engine

Engine Name

Database engine initialization occursin the source file dbi i ni t . c. This source
fileis unique for each database engine and is constructed from the settings in the
makevar s file. In Prolifics for JDB, thisresultsin the following vendor _| i st
structureindbi i nit.c:

static vendor_t vendor _list[] =
{”jdb”, dmjdbsup, DM DEFAULT_CASE , (char *) 0},

{ (char *) 0, (int (*)()) O, (int) 0, (char *) 0}

’

The settings are as follows:

jdb Engine name. May be changed.

dm j dbsup Support routine name. Do not change.

DM _DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Pralifics for JDB, the settings can be changed by editing the makevar s. j db
file.

You can change the engine name associated with the support routine dm j dbsup.
The application then uses that namein DBMS ENG NE statementsand in W TH
ENG NE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevar s. j db file:

JDB_ENGNAME=t r acki ng

If the application is accessing multiple engines, it makes JDB the default engine by
executing:

DBMS ENG NE jdb-engine-name

where jdb-engine-name isthe string used in vendor _I i st . For example,
DBMS ENG NE j db

or

DBMS ENG NE tracki ng

Database Drivers: Panther 4.25

Connecting to the Database Engine

Support Routine Name

Case Flag

dm_sup isthe name of the support routine for JDB. This name should not be
changed.

The case flag, DM_DEFAULT_CASE, determines how Prolifics's database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing JDB column names to either a Prolifics variable name or
to acolumn namein aDBVMS ALI AS statement.

JDB is caseinsensitive. Regardless of the casein a SQL statement, JDB creates all
database objects—tables, views, columns, etc.—with lower case names. For JDB,
the DM_DEFAULT_CASE setting istreated as DM_FORCE_TO LOWER CASE. Because
JDB uses only lower case, the DM FORCE_TO _LOWER CASE setting isthe same as
DM _PRESERVE_CASE. For either of these flags, Prolifics attempts to match JDB
column names to lower case Prolifics variables when processing SELECT results. If
your application is using this default, use lower case names when creating Prolifics
variables.

If you wish to use upper case variable names, substitute the u option in the
makevar s file that setsthe DM_FORCE_TO UPPER_CASE flag.

JDB_I NI T=u

If you edit makevars. j db, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

Table 1.

JDB allows your application to use one or more connections. The application can
declare any number of named connections with DBMS DECLARE CONNECTI ON
statements; however, you should not have multiple connections to the same
database.

The following options are supported for connectionsto JDB:

Database connection options.

Option Argument

DATABASE database-pathname

Chapter 1 Database Driver for JDB 5

Importing Database Tables

database-pathname is a pathname to an existing database.

Additional keywords are available for other database engines. If those keywords
areincluded in your DBMS DECLARE CONNECTI ON command for JDB, it istreated
asan error.

Importing Database Tables

The Importd Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an JDB database. When the import
process is complete, each selected database table has a corresponding repository
entry screen.

After theimport processis complete, the repository entry screen contains:

Q A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

Q A label for each column based on the column name.
Q A tableview named for the database table.
Q Linksthat describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. Asa
genera rule, the members of atable view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:
QO Name— The name of the table view, generally the same as the database table.
Q Table— The name of the database table.

Q Primary Keys— The columns that are defined as primary keys for the
database table.

6 Database Drivers: Panther 4.25

Links

Widgets

Importing Database Tables

Q Columns— A list of the columns in the database table is displayed when you
click on the More button. However, thislist is for reference only. It cannot be
edited.

Q Updatable — A setting that determinesiif the data in the table can be modified.
The default setting for Updatableis Yes.

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link propertiesto seeif they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @GXATABASE

indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each JDB data type.

Table2. Importing Database Tables
JDB Data Type Prolifics Type C Type Widget Length Widget Precision
char FT_CHAR Char String Column length
dat eti me DT_DATETI ME Def aul t 20
doubl e FT_FLOAT Doubl e 16 2
fl oat FT_FLOAT Fl oat 16 2
i nt FT_LONG Long I nt 11
| ong FT_LONG Long I nt 11

Chapter 1 Database Driver for JDB

Formatting for Colon Plus Processing and Binding

Other Widget
Properties

DT_DATETIME

Null Field property

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

DT_DATETI ME widgets a so have the Format/Display(] Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM DD/ YY HH: MM

If acolumn is defined to be NOT NULL, the Null Field property is set to No. For
example, ther ol es tableinthevi deobi z database contains three columns;
title id,actor _idandrole.title_idandactor_id aredefined as NOT
NULL so the Null Field property is set to No. r ol e, without a NOT NULL setting, is
implicitly considered to alow null values so the Null Field property is set to Yes.

For more information about usage of Prolificstype and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Declaring Cursors

Prolifics uses two cursors for operations performed by DBMS SQL. One cursor is
used for SQL SELECT statements and the other for non-SELECT statements. These
two cursors might be sufficient for small applications. Larger applications often
require more; an application might declare named cursors using DBVS DECLARE
CURSOR. For example, master and detail applications often need to declare at least
one named cursor: one cursor selects the master rows and additional cursors select
detail rows. In short, if an application is processing a SELECT set in increments
(i.e., by using DBMS CONTI NUE) while it is executing other SELECT statements,
two or more cursors are necessary.

Prolifics does not put any limit on the number of cursors an application may
declare to an JDB engine. Because each cursor requires memory and JDB
resources, however, it is recommended that applications close a cursor when it is
no longer needed.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Database Drivers: Panther 4.25

Scrolling

Scrolling

Even though JDB does not have native support for non-sequential scrolling in a
select set, Prolifics scrolling is available. Before using any of the following
commands:

DBMS [W TH CURSCOR cursor-name] CONTI NUE_BOTTOM
DBMS [W TH CURSCOR cursor-name | CONTI NUE_TOP
DBMS [W TH CURSCR cursor-name] CONTI NUE_UP

the application must set up a continuation file for the cursor. This is done with this
command:

DBMS [W TH CURSCR cursor-name] STORE FI LE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:
DBMS [W TH CURSCR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information

Errors

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for usein
other engines and for use in future releases of Prolifics for JDB.

Prolificsinitializes the following global variables for error code information:

@nr et code Standard database driver status code.
@inr et nsg Standard database driver status message.
@imenger r code JDB error code.

@inmenger r nsg JDB error message.

@ mengwar ncode Not used in Prolifics for JDB.
@inmengwar nnsg Not used in Prolificsfor JDB.
@lnmengreturn Not used in Prolifics for JDB.

Chapter 1 Database Driver for JDB 9

Error and Status Information

Using the
Default Error
Handler

Using an
Installed Error
Handler

JDB returns error codes and messages when it aborts a command. It usually aborts
a command because the application used an invalid option or because the user did

not have the authority required for an operation. Prolifics writes JDB error codes to
the global variable @menger r code and writes JDB messagesto @nenger r nsg.

All JDB errors are Prolifics errors. Therefore, Prolifics always cals the default
error handler or the installed error handler when an error occurs.

The default error handler displays adialog box if thereisan error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Dat abase i nt er f ace appearsintheReported by list along
with the database engine. The error number and message contain the values of
@inr et code and @inr et nsg. If the error comes from the database engine, only
the name of the engine appearsin the Report ed by list. The error number and
message contain the values of @menger r code and @imenger r nsg.

Aninstalled error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi _sessi on CONNECTI ON FOR . ..

proc errors (stnt, engine, flag)
i f @nmengerrcode ==

nmsg enmsg "JAM error: " @nretnsg
el se

msg enmsg "JAMerror: 7 @nretnsg 7 9N \

":engine error is " @nengerrcode * " @mengerrnsg
return 1

For additional information about engine errors, refer to your JDB documentation.
For more information about error processing in Prolifics, refer to Chapter 36 in the
Developer’s Guide and Chapter 12 in the Programming Guide.

Row Information

10

Prolificsinitializes the following global variables for row information:

@inr owcount Count of the number of JDB rows affected by an
operation.
@inseri al Not used in Prolifics for JDB.

As explained on the manual page for @inT owcount , the value of @nr owcount
after a SQL SELECT isthe number of rows fetched to Prolifics variables. This

Database Drivers: Panther 4.25

Using Transactions

number isless than or equal to the total number of rows in the select set. The value
of @nr owcount after a SQL | NSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBVS
statement is executed, including DBMS COVM T.

Using Transactions

A transaction is aunit of work that must be totally completed or not completed at
all. JDB has one transaction for each connection. Therefore, in aProlifics
application, atransaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on JDB:
Q Executing DBMS COMM T.

Q Closing the connection.

The following events roll back atransaction on JDB:

QO Executing DBMS ROLLBACK.

Transaction Control on a Single Connection

Example

After an application declares a connection, a transaction automatically starts on
that connection.

JDB supports the following transaction commands:
Q Commit the transaction on a default or named connection.
DBMS [W TH CONNECTI ON connection] COW T
Q Rallback to the beginning of the transaction on a default or named connection.

DBMS [W TH CONNECTI ON connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the nane
of the subroutine containing the transacti on conmands.

call tran_handle "new title()”

Chapter 1 Database Driver for JDB 11

Using Transactions

12

proc tran_handl e (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl _retcode
jpl _retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements

in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handl er aborted the

subroutine. If it is -1, Prolifics aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0

{
nmsg ensg " Transaction succeeded.”
}
el se
{
nsg ensg "Aborting transaction.”
DBMS ROLLBACK
}

}

proc new title
DBM5S SQL INSERT INTO titles VALUES \
(:+title_id, :+nane, :+genre_code, \
c+dir_last_name, :+dir_first_nane, :+filmmnutes, \
:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL | NSERT | NTO t apes VALUES \
(:+title_id, :+copy_num :+status, :+tinmes_rented)
DBMS COWM T
return O

The proceduret r an_handl e isageneric handler for the application’s transac-
tions. The procedurenew_t i t | e contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle "new title()”

The proceduret r an_handl e receivesthe argument “new_title” and writesit to
thevariable subr out i ne. It declaresa JPL variable, j pl _r et code. After
performing colon processing, : subr out i ne isreplaced with its value,

new_titl e, and JPL calsthe procedure. The procedurenew tit | e beginsthe
transaction, performs three inserts, and commits the transaction.

Database Drivers: Panther 4.25

Transaction Manager Processing

If new_titl e executes without any errors, it returns O to the variablej pl _r et -
code inthe calling proceduret r an_handl e. JPL then evaluatesthei f statement,
displays a success message, and exits.

If however an error occurs while executing new ti t | e, Prolifics callsthe
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume thefirst | NSERT innew_t i t | e executes successfully but the
second | NSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_t i t | e (therefore, the third | NSERT is not attempted). Prolifics
returns1toj pl _ret code inthecaling proceduret r an_handl e. JPL evauates
thei f statement, displays a message, and executes arollback. The rollback undoes
theinsert to thetableti t 1 es.

Transaction Manager Processing

Transaction Model for JDB

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For JDB, the name of the standard transaction model ist nj db1. c.

Even though JDB does not enforce referential integrity, the transaction manager
checks for duplicate primary key values each time dataisinserted or updated. This
is performed through processing found in the standard transaction model for JDB.
If it finds any duplicate value in the primary key columns, the transaction manager
gives an error.

SAVE Commands

If you specify a SAVE command with atable view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COVM T.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

Chapter 1 Database Driver for JDB 13

JDB-Specific Commands

JDB-Specific Commands

Prolifics for JDB provides commands for JDB-specific features. This section
contains a reference page for each command. If you are using multiple engines or
are porting an application to or from another engine, please note that these
commands may work differently or may not be supported on some engines.

Using Transactions

COW T Commit a transaction.
ROLLBACK Rollback atransaction.

14 Database Drivers: Panther 4.25

COMMIT

JDB-Specific Commands

Commit a transaction

DBMS [W TH CONNECTI ON connection-name] COW T

W TH CONNECTI ON
connection-name

Description

Example

See Also

Specify the connection for this command. If the command does not contain aw TH
CONNECTI ON clause, Prolifics issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMM T. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

After atransaction is terminated, the engine automatically begins a new transac-
tion.

When an application closes its connections with CLOSE_ALL_CONNECTI ONS or
CLOSE CONNECTI ON, JDB commits any pending transactions on those connec-
tions. However, this procedure is not recommended. Instead, it is strongly
recommended that applications use explicit COMM T and ROLLBACK statements to
terminate transactions.

This command is available depending on the setting of various parametersin your

environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 11.

Using Transactions on page 11

ROLLBACK

Chapter 1 Database Driver for JDB 15

JDB-Specific Commands

ROLLBACK

Roll back a transaction

DBMS [W TH CONNECTI ON connection-name] ROLLBACK

W TH CONNECTI ON Specify the connection for this command. If the command does not contain aW TH
connection-name CONNECTI ON clause, Prolificsissues the rollback on the default connection.

Description Use this command to rollback atransaction and restore the database to its state
prior to the start of the transaction.

If astatement in atransaction fails, an application must attempt to reissue the
statement successfully or elseroll back the transaction. If an application cannot
complete atransaction, it should roll back the transaction. If it does not, it might
inadvertently commit the partial transaction when it commits a later transaction.

Example Refer to the example in Using Transactions on page 11.
See Also Using Transactions on page 11
COW T

16 Database Drivers: Panther 4.25

Command Directory for JDB

Command Directory for JDB

Table 3.

The following table lists all commands available in Prolifics's database driver for
JDB. Commands available to all database drivers are described in the Program+

ming Guide.

Commands for JDB

Command Name Description Documentation
Location
ALI AS Name aProlificsvariableas Programming
the destination of aselected Guide
column or aggregate function
Bl NARY Create a Prolificsvariablefor page 810
fetching binary values
CATQUERY Redirect select resultsto a
file or aProlifics variable
CLOSE_ALL_CONNECTI ONS Close al connections on all
engines
CLOSE CONNECTI ON Close anamed connection
CLOSE CURSOR Close anamed cursor
COLUWN_NANMES Return the column name, not
column data, to a Prolifics
variable
COW T Commit atransaction page 15
CONNECTI ON Set a default connection and
engine for the application
CONTI NUE Fetch the next screenful of Database Guide &

CONTI NUE_BOTTOM

CONTI NUE_DOWN

CONTI NUE_TOP

rows from a select set

Fetch the last screenful of
rows from a select set

Fetch the next screenful of
rows from a select set

Fetch the first screenful of
rows from a select set

Database Drivers

Database Guide &
Database Drivers

Database Guide &
Database Drivers

Database Guide &
Database Drivers

Chapter 1 Database Driver for JDB

17

Command Directory for JDB

18

Command Name Description Documentation
Location
CONTI NUE_UP Fetch the previous screenful Database Guide &
of rows from a select set Database Drivers
DECLARE CONNECTI ON Declare anamed connection Database Guide &
to an engine Database Drivers
DECLARE CURSOR Declare a named cursor Database Guide &

ENG NE

EXECUTE
FORVAT

OCCUR

ONENTRY

ONERROR

ONEXI T

ROLLBACK
START

STORE

Set the default engine for the
application

Execute a named cursor

Format the results of a CAT-
QUERY

Set the number of rows for
Prolificsto fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

Install aJPL procedure or C
function that Prolifics will
call before executing a DBMVS
statement

Install aJPL procedure or C
function that Prolifics will
call when a DBVS statement
fails

Install aJPL procedure or C
function that Prolifics will
call after executing a DBVS
Statement

Roll back atransaction

Set the first row for Prolifics
to return from a select set

Store the rows of a select set
in atemporary file so the ap-
plication can scroll through
the rows

Database Drivers

Database Guide &
Database Drivers

page 16

Database Drivers: Panther 4.25

Command Directory for JDB

Command Name Description Documentation
Location
UNI QUE Suppress repeating valuesin
aselected column
W TH CONNECTI ON Specify the connection to use
for acommand
W TH CURSCR Specify the cursor to use for
acommand
W TH ENG NE Specify the engine to use for
acommand

Chapter 1 Database Driver for JDB 19

