
Database Driver–JDB

Release 4.25

May 2000

3

Database Driver for
JDB

This chapter provides documentation specific to JDB. It discusses the following:

� Engine initialization (page 4)

� Connection declaration (page 5)

� Import conversion (page 6)

� Formatting for colon-plus processing and binding (page 8)

� Cursors (page 8)

� Errors and warnings (page 9)

� Database transaction processing (page 11)

� Transaction manager processing (page 13)

� JDB-specific DBMS commands (page 14)

� Command directory for Prolifics for JDB (page 17)

This document is designed as a supplement to information found in the Develop-
er’s Guide.

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

Initializing the Database Engine
Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the
makevars file. In Prolifics for JDB, this results in the following vendor_list
structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”jdb”, dm_jdbsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

jdb Engine name. May be changed.

dm_jdbsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for JDB, the settings can be changed by editing the makevars.jdb
file.

Engine Name
You can change the engine name associated with the support routine dm_jdbsup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.jdb file:

JDB_ENGNAME=tracking

If the application is accessing multiple engines, it makes JDB the default engine by
executing:

DBMS ENGINE jdb-engine-name

where jdb-engine-name is the string used in vendor_list. For example,

DBMS ENGINE jdb

or

DBMS ENGINE tracking

Connecting to the Database Engine

Chapter 51 Database Driver for JDB

Support Routine Name
dm_sup is the name of the support routine for JDB. This name should not be
changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing JDB column names to either a Prolifics variable name or
to a column name in a DBMS ALIAS statement.

JDB is case insensitive. Regardless of the case in a SQL statement, JDB creates all
database objects—tables, views, columns, etc.—with lower case names. For JDB,
the DM_DEFAULT_CASE setting is treated as DM_FORCE_TO_LOWER_CASE. Because
JDB uses only lower case, the DM_FORCE_TO_LOWER_CASE setting is the same as
DM_PRESERVE_CASE. For either of these flags, Prolifics attempts to match JDB
column names to lower case Prolifics variables when processing SELECT results. If
your application is using this default, use lower case names when creating Prolifics
variables.

If you wish to use upper case variable names, substitute the u option in the
makevars file that sets the DM_FORCE_TO_UPPER_CASE flag.

JDB_INIT=u

If you edit makevars.jdb, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

JDB allows your application to use one or more connections. The application can
declare any number of named connections with DBMS DECLARE CONNECTION
statements; however, you should not have multiple connections to the same
database.

The following options are supported for connections to JDB:

Table 1. Database connection options.

Option Argument

DATABASE database-pathname

Importing Database Tables

6 Database Drivers: Panther 4.25

database-pathname is a pathname to an existing database.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for JDB, it is treated
as an error.

Importing Database Tables

The Import⇒ Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an JDB database. When the import
process is complete, each selected database table has a corresponding repository
entry screen.

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys for the
database table.

Importing Database Tables

Chapter 71 Database Driver for JDB

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

Links

Links are created from the foreign key definitions entered in the database. The
application screen must contain links if you are using the transaction manager and
the screen contains more than one table view.

Check the link properties to see if they need to be edited for your application
screen. The Parent and Child properties might need to be reversed or the Link Type
might need to be changed.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each JDB data type.

Table 2. Importing Database Tables

JDB Data Type Prolifics Type C Type Widget Length Widget Precision

char FT_CHAR Char String Column length

datetime DT_DATETIME Default 20

double FT_FLOAT Double 16 2

float FT_FLOAT Float 16 2

int FT_LONG Long Int 11

long FT_LONG Long Int 11

Formatting for Colon Plus Processing and Binding

8 Database Drivers: Panther 4.25

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

DT_DATETIME widgets also have the Format/Display⇒ Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Declaring Cursors

Prolifics uses two cursors for operations performed by DBMS SQL. One cursor is
used for SQL SELECT statements and the other for non-SELECT statements. These
two cursors might be sufficient for small applications. Larger applications often
require more; an application might declare named cursors using DBMS DECLARE
CURSOR. For example, master and detail applications often need to declare at least
one named cursor: one cursor selects the master rows and additional cursors select
detail rows. In short, if an application is processing a SELECT set in increments
(i.e., by using DBMS CONTINUE) while it is executing other SELECT statements,
two or more cursors are necessary.

Prolifics does not put any limit on the number of cursors an application may
declare to an JDB engine. Because each cursor requires memory and JDB
resources, however, it is recommended that applications close a cursor when it is
no longer needed.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Other Widget
Properties

DT_DATETIME

Null Field property

Scrolling

Chapter 91 Database Driver for JDB

Scrolling
Even though JDB does not have native support for non-sequential scrolling in a
select set, Prolifics scrolling is available. Before using any of the following
commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

the application must set up a continuation file for the cursor. This is done with this
command:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information
Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for JDB.

Errors
Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode JDB error code.

@dmengerrmsg JDB error message.

@dmengwarncode Not used in Prolifics for JDB.

@dmengwarnmsg Not used in Prolifics for JDB.

@dmengreturn Not used in Prolifics for JDB.

Error and Status Information

10 Database Drivers: Panther 4.25

JDB returns error codes and messages when it aborts a command. It usually aborts
a command because the application used an invalid option or because the user did
not have the authority required for an operation. Prolifics writes JDB error codes to
the global variable @dmengerrcode and writes JDB messages to @dmengerrmsg.

All JDB errors are Prolifics errors. Therefore, Prolifics always calls the default
error handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”:engine error is ” @dmengerrcode ” ” @dmengerrmsg

return 1

For additional information about engine errors, refer to your JDB documentation.
For more information about error processing in Prolifics, refer to Chapter 36 in the
Developer’s Guide and Chapter 12 in the Programming Guide.

Row Information
Prolifics initializes the following global variables for row information:

@dmrowcount Count of the number of JDB rows affected by an
operation.

@dmserial Not used in Prolifics for JDB.

As explained on the manual page for @dmrowcount, the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to Prolifics variables. This

Using the
Default Error
Handler

Using an
Installed Error
Handler

Using Transactions

Chapter 111 Database Driver for JDB

number is less than or equal to the total number of rows in the select set. The value
of @dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of
rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. JDB has one transaction for each connection. Therefore, in a Prolifics
application, a transaction controls all statements executed with a single named
connection or the default connection.

The following events commit a transaction on JDB:

� Executing DBMS COMMIT.

� Closing the connection.

The following events roll back a transaction on JDB:

� Executing DBMS ROLLBACK.

Transaction Control on a Single Connection

After an application declares a connection, a transaction automatically starts on
that connection.

JDB supports the following transaction commands:

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

Example

Using Transactions

12 Database Drivers: Panther 4.25

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

proc new_title
DBMS SQL INSERT INTO titles VALUES \

(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \
:+rating_code, :+release_date, :+pricecat)

DBMS SQL INSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)

DBMS SQL INSERT INTO tapes VALUES \
(:+title_id, :+copy_num, :+status, :+times_rented)

DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After
performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

Transaction Manager Processing

Chapter 131 Database Driver for JDB

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates
the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Manager Processing

Transaction Model for JDB

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the
main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For JDB, the name of the standard transaction model is tmjdb1.c.

Even though JDB does not enforce referential integrity, the transaction manager
checks for duplicate primary key values each time data is inserted or updated. This
is performed through processing found in the standard transaction model for JDB.
If it finds any duplicate value in the primary key columns, the transaction manager
gives an error.

SAVE Commands

If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

JDB-Specific Commands

14 Database Drivers: Panther 4.25

JDB-Specific Commands

Prolifics for JDB provides commands for JDB-specific features. This section
contains a reference page for each command. If you are using multiple engines or
are porting an application to or from another engine, please note that these
commands may work differently or may not be supported on some engines.

Using Transactions

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

JDB-Specific Commands

Chapter 151 Database Driver for JDB

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the commit on the default connection.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

After a transaction is terminated, the engine automatically begins a new transac-
tion.

When an application closes its connections with CLOSE_ALL_CONNECTIONS or
CLOSE CONNECTION, JDB commits any pending transactions on those connec-
tions. However, this procedure is not recommended. Instead, it is strongly
recommended that applications use explicit COMMIT and ROLLBACK statements to
terminate transactions.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 11.

Using Transactions on page 11

ROLLBACK

WITH CONNECTION
connection-name

Description

Example

See Also

JDB-Specific Commands

16 Database Drivers: Panther 4.25

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

Specify the connection for this command. If the command does not contain a WITH
CONNECTION clause, Prolifics issues the rollback on the default connection.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it might
inadvertently commit the partial transaction when it commits a later transaction.

Refer to the example in Using Transactions on page 11.

Using Transactions on page 11

COMMIT

WITH CONNECTION
connection-name

Description

Example

See Also

Command Directory for JDB

Chapter 171 Database Driver for JDB

Command Directory for JDB

The following table lists all commands available in Prolifics’s database driver for
JDB. Commands available to all database drivers are described in the Program-
ming Guide.

Table 3. Commands for JDB

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

BINARY Create a Prolifics variable for
fetching binary values

page 810

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 15

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for JDB

18 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FORMAT Format the results of a CAT-
QUERY

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

ROLLBACK Roll back a transaction page 16

START Set the first row for Prolifics
to return from a select set

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

Command Directory for JDB

Chapter 191 Database Driver for JDB

Command Name Documentation
Location

Description

UNIQUE Suppress repeating values in
a selected column

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

