Panther

Database Driver—Informix

Release 4.25

Prolifics, May 2000

—]

Database Driver for
|nformix

This chapter provides documentation specific to Informix. It discusses the
following:

Q

©c 0 0 0 0 0 0 © © 0o

Engineinitialization (page 4)

Connection declaration (page 5)

Import conversion (page 6)

Formatting for colon-plus processing and binding (page 10)
Cursors (page 10)

Errors and warnings (page 12)

Stored procedures (page 16)

Database transaction processing (page 18)

Transaction manager processing (page 21)
Informix-specific DBMS commands (page 22)

Command directory for Pralifics for Informix (page 32)

Initializing the Database Engine

This document is designed as a supplement to information found in the Devel op-
er'sGuide.

Initializing the Database Engine

Engine Name

Database engine initialization occurs in the source file dbi i ni t . c. This source
fileisunique for each database engine and is constructed from the settings in the
makevar s file. In Prolifics for Informix, this resultsin the following ven-
dor _|i st structureindbiinit.c:

static vendor_t vendor_list[] =
{"inform x”, dm.nfsup, DM DEFAULT_CASE , (char *) 0},

{ (char *) 0, (int (*)()) 0, (int) 0, (char *) 0}
b

The settings are as follows:

i nform x Engine name. May be changed.

dm.infsup Support routine name. Do not change.

DM DEFAULT_CASE Case setting for matching SELECT columns
with Prolifics variable names. May be
changed.

For Prolifics for Informix, the settings can be changed by editing the make-
vars. inf file

You can change the engine name associated with the support routine dm i nf sup.
The application then uses that namein DBMS ENG NE statementsand in W TH
ENG NE clauses. For example, if you wish to use “tracking” as the engine name,
change the following parameter in the makevar s. i nf file:

| NF_ENGNANE=t r acki ng
If the application is accessing multiple engines, it makes Informix the default

engine by executing:

Database Drivers: Panther 4.25

Connecting to the Database Engine

DBMS ENGQ NE informix-engine-name

whereinformix-engine-name is the string used in vendor _| i st . For example,
DBM5S ENG NE i nf ormi x

or

DBMS ENG NE tracki ng

Support Routine Name

dm_sup isthe name of the support routine for Informix. This name should not be
changed.

Case Flag

The case flag, DM_DEFAULT_CASE, determines how Prolifics's database drivers use
case when searching for Prolifics variables for holding SELECT results. This setting
is used when comparing Informix column names to either a Prolifics variable name
or to acolumn namein aDBVMS ALI AS statement.

Informix is case insensitive. Regardless of the case in a SQL statement, Informix
creates all database objects—tables, views, columns, etc.—with lower case names.
For Informix, the DM_DEFAULT_CASE setting is treated as DM FORCE_TO _LOW
ER_CASE. Because Informix uses only lower case, the DM FORCE_TO_LOW
ER_CASE setting is the same as DM _PRESERVE_CASE. For either of these flags,
Prolifics attempts to match Informix column names to lower case Prolifics
variables when processing SELECT results. If your application is using this default,
use lower case names when creating Prolifics variables.

If you wish to use upper case variable names, substitute the u option in the
makevar s file that setsthe DM_FORCE_TO UPPER_CASE flag.

INF_I NI T=u

If you edit makevar s. i nf, you must remake your Prolifics executables. For more
information on engine initialization, refer to Chapter 7 in the Devel oper’s Guide.

Connecting to the Database Engine

Informix allows your application to use one or more connections. The application
can declare any number of named connections with DBMS DECLARE CONNECTI ON
statements, up to the maximum number permitted by the server.

Chapter 1 Database Driver for Informix 5

Importing Database Tables

The following options are supported for connections to Informix:

Tablel. Database connection options.

Option Argument
USER user-name
SERVER server-name
DATABASE database-name
PASSWORD password
DB_PATH database-path
HOST host-name
PROTOCCOL protocol-type
SERVI CE service

For UNIX, DATABASE, which specifies the database name, is the only option.

For Windows, you have the USER, PASSWORD, DATABASE, DB_PATH, HOST,
PROTOCOL, and SERVI CE options.

USER and PASSWORD are the user name and password for your account on the host
computer.

DATABASE specifies the database name, and DB_PATH specifies the database path.

HOST specifies a character string to identify the host computer with which you
establish a connection.

PROTOCOL isthe name of the protocol used by your network.

SERVI CE isthe service name that the remote database server usesto listen to all
incoming requests.

Note that you can declare a connection without the DATABASE option if you set the
database with DBMS SQL DATABASE database-name.

Additional keywords are available for other database engines. If those keywords
areincluded in your DBMS DECLARE CONNECTI ON command for Informix, itis
treated as an error.

Importing Database Tables

The Importd Database Objects option in the screen editor creates Prolifics
repository entries based on database tables in an Informix database. When the

6 Database Drivers: Panther 4.25

Table Views

Importing Database Tables

import process is complete, each selected database table has a corresponding
repository entry screen.

In Prolifics for Informix, the following database objects can be imported as
repository entries:

Q database tables

Q database views

Q synonyms

After theimport processis complete, the repository entry screen contains:

Q A widget for each column in the table, using the column’s characteristics to
assign the appropriate widget properties.

QO A labe for each column based on the column name.
Q A tableview named for the database table, database table view, or synonym.
Q Linksthat describe the relationship between table views.

Each import session alows you to display and select up to 1000 database tables.
Each database table can have up to 255 columns. If your database contains more
than 1000 tables, use the filter to control which database tables are displayed.

A table view is a group of associated widgets on an application screen. Asa
genera rule, the members of atable view are derived from the same database table.
When a database table is first imported to a Prolifics repository, the new repository
screen has one table view that is named after the database table. All the widgets
corresponding to the database columns are members of that table view.

Theimport process inserts values in the following table view properties:
Q Name— The name of the table view, generally the same as the database table.
Q Table— The name of the database table.

Q Primary Keys— The columnsthat are defined as primary keys for the
database table.

Q Columns— A list of the columns in the database table is displayed when you
click on the More button. However, thislist is for reference only. It cannot be
edited.

Chapter 1 Database Driver for Informix 7

Importing Database Tables

Links

Widgets

Q Updatable — A setting that determinesif the data in the table can be modified.
The default setting for Updatableis Yes.

For each repository entry based on a database view, the primary key widgets must
be availableif you want to update datain that view. To do this, check that the
Prolifics table view’s Primary Keys property is set to the correct value. Then, the
widgets corresponding to the primary keys must be members of either the Pralifics
table view or one of its parent table views. For repository entries based on database
tables, thisinformation is automatically imported.

Links are created from the foreign key definitions entered in the database. If you
are working with aversion of Informix that does not support foreign keys, you
must create the links needed by the transaction manager manually if the application
screen contains more than one table view.

If you are using the screen wizard to create screens, the links must also be added to
the repository entriesin order for the wizard to allow more than one table view in
each section of a screen.

Refer to Chapter 30 in the Developer’s Guide for more information on links.

A widget is created for each database column. The name of the widget corresponds
to the database column name. The Inherit From property is set to GXATABASE

indicating that the widget was imported from the database engine. The Justification
property is set to Left. Other widget properties are assigned based on the data type.

The following table lists the values for the C Type, Length, and Precision
properties assigned to each Informix data type.

Database Drivers: Panther 4.25

Importing Database Tables

Table2. Importing Database Tables

Informix Data Prolifics Type C Type Widget Length Widget

Type Precision

char FT_CHAR Char String Column length

date DT_DATETI ME Def aul t 20

datetine DT_DATETI ME Def aul t 20

deci nal FT_DOUBLE Doubl e Column length plus 2 for +/— Column scale
sign and decimal point

f1 oat FT_DOUBLE Doubl e 16 2

i nt eger FT_LONG Long I nt 11

i nterval FT_CHAR Char Varies according to column
qualifiers

noney DT_CURRENCY Def aul t 16

seri al FT_LONG Long I nt 11

smal | fl oat FT_FLOAT Fl oat 16 2

smal | int FT_INT I nt 6

var char FT_CHAR Char Column length

Precision in Informix is equivalent to length in Prolifics, and scale in Informix is equivalent to precision in Prolifics.

Other Widget

Properties

DT_CURRENCY

DT_DATETIME

Null Field property

Based on the column’s data type or on the Prolifics type assigned during the import

process, other widget properties might be automatically set when importing

database tables.

DT_CURRENCY widgets have the Format/Display[] Data Formatting property set to
Numeric and Format Type set to 2 Dec Places.

DT_DATETI ME widgets a so have the Format/Display(] Data Formatting property
set to Date/Time and Format Type set to DEFAULT. Note that dates in this Format
Type appesar as.

MM DDY YY HH: MM

If acolumn isdefined to be NOT NULL, the Null Field property is set to No. For
example, ther ol es tableinthe vi deobi z database contains three columns:
title_id,actor_idandrole.title_idandactor_id aredefined as NOT
NULL so the Null Field property is set to No. r ol e, without aNOT NULL setting, is
implicitly considered to allow null values so the Null Field property is set to Yes.

Chapter 1 Database Driver for Informix 9

Formatting for Colon Plus Processing and Binding

For more information about usage of Prolificstype and C type, refer to Chapter 29
of the Developer’s Guide.

Formatting for Colon Plus Processing and Binding

This section contains information about the special data formatting that is
performed for the engine. For general information on data formatting, refer to
Chapter 29 in the Developer’s Guide.

Formatting Dates

Informix supports three types of date data types:

Declaring Cursors

10

When a connection is declared to an Informix engine, Prolifics automatically
declares adefault cursor for SQL SELECT statements executed with the JPL
command DBMS SQL. For all non-SELECT operations performed with DBVMS SQL,
Prolifics uses Informix’s EXECUTE | MVEDI ATE feature rather than another default
cursor. If the application needs to select multiple rows and update the rows one at a
time, the application does not need to declare named cursors.

If you use Informix 5, SELECT cursors can be either HOLD cursors or non-HOLD
cursors. If the cursor isaHOLD cursor, it maintains its positioning information
while other cursors perform | NSERT, UPDATE, and DELETE statements. This allows
you to fetch additional datawith DBMS CONTI NUE after committing or rolling back
another transaction. If a cursor isanon-HOLD cursor, it is closed at the end of a
transaction. Informix closes all hon-HOLD cursors when it commits or rolls back a
transaction.

By default, Prolifics for Informix declares all cursors as HOLD cursors. To cause all
subsequently declared cursors to be non-HOLD cursors, issue the following
command:

DBMS SET HOLD DEFAULT OFF

This can be reversed and cause cause all subsequently declared cursors to be HOLD
cursors by issuing the following:

DBM5S SET HOLD_DEFAULT ON

Database Drivers: Panther 4.25

Scrolling

Scrolling

Both of these commands affect only cursors declared after the command is
executed. Currently active cursors are not affected.

In addition, you can set the HOLD behavior for anindividual cursor with this
command:

DBMS [W TH CURSCR cursor-name] SET HOLD OFF

If the command isissued for the default cursor, all subsequent SELECT statements
are with non-HOLD cursors. If the command isissued on a named cursor, then all
subsequent executions and declarations of SELECT statements on the cursor are on
anon-HOLD cursor. To restore the default behavior, issue the following command:

DBMS [W TH CURSCR cursor-name] SET HOLD ON

For Informix 5, Prolifics does not put any limit on the number of cursors an
application can declare to an Informix engine. For previous versions, Prolifics
defines 10 cursors for an application accessing Informix. It reserves one for itself
(i.e., the “default” cursor); the other nine are available for the application’s use. If
the application attempts to declare atenth cursor, Prolifics returns the

DM _MANY_CURSCRS error. In this case, the application must close a cursor using
DBMS CLOSE CURSOR beforeit can declare anew one. If nine cursors are not
enough for your application, please contact JYACC Technical Support.

For more information on cursors, refer to Chapter 27 in the Developer’s Guide.

Informix has native support for non-sequential scrolling in a select set. This
capability is available on any cursor. As an alternative, you can switch to Prolifics
scrolling. Both systems allow you to use the following commands:

DBMS [W TH CURSOR cursor-name] CONTI NUE_BOTTOM
DBMS [W TH CURSCR cursor-name] CONTI NUE_TOP
DBMS [W TH CURSCR cursor-name] CONTI NUE_UP

For native scrolling, use this command:

DBMS [W TH CURSCR cursor-name] SET_BUFFER 1

To turn off native scrolling, use this command:

DBMS [W TH CURSCR cursor-name] SET_BUFFER 0O

Chapter 1 Database Driver for Informix 11

Error and Status Information

Then, set Prolifics scrolling with this command::

DBMS [W TH CURSCR cursor-name] STORE FI LE [filename]

To turn off Prolifics scrolling and close the continuation file, use this command:
DBMS [W TH CURSCR cursor-name] STORE

or close the Pralifics cursor with DBMS CLOSE CURSOR.

With Informix-based scrolling, Informix maintains atemporary table to hold the
select set. With Prolifics-based scrolling, Prolifics maintains atemporary binary
file to hold the select set. A cursor using Informix-based scrolling cannot use the
SQL syntax SELECT FOR UPDATE. Use Prolifics-based scrolling if you need
SELECT FOR UPDATE.

For more information on scrolling, refer to Chapter 28 in the Devel oper’s Guide.

Error and Status Information

Errors

12

Prolifics uses the global variables described in the following sections to supply
error and status information in an application. Note that some global variables can
not be used in the current release; however, these variables are reserved for usein
other engines and for use in future releases of Prolifics for Informix.

Prolificsinitializes the following global variables for error code information:

@inr et code Standard database driver status code.
@inr et nsg Standard database driver status message.
@lnmenger r code Informix error code.

@lnmengerr msg Informix error message.
@inmengreturn Not used in Prolifics for Informix.

In Prolifics for Informix, @menger r code and @ nenger r msg are arrays that
contain both Informix and ISAM information.

@inmengerrcode [1] Informix error message.
@inmengerr code [2] ISAM error code.
@inmengerrnsg [1] Informix error message.
@nmengerrnmsg [2] ISAM error message.

Database Drivers: Panther 4.25

Using the
Default Error
Handler

Using an
Installed Error
Handler

Warnings

Error and Status Information

If the error handler queries for the values of @ menger r code and @inenger r nsg
without any occurrence numbers, both sets of codes and messages are returned.

Informix returns error codes and messages when it aborts a command. It usually
aborts a command because the application used an invalid option or because the
user did not have the authority required for an operation. Prolifics writes Informix
error codes to the global variable @nenger r code and writes Informix messages
to @nmenger r nsg.

All Informix errors are Prolifics errors. Therefore, Prolifics aways calls the default
error handler or the installed error handler when an error occurs.

The default error handler displays a dialog box if thereisan error. Thefirst line
indicates whether the error came from the database driver or database engine,
followed by the text of the statement that failed. If the error comes from the
database driver, Dat abase i nt erface appearsintheReported by list along
with the database engine. The error number and message contain the values of
@inr et code and @Inr et msg. If the error comes from the database engine, only
the name of the engine appearsin the Repor t ed by list. The error number and
message contain the values of @imenger r code and @menger r nsg.

An installed error or exit handler should test for errors from the database driver and
from the database engine. For example:

DBVS ONERROR JPL errors
DBMS DECLARE dbi _sessi on CONNECTI ON FOR . ..

proc errors (stnt, engine, flag)
i f @mengerrcode[1] ==

msg ensg "JAM error: " @nretnsg
el se
nmsg enmsg "JAMerror: " @nretnsg " 9N \
"INFORM X error: " @nengerrcode[1] " " @nengerrnsg[1] \
"ISAM error: " @nengerrcode[2] " " @nengerrnsg[2]
return 1

For additional information about engine errors, refer to your Informix documenta-
tion. For more information about error processing in Prolifics, refer to Chapter 36
in the Developer’s Guide and Chapter 12 in the Programming Guide.

Prolificsinitializes the following global variables for warning information:

@imengwar ncode Informix warning code.

@inmengwar nnsg Not used in Prolifics for Informix.

Chapter 1 Database Driver for Informix 13

Error and Status Information

14

Informix uses awarning byte called SQLAWARN to signal conditionsit considers
unusual but not fatal. @nengwar ncode derivesits value from this byte.
@inmengwar ncode isan 8-occurrence array. If Informix setsabit in SQLAWARN,
Prolifics putsa“W"” in the corresponding occurrence of @nengwar ncode.

In Informix, the meaning of these settings depends on the statement that was just
executed. Also, Informix might change the value of SQLAWARN between rel eases.
The settings for SQLAWARN after connecting to a database are:

Array Index Meaning (Informix 5.x)

1

o N o 0o b~ W

Set to W if any of 2 through 8 are set to W. If thisis blank, the oth-
er fields do not need to be checked.

Set to W if the database has a transaction log that makes transac-
tions available.

Set to W if the database is an ANSI database.

Set to W if the database server is an Informix On-Line engine.
Set to W if the database server stores FLOATs as DECIMALS.
Not used.

Not used.

Not used.

The settings for SQLAWARN for all other operations are:

Array Index Meaning

1

g b~ W DN

Set to W if any of 2 through 8 are set to W. If thisis blank, the oth-
er fields do not need to be checked.

Not applicable in Prolifics for Informix.
Set to W if an aggregate function encountersa NULL value.
Not applicable in Prolifics for Informix.

Set to W when acursor is declared for an UPDATE or DELETE state-
ment and the statement does not contain a WHERE clause.

Set to W if the Informix environment variable DBANSI WARN i S set
and the executed statement does not conform to ANSI SQL syntax.

Database Drivers: Panther 4.25

Error and Status Information

Array Index Meaning

7 Not used.
8 Not used.

Before using @nengwar ncode, you should verify these settings for your release
of Informix by consulting your Informix documentation.

You might wish to use an exit hook function to process warnings. An exit hook
functionisinstalled with DBMS ONEXI T. A sample exit hook function is shown
below.

proc check_status (stmt, engine, flag)

if @lnTretcode ==

{
i f @nengwarncode [1] == "W
if @nmengwarncode [3] == "W
nmsg ensg "A NULL val ue was found.”
if @mengwarncode [5] == "W
nmsg ensg "The operation did not use a WHERE cl ause.”
if @mengwarncode [6] == "W
nsg ensg "This does not conformto ANSI standards.”
}
}
return

Row Information

Prolificsinitializes the following global variables for row information:

@Inr owcount Count of the number of Informix rows affected by
an operation.
@inseri al Informix-generated value for a serial column.

Informix returns a count of the rows affected by an operation. Prolifics writes this
value to the global variable @inr owcount .

As explained on the manual page for @nr owcount , the value of @inr owcount
after a SQL SELECT isthe number of rows fetched to Prolifics variables. This
number isless than or equal to the total number of rows in the select set. The value
of @nr owcount after a SQL | NSERT, UPDATE, or DELETE is the total number of

Chapter 1 Database Driver for Informix 15

Using Stored Procedures

rows affected by the operation. Note that this variable is reset when another DBVS
statement is executed, including DBMS COVM T.

Thevalue of @nseri al isupdated when an application inserts arow into atable
with aserial column. Because this variable is cleared when a new DBMS statement
is executed, you must copy its value to another location if you wish to useitin
subsequent statements.

Using Stored Procedures

A stored procedure is a precompiled set of SQL statements that are recorded in the
database and executed by calling the procedure name. Since the SQL parsing and
syntax checking for a stored procedure are performed when the procedure is
created, executing a stored procedure is faster than executing the same group of
SQL statementsindividually. By passing parameters to and from the stored
procedure, the same procedure can be used with different values. In addition to
SQL statements, stored procedures can also contain control flow language, such as
i f statements, which gives greater control over the processing of the statements.

Database engines implement stored procedures very differently. If you are porting
your application from one database engine to another, you need to be aware of the
differencesin the engine implementation.

Executing Stored Procedures

Example

16

An application can execute a stored procedure with DBMS SQL and the engine's
command for execution, EXECUTE PROCEDURE. For example:

DBMS SQL EXECUTE PROCEDURE procedure-name

For example, updat e_t apes isastored procedure that changes the video tape
status to Owhenever avideo isrented.

create procedure update_tapes (parml int, parn2 int)
update tapes set status ='O
where title_id = parml and copy_num = parn®

end procedure

The following statement executes this stored procedure, updating the st at us
column of thet apes table using the onscreen values of thewidgetstit!le_i d and
copy_num

Database Drivers: Panther 4.25

Using Stored Procedures

DBMS SQL EXECUTE PROCEDURE update_t apes \
(:+title_id, :+copy_num

A DECLARE CURSOR statement can also execute a stored procedure. First, a cursor
is declared identifying the parameters. Then, the cursor is executed with a USI NG
clause that gets the onscreen values of thewidgetsti t1e_i d and copy_num

DBMS DECLARE x CURSOR FOR EXECUTE PROCEDURE updat e_t apes \
(::parnl, ::parnR)
DBMS W TH CURSOR x EXECUTE USING title_id, copy_num

Remember to use double colons (::) in aDECLARE CURSOR statement for cursor
parameters. If asingle colon or colon-plus were used, the data would be supplied
when the cursor was declared, not when it was executed. Refer to Chapter

NO TAG in the Developer’s Guide for more information.

Viewing SELECT Results

In order to return data from a stored procedure in Informix, you must include a
RETURN statement and a RETURNI NG clause when you create the stored procedure.
You can return multiple rows by including aRETURN W TH RESUME statement.
Also, your application must define positional aliases for the result columns using a
DBMS ALl AS statement. The order of the variables in this statement must match
the order of the variables in the RETURNI NG clause of the stored procedure.

This stored procedure, avai | _vi deo, selects the video titles that are available for
rental and returnsvaluesfortitle_i d, nane, and genr e_code to the applica-
tion.

CREATE PROCEDURE avail _video ()
RETURNI NG i nt eger, char(60), char(4);
DEFINE p_title_id integer;
DEFI NE p_nane char (60);
DEFI NE p_genre_code char(4);
DEFI NE vcount int;
LET vcount = 1;
FOREACH
SELECT titles.title_id, nane, genre_code
INTO p_title_id, p_nane, p_genre_code
FROM titles, tapes WHERE titles.title_id = tapes.title_id
AND t apes.status = "A’;
RETURN p_title_id, p_nanme, p_genre_code W TH RESUME;
LET vcount = vcount +1;
END FOREACH;
END PROCEDURE

-]

The Prolifics application screen contains three widgetsnamed ti t| e_i d, nane,
and genr e_code. When the application executes the following statements, the
screen displays the available videos.

Chapter 1 Database Driver for Informix 17

Using Transactions

proc get_video

DBMS ALIAS title_id, name, genre_code
DBMS SQL EXECUTE PROCEDURE avail _video ()
return

The next example, unpai d_or der s, usesthe st or es database and returns data
about unpaid orders to the application.

CREATE PROCEDURE unpai d_orders ()
RETURNI NG i nt eger, date, integer, char(10), date;

DEFI NE p_order_num i nt eger;

DEFI NE p_order_date date;

DEFI NE p_cust omer _num i nt eger;

DEFI NE p_po_num char (10);

DEFI NE p_shi p_date date;

DEFI NE | count int;

LET I count = 1;

FOREACH

SELECT order_num order_date, customer_num po_num ship_date

I NTO p_order_num p_order_date, p_custoner_num p_po_num
p_shi p_date

FROM i nf orm x. orders

VWHERE pai d_date is NULL

ORDER BY shi p_date

RETURN p_order_num p_order_date, p_custoner_num p_po_num
p_shi p_date W TH RESUME;

LET I count = |count +1;

END FOREACH;

END PROCEDURE

-

The application contains Prolifics variables named or der _num or der _dat e,
customer _num po_num and shi p_dat e. The procedure is executed using the
following statements. The order of the variablesin the DBMS ALI AS statement and
in the RETURNI NG clause of the procedure are the same.

proc unpaid

DBMS ALI AS order _num order_date, customer_num po_num \
shi p_date

DBMS SQL EXECUTE PROCEDURE unpai d_orders ()

return

Using Transactions

18

A transaction isaunit of work that must be totally completed or not completed at
al. Informix has one transaction for each connection. Therefore, in aProlifics
application, atransaction controls all statements executed with a single named
connection or the default connection.

Database Drivers: Panther 4.25

Using Transactions

The following events commit a transaction on Informix:

Q [Executing DBMS COWM T.

The following eventsroll back atransaction on Informix:

Q Executing DBMS ROLLBACK.

Q Closing the transaction’s connection before the transaction is committed.

Informix keeps arecord of the database modifications performed in each
transaction in atransaction log. It uses this log to undo the database changes when
aROLLBACK command is executed. However, Informix databases do not
automatically have atransaction log. If transaction processing is not available, see
your database administrator to activate this feature.

As noted earlier in the document, the behavior of named cursors differs between
Prolifics and Informix when transactions are terminated. A named cursor has
actually two representations. One is a Prolifics structure and the other is an
Informix cursor in the database. The two representations have the same lifetime
(declaring the Prolifics cursor creates the Informix cursor, closing the Prolifics
cursor closes the Informix cursor) except when atransaction is terminated. When
Informix commits or rolls back atransaction, it closes all Informix cursors.
Therefore, if an application has a select set pending when it begins atransaction, it
cannot fetch the remaining rows after executing a rollback or commit because
Informix has closed its cursors and the positioning information is no longer
available. To begin the fetch again, the application must simply re-execute the
cursor using DBMS EXECUTE; it is not necessary to re-declare the Prolifics cursor.

If your application needs to keep the positioning information, you can use the
continuation filein Prolifics. Before issuing the select statement, set up the
continuation file. Then, fetch al the rows to the continuation file before continuing
with the application. For example:

proc getrows

Set up a continuation file. Use WTH CURSOR i f needed.
DBMS STORE FI LE

#Execute the sel ect.

DBMS SQL SELECT ...

#Fetch all the rows to the continuation file.

DBMS CONTI NUE_BOTTOM

#Reposition to the top of the select.

DBMS CONTI NUE_TOP

return

Transaction Control on a Single Connection

After an application declares a connection, an application can begin atransaction
on the default connection or on any declared connection.

Chapter 1 Database Driver for Informix 19

Using Transactions

Example

20

Informix supports the following transaction commands:
Q Begin atransaction on a default or named connection.
DBMS [W TH CONNECTI ON connection] BEG N
O Commit the transaction on a default or named connection.
DBMS [W TH CONNECTI ON connection] COW T
Q Rallback to the beginning of the transaction on a default or named connection.

DBMS [W TH CONNECTI ON connection] ROLLBACK

The following example contains a transaction on the default connection with an
error handler.

Call the transaction handler and pass it the nane
of the subroutine containing the transacti on commands.

call tran_handle "new_ title()”

proc tran_handl e (subroutine)
{
Declare a variable jpl_retcode and
set it to call the subroutine.
vars jpl _retcode
jpl _retcode = :subroutine

Check the value of jpl _retcode. If it is 0, all statenents

in the subroutine executed successfully and the transaction
was conmitted. If it is 1, the error handler aborted the

subroutine. If it is -1, Prolifics aborted the subroutine.

Execute a ROLLBACK for all non-zero return codes.

if jpl_retcode == 0

nsg ensg " Transacti on succeeded.”

}
el se
{
nsg ensg "Aborting transaction.”
DBMS ROLLBACK
}
}
proc new title
DBVS BEG N

DBM5S SQL INSERT INTO titles VALUES \
(:+title_id, :+nane, :+genre_code, \
c+dir_last_name, :+dir_first_nane, :+filmmnutes, \

Database Drivers: Panther 4.25

Transaction Manager Processing

:+rating_code, :+release_date, :+pricecat)
DBMS SQL I NSERT INTO title_dscr VALUES \
(:+title_id, :+line_no, :+dscr_text)
DBMS SQL | NSERT | NTO t apes VALUES \
(:+title_id, :+copy_num :+status, :+tinmes_rented)
DBMS COM T
return O

The proceduret r an_handl e isageneric handler for the application’s transac-
tions. The procedurenew_t i t | e contains the transaction statements. This method
reduces the amount of error checking code.

The application executes the transaction by executing
call tran_handle "new_title()”

The proceduret r an_handl e receives the argument “new_title” and writesit to
thevariable subr out i ne. It declaresa JPL variable, j pl _r et code. After
performing colon processing, : subr out i ne isreplaced with its value,
new_titl e, and JPL callsthe procedure. The procedurenew_ti t | e beginsthe
transaction, performs three inserts, and commits the transaction.

If new_titl e executes without any errors, it returns O to the variablej pl _r et -
code inthe calling proceduret r an_handl e. JPL then evaluatesthei f statement,
displays a success message, and exits.

If however an error occurs while executing new_ti t | e, Prolifics callsthe
application’s error handler. The error handler should display any error messages
and return the abort code, 1.

For example, assumethefirst | NSERT innew_ti t | e executes successfully but the
second | NSERT fails. In this case, Prolifics calls the error handler to display an
error message. When the error handler returns the abort code 1, Prolifics aborts the
procedure new_t i t | e (therefore, the third | NSERT is not attempted). Prolifics
returns1toj pl _ret code inthecaling proceduret r an_handl e. JPL evaluates
thei f statement, displays a message, and executes arollback. The rollback undoes
theinsert tothetableti t 1 es.

Transaction Manager Processing

Transaction Model for Informix

Each database driver contains a standard transaction model for use with the
transaction manager. The transaction model is a C program which contains the

Chapter 1 Database Driver for Informix 21

Informix-Specific Commands

main processing for each of the transaction manager commands. You can edit this
program; however, be aware that the transaction model is subject to change with
each release. For Informix, the name of the standard transaction model is
tmnfl c.

SAVE Commands

If you specify a SAVE command with atable view parameter, it is called a partial
command. A partial command is not applied to the entire transaction tree. In the
standard transaction models, partial SAVE commands do not commit the database
transaction. In order to save those changes, you must do an explicit DBMS COWM T.
Otherwise, those changes could be rolled back if the database engine performs an
automatic rollback when the database connection is closed.

Informix-Specific Commands

Using Cursors

Prolifics for Informix provides commands for Informix-specific features. This
section contains a reference page for each command. If you are using multiple
engines or are porting an application to or from another engine, please note that
these commands may work differently or may not be supported on some engines.

SET HOLD Control behavior of Informix cursorsfor SE-
LECT statements.
SET HOLD DEFAULT Set connection behavior for Informix cursors

when executing SELECT statements.

Using Scrolling

22

BUFFER_DEFAULT Set buffer size for scrolling for entire ap-
plication.
SET_BUFFER Control availability of Informix-based scroll-

ing for DBMS CONTI NUE_BOTTOM DBMS
CONTI NUE_TOPR, DBVMS CONTI NUE_UP.

Database Drivers: Panther 4.25

Informix-Specific Commands

Using Transactions

BEG N Begin atransaction.
CcCoOwWm T Commit atransaction.
ROLLBACK Rollback atransaction.

Chapter 1 Database Driver for Informix 23

Informix-Specific Commands

BEGIN

Start a transaction

DBMS [W TH CONNECTI ON connection-name] BEG N

W TH CONNECTI ON
connection-name

Example

See Also

24

Specify the connection for this command. Because Informix does not support
multiple connections, the W TH CONNECTI ON clause is necessary only in
applications using more than one engine.

A transaction isalogical unit of work on a database. In Informix, transaction
behavior differsfor ANSI and non-ANSI databases.

For non-ANSI Informix databases, atransaction is contained within DBMS BEG N
and DBMS COWMM T statements. DBMS BEG N defines the start of atransaction.
After atransaction is begun, changes to the database are not committed until a
DBMs COMM T is executed. Changes are undone by executing DBMS ROLLBACK.
Before beginning a new transaction, the application should COMM T or ROLLBACK
any pending work. Otherwise, you might receive an error.

For ANSI Informix databases, all statements up to aDBMS COWM T are contained
within atransaction. DBMS BEG N has no effect. Changes can be undone by
executing DBM5S ROLLBACK.

Refer to the example in Using Transactions on page 18.

Using Transactions on page 18
COW T

ROLLBACK

Database Drivers: Panther 4.25

Informix-Specific Commands

BUFFER_DEFAULT

Specifies setting for engine-based non-sequential scrolling

DBMS [W TH CONNECTI ON connection-name] BUFFER_DEFAULT value

Description

See Also

Disable Informix-based scrolling on all cursors on the specified connection.

Enable Informix-based scrolling on al cursors on the specified connection.

Informix supports sequential and scroll cursors. By default, Prolifics creates Infor-
mix sequential cursors.

An Informix sequential cursor can fetch only the next row in sequence from the
select set. The sequential cursor can read through the active set once; to reread the
rows, the application must re-execute the cursor.

An Informix scroll cursor alows an application to fetch rows in any sequence. The
scroll cursor can re-fetch rows without re-executing the cursor.

A Prolifics application can use either Prolifics-based or Informix-based scrolling to
execute DBMS CONTI NUE, DBMS CONTI NUE_TOP, DBMVS CONTI NUE_UP, and DBMS
CONTI NUE_BOTTOM

To enable Prolifics-based scrolling an application executes DBMS STORE FI LE for
a specified cursor. To enable Informix-based scrolling an application executes
DBMs SET_BUFFER for a specified cursor or DBMS BUFFER_DEFAULT for all
cursors on an Informix connection.

To support Informix—based scrolling, Informix buffers the select rowsin a
temporary table. You might want to change the cursor’s isolation level to prevent
other users from modifying the rows when using Informix—based scrolling. See
your Informix documentation for more information.

SET_BUFFER

Chapter 1 Database Driver for Informix 25

Informix-Specific Commands

COMMIT

Commit a transaction

DBMS [W TH CONNECTI ON connection-name] COW T

W TH CONNECTI ON
connection-name

Description

Example

See Also

26

Specify the connection for this command. This clause is necessary only in
applications using more than one engine because Informix does not support
multiple connections.

Use this command to commit a pending transaction. Committing a transaction
saves al the work since the last COMM T. Changes made by the transaction become
visible to other users. If the transaction is terminated by ROLLBACK, the updates are
not committed, and the database is restored to its state prior to the start of the trans-
action.

After atransaction is terminated, the engine automatically begins a new transac-
tion.

Before beginning a new transaction, the application should COMM T or ROLLBACK
any pending transactions. Otherwise, you will receive an error.

This command is available depending on the setting of various parametersin your

environment. Refer to the section on transactions and your documentation for
more information.

Refer to the example in Using Transactions on page 18.

Using Transactions on page 18
BEG N

ROLLBACK

Database Drivers: Panther 4.25

Informix-Specific Commands

ROLLBACK

Roll back a transaction

DBMS [W TH CONNECTI ON connection-name] ROLLBACK

W TH CONNECTI ON This clauseis necessary only in applications using more than one engine because
connection-name Informix does not support multiple connections.

Description Use this command to rollback a transaction and restore the database to its state
prior to the start of the transaction.

Example Refer to the example in Using Transactions on page 18.

If astatement in atransaction fails, an application must attempt to reissue the
statement successfully or elseroll back the transaction. If an application cannot
complete atransaction, it should roll back the transaction. If it does not, it might
receive an error when it starts the next transaction.

Prolifics's database driver for Informix issuesaDBMS ROLLBACK before closing a
connection.

See Also Using Transactions on page 18
BEGA N

cow T

Chapter 1 Database Driver for Informix 27

Informix-Specific Commands

SET_BUFFER

Use engine-based scrolling

DBMS [W TH CURSOR cursor-name | SET_BUFFER 1

DBMS [W TH CURSCOR cursor-name] SET_BUFFER 0

W TH CURSCR
cursor-name

Description

28

Specify a named cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

There are two methods of using the non-sequential scrolling commands DBVS
CONTI NUE_BOTTOM DBMS CONTI NUE_TOP, and DBMS CONTI NUE_UP. In one
method, an application uses Prolifics-based scrolling by setting up a continuation
filewith DBMS STORE FI LE. In the other method, an application uses Informix-
based scrolling by setting aflag for a cursor with DBMS SET_BUFFER.

By default, Prolifics declares Informix cursors without sequential scrolling. Use
this command to allow a SELECT cursor to use |nformix-based scrolling.

The argument for this command sets the availability of the scrolling. To turn on
Informix-based scrolling, use this command:

DBMS [W TH CURSCR cursor-name] SET_BUFFER 1
To turn off Informix-based scrolling, use this command:
DBMS [W TH CURSCR cursor-name] SET_BUFFER O

If the W TH CURSOR clauseis used, Prolifics sets the flag for the named cursor. If
the W TH CURSOR clause is not used, Prolifics sets the flag for the default SELECT
CUrsor.

Note the following restrictions:

Q When Informix-based scrolling is used, Informix prohibits the cursor from
using some features, such as SELECT FOR UPDATE.

Q Only afew engines support native scrolling. Therefore, this command might

not be supported with other engines. Prolifics-based scrolling is supported on
all engineswith DBM5 STORE FI LE.

Database Drivers: Panther 4.25

Informix-Specific Commands

O [Each DBMS CONTI NUE_BOTTOM DBMS CONTI NUE_TOP, and DBMVS
CONTI NUE_UP requires atrip to the server. With Prolifics-based scrolling, the
rows are fetched once. When the application attempts to view rows already
fetched, Prolifics reads them from the continuation file rather than requesting
them from the server.

Example DBMS DECLARE t_cursor CURSOR FOR SELECT * FROM titles
DBMS W TH CURSOR t _cursor SET_BUFFER 1

proc scroll _up

DBVMS W TH CURSOR t _cursor CONTI NUE_UP
return

proc scroll _down

DBMS W TH CURSCR t _cursor CONTI NUE_DOWN
return

See Also CONTI NUE_BOTTOM
CONTI NUE_TOP
CONTI NUE_UP

STORE

Chapter 1 Database Driver for Informix 29

Informix-Specific Commands

SET HOLD

Set the HOLD behavior for a cursor

DBMS [W TH CURSOR cursor-name] SET HOLD { OFF | ON }

W TH CURSCR
cursor-name

Description

Example

30

Specify a named cursor for the command. If this clauseis not included, Prolifics
issues the command on the default cursor of the default connection.

Non-hold cursorsin Informix are closed at the end of atransaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, | NSERT and DELETE
statements.

In the current release, Prolifics for Informix declares al cursorsto be hold cursors.

If DBMS SET HOLD OFF isissued for the default SELECT cursor, all subsequent
SQL SELECT statements are on non-hold cursors. Therefore, after atransaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD ON.

If DBMS SET HOLD OFF isissued for anamed cursor, it is anon-hold cursor
throughout all subsequent executions and redeclarations of the cursor. To reset the
default behavior, issue DBM5 W TH CURSCOR cursor-name SET HOLD ON.

proc select_titles
DBMS DECLARE t _cursor CURSOR FOR \
SELECT title_id, name, genre_code FROMtitles
DBVMS W TH CURSOR t_cursor SET HOLD OFF
DBVMS W TH CURSOR t _cursor EXECUTE

Database Drivers: Panther 4.25

Informix-Specific Commands

SET HOLD_DEFAULT

Set the connection’s default behavior for HOLD cursors

DBVS SET HOLD DEFAULT { OFF | ON}

Description

Example

Non-hold cursorsin Informix are closed at the end of atransaction, even if the cur-
sor only executed SELECT statements. Hold cursors remain open and keep their
position even if other cursors execute and commit UPDATE, | NSERT and DELETE
statements.

In the current release, Prolifics for Informix declares all connections to create
SELECT cursors as hold cursors.

If DBMS SET HOLD DEFAULT OFF isissued for a connection, all subsequent SQL
SELECT statements are on non-hold cursors. Therefore, after atransaction is
committed or rolled back, positioning information for a select set is no longer
available, and the SELECT statement needs to be re-executed. To reset the default
behavior, issue DBMS SET HOLD DEFAULT ON.

proc connect_nonhol d
DBMS DECLARE non_conn CONNECTI ON FOR \
DATABASE " vi deobi z”
DBMS W TH CONNECTI ON non_conn SET HOLD DEFAULT COFF
DBVMS CONNECTI ON non_conn
DBMS SQL SELECT title_id, nane, genre_code FROMtitles

Chapter 1 Database Driver for Informix 31

Command Directory for Informix

Command Directory for Informix

32

Table 3.

Thefollowing table lists all commands available in Prolifics's database driver for
Informix. Commands available to all database drivers are described in the

Programming Guide.

Commands for Informix

Command Name Description Documentation
Location
ALl AS Name aProlificsvariableas Programming
the destination of aselected Guide
column or aggregate function
BEG N Begin atransaction page 24
BI NARY Create a Prolificsvariablefor page 810
fetching binary values
BUFFER_DEFAULT Set engine-based scrolling page 25
CATQUERY Redirect select resultsto a
file or aProlifics variable
CLOSE_ALL_CONNECTI ONS Close all connections on all
engines
CLOSE CONNECTI ON Close anamed connection
CLOSE CURSCR Close anamed cursor
COLUWN_NANMES Return the column name, not
column data, to a Prolifics
variable
COW T Commit atransaction page 26
CONNECTI ON Set a default connection and
engine for the application
CONTI NUE Fetch the next screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_BOTTOM Fetch the last screenful of Database Guide &
rows from a select set Database Drivers
CONTI NUE_DOWN Fetch the next screenful of Database Guide &

rows from a select set

Database Drivers

Database Drivers: Panther 4.25

Command Directory for Informix

Command Name

Description Documentation
Location

CONTI NUE_TOP

CONTI NUE_UP

DECLARE CONNECTI ON

DECLARE CURSOR

ENG NE

EXECUTE
FORVAT

OCCUR

ONENTRY

ONERROR

ONEXI T

ROLLBACK
SET_BUFFER

SET HOLD

Fetch the first screenful of Database Guide &

rows from a select set Database Drivers
Fetch the previous screenful Database Guide &
of rows from a select set Database Drivers
Declare anamed connection Database Guide &
to an engine Database Drivers
Declare a named cursor Database Guide &

Database Drivers

Set the default engine for the
application

Execute a named cursor

Format the results of a CAT-
QUERY

Set the number of rows for
Prolificsto fetch to an array
and set the occurrence where
Prolifics should begin writing
result rows

Install aJPL procedure or C
function that Prolifics will
call before executing a DBMVS

statement

Install aJPL procedureor C Database Guide &
function that Prolifics will Database Drivers
call when a DBMVS statement

fails

Install a JPL procedure or C
function that Prolifics will
call after executing a DBVS
Statement

Roll back atransaction page 27

Set engine-based scrolling page 28
for acursor

Set behavior for SELECT cur- page 30
sors

Chapter 1 Database Driver for Informix

33

Command Directory for Informix

34

Command Name

Description

Documentation
Location

SET HOLD DEFAULT

START

STORE

UNI QUE

W TH CONNECTI ON

W TH CURSCR

W TH ENG NE

Set SELECT cursor behavior page 31

for the connection

Set the first row for Prolifics
to return from a select set

Store the rows of a select set
in atemporary file so the ap-
plication can scroll through

the rows

Suppress repeating valuesin

aselected column

Specify the connection to use

for acommand

Specify the cursor to use for

acommand

Specify the engine to use for

acommand

Database Drivers: Panther 4.25

