
Database Driver–Informix

Release 4.25

May 2000

3

Database Driver for
Informix

This chapter provides documentation specific to Informix. It discusses the
following:

� Engine initialization (page 4)

� Connection declaration (page 5)

� Import conversion (page 6)

� Formatting for colon-plus processing and binding (page 10)

� Cursors (page 10)

� Errors and warnings (page 12)

� Stored procedures (page 16)

� Database transaction processing (page 18)

� Transaction manager processing (page 21)

� Informix-specific DBMS commands (page 22)

� Command directory for Prolifics for Informix (page 32)

11

Initializing the Database Engine

4 Database Drivers: Panther 4.25

This document is designed as a supplement to information found in the Develop-
er’s Guide.

Initializing the Database Engine

Database engine initialization occurs in the source file dbiinit.c. This source
file is unique for each database engine and is constructed from the settings in the
makevars file. In Prolifics for Informix, this results in the following ven-
dor_list structure in dbiinit.c:

static vendor_t vendor_list[] =
{

{”informix”, dm_infsup, DM_DEFAULT_CASE ,(char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0 }
};

The settings are as follows:

informix Engine name. May be changed.

dm_infsup Support routine name. Do not change.

DM_DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for Informix, the settings can be changed by editing the make-
vars.inf file.

Engine Name

You can change the engine name associated with the support routine dm_infsup.
The application then uses that name in DBMS ENGINE statements and in WITH
ENGINE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevars.inf file:

INF_ENGNAME=tracking

If the application is accessing multiple engines, it makes Informix the default
engine by executing:

Connecting to the Database Engine

Chapter 51 Database Driver for Informix

DBMS ENGINE informix-engine-name

where informix-engine-name is the string used in vendor_list. For example,

DBMS ENGINE informix

or

DBMS ENGINE tracking

Support Routine Name
dm_sup is the name of the support routine for Informix. This name should not be
changed.

Case Flag
The case flag, DM_DEFAULT_CASE, determines how Prolifics’s database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing Informix column names to either a Prolifics variable name
or to a column name in a DBMS ALIAS statement.

Informix is case insensitive. Regardless of the case in a SQL statement, Informix
creates all database objects—tables, views, columns, etc.—with lower case names.
For Informix, the DM_DEFAULT_CASE setting is treated as DM_FORCE_TO_LOW-
ER_CASE. Because Informix uses only lower case, the DM_FORCE_TO_LOW-
ER_CASE setting is the same as DM_PRESERVE_CASE. For either of these flags,
Prolifics attempts to match Informix column names to lower case Prolifics
variables when processing SELECT results. If your application is using this default,
use lower case names when creating Prolifics variables.

If you wish to use upper case variable names, substitute the u option in the
makevars file that sets the DM_FORCE_TO_UPPER_CASE flag.

INF_INIT=u

If you edit makevars.inf, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Developer’s Guide.

Connecting to the Database Engine

Informix allows your application to use one or more connections. The application
can declare any number of named connections with DBMS DECLARE CONNECTION
statements, up to the maximum number permitted by the server.

Importing Database Tables

6 Database Drivers: Panther 4.25

The following options are supported for connections to Informix:

Table 1. Database connection options.

Option Argument

USER user-name

SERVER server-name

DATABASE database-name

PASSWORD password

DB_PATH database-path

HOST host-name

PROTOCOL protocol-type

SERVICE service

For UNIX, DATABASE, which specifies the database name, is the only option.

For Windows, you have the USER, PASSWORD, DATABASE, DB_PATH, HOST,
PROTOCOL, and SERVICE options.

USER and PASSWORD are the user name and password for your account on the host
computer.

DATABASE specifies the database name, and DB_PATH specifies the database path.

HOST specifies a character string to identify the host computer with which you
establish a connection.

PROTOCOL is the name of the protocol used by your network.

SERVICE is the service name that the remote database server uses to listen to all
incoming requests.

Note that you can declare a connection without the DATABASE option if you set the
database with DBMS SQL DATABASE database-name.

Additional keywords are available for other database engines. If those keywords
are included in your DBMS DECLARE CONNECTION command for Informix, it is
treated as an error.

Importing Database Tables
The Import⇒ Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an Informix database. When the

Importing Database Tables

Chapter 71 Database Driver for Informix

import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for Informix, the following database objects can be imported as
repository entries:

� database tables

� database views

� synonyms

After the import process is complete, the repository entry screen contains:

� A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

� A label for each column based on the column name.

� A table view named for the database table, database table view, or synonym.

� Links that describe the relationship between table views.

Each import session allows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

Table Views

A table view is a group of associated widgets on an application screen. As a
general rule, the members of a table view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

The import process inserts values in the following table view properties:

� Name — The name of the table view, generally the same as the database table.

� Table — The name of the database table.

� Primary Keys — The columns that are defined as primary keys for the
database table.

� Columns — A list of the columns in the database table is displayed when you
click on the More button. However, this list is for reference only. It cannot be
edited.

Importing Database Tables

8 Database Drivers: Panther 4.25

� Updatable — A setting that determines if the data in the table can be modified.
The default setting for Updatable is Yes.

For each repository entry based on a database view, the primary key widgets must
be available if you want to update data in that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Prolifics
table view or one of its parent table views. For repository entries based on database
tables, this information is automatically imported.

Links

Links are created from the foreign key definitions entered in the database. If you
are working with a version of Informix that does not support foreign keys, you
must create the links needed by the transaction manager manually if the application
screen contains more than one table view.

If you are using the screen wizard to create screens, the links must also be added to
the repository entries in order for the wizard to allow more than one table view in
each section of a screen.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

Widgets

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to @DATABASE
indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each Informix data type.

Importing Database Tables

Chapter 91 Database Driver for Informix

Table 2. Importing Database Tables

Informix Data
Type

Prolifics Type C Type Widget Length Widget
Precision

char FT_CHAR Char String Column length

date DT_DATETIME Default 20

datetime DT_DATETIME Default 20

decimal FT_DOUBLE Double Column length plus 2 for +/–
sign and decimal point

Column scale

float FT_DOUBLE Double 16 2

integer FT_LONG Long Int 11

interval FT_CHAR Char Varies according to column
qualifiers

money DT_CURRENCY Default 16

serial FT_LONG Long Int 11

smallfloat FT_FLOAT Float 16 2

smallint FT_INT Int 6

varchar FT_CHAR Char Column length

Precision in Informix is equivalent to length in Prolifics, and scale in Informix is equivalent to precision in Prolifics.

Based on the column’s data type or on the Prolifics type assigned during the import
process, other widget properties might be automatically set when importing
database tables.

DT_CURRENCY widgets have the Format/Display⇒ Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETIME widgets also have the Format/Display⇒ Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appear as:

MM/DD/YY HH:MM

If a column is defined to be NOT NULL, the Null Field property is set to No. For
example, the roles table in the videobiz database contains three columns:
title_id, actor_id and role. title_id and actor_id are defined as NOT
NULL so the Null Field property is set to No. role, without a NOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

Other Widget
Properties

DT_CURRENCY

DT_DATETIME

Null Field property

Formatting for Colon Plus Processing and Binding

10 Database Drivers: Panther 4.25

For more information about usage of Prolifics type and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates

Informix supports three types of date data types:

Declaring Cursors

When a connection is declared to an Informix engine, Prolifics automatically
declares a default cursor for SQL SELECT statements executed with the JPL
command DBMS SQL. For all non-SELECT operations performed with DBMS SQL,
Prolifics uses Informix’s EXECUTE IMMEDIATE feature rather than another default
cursor. If the application needs to select multiple rows and update the rows one at a
time, the application does not need to declare named cursors.

If you use Informix 5, SELECT cursors can be either HOLD cursors or non-HOLD
cursors. If the cursor is a HOLD cursor, it maintains its positioning information
while other cursors perform INSERT, UPDATE, and DELETE statements. This allows
you to fetch additional data with DBMS CONTINUE after committing or rolling back
another transaction. If a cursor is a non-HOLD cursor, it is closed at the end of a
transaction. Informix closes all non-HOLD cursors when it commits or rolls back a
transaction.

By default, Prolifics for Informix declares all cursors as HOLD cursors. To cause all
subsequently declared cursors to be non-HOLD cursors, issue the following
command:

DBMS SET HOLD_DEFAULT OFF

This can be reversed and cause cause all subsequently declared cursors to be HOLD
cursors by issuing the following:

DBMS SET HOLD_DEFAULT ON

Scrolling

Chapter 111 Database Driver for Informix

Both of these commands affect only cursors declared after the command is
executed. Currently active cursors are not affected.

In addition, you can set the HOLD behavior for an individual cursor with this
command:

DBMS [WITH CURSOR cursor-name] SET HOLD OFF

If the command is issued for the default cursor, all subsequent SELECT statements
are with non-HOLD cursors. If the command is issued on a named cursor, then all
subsequent executions and declarations of SELECT statements on the cursor are on
a non-HOLD cursor. To restore the default behavior, issue the following command:

DBMS [WITH CURSOR cursor-name] SET HOLD ON

For Informix 5, Prolifics does not put any limit on the number of cursors an
application can declare to an Informix engine. For previous versions, Prolifics
defines 10 cursors for an application accessing Informix. It reserves one for itself
(i.e., the “default” cursor); the other nine are available for the application’s use. If
the application attempts to declare a tenth cursor, Prolifics returns the
DM_MANY_CURSORS error. In this case, the application must close a cursor using
DBMS CLOSE CURSOR before it can declare a new one. If nine cursors are not
enough for your application, please contact JYACC Technical Support.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Scrolling

Informix has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to Prolifics
scrolling. Both systems allow you to use the following commands:

DBMS [WITH CURSOR cursor-name] CONTINUE_BOTTOM

DBMS [WITH CURSOR cursor-name] CONTINUE_TOP

DBMS [WITH CURSOR cursor-name] CONTINUE_UP

For native scrolling, use this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

To turn off native scrolling, use this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

Error and Status Information

12 Database Drivers: Panther 4.25

Then, set Prolifics scrolling with this command::

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:

DBMS [WITH CURSOR cursor-name] STORE

or close the Prolifics cursor with DBMS CLOSE CURSOR.

With Informix-based scrolling, Informix maintains a temporary table to hold the
select set. With Prolifics-based scrolling, Prolifics maintains a temporary binary
file to hold the select set. A cursor using Informix-based scrolling cannot use the
SQL syntax SELECT FOR UPDATE. Use Prolifics-based scrolling if you need
SELECT FOR UPDATE.

For more information on scrolling, refer to Chapter 28 in the Developer’s Guide.

Error and Status Information
Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for use in
other engines and for use in future releases of Prolifics for Informix.

Errors
Prolifics initializes the following global variables for error code information:

@dmretcode Standard database driver status code.

@dmretmsg Standard database driver status message.

@dmengerrcode Informix error code.

@dmengerrmsg Informix error message.

@dmengreturn Not used in Prolifics for Informix.

In Prolifics for Informix, @dmengerrcode and @dmengerrmsg are arrays that
contain both Informix and ISAM information.

@dmengerrcode [1] Informix error message.

@dmengerrcode [2] ISAM error code.

@dmengerrmsg [1] Informix error message.

@dmengerrmsg [2] ISAM error message.

Error and Status Information

Chapter 131 Database Driver for Informix

If the error handler queries for the values of @dmengerrcode and @dmengerrmsg
without any occurrence numbers, both sets of codes and messages are returned.

Informix returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes Informix
error codes to the global variable @dmengerrcode and writes Informix messages
to @dmengerrmsg.

All Informix errors are Prolifics errors. Therefore, Prolifics always calls the default
error handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if there is an error. The first line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Database interface appears in the Reported by list along
with the database engine. The error number and message contain the values of
@dmretcode and @dmretmsg. If the error comes from the database engine, only
the name of the engine appears in the Reported by list. The error number and
message contain the values of @dmengerrcode and @dmengerrmsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBMS ONERROR JPL errors
DBMS DECLARE dbi_session CONNECTION FOR ...

proc errors (stmt, engine, flag)
if @dmengerrcode[1] == 0

msg emsg ”JAM error: ” @dmretmsg
else

msg emsg ”JAM error: ” @dmretmsg ” %N” \
”INFORMIX error: ” @dmengerrcode[1] ” ” @dmengerrmsg[1] \
”ISAM error: ” @dmengerrcode[2] ” ” @dmengerrmsg[2]

return 1

For additional information about engine errors, refer to your Informix documenta-
tion. For more information about error processing in Prolifics, refer to Chapter 36
in the Developer’s Guide and Chapter 12 in the Programming Guide.

Warnings
Prolifics initializes the following global variables for warning information:

@dmengwarncode Informix warning code.

@dmengwarnmsg Not used in Prolifics for Informix.

Using the
Default Error
Handler

Using an
Installed Error
Handler

Error and Status Information

14 Database Drivers: Panther 4.25

Informix uses a warning byte called SQLAWARN to signal conditions it considers
unusual but not fatal. @dmengwarncode derives its value from this byte.
@dmengwarncode is an 8-occurrence array. If Informix sets a bit in SQLAWARN,
Prolifics puts a “W” in the corresponding occurrence of @dmengwarncode.

In Informix, the meaning of these settings depends on the statement that was just
executed. Also, Informix might change the value of SQLAWARN between releases.
The settings for SQLAWARN after connecting to a database are:

Array Index Meaning (Informix 5.x)

1 Set to W if any of 2 through 8 are set to W. If this is blank, the oth-
er fields do not need to be checked.

2 Set to W if the database has a transaction log that makes transac-
tions available.

3 Set to W if the database is an ANSI database.

4 Set to W if the database server is an Informix On-Line engine.

5 Set to W if the database server stores FLOATs as DECIMALs.

6 Not used.

7 Not used.

8 Not used.

The settings for SQLAWARN for all other operations are:

Array Index Meaning

1 Set to W if any of 2 through 8 are set to W. If this is blank, the oth-
er fields do not need to be checked.

2 Not applicable in Prolifics for Informix.

3 Set to W if an aggregate function encounters a NULL value.

4 Not applicable in Prolifics for Informix.

5 Set to W when a cursor is declared for an UPDATE or DELETE state-
ment and the statement does not contain a WHERE clause.

6 Set to W if the Informix environment variable DBANSIWARN is set
and the executed statement does not conform to ANSI SQL syntax.

Error and Status Information

Chapter 151 Database Driver for Informix

Array Index Meaning

7 Not used.

8 Not used.

Before using @dmengwarncode, you should verify these settings for your release
of Informix by consulting your Informix documentation.

You might wish to use an exit hook function to process warnings. An exit hook
function is installed with DBMS ONEXIT. A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)

if @dmretcode == 0
{
 if @dmengwarncode [1] == ”W”
 {

if @dmengwarncode [3] == ”W”
msg emsg ”A NULL value was found.”

if @dmengwarncode [5] == ”W”
msg emsg ”The operation did not use a WHERE clause.”

if @dmengwarncode [6] == ”W”
msg emsg ”This does not conform to ANSI standards.”

 }
}
return

Row Information

Prolifics initializes the following global variables for row information:

@dmrowcount Count of the number of Informix rows affected by
an operation.

@dmserial Informix-generated value for a serial column.

Informix returns a count of the rows affected by an operation. Prolifics writes this
value to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount
after a SQL SELECT is the number of rows fetched to Prolifics variables. This
number is less than or equal to the total number of rows in the select set. The value
of @dmrowcount after a SQL INSERT, UPDATE, or DELETE is the total number of

Using Stored Procedures

16 Database Drivers: Panther 4.25

rows affected by the operation. Note that this variable is reset when another DBMS
statement is executed, including DBMS COMMIT.

The value of @dmserial is updated when an application inserts a row into a table
with a serial column. Because this variable is cleared when a new DBMS statement
is executed, you must copy its value to another location if you wish to use it in
subsequent statements.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statements individually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
if statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differences in the engine implementation.

Executing Stored Procedures
An application can execute a stored procedure with DBMS SQL and the engine’s
command for execution, EXECUTE PROCEDURE. For example:

DBMS SQL EXECUTE PROCEDURE procedure-name

For example, update_tapes is a stored procedure that changes the video tape
status to O whenever a video is rented.

create procedure update_tapes (parm1 int, parm2 int)
update tapes set status = ’O’

where title_id = parm1 and copy_num = parm2
end procedure

The following statement executes this stored procedure, updating the status
column of the tapes table using the onscreen values of the widgets title_id and
copy_num.

Example

Using Stored Procedures

Chapter 171 Database Driver for Informix

DBMS SQL EXECUTE PROCEDURE update_tapes \
(:+title_id, :+copy_num)

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USING
clause that gets the onscreen values of the widgets title_id and copy_num.

DBMS DECLARE x CURSOR FOR EXECUTE PROCEDURE update_tapes \
(::parm1, ::parm2)

DBMS WITH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in a DECLARE CURSOR statement for cursor
parameters. If a single colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter
NO TAG in the Developer’s Guide for more information.

Viewing SELECT Results
In order to return data from a stored procedure in Informix, you must include a
RETURN statement and a RETURNING clause when you create the stored procedure.
You can return multiple rows by including a RETURN WITH RESUME statement.
Also, your application must define positional aliases for the result columns using a
DBMS ALIAS statement. The order of the variables in this statement must match
the order of the variables in the RETURNING clause of the stored procedure.

This stored procedure, avail_video, selects the video titles that are available for
rental and returns values for title_id, name, and genre_code to the applica-
tion.

CREATE PROCEDURE avail_video ()
RETURNING integer, char(60), char(4);

DEFINE p_title_id integer;
DEFINE p_name char(60);
DEFINE p_genre_code char(4);
DEFINE vcount int;
LET vcount = 1;
FOREACH
SELECT titles.title_id, name, genre_code
INTO p_title_id, p_name, p_genre_code
FROM titles, tapes WHERE titles.title_id = tapes.title_id
AND tapes.status = ’A’;
RETURN p_title_id, p_name, p_genre_code WITH RESUME;
LET vcount = vcount +1;
END FOREACH;
END PROCEDURE
;

The Prolifics application screen contains three widgets named title_id, name,
and genre_code. When the application executes the following statements, the
screen displays the available videos.

Using Transactions

18 Database Drivers: Panther 4.25

proc get_video
DBMS ALIAS title_id, name, genre_code
DBMS SQL EXECUTE PROCEDURE avail_video ()
return

The next example, unpaid_orders, uses the stores database and returns data
about unpaid orders to the application.

CREATE PROCEDURE unpaid_orders ()
RETURNING integer, date, integer, char(10), date;

DEFINE p_order_num integer;
DEFINE p_order_date date;
DEFINE p_customer_num integer;
DEFINE p_po_num char(10);
DEFINE p_ship_date date;
DEFINE lcount int;
LET lcount = 1;
FOREACH
SELECT order_num, order_date, customer_num, po_num, ship_date
INTO p_order_num, p_order_date, p_customer_num, p_po_num,
 p_ship_date
FROM informix.orders
WHERE paid_date is NULL
ORDER BY ship_date
RETURN p_order_num, p_order_date, p_customer_num, p_po_num,
 p_ship_date WITH RESUME;
LET lcount = lcount +1;
END FOREACH;
END PROCEDURE
;

The application contains Prolifics variables named order_num, order_date,
customer_num, po_num, and ship_date. The procedure is executed using the
following statements. The order of the variables in the DBMS ALIAS statement and
in the RETURNING clause of the procedure are the same.

proc unpaid
DBMS ALIAS order_num, order_date, customer_num, po_num, \

ship_date
DBMS SQL EXECUTE PROCEDURE unpaid_orders ()
return

Using Transactions

A transaction is a unit of work that must be totally completed or not completed at
all. Informix has one transaction for each connection. Therefore, in a Prolifics
application, a transaction controls all statements executed with a single named
connection or the default connection.

Using Transactions

Chapter 191 Database Driver for Informix

The following events commit a transaction on Informix:

� Executing DBMS COMMIT.

The following events roll back a transaction on Informix:

� Executing DBMS ROLLBACK.

� Closing the transaction’s connection before the transaction is committed.

Informix keeps a record of the database modifications performed in each
transaction in a transaction log. It uses this log to undo the database changes when
a ROLLBACK command is executed. However, Informix databases do not
automatically have a transaction log. If transaction processing is not available, see
your database administrator to activate this feature.

As noted earlier in the document, the behavior of named cursors differs between
Prolifics and Informix when transactions are terminated. A named cursor has
actually two representations. One is a Prolifics structure and the other is an
Informix cursor in the database. The two representations have the same lifetime
(declaring the Prolifics cursor creates the Informix cursor, closing the Prolifics
cursor closes the Informix cursor) except when a transaction is terminated. When
Informix commits or rolls back a transaction, it closes all Informix cursors.
Therefore, if an application has a select set pending when it begins a transaction, it
cannot fetch the remaining rows after executing a rollback or commit because
Informix has closed its cursors and the positioning information is no longer
available. To begin the fetch again, the application must simply re-execute the
cursor using DBMS EXECUTE; it is not necessary to re-declare the Prolifics cursor.

If your application needs to keep the positioning information, you can use the
continuation file in Prolifics. Before issuing the select statement, set up the
continuation file. Then, fetch all the rows to the continuation file before continuing
with the application. For example:

proc getrows
Set up a continuation file. Use WITH CURSOR if needed.
DBMS STORE FILE
#Execute the select.
DBMS SQL SELECT ...
#Fetch all the rows to the continuation file.
DBMS CONTINUE_BOTTOM
#Reposition to the top of the select.
DBMS CONTINUE_TOP
return

Transaction Control on a Single Connection
After an application declares a connection, an application can begin a transaction
on the default connection or on any declared connection.

Using Transactions

20 Database Drivers: Panther 4.25

Informix supports the following transaction commands:

� Begin a transaction on a default or named connection.

DBMS [WITH CONNECTION connection] BEGIN

� Commit the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] COMMIT

� Rollback to the beginning of the transaction on a default or named connection.

DBMS [WITH CONNECTION connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the name
of the subroutine containing the transaction commands.

call tran_handle ”new_title()”

proc tran_handle (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.

vars jpl_retcode
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all statements
in the subroutine executed successfully and the transaction
was committed. If it is 1, the error handler aborted the
subroutine. If it is -1, Prolifics aborted the subroutine.
Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg ”Transaction succeeded.”
}
else
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
}

proc new_title
DBMS BEGIN

DBMS SQL INSERT INTO titles VALUES \
(:+title_id, :+name, :+genre_code, \
:+dir_last_name, :+dir_first_name, :+film_minutes, \

Example

Transaction Manager Processing

Chapter 211 Database Driver for Informix

:+rating_code, :+release_date, :+pricecat)
DBMS SQL INSERT INTO title_dscr VALUES \

(:+title_id, :+line_no, :+dscr_text)
DBMS SQL INSERT INTO tapes VALUES \

(:+title_id, :+copy_num, :+status, :+times_rented)
DBMS COMMIT
return 0

The procedure tran_handle is a generic handler for the application’s transac-
tions. The procedure new_title contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing

call tran_handle ”new_title()”

The procedure tran_handle receives the argument “new_title” and writes it to
the variable subroutine. It declares a JPL variable, jpl_retcode. After
performing colon processing, :subroutine is replaced with its value,
new_title, and JPL calls the procedure. The procedure new_title begins the
transaction, performs three inserts, and commits the transaction.

If new_title executes without any errors, it returns 0 to the variable jpl_ret-
code in the calling procedure tran_handle. JPL then evaluates the if statement,
displays a success message, and exits.

If however an error occurs while executing new_title, Prolifics calls the
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assume the first INSERT in new_title executes successfully but the
second INSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_title (therefore, the third INSERT is not attempted). Prolifics
returns 1 to jpl_retcode in the calling procedure tran_handle. JPL evaluates
the if statement, displays a message, and executes a rollback. The rollback undoes
the insert to the table titles.

Transaction Manager Processing

Transaction Model for Informix

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the

Informix-Specific Commands

22 Database Drivers: Panther 4.25

main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For Informix, the name of the standard transaction model is
tminf1.c.

SAVE Commands

If you specify a SAVE command with a table view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COMMIT.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

Informix-Specific Commands

Prolifics for Informix provides commands for Informix-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

Using Cursors

SET HOLD Control behavior of Informix cursors for SE-
LECT statements.

SET HOLD_DEFAULT Set connection behavior for Informix cursors
when executing SELECT statements.

Using Scrolling

BUFFER_DEFAULT Set buffer size for scrolling for entire ap-
plication.

SET_BUFFER Control availability of Informix-based scroll-
ing for DBMS CONTINUE_BOTTOM, DBMS
CONTINUE_TOP, DBMS CONTINUE_UP.

Informix-Specific Commands

Chapter 231 Database Driver for Informix

Using Transactions

BEGIN Begin a transaction.

COMMIT Commit a transaction.

ROLLBACK Rollback a transaction.

Informix-Specific Commands

24 Database Drivers: Panther 4.25

BEGIN
Start a transaction

DBMS [WITH CONNECTION connection-name] BEGIN

Specify the connection for this command. Because Informix does not support
multiple connections, the WITH CONNECTION clause is necessary only in
applications using more than one engine.

A transaction is a logical unit of work on a database. In Informix, transaction
behavior differs for ANSI and non-ANSI databases.

For non-ANSI Informix databases, a transaction is contained within DBMS BEGIN
and DBMS COMMIT statements. DBMS BEGIN defines the start of a transaction.
After a transaction is begun, changes to the database are not committed until a
DBMS COMMIT is executed. Changes are undone by executing DBMS ROLLBACK.
Before beginning a new transaction, the application should COMMIT or ROLLBACK
any pending work. Otherwise, you might receive an error.

For ANSI Informix databases, all statements up to a DBMS COMMIT are contained
within a transaction. DBMS BEGIN has no effect. Changes can be undone by
executing DBMS ROLLBACK.

Refer to the example in Using Transactions on page 18.

Using Transactions on page 18

COMMIT

ROLLBACK

WITH CONNECTION
connection-name

Example

See Also

Informix-Specific Commands

Chapter 251 Database Driver for Informix

BUFFER_DEFAULT
Specifies setting for engine-based non-sequential scrolling

DBMS [WITH CONNECTION connection-name] BUFFER_DEFAULT value

Disable Informix-based scrolling on all cursors on the specified connection.

Enable Informix-based scrolling on all cursors on the specified connection.

Informix supports sequential and scroll cursors. By default, Prolifics creates Infor-
mix sequential cursors.

An Informix sequential cursor can fetch only the next row in sequence from the
select set. The sequential cursor can read through the active set once; to reread the
rows, the application must re-execute the cursor.

An Informix scroll cursor allows an application to fetch rows in any sequence. The
scroll cursor can re-fetch rows without re-executing the cursor.

A Prolifics application can use either Prolifics-based or Informix-based scrolling to
execute DBMS CONTINUE, DBMS CONTINUE_TOP, DBMS CONTINUE_UP, and DBMS
CONTINUE_BOTTOM.

To enable Prolifics-based scrolling an application executes DBMS STORE FILE for
a specified cursor. To enable Informix-based scrolling an application executes
DBMS SET_BUFFER for a specified cursor or DBMS BUFFER_DEFAULT for all
cursors on an Informix connection.

To support Informix–based scrolling, Informix buffers the select rows in a
temporary table. You might want to change the cursor’s isolation level to prevent
other users from modifying the rows when using Informix–based scrolling. See
your Informix documentation for more information.

SET_BUFFER

O

1

Description

See Also

Informix-Specific Commands

26 Database Drivers: Panther 4.25

COMMIT
Commit a transaction

DBMS [WITH CONNECTION connection-name] COMMIT

Specify the connection for this command. This clause is necessary only in
applications using more than one engine because Informix does not support
multiple connections.

Use this command to commit a pending transaction. Committing a transaction
saves all the work since the last COMMIT. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

After a transaction is terminated, the engine automatically begins a new transac-
tion.

Before beginning a new transaction, the application should COMMIT or ROLLBACK
any pending transactions. Otherwise, you will receive an error.

This command is available depending on the setting of various parameters in your
environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 18.

Using Transactions on page 18

BEGIN

ROLLBACK

WITH CONNECTION
connection-name

Description

Example

See Also

Informix-Specific Commands

Chapter 271 Database Driver for Informix

ROLLBACK
Roll back a transaction

DBMS [WITH CONNECTION connection-name] ROLLBACK

This clause is necessary only in applications using more than one engine because
Informix does not support multiple connections.

Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

Refer to the example in Using Transactions on page 18.

If a statement in a transaction fails, an application must attempt to reissue the
statement successfully or else roll back the transaction. If an application cannot
complete a transaction, it should roll back the transaction. If it does not, it might
receive an error when it starts the next transaction.

Prolifics’s database driver for Informix issues a DBMS ROLLBACK before closing a
connection.

Using Transactions on page 18

BEGIN

COMMIT

WITH CONNECTION
connection-name

Description

Example

See Also

Informix-Specific Commands

28 Database Drivers: Panther 4.25

SET_BUFFER
Use engine-based scrolling

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBMS
CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS CONTINUE_UP. In one
method, an application uses Prolifics-based scrolling by setting up a continuation
file with DBMS STORE FILE. In the other method, an application uses Informix-
based scrolling by setting a flag for a cursor with DBMS SET_BUFFER.

By default, Prolifics declares Informix cursors without sequential scrolling. Use
this command to allow a SELECT cursor to use Informix-based scrolling.

The argument for this command sets the availability of the scrolling. To turn on
Informix-based scrolling, use this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 1

To turn off Informix-based scrolling, use this command:

DBMS [WITH CURSOR cursor-name] SET_BUFFER 0

If the WITH CURSOR clause is used, Prolifics sets the flag for the named cursor. If
the WITH CURSOR clause is not used, Prolifics sets the flag for the default SELECT
cursor.

Note the following restrictions:

� When Informix-based scrolling is used, Informix prohibits the cursor from
using some features, such as SELECT FOR UPDATE.

� Only a few engines support native scrolling. Therefore, this command might
not be supported with other engines. Prolifics-based scrolling is supported on
all engines with DBMS STORE FILE.

WITH CURSOR
cursor-name

Description

Informix-Specific Commands

Chapter 291 Database Driver for Informix

� Each DBMS CONTINUE_BOTTOM, DBMS CONTINUE_TOP, and DBMS
CONTINUE_UP requires a trip to the server. With Prolifics-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, Prolifics reads them from the continuation file rather than requesting
them from the server.

DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS WITH CURSOR t_cursor SET_BUFFER 1

proc scroll_up
DBMS WITH CURSOR t_cursor CONTINUE_UP
return

proc scroll_down
DBMS WITH CURSOR t_cursor CONTINUE_DOWN
return

CONTINUE_BOTTOM

CONTINUE_TOP

CONTINUE_UP

STORE

Example

See Also

Informix-Specific Commands

30 Database Drivers: Panther 4.25

SET HOLD
Set the HOLD behavior for a cursor

DBMS [WITH CURSOR cursor-name] SET HOLD { OFF | ON }

Specify a named cursor for the command. If this clause is not included, Prolifics
issues the command on the default cursor of the default connection.

Non-hold cursors in Informix are closed at the end of a transaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, INSERT and DELETE
statements.

In the current release, Prolifics for Informix declares all cursors to be hold cursors.

If DBMS SET HOLD OFF is issued for the default SELECT cursor, all subsequent
SQL SELECT statements are on non-hold cursors. Therefore, after a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD ON.

If DBMS SET HOLD OFF is issued for a named cursor, it is a non-hold cursor
throughout all subsequent executions and redeclarations of the cursor. To reset the
default behavior, issue DBMS WITH CURSOR cursor-name SET HOLD ON.

proc select_titles
DBMS DECLARE t_cursor CURSOR FOR \

SELECT title_id, name, genre_code FROM titles
DBMS WITH CURSOR t_cursor SET HOLD OFF
DBMS WITH CURSOR t_cursor EXECUTE

WITH CURSOR
cursor-name

Description

Example

Informix-Specific Commands

Chapter 311 Database Driver for Informix

SET HOLD_DEFAULT
Set the connection’s default behavior for HOLD cursors

DBMS SET HOLD_DEFAULT { OFF | ON }

Non-hold cursors in Informix are closed at the end of a transaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, INSERT and DELETE
statements.

In the current release, Prolifics for Informix declares all connections to create
SELECT cursors as hold cursors.

If DBMS SET HOLD_DEFAULT OFF is issued for a connection, all subsequent SQL
SELECT statements are on non-hold cursors. Therefore, after a transaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD_DEFAULT ON.

proc connect_nonhold
DBMS DECLARE non_conn CONNECTION FOR \

DATABASE ”videobiz”
DBMS WITH CONNECTION non_conn SET HOLD_DEFAULT OFF
DBMS CONNECTION non_conn
DBMS SQL SELECT title_id, name, genre_code FROM titles

Description

Example

Command Directory for Informix

32 Database Drivers: Panther 4.25

Command Directory for Informix

The following table lists all commands available in Prolifics’s database driver for
Informix. Commands available to all database drivers are described in the
Programming Guide.

Table 3. Commands for Informix

Command Name Description Documentation
Location

ALIAS Name a Prolifics variable as
the destination of a selected
column or aggregate function

Programming
Guide

BEGIN Begin a transaction page 24

BINARY Create a Prolifics variable for
fetching binary values

page 810

BUFFER_DEFAULT Set engine-based scrolling page 25

CATQUERY Redirect select results to a
file or a Prolifics variable

CLOSE_ALL_CONNECTIONS Close all connections on all
engines

CLOSE CONNECTION Close a named connection

CLOSE CURSOR Close a named cursor

COLUMN_NAMES Return the column name, not
column data, to a Prolifics
variable

COMMIT Commit a transaction page 26

CONNECTION Set a default connection and
engine for the application

CONTINUE Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_BOTTOM Fetch the last screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_DOWN Fetch the next screenful of
rows from a select set

Database Guide &
Database Drivers

Command Directory for Informix

Chapter 331 Database Driver for Informix

Command Name Documentation
Location

Description

CONTINUE_TOP Fetch the first screenful of
rows from a select set

Database Guide &
Database Drivers

CONTINUE_UP Fetch the previous screenful
of rows from a select set

Database Guide &
Database Drivers

DECLARE CONNECTION Declare a named connection
to an engine

Database Guide &
Database Drivers

DECLARE CURSOR Declare a named cursor Database Guide &
Database Drivers

ENGINE Set the default engine for the
application

EXECUTE Execute a named cursor

FORMAT Format the results of a CAT-
QUERY

OCCUR Set the number of rows for
Prolifics to fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

ONENTRY Install a JPL procedure or C
function that Prolifics will
call before executing a DBMS
statement

ONERROR Install a JPL procedure or C
function that Prolifics will
call when a DBMS statement
fails

Database Guide &
Database Drivers

ONEXIT Install a JPL procedure or C
function that Prolifics will
call after executing a DBMS
statement

ROLLBACK Roll back a transaction page 27

SET_BUFFER Set engine-based scrolling
for a cursor

page 28

SET HOLD Set behavior for SELECT cur-
sors

page 30

Command Directory for Informix

34 Database Drivers: Panther 4.25

Command Name Documentation
Location

Description

SET HOLD_DEFAULT Set SELECT cursor behavior
for the connection

page 31

START Set the first row for Prolifics
to return from a select set

STORE Store the rows of a select set
in a temporary file so the ap-
plication can scroll through
the rows

UNIQUE Suppress repeating values in
a selected column

WITH CONNECTION Specify the connection to use
for a command

WITH CURSOR Specify the cursor to use for
a command

WITH ENGINE Specify the engine to use for
a command

