
JAM 7

Configuration Guide

August 1995

This software manual is documentation for JAM 7. It is as accurate as possible at this time; however, both
this manual and JAM itself are subject to revision.

JAM is a registered trademark of JYACC, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

VMS, VT100, and VT220 are trademarks of the Digital Equipment Corporation.

DynaText is a trademark of Electronic Book Technologies.

HP is a trademark of Hewlett-Packard Company.

INFORMIX is a registered trademark of Informix Software, Inc.

IBM and Presentation Manager are registered trademarks of International Business Machines Corporation.

SYBASE is a registered trademark of Sybase, Inc.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation.

Sun is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267–7722

 1995 JYACC, Inc.
All rights reserved.
Printed in USA.

i

Table of Contents
About this Guide vii.

Organization of this Guide vii.
Conventions viii.

Text Conventions viii.
Keyboard Conventions ix.

JAM Documentation ix.

Chapter 1 Introduction 1.
Configuring JAM 1.
Configuration Files 3.
Modifying JAM Configuration Files 3.
Recommendations 4.

Chapter 2 Setting Up the JAM Environment 5.
Setup File 6.

Types of Setup Files 6.
JAM Initialization 8.

Setup File Syntax 9.
Creating or Modifying a Setup File 10.
Converting Setup Files to Binary 10.

Chapter 3 Configuration Variables 13.
Environment Variables 14.
Pointers to Required Files 15.
Pointers to Other Setup Files 16.
Pointers to Application-Specific Files and Information 16.

ii JAM 7.0 Configuration Guide

Chapter 4 Setup Variables 19.
Changing the Default Information/Behavior 20.
Defining Setup Variables 20.

Assigning Display Attributes 21.
Variables for Controlling Behavior 21.

Cursor Appearance and Movement 22.
Mouse Cursor Appearance and Behavior (JAM Cursor Only) 24.
Text Selection Appearance 25.
Function Keys 25.
Toolbars 26.
Messages 26.
Shifting and Scrolling 29.
Character-Mode Label Text Display 30.
Character-Mode Menus 31.
Character-Mode Screens 33.
Default Filenames and Extensions 33.
Display Attributes for Grouped Items 34.
Print Capabilities 35.
Miscellaneous Setups 35.

Sample Setup File 39.

Chapter 5 Message Files 41.
Message Files: Convenient, Flexible and Portable 42.

Advantages of a Message File 43.
Recommendations when Changing and Creating Messages 43.

Message File Syntax 44.
Defining Multiple User Sections 45.

Modifying the Provided Message File 47.
Creating Application Messages 48.
Converting Message Files to Binary 49.
Creating a Header File of User Messages 53.
Display and Behavior Options in Messages 57.
Customizing Date and Time Formats 60.

Date/Time Defaults 61.
Date/Time Tokens 62.
Creating Date and Time Defaults 63.
Literal Dates in Calculations 66.

Numeric Formats 66.
Creating a Default Numeric Format 68.
Decimal Symbols 69.

Table of Contents iii

Customizing Push Button Labels for Message Boxes 70.
Warnings for Character JAM Message Windows 70.
Setting Yes/No Values 71.
Using Alternate Message Files 71.

Chapter 6 Key Translation File 73.
The Role of the Key Translation File 74.
Viewing Key Sequences 75.
Key Translation File Syntax 77.

Key Mnemonics and Hexadecimal Values 78.
ASCII Character Mnemonics and Hex Values 83.

Creating and Modifying a Key Translation File 83.
Customizing Key Mapping 84.
Using International and Composed Characters 85.

Converting a Key Translation File 86.
Using Alternate Key Translation Files 87.

Chapter 7 Video File 89.
The Role of the Video File 90.

The Basic Video File 90.
Processing Keywords — Automatic Parameter Sequencing 91.

Video File Syntax 92.
Inputting Control Characters 93.
Parameters for Keyword Sequences 93.

Creating and Modifying a Video File 101.
For a New Terminal 102.
Enhancing a Basic Video File 103.

Converting a Video File to Binary 104.
Video File Keywords 105.

Basic Capabilities 109.
Screen and Line Erasure 112.
Cursor Position 112.
Cursor Appearance 114.
Display Attributes 115.
Status Line 124.
Graphics and International Character Support 125.
Borders and Line Drawing 128.
Indicators 130.
Drivers 132.
Miscellaneous 132.

Sample Video Files 133.

iv JAM 7.0 Configuration Guide

Chapter 8 Configuration Map File 137.
Defining Colors 138.

Color Aliases 138.

Color Schemes 142.

Defining Line and Box Styles 145.

Character Mode 145.

GUI Styles 146.

Defining Display Fonts 147.

Point Sizes 147.

Default Font 147.

Default Font Size 148.

Font Aliases 148.

Converting Configuration Map Files to Binary 150.

Sample Configuration Map File 151.

Chapter 9 Setting Windows Defaults 153.
Initialization Files 153.

Filenames 154.

Syntax of Initialization Files 154.

Colors 155.

Initialization Options 156.

Status Line Appearance 159.

Help Behavior 159.

DDE 160.

Windows Control Panel 160.

Sample JAM.INI File 161.

Chapter 10 Setting Motif Defaults 169.
Resource Files 169.

Resource Filenames 169.

Structure of Resource Files 170.

Location of Resource Files 170.

Colors 171.

Setting Palette Colors 171.

Colors Beyond the JAM Palette 172.

Overriding Colors Set within JAM 172.

Motif Colors 173.

Table of Contents v

Resource Options 174.
Behavioral Resources 174.
Screen Control Resource 177.
Restricted Resources 177.
Global Resource and Command Line Options 177.
Widget Hierarchy 178.
Sample Motif Resource File for JAM 184.

Index 189.

vii

About this Guide
The Configuration Guide describes the files that are the source of JAM’s hardware
and software flexibility. Most are found in the JAM configuration (config)
directory. The guide also provides instructions on how to modify, create, and
compile configuration files to customize JAM for your specific requirements.

You should read this guide if:

� You just installed JAM and want more information about configuring
JAM—that is, ascertain the location of the required files and/or directories that
are installed and used with JAM.

� You want to set new standards or reset defaults for the behavior of JAM or
your application—all setup options are described in this guide.

� You want to adapt or translate the content and style of messages as well as
create your own user message files for your application.

� You want to change date/time and currency default formats to comply with
individual specifications or international (language-specific) requirements.

� Your JAM application is ready for distribution and you want more information
about specifying files and/or directories that JAM will need.

Organization of this Guide
This guide is organized into ten chapters. The first three chapters provide general
information about JAM configuration. The next seven chapters discuss the various
configuration files:

Conventions

viii JAM 7.0 Configuration Guide

� Setup file

� Message file

� Key file

� Video file

� Configuration map file

� Windows initialization file

� Motif resource file

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you’re instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

expression

KEYWORDS

numeric_value

[option_list]

{x | y}

x ...

JAM Documentation

About this Guide ix

Italicized text is used:

� To indicate defined terms when used for the first time in the guide.

� Occasionally for emphasis.

Keyboard Conventions
JAM logical keys are indicated with uppercase characters.

Physical keys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First — Consists of three sections:

• What’s New in JAM — Briefly describes what’s new in JAM 7.

• Installation Guide — Describes how to install JAM on your specific
platform and environment.

• License Manager Installation — Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started — Contains useful information for orienting you to JAM. Includes
a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guide — Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen editor, screen wizard, menu
bar editor, and styles editor. The Editors Guide is also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor.

Application Development Guide — Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repository, hook functions, and menu bars,
as well as sections on the SQL executor, SQL generator and the transaction
manager.

new terms

XMIT

Alt+A

JAM Documentation

x JAM 7.0 Configuration Guide

Language Reference — Describes JPL, JAM’s proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti-
cally.

Database Guide —Instructions for using JDB, JYACC’s prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver.

Configuration Guide — Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys
and input/output. Also includes information on GUI resource and initialization
files.

Master Index and Glossary — Provides an index into the entire documentation set
and a dictionary of terms used in the documentation set. This is in addition to the
indexes in the individual volumes.

Upgrade Guide — Online only. Information for upgrading from JAM 5.

JAM’s documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynaTextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
DynaText’s read-only browser from the command line or by clicking on the
DynaText icon. For instructions on using DynaText, request Help while you have a
browser window open.

The following information is also provided with your JAM installation:

� Database Driver Notes — JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM’s proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help — The Editors Guide is provided in online form through the
DynaText browser on GUI platforms. It can be accessed by choosing Help
from the screen editor. For instructions on using DynaText, request Help while
you have a browser window open.

� Online README file.

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Online
Documentation

Collateral
Documentation

Additional Help

1

Introduction
JAM is designed to be terminal- and system-independent and, therefore, is
adaptable and portable across terminals, platforms, databases, and GUI environ-
ments. For the most part, once you provide the basic configuration information,
JAM and your JAM applications are ready to run.

This introduction includes:

� The meaning of configuring JAM.

� A brief description of configuration files.

� A general method for modifying configuration files—covered in detail in this
guide.

� Recommendations for using the contents of the JAM config directory.

Configuring JAM

When you are ready to configure JAM or your JAM application, you must supply
the necessary information so that JAM runs correctly on your particular terminal.
The installation notes provided with your installation walk you through the actual
configuration. In brief, you provide:

� A value for the SMTERM variable. The value of SMTERM is the name (mnemon-
ic) of the terminal-type you are supporting or emulating if it is different from
your system TERM setting.

11

JAM requirements

Configuring JAM

2 JAM 7.0 Configuration Guide

JAM uses the SMTERM or TERM setting to identify

• The name of the binary video file (*vid.bin) that tells JAM how to
drive the display.

• The name of the binary key translation file (*keys.bin) that tells JAM
how to map the character sequences produced by the keyboard to JAM
logical keys.

You must have a key translation file and a video file for each type of
terminal you support.

� The location and name of the binary setup file (smvars.bin). The smvars
file can tell JAM where to find its binary message file (msgfile.bin) and
configuration map file (*cmap.bin).

Table 1 lists the JYACC-distributed ASCII files that are used to configure JAM:
the file’s purpose, the utility you can use to modify or create the file, the
conversion utility you use to convert it to a JAM-usable binary file, and the chapter
or chapters containing the details.

Table 1. Files used by JAM

ASCII file Convert via Binary file Create with Refer to Purpose

smvars var2bin smvars.bin text editor Chapter 3
Chapter 4

Contains configuration and setup
variables, and provides pointers to
JAM-required files

msgfile msg2bin msgfile.bin text editor Chapter 5 Contains all message text used by
JAM as well as date/time and cur-
rency format standards

*keys key2bin *keys.bin text editor Chapter 6 Describes key mapping

*vid vid2bin *vid.bin text editor or
term2vid

Chapter 7 Describes terminal-specific capabil-
ities and attributes

*map cmap2bin *map.bin text editor Chapter 8 Application color scheme, screen
editor color scheme, color aliases,
line style aliases

JAM is compatible with any ANSI terminal, and JYACC provides many key
translation and video files (in the config directory) for specific vendor terminals.
In the unlikely event that none of the distributed key translation and video files
work with your terminal, you can build files from scratch or modify existing ones.

Configuration Files

31 IntroductionChapter

Configuration Files

JAM applications depend on a number of environment and/or setup variables. The
environment variables point to files and directories that provide the necessary
information to JAM about the layout of your system and the terminal you are
using. The setup files can also serve as a repository for the variables that control
many operating parameters in the JAM runtime system and utilities. You can
establish new standards or defaults by changing these variables and thereby control
certain types of behavior across JAM and your applications. In addition, by using
specific library functions with these variables in your code, you can manipulate
behavior on an “as needed” basis.

You can adapt and translate the content and style of the messages in the JAM
message file to comply with local customs and language, as well as define new
default values for date/time and currency formats. These changes can be made to
accommodate non-English-speaking JAM developers or to adapt your JAM
applications for international distribution.

JAM is distributed with key translation files (paired with video files) that are
designed to map most vendors’ terminal keyboards to JAM’s logical keys. If one of
these files does not define your keyboard, you can customize a key translation file
for your particular needs and terminal keyboard.

JAM is distributed with video files (paired with key translation files) to support
most vendors’ terminals. If your particular terminal is not among those installed in
the config directory, you can modify one of them to support your terminal.

JAM is distributed with configuration map files that define color schemes for
screens and for each widget type. They also define color, line style, and box style
aliases. You can modify these files to define your own color schemes and to allow
your color and line style assignments to port across environments.

Modifying JAM Configuration Files

For the most part, you can easily modify the files provided with JAM. The JAM
configuration directory (config) includes ASCII and binary files which you can
use to adapt JAM (refer to Table 1) to your needs.

1. Access (or create) the ASCII file using a text editor.

2. Make the desired changes and save the file.

3. Convert the ASCII file to binary format with the appropriate conversion
utility, located in the JAM util directory.

setting up the
environment and
controlling JAM and
application behavior

JAM message file

key translation files

video files

configuration map files

Recommendations

4 JAM 7.0 Configuration Guide

4. Make sure that the appropriate configuration variables point to the binary file,
since it is the binary file that JAM uses.

Then JAM and your JAM applications are ready to run.

Recommendations

To ensure that any changes you make to configuration files survive later releases of
JAM, you should:

� Create a working directory on your system that essentially emulates or mirrors
the JAM directory structure.

� Copy the desired ASCII and binary (*.bin) files from the config directory
into your working config directory.

� If configuration files require modifications, alter the copies of the files—setup,
message, key translation, video, and configuration map files—to suit your
particular development or application requirements.

� Maintain the ASCII version of your application user messages in a file
separate from the JAM message file (msgfile). You can combine the
messages in a single binary file by using the msg2bin utility with the –o
option.

5

Setting Up the JAM
Environment

This chapter describes:

� The role of setup files and how they are used to define your development
environment as well as your application environment (page 6).

� How to create and modify a setup smvars file (page 10) and convert it to
binary format with the var2bin utility (page 10).

Refer to Chapter 3 for detailed descriptions of environment and configuration
variables and Chapter 4 for detailed descriptions of setup variables.

To make the most of this chapter, you should be somewhat familiar with the
operating system you are using: for example, how to set environment variables. If
you are a:

� DOS user, you should be familiar with the command set and the autoex-
ec.bat file.

� UNIX user, you should be familiar with the command setenv (or set and
export if you are a Bourne shell user) and shell files like .login , .cshrc or
.profile .

� New JAM user, refer to the installation notes distributed with JAM. The notes
provide operating system-specific examples for setting environment variables

22

Setup File

6 JAM 7.0 Configuration Guide

needed to run JAM. It also lists and describes the contents of all the JAM
subdirectories.

Consult your operating system documentation for specific information on these
subjects.

If you are a user of a non-UNIX, non-DOS operating system, see your installation
notes for system-specific directions.

Setup File
JAM supports a number of variables that let you store and control many operating
parameters in the JAM runtime system and utilities. To configure JAM to the
structure and layout of your system, JAM is installed with a single setup
source—the smvars file in the config directory. This file contains two types of
variables: configuration variables and setup variables.

Configuration Variables
Configuration variables, in general, serve as pointers to:

� Files that are required by JAM: key translation, message, and video files for
your particular terminal.

� Alternate setup files that contain additional setup variables.

� Application-specific files and information: repository, screen libraries, LDB
initialization files, directories to JAM files.

Setup Variables
You can also store application setup variables in the smvars file. These variables
control JAM’s behavior as well as your application’s behavior. JAM is installed
with default settings for all setup variables. However, by adding the setup variables
to a setup file, you can establish new defaults that control:

� Message display and behavior.

� The text editor that can be invoked from the JPL procedure window.

� Cursor and key behavior during data entry and on screens in general.

� JAM keys that trigger field validation.

Types of Setup Files
There are two files in which you can place configuration and setup variables:

� In the binary file named by the environment variable SMVARS.

Setup File

72 Setting Up the JAM EnvironmentChapter

Note: If your operating system does not support an environment, you can
hard-code the location of the binary file.

JAM is installed with an ASCII smvars file and its binary counterpart in the
config directory. It contains multiple SMKEY and SMVIDEO entries, which
point to terminal-specific key translation and video files.

� In the binary file named by the SMSETUP variable, which can be defined in the
either the SMVARS file or in the system environment. This file can be
terminal-specific, and can, therefore, include settings belonging to an
individual or project.

/*smvars*/
SMKEY=(vt100)$SMBASE/config/vt100keys.bin
SMKEY=(vt950)$SMBASE/config/vtkey.bin
SMMSGS=$SMBASE/config/msgfile.bin
SMVIDEO=$SMBASE/config/vt100vid.bin
SMSETUP=(vt100) vtsetup.bin
...

SMVARS=/usr/local/smvars.bin
SMTERM=vt100

/*vtsetup*/
DW_OPTIONS=DW_OFF
EXPHIDE_OPTION=ON_EXPHIDE
...

Figure 1. Via the environment variable SMTERM, JAM can determine which files to use as
well as what setup file contains terminal-specific information.

All configuration and setup variables (with the exception of SMVARS) can occur in
either file. SMVARS itself cannot be put in a setup file. If a variable occurs in both,
the setting in the SMSETUP file takes precedence.

In addition, configuration and setup variables can be specified directly in the
system environment, which takes precedence over settings defined in either of the
setup files.

Note: You can also place certain configuration variables in Windows initialization
files. Any setting established in the initialization file override duplicate settings in
SMVARS and SMSETUP files. Refer to Chapter 9 of this guide for more information
on setting variables in initialization files.

order of precedence

Setup File

8 JAM 7.0 Configuration Guide

JAM Initialization

Application programs initialize JAM by calling sm_initcrt . This routine is
executed before any screens are displayed, and before input is accepted from the
keyboard. It must precede most library function calls. Exceptions are calls that
install memory-resident message, key translation, and video files, or which set
options.

In general, sm_initcrt (initialization of the display and JAM data structures)
proceeds as follows:

1. Calls an optional user-supplied initialization routine, which can initialize the
character string sm_term . If sm_term contains the terminal type,
sm_initcrt proceeds to Step 3.

2. Determines the terminal type via the environment variable SMTERM.

If the terminal variable is not found in the environment, it reads the setup file
defined by the environment variable SMVARS for the SMTERM variable. If
SMTERM is not defined, the system TERM variable is used.

If neither terminal variable is found, JAM prompts for the terminal type. If it is
not provided, initialization is terminated.

3. Processes the files named by the SMVARS and/or SMSETUP environment
variables.

4. Reads the binary message file as defined by the SMMSGS variable.

If the SMMSGS file is not found, JAM aborts initialization. Error messages
encountered prior to loading the JAM message file are hard-coded. Afterward,
all error messages are taken from the message file.

5. Seeks and reads the binary video and keyboard files. These files can be
defined in SMVARS, in SMSETUP, or in the system environment.

If JAM cannot determine which files to use, JAM prompts for a terminal type,
and JAM retries the entire sequence.

6. sm_initcrt initializes the operating system’s terminal channel. It is set to
“no echo” and non-buffered input, if appropriate.

7. Initializes the operating system display (using the initialization string found in
the video file) and key translation files.

initialization errors in
file I/O are reported
using the C library
function errors
(system-dependent).

Setup File Syntax

92 Setting Up the JAM EnvironmentChapter

Setup File Syntax

The syntax described here applies to entries included in a setup file or defined in
the environment. Each line has the following format:

variable = value

The equal sign is required.

variable
One of the configuration or setup variables. Chapter 3 lists configuration variables;
Chapter 4 describes setup variables.

value
A string or another keyword. If a line is too long, continue it on the next line by
placing a backslash (\) at the end. Lines beginning with a pound sign (#) are
comments and are ignored by var2bin .

Certain variables, notably the JAM configuration files—key translation and
video—as distributed, have values that depend on the type of terminal you are
using. For those variables, the entries in the setup file take the following format:

variable = (term | term2 | ... | termN) value

The named variable uses the file called value for terminals of type term1, term2,
etc. For example, the following excerpt is from the smvars file:

SMKEY = (ibm) $SMBASE/config/ibmkeys.bin
SMKEY = (hp|hp2392|hpblk) $SMBASE/config/hpkeys.bin

If SMTERM is set to ibm , SMKEY is set to /usr/jam/config/ibmkeys.bin.

It is not necessary to use a terminal mnemonic if you are supporting only one
terminal type. Any variables that are not terminal-qualified are initialized. You can
provide, along with a number of terminal-specific entries of the same type (e.g.,
SMKEY files), one entry that is not terminal-qualified. This serves as the default and
it must be last in the list.

When you install JAM, the installation program asks for the base directory for your
installation, for example: /usr/jam . This path then gets set in your environment
as the SMBASE environment variable. You can use $SMBASE in your setup file as a
convenient way to point to files in the JAM installation hierarchy, for example:
$SMBASE/config/sunkeys.bin is a convenient way to refer to /usr/jam/
config/sunkeys.bin . If you ever move your installation, you then only have to
change the value of $SMBASE to point to the new location.

setting a default

the $SMBASE directory

Creating or Modifying a Setup File

10 JAM 7.0 Configuration Guide

Creating or Modifying a Setup File

To configure JAM to the structure and layout of your system, you can create an
smvars and/or smsetup files or modify the JYACC-supplied setup file in the
config directory

1. Access the ASCII file using a text editor.

2. Edit the entries using the appropriate syntax.

3. Use the JAM var2bin utility to convert the ASCII file to binary format (see
below).

4. Ensure that the binary filename is defined in the SMVARS variable. Or, if you
create a file containing additional configuration or setup variables, be certain
to identify it as the SMSETUP variable.

Converting Setup Files to Binary

Use the var2bin utility to convert ASCII setup files smvars and smsetup to
binary format.

var2bin [–pv] [–e ext] setupfile ...

–p
Places the binary output file in same directory as the input file.

–v
Lists the name of each input file as it is processed.

–e
Appends the extension ext to the output file instead of the default bin extension.

setupfile
The name of an ASCII setup file; you can specify more than one input file.

The output of var2bin is a binary file having the name of the file you have
specified, with a default extension of bin . You designate this output file to be used
as a setup file in either the SMVARS or SMSETUP variables, or in the system
environment.

Synopsis

Arguments and
Options

Description

Converting Setup Files to Binary

112 Setting Up the JAM EnvironmentChapter

To get a brief description of available arguments and command options, type:

var2bin –h

The following list describes possible errors, their cause, and the corrective action to
take:

%s is an invalid name.

Cause: The indicated line did not begin with a valid variable name.
Action: Refer to Chapters 3 and 4 for lists of variable names. Correct the ASCII

input file, and run var2bin again.

At least one file name is required.

Cause: You have failed to give an input filename.
Action: Retype the command, supplying the ASCII setup filename.

Error opening %s.

Cause: An input file was missing or unreadable.
Action: Check the spelling, presence, and permissions of the file in question.

Missing ’=’.

Cause: An input line did not contain an equal sign after the variable name.
Action: Correct the ASCII input file by inserting the equal sign and run var2bin

again.

Unable to allocate memory.

Cause: The utility could not allocate enough memory for its needs.
Action: None.

%s is an invalid parameter.

Cause: An option in the input is misspelled or misplaced, or conflicts with an
earlier option.

Action: Check the valid options listed in Chapter 4. Correct the ASCII input file
and run var2bin again.

Errors

13

Configuration
Variables

This chapter describes the four general categories of configuration variables:

� Environment variables

� Variables that point to files required by JAM

� Variables that point to alternate setup files

� Variables that point to application-specific files and information

All configuration and setup variables, with the exception of SMVARS, are typically
defined in the SMVARS file. However, you can also set these variables in an
SMSETUP file and in Windows *.ini files (Chapter 9 tells which variables can be
set in initialization files). Furthermore, these settings can be overridden by defining
them directly at the system environment level.

JAM sets variables from the following sources, listed in order of precedence:

1. Environment

2. Windows initialization files

3. The file named by the SMSETUP variable

4. The file named by the SMVARS variable

33

order of precedence

Environment Variables

14 JAM 7.0 Configuration Guide

You can also use library functions to reset some variables at runtime; for example,
sm_msgread opens an additional message file, like your application message file.

Environment Variables

There are three configuration variables for which JAM seeks values in the
environment and not in a file. If SMTERM and SMUSER are not defined explicitly,
JAM tries to derive appropriate values. In Windows, JAM checks the initialization
file *.ini for SMUSER.

If the SMVARS file is not set by the environment, JAM looks for it in these
locations, in the following search order:

1. $SMBASE/config/smvars.bin

2. $SMBASE/smvars.bin

JAM needs to know two pieces of information to get started: what terminal-type is
it running on and where it can find the information it needs to interpret input and
output. Your system environment can include two entries to answer these
questions; for example:

SMVARS = /usr/appl/config/smvars.bin
SMTERM = vt100

SMVARS
This variable identifies the binary setup file (usually smvars.bin). JAM uses the
file named in this variable to direct it to other configuration files and setup
information. A typical SMVARS file might contain the following excerpt:

SMKEY = (vt|vt950) $SMBASE/config/vtkeys.bin
SMKEY = (vt100) $SMBASE/config/vt100keys.bin
SMVIDEO = $SMBASE/config/vt100vid.bin
SMMSGS = /appl/config/msgfile.bin
SMPATH = /appl/masks
SMEDITOR = vi

The entries with parenthetic items are terminal-specific; JAM uses this mnemonic
to find the appropriate files for your terminal (as indicated by the JAM environ-
ment variable SMTERM or the system variable TERM).

SMTERM
This variable defines the terminal-type if you want JAM to recognize a terminal
type (mnemonic) that is different from that defined in the system TERM variable.

Required
Variables

Pointers to Required Files

153 Configuration VariablesChapter

For example, your text editor might work fine with a terminal in VT100 emulation,
but you might want JAM to use the features of VT220 emulation; so while TERM is
set to VT100, you can set SMTERM = vt220 .

SMUSER
One environment variable is useful to JAM but not required: SMUSER. When you
are working with multi-user libraries, JAM needs to know your user name. JAM
looks for SMUSER only in the environment. It will not seek this value in the
SMVARS, .ini or XJam file. Motif and DOS users can identify themselves in the
environment, and are likely to have a user name defined that JAM can access
without the need of SMUSER. JAM first looks for user identification from your
configuration management tool, if any; failing that it looks at SMUSER; if this
variable is not defined it looks for LOGNAME, then USER; if it cannot identify you in
any of these ways, it prompts you for a user name.

SMBASE
This variable points to the root of your JAM installation. For example:

/usr/jam

Setting this variable in your environment allows your installation to be portable,
since you can define other variables that point to files relative to SMBASE. For
example, your SMVARS might be defined like this:

$SMBASE/config/smvars.bin

Pointers to Required Files

SMKEY, SMMSGS, and SMVIDEO are required variables. They name the configuration
files used by JAM to describe its operating environment. If JAM cannot find these
variables defined or the configuration files named by them, it issues an error
message and aborts initialization.

JAM looks for these variables in the file specified by SMVARS. Any values set
directly in your environment override duplicate values set in your SMVARS file.
Finally, any values set in a Windows *.ini override duplicate values in either the
environment or SMVARS.

SMKEY
This variable identifies the binary file containing a key translation table for your
terminal. You can include a terminal mnemonic in the entry that matches the
terminal type designated in your JAM SMTERM variable or system TERM variable.

Non-required
Variables

Pointers to Other Setup Files

16 JAM 7.0 Configuration Guide

SMKEY = (vt100)$SMBASE/config/vt100keys.bin

Refer to Chapter 6 in this book for details about key translation files, and also the
library functions sm_getkey and sm_keyinit in the Language Reference.

SMMSGS
This variable identifies the binary file containing messages and other printable
strings used by the JAM runtime system and utilities. You can include a terminal
mnemonic in the entry that matches the terminal type designated in your JAM
SMTERM variable or system TERM variable.

SMMSGS = /usr/appl/config/msgfile.bin

Refer to Chapter 5 in this book for details about message files, and the library
functions sm_msg_get and sm_msgread in the Language Reference.

SMVIDEO
This variable identifies the binary file containing video control sequences and
parameters used by the JAM runtime system. You can include a terminal
mnemonic in the entry that matches the terminal type designated in your JAM
SMTERM variable or system TERM variable.

SMVIDEO = (vt100|x100)$SMBASE/config/vt100vid.bin

Refer Chapter 7 in this book for details about video files, and the library function
sm_vinit in the Language Reference.

Pointers to Other Setup Files

SMSETUP
Use this variable to identify additional binary setup files containing configuration
and/or setup variables. If the SMVARS and SMSETUP files contain identical
variables, the settings in the SMSETUP file take precedence. By including this
variable, you can conveniently store additional variables that are specific to a
particular terminal-type, project, or individual. You can include a terminal
mnemonic in the entry that matches the terminal type designated in your JAM
SMTERM variable or system TERM variable.

SMSETUP = (xterm) motifsetup.bin

Pointers to Application-Specific Files and Information

SMCOLMAP
This variable points to the binary cmap file. The cmap file defines the default
colors, or scheme, for your application, font, color and line style aliases, and the

Pointers to Application-Specific Files and Information

173 Configuration VariablesChapter

screen editor color scheme. You can include a terminal mnemonic in the entry that
matches the terminal type designated in your JAM SMTERM variable or system
TERM variable. In this way you can assign color schemes that will take advantage
of GUI-specific colors. Refer to Chapter 8 for more information on creating and
modifying configuration map files.

SMDICNAME
Use this variable to identify your development repository. Also refer to the library
function sm_dicname in the Language Reference.

SMDICNAME = /usr/app/dev.dic

SMEDITOR
Use this variable to indicate the name of the desired text editor to use in JPL
procedure windows. The named editor is invoked from the screen editor when the
appropriate key is selected. If you do not indicate a value for SMEDITOR, JAM’s
text editor is available. For example, your entry might look like:

SMEDITOR = vi

Or using terminal-specific syntax, you can assure that the editor most suited to
your environment is run. If you are running in Motif, you will want to spawn a
new window for your editor, or it will run in the window which invoked JAM:

SMEDITOR = (xterm) ”xterm –e vi”
SMEDITOR = (win) c:\windows\write.exe
SMEDITOR = (ibm) edit

You can define this variable in a setup file or at the environment level, and you can
change it at runtime with the library routine sm_soption .

SMFLIBS
Use this variable to identify the screen libraries that are to remain open while JAM
is active. Each open library should have its own entry. Refer to the library
functions sm_l_open and sm_r_window in the Language Reference.

SMFLIBS = /usr/appl/genlib
SMFLIBS = /usr/me/mylib

SMLDBLIBNAME
Use this variable to supply the name of screen libraries whose contents are to be
used as local data block initialization filenames by sm_ldb_init . The files in the
library will be loaded and activated at application startup. Filenames are listed on
successive lines. Refer to Chapter 9 of the Application Development Guide for

Pointers to Application-Specific Files and Information

18 JAM 7.0 Configuration Guide

information on using LDBs. For information on creating and maintaining libraries,
refer to page 561 of the Application Development Guide; for information about
creating a library member, refer to page 97 of the Editors Guide

SMLDBLIBNAME = cust.lib
SMLDBLIBNAME = const.lib

SMLDBNAME
Use this variable to supply a list of screen names to be used as local data block
initialization filenames by sm_ldb_init . The listed files will be loaded and
activated at application startup after any libraries specified with SMLDBLIBNAME
have been loaded. Filenames are listed on successive lines. Refer to Chapter 9 of
the Application Development Guide for information on using LDBs.

SMLDBNAME = ldb1.jam
SMLDBNAME = ldb2.jam
SMLDBNAME = ldb3.jam
SMLDBNAME = ldb4.jam

SMPATH
Use this variable to list the directories where JAM should search for JAM files at
runtime, such as screens and JPL procedures. Place a vertical bar (|) between
directory paths; do not include blank spaces. Refer to the library function
sm_r_window in the Language Reference. You can include a terminal mnemonic
in the SMPATH entry that matches the terminal type designated in your JAM
SMTERM variable or system TERM variable.

SMPATH = (vt100) /usr/appl/forms|/usr/me/testforms

You can define this variable in a setup file or at the environment level, and you can
change it at runtime with the library function sm_soption .

SMVIEWER
Use this variable to specify the viewer for output of reports created with JAM/Re-
portWriter report browser. If you create PostScript reports, you’ll want to set this to
a PostScript viewer. If this variable is not set, then SMEDITOR is used.

19

Setup Variables
This chapter describes all the setup variables that you can define either in your
environment, in setup files, and at runtime with specific library functions.

In addition to the variables that point to files and application-specific information,
a number of setup variables control the behavior of JAM and your application:

� Cursor appearance and movement (page 22).

� How messages are displayed and acknowledged by the user (page 26).

� Scrolling and shifting in fields and arrays (page 29).

� The appearance of screens (page 33).

� Group handling and attributes (page 34).

� Default file extensions (page 33).

� Miscellaneous processing and display options (page 35).

Setup variables can also establish system-wide behavior for particular function
keys (page 25), and a variable that you define as the command to print screens
(page 35).

This chapter shows how to accomplish these tasks:

� Establish new default settings for JAM and/or your applications.

44

Changing the Default Information/Behavior

20 JAM 7.0 Configuration Guide

� Review the options available for these setup variables.

� Change variable settings using a specific library function.

A sample setup file is provided at the end of this chapter which shows the syntax
for setting most of the desired variables.

JAM has installed default settings for all setup variables. If these are acceptable,
you can skip this chapter for now.

Changing the Default Information/Behavior

To change or include setup variables in a setup file:

1. Access the desired ASCII setup file (smvars or an alternate setup file) using
any text editor.

2. Add or change the desired variables using the syntax for the specific variables
described in this chapter or in Chapter 3.

3. Convert the ASCII file to binary format with the var2bin utility (refer to
page 10).

4. If this is a new setup file, define its pathname in the SMVARS or SMSETUP
configuration variable.

Defining Setup Variables

In general, the format for setting variables (unless otherwise stated) in the setup file
is variable = option; for example:

IN_BLOCK = OK_BLOCK

To change the setting at runtime, use the library routine sm_option unless
otherwise stated. The form is sm_option (variable, option) ; for example:

sm_option (IN_BLOCK, OK_BLOCK);

To get the current setting for most of setup variables, supply sm_option with an
argument of NOCHANGE. For example, this statement returns the current value of
IN_BLOCK—either OK_NOBLOCK or OK_BLOCK. :

retval = sm_option (IN_BLOCK, NOCHANGE);

in setup files

at runtime

to determine current
setting

Variables for Controlling Behavior

214 Setup VariablesChapter

Note: Many of the variable settings have an OK_ prefix—it identifies that the value
refers to keyboard input, or “open_keyboard.” It does not refer to the variable as
being okay, although it might.

Assigning Display Attributes
Many setup variables take display attributes as parameters.

To define a display attribute, select one color and any other attributes using the
defined keywords (refer to Table 2). In a setup file, separate the OR’d attributes
with blanks, commas, or semicolons.

MB_BORDATT = REVERSE HILIGHT GREEN
MB_DISPATT = RED, B_WHITE; BLINK

To change default display attributes at runtime, use sm_option unless otherwise
stated. Separate the variable from its attributes with a comma and use vertical bars
OR attributes together. For example:

sm_option (MB_BORDATT, REVERSE | HILIGHT | GREEN);
sm_option (MB_DISPATT, RED | B_WHITE | BLINK);

Table 2. Display attribute keywords

Foreground Color Background Color Attribute

B_HILIGHT NORMAL_ATTR

BLACK B_BLACK BLANK

BLUE B_BLUE REVERSE

GREEN B_GREEN UNDERLN

CYAN B_CYAN BLINK

RED B_RED HILIGHT

MAGENTA B_MAGENTA DIM

YELLOW B_YELLOW

WHITE B_WHITE

B_CONTAINER

Variables for Controlling Behavior
Setup variables that are defined in a setup file—typically in smvars —affect the
entire application. To implement variable settings that are specific to a terminal
type, include them in a terminal-specific SMSETUP file.

setting default attributes

at runtime

Variables for Controlling Behavior

22 JAM 7.0 Configuration Guide

If you want to change the application behavior without altering the default, change
the setting at runtime with sm_option .

This section describes each of the variables and their respective settings.

Cursor Appearance and Movement

These variables control how the cursor appears and moves. The letter (D) in the
description indicates the default setting.

IN_BLOCK Set Cursor Appearance

OK_NOBLOCK Cursor occupies one character position in a field. (D)

OK_BLOCK Current field is changed to reverse video to simulate a
large cursor. The cursor occupies the entire field.

IN_HARROW Set Horizontal Arrow Movement
Note: Using the left and right arrow keys usually causes the cursor to move to the
field to the left or right of the current field, or as indicated by the setup variable.
However, using left and right arrow keys in horizontal scrolling arrays moves the
cursor to the next occurrence, and causes the array to scroll to the next available
occurrence. Therefore, these variable settings only control cursor movement in
fields having a single occurrence. Refer to Chapter 19 in the Editors Guide for
information on cursor movement in arrays.

OK_FREE Free cursor movement.

OK_RESTRICT The cursor moves left and right in the current field, but
it does not leave the field.

OK_COLM The cursor is positioned to the closest field on the cur-
rent line.

OK_SWATH Same as OK_COLM.

OK_NXTLINE The cursor is positioned to the nearest field in the col-
umn closest to the current column. Wrapping is ob-
served, if set.

OK_NXTFLD The cursor is positioned to the field closest to the cur-
rent line and column. The calculation uses the diagonal
distance, assuming a 5 to 2 aspect ratio.

OK_TAB Left-arrow backtabs to the end of the previous field, and
right-arrow tabs to the first character in the next field.
Wrapping is observed if set. The next and previous field
properties are not observed. (D)

Variables for Controlling Behavior

234 Setup VariablesChapter

OK_TABNXT Like OK_TAB, but the next field and previous field prop-
erties are observed.

IN_VARROW Set Vertical Arrow Movement
Note: Using the up and down arrow keys usually causes the cursor to move up or
down to the next field, or as indicated by the setup variable. However, using up and
down arrow keys in scrolling arrays moves the cursor to the next occurrence, and
causes the array to scroll to the next available occurrence. Therefore, these
variable settings only control cursor movement in fields having a single occur-
rence. Refer to Chapter 19 in the Editors Guide for information on cursor
movement in arrays.

OK_FREE Free cursor movement.

OK_RESTRICT Vertical arrow keys ignored in current field.

OK_COLM The cursor is positioned to the nearest field that overlaps
the current column. Wrapping is observed, if set.

OK_SWATH The cursor is positioned to the closest field that overlaps
the swath containing the current field. Wrapping is ob-
served if set.

OK_NXTLINE The cursor is positioned to the nearest field whose line
is closest to the current line. Wrapping is observed, if
set. (D)

OK_NXTFLD The cursor is positioned to the field nearest the current
line and column.

OK_TAB Down arrow tabs to the first character in next field; up
arrow backtabs to last character in the previous field.
The next and previous field properties are not observed.

OK_TABNXT Like OK_TAB, but the next field and previous field prop-
erties are observed.

IN_ENDCHAR Specify Treatment of Last Character In No Auto Tab
Field

OK_ENDWRITE Last character in a no auto tab field is repeatedly over-
written if the cursor is in overwrite mode.

OK_ENDBEEP Terminal beeps when user attempts to overwrite last
character in a no auto tab field. (D)

IN_RESET Set Options for Field-reset

Note: IN_RESET is ignored on word-wrapped fields.

OK_NORESET Arrow keys can enter the middle of a field.

Variables for Controlling Behavior

24 JAM 7.0 Configuration Guide

OK_RESET When field is entered, cursor always goes to first char-
acter position, based on justification and punctuation
properties.

OK_TO_END When field is entered, cursor always go to the first avail-
able blank after (or before in the case of right-justifica-
tion) the data.(D)

IN_VALID Set Conditions for Validation On Field Exit

OK_VALID Validation is performed whenever field is exited (NL,
TAB, BACKTAB, arrows, mouse click, etc.).

OK_NOVALID Validation is performed only when TAB or NL is
pressed. Using arrow keys or a mouse click to leave a
field does not validate the field. (D)

IN_WRAP Set Options for Arrow Wrapping

OK_WRAP Arrow keys wrap. Vertical arrows wrap from top to bot-
tom. Right arrows wrap to the beginning of next line (or
first line). Left arrows wrap to end of previous line (or
last line). (D)

OK_NOWRAP Arrow keys do not wrap. Terminal beeps if user tries to
move the cursor past the edge of the active screen.

Mouse Cursor Appearance and Behavior (JAM Cursor Only)

These variables control mouse cursor appearance and behavior only when the
mouse is being run by JAM. In most cases, the mouse is under control of the native
environment and mouse behavior is determined by the environment, not JAM.

CLICK_TIME Define Maximum Click Interval

time The maximum amount of time between two mouse
clicks that defines a double mouse click. Defaults to 250
ms.

MOUS_CRSR_CHAR Set Mouse Cursor Character

character Sets the character used to display mouse cursor. Defaults
to a block character.

MOUS_CRSR_ATTR Set Mouse Cursor Attributes

display attributes Assign the desired attributes for the occurrence under
the cursor. These attributes are added to those already
assigned to the occurrence. This defaults to REVERSE.

Variables for Controlling Behavior

254 Setup VariablesChapter

MOUS_CRSR_MASK Mask Mouse Cursor Attributes

display attributes Mask any attributes that should not be added to the cur-
sor attributes. If you are assigning a color as the cursor
attribute, add NORMAL_ATTR to MOUS_CRSR_MASK. At-
tributes of the occurrence are used if they are not
masked out.

Text Selection Appearance
The following variables set attributes for text selected in a single or multiline text
widget.

TXT_SELECT_ATTR Set Selected Text Attributes

display attributes Assign the desired attributes for the selected text. These
attributes are added to those already assigned to the text
widget. This defaults to HILIGHT REVERSE.

TXT_SELECT_MASK Mask Selected Text Attributes

display attributes Mask any attributes that should not be added to the se-
lected text. If you are assigning a color as the selected
text attribute, add NORMAL_ATTR to TXT_SE-
LECT_MASK. Attributes of the occurrence are used if
they are not masked out.

Function Keys

SMINICTRL Associate Control Strings with Function Keys

Each JAM screen contains a table of control strings associated with functions keys.
You can also set default control strings for specified function keys either in
SMVARS or in the environment. JAM uses absence of a control string for a given
function key.

By including multiple SMINICTRL entries in your SMVARS file (or in the
environment), you can define system-wide actions for specific function keys. The
syntax for including SMINICTRL variables is as follows:

SMINICTRL = function_key = control_string

For example:

SMINICTRL = PF1 = &system_help
SMINICTRL = PF2 = ^toggle_mode
SMINICTRL = PF7 = ^jm_keys SPGD
SMINICTRL = PF8 = ^jm_keys SPGU

Variables for Controlling Behavior

26 JAM 7.0 Configuration Guide

You can programmatically change application control strings at runtime. For more
information, refer to page 29 in the Language Reference.

To disable a JYACC-supplied default function key, bind it to a control string
function that does nothing or one that calls sm_bel .

Toolbars
These variables control the display of toolbars items and their corresponding
tooltips. You can define them in a setup file and at runtime with sm_option . The
letter (D) in the description indicates the default setting.

TOOLBAR_DISPLAY Tool Bar Display

TOOLBAR_OFF Disables display of tool bars. JAM continues to update
the underlying data structures.

TOOLBAR_ON Allows display of tool bars. (D)

TOOLTIP_DISPLAY Tool Tip Text Display

TOOLTIP_OFF Disables display of tool tip text.

TOOLTIP_ON Enables display of tool tip text. (D)

Messages
These variables control message display. You can define them in a setup file, in the
environment, and at runtime with sm_option .

Note: The BLANK attribute keyword is ignored for messages.

MESSAGE_WINDOW Control When Messages Appear in a Window

WHEN_REQUIRED Messages appear on the status line unless they are too
large to fit. Oversize messages appear in a window.
(Messages never appear on the status line in GUI envi-
ronments). (D)

ALWAYS Messages always appear in a window unless they are
explicitly sent to the status line (e.g. with
sm_d_msg_line and sm_msg).

SMSGPOS Set Position of Message Line

number Set the position for the message line by specifying a
single number (1 is the top line of the display). This
variable is ignored if the terminal has a hardware status
line.

Variables for Controlling Behavior

274 Setup VariablesChapter

SMSGBKATT Set Background Attributes for Message Line

display attributes Set message line background attribute. The default is
SMSGBKATT = B_BLACK . The keywords for
SMSGBKATT take the format B_color. Refer to Table 2 on
page 21 for a list of the keywords.

STEXTATT Set Attributes for Status Message Text

display attributes Change the default display attribute for field status text.
Refer to Table 2 on page 21 for a list of the keywords.
The default is STEXTATT = WHITE .

Note: If you change the attributes but do not specify a color, the default color
becomes BLACK. For example, if you use the entry STEXTATT = BLINK , status
messages display with the foreground attributes BLINK and BLACK. Then, if you
use the default message line background (see SMSGBKATT), status messages are not
visible because they have black text on a black background. Always specify a
foreground or background color when setting attribute for text. If this is not
convenient, you can set the variable SMSGBKATT to a color other than B_BLACK.

EMSGATT Set Attributes for Error Messages Text

display attributes Change the display attributes of message text displayed
with sm_femsg and sm_ferr_reset , and the tag por-
tion of sm_fquiet_err and sm_fqui_msg messages.
The content of the tag is specified in the message file
entry SM_ERROR (the default is ERROR:). The default is
EMSGATT = WHITE BLINK HILIGHT B_HILIGHT .
Refer to Table 2 on page 21 for a list of the keywords.

If you change this variable without specifying a fore-
ground color, the default foreground color becomes
BLACK. Refer to the note on STEXTATT for more in-
formation.

QUIETATT Set Attributes for Quiet Error Message Text

display attributes Change the display attributes of message text displayed
with sm_fquiet_err messages. The default is QUIE-
TATT = WHITE . See EMSGATT for changing the attrib-
utes of the tag portion of these messages. Refer to Table
2 on page 21 for a list of the keywords.

If you change this variable without setting a foreground
color, the default foreground color becomes BLACK. Re-
fer to the note on STEXTATT for more information.

Variables for Controlling Behavior

28 JAM 7.0 Configuration Guide

These variables control how your application responds to user input when a
message appears. The letter (D) in the description indicates the default setting.

ER_ACK_KEY Define Error Acknowledgment Key

key There are no keywords—the value must be specified
explicitly. The key can be given as number (in decimal,
hex, or octal) representing an ASCII character, as an
ASCII mnemonic (SP, SOH, ETX, etc.), as quoted charac-
ter (’. ’, ’_’ , etc.), or as a logical key defined in
smkeys.h . The default is ER_ACK_KEY = ’ ’ , the
space key. If you define a value other than the spacebar,
refer to ER_SP_WIND below.

ER_KEYUSE Use or Discard Key in sm_ferr_reset

ER_NO_USE All error messages must be acknowledged by
ER_ACK_KEY, which is discarded. Any other keys struck
between the time of the message display and the press-
ing of the acknowledgment key are also discarded. By
default, if the user does not press ER_ACK_KEY, JAM
displays an error window. Refer to ER_SP_WIND. (D)

ER_USE Any keypress acknowledges an error message. The
type-ahead buffer is flushed when the message is dis-
played, and the acknowledging keypress is saved for
data-entry. Because any keypress clears the error mes-
sage, the message Please press the space bar is
not used. If you set this as the default, you can still force
the user to acknowledge selective messages by putting
%Md at the beginning of the message text. Refer to Chap-
ter 5 for more information.

ER_SP_WIND Remind User to Acknowledge Message

ER_YES_SPWIND If ER_KEYUSE= ER_NO_USE, and the user presses
another key when ER_ACK_KEY is expected, a window
appears. The default message is Please hit the
space bar after reading this message from
the message file entries SM_P1 and SM_P2. If you are
using this option and a key other than the space bar for
message acknowledgement, modify the message file
entry SM_SP1. (D)

ER_NO_SPWIND If ER_KEYUSE= ER_NO_USE, and the user presses
another key when ER_ACK_KEY is expected, the termi-
nal beeps (by calling sm_bel). A visual bell can be used
if the video file file has a BELL entry.

Acknowledging
Messages

Variables for Controlling Behavior

294 Setup VariablesChapter

Shifting and Scrolling
These variables can help you establish standards for handling scrolling and shifting
arrays and fields, and the zoom window. You can define them in a setup file, in the
environment, and at runtime with sm_option . If you change these defaults at
runtime, call sm_option before opening the screen. The letter (D) in the
description indicates the default setting.

ZM_DISPLAY Specify Zoom Window Size Preference

ZM_ONSCREEN Displays expanded zoom window at the display size of
the operating system window (for example, in the
xterm or jterm window). Useful for character-mode
applications.

ZM_MAXIMUM Displays expanded zoom window at its maximum physi-
cal display. Useful for applications running in GUI envi-
ronment.

ZM_SC_OPTIONS Set Zoom Scroll Options

ZM_NOSCROLL No scroll expansion on arrays.

ZM_SCROLL Scroll the current array and display as many occurrences
as possible.

ZM_PARALLEL Scroll all parallel or synchronized arrays. Display as
many occurrences as possible. (D)

ZM_1STEP Scroll and shift in one step.

ZM_SH_OPTIONS Set Zoom Shift Options

ZM_NOSHIFT No shift expansion. Fields shift, but no horizontal zoom-
ing takes place.

ZM_SCREEN Shifting arrays have as many on-screen elements as the
previous form, which is the original form if ZM_SC_OP-
TIONS = ZM_NOSCROLL is used. Otherwise,
ZM_SCREEN displays as many items as possible. All syn-
chronized arrays are shifted together. (D)

IND_OPTIONS Set Shift/Scroll Indicator Options

IND_NONE No indicators.

IND_SHIFT Shift indicators only.

IND_SCROLL Scroll indicators only.

IND_BOTH Shift and scroll indicators. (D)

SCR_KEY_OPT Set Scroll Field Priority

SCR_NEAREST Nearest scrolling array to current field scrolls when
scrolling keys are used (PGUP and PGDN). (D)

Variables for Controlling Behavior

30 JAM 7.0 Configuration Guide

SCR_CURRENT Scrolling keys (PGUP and PGDN) have no affect unless
current field is a scrolling array.

SB_OPTIONS Set Scroll Options for Virtual Windows

SB_NONE No scroll bars or corner arrows.

SB_BARS Show scroll bars. (D)

SB_CORNERS Show corner arrows.

IND_PLACEMENT Set Position of Shift and Scroll Indicators

IND_FULL Full width of field. (D)

IND_FLDENTRY Left or right corner, according to the field’s justification.

IND_FLDLEFT Left corner of field.

IND_FLDCENTER Center of field.

IND_FLDRIGHT Right corner of field.

ZW_BORDSTYLE Set Border Style for Zoom Windows

NOBORDER No border.

style number A number between 0 and 9 indicates a style. Default is1.

ZW_BORDATT Set Border Attributes for Zoom Windows

display attributes Default is ZW_BORDATT = RED HILIGHT B_CON -
TAINER. Refer to Table 2 on page 21 for a list of the
keywords.

Character-Mode Label Text Display

These variables control the display attributes of label text in character-mode
applications. These variables belong to two categories:

� Display of label mnemonics: AC_KEEPATTRS, AC_SETATTRS, and
AC_SWATTRS. These variables only affect widgets that have Label proper-
ties—for example, dynamic labels and push buttons. For display of label
mnemonics in menu items, refer to page 31.

� Greying of text in inactive widgets—that is, widgets that cannot get focus:
FE_KEEPATTRS, FE_SETATTRS, and FE_SWATTRS. These variables only
affect widgets that have Label properties—for example, dynamic labels and
push buttons—and menu items.

You can change these variables at runtime with sm_option .

Variables for Controlling Behavior

314 Setup VariablesChapter

AC_KEEPATTRS Define Attributes Retained for Keyboard Mnemonic

display attributes Indicate those attributes to be retained (AND’d) for key-
board mnemonic characters that are emphasized. The
default includes all attributes currently assigned. Refer
to Table 2 on page 21 for a list of the keywords.

AC_SETATTRS Set Attributes for Keyboard Mnemonic Character

display attributes Set display attributes to emphasize keyboard mnemonic
characters. The default is none. Refer to Table 2 on page
21 for a list of the keywords.

AC_SWATTRS Set Attributes for Switched Keyboard Mnemonic

display attributes Set display attributes that are switched for keyboard
mnemonic characters. The default is HILIGHT WHITE
for menu items HILIGHT CYAN. Refer to Table 2 on
page 21 for a list of valid keywords.

FE_KEEPATTRS Define Attributes Retained for Grayed Items

display attributes Indicate those attributes to be retained (AND’d) for the
label text of inactive items. The default includes all at-
tributes currently assigned. Refer to Table 2 on page 21
for a list of the keywords.

FE_SETATTRS Set Attributes for Inactive Items

display attributes Set display attributes for label text. of inactive items The
default setting is none. Refer to Table 2 on page 21 for a
list of the keywords.

FE_SWATTRS Set Display Attributes for Inactive Items

display attributes Set display attributes that are toggled when graying is
turned on and off. The default setting is HILIGHT . Refer
to Table 2 on page 21 for a list of the keywords.

Character-Mode Menus
These variables control the way menus appear and behave in character-mode
applications. You can change these variables at runtime with sm_option .

MB_KEEPATTRS Define Attributes Retained for Keyboard Mnemonic

display attributes Indicate those attributes to be retained (AND’d) for key-
board mnemonic characters that are emphasized. The
default includes all attributes currently assigned. Refer
to Table 2 on page 21 for a list of the keywords.

Variables for Controlling Behavior

32 JAM 7.0 Configuration Guide

MB_SETATTRS Set Attributes for Keyboard Mnemonic Character

display attributes Set display attributes to emphasize keyboard mnemonic
characters. The default is none. Refer to Table 2 on page
21 for a list of the keywords.

MB_SWATTRS Set Attributes for Switched Keyboard Mnemonic

display attributes Set display attributes that are switched for keyboard
mnemonic characters. The default is HILIGHT WHITE .
Refer to Table 2 on page 21 for a list of the keywords.

MB_BORDSTYLE Set Border Style of Menu Bars

NOBORDER No border.

style number Set number between 0 and 9 to indicate a style. Default
is 1.

MB_BORDATT Set Border Attributes of Menu Bars

display attributes Set border display attributes for menu bars. The default
is MB_BORDATT = B_WHITE BLACK . Refer to Table 2
on page 21 for a list of the keywords.

MB_DISPATT Set Text Attributes in Menu Bars

display attributes Set display attributes for text in menu bars. The default
is MB_DISPATT = B_WHITE BLACK . Refer to Table 2
on page 21 for a list of the keywords.

MB_FLDATT Set Attributes for Menu Bar Options

display attributes Set display attributes for unselected menu bar options.
The default is MB_FLDATT = B_WHITE BLACK . Refer
to Table 2 on page 21 for a list of the keywords.

MB_HBUTDIST Set Distance Between Horizontal Menu Options

number Set the distance between menu items on a horizontal
menu. Default is 2 columns.

MB_LINES_PROT Reserve Space for Menu Bar

number Set the number of top lines reserved for a menu bar. De-
fault is 1.

MB_SYSTEM Specify Presence of System Menu on Menu Bar

OK_SYSTEM System menu item (==) appears on menu bar. (D)

NO_SYSTEM System menu item does not appear on menu bar.

Variables for Controlling Behavior

334 Setup VariablesChapter

Character-Mode Screens

The following variable determines the style of emphasis desired to indicate the
current, or active, screen. The options are drop shadows, graying, or border
highlights. Drop shadows appear to cast a shadow from the active screen over
underlying screens. Graying changes the display attributes of all screens except the
active one: highlights turn off and colors change to monochrome by default.
Chapter 7 describes how to set the graying attributes with the video file entries
EMPHASIS_KEEPATT and EMPHASIS_SETATT (refer to page 115). Border
highlighting turns on the highlight characteristic for the active screen border. An
application running in character-mode can use any one style, or drop shadows and
graying can be used together.

You can establish the style by including the variable in a setup file and reset it at
runtime through sm_option .

EMPHASIS Specify Emphasis Style

DROPSHADOW Draw a shadow at the screen’s uppermost right and bot-
tom edges. The shadow is two columns wide and one
line deep. The right shadow starts one space below the
screen’s upper edge, while the bottom shadow starts two
columns from the screen’s left edge. The bottom shadow
is indented two spaces from the left edge of the screen.
The shadow is formed by graying the underlying text.

GRAYBKGD Gray background screens. Only the active screen retains
its original display attributes.

HIBORDER Highlight the border of the active screen.

NONE Disable display emphasis. (D)

Default Filenames and Extensions

The following variables control default file extensions. You can define them in a
setup file, in the environment, and at runtime with sm_option unless otherwise
indicated. The letter (D) in the description indicates the default setting.

FCASE Set Case Sensitivity for Filename Searches

CASE_INSENS JAM ignores case when searching for a file. This does
not have any effect on filenames passed to the operating
system; only on filenames in libraries or in memory.

CASE_SENS Filename searches are case sensitive. (D)

Variables for Controlling Behavior

34 JAM 7.0 Configuration Guide

SMFEXTENSION Specify Screen File Extension

extension Screen file extension is used by the JAM run-time sys-
tem and various utilities. The default is operating sys-
tem-dependent; it can be jam or none. If you supply an
extension, JAM appends (or prefixes) it to any screen
name that does not already contain an extension. Use
F_EXTSEP to specify a character which separates a file-
name and the extension. Use F_EXTOPT to specify the
placement.

To change the string at runtime, use the library function
sm_soption (refer to the Language Reference).

F_EXTREC Recognize Screen and Utility I/O File Extensions

FE_IGNORE Ignore extensions.

FE_RECOGNIZE Recognize extensions.

The default for F_EXTREC is the value of EXTMULTS for
the system as defined in smcommon.h.

F_EXTOPT Placement of Screen and Utility I/O File Extensions

FE_FRONT Put the extension before the filename.

FE_BACK Put the extension after the filename. (D)

F_EXTSEP Specify Screen and Utility I/O File Extension Separa-
tor

character There are no keywords — the value must be specified
explicitly. The default is a period (.). A separator char-
acter can be a number (decimal, hex, or octal) which
represents an ASCII character, an ASCII mnemonic
(SOH, ETX, etc.), or as quoted character (’.’ , ’_’ , etc.).

Display Attributes for Grouped Items
These variables control the attributes of the cursor and selected items in groups.
You can define them in a setup file, in the environment, and at runtime with
sm_option .

GA_CURATT Set Group Cursor Attributes

display attributes Assign the desired attributes for the occurrence under
the cursor. These attributes are added to those already
assigned to the occurrence. This defaults to BLINK
B_HILIGHT .

Variables for Controlling Behavior

354 Setup VariablesChapter

GA_CURMASK Mask Group Cursor Attributes

display attributes Mask any attributes that should not be added to the cur-
sor attributes. If you are assigning a color as the cursor
attribute, add NORMAL_ATTR to GA_CURMASK. Attributes
of the occurrence are used if they are not masked out.

GA_SELATT Set Selected Group Occurrence Attributes

display attributes Assign the desired attributes for a selected group occur-
rence. These attributes are added to those already as-
signed to the occurrence. This defaults to HILIGHT
REVERSE.

GA_SELMASK Mask Selected Group Occurrence Attributes

display attributes Mask any attributes that should not be added to the at-
tributes for the selected group occurrence. If you are
assigning a color to GA_SELATT, add NORMAL_ATTR to
GA_SELMASK. Attributes of the occurrence are used if
they are not masked out.

Print Capabilities

SMLPRINT Set Default Print Command

The SMLPRINT variable can be used to indicate the operating system command to
print the file (screen) generated by the local print key (LP). The entry must contain
the string %s at the place where the file name should go.

For example, your entry in might look like

SMLPRINT= print %s
or
SMLPRINT = lpr %s

This variable can be defined in a setup file, overridden by setting it at the system
environment, and changed at runtime with the library function sm_soption (refer
to the Language Reference).

Miscellaneous Setups

These variables control a variety of customization issues. They can be defined in a
setup file or in the environment as well as at runtime with sm_option . The letter
(D) in the description indicates the default setting.

Variables for Controlling Behavior

36 JAM 7.0 Configuration Guide

CHAR_VAL_OPT Keystroke Filter Validation Option

CHAR_BEEP Cause a beep if user keyboard input does not pass char-
acter validation as defined in the Keystroke Filter prop-
erty for a data entry field. (D)

CHAR_MSG Display message if user keyboard input does not pass
character validation as defined in the Keystroke Filter
property for a data entry field.

CLOSELAST_OPT Exit Base Form Without Exiting Application

OK_CLOSE_LAST Allow base form to close without exiting the applica-
tion. (D)

NO_CLOSELAST Exit application when user exits base form.

DA_CENTBREAK Set Default Century for Two-Digit Dates

two-digit number Use this option to specify the breaking year between the
twentieth and twenty-first centuries when JAM formats
two-digit year to four-digit year specifications.This op-
tion lets you specify that all two-digit year entries less
than the number specified should be in the twenty-first
century. For example, if you specify 45. then all two-
digit year entries between 00 and 44 indicate the years
2000 to 2044, while those between 45 and 99 indicate
1945 to 1999.

 By default, this variable is set to 50; JAM therefore
assumes that all two-digit years between 0 and 50 speci-
fy the years 2000 to 2050, while all two-digit years
51–99 are in the 20th century (1951–99).

DECIMAL_PLACES Set Default Decimal Places for Math Display

number Set the default number of decimal places for JPL math
display.

PLACES_VARIABLE Set the number of decimal places for JPL math display
to equal the number of significant digits in the number,
to a maximum of 257. (D)

Variables for Controlling Behavior

374 Setup VariablesChapter

DW_OPTIONS Set Delayed-write Options

DW_ON Turn on delayed-write. Output from library functions is
not sent immediately to the display, but is used to update
the image in memory. When it is necessary to update the
display (e.g., when input is accepted from the key-
board), output is sent to the display one line at a time,
and a check is made for keyboard input between each
line. If the user presses a key before the update is com-
pleted, the key is processed before the remaining lines
are displayed. This option makes JAM more responsive,
especially at low baud rates. You can force the display
of a delayed-write with the library function sm_flush
(refer to the Language Reference). (D)

 DW_OFF Turn off delayed-write. The display is not flushed until
input is accepted from the keyboard. JAM does not
check for input while writing to the display. This option
can be useful when debugging an application. If you use
this option, you may need to add the entry BUFSIZ to
your video file.

ENTEXT_OPTION Set Screen Entry Processing Option

LDB_FIRST LDBs are examined first for the value of a field, then the
screen, on screen entry. On screen exit, this order is re-
versed. (D)

FORM_FIRST Screen is examined first for the value of a field, then
LDBs, on screen entry. On screen exit, this order is re-
versed.

EXPHIDE_OPTION Set Screen Expose/Hide Option

OFF_EXPHIDE Process screen entry or exit functions only when screen
is explicitly opened or closed.

ON_EXPHIDE Process screen functions when screen is explicitly
opened or closed, when screen is exposed by closing an
overlying window, or when screen is hidden by opening
an overlying window. (D)

LISTBOX_SELECTION Enables extended selection in list boxes

EXTENDED_SELECTION Enables extended selection. (D)

SIMPLE_SELECTION Allows only one selection at a time.

STARTSCREEN Specifies the startup screen name

screen-name The name of the JAM screen that the application first
displays. JAM searches the open form libraries and
along SMPATH for the named screen. If no screen is
found, JAM reports an error.

Variables for Controlling Behavior

38 JAM 7.0 Configuration Guide

STARTSCREEN is not supported in the application’s ini-
tialization/resource file or in the environment. It must be
set in the file specified by SMVARS or SMSETUP. You can
also specify the start screen by setting
start_screen_name in jmain.c or jxmain.c .

WW_COMPATIBLE Emulate JAM 6 Behavior in Word Wrap Fields
(character-mode only)

WW_COMPATIBLE_OFF Prevent execution of of field exit and entry functions
when cursor traverses occurrences within a word wrap
field. Cursor movement within the text of a word wrap
field stays inside that field. (D)

WW_COMPATIBLE_ON Execute field exit and entry functions when cursor tra-
verses occurrences within a word-wrapped field. This
setting emulates JAM 6 behavior.

WWTAB Set Tab Space in Word Wrap Fields

number Set the number of spaces to move when the TAB key is
pressed in a word wrap multiline text field. The default
is 5. On Motif, this option is ignored.

XMIT_LAST Set NL or TAB to Act Like XMIT on Last Field of
Screen (triggering screen validation)

XMIT_NL NL (New Line) logical key behaves like XMIT on last
field of a screen.

XMIT_TAB TAB logical key behaves like XMIT on last field of a
screen.

XMIT_NL_TAB Makes both NL and TAB behave like XMIT on last field
of a screen.

XMIT_DISABLE NL and TAB respond as defined and do not emulate the
XMIT key when used in the last field of a screen. (D)

Sample Setup File

394 Setup VariablesChapter

Sample Setup File
The following sample file illustrates the syntax for setting most of the variables
discussed in this chapter and the configuration variables in Chapter 3. These
variables can be designated in the environment or, as recommended, in a setup file,
and can be altered at runtime with specific library functions.

SMKEY = (vt100 | x100) /usr/jam/config/vt100keys.bin
SMLPRINT = print %s
SMMSGS = /usr/config/msgfile.bin
SMPATH = /usr/app/forms|/usr/me/testforms
SMSETUP = hpsetup.bin
SMVIDEO = (vt100 | x100)/usr/jam/config/vt100vid.bin
SMINICTRL= PF2 = ^toggle_mode
SMINICTRL = PF3 = &popwin(3,28)
SMINICTRL = XMIT = ^commit all

IN_BLOCK = OK_NOBLOCK
IN_WRAP = OK_WRAP
IN_RESET = OK_NORESET
IN_ENDCHAR = OK_ENDWRITE
IN_VALID = OK_VALID
IN_VARROW = OK_FREE
IN_HARROW = OK_TAB

ER_ACK_KEY = PF12
ER_KEYUSE = ER_NO_USE
ER_SP_WIND = ER_YES_SPWIND

EMSGATT = RED; RED, REVERSE
QUIETATT = CYAN HILIGHT BLINK
STEXTATT = WHITE REVERSE
QMSGATT = CYAN REVERSE
SMSGBKATT = RED
SMSGPOS = 25

ZM_SC_OPTIONS = ZM_SCROLL
IND_OPTIONS = IND_BOTH
IND_PLACEMENT = IND_FLDRIGHT
SB_OPTIONS = SB_CORNERS
ZW_BORDSTYLE = 8
ZW_BORDATT = MAGENTA

SMFEXTENSION = jam
F_EXTREC = FE_RECOGNIZE
F_EXTOPT = FE_BACK
F_EXTSEP = ’.’

DW_OPTIONS = DW_OFF
ENTEXT_OPTION = LDB_FIRST
FCASE = CASE_SENS

41

Message Files
The message file contains more than messages in the traditional sense. Think of a
message as a default application “constant”—for example, text labels for message
window push buttons, currency formats, date and time formats, and JAM error
messages. Some of these message constants may not be appropriate for your entire
application audience. JAM allows you to modify them to suit your needs. The
JAM configuration library provides a file of message defaults, msgfile , along
with its binary form.

You can:

� Translate message text and default values into other languages for internation-
al distribution of your application.

� Customize default formats for date/time and currency edits to comply with
local standards or individual preferences.

� Add your own application messages to JAM’s msgfile or to a separate
message file.

Note that only those messages which might be relevant to an end user, that is
runtime messages, are in msgfile . JAM messages which only a JAM developer
might see are not translatable.

The first part of this chapter describes message file syntax and how to make
messages accessible to JAM. It includes the following general topics:

� How to read entries in the message file (page 44).

55

Message Files: Convenient, Flexible and Portable

42 JAM 7.0 Configuration Guide

� How to modify the JAM ASCII message file (page 47).

� How to create a message file that contains your application-specific messages
(page 48).

� How to convert an ASCII message file to a binary format accessible to JAM
with msg2bin (page 49).

� How to create a header file with msg2hdr so your application messages can be
found by your functions, JAM’s functions, and JPL (page 53).

� How to embed attributes and key names in messages (page 57).

The second part of the chapter details the more specialized use of the message file,
and includes the following topics:

� How to customize date and time formats (page 60) and currency formats
(page 66).

� JAM support of local and system decimal designations (page 69).

� Defining defaults for message window button labels such as Yes, No, and
Cancel (page 70).

� Defining defaults for yes/no text values (page 71).

� Using alternate message files (page 71).

Message Files: Convenient, Flexible and Portable

During initialization, JAM looks for the configuration variable SMMSGS (which can
be defined in the environment or in an SMVARS file). This variable gives the full
pathname of the binary message file. This file is ordinarily a binary version of
msgfile , where message constants or “tags” are assigned message text:

SM_HITANY = Hit any key to continue.

JAM’s message tags are then defined in the include file smerror.h so the
messages can be found by the functions in the JAM libraries. The following
excerpts from smerror.h show how SM_HITANY gets assigned the hex value
0x8027 (integer value 32795):

#define SM_MSGS 0x8
#define SM_MSG_OF (unsigned short)SM_MSGS * 0x1000
#define SM_HITANY (SM_MSG_OF+27)

Message Files: Convenient, Flexible and Portable

435 Message FilesChapter

Advantages of a Message File

There are obvious advantages to storing message text and default formats in a file:

� Messages need not be hard-coded either for JAM or for JAM applications. The
messages, once converted to binary format, can be retrieved with library
functions (e.g., sm_msg_get). Different parts of an application can use the
same message text, which saves space.

� When you develop an application, you can edit and compile message text
without having to recompile the application.

� Messages are in one place, so you can easily access and modify them.

� You can translate all message text, date/time formats, and currency formats to
comply with local languages and customs. For example, if you create a French
version of the message file, the status line messages which identify physical
keys with logical values will appear in French. System dates will use French
names for the days of the week and months of the year. Formats for date/time
and currency edits will be adapted to French standards. It might be useful to
translate error messages as well.

Recommendations when Changing and Creating Messages

Store your application messages separately from the JAM messages. Not only is
this more manageable, but you avoid the risk of corrupting JAM messages, and
avoid losing your messages with new release of the JAM message file. After you
create your ASCII message file, you can concatenate them with the JAM message
file via the msg2bin utility (using the –o option). In this way, you can have a
single binary file, and your messages are available at initialization when JAM
loads msgfile.bin .

If you must change the JAM message file, you should modify a copy of msgfile
rather than alter the original. By doing this, you avoid losing your changes with
new releases of the JAM message file.

The user message file can consist of up to eight user classes numbered 0 to 7. The
distributed message file utilizes classes 8 through 15, but they are not designated in
the file. If you wish to add user messages, consider using class designators. Each
classes’ messages begin with a two-character prefix that you define (refer to page
45). Use section classes and prefixes to divided your messages into useful
categories. Message classes can be loaded and unloaded from memory separately
or as a unit. If you do not specify a class for your messages, they default to class 0.

store application
messages separately
from JAM messages

work with a copy of the
file

divide application
messages into sections

Message File Syntax

44 JAM 7.0 Configuration Guide

Message File Syntax

Each entry in a message file has the following format:

TAG = message_content

TAG
A single word without embedded blanks that can include letters, digits, and
underscores. The equal (=) sign following TAG is required. Blanks are allowed
both before and after the equal sign.

If TAG identifies a system message, it is defined in the include file smerror.h ,
and it begins with a standard prefix (listed below). These prefixes are reserved and
can not be used for other messages.

SM Messages and strings used by the JAM runtime library.

FM Messages issued by the Screen Editor.

JM Additional runtime messages used by JAM.

JX Additional runtime messages used by the Screen Editor.

UT Messages issued by the JAM utilities.

DM Messages issued by the JAM database editor.

TP Messages issued by JAM’s transaction monitor interface.

CA Messages issued by the JAM/CASE interface.

message_content
Any alphanumeric string on a single line—although the string must contain at least
one non-numeric character.

Leading and trailing spaces are skipped. Use identical quotes at the start and end of
message_content to include leading and trailing space as literal blank space. If
message_content begins and ends with the same quotation character, JAM strips
off the quotes when it displays the message.

If the content is longer than one line and you wish it to appear on a continuous line,
use a backslash to end the lines that are continued. For example,

PQ_FATALERR = Application unable to post your \
transaction. Contact your system manager.

system prefixes

embedding leading and
trailing spaces

Message File Syntax

455 Message FilesChapter

Use backslash-n (\n) to force a new line. Use backslash-backslash (\\) to place
the backslash character in your message.

Use the ampersand to indicate a key mnemonic for push buttons. For example the
following lets a user press the letter O on the keyboard instead of choosing the Oui
(Yes) acknowledgment push button:

SM_MB_YESLABEL = &Oui

JAM automatically displays long status-line messages in a window so that the
entire message is visible.

message_content can also contain percent sequences that specify appearance,
positioning, and acknowledgment information. Refer to page 57 for information on
defining message attributes.

Messages that define date/time formats and numeric/currency formats have their
own syntax. Refer to page 60 for date/time syntax and page 66 for numeric/curren-
cy syntax.

If there is no TAG for a message, or message_content, is missing from the
message file and a call is made to display the message, JAM displays the message
section and number from the #define statement. For example, if the entry for
SM_HITANY is deleted from the JAM message file, and user input invokes this
particular message, the status line displays <8–27> — the value for SM_HITANY
from the include file smerror.h .

You can include comments in the message file by beginning the comment line with
a pound sign (#). The msg2bin utility ignores commented lines when it compiles
the file.

The following example illustrates the types of entries that can be found in the JAM
message file:

SM_DAYA6 = Fri
SM_DAYA7 = Sat
SM_MOREDATA = No more data.
SM_YES = y
SM_NO = n
SM_MONL1 = January
SM_MONL2 = February
SM_0DEF_DTIME = %m/%d/%2y %h:%0M
SM_MB_HELPLABEL= &Help
SM_YN_ERR = %MuPlease enter %Ky or %Kn into this field.
JM_HITACK = %MdHit acknowledge key to continue

Defining Multiple User Sections
A message file can utilize up to eight user classes, numbered 0 to 7. Each section
can contain up to 65529 characters. Each classes’ messages begin with a

forcing a new line

indicating a key
mnemonic

missing message entry

comments

Example

Message File Syntax

46 JAM 7.0 Configuration Guide

two-character prefix that you define. Use section classes and prefixes to divided
your messages into useful categories. Message classes can be loaded and unloaded
from memory separately or as a unit. If you do not specify a class for your
messages, they default to class 0.

The distributed message file utilizes classes 8 through 15, but they are not
designated in the file. If you wish to add user messages to this file, consider using
class designators.

When specifying messages in an application message file, precede each group of
messages with a class indicator in the following form:

” XY” = n

” XY”

A two-character (alphanumeric) ASCII code—you must type in the quotes. You
can use this identifier as the code argument (in library functions, such as
sm_msgread) when calling for specific classes of user messages. This code is used
in the same way as the JAM-specific prefixes and therefore, must be different from
those reserved for JAM (SM, JM, JX, FM, UT, DM, CA, TP).

n

A digit between 0 and 7, inclusively, that designates the class (in library functions
such as sm_msgread).

For example, a user-defined message file with multiple classes might contain the
following entries:

”U0” = 0
U0_BADVAL = Bad value
U0_WRONGDATE = Date must be with 30 days of current date
”U1” = 1
U1_WRONGRATE = This is not the applicable rate.

When msg2bin compiles the above messages, it numbers them 0x0, 0x1, and
0x1000.

You can also convert the ASCII message file to a C header file with the msg2hdr
utility. Refer to page 53 for a sample output file.

To make a class of messages memory-resident, read in each class individually. For
example:

sm_msgread (”UO”, 0, MSG_FILENAME|MSG_NOREPLACE, ”umsg.bin”)
sm_msgread (”U1”, 1, MSG_FILENAME|MSG_NOREPLACE, ”umsg.bin”)

When a message file is compiled with msg2bin , the utility uses the tags to
distinguish between system and user messages. It numbers user-defined messages

example

Modifying the Provided Message File

475 Message FilesChapter

consecutively starting with the class number times 0x1000. So the fourth message
in user class four would be numbered 0x4004. If you do not use classes, msg2bin
starts numbering at zero. (JAM’s system message numbers are taken from
smerror.h .) As a developer, you must remember to maintain the order of user
messages and the assignment of their identifiers.

Modifying the Provided Message File

You can change the contents in the the distributed message file (msgfile) in order
to perform these tasks:

� Translate JAM message text to another language—for non-English-speaking
developers or for international distribution.

� Change terminology to suit your particular needs while working with JAM.

� Change JAM defaults to suit you development and/or local standards or
customs. Refer to page 60 for information about modifying date/time formats
and defaults, and page 66 for information about changing currency formats.

If you want to add messages to the file, see the next section.

You can modify a message file in three steps:

1. Access the ASCII version of the message file and make changes using a text
editor.

For example, if you translate the JAM message file, as illustrated:

SM_DAYL1 = Domingo
SM_DAYL2 = Lunes
SM_DAYL3 = Martes
SM_DAYL4 = Miércoles
SM_DAYL5 = Jueves
SM_DAYL6 = Viernes
SM_DAYL7 = Sábado

the long names for days of the week will appear in Spanish in those fields that
have date edits that use the system clock.

2. Convert the ASCII message file to binary format with the msg2bin utility
(refer to page 49 for more information about msg2bin).

If you are simply changing the text of a message, you do not have to recompile the
application program if the TAG has already been defined in a compiled message
file.

Creating Application Messages

48 JAM 7.0 Configuration Guide

Creating Application Messages

You can create as many message files as your application requires. All message
entries must use the same syntax assignment as described on page 44; your
message TAGs cannot include any of those prefixes reserved for JAM (SM, FM,
JM, JX, UT, DM, TP, and CA). When you convert the ASCII file to binary format,
the utility msg2bin automatically numbers user-defined messages consecutively
starting with zero.

Note: If you are modifying your application message file and plan on appending it
to the JAM message file,or if you are planning extensive application messages,
consider defining multiple classes. This will ensure that the message file does not
exceed size limitations (65529 characters per class).

While a prefix is not required in an application-message TAG, it is often useful. All
entries with the same prefix (including JAM-specific) can then be loaded into
memory with a call to the library function sm_msgread (refer to the Language
Reference). Then to invoke a specific message, you must define its TAG in the
application program according to the assignment made by msg2bin (or msg2hdr
for user messages).

To create a message file, or add to an existing message file:

1. Create or access the ASCII message file using a text editor.

2. Add the desired entries using the syntax described earlier on page 44. For
example:

#user messages
US_NOTAVAIL = All copies of this movie are unavailable.
US_ACTL = Enter an actors last name.
#administrator messages
ADM_INVALIDRC = Invalid rating code.

3. Convert the ASCII file to binary format with the msg2bin utility.

4. Let JAM know about your new messages. There are several ways of
accomplishing this. Either define the TAGs in your application program or in
an include file:

#define US_NOTAVAIL 0x0
#define US_ACTL 0x1
#define ADM_INVALIDRC 0x2

Or run the msg2hdr utility to create a C header file of your user messages
(refer to page 53).

advantages of using
TAG identifiers

refer to page 53 for
directions on creating a
header file

Converting Message Files to Binary

495 Message FilesChapter

If you are going to be accessing your messages with JPL, you need to define
your TAGs as global JPL variables in your program or in a file which you
include:

global US_NOTAVAIL (1) 0
global US_ACTL (1) 1
global ADM_INVALIDRC (1) 2

Or run the msg2hdr utility to create a file of JPL global variables of your user
messages (refer to page 53).

5. If you need to gain access to your messages outside of JPL, you must
recompile your application program. Your application might then issue the
following calls:

sm_quiet_err (sm_msg_get (US_NOTAVAIL));
sm_err_reset (sm_msg_get (ADM_INVALIDRC));

Converting Message Files to Binary

Use the msg2bin utility to convert ASCII message files to a binary format for use
by JAM library functions. To convert a message file, use the desired options in
either of the following formats:

msg2bin [–pv] [–e ext] message-file...
msg2bin [–pv] [–o file] message-file...

To obtain a brief description of available arguments and command options, type

 msg2bin -h

The output of msg2bin is a binary file; the utility uses the TAGs to distinguish
between system and user messages. It numbers user-defined messages consecutive-
ly starting with the class number times 0x1000 (refer to page 45 for how to define
user classes). If there are no classes defined, user-defined messages are automati-
cally numbered consecutively starting from zero; the definitions of system
messages are taken from smerror.h . Be sure to maintain the order of messages
and the assignment of their identifiers. Use these identifiers in the application
programs to invoke the desired messages at runtime. Then recompile and link any
non-JPL source that includes any files that contain newly defined messages.

message-file
The name of the ASCII file containing named messages. More than one input file
may be specified.

Defining your message
TAGs in JPL

Arguments and
Options

Converting Message Files to Binary

50 JAM 7.0 Configuration Guide

–p Places each binary output file in the same directory as the corresponding
input file.

–v Lists the name of each input message file as it is processed.

–e Appends the given ext (extension) to the output files, rather than the
default bin extension. If the –o option is used, –e is ignored.

–o All output is placed in a single file, whose file name follows the option
letter. Use this option to concatenate your user messages to JAM-mes-
sages in a single binary file. This option will overwrite an existing binary
message file of the same name.

The following list describes possible errors, their cause, and the corrective action to
take:

Line too long: %s

Cause: The message has exceeded 1024 characters.
Action: Split the message into two separate messages or find a good copy editor.

File ’%s’ not found.

Cause: An input file was missing or unreadable.
Action: Check the spelling, presence, and permissions of the file in question.

Missing ’=’ in line: %s

Cause: The line in the message had no equal sign following the tag.
Action: Correct the input and re-run msg2bin .

Insufficient memory available.

Cause: The utility could not allocate enough memory for its needs.
Action: None.

Error in %s line %d: text after final quote %s

Warning in %s line %d: text after final quote %s

Cause: The message_content starts with a quote character (” , ’ , ‘) but there are
characters after the matching terminal quote character. Perhaps a
backslash is missing. An output file will be created and RET_SUCCESS
will be returned if warnings are encountered but no errors.

Action: Fix the offending line and rerun the utility.

Warning: no messages in user section \”%.2s\”

Cause: The input file had a user message class indicator line that did not have any
user messages after it. That section will not be included in the output file.

Action: Remove the offending class indicator and rerun the utility.

create a single binary
file from multiple ASCII
files

Errors

Converting Message Files to Binary

515 Message FilesChapter

message tag exceeds 80 characters:%s

Cause: Message name too long.
Action: Shorten the message name and re-run the utility.

At least one file name is required.

Cause: No message file was specified.
Action: Specify the name of the message file.

Error processing file %s

Cause: An error was encountered reading or writing the file.
Action: Confirm that the file is available and that the target directory can be

written.

Invalid character(s) in –x option.

Cause: The –x option (characters to prefix to the tag) starts with a digit or contain
a character that is not an alphanumeric or an underscore.

Action: Specify a valid prefix and re-run msg2hdr .

Error in %s line %d: bad tag %s

Warning in %s line %d: bad tag %s

Cause: The tag is missing or does not consist entirely of letters, digits and/or
underscores. An output file will be created and RET_SUCCESS will be
returned if warnings are encountered but no errors.

Action: Fix the offending tag and re-run the utility. Refer to smerror.h for a list
of tags.

Error in %s line %d: duplicate message tag %s

Warning in %s line %d: duplicate message tag %s

Cause: An earlier line also contained the same system message tag. The current
line is skipped. An output file will be created and RET_SUCCESS will be
returned if warnings are encountered but no errors.

Action: Fix the offending line and rerun the utility.

Error in %s line %d: duplicate user section class %s

Warning in %s line %d: duplicate user section class %s

Cause: The user section or two letter prefix on a class indicator line is already in
use. Class zero is implicitly used if a user message is encountered before
any class indicator lines. An output file will be created and RET_SUC-
CESS will be returned if warnings are encountered but no errors.

Action: Fix the offending line and rerun the utility.

Converting Message Files to Binary

52 JAM 7.0 Configuration Guide

Error in %s line %d: invalid user message class indicator
line %s

Warning in %s line %d: invalid user message class indicator
line %s

Cause: A user class indicator line (which is used to start a new message User
Section) is defective. The programs assume that any tag starting with a
double quote is one of these. The tag must be a double quote followed by
two character alphanumeric code and a double quote. The class indicator
must be a digit between 0 and 7. An output file will be created and
RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action: Fix the offending line and rerun the utility.

Error in %s line %d: message tag exceeds 80 characters %s

Warning in %s line %d: message tag exceeds 80 characters %s

Cause: Message name too long.
Action: Shorten the message name and re-run the utility.

Warning in %s line %d: message tag exceeds 31 characters %s

Cause: The tag is longer than 31 characters but is shorter than 80.
Action: None.

Error in %s line %d: missing final quote &s

Warning in %s line %d: missing final quote &s

Cause: The message content starts with a quote character (” , ’ , ‘) but does not
contain a matching terminal quote character. An output file will be created
and RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action: Fix the offending message and re-run the utility.

Warning in %s line %d: prefix does not match user section
class %s

Cause: The first two characters of a user message do not match the two characters
specified in the most recent user message class indicator line. An output
file will be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action: Fix the offending tag and re-run the utility.

Error in %s line %d: section too long

Warning in %s line %d: section too long

Cause: There are too many messages in a section. For user message sections the
total length of section’s message content plus 3, multiplied by the number
of messages in the section must not exceed 65503 (0xFFDF). Stated
mathematically:
 (section_content + 3) * (#_of _messages) < 65503 .

Action: Create another user section at the specified line.

Creating a Header File of User Messages

535 Message FilesChapter

Creating a Header File of User Messages

You use the msg2hdr utility to convert an ASCII message file that contains your
application’s messages to a C header file. To convert a message file, use the
following format:

msg2hdr [–n nmbr] [–x pfix] [–s pfix] [–dfjpv] [–o file] message-file

The square brackets indicate optional command flags. Do not type the brackets.

To obtain a brief description of the available arguments and command options, type

msg2hdr –h

The output of msg2hdr is a .h file with #define statements for each user
message TAG. The messages are numbered sequentially starting with 0x0 to 0xF.
The message portion is copied to the header file as a comment.

message-file
–n Starts numbering messages with the specified nmbr. If no number is

entered, 0 (zero) is used.

–x Prepends the specified prefix pfix to the TAG portion of the message.

–s Select only message names beginning with the prefix pfix.

–d Decimal base in the output header file. Default is base 16 (hexadecimal).

–f Output file may overwrite an existing file.

–j Create a JPL global variable file

–p Places the output file in the same directory as the corresponding input file.

–v Generates list of the file under creation.

–o Directs output to the specified file.

A user message file with multiple sections might look like this:

”U0” = 0
U0_BADVAL = Bad value
U0_WRONGDATE = Date must be within 30 days of current date
”U1” = 1
WRONGRATE = This is not the applicable rate

The output would then look like this:

Options and
Arguments

Example

sample header file with
multiple sections

Creating a Header File of User Messages

54 JAM 7.0 Configuration Guide

#define U0_BADVAL 0x0 /* Bad value */
#define UO_WRONGDATE 0x1 /* Date must be within 30 \
 days of current date */
#define WRONGRATE 0x1000 /* This is not the \
 applicable rate */

If you had used the –j options, the output would appear as:

global U0_BADVAL(1) = 0 /* Bad value */
global U0_WRONGDATE(1) = 1 /* Date must be within 30 \
 days of current date */
global WRONGRATE(4) = 4096 /* This is not the \
 applicable rate */

The following list describes possible errors, their causes, and the corrective action
to take:

Exactly one message file name is required

Cause: More than one input message file was specified.
Action: Run msg2hdr separately for each message file. Consider using the –n

option on the subsequent messages to number the messages consecutively.

File ’%s’ already exists; use ’–f’ to overwrite.

Cause: An output file of the same name already exists.
Action: Use the –o option to specify a different output name or use the –f option

to overwrite the existing header file.

Missing ’=’ in line: %s

Cause: The line in the message had no equal sign following the tag.
Action: Correct the input and re-run msg2hdr . (If you have already converted the

message file to binary, you will need to re-run msg2bin)

Insufficient memory available.

Cause: The utility could not allocate enough memory for its needs.
Action: None.

Invalid all–numeric message name ’%s’

Cause: At least one non-numeric character must be in a message name.
Action: Rename the offending message and re-run msg2hdr . (If you have already

converted the message file to binary, you will need to re-run msg2bin)

If no number is entered, 0 will be used.

Cause: You did not provide a number with the –n option and it defaulted to zero.
Action: Re-run the utility providing a number.

Missing message name for ’%s’

Cause: The message had no characters before the equal sign.
Action: Provide a name for the offending message and re-run msg2hdr . (If you

have already converted the message file to binary, you will need to re-run
msg2bin)

Errors

Creating a Header File of User Messages

555 Message FilesChapter

At least one file name is required.

Cause: No message file was specified.
Action: Specify the name of the message file.

Error processing file %s

Cause: An error was encountered reading or writing the file.
Action: Confirm that the file is available and that the target directory is writeable.

Invalid character(s) in –x option.

Cause: The –x option (characters to prefix to the tag) starts with a digit or contain
a character that is not an alphanumeric or an underscore.

Action: Specify a valid prefix and re-run msg2hdr .

Warning: no messages in user section \”%.2s\”

Cause: The input file had a user message class indicator line that did not have any
user messages after it.

Action: Remove the offending class indicator.

Error in %s line %d: message tag exceeds 80 characters %s

Warning in %s line %d: message tag exceeds 80 characters %s

Cause: Message name too long.
Action: Shorten the message name and re-run the utility.

Error in %s line %d: bad tag %s

Warning in %s line %d: bad tag %s

Cause: The tag is missing or does not consist entirely of letters, digits and/or
underscores. It can also indicate the the first character of the tag is a digit.
An output file will be created and RET_SUCCESS will be returned if
warnings are encountered but no errors.

Action: Fix the offending tag and rerun the utility. Refer to smerror.h for a list
of tags.

Error in %s line %d: duplicate message tag %s

Warning in %s line %d: duplicate message tag % s

Cause: An earlier line also contained the same system message tag. An output
file will be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action: Fix the offending tag and rerun the utility.

Error in %s line %d: duplicate user section class %s

Warning in %s line %d: duplicate user section class %s

Cause: The user section or two letter prefix on a class indicator line is already in
use. An output file will be created and RET_SUCCESS will be returned
if warnings are encountered but no errors.

Action: Fix the offending line and rerun the utility.

Creating a Header File of User Messages

56 JAM 7.0 Configuration Guide

Error in %s line %d: invalid user message class indicator
line %s

Warning in %s line %d: invalid user message class indicator
line %s

Cause: A user class indicator line (which is used to start a new message User
Section) is defective. The programs assume that any tag starting with a
double quote is one of these. The tag must be a double quote followed by
two character alphanumeric code and a double quote. The class indicator
must be a digit between 0 and 7. An output file will be created and
RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action: Fix the offending line and rerun the utility.

Error in %s line %d: message tag exceeds 80 characters %s

Warning in %s line %d: message tag exceeds 80 characters %s

Cause: The tag is longer than 80 characters. An output file will be created and
RET_SUCCESS will be returned if warnings are encountered but no
errors.

Action: Fix the offending tag and rerun the utility.

Error in %s line %d: message tag exceeds 31 characters %s

Warning in %s line %d: message tag exceeds 31 characters %s

Cause: The tag is longer than 31 characters but is shorter than 80. This causes an
error if the –j (JPL) option is selected, otherwise it causes a warning. An
output file will be created and RET_SUCCESS will be returned if
warnings are encountered but no errors.

Action: Fix the offending tag and rerun the utility.

Error in %s line %d: prefix does not match user section
class

Warning in %s line %d: prefix does not match user section
class

Cause: The first two characters of a user message do not match the two characters
specified in the most recent user message class indicator line. An output
file will be created and RET_SUCCESS will be returned if warnings are
encountered but no errors.

Action: Fix the offending tag and rerun the utility.

Display and Behavior Options in Messages

575 Message FilesChapter

Display and Behavior Options in Messages

Several percent escapes let you control the content and presentation messages. The
character or characters following the percent sign are case-sensitive; type them
exactly as shown. This prevents conflicts with percent escapes used by printf
and the tokens used by date/time formats. Some percent escapes must appear at the
beginning of the message; others are valid only for display in a window or on the
status line.

Table 3 summarizes the available percent escape sequences, followed by detailed
information about each option.

Table 3. Percent escapes for status line messages

Percent Escape
Description

%Ahhhh Change display attributes. Valid for status line messages only.

%K Display key label.

%B Beep the terminal.

%N Use a carriage return in the message text. Usage of this option
forces message in a pop-up window.

%W Display message in a pop-up window.

%Md Force the user to press the acknowledgment key
(ER_ACK_KEY) in order to dismiss the error message. This op-
tion must precede the message text.

%Mt[time-out] Force temporary display of message to the status line. JAM
automatically dismisses the message after the specified timeout
elapses and restores the previous status line display.

%Mu Force message display to the status line and permit any key-
board or mouse input to serve as error acknowledgment. JAM
then processes the keyboard or mouse input. This option must
precede the message text.

%A attr-value— Change display attributes
Valid only for status line messages, you can place %Aattr-value anywhere in the
message text. It changes the display attributes of the text that follows it. attr-value
is a four-digit hexadecimal value that represents one display attribute or the sum of
two or more attributes.

Display and Behavior Options in Messages

58 JAM 7.0 Configuration Guide

If the string to get the attribute change starts with a hexadecimal digit (0...F), pad
attr–value with leading zeros to four digits. Refer to Table 4 for valid attribute
values.

Note: Monochrome terminals ignore color attributes. However, if you are
developing for color terminals, include a color code with the %A. Otherwise, both
the foreground and background colors default to black when the %A is not followed
by a color code.

Table 4 lists the display attributes and their hexadecimal codes as defined in the
include file smattrib.h .

Table 4. Display attributes and hexadecimal codes for status line messages

Foreground Attributes* Background Attributes

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code

REVERSE 0010 B_HILIGHT 8000
UNDERLN 0020
BLINK 0040
HILIGHT 0080
DIM 1000

Foreground Colors Background Colors

BLACK (colors are additive) 0000 B_BLACK 0000
BLUE 0001 B_BLUE 0100
GREEN 0002 B_GREEN 0200
CYAN 0003 B_CYAN 0300
RED 0004 B_RED 0400
MAGENTA 0005 B_MAGENTA 0500
YELLOW 0006 B_YELLOW 0600
WHITE 0007 B_WHITE 0700
NORMAL_ATTR 0007 B_CONTAINER

(inherit color from container)
4000

*Attributes are additive. One or more foreground attributes can be added to a background attribute,
foreground color and background color.

The following message appears in red characters on the default black background
with “Warning.” in blinking characters.

SM_WARNBIG= %A44Warning.\
 %A0004Form is larger than screen size.

example

Display and Behavior Options in Messages

595 Message FilesChapter

%B — Beep the Terminal
Place %B in a status line or error message so that the terminal is beeped via sm_bel
when the message is displayed. You can configure JAM to send a visible bell, such
as flashing the screen, by putting a BELL entry in the video file. Refer to Chapter 7.

%K — Display Key Label
Place %Klogical-key anywhere in the text of status line and error messages. JAM
interprets logical-key as a mnemonic defined in smkeys.h . If the key translation
file defines a key label for the logical key, the key label replaces the percent
sequence in the message text. If there is no key label or no such logical key, %K is
stripped off and logical-key remains in the message text.

Key translation file Message file

XMIT(End)= NULL 0
SG_CONFIRM =\
Press %KXMIT\
to confirm .

Press End to confirm

Figure 2. The key label is defined in the key translation file; the message file contains the
message text. The result is displayed on the screen.

Note: If %K is used in a status line message, the user can push the corresponding
logical key onto the input queue by mouse-clicking on the key label text.

%Md — Force User to Acknowledge Error Message
Place %Md at the beginning of an error message so that the user is forced to press
the predefined acknowledgment key ER_ACK_KEY to clear the message. If the user
presses any other key, JAM displays an error message or beeps, depending on how
setup variable ER_SP_WIND is set. The keypress is not processed as data.

The %Md option corresponds to the default message behavior when setup variable
ER_KEYUSE is set to ER_NO_USE. If ER_KEYUSE is set to ER_USE—that is, your
application default does not require use of the acknowledgement key—set %Md in a
message in order to force the user to press the acknowledgment key to clear a
message. For more information about acknowledgement options, refer to page 28.

%Mt[time-out] — Display Transient Error Message
Place %Mt at the beginning a transient status line message. JAM automatically
dismisses the message after the specified timeout elapses and restores the previous

Customizing Date and Time Formats

60 JAM 7.0 Configuration Guide

status line display. Timeout specification is optional; the default timeout is one
second. You can specify another timeout in units of 1/10 second with this syntax:

#(n)

where n is a numeric constant that specifies the timeout’s length. If n is more than
one digit, the value must be enclosed with parentheses. For example, this statement
displays a message for 2 seconds:

msg emsg ”%Mt(20)Changes have been saved to database.”

The user can dismiss the message before the timeout by pressing any key or mouse
clicking. JAM then processes the keyboard or mouse input.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement key. JAM then discards any keyboard input.

%Mu — Use Any Key to Acknowledge Error Message
Valid only for error messages, you must place %Mu at the beginning of an error
message. JAM forces message display to the status line and permits any keyboard
or mouse input to serve as error acknowledgment. JAM then processes the
keyboard or mouse input. In the following example, entering y or n acts as both
message acknowledgment and data entry:

%MuPlease enter %Ky or %Kn into this field.

If the message is too long to fit on the status line, JAM displays the message in a
window. In this case, users can dismiss the message only by choosing OK or
pressing the acknowledgement key. JAM then discards any keyboard input.

%N — Use a Carriage Return in Message Text
Place one or more %Ns anywhere in a message where you want to insert line
returns. Use of this option forces message display to a pop-up window.

%W — Display Message in a Pop-up Window
Valid only for error messages, you must place %W at the beginning of a message.
JAM forces display of the message in a pop-up window.

Customizing Date and Time Formats

The JAM message file includes entries that establish date and time formats and
text. It also includes substitution variables that the screen editor uses to assign
those formats to fields.

Customizing Date and Time Formats

615 Message FilesChapter

You can modify date/time entries in the message file if you want to

� Translate the text (days of the week and names of months) to comply with
local customs.

� Customize the formats (SM_ date/time entries) to comply with local customs or
individual preferences.

� Customize the names of format mnemonics and format types for non-English
developers or for individual preferences.

This section describes the tags and their default entries and how you can change
the entries to meet the needs of both your development environment and your
application.

Date/Time Defaults

When you choose Date/Time for the Data Formatting property of a widget, ten
default choices for Format Type are made available to you. The message file
contains the definitions for these format types: A name tag defines the name of a
format type to appear on the Format Type menu, and a corresponding format tag
specifies the format associated with that name. For example FM_0MN_DEF_DT
defines the name of the first format type as DEFAULT and the corresponding format
tag SM_0DEF_DTIME defines its format as %m/%d/%2y %h:%0M.

Table 5 lists the date/time name tags as delivered with JAM and their correspond-
ing format type names. These are the names which appear in the screen editor. The
entries in Table 6 define the formats that correspond to the date/time tags and
names in Table 5. (The tokens in the formats are defined in Table 7.)

Table 5. Default date/time entries

Date/Time Tag Format Type Name Formatting Result

FM_0MN_DEF_DT DEFAULT 4/1/94 13:13

FM_1MN_DEF_DT DEFAULT DATE 4/1/94

FM_2MN_DEF_DT DEFAULT TIME 13:13

The tags FM_3MN_DEF_DT through FM_9MN_DEF_DT are undefined in the
provided message file. In the screen editor, the format names default to ‘Default’.
The corresponding formats are defined in the message file, as shown in the table
below.

Customizing Date and Time Formats

62 JAM 7.0 Configuration Guide

Table 6. Default date/time formats

Date/Time Format Tag Tokenized Format

SM_0DEF_DTIME %m/%d/%2y %h:%0M

SM_1DEF_DTIME %m/%d/%2y

SM_2DEF_DTIME %h:%0M

SM_3DEF_DTIME %m/%d/%2y %h:%0M

SM_4DEF_DTIME %m/%d/%2y %h:%0M

... ...

SM_9DEF_DTIME %m/%d/%2y %h:%0M

Date/Time Tokens

When specifying a format in the message file or as an argument to the library
functions sm_sdtime or sm_udtime , you must use some combination of tokens
— not the Screen Editor mnemonics like MONL or DEFAULT DATE. In this way,
JAM does not need to parse the message file, and the library functions may be used
without knowing the names of substitution variables defined or modified in the
message file. When JAM performs date calculations using a format, it replaces
tokens with their appropriate values. All other characters in the format (i.e.,
commas, slashes, colons, etc.) are used literally. If you wish to refer to one of the
default format types, there are format tokens ranging from %0f to %9f that
correspond to each of the format tags (SM_ date/time entries).

The tokens are listed in Table 7. Most of these substitute a numeric value; message
entries are indicated for those that substitute text. For example, %4y might
substitute 1999 , whereas %*m would, depending on the date, substitute one of the
values defined by SM_MONL1 through SM_MONL12, perhaps July , perhaps
Juillet .

Table 7. Definitions of date and time tokens

Description Token Message Entries for Text

Year:

4 digit %4y

2 digit %2y (Use setup file to specify century break)
**Tokens provided so default formats may be used with the library functions sm_sdtime and
sm_udtime .

Customizing Date and Time Formats

635 Message FilesChapter

Description Message Entries for TextToken

Month:

numeric (1 or 2 digit) %m

numeric (2 digit) %0m

abbreviated name (3 char) %3m SM_MONA1...SM_MONA12

full name %*m SM_MONL1...SM_MONL12

Day of the Month:

numeric (1 or 2 digit) %d

numeric (2 digit) %0d

Day of the Week:

abbreviated name (3 char) %3d SM_DAYA1...SM_DAYA7

full name %*d SM_DAYL1...SM_DAYL7

Day of the Year:

numeric (1-366) %+d

Time:

hour (1 or 2 digit) %h

hour (2 digit) %0h

minute (1 or 2 digit) %M

minute (2 digit) %0M

second (1 or 2 digit) %s

second (2 digit) %0s

AM and PM %p SM_AM, SM_PM

Ten Default Formats:

formats specified in message
file entries**

%0f - %9f SM_0DEF_DTIME to
SM_9DEF_DTIME

Other:

literal percent sign %%

**Tokens provided so default formats may be used with the library functions sm_sdtime and
sm_udtime .

Creating Date and Time Defaults

There are ten date and time entries available for defining formats and the names
that specify those formats. The tokens for SM_3DEF_DTIME through
SM_9DEF_DTIME are the defined identically to the default for SM_0DEF_DTIME.
These additional tags are provided so that you can

Customizing Date and Time Formats

64 JAM 7.0 Configuration Guide

� Create your own date/time formats.

� Name them appropriately.

To change or create a default format:

1. Open the ASCII version of the message file with a text editor.

2. Change one of the SM_ date/time entries (SM_0DEF_DTIME through
SM_9DEF_DTIME) to define the desired format.

To change the format associated with the DEFAULT substitution variable, you
could change

SM_0DEF_DTIME = %m/%d/%2y %h:%M0
to
SM_0DEF_DTIME = %d %*m %4y %h:%M0 %p

Date fields that are assigned the DEFAULT substitution variable display
date/time in the form: 30 November 1994 3:40 PM

To define a new format, e.g. month/year, you could change

SM_3DEF_DTIME = %m/%d/%2y %h:%M0
to
SM_3DEF_DTIME = %3m/%4y

Then create the substitution variable with the corresponding FM_ tag:

FM_3MN_DEF_DT = SHORTDATE

SHORTDATE would now be on the Format Type menu. Date fields created with
the Screen Editor whose format is SHORTDATE would display dates in the
form: JUN/1993

3. Convert the ASCII message file to binary format with the msg2bin utility.

Note: Tokens are provided (refer to Table 7) that correspond to each of the default
formats so that these defaults can be used with the library functions sm_sdtime
and sm_udtime.

To customize the date and time entries in the JAM message file for non-English
applications, you can:

� Translate the text entries which name the days of the week and the months of
the year. This text is assigned to the tags SM_DAYA1 ... SM_DAYA7 (abbreviated
names of days), SM_DAYL1 ... SM_DAYL7 (full names of days), SM_MONA1 ...
SM_MONA12 (abbreviated names of months), SM_MONL1 ... SM_MONL12 (full
names of months).

changing the default
format

creating a new format

Creating
Defaults for
Non-English
Applications

Customizing Date and Time Formats

655 Message FilesChapter

� Change the formats associated with the SM_ date/time tags to comply with
local customs.

By translating text and changing formats, date fields whose format is DEFAULT
might appear like this:

30 Novembre 1994 15:40

For example, to develop an application for French users, translate the text assigned
to SM_DAYA1...SM_DAYA7, SM_DAYL1..SM_DAYL7, SM_MONA1...SM_MONA12,
and SM_MONL1...SM_MONL12, like this:

SM_DAYA1 = Dim
SM_DAYA2 = Lun
SM_DAYA3 = Mar
...
SM_DAYL3 = Mardi
SM_DAYL4 = Mercredi
SM_DAYL5 = Jeudi
SM_DAYL6 = Vendredi
SM_DAYL7 = Samedi
...
...
SM_MONA1 = Jan
SM_MONA2 = Fév
SM_MONA3 = Mar
...
SM_MONL7 = Juillet
SM_MONL8 = Août
SM_MONL9 = Septembre
SM_MONL10 = Octobre
SM_MONL11 = Novembre
SM_MONL12 = Décembre

This method can be useful if you are distributing the same application to users who
speak different languages. A user’s SMMSGS variable in the local setup (smvars)
file or system environment can specify the name of the appropriate message file
and screen libraries. Date/time fields then display the date in a language and format
familiar to the user, while all programming code remains independent of the user’s
language.

In addition to translating the text for days of the week and months of the year, and
localizing formats, you can translate the names of substitution variables for
non-English speaking developers, These entries are adjacent to each other in the
JAM message file, beginning with FM_YR4 and ending with FM_9MN_DEF_DT.

For example, for French-speaking developers, you could provide these entries:

Creating
Defaults in a
Non-English
Version of JAM

Numeric Formats

66 JAM 7.0 Configuration Guide

FM_YR4 = ANNÉE4
FM_YR2 = ANNÉE2
FM_MON = MOIS
FM_MON2 = MOIS2
FM_DATE = JOUR
...

Given these changes, French-speaking developers using jamdev can create
date/time formats using substitution variables in their native language — MOIS2,
ANNÉE4, and JOURA, while Spanish-speaking developers might use substitution
variables like MES2, AÑO4, and DÍAA.

Literal Dates in Calculations

The JAM message file includes an entry to specify the format of literal dates used
in @date calculations. The tag SM_CALC_DATE specifies the format. The default
format is %m/%d/%4y (MON/DATE/YR4). For example, to count the number of
days until the millennium, sm_calc can be used with a literal date:

sm_calc (0,0,’days = @date(1/1/2000)- @date(today)’);

For more information about the library function sm_calc , refer to the Language
Reference.

Numeric Formats

When you choose Numeric for the Data Formatting property of a widget, ten
default choices for Format Type are made available to you. The message file
contains the definitions for these format types: A name tag defines the name of a
format type to appear on the Format Type menu, and a corresponding format tag
specifies the format associated with that name. For example SM_0MN_CURR_DEF
defines the name of the first format type as Local Currency and the correspond-
ing format tag SM_0DEF_CURR defines its format as “.22,l$” .

You can modify the message file to store ten different default numeric formats.
Like the date/time message entries, one entry (SM_0DEF_CURR through
SM_9DEF_CURR) defines the format, and a corresponding entry (SM_0MN_CURRDEF
through SM_9MN_CURRDEF) defines the name of the format type that appears in the
Screen Editor.

Numeric Formats

675 Message FilesChapter

Numeric formats are defined as rmxtpccccc:

r Radix separator or decimal symbol (usually a period or comma)

m Minimum number of decimal places

x Maximum number of decimal places

t Thousands’ separator (i.e., a comma or period; b for a blank)

p Placement of currency symbol (l = left, r = right, or m = middle)

ccccc Currency symbol (up to 5 characters, including blank spaces)

To specify leading or trailing blanks in a format, enter blank spaces before or after
the currency character(s). The spaces become a part of the currency symbol.

The default format .22,l$ indicates:

� period (or decimal point) as the radix separator

� minimum of two decimal places

� maximum of two decimal places

� comma as the thousands separator

� the currency symbol is placed on the left of the number

� the dollar sign ($) is the currency symbol

Table 8 lists the numeric tags as delivered with JAM, their format type name, and
the corresponding format tag and the default format. Names are defined only for
the first three format types. (Names for format types default to ‘default’). The last
seven names and formats are for other types you may want to create. Therefore, the
last seven format types are defined identically to SM1_DEF_CURR, which is set to
two decimal places with a comma as the thousands separator.

Numeric Format
Syntax

Formats in
Provided
Message File

Numeric Formats

68 JAM 7.0 Configuration Guide

Table 8. Default message entries for defining numeric formats

Numeric Tag Format Type Name
Corresponding
Format Tag

Default
Format

SM_0MN_CURRDEF Local Currency SM_0DEF_CURR ”.22,l$”

SM_1MN_CURRDEF 2 decimal places
with commas

SM_1DEF_CURR ”.22,”

SM_2MN_CURRDEF 0 decimal places
with commas

SM_2DEF_CURR ”.00,”

SM_3DEF_CURR ”.22,”

SM_4DEF_CURR ”.22,”

... ...

SM_9DEF_CURR ”.22,”

For example, SM_0MN_CURRDEF defines the name of the format type as Local
Currency , and the corresponding format tag SM_0DEF_CURR defines its format as
”.22,l$” . A field with this property would to look like $5,100.75 .

Creating a Default Numeric Format
There are ten numeric format entries available. You can overwrite one of the first
three provided formats, or change one of the seven dummy formats. To create a
numeric format you need to:

� Define a format tag to equal your own numeric format.

� Define its corresponding numeric tag to equal the name of your newly created
format variable.

To change a default numeric format:

1. Open the ASCII version of the message file with a text editor.

2. Change one of the SM_ numeric entries (SM_0DEF_CURR through
SM_9DEF_CURR) to define the desired format

To specify leading or trailing blanks in a format, enter blank spaces before or
after the currency character. The spaces become a part of the currency symbol.

To add a format for the French franc, you might make the following change:

SM_9DEF_CURR = ’,22.r F’

example

Numeric Formats

695 Message FilesChapter

3. And then add the corresponding SM_ numeric entry.

SM_9MN_CURRDEF = Franc

4. Convert the ASCII message file to binary format with the msg2bin utility.

Using the example illustrated here, currency fields that are assigned the Franc
numeric format type property display currency entries in the form:
999.999,99 F .

In addition to modifying the currency formats to comply with local customs, you
can translate the names which appear on the numeric format type property menu
for non-English speaking developers. The first three entries are adjacent to each
other in the JAM message file, beginning with SM_0MN_CURRDEF and ending with
SM_3MN_CURRDEF.. SM_4MN_CURRDEF through SM_9MN_CURRDEF are also
available variables but not pre-defined in the message file.

For example, for Spanish-speaking developers, you might provide these entries:

SM_0MN_CURRDEF = DINERO
SM_1MN_CURRDEF = NUMERO

Given these changes, Spanish-speaking developers using jamdev would see
format type choices in their native language.

Decimal Symbols
Via the message file tag SM_DECIMAL you can define a default decimal symbol (or
radix separator). When you create a currency field with the Screen Editor, you can
specify any decimal symbol (or radix separator). However, the SM_DECIMAL entry
enforces a default symbol. If SM_DECIMAL is not specified in the message file,
JAM tries to determine the appropriate symbol from the operating system.

JAM accommodates 3 types of decimal symbols. These decimals differ in scope
and function.

local
Defined by the message file entry for SM_DECIMAL (default is period (.)). It
replaces the system symbol within the scope of a JAM application. If the system
and local symbols are different, JAM translates appropriately when interacting
with system routines. Use the SM_DECIMAL entry when the system decimal symbol
is inappropriate.

system
The character used by the operating system when translating characters to internal
values or vise versa (e.g., C routines atof , sprintf , etc.).

Creating
Defaults in a
Non-English
Version of JAM

Customizing Push Button Labels for Message Boxes

70 JAM 7.0 Configuration Guide

Note: Setting the system decimal symbol incorrectly will cause unexpected results
when JAM processes numeric values.

field
Defined by a currency edit for a specific field. This symbol is used only for data
entry validation and for displaying field values. Use field decimal symbols when
you nee to handle multiple decimal conventions within a single application. For
more information, refer to page 486 in the Application Development Guide.

Customizing Push Button Labels for Message Boxes

The message file tags SM_MB_OKLABEL through SM_MB_HELPLABEL provide the
text for message box push buttons.

Note: Microsoft Windows for other languages automatically translate standard
push buttons to the appropriate language.

You can change as well as translate push button labels by doing the following:

1. Access the ASCII version of the message file with a text editor.

2. Change the label text (placing an ampersand before the character you wish to
serve as a key mnemonic for the push buttons).

3. Convert the ASCII message file to binary format with the msg2bin utility.

For example, if you were converting your application to Spanish, you might
include the following in your message file:

SM_MB_OKLABEL = &Ok
SM_MB_CANCELLABEL = &Cancelar
SM_MB_YESLABEL = &Si
SM_MB_NOLABEL = &No
SM_MB_RETRYLABEL = &Re-intentar
SM_MB_IGNORELABEL = &Ignorar
SM_MB_ABORTLABEL = A&bortar
SM_MB_HELPLABEL = &Ayuda

Warnings for Character JAM Message Windows

Some message windows contain icons to alert users to the nature of the message or
warning. JAM supports four icon types: Stop, Question, Warning, and Information.

Setting Yes/No Values

715 Message FilesChapter

In character JAM, the message file is searched for the tag that corresponds to the
specified icon and its associated text; this text appears as the message box’s title
bar text. The message file tags SM_MB_STOP through SM_MB_INFORMATION
provide this text. To translate these labels, access the ASCII version of the message
file with a text editor, change the label text and convert the ASCII message file to
binary format with the msg2bin utility. For example, if you were converting your
application to Spanish, you might include the following in your message file:

SM_MB_STOP = Alto!
SM_MB_QUESTION = Pregunta
SM_MB_WARNING = Aviso!
SM_MB_INFORMATION = InformaciÓn

Setting Yes/No Values

The values associated with the message tags SM_YES and SM_NO can be easily
translated or standardized to meet your specific needs. For example, you can
translate the value for SM_YES to s (short for sí) for Spanish-speaking users.

Library functions such as sm_is_yes , and properties such as keystroke filter that
use the SM_YES and SM_NO entries expect and return the appropriate character as
defined in the message file. In the case of a Spanish-speaking user, entering s (for
an affirmative response) is recognized, whereas y is ignored.

Using Alternate Message Files

The SMMSGS environment variable specifies the binary file to read into memory at
JAM’s initialization. If you serve an international market, you can give your users
the option of selecting from alternate message files. At runtime the user can set the
configuration variable SMMSGS for the binary message file that is appropriate to
his/her language.

Alternative files for an application (and for non-English versions of JAM) must be
identical in terms of the number and sequencing of all messages (refer to page 48
for information about adding messages).

73

Key Translation File
To build a JAM application, you must be able to enter ASCII data characters (i.e.,
A, q, 8, ! , 7, ?,] , ...) and to indicate certain logical key values to JAM—EXIT,
XMIT, PF1, SPF1, etc. Since physical keyboards vary from system to system, JAM
uses a key translation file to translate sequences you enter on your physical
keyboard into logical keys that JAM understands.

JYACC provides key translation files, in the config directory, that support more
than 100 terminal types. One of the distributed key files should work for you.
However, you may want to create, modify, or examine the key translation file if
you:

� Have a unique keyboard that does not have extended keys corresponding to
the JAM logical keys.

� Want to change or define key assignments for specific logical keys.

� Want to assign or change key labels for logical keys.

This chapter describes

� What a key translation file does.

� How to read the entries in the key translation file (page 77).

� How to view the key sequences produced by your keyboard with the showkey
utility (page 75).

66

The Role of the Key Translation File

74 JAM 7.0 Configuration Guide

� How to convert key translation files to binary format with the key2bin (page
86) utility.

� Using alternate key translation files in portable applications (page 87).

The Role of the Key Translation File
During initialization, JAM reads the key translation file specified by SMKEY (in the
smvars file) into memory. The value for SMKEY is determined by the terminal type
indicated in your SMTERM or system TERM variable. Refer to Chapter 3 for more
information about setting the SMKEY variable. Now JAM can recognize how your
physical keys map to the logical keys.

JAM logical keys are defined as hexadecimal values in the include file smkeys.h .
This file is terminal-independent, while key translation files are terminal-depen-
dent. ibmkeys , vt220keys , wy75keys are a few of the available key translation
files.

For the most part, ASCII data key, logical values between 1 and hex FF, require no
translation and are not included in the key translation file. However, some
keyboards do not have the same number of function keys, and most do not have
logical keys named HELP or XMIT (Transmit). Therefore, the key translation file
specifies a physical key which transmits a unique code or sequence of codes which,
in turn, works as a HELP key. Another key works as the XMIT key, and so on.
Logical values between hex 100 and hex 1FF are cursor control and editing keys;
values greater than hex 1FF are function keys.

So, when you press a key, the keyboard generates either a single ASCII data
character, or a sequence of characters beginning with an ASCII control code. JAM
converts these characters into logical keys, numbered between 1 and 65535
inclusively, before processing them—hence determining if a data character or
control character was received.

If the key input is a control character, JAM searches the key translation file for a
sequence beginning with that character. If there is a match, additional characters
are read until the entire sequence is found, and returns the logical value. So, JAM
is able to interpret XMIT when you press a Do key, or an End key, or whatever
physical key is mapped to XMIT in your key translation file.

Ctrl Key Translation file
HELP

HELP(Ctrl–F1) = NUL ^

F1

Viewing Key Sequences

756 Key Translation FileChapter

If a match is found on the initial character, but not the whole sequence, the entire
sequence is discarded. If there is no match at all with the entered control character,
it is returned unchanged; this is useful for machines such as IBM PCs that use
control codes for displayable characters. Chapter 25 of the Application Develop-
ment Guide contains a detailed discussion of key translation.

With a one-to-one mapping there are not enough keys on a commercially available
keyboard to represent the entire JAM logical keyboard — and for your application,
you may not need to use or map all the logical keys. However, to accommodate its
larger logical keyboard, JAM combines two or more physical keys to represent a
logical key. For example, on a PC the logical key ZOOM is often mapped to Alt-Z.

You can print out the ASCII key translation file that supports your keyboard. Key
translation file names begin with a mnemonic for the type of terminal you are
using, and end with keys . For example, vt100keys is the key translation file for a
VT100 terminal. All key translation files distributed by JYACC adhere to this
convention.

If you use JAM on different terminals with varying operating systems and
keyboards, then each terminal must have its own key translation file. If necessary,
you can create more than one key translation file for a terminal. In this way you
can tailor the key mapping for a particular application.

Refer to Chapter 25 of the Application Development Guide for a discussion of key
processing in JAM applications.

Viewing Key Sequences

As an aid to editing key files, the showkey utility is provided. The showkey utility
prints out the key sequence of keys that you enter. To run this utility, type showkey
at a system prompt. (This is a JAM executable, and as such, the variables SMVARS
and SMBASE must be appropriately defined to run this utility.) The showkey
window appears:

learn your key mapping

Viewing Key Sequences

76 JAM 7.0 Configuration Guide

In order to assure that you are not mistyping your keystrokes, showkey expects you
to enter your keystrokes twice. If you do not press the same key sequence twice, it
will not display the generated characters. Type x twice in a monospace font to exit
the showkey utility.

If you want to bind the keystroke(s) to a JAM logical key, copy the decoded
keystroke text to your key translation file. For example if you wanted to assign
Shift–F10 on your keyboard to the logical key which starts the debugger, you
would:

1. Start the showkey utility.

2. Enter Shift–F10 twice.

The showkey window displays the character sequence that the keystroke
transmits. On one platform, the sequence for Shift–F10 was ESC [4 5 ~

3. Bind the key label and character sequence to the debugger hot key:

DBUG(Shift–F10)= Esc [4 5 ~

4. Run the key2bin utility on your altered key file.

5. Type xx to exit the utility.

Key Translation File Syntax

776 Key Translation FileChapter

Key Translation File Syntax

Each entry in a key translation file has the format:

logical-key(key-label) = character-sequence

Lines beginning with a pound sign # are treated as comments. They are ignored by
the key2bin utility.

logical-key
The mnemonic or the hexadecimal value of a JAM logical key. For example, the
logical TRANSMIT key is represented by the mnemonic XMIT or by the hex
value 0x104. The mnemonics and hex values for all JAM logical keys are defined
in smkeys.h . Refer to Table 9 on page 79 for a list of these mnemonics and
values.

You can assign the same logical-key to two (or more) different character-se-
quences. For example, in a key translation file for the PC, you can make these
entries:

HELP(Ctrl–F1) = NUL ^
HELP(Ctrl–Home) = NUL w

When these entries are used with a PC, both Ctrl–F1 and Ctrl–Home will execute
HELP.

key-label
The letter, numeral, character, or character string engraved on a physical keytop.
One or more physical key labels may be included inside the parentheses, for
example (Alt–F1). key-label is optional. It can be accessed at runtime through
various library functions and the %K escape in status line messages. (Refer to
sm_d_msg_line in the Language Reference.) Key labels are often helpful in user
messages and prompts. If key-label is not specified, the logical key value is used in
screen displays.

character-sequence
The sequence of characters, up to six characters not including blanks, produced by
a keystroke. JAM translates character-sequence to be the logical key on the left of
the equal sign.

When a physical key is pressed, it transmits a character code which is unique from
the code produced by any other key on the keyboard. Each complete character
sequence has only one logical value. Although a sequence may include another as a
substring.

key-label must be
enclosed in parentheses

Key Translation File Syntax

78 JAM 7.0 Configuration Guide

If you use key sequences that are lead-ins of other sequences, you must assign a
timing interval with the video file entry keyword KBD_DELAY. For example, if you
have defined one logical value to ESC, another to ESC [F and have set
KBD_DELAY to 5, JAM will wait a half of a second after ESC is pressed to resolve
the ambiguity. If during that interval [F is not received (or any other identifiable
sequence that is prefixed with ESC) JAM passes on the logical value of ESC. For
more information on keyboard delay, refer to page 111.

The following example is an excerpt from a key translation file:

EXIT (F1) = SOH @ CR
XMIT (Enter) = SOH O CR
TAB = HT
BACK = NUL SI
BKSP = BS

These are the arrow keys
RARR = ESC [C
LARR = ESC [D
UARR = ESC [A
DARR = ESC [B

The next entry uses a hex value rather
than a mnemonic for logical-key
0x108 = DEL

Key Mnemonics and Hexadecimal Values

Table 9 is derived from the include file smkeys.h which defines the JAM logical
keyboard. Some entries are required by the Screen Editor and are indicated with
double asterisks (**).

character sequence
substrings and keyboard
delay

Example

Key Translation File Syntax

796 Key Translation FileChapter

Table 9. JAM Logical Keyboard — key mnemonics and hexadecimal values

Logical Key
Mnemonic Hex Value Description

CLWIN 0x100 close the current window
SYSMN 0x101 access system menu on active screen/window
CLAPP 0x102 close the application
EXIT 0x103 exit**
XMIT 0x104 transmit**
HELP 0x105 help on field*
FHLP 0x106 help on screen or form
BKSP 0x108 backspace*
TAB 0x109 tab*
NL 0x10a newline*
BACK 0x10b backtab*
HOME 0x10c go to first field on screen*
DELE 0x10e delete character*
INS 0x10f insert/overwrite character toggle*
LP 0x110 local print, valid only for character-mode
FERA 0x111 clear field*
CLR 0x112 clear all unprotected*
SPGU 0x113 scroll up a page
SPGD 0x114 scroll down a page
LSHF 0x116 left shift
RSHF 0x117 right shift
LARR 0x118 left arrow*
RARR 0x119 right arrow*
DARR 0x11a down arrow*
UARR 0x11b up arrow*
LWRD 0x11c left to previous word
RWRD 0x11d right to next word
REFR 0x11e refresh screen*
EMOH 0x11f go to last field on screen
INSL 0x120 insert line*
DELL 0x121 delete line*
ZOOM 0x122 zoom on field*
SFTS 0x123 soft key select
MTGL 0x124 toggle menu mode
VWPT 0x125 viewport
MOUS 0x126 indicate mouse event
MNBR 0x127 access menu bar
* Recommended entries. **Entries required by jamdev. ***Used in wordwrap fields.

Key Translation File Syntax

80 JAM 7.0 Configuration Guide

Logical Key
Mnemonic DescriptionHex Value

CYCL 0x128 cycle through a set of sibling windows
DBUG 0x129 hot key for debugger
WMODE*** 0x12a toggle control code display
WTAB*** 0x12b hard tab
WNL*** 0x12c hard new line
ITSEL 0x12d item selection screen key
BOLN 0x12e beginning of line (widget)
EOLN 0x12f end of line (widget)
MDBL 0x131 mouse double click
OPTDN 0x132 option menu drop down key
BOFD 0x133 beginning of entry field
EOFD 0x134 end of entry field
ADDM 0x135 add mode toggle in list box
EXT 0x136 extend selection to select contiguous list items
EXTD 0x137 extend selection with down arrow in list box
EXTU 0x138 extend seleciton with up arrow in list box
ALSYS 0x83d access and open system menu
* Recommended entries. **Entries required by jamdev. ***Used in wordwrap fields.

Note: The documentation on error messages and error acknowledgment often
refers to an error acknowledgment key whose default is the space bar. Since the
space bar is a data entry key, it cannot be used as a logical key. Instead, the key is
defined as the setup variable ER_ACK_KEY. You can change the entry in the
smvars file, in a setup file, in the system environment, or at runtime with the
library function sm_option. Refer to Chapter 4.

Table 10 includes the mnemonics and hexadecimal values for function keys (PF),
shifted function keys (SPF), and ALT keys. Table 11 includes the mnemonics and
hexadecimal values for application function keys (APP).

Key Translation File Syntax

816 Key Translation FileChapter

Table 10. Hexadecimal values for function keys, shifted function keys, and ALT keys

PF Hex SPF Hex ALT Hex

PF1 0x6101 SPF1* 0x4101 ALTA 0x4103

PF2* 0x6201 SPF2* 0x4201 ALTB 0x4203

PF3* 0x6301 SPF3* 0x4301 ALTC 0x4303

PF4* 0x6401 SPF4* 0x4401 ALTD 0x4403

PF5* 0x6501 SPF5* 0x4501 ALTE 0x4503

PF6* 0x6601 SPF6* 0x4601 ALTF 0x4603

PF7* 0x6701 SPF7 0x4701 ALTG 0x4703

PF8* 0x6801 SPF8 0x4801 ALTH 0x4803

PF9* 0x6901 SPF9 0x4901 ALTI 0x4903

PF10* 0x6a01 SPF10 0x4a01 ALTJ 0x4a03

PF11 0x6b01 SPF11 0x4b01 ALTK 0x4b03

PF12 0x6c01 SPF12 0x4c01 ALTL 0x4c03

PF13 0x6d01 SPF13 0x4d01 ALTM 0x4d03

PF14 0x6e01 SPF14 0x4e01 ALTN 0x4e03

PF15 0x6f01 SPF15 0x4f01 ALTO 0x4f03

PF16 0x7001 SPF16 0x5001 ALTP 0x5003

PF17 0x7101 SPF17 0x5101 ALTQ 0x5103

PF18 0x7201 SPF18 0x5201 ALTR 0x5203

PF19 0x7301 SPF19 0x5301 ALTS 0x5303

PF20 0x7401 SPF20 0x5401 ALTT 0x5403

PF21 0x7501 SPF21 0x5501 ALTU 0x5503

PF22 0x7601 SPF22 0x5601 ALTV 0x5603

PF23 0x7701 SPF23 0x5701 ALTW 0x5703

PF24 0x7801 SPF24 0x5801 ALTX 0x5803

ALTY 0x5903

ALTZ 0x5a03

*Recommended entries.

Key Translation File Syntax

82 JAM 7.0 Configuration Guide

Table 11. Hexadecimal values for application function keys

APP Hex APP Hex

APP0 0x6002 APP32 0x4002

APP1 0x6102 APP33 0x4102

APP2 0x6202 APP34 0x4202

APP3 0x6302 APP35 0x4302

APP4 0x6402 APP36 0x4402

APP5 0x6502 APP37 0x4502

APP6 0x6602 APP38 0x4602

APP7 0x6702 APP39 0x4702

APP8 0x6802 APP40 0x4802

APP9 0x6902 APP41 0x4902

APP10 0x6a02 APP42 0x4a02

APP11 0x6b02 APP43 0x4b02

APP12 0x6c02 APP44 0x4c02

APP13 0x6d02 APP45 0x4d02

APP14 0x6de2 APP46 0x4e02

APP15 0x6f02 APP47 0x4f02

APP16 0x7002 APP48 0x5002

APP17 0x7102 APP49 0x5102

APP18 0x7202 APP50 0x5202

APP19 0x7302 APP51 0x5302

APP20 0x7402 APP52 0x5402

APP21 0x7502 APP53 0x5502

APP22 0x7602 APP54 0x5602

APP23 0x7702 APP55 0x5702

APP24 0x7802 APP56 0x5802

APP25 0x7902 APP57 0x5902

APP26 0x7a02 APP58 0x5a02

APP27 0x7b02 APP59 0x5b02

APP28 0x7c02 APP60 0x5c02

APP29 0x7d02 APP61 0x5d02

APP30 0x7e02 APP62 0x5e02

APP31 0x7f02 APP63 0x5f02

Creating and Modifying a Key Translation File

836 Key Translation FileChapter

ASCII Character Mnemonics and Hex Values

Table 12 lists two- and three-letter ASCII mnemonics for control and extended
control characters. It is derived from the include file smascii.h .

Table 12. ASCII character mnemonics and hexadecimal values

Mnemonic Hex Mnemonic Hex Mnemonic Hex Mnemonic Hex

NUL 0x00 DLE 0x10 DCS 0x90

SOH 0x01 DC1 0x11 PU1 0x91

STX 0x02 DC2 0x12 PU2 0x92

ETX 0x03 DC3 0x13 STS 0x93

EOT 0x04 DC4 0x14 IND 0x84 CCH 0x94

ENQ 0x05 NAK 0x15 NEL 0x85 MW 0x95

ACK 0x06 SYN 0x16 SSA 0x86 SPA 0x96

BEL 0x07 ETB 0x17 ESA 0x87 EPA 0x97

BS 0x08 CAN 0x18 HTS 0x88

HT 0x09 EM 0x19 HTJ 0x89

LF 0x0a SUB 0x1a VTS 0x8a

VT 0x0b ESC 0x1b PLD 0x8b CSI 0x9b

FF 0x0c FS 0x1c PLU 0x8c ST 0x9c

CR 0x0d GS 0x1d RI 0x8d OCS 0x9d

SO 0x0e RS 0x1e SS2 0x8e PM 0x9e

SI 0x0f US 0x1f SS3 0x8f APC 0x9f

SP 0x20 DEL 0x7f

Creating and Modifying a Key Translation File

Creating or modifying a key translation file involves four steps:

1. Access the desired ASCII key translation file (or create a new one) using a
text editor.

2. Edit the ASCII key translation file as required.

3. Use key2bin to convert the ASCII file to binary format.

4. If this is a new key translation file, include the pathname of the binary file as
the value of the SMKEY configuration variable. (The default value for SMKEY is

Creating and Modifying a Key Translation File

84 JAM 7.0 Configuration Guide

set in the file pointed to by SMVARS. Refer to Chapters 2 and 3 for information
on changing configuration variables in setup files.)

Customizing Key Mapping

You can change the mappings of logical keys for the preferences of users or
developers.

In the distributed key translation files for the PC, XMIT is mapped to the physical
End key, and NL is mapped to the Enter key. The key translation file entries look
like this:

XMIT(End) = NUL O
NL(Enter) = CR

NUL O is the character-sequence transmitted by the PC’s End key; when JAM
receives this sequence, it carries out its XMIT function. Similarly, CR is transmitted
by the PC’s Enter key and JAM responds appropriately.

To use the Enter key for XMIT and the End key for NL, you can change the key
translation file entries to read:

XMIT(Enter) = CR
NL(End) = NUL O

The Enter key then is used for XMIT, and the End key is used where a new line
(NL) is needed. Changes made to the key translation file affect the entire
application. Or you can use the library function sm_keyoption to change the
behavior of logical keys at runtime. Refer to the Application Development Guide
for more information.

If you are building applications for PCs with extended keyboards you can use the
additional keys and key combinations. By default, the extended keys are not
recognized in the distributed PC version of JAM. Before you define these keys,
you must add a special flag for each class of key or key combination to the INIT
entry in your video file. The classes are listed in Table 13.

example

use sm_keyoption to
change default key
behavior at runtime

Accessing
Extended Keys
on the PC

Creating and Modifying a Key Translation File

856 Key Translation FileChapter

Table 13. Classes of keys

Flag Description

XKEY Allows access to the F11 and F12 function keys.

WINDOWS Relates to Microsoft Windows. Specifies that JAM may
move the cursor, even if the cursor is invisible.

GRAYKEYS Distinguishes between gray and white cursor positioning
keys. For example, this option allows you to assign one
value to the gray up arrow key and another value to the
white up arrow key.

MULTISHIFT Permits the use of sequences using the key combinations:
Ctrl-Alt-, Shift-Alt-, and Ctrl-Shift-Alt-

For example, an INIT sequence that includes activation the F11 and F12 keys
might look like:

INIT = C 0, 7, 2, XKEY

You might then define F11 and F12 as supplementary HELP and FHLP keys. (Use
the showkey utility to determine the key sequences. Refer to page 75 for a
description of the utility). Their definitions in the ASCII key translation file appear
as:

HELP(F11) = NUL NEL
FHLP(F12) = NUL SSA

Extended keys are documented in the PC video files. The INIT entry is docu-
mented in Chapter 7.

Using International and Composed Characters
JAM accepts and interprets 8-bit international characters automatically. Some
terminals, however, use character sequences which correspond to international
characters. Some terminals also allow the user to compose characters (by
programming a key to transmit a specified character sequence). To support either
situation:

1. Assign the sequence to a hex value in the range 0xA0 to 0xFE in the key
translation file.

2. Add a corresponding entry in the GRAPH table of the video file to specify the
display (refer to Chapter 7 for information on graphics and international
character support). Without a GRAPH entry, the 8-bit character is transmitted as
is, and must be interpreted by the terminal.

Converting a Key Translation File

86 JAM 7.0 Configuration Guide

In addition, you can install a key translation table that controls how keyboard input
is mapped to the data in the internal character set. (A video translation table in the
video file can map from the internal character set to the screen display; refer to
Chapter 7.)

JYACC provides a set of sample translation tables (for example, pc2latin.c
translates IBM PC Extended Character set to Latin-1) and code to install them. To
install or de-install a key translation table, refer to page 539 in the Language
Reference.

Converting a Key Translation File

You use the key2bin utility to convert an ASCII key translation file that you have
edited or created into binary format for use by applications using the JAM library.

To convert a key translation file, use the following format:

key2bin [-pv] [-e ext] keyfile ...

The square brackets indicate the optional command flags. Do not type the brackets.

To obtain a brief description of available arguments and command options, type

key2bin -h

key2bin first tries to open its key translation file with the exact name you enter on
the command line; if that fails, key2bin appends keys to the name and tries
again. The output file is given the name of the successfully opened key translation
file plus the default extension .bin .

To make a key translation file memory-resident use the bin2c utility (refer to page
563 of the Application Development Guide) to produce a program source file; then
compile that output file and link it with your program. For a complete description,
refer to page 523 of the Application Development Guide.

keyfile
The name of an ASCII key translation file; more than one key translation file may
be included. By convention, the key translation file name is an abbreviation of the
terminal’s name plus keys . The tag keys helps identify the file as a key translation
file; for example, vt100keys is the key translation file for a VT100.

-p Places the binary files in the same directories as the key translation files.

-v Lists the name of each key translation file as it is processed.

interpreting JAM on
different operating
systems with different
character sets.

Arguments and
Options

Using Alternate Key Translation Files

876 Key Translation FileChapter

-e Appends the given ext (extension) to the output files, rather than the
default bin extension.

The following list describes possible errors, their causes, and the corrective action
to take:

Cannot create ’%s’
Error writing ’%s’

Cause: An output file could not be created because of lack of permission or
perhaps disk space.

Action: Correct the file system problem and retry the operation.

Duplicate key definition in line:\n ’%s’

Cause: The same character-sequence was assigned to more than one logical key
in the specified key translation file.

Action: Edit the ASCII file and assign a unique character-sequence to key or keys
in question. Then run key2bin again.

Neither ’%s’ nor ’%s’ found.

Cause: A key translation file was missing or unreadable.
Action: Check the spelling, presence, and permissions of the file in question.

Unable to allocate memory

Cause: key2bin could not allocate enough memory for its needs.
Action: None.

No key definitions in file ’%s’

Cause: Warning only. The key translation file was empty or contained only
comments.

Action: None.

Unknown mnemonic in line: ’%s’

Cause: The line printed in the message does not begin with a logical key
mnemonic.

Action: Refer to smkeys.h for a list of mnemonics, and correct the input.

Extra characters in sequence neglected, in line: ’%s’

Cause: The key sequence is longer than the maximum of six characters.
Action: Correct the input.

At least one file name is required.

Cause: One or more options was specified but no key translation file names were
given.

Action: Specify file name(s).

Using Alternate Key Translation Files
Many applications support more than one type of keyboard. With JAM you can
provide this support without recompiling the application for each keyboard. Each

Errors

Using Alternate Key Translation Files

88 JAM 7.0 Configuration Guide

terminal must have a working key translation file and video file. List the
pathnames for the key translation and video files in your application’s smvars file.
Assuming the SMTERM variable is set correctly, JAM selects the correct key
translation file from the smvars file during initialization. Refer to Chapter 2 for
more information.

For example, the following excerpt is from the smvars file:

SMKEY = (ibm) /usr/jam/config/ibmkeys.bin
SMKEY = (hp|hp2392|hpblk) /usr/jam/config/hpkeys.bin

89

Video File
JAM is designed to run on many displays with widely differing characteristics.
These characteristics greatly affect JAM’s display of screens and messages. For
example, some displays are 80 columns wide, while others are 132 columns.
Similarly, the control sequences used to position the cursor and highlight data on
the display are often different from model to model. JAM obtains its display
characteristics from a video file.

For your convenience, JYACC provides video files in the config directory that
support more than 100 terminal types. One of the distributed video files should
work for you.

This chapter describes:

� The role of a video file.

� How to read the entries in a video file as well as the concepts used to interpret
them (page 92).

� How to modify a video file for your specific needs (page 101).

� How to convert your ASCII video file to binary format with the vid2bin
utility (page 104).

� All the keywords that can be included in a video file (page 105) and
commands that are be needed to encode parameters (page 93).

In addition, an annotated video file is included in this chapter (page 133).

77

The Role of the Video File

90 JAM 7.0 Configuration Guide

The Role of the Video File

Differences among terminal characteristics do not affect programs that are line
oriented. They merely use the screen as a typewriter. Full-screen editors, like
emacs or vi, use the screen non-sequentially; they need terminal-specific ways to
move the cursor, clear the screen, insert lines, etc. For this purpose the termcap
database, and its close relative terminfo, were developed. Although closely
associated with UNIX, termcap and terminfo are also used on other operating
systems. They list the idiosyncrasies of many types of terminals.

Text editors use visual attributes sparingly, if at all. Thus termcap contains minimal
information about handling them. Usually there are entries to start and end
“stand-out” and sometimes entries to start and end “underline.” Notably missing
are entries explaining how to combine attributes, like reverse video and blinking
simultaneously. The terminfo database can combine attributes; in practice,
unfortunately, the appropriate entries are usually missing.

JAM makes extensive use of attributes in all combinations, and supports color.
Rather than extending termcap with additional codes, which might conflict with
other extensions, JYACC uses an independent file to describe the terminal specific
information. Furthermore, some machines, notably the PC, do not have terminfo
capability.

In addition, JYACC developed a set of commands that extend the limited set of
commands used by termcap and abbreviates verbose sequences used by terminfo.
Both syntaxes are supported. All the commands needed in the video file can be
written using terminfo syntax; many can be written using the simpler termcap
syntax and a few can benefit by using the extended commands.

A summary of the commands used to process parameters is described in this
chapter; details and examples are also included.

The Basic Video File

The only required entries in the video file are:

� CUP for positioning the cursor.

� ED for erasing the display.

Although JAM functions with these two entries, they offer limited features; for
example, no visual attributes. Speed is also a concern, since the sole purpose of
many entries in the video file is to decrease the number of characters transmitted to
the terminal.

The Role of the Video File

917 Video FileChapter

In the absence of other entries, JAM assumes a 24-line by 80-column screen. Line
24 is used for status text and error messages, and the remaining 23 are available for
screens. The non-display attribute is supported and available. The underline
attribute is simulated by underscores placed wherever blanks appear in an
underlined field. Clearing a line is done by writing spaces. Borders are available,
and consist of printable characters only.

Refer to page 103 for specific details on enhancing a basic video file to include
display attributes, such as reverse, underline, etc.

Processing Keywords — Automatic Parameter Sequencing

A stack is used in processing a keyword in the video file—parameters are kept in a
separate list. The stack is initially empty and parameters are generally pushed on
the stack as needed. The parameters are ordered and a pointer is used to access
them. It initially points to the first one. The stack is four levels deep; anything
pushed off the end is lost. There are commands that push a parameter or constant
onto the stack, but no explicit pop commands. Output commands transmit the value
on top of the stack, then remove it.

Arithmetic and logical operations take one or two operands from the top of the
stack, and replace them with one result; thus, they perform an implicit pop. These
types of operations use postfix notation. The operands are pushed, then the
operation takes place. So the sequence %p1 %p2 %p3 %+ %* leaves parameter1 +
(parameter2 * parameter3) on the stack. This same mechanism is used by
terminfo.

Termcap commands do not use a stack mechanism. To support them, JAM uses an
automatic parameter sequencing scheme where a current index into the parameter
list is maintained. When a parameter is needed on the stack

� The current parameter is pushed and the index is incremented.

� If an output command is encountered and there is nothing on the stack to
output, an automatic push is performed using the current index. The
commands %d %d output two decimals; the sequence %p1 %d %p2 %d does
the same thing.

The effect of this scheme is that termcap-style commands are translated into
terminfo-style.

Although it is possible to use automatic sequencing and explicit parameter pushes
in the same sequence, it is not recommended. Explicit pushes of constants with
automatic parameter sequencing, however, is a useful combination. For example:

REPT= %p1 %c ESC F %’?’ %p2 %+ %c

what you get

refer to page 93 for
information about
specific parameters

supporting termcap
commands

Video File Syntax

92 JAM 7.0 Configuration Guide

Video File Syntax

The video file is an ASCII text file that can be edited and created using any text
editor. Lines beginning with a pound sign (#) are treated as comments. The
commented lines are ignored by the vid2bin utility (used to convert the ASCII
file to binary format). All video files distributed by JYACC are documented with
comments.

The file consists of many instructions, one per line, and has the following format:

keyword = variable-data

keyword
A single word used to define the instructions. Refer to page 105.

When you add entries to a video file, it is essential that you use the formats
described for the specific video instruction. No error checking is done at runtime.
The vid2bin utility checks for errors like missing, misspelled, and superfluous
keywords, but not for duplicated or conflicting entries.

variable-data
A number, a list of characters, a sequence of characters, or a list of further
instructions. The variable-data is dependent on the keyword you use. Refer to page
93 for information on keywords that use specific parameters as variable-data.

To continue a logical line on the next physical line, end the first line with a
backslash. Do not leave a space between the backslash and carriage return. All
white space (spaces and tabs) is skipped, except where noted. To enter a backslash
as the last character of a line, use two backslashes (without spaces). Thus

text \
Continuation line.

text \\
Ends with a backslash.

text \\\
Backslash and a continuation.

A double quote ” starts a string. Text between it and the next double quote (or the
end of the line) is taken literally, including spaces. To include a double quote in a
quoted string, use backslash quote \” with no space between.

“stty tabs”
Has an embedded space.

backslash

double quotes

Video File Syntax

937 Video FileChapter

stty tabs
Does not not have an embedded space.

The percent sign is a control character (refer to Table 15 on page 95 for a list of
percent commands). To enter a literal percent sign, enter it twice (for example, %%).

Inputting Control Characters
There are three ways to input non-printing characters, like control characters, in a
video file. You can enter:

� Any character as 0x followed by two hexadecimal digits. For example, use
0x41 for A, or 0x01 for control-A, etc. This method is useful for entering
codes in the range 0x80 to 0xff (extended ASCII control characters).

� A caret ̂ followed by a letter or symbol to represent control characters in the
range 0x01 to 0x1f . Either ̂ A or ̂ a can represent SOH (0x01) . The symbols
are ̂ [for ESC; ^\ for FS; ^] for GS; ^^ for RS; and ̂ _ for US.

� Two- and three-character ASCII mnemonics to represent control characters.
The documentation provided with terminals often lists such sequences.

Refer to Table 12 on page 83 for a list of mnemonics and hexadecimal values.

Extended ASCII control codes can be transmitted only if the communication line
and terminal use eight data bits. If this is not possible, the eight-bit code can be
replaced by two seven-bit codes—the first code is ESC (0x1b) , the second is
0x40 less than the desired eight-bit control character. For example, CSI (0x9b) is
replaced by ESC 0x5b , or ESC [. If your video file contains extended ASCII
control codes, JAM assumes they can be used; it does not transmit the two-charac-
ter sequence automatically.

Note: Some computers internally toggle the high bit of a character; ESC on a
PRIME is 0x9b and CSI is 0x1b , not vice versa. The numbers given in this guide
are always standard ASCII.

Parameters for Keyword Sequences
Certain keywords take values or sequences that cannot be completely specified in
advance. For example, the cursor position sequence requires the line and column
number before moving. The commands using these sequences are passed extra
parameters.

Table 14 lists those keywords that are passed parameters. The number in
parentheses is the number of parameters for each keyword.

percent sign (%)

Video File Syntax

94 JAM 7.0 Configuration Guide

Table 14. Keywords and expected parameters

Keyword Action Parameters

REPT repeat sequence (2) Character
Number of times to repeat

EW erase window (5) Start line
Start column
Number of lines
Number of columns
Background color

CUP cursor position (2) Line and column (relative to 0)

CUU cursor up (1) Line increment

CUD cursor down (1) Line increment

CUF cursor forward (1) Column increment

CUB cursor backward (1) Column increment

SGR set latch graphics rendition (12) Refer to page 123

ASGR set area graphics rendition (12) Refer to page 118

Parameters are encoded in sequences by percent commands where the sequence
starts with the % symbol. Percent commands

� Cause data to be output, or

� Are used for control purposes.

JAM uses a stack mechanism (similar to that used by terminfo) (refer to page 91
for a description). However, use percent commands with care, since all sequences
go through the same processing, even those that do not use runtime arguments. In
particular, to enter a percent sign as a literal, you must use %%.

Percent commands are summarized in Table 15. They are organized by function,
and their source is indicated (C for termcap; I for terminfo; E for JYACC extended
command). Descriptions and examples are provided in subsequent sections.

Percent commands that take a count (represented by a # immediately after a %) do
not need to have a count specified. If none is specified, the count is assumed to be
1. For example, %w is equivalent to %1w. (This does not apply to %d.)

percent commands

Video File Syntax

957 Video FileChapter

Table 15. Percent commands

Percent Command Source* Description

Output Commands (page 97)

%% C / I Output a percent sign

%. C Output a character

%c I Output a character

%d C / I Output a decimal

%#d I Output a #-digit decimal, blank filled

%0#d I Output a #-digit decimal, zero filled, like
the termcap %2 which is not supported

%+ C Add and output a character

%#z E Output # (decimal number) binary zeros

%#w E Wait (sleep) # seconds

%S E Issue a system command

* C = termcap; I = terminfo; E = JYACC extended command

Video File Syntax

96 JAM 7.0 Configuration Guide

Percent Command DescriptionSource*

Stack Manipulation and Arithmetic Commands (page 98)

%p# I Push parameter # (1 - 12 allowed)

%’c’ I Push the character constant c

%{#} I Push the integer constant #

%+ I Add

%- I Subtract

%* I Multiple

%/ I Divide

%m I Modulus

%| I Bitwise OR

%^ I Bitwise exclusive OR

%& I Bitwise AND

%= I Logical EQUAL TO

%> I Logical GREATER THAN

%< I Logical LESS THAN

%! I Logical NOT

%~ I One’s complement

Parameter Sequencing and Changing Commands (page 98)

%#u E Discard # parameters

%#b E Back up # parameters

%i C / I Increment the next two parameters

%r C Reverse the next two parameters

Control Flow Commands (page 99)

%? expr %t then-part
%e else-part %;

I Conditionally execute one of two com-
mand sequences

expr %t then-part %e
else-part %;

E Same effect as previous

%#(... %) E Repeat the sequence # times

%l(... %) E Select operations from a list

* C = termcap; I = terminfo; E = JYACC extended command

Video File Syntax

977 Video FileChapter

Percent Command DescriptionSource*

Terminfo Commands Not Supported

%P, %g Letter variables

$<#> Padding (use %#z instead) (page 100)

* C = termcap; I = terminfo; E = JYACC extended command

%% Outputs a literal percent sign.

%. Outputs a character, like printf ; this command is supplied for termcap
compatibility.

%c Outputs a character, like printf . (Equivalent to %.).

 %d Outputs a decimal, any number of digits, no fill. It has variations that
allow for specifying the number of digits, and whether blank-fill or
zero-fill is to be used.

%#d Outputs a #-digit decimal, blank filled. For example, %3d outputs at most
three decimal digits with blank fill.

%0#d Outputs a #-digit decimal, zero filled. For example, %03d outputs at most
three decimal digits with zero fill.

%+ Adds and outputs a character. If the stack is empty, the character
following %+ is added to the next parameter, the sum is output as a
character, and the parameter index is incremented. Also refer to
definitions of %+ in arithmetic commands and automatic parameter
sequencing.

%#z Outputs the specified number of NUL characters (binary zero). It is
usually used for padding, to insert a time delay for commands such as
erase screen. The sequence %100z outputs 100 pad bytes to the terminal.

%#w Waits (sleeps) the specified # of seconds. (Although supported on all
UNIX and DOS platforms, it is not supported on systems where the sleep
library routine is unavailable). It is often used as a time delay for INIT
and RESET sequences. The sequence %2w evokes a wait of two seconds.

%S Issues a system command. The format is %S (string %) — the string is
passed to the command interpreter for execution. To include spaces in the
string, enclose the text in single quotation marks. The following examples
illustrate two ways of making a system call stty tabs :

Output
Commands

Video File Syntax

98 JAM 7.0 Configuration Guide

%S(’stty tabs’%)
%S(stty SP tabs%)

Commands are available to push parameters and constants. Only four levels of
stack are supported, and anything pushed off the end is discarded.

%p# Pushes parameter #; one to 11 is allowed. For example, the sequence %p2
pushes the second parameter.

%’c’ Pushes the character constant c. For example, the sequence %’x’ pushes
the character x.

%{#} Pushes the integer constant #. For example, the sequence %{12} pushes
the number 12.

Various arithmetic and logical operations (e.g., %+, %/, %&, %>, etc.) are supported.
They require one or two operands on the stack. If necessary an automatic push is
generated, using the next parameter.

%’@’ %| %| %| %c Bitwise OR 3 parameters with @, then output result

The automatic parameter sequencing mechanism works well in the above example.
Since bitwise OR requires two parameters and there is only one on the stack, a
push is performed. No push is required to process %c since an entry already exists
on the stack. Thus only three parameters are consumed and the result of the bitwise
OR is output.

In the following sequence the first parameter is pushed, then a space character
(0x20) is pushed. The %+ command pops and adds these values and puts the
answer on the stack. %c then pops this value and transmits it to the terminal.

%p1 %’SP’ %+ %c

With automatic sequencing of parameters, sometimes it is necessary to access the
parameters in a different order. The following percent commands can be specified:

%#b Backs up the # of parameters by decrementing the parameter index. For
example, the following sequences output the same parameter twice:

%d %b %d
%p1 %d %p1 %d

%#u Uses up or discards # of parameters by incrementing the parameter index.
For example, the following sequences output in reverse order:

%u %d %2b %d
%p2 %d %p1 %d

Stack
Manipulation
and Arithmetic
Commands

Parameter
Sequencing
Commands

Video File Syntax

997 Video FileChapter

Parameter changing commands either increment parameters or reverse them

%i Increments the next two parameters; however, no output is performed and
no parameters are consumed. It is used almost exclusively in termcap
cursor positioning sequences. It is passed line and column parameters,
with the upper left being (0,0). Many terminals expect the line and
column to be relative to (1,1). The following sequence adds one to each
parameter and sends it out as decimals: ESC [%i %d ; %d H

%r Reverses the next two parameters. It is unnecessary if explicit parameter
pushes are used; in fact, it should be avoided in that case since the
numbering of the parameters is reversed. This command is often used in
cursor positioning sequences where the terminal requires that column be
given first and then the line (the default being the other way around). For
example, this sequence outputs column first, and then line:
FS G %r %c %c

Control flow commands conditionally execute command sequences. Some specify
the number of times to repeat the sequence, and others select operations from a list.

%? expr %t then-part%e else-part%;
This is the general if-then-else clause, which can be abbreviated by
omitting the if, thus: expr %t then-part %e else-part %;.

expr is any sequence including the empty sequence. The %t, which is
required, pops a value from the stack and tests it, executing then-part if it
is true (non-zero) and else-part otherwise.

then-part and else-part can be any sequence, including the empty
sequence. If else-part is empty, %e can be omitted. They can also contain
conditionals, so else-if can be implemented. However, this can produce
undecipherable sequences. It is provided for terminfo compatibility. The
list command (below) is an alternative.

If %t finds the stack is empty, it generates an automatic push of the next
parameter. %t consumes one parameter; however, the incrementing of the
parameter index is delayed until after the entire conditional is executed. A
conditional always consumes exactly one parameter, regardless of which
branch is taken or of the content of then-part or else-part. If either of those
use automatic parameter sequencing, they use a local index. Thus even if
they consume two parameters, at the end of the conditional the parameter
index is reset. When the next command is reached, only one parameter
has been consumed.

In this sequence, %t ; %c %; , one parameter is consumed. It outputs ;
and a character if the parameter is non-zero, otherwise it skips the
parameter.

Parameter
Changing
Commands

Control Flow
Commands
conditional command

Video File Syntax

100 JAM 7.0 Configuration Guide

In the next example, the constant (binary) 1 is pushed, the parameter is
compared with 1, and the boolean value is left on the stack. If the value is
true, nothing is done; otherwise the parameter is output as a decimal.

%? %{1} %p1 %= %t %e %p1 %d %;

The following sequence exhibits a simple “either-or” condition that is
sometimes used to toggle an attribute on or off. It outputs

ESC (if the parameter is non-zero, and

ESC) otherwise:

ESC %t (%e) %;

%# (... %)
Performs the same action for several parameters. It is used with automatic
parameter sequencing, and is almost useless if explicit parameter pushes
are used. The count is specified after the percent sign. All the commands
between %# (and %) are executed the specified number of times. For
example, the first outputs three decimals, and the second outputs up to
three non-zero parameters:

%3(%d %)
%3(%t %d %; %)

%l(... %)
Available as an alternative to an if-then-else-if construction, but is seldom
needed. It implements a simple select or case conditional. The general
format is: %l(value1: expr1 %; value2: expr2 %; ... %)

The values are single character constants representing the various cases.
The expression is executed if the value matches the top of stack. At most
one expression is executed (i.e., each case contains a break). If the value
is missing, the expression is evaluated as a default. For correct operation,
the default case must occur last in the list. The colons do not have a
leading percent sign, so no selector can be a colon. The %; after the last
element of the list is not required.

The parameter on the stack (automatically pushed, if necessary) is popped
and tested against the various cases. The parameter index is incremented
by one after the entire list is processed, even if the expressions use
parameters. The following sequence outputs nothing if the parameter is 0;
ESC if it is 1; FS otherwise: %l(0:%; 1:ESC%; :FS %)

Certain terminals (or tty drivers) require extra time to execute instructions. Some
terminal documentation specifies the delay required for each command. If random
characters appear on the screen, particularly characters that are part of command
sequences, time delays may be required. Delays can be introduced in two ways:

repeat command

list command

Padding

Creating and Modifying a Video File

1017 Video FileChapter

%#w Causes a wait (sleep) for the specified number of seconds. This command
is usually only required in terminal initialization or reset sequences. A
hard reset of a terminal sometimes requires a sleep of one or two seconds.
The following sequence causes a two second sleep after terminal reset:
ESC c %2w

%#z Outputs the specified number of zeros. This command is occasionally
needed on the erase display or erase line commands and very rarely in the
cursor positioning sequence. The number of zeros to send may range from
about five, for very short delays, to several thousand for longer delays.
Usually 100 or so is adequate. The following sequence specifies 100 pad
zeros after clearing the screen: ESC [J %100z

termcap indicates padding by using a number at the beginning of a
sequence, which is the number of milliseconds of pad required.

terminfo uses the syntax $<#>.

It is easy to convert to the %#z notation, since at 9600 baud, one character
takes one millisecond to output.

Creating and Modifying a Video File

There are two ways to create and modify a video file:

� The easiest way is to modify one of the many video files supplied with JAM.
Determine if any of these are for terminals similar to yours. This is very often
possible because so many terminals emulate one another.

� Review the documentation that comes with your terminal and alter one of the
distributed video files.

JAM is distributed with knowledge of how to talk to around 100 different specific
terminals as well as those that emulate other terminals.

1. Identify the binary video file in the smvars file in the config directory that
supports your terminal. Do this by looking for the parenthetic mnemonic for
your terminal type (as you would for a key translation file). For example

SMVIDEO = (vt100)/usr/jam/config/vt100vid.bin

2. Set the value for the SMTERM variable to the mnemonic; in this example,
SMTERM = vt100 or enter the mnemonic when prompted for terminal type
when you invoke jamdev .

Identifying the
Right File for
Your Terminal

Creating and Modifying a Video File

102 JAM 7.0 Configuration Guide

3. Invoke jamdev and check that basic functions work correctly.

If the screen does not clear and/or the characters are positioned incorrectly,
you can try a different terminal mnemonic to access a different video file,
create a video file from the termcap or terminfo databases (if available), or
modify an existing video file. Test video files in this manner until you find one
that performs basic requirements (clear screen and proper character display).

Table 16 provides a listing of the more popular and used terminal types. Once you
determine the family of terminals (there may be more than one video file to
support a single family), you can try each of the files associated with the family of
terminals by inputting the appropriate terminal mnemonic in the SMTERM setting.

Table 16. General categories of families of terminals

If the family is Look for Set SMTERM to

ANSI/DEC VT ESC [or CSI in the
ASCII video files

vt100

Televideo, Wyse, etc. ESC * or ESC = in the
ASCII video files

wy30; wy50

Hewlett-Packard Video files supporting
HP terminals begin with
the letters hp.

hp

Data General Video files supporting
Data General terminals
begin with the letters dg

dg214

For a New Terminal

If none of the JYACC-distributed video files come close to your particular terminal
type, try to find one that will serve as a starting place for customization:

1. Identify the desired video file by setting the SMTERM variable in your
environment to the mnemonic (for example, SMTERM = vt100) for the
selected video file. (Or leave it unset and type the name in when jamdev
prompts you for it.)

2. Execute jamdev and retrieve an existing screen or try creating one.

3. Check a few basic functions: Does the screen clear? Are characters positioned
properly (or even close)?

Creating and Modifying a Video File

1037 Video FileChapter

If things seem to work closely to the way you would expect them to — you
probably have a good, modifiable video file.

4. If the video file works well, but the keys are not translating properly, modify
the key translation file or create a new one that is compatible with the video
file (refer to Chapter 6).

5. Make a copy of the best working video file you found; name it testvid .

6. Edit the ASCII video file using any text editor. Comment out or delete all lines
except for the ED (erase display) entry and CUP (cursor position) entry.

7. Convert the ASCII file to binary format using vid2bin .

8. Edit your smvars file. Add the following entry after the last SMVIDEO entry:

SMVIDEO = testvid.bin

Convert the smvars file to binary (using var2bin).

9. Invoke jamdev and check the basic functions.

Enhancing a Basic Video File

Once you have a basic working video file you can enhance the file to provide
greater functionality. Incrementally add and test various features until you have a
fully operational video file. The easiest way to add the recommended sequences is
to copy them from an existing video file or, if available, from your terminal’s
documentation.

1. Provide cursor movement control characters by adding an entry for CMFLGS
(refer to page 112).

2. Define display attributes (colors, reverse, underline, etc.) with SGR, ASGR,
LATCHATT, AREAATT entries (refer to page 115).

3. Add a mechanism for turning the cursor on and off so that menus display
properly: CON and COF entries (refer to page 114).

4. Consider adding entries to enable the use of graphic characters to draw lines
and borders (refer to page 125):

MODE0...MODE6
GRAPH
BORDER
BOX
ARROWS

Converting a Video File to Binary

104 JAM 7.0 Configuration Guide

Converting a Video File to Binary

Use the vid2bin utility to convert ASCII video files to binary format for use by
applications with the JAM library routines. The ASCII video files distributed with
JAM have already been complied and their binary versions reside in the config
directory.

To convert an ASCII video file that you have modified or created to a binary file,
use the following:

vid2bin [–pv] [–e ext] video-file...

The square brackets indicate the optional command flags. Do not type the brackets.

To obtain a brief description of available arguments and command options, type

vid2bin –h

vid2bin searches for the video-file you supply; first trying the mnemonic, then the
mnemonic followed by vid . The output file will have the same name as the input
file, with the extension bin or the given extension (ext) specified with the –e
option.

To make a video file memory-resident, run the bin2c utility (refer to page 563 in
the Application Development Guide) on the binary output, compile the resulting
program source file, and link it with your application. For a complete description
of how to make configuration files memory-resident, refer to page 523 of the
Application Development Guide.

The vid2bin utility checks for errors like missing, misspelled, and superfluous
keywords, but not for duplicated or conflicting entries. If errors are encountered
during the conversion, up to ten error messages can be displayed; no output file is
created.

video-file
The name of an ASCII video file. Customarily, it is an abbreviation (mnemonic) of
the terminal name followed by the suffix vid ; for example sunvid for a terminal,
or colvid for a color monitor.

–p Places the binary output file in same directory as input file.

–v Lists the name of each video file as it is converted.

–e Appends the given ext (extension) to the output file, rather than the
default bin extension.

The following list describes possible errors, their causes, and the corrective action
to take:

memory-resident

Arguments and
Options

Errors

Video File Keywords

1057 Video FileChapter

A cursor positioning sequence is required.

An erase display sequence is required.

Cause: Both entries (CUP and ED) are required in video files.
Action: Determine what your terminal uses to perform these two operations, and

enter them in the ASCII video file; then run vid2bin again.

Invalid entry: ’%s’.

Entry missing ’=’: ’%s’.

Cause: An input line does not begin with a valid video keyword. An input line
does not include and an equal sign.

Action: Correct the ASCII file and run vid2bin again. Be sure that backslashes
are placed at the end of lines that continue onto the next line.

Invalid attribute list : ’%s’.

Invalid border information (%s):’%s’.

Invalid box information (%s): ’s%’

Invalid color specification : ’%s’.

Invalid cursor flags specification : ’%s’.

Invalid graphics character specification (%s):’%s’.

Invalid graphics type : ’%s’.

Invalid label parameter : ’%s’.%s

Invalid numeric parameter : ’%s’

Cause: There is a misspelled or misplaced keyword in the specified input line.
Action: Correct the ASCII video file, and run vid2bin again.

Neither %s nor %s found.

Cause: The video file was missing or unreadable.
Action: Check the spelling, presence, and permissions of the file in question.

Unable to allocate memory.

Cause: vid2bin could not allocate enough memory for its needs.
Action: None.

Video File Keywords

Table 17 includes a list of all video file entry keywords, arranged by function.
Detailed information on each keyword is available on the indicated pages. Refer to
the sample video file for syntax examples.

Video File Keywords

106 JAM 7.0 Configuration Guide

Table 17. Video file keywords

Keyword Description

Basic Capabilities (page 109)

BOTTOMRT Last position of screen may be written without scrolling
the display

BUFSIZ Number of characters to accumulate before flushing

COLMS Number of columns on screen

INIT Initialization sequence

KBD_DELAY Timing interval for keyboard input

LINES Number of lines on screen

REPMAX Maximum number of repeated characters

REPT Repeat the following character sequence

RESET Undo initialization sequence

Erasure Commands (page 112)

ED Erase entire display

EL Erase to end of current line

EW Erase window

Cursor Position (page 112)

CMFLGS Allowed cursor-motion shortcuts

CUB Cursor backward

CUD Cursor down

CUF Cursor forward

CUP Absolute cursor position

CUU Cursor up

Video File Keywords

1077 Video FileChapter

Keyword Description

Cursor Appearance (page 114)

COF Turn cursor off

CON Turn cursor on

INSOFF Overstrike-mode cursor

INSON Insert-mode cursor

RCP Restore cursor position and attribute

SCP Save cursor position and attribute

Display Attributes (page 115)

AREAATT List of available area attributes

ARGR Remove area attribute

ASGR Set graphics rendition (area)

COLOR List of colors

EMPHASIS_KEEPATT Specify attributes retained for grayed objects

EMPHASIS_SETATT Set attributes for grayed objects

LATCHATT List of available latch attributes

SGR Set graphics rendition (latch)

SPXATT List of attributes that do not affect space

Status line (page 124)

CMSG Close status line

MSGATT Status line attributes

OMSG Open status line

Video File Keywords

108 JAM 7.0 Configuration Guide

Keyword Description

Graphics (page 125)

GRAPH Graphics character equivalents

GRTYPE Shortcut for defining graphics characters

MODE0 Normal character set sequence

MODE1 Locking shift to alternate character set 1

MODE2 Locking shift to alternate character set 2

MODE3 Locking shift to alternate character set 3

MODE4 Non-locking shift to alternate character set 1

MODE5 Non-locking shift to alternate character set 2

MODE6 Non-locking shift to alternate character set 3

Borders and Line Drawing (page 128)

BORDER Characters that make up the 10 border styles

BOX Characters that make up the styles for box and line draw-
ing

BRDATT Available border attributes

Indicators (page 130)

ARROWS Indicator characters for shifting and scrolling

BELL “Visible bell” alarm sequence

CBDSEL Deselection character for groups

CBSEL Selection character for groups

MARKCHAR Character used for check menu items

SUBMNSTRING String on menu item indicating presence of submenu

Drivers (page 132)

BLKDRVR Name of block mode driver

MOUSEDRIVER Name of mouse driver

Video File Keywords

1097 Video FileChapter

Keyword Description

Miscellaneous (page 132)

COMPRESS Output data compression for Jterm

CURPOS Display the current cursor position on the status line

Basic Capabilities

BOTTOMRT
A flag indicating that the bottom right-hand corner of the display can be written to
without causing the display to scroll. If this flag is not present, JAM does not write
to that position.

BUFSIZ
Sets the size of the output buffer used by JAM. If it is omitted, JAM calculates a
reasonable default size. Include this entry only if special circumstances warrant.
For example, if you make extensive use of a screen-oriented debugger, you can set
BUFSIZ to a large value; that effectively disables the delayed-write feature, which
can interfere with debugging.

COLMS
Indicates the number of columns on the display. The default value is 80. In some
windowing environments (e.g., SUN work stations) the values of LINES and
COLMS are overridden by the number of lines and columns in the active window.

INIT
Terminal initialization sequence, output by the library function sm_initcrt .
There is no default; and the keyword can be omitted. INIT is typically used to
change the mode of the terminal, to map function keys, select attribute styles, etc.
Padding is sometimes required, either with %#z or %#w.

map 2 function keys, then wait 2 seconds
INIT = %S(”/etc/keyset f1 ^a P ^m” %) \
 %S(”/etc/keyset f2 ^a Q ^m” %) \
 %2w

load alternate character sets
INIT = ESC)F ESC*| ESC+}

On MS-DOS systems only, you can use the INIT and RESET sequences (which are
normally not used) to specify cursor style. On ASCII terminals, you can use escape

refer to LINES

specifying cursor style

Video File Keywords

110 JAM 7.0 Configuration Guide

sequences for specifying the cursor style in the INIT and RESET strings in the
normal fashion. The format is

INIT = C n1, n2[, n3, flag]
RESET = C n1, n2[, n3]

n1 and n2 specify the top and bottom scan lines respectively for the cursor block;
with line 0 at the top. (A scan line is the smallest vertical unit on your display—
one pixel wide). The optional n3 specifies the blink rate, as follows:

1 no cursor
2 fast blink (the default)
3 slow blink
0 fast blink (Not always valid on non-IBM systems)

The standard sequences for a blinking block cursor are

For a monochrome monitor:INIT = C 0, 13, 0

For a CGA monitor: INIT = C 0, 7, 0

For a EGA monitor: INIT = C 0, 13, 2

In addition, there are flags (listed in Table 18) that you can include the INIT
sequence in video files supporting MS-DOS.

Table 18. Optional flags used with INIT on MS-DOS

Flag Description

BIOS Specifies that JAM should use BIOS calls to display output
rather than writing to the video RAM directly.

WINDOWS Relates to Microsoft Windows. Specifies that JAM can move
the cursor, even if the cursor is invisible.

XKEY Directs JAM to use a different BIOS interrupt for keyboard
input that recognizes the F11 and F12 keys on an extended key-
board.

GRAYKEYS Distinguishes between gray and white cursor positioning keys.
For example, this option allows you to assign one value to the
gray up arrow key and another value to the white up arrow key.

MULTISHIFT Permits the use of key sequences using the combinations:
Ctrl-Alt , Shift-Alt , and Ctrl-Shift-Alt

Video File Keywords

1117 Video FileChapter

KBD_DELAY
Assigns a timing interval to keyboard input. A positive integer between 1 and 10
represents an interval in tenths of a second. A negative integer or 0 represents an
interval of indefinitely great length.

If you use key sequences that are lead-ins of other sequences, you must assign a
timing interval via KBD_DELAY to determine when a key sequence ends.

LINES
Indicates the number of lines on the display. The default value is 24. In general one
line is reserved for status and error messages so the maximum screen size is
usually one less than the number specified here. (Refer to OMSG, on page 124, for
exceptions.)

REPMAX
Indicates the maximum number of characters REPT can repeat. To determine the
proper value of REPMAX, omit the entry from the video file; then using jamdev ,
create a field that extends the entire width of the screen. Once you choose XMIT, if
the entire field has the underline attribute, you do not need the REPMAX entry. If the
field is not underlined, gradually shorten the field until the underlines fill the field.
The resulting number determines the largest possible value of REPMAX.

REPT
A repeat-character sequence that is passed two parameters: the character to be
repeated and the number of times to display it. There is no default, since most
terminals do not support character repeat. If it is available on your terminal,
include the REPT entry. The repeat sequence is used whenever possible, usually for
borders and for clearing areas of the screen. If borders do not appear correctly, your
sequence could be incorrect. A repeat sequence is not used to repeat a control
character, and it never extends to more than one line.

For example, the following entry outputs the character, then ESC F and the count
with 0x3f (the ASCII value of ’?’) added:

REPT= %c ESC F %+ ?

The next entry sets the maximum count for the preceding REPT entry. Anything
over this count splits into more sequences.

REPMAX= 64

RESET
A reset-terminal sequence, output by the library function sm_resetcrt . There is
no default. The RESET sequence should be set to undo the effects of INIT . For

Video File Keywords

112 JAM 7.0 Configuration Guide

many terminals a hard reset that resets the terminal to the state stored in non-vola-
tile memory is appropriate.

In video files used on MS-DOS systems, if INIT is specified and RESET is not,
JAM saves and restores the original cursor style.

Screen and Line Erasure

ED
Provides the control sequence that erases the display. This entry is required and
clears all available display attributes, including background color. You can find the
correct command in your terminal manual or in termcap as cl . Some terminals
require padding after this command. The following example is common for ANSI
terminals

ED = ESC [J

EL
Provides a sequence that erases characters and attributes from the cursor to the end
of the line. If EL is not in the video file, JAM erases the line by writing blanks. You
can find the sequence in termcap as ce . Some terminals require padding after this
command. The first example is common for ANSI terminals; the second illustrates
a padded entry:

EL = ESC [K
EL = ESC [0 K %100z

EW
Provides a sequence that erases a rectangular region on the screen, to a given
background color if available. PCs using MS-DOS use this entry. Five parameters
are passed: start line, start column, number of lines, number of columns, and
background color. (If color is not available, the fifth parameter is ignored.)

Cursor Position

CMFLGS
Lists shortcuts JAM uses for cursor positioning; they are:

CR Carriage return (0x0d , or ̂ M) moves the cursor to the first column of the
current line.

Video File Keywords

1137 Video FileChapter

LF Linefeed (0x0a , or ̂ J) moves the cursor down one line in the same
column.

BS Backspace (0x08 , or ̂ H) moves the cursor one position to the left without
erasing anything.

AM Automatic margin: the cursor automatically wraps to the first column
when it reaches the right-hand edge of the display.

Note: The AM setting of CMFLGS must match the auto-wrap setting of the
terminal. If the setting is not correct, the terminal display may be irregular.
Consider using INIT and RESET to turn terminal auto-wrap on and off as desired.

Most terminals are capable of the first three. The fourth can frequently be found in
termcap as am. It cannot be used on terminals with the xen1 glitch (i.e.,
VT100-style delayed auto margin).

CUB
Moves the cursor backward in the same row. Takes the number of columns to move
as a parameter. Do not specify this keyword if the sequence can only move the
cursor one column at a time. The following entry moves the cursor back:

CUB = ESC [%d D

CUD
Moves the cursor down in the same column. Takes the number of lines to move as
a parameter. Do not specify this keyword if the sequence can only move the cursor
one line at a time. The following entry moves the cursor down:

CUD = ESC [%d B

CUF
Moves the cursor forward in the same row. Takes the number of columns to move
as a parameter. Do not specify this keyword if the sequence can only move the
cursor one column at a time. The following entry moves the cursor forward:

CUF = ESC [% C

CUU
Moves the cursor up in the same column. Takes the number of lines to move as a
parameter. Do not specify this keyword if the sequence can only move the cursor
one line at a time. The following entry moves the cursor up:

CUU = ESC [%d A

Video File Keywords

114 JAM 7.0 Configuration Guide

CUP
Establishes absolute cursor position which is required to run JAM. This sequence
appears in termcap as cm. It takes two parameters: the target line and the target
column, in that order and relative to 0. %i (increment) is used to convert them to be
relative to one. ANSI terminals need the line and column as decimals. Other
terminals add a fixed value to the line and column to make them printable
characters; %+ is used. The following example is for an ANSI terminal:

CUP = ESC [%i %d;%d H

Another common scheme is to output the line and column as characters, after
adding SP. The entry might look like the following example:

CUP = FS C %+SP %+SP

Cursor Appearance

COF
Turns the cursor off. If possible, both COF and CON should be specified. Menus
(using a block cursor) look better with the regular cursor off. Also JAM often must
move the cursor around the screen to put text in fields, to scroll arrays, etc. If the
cursor is off during these operations, the user is not disturbed by its flickering all
over the screen.

CON
Turns the cursor on in the desired style. A blinking block cursor is recommended
since an underline cursor is difficult to see in an underlined field.

Note: You can use the INIT and RESET sequences to switch between the cursor
style used in JAM applications and that used on the command line.

Many terminals have no ability to turn the cursor on and off. Although JAM
attempts to minimize cursor movement, some flickering is unavoidable.

CON and COF can sometimes be found in the terminal manual as cursor attributes
and in termcap as CO and CF. The following entries are an example of a pair of COF
and CON sequences for some ANSI terminals:

CON = ESC [>5l
COF = ESC [>5h

INSOFF and INSON
Used with INSON, changes the cursor style so that you can easily see which mode
you are in: insert or overstrike. By convention, the insert cursor is about one-half

Video File Keywords

1157 Video FileChapter

the size of the regular, overstrike cursor. INSOFF or INSON is issued to the terminal
when you toggle JAM’s data entry mode using the INSERT key. On many
terminals, changing the cursor style also turns it on; in this case, the INSOFF is the
same as COF, so you can omit it altogether. If the cursor style can be changed
without turning it on or off, use both INSON and INSOFF. Uses the same escape
sequence format as INIT and RESET.

RCP and SCP
Saves (SCP) and restores (RCP) cursor position and attribute.

Display Attributes
JAM supports highlight, blink, underline and reverse video attributes. If either
highlight or blink is not available, low intensity is supported in its place. An
additional attribute, standout, can be assigned to any other desired attribute, e.g.
dim or italics, if available. The display attribute keywords AREAATT and
LATCHATT are used to list the attributes available in each style and associate a
character with each attribute.

JAM supports three different kinds of attribute handling.

� latch attributes — Assigns attributes to any characters written after the current
cursor position. Latch attributes require no space on the screen. ANSI
terminals use this method.

� area attributes — Assigns attributes to all characters from the cursor position
to the next attribute (or end of line or end of screen). Area attributes do not
occupy a screen position (they are “non-embedded” or “no space”). In this
style, JAM positions the cursor to the end of the area to be changed, sets the
ending attribute, then positions the cursor to the beginning of the area and sets
its attribute.

� onscreen attributes — Act like area attributes, but occupy a screen position.
(They are “embedded” or “spacing.”) This style of attribute handling dictates
that fields and/or display areas cannot be adjacent, since a space must be
reserved for the attribute. Display of windows may be hampered by lack of
space for onscreen attributes.

You can set several modes on your terminal. Many terminals support both area and
onscreen attributes. If so, you should select area (“non-embedded” or “no space”)
rather than onscreen (“embedded” or “spacing”) attributes. Some terminals support
one latch attribute and several area attributes simultaneously.

If your terminal has only one attribute style available, it is recommended that you
select reverse video. JAM supports non-display in software, so you can omit that

Attribute Types

Video File Keywords

116 JAM 7.0 Configuration Guide

attribute. Underlines are simulated (by writing an underscore character) if that
attribute is not available.

You can find attribute information in your terminal’s documentation or, perhaps, in
your termcap database (if applicable). The codes so , ul and bl specify standout
(usually reverse video), underline, and bold respectively. The codes se , ue and be
specify the sequence to end the attributes. The standard ANSI sequences are:

so=\E[7m:se=\E[0m:ul=\E[4m:ue=\E[0m:bl=\E[1m:be=\E[0m

If you find something like these, ANSI latch attributes are available. If you find
entries ug#1:sg#1 , onscreen attributes are available.

AREAATT
Lists the area or onscreen attributes that are available, and associates a character
with each. The possible attributes are:

ACS Alternate character set (line drawing graphics)
BLINK Blink or other standout
DIM Dim (low intensity)
HILIGHT Highlight (bold)
REVERSE Reverse (or inverse) video
STANDOUT User selected standout mode
UNDERLN Underline

In addition, flags are available that specify how the attributes are implemented by
the terminal. The flags are:

LINEWRAP The attribute wraps from line to line
ONSCREEN The attribute uses a screen position
REWRITE Must rewrite attribute when writing character
SCREENWRAP The attribute wraps from bottom of screen to top

Area and onscreen attributes modify all characters from the start attribute to the
next attribute or to an ‘end’, whichever is closer. (An ‘end’ is either the end of the
screen or the end of the line.) If there is no ‘end’, use SCREENWRAP. If the end is
the end of screen, use LINEWRAP. If end is the end of the line, omit both wrap flags.
Some terminals allow you to select the style. For onscreen attributes, SCREENWRAP
is best and LINEWRAP a good second; for area attributes the choices are about the
same. If the attribute takes up a screen position, use the ONSCREEN flag.

AREAATT= BLINK= 2 DIM= p REVERSE= 4 UNDERLN= 8 \
ONSCREEN LINEWRAP

ASGR = ESC G %u %’0’ %5(%| %) %c

Video File Keywords

1177 Video FileChapter

On some terminals writing a character at the position where an attribute was set
can remove the attribute. Immediately after placing the attribute, the character may
be written with no problems; however, the next time a character is written there,
the attribute disappears. In this case, use the REWRITE flag to reset the attribute
before writing to that position. The following example illustrates how the REWRITE
flag is used (in Televideo 925 video file):

AREAATT = REVERSE = 4 UNDERLN = 8 BLINK = 2 REWRITE
ASGR = ESC G %’0’ %9(%| %) %c

Some terminals restrict the number of attributes, use an ARGR entry to remove
attributes.

ARGR
Removes area attributes. Some terminals restrict the number of attributes (as set
with ASGR) that are available on a given line. If possible, use an ARGR entry.
Changing an attribute to normal does not remove it; a normal attribute stops the
propagation of a previous attribute only. The following example illustrates how the
ARGR entry might appear in your video file:

AREAATT = REVERSE = Q UNDERLN = ‘
ASGR = ESC d %u %’@’ %5(%| %) %c
ARGR = ESC e

JAM uses the ARGR entry to remove repeated attributes, to avoid exceeding the
maximum number of attributes on a line. If there is no maximum, the remove
attribute sequence can be omitted; it sometimes makes the screen “wiggle.”

If the maximum number of attributes is small, JAM’s performance can be limited.
ARGR is desirable because having many attributes onscreen can dramatically slow
performance, since JAM must keep rewriting them as attributes change.

Video File Keywords

118 JAM 7.0 Configuration Guide

ASGR
An area set graphics rendition sequence, used in conjunction with AREAATT, is
passed twelve parameters. The first nine are the same as used by terminfo. The
parameters, in order, represent:

1 standout
2 underline
3 reverse video
4 blink
5 dim (low intensity)
6 highlight (bold)
7 blank
8 protect not used, always 0
9 alternate character
10 foreground color (if available)
11 background color (if available)
12 background highlight

If an attribute is desired, the parameter passed is the character associated with the
attribute, as explained in the description of SGR. If the attribute is not desired, the
parameter passed is (binary) 0.

If no attributes are specified in the video file, JAM supports only two attributes:
non-display (done in software anyway) and underline (using the underscore
character).

COLOR
Used to associate a character with each color, just as LATCHATT associates a
character with each attribute. JAM supports eight foreground and background
colors. The CTYPE entry has flags that tell JAM what background color is
available. You only need to specify the three primary colors in the video file. If
other colors are not specified, they are generated according to the following rules:

BLACK = RED & GREEN & BLUE

BLUE Must be specified

GREEN Must be specified

CYAN = GREEN | BLUE

RED Must be specified

MAGENTA = RED | BLUE

YELLOW = RED | GREEN

WHITE = RED | GREEN | BLUE

Video File Keywords

1197 Video FileChapter

The tenth parameter to SGR or ASGR is the character representing the foreground
color; the eleventh represents the background color (it is 0 if background color is
not available). Many ANSI terminals set foreground color with the following
sequence: ESC [3 x m — where x ranges from 0 for black to 7 for white.
Background color is often set with ESC [4 x m. The order of the colors varies from
terminal to terminal.

On color terminals, REVERSE often means black on white. If background color is
available, JAM prefers that REVERSE is not specified in the video file. It uses the
specified color as the background, and either black or white as the foreground. The
following example is suitable for a color ANSI terminal:

LATCHATT = HILIGHT = 1 BLINK = 5
COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
SGR = %3u ESC [0 %3(%?%t ; %c %; %) ; %3u 3%c ; 4%c m

If the terminal has a unique sequence for each color, a list command works well. In
the following example, the ANSI attribute sequence
ESC [0 ; p1 ; p2 ; ... m) is used:

LATCHATT = REVERSE = 7 HILIGHT = 2
COLOR = CYAN = 0 MAGENTA = 1 BLUE = 2 YELLOW =3 \

GREEN = 4 RED = 5 BLACK = 6 WHITE = 7
SGR = ESC [0 %p3%t;7%; %p6%t;2%; \

%l(0:;>1%; 1:;5%; 2:;5;>1%; 3:;4%; \
4:;4;>1%; 5:;4;5%; 6:;4;5;>1 %) m

The values for the colors are:

cyan >1
magenta 5
blue 5 ; > 1
yellow 4
green 4 ; > 1
red 4 ; 5
black 4 ; 5 ; > 1

Some terminals use ESC [2 ; x ; y m to set color and other attributes — x is
the foreground color and y is the background color; both numbers range from 0 to
7. If highlight is desired in the foreground, 8 should be added to x. If blink is
desired, 8 should be added to y. The following video entries satisfy these
requirements:

LATCHATT = HILIGHT = 8 BLINK = 8
COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND
SGR = ESC [2 ; %p10 %p6 %+ %d ; %p11 %p4 %+ %d m

EMPHASIS_KEEPATT
Use this entry to specify the attributes to be retained when implementing drop
shadows and grayed objects. By default, all attributes are enabled except HILIGHT .

Video File Keywords

120 JAM 7.0 Configuration Guide

This variable is used in conjunction with the EMPHASIS setup variable. You can
change this setting at runtime with the library function sm_pset (refer to the
Language Reference). Refer to Table 2 on page 21 for a list of display attribute
keywords.

EMPHASIS_SETATT
Use this entry to specify the attributes to apply when implementing drop shadows
and grayed objects. By default, this variable has two attributes enabled: REVERSE
and DIM. This variable is used in conjunction with the EMPHASIS setup variable.
You can change attributes at runtime with the library function sm_pset (refer to
the Language Reference). Refer to Table 2 on page 21 for a list of display attribute
keywords.

LATCHATT
Lists the available attributes, and associates a character with each. The possible
attributes are:

ACS Alternate character set (line drawing graphics)
B_HIGLIGHT Background highlight
BLANK Non-display (foreground not shown)
BLINK Blink or other standout
DIM Dim (low intensity)
HILIGHT Highlight (bold)
REVERSE Reverse (or inverse) video
STANDOUT User selected standout mode
UNDERLN Underline

The format is:

LATCHATT = attribute = value attribute = value ...

So a typical LATCHATT might look like:

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7

If the equal sign and value are missing, the attribute is given the value (binary) 1.

Most ANSI terminals use latch attributes, and the codes are fairly standardized. To
determine which attributes are supported and how attributes can be combined, if at
all, examine the SGR entry that usually follows the LATCHATT entry.. Some ANSI
terminals support color, either foreground only or foreground and background. The
sequences for color are far less standard.

Terminal manuals often describe the sequence as “set graphics rendition.” A
common description reads:

Video File Keywords

1217 Video FileChapter

ESC [p1 ; p2 ; ... m

where p n= 0 for normal
1 for bold
5 for blink

Thus ESC [0 m is normal, ESC [1 m is bold, ESC [1 ;5 m is bold and
blinking. Often setting an attribute does not “erase” others, so it is best to reset to
normal first, using ESC [0; 1 m for bold, ESC[0;1;5m for blinking bold, etc.
The coding in the video file is as follows:

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7
SGR = ESC [0 %9(%t ; %c %; %) m

The meaning of the above SGR sequence is as follows. The sequence is passed 11
parameters, each 0 (if the attribute is not to be set) or the character in the
LATCHATT list. First, ESC [0 is output. The %t test, repeated 9 times, causes the
zero parameters to be skipped. A non-zero parameter causes a semicolon and the
parameter to be output. Finally, the character m is output. If the normal attribute is
wanted, all parameters are 0, and the output sequence is ESC [0 m . For underline
SGR is ESC [0 ; 4 m . If highlighted, blinking, and reverse video are desired,
the output is

ESC [0; 7 ; 5 ;1 m.

Some terminals (or emulators) do not accept the method of combining attributes
used above. In that case, one sequence followed by the next might work, e.g., ESC
[1 m ESC [7m . Some terminals cannot combine attributes at all. Here are some
more ANSI and near-ANSI examples:

“standard” ANSI terminal
LATCHATT= HILIGHT=1 BLINK=5 UNDERLN=4 REVERSE=7

ANSI with low intensity but no highlight
LATCHATT= DIM=2 REVERSE=7 UNDERLN=4 BLINK=5

only one attribute available
LATCHATT= REVERSE=7

repeat of above SGR example
SGR = ESC [0 %9(%t ; %c %; %) m

attributes cannot be combined
SGR = ESC [0 m %9(%t ESC [%c m %; %)

skip parameters that are always 0
SGR = %u ESC [0 %5(%t ; %c %; %) m

unable to combine
attributes

Video File Keywords

122 JAM 7.0 Configuration Guide

In the next LATCHATT/SGR example explicit pushes are used to select the
appropriate parameter. The second pair is the same as the first, but the attribute is
treated as a boolean. The first uses the optional %?, the second omits it.

LATCHATT = DIM = 2
SGR = ESC [m %? %p5 %t ESC [2 m %;

LATCHATT = DIM
SGR = ESC [m %t ESC [2 m %;

The following is suitable for terminals that support all attributes but cannot
combine them. It selects one attribute giving preference to REVERSE, UNDERLN,
BLINK , and HILIGHT in that order. It uses a complicated “if-then-elseif-elseif-el-
seif” structure. Automatic parameter sequencing cannot be relied on, so explicit
parameter pushes are used.

LATCHATT = HILIGHT BLINK UNDERLN REVERSE
SGR = ESC [%p3 %t 7 %e %p2 %t 4 %e %p4 %t 5 %e\

%p6 %t 1 %; %; %; %; m

Some terminals use bit-mapped attributes. Terminal manuals are not usually
explicit on this. Often they use tables like that described in Table 19:

Table 19. Bit-mapped attributes

n Visual attribute n Visual attribute

0 normal 8 underline

1 invisible 9 invisible underline

2 blink : underline and blink

3 invisible blink ; invisible underline and blink

4 reverse video < reverse and underline

5 invisible reverse = invisible reverse and underline

6 reverse and blink > reverse, underline and blink

7 invisible reverse and blink ? invisible reverse, underline and
blink

After poring over the ASCII table for a while, it becomes clear that this is
bit-mapped, with the four high-order bits constant (0x30) and the four low-order
bits varying, like this:

x x x x x x x x
0 0 1 1 | | | |

invisible
blink
reverse
underline

bit-mapped attributes

Video File Keywords

1237 Video FileChapter

This can be coded in the video file as follows. The attributes are OR-ed with a
starting value of ’0’ (0x30).

LATCHATT = BLINK = 2 REVERSE = 4 UNDERLN = 8
SGR = ESC G %’0’ %9(%| %) %c

Following are examples of LATCHATT entries that can be used with a Videotex
terminal. The LATCHATT entries, when used with the SGR entry, have equivalent
equivalent results. The bits are OR-ed together with a starting value of 0x40, or @,
and the result is output as a character.

LATCHATT= UNDERLN=DLE BLINK=STX REVERSE=EOT HILIGHT=SP
LATCHATT= UNDERLN= ^P BLINK= ^B REVERSE= ^D HILIGHT= SP
LATCHATT= UNDERLN= 0x10 BLINK= 0x02 REVERSE= 0x04 \

 HILIGHT= 0x20

LATCHATT= UNDERLN= P BLINK= B REVERSE= D HILIGHT= ‘
SGR = FS G %’@’ %9(%| %) %c

Some terminals that use area attributes support a single latch attribute. It is often
called “protected” and is used to indicate protected areas when the terminal is
operated in block mode. The following example switches between protected and
unprotected modes in order to use low intensity. (Be aware that a terminal might
become very slow when using the protect feature.) The SGR sequence depends only
on the attribute being non-zero, so no value is necessary:

LATCHATT = DIM
SGR = ESC %?%t) %e (%;

SGR
A set graphics rendition sequence, in conjunction with the LATCHATT sequence, is
passed twelve parameters.

1 standout
2 underline
3 reverse video
4 blink
5 dim (low intensity)
6 highlight (bold)
7 blank
8 protect not used, always 0
9 alternate character
10 foreground color (if available)
11 background color (if available)
12 background highlight

for Videotex terminal

protected modes

Video File Keywords

124 JAM 7.0 Configuration Guide

If an attribute is desired, the parameter passed is the character associated with the
attribute, as explained below. If the attribute is not desired, the parameter passed is
(binary) 0.

For example, if the video file contains:

LATCHATT = REVERSE = 7 HILIGHT = 1 BLINK = 5 UNDERLN = 4

and a field is to be highlighted and underlined, the SGR sequence is passed (0, ’4’,
0, 0, 0, ’1’, 0, 0, 0). The second and sixth parameters represent underline and
highlight; they are set to the corresponding values in the LATCHATT entry. The rest
are zero. To make the field reverse video and blinking, SGR is passed (0, 0, ’7’, ’5’,
0, 0, 0, 0, 0) .

If no attributes are specified in the video file, JAM supports only two attributes:
non-display (done in software anyway) and underline (using the underscore
character).

SPXATT
Lists attributes which do not change or affect the appearance of a character cell
containing a space. For example,

SPXATT = BOLD DIM BLANK BLINK COLOR

For efficiency, this entry reduces the number of characters sent to a screen. It
defaults to COLOR BLANK HILIGHT DIM . To turn it off entirely, use

SPXATT =

Status Line

JAM usually uses a line from the screen to display status text and error messages.
Thus a 25-line screen (as specified in the LINES keyword) has 24 lines for the
screen, and one for messages. This use of a normal screen line for messages is the
default.

Terminals that use a separate status line can use different attributes on the status
line than on the screen itself. JAM provides some support for this ability; for very
complicated status lines, you must write a routine and install it with sm_install
using the STAT_FUNC function type. For more information on installing a status
line function, refer to page 188 of the Application Development Guide.

OMSG and CMSG
Opens and closes the status line. Use the OMSG entry to open the status line, and
CMSG to close it. These entries are used primarily for those terminals that have a

Video File Keywords

1257 Video FileChapter

special status line that cannot be addressed by normal cursor positioning. All text
between these sequences appears on the status line. No assumption is made about
clearing the line; JAM always writes blanks to the end of the line.

OMSG = ESC f
CMSG = CR ESC g

If the OMSG entry is present in your video file, JAM uses all the lines specified in
the LINES entry for screens.

MSGATT
Lists the attributes available on the status line. This keyword takes a list of flags:

AREAATT All area attributes can be used
BLINK Blink available
DIM Dim (low intensity) available
HILIGHT Highlight (bold) available
LATCHATT All latch attributes can be used
NONE No attributes on status line
ONSCREEN Area attributes take a screen position
REVERSE Reverse video available
UNDERLN Underline available

The attribute for the status line is specified as either a latch (LATCHATT) or area
(AREAATT) attribute, and the sequence to set it must is given in the SGR or ASGR
keyword. For example, if REVERSE is listed in MSGATT and REVERSE is a latch
attribute, then SGR sets it. Attributes that appear in MSGATT and do not appear in
either LATCHATT or AREAATT are ignored.

In order for JAM to determine the correct length of a line, it is important to know
whether area attributes are onscreen or not. It is not uncommon for area attributes
to be non-embedded on the screen but embedded on the status line. Use the
ONSCREEN flag in MSGATT to inform JAM of this condition.

LATCHATT = DIM
AREAATT = REVERSE UNDERLN BLINK
MSGATT = REVERSE UNDERLN BLINK ONSCREEN
MSGATT = AREAATT ONSCREEN

The two MSGATT entries are equivalent. They show a case where only area
attributes are available on the status line and they take a screen position. The area
attributes in the normal screen area do not.

Graphics and International Character Support
JAM has support for eight-bit ASCII codes as well as any graphics that the
terminal can support in text mode. Bit-mapped graphics are not supported.

Video File Keywords

126 JAM 7.0 Configuration Guide

GRAPH
Maps internal numbers to output sequences, similar to the key translation files
which provide mapping from character sequences to internal numbers. The only
character value that may not be sent is 0.

Some terminals have a special compose key, active in eight-bit mode. Generally,
you would press the compose key followed by one or two more keys, generating a
character in the range 0xa0 to 0xff . JAM can process such characters as normal
display characters, with no special treatment in the video file.

Other terminals have special keys that produce sequences representing special
characters. The key translation file can be used to map such sequences to single
values in the range 0xa0 to 0xfe . (Refer to the Application Development Guide
for a way to use values outside that range.) The video file can then specify how
these values are output to the terminal.

Often, to display graphics characters, a terminal must be told to “shift” to an
alternate character set (in reality, to address a different character ROM). The video
file’s GRAPH entries tell which alternate set to use for each graphics character, and
how to shift to it. Whenever JAM is required to display a character, it looks in the
GRAPH table for that character (refer to the description on MODE0 through MODE6
for information on what happens). If it is not there, the character is sent to the
terminal unchanged.

GRTYPE
Provides a convenient shortcut for certain common graphics sets, each denoted by
another keyword. The GRTYPE keywords may be combined.

The format is GRTYPE = [GRTYPE] keyword(s)

The GRTYPE keyword(s) are:

ALL 0xa0 through 0xfe

EXTENDED same as ALL

PC 0x01 through 0x1f and 0x80 through 0xff

CONTROL 0x01 through 0x1f , and 0x7f

C1 0x80 through 0x9f , plus 0xff

An entry in the GRAPH table is made for each character in the indicated range, with
mode 0. If the mode is not 0, you must construct the GRAPH table by hand.

MODE0 through MODE6
JAM supports up to three alternate character sets. The sequences that switch
among character sets are listed below.

Video File Keywords

1277 Video FileChapter

MODES0 through MODE3 are locking shifts. All characters following are shifted,
until a different shift sequence is sent.

MODES4 through MODE6 are non-locking or single shifts, which apply only to the
next character.

You may need to use the INIT entry to load the character sets you want for access
by the mode changes.

MODE0 switch to standard character set

MODE1 alternate set 1

MODE2 alternate set 2

MODE3 alternate set 3

MODE4 ...

MODE5

MODE6

Different modes can be used to support foreign characters, currency symbols,
graphics, etc. JAM makes no assumption as to whether the mode changing
sequences latch to the alternate character set or not. To output a character in
alternate set 2, JAM first outputs the sequence defined by MODE2, then a character,
and finally the sequence defined by MODE0 (which may be empty, if the others are
all non-locking). Here are three examples:

MODE0 = SI
MODE1 = SO
MODE2 = ESC n
MODE3 = ESC o

MODE0 = ESC [10 m
MODE1 = ESC [11 m
MODE2 = ESC [12 m
MODE3 = ESC [13 m

MODE0 =
MODE1 = SS1
MODE2 = SS2

Any of the MODEn strings may also contain a list of attributes. When a character in
that mode is displayed, that attribute is added to whatever attribute is already in
effect. On some terminals, like the HP, only an attribute is required. For example

MODE4 = ACS

which forces all mode 4 characters to be displayed using the alternate character set.

sample of ANSI
standard

Video File Keywords

128 JAM 7.0 Configuration Guide

Any character in the range 0x01 to 0xff can be mapped to an alternate character
set by use of the keyword GRAPH. The value of GRAPH is a list of equations. The
left side of each equation is the character to be mapped; the right side is the number
of the character set (0, 1, 2, 3), followed by the character to be output. Any
character not so mapped is output as itself. For example, suppose that 0x90 =1 d
appears in the GRAPH list. First the sequence listed for MODE1 is sent, then the letter
d, and then the sequence listed for MODE0.

In the following example, 0x81 is output as SO / SI , 0xb2 as SO 2 SI , and
0x82 as ESC o a SI . LF, BEL and CR are output as a space, and all other
characters are output without change. This output processing applies to all data
coming from JAM. No translation is made for direct calls to printf , putchar ,
etc. Thus \n and \r will still work correctly in printf , and putchar (BEL) still
rings the terminal bell.

MODE0 = SI
MODE1 = SO
MODE2 = ESC n
MODE3 = ESC o
GRAPH = 0x81 = 1 / 0xb2 = 1 2 0x82 = 3 a LF = 0 SP\

BEL = 0 SP CR = 0 SP

For efficiency, use single shifts to obtain accented letters, currency symbols, and
other characters that appear mixed in with unshifted characters. Graphics
characters, especially for borders, are good candidates for a locking shift.

It is possible, though not recommended, to map the usual display characters to
alternates. For example, GRAPH = y = 0 z causes the y key to display as z .
Graphics characters are non-portable across different displays, unless care is taken
to ensure that the same characters are used on the left-hand side for similar
graphics, and only for a common subset of the different graphics available.

Borders and Line Drawing
The characters constituting the border and line drawing styles can be specified in
the video file.

BORDER
Specifies alternate borders. If fewer than 10 are given, the default borders (listed
below) are used to complete the set. They are numbered 0 to 9. When you create
screens with the screen editor, you can select from these border styles. The BORDER
entry is portable across different platforms because JAM saves a border as a style
number in the screen file. Style 1 is the default.

0. 1 .
IIIII _____
I I | |
IIIII _____

recommendations

Video File Keywords

1297 Video FileChapter

2. 3.
+++++ =====
+ + | |
+++++ =====

4. 5.
%%%%%
% % : :
%%%%%

6. 7.
***** \\\\\
* * \ \
***** \\\\\

8. 9.
///// #####
/ / # #
///// #####

The data for BORDER is a list of 8 characters per border, in the order: upper left
corner, top, upper right corner, left side, right side, lower left corner, bottom, lower
right corner. The default border set is:

BORDER = SP SP SP SP SP SP SP SP \
 SP _ SP | | | _ | \
 + + + + + + + + \
 SP = SP | | SP = SP \
 % % % % % % % % \
 . . . : : : . : \
 * * * * * * * * \
 \ \ \ \ \ \ \ \ \
 / / / / / / / / \
 # # # # # # # #

The following example is for the PC graphics character set:

BORDER= SP SP SP SP SP SP SP SP \
 0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
 0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
 0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
 0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
 0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
 . . . : : : . . \
 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd

In addition, attributes can be specified for each set of border characters. For
example:

Video File Keywords

130 JAM 7.0 Configuration Guide

BORDER = SP SP ... SP REVERSE \
 ; A ... + ACS \

If there is a GRAPH entry in the video file, you can use the graphics character set of
the terminal for borders. Choose some numbers to represent the various border
parts. The GRAPH option can be used to map these numbers to a graphics character
set. The numbers chosen are arbitrary, except that they should not conflict with
ordinary display characters. Even if the extended 8-bit character set is used, there
are unused values in the ranges 0x01 to 0x1f and 0x80 to 0x9f.

BOX
Ten different sets of line draw characters can be specified when you are using the
screen editor. The BOX entry lists either five or thirteen characters per set. If only
five characters are specified the remaining eight are taken from the corresponding
BORDER set.

Although the format in the video file is similar, JAM uses BOX and BORDER
differently. While BORDER entries are portable across platforms, JAM saves line
drawing as display data. To ensure portability, avoid assigning graphic characters
to the BOX keyword. Instead, use characters that are displayable on all terminals.

BRDATT
Use a BRDATT entry to limit the attributes available in the border. Normally
HILIGHT (or DIM) and REVERSE are used; however, if your terminal uses onscreen
attributes or can accommodate only a few attributes per line, it may be better to
prohibit attributes in borders — use the entry BRDATT = NONE .

The flags used in MSGATT can also be used with BRDATT; however, the only
attributes available are HILIGHT , DIM, and REVERSE.

Indicators

ARROWS
Used to indicate the presence of offscreen data in shifting/scrolling fields. You can
define these indicators to be any characters you wish. The default characters are:

 < , > , X for shifting

 ^ , v, X for scrolling

The character X is used when two shifting/scrolling fields are next to each other; it
represents a combination of both < and >.

ARROWS = < > X ^ v X

Video File Keywords

1317 Video FileChapter

Shift/scroll indicators are black on screens with background colors of white,
yellow, or cyan. They are white on all other screen background colors. You cannot
alter indicator colors.

BELL
If present, is transmitted by the library function sm_bel to give a visible alarm.
Normally, the function rings the terminal’s bell. The BELL sequence can sometimes
be found in the termcap file under vb .

CBDSEL and CBSEL
Selection (CBSEL) and deselection (CBDSEL) characters for groups. If there are no
entries for CBSEL and CBDSEL in your video file, the internal defaults are X for
CBSEL and a blank for CBDSEL. For radio button or checklist widgets, these
characters are used to indicate which fields are selected and which are not. You can
add these entries to the video file to override the defaults. For example:

CBSEL = y
CBDSEL = n

As a result, JAM uses a y to indicate a selected occurrence; NL deselects the
occurrence, and JAM inserts an n in the box.

MARKCHAR
Defines the character used to check menu items. The default character is X. For
example, the following example specifies the square root symbol (√) as the mark
character. This variable is optional for supporting those character-mode applica-
tions that use menu bars and is most useful in video files that support reasonable
graphical characters.

MARKCHAR = 0xFB

SLIDER
Defines the characters used in character-mode scroll bars. Eight characters are
defined, where the first set of four characters define the slider characters used in
horizontal scroll bars, and the second set contains the slider characters used in
vertical scroll bars:

SLIDER = left-arrow right-arrow bar thumb \
 up-arrow down-arrow bar thumb

For example, these characters are defined in vt100vid :

SLIDER = < > = # ^ v / #

You can use hex values of graphics characters for those terminals that support
them. For example:

SLIDER = 0x11 0x10 0xb0 0xb2 0x1e 0x1f 0xb0 0xb2

Video File Keywords

132 JAM 7.0 Configuration Guide

SUBMNSTR
Defines the indicator for submenu options. This indicator appears on menu bar
options indicating that the item invokes a submenu. The default string is an ellipsis
(...). This variable is optional for supporting those character-mode applications that
use menu bars and is most useful in video files that support reasonable graphical
characters.

Drivers

MOUSEDRIVER
Enables the mouse in JAM applications. Supported mouse types on UNIX are kb ,
AT, JAMPI, and xterm . On PCs, you can only specify PC. For example, you might
add the following entry to your PC video file:

MOUSEDRIVER = PC

Miscellaneous

COMPRESS
Implements data compression for Jterm users. Use the following entry:

COMPRESS = JTERM

CURPOS
Specifies the time-out delay, in tenths of a second. The CURPOS entry causes the
current cursor position to be displayed on the status line at the specified intervals:

CURPOS = 1 Updates display every 0.1 second (use on fast systems)

CURPOS = 3 Updates every 0.3 second (reasonable for most)

CURPOS = 7 Updates every 0.7 second at low baud rates

CURPOS = 0 No display, same as omitting keyword.

When possible, JAM uses non-blocking keyboard reads. If no key is received
within a specified time, the cursor position display is updated. This allows fast
typists to type at full speed; when the typist pauses, the cursor position display is
updated.

The delay depends on the baud rate and your terminal. If there is no non-blocking
read, a non-zero value of CURPOS enables the display and zero disables it. If the
terminal has its own display, omit CURPOS.

Sample Video Files

1337 Video FileChapter

Sample Video Files

This sample video file, for a basic ANSI terminal (like a VT100), contains the
basic capabilities, plus control sequences to erase a line and to apply the reverse
video, underlined, blinking, and highlighted visual attributes. The entries for CUP
and SGR are more complicated because they require additional parameters at
runtime.

Display size (these are actually the default # values)
LINES = 24
COLMS = 80

Erase whole screen and single line
ED = ESC [2 J
EL = ESC [0 K

Position cursor
CUP = ESC [%i %d ; %d H

Standard ANSI attributes, four available
LATCHATT = REVERSE = 7 UNDERLN = 4 BLINK = 5 HILIGHT = 1
SGR = ESC [0 %u %5(%t ; %c %; %) m

By default, JAM displays data on the console by directly accessing the PC’s video
RAM. On machines that are not 100% IBM-compatible, it will use BIOS calls
instead. Use the entry INIT = BIOS for these machines. Under no circumstances
does JAM use DOS calls or the ANSI.SYS driver. Video files for both mono-
chrome and color displays are distributed with JAM.

Because JAM contains special code for the PC display, most of the entries that
contain control sequences are irrelevant, and are given a value of PC in the
distributed video files. Do not alter these entries; they are required but their values
are irrelevant. Other entries, that do not contain PC control sequences, such as
LINES , GRAPH, and BORDER, can be changed.

For Basic ANSI
Terminal

For MS-DOS

Sample Video Files

134 JAM 7.0 Configuration Guide

the default for INIT is:
INIT = C 0,7,2

most sequences are handled by assembler functions,
these should be set to “PC” to function correctly

ED = PC
EL = PC

LINES = 25
COLMS = 80

defines the display area

INIT and RESET can change the cursor style if desired
other flags are available in the INIT sequence.

cursor style 0 specifies top scan line; 7 specifies bottom scan line;
2 specifies fast blinking cursor.

erase display
erase to end of line

CON = PC
COF = PC

INSON = C 6,7,0
INSOFF = C 0,7,0

CUP = PC
CUU = PC
CUD = PC
CUB = PC
CUF = PC

cursor on
cursor off

cursor style in

cursor style in insert

overstrike mode

relative cursor

absolute cursor
postiion

mode

postiioning

6 specifies top scan line; 7 specifies bottom scan line;
0 specifies rapid blinking cursor
restores cursor to block style, blinking cursor.

COLOR = BLUE = 1 GREEN = 2 RED = 4 BACKGRND
LATCHATT = HILIGHT BLINK
SGR = PC

EW = PC

SCP = PC

RCP = PC

REPT = PC

available attributes

erase window

save cursor position and
attributes

restore cursor position
and attributes

available colors

sets attributes
specified by LATCHATT

repeat character
specification

Sample Video Files

1357 Video FileChapter

__ __ __
| | | | | |
| | | | |__ __ __|

BORDER = SP SP SP SP SP SP SPSP \
0xda 0xc4 0xbf 0xb3 0xb3 0xc0 0xc4 0xd9 \
0xc9 0xcd 0xbb 0xba 0xba 0xc8 0xcd 0xbc \
0xd5 0xcd 0xb8 0xb3 0xb3 0xd4 0xcd 0xbe \
0xd6 0xc4 0xb7 0xba 0xba 0xd3 0xc4 0xbd \
0xdc 0xdc 0xdc 0xdd 0xde 0xdf 0xdf 0xdf \
. . . : : : . . \
0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 0xb0 \
0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 0xb2 \
0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd 0xbd

PC graphics characters
specify border style

___ |
| |– –|– –| –––

BOX = SP SP SP SP SP \
0xc2 0xc3 0xc5 0xb4 0xc1 \
0xcb 0xcc 0xce 0xb9 0xca \
0xd1 0xc6 0xd8 0xb5 0xcf \
0xd2 0xc7 0xd7 0xb6 0xd0 \
0xb1 0xb1 0xb1 0xb1 0xb1 \
0xf9 0xf9 0xf9 0xf9 0xf9 \
0xb0 0xb0 0xb0 0xb0 0xb0 \
0xb2 0xb2 0xb2 0xb2 0xb2 \
0xdb 0xdb 0xdb 0xdb 0xdb

^ ^
<– –> <–> | | |
v v

ARROWS = 0x1b 0x1a 0x1d 0x18 0x19 0x12

CURPOS = 1

GRTYPE = PC

MOUSEDRIVER=PC

MARKCHAR=û
SUBMNSTRING=ÍÍÍ^P

PC graphics characters
specify box style

specifies indicator styles
for shifting/scrolling fields

updates cursor position
display every .10 sec

specifies graphic
character set 0x01 through 0x1f and 0x80 through 0xff

specifies mouse driver enables mouse in JAM applications

137

Configuration Map
File

The configuration map file contains definitions for for screens and widgets—col-
ors, fonts, lines and box styles—that you can tailor to different platforms. The file
is divided into several sections:

� [Colors] maps user-defined color names to system color names (page 138).

� [Schemes] maps color definitions to application components such as screens
and widget types (page 142).

� [Lines] defines line and box styles (page 145).

� A fonts section—[Windows Fonts] for Windows, [Display Fonts] for
other GUI platforms—tells JAM which fonts and font sizes to display in the
drop-down menus in the screen editor; it also defines default display fonts, and
maps system-specific font names to JAM font aliases. (page 147).

By defining these display elements in GUI-specific files and using their names for
screen and widget properties, you can create applications that are easy to port
across different platforms. Instead of creating multiple instances of the same
screens that each use GUI-specific font and color names, you can create multiple
configuration map files—one for each platform on which JAM and your JAM
applications run. For example, you can create a color alias PanicButtonRed that
resolves to different colors in different configuration maps.

88

Defining Colors

138 JAM 7.0 Configuration Guide

JAM is installed with at least one configuration map file (*cmap) that suits your
environment. You can edit these or create your own with an ASCII text editor, then
run the utility cmap2bin to convert it to binary format (page 150).

During initialization, JAM looks for the configuration variable SMCOLMAP which
can be defined in the environment or in an SMVARS file). This variable gives the
full pathname of the binary configuration map file.

Defining Colors

When you create a screen or widget, the screen editor seeks default color settings,
or a scheme, for that object’s type. foreground and background. The editor
automatically sets the color property to Scheme and then resolves the scheme,
looking first in the configuration map file. If the file provides no scheme for the
object, the editor looks elsewhere for color defaults (refer to page 142).

JYACC provides configuration maps with default schemes for screens and for each
widget type. You can define your own color schemes that suit your environment,
style preferences, or development and application requirements. Or you can rely on
the local GUI to assign colors to your application objects.

You can set the Color Type property to one of these three settings:

� Scheme—the defaults defined in the [Schemes] section in the *cmap file, or
if none, a set of default colors determined by settings defined either in the
native GUI or in JAM.

� Basic—JAM’s eight highlighted and eight unhighlighted colors, plus the
Container option. (The Container option specifies that a widget within another
object has the same background color as the container.)

� Extended colors—GUI-specific colors that are specified by a string and are
resolved in the [Colors] section of the *cmap file, or directly by the GUI.

Color Aliases

The [Colors] section defines GUI-independent color aliases that you can use in
the Color Name property of screens and widgets. All color names, including JAM
palette color names like hilight_red , must be added to the list of color aliases.
Each entry appears on its own line in the following format:

alias_color = color

Defining Colors

1398 Configuration Map FileChapter

alias_color
Any name you choose to identify a color.

color
One of the following:

� An RGB value in a platform-specific form:

For Windows, use the form ” red/ green/ blue” where red, green and blue are
numbers between 0 and 255. For example:

PanicButtonRed = ”205/92/92”

For Motif, use the form “# RedGreenBlue“ where Red, Green, and Blue are
hex numbers between 00 and ff. For example:

PanicButtonRed = ”#cd5c5c”

� A GUI specific name (in Motif only). For more information on Motif color
names, refer to page 171. For example:

PanicButtonRed = ”Indian Red”

� JAM keywords in the form basic_color (attributes); where basic_color
corresponds to one of JAM’s 16 colors (or “container”) and attributes is an
optional display attribute (refer to Table 20). For example:

NumberField = BLACK UNDERLN

This style of definition can create a GUI-independent color alias. For example:

SpringGreen=Green Hilight
SummerGreen=Green Dim

If a widget had the Motif color SpringGreen specified and JAM could not
find it, it would substitute the JAM color Green Hilight , which is always
defined. A configuration map with similar aliases would allow a Motif-specif-
ic screen to appear similarly when running in JAM’s character mode.

Note: In Windows and Presentation Manager, JAM screens and widgets that have
highlighted background colors are different from those having unhighlighted
background colors. In character JAM on a PC under DOS, there is normally no
difference between highlighted and unhighlighted background colors. JAM display
attributes have no effect in Motif.

Defining Colors

140 JAM 7.0 Configuration Guide

Table 20. JAM color and attribute keywords. Keywords are case–insensitive.

Color Keyword Attribute Keyword

Black BLACK Reverse video REVERSE

Blue BLUE Underline UNDERLN

Green GREEN Blink BLINK

Cyan CYAN Highlight HILIGHT

Red RED Dim DIM

Magenta MAGENTA

Yellow YELLOW

White WHITE

Container CONTAINER

The keyword CONTAINER specifies that a widget within another object has the
same background color as the container. Therefore CONTAINER can not be used to
specify a foreground color. Also, because CONTAINER may contain attributes, you
cannot specify any additional attributes with it.

A number of predefined color aliases control the screen editor’s appearance. All
screen editor color aliases begin with se ; entries use the same format as user-de-
fined colors. For example, this entry in a Windows or Presentation Manager
configuration map file sets the background color of the design screen:

seFormBg = ”127/255/0”

Table 21 lists screen editor color aliases and the objects whose appearance they
control:

Table 21. Screen editor object constants. Object keywords are case sensitive.

Color alias Description

seBorderFG Editor windows border foreground.

seCheckFG Property window option menu foreground.

seEntryFG Property window text field foreground.

seFormBG Editor windows background.

seLabelFG Label foreground.

seListBG List background (except for Property window).

seListFG List foreground (except for Property window).

Screen Editor
Colors

Defining Colors

1418 Configuration Map FileChapter

Color alias Description

seMultiBG Multiline text background.

seMultiFG Multiline text foreground.

seOptionmenuBG Option menu background.

sePushBG Push button background.

sePushFG Push button foreground.

sePwListBG Property window list background.

sePwListFG Property window list foreground.

seTbBorderFG Tool box border foreground.

seTbFormBG Tool box background.

seTbTogFG Tool box toggle button foreground.

seTextBG Text background.

The following examples are from ASCII configuration map files; the aliases ensure
that colors you specify for one platform are displayed correctly on others without
editing Color Name properties of application components. Given the appropriate
configuration map file, an application displays colors that are correct for its
environment.

The [Colors] section in the Motif configuration map defines these color aliases:

Slate Gray = “#708090”
Olive Drab = “#6B8E23”
ButtonBlue = ”#0938EE”

For character mode, the [Colors] section redefines these aliases with JAM color
names:

Slate Gray = HILIGHT WHITE
Olive Drab = Green
ButtonBlue = Blue

For a Windows and Presentation Manager configuration map, these aliases are
redefined with RGB values:

Slate Gray = ”112/128/144”
Olive Drab = ”107/142/35”
ButtonBlue = ”09/38/240”

If you specify Slate Gray on the three platforms, the correct color is displayed. If
you alias the Motif color to map to a JAM-specific color, you ensure that when

Sample Colors
Section

Defining Colors

142 JAM 7.0 Configuration Guide

your application runs in character JAM, Slate Gray is displayed as the JAM color
hilight white .

Color Schemes
You can decide on a set of default colors for each newly created object in the JAM
screen editor. When the Color Type property is set to Scheme, JAM uses the
configuration map file to resolve the object’s foreground and background colors,
according to its type.

The Schemes section of the configuration map file can include explicit settings or
defer to the GUI’s resource database or initialization file.

If the configuration map file omits a [Schemes] section, JAM uses the following
default schemes:

� Character JAM: white foreground, black background.

� Motif: the *fg and *bg settings in the resource database.

� Windows: Control Panel colors.

� Presentation Manager: Color Palette colors.

Each entry in the [Schemes] section appears on its own line in the following
format:

object = color

object
Any widget type, including lines and boxes, screen, and borders, followed by either
a foreground (FG) or background (BG) mnemonic; for example, ToggleBut-
tonFG and ListBoxBG . Refer to Table 22 for a list of valid object specifications.

color
One of the following specifications:

� An RGB value in a platform-specific form:

For Windows and Presentation Manager, use the form ” red/ green/ blue”
where red, green and blue are numbers between 0 and 255. For example:

MultiTextFG = ”0/0/255”

For Motif, use the form “# RedGreenBlue“ where Red, Green, and Blue are
hex numbers between 00 and ff. For example:

Default
Schemes

Scheme Syntax

Defining Colors

1438 Configuration Map FileChapter

MultiTextFG = ”#0000ff”

� JAM keywords in the form basic_color [attribute] ; where basic_color
corresponds to one of JAM’s 16 colors (or “container”) and attribute is an
optional display attribute. (Refer to Table 20.) (You may not use the container
color for foreground color designations.) For example:

TEXTFG = BLACK UNDERLN

� A GUI independent color alias. For example, this entry sets LabelBg to
JYACC blue , an alias that must be defined in the [Colors] section:

 LabelBG=JYACC blue

� Use the keyword GUI to indicate the native GUI resource database or
initialization file. For example, the following indicates that the native GUI
resolves the foreground color for toggle buttons:

 TogglebuttonFG=GUI

� Use the keyword GUI and the Motif or Windows/Presentation Manager screen
element scheme value. (Do not use any additional attributes with a GUI
keyword color designation.) For example, for Windows/Presentation Manager:

PushButtonFG = GUI Buttonface

For Motif:

PushButtonBG = GUI XJam*background

� GUI-specific colors. These exist only in Motif, and used un-aliased, limit the
scheme’s color portability to other environments. For more information on
Motif color names, refer to page 171.

CheckBoxFg =tomato

Table 22. Object specifications for setting schemes. Object specification keywords are
case-insensitive.

Object Specification Descriptions

BoxTopBg Top border background of box widget.

BoxTopFg Top border foreground of box widget.

CheckBoxBg Check box background.

CheckBoxFg Check box foreground.

ComboBoxBg Combo box background.

ComboBoxFg Combo box foreground.

Defining Colors

144 JAM 7.0 Configuration Guide

Object Specification Descriptions

FormBg Screen color scheme.

FormBorderBg Screen border background.

FormBorderFg Screen border foreground.

GraphBg Graph widget background.

GraphFg Graph widget foreground.

GridBg Grid widget background.

GridFg Grid widget foreground.

LabelBg Static label background.

LabelFg Static label foreground.

LineBg Line widget background.

LineFg Line widget foreground.

ListBoxBg List box background.

ListBoxFg List box foreground.

MultiTextBg Multitext background.

MultiTextFg Multitext foreground.

OptionMenuBg Option menu background.

OptionMenuFg Option menu foreground.

OutputBg Dynamic label background.

OutputFg Dynamic label foreground.

PushButtonBg Push button background.

PushButtonFg Push button foreground.

RadioButtonBg Radio button background.

RadioButtonFg Radio button foreground.

ScaleBg Scale widget background.

ScaleFg Scale widget foreground.

TextBg Single line text background.

TextFg Single line text foreground.

ToggleButtonBg Toggle button background.

ToggleButtonFg Toggle button foreground.

Defining Line and Box Styles

1458 Configuration Map FileChapter

Defining Line and Box Styles

[Lines] section entries map character-mode styles for lines and boxes to GUI
styles. Character-mode line and box styles are defined in the box and border entries
of your terminal’s video file.

Each entry appears on its own line in the following format:

style name = style content

style name
A predefined or new style name. Spaces are allowed and case is irrelevant.

style content
A predefined style name or another alias style name defined in this file. Spaces are
allowed and case is irrelevant. Currently supported predefined style names include:

Dash Dashdot Dashdotdot Default

Dot Double Dash Double Etched In

Etched In Dash Etched Out Etched Out Dash In

None Out Single

Style 0 Style 1 ... Style 9

You can use this section of the configuration map file to assign the styles 0 through
9 to GUI-specific line styles. For example, you might define the following entries
for Motif:

[Lines]
style 0 = etched in
style 1 = etched out

These entries tell JAM for Motif that when to interpret style 0 as an alias for
etched in , and style 1 as etched out .

Character Mode

Styles 0 through style 9 are native to JAM running in character mode. Style 1 is
defined as the default line style. When you assign a character–specific style as the
Style property value for a line or box style in the screen editor, that style is mapped

Defining Line and Box Styles

146 JAM 7.0 Configuration Guide

to style 1 on non-character JAM applications. GUI-specific styles map to style 1
when running in character mode.

GUI Styles
The default line and box style for all GUI platforms is etched in. Table 23 shows
which styles are supported by different platforms, and how JAM displays styles
that are undefined or are not supported by the GUI. Supported styles are repre-
sented by asterisks (*). Because Windows and Presentation manager support the
same styles for lines and boxes, the table does not differentiate between these two
widgets; however, Motif supports a different set of styles for each widget type, so
these are depicted separately.

Note: In Windows and Presentation Manager, screens that have their 3D property
set to No display Etched In and Etched Out as single lines.

Table 23. Mapping of JAM line and box styles on GUI platforms.

Line styles Windows/PM Motif line Motif box

Default etched in etched in etched in

Style 0 single no line etched in

None single no line etched in

Styles 1–9 single etched in etched in

Etched In * * *

Etched In Dash dash * etched in

Etched Out * * *

Etched Out Dash dash * etched in

Single * * etched in

Dash * * etched in

Dot * dash etched in

Dashdot * dash etched in

Dashdotdot * dash etched in

In single etched in *

Out single etched out *

* Style is supported by the GUI platform.

Defining Display Fonts

1478 Configuration Map FileChapter

Line styles Motif boxMotif lineWindows/PM

Double single * etched in

Double Dash single * etched in

* Style is supported by the GUI platform.

To control the mapping, assign the desired specification in the configuration map
file.

Defining Display Fonts

Display font information is contained in its own section—[Windows Fonts]
under Windows, [Display Fonts] for other platforms. Entries in this section let
you:

� Specify the fonts and point sizes that appear on drop-down menus for the Font
Name and Point Size properties.

� Specify the default font and font size.

� Define font aliases.

Point Sizes
You can specify the point sizes that appear on the Point Size property’s drop-down
menu with an entry that has this format:

point_sizes = size[size]...

For example:

point_sizes = 8 9 10 12 14 16 18 20 24 36 48 72

Note: JAM uses the point_sizes entry only for scalable fonts. For a non-scal-
able font, JAM gets its available sizes from the GUI and displays these on the
drop-down menu.

Default Font
You can specify the default font that JAM applies when you accept Default for a
screen’s Font Name property with an entry that has this format:

Defining Display Fonts

148 JAM 7.0 Configuration Guide

default_font = font-spec

font-spec is a font specification that is valid for this configuration map file’s
environment. For applications running on Windows, specify the font name only.
For example:

default_font = Arial

For Motif applications, specify fonts with the XLFD font naming convention;
substitute the wild card character * for all weight, slant, and size properties. For
example:

default_font = –*–Helvetica–*

Note: JAM also uses the default font for any font alias that it cannot resolve.

Default Font Size

The default_font_size entry specifies the font size that JAM applies when
you accept Default for a screen’s Font Size property. Use this format:

default_font_size = size

Font Aliases

The fonts section can define any number of GUI-independent font aliases that
appear on the Font Name property’s drop-down menu. In GUI environments, JAM
merges these with the names of fonts supplied by the GUI itself.

Each font alias definition has the following format:

alias-name [(font-qualifier...)] = font-spec
[[(font-qualifier...)] = font-spec]...

You can reiterate the same font alias with different qualifiers on separate lines, and
thereby map it to unique font specifications. For example, the following alias
definition uses different qualifiers to map font alias Text to two different fonts,
depending on whether the Italic property is set:

Text (noitalic) = Arial
 (italic) = ArialItalic

If more than one entry matches a widget’s properties, the first matching entry
determines which font is displayed.

The following sections discuss each component of a font alias definition.

Defining Display Fonts

1498 Configuration Map FileChapter

alias-name
The name that you choose to identify a font.

font-qualifier
Optionally limits usage of alias-name to those objects that also use the specified
qualifiers. You can AND together one or more space-delimited font qualifiers from
each of the following columns, in any order:

bold italic underline point-size[point-size]...
nobold noitalic nounderline

For example, a Windows configuration map file might contain two definitions for
the font alias Helv, the first qualified, the second unqualified:

Helv (italic 12 14) = ArialItalic
 = Arial

If a widget’s Font Name property is set to Helv , JAM uses Arial unless two other
conditions are also true: the Italic property is set to Yes, and the Point Size property
is set to either 12 or 14. In this case, JAM uses ArialItalic.

Point size qualifiers can limit the number of choices available in the Point Size’s
drop-down menu. For example, given the following Windows alias definition,
choosing SmallFont as a widget’s Font Name property limits the choices on the
Point Size drop-down menu to Default, 8, and 10:

SmallFont (8 10) = Arial

Note: Point size qualifiers are used on the Point Size property’s drop-down menu
only if they are valid for the selected font.

font-spec
font-spec maps the font alias to a font supported by the GUI environment. For
applications running on Windows, specify fonts with this syntax:

fontname[–point-size] [–bold] [–italic] [–underline]

For example:

Title = Arial–14–bold
Text = Arial

For Motif applications, specify fonts with the XLFD font naming convention:

–foundry–family–weight–slant–width–style–pixel size–point size–x resolution–
 y resolution–spacing–average width–charset registry–charset encoding

Converting Configuration Map Files to Binary

150 JAM 7.0 Configuration Guide

You can substitute any component in an XLFD font name with the wild card
character * . For example:

Courier = –*–courier–*–r–*
Courier (italic) = –*–courier–*–o–*

If font-spec omits values for point size, slant, or weight, JAM supplies these values
from the corresponding property settings—Point Size, Italic, and Bold. For
example, the following entries for font alias Helv—each in separate configuration
map files for Windows and Motif—specify only the font’s family name:

Helv = Arial

Helv = –*–helvetica–*

Given these definitions, any widget using Helv as its font can also have its Point
Size, Bold, and Italic properties set; these properties are used to resolve the
displayed font. So, if the widget’s Bold and Italic properties are set to Yes, JAM
resolves the aliases to Arial–bold–italic on Windows and –*–helvetica–
bold–i–* in Motif, and passes on these specifications to their respective GUIs.

Conversely, these definitions of font alias HelvBold sets its weight to bold:

HelvBold = Arial–bold

HelvBold = –*–helvetica–bold–*

The explicit weight specifications for HelvBold override the Bold properties for a
widget that uses this font; the font is always displayed as bold.

Converting Configuration Map Files to Binary

You use the cmap2bin utility to convert ASCII configuration map files to a binary
format for use by JAM. cmap2bin automatically appends the binary file name
with the bin extension (unless the –e option is used). It places the binary output
file in the directory from which the utility is run.

To convert a configuration map file, use the following format:

cmap2bin [–pv] [–e ext] map file [map file ...]

map file
The name of the ASCII configuration map file. More than one input file may be
specified.

Synopsis

Options and
Arguments

Sample Configuration Map File

1518 Configuration Map FileChapter

–p Output file(s) will be placed in same directory as input files(s).

–v Generates a list of files processed.

–e ext Uses ext as the file extension to the output file(s).

Sample Configuration Map File

The following configuration map file defines colors, fonts, and lines styles for
Windows applications.

[Colors]
grape = MAGENTA # JAM color
Aquatic Blue = ”64/32/200” # Windows–style RGB value

The following entries in the color map are for use in the
screen editor. If you remove them entirely, then SCHEME
colors are used, which may be desirable in Windows.

#seFormBG = GUI WindowBackground
#seBorderFG = Unused by Pi for Windows
#seLabelFG = GUI WindowText
#sePushFG = GUI ButtonText
#sePushBG = GUI ButtonFace
#seEntryFG = GUI WindowText
#seMultiFG = GUI WindowText
#seMultiBG = GUI WindowBackground
#sePwListFG = GUI WindowText
#sePwListBG = GUI WindowBackground
#seListFG = GUI WindowText
#seListBG = GUI WindowBackground
#seCheckFG = GUI WindowText
#seOptionmenuBG = GUI WindowBackground
#seComboboxBG = GUI WindowBackground
#seTextBG = GUI WindowBackground

The following definitions are for the tool box
seTbFormBG = BLACK
#seTbBorderFG = Unused by Pi for Windows
#seTbTogFG = Unused by Pi for Windows

[Schemes]
#OUTPUTFG = GUI WindowText
#TEXTFG = GUI WindowText
#MULTITEXTFG = GUI WindowText
#PUSHBUTTONFG = GUI ButtonText
#TOGGLEBUTTONFG = GUI ButtonText
#RADIOBUTTONFG = GUI WindowText

Sample Configuration Map File

152 JAM 7.0 Configuration Guide

#OPTIONMENUFG = GUI WindowText
#COMBOBOXFG = GUI WindowText
#LISTBOXFG = GUI WindowText
#SCALEFG = GUI WindowText
#LABELFG = GUI WindowText
#BOXTOPFG = GUI WindowText
#LINEFG = GUI WindowFrame
#CHECKBOXFG = GUI WindowText
#FORMBORDERFG = Unused by Pi for Windows
GRAPHFG = BLACK
#GRIDFG = GUI WindowText

#FORMBG = GUI WindowBackground
OUTPUTBG = CONTAINER
#TEXTBG = GUI WindowBackground
#MULTITEXTBG = GUI WindowBackground
#PUSHBUTTONBG = GUI ButtonFace
#TOGGLEBUTTONBG = GUI ButtonFace
RADIOBUTTONBG = CONTAINER
#OPTIONMENUBG = GUI WindowBackground
#COMBOBOXBG = GUI WindowBackground
#LISTBOXBG = GUI WindowBackground
SCALEBG = CONTAINER
LABELBG = CONTAINER
#BOXTOPBG = CONTAINER
#LINEBG = Unused by Pi for Windows
CHECKBOXBG = CONTAINER
#FORMBORDERBG = Unused by Pi for Windows
#GRAPHBG = CONTAINER
#GRIDBG = CONTAINER

[Lines]
Style 1 = Single
MyFavoriteStyle = Double

[Windows Fonts]
Point Size property drop–down
point_sizes = 8 9 10 12 13 14 16 18 20 22 24 26 28 36 48 72

Application defaults for Font Name and Point Size
properties
default_font (print) = Times New Roman
default_point_size (print) = 10

JAM Font Name Qualifiers Windows font
––––––––––––– –––––––––– ––––––––––––
JAM Courier = Courier New
JAM Times Roman = Times New Roman
JAM Helvetica = Arial
JAM Symbol = Symbol

153

Setting Windows
Defaults

Applications that run under Microsoft Windows use initialization files to set
defaults for the GUI. The initialization file controls how Windows and the
applications running under Windows appear and behave. You can set up the initial
state, and (as is the practice in Windows) your users can change these settings to
suit their preferences.

The settings you establish in the initialization file override any duplicate settings
you have indicated in your SMVARS files.

Initialization Files

The initialization files reside in the Windows directory. Preferences are indicated in
the initialization file by setting attribute/value pairs. JAM applications running
under Windows use initialization files to determine values for a variety of
attributes including:

� Default colors

� Mapping between JAM colors and GUI-specific colors

99

location

Initialization Files

154 JAM 7.0 Configuration Guide

� GUI independent color names

� Application behavior

Filenames

Each application can have an application-specific initialization file. The name of
this file is set by the argument to JAM’s GUI initialization function. To change the
initialization filename, edit the argument to the function sm_pi_mw_setup in the
file piinit.c for a JAM application executable, or the function
sm_pi_mw_jxsetup in the file pijxinit.c for a JAM development executable.
These source files can be found in the link directory.

At initialization, the main routine of your application (usually either jmain.c or
jxmain.c) calls either the function sm_pi_init or sm_pi_jxinit to initialize
the GUI. These routines in turn call sm_pi_mw_setup or sm_pi_mw_jxsetup
which set the name of the initialization file.

The default value for this argument in the distributed software is Jam7, so the
resulting initialization file would be JAM7.INI .

Syntax of Initialization Files

Initialization files are arranged as a list of attributes; each attributes takes a value.
The entries take the following form:

attribute=value

StackedWindowType=Dialog

The attribute is StackedWindowType . The value, set on the right of the equal
sign, is Dialog .

The file is made up of sections; bracketed names indicate each section. Section and
content order is not relevant.

Section Description

[Jam Options] Behavior and appearance options.

[Jam PaletteColors] List of names and values for setting the sixteen
JAM palette colors.

[Jam NoPaletteColors Names and Values of colors if display device does
not have color palette.

example

Colors

1559 Setting Windows DefaultsChapter

Section Description

[Jam StatusLine] Configures how the status line appears.

[Jam Help] Specifies behavior of JAM interface to Windows
Help.

[Jam DDE] Supports end-user DDE client links.

Comments are indicated with a semicolon at the start of the line.

Colors

JAM provides sixteen basic colors — eight highlighted and eight unhighlighted.
You can map these colors to any of the colors supported by the GUI. The mapping
between JAM colors and GUI colors defines your color palette.

To create custom colors beyond the provided sixteen basic colors, use the
configuration map file (refer to Chapter 8). (Since your users have access to
configuration maps, you could allow them to customize the colors.)

Most monitors support sixteen primary colors, but some support more. These
sixteen primary colors are mapped to the palette colors in the jam.ini file, which
is the initialization file distributed with JAM. The sixteen basic colors are:

black red hi_black hi_red

blue magenta hi_blue hi_magenta

green yellow hi_green hi_yellow

cyan white hi_cyan hi_white

If your application is running on a display device which has the Windows color
palette enabled, JAM colors are mapped to your Window colors in the [Jam Pa-
letteColors] section of the initialization file. If your application is running on a
display device which does not support a color palette, or you have disabled the
color palette using the PaletteUse option in the JAM Options section, JAM
colors are mapped in the [JAM NoPaletteColors] section. The syntax for both
color sections is as follows:

jamcolor = color

Note: There is a limitation in Windows for colors used as foregrounds. Foreground
colors must be primary colors (i.e., no dithered patterns). If you specify a
non-primary color, Windows rounds it up to a primary color.

Color Section
Syntax

Initialization Options

156 JAM 7.0 Configuration Guide

jamcolor
A basic JAM color as listed above.

color
An RGB value in the form red/green/blue where red, green and blue are numbers
between 0 and 255. For example, Blue=0/0/255 You can use the Windows
palette feature on the Windows Control Panel to interactively mix your colors, and
then note the values and transfer them to the initialization file.

Note: In Windows JAM screens and widgets having highlighted background colors
are different from unhighlighted background colors. In character JAM on a PC
under DOS, there is normally no difference between highlighted and unhighlighted
background colors.

Initialization Options

The following behavior and appearance options can be set in the [Jam Options]
section of the application-specific initialization file.

3D = Yes | No

When this option is set to Yes, the 3D feature is enabled for the application.
Message boxes and Windows common dialog boxes, as well as application screens,
take on a three-dimensional appearance. When this option is set to No, the 3D
feature is disabled for the application. The 3D option setting in this file can be
overridden for individual application screens through the 3D screen property;
message boxes and Windows common dialog boxes, however, will always take
their appearance from the setting in this initialization file. (Refer to Chapter 14 in
the Editors Guide for an explanation of the 3D property.) If this option is not
specified, it defaults to Yes.

FrameTitle = TitleString

This setting controls the title text in the MDI frame around a JAM application. The
default title string is the value of the first argument to sm_pi_mw_jxinit or
sm_pi_mw_init in jmain.c or jxmain.c .

HideHiddenWindows = Yes | No

When set to Yes, this option hides screen editor windows when it enters Test mode.

IconPosition = Xposition Yposition

This options sets the location of the application’s minimized icon. Xposition and
Yposition are set in pixels.

Initialization Options

1579 Setting Windows DefaultsChapter

IntroPixmap = image-file

Specifies the image that appears during application startup. Refer to page 266 in
the Editors Guide for supported image file types. The specified image file name
can include an explicit path; refer to page 267 in the Editors Guide for a descrip-
tion of the search algorithm JAM uses when you omit a path.

KeepInMDI = Yes | No

If set to Yes, this option forces initial placement of a newly created window within
the MDI frame, if its size allows. No, the default, allows initial placement of the
window anywhere within the MDI frame.

MDIWallpaperPixmap = image-file

MDIWallpaperStyle = Center | Tile

These options let you define a wallpaper image and its position on JAM’s MDI
parent window. Refer to page 266 in the Editors Guide for supported image file
types. The specified image file name can include an explicit path; refer to page 267
in the Editors Guide for a description of the search algorithm JAM uses when you
omit a path.

When MDIWallpaperStyle is set to Center, the image is centered on your JAM
MDI screen. When MDIWallpaperStyle is set to Tile, the image is placed in the
upper left corner of the window and is repeated as many times as is necessary to
fill the entire window.

MoveThreshold = Distance

The number of pixels which the cursor must be moved in order to be considered a
drag instead of a click. This applies when dragging the rubberband, or creating,
moving, or resizing an object.

NormalPosition = Xposition Yposition

This options sets the location of the application MDI frame when it is ‘restored’.
Xposition and Yposition are set in pixels.

NormalSize = Width Height

This option sets the size of the MDI frame in when it is ‘restored’. Width and
Height are set in pixels.

PaletteUse = Enable | Disable

If set to Enable, JAM uses the color palette to produce colors, allowing the full
range of RGB colors supported by your display device without having to make use
of dithering. If set to Disable, JAM does not make use of the color palette. Your

Initialization Options

158 JAM 7.0 Configuration Guide

application is limited to the reserved system colors (20 on a 256-color display) and
dithered combinations of them. This setting requires fewer resources. (You should
only set this option to Disable if you tend to run other applications that are very
color intensive.)

SaveStateOnExit = Yes | No

When this option is set to Yes the size and location of the MDI frame is saved
between sessions. The default setting is Yes.

SMTERM = TerminalType

This option overrides the SMTERM environment variable for JAM applications
running under Windows. It allows both DOS and Windows to use JAM without the
need to change the environment. To take advantage of this feature, set SMTERM to
mswin in the initialization file, and to a DOS terminal type in the environment or
SMVARS file. Example DOS terminal types are: cga , ega , mono, softcol and
softbw .

SMUSER = Username

This JAM environment variable sets the developer’s name for use with multi-user
libraries. JAM first looks for user identification from your configuration
management tool, if any; failing that it looks at SMUSER; if this variable is not
defined it looks for LOGNAME, then USER; if it cannot identify you in any of these
ways, it prompts for a user name.

SMVARS = Pathname, SMPATH = Pathname and SMBASE = Pathname

Each of these variables can be set in the initialization file in order to override
environment variable settings, permitting different settings for different applica-
tions running in the same environment. (Refer to Chapter 4 for detailed informa-
tion on the meaning of these configuration variables.)

StackedWindowType = Dialog | MDI

When set to Dialog, this option forces all stacked windows in a JAM application to
be dialog boxes. As dialog boxes, they are modal, have a dialog style border, and
can move outside of the MDI frame. This might lead to unpredictable behavior if
the application moves stacked and sibling windows on the window stack, or if the
application creates or breaks sibling relationships between windows after they are
displayed.

StartupState = Minimized | Normal | Maximized

This option controls the size of the MDI frame when JAM starts. Windows will
determine the initial size if no value is given.

Status Line Appearance

1599 Setting Windows DefaultsChapter

Status Line Appearance

The [JAM StatusLine] section configures how the status line appears. By
default, the status line is an etched out bar with the same colors that Windows uses
for push buttons.

Flags = STATUSBARCOLORS PURECOLORS ETCHEDIN

This option sets flags for the status line. STATUSBARCOLORS enables the four
status bar color options defined below. If this flag is not set, the control panel color
settings for buttons are used. PURECOLORS forces only non-dithered colors to be
used in painting the status bar. ETCHEDIN causes the status bar to appear etched into
the MDI frame, rather than the default of appearing etched out.

ShadowWidth = Width

This option sets the width of the 3-D status bar shading in pixels. It defaults to 2. If
set to 0, there is no 3-D effect.

BackColor = Color
TextColor = Color
HighLightColor = Color
ShadowColor = Color

These options only take effect if the Flags option is set to STATUSBARCOLORS
They set the default background color, text color, shaded highlights, and darkened
shadow for the status line. For compatibility with other Windows applications,
background color defaults to grey. The other colors’ default values are calculated
by sm_ManipulateColor . Messages with embedded display attributes can
override the default background color. Color is an RGB value in the form
red/green/blue where red, green and blue are numbers between 0 and 255. For
example, Blue=0/0/255 You can use the Windows palette feature on the
Windows Control Panel to interactively mix your colors, and then note the values
and transfer them to the initialization file.

Help Behavior

The [JAM Help] section specifies the behavior of the JAM interface to the
Windows help engine.

WinHelp = On | Off

When set to On the F1 key will be trapped by JAM and used to access the help
database specified in the HelpFile option, below. Shift–F1 will cause the mouse

DDE

160 JAM 7.0 Configuration Guide

cursor to change indication help mode, and the subsequent mouse selection will
cause the help database specified in the HelpFile option to be accessed for help.
This means that F1 and Shift–F1 will not be available as keystroke to JAM itself.
This option defaults to Off .

HelpFile = Pathname

This option specifies a path to the winhelp database file to use for help. It can be a
fully specified path, or it can be a file that is somewhere on the path specified by
the SMPATH environment variable. There is no default. Therefore this option must
be specified if the WinHelp option is set to On.

DDE

This section supports DDE client and server links. For general information on
setting DDE client/server links between JAM and other applications, refer to
Chapter 31 in the Application Development Guide

DDEServer = On | Off

When set to On, this option enables JAM as a server.

DDEClient = On | Off

When set to On, this option enables JAM as a client.

screenname ! fieldname = service | topic ! item

Specifies hot links to server applications. The format for server, topic, and item
arguments is specific to the server application. For example, a link to a Quattro Pro
spreadsheet might look like this:

salesScrn!totalSales=QPW|C:\myAcct\sales.wb1!$A:$A$10..$A$10

Table 58 shows the syntax used by three widely used Windows applications. Refer
to the server application’s documentation for information on server argument
formats. For more information on setting JAM as a DDE client, refer to page 548
in the Application Development Guide.

Windows Control Panel

Default attributes for Windows can be set from the Windows Control Panel,
usually found in the Main group on the Windows desktop. From the Control Panel,

Sample JAM.INI File

1619 Setting Windows DefaultsChapter

you can set up the color scheme for Windows, as well as other defaults. The
Control Panel alters the win.ini file, supplied by Microsoft. Refer to the MS
Windows documentation for details of how to use the control panel

Sample JAM.INI File

[JAM Options]

; The following are various general PI/Windows options.
; Each option is preceded with a comment that indicates
; what it is for.

; Set this option to the name you want in the MDI Frame
; Window’s title bar. Set this to an appropriate value for
; your application.
FrameTitle=JAM for Windows

; Name of graphic file to display on application startup
IntroPixmap=

; Set SMBASE, SMVARS, SMPATH and SMUSER here to override the
; environment variable settings. This permits different
; settings for different applications running in the same
; environment, without needing to restart Windows.
; Setting any of these options to an empty value will
; maintain the environment settings.
SMBASE=
SMVARS=
SMPATH=$SMBASE\config;$SMBASE\samples\videobiz
SMUSER=

; Use this option to override the SMTERM environment variable
; under Windows. This allows the use of JAM in both DOS and
; Windows without changing the environment.
SMTERM=mswin

; Set this option to ”No” to remove the 3–D effect for
; all user screens and system dialogs. Defaults to ”Yes”
; if unspecified.
3D=Yes

; Options that control the size and location of the MDI frame
; when JAM starts. If no values are given, initial size &
; location are determined by Windows.
;
; Set this option to ”Minimized”, ”Normal” or ”Maximized”.
; Defaults to ”Normal”.

Sample JAM.INI File

162 JAM 7.0 Configuration Guide

StartupState=Normal

; This option sets the normal (i.e. ”Restored”) size
; (width height) of the MDI frame in pixels. For example,
; NormalSize=100 150 makes the MDI frame 100 pixels
; wide and 150 pixels high when in a restored
stateNormalSize=858 686

; This option sets the normal (i.e. ”Restored”) location
; (x y) of the MDI frame in pixels.
NormalPosition=24 37

; This option sets the location (x y) of the application’s
; minimized icon in pixels. Use this to override Windows’
; default placement.
;IconPosition=

; Set this option to ”Yes” to save the size and location of
; the MDI frame in this file each time you exit JAM. Any
; uncommented settings for StartupState, NormalSize,
; NormalPosition and IconPosition are overridden
; upon exiting. The default is ”No” if unspecified.
SaveStateOnExit=Yes

; Name of the graphic file to display as the MDI frame
; background. Style determines if graphic is ”Tiled” or
; ”Centered”.
MDIWallpaperPixmap=
MDIWallpaperStyle=

; The next option controls how JAM makes use of the color
; palette, if your display device supports one. Use of the
; palette allows the full range of RGB colors supported by
; your display device to be displayed without dithering. If
; several applications which use the color palette are
; running, they share the palette. The application which is
; active is guaranteed to display its colors correctly. If
; applications share the palette correctly, applications
; which are not active get colors which are as close as
; possible to the requested colors. More information on color
; palettes can be found in chapter 19 of the Windows 3.1 SDK
; ”Guide to Programming”.
;
; If set to Disable, JAM does not make use of the color
; palette. Your application is limited to the reserved system
; colors (20 on a 256 color display) and dithered
; combinations of them. This setting requires fewer
; resources. In this configuration, the colors displayed by
; JAM are independent of the focus. You should only set this
; option to Disable if you tend to run other applications

Sample JAM.INI File

1639 Setting Windows DefaultsChapter

; that are very color intensive.
;
; Set this option to ”Enable” or ”Disable”. Default is
; ”Enable”.
PaletteUse=Enable

; The following option can be used to force all stacked
; windows in a JAM application to be dialog boxes. This
; makes them modal, gives them a dialog style border, and
; allows them to move outside of the MDI frame. Note that
; this may lead to unpredictable behavior if the application
; moves stacked and sibling windows around on the window
; stack, or if the application ”siblingizes” and/or
; ”desiblingizes” windows after they are displayed.
;
; Set this option to ”Dialog” to force stacked windows to be
; dialog boxes or to ”MDI” if you want to use regular MDI
; windows. ”Dialog” is the default. Note that in JAM 5 the
; default value was ”MDI”.
StackedWindowType=Dialog

; Setting this option to ”Yes” (default) causes Edit Mode
; windows to be hidden when going onto test mode. ”No” leaves
; them visible.
HideHiddenWindows=Yes

; The option ”MoveThreshold” is the number of pixels which
; the mouse must be moved in order to be considered a drag
; instead of a click. This applies when dragging out a
; rectangle to create an object, or when trying to
; move or resize an object. If you actually do want to move
; or resize an object by less than this amount, drag a larger
; distance first, then drag back to the desired position.
; (Do not release the mouse in between.) This only takes
; effect in Edit Mode.
MoveThreshold=5

; Setting this option to ”Yes” causes new MDI windows to be
; positioned within the MDI frame, if possible. ”No”
; (the default) places no constraints on the initial position
; of windows.
KeepInMDI=No

; The following two options disable JAM as a DDE client
; or server. By default, JAM is enabled as both a client
; and server. Set these to ”Off” to disable either or both.
DdeClient=On
DdeServer=On

[JAM PaletteColors]

Sample JAM.INI File

164 JAM 7.0 Configuration Guide

; The colors in this section are used if the display device
; supports a color palette, and you have not disabled use
; of the color palette using the PaletteUse option. See the
; comments prior to PaletteUse in the [Jam Options] section
; for more information.
;
; This section matches the 16 JAM basic colors to RGB values.
; It is not optional, as JAM must have a way to perform this
; mapping. The 16 colors listed here correspond to the
; colors of the screen editor’s Color Palette screen. You can
; change any of these values to override the default.
; Values for these colors are decimal RGB values. You can
; run Control Panel – Colors to look at colors by decimal
; RGB value.
black=128/128/128
blue=0/0/191
green=0/191/0
cyan=0/191/191
red=191/0/0
magenta=191/0/191
yellow=191/191/0
white=191/191/191
hi_black=0/0/0
hi_blue=0/0/255
hi_green=0/255/0
hi_cyan=0/255/255
hi_red=255/0/0
hi_magenta=255/0/255
hi_yellow=255/255/0
hi_white=255/255/255

[JAM NoPaletteColors]

; Colors in this section are used if the display device does
; not support a color palette, or you disabled use of the
; color palette using the PaletteUse option. See comments
; prior to PaletteUse in the [Jam Options] section for more
; information.
;
; This section matches the 16 JAM Basic colors to RGB values.
; It is not optional: JAM must perform this mapping. The
; 16 colors listed here correspond to the colors of the
; screen editor’s Color Palette screen. You can change any of
; these values to override the default. Values for these
; colors are decimal RGB values. You may run Control
; Panel – Colors to look at colors by decimal RGB value.
black=128/128/128
blue=0/0/128
green=0/128/0

Sample JAM.INI File

1659 Setting Windows DefaultsChapter

cyan=0/128/128
red=128/0/0
magenta=128/0/128
yellow=128/128/0
white=192/192/192
hi_black=0/0/0
hi_blue=0/0/255
hi_green=0/255/0
hi_cyan=0/255/255
hi_red=255/0/0
hi_magenta=255/0/255
hi_yellow=255/255/0
hi_white=255/255/255

[JAM StatusLine]
; This section configures how the status line appears. By
; default, the status line is an etched out bar with the same
; colors that Windows uses for push buttons. The following
; options modify its appearance:
;
; The ”Flags” option sets flags for the status line.
; Available flags are:
;
; STATUSBARCOLORS – If this flag is set, the options
; BackColor, TextColor, HiLightColor,
; and ShadowColor below are meaningful.
; If it is not set, colors used for the
; status bar are those set for buttons in
; the control panel.
; PURECOLORS – all colors used for painting the status
; bar are forced to pure non–dithered
; colors.
; ETCHEDIN – The status bar is etched in to the MDI
; frame, rather than being etched out.
; Etched out is the default.
;
; By default, no flags are set.
Flags=

; The ”ShadowWidth” option sets the width of the 3D status
; bar shading in pixels. It defaults to 2. If set to 0,
; there is no 3D effect.
ShadowWidth=2

; The ”BackColor”, ”HighLightColor”, and ”ShadowColor”
; options are the colors used to paint the status bar
; background, shaded highlights, and darkened shadow. These
; options only take effect if STATUSBARCOLORS is
; one of the flags specified in the ”Flags” option above.
; The colors can be GUI independent colors. ”BackColor”

Sample JAM.INI File

166 JAM 7.0 Configuration Guide

; defaults to gray. ”TextColor”, ”HighlightColor” and
; ”ShadowColor” are calculated using sm_ManipulateColor()
; if they are not specified here.
BackColor=128/128/128
;TextColor=0/0/0
;HighLightColor=255/255/255
;ShadowColor=0/0/0

; The ”Font” option sets a font for use on the status line.
; It can be one of the system fonts, like SYSTEM_FONT, or
; ANSI_VAR_FONT, or it can be a font description in the form:
; fontname–size[–bold][–italic][–underline]
; or it can be a GUI–independent font. It defaults to
; SYSTEM_FIXED_FONT.
Font=MS Sans Serif–10

[JAM Help]

; This section specifies the behavior of the JAM interface to
; external help engines.

; This option contains the name of the help file used by the
; external help system you’ve installed.
HelpFile=

; The option ”EditorHelpPath” specifies a path where the
; directory that contains the book directory that contains
; the editors directory can be found. This should be removed
; when providing an .ini file with your finished application.
EditorHelpPath=$SMBASE\docs\books

[JAM DDE]

; This section supports end user DDE client links. Specify
; the JAM screen name, JAM widget name, the remote server
; name, the topic, and the item.
;
; Example:
; scrnname.jam!widgetname=Excel|Sheet1!R1C1
;
; The screen name MUST be separated from the widget name with
; an ’!’. The Server, Topic and Item MUST be separated with
; ’|’ and ’!’ characters.
;
;WARNING:QuattroPro requires full path name for its topic.
; For example, to connect linkfunc.jam client topic
; and DDETextField client item with QPW server
; FROMINI.WB1 server topic, and A1 server item,
; write:
;

Sample JAM.INI File

1679 Setting Windows DefaultsChapter

; linkfunc.jam!DDETextField=QPW|C:\QPW\FROMINI.WB1!A1

;NOTE: JAM topic and item can be specified in lower, upper,
; or mixed cases. QuattroPro and Microsoft Excel servers
; allow specification of names of their servers, topics,
; and items in lower, upper, or mixed cases.

[JAM EditMenu]

; This section lets users set Edit Menu labels, mnemonics,
; and accelerators. Below are examples of default settings
; which are commented out.

;WARNING: in case a user changes default settings for
; ACCELERATORS, he/she should change corresponding
; items in mwjxform.rc file.

;CutLabelAndMnemonic=Cu&t
;CutAccelerator=CtrlDel+X
;CopyLabelAndMnemonic=&Copy
;CopyAccelerator=Ctrl+C
;PasteLabelAndMnemonic=&Paste
;PasteAccelerator=Ctrl+V
;DeleteLabelAndMnemonic=Delete
;DeleteAccelerator=Del
;ClearLabelAndMnemonic=Clear
;ClearAccelerator=
;SelectAllLabelAndMnemonic=&Select All
;SelectAllAccelerator=

[JAM WindowsMenu]

;This section lets a user set Windows Menu labels, mnemonics,
; and accelerators. Below are examples of default settings
; which are commented out.

WARNING: In case a user changes default settings for
; ACCELERATORS, he/she should add corresponding
; items in accelerator table in mwjxform.rc file.

;CascadeLabelAndMnemonic=&Cascade
;CascadeAccelerator=
;TileLabelAndMnemonic=&Tile
;TileAccelerator=
;ArrangeIconsLabelAndMnemonic=Arrange &Icons
;ArrangeIconsAccelerator=

169

Setting Motif Defaults
Applications that run under Motif use resource files to set defaults for the GUI
(Graphical User Interface). The resource file controls how Motif and the
application running under Motif appear and behave. You can set up the initial state,
and as is the practice in Motif, your users can change these settings to suit their
preferences.

Resource Files

Resource preferences are indicated by setting attribute/value pairs. JAM applica-
tions use resource files to determine values for a variety of attributes including:

� Default colors.

� Mapping between JAM colors and Motif colors.

� GUI-independent color names.

� Application behavior.

Resource Filenames

Each application can have an application-specific resource file. The name of this
file is determined by the class name for the application. The class name for a JAM

1010

Resource Files

170 JAM 7.0 Configuration Guide

application is set by the argument to JAM’s GUI initialization function. To change
the class name, edit the argument to the function sm_pi_xm_setup in the file
piinit.c for a JAM application executable, or the function sm_pi_xm_jxsetup
in the file pijxinit.c for a JAM development executable. These source files can
be found in the link directory.

At initialization, the main routine of your application (usually either jmain.c or
jxmain.c) calls either the function sm_pi_init or sm_pi_jxinit to initialize
the GUI. These routines in turn call sm_pi_xm_setup or sm_pi_xm_jxsetup
which set the class name.

The default class name in the distributed software is XJam. Therefore the
application-specific resource filename is XJam.

Structure of Resource Files

Under Motif, resource files are arranged as colon separated attribute/value pairs.
For example:

XJam*stackedWindowsAreDialogs: false

The attribute set in this case is stackedWindowsAreDialogs . The value is
understood to be any text to the right of the colon. White space directly after the
colon is ignored. Therefore the value is false .

XJam is the class name. It restricts this resource to applications of the class XJam.
Resources may be further restricted to screens and even to individual widgets. The
class name for a JAM application is determined at application initialization (see
above). You can also specify an instance name for an application via the standard
Xt command line switch –name.

Comments are indicated by starting the line with an exclamation point. Refer to
your Motif documentation for a full explanation of resources and resource files.

Location of Resource Files

A resource database is constructed from several sources, in the following order of
precedence, each source overriding any conflicting settings from the previous
sources:

� The application-specific resource file, named by the class name of the
application, is sought in the directory: /usr/lib/X11/app–defaults on the
client machine. These resources are then global to all users of a particular
application.

Colors

17110 Setting Motif DefaultsChapter

� An application-specific resource file is then sought in the user’s home
directory. The user may override the global setting here.

� If the environment variable XAPPLRESDIR is set, the directory named in it on
the client machine is searched for a resource file named by the application
class name. This file can contain the user’s or site administrator’s preferences,
and overrides settings in both the application-specific resource file in the
app–defaults directory and the user’s home directory.

� Resources that are particular to one user’s preference can be included in the
.Xdefaults file in the user’s home directory. The .Xdefaults takes
precedence over other resource files. If you make changes to the .Xdefaults
file while the Motif Window Manager is running, you must call xrdb –load
.Xdefaults to reload the resource file.

� Command line options override any resources set in a resource file.

Colors

JAM running under a GUI offers access to many more color choices than character
JAM. Resource files provide a mapping between JAM colors and Motif colors.
JAM also provides a way to set up a GUI-independent color naming scheme in the
resource file. These colors can be used in widget and screen properties.

Setting Palette Colors

Character JAM provides sixteen colors from which you can choose, eight
highlighted and eight unhighlighted. In the resource file, you can map these sixteen
JAM colors to any of the colors supported by Motif. This mapping between JAM
colors and Motif colors define your palette. Since your users have access to
resource files, they can customize the palette. The sixteen JAM colors that can be
defined in the palette are:

black red hi_black hi_red

blue magenta hi_blue hi_magenta

green yellow hi_green hi_yellow

cyan white hi_cyan hi_white

In JAM running under Motif, palette colors are mapped to Motif colors defined in
the resource file. The syntax is:

Colors

172 JAM 7.0 Configuration Guide

XJam. jamcolor: color

jamcolor
A basic JAM color as listed above.

color
Can be either

� A color name that appears in the rgb.txt file on your system. For example:

XJam.blue: DarkSlateBlue

� A hexadecimal RGB value. Hex specifications must be preceded by a #
symbol. For example:

XJam.green: #00a800

Refer to the Motif User’s Guide for details.

Colors Beyond the JAM Palette
For most applications, sixteen colors are sufficient. However, if additional colors
beyond the sixteen are needed, you can specify them in the widget or screen
properties with the extended color type. With the extended color type, you can use
either GUI-specific colors or GUI-independent color aliases.

Overriding Colors Set within JAM

Motif provides resources for changing the color of widgets and these setting can
override any color settings made within JAM. For example, a foreground color
setting for a text widget might look like this:

XJam*XmText*foreground: blue

This setting overrides any other foreground color for text widgets in applications of
class XJam. A setting like the following changes the text widget for the specified
screen vidscreen :

XJam*vidscreen*XmText*foreground: blue

Motif provides application-wide background and foreground color resources. You
can set these from the command line or in the resource file. JAM interprets these
resources to override JAM’s default background and foreground colors. Therefore,
the application-wide background color replaces any un-highlighted black
background, and the application-wide foreground color replaces any unhighlighted
white foreground.

Color Resources

Background and
Foreground
Resources

Colors

17310 Setting Motif DefaultsChapter

The format in the resource file is:

XJam*background: color
XJam*foreground: color

To set the colors from the command line, the format is:

–bg color –fg color

color
Can be either

� Motif color name

� Hex value preceded by a # symbol.

Note: GUI-independent color aliases cannot be used with these resources.

Background and foreground resources offer a convenient method for allowing
users to set their own color preferences, provided that you specify unhigh-
lighted black as the background and unhighlighted white as the
foreground in the display attributes for widgets and screens, and that the widgets
and screens don’t have background or foreground colors specified.

Motif Colors
Motif colors are listed in the rgb.txt file, often found in the directory /
usr/ lib/X11 . If your rgb.txt file is located in a different directory, use the
XJam.rgbFilename: directory resource to point to it. The rgb.txt file lists
color names along with their red, green, and blue components. The colors are
system dependent. Some common color names are listed in Table 24:

Table 24. Motif colors (partial listing)

alice blue deep sky blue light sky blue papaya whip
antique white dim gray light slate blue peach puff
aquamarine dim grey light slate gray peru
azure dodger blue light slate grey pink
beige firebrick light steel blue plum
bisque floral white light yellow powder blue
black forest green lime green purple
blanched almond gainsboro linen red
blue ghost white magenta rosy brown
blue violet gold maroon royal blue
brown goldenrod medium blue saddle brown

Resource Options

174 JAM 7.0 Configuration Guide

burlywood gray medium orchid salmon
cadet blue green medium purple sandy brown
chartreuse green yellow medium sea greensea green
chocolate grey medium slate blue sienna
coral honeydew medium turquoise sky blue
cornflower blue hot pink medium violet red slate blue
cornsilk indian red midnight blue slate gray
cyan ivory mint cream slate grey
dark goldenrod khaki misty rose snow
dark green lavender moccasin spring green
dark khaki lavender blush navajo white steel blue
dark olive green lawn green navy tan
dark orange lemon chiffon navy blue thistle
dark orchid light blue old lace tomato
dark salmon light coral olive drab turquoise
dark sea green light cyan orange violet
dark slate blue light goldenrod orange red violet red
dark slate gray light gray orchid wheat
dark slate grey light grey pale goldenrod white
dark turquoise light pink pale green white smoke
dark violet light salmon pale turquoise yellow
deep pink light sea green pale violet red yellow green

Resource Options

This section describes resources that control behavior and the appearance of JAM
running under Motif.

Behavioral Resources
Several resources control application-wide behavior of JAM:

The introPixmap resource specifies the image that appears during application
startup. Refer to page 266 in the Editors Guide for supported image file types. The
specified image file name can include an explicit path; refer to page 267 in the
Editors Guide for a description of the search algorithm JAM uses when you omit a
path.

The baseWindow resource controls whether a base window appears on the display.
The base window is a special window that contains only a menu bar, a keyset, and
a status line.

Splash Screen
Resource

Base Window
Resource

Resource Options

17510 Setting Motif DefaultsChapter

If baseWindow is:

� true (default) — a base window appears on the display.

� false — No base window appears on the display. Any menu bar, keyset, or
status line that would appear in this window are lost. Refer to formStatus
and formMenus to determine which status line and menu bars appear in the
base window.

The moveThreshold resource sets the number of pixels which the cursor must be
moved in order to consider the movement to be a drag instead of a click. This
applies when dragging out a rubber band when creating an object, or when trying
to move or resize an object. If you want to move or resize a field by less than this
amount, drag the mouse a larger distance than this resource is set to, then drag it
back to the desired position without releasing the mouse button during the action.
This resource defaults to 0.

The pressAndMove resource determines whether an object must be selected
before it can be moved. When this resource is set to true (the default behavior),
pressing on a widget selects it and allows it to be immediately dragged. When this
resource is set to false, the widget must first be clicked on (press and release the
mouse), and then pressed on again in order to move it.

The formStatus resource controls where status messages appear (not error
messages). Error messages appear in dialog boxes, while status messages appear on
the status line. This resource controls whether status messages appear on the base
window’s status line (the default), or on the active screen’s (or window’s) status
line. The existence of the base window is controlled by the baseWindow resource
(see above).

There are five levels of status messages:

1. d_msg_line

2. wait

3. field

4. ready

5. background

Background status messages can only appear in the base window. If formstatus
is:

� false (default) — All status messages appear in the base window. Individual
screens have no status line of their own. If there is no base window (that is, if
baseWindow: false), then there is no status line at all.

Screen Editor
Cursor Behavior
Resources

Status Message
Resource

Resource Options

176 JAM 7.0 Configuration Guide

� true — Background status messages appear in the base window. All other
status messages appear in a status line on the active screen. The status line on
individual screens appears at the bottom of the screen. Only the active screen’s
status line is updated. If a screen is not active, then its status line is not
updated.

The following resources control menu display:

formMenus

Controls whether individual screens or windows have their own menu bars.
formMenus can be set to true or false:

� false (default) — Only the base window displays a menu bar. Individual
screens display no menu bar. Menu bars of all scopes, including screen–level,
appear in the base window. If baseWindow is also false, then no menu bars
appear at all.

� true — Individual screens display their own menu bar. Screens display menu
bars of the scope MNS_SCREEN (screen–level). Only the active screen’s menu
bar is updated and active. Menu bars on inactive screens are inactive.

The base window, if there is one, displays menu bars of the scope MNS_AP-
PLIC (application–level). The SFTS logical key can toggle between having the
application-level or system-level menu bar displayed in the base window. If
there is no base window, then no system- or application-level menu bars are
displayed.

labelString

Sets the label for the specified edit item—for example, edit_cut or
edit_paste . This statement sets the label for edit_cut to Cut :

XJam*XmMenuShell*edit_cut.labelString: Cut

mnemonic

Sets the mnemonic for keyboard access to the specified edit item—for example,
edit_cut or edit_paste . This statement sets for edit_cut ’s mnemonic to t :

XJam*XmMenuShell*edit_cut.mnemonic: t

You can control tooltips font type and size for Motif applications through the XJam
resource file. For example, this statement sets tooltip text to 18 point Helvetica:

XJam*toolbar*tooltip.fontList: *–helvetica–*–18–*

There are combinations of setting you can use with the behavioral resources that
will ensure compatibility with Windows and ensure compliance with Motif

Menu
Resources

Toolbar
Resources

Combination of
Settings

Resource Options

17710 Setting Motif DefaultsChapter

standards, with respect to where and how menu bars and status lines appear and
work.

� For compatibility with JAM running under Windows and backward compati-
bility with controlled release versions of JAM running under Motif, use the
following default settings:

XJam*baseWindow: true
XJam*formStatus: false
XJam*formMenus: false

� For full functionality with menu bars and status lines local to screens:

XJam*baseWindow: true
XJam*formStatus: true
XJam*formMenus: true

� If you wish to have no base window:

XJam*baseWindow: false
XJam*formStatus: true
XJam*formMenus: true

Do not use application level menu bars or background status messages with
this combination; they will not appear.

Screen Control Resource
The focusAutoRaise resource brings a screen to the top of the display when it
gets the focus. Use the following setting:

XJam*focusAutoRaise: true

Restricted Resources
The following items in the distributed XJam file must not be changed:

XJam*...*translations
XJam*keyboardFocusPolicy
XJam*...*traversalOn

You can change all other items (including: Mwm*XJam*keyboardFocusPolicy).

Global Resource and Command Line Options
The resources in Table 25 are global settings that function on an application-wide
basis. You can also specify them on the command line, as you can the standard X

Resource Options

178 JAM 7.0 Configuration Guide

Toolkit command line options. Refer to the X Toolkit manual for a full list of
command line switches.

Table 25. Global resource options

Resource Type Command Line Description

foreground string –bg color Sets unhighlighted white foregrounds to color.

background string –fg color Sets unhighlighted black backgrounds to col-
or.

ownColormap boolean –cmap (on)
+cmap (off) D

Tells JAM whether to use its own color map.
Use ‘on’ for systems with limited colors.

D = default

The following illustrates a sample command line resource setting:

jamdev –fg ’white’ myscreen.jam

Widget Hierarchy

Widgets are arranged in a parent-child hierarchy. The tables in this section describe
the widget hierarchy in JAM running under Motif. If you want to set resources for
particular widgets or classes of widgets in your application, you will need this
information. Refer to the OSF/Motif Programmer’s Guide for more information on
widgets, widget classes, and the resources associated with them.

The base screen in a JAM application is an ApplicationShell widget. Its class
is given by the first argument to the initialization routine, and its name is the name
of the application program (the value of argv[0] in main). If the baseWindow
resource is set to false , then this shell is created but never displayed.

Note: Avoid application program names that contain periods or asterisks, as the
resource parser interprets these as special characters. Periods that precede widget
name extensions are exempt from this restriction: extensions are stripped from JAM
names before Motif uses them.

By default, JAM has class name XJam and application name jamdev or jam .

command line example

Base Screen

Resource Options

17910 Setting Motif DefaultsChapter

Table 26 lists the widget hierarchy for the base screen.

Table 26. Base screen widget hierarchy

Name Widget Class

application-name ApplicationShell... (given by initialization routine)

main XmMainWindow

statusForm XmForm

statusText XmText

menubar XmRowColumn

toolbar XmRowColumn

 The status area is used for the JAM status line in the base screen.

The creation of dialog boxes is handled by JAM, in some cases, and by Motif in
others. Table 27 lists the appropriate function or Motif resource associated with the
creation of specific dialog box types.

Table 27. Dialog boxes

Dialog box type Created by

File selection sm_filebox library function

Message Need to post message

Error message XmCreateErrorDialog

Query message XmCreateQuestionDialog

JAM specifies the message string, which buttons appear, and which button is the
default. The JAM message call can specify the icon to appear. Other options, like
the title bar text, can be set in the resource file.

The children of dialog boxes are handled by Motif. Refer to your Motif manual for
details.

The widgets used in JAM screens are all subclasses of the Motif shell widget.
The shell ’s parent is the ApplicationShell . Table 28 lists the widget
hierarchy for JAM screens.

Dialog Boxes

JAM Screens

Resource Options

180 JAM 7.0 Configuration Guide

Table 28. Widget hierarchy for JAM screens

Name Widget Class

screen–name ...TopLevelShell

message_popup XmDialogShell

message XmMessageBox...

filebox_popup XmDialogShell

fileBox XmFileSelectionBox...

scroll XmMainWindow

clip SmSimpleManager

area SmSimpleManager

statusForm XmForm

statusText XmText

scrollbar XmScrollBar

scrollbar XmScrollBar

menubar XmRowColumn

toolbar XmRowColumn

JAM screens have a status line only if the value of the formStatus resource is
true . They have a menu bar only if formMenus is true .

New screens are named shell before they have been saved.

Since the name of the shell used for JAM screens is the screen name, resources can
be restricted to a specific screen if you begin the specification with
class* screen_name. For example, XJam*vidscrn... begins a specification for a
screen named vidscrn in an application of class XJam. Resources restricted to a
named screen are equivalent to screen property. For example:

XJam*vidscrn.background: gold

is the same as specifying a screen color property.

area is the parent widget for all the widgets on a JAM screen. To place your own
widgets on a JAM screen, you need the widget ID of area . The library function
sm_drawingarea returns the widget ID of area . A related function,
sm_translatecoords , translates JAM screen coordinates into pixel coordinates
relative to the upper left hand corner of area .

JAM widgets are created as child widgets of area . If a widget has a name, its
corresponding Motif widget gets the same name. If a field doesn’t have a name, its

Widgets

Resource Options

18110 Setting Motif DefaultsChapter

Motif widget is named _fld #, where # is the field number. In a named array
consisting of multiple fields, each widget has the same name. Motif widgets that
represent multiple fields take the name of the first field.

Motif variants of sm_widget such as sm_xm_widget return a widget ID.
Asterisks in the table below indicate which widget is returned by sm_widget in
cases where there is more than one possibility. If the widget returned by
sm_widget is not the one you are looking for, use XtParent to obtain the widget
ID of its parent. This is particularly useful when working with scale widgets and
scrolling multiline and list box widgets.

Table 29 lists the widget hierarchy for JAM fields. Some entries in the table have
prefixes or suffixes with their names. For example, field–nameSW indicates that the
widget’s name is composed of the field’s name followed by the characters SW.

Table 29. Widget hierarchy for JAM widgets

Object Name Widget Class

box box ...XmFrame

title XmLabel

line separator ...XmSeparator

graph box ...XmDrawingArea

grid grid-name ...SmMatrix

horizScroll XmScrollBar

vertScroll XmScrollBar

clip SmClip

textField XmText

single line text field–name ...XmText

static label field–name ...XmLabel

radio button field–name ...XmToggleButton

toggle button field–name ...XmToggleButton

check box field–name ...XmToggleButton

dynamic label field–name ...XmLabel

push button field–name ...XmPushButton

Resource Options

182 JAM 7.0 Configuration Guide

Object Widget ClassName

combo box field–name ...XmForm

text XmText

arrow XmArrowButton

field-name_pane XmRowColumn

label-text
label-text
...
label-text

 XmPushButton
 XmPushButton
 ...
 XmPushButton

multiline text field–name ...XmText

multiline text with
scrollbars

field–nameSW ...XmScrolledText
scrollbars

field–name XmText *

list box field–name ...XmList

list box with scroll
bars

field–nameSW ...XmScrolledList
bars

field–name XmList *

option menu field–name ...XmRowColumn *

popup_ field–name_pane ...XmMenuShell

field–name_pane ...XmRowColumn

label-text
label-text
...
label-text

 XmPushButton
 XmPushButton
 ...
 XmPushButton

scale field–name ...XmScale

scale_scrollbar XmScrollBar *

To refer to a whole class of widgets, use the widget class. For example,
XJam*XmText refers to all text widgets. To refer to a class of widgets on a screen,
use the screen name followed by the widget class. For example, XJam*emps-
creen*XmText refers only to text widgets on the screen empscreen . To refer to
an individual widget, use the screen name followed by the widget’s name. For
example, XJam*empscreen*empname refers only to the empname widget on the
screen empscrn .

In the option menu widget, the text field and the pop-up pane are linked through
the subMenuID field of the RowColumn widget. Since the push buttons in the

Resource Options

18310 Setting Motif DefaultsChapter

option menu are named by their contents, it is easier to set a resource for all the
push buttons in an option menu than it is to set a resource for an individual button.

Menus—instantiated as menu bars and their submenus, as pop-up menus, or as
toolbars—are created within RowColumn widgets. Menu bars are children of either
the base screen’s or an individual screen’s MainWindow . Submenus are children of
MenuShell s, but the name of the shell is unclear, since Motif reuses these shells.
If a new shell is created, its name is popup_ submenu–name. Specify resources for
a submenu by using the form: XJam*XmMenuShell. submenu–name. Table 30
lists the hierarchy for menus and pop-up menus.

Table 30. Hierarchy for menus and pop-up menus

Object Name Widget Class

menu bar menu–name ...XmRowColumn...

submenu (name varies) ...XmMenuShell

submenu–name XmRowColumn...

pop-up menu application–name ApplicationShell

dummy TransientShell

popup_popupmenu XmMenuShell

popupmenu XmRowColumn...

toolbar toolbar ...XmRowColumn

Submenus pop up through the auspices of a CascadeButton widget. A submenu
is tied to its CascadeButton via the XmNsubMenuID field of the button.

Menu items are children of the menu’s RowColumn widget. Table 31 lists their
hierarchy.

Table 31. Hierarchy for menu item types

Menu script keyword Name Widget class

ACTION label-text ...XmPushButton

EDCLEAR edit_clear ...XmPushButton

EDCOPY edit_copy ...XmPushButton

EDCUT edit_cut ...XmPushButton

Menus and
Toolbars

Resource Options

184 JAM 7.0 Configuration Guide

Menu script keyword Widget className

EDDEL edit_delete ...XmPushButton

EDPASTE edit_paste ...XmPushButton

EDSELECT edit_select ...XmPushButton

SUBMENU label-text ...XmCascadeButton

SEPARATOR separator ...XmSeparator

TOGGLE label-text ...XmPushButton

WINLIST window-name
window-name
...
window-name

...XmPushButton

...XmPushButton

...

...XmPushButton

WINOP windows_raise ...XmPushButton

Toolbar items are children of the menu’s RowColumn widget. Table 32 lists their
hierarchy.

Table 32. Hierarchy for toolbar components

Object Name Widget class

button label-text ...XmPushButton

separator _tool# ...XmDrawingArea

Sample Motif Resource File for JAM
!###
!### Geometry Resources ###
!###

! Set this to true if you use interactive placement for your
! window manager and want JAM to respect it. Default value is
! false if not specified.

XJam.interactivePlacement: false

Resource Options

18510 Setting Motif DefaultsChapter

! Set Geometry for the base window.
! Default

XJam.geometry: 600+0+0

! Use this as example if Interactive Placement is set to true

!XJam.geometry: 600

!##
!### Double Click Resources ###
!###

! Set preference for double click time in thousandths of a
! second (e.g. 500 = 1/2 second). If double clicks are
! are treated as separate clicks, raise this value. If
! separate clicks are unexpectedly treated as a double click,
! lower this value.
XJam.multiClickTime: 400

!###
!### Color Resources ###
!##

! Set the location of the X rgb color database file.
! This must be changed to reflect the site–specific location.

XJam.rgbFileName: /usr/lib/X11/rgb.txt

! Set any GUI colors in your color scheme.

XJam*foreground: white
XJam*background: dark slate gray

! Set the 16 Jam colors, so JAM can map these colors to
! actual GUI values. Modify the values to suit your needs.

XJam.black: #000000
XJam.blue: #0000a8
XJam.green: #00a800
XJam.cyan: #00a8a8
XJam.red: #a80000
XJam.magenta: #a800a8
XJam.yellow: #a85400
XJam.white: #a8a8a8
XJam.hi_black: #545454
XJam.hi_blue: #5454ff
XJam.hi_green: #54ff54
XJam.hi_cyan: #54ffff
XJam.hi_red: #ff5454
XJam.hi_magenta: #ff54ff
XJam.hi_yellow: #ffff54
XJam.hi_white: #ffffff

Resource Options

186 JAM 7.0 Configuration Guide

!###
!### Screen Editor Resources ###
!##

! Resources in this section only affect the operation of
! JAM Screen Editor. Remove when supplying a resource
! file to your end–users.

! Determines how many pixels mouse pointer must move in Edit
! Mode before being considered a drag.

XJam.moveThreshold: 6

! Set the path of the Editor help file. Set in order to
! use online help in the screen editor.

XJam.editorHelpPath: $SMBASE/docs/books

! Splits Property Window drop down into two or more columns
! if more than 15 items appear, to ensure that entire list is
! visible. Users of high–resolution monitors may use a higher
! threshhold as the value of numColumns: 30 on a 17”
! 1024x768 monitor for instance.

XJam*smpropty*proptext_pane*packing: PACK_COLUMN
XJam*smpropty*proptext_pane*orientation: HORIZONTAL
XJam*smpropty*proptext_pane*numColumns: 15

!##
!### General Resources ###
!##

! Point this resource to an XPM, GIF or JPEG file to display
! when the application starts up.

XJam.introPixmap:

! Set to false to remove extra insert cursors that Motif 1.2
! displays by default. Defaults to true if not specified.

XJam*cursorPositionVisible: false

! Uncomment the following line to enable Tear–Off Menus.
! Tear–Off Menus are disabled by default.

!XJam*tearOffModel: TEAR_OFF_ENABLED

! Set the following resource to true to force all JAM stacked
! windows to be application modal dialogs. Defaults to false.

XJam*stackedWindowsAreDialogs: false

Resource Options

18710 Setting Motif DefaultsChapter

! Example of specifying the font for the tooltip text.

! XJam*toolbar*tooltip.fontList: fixed

! The following prevents file selection boxes from changing
! size when Filter button is pressed. This may be changed
! according to taste. Default is RESIZE_ANY if not specified.

XJam*XmFileSelectionBox.resizePolicy: RESIZE_NONE

! Set full path and name of runtime help file. This option
! contains name of the help file used by external help system
! you’ve installed. The default value is empty.

XJam.helpFile:

! Under VMS, text widgets seem to grab the selection
! unless the following is set.

XJam*area*navigationType: NONE

!###
!### Drag and Drop ###
!##

! Drag and drop protocol in many commercial Motifs can be
! buggy . Also, it increases widget creation overhead and may
! affect performance. These resources are set to disable
! Motif drag and drop. This does NOT affect the ability to
! drag and drop widgets within the JAM Screen Editor.
! Enable these resources by changing their values.

XJam*dragReceiverProtocolStyle: DRAG_NONE
XJam*dragInitiatorProtocolStyle: DRAG_NONE
XJam*dropSiteActivity: DROP_SITE_INACTIVE

!##
!### Edit and Windows Menu Resources ###
!##

! Text and mnemonics used in window and edit menu items.

XJam*XmMenuShell*windows_raise.labelString : Raise All
XJam*XmMenuShell*windows_raise.mnemonic: R
XJam*XmMenuShell*edit_cut.labelString: Cut
XJam*XmMenuShell*edit_cut.mnemonic: t
XJam*XmMenuShell*edit_copy.labelString: Copy
XJam*XmMenuShell*edit_copy.mnemonic: C
XJam*XmMenuShell*edit_paste.labelString: Paste
XJam*XmMenuShell*edit_paste.mnemonic: P
XJam*XmMenuShell*edit_delete.labelString: Delete
XJam*XmMenuShell*edit_delete.mnemonic: D

Resource Options

188 JAM 7.0 Configuration Guide

XJam*XmMenuShell*edit_select.labelString: Select All
XJam*XmMenuShell*edit_select.mnemonic: S
XJam*XmMenuShell*edit_clear.labelString: Clear
XJam*XmMenuShell*edit_clear.mnemonic: l

! The standard JAM X key file ”xwinkeys” maps unmodified,
! shifted, and control function keys 1–12 to JAM logical keys
! PF1–12, SPF1–12, and SFT1–12. This conforms to standard key
! conventions used for JAM on character terminals.
!
! These might conflict with the fallback or vendor–
! specific default bindings Motif uses for virtual keysyms.
! The following line disables all virtual keysyms in a JAM
! application. (The default binding for osfMenuBar is
! remapped to F25. If we unmap it, the Motif library
! resets it to F10.)
!
! If you prefer the standard Motif usage for function keys,
! change the JAM key file to avoid keys that conflict with
! Motif. The following line can then be commented–out.
!
! If you retain any of the following, retain entries for both
! osfMenu and osfMenuBar; otherwise, the program crashes
! on some versions of Motif. (You can change which keys they
! are bound to.)

XJam*defaultVirtualBindings: \n\
osfMenu: <Key>F26 \n\
osfMenuBar: <Key>F25 \n\
osfActivate: <Key>KP_Enter \n\
osfCancel: <Key>Escape \n\
osfDown: <Key>Down \n\
osfLeft: <Key>Left \n\
osfRight: <Key>Right \n\
osfUp: <Key>Up \n\
osfBackSpace: <Key>BackSpace \n\
osfDelete: <Key>Delete \n\
osfHelp: <Key>F1

189

Index
Symbols

(pound sign)
in key translation file, 77
in video file, 92

% (percent sign)
in message file, 57
parameter sequences, 94

%A, display attributes in messages, 57

%B, bell for messages, 59

%K, key label in message, 59

%Md, force user acknowledgment of messages, 59

%Mu, acknowledgment of error messages, 60

%N, carriage returns in messages, 60

%W, pop–up window for messages, 60

@date, defining format for, 66

\ (backslash), in messages, 44

Numbers
3D, Windows initialization option, 156

A
AC_KEEPATTRS, 31

AC_SETATTRS, 31

AC_SWATTRS, 31

ADDM key (add mode), hex value, 80

Aliasing, colors, 138–142

ALT keys, hex value, 81

Alternate character sets, 125–128

ANSI terminal
latch attributes, 120
sample video file, 133
setting color, 119

app–defaults directory, 170

APP1–APP63 (application function keys), hex value,
82

Application
exiting base form, 36
initialization, 8

Application behavior
changing default, in Windows, 156
changing the default, 20
options in Motif, 174
variables for controlling, 21–38

190 JAM 7.0 Configuration Guide

Application function keys (APP1–APP63), hex value,
82

Application messages, 45
adding, 48–49
header file, 53

Area attributes
assigning, 116–117
defined, 115
removing, 117

Area graphics, setting, 118

AREAATT keyword (video file), 116–117

ARGR keyword (video file), 117

Arithmetic commands, 96, 98

Arrow keys
hex value, 79
setting horizontal movement, 22
setting vertical movement, 23
wrapping behavior, 24

ARROWS keyword (video file), 130

ASCII
extended control codes, 93
table of mnemonics and hex values, 83

ASGR keyword (video file), 107, 118
parameters, 118

Auto–wrap, setting margin, 113

B
BACK key (backtab), hex value, 79

Background color, resource in Motif, 172

Backslash
in messages, 44
inputting, 92

Backspace, video file entry, 113

Base form, exiting, 36

Base window, 174

Basic colors
defining in Motif, 171
defining in Windows, 155–156
keywords, 140

Behavior, variables for controlling, 21

Bell, setting in messages, 59

BELL keyword (video file), 131

BIOS flag (video file), 110

Bit–mapped attributes, 122

BKSP key (backspace), hex value, 79

BOFD key (beginning of field), hex value, 80

BOLN key (beginning of line), hex value, 80

Border
keywords, 108, 128–130
limiting attributes, 130
setup variables, for menu bars, 32
styles, specifying alternate, 128–130
zoom window, 30

BORDER keyword (video file), 128–130

BOTTOMRT keyword (video file), 109

BOX keyword (video file), 130

BRDATT keyword (video file), 130

Buffer, setting size of output, 109

BUFSIZ keyword (video file), 109

C
CA, case interface message tag prefix, 44

Carriage return
in message. See %N
video file entry, 112

Case sensitivity, filenames, 33

CBDSEL keyword (video file), 131

CBSEL keyword (video file), 131

Century specification, 36

CHAR_VAL_OPT, 36

Character JAM, setting line and box style in cmap file,
145

Character set
8–bit translation, 85, 125
graphics, 125–128

Character–sequence, defined, 77

Index 191

Class name (Motif)
application, 170, 178
field widgets, 180
menu widgets, 183
screen widgets, 179
widget, 178–184

CLICK_TIME, 24

CLR key (clear all), hex value, 79

cmap. See Configuration map file

CMFLGS keyword (video file), 112

CMSG keyword (video file), 124

COF keyword (video file), 114

COLMS keyword (video file), 109

COLOR keyword (video file), 118–119

Color palette
defining colors in Motif, 171
defining colors in Windows, 155

Color properties
aliasing colors, 138–142
basic colors. See Basic colors
display attributes, keywords, 140
highlighted colors, in Windows, 139
JAM basic colors, keywords, 140
Motif resources for overriding, 172
scheme. See Scheme

Color terminal, display attributes in messages, 58

Command line, Motif, 177–188
bg switch, 178
fg switch, 178
name switch, 170
ownColormap switch, 178

Comments
in key translation files, 77
in message file, 45

Compose characters, 85

Compose key, 85, 126

COMPRESS keyword (video file), 132

CON keyword (video file), 114

Configuration
converting message files, 49–52
converting terminfo/termcap to video file, 101–102
converting video files, 104–105

Configuration directory, contents, 3

Configuration files, required by JAM, 2

Configuration map file
aliasing colors, 138–142
colors section, 138–142
object specification keywords, 143
scheme section, 142–145
screen editor section, 140–142

Configuration variables
application–specific, 16–18
defined, 6
for setting path, 18
types, 13–14

Control characters, entering, 93

Control flow, commands, 96, 99

Control string
binding to function key, 25
case sensitivity for filename searches, 33

Controlling input, variables for, 21–38

Conversion utilities
key translation files to binary (key2bin), 86–87
message files to binary (msg2bin), 49–52
setup files to binary (var2bin), 10–11
video file to binary (vid2bin), 104–105

CUB keyword (video file), 113
parameters, 94

CUD keyword (video file), 113
parameters, 94

CUF keyword (video file), 113
parameters, 94

CUP keyword (video file), 114
parameters, 94

CURPOS keyword (video file), 132

Currency format, 66–70
default entries in message file, 68

Cursor
appearance

keywords, 107, 114–115
restoring, 115
saving, 115
setting, 22, 114
switching to/from system style, 114

behavior in groups, 34
defining gray/white keys, 110

192 JAM 7.0 Configuration Guide

movement
defining, 22–24
setting video display, 113

position
displaying, 132
keywords, 106, 112–114
restoring, 115
saving, 115
setting absolute, 114

setting absolute position (CUP), 114
specifying style of, 110
turning on/off. See CON/COF keyword

Cursor attributes. See Cursor, appearance

Cursor backward. See CUB keyword

Cursor down. See CUD keyword

Cursor forward. See CUF keyword

Cursor up. See CUU keyword

CUU keyword (video file), 113
parameters, 94

D
DA_CENTBREAK, 36

DARR key (down arrow), hex value, 79

Data compression, specifying for Jterm, 132

Database columns, setting number of, 109

Database message tag, 44

Date/time format
customizing, 60–66
defaults, 61–62
for non-English JAM, 65
for non–English applications, 64
literal format for @date calculations, 66
tokens, 62–63

DDE
hot links, specifying in initialization file, 160
links, specifying in initialization file, 160

Decimal places, setting JPL default, 36

Decimal symbol, setting default, 69–70

DECIMAL_PLACES, 36

Defaults
setting for Motif, 169–188
setting for Windows, 153–167

Defining keys, 83–86

Delayed write, 37

DELE key (delete character), hex value, 79

DELL key (delete line), hex value, 79

Display attributes
as parameters, 21
defaults, assigning, 21
keywords, 140
keywords for video, 107
setting

for zoom window borders, 30
in messages, 57–60
in status line, 26, 57

video attribute handling types, 115–124
video attributes

ANSI terminals and, 120
combining, 121
for grayed menu items, 120
for message line, 125
for onscreen or area, 116–117
latch attributes, 120–123

video file keywords, 115–124

DM, database message tag prefix, 44

Drawing area, 179

Driver, keywords, 108, 132

Drop shadows
on character–mode screens, 33
setting emphasis, 119

DW_OPTIONS, 37

E
ED keyword (video file), 112

Editor, setting, 17

Eight–bit character set, 93

EL keyword, 112

EMOH key (go to last field), hex value, 79

EMPHASIS, 33

Emphasis style, defining, 33

Index 193

EMPHASIS_KEEPATT keyword (video file), 119

EMPHASIS_SETATT keyword (video file), 120

EMSGATT, 27

ENTEXT_OPTION, 37

Environment variables, 6, 14–18

EOFD key (end of field), hex value, 80

EOLN key (end of line), hex value, 80

ER_ACK_KEY, 28, 80

ER_KEYUSE, 28

ER_SP_WIND, 28

Erase display command. See ED keyword

Erase line command. See EL keyword

Erase window command. See EW keyword

Erasure command keywords (video file), 106, 112

Error acknowledgment key
and space bar, 80
defining, 28

Error messages, acknowledgment, 28–39, 59

Escape sequence, for setting cursor style, 109

EW keyword (video file), 112
parameters, 94

EXIT key, hex value, 79

EXPHIDE_OPTION, 37

EXT key (extend selection), hex value, 80

EXTD key (extend selection down), hex value, 80

Extended colors, aliasing colors, 138–142

Extended keyboard, 84
defining for MS–DOS, 110

Extensions. See Filename, extensions

EXTU key (extend selection up), hex value, 80

F
F_EXTOPT, 34

F_EXTREC, 34

F_EXTSEP, 34

F11/F12 function keys
accessing, 110
defining, 85

FCASE, 33

FE_KEEPATTRS, 31

FE_SETATTRS, 31

FE_SWATTRS, 31

FERA key (clear field), hex value, 79

FHLP key (screen help), hex value, 79

Field, decimal symbol, 70

Field exit, setting validation condition, 24

Filename
case sensitivity, 33
extensions, setting defaults, 33
for key translation file, 75
setting default behavior, 33–34
specifying screen extension, 34

Flow control. See Control flow

FM, message tag prefix, 44

Foreground color, resource in Motif, 172

formMenus, 176

Function keys
hex value, 81
setting default behavior, 25

G
GA_CURATT, 34

GA_CURMASK, 35

GA_SELATT, 35

GA_SELMASK, 35

GRAPH keyword, in video file, 126

Graphics characters
keywords, 108
supporting, 125–128

Graphics sets, defining, 126

Grayed menu items, setting emphasis, 119

Graying, inactive screens, 33

GRAYKEYS flag (video file), 110

194 JAM 7.0 Configuration Guide

Group
cursor attributes, 34
display attributes, 34–35
occurrence attributes, 35
specifying selection/deselection characters, 131

GRTYPE keyword (video file), 126
keywords, 126

H
Hard reset. See RESET keyword

Header file
creating, 53–56
sample, 53

HELP key (field help), hex value, 79

HOME key, hex value, 79

I
IN_BLOCK, 22

IN_ENDCHAR, 23

IN_HARROW, 22

IN_RESET, 23

IN_VALID, 24

IN_VARROW, 23

IN_WRAP, 24

IND_OPTIONS, 29

IND_PLACEMENT, 30

Indicator symbol
keywords (video file), 108, 130–132
submenu in character JAM, 132

INIT keyword (video file), 109
undoing effects of, 111

Initialization
application

options in Motif, 174–177
options in Windows, 156

JAM, 8

Initialization file. See Windows initialization file

INS key (insert/overwrite), hex value, 79

INSL key (insert line), hex value, 79

INSOFF keyword (video file), 114

INSON keyword (video file), 114

International characters, supporting, 85

Internationalization
8–bit characters, 85, 125
alternate message files, 71
currency formats, 66
date/time formats, 65
decimal symbol, 69–70
supporting, 127
yes/no values, 71

J
JAM basic colors, keywords, 140

jam.ini, 154
sample, 161–167

jamdev message tag, 44

JM, message tag prefix, 44

jmain.c, 154, 170

JPL, choosing an editor, 17

Jterm, enabling data compression, 132

JX, message tag prefix, 44

jxmain.c, 154, 170

K
KBD_DELAY keyword, in video file, 111

Key
See also Key label; Key translation; Key translation

file
classes for PC extended keyboards, 84
label. See Key label
logical, 77

defined, 73
hexadecimal values, 78–82

mnemonics, 78–82
translation. See Key translation

Key classes for PC extended keyboards, 84

Index 195

Key label, displaying in messages, 59

Key translation, variable, 15

Key translation file, 73–88
accessing, 88
comments, 77
converting to binary (key2bin), 86–87
creating and modifying, 83–86
defining as SMKEY variable, 83
identifying for initialization, 15
memory–resident, 86
modifying, 83–84
multiple, 75
names of, 2
naming convention, 75
purpose, 74–75
syntax, 77–83
using alternate files, 87

key2bin, 86–87
error messages, 87

Keyboard
assigning timing interval, 111
extended, 84

for MS–DOS, 110
logical, mnemonics and hex values, 79–82
more than one type, 87

Keytop. See Key label

L
Label. See Key label

Label text display, setup variables, 30

LARR key (left arrow), hex value, 79

Latch attributes
defined, 115
setting, 120–123

LATCHATT keyword (video file), 120–123

LDB
identifying files for initialization, 18
screen functions and, 37

Library message tag, 44

Line drawing
for boxes, 130
keywords, 108, 128–130

Line feed, video file entry, 113

Line styles
setting in cmap file, 145
table of style names, 145

LINES keyword (video file), 111

LINEWRAP flag (video file), 116

List box widget, enabling extended selection, 37

List command, for parameter indexing, 100

LISTBOX_SELECTION, 37

Local decimal symbol, 69

Locking shifts, 127

Logical key
changing behavior at runtime, 84
changing mapping of, 84
defined, 74
mnemonics and hex values, 78–82
required by jamdev, 79

Logical keyboard, vs. physical keyboard, 75

LP key (local print)
defining default, 35
hex value, 79

LSHF key (left shift), hex value, 79

LWRD key (previous word), hex value, 79

M
MARKCHAR keyword (video file), 131

MB_BORDATT, 32

MB_BORDSTYLE, 32

MB_DISPATT, 32

MB_FLDATT, 32

MB_HBUTDIST, 32

MB_KEEPATTRS, 31

MB_LINES_PROT, 32

MB_SETATTRS, 32

MB_SWATTRS, 32

MB_SYSTEM, 32

MDI frame, placement of window in, 157

Memory–resident
key translation file, 86
user messages, 46
video file, 104

196 JAM 7.0 Configuration Guide

Menu
formMenus resource, 176
in character–mode, 31
widget hierarchy in Motif, 183

Menu bar
reserving space for, 32
submenu indicator, 132

Menu item
indicator symbol, setting for character mode, 131
setup variables, 31

Message
See also Error messages; Message file; Status line
acknowledgment, 60

forcing, 28, 59
bell, 59
creating, 44
default display

in status line, 26
in window, 26

display attributes in, 27, 57–60
hexadecimal codes for, 58

displaying
forcing to window, 26
in window, 60–69

file. See Message file
forcing to status line, automatic dismissal, 59
installing, 48
JAM messages, 44
key labels in, 59
line. See Status line
multiple lines in, 60
setup variables, 26–28
status, formStatus Motif resource, 175
status line. See Status line
text not visible, 27

Message file, 41–71
converting to binary (msg2bin), 49–52
creating, 48–49
identifying for initialization, 16
modifying, 47
multiple sections, 45
name of, 2

size, 45
syntax, 44–47
text, 44
translating, 47
using alternate, 71
variable, 16

Message tag prefix, uses, 48

MESSAGE_WINDOW, 26

MNBR (menu bar key), 79

Mnemonic, display attributes
in menu items, 31
in widgets, 31

MODE0 to MODE6 keyword, in video file, 126–128

Modifying messages, 47

Monochrome terminal, 58

Motif
common color names, 173–174
setting defaults, 169–188

Motif resource file, 169–188
application behavior options, 174
background, 178
baseWindow, 174, 178
class name, 170
colors, 171–174
focusAutoRaise, 177
foreground, 178
formStatus, 175
global resources, 177–188
introPixmap, 174
location, 170
names, 169–170
overriding colors, 172
ownColorMap, 178
restricted resources, 177
restricting resources to a screen, 180
sample, Pages, 184
syntax, 170

MOUS key (indicate mouse event), hex value, 79

MOUS_CRSR_ATTR, 24

MOUS_CRSR_CHAR, 24

MOUS_CRSR_MASK, 25

Mouse, supporting in JAM, 132

Mouse driver, specifying, 132

Index 197

Mouse pointer, character JAM appearance and behav-
ior, 24

MOUSEDRIVER keyword (video file), 132

MS–DOS, INIT keywords, 110

msg2bin, 49–52
errors, 50

msg2hdr, 53–56
errors, 54
options/arguments, 53
sample output, 53

MSGATT keyword (video file), 125
flags for, 125

MTGL key (toggle menu mode), hex value, 79

Multiple sections, in message file, 45

MULTISHIFT flag (video file), 110

N
NL key (newline)

acting like XMIT, 38
hex value, 79

No auto tab, setting, 23

Non–locking shifts, 127

Nonprinting characters, 93

O
Occurrence, setting attributes, 35

OMSG keyword (video file), 124

Onscreen attributes
defined, 115
setting, 116

ONSCREEN flag (video file), 116

Output commands, 97
specifying, 95

P
Padding commands, 100

in termcap, 101
in terminfo, 101

Parameters, in video file. See Video file

Path, 18

PC extended keyboard, 84

Percent commands
arithmetic, 96, 98
for changing parameters, 99
for control flow, 96, 99
for parameter sequencing, 96, 98
for specifying output, 95, 97
for stack manipulation, 96, 98
for terminal delays, 100
in video file, 94–102

Percent escapes, in message file, 57

PF1–PF24 (function keys). See Function keys

Portability, aliasing colors, 138

Prefixes, in message file, 44

Print file, setting system command, 35

Protected modes, 123

Q
QUIETATT, 27

Quotation marks, inputting, 92

R
RARR key (right arrow), hex value, 79

RCP keyword (video file), 115

REFR key (refresh screen), hex value, 79

Repeat character sequence
See also REPT keyword
setting, 111

REPMAX keyword (video file), 111

Repository, setting default pathname, 17

REPT keyword (video file), 111
parameters, 94

198 JAM 7.0 Configuration Guide

RESET keyword (video file), 111

Resource file. See Motif resource file

REWRITE flag (video file), 116

rgb.txt, 173

RSHF key (shift right), hex value, 79

Runtime (JAM) message tag, 44

Runtime path, setting, 18

RWRD key (next word), hex value, 79

S
SB_OPTIONS, 30

Scan line, 110

Scheme
defining in color map file, 142
object names for color mapping, 143

SCP keyword (video file), 115

SCR_KEY_OPT, 29

Screen
See also Screen editor; Window
character–mode attributes, 33
file extension, setting defaults, 34
focus, in Motif, 177
library. See Screen library
resources, Motif, 180
setting number of lines, 111
startup, 37
widget hierarchy, Motif, 179

Screen editor, setting editor colors with cmap file, 140

Screen editor message tag, 44

Screen function
data access, LDB vs. fields, 37
execution options, 37

Screen library, identifying for initialization, 17

SCREENWRAP flag (video file), 116

Scroll bars, slider characters, 131

Scroll indicators, setting position of, 30

Scrolling array
indicator

in video file, 130
placement, 30
setting, 29

setup options, 29–30

Set area graphics. See ASGR keyword

Set graphics rendition. See SGR keyword

Set latch graphics. See SGR keyword

Setup file
converting to binary (var2bin), 10–11
creating, 10
modifying, 10
name of, 2
sample, 39
specifying, 14, 16
syntax, 9
syntax of, 20
types of, 6–7

Setup variables
changing, 20
defined, 6
defining, 20–21
delayed–write, 37
designating active screens, 33
display attribute keywords, 21
for character–mode screens, 33
for controlling behavior, 21–38
for cursor appearance, 22–38
for filenames, 33–34
for label text display, 30
for menus, 31
for message display, 26–28
for screen entry/exit processing, 37
for scrolling, 29–30
for shifting, 29–30
group attributes, 34–35
zoom, 29–30

Seven–bit character set, 93

SFTS key (shift scope), hex value, 79

SGR keyword (video file), 120, 123–124
parameters, 123

Shift indicators, setting position of, 30

Shifted function keys (SPF1–SPF24), hex value, 81

Shifting array. See Shifting field

Index 199

Shifting field
setting indicator, 29
setting indicator placement, 30
setup options, 29
specifying indicators for, 130

Slider characters, for scroll bars in character JAM, 131

SM, message tag prefix, 44

SM_CALC_DATE, setting default format, 66

SM_DECIMAL, setting default, 69

SMDICNAME, defined, 17

SMEDITOR, defined, 17

smerror.h, contents of, 42

SMFEXTENSION, 34

SMFLIBS, defined, 17

SMINICTRL, defined, 25

SMKEY, 83
defined, 15

smkeys.h, contents of, 74, 78–82

SMLDBNAME, defined, 18

SMLPRINT, defined, 35

SMMSGS
defined, 16
setting alternate value, 65, 71
setting value of, 42

SMPATH, defined, 18

SMSETUP, 7
defined, 16

SMSGBKATT, 27

SMSGPOS, 26

SMTERM
defined, 14
in Windows, 158

SMUSER, 158

SMVARS, 6
defined, 14

SMVIDEO, defined, 16

SMVIEWER, 18

Space bar, 80

SPF1–SPF24 (shifted function keys). See Shifted func-
tion keys (SPF1–SPF24)

SPGD key (scroll down page), hex value, 79

SPGU key (scroll up page), hex value, 79

Splash screen
Motif, 174
Windows, 157

SPXATT keyword (video file), 124

Stack manipulation commands, 96, 98

STARTSCREEN, 37

Status line
closing, 124
cursor position display, 132
display attributes, 124–125
force user to acknowledge, 28
formStatus resource, 175
keywords for video, 107, 124–125
location, setting in Motif, 175
opening, 124
setting

display attributes, 26–28
position, 26
text attributes, 27

setup variables, 26–28
text not visible, 27

STEXTATT, 27

Submenu, indicator, 132

System decimal, defining symbol, 69

System menu, setup variable, 32

T
TAB key

acting like XMIT, 38
hex value, 79

TERM, 14

term2vid, 101–102

termcap, 90
padding in, 101
supporting, 91

200 JAM 7.0 Configuration Guide

Terminal
assigning timing interval, 111
attributes, 115
bell, in message, 28, 59
initializing, 109
mapping input to output, 126
reset sequence, 111
timing interval, 100
type. See Terminal type
visible bell, 131

Terminal type, setting, 14

Terminal–specific variable, 14

terminfo, 90
commands, not supported, 97
padding in, 101

Text, selection appearance, 25

Text editor, naming for JPL procedures, 17

Text widget, selection appearance, 25

Time format. See Date/time format

Time–out delay, 132

Timing interval
assigning to keyboard input, 111
setting with percent commands, 100

Title, for MDI window, 156

Toolbar
enabling display, 26
setup variables, 26

TOOLBAR_DISPLAY, 26

Tooltip, enabling display, 26

TOOLTIP_DISPLAY, 26

TP, transaction monitor message tag prefix, 44

Transaction monitor interface message tag, 44

Translating
message file, 47
messages, 43
physical keyboard, 73–88
substitution variables, 63, 68

TXT_SELECT_ATTR, 25

TXT_SELECT_MASK, 25

Type–ahead buffer, 28

U
UARR key (up arrow), hex value, 79

Underline display attribute, setting, 118

User messages. See Application messages

UT, message tag prefix, 44

Utilities, file extensions, default behavior, 34

Utilities message tag, 44

V
Validation

character–level, 36
setup options, 24

var2bin, 10–11
errors, 11

Variable
configuration, 13–14
environment, 14–18

vid2bin, 104–105
errors, 104

Video file, 89–135
converting terminfo/termcap to, 101
converting to binary, 104–105
creating, 101–102
identifying for initialization, 16
international character support, 125–128
keyword summary, 105
names of, 2
parameter changing commands, 99
parameter sequencing

commands, 98
for processing keywords, 91

parameters for keyword sequences, 93–101
sample

ANSI terminal, 133
MS–DOS, 133

screen size entries, 111
syntax, 92–93
variable, 16

Viewing reports, 18

Visible bell, 131

VWPT key (viewport), hex value, 79

Index 201

W
Wallpaper, for MDI window, 157

Widgets
class names in Motif, 178–188
drawing area, 180
hierarchy, Motif, 178–188

base screen, 178–188
dialog box, 179
fields, 180
JAM screens, 179–188
menu bars, 183

win.ini, 160

Window
displaying messages in, 60–69
placement in MDI frame, 157

Windows
color definition, 155
control panel, 156, 160
setting defaults. See Windows initialization file

WINDOWS flag (video file), 110

Windows initialization file
3D, 156
application behavior options, 156–167
colors, 155–156
FrameTitle, 156
JAM Colors, 155
location, 153
name, 154
sample, 161–167
setting defaults, 153–167
SMTERM, 158
splash screen, 157
syntax, 154–167
wallpaper for MDI window, 157
window placement in MDI frame, 157

WMODE (wordwrap toggle mode), hex value, 80

WNL (wordwrap newline), hex value, 80

Word wrapped text
executing entry/exit procedures for each occurrence,

38
setting tab space, 38

WTAB (wordwrap tab), hex value, 80

WW_COMPATIBLE, 38

WWTAB, 38

X
XAPPLRESDIR, 171

Xdefaults, 171

XJam file, 170
sample, 184–188

XKEY flag (video file), 110

XMIT key (transmit)
hex value, 79
making TAB and NL act like, 38

XMIT_LAST, 38

xrdb, 171

Y
Yes/No, setting default values, 71

Z
ZM_DISPLAY, 29

ZM_SC_OPTIONS, 29

ZM_SH_OPTIONS, 29

ZOOM key, hex value, 79

Zoom window
setting border attributes, 30
setting border style, 30
setup options, 29

ZW_BORDATT, 30

ZW_BORDSTYLE, 30

