
JAM 7

Application Development Guide

August 1995

This software manual is documentation for JAM 7. It is as accurate as possible at this time; however, both
this manual and JAM itself are subject to revision.

JAM is a registered trademark of JYACC, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

VT100 is a trademark of the Digital Equipment Corporation.

DynaText is a trademark of Electronic Book Technologies.

INFORMIX is a registered trademark of Informix Software, Inc.

IBM, OS/2, and Presentation Manager are registered trademarks of International Business Machines Corpo-
ration.

Oracle is a registered trademark of Oracle Corporation.

PROGRESS is a registered trademark of Progress Software Corporation.

SYBASE is a registered trademark of Sybase, Inc.

Windows and ODBC are trademarks and Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation.

UNIX is a registered trademark in the United States and other countries.

Other product names mentioned in this manual may be trademarks or registered trademarks of their respec-
tive owners, and they are used for identification purposes only.

Send suggestions and comments regarding this document to:
Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038
(212) 267–7722

 1995 JYACC, Inc.
All rights reserved.
Printed in USA.

iii

Table of Contents

About this Guide xix.
Organization of this Guide xix.

Conventions xx.

Text Conventions xx.

Keyboard Conventions xxi.

JAM Documentation xxi.

Section I: Overview 1.

Chapter 1 JAM Development Overview 3.
What You Need to Use JAM 4.

Components of a JAM Application 4.

Components of the JAM Authoring Environment 5.

Creating Screens 5.

Iterative Application Development 6.

The Visual Object Repository 7.

The Repository and Inheritance 8.

JDB: JAM’s Built-in Database for Prototyping 8.

iv JAM 7.0 Application Development Guide

Application Development Steps 9.
Build the Repository from the Database 9.
Enhance the Repository Screens 13.
Create Application Screens 13.
Customize and Add Screen Objects 14.
Define User Actions with Menu Bars, Push Buttons, and Function Keys 14
Define Event-Based Actions with Hook Functions 15.
Define Database Access 16.
Write Specialized Logic in JPL 16.
Create Menus and Toolbars 16.
Package the Application for Distribution 17.

Levels of Database Access 18.
Database API 19.
SQL Executor 19.
SQL Generator 21.
Transaction Manager 23.

Completing Your Application 27.
Displaying and Managing Screens 27.
Sharing Data Between Screens 29.
Manipulating JAM Events 30.
Changing Object Behavior at Runtime 30.
Using C with Your Application 31.

Summary 31.

Chapter 2 Sample Application: VideoBiz 33.
Starting VideoBiz 34.
VideoBiz Components 35.

The Database 36.
The Repository 36.
Application Screens 37.
Menu Bar/Toolbar 37.
JPL Code 37.
Styles Sheet 38.
Sample Reports 38.
Pixmap Files 38.

The User’s Guide to VideoBiz 38.
What is VideoBiz? 38.
Starting VideoBiz 39.
Identify the Customer 41.

Table of Contents v

Add/Update Customer Records 45.
Video Rental Listing 47.
Rent Videos 48.
Customer Profile 50.
Video Lookup 52.
View Video Details 55.
Marketing 56.

Section II: Application Building Blocks 59.

Chapter 3 Repository 61.
Using the Repository 62.

Creating the Repository 62.
Creating Repository Entries 62.
Creating Repository Objects 62.
Creating Screen Templates 63.
Storing Database Information 63.
Storing Widget Templates 64.
Storing Widget Definitions 64.
Using the Screen Wizard 65.

Using Inheritance 65.
Updating Inheritance in Application Screens 66.

Chapter 4 Screen Management 69.
Forms and Windows 69.

Forms and the Form Stack 70.
Windows and the Window Stack 70.

Opening Screens 73.
Screen Display Defaults 73.
Overriding Display Defaults 74.

Screens and Viewports 74.
Closing Screens 75.
Screen Properties 75.

Chapter 5 Field Management 77.
Field Names and Numbering 78.

Naming Fields 78.
Identifying Fields 79.

vi JAM 7.0 Application Development Guide

Arrays 79.
Groups 79.
Getting Data and Properties 80.

Getting Field and Array Data 80.
Getting Properties 81.

Checking Validation 81.
Getting and Setting Selection Group Data 82.

Getting Selections 82.
Changing Selections 83.

Changing Widget Data and Behavior 83.
Writing Data to Fields 83.
Clearing Field Data 84.
Inserting and Deleting Occurrences 85.

Chapter 6 Menus and Toolbars 87.
Loading Menus into Memory 88.
Installing Menus 89.

Installing Menus with Shared Content 90.
Installing Menus with Unique Content 91.
Referencing External Menus 92.

Displaying Toolbars 92.
Changing Menus at Runtime 93.

Getting and Setting Properties 93.
Changing the State of Toggle Items 94.
Creating and Deleting Menus 95.
Inserting and Deleting Menu Items 95.

Deinstalling and Unloading Menus 96.
Invoking Pop-up Menus 96.
Calling Menu Functions From JPL 97.
Using the m2asc Utility 97.
Outputting Menu Definitions to ASCII 98.

Keywords 98.
Menu Properties 99.
Sample Output 104.

Chapter 7 Control Strings 109.
Associating Control Strings with the Application 109.
Control String Types 110.
Opening Screens 110.

Table of Contents vii

Executing Functions 112.
Invoking Operating System Commands 113.

Chapter 8 Hook Functions 115.
Hook Function Types 116.

Demand Hook Functions 116.
Automatic Hook Functions 117.

Standard versus Non-standard Arguments 117.
Installation 117.

Preparing Hook Functions for Installation 118.
Installing Hook Functions 119.

Prototyped Functions 120.
Accessing Standard Argument Information 120.
Installing Prototyped Functions 121.

Screen Functions 122.
Field Functions 124.
Grid Functions 129.
Group Functions 132.
Help Function 134.
Timeout Functions 134.
Key Change Function 136.
Error Function 137.
Insert Toggle Function 138.
Check Digit Function 139.
Initialization and Reset Functions 140.
Record and Playback Functions 141.
Control Functions 142.
Status Line Function 143.
Video Processing Function 144.
Database Driver Error Functions 146.
Transaction Manager Hook Functions 146.
Sample Hook Functions 148.

Prototyped 148.
Automatic Screen 156.
Automatic Field 159.
Demand Field 163.
Automatic Group 164.
External Help 166.
Timeout 171.

viii JAM 7.0 Application Development Guide

Key Change 171.
Error 173.
Insert Toggle 174.
Initialization and Reset 175.
Record and Playback 176.
Control 179.
Status Line 188.

Chapter 9 Moving Data Between Screens 191.
Using Local Data Blocks 191.

Loading and Activating LDBs 193.
Getting Information on LDBs 194.

Sending and Receiving Data 195.
Bundles 196.
Sending Data 196.
Receiving Data 197.

Chapter 10 Error Handling and Messages 199.
Error Hook Function 201.
Status Line 202.

Section III: The SQL Executor 205.

Chapter 11 Database Initialization 207.
Initializing One or More Engines 207.

Using dbiinit.c for Static Initialization 208.
Description of dbiinit.c 208.
Using JAM7.INI for Dynamic Initialization 210.
Initialization Procedure 211.
Setting the Default Engine 211.

Making a New dbiinit.c to Change Static Initialization 211.

Chapter 12 Database Connections 213.
Connecting to a Database Server 213.

Description of a Database Connection 214.
Setting the Default Connection 214.
Connections to Multiple Engines 214.
Multiple Connections to a Single Engine 215.

Closing Connections 215.

Table of Contents ix

Chapter 13 Using Cursors 217.
Using a Default Cursor 218.

Using a Named Cursor 219.
Declaring a Cursor 219.

Closing a Cursor 222.

Chapter 14 Reading Information from the Database 223.
Fetching Data Using SELECT Statements 224.
JAM Targets for a SELECT Statement 224.

Automatic Mapping 225.
Aliasing 225.

Fetching Multiple Rows 228.
Determining the Number of Occurrences 229.

Scrolling Through a SELECT Set 229.
Format of Select Results 234.

Redirecting Select Results to Other Targets 237.

Chapter 15 Writing Information to the Database 239.
Colon Preprocessing 239.

Step 1: Perform Standard Colon Preprocessing 241.
Step 2: Determine the Variable’s JAM Type 241.

Step 3: Format a Non-null Value 244.
Colon-equal Processing 246.

Examples 247.
Using Parameters in a Cursor Declaration 250.

Parameter Substitution and Formatting 251.
Examples 253.

Chapter 16 Error Processing in Database Applications 255.
Default Error Handler 256.

Using Variables with Error and Status Information 257.
Using the Error Hook Functions 259.

ONENTRY Function 260.
ONEXIT Function 260.

ONERROR Function 260.
Function Arguments 260.

Return Codes 261.
Installing an Error Handler 262.

x JAM 7.0 Application Development Guide

Chapter 17 Database Transactions 265.
Introduction to Transactions 265.
Engine-specific Behavior 266.
Error Processing for a Transaction 267.

Section IV: SQL Generation 271.

Chapter 18 SQL Generator 273.
SQL Generation Overview 273.

Specifying Tables 274.
Specifying Columns 274.
Generating SQL in the Transaction Manager 274.
Example Tables 275.

SELECT Statement Overview 277.
Setting the DISTINCT keyword 279.
Setting the Select List 280.
Setting the Table List 281.
Setting the Where Condition 281.
Setting the Group-by List 284.
Setting the Having Condition 287.
Setting the Order-by List 288.
Generating SELECT Statements for Multiple Database Tables 289.

Generating INSERT Statements 292.
Setting the Table Name 293.
Setting the Column List 293.
Setting the Value List 293.
Implementing Optimistic Database Locking 295.

Generating UPDATE Statements 296.
Setting the Table Name 297.
Specifying the SET Clause 297.
Setting the Primary Keys 297.
Implementing Optimistic Database Locking 298.

Generating DELETE Statements 299.
Implementing Optimistic Database Locking 300.

Viewing the SQL Statements 301.
Examples 302.

Modifying the SQL Statements 304.

Table of Contents xi

Section V: The Transaction Manager 305.

Chapter 19 Introduction to the Transaction Manager 307.

Chapter 20 Transaction Manager Basics 309.
Building an Application Screen 310.

Copying Repository Objects 311.
Table Views and Links 313.
Editing the Properties 317.

Using the Transaction Manager 317.
Opening the Screen 317.
Defining the Menu Options 318.
Transaction Modes 319.
Establishing a Connection 320.
Displaying Data in the Transaction Manager 321.
Styles 322.
Modifying Data in the Transaction Manager 323.
Closing the Screen 325.

Chapter 21 Transaction Manager Components 327.
Screen Wizard 328.
Transaction Manager Commands 329.

Description of the Commands 330.
Specifying Commands 331.
Executing Transaction Manager Commands 333.
Attaching Commands to Push Buttons 334.
Errors 336.

Transaction Events 337.
Traversal 337.
Event Stack 338.
Adding Your Own Transaction Events 339.
Querying for Events 340.
Summary of Events in Transaction Manager Commands 340.

Transaction Modes 346.
Command Availability 346.

Styles and Classes 349.
Classes 349.
Specifying Styles 350.
Specifying Classes 351.

xii JAM 7.0 Application Development Guide

Repository 353.
Constructing the Database First 353.
Constructing the Screens First 353.
Constructing Screens with the Screen Wizard 354.

Table Views 354.
Table View Properties 354.
Table Views in a Repository 355.
Table Views in an Application Screen 355.
Setting the Root Table View 356.
Example 356.

Links 357.
Creating Links 357.
Setting the Parent and Child Properties 358.
Setting the Link Type 359.
Setting the Relations Property 360.
Using Validation Links 361.

Transaction Models 364.
Cursor Usage 365.
Database Transaction Strategies 365.

Before Image Processing 366.
Hook Functions 367.

Chapter 22 Customizing Transaction Manager 369.
Controlling Database Locking 370.

Implementing Optimistic Locking 370.
Implementing Engine Locking 371.

Error Processing in the Transaction Manager 371.
TM_STATUS Variable 372.
Event Processing after Errors 372.
Controlling Error Messages 373.
Suppressing Transaction Manager Error Messages 375.

Controlling Cursor Behavior 375.
Declaring Cursors 376.
Using the Default Cursors 376.

Displaying Data 377.
Selecting Data 377.
Deleting Data 379.

Using Traversal Properties 380.
Finding Table View and Server Views 383.
Examples 383.

Table of Contents xiii

Writing Hook Functions 384.
Writing a Simple Hook Function 384.
Specifying a Return Code 385.
Modifying Select Statement Processing 388.
Replacing Other SQL Statements 391.

Chapter 23 Transaction Manager Commands 395.

Chapter 24 Transaction Manager Troubleshooting 463.
Guidelines for Creating Screens 463.

Using Table Views 463.
Using Links 464.
Setting Widget Properties 464.

Errors in the Transaction Manager 465.

Section VI: Application Issues 471.

Chapter 25 Input/Output Processing 473.
Processing Keyboard Input 474.

Logical Keys 474.
Key Translation 474.
Key Routing 475.

Processing Terminal Output 476.
How JAM Handles Output 477.
Graphics Characters and Alternate Character Sets 477.

Chapter 26 Writing Portable Applications 479.
Terminal Dependencies 479.
Ensuring Portability with Library Functions 480.

Chapter 27 Writing International Applications 481.
JAM’s Approach to Internationalization 481.

Supported Features 482.
Localization 482.

8-Bit Character Data 482.
Date and Time Fields 483.
Currency Fields 486.

Decimal Symbols 488.

xiv JAM 7.0 Application Development Guide

Keystroke Filter Translation 488.

Translation Considerations 489.

Translating Status and Error Messages 489.

Translating Screens in Application Programs 490.

Interpreting Range Checks 493.

Interpreting Math Calculations 494.

Chapter 28 JAM Debugger 495.
Debugger Features 495.

How the Debugger Works 496.

The View Menu: Debugger Views Into Your Application 497.

Configuring the Debugger 499.

Log File Preferences 499.

Other Debugger Preferences 500.

Accessing the Debugger 501.

Enabling the Debugger from the Screen Editor 501.

Accessing the Debugger in Test or Application Mode 501.

Exiting the Debugger 501.

The Debugger Menu Bar 502.

File 502.

Tools 503.

View 504.

Edit 504.

Trace 504.

Breaks 504.

Options 505.

Viewing JPL 505.

File Browsing: Begin at the Open Source Module Window 505.

Viewing Application Screen Information 508.

Stepping through Program Execution 511.

Automatic Stepping Using Animation 512.

Setting Breakpoints 512.

Location Breakpoints 513.

Setting Breakpoints on Execution Events 513.

Event Filtering in Expert Mode with the Edit Breakpoints Window 515. .

Monitoring Variables and JPL Expressions 517.

Modifying and Monitoring Application Data in Expert Mode 518.

Table of Contents xv

Chapter 29 Preparing Applications for Release 519.
Required Files 519.

Common Files 519.
GUI Files 520.

Optional Files 520.
Specifying Files and Directories 520.
Modifying Source Code 521.

Subsystem Installation 521.
Storing Screen and JPL Files in Libraries 522.
Memory-Resident Screens 522.
Memory-Resident Configuration Files 523.
Message File Options 524.
Memory-Resident JPL 524.
JPL Versus C 525.
Minimizing Screen Output 525.
Small and Medium Memory Models 525.
Stub Functions 525.

Chapter 30 Alternative Scrolling 529.
Array Geometry Properties 530.
Installation 531.
JAM Interaction With Scrolling Drivers 531.
Scroll Driver Interface 532.

Scroll Driver Action Codes 532.
The altsc_t Structure 533.
Return Values 534.

Action Codes 534.
AS_INST_FUNC 536.
AS_RESET_FUNC 537.
AS_INIT_FUNC 538.
AS_RLS_FUNC 539.
AS_GDATA_FUNC 540.
AS_PDATA_FUNC 541.
AS_DLT_FUNC, AS_INSRT_FUNC 542.
AS_GTSPC_FUNC 543.

xvi JAM 7.0 Application Development Guide

Chapter 31 Dynamic Data Exchange 545.
JAM as a Server 545.

Enabling Connections 546.

Creating Links 546.
Processing Links 547.

Updating Client Data 547.
Disabling JAM as a Server 548.

JAM as a Client 548.

Enabling Connections 548.
Creating Links 549.

Processing Link Requests 550.
Updating Data from the Server 550.

Destroying Links to Server 551.
Disconnecting from a Server 551.

Execute Transactions 551.

Poke Transactions 552.

Chapter 32 Mouse Interface 553.
Trapping Mouse Events 553.

Using Key Change Functions 553.

Trapping Double Clicks on a Widget 554.
Getting Mouse Data 555.

Mouse Click Location 555.
Mouse Button State 557.

Keyboard Modifiers 558.

Elapsed Time Between Mouse Clicks 559.
Changing the Mouse Pointer State 559.

Appendix A Development Utilities 561.
Creating and Maintaining Libraries 561.

Converting Binary Files to C Data Structures 563.
Converting Binary Screens to Hex ASCII 564.

Converting Screens Between Binary and ASCII 565.

Appendix B Videobiz Database 569.
Videobiz Schema 570.

Index 579.

xvii

About this Guide
This guide covers various topics related to application development. It discusses
approaches to development, strategies for using JAM effectively, and the order in
which tasks should be performed.

You should read Chapter 1 for a comprehensive overview of JAM as a develop-
ment tool. If you want a detailed example of an application developed with JAM,
look at Chapter 2, which describes the Videobiz sample application that is part of
the JAM distribution. The rest of the guide is topical, and should be used as a
reference when specific application development issues arise during your
development cycle.

Note: JAM’s proprietary programming language, JPL is fully discussed in the
Language Reference.

Organization of this Guide

This guide is organized into six sections:

Section One: Overview
A comprehensive overview of the development process and detailed description of
the Videobiz sample application.

Section Two: Application Building Blocks
Information about the various components in a JAM application, including screens,
widgets, repositories, menu bars, and hook functions.

Conventions

xviii JAM 7.0 Application Development Guide

Section Three: The SQL Executor
The protocol for JAM’s interaction with your database engine—how to initialize
and connect to database engines as well as how data and status information is
fetched from, or written to, the database.

Section Four: SQL Generation
How JAM’s SQL generator constructs SQL statements from widget, link, and table
view properties.

Section Five: The Transaction Manager
How to build screens that use the transaction manager, how the transaction
manager gets its information and processes transactions, and how to customize
your transaction manager applications.

Section Six: Application Issues
Topics related to JAM’s runtime processing, portability, internationalization,
packaging, and debugging.

Conventions

The following typographical and terminological conventions are used in this guide:

Text Conventions

Monospace (fixed-spaced) text is used to indicate:

� Code examples.

� Words you’re instructed to type exactly as indicated.

� Filenames, directories, library functions, and utilities.

� Error and status messages.

Uppercase, fixed-space font is used to indicate:

� SQL keywords.

� Mnemonics or constants as they appear in JAM include files.

Italicized helvetica is used to indicate placeholders for information you supply.

expression

KEYWORDS

numeric_value

JAM Documentation

About this Guide xix

Items inside square brackets are optional.

One of the items listed inside curly brackets needs to be selected.

Ellipses indicate that you can specify one or more items, or that an element can be
repeated.

Italicized text is used:

� To indicate defined terms when used for the first time in the guide.

� Occasionally for emphasis.

Keyboard Conventions
JAM logical keys are indicated with uppercase characters.

Physical keys are indicated with initial capitalization, and keys that you press
simultaneously are connected with a plus sign.

JAM Documentation

The JAM documentation set includes the following guides and reference material:

Read Me First — Consists of three sections:

• What’s New in JAM — Briefly describes what’s new in JAM 7.

• Installation Guide — Describes how to install JAM on your specific
platform and environment.

• License Manager Installation — Instructions for installing the License
Manager (used on many UNIX and VMS platforms).

Getting Started — Contains useful information for orienting you to JAM. Includes
a description of the JAM environment and features, how JAM addresses real-world
application development issues, and a guided tutorial for building a mini-JAM
database application.

Editors Guide — Instructions about using the JAM authoring environment; learn
how to use the graphical tools for creating, editing, and designing your application
interface. Includes detailed descriptions of the screen editor, screen wizard, menu
bar editor, and styles editor. The Editors Guide is also provided online on GUI
platforms. It is installed with the installation of the JAM software and can be
accessed by selecting help from within the screen editor.

[option_list]

{x | y}

x ...

new terms

XMIT

Alt+A

JAM Documentation

xx JAM 7.0 Application Development Guide

Application Development Guide — Information by topic to guide you in
developing your JAM application. This includes components of the JAM
development environment such as the repository, hook functions, and menu bars,
as well as sections on the SQL executor, SQL generator and the transaction
manager.

Language Reference — Describes JPL, JAM’s proprietary programming language.
Also includes reference sections for JPL commands, built-in functions and JAM
library functions. The man pages in the reference sections are arranged alphabeti-
cally.

Database Guide — Instructions for using JDB, JYACC’s prototyping database, and
for the commands and variables available in the database interfaces. Includes an
Database Drivers section containing instructions unique to each database driver.

Configuration Guide — Instructions for configuring JAM on various platforms and
to your preferences. Some options that can be set relate to messages, colors, keys
and input/output. Also includes information on GUI resource and initialization
files.

Master Index and Glossary — Provides an index into the entire documentation set
and a dictionary of terms used in the documentation set. This is in addition to the
indexes in the individual volumes.

Upgrade Guide — Online only. Information for upgrading from JAM 5.

JAM’s documentation set is available online and included with the JAM
distribution. The books can be viewed through the DynaTextTM browser on GUI
platforms. It can be accessed by choosing Help from within JAM or by running
DynaText’s read-only browser from the command line or by clicking on the
DynaText icon. For instructions on using DynaText, request Help while you have a
browser window open.

The following information is also provided with your JAM installation:

� Database Driver Notes — JAM 7 has database drivers for most popular
relational database engines, as well as JDB, JAM’s proprietary database.
Information for JDB, Sybase, Oracle, Informix and ODBC are located in the
Database Guide; others are included separately.

� Online help — The Editors Guide is provided in online form through the
DynaText browser on GUI platforms. It can be accessed by choosing Help
from the screen editor. For instructions on using DynaText, request Help while
you have a browser window open.

� Online README file.

Online
Documentation

Collateral
Documentation

JAM Documentation

About this Guide xxi

JYACC provides the following product support services; contact JYACC for more
information.

� Technical Support

� Consulting Services

� Educational Services

Additional Help

SECTION ONE

Overview

Chapter 1 JAM Development Overview . 3

Chapter 2 Introduction to Videobiz . 33

3

JAM Development
Overview

JAM helps developers to prototype and build powerful and efficient applications
that can operate in a variety of computing environments. JAM has been used to
build a broad range of applications, such as order entry, customer service, project
planning, transportation logistics, and manufacturing automation.

There is no single correct approach to building a JAM application. In fact, JAM
provides you—the professional developer—with tools that support many different
approaches. The goal of this development overview is to demonstrate one approach
while providing sufficient detail to let you perceive other approaches.

We’ll demonstrate the approach using a small portion of a video store application
as an example. The next chapter in this guide (page 33) fully documents a video
store application that is distributed as a sample application with JAM. In this
chapter, our application will display each of the actors and their roles for the
specified movie title. For this purpose, we’ll create the movie screen shown in
Figure 1.

11

What You Need to Use JAM

4 JAM 7.0 Application Development Guide

Figure 1. Sample movie screen.

What You Need to Use JAM

JAM supports many graphical user interfaces (GUIs) and databases. To develop
and run JAM applications with a specific GUI and database, you need:

� A presentation interface for the GUI.

� A database driver for the database.

JAM ships with at least one presentation interface, along with a database driver for
JDB, JAM’s built-in database for prototyping.

Components of a JAM Application

A JAM application typically comprises:

� Screens

� Menus and toolbars

� JPL modules

� Configuration files

� Application executable

� Database

Components of the JAM Authoring Environment

51 JAM Development OverviewChapter

There are several ways to package a JAM application for distribution. Typically,
the screens, menus, and JPL are shipped in one or more libraries. The configuration
files and the application executable are shipped as separate files. If desired, the
screens, menus, JPL modules, and the configuration files can be shipped as part of
the application executable. Packaging is described in more detail later in this
chapter and in Chapter 29.

Components of the JAM Authoring Environment

Authoring is the process of developing a JAM application. A JAM authoring
environment typically comprises the screens, menus, toolbars, JPL modules,
configuration files, and database that will become part of the application, plus:

� Screen editor

� Menubar editor

� Styles editor

� JAM Debugger

� Repository

� Authoring executable (jamdev)

� Configuration manager. JAM works with third-party configuration manage-
ment tools such as SCCS and PVCS. Customers may elect to build their own
interfaces to these or other configuration management tools. Configuration
management currently applies to JAM screens.

The JAM authoring environment optionally includes other add-on products:
JAM/CASE interface, JAM/TPi, and JAM/ReportWriter.

Creating Screens

To create screens, you must start the authoring executable, jamdev which invokes
the screen editor. The screen editor includes a menu bar, a toolbar, a tool box, a
color palette, a widget list, a property window, and one or more drawing areas.
Each drawing area contains a separate screen. Typically, the screen editor starts
with a single, empty, drawing area. The screen can be enhanced by using tools
selected from the toolbox (or from the menu bar). Since the screen editor can open
many screens at once, existing objects can be copied between screens via drag and
drop. The screen editor is fully documented in the Editors Guide.

Iterative Application Development

6 JAM 7.0 Application Development Guide

Figure 2. The JAM screen editor

To maximize development productivity by promoting object reuse, and to reduce
maintenance costs, you may wish to create screens by copying screen objects from
JAM’s visual object repository, which is described later.

Iterative Application Development

Application development is never done with perfect knowledge of the true
requirements. Often requirements change based upon the knowledge gained as an
application is developed. Therefore, JAM fully supports an iterative and interactive
approach to application development. Changes can be made and tested without
leaving the authoring executable, resulting in rapid feedback to both developers
and users. In fact, changes can be made while the application is being demon-
strated to the user.

Iterative development works because from within jamdev you have immediate
access to:

� Application mode — In this mode, you can test the entire application as
though you are a user. The advantage of using application mode within
jamdev , rather than using the application executable itself, is that you can
enter the screen editor to modify whatever screen is currently displayed.

� The screen editor — In the screen editor you can make changes to your
screens. From the screen editor you can either return to application mode to
fully test the entire application, or you can enter test mode.

� Test mode — Test mode is entered from the screen editor. It is similar to
entering application mode, starting at the screen that is currently being edited.
It allows the developer to immediately see and use the screen, without needing

The Visual Object Repository

71 JAM Development OverviewChapter

to permanently save that screen and without losing the state of the screen
editor. In test mode you can open other screens as well. When test mode is
exited, however, the current screen is not opened for editing, but rather the
editor opens in the state it was in before test mode was entered.

Test
Mode

Application
Mode

Screen
Editor

Figure 3. Iterative application development.

The Visual Object Repository

The repository is the key to sharing and reusing objects within a JAM application.
The repository is a JAM library that consists of one or more members. Each
member is, in fact, a JAM screen. Therefore, the repository screens can be viewed
and changed with the screen editor. The advantage of keeping repository objects in
JAM screens is that it makes the repository visual. Each object can be viewed as it
will appear, rather than as part of a list. In addition, each object can be viewed in
relation to other objects with which it is normally associated. Consider the simple
example of a person’s name. On screens throughout an application, you might
expect it to look something like:

First: __________ Last: _______________

In a non-visual repository the name might be stored in as many as four objects, one
per field and one per field label. Copying each object individually to a new screen
to recreate the name would be tedious and error-prone. Since JAM’s visual object
repository preserves spatial relationships, a widget and its label can be copied as a
single drag and drop operation as shown in Figure 4.

The Repository and Inheritance

8 JAM 7.0 Application Development Guide

Figure 4. Copying the title_id label and widget from the visual object repository (on the
right) to the movie screen (on the left).

The Repository and Inheritance

By copying an object, such as a text widget, from the repository to a screen, you
create an inheritance relationship between the repository object and the screen
object. If you subsequently change a property of the repository object, then the
change can be propagated to all screen objects that inherit from the repository
object. The propagation of inheritance, called inheritance resolution, happens
automatically within the screen editor and as requested via the batch inherit utility,
binherit . Inheritance can also be established between objects within the
repository, but not between objects within screens. Inheritance can be overridden
on a property-by-property basis.

The inheritance relationship between an object and the repository is preserved,
even when the object is copied between non-repository screens. The relationship is
between the newly-created object on the screen and the repository object. This
enables rapid use of existing objects without the need for going back to the
repository.

At the present time, inheritance applies to most, but not all, JAM objects. It does
not apply to selection groups or menus. Refer to page 61 for details on the
repository.

JDB: JAM’s Built-in Database for Prototyping

JDB is a single-user relational database provided with JAM. It provides a SQL
interface for data definition and maintenance that is similar to most multi-user

Application Development Steps

91 JAM Development OverviewChapter

relational databases. The examples in this overview are based upon JDB. Please
note that, although the data definition facility includes declarative referential
integrity, it is not enforced by JDB. It is present in the data definition language in
order to facilitate prototyping of applications. Specifically, JAM can use the
information to build SQL statements dynamically. Therefore, you should define
referential integrity constraints when using JDB. JDB is described in the JDB
section of the Database Guide.

Application Development Steps
A JAM application is typically built in an iterative fashion, but it is useful to think
of the process as consisting of the following steps:

1. Build the repository from the database.

2. Enhance the repository screens.

3. Create application screens.

4. Customize the application screens.

5. Package the application for distribution.

Creating and customizing an application screen can be further subdivided into the
following steps:

1. Copy objects onto the screen from the repository or use the screen wizard to
create the initial screen.

2. Customize and add screen objects.

3. Define user actions with menu bars, toolbars, push buttons, and function keys.

4. Define additional actions with hook functions.

5. Define and customize the database access. You can use the SQL executor to
execute the SQL statements that you write for the screen, or you can use the
transaction manager to automatically generate SQL from property values.
Both enable the application to access and modify the database.

6. Write specialized logic in JPL.

The following sections describe each of these steps.

Build the Repository from the Database
Although JAM, through prototyping screens, can be used to help develop a
database, we’ll start developing our application with its database in place. We will

Application Development Steps

10 JAM 7.0 Application Development Guide

use just three of the tables from the video store application, and show only a few
columns for each table. The details of each table are shown below:

CREATE TABLE actors (
actor_id INT NOT NULL,
last_name CHAR (25) NOT NULL,
first_name CHAR (20) ,
PRIMARY KEY (actor_id));

CREATE TABLE titles (

title_id INT NOT NULL,
name CHAR (60) NOT NULL,
.
.
.
PRIMARY KEY (title_id));

CREATE TABLE roles (
title_id INT NOT NULL,
actor_id INT NOT NULL,
role CHAR (40) ,
PRIMARY KEY (title_id, actor_id),
FOREIGN KEY (title_id) REFERENCES titles (title_id),
FOREIGN KEY (actor_id) REFERENCES actors (actor_id));

To build the repository, simply import the database tables into the repository. This
involves entering the screen editor, opening or creating a repository, opening the
database, choosing File⇒ Import from the menu bar, and then selecting the tables
to be imported. The import process creates one screen per imported table. In this
case, JAM creates three repository screens as shown in Figure 5, one for each
selected table.

Figure 5. Repository screens created from database tables.

Each screen contains one text widget and one label widget per database column.
JAM assigns the database column name to the name of the text widget. Other
properties are set similarly to reflect the properties of the column in the database. A
table may be reimported in order to update the information kept in the repository.
This means that, if you build screens by copying objects from the repository,

Application Development Steps

111 JAM Development OverviewChapter

changes to database column properties can be propagated throughout your
application via inheritance relationships.

Database

Repository

Screens

Figure 6. Inheritance from the database to the repository to screens.

In order to support automatic database access, JAM needs to know which widgets
are associated with which tables, and how the tables are related. Table information
is stored in a table view widget. Table view properties include the name of the
database table, the table’s columns, and the columns that compose the table’s
primary key. The import process creates a table view for each imported table, and
adds the widgets corresponding to columns to each table view. Table relationship
information is stored in link widgets. The import process creates links based upon
foreign key information contained in the database. If the database contains no
foreign key information, then you must create the links manually. Links and table
views are discussed in greater detail in the SQL Generator section of this chapter,
as well as in Chapters 20 and 21.

The objects created for each table are listed in the following tables.

Table Views and
Links

Application Development Steps

12 JAM 7.0 Application Development Guide

Table 1. The actors table — objects created by import.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Type

ÁÁComment

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁactor_id

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁÁlast_name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁfirst_name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁÁactors

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtable view

ÁÁIncludes actor_id , last_name and
first_name . actor_id is marked as
primary key.

Table 2. The titles table — objects created by import.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Type

ÁÁComment

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtitle_id

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁÁname

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁÁtitles

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtable view

ÁÁIncludes title_id and name.
title_id is marked as primary key.

Table 3. The roles table — objects created by import.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Name

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁObject Type

ÁÁComment

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtitle_id

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁÁactor_id

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁrole

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtext widget

ÁÁroles

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁtable view

ÁÁIncludes title_id , actor_id and
role . title_id and actor_id are
marked as primary key.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁK1roles

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁlink

ÁÁLinks roles and titles tables based on
title_id . Shown as roles+titles
on the screen.

ÁÁK2roles

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁlink

ÁÁLinks roles and actors tables based on
actor_id . Shown as roles+actors
on the screen.

Application Development Steps

131 JAM Development OverviewChapter

The import process creates its own link names. You can give these links names
that make sense to you. For example, you might change K1roles to
link_roles_to_titles .

Enhance the Repository Screens
JAM’s import process is limited by the information available in the database. For
example, there is no information about the expected spatial relationship between
columns when presented on the screen. There is also no information about the most
appropriate widget type. Therefore, you can enhance the repository screens without
breaking the ability to reimport tables. Your enhancements might include:

� Rearranging the widgets on the screen.

� Changing the widget size.

� Changing the labels.

� Adding new widgets. For example, you may want to add a total price widget
to hold the product of the unit price and the quantity.

JAM assigns names to label widgets that are created by the import process. The
name of a label widget is “L” followed by the name of the associated text widget.
Since inheritance relationships are based on names, labels on screens will be
updated when labels are changed in the repository.

Create Application Screens
The easiest way to create new screens is by using the screen wizard. This option is
available each time you create a new screen in the editor.

The screen wizard can create three basic types of screens: master, master-detail,
and master-detail-subdetail. In each section of the screen, you can have one or
more table views using either a single row or grid layout. When the screen is
completed, it contains the widgets and their labels, a series of push buttons or a
menu bar for commands, item selection screens for any additional tables, and a JPL
module containing the JPL procedures needed to execute the transaction manager
commands.

Alternatively, you can create new screens by copying objects to the screen either
via drag and drop, or copy and paste. To enable propagation of properties via
inheritance, it is best if the copied objects either reside in the repository or are set
to inherit their properties from objects in the repository. For the example screen,
the following diagram depicts the repository source of each of the screen objects
that contains data. Refer to page 61 for details on the repository.

imported label widgets
get named automatically

using the screen wizard

copying objects from
the repository

Application Development Steps

14 JAM 7.0 Application Development Guide

titles

actors

roles

Link: roles+titles,
join by title_id.

Link: roles+actors,
join by actor_id.

Figure 7. Source of each object on the movie screen.

Customize and Add Screen Objects

You can modify the properties of objects created by the screen wizard or copied
from the repository, and add new objects. Many changes typically are directed
towards properly using the SQL generator and the transaction manager. For
example, you might want to specify a sort order for the list of actors and roles that
changes one of the table view properties.

Other changes can customize the presentation of the screen. For example, you
might want to change the colors or fonts of various objects or add decorative
elements such as boxes or lines. Information can be displayed using different types
of business graphics, such as graphs or pie charts.

Define User Actions with Menu Bars, Push Buttons, and
Function Keys

Menu items, push buttons, and function keys can be associated with processing
logic. In all three cases, this association can be defined with JAM control strings.
Some sample control strings are shown in the following table. Although it is often

Application Development Steps

151 JAM Development OverviewChapter

a good idea to keep model push buttons in the repository, we’ll create them on the
screen for ease of demonstration of our small application.ÁÁControl String

ÁÁAction

ÁÁ&&detail

ÁÁÁDisplay the detail screen as a sibling
(non-modal) window.

ÁÁ^sm_emsg(”Update failed.”)

ÁÁCall a JAM library function to display an
error message. You can also call your own
JPL or C functions.

ÁÁ!date

ÁÁÁExecute the operating system date com-
mand.

The control string is a property of push buttons and menu items. Actions for
function keys are specified as a property of the screen itself. In addition, function
key actions can be defined globally throughout the application.

It is a good idea to place commonly used push buttons in the repository. These
push buttons can then be copied onto screens as needed.

The actions associated with push buttons on the movie screen are shown in Table 4.

Table 4. Push button actions on the movie screen.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁButton Text

ÁÁAction (control string)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNew Search

ÁÁ^sm_tm_command(”CLOSE”)

ÁÁDiscard the current transac-
tion to enable entry of new
search criteria.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSearch

ÁÁÁ^sm_tm_command(”VIEW”)

ÁÁÁSelect title information for
viewing purposes only.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNext Title

ÁÁÁ^sm_tm_command(”CONTINUE”)

ÁÁÁFetch information about the
next title.

For detailed information about control string, refer to page 109.

Define Event-Based Actions with Hook Functions
You can specify JPL or C functions to be invoked when certain events occur. In
addition, you can specify processing that is to occur for a specific object, such as a
single screen, or application-wide for all objects. When processing is specified for

keep push button
templates in the
repository

Application Development Steps

16 JAM 7.0 Application Development Guide

a specific object, then the name of the C or JPL function is entered as a property of
the object. For example, to invoke myfunc whenever a widget gains the focus,
specify myfunc as the value of the Entry Function property of the widget (under
the Focus heading). When processing is application-wide, the function must be
written in C and installed using the library function sm_install . For details on
hook functions, refer to page 115.

Define Database Access
The transaction manager enables JAM to interact with the database according to
user actions. The JAM repository should contain most of the information needed
for transaction management, either due to the database import or due to enhance-
ments made to the repository. By copying objects from the repository (or from
other screens built from the repository), you minimize the amount of work required
to set up the transaction manager. The transaction manager is described in more
detail later in this chapter and in Chapters 20 and 21.

Alternatively, the SQL executor has a series of DBMS commands which allow you
to send SQL statements to the database server and to control how select sets are
displayed. You can write your own SQL statements using onscreen values for the
SQL executor to process.

Write Specialized Logic in JPL
Much of an application’s behavior can be defined by setting object properties
rather than by writing code. Where code is required, it can be written in the JPL
language, or in C. JPL is usually preferred for this reasons:

� No separate compiling or linking is generally required since JPL is interpreted.

� JPL can be associated with specific screens or widgets.

� JPL has better constructs for handling strings.

Programming in C might be preferred for performance reasons when doing
operations iteratively or when doing intensive calculations. It might also be
preferred for large programming efforts, such as writing a custom transaction
model or other code that will be used repeatedly throughout an application. For
details on JAM’s C library and JPL, refer to the Language Reference.

Create Menus and Toolbars
You can create menus and toolbars in the menubar editor. You can also create
menus directly via text scripts. A menu can be associated with a screen either

Application Development Steps

171 JAM Development OverviewChapter

programmatically, or by setting the properties of the screen. Note that menus can
also be associated with the application as a whole and with individual widgets.

For more information about menus, refer to page 87.

Package the Application for Distribution

JAM provides you with many packaging options. Some options improve
application performance, others reduce memory use. The options are summarized
in Table 5.

Table 5. Application objects and their possible locations in a distribution.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁApplication Object

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁFile

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁLibrary

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁScreen

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁExecutable

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁscreen

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ �

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁ �

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁJPL

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ �

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ �

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁmenu bar

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁ �

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁexecutable

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁÁconfiguration files

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ � *

ÁÁ �

� * indicates one reasonable approach to packaging.

Two locations are mentioned as reasonable for JPL in Table 5. JPL that is stored in
a screen is localized since it can be called only from within that screen. This
localization is not always desirable. Two locations are also indicated for menu
bars; although menu bars run faster out of libraries, the menu bar editor does not
currently let you directly edit menu bars in libraries.

There is no single preferred choice of locations. For example, you might prefer to
distribute your application in a form that is most easily maintained via the JAM
authoring tools. The screen editor can directly edit screens stored in files and
libraries. It can also edit JPL stored in screens. By storing screens in libraries
during development, you can let JAM manage concurrent access to libraries. At
runtime, libraries can provide better performance than files because JAM maintains
an in-memory index of the list of available objects stored in the open libraries, but
at the expense of using more memory.

The fastest performance is obtained by linking objects into the executable, at the
cost of using more memory. However, it is more difficult to build and maintain all

Levels of Database Access

18 JAM 7.0 Application Development Guide

application objects in a single executable than it is to build and maintain objects as
libraries and files.

Adding menu bars and JPL to a library requires use of JAM’s library maintenance
utility, formlib . Adding objects to the executable requires use of JAM’s bin2c
utility. For more information about packaging, refer to page 519.

Levels of Database Access

 JAM provides you with four levels of database access:

1. Transaction Manager. The transaction manager determines what SQL must be
generated and executed, and asks the next level to do the work.

2. SQL Generator. The SQL generator constructs SQL statements and asks the
next level to execute them.

3. SQL Executor. The SQL executor passes SQL requests to the database API,
and returns formatted results to JAM. The SQL executor is implemented via
the DBMS verb in the JPL language, and the JAM library function dm_dbms.

4. Database API. This is the API provided by the database vendor.

Although access via the transaction manager is usually easiest, you may use any
combination of the levels in your application. For example, you might allow the
transaction manager to handle most access itself, but supply specific SQL
statements—for example, stored procedure or RPC calls—in certain performance-
critical areas. This is easily done with transaction manager hook functions.

 The levels of database access are depicted in Figure 8.

Levels of Database Access

191 JAM Development OverviewChapter

Transaction Manager

SQL Generator

SQL Executor

Database API

Database Support Routines

Transaction Models

JAM
Application

Database

Figure 8. Levels of database access in JAM.

Each level of database access is described below, starting at the lowest level.

Database API
There are two mechanisms for using the database vendor’s API. Both require
writing C code. The first is to use the API without using any of JAM’s other
database access facilities. The second, which is currently available for Sybase, is to
use the source code provided in the file usrhndlr.c to gain access to the
database’s internal data structures. Because of the complexity of using database
APIs, most developers will not use this access level.

SQL Executor
The SQL executor provides an easy-to-use and powerful interface for the execution
of SQL statements and other database directives. You create any SQL statement
using the SQL dialect supported by your database. This means that you can utilize
the most powerful, although possibly non-portable, features of your database such
as stored procedure and RPC calls. You can either hard-code these SQL statements,
or generate them programmatically with JPL or C. The SQL executor uses the
database API to execute the statements and to return result rows, if any.

It is very common to explicitly access the SQL executor while also using the
transaction manager. Consider the case of a database that supports stored
procedures. The SQL generator does not automatically generate calls to stored

Levels of Database Access

20 JAM 7.0 Application Development Guide

procedures. To replace an automatically generated SQL INSERT statement with a
call to a stored procedure, you would write a transaction hook function to handle
the insert. Your function would call the stored procedure using the SQL executor.

For better database portability with respect to SQL, the higher levels of access
should be used where possible. On the other hand, you can achieve a reasonable
level of portability by using SQL constructs that are common across the relevant
databases. However, it is very important to understand how the SQL executor
works, since it is used by the SQL generator and the transaction manager.

The SQL executor is very portable with respect to the handling of results sets from
the database. This is true for several reasons:

� The SQL executor inspects each column returned from the database to deter-
mine the column’s data type. It then formats the column’s data according to
the properties of the destination object. You do not need to use database-spe-
cific formatting statements—for example, to format a date column—when
writing SQL.

� SQL is a set-oriented language. There are no SQL commands to control
fetching of individual rows from a result set. JAM provides fetching
commands and supports them across all databases. JAM even supports
re-fetching of rows when the database itself offers no such support.

In addition, JAM provides certain other commands that are supported across all
databases, such as those for transaction and cursor control.

The JPL interface to the SQL executor is the DBMS verb. To execute a SQL
SELECT statement from JPL, you could use:

DBMS SQL SELECT title_id, name FROM titles WHERE name= :+name

The SQL executor takes the following actions:

1. The value stored in the name widget replaces :+name . The proper quotation
marks, if needed, are provided automatically since :+ requests “database
smart” substitution via colon plus processing.

2. The SELECT statement is sent to the database via the database’s API.

3. After the database completes the SELECT, JAM obtains the names and types of
the columns selected. Since JAM does not parse the select list, it is possible to
use any legal database expression in the select list, such as * and aggregation
functions. The data selected is fetched into the destination JAM variables
named exactly like the database column names. Database independent or
dependent aliasing can be used when the widget names and column names do
not match. The format of the fetched data is determined by the properties of
the destination variables.

for database portability,
use higher level access

Levels of Database Access

211 JAM Development OverviewChapter

4. JAM determines the number of rows of data that will be fetched into JAM
variables by determining the number of occurrences that can be stored in each
of the destination JAM variables, and using the smallest such number.
Additional rows are fetched with the DBMS CONTINUE command.

The control that the SQL executor provides over the number of rows fetched at one
time is very important in two circumstances:

� Client-server applications under conditions of high network use. In this case it
may be advantageous to minimize network traffic by reducing the number of
rows fetched at one time.

� A database like Sybase that maintains a read lock until the SELECT completes.
In this case, it might be critical to release the lock immediately by fetching all
selected rows at one time. In practice, this means setting the number of
occurrences to a large number, and then flushing the SELECT with the DBMS
FLUSH command after fetching the rows. Note that after the SELECT is
flushed, JAM is unable to fetch additional rows. This is often not a problem if
the number of occurrences is large. It also simplifies application development
since there is no need to program special actions to fetch additional rows with
DBMS CONTINUE. The user can simply scroll the widgets that contain the
selected rows.

JAM provides a database support routine for each supported database engine. The
SQL executor uses these database routines to interact with the database engines.
Some database engines support multiple connections to their databases. It is also
possible to install several support routines for different database engines
simultaneously, providing another approach to accessing multiple databases
concurrently.

The SQL executor is discussed in Section III of this guide (page 213).

SQL Generator
The SQL generator uses the properties of screen objects to generate SQL
statements, and then executes the generated statements using the SQL executor.
Since the transaction manager, by default, uses generated SQL statements, there is
normally no reason for you to invoke the SQL generator directly. To change the
generated SQL, you can change the properties of widgets, links, and table views.
To provide custom SQL, you can use the SQL executor. In fact, you cannot
currently use the SQL generator except through the transaction manager. The SQL
generator is discussed in detail in Chapter 18.

The SQL generator can generate SELECT, INSERT, UPDATE, and DELETE
statements. It uses the database support routine to determine how to generate SQL
that is correct for the target database. The transaction manager tells the SQL

optimizing the number
of rows to fetch depends
on the runtime
environment

Levels of Database Access

22 JAM 7.0 Application Development Guide

generator what type of statement to generate (SELECT, INSERT, UPDATE, DELETE)
and which table view is affected. To understand how this works, you must
understand how JAM uses links to represent the relationships between table views.

A table view is a group that contains the widgets associated with a database table.
Table view properties include the name of the database table, the widgets
associated with the table’s primary key, and whether or not the table may be
updated through the table view. You can add a widget to a table view, even if the
widget is not associated with a column in the database table. This facility is useful
for representing data computed from data stored in the database.

A link relates two table views. It is usually sufficient to say that a link relates two
tables, but there may be more than one table view associated with the same table
on a single screen. One table view is designated as the parent table view, and the
other as the child table view.

There are two types of links, server and sequential:

Server Link
A server link means that the database server will be asked to join the linked tables
together. In this case, the SQL generator must generate the SQL to issue the join
request to the database. The table views joined together by server links are referred
to collectively as a server view. The term server view also applies to a table view
that is not connected to any other table view by a server link. When the SQL
generator is asked by the transaction manager to generate SQL for the parent table
view within the server view composed of server links, then the SQL generator
builds a single SQL SELECT statement that joins all of the tables in the server view.

Sequential Link
A sequential link means that the two separate SELECT requests will be sent to the
database server, and that JAM will perform the join. The transaction manager first
asks the SQL generator to generate and execute the SQL statement for the parent
table view. When that request is complete, the transaction manager asks the SQL
generator to generate and execute the SQL statement for the child table view. The
join occurs because the first request provides the information needed by the second
request.

In our sample screen, the titles table view is joined to the roles table view by a
sequential link. Therefore, when the transaction manager asks the SQL generator to
generate a SELECT statement for titles , the SQL generator will not query the
roles table at the same time. Conversely, the roles table view is joined to the
actors table view by a server link. Therefore, when the transaction manager asks
the SQL generator to generate a SELECT statement for roles , the SQL generator
will query the actors table at the same time by creating a single SELECT
statement that joins the two tables.

Table Views

Links

Levels of Database Access

231 JAM Development OverviewChapter

Note that the transaction manager provides the facility that enables joining of data
between multiple databases. To join tables from different databases, specify a
sequential link between the tables. The transaction manager will perform the join
by first querying the parent table, and then the child table.

Transaction Manager

The transaction manager enables access to databases without SQL, JPL, or C
programming. The behavior of the transaction manager is largely determined by
the transaction models used by the application. JYACC provides one transaction
model per database engine in order to enable JAM to effectively use such database
engine features as connection management, cursor management, and concurrence
control. The behavior of a transaction model can be changed by writing transaction
manager hook functions using JPL or C, optionally along with SQL. You can even
write complete transaction models. These abilities, combined with the database-
specific models provided with JAM, give you the ability to use the powerful
features of your database with zero or minimal programming.

Database access is achieved by creating an interactive transaction with the
transaction manager. A user’s notion of a transaction is that information is
gathered, modified, and committed to the permanent memory of the computer. The
user might abort such a transaction at any time prior to the commit. The transaction
manager, via the transaction models, determines when and how database engine
transaction services are used to support the interactive transaction. For example,
consider the action of selecting data for possible update. Some models begin a
database transaction when the data is selected. Other models begin a database
transaction only after the user has requested that the changes be saved.

Do not confuse JAM’s interactive transactions with database transactions. JAM
does not provide database transaction management. JAM converts user requests
into database transactions.

When a set of records is selected for update, the transaction manager keeps a
before image of the selected data. The user may add, change, or delete data on the
screen. When the user requests that changes be saved, the transaction manager
determines what INSERT, UPDATE, and DELETE statements must be generated and
executed in order to make the database reflect the changes made to the screen. The
properties of the links determine, when INSERT, UPDATE, and DELETE statements
are generated, whether the statements are applied first to the parent or child table
views. This enables JAM to work with both referential integrity constraints and
cascading deletes.

Levels of Database Access

24 JAM 7.0 Application Development Guide

In addition to describing differences between database engines, transaction models
can be used to describe how the application behaves in response to various user
requests. For example, invocation of stored procedures can be substituted for the
transaction model default behavior of executing generated SQL. This is just one
example of how user interaction can be controlled by the transaction model.
Another example is that menu items and push buttons are automatically activated
and deactivated, and widgets used for data entry are protected and unprotected, as a
result of the state of the transaction. One of the key features of the models is that
user interface code can be centralized and separated from business logic for code
simplification and reduction.

To enable full customization of transaction models, all transaction models provided
with JAM are provided in source form.

For details on the transaction manager, refer to Section V (page 307).

To add transaction management to a screen, drag screen objects from the repository
onto the screen. If these objects were imported from the database, as described lat-
er, then the transaction manager is likely to have all of the information it needs to
build transactions. To enable the user to use transactions, you must attach high lev-
el transaction manager commands to push buttons, menu items, or function keys.
These commands closely correspond to how users perceive transactions. The most
common of these commands are summarized in Table 6 and detailed in Chapter 23.

Table 6. Common transaction manager commands.ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCommand

ÁÁDescription

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCLEAR

ÁÁClear transaction data (i.e. data entered into widgets) from the
screen. This applies only when entering data for a new record or
when entering criteria for selecting records.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCLOSE

ÁÁÁAbort the transaction in progress, but first prompt for and receive
user confirmation.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCONTINUE

ÁÁFetch the next group of selected records.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCOPY

ÁÁÁCLOSE the current transaction (if any), without clearing existing
data, to enable the user to create a new record from existing data.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNEW

ÁÁÁCLOSE the current transaction (if any), and CLEAR existing data,
to enable users to enter information to create a new record.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSAVE

ÁÁUpdate the database to reflect the changes made by the user, or
the new data entered by the user.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSELECT

ÁÁÁSelect one or more records for possible update.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVIEW

ÁÁSelect one or more records for viewing purposes only.

transaction model

Transaction
Manager
Commands

Levels of Database Access

251 JAM Development OverviewChapter

The transaction manager executes its commands by traversing the table views on
the screen, using the specified links. It starts with the root table view, which is the
table view that is the ancestor of all other table views on the screen. The transac-
tion manager can affect only those table views that are descendants of the root
table view. For example, when JAM imported the roles table earlier, JAM created
a link between roles (the child) and actors (the parent). The movie screen
works only if actors is the child and roles is the parent, because the root table
view is titles and the sequential link is between titles (the parent) and roles
(the child). If the roles+actors link were not changed, then actors would have
no parent and would be unreachable from titles .

A transaction is associated with a single screen. This enables many transactions to
be active at one time. For example, a user may be in the process of updating one
employee’s records when another employee calls to check on his insurance status.
The user might interrupt work on the first employee, satisfy the second employee’s
request, and then return to the first employee’s record. The state of a transaction is
characterized by its mode. The modes are:

� initial — Transaction is inactive. The user can either issue a NEW command to
move to new mode and begin entering data for new records, or enter select
criteria and issue a SELECT or VIEW command.

� new — Data is being entered for new records to be added to the database.

� update — Existing records are being modified.

� view — Existing records are being displayed.

The modes enable the transaction manager to determine which commands are
permitted at a particular instant, and to take different actions for a particular
command. For example, an error is detected if SAVE is attempted in any mode
other than new or update.

Modes also permit the transaction manager to change the appearance of objects to
reflect the state of the transactions. This is managed via styles and transaction
classes, both of which are created and modified with the styles editor. A style is a
description of an object’s appearance and behavior—for example, its color and
protection. A transaction class is a pairing of styles and modes.

To minimize the work needed to build an application, JAM provides predefined
styles and transaction classes, and a special class named “default”. By default,
JAM assigns the transaction class “default” to each object. The “default” class tells
JAM to select one of the other predefined classes at runtime. Table 7 lists some of
the predefined classes.

root table view

Transaction
Modes

Styles and
Transaction
Classes

Levels of Database Access

26 JAM 7.0 Application Development Guide

Table 7. Some predefined transaction classes and their allowable actions per mode.

Transaction
Class

Default Assignment
Conditions

Data Manipulation Permitted Actions Per Mode

initial new update view
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁupdatable

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWidget is not part of
table’s primary key.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁData can be changed.

ÁÁÁÁÁÁÁÁÁÁÁÁfocus,
input

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus,
input

ÁÁÁÁÁÁÁÁÁÁÁÁfocus

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁprimary_key

ÁÁWidget is part of
table’s primary key.

ÁÁData cannot be changed
in update mode.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus,
input

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus,
input

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁnon_updatable

ÁÁWidget is part of
table’s primary key.

ÁÁData is not updatable.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁfocus

The automatic assignment of the “default” class means that you can do significant
application development without defining styles, without defining transaction
classes, and without setting the transaction class property of objects.

Transaction classes also apply to push buttons and menu items. This enables JAM
to automatically activate and inactivate push buttons and menu items according to
the transaction mode.

You can write transaction hook functions to customize the processing of transac-
tions. Hook functions can be used to:

� Modify automatically generated SQL.

� Supply hand-coded SQL to replace generated SQL.

� Supply stored procedure or RPC calls to replace generated SQL.

� Change error handling.

� Change the use of cursors.

� Change the use of database transactions.

A hook function replaces part of the functionality provided by a transaction model.
A model can be thought of as a collection of hook functions. JYACC supplies
transaction models with JAM. These models are similar in many regards in order to
promote database portability. These models are referred to as the standard models.

The transaction manager processes commands. It generates transaction events, in
response to each command. Each event is “sent” to the table views involved in a
transaction. A transaction event can be thought of as a request for a table view to
do some of the processing required by a command. In fact, the events generated by

Changing Model
Behavior with
Hook Functions

Completing Your Application

271 JAM Development OverviewChapter

the transaction manager in response to commands are referred to as requests in
order to differentiate them from other types of transaction events. The table
view-specific processing is carried out by the transaction model associated with the
table view. It is the model that knows, for example, whether or not to request
generation and execution of SQL in response to an event.

The standard transaction models are complex and powerful. Most applications that
use a single database can use a single transaction model throughout the entire ap-
plication. When the model does not perform the needed functionality, a transaction
hook function can be associated with a table view to provide that functionality.
When a transaction hook function is present, the transaction manager sends re-
quests to the hook function rather than to the model. The hook function decides
whether or not the transaction manager will also send the request to the model. A
transaction hook function is specified as a property of a table view. The transaction
model may be specified as a property of a table view or of a screen. If no transac-
tion model is specified, what is used is the default transaction model for the default
engine at the time of the START command (typically when the screen opens).

Here’s a sample transaction hook function. It, and other details of hook functions,
is explained in greater detail in the Chapter 22. This hook function replaces
automatic SQL generation with a hand-coded SQL statement.

proc my_better_hook(event)
if event == TM_SEL_BUILD_PERFORM
{
 dbms DECLARE :@tm_sel_cursor CURSOR FOR \
 SELECT empid, name, salary \
 FROM emp \
 WHERE name = ::name
 dbms WITH CURSOR :@tm_sel_cursor EXECUTE USING name
 return TM_CHECK
}
return TM_PROCEED

Completing Your Application

After your screens are designed, you will need to write control strings, JPL
procedures or C functions to link your screens together into an application. In
addition, the following sections list some of the areas where JPL procedures or C
functions can provide specialized functionality for your application.

Displaying and Managing Screens
You display and manage screens by invoking control strings or library functions.
When a screen is displayed, it is opened and then placed on JAM’s window stack.

Completing Your Application

28 JAM 7.0 Application Development Guide

There is no limit (other than memory) to the number of windows that can be on the
window stack. A screen is said to be displayed as a window if it is displayed
without closing other screens on the window stack. The screen at the top of the
window stack is the active window. A screen is said to be displayed as a form if all
open windows are first closed. To display a screen, you can invoke any of the
following control strings or library functions. Note that there are other library
functions that display screens, but they are beyond the scope of this overview.

Table 8. Options for displaying a screen.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁControl

String

ÁÁÁFunction Called From JPL

ÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ&mywin

ÁÁcall sm_jwindow(”mywin”)

ÁÁDisplay a screen as a window.
This is also referred to as dis-
playing a stacked window.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁmywin

ÁÁcall sm_jform(”mywin”)

ÁÁDisplay a screen as a form.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ&&mywin

ÁÁÁcall sm_jwindow(”&&mywin”)

ÁÁDisplay a screen as a sibling
(non-modal) window.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ(none)

ÁÁcall sm_setsibling()

ÁÁOpen the next screen as a sib-
ling of the current window

When a screen is displayed as a stacked window, then the user will not normally be
permitted to interact with underlying windows until the stacked window is closed.
To permit user interaction with underlying windows, display the screen as a sibling
of the underlying window. This can be done with the && notation shown in Table 8.
If the screen referenced by && is already a sibling of the active window, then the
existing sibling is activated (i.e. moved to the top of the window stack). To open a
second sibling instance of a screen already displayed as a sibling to the active
window, call sm_setsibling , then open the screen as a sibling window.

The first screen displayed by JAM is displayed as a form. JAM maintains a form
stack that contains the names of screens displayed as forms. When a form is closed,
JAM removes its name from the form stack and reopens the next screen on the
form stack. Before displaying a screen as a form, JAM first checks for the screen
name on the form stack. If it is there, then JAM clears the form stack of all names
above the name of the screen to be displayed.

You can use forms to:

� Quickly close a deeply nested set of open windows.

� Save memory by keeping track of screen names, rather than by maintaining
open windows.

Completing Your Application

291 JAM Development OverviewChapter

For details on screen management, refer to page 69.

Sharing Data Between Screens
JAM applications typically require data to be shared between screens. JAM
provides several methods of sharing data, as described below.

This technique is similar to passing parameters when calling a function. It is the
most modular of the data sharing techniques. The sender specifies exactly what
data is sent. The receiver specifies exactly what data is received. The order of the
data items determines the correspondence between items sent and received.
Sending and receiving are implemented by the JPL statements send and receive .
There are also JAM library functions used for sending and receiving.

JAM creates a bundle that contains sent data. By default, the bundle is nameless
and is automatically destroyed upon receipt. However, you can name bundles and
preserve them after receipt so that data can be shared among several screens.

In JPL you can refer explicitly to a data item on an open window by using the
notation screen-name! widget-name. For example, you could copy data from
empid on the empsrch screen to empid on the active screen by writing:

empid = empsrch!empid

The local data block (LDB) enables sharing of data automatically based on widget
names. Each time a screen becomes active, its widgets are populated with data
from those LDB fields that have corresponding names. When the screen is made
inactive, JAM copies widget data back into the LDB. This eliminates the need to
write code to move data between screens.

You can create multiple LDBs. An LDB exists until it is explicitly destroyed. This
allows access to data regardless of whether or not it is on the active screen, or on
any open screen.

The LDB contains data that is local to each user, but that is globally shared within
a user’s invocation of an application. Use the LDB to store data that is shared
between many screens when you want changes on any one screen to cause changes
on all screens that share the same widget name. In most circumstances do not use
the LDB to pass data between two screens, or for other purposes where global data
is inappropriate.

For details on moving data between screens, refer to page 191.

Data can be moved between screens by saving the data in JPL or C variables,
opening the destination screen, and copying the data into the destination screen.
For example, in JPL you could write:

Sending and
Receiving

Explicit
Reference

Local Data
Block

the LDB is local to a
user, but global to the
application

JPL and C
Variables

Completing Your Application

30 JAM 7.0 Application Development Guide

...
vars pass_empid
pass_empid = empid
call sm_jwindow(”empview”)
empid = pass_empid
...

Note that the reference to empid after the call to sm_jwindow refers to a widget
on the newly opened screen, whereas the first reference refers to a widget on the
original screen. The advantage of this technique over the screen-name! widget-
name technique is that the source and destination screens do not need to be open at
the same time.

Manipulating JAM Events

When you open and close JAM screens and move among the widgets on the
screen, you move through a series of JAM events. Categories of JAM events
include screen entry, screen exit, widget entry, widget exit, group entry, and group
exit. You can programmatically decide what behavior occurs for each event either
on a screen-by-screen basis or at the application level. To change the behavior for
the entire application, you need to write and install a hook function. For more
information on hook functions, refer to page 115.

Changing Object Behavior at Runtime

All JAM objects have properties that can be examined or changed at runtime. Most
of these properties can be viewed in the screen editor through the Properties
window; however, there are application and runtime properties that are available as
well. You can access these properties through library functions or through JPL.

The following library functions allow you to examine and change screen and
widget properties at runtime:

� sm_prop_get gets properties of the application and its components—screens,
widgets, LDBs and so on.

� sm_prop_set sets gets properties of the application and its components.

You can also access and set these properties in JPL. For example, the following
section of a JPL procedure sets the Hidden property of a widget named title_id :

title_id–>hidden=yes

For more information about accessing JAM properties, refer to page 28 in the
Language Reference.

Summary

311 JAM Development OverviewChapter

Using C with Your Application

JAM provides an excellent interface to functions written in C. The interface
enables C programmers to:

� Integrate third-party software with JAM applications.

� Write hook functions in C.

� Extend the functionality of JAM by writing library functions for JPL
programmers.

� Write transaction models in C.

� Use JAM without JPL.

To assist C programmers, JAM’s main function is provided in source code form in
a file named jmain.c . Hook functions are installed in a provided source file
named funclist.c . For details on hook functions, refer to page 115. The full set
of JAM library functions is described in the Language Reference.

Summary

In the following chapters, the topics mentioned in this overview are explained in
more detail. Additional manuals may help with certain areas like the screen editor,
library functions, or configuration. If you would like to use JAM in order to apply
some of the concepts presented in this overview, refer to the tutorial in the Getting
Started manual.

If you want to look at a sample JAM application, there are two applications
provided in your JAM distribution. One is videobiz , the sample application for a
video store which is described in the next chapter. The other is JISQL, the
interactive SQL editor for JDB.

33

Sample Application:
VideoBiz

JAM is installed with a sample application—VideoBiz. It is provided to give you a
look at a working JAM application. Although all JAM features are not implement-
ed in this application, it is designed to illustrate some of the functionality that is
possible. In addition, VideoBiz can help point out how some things can be
done—and will assist you in developing your JAM application.

VideoBiz is a database application that was built to take advantage of JAM’s
transaction manager capabilities. The application required very little coding—only
a minimal amount of SQL and JPL code. The application screens were constructed
via the screen wizard or by using widgets imported from the underlying database
and inherited from a repository. Properties of these widgets, along with those of
table views and links, provide the information that the transaction manager needs
to drive the automated SQL generation.

This chapter describes:

� Starting VideoBiz — The start up information you need to actually view and
use the VideoBiz application.

� What You Get with VideoBiz — A brief description of the components that
make up this application, such as the menu bar, the JPL code, and the screens
that comprise the application.

22

Heading 1 (head 1) This is head 1

34 JAM 7.0 Application Development Guide

� The User’s Guide to VideoBiz — The functional specification to the user
interface which provides a “how-to-use” approach to the sample application
from the user’s perspective as well as some insight into what’s happening in
the background. This section walks you through each screen and briefly
describes how the screen works and what actions the user can take.

Check out the “Behind the Scenes” section for each screen. These sections
outline what features are implemented, where you can find the JPL code, and
what mechanisms are used to make a behavior or event occur.

Starting VideoBiz

To look at VideoBiz follow the directions below for your specific platform and
environment. Try the application (refer to page 38 for more information on using
the application). In the process of looking at VideoBiz, you can also invoke the
screen editor to look behind the scenes to find out just how it works.

While VideoBiz is running, you are in Application mode. To see how the current
application screen looks behind the scenes, you must be in Edit mode. To do this,
simply access the screen editor by choosing JAM⇒ Screen Editor from the applica-
tion menu bar. The current screen will open in the screen editor workspace. In this
way, you can see all the property specifications for the screen and its widgets, look
at the JPL code that is attached to the specific screen, and see all the widgets on the
screen, including those that are hidden at runtime, like table view links. To return
to Application mode, choose File⇒ Exit from the screen editor menu bar.

To start VideoBiz, choose the VideoBiz icon in the JYACC program group. The
VideoBiz Welcome screen opens.

To start VideoBiz:

1. Know in what directory JAM is installed.

2. From your home or working directory (make sure your current directory has
write-permissions) run the following script:

. $SMBASE/samples/videobiz/vbizunix

The required files you need locally are copied to your current directory. They
include: the videobiz database and the styles sheet styles.sty ..

3. When prompted, enter c or m to indicate whether you are using VideoBiz on a
color or monochrome monitor.

The VideoBiz Welcome screen opens.

For Windows

For Motif and
Character-
Mode

Heading 1 (head 1) This is head 1

35 Chapter

Figure 9. VideoBiz Welcome screen includes a menu bar, a graphical toolbar, two logon
options, and a display of the most frequently rented video.

VideoBiz Components

This section describes the contents of the $SMBASE/samples/videobiz
directory and how VideoBiz uses these elements. These include:

� The videobiz database

� Repository (supplied for reference; this is not runtime requirement)

� Application screens

� Menu bar/toolbar

� JPL code

� Styles sheet

� Sample reports

� Pixmap files

Heading 1 (head 1) This is head 1

36 JAM 7.0 Application Development Guide

The Database
VideoBiz runs against a JDB (JYACC’s prototype database tool) relational
database, videobiz , that has been normalized. The primary and foreign key
definitions were made in the SQL table creation statements. The VideoBiz
application depends on these definitions to drive the transaction manager’s access
to the SQL generator.

The Repository
The repository, data.dic that was created and used to build VideoBiz is provided
so that you can see what kinds of things are controlled via this mechanism. JAM’s
visual object repository and its inheritance mechanism is a development tool used
to implement and maintain application consistency, to store reusable application
components, and to facilitate application maintenance as well as provide the screen
wizard with the information it needs to quickly create screens. This repository
contains three general types of screens: those created as the result of the database
tables import process, those created and used by the screen wizard, and one that
was created simply as a screen to hold frequently used objects, like push buttons.

By importing database tables as JAM repository screens, the widgets that were
derived from the database were used to build the VideoBiz application screens.
Attributes of the source database table are embedded in the corresponding widget’s
Database properties. These properties are inherited by child copies of these
widgets, and provide the SQL generator with the information needed to dynamical-
ly generate SQL statements. Changes in the underlying database tables can be
re-imported into the repository and then inherited by the child screens and widgets.

Many properties imported from the database do not exactly correspond to your
application’s business requirements. For example, database tables imported from
JDB (JYACC database) automatically assign a Length property of 11 to widgets
imported from database columns of type long. In VideoBiz, an ID number is never
longer than 5 characters. This was resolved, for example, by changing the Length
property of the cust_id widget from 11 to 5 in the repository. This ensures that
wherever that widget is used in the application, its length is 5 characters long.

Other properties that could reasonably be changed at the database table level were
considered, and some implemented. The things to consider are:

� Does it make sense to propagate the change to every child copy in the
application?

� Is it useful to control the settings of this property with inheritance?

Some of the property changes made in the repository include input keystroke
filters, the Length property, font specifications for data entry widgets, and data
format specifications (for instance, date formats).

Imported
Database Tables

Heading 1 (head 1) This is head 1

37 Chapter

Repository-based inheritance was also used to define standard widget types (in
this case, push buttons). These are stored in the repository screen masters.wgt .
The appearance of the push buttons on the application screens is inherited from this
repository screen. In this manner, a consistent look is propagated and easily
maintained.

Wizard entries (smwizard and smwizis) were automatically created when the
screen wizard was first invoked.

Application Screens
The VideoBiz screens were created by using the screen wizard. The wizard uses
the database-derived widgets in the repository to build screens.

While you navigate through the VideoBiz application, you can also examine what’s
going on behind the scenes (or screens) by invoking the screen editor (choose
Jam⇒ Screen Editor). The current screen will open in the screen editor workspace
and you can see how the screen was put together, what properties were set, and
which properties are inherited from the repository (these are displayed in reverse
video in the Properties window).

When you are done, resume the VideoBiz application by choosing File⇒ Exit from
the screen editor menu bar.

Menu Bar/Toolbar
The menu bar and toolbar in VideoBiz is used primarily for navigation among the
modules. JAM’s menu bar editor was used to create the menu script file. The menu
script is read into memory when the Welcome screen opens. It remains in place for
the life of the application.

Items on the Options menu become active or inactive depending on the user’s
permissions and the currently active screen. For example, a user with customer
permissions will not be allowed to run reports or view customer profiles.

A JAM menu option is also provided on the menu bar to allow you to easily access
the JAM editors and to view the SQL that is being automatically generated for the
VideoBiz application. This menu bar item would normally not be part of a
distributed, runtime-only application, but is provided for your convenience.

JPL Code
All of the coding in VideoBiz is done with JPL and is well-documented. There is
one externally stored file, videobiz.jpl , which is called when the first screen
(main.jam) is opened. All the procedures contained in this file are then globally
available to the application. This is particularly useful when a procedure is used by
more than one screen. For example, the procedure init_menu is used throughout
the application.

Other
Repository
Entries

Heading 1 (head 1) This is head 1

38 JAM 7.0 Application Development Guide

All other JPL code is stored with the screens that use it.

Styles Sheet

The default JAM styles.sty file was modified to accommodate the VideoBiz
application. This file controls how widgets behave when different transaction
modes are executed.

Sample Reports

The Marketing portion of VideoBiz generates reports. If your JAM executable
includes JAM/ReportWriter, edit the videobiz.jpl file to let JAM know this.
Change the following line:

RW_INSTALL = 0

to RW_INSTALL = 1

The report templates are provided as JAM screens by the JAM/ReportWriter
installation. You can see how they are constructed by opening them in the screen
editor; they are: duenote.jam , topten.jam , and genrecus.jam .

Pixmap Files

There are several pixmap files provided that serve to enhance the VideoBiz
application on GUI platforms. There are pixmap files used for push buttons,
toolbar items, for the screen when it is minimized, and for screen wallpaper.

The User’s Guide to VideoBiz

This section serves as a functional specification for the VideoBiz user interface.
The specification is usually where an application begins. A task is introduced and a
solution is sought. The user’s perspective introduces you to what VideoBiz is
intended to do and what functions it will perform.

What is VideoBiz?

VideoBiz is a small database application that is intended for use in a video rental
store. It serves three audiences and provides functions specific to those audiences:

Heading 1 (head 1) This is head 1

39 Chapter

� Customers — to look up information about videos.

� Front desk clerks — to add and change information about customers, to look
up video information, to rent videos and check them back in.

� Marketing personnel — to produce reports about customers and the videos
they rent.

Starting VideoBiz

VideoBiz runs on free-standing terminal kiosks in the video store for customer use
as well as on work stations behind the front desk for employee use.

The Welcome (main.jam) screen displays when the application is idle, that is,
when no one has logged on, and it shows the title and description of the most
frequently rented video.

The application’s menu bar offers two menu bar items: Options and Jam. The
toolbar includes all entries available via the Options menu. On initialization, the
only available choices under Options and on the toolbar are Video Search and
Done/Exit. The user can choose Video Search to search for a video by title ID, title,
and/or director.

Heading 1 (head 1) This is head 1

40 JAM 7.0 Application Development Guide

The JAM menu is provided for your convenience to give you access to the JAM
editors so that you can examine the internals of the application. This option would
normally not be part of a runtime application.

The Welcome screen also includes two radio buttons:

� Customer — The default radio button. When this button is selected, pressing
Enter or choosing the Start button invokes the Search for a Video screen.
(Under GUI platforms, the Start button displays a pixmap of a 35mm camera
reel on it.)

No log on information is required. The application navigates to the Video
Lookup screen when the Start button is chosen. Video Search and Done are the
only available menu options when the screen is in Customer mode.

� Employee — Requires the user to enter a user name and password. When this
button is selected and the required login data is provided, pressing Enter or
choosing the Start button invokes the Customer Search screen.

To log into VideoBiz as an employee:
1. Choose the Employee radio button. The log on fields (Name and Password)

are displayed.

2. Enter the name sheila in the Name field, and trade3 in the Password field.
(The password is echoed using asterisks (*).)

Both user name and password are required. An error message is posted if both
are not provided. Otherwise, logon information is compared to a list of valid
names and passwords. An invalid user name or password invokes an error
message and the user can try another.

Heading 1 (head 1) This is head 1

41 Chapter

3. Choose the Start button (or press Enter). The Search for a Customer screen
opens.

Connection to the database occurs upon initial screen entry. On entry, the screen is
by default in Customer mode. If a valid user/password is entered, the application
switches into Employee mode. While in Employee mode, the marketing menu/
toolbar items are active. When a user returns to the Welcome screen, the
application automatically switches back to Customer mode.

To exit VideoBiz
Choose Close/Quit from the application’s system menu. JAM prompts you to
confirm the termination of your session in VideoBiz.

The main.jam screen includes the following features which you can examine by
accessing the screen editor:

� When the screen opens it calls videobiz.jpl to install the application menu
and JPL procedures, making them globally available to the application.

� Call to init_menu to turn on the applicable menu/toolbar selections.

� Silent connection to and disconnection from the videobiz database. Check
out the JPL Procedures property for the screen.

� The Name and Password fields are hidden in Customer mode and exposed
conditionally. This is controlled via the screen-level JPL (the procedure name
is display_login_fields). The screen-level JPL also handles the
validation of the user name and password.

� A pixmap (visible under GUI platforms) is attached to the Start button via its
Active Pixmap property under Format/Display.

� An icon visible on GUI platforms displays when the screen is minimized. It is
defined in the screen’s Icon property.

� Three database tables are linked on this screen so that the most popular movie
title and description are displayed. Check the DB Interactions window in the
screen editor to see how the table views are linked.

� The sm_tm_command(”VIEW”) in the screen-level JPL invokes the
transaction manager to execute the query that determines the most frequently
rented video. See the Database properties for the hidden widget
times_rented . This widget provides JAM with the aggregate expression
used in the SQL that is automatically generated on screen entry.

Identify the Customer
When the user successfully logs in as an employee, the Search for a Customer
(custlist.jam) screen opens.

Behind the
Scenes

Heading 1 (head 1) This is head 1

42 JAM 7.0 Application Development Guide

This screen allows the employee to search for an individual customer and select an
action for that customer. The screen includes two query fields and a grid frame
which displays the results of the query—the customer’s ID, first and last names,
and phone number. A bounce bar can be moved up and down in the grid to indicate
the currently selected customer. The screen includes several push buttons and
Customer Profile menu bar/toolbar options that invoke other screens.

The top portion of the screen provides two fields on which the user can query.
Customer records can be searched in two ways: by customer ID or by full or partial
last name.

Heading 1 (head 1) This is head 1

43 Chapter

To search for a customer record:
1. Specify the search criteria by doing one of the following:

• Enter a customer ID in the Cust ID field at the top of the screen, and
choose the Search button (or press Enter).

If there is a corresponding customer record, the data are displayed in the
grid frame.

• Enter a full or partial string in the Last Name field at the top of the screen,
and then choose the Search button (or press Enter).

All records that match the search criteria are displayed in the grid frame.
For example, if the user enters B into the Last Name field, all customers
whose last names begin with B are displayed.

• Choose the Search button (the screen’s default button) or press Enter.

All customer records are fetched, and are displayed in alphabetical order
in the grid frame.

Choosing the Search push button or pressing Enter (activates the screen’s
default button) triggers a search using the contents of the query fields as
criteria. At any point, the user can enter a new search string or customer ID in
the query fields and trigger a new search by selecting the Search button (or
pressing Enter).

If no records match the search criteria, the application prompts the user to add
a new customer. If the user chooses Yes to add a new customer, the Customer
Information screen opens. If the user chooses No, new search criteria can be
specified.

2. Select the desired record by doing any of the following:

• Click in any cell of the grid frame to highlight the record.

• Press the up and down arrow keys to position the bounce bar on the
desired record.

• Double-click in any cell of the grid frame to select the record and invoke
the Customer Information screen. The selected customer record is
displayed and ready for update.

The selected record is the target of any commands triggered by selecting a
push button or one of the Customer Profile menu bar/toolbar item (pie or bar
chart).

3. Specify the kind of action to take by doing any of the following:

Heading 1 (head 1) This is head 1

44 JAM 7.0 Application Development Guide

• Choose the Add button — Ignores any search criteria and opens the
Customer Information screen. The application is ready to insert a new
customer record (i.e., the screen is in New mode) into the database.

• Double-click on a customer record or choose the Change button — The
Change push button is inactive, or grayed, if a customer record is not
selected. On a customer record is selected and the Change option is
armed, the Customer Information screen opens and displays details of the
selected customer record. The application is ready to update this record
(i.e., the screen is in Update mode).

• Choose the Rent button — The Rent push button is inactive, or grayed, if
a search has not been conducted; that is, if the grid frame displays no data.
The button becomes active once a customer record is selected in the grid
frame. It navigates to the Video Rentals screen where the selected
customer’s current video rentals are displayed.

• Choose the Bar Chart/Pie Chart button or Options⇒ Profile⇒ Bar Chart or
Pie Chart — Brings up the customer’s rental profile in the specified
chart-type format.

• Choose the Done button or Options⇒ Done — Closes the Search for a
Customer screen and returns to the Welcome screen.

The custlist.jam screen includes the following features which you can examine
by accessing the screen editor:

� Query by example allows the user to enter search criteria. The Use In Where
Operator property for query fields defines what data to fetch that matches the
search criteria.

� The menu/toolbar item’s and push button’s active/inactive behavior is
controlled by a style defined in the styles.sty file. See the Class property
(under Transaction) for the Rent and Change buttons.

� The Control String property under Validation for each of the push buttons on
this screen controls how each button behaves when it is selected.

� The Customer Profile options are activated on screen entry, but the code can
be changed easily to have them activated only when a customer is selected.

� The Double Click property is set on each of the grid members.

� The telephone number format is controlled by a JPL procedure that is invoked
as a validation function on the phone column grid member. The Force Valid
property (under Database) forces the validation when data are selected into
this field.

Behind the
Scenes

Heading 1 (head 1) This is head 1

45 Chapter

� The customer search procedure (custsearch) is invoked from the Search
push button. The procedure is stored as screen-level JPL.

� The screen-level JPL includes code to determine what should happen when a
customer query returns no records.

Add/Update Customer Records
The Customer Information (custedit.jam) screen displays detailed information
about a selected customer. The user arrives at this screen for one of two reasons: to
add or to change a customer record. Once the record is inserted or updated,
choosing OK commits the additions/changes.

The Cancel button closes the Customer Information screen without saving any
changes, and returns the user to the customer search screen.

To insert a customer record:
1. Choose the Add push button on the Search for a Customer (custlist) screen

or respond to the application prompt to add a new customer (when a query
results in no matches).

The Customer Information screen opens in New mode.

Figure 10. The Customer Information in New mode initializes the Membership Date to the
system date and the Status field to A, for active. In addition, any string that the
user may have entered in Last Name query field on the Search for a Customer
screen is passed to this screen and is displayed in the Last Name field.

2. Tab or click to each field and enter the customer demographics and credit card
information.

Heading 1 (head 1) This is head 1

46 JAM 7.0 Application Development Guide

The Cust ID, Membership Date and Status fields are protected from input. All
other fields are ready for data entry.

3. Choose OK to accept the information. The application assigns a customer ID
number and displays a confirmation message.

The OK button executes a procedure to assign a customer identification
number and to insert (save) the new record to the database because a New
command was specified. Once the confirmation message is acknowledged, the
screen closes, and the user returns to the customer search screen.

To update a customer record:
1. Select a customer in the grid and choose the Change button or double-click on

a customer record on the Search for a Customer (custlist) screen.

The Customer Information (custedit) screen opens and displays all data
associated with the selected customer record.

2. Tab or click to the fields that require change.

All fields are updatable, except for the customer ID and the rental information
fields.

3. Choose OK to commit the changes to the database. An update confirmation
message is displayed.

When updating an existing record, the OK button performs an update of the
database. Once the confirmation message is acknowledged, the screen closes,
and the user returns to the customer search screen.

Heading 1 (head 1) This is head 1

47 Chapter

The custedit.jam screen includes the following features which you can examine
by accessing the screen editor:

� Receives a transaction manager command and data from the Search for a
Customer (custlist.jam) screen and performs a COPY or SELECT
command, depending on what action the user has specified.

� The Credit Card option menu is populated from the database via a screen
called credcard.jam . Look at the Identity properties for the option menu to
see how this lookup capability is implemented. Then open the credcard.jam
screen in the screen editor to see how selection screens are constructed. It’s the
credcard screen’s entry function that actually runs the query to fetch credit
card information.

� The customer ID is provided programmatically when a new customer record is
created. Review the screen-level JPL procedure (ok_proc) attached to this
screen.

� Fields are updatable based on the transaction class that the widget is assigned
to—look at the Class property under Transaction for the cust_id and
member_date text widgets.

Video Rental Listing

Users with “front desk” permissions can reach the Video Rental Listing screen by
first identifying and selecting a customer record from the Search for a Customer
screen and then choosing the Rent push button.

The selected customer’s identification number and name are sent to the Video
Rentals (rentlist.jam) screen; the customer’s name is displayed in the screen’s
title bar. All videos that are currently rented by the selected customer are listed; if
there are no videos out, the grid is empty, and ready for Check out.

Behind the
Scenes

Heading 1 (head 1) This is head 1

48 JAM 7.0 Application Development Guide

From the rentlist screen, the user can:

� Choose the Check Out button to rent additional video titles. The Video Rental
(rentvid.jam) screen is displayed.

� Choose the Check In button to return videos.

To return a video:
1. Select the video from the list.

2. Choose the Check In button.

Repeat these steps for each return.

The rentlist.jam screen includes the following features:

� The screen receives the cust_id and the customer name from the cust-
list.jam screen and runs a query to find what videos the customer currently
has out.

� The customer’s name is received into the screen’s title bar (this specification is
defined in the screen’s Title property under Identity).

� When the Check Out button is armed, it sends the cust_id to the New
Rentals (rentvid) screen and invokes the rentvid screen.

� The Check In button updates the rental status and redisplays the screen.

Rent Videos
It is expected that in this video store, the customer brings the video cassette to the
front desk when he or she wants to rent a movie. The video itself has the ID and
copy number printed on the container. The front desk clerk can just type that
information into the application.

Behind the
Scenes

Heading 1 (head 1) This is head 1

49 Chapter

To rent a video:
1. From the Rentals (rentlist) screen, choose the Check Out button.

The New Rentals (rentvid.jam) screen opens.

2. Enter a title ID and press TAB.

The application displays the video title associated with the specified ID
number. If a title ID does not exist, an error message is displayed.

3. Enter the tape copy number (usually a number between 1 and 3 inclusively)
and press TAB.

If the video associated with the specified ID and copy number is, in fact,
available, the cost of the rental, late fee rate, and due date are displayed.

Heading 1 (head 1) This is head 1

50 JAM 7.0 Application Development Guide

If the specified copy number is not available (it’s already rented by another
customer or does not exist), an error message is displayed. Another number
can be entered.

4. Choose OK to record the rental. The New Rentals screen closes, and the
Rentals list is updated with the newly rented video titles.

The rentvid.jam screen includes the following features:

� Receives the cust_id from the Rentals (rentlist) screen.

� After an available video tape is specified, the screen is prepared for an insert to
the database. It uses sm_tm_command(”SAVE rentals TV-ONLY”)

� A transaction hook function rental_hook is invoked after a new rental is
inserted in the database. It updates the tapes database table by logging the
tape as “unavailable.”

� Review the screen-level JPL; most of these procedures apply the business
logic required to make this screen work correctly.

Customer Profile

The Customer Profile options are only available to a user logged in as an
Employee. A customer profile provides two different graphical representations of
the types of videos a selected customer has rented.

To obtain a customer profile:
1. Select a customer from the Search for a Customer (custlist) screen.

2. Choose the design chart format by doing either of the following:

• Choose Options⇒ Profile⇒ Bar Chart or

The selected customer’s rental profile is displayed in the bar chart format:

Behind the
Scenes

Heading 1 (head 1) This is head 1

51 Chapter

• Choose Option⇒ Profile⇒ Pie Chart or

The selected customer’s rental profile is displayed in pie chart format:

Heading 1 (head 1) This is head 1

52 JAM 7.0 Application Development Guide

3. Choose Done to return to the Search for a Customer screen.

The bar chart and pie chart screens include the following features:

� The cust_id is passed from the custlist screen and is used to execute the
query.

� The count of each video category (drama, comedy, etc.) is gathered from the
rentals table using the count(*) expression. JAM automatically performs
a group by category.

Video Lookup
The user can access the video lookup portion of VideoBiz by doing either of the
following:

� Logging into VideoBiz as a customer (choosing the Customer radio button on
the Welcome screen)

� Choosing Options⇒ Video Search or

Behind the
Scenes

Heading 1 (head 1) This is head 1

53 Chapter

The Video Lookup consists of two screens: Video Listing and Video Detail. The
Listing screen allows the user to search for a video by title ID, movie title, or
director. It fetches all records that match the search criteria and displays the results
in scrolling lists. From this screen, the user can access the Video Detail screen,
which displays all information about a selected video.

Querying the Database and Selecting a Video
The Search for a Video (vidlist.jam) screen allows the user to search for a
video and select one from the results. The screen consists of four query fields and a
grid frame that contains four columns for displaying query results.

The grid frame lists the video ID, movie title, director, genre, and rating. The grid
frame can be shifted from left to right to display offscreen columns. A bounce bar
can be moved up and down in the list to indicate the currently selected title. The
screen includes a Search button to execute the query, a Detail button that invokes
the video detail screen, and a Cancel button to return the user to the calling screen.

To search for a video:
1. Specify the search criteria by entering a title ID or a combination of one or

more of the following:

• Enter a full or partial string in the Title field at the top of the screen, and
then choose the Search button or press Enter.

• Enter a full or partial string in the Director Last Name field and choose
the Search button or press Enter.

Heading 1 (head 1) This is head 1

54 JAM 7.0 Application Development Guide

• Enter a full or partial string in the Director First Name field and choose
the Search button.

All records that match the search criteria are displayed in the grid frame in
alphabetical order by title. In addition to the title and director’s name, the
rating (e.g., PG (parental guidance), R (restricted), etc.) and genre (e.g.,
comedy, science fiction) of each title are displayed. The arrays scroll to
accommodate more titles than can fit on the screen, and a bounce bar allows
the user to select a video title from the list. A horizontal scroll bar allows the
user to display offscreen columns in the grid frame.

If the user chooses the Search button without specifying any search criteria, all
videos in the database are displayed in alphabetical order by title.

2. Select the desired record by doing any of the following:

• Click on any of the grid members.

• Use the up and down arrow keys to position the bounce bar on the desired
record.

• Double-click on the desired record. This invokes the Video Detail screen.

3. Choose the Detail button. The Detail button invokes the Video Detail screen.

4. Choose Done to close the Search for a Video screen. If the user is a customer,
the Welcome screen appears. Otherwise, the user resumes on the screen that
was open when he or she chose the Video Search option.

Heading 1 (head 1) This is head 1

55 Chapter

The vidlist.jam screen includes the following features:

� Functions in the same way as the customer search screen (custlist.jam).

� The title_id selected in the grid frame is sent to the video detail screen.

View Video Details

The Video Detail screen (viddtl.jam) displays detailed information about a
selected video title. The user arrives at this screen as a result of specifying search
criteria, querying the database, and selecting a video title from the results. The
upper portion of the screen displays general information about the selected video
(e.g., title, length in minutes, rating code, and pricing category (displays only if the
user is an employee)). The middle portion displays a scrolling text area with a
description of the video. The grid frame in the lower portion of the screen displays
the actors who appear in the film and the roles they play.

When the user is finished reading the details of the video, choosing the Done push
buttons closes the Video Detail screen and returns the user to the Search for a
Video screen.

The viddtl.jam screen includes the following features that you can examine by
accessing the screen editor:

� Open the DB Interactions window to see how the table views on this screen
are linked. The screen executes two server joins and two sequential joins.

� A query is executed using title_id received from the vidlist.jam screen
to find the description associated with the selected video title.

Behind the
Scenes

Behind the
Scenes

Heading 1 (head 1) This is head 1

56 JAM 7.0 Application Development Guide

� The title ID and its pricing category are displayed conditionally. When the
screen opens, the screen entry procedure (viddtl_se) checks the user_type.
If the user_type is Customer, the call to the expose_fields procedure will
hide these field. Otherwise, the fields are displayed to the video store
employee.

� The director’s first and last name are concatenated into a single field in the
procedure defined as this screen’s entry procedure (viddtl_se). This ensures
that when the screen opens, the data are displayed correctly.

Marketing

If you have JAM/ReportWriter installed, you can access the Marketing portion of
VideoBiz by choosing Options⇒ Marketing from the menu bar or one of the
corresponding toolbar items.

To run marketing reports:
1. The user must log onto the application as an employee to active the marketing

menu/toolbar options.

2. Choose the desired report:

• Choose Option⇒ Marketing⇒ Top Ten or

Lists the ten most frequently rented videos.

• Choose Option⇒ Marketing⇒ Due Notice or

Produces a letter addressed to each customer who has overdue rentals as
of this reporting period. The letter lists each overdue rental by title and the
amount due.

• Choose Option⇒ Marketing⇒ Genre or

The user is prompted to select from a list of genre categories.

Heading 1 (head 1) This is head 1

57 Chapter

• Select a category and choose Run Report.

The report lists all those customers who have rented videos having the
specified genre. For example, the user can specify the genre Drama. The
output lists all customers, in descending order of the number rented, who
have rented videos classified as Drama. The customers’ phone numbers
are listed as well.

Data from these screens are passed to reports created with JAM/ReportWriter and
output to disk files. Sample output from each report is provided and is displayed if
the JAM executable doesn’t have JAM/ReportWriter installed. Otherwise, the
reports are actually run and displayed.

SECTION TWO

Application Building
Blocks

Chapter 3 Repository . 61

Chapter 4 Screen Management . 69

Chapter 5 Field Management . 77

Chapter 6 Menus . 87

Chapter 7 Control Strings . 109

Chapter 8 Hook Functions . 115

Chapter 9 Moving Data Between Screens . 191

Chapter 10 Error Handling and Messages . 199

61

Repository
The visual object repository is used during development to define and store the
various objects needed to build your application screens. Once the repository is
populated, you can easily make a new application screen by copying the necessary
objects from the repository.

In addition to the development time saved by creating objects only once, the
repository can be used to easily update the objects by using inheritance. When you
copy a new object from the repository, the copy of the object, or child, retains the
property definitions of the original object, the parent. If you change the properties
of the parent object in the repository, the properties that the child has inherited are
also updated.

The visual object repository consists of a series of JAM screens. These repository
screens can contain:

� Screen templates

� Widget templates

� Widgets imported from your database tables

� Templates for the screen wizard

33

Using the Repository

62 JAM 7.0 Application Development Guide

Using the Repository

The repository and the ability to inherit repository properties are powerful
development tools. One of the first steps in your application development process
should be to decide the role of the repository in your application. You need to
decide what types of information will be stored in the repository, how that
information will be used, and what properties need to be inherited.

Creating the Repository
The first step is to create a repository from options found in the screen editor. Since
you can only have one repository open at a time, it is recommended that you create
one repository per application. For the steps used to create a repository, refer to
page 55 in the Editors Guide.

Note that if the repository is named data.dic , JAM automatically opens it when
you start jamdev .

Creating Repository Entries
Once the repository is created, you can populate it. A repository is like a JAM
library, in that, it is a collection of screens. Each of the screens in the repository is
called a repository entry.

There are several ways to create repository entries:

� Choose the New⇒ Repository Entry option on the File menu.

� Save any JAM screen as a repository entry.

� Import your database tables, views or synonyms. This creates a repository
entry for each database table.

Creating Repository Objects
When you import your database tables, the repository entries contain widgets
corresponding to the database columns and labels corresponding to the column
names, but for other repository entries, you might want to create new objects. For
example, you might have a repository screen containing push button templates for
use throughout the application.

Since repository screens have complete access to all of the screen editor functional-
ity, you can open a repository entry and make new objects from options on the

Using the Repository

633 RepositoryChapter

Create menu. Alternatively, you can copy objects to the repository from any
application screen.

When you create objects on repository entries, make sure that the parent objects
have a value in the Name property under the Identity heading. It is this name that is
used in the Inherit From property in the child object to establish inheritance.

Creating Screen Templates

If a series of application screens will share the same screen properties, a repository
entry can be a screen template. For example, you might want a series of screens to
share:

� Entry and/or exit functions

� JPL procedures

� Control strings

� Menu bars

Another use of screen templates in the repository would be to provide the
definition for a screen that is used throughout the application, like an error screen.

Once a screen is created, it can inherit screen properties by setting the Inherit From
property to the repository entry. The dialog box asks whether you want to inherit
all the screen properties. If you select Yes, all the screen properties will be taken
from the template, overwriting any values you have set. If you select No, the
Inherit From property will be set to the screen template but no property values will
be inherited. You can then set inheritance for each property by clicking on the
Inherit button while the property is selected.

Note that widgets stored on your screen template are not copied to the application
screen, just the screen properties.

Note: To define the colors for application screens, you might choose to define and
edit settings in the configuration map file. Refer to the Configuration Guide for
more information.

Storing Database Information
Using the database importer in the screen editor, you can import a database table
with all of its column definitions and primary and foreign key relationships into a
JAM repository. If the database engine supports views or synonyms, those database
objects can be imported as well.

Using the Repository

64 JAM 7.0 Application Development Guide

When you import a database table to a repository entry, JAM creates a label and
text widget for each column in the database table. The text widget has the column
name as one of its properties in addition to other properties that are used for
automatic SQL generation. A table view is created which lists the columns in the
database table and the primary key definitions for that database table. A link is
created for each foreign key defined for that database table.

Once you have repository entries with your database information, you can copy
those widgets to application screens.

One advantage of importing your database tables to the repository is that any
changes to the database, such as the column length or column type, can be easily
propagated throughout the application. The import database facility can be used to
update the database repository entries. If the widgets on those screens are the
parents of the widgets used in your application screens, changes in the column
information are redefined for each child of that widget.

If you are planning to use the transaction manager, it is recommended that you
copy the widgets corresponding to the database columns from database repository
entries. Repository entries created from the database import facility contain the
necessary settings for SQL generation needed by the transaction manager.

Storing Widget Templates
The repository can contain a master copy of any widget. For example, you might
want to have the same push button on several screens. You can store a definition of
that push button on a repository screen with the color of the push button, the
pixmap and the control string generated when that push button is selected. Then
you can copy that push button to the applicable screens.

You can define the widget template on a repository screen, or you can copy a
widget from one of your application screens to the repository. If you copy a widget
to the repository, please note that inheritance is automatically set for the widget on
the application screen.

Storing Widget Definitions
In some cases, you can make repository entries based on sets of widgets used
throughout an application. These sets of widgets, which might be used on several
screens, have several properties that differ from the database repository entry.

First, import the database tables to the repository. Copy widgets from the database
repository entry to new repository entries. The widgets will inherit all the Database
and Transaction properties. Set the properties that will not be inherited. Copy the
widgets to application screens.

Using Inheritance

653 RepositoryChapter

For example, in the videobiz application, the title_id and name fields are often
used together as a scrolling array. Instead of editing the array properties each time
these widgets are used in an application screen, the widgets can be copied to a new
repository entry, the necessary properties changed, and then the widgets can be
copied to an application screen.

Using the Screen Wizard
The first time you create a new screen with the screen wizard, JAM copies two
entries into the current repository:

� smwizard

� smwizis

smwizard is the template for the screen itself as well as the template for several
objects found on the finished screen, including the push buttons and the grid frame.
Since these objects inherit from smwizard , you could change the properties in the
repository so that every new screen made with the screen wizard would inherit the
the desired settings.

smwizis is the template for the item selection screens. It too contains push buttons
and a grid frame and could be used to modify the properties for those objects or for
the screen itself.

Note that if your repository is set as read-only, the screen wizard cannot make the
necessary entries in the repository. You need to speak to your system administrator
about adding these entries to the repository if you want to use the screen wizard.

Using Inheritance

For a screen or widget to inherit from a repository entry, the Inherit From property
must be set to the designated object in the repository. This property is set
automatically when objects are copied from the repository. For screens, the Inherit
From property contains the name of the repository entry, for example,
msg_screen . For widgets, the Inherit From property contains the name of the
repository entry followed by the name of the object. For example, if a widget’s
Inherit From property contained titles!title_id , it indicates that the widget
inherits its properties from an object whose Name property is title_id on the
repository entry titles .

For the repository entries imported directly from the database, the Inherit From
property for each widget is set to @DATABASE. When those widgets are copied to
screens, the Inherit From property changes to the repository entry and object.

Updating Inheritance in Application Screens

66 JAM 7.0 Application Development Guide

The repository object named in the Inherit From property is known as the parent.
The widget containing the Inherit From value is known as the child. If a child
inherits a property setting which is later changed in the parent, the child will reflect
those changes when the screen is opened in the screen editor or after you update
the screen using the binherit utility. For more information on binherit , refer
to the next section.

If a property is inherited, it is highlighted in the Properties window of the screen
editor. If you turn off inheritance for a property and later wish to reinstate it, select
the property and press the Inherit button at the bottom of the Properties window.

The Inherit selection on the Options menu is available in the screen editor in order
to help system performance. When Inherit is active, the properties of each widget
are updated and displayed in the editor as you work. When Inherit is inactive, the
properties that are inherited are highlighted, but the values of those properties are
not updated or displayed on the screen until inheritance is activated. You can
activate inheritance by choosing Inherit on the Options menu, by opening the
screen with the Inherit selection being active, or by saving the screen and running
the binherit utility.

An object in the repository can inherit from another repository object. An object on
the screen can inherit from only one repository object.

Updating Inheritance in Application Screens

Use the binherit utility to update application screens or a screen library from
property values stored in the repository. binherit can also be used to report on
the differences in the properties between the screens and the repository.

Inheritance is updated each time you open a screen in the editor and then save it.
binherit performs this operation in batch mode, opening the specified screens
and saving them.

To report or update a series of screens, use the following format:

binherit [-r repository-name] [-v level] [–u] filename
[filename ...]

To report on or update members of a screen library, use the following format:

binherit [-r repository-name] [-v level]
[–u] –l library member [member ...]

Square brackets indicate the optional command flags and do not need to be typed.

Updating Inheritance in Application Screens

673 RepositoryChapter

To obtain a brief description of available arguments and command options, type

binherit -h

binherit opens the specified file and looks for widgets having the Inherit From
property set to a repository entry, for example, title_id@titles . For those
widgets, it compares the inherited property values with the values in the repository.
The properties that have inheritance disabled are ignored.

It also checks to see if the screen’s Inherit From property is set. If it is, it compares
the values in the inherited screen properties with the corresponding values in the
repository.

If the –u option is specified, it updates the file with the repository value.

repository name
The name of a repository containing the entries for the specified files or library.

filename
The name of a JAM screen or library; more than one filename may be included. If
the filename does not exist or is not of the correct type, it is skipped.

library
The name of a JAM screen library.

member
The member of a screen library; more than one member can be included. If the
library member does not exist, it is skipped.

-r Specifies the name of the repository. If –r is not specified on the
command line, binherit looks at the value of SMDICNAME. If this
variable is not set, binherit reports an error.

-l Specifies the name of the screen library when updating or reporting on
individual library members.

-v Specifies the level of reporting desired when running the utility.

0: No reporting.

1: List screens as they are processed (the default setting).

2: List screens and widgets as they are processed.

3: List screens, widgets, and properties as they are processed.

-u Update the screens as well as listing the differences.

Arguments and
Options

Updating Inheritance in Application Screens

68 JAM 7.0 Application Development Guide

The following list describes possible errors, their causes, and the corrective action
to take:

Not a JAM repository.

Cause: File specified after the –r option was incorrect.
Action: Check the spelling and location of the specified repository.

Unable to inherit property property_name for object_id

Cause: The object listed in the Inherit From property cannot be found in the
current repository.

Action: Make sure the current repository was specified.

Unable to open JAM library.

Cause: Unable to find the specified library.
Action: If the library is not in the current directory, include the pathname.

Unable to open JAM repository.

Cause: Unable to find the specified repository.
Action: If the repository is not in the current directory, include the pathname.

Verbosity (–v) must be 0, 1, 2, or 3

Cause: An invalid value followed the –v option.
Action: Supply one of the listed values in the command line.

Errors

69

Screen Management
A JAM application is largely composed of screens—screens that you open as
forms or windows, save as repository entries, and use to merge data into other
screens or widgets. The Editors Guide shows how to build screens and tie them
together. This chapter discusses the underlying architecture of screens and how
JAM manipulates them. It also discusses runtime options that are available to
change screen properties.

Forms and Windows

User interaction with a JAM application typically begins with a startup screen, or
base form. The base form is often the gateway to other screens, which can be
opened in one of two ways:

� As another form. JAM maintains a list of forms, called the form stack. The top
form of that stack is the only one that is open.

� As a window that is opened either from the top form or another window. This
window can itself open another window, either as a child or a sibling. JAM
maintains a stack of all open windows, where the window at the top of the
stack is the active window—that is, the window with focus. JAM maintains the
window stack only as long as its parent form remains on top of the form stack.
The rest of this chapter refers to child windows as stacked windows.

44

Forms and Windows

70 JAM 7.0 Application Development Guide

Forms and the Form Stack
JAM maintains a form stack which lists forms previously opened by the applica-
tion. The application’s startup screen is the base form—that is, the first screen to be
pushed onto the form stack. JAM pushes onto the stack each screen that is
subsequently opened as a form in the application. The top screen is the only form
that is open and whose data is accessible.

The form stack retains the names of the screens saved to it and some information
about each one’s save state—for example, the cursor’s last position. However, the
stack does not save screen data. Consequently, changes entered earlier on a form
might not reappear when the form is reactivated. You can save form data changes
through the local data block (LDB). All changes in fields with corresponding LDB
entries are written to the LDB when a new form is opened, and can be restored
when the earlier form is reactivated. You can also send screen data to a named
location in memory, or bundle, for later retrieval; bundles are created and accessed
through JAM’s send and receive commands and library functions. For more
information on LDB processing and send/receive facility, refer to page 191.

JAM stacks forms in last-in/first-out (LIFO) order. All screens in the form stack
must be unique. If a form is opened and its name is already in the stack, JAM
assumes that you want to return to that form; it pops off the stack all screens above
the specified form and discards them.

For example, an application might consist of three screens, screen1 , screen2 ,
and screen3 , which open each other as forms. This creates a form stack in which
screen1 is the application’s base form and screen3 is the top form:

screen3

screen2

screen1

Top form

Base form

↑

screen3 has a menu item that allows users to open screen1 as a form through
the control string screen1 . On selection of that menu item, JAM finds screen1
already exists in the form stack and returns to that instance. All intervening screens
in the form stack—in this case, screen3 and screen2 —are destroyed. If the user
now exits from screen1 , the form stack is empty. If the setup variable
CLOSELAST_OPT is set to OK_CLOSELAST, the application terminates; otherwise,
the application continues to run without an open screen.

Windows and the Window Stack
The top form always has its own window stack, in which it serves as the base
window. Only the top form maintains a window stack. The window stack remains

Forms and Windows

714 Screen ManagementChapter

in memory until JAM gets a request to open another form. It then closes all
windows and purges that window stack from memory. Finally, it opens the form
and creates a new window stack.

JAM stacks windows in last-in/first-out order. The top screen in the window stack
is the active window and is the only window to have focus. When the application
issues a request to close the active window—through EXIT or an explicit function
call—JAM pops the active window off the window stack. The top window in the
stack now becomes the active window with its saved data restored.

For example, given the form stack shown earlier, the top form screen3 can open
screen1 as a window; screen1 can in turn open another window, and so on,
yielding a window stack as shown in the following illustration:

screen3

screen2

screen1

Top form

Base form

↑

screenY

screenX

screen1

screen3 Base window

↑

Active window

In this example, screenY is the top window in the window stack and therefore the
active window; only it has focus. If the user closes screenY —for example,
through the EXIT key—screenX becomes the active window.

JAM uses the window stack to maintain information about all open windows—
which one is active, the order in which they were opened, whether they have a
sibling or stacked relationship, and the data of inactive windows. Because the
window stack saves inactive window data, JAM can reactivate a window in its
previous state, and thus avoids the overhead and processing otherwise incurred by
reopening and redisplaying the screen.

The window stack can hold as many windows as system memory allows. You can
get the number of windows in the window stack through sm_wcount .

In contrast with the form stack, the window stack can contain multiple instances of
the same screen. Be careful to avoid recursive designs that might use large amounts
of memory.

You can open a screen as a sibling of the current window. Unlike stacked windows,
users can bring focus to any window that is a sibling of the active window.

Window Stack
Organization

Sibling Windows

Forms and Windows

72 JAM 7.0 Application Development Guide

Note: A window cannot directly open any screen as a sibling that is already a
sibling. If you want to open multiple instances of the same screen as sibling
windows, call sm_setsibling to force sibling status onto the next screen opened
as a window. You can also reset an existing window’s sibling property.

JAM provides these library functions to manipulate the window stack:

� sm_wselect move any window to the top of the window stack; this window
becomes the active window. In character-mode, any siblings of the selected
window are also brought forward in the display.

� sm_deselect restores a window previously selected by sm_wselect to its
former position in the window stack. JAM only saves information about the
screen last-selected by sm_wselect call; consequently, you can restore a
screen to its previous place in the window stack only if no other windows have
subsequently been selected by sm_wselect .

� sm_setsibling forces sibling status onto the next screen opened as a
window. Usually, you can open a screen as a sibling window by prepending
the screen name with double ampersands (&&) in a control string—for
example, in a widget’s Control String property or as an argument to
sm_jwindow . This operation fails if the specified screen is already open as the
current window or as a sibling of the current window. If you want to open
multiple instances of the same screen as sibling windows, precede each call to
open these windows with a call to sm_setsibling .

� sm_sibling assigns sibling status between the current window and the
window immediately below it in the window stack. Use this function to group
as siblings any number of windows that are contiguous in the window stack.
You can also use this function to remove sibling status from windows.

You can also programmatically rotate sibling windows in order to change the
active one. sm_wrotate rotates sibling windows according to the supplied step
value. For example, the following illustration shows sibling windows A, B, and C,
where C is the active window:

A

B

C

The following function call rotates the top sibling window C to the bottom of the
sibling stack and leaves screen B on top as the active window:

sib_windows = sm_wrotate (1);

Window Stack
Manipulation

Opening Screens

734 Screen ManagementChapter

Opening Screens

Applications typically let users open screens by pressing a key or choosing a menu
item or a selection-type widget such as a push button. You specify the screen to
open through the control string property of the screen, menu item, or widget; the
control string specifies which screen to display and whether to open it as a form or
window. For example:

This control string: Opens the screen as a:

screen–name Form

&screen–name Stacked window

&&screen–name Sibling window

You can also use JAM runtime functions to open a screen and give it focus:

� sm_jform opens the specified screen as a form. It first closes all open
screens—that is, the previous top form and any windows in the window stack.

� sm_jwindow and sm_r_window open the specified screen as a window.

Note: Avoid calling sm_jform in a screen entry or exit function. Doing so can
yield unpredictable results. To open a form at screen entry, use the built-in function
jm_keys; pass as its argument a function key with a control string that brings up
the desired window. You can call sm_jwindow and sm_r_window in screen entry
and exit functions if you close the window before the function returns.

Screen Display Defaults

Unless otherwise specified, JAM tries to display the entire screen. If a screen is
opened as a form, JAM displays it at the physical display’s upper-left corner; in
GUIs, this excludes the menu bar, which remains visible. If a screen is opened as a
window, JAM tries to leave the calling screen’s last cursor position visible. Note
that in GUI environments, the displayed form always leaves the menu bar visible.

If the screen size exceeds the physical display area, JAM creates a viewport—that
is, a window with scroll bars that displays portions of the screen. By default, the
viewport’s upper-left corner (1,1) initially displays the screen’s upper-left contents,
unless this prevents display of the cursor. Note that JAM always ensures that the
cursor’s initial position in a viewport—usually the first field—is visible. If
necessary, it adjusts the screen offset within the viewport accordingly.

Screens and Viewports

74 JAM 7.0 Application Development Guide

Overriding Display Defaults

The control string that you use to open a screen can specify the screen’s position
and dimensions. If the specified dimensions are unable to display the entire screen,
you can also specify the offset of the screen within the viewport. The full control
string syntax is as follows:

[lead-char] (row, col, height, width, vrow, vcol) screen–name

If you omit lead–char, JAM opens the screen as a form. A single ampersand (&)
opens the screen as a stacked window, while a double ampersand (&&) opens it as
a sibling window. If you use ampersands (& or &&) to open a screen as a window,
they must precede the viewport arguments. Parentheses must enclose all viewport
arguments.

For example, the following control string specifies the PF1 key to open the
new_customer screen at the upper left corner of the physical display:

PF1 = (1,1)new_customer

For detailed information about control strings, refer to page 109.

The runtime functions sm_jform , sm_r_window , and sm_jwindow can specify
viewport parameters. For example, the following calls to sm_jwindow and
sm_r_window are equivalent: each opens myscreen as a stacked window at
coordinates 4,4 on the physical display:

ret = sm_jwindow(”&(4,4)myscreen”);

ret = sm_r_window(”myscreen”, 4, 4);

Screens and Viewports

JAM automatically handles screens whose size exceeds the actual dimensions of
the viewing area—for example, the screen is larger than the physical display. When
a screen’s dimensions exceed its display area, JAM displays the screen in a
viewport with vertical and horizontal scroll bars, so users can scroll out-of-view
data into view. JAM also scrolls screen data when the user tabs into an out-of-view
field to make that field visible.

The viewport itself can only be as large as the system’s physical or virtual display.
In character mode, the two are identical; thus, a viewport can only be as large as
the screen. In contrast, under some GUIs—for example, Motif—a viewport can be
larger than the physical display. The offscreen portions of the viewport can be
brought into view either by the user or programmatically.

usage in runtime
functions

viewport size and
display modes

Closing Screens

754 Screen ManagementChapter

Closing Screens

By default, EXIT causes the current screen, whether a window or form, to close. If
you leave EXIT unassociated with any control string, you can make it available to
users to exit the current screen—for example, by attaching it to a physical key,
menu item, or push button.

You can also close a screen with jm_exit and sm_jclose . The two functions are
equivalent; jm_exit is a built-in function, while sm_jclose is an installed
library function.

Screen Properties

When you create a screen, JAM initializes its properties according to internally set
defaults. You can set a screen to inherit properties from a repository entry through
the screen’s Inherit From property. When you do this, JAM writes the entry’s
properties to the target screen. You can subsequently turn inheritance on and off for
individual properties, or turn off inheritance for the entire screen by removing its
Inherit From property. If inheritance remains on, the repository can be used to
control screen properties at runtime.

You can get and set all screen properties at runtime through JPL. For example, this
statement gets the title property for screen vidlist.jam :

cur_title = @screen(”vidlist.jam”)–>title

For more information about accessing JAM properties, refer to page 28 in the
Language Reference.

77

Field Management
JAM lets you access and manipulate most widgets at runtime—get and modify
their data and properties, ascertain the current selection within a radio button group
or check list, and determine whether data has changed or passed validation. JAM
identifies widgets that can be thus accessed and manipulated as fields, in contrast
with other widgets that are static in nature, like lines, boxes, and static labels.

This chapter shows how to:

� Identify and access widgets programmatically.

� Get information about widgets and their data.

� Manipulate widget properties and data.

All functions described in this chapter are documented in the Language Reference;
refer to that manual for the syntax and specific behavior of each function.

55

Field Names and Numbering

78 JAM 7.0 Application Development Guide

Field Names and Numbering

Most runtime functions let you identify fields by name or by number. In JPL, you
can always refer to fields by their name or number. You can also refer to named
fields on other screens. For more information on referencing fields in JPL, refer to
page 24 in the Language Reference.

Field numbers are assigned automatically when you add a field to a screen, and are
reassigned whenever the field position changes. JAM numbers fields as follows:

� Fields are numbered sequentially from left to right, and top to bottom—as
Field #1 , Field #2 , and so on.

� All onscreen occurrences of an array, called elements, are numbered. The
number of the first element in an array, or the array’s base field, is the number
by which the field as a whole is identified. Field numbers of subsequent
elements can be viewed only in the Widget list.

Note: Elements in an array might not be numbered contiguously, depending on
whether other fields are positioned on the array’s right side.

Because a field’s position determines its number, changing design considerations
and runtime repositioning can make referencing fields by number problematic.
Names provide maximum control of runtime field behavior; they are also easier to
identify in your code. Additionally, JAM requires named fields for these reasons:

� Its contents are shared with other screens through a local data block (LDB).

� The widget inherits its properties from a repository entry of the same name.

Naming Fields

A widget name can be up to 31 characters long and can start with an alphabetic
character, an underscore, a dollar sign, or a period. Names are case-sensitive; thus,
JAM identifies city and City as two unique names.

Names must be unique within a screen. Widgets on different screens can share the
same name, but they should use the same name only when they share data through
an LDB entry or inherit the same properties.

Widgets that are created as the result of importing database tables are automatically
named.

Arrays

795 Field ManagementChapter

Identifying Fields

JAM provides several properties, accessible through JPL or library functions
sm_prop_get and sm_prop_set , that contain a field’s number or name. In JPL,
these properties are:

� fldnum — A property of the current screen and of widgets. As a screen
property, it is set to the number of the field where the cursor is currently
positioned. As a widget property, it is set to the field number of a field
specified by name, or the base field number of an array specified by name.

� name — As widget property, set to the name of the number-specified field.

Arrays

JAM identifies an array as any field that can contain one or more occurrences of
data. In this sense, most JAM widget types can be regarded as arrays. Typically,
however, the term array refers to three widget types: multiline and single-line text,
and list boxes. In all three cases, you can modify the Geometry properties of these
widgets to allow more occurrences than are visible onscreen. Widgets thus defined
are scrolling arrays.

JAM allocates memory only for occurrences that have data; trailing occurrences
that are empty are discarded. JAM maintains information about the number of
occurrences allocated for an array and the offset of occurrences within an array’s
elements.

Groups

You can group widgets of the same or different types together. You might create
groups in order to allow synchronized scrolling among several arrays, or to allow
selection among radio buttons or check boxes. Widgets within each group retain
their separate identities; however, JAM also recognizes groups as unique
components that can be named, and identifies its constituent widgets by their
relative offset within the group. All group properties are accessible at runtime
through JPL and by JAM library functions sm_prop_get and sm_prop_set .

Two functions let you identify groups and their widgets:

� sm_i_gtof converts a group name and group occurrence into a field number
and occurrence. This function lets you use other JAM library functions to

Getting Data and Properties

80 JAM 7.0 Application Development Guide

manipulate group fields by converting group references into field references.
For example, to access text from a specific field within a group, use
sm_i_gtof to get the field and occurrence number, then call
sm_o_getfield to retrieve the text.

� sm_ftog converts field references to group references. It returns the name of
the group that contains the referenced field and the field’s offset within the
group.

Getting Data and Properties

JAM library functions let you obtain the data in a field or its occurrences; they also
let you ascertain the field’s current property settings.

Getting Field and Array Data
The following functions copy data from fields and arrays:

� sm_getfield copies data from the specified field or occurrence to the
supplied parameter. JAM strips leading or trailing blanks.

� sm_fptr returns the contents of the specified field. JAM strips leading or
trailing blanks.

� sm_ww_read copies word-wrapped text from a multiline text widget into a
string buffer.

� sm_ww_write puts text into a wordwrap field.

� sm_ww_length gets the number of characters in a word wrap field.

� sm_dblval returns the contents of the specified field as a real number.

� sm_intval returns the integer value of the data contained in the specified
field, including its sign. All other punctuation characters are ignored.

� sm_lngval returns the contents of the specified field as a long integer. It
recognizes only digit characters and a leading plus or minus sign.

You can also get information about the data in a field with these functions:

� sm_dlength returns the length of the data in the specified field or occurrence
of a field. The length includes any data that is shifted offscreen and therefore
out of view. The length excludes leading blanks in right-justified fields, and
trailing blanks in left-justified fields.

Checking Validation

815 Field ManagementChapter

� sm_is_no and sm_is_yes compare the first character of the data in the
specified field or occurrence to the first letter of the SM_NO and SM_YES
entries in the message file, ignoring case.

� sm_null lets you test whether a field’s value is null or not. This function
checks whether a field’s Null Field property is set to Yes; if it is, sm_null gets
the field’s null indicator and compares it to the field’s value.

Getting Properties

You can access all widget properties at runtime through JPL. For example, this if
statement conditionally unhides a widget at runtime by changing its hidden
property to PV_NO:

if (login == ”super”)
 emp_salary –>hidden = PV_NO

For more information about getting and setting widget properties, refer to page 28
in the Language Reference.

Checking Validation

JAM maintains a bit for each field and group called the validation bit that indicates
whether or not the field or group has passed its edits. The validation bit is initially
cleared when a screen is displayed. It is cleared again each time the content of the
field is changed. It is set each time the field passes its validation tests; for example
when the user tabs out of the field.

JAM also maintains a modified data tag bit (MDT) for each field and group. The
MDT bit is cleared when the screen is displayed—after the screen’s entry function
is called—and is set when the content of the field or group is changed. JAM never
clears a field’s MDT after the screen is displayed, but it can be cleared by resetting
its mdt property to PV_NO. You can also check and modify a widget’s valided
property.

JAM performs validation processing of a field or group without regard to the
setting of the field’s or group’s validation bit. If validation requires significant
processing such as a database lookup, then the validation bit should be tested by
the validation function and unnecessary validation processing should be avoided.
In addition the MDT can be used in conjunction with the validation bit to prevent
unnecessary validation of fields and groups that were populated with valid data
from the LDB by a screen entry function or via initial data and have not changed
since the screen was displayed.

Getting and Setting Selection Group Data

82 JAM 7.0 Application Development Guide

You can access a widget’s MDT settings through its mdt and valided properties.
You can also use the following functions to check and reset MDT and validation bit
settings for all fields:

� sm_cl_all_mdts clears the MDT bits of all fields and occurrences .

� sm_tst_all_mdts tests the MDT bits of all on- and offscreen occurrences of
all fields on the current screen. If it finds an occurrence with its MDT bit set,
the function returns with the base field and occurrence number. Use this
function to ascertain whether any occurrence has been modified on the screen
since the screen was displayed or its MDT was last cleared by
sm_cl_all_mdts or sm_bitop .

Getting and Setting Selection Group Data

JAM has a set of functions that let you check the current selection or selections
within a selection group, and change the selections.

Getting Selections

Two functions, sm_isselected and sm_getfield , let you determine whether a
selection has been made within a selection group and what those selections are.

sm_isselected checks whether a selection has been made in a selection group.
The selection is referenced by the group name and occurrence number.

If you call sm_n_getfield on a radio button group that allows one selection, the
buffer that you pass into this function gets the group occurrence number of the
selected item. For example, the radio button group rating has the third
occurrence, PG–13, selected:

�

�

�

�

��

G

PG

PG – 13

R

NC – 17

Given this selection, the following call to sm_n_getfield puts the string ”3” into
the string buffer pointed to by buffer :

retvar = sm_n_getfield (buffer, ”rating”);

Changing Widget Data and Behavior

835 Field ManagementChapter

If you call sm_n_getfield on a group of widget types that allows multiple
selections—for example, a check box group—JAM puts the numbers of the
selected occurrences into buffer . For example, the genre check box group has
occurrences 1, 3, and 4 selected:

Comedy

Mystery

Sci–Fi

Western

�

�

�

�

×

×

×

If you call sm_n_getfield on genre , buffer gets the string 1 3 4 .

JAM sees a group’s value as an array whose elements contain the offsets of the
selected items. Thus, JAM stores the value of genre as follows:

genre[1] = ”1”
genre[2] = ”3”
genre[3] = ”4
genre[4] = ” ”

sm_i_getfield gets the specified selection in the group. For example, this call
gets the second-selected item in genre and puts its value, 3, into buffer :

retvar = sm_i_getfield (buffer, ”genre”, 2);

Changing Selections
sm_select lets you select an occurrence within a selection widget group. If the
group’s # of Selections property allows no more than one selection, JAM first
deselects the current selection before it selects the specified group occurrence. For
more information about selection widgets, refer to page 199 in the Editors Guide.

To deselect an occurrence,call sm_deselect .

Changing Widget Data and Behavior

This section outlines the various runtime options provided with JAM library
functions to change widget data and behavior.

Writing Data to Fields
The following functions let you move data directly into fields:

Changing Widget Data and Behavior

84 JAM 7.0 Application Development Guide

� sm_putfield moves the supplied string into the specified field. If the string
is too long, JAM truncates it without warning. If the string is shorter than the
destination field, JAM blank fills it according to the field’s justification. If the
data is a null string, JAM clears the field. This refreshes date and time fields
that take system values.

� sm_ww_write copies text from a string buffer into a multiline text widget
whose Word Wrap property is set to Yes. sm_ww_write wraps at the end of
words and leaves a space at the end of each line. If a word is equal to or longer
than the length of the field, sm_ww_write breaks the word one character
before the end of the field, appends a space, and wraps the rest of the word on
the next line.

� sm_dtofield converts a real number value to user-readable format as
specified by format . It then moves this value into the specified field with a
call to sm_amt_format . If the format string is empty, JAM determines the
number of decimal places from a data type edit, or from a currency edit. If
neither exists, it uses two decimal places.

� sm_itofield converts the supplied value to a string and places it in the
specified field.

� sm_ltofield converts a long integer passed to user-readable form and places
it in the specified field.

� sm_amt_format writes data to a field, first checking whether the field has a
currency edit. It it does, it formats the data accordingly.

� sm_upd_select updates the contents of an option menu or combo box with
data from another screen. The widget must be defined to accept data from an
external screen; otherwise, the function returns an error.

Clearing Field Data

Use the following functions to clear data from fields and arrays:

� sm_cl_unprot erases onscreen and offscreen data from all fields that are
unprotected from clearing (CPROTECT). Date and time fields that take system
values are reinitialized. Fields with the null edit are reset to their null indicator
values.

� sm_clear_array clears all data from the array that contains the specified
field. The array is cleared even if it is protected from clearing (CPROTECT).
sm_clear_array and sm_n_clear_array also clear arrays synchronized
with the array unless they are protected from clearing. Variants
sm_1clear_array and sm_n_1clear_array only clear the specified array.

Changing Widget Data and Behavior

855 Field ManagementChapter

Inserting and Deleting Occurrences

Two functions let you delete and insert occurrences from arrays:

� sm_doccur removes one or more occurrences, starting with the specified
occurrence.

� sm_ioccur inserts one or more blank occurrences. Before it inserts the
occurrences, JAM checks the new total of occurrences is greater than the
maximum number of occurrences set for the array.

If other arrays are synchronized with the one specified, sm_doccur and
sm_ioccur perform the same operation on them, provided their Clearing Protect
property is set to No. If a synchronized array is protected from clearing, JAM
leaves it unchanged. Thus, you can synchronize a protected array that contains an
unchanging sequence of numbers with an adjoining unprotected array whose data
grows and shrinks.

Both functions ignore the target array’s Clearing Protect setting.

87

Menus and Toolbars
Menu bars, pop-up menus, and toolbars are all instantiated from menus that you
define through the menu bar editor and save to a binary resource file, or menu
script. Because menu bars, pop-up menus, and toolbars are created from the same
menu definition, runtime access to all three is provided through the same set of
library functions. In this chapter, all references to menus apply equally to menu
bars, pop-up menus, and toolbars, unless otherwise noted.

JAM menu definitions are saved in menu scripts. When you save a menu through
the menu bar editor, JAM saves the menu and its submenus to a binary script. At
runtime, JAM can load one or more scripts into memory; it can then install menus
from these scripts at different levels of the application. Depending on how a menu
is installed, it can display as a menu bar on a screen or be invoked as a pop-up
from a screen or widget. If the menu is installed as a menu bar and one or more of
its items have their MNI_DISPLAY_ON property set to DISPLAY_TOOL or
DISPLAY_BOTH, JAM also displays a toolbar with the menu bar.

You can specify to load a menu script and install a menu from the Properties
window of a screen or widget. Alternatively, you can use JAM runtime functions to
load and display menus.

This chapter shows how to perform the following tasks:

� Load menus into memory.

� Install menus for display with a screen or widget.

� Display menu items on a toolbar.

66

Loading Menus into Memory

88 JAM 7.0 Application Development Guide

� Change menu properties at runtime.

� Remove menus from display and unload them from memory.

� Use m2asc to convert menus from binary to ASCII format, and vice versa.

� Read menu definitions in ASCII format.

Loading Menus into Memory

When you load a menu script, all of its menus are stored in memory and are
available for installation and display. JAM applications have three levels of
memory for loading menus:

� Application memory. Menus that are loaded into application memory are
accessible throughout the application.

� Screen memory. Each screen has its own memory; menus that are loaded into a
screen’s memory are available only to that screen and its widgets.

� Field memory. Most widget types have their own memory; menus that are
loaded into a widget’s field memory are available only to that widget.

A script can be loaded only once in each memory location—that is, a given script
can be loaded only once into application memory, and once into the memory
location of a screen or widget. So, if several screens have the same menu installed
from a script in application memory, they display identical menus—if one menu
changes, JAM writes those changes to the same memory and immediately
propagates them to the other menus. Alternatively, if each screen has the same
menu installed from its own memory—each screen has its own instance of the
script loaded into screen memory—each instance of that menu is unique: changes
to one are written only to its own memory and have no effect on the other screen
menus. For more information on installing menus with shared and unique content,
see pages 90 and 91.

You can load a menu script in two ways:

� Enter its name in the screen’s Menu Script File property or a widget’s Popup
Script File property.

� Call the library function sm_mnscript_load .

The first method loads the menu script into the screen or widget’s memory and
makes its menus available to that screen or widget. sm_mnscript_load can load

Installing Menus

896 Menus and ToolbarsChapter

the specified script into any memory location that is the same or higher than its
caller, as shown in the following table:

sm_mnscript_load caller Valid memory locations

Application Application

Screen Current screen
Application

Widget Current widget
Current screen
Application

For example, the application’s startup routines in jmain.c can only load menu
scripts into application memory, while a screen’s entry procedure can load scripts
into application memory and its own memory.

Installing Menus

After you load a menu script, you can install any of its menus for display. When a
menu is installed, JAM finds it in the specified script and reads its definition. If the
menu contains external references—the menu is defined in another script—JAM
resolves these; it then makes the menu available for display.

Except for Motif versions, JAM applications can display only one menu bar and its
corresponding toolbar at a time. For example, if an application contains multiple
screens and each screen has its own menu, JAM displays only the menu bar and
toolbar of the active screen. Under Motif, an application menu and a screen menu
can display simultaneously if you set the baseWindow and formMenus resources
to true.

You can install a menu at three scopes:

� Application scope. A menu that is installed at application scope displays with
all screens unless the active screen has its own menu. Under Motif, the
application menu displays with the base window if the baseWindow resource
is set to true. You can install an application menu only from application
memory.

� Screen scope. A menu that is installed with a screen displays whenever its
screen is invoked or reexposed. This menu is also used by successive screens
that lack their own menu. You can install a screen menu from application or
screen memory.

Installing Menus

90 JAM 7.0 Application Development Guide

� Field scope. A menu that is installed with a widget displays as a pop-up that
the user invokes when that widget has focus. You can install a menu for a
widget from any level of memory—application, screen, or field.

You can install a menu in two ways:

� Enter its name in the screen’s Menu Name property or in the widget’s Pop-up
Menu property. You can also enter a menu name in the screen’s Pop-up Menu
property.

� Call the library function sm_menu_install . You must use this function to
install menus at application scope.

When a screen opens, JAM looks at its Menu Name property and installs the menu
specified there, if any, as that screen’s menu bar. If any of the menu items have
their Toolbar property set to Yes, JAM creates a toolbar from the images associated
with those items and displays it below the menu bar. JAM also uses the Menu
Name property for the screen’s pop-up menu.

At screen open, JAM also checks the Menu Pop-up property of each widget; JAM
installs each menu specified by a widget at field scope and displays it as a pop-up
when invoked from that widget.

With sm_menu_install , you can install a menu at any scope that is the same or
higher than the calling environment, from any memory location that is valid for
that scope. Thus, a screen’s entry procedure can install a menu for the current
screen or for the application, while a widget’s entry procedure can install a menu
for the current widget, its screen, or the application. If another menu is already
installed at the specified scope, JAM removes it. If the same menu is already
installed from the same memory location, JAM does not try to reinstall it.

Installing Menus with Shared Content
Because a script can be loaded only once into a given memory location, all menus
installed from that location are identical. JAM provides only one memory location
at the application level. So, all scripts in application memory are unique, and all
instances of a menu installed from application memory are the same: changes in
one are immediately propagated to all others.

You can install the same menu from application memory for different screens and
widgets; if you do, all instances of this menu are always the same. If you install the
same menu for different widgets from screen memory, all pop-up menus of those
widgets are identical.

For example, the following entry procedure in an application’s startup screen loads
a menu script into application memory; it then installs the menu scr_mn for the
startup screen from application memory:

Installing Menus

916 Menus and ToolbarsChapter

proc install_menu
if (sm_mnscript_load(MNL_APPLIC, ”mnscript_myprog”) == 0)
 {
 call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC,”mnscript_myprog”, ”scr_mn”)
 }
else
 {
 msg emsg ”No menu found for application. Goodbye”
 call jm_exit
 }
return

Subsequently, other screens in the application can install their own instances of this
menu with this call:

call sm_menu_install \
 (MNS_SCREEN, MNL_APPLIC, ”mnscript_myprog”, ”scr_mn”)

All screens that display scr_mn as a menu bar and toolbar display the same menu
and toolbar. Thus, if one screen makes a menu item inactive, that item is inactive
on the other screens.

Installing Menus with Unique Content

You can install multiple copies of the same menu for screens and widgets, where
each copy is unique. Because screens and widgets can load menu scripts into their
private memory locations, each location can maintain its own copy of a menu;
changes to one have no effect on the others.

To install unique copies of the same menu for several screens, repeat these steps for
each screen:

1. Load the menu script into screen memory—specify the script in the screen’s
Menu Script File property; or call sm_mnscript_load at screen entry with
an argument of MNL_SCREEN.

2. Install the menu from screen memory—specify the menu in the screen’s Menu
Name property; or call sm_menu_install at screen entry with arguments of
MNS_SCREEN and MNL_SCREEN.

Similarly, you can make sure that widgets have unique copies of the same pop-up
menu. Repeat these steps for each widget:

1. Load the menu script into field memory for the widget—specify the script in
the widget’s Menu Script File property; or call sm_mnscript_load at widget
entry with an argument of MNL_FIELD.

Displaying Toolbars

92 JAM 7.0 Application Development Guide

2. Install the menu from the widget’s memory—specify the menu in the widget’s
Menu Name property; or call sm_menu_install at widget entry with
arguments of MNS_FIELD and MNL_FIELD.

Referencing External Menus

A menu definition can specify submenus whose contents are defined outside the
current script—that is, the submenu’s External property is set to Yes. For
maximum flexibility, the external flag contains no information about this menu’s
script name. Consequently, when you install a menu, JAM resolves external
references by searching first among scripts in the same memory location, then
among scripts in the next highest memory location, and so on.

For example, given a menu installed from screen memory, JAM tries to resolve
each of its external references first by searching among other scripts in screen
memory; if no match is found in screen memory, JAM continues the search among
the scripts loaded into application memory. If no menu is found in either memory
location, JAM displays an empty submenu.

Displaying Toolbars

A screen can display a toolbar alongside or in place of a menu bar. Both the toolbar
and menu bar are instantiations of the same menu: any item that can be displayed
on the screen’s menu bar can also be displayed on its toolbar, and vice versa.

Display of a toolbar depends on two conditions being true:

� Toolbar display is enabled.

� At least one screen menu item is set for toolbar display.

You enable toolbar display through the setup variable TOOLBAR_DISPLAY, which
can be set to TOOLBAR_ON (the default) or TOOLBAR_OFF. This variable can be
changed at runtime to toggle toolbar display for the entire application.

Display of individual items on a screen’s menu bar and/or toolbar is determined by
their MNI_DISPLAY_ON property, which is set to one of these values:

� DISPLAY_MENU: Display the item only on the screen’s menu bar (default).

� DISPLAY_TOOL: Display the item only on the toolbar.

� DISPLAY_BOTH: Display the item on both the menu bar and toolbar.

Changing Menus at Runtime

936 Menus and ToolbarsChapter

� DISPLAY_NEITHER: Suppress display on menu bar and tool bar.

You can set a menu item’s initial display in the menu bar editor and change it at
runtime.

If a menu item is set to display on a toolbar, you should set its pixmap properties—
MNI_ACT_PIXMAP, MNI_ARM_PIXMAP, and MNI_INACT_PIXMAP—to determine
the item’s display in its active, armed, and inactive states. JAM for Windows uses
MFC to control toolbar display, which sets the item’s inactive and armed display
from the MNI_ACT_PIXMAP (active) property; consequently, Windows applications
ignore the other two pixmap properties.

For more information about setting pixmap properties, refer to page 224 in the
Editors Guide.

You can set an item’s tooltip text, which displays when the cursor remains above
that item; tooltip display is enabled or disabled for the entire application through
the setup variable TOOLTIP_DISPLAY. You can toggle tooltip display on and off by
setting it to TOOLTIP_ON (the default) and TOOLTIP_OFF, respectively.

You can control the font type and size for tooltips in Motif applications through the
XJam resource file. For example, this statement sets tooltip text to 18 point
Helvetica:

XJam*toolbar*tooltip.fontList: *–helvetica–*–18–*

On Windows, the appearance of tooltip text is under MFC control.

Changing Menus at Runtime

JAM provides a set of library functions that let you change menus and their items
at runtime. You can:

� Get and set menu and menu item properties.

� Change the state of toggle items.

� Create and delete menus and menu items from memory.

Getting and Setting Properties

All properties that are available through the menu bar editor also are accessible and
modifiable through JAM library functions.

pixmap properties

tooltip display

Changing Menus at Runtime

94 JAM 7.0 Application Development Guide

You can get the current setting of a menu property by calling either
sm_menu_get_int or sm_menu_get_str . To get a menu item’s property setting,
call either sm_mnitem_get_int or sm_mnitem_get_str . Use the _int variant
for those properties that have an integer value—for example, MN_TEAR or
MNI_ACTIVE; use the _str variant for properties that take string values, such as
MN_TITLE and MNI_CONTROL.

sm_menu_bar_error lets you test error conditions generated by the aforemen-
tioned _get functions. These functions return the value of the specified property
when successful; otherwise, they return –1 for failure of the _get_int variants
and NULL for the _get_str variants. sm_menu_bar_error returns the error
code generated by the last call to one of these variants.

sm_menu_change and sm_mnitem_change set menu and menu item properties,
respectively. These properties are derived from a memory-resident script. Because
these functions change the specified script, all instances of menus installed from
this script get the requested property change.

sm_mnitem_change and its variant sm_n_mnitem_change cannot be called
directly from JPL; consequently, a number of wrapper functions are declared and
installed in funclist.c , which you can use to modify menu items in JPL
modules. Refer to page 385 in the Language Reference for a list of these functions.

Changing the State of Toggle Items

Toggle items—on a menu and a toolbar—are initially set to the state specified in
the menu script. Toggle items alternatively show or hide a system-specific
indicator to show whether the item’s state is on or off. If the toggle item is included
in the toolbar, JAM uses its MNI_ARM_PIXMAP or MNI_ACT_PIXMAP property to
show whether its state is on or off.

The function that you associate with a toggle item through its control string
property should perform these tasks:

� Test the current setting of the item’s MNI_INDICATOR property—set to either
PROP_ON or PROP_OFF

� Execute the appropriate action.

� Change the item’s MNI_INDICATOR property to PROP_ON or PROP_OFF.

For example, the following code examines the state of menu item tgl2 and
changes its MNI_INDICATOR property accordingly.

get properties

set properties

Changing Menus at Runtime

956 Menus and ToolbarsChapter

vars ind, ret
ind = sm_n_mnitem_get_int \
 (MNL_SCREEN, ”toggle”, ”sub1”, ”tgl2”, MNI_INDICATOR)
if (ind_state == PROP_ON)
{
 ret = tgl2_proc(PROP_ON)
 if ret > 0
 {
 call sm_n_mnitem_change_i_screen \
 (”toggle”, ”sub1”, ”tgl2”, MNI_INDICATOR, PROP_OFF)
 }
}
else if (ind_state == PROP_OFF)
{
 ret = tgl2_proc(PROP_OFF)
 if ret > 0
 {
 call = sm_n_mnitem_change_i_screen \
 (”toggle”, ”sub1”, ”tgl2”, MNI_INDICATOR, PROP_ON)
 }
}

Creating and Deleting Menus

sm_menu_create defines a menu and loads it into memory as part of the specified
script. After you create this menu, you can set its properties and create items for it
through sm_menu_change and sm_mnitem_create , respectively. Like other
menus that are loaded into memory, you can attach this menu to an application
component—screen or widget—and make it available for display through
sm_menu_install .

sm_menu_delete removes a menu from memory at runtime and frees the memory
allocated for it. This function also destroys all items in the menu and frees the
memory associated with them. After you call this function, you can restore this
menu only by reloading its script, provided the script’s source file already contains
the menu definition.

Inserting and Deleting Menu Items

sm_mnitem_create inserts a new menu item into a menu. After you create this
item, you can set its properties through sm_mnitem_change . The menu displays
this item at the next delayed write.

sm_mnitem_delete removes an item from a menu and frees the memory
associated with it. JAM updates the menu display at the next delayed write.

Deinstalling and Unloading Menus

96 JAM 7.0 Application Development Guide

Deinstalling and Unloading Menus

Menus and their scripts remain in memory until JAM frees their memory
location—for example, when a screen with its own menu is removed from the form
or window stack. JAM automatically removes all menus and frees their memory
when the application exits.

You can explicitly remove a menu from display by calling sm_menu_remove . This
function takes a single argument that specifies the scope from which to remove the
current menu. Because the menu script remains in memory, subsequent changes to
the menu’s properties become visible when you reinstall it. This function has no
effect on other instances of the menu that are installed from the same memory
location.

You can remove a script from memory with sm_mnscript_unload . This function
takes two arguments—the script’s name and memory location. JAM removes the
script from the specified memory location and destroys all menus that are installed
from it. If any of those menus are currently displayed, JAM removes them
immediately. If a menu is referenced as an external menu, JAM displays an empty
menu in its place.

Invoking Pop-up Menus

JAM displays a pop-up menu when the user presses the right mouse button or
when sm_popup_at_cur is called. JAM uses one of the following two algorithms
for finding and displaying a pop-up menu:

� If a field has focus, sm_popup_at_cur displays the first menu that it finds
from the following:

1. The pop-up menu installed for the field.

2. The menu installed for the screen.

3. The application-level menu.

� If the screen has focus, sm_popup_at_cur displays the first menu that it
finds from the following:

1. The menu installed for the screen.

2. The application-level menu.

You can let users invoke pop-up menus from the keyboard with
sm_popup_at_cur . For example, the following control string assignment lets the
user invoke a pop-up menu by pressing the PF1 key:

invoking pop-up menus
from the keyboard

Calling Menu Functions From JPL

976 Menus and ToolbarsChapter

PF1 = ^sm_popup_at_cur

Calling Menu Functions From JPL

All menu functions that can be prototyped are installed and can be called from a
JPL procedure. Three functions cannot be prototyped because their parameter lists
do not conform to current requirements. These are:

sm_menu_change
sm_mnitem_create
sm_mnitem_change

Wrapper functions for these routines are provided and installed in funclist.c ;
you can call these from JPL to change menu and menu item properties and to
create menu items. Refer to page 385 in the Language Reference for a list of these
functions.

Using the m2asc Utility

JAM’s m2asc utility lets you convert binary menu files to ASCII and vice versa.
m2asc has this syntax:

m2asc –a [–fv] [–i include-file] ascii–file mn–file [mn–file ...]

m2asc –b [–fv] ascii–file [ascii–file ...]

m2asc –c [–fv] v5-mn-file [v5-mn-file ...]

–a
Convert binary files to ASCII.

–b
Convert ASCII files to binary.

–c
Convert JAM 5 binary files to JAM 6 binary.

–f
Allow the output file to overwrite an existing file.

Outputting Menu Definitions to ASCII

98 JAM 7.0 Application Development Guide

–iinclude-file
Include the specified file at the beginning of ASCII output.

–v
Generate a list of files as they are processed.

Outputting Menu Definitions to ASCII
You can save menu definitions to ASCII format through the m2asc utility. ASCII
menu definitions define a menu as a hierarchy, where the top-level menu and its
items are defined first along with global menu properties, followed by submenus
and their items.

Keywords
Each component of a menu definition is identified by a keyword in Table 9 and,
optionally, a unique name. In some cases, JAM uses these names to resolve
references—for example, given a submenu item that sets its SUBMENU property to
myEditSub , at runtime, JAM looks for a MENU:myEditSub item in the same
script to build that submenu. In all cases, you can use these identifiers to get and
set item properties at runtime.

Table 9. ASCII menu keywords

Keyword Description

ACTION Invokes an action through a control string.

EDCLEAR Replaces the selected text with spaces.

EDCOPY Copies selected text to the clipboard.

EDCUT Cuts selected text to the clipboard.

EDDEL Deletes the selected text.

EDPASTE Pastes the clipboard contents.

EDSELECT Selects the current widget’s contents.

FILE The source file of the menu script. You can write multiple
menu scripts to the same ASCII text file; each script begins
with a FILE: script-name identifier. When menu2asc con-
verts the ASCII file to binary format, it saves each script to
its own file.

Outputting Menu Definitions to ASCII

996 Menus and ToolbarsChapter

Keyword Description

MENU Starts a menu or submenu definition. All keywords that fol-
low MENU identify the menu’s items.

SEPARATOR Draws a separator between the previous and next menu
items.

SUBMENU Invokes another menu. If the SUBMENU item is on the menu
bar, the submenu displays as a pulldown; otherwise, the sub-
menu displays to its right.

TOGGLE Invokes an action through a control string and toggles the
indicator on or off.

WINLIST Identifies the item as a menu that lists all open windows.

WINOP Identifies the item as the windows menu of the current plat-
form—for example, under Windows, the Windows menu
with Arrange Icons, Tile, and Cascade. Applications running
on character-mode, Macintosh, and Presentation Manager
platforms ignore this item.

Menu Properties

Each menu and menu item definition has properties; these properties are specified
immediately below the component’s identifier. For example, the following
statements define a submenu item myoption : its label is Options with a keyboard
mnemonic of O; it invokes the menu myoptionsub ; and it is initially available for
selection (ACTIVE=YES):

SUBMENU:myoption
 LABEL=&Options
 SUBMENU=myoptionsub
 ACTIVE=YES

Table 10 shows all ASCII menu property mnemonics and their valid values. For
more information about these properties, refer to the Editors Guide.

Outputting Menu Definitions to ASCII

100 JAM 7.0 Application Development Guide

Table 10. Menu properties and valid assignments

Property Values

ACCEL An accelerator string that specifies the keyboard equiv-
alent for selecting this menu item.

ACCEL–ACTIVE A value of PROP_ON or PROP_OFF specifies whether
the menu item accelerator is active.

ACTIVE A value of YES or NO allows or disallows user access to
this menu item. If ACTIVE=NO, the menu item is greyed
out.

ACTIVE_PIXMAP* The name of an image file whose contents are shown
for an active toolbar item—that is, accessible but not
pressed. Refer to page 225 in the Editors Guide for val-
id file types, and for information about path and exten-
sion options.

ARM–PIXMAP* The name of an image file whose contents are shown
for an armed toolbar item—that is, in its pressed state.
If this property is blank, Motif uses the
MNI_ACT_PIXMAP property for the item’s armed state.
Windows uses a modified version of the Active Pixmap
property to display a toolbar item’s armed state and
ignores this property.

CONTROL A control string that specifies the action that occurs
when the item is selected.

DISPLAY–ON Specifies whether to display the menu item on the menu
and/or the tool bar. Supply one of these arguments:

MENU: Menu only (default).
TOOL: Tool bar only.
BOTH: Menu and tool bar.
NEITHER: Neither.

EXTERNAL A value of YES or NO specifies whether to find this
menu’s definition in another menu script. External ref-
erences are resolved at runtime only.

EXT–HELP–TAG A string expression that specifies the help text to invoke
for this item.

* Ignored in character-mode.

Outputting Menu Definitions to ASCII

1016 Menus and ToolbarsChapter

Property Values

INACTIVE–PIXMAP* The name of an image file whose contents are shown
for an inactive or unavailable (grayed) item. If this
property is blank, Motif displays an empty toolbar item.
Windows uses a grayed version of the Active Pixmap
property to display a toolbar item’s inactive state and
ignores this property.

INDICATOR A value of YES or NO specifies whether to show the
toggle indicator.

IS–HELP A value of YES or NO specifies whether to display this
item as the rightmost item on the menu bar.

LABEL A string expression to display as the menu item’s label.
To specify a keyboard mnemonic for a menu item,
place an ampersand (&) in front of the desired character.

MEMO A string expression for the Memo Text property.

MNI_ORDER* The order in which this item appears on the toolbar. The
default value is 100. You can enter any value between 0
and 200, inclusive. If all toolbar items are set to the
same value, they appear in the same order as they do in
the menu.

SEP–STYLE The style used by item separators, specified by one of
these values:

SINGLE
DOUBLE
DOUBLE–DASHED
SINGLE–DASHED
ETCHED–IN
ETCHED–OUT
ETCHED–IN–DASHED
ETCHED–OUT–DASHED
NOLINE
MENUBREAK

SHOW–ACCEL A value of YES or NO specifies whether the menu item
displays the accelerator key next to the label.

* Ignored in character-mode.

Outputting Menu Definitions to ASCII

102 JAM 7.0 Application Development Guide

Property Values

STAT–TEXT A string expression to display on the screen’s status line
for this item.

SUBMENU Name of submenu to invoke when this item is selected.

TEAR A value of YES or NO enables or disables this submenu
as a tear-off menu.

TITLE A title to display with tear-off submenus.

TM–CLASS Transaction manager property. Refer to page 285 in the
Editors Guide for more information and valid argu-
ments.

TOOL–TIP* The balloon help to display when the cursor remains
over the toolbar item.

* Ignored in character-mode.

A subset of these properties is valid for each menu component except WINOP and
WINLIST. Table 11 shows which properties are valid for each component:

Outputting Menu Definitions to ASCII

1036 Menus and ToolbarsChapter

Table 11. Valid properties for menu definition components

Menu definition component

Property MENU SUBMENU ACTION TOGGLE SEPARATOR ED*

ACCEL • • • •
ACCEL–ACTIVE • • • •
ACTIVE • • • •
ACTIVE–PIXMAP • • •
ARM–PIXMAP • • •
CONTROL • •
DISPLAY–ON • • •
EXTERNAL •
HELP–TAG • • • • •
INDICATOR • •
INACTIVE–PIXMAP • • •
IS–HELP • • •
LABEL • • •
MEMO • • •
ORDER • • •
SEP–STYLE • •
SHOW–ACCEL • • • •
STAT–TEXT • • • •
SUBMENU •
TEAR •
TITLE •
TM–CLASS • • •
TOOL–TIP • • •
* All editor item types: EDCUT, EDCOPY, EDPASTE, EDDEL, EDSELECT, EDCLEAR

Outputting Menu Definitions to ASCII

104 JAM 7.0 Application Development Guide

Sample Output

The following menu script is the ASCII output of a truncated version of the menu
bar used by JAM’s screen editor. The main menu contains three items: File, Edit,
and Help.

FILE:semain

MENU:sm_se_main_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

SUBMENU:sm_se_file
 LABEL=&File
 SUBMENU=sm_se_file_menu
 IS–HELP=NO
 EXT–HELP–TAG=basicFilemenu
 STAT–TEXT=File Operations

SUBMENU:sm_se_edit
 LABEL=&Edit
 SUBMENU=sm_se_edit_menu
 IS–HELP=NO
 EXT–HELP–TAG=basicEditmenu
 STAT–TEXT=Editing Operations

SUBMENU:sm_se_help
 LABEL=&Help
 SUBMENU=sm_se_help_menu
 IS–HELP=YES
 STAT–TEXT=Get Help!

MENU:sm_se_file_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

SUBMENU:sm_se_new
 LABEL=&New
 SUBMENU=sm_se_new_menu
 IS–HELP=NO
 EXT–HELP–TAG=FileNew
 STAT–TEXT=Create new screen

Outputting Menu Definitions to ASCII

1056 Menus and ToolbarsChapter

SUBMENU:sm_se_open
 LABEL=&Open
 SUBMENU=sm_se_open_menu
 IS–HELP=NO
 EXT–HELP–TAG=FileOpen
 STAT–TEXT=Open existing screen

ACTION:sm_se_save
 LABEL=&Save
 CONTROL=^jm_keys PF5
 ACTIVE=YES
 IS–HELP=NO
 EXT–HELP–TAG=FileSave
 ACCEL=PF5
 ACCEL–ACTIVE=NO
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Saves the current screen
 ORDER=18
 ACTIVE–PIXMAP=save–act
 INACTIVE–PIXMAP=save–dis
 TOOL–TIP=Save

ACTION:sm_se_set_test
 LABEL=&Test Mode
 CONTROL=^jm_keys PF2
 IS–HELP=NO
 EXT–HELP–TAG=FileTestMode
 ACCEL=PF2
 ACCEL–ACTIVE=NO
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Switch to Test Mode
 ORDER=19
 ACTIVE–PIXMAP=test–act
 TOOL–TIP=Test Mode

SEP:sm_se_file_sep2
 SEP–STYLE=SINGLE

ACTION:sm_se_exit
 LABEL=E&xit
 CONTROL=^jm_keys CLAPP
 ACCEL=CLAPP
 IS–HELP=NO
 EXT–HELP–TAG=FileExit
 ACCEL–ACTIVE=NO
 SHOW–ACCEL=YES
 STAT–TEXT=Exit the editor

MENU:sm_se_new_menu
 TEAR=NO

Outputting Menu Definitions to ASCII

106 JAM 7.0 Application Development Guide

 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

ACTION:sm_se_new_screen
 LABEL=&Screen
 CONTROL=^filemenu new screen
 IS–HELP=NO
 EXT–HELP–TAG=FileNew
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Creates new untitled screen
 ORDER=11
 ACTIVE–PIXMAP=new–act
 INACTIVE–PIXMAP=new–dis
 TOOL–TIP=New

ACTION:sm_se_new_lib
 LABEL=&Library...
 CONTROL=^filemenu new lib
 IS–HELP=NO
 EXT–HELP–TAG=FileNew
 SHOW–ACCEL=YES
 STAT–TEXT=Create a new library

MENU:sm_se_open_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

ACTION:sm_se_op_screen
 LABEL=&Screen...
 CONTROL=^filemenu open screen
 IS–HELP=NO
 EXT–HELP–TAG=FileOpen
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Opens new screen from a file
 ORDER=12
 ACTIVE–PIXMAP=open–act
 INACTIVE–PIXMAP=open–dis
 TOOL–TIP=Open

ACTION:sm_se_op_lib
 LABEL=&Library...
 CONTROL=^filemenu open lib

Outputting Menu Definitions to ASCII

1076 Menus and ToolbarsChapter

 IS–HELP=NO
 EXT–HELP–TAG=FileOpen
 SHOW–ACCEL=YES
 STAT–TEXT=Open library

ACTION:sm_se_op_db
 LABEL=D&atabase...
 CONTROL=^dm_handle_connect 1
 ACTIVE=NO
 IS–HELP=NO
 EXT–HELP–TAG=FileOpen
 SHOW–ACCEL=YES
 STAT–TEXT=Open database

MENU:sm_se_edit_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

SEP:sm_se_edit_sep0
 SEP–STYLE=SINGLE
 DISPLAY–ON=TOOLBAR
 ORDER=30

ACTION:sm_se_edit_cut
 LABEL=Cu&t
 CONTROL=^(^cut)save_state 2
 ACTIVE=NO
 IS–HELP=NO
 EXT–HELP–TAG=basicEditmenu
 ACCEL=Ctrl–X
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Cuts current selection to clipboard
 ORDER=21
 ACTIVE–PIXMAP=cut–act
 INACTIVE–PIXMAP=cut–dis
 TOOL–TIP=Cut

ACTION:sm_se_edit_copy
 LABEL=C&opy
 CONTROL=^copy 1
 ACTIVE=NO
 IS–HELP=NO
 EXT–HELP–TAG=basicEditmenu
 ACCEL=Ctrl–C
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH

Outputting Menu Definitions to ASCII

108 JAM 7.0 Application Development Guide

 STAT–TEXT=Copies current selection to clipboard
 ORDER=22
 ACTIVE–PIXMAP=copy–act
 INACTIVE–PIXMAP=copy–dis
 TOOL–TIP=Copy

ACTION:sm_se_edit_paste
 LABEL=&Paste
 CONTROL=^(^paste)save_state 5
 ACTIVE=NO
 IS–HELP=NO
 EXT–HELP–TAG=basicEditmenu
 ACCEL=Ctrl–V
 SHOW–ACCEL=YES
 DISPLAY–ON=BOTH
 STAT–TEXT=Copies contents of clipboard to current screen
 ORDER=23
 ACTIVE–PIXMAP=past–act
 INACTIVE–PIXMAP=past–dis
 TOOL–TIP=Paste

MENU:sm_se_help_menu
 TEAR=NO
 EXTERNAL=NO
 ACTIVE=YES
 INDICATOR=NO
 SHOW–ACCEL=YES
 SEP–STYLE=SINGLE

ACTION:sm_se_hl_topic
 LABEL=Current &Topic ...
 CONTROL=^jm_keys HELP
 IS–HELP=NO
 STAT–TEXT=Shows help on what you’re doing

SEP:sm_se_hl_sep1
 SEP–STYLE=SINGLE
 ORDER=190
 DISPLAY–ON=BOTH

ACTION:sm_se_hl_about
 LABEL=&About JAMDEV ...
 CONTROL=^sm_message_box(\
 ”JAM Version 7.0%NCopyright 1994–1995%NJYACC Inc.”, \
 ”About JAMDEV”,0,””)
 STAT–TEXT=Tells about this version of JAM

109

Control Strings
Control strings specify actions that you associate with function keys, push buttons,
list boxes, and menu items. Control strings can perform these tasks:

� Open a screen as a form or window.

� Execute a function.

� Invoke an operating system command.

Associating Control Strings with the Application

A JAM application has various hooks from which it can execute control strings.
You can associate control strings with push buttons, list boxes, and menu items
through their Control String property. For example, a push button widget can exit
the current screen if its Control String property specifies to execute the built-in
function jm_exit :

^jm_exit

You can also attach control strings to function keys. Each screen has its own
Control Strings property, which lists JAM logical keys and their control strings.
For example, the following control string list lets users open two screens as
windows through the logical keys F1 and F2, and leave the current screen through
EXIT:

77

Heading 1 (head 1) This is head 1

110 JAM 7.0 Application Development Guide

F1 = &custInfo
F2 = &orderDetail
EXIT = ^jm_exit

You can globally associate control strings with function keys at application startup
through the setup variable SMINICTRL. For example, the following statement in
your setup file globally associates the EXIT key with your own exit routine:

SMINICTRL = EXIT = ^myExit

Control String Types

JAM uses the leading character of a control string to determine what type of action
to perform—whether to open a screen, execute a function, or invoke a system
command. Table 12 summarizes these leading characters and actions.

Table 12. Control string types and leading characters

Character Action Example

None Open screen as a form. mainmenmu

& Open screen as a stacked window. &(5,20)status

&& Open screen as a sibling window. &&(5,20)status

^ Execute C function or JPL procedure. ^drop acctno

! Invoke operating system program !ls ”*.jam”

 The following sections explain each type in detail.

Opening Screens

A control string can open a screen as a form, as a stacked window, or as a sibling
window. Control strings that open screens have the following syntax:

[lead-char] [(viewport-args)] screen–name

If you omit lead–char, JAM opens the screen as a form. A single ampersand (&)
opens the screen as a stacked window, while a double ampersand (&&) opens it as
a sibling window. Refer to page 69 for more information about how JAM manages
screens as forms and windows.

Heading 1 (head 1) This is head 1

111 Chapter

You can optionally specify arguments for the screen’s viewport—that is, the
window in which the screen is displayed. Viewport arguments determine the
screen’s position on the physical display, viewport’s dimensions, and offset of the
screen’s contents within its viewport as follows:

(row, col, len, width, vRow, vCol)

Note: All viewport arguments are optional. However, if you specify any one
argument, you must supply all leading arguments; trailing arguments are optional.

row, col
The position of the viewport’s top left corner on the physical display, where row
and col are one-based offsets from the physical display’s top left corner. The
physical display excludes any area already used either by the screen manager, such
as a base window border, or by the application’s menu bar. Thus, arguments of 1,1
start the screen at the first line and leftmost column that are available.

Signed integer values (negative or positive) specify the viewport’s position relative
to the previously active screen. For example, the following control string invokes
newWindow.jam as a sibling window whose viewport is two rows higher and two
rows left of the current screen’s viewport:

&&(–2,–2)newWindow.jam

If the window does not fit on the display at the specified location, JAM adjusts it as
needed. JAM does not allow viewports to be positioned completely offscreen.

len, width
The viewport’s dimensions in rows and columns. A value of 0 or less specifies to
use the screen’s actual dimensions if the physical display is large enough. Note that
the border is counted as part of the screen.

vRow, vCol
The row and column of the screen to display on the viewport’s first row and
column.

If you specify vRow or vCol, the cursor appears in the upper-left corner of the
viewport, whether or not a field is there. The cursor responds to the cursor keys
until it encounters an unprotected field, or the TAB key is pressed. When it is in a
field, the cursor uses the normal tabbing order among fields.

Table 13 contains several examples of control strings that open screens.

Heading 1 (head 1) This is head 1

112 JAM 7.0 Application Development Guide

Table 13. Control strings that open screens

Control string Action

mainmenu Open mainmenu as a form at the physical dis-
play’s top left corner.

&(5,20)custInfo Open custInfo as a stacked window at row 5,
column 20 of the physical display.

&&(1,1,10,40,5,5)detail Open detail as a sibling window in a 10 row
x 40 column viewport at the physical display’s
top left corner. Row 5, column 5 of the screen
is initially displayed at the top left corner of the
viewport.

Executing Functions

A control string that executes a function has the following syntax:

^ [(target-string [; target-string])] func-name [(arglist)]

func-name
The name of an installed or built-in function or a JPL procedure or module. An
installed function can be one of JAM’s library functions or your own. For
information about function installation, refer to page 119. Built-in functions are
preinstalled in JAM and begin with the prefix jm_ . Built-in functions are described
in Chapter 4 of the Language Reference.

JAM looks first among the installed functions for func-name, then among the JPL
procedures modules. For detailed information about this search algorithm, refer to
page 17 of the Language Reference.

arglist
One or more arguments to pass to parameters in func-name. Arguments for
installed functions—JAM library functions and your own—must be enclosed in
parentheses and delimited by commas or spaces. Arguments supplied to the built-in
function jm_keys should not be enclosed in parentheses.

target-string
The control string can optionally test the return value against one or more
semicolon-delimited target strings. Each target string has this syntax:

[test-value =] control-string

Heading 1 (head 1) This is head 1

113 Chapter

JAM compares func-name’s return value to each test-value, reading from left to
right. If it finds a match, it processes the specified control string. If you omit a test
value, JAM processes the control string unconditionally. The control string can
itself contain a JPL call with its own target strings; you can thereby nest multiple
control strings with recursive calls.

For example, given this control string:

^(–1=^(^jm_exit)cleanup; 1=&welcome_scr)process

JAM processes the string as follows:

1. Calls the JPL module or procedure process .

2. Evaluates the return value from process to determine its next action:

• If process returns –1, JAM executes cleanup . When cleanup returns,
JAM calls the built-in function jm_exit .

• If process returns 1, JAM opens the welcome_scr screen.

Table 14 shows several control strings that call functions:

Table 14. Control strings that call functions

Control string Action

^verify(name,idnum) Execute the user-written function verify , pass-
ing variables name and idnum as arguments.

^sm_n_ascroll(”IDs”,1) Execute the library function sm_n_ascroll .

^jm_exit Execute the built-in function jm_exit .

Invoking Operating System Commands

A control string that starts with an exclamation point (!) temporarily passes control
to the operating system. At runtime, JAM passes the string after the exclamation
point to the operating system for execution. After program execution is complete,
control returns to the application.

Note: In character-mode, JAM displays a message that the user must acknowledge
before control returns to the application.

If you include variables in the control string, they must be prefixed by a colon(:).
JAM’s colon preprocessor expands colon-prefixed variables to their literal values
before passing the string to the operating system.

Heading 1 (head 1) This is head 1

114 JAM 7.0 Application Development Guide

Table 15 shows several operating system control strings:

Table 15. Control strings that call system commands

Control String Action

!ls Display a directory listing.

!vi ”newdoc” Invoke vi to edit newdoc .

!rm :rmData Remove the file whose name matches the contents of vari-
able rmData .

115

Hook Functions

Hook functions are called at specific events during program execution. JAM
identifies each stage of program execution as one type of event or another. For
example, JAM identifies all screen entries as one event type, and all field exits as
another. You can write hook functions for each of these events in any third-genera-
tion language that JAM supports. This chapter shows how to write hook functions
in C and install them in your application.

JAM recognizes many different stages of program execution as distinct events that
can invoke hook functions. Events for which hook functions are commonly written
include:

� Screen entry and exit.

� Field entry, exit, and validation.

� Menu item, push button, or function key selection.

Through JAM’s screen editor, you can specify many of the hook functions used by
your application. For example, each screen can have its own entry function, which
is specified on the screen’s properties window, each field its own exit function,
which is specified on the field’s properties window, and so on. If the function is

88

Hook Function Types

116 JAM 7.0 Application Development Guide

installed, JAM finds the function at the appropriate stage of program execution and
executes it. For example, if you specify a screen entry function for a screen, JAM
invokes that function when the screen opens.

Installed hook functions can also be called from JPL procedures.

You can also install functions that JAM always executes whenever events of a
certain type occur. Each function is identified with a single event type. For
example, you can install a screen function that JAM executes on entering or exiting
all screens.

All hook functions must be installed in the application so that JAM can find and
execute them at the proper time. Many commonly used JAM library functions are
already installed for you for immediate access during the design process.
Installation procedures and options are discussed later in this chapter.

Hook Function Types

Hook functions can be divided into two general types: those that are called
explicitly and those that are called automatically on specific stages of program
execution:

� Demand hook functions are functions explicitly called from a JAM compo-
nent, such as a widget or screen, or a JPL module.

� Automatic hook functions are functions that execute on all occurrences of an
event type. These functions are never explicitly called in the application code
or screens; instead, JAM calls them automatically at the appropriate stage of
program execution.

Demand Hook Functions

A demand hook function can be called by name from any component of a JAM
application: groups, screens, menu items, logical keys, and JPL modules. Except
for external JPL modules, hook function calls are stored with the application’s
screens and can be edited only through the screen editor. For example, each field’s
properties window lets you specify entry, exit, and validation functions.

Demand hook functions usually perform tasks that are specific to their callers. For
example, you might create an exit function for a field whose data requires special
processing. You can then specify this function through the field’s Exit Function
property. At runtime, JAM invokes the function when the cursor exits the field.

Standard versus Non-standard Arguments

1178 Hook FunctionsChapter

You can also write demand hook functions in a JPL module and make the module
available to the application through the public command. You can then call that
module’s procedures—for example, as a widget’s entry function, or from a control
string; JAM executes the JPL code if no C function of the same name is installed.
For more information about JPL, refer to page 3 in the Language Reference.

Automatic Hook Functions
Automatic hook functions are functions that are called automatically at specific
event types. For example, an automatic screen function executes anytime a screen
opens and closes.

Unlike demand functions, automatic functions are independent of any one field,
screen, or other application component. Automatic hook functions cannot be
written in JPL. However, you can call a JPL procedure from an automatic hook
function through sm_jplcall .

In general, an application can have only one automatic hook function of each type
installed at a time. Thus, there can be only one automatic screen function, one
insert toggle function, and so on. Timeout functions are the exception among
automatic functions: you can install multiple timeout functions, where each one is
called when its own timeout occurs.

Note that JAM can call automatic and demand hook functions for the same object.
For example, on screen entry, JAM always calls the automatic screen function if
one is installed. If a screen also specifies an entry hook function, JAM then calls
and executes this function, too.

Standard versus Non-standard Arguments
JAM automatically supplies a fixed number of arguments for all hook function
types except those that are installed as type PROTO_FUNC, or prototyped functions.
Arguments that are automatically supplied by JAM are called standard arguments.
For example, screen functions get two standard arguments: the screen’s name, and
a bitmask that tells when and how this function was called. If you use these
arguments, you must ensure that function definition parameters correspond in
number and type to those supplied by JAM.

You can also write functions whose arguments are explicitly supplied by the
application. These functions must be installed as prototyped functions. JAM
expects calls to any functions thus installed to supply their own arguments.

Installation
Most functions are typically installed in the source file funclist.c . The coding
required to install a function consists of two steps:

Installation

118 JAM 7.0 Application Development Guide

1. Prepare the function for installation by including it in a fnc_data structure. If
the hook function type allows installation of multiple functions, declare an
array of fnc_data structures, where each data structure specifies a function.

2. Install the function with a call to sm_install in the sm_do_uinstalls
function.

The following sections describe each of these steps.

Note: For greater efficiency, prototyped function declarations should be #included
in funclist.c.

Preparing Hook Functions for Installation
Before you can install a function, you must first include it in a fnc_data structure.
The following statements prepare two prototyped functions and one automatic
screen function for installation:

struct fnc_data proto_list[] = {
 SM_INTFNC (”mark_flds(i,i)”, mark_flds),
 SM_INTFNC (”report(s,s)”, report),
};

struct fnc_data autosc_struct = SM_OLDFNC(0, auto_sfunc);

Each fnc_data structure is initialized with the following information:

SM_*FNC Macro
Prefix a fnc_data structure with one of several macros that determines the
function’s return type and whether it dereferences its arguments. Use one of these
macros:

� SM_INTFNC specifies that the function dereferences arguments supplied from
JPL and returns an integer value.

� SM_STRFNC specifies that the function dereferences arguments supplied from
JPL and returns a string value.

� SM_DBLFNC specifies that the function dereferences arguments supplied from
JPL and returns a double precision value.

� SM_ZROFNC specifies that the function dereferences arguments supplied from
JPL and always returns 0 to its caller.

� SM_OLDFNC specifies that the function does not dereference JPL-supplied
arguments and returns an integer value. Use this macro for all non-prototyped
functions and for any function written for pre-JAM 6 applications.

Installation

1198 Hook FunctionsChapter

Function Name
The first value of a fnc_data structure specifies the function’s name. Names of
prototyped functions must include their argument types. In the previous example,
mark_flds takes two integer arguments, while report takes two strings.

If the hook function type allows installation of only one function, supply 0.

Function Address
The second value of a fnc_data structure is the address of the function—that is,
its C identifier.

Installing Hook Functions

You install functions through the JAM library function sm_install . For example,
given the earlier fnc_data structures, these statements install the functions in
proto_list and autosc_struct :

int ct = sizeof (proto_list) / sizeof (struct fnc_data);
sm_install (PROTO_FUNC, proto_list, &ct) ;
sm_install (DFLT_SCREEN_FUNC, &autosc_struct, (int *)0) ;

This function takes three arguments:

func_type
Specifies the hook function type, one of the constant in Table 16. In this table,
hook function types are divided into two groups: those that allow installation of
multiple functions; and those that allow installation of only one function. Each type
is discussed later in this chapter.

Table 16. Hook function types

Multi–function installation Single-function installation

SCREEN_FUNC DFLT_SCREEN_FUNC CKDIGIT_FUNC

FIELD_FUNC DFLT_FIELD_FUNC UINIT_FUNC

GRID_FUNC DFLT_GROUP_FUNC URESET_FUNC

GROUP_FUNC KEYCHG_FUNC RECORD_FUNC

PROTO_FUNC ERROR_FUNC PLAY_FUNC

TIMEOUT_FUNC INSCRSR_FUNC STAT_FUNC

CONTROL_FUNC EXTERNAL_HELP_FUNC VPROC_FUNC

Prototyped Functions

120 JAM 7.0 Application Development Guide

funcs
The name of the fnc_data structure that includes the functions to install.

num_funcs
The address of a variable that contains the number of functions included in funcs .
If funcs is an array of fnc_data structures, get the number of functions declared
in the array before calling sm_install . If the hook function type allows
installation of only one function, supply a null integer pointer—(int *)0 .

For example, this statement gets the number of functions installed in the
fnc_data array proto_list.

int pct = sizeof (proto_list) / sizeof (struct fnc_data);

Prototyped Functions

Prototyped functions are functions that get only the number and type of arguments
that you specify. Prototyped functions are demand hook functions—that is, they
must be invoked by name from a JAM component, such as a widget or screen.

All prototyped functions are installed together in their own function list. When a
prototyped function is called, it is supplied the arguments that you specify instead
of the standard arguments otherwise supplied by its caller. Thus, if a screen entry
hook calls a function, and JAM finds this function on the list of prototyped hook
functions, JAM passes the arguments that follow the function’s name instead of the
two standard arguments otherwise supplied to a screen function. As developer, you
must make sure that prototyped function calls supply the correct number and type
of arguments.

You can specify prototyped function calls through JAM’s screen editor. For
example, the screen properties window lets you specify prototyped functions for
screen entry and exit. Prototyped functions can also be called in JPL procedures.

Accessing Standard Argument Information

Although prototyped functions that are called by fields and groups do not get
standard arguments, JAM has several library functions that let you get equivalent
information about a field or group. sm_inquire can return a field’s field number,
validation state, and occurrence number, and a group’s validation state, according
to the argument that you supply:

Prototyped Functions

1218 Hook FunctionsChapter

Argument Return Value

SC_AFLDNO Number of the field calling a prototyped field function.
Corresponds to the first standard argument to a field func-
tion.

SC_AFLDMDT Bit mask that indicates the field’s validation state and why
the function was called. Corresponds to fourth standard
argument of a field function.

SC_AFLDOCC Occurrence number of the field that called the function.
Corresponds to the third standard argument of a field
function.

SC_AGRPMDT Bit mask that indicates the group’s validation state and
why the function was called. Corresponds to the second
standard argument of a group function.

You can get the second standard argument of a field function, a pointer to a copy of
the field’s contents, through sm_getfield or sm_o_getfield .

You can also get the first standard argument of a group function, a pointer to the
group name, through sm_getcurno and sm_ftog at group entry and exit. Access
to the group name at group validation is not supported because the group might be
undergoing validation as part of screen validation.

Prototyped functions cannot access the standard arguments of a screen. If a hook
function requires this information, you should install it as a demand or automatic
screen function.

Installing Prototyped Functions
Prototyped functions are listed with their argument types as members of a
fnc_data data structure. The list of argument types is enclosed in parentheses:
JAM supports string and integer arguments, specified by s and i , respectively. The
following declarations and definitions support the installation of two functions
shown later in this chapter, mark_flds and report , and two JAM library
functions. This code is usually found in the file funclist.c :

struct fnc_data proto_list[] = {
 SM_INTFNC (”mark_flds(i,i)”, mark_flds),
 SM_INTFNC (”report(s,s)”, report),
 SM_INTFNC (”sm_n_putfield(s,s)”, sm_n_putfield),
 SM_INTFNC (”sm_gofield(i)”, sm_gofield)
};

int proto_count = sizeof (proto_list) /
 sizeof (struct fnc_data) ;

Screen Functions

122 JAM 7.0 Application Development Guide

In this example, marks_flds is prototyped to take two string arguments, report
and sm_n_putfield take two string arguments, and sm_gofield takes a single
integer argument. The last two functions are JAM library functions; their
prototypes must conform to their definitions as shown in the Language Reference.

The macro SM_INTFNC specifies that the function dereferences its arguments and
returns an integer value. For string returns, substitute SM_STRFNC; for double
precision returns, substitute SM_DBLFNC.

JAM supports any combination of strings and integers from zero to five arguments.
JAM also supports functions with six integer arguments. If a function’s arguments
do not conform to these requirements—for example, there are more than six, or
they include an unsupported data type—you can call it indirectly through a
wrapper function.

The following library call to sm_install installs these functions. sm_install is
usually called in sm_do_uinstalls , found in the source module funclist.c :

sm_install(PROTO_FUNC, proto_list, &proto_count) ;

Screen Functions
You can install an automatic screen function that JAM calls on screen entry and
exit. You can also install one or more demand screen functions that can be called
explicitly at different stages of program execution. Both automatic and demand
screen functions get arguments that describe the screen’s current state.

JAM executes the automatic screen function on both entry and exit for that screen.
On entry, JAM executes the automatic screen function before it executes the
screen’s entry function. If a screen has a JPL module, JAM executes its unnamed
procedure on screen entry before it executes the automatic function. On exit, JAM
executes the screen’s exit function before the automatic screen function.

JAM optionally recognizes overlay and reexposure of a screen as exit and entry
events, respectively. This depends on how the JAM setup variable EXPHIDE_OP-
TION is set. If the variable is set to ON_EXPHIDE, JAM invokes screen exit and
entry functions on screen overlay and reexposure. Overlay of a screen can occur
because another screen opens or is selected; reexposure can occur because an
overlying screen closes or is deselected.

Note: It is not advisable to open a screen from a screen entry function, since such
an event yields undefined results.

Arguments
All screen functions receive two arguments in this order:

Screen Functions

1238 Hook FunctionsChapter

� A pointer to a null-terminated character string that contains the screen’s name.

� An integer bitmask that indicates the screen’s current state and why the
function was called.

The second parameter can have one or more of the following flags set:

K_ENTRY

The function was called on screen entry.

Equivalent: if(param2 & K_ENTRY)

K_EXIT

The function was called on screen exit.

Equivalent: if (param2 & K_EXIT)

K_EXPOSE

The function was called for one of these reasons:

� The screen was selected.

� The screen was deselected.

� The screen is hidden because a window popped over it—K_EXIT and
K_EXPOSE are set.

� The screen is reexposed because a window that overlay it closed—K_EXPOSE
and K_ENTRY are set.

Equivalent: if (param2 & K_EXPOSE)

K_KEYS

Mask for the bits that indicate which event caused the screen to exit. You should
test the intersection of this mask and the second parameter against K_NORMAL or
K_OTHER.

K_NORMAL

A “normal” call to sm_close_window caused the screen to close.

Equivalent: if ((param2 & K_KEYS) == K_NORMAL)

K_OTHER

The screen closed because another form is displayed or because sm_resetcrt is
called.

Field Functions

124 JAM 7.0 Application Development Guide

Equivalent: if ((param2 & K_KEYS) == K_OTHER)

Returns
Screen functions should return 0 if they do not reposition the cursor or change the
screen. If a screen function does move the cursor, it should have a non-zero return
value, which prevents sm_input from repositioning the cursor.

Installation of an Automatic Screen Function
You can install only one function as the automatic screen function. The following
statement, typically found in funclist.c , includes the automatic screen function
auto_sfunc in the fnc_data structure autoscr_struct . To see the code for
this function, refer to page 156.

struct fnc_data autoscr_struct = SM_OLDFNC(0, auto_sfunc) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c , installs auto_sfunc as the default screen function:

sm_install (DFLT_SCREEN_FUNC, &autoscr_struct, (int *)0) ;

Installation of Demand Screen Functions
You can install multiple functions as demand screen functions. The following
statements, typically found in funclist.c , include two all-purpose screen entry
and exit functions sEntry and sExit in the fnc_data structure sfuncs :

struct fnc_data sfuncs[] =
{
 SM_OLDFNC(”sEntry”, sEntry),
 SM_OLDFNC(”sExit”, sExit),
};
int scount = sizeof (sfuncs) / sizeof (struct fnc_data) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c , installs the functions in sfuncs as demand screen functions:

sm_install (SCREEN_FUNC, sfuncs, &scount) ;

Field Functions

You can install an automatic field function that JAM calls on field entry, exit, and
validation. You can also install one or more demand field functions that can be

Field Functions

1258 Hook FunctionsChapter

called explicitly at different stages of program execution. Both automatic and
demand field functions get arguments that describe the widget’s current state.

JAM executes the automatic field function on field entry, exit, and validation. You
can install an automatic field function that JAM invokes on any of these events for
all fields. You can separately install demand field functions, which individual fields
can explicitly invoke for entry, exit, or validation. These functions are installed in
the field function list; a field specifies one of these through its properties window
as its entry, exit, or validation function.

Although automatic field functions cannot be prototyped, they can access
non-standard information for specific fields through the field’s memo edits. For an
example, see page 161 later in this chapter.

JAM executes the automatic field function on all field events. On entry, JAM
executes the automatic field function before it executes the field’s entry function.
On exit, JAM first calls the field’s validation function, then its exit function, and
finally the automatic field function. If the field has JPL validation, JAM executes
this module after it executes the validation function.

JAM can recognize two events as field entry: when the cursor enters a field; and
when the screen’s current field is reactivated because an overlying window closes,
if setup variable EXPHIDE_OPTION is set to ON_EXPHIDE.

Note: It is not advisable to bring up a dialog box, such as a message dialog, from
a field entry function, since opening a screen between a mouse down and a mouse
up event yields undefined results.

JAM can recognize two events as field exit: when the cursor leaves a field; and
when a window overlays the field’s screen, if setup variable EXPHIDE_OPTION is
set to ON_EXPHIDE.

Validation functions are called under the following conditions:

� As part of field validation, when you exit the field or scroll to the next
occurrence by filling it, or by pressing TAB or NL. Field functions are called
for validation only after the field’s contents pass all other validations for the
field.

BACKTAB, arrow keys, and mouse clicks outside the field also trigger field
validation unless the setup variable IN_VALID is changed from its default
setting to OK_NOVALID.

� As part of screen validation. Screen validation occurs when the XMIT key is
pressed. At that time, all fields on the screen are validated via the function
sm_s_val . If the setup variable XMIT_LAST is set, screen validation also
occurs when TAB or NL are pressed in the last field on a screen.

automatic field function
access to non-standard
information

Execution

Entry

Exit

Validation

Field Functions

126 JAM 7.0 Application Development Guide

� When the application code calls library functions for field validation or screen
validation.

If a field calls a validation function and belongs to a menu, radio button group, or
checklist, JAM calls this function when the field is selected. JAM also calls the
validation function of a checklist field when the field is deselected.

Arguments
All field functions receive four arguments in this order:

� An integer that contains the field’s number.

� A pointer to a null-terminated character string that contains a copy of the
field’s contents.

� An integer that contains the occurrence number of the data.

� An integer bitmask that indicates the field’s validation state and why the
function was called.

The last parameter can have one or more flags set. The following sections describe
these flags:

VALIDED

The field has passed validation and remains unmodified. Note that JAM always
calls field functions for validation whether or not the field already passed
validation. You can test this flag and the MDT flag to avoid redundant validation.

Equivalent: if(param4 & VALIDED)

MDT

The field data changed since the current screen opened. Note that if the screen
entry function modifies the field’s data when the screen opens, the MDT flag
remains unset. However, if the same screen entry function executes because the
screen is reexposed—for example, through closure of an overlying window—mod-
ification of the field data sets the MDT.

JAM never clears this flag. You can clear it with sm_bitop .

Equivalent: if(param4 & MDT)

K_ENTRY

The field function was called on field entry.

Equivalent: if(param4 & K_ENTRY)

Field Functions

1278 Hook FunctionsChapter

K_EXIT

The field function was called on field exit. Note that if neither K_ENTRY nor
K_EXIT are set, the field is undergoing validation.

Equivalent: if(param4 & K_EXIT)

K_EXPOSE

The field function was called because a window overlying this field’s screen
opened or closed:

� K_EXPOSE and K_ENTRY are set: the overlying window closed and the field is
exposed.

� K_EXPOSE and K_EXIT are set: the overlying window opened and the field is
hidden.

Equivalent: if(param4 & K_EXPOSE)

K_KEYS

Mask for the flags that tell which keystroke or event caused field entry, exit, or
validation. The intersection of this mask and the fourth parameter to the field
function should be tested for equality against one of the next six flags.

K_NORMAL

A “normal” key caused the cursor to enter or exit the field in question. For field
entry, “normal” keys are NL, TAB, HOME, and EMOH. For field exit, only TAB
and NL are considered “normal.”

Equivalent: if((param4 & K_KEYS)==K_NORMAL)

K_BACKTAB

The BACKTAB key caused the cursor to enter or exit the field.

Equivalent: if((param4 & K_KEYS)==K_BACKTAB)

K_ARROW

An arrow key caused the cursor to enter or exit the field.

Equivalent: if((param4 & K_KEYS)==K_ARROW)

K_SVAL

The field is being validated as part of screen validation.

Equivalent: if((param4 & K_KEYS)==K_SVAL)

Field Functions

128 JAM 7.0 Application Development Guide

K_USER

The field is being validated directly from the application with sm_fval .

Equivalent: if((param4 & K_KEYS)==K_USER))

K_OTHER

A key other than BACKTAB, an arrow key, or a “normal” key caused the cursor to
enter or exit the field. For field entry, “normal” keys are NL, TAB, HOME, and
EMOH. For field exit, only TAB and NL are considered “normal.”

Equivalent: if((param4 & K_KEYS)==K_OTHER)

Returns
Field functions called on entry or exit should return 0 if they leave the cursor
position unchanged. Field functions called for validation should return 0 if the field
contents pass the validation criteria. A non-zero return code in a validation
function should indicate that the field does not pass validation.

If the returned value from a field function is 1, the cursor position remains
unchanged. Any other non-zero return value repositions the cursor to the field.
This repositioning is useful when an entire screen is undergoing validation,
because the field that fails validation might not have the cursor in it. It is generally
good design practice to use the field validation function to reposition the cursor
before you display an error message. This reinforces the link between the error
message and the offending field.

Installation of an Automatic Field Function
You can install only one function as the automatic field function. The following
statement, usually found in funclist.c , includes the automatic field function
auto_ffunc in the fnc_data structure autofld_struct . To see the code for
this function, refer to page 159.

struct fnc_data autofld_struct = SM_OLDFNC(0, auto_ffunc) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs auto_ffunc as the default field function:

sm_install (DFLT_FIELD_FUNC, &autofld_struct, (int *) 0) ;

Installation of Demand Field Functions
You can install multiple functions as demand field functions. The following
statements, usually found in funclist.c , include two all-purpose field entry and

Grid Functions

1298 Hook FunctionsChapter

validation functions fentry and fvalid in the fnc_data structure ffuncs . To
see the code for these functions, refer to page 163.

struct fnc_data ffuncs[] =
{
 SM_OLDFNC(”fentry”, fentry),
 SM_OLDFNC(”fvalid”, fvalid),
};
int fcount = sizeof (ffuncs) / sizeof (struct fnc_data) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs the functions in ffuncs as demand field functions:

sm_install (FIELD_FUNC, ffuncs, &fcount) ;

Grid Functions
You can install one or more demand grid functions that can be called explicitly at
different stages of grid execution:

� Grid entry and exit.

� Grid row entry and exit.

� Grid validation.

JAM can recognize two events as grid entry: when the cursor enters a grid; and
when the screen’s current grid is reactivated because an overlying window closes,
if setup variable EXPHIDE_OPTION is set to ON_EXPHIDE.

On grid entry, JAM first executes the grid’s entry function, then the grid’s row
entry function. The grid row exit and entry functions are repeatedly called each
time the cursor exits the current row and enters another one.

JAM can recognize two events as grid exit: when the cursor leaves a grid; and
when a window overlays the grid’s screen, if setup variable EXPHIDE_OPTION is
set to ON_EXPHIDE. On exit, JAM calls the grid row exit function before it calls
the grid exit function.

Arguments
All grid functions receive three arguments in this order:

� An integer that contains the grid’s base field number—that is, the base field
number of the grid’s leftmost array, whether or not it is hidden or the grid uses
the first row as a title row.

� An integer that contains the occurrence number of the current grid row. This
argument is supplied only to grid row entry or row exit functions; otherwise,
this argument is 0.

Grid Functions

130 JAM 7.0 Application Development Guide

� An integer bitmask that indicates why the function was called.

The last parameter can have one or more flags set. The following sections describe
these flags:

K_ENTRY

The grid function was called on grid entry.

Equivalent: if(param3 & K_ENTRY)

K_EXIT

The grid function was called on grid exit. Note that if neither K_ENTRY nor
K_EXIT are set, the grid is undergoing validation.

Equivalent: if(param3 & K_EXIT)

K_EXPOSE

The grid function was called because a window overlying this grid’s screen opened
or closed:

� K_EXPOSE and K_ENTRY are set: the overlying window closed and the grid is
exposed.

� K_EXPOSE and K_EXIT are set: the overlying window opened and the grid is
hidden.

Equivalent: if(param3 & K_EXPOSE)

K_KEYS

Mask for the flags that tell which keystroke or event caused grid entry, exit, or
validation. The intersection of this mask and the fourth parameter to the grid
function should be tested for equality against one of the next six flags.

K_NORMAL

A “normal” key caused the cursor to enter or exit the grid in question. For grid
entry, “normal” keys are NL, TAB, HOME, and EMOH. For grid exit, only TAB
and NL are considered “normal.”

Equivalent: if((param3 & K_KEYS)==K_NORMAL)

K_BACKTAB

The BACKTAB key caused the cursor to enter or exit the grid.

Grid Functions

1318 Hook FunctionsChapter

Equivalent: if((param3 & K_KEYS)==K_BACKTAB)

K_ARROW

An arrow key caused the cursor to enter or exit the grid.

Equivalent: if((param3 & K_KEYS)==K_ARROW)

K_SVAL

The grid is being validated as part of screen validation.

Equivalent: if((param3 & K_KEYS)==K_SVAL)

K_USER

The grid is being validated directly from the application with sm_fval .

Equivalent: if((param3 & K_KEYS)==K_USER))

K_OTHER

A key other than BACKTAB, an arrow key, or a “normal” key caused the cursor to
enter or exit the grid. For grid entry, “normal” keys are NL, TAB, HOME, and
EMOH. For grid exit, only TAB and NL are considered “normal.”

Equivalent: if((param3 & K_KEYS)==K_OTHER)

Returns

Grid functions return meaningful values only if called as the grid’s validation
function—0 if successful, non-zero if not.

Installation of Demand Grid Functions

You can install multiple functions as demand grid functions. The following
statements, typically found in funclist.c , include two all-purpose grid entry and
exit functions gridEntry and gridExit in the fnc_data structure grdfuncs :

struct fnc_data grdfuncs[] =
{
 SM_INTFNC(”gridEntry”, gridEntry),
 SM_INTFNC(”gridExit”, gridExit),
};
int gcount = sizeof (grdfuncs) / sizeof (struct fnc_data) ;

Group Functions

132 JAM 7.0 Application Development Guide

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c , installs the functions in grdfuncs as demand grid functions:

sm_install (GRID_FUNC, grdfuncs, &gcount) ;

Group Functions
��� calls group functions on entry, exit, and validation of groups. You can install
an automatic group function that JAM invokes on entry, exit, and validation for all
groups. Each group can invoke its own functions for these events through its entry,
exit, and validation hooks. You can specify these hooks in the group’s properties
window, accessed through JAM’s screen editor.

JAM executes the automatic group function on all group events. On entry, JAM
executes the automatic group function before it executes the group’s entry function.
On exit, JAM first calls the group’s exit and validation functions, and then calls the
automatic group function. If the group has a JPL group module, JAM executes this
module only after it executes the group hook functions.

JAM recognizes two events as group entry: when the cursor enters a group; and
when the screen’s current group is reactivated because an overlying window closes.

JAM recognizes two events as group exit: when the cursor leaves a group; and
when a window overlays the group’s screen.

Group validation functions are called under the following conditions:

� As part of group validation, when you exit the group by pressing TAB or
selecting from an autotab group. BACKTAB, arrow keys and mouse clicks
outside the group also cause validation, unless the setup variable IN_VALID is
changed from its default setting to OK_NOVALID.

� As part of screen validation when the user presses XMIT.

� When the application code calls library functions for group validation.

Note that if a group contains a field that has its own validation function, JAM calls
this function when the field is selected. JAM also calls the validation function of a
checklist field when the field is deselected.

Note: It is not advisable to bring up a dialog box, such as a message dialog, from
a group entry function, since opening a screen between a mouse down and a mouse
up event yields undefined results.

Arguments
All group functions receive two arguments:

Group Functions

1338 Hook FunctionsChapter

� A pointer to a null-terminated character string that contains the group’s name.

� An integer bitmask that indicates whether the group has been validated and
why the function was called.

The flags that can be set on a group’s bitmask are the same as for a field. For a
description of these flags, refer to page 126.

Group functions are called for validation whether or not the group has already been
validated. You can test the VALIDED and MDT bits to avoid redundant processing.

Returns
Group functions called on entry or exit should return 0. Group functions called for
validation should return 0 if the group selections pass the validation criteria. A
non-zero return code should indicate that the group failed validation. If the return
value is 1, the cursor position remains unchanged. Any other non–zero return value
repositions the cursor to the group that failed validation.

Installation of an Automatic Group Function
You can install only one function as the automatic group function. The following
statement, usually found in funclist.c , includes the automatic group function
auto_gfunc in the fnc_data structure autogrp_struct . To see the code for
this function, refer to page 164.

struct fnc_data autogrp_struct = SM_OLDFNC(0, auto_gfunc) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs auto_gfunc as the default group function:

sm_install (DFLT_GROUP_FUNC, &autogrp_struct, (int *) 0) ;

Installation of Demand Group Functions
You can install multiple functions as demand group functions. The following
statements, usually found in funclist.c , include two all-purpose group entry and
exit functions gEntry and gExit in the fnc_data structure gfuncs :

struct fnc_data gfuncs[] =
{
 SM_OLDFNC(”gEntry”, gEntry),
 SM_OLDFNC(”gExit”, gExit),
};
int gcount = sizeof (gfuncs) / sizeof (struct fnc_data) ;

Help Function

134 JAM 7.0 Application Development Guide

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs the functions in ffuncs as demand field functions:

sm_install (GROUP_FUNC, gfuncs, &gcount) ;

Help Function

The help function installs a driver to invoke an external help facility such as
WINHELP from your application. This driver gets a single argument from its caller,
which contains a help context identifier. It is the responsibility of the help driver to
pass this identifier to the help facility.

Arguments

The help function gets a single string that contains the help context identifier.

Returns

Returns either PI_ERR_NONE (success) or PI_ERR_NO_MORE (failure).

Installation

You can install only one function as the help function. The following statement,
usually found in funclist.c , include the help function sm_PiXmDynaHook in
the fnc_data structure hlp_struct . To see the code for this function, refer to
page 166.

struct fnc_data hlp_struct = SM_OLDFNC(0, sm_PiXmDynaHook);

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs sm_PiXmDynaHook as the default group function:

sm_install (EXTERNAL_HELP_FUNC, &hlp_struct, (int *) 0);

Timeout Functions

JAM periodically calls the installed timeout functions while the keyboard input
function awaits user input. You can use timeout functions to poll or otherwise

Timeout Functions

1358 Hook FunctionsChapter

manipulate communications resources, or to update the screen display. You can
install multiple timeout functions with different time lapse specifications, measured
in minutes, seconds, or tenths of seconds. JAM calls each timeout function when
its timeout interval elapses

Timeout functions are called from the lowest level of JAM keyboard or mouse
input. When they are installed, the device driver clock on the terminal input device
is set to time out on its character read operation. If JAM does not read any
character in the time interval specified by a timeout function, it calls that function
before it tries to read another character. .

Arguments

Timeout functions get one integer argument that tells why the function was called:

TF_TIMEOUT

No keyboard activity occurred for the amount of time specified by this function’s
timeout interval.

TF_RESTART

Keyboard input was received during execution of the timeout function.

Returns

A timeout functions should return a code that indicates whether JAM should keep
calling the timeout function after each lapse of the timeout interval:

TF_KEEP_CALLING

Keep calling the user function each timeout the interval elapses.

TF_STOP_CALLING

Do not call the timeout function again until keyboard input is received.

Installation

You can install multiple timeout functions. The following statements, usually
found in funclist.c , include a single timeout function screen_saver in the
fnc_data structure timeout_funcs . To see the code for this function, refer to
page 171. The first member of this structure specifies units of measurement:

Key Change Function

136 JAM 7.0 Application Development Guide

TF_TENTHS (tenths of seconds), TF_SECONDS, or TF_MINUTES. The fifth member
specifies the timeout interval as a multiple of these units.

struct fnc_data timeout_funcs[] =
{
 { TF_MINUTES, screen_saver, 0, 0, 10, 0 }
};

int tcount = sizeof (timeout_funcs)
 / sizeof (struct fnc_data) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs the function in timeout_funcs as a timeout function:

sm_install (TIMEOUT_FUNC, timeout_funcs, &tcount) ;

Key Change Function

A key change function can be called whenever JAM reads a key from the
keyboard. You can use key change functions to intercept, process, or translate
keystrokes at the logical key level. Key change functions can be useful alternatives
to using sm_keyoption .

JAM calls the key change function once for each key that it gets from the keyboard
or the playback hook function.

Note: The key change function ignores any keys placed on the input queue by
sm_ungetkey or jm_keys.

Arguments

The key change function gets one integer argument, the JAM logical key that is
read from the keyboard or received from the playback hook function.

Note: The key change function is not called for the following keys: MNBR, ALSYS,
and ALT keys.

Returns

The key change function returns the key to be input into the application by
sm_get_key . If the key change function returns 0, sm_getkey gets the next key
from the keyboard.

Error Function

1378 Hook FunctionsChapter

Installation
You can install only one key change function. The following statement, usually
found in funclist.c , includes key change function keychg in the fnc_data
structure keychg_struct . To see the code for this function, refer to page 171.

struct fnc_data keychg_struct = SM_OLDFNC(0, keychg) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs keychg as the key change function:

sm_install (KEYCHG_FUNC, &keychg_struct, (int *) 0) ;

Error Function
JAM calls the installed error function when it issues an error message—invoked
either by a JAM error or by a call to one of JAM’s error message functions—for
example, sm_fquiet_err , or sm_ferr_reset . You can use the error function
for special error handling—for example, to write all error messages to a log file.

Arguments
The error function gets three arguments in this order:

� The number of the message to display—for JAM messages, as defined in
smerror.h ; for user-defined messages, as defined in user-created message
header files. If the calling function passes a text string to display, this
argument is –1.

� The text of the message to display. If the calling function passes a message
number, this argument is 0.

� Tells whether to display the message in quiet mode: a value of 1 specifies yes,
a value of 0 specifies no.

Returns
If the error function returns 0 to its caller, the calling message function continues
processing. If this function returns a non-zero value, the calling message function
returns immediately.

Installation
You can install only one error function. The following statement, usually found in
funclist.c , includes error function myerr in the fnc_data structure
err_struct .

struct fnc_data err_struct = SM_OLDFNC(0, myerr) ;

Insert Toggle Function

138 JAM 7.0 Application Development Guide

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs myerr as the error function. To see the code for this
function, refer to page 173.

sm_install (ERROR_FUNC, &err_struct, (int *) 0) ;

Insert Toggle Function

JAM calls the insert toggle function when the data entry mode switches between
insert and overstrike mode—for example, when the user chooses Insert. You can
use this hook function to display a message that indicates the current mode.

JAM automatically installs an insert toggle function that changes the cursor style
when the mode is changed. If an application has its own insert toggle function
installed, JAM deinstalls its insert toggle function; the insert toggle function that
you install can call JAM’s insert toggle function directly.

Arguments

This function gets one integer argument, which specifies the new mode:

1 Insert mode

0 Overstrike mode

Returns

The insert toggle function should return 0.

Installation

You can install only one insert toggle function. The following statement, usually
found in funclist.c , includes the insert toggle function inscrsr in the
fnc_data structure keychg_struct . To see the code for this function, refer to
page 174.

struct fnc_data instgl_struct = SM_OLDFNC(0, inscrsr) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs inscrsr as the insert toggle function:

Check Digit Function

1398 Hook FunctionsChapter

sm_install (INSCRSR_FUNC, &instgl_struct, (int *) 0) ;

Check Digit Function

JAM calls the check digit function during validation of any field that is marked for
check digit. A field is marked for check digit on its properties window, which you
access through JAM’s screen editor. You use a check digit function to perform your
own check digit algorithm. If no check digit function is installed, JAM uses the
library function sm_ckdigit , which is distributed in source form.

Because sm_ckdigit source is available, you can implement your own algorithm
by directly modifying this library function and linking it to your application.
However, if your linker does not let you override library functions, you must install
your own check digit function.

Arguments

The check digit function gets these arguments:

� A pointer to a null-terminated string that contains the field contents.

� The occurrence number for the current field.

� The modulus as specified in the screen editor.

� The minimum number of digits as specified in the screen editor.

Returns

The check digit function should return 0 if the field passes check digit validation. If
the function returns a non-zero value, JAM repositions the cursor to the offending
field and the field is not marked as validated.

Installation

You can install only one check digit function. The following statement, usually
found in funclist.c , includes the check digit function ckdigit in the
fnc_data structure ckdgt_struct .

struct fnc_data ckdgt_struct = SM_OLDFNC(0, ckdigit) ;

Initialization and Reset Functions

140 JAM 7.0 Application Development Guide

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs ckdgt as the check digit function:

sm_install (CKDIGIT_FUNC, &ckdgt_struct, (int *) 0) ;

Initialization and Reset Functions
JAM calls the initialization and reset functions on display setup and reset,
respectively. You can use the initialization function to set the terminal type, and the
reset function to handle any cleanup that the application requires on exit.

The initialization function is called from the library function sm_initcrt . It is
called before JAM allocates its own memory structures or sets the physical display.
Unlike other hook functions, the initialization function should be installed before
sm_initcrt is called. Consequently, you cannot place the installation code for
this hook function in the funclist.c function sm_do_uinstalls .

The reset function is called from the library function sm_resetcrt after JAM
releases its memory and resets the physical display. Because JAM’s abort function
sm_cancel calls sm_resetcrt before the application terminates, it calls the reset
function at application exit whether the exit is graceful or not.

Note that you might need to set interrupt handlers to ensure that sm_cancel is
called at all the necessary hardware and software interrupt signals. You should set
these either in the funclist.c function sm_do_uinstalls , or in the function
installed as an initialization function.

Arguments
The initialization function is passed a single argument, a 30-byte character buffer
that contains a null-terminated string mnemonic for the terminal type in use. This
is mainly used for operating systems without an environment. You can use this
function to get the terminal type in some system-specific way.

The reset function is passed no arguments.

Returns
Both the initialization and reset hook functions should return 0.

Installation
You can install only one initialization and one reset function. Initialization
functions are called by sm_initcrt and so must be installed in jmain.c before
the call to sm_initcrt :

Record and Playback Functions

1418 Hook FunctionsChapter

struct fnc_data uninit_struct = SM_OLDFNC(0, uinit) ;
sm_install (UINIT_FUNC, &uinit_struct, (int *) 0) ;

The reset function can be installed like other hook functions in funclist.c . This
function is called from sm_resetcrt , and is consequently called even if the
application terminates abnormally:

struct fnc_data ureset_struct = SM_OLDFNC(0, ureset) ;
sm_install (URESET_FUNC, &ureset_struct, (int *) 0) ;

To see sample initialization and reset functions, refer to page 175.

Record and Playback Functions

JAM provides hooks for recording and playing back keystrokes. You can use this
facility to create simple macros, or to perform regression testing on a JAM
application. Be careful that record and playback functions are not in use simulta-
neously.

sm_getkey calls the record function just before it returns a translated key value to
the application. sm_getkey also calls the playback function in place of a read
from the keyboard.

Note that characters are recorded after the key change function processes them, but
are played back before key change translation; consequently, some key change
functions might prevent accurate playback of recorded keystrokes. See the
description of sm_getkey for more information.

Also note that accurate regression testing might require the playback function to
pause and flush the output, in order to simulate a realistic rate of typing, and to call
a timeout function.

Arguments
The record function gets a single integer argument, the JAM logical key to record.
This key is usually recorded in some fashion for later playback.

The playback function gets no arguments.

Returns
The record function should return 0. The playback function should return the
logical key previously recorded.

Control Functions

142 JAM 7.0 Application Development Guide

Installation
You can install only one record and one playback function. The following
statements, usually found in funclist.c , include the record and playback
functions record and play in the fnc_data structures record_struct and
play_struct , respectively. To see the code for these functions, refer to page 176.

struct fnc_data record_struct = SM_OLDFNC(0, record) ;
struct fnc_data play_struct = SM_OLDFNC(0, play) ;

The following lines of code, usually found in the function sm_do_uinstalls in
funclist.c , install record and play as the record and playback functions:

sm_install (RECORD_FUNC, &record_struct, (int *) 0) ;
sm_install (PLAY_FUNC, &play_struct, (int *) 0) ;

Control Functions
Control functions are called either through control strings or by the call command
in a JPL procedure. Because control functions take only one argument— a pointer
to a copy of the control string that invoked it—you can install as control functions
those functions whose argument list is especially long or complex—for example, a
SQL statement.

All control functions are demand types—that is, they must be explicitly named by
one of the aforementioned callers.

Arguments
A control function receives one argument, a pointer to a copy of the control string
or call command that invoked it. This string is stripped of its leading caret ^ or
call verb. JAM identifies only the first word of the control string as the function
name; the rest of the string can be parsed and used as arguments by the function.

Returns
Control functions can return any integer. You can use the return value for
conditional control branching in a control string’s target lists. If the function
returns a function key that is not a value in the target list, JAM processes the key
and executes its control string, if any.

Installation
You can install multiple functions as control functions. The following statements,
typically found in funclist.c , include two control functions mark_low and

Status Line Function

1438 Hook FunctionsChapter

mark_high in the fnc_data structure mark_funcs . To see the code for these
functions, refer to page 179.

struct fnc_data mark_funcs[] =
{
 SM_OLDFNC(”mark_low”, mark_low),
 SM_OLDFNC(”mark_high”, mark_high),
};
int markcount = sizeof (mark_funcs)
 / sizeof (struct fnc_data) ;

The following line of code, typically found in the function sm_do_uinstalls in
funclist.c , installs the functions in mark_funcs as control functions:

sm_install (CONTROL_FUNC, mark_funcs, &markcount) ;

Status Line Function

JAM calls the status line function just before the status line is flushed or physically
written to the terminal display. Because of delayed write, this might not coincide
with calls to functions that specify message line text. You typically use this
function for terminals that require special status line processing.

Arguments

The status line function gets no arguments. It can access copies of the text and
attributes about to be flushed to the status line through the following calls to JAM
library functions:

stat_text = sm_pinquire(SP_STATLINE);

stat_attr = sm_pinquire(SP_STATATTR);

Note that in the case of the status text and status attribute globals, sm_pinquire
returns a pointer to a temporary copy of the arrays. You should copy these to a save
location before using them.

Returns

If the status line function returns 0, JAM continues its usual processing and writes
out the status line. If the function returns a non-zero value, JAM assumes that the
hook function handles the physical write of the status line.

Video Processing Function

144 JAM 7.0 Application Development Guide

Installation
You can install only one status line function. The following statement, usually
found in funclist.c , includes the status line function statln in the fnc_data
structure stat_struct . To see the code for this function, refer to page 188.

struct fnc_data stat_struct = SM_OLDFNC(0, statln) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs statln as the status line function:

sm_install (STAT_FUNC, &stat_struct, (int *) 0) ;

Video Processing Function

A character-based application can use the video processing function for special
handling of various video sequences. GUI applications ignore the video processing
function. Use your own video processing function only if JAM has no video file
that supports a specific terminal type. JAM’s output function calls the video
processing function just before it displays data on a JAM screen; consequently, this
function should perform only low-level processing.

Video processing functions should not call JAM library functions.

Arguments
The video processing function receives two arguments:

� An integer video processing code defined in the header file smvideo.h and
outlined in Table 17.

� A pointer to an array of integers with parameters for the video processing
code. The number of parameters passed depends on the operation as shown in
Table 17. For video processing codes that require no arguments, supply NULL.

Table 17. Video processing codes

Code Parameters Action

V_ARGR Remove area attribute.

V_ASGR 11 Set area graphics rendition.

V_BELL Visible alarm sequence.

V_CMSG Close message line.

Video Processing Function

1458 Hook FunctionsChapter

Code ActionParameters

V_COF Turn cursor off.

V_CON Turn cursor on.

V_CUB 1 Cursor back (left).

V_CUD 1 Cursor down.

V_CUF 1 Cursor forward (right).

V_CUP 2 Set cursor position (absolute).

V_CUU 1 Cursor up.

V_ED Erase entire display.

V_EL Erase to end of line.

V_EW 5 Erase window to background.

V_INIT Initialization string.

V_INSON Set insert cursor style.

V_INSOFF Set overstrike cursor style.

V_MODE0 Set graphics mode (also V_MODE1,2,3).

V_MODE4 Single character graphics mode (also V_MODE5,6).

V_OMSG Open message line.

V_RCP Restore cursor position.

V_REPT 2 Repeat character sequence.

V_RESET Reset string.

V_SCP Save cursor position.

V_SGR 11 Set latch graphics rendition.

Returns

If the function returns 0, JAM continues with normal processing. If it returns a
non-zero value, JAM assumes that the hook function handled the operation. This
lets you implement only necessary operations.

Database Driver Error Functions

146 JAM 7.0 Application Development Guide

Installation
You can install only one video processing function. The following statement,
usually found in funclist.c , includes the video processing function video in
the fnc_data structure video_struct .

struct fnc_data video_struct = SM_OLDFNC(0, video) ;

The following line of code, usually found in the function sm_do_uinstalls in
funclist.c , installs video as the video processing function:

sm_install (VPROC_FUNC, &video_struct, (int *) 0) ;

Database Driver Error Functions
JAM’s database drivers have three error hook functions that can be used to write
database error handlers: ONERROR, ONENTRY, and ONEXIT. For more information
about using these commands, refer to page 255 in the Application Development
Guide.

Transaction Manager Hook Functions
The transaction manager builds a tree of all the table views that are linked to the
root table view. It traverses this tree to issue transaction manager commands to
each table view or server view. If any of these table views or server views has a
hook function property specified, the transaction manager looks for it among the
installed prototyped functions and calls it.

If the hook function contains processing for the current transaction event, that
processing is completed. If the return code is TM_PROCEED, the transaction
manager then calls the model for the same transaction event. If the return code is
TM_OK, the transaction manager continues to the next table view or the next
transaction event. If the return code is TM_CHECK, TM_CHECK_ONE_ROW, or
TM_CHECK_SOME_ROWS, the transaction manager pushes an event onto the stack to
check for database errors.

For information about writing transaction hook functions, refer to page 384 in the
Application Development Guide.

Arguments
The transaction manager hook functions are passed a single integer argument that
corresponds to the transaction event. Transaction events and their integer values
are listed in tmusubs.h .

Transaction Manager Hook Functions

1478 Hook FunctionsChapter

Returns

Table 18 summarizes possible return codes for transaction manager hook functions:

Table 18. Return codes for transaction manager hook functions

Return value Description

ÁÁTM_OK

ÁÁÁThe event processing succeeded.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTM_FAILURE

ÁÁThe event processing failed.

ÁÁTM_PROCEED

ÁÁAfter completing the hook function, proceed to call
the transaction model for this event, as if this func-
tion had never been called.

ÁÁTM_CHECK

ÁÁÁTest to see if an error occurred. This is used in data-
base-based transaction models to check for SQL
execution errors.

ÁÁTM_CHECK_ONE_ROW

ÁÁÁIn addition to an error test, test that exactly one row
was affected by the processing.

ÁÁTM_CHECK_SOME_ROWS

ÁÁÁIn addition to an error test, test that one or more rows
were affected by the processing.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁTM_UNSUPPORTED

ÁÁThe event was not recognized.

Installation

You can specify a transaction manager hook function for each table view or server
view in the screen. With the table view selected, enter the name of the hook
function in the Database category’s Function property. Note that if the hook
function affects the SQL generation of SELECT statements, the hook function must
be entered on the appropriate server view.

The hook function itself can be either a JPL procedure or C function that is
installed in the prototyped function list.

Errors

When a screen is opened, the transaction manager reports an error if the hook
function cannot be found. As a result of this error, the transaction manager does not
start its transaction.

Sample Hook Functions

148 JAM 7.0 Application Development Guide

Sample Hook Functions

The following sections show sample code for commonly used hook function types.

Prototyped

This section has two sample functions:

� mark_flds gets a range of values and highlights all fields whose data is
within that range.

� report generates a report whose type and output device vary according to the
supplied arguments.

mark_flds gets a range of values and highlights all fields whose data is within
that range. This function takes two integer arguments which specify the low and
high ends of the range. If the first argument is less than the second, all fields on the
screen with numeric values between the two arguments are temporarily high-
lighted. If the first argument is greater than the second, all fields on the screen with
numeric values that are not between the two fields are highlighted.

For example, this control string highlights all values on the screen between zero
and 500:

^mark_flds (0, 500)

The next control string highlights all values on the screen that are greater than 1000
or less than -300:

^mark_flds (1000, –300)

The following code comprises the entire mark_flds function.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */

/* Macro Definitions... */
/* Attributes used to mark fields */
#define MARK_ATTR REVERSE | HILIGHT | BLINK

int
mark_flds (bound1, bound2)
int bound1 ; /* First Boundary on fields to mark */
int bound2 ; /* Second Boundary on fields to mark */

Example 1

Sample Hook Functions

1498 Hook FunctionsChapter

{
 int fld_num ; /* Field Number */
 char *fld_data; /* Field Data */
 double fld_val ; /* Field Value */
 int num_of_flds ;/* Number of Fields */
 int *old_attrib ;/* Array of old attributes */

 /* Determine number of fields */
 num_of_flds = sm_inquire (SC_NFLDS) ;

 /* Allocate memory for attribute array */
 old_attrib = (int *)calloc (num_of_flds,
 sizeof (int)) ;

 /* Cycle through all the fields on the screen */
 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Store away old attributes */
 old_attrib[fld_num–1] =
 sm_finquire (fld_num, FD_ATTR) ;

 /* Make sure it is a field with numbers */
 fld_data = sm_strip_amt_ptr (fld_num, NULL) ;
 if (! *fld_data) continue ;

 /* Create a double from it */
 fld_val = sm_dblval(fld_num) ;

 /* See if fld_val is in bounds */
 if (bound1 <= bound2)
 {
 /* Mark fields between bounds. */
 if ((fld_val >= (double)bound1) &&
 (fld_val <= (double)bound2))
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }
 }
 else
 {
 /* Mark fields outside bounds. */
 if ((fld_val >= (double)bound1) ||
 (fld_val <= (double)bound2))
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }
 }
 }

Sample Hook Functions

150 JAM 7.0 Application Development Guide

 /* Wait for acknowledgement */
 sm_err_reset (”Hit <space> to continue”) ;

 /* Cycle again through all the fields on the screen */
 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Reset field attributes */
 sm_chg_attr (fld_num,
 old_attrib[fld_num – 1]) ;
 }

 /* Release memory */
 free ((char *)old_attrib) ;

 return (0) ;
}

report generates a report whose type and output device vary according to the
supplied arguments. This function takes two string arguments:

� The first argument specifies the report type with one of these values: field ,
screen , wstack , or term .

� The second argument specifies where to output the report. If you supply a null
string, the requested report is shown in a message window. For example, the
following control string causes a field report to pop up in a message window:

^report(”field”, ””)

If the second argument starts with an exclamation point (!), the remainder is
interpreted as an operating system command. The report is created in a temporary
file, and the name of the file is passed as an argument to the operating system
command. If a tilde (~) is embedded in the command, the name of the temporary
file is substituted for the tilde, otherwise the name is just appended at the end.
These two control strings both cause a screen report to print on a UNIX system:

^report (”screen”,”!lp –c –s”)
^report (”screen”, ”!date | cat – ~ | lp –s”)

If the second argument starts with a vertical bar (|), the remainder is also
interpreted as an operating system command. In this case, however, the report is
piped into the standard input of that command. This control string prints out the
last twenty lines of a window stack report on a UNIX system:

^report (”wstack”, ”| tail | lp –s”)

Finally, if the second argument is a valid file name, the report is appended to the
named file. This control string causes a display terminal report to be appended to
the file report.fil :

Example 2

Sample Hook Functions

1518 Hook FunctionsChapter

^report(”term”, ”report.fil”)

The following code comprises the entire report function.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */

int
report (report_type, report_out)
char *report_type ; /* Type of report: field, screen,
 wstack, or term. */
char *report_out ; /* Output designation. */
{
 char *fn = NULL ; /* Name of output file */
 char *ptr, *ptr1 ; /* Character pointers */
 char msg_buf[128]; /* Message buffer */
 FILE *fp ; /* File pointer for output */
 int size ; /* Size of output file */
 int cur_no ; /* Current field number */
 int select ; /* Current window stack index */

 /* If an output designation was made... */
 if (report_out && *report_out)
 {
 /* Based on what output type we designated: */
 switch (*report_out)
 {
 case ’!’ :
 /* OS command. Open temp file */
 fn = tempnam (NULL, ”rprt”) ;
 fp = fopen (fn, ”w”) ;
 break ;

 case ’|’ :
 /* Pipe. Open the pipe */
 fp = popen (report_out + 1,
 ”w”) ;
 break ;

 default :
 /* Other. Open the file */
 fp = fopen (report_out, ”a+”) ;
 break ;
 }

 /* If we could not open the file, show error */
 if (! fp)
 {
 sprintf (msg_buf,

Sample Hook Functions

152 JAM 7.0 Application Development Guide

 ”Cannot open stream for %s.”,
 report_out) ;
 sm_err_reset (msg_buf) ;
 return (–1) ;
 }
 }

 /* If no report output specified, open temp file for
 storing message window stuff. */
 else
 {
 fn = tempnam (NULL, ”rprt”) ;
 fp = fopen (fn, ”w+”) ;
 report_out = ”” ;
 }

 fprintf (fp, ” \n \nREPORT TYPE: %s \n”, report_type) ;

 /* Now, based on the report_type, which is the name
 with which the function was invoked, create
 the reports. Note that all newlines are
 preceded with spaces, this is so that in the
 case of the message windows we can replace
 all space–newlines with %N, the newline
 indicator for JAM windows. */
 switch (*report_type)
 {
 case ’F’:
 case ’f’:
 /* Output a field report */
 fprintf (fp, ” \nField Report: \n”) ;

 /* Field Identifier and contents */
 cur_no = sm_getcurno ();
 fprintf (fp, ”\tFIELD: %d (%s[%d]) = %s \n”,
 cur_no,
 sm_name (cur_no),
 sm_occur_no (),
 sm_fptr (cur_no)) ;

 /* Field sizes */
 size = sm_finquire (cur_no, FD_LENG) ;
 fprintf (fp, ”\tLENGTH: onscreen: %d ”
 ”Max: %d \n”,
 size, sm_finquire (cur_no,
 FD_SHLENG)
 + size) ;

 fprintf (fp, ”\t# OCCURRENCES: onscreen: %d ”
 ”Max: %d \n”,

Sample Hook Functions

1538 Hook FunctionsChapter

 sm_finquire (cur_no, FD_ASIZE),
 sm_max_occur (cur_no)) ;

 break;

 case ’S’:
 case ’s’:
 /* Output screen report */
 fprintf (fp, ” \n \nScreen Report: \n”) ;

 /* Screen Name */
 fprintf (fp, ”\tSCREEN: %s \n”,
 sm_pinquire (SP_NAME)) ;

 /* How much of screen is visible */
 fprintf (fp, ”\t%% VISIBLE IN VIEWPORT: %d \n”,
 100 *
 (sm_inquire (SC_VNLINE) *
 sm_inquire (SC_VNCOLM)) /
 (sm_inquire (SC_NCOLM) *
 sm_inquire (SC_NLINE))) ;

 break ;

 case ’w’:
 case ’W’:
 /* Output Window stack report */
 fprintf (fp, ” \n \nWindow Stack Report: \n”) ;

 /* Cycle through all the windows. */
 for (select = 0 ;
 sm_wselect (select) == select ;
 select++)
 {
 /* Window number... */
 fprintf (fp, ” \n\tWindow %d: \n”,
 select) ;

 /* Screen name */
 fprintf (fp, ”\t\tScreen: %s \n”,
 sm_pinquire (SP_NAME)) ;

 /* Number of fields and groups */
 fprintf (fp, ”\t\t# of Fields: %d ”
 ”# of Groups: %d \n”,
 sm_inquire (SC_NFLDS),
 sm_inquire (SC_NGRPS)) ;

 sm_wdeselect () ;
 }

Sample Hook Functions

154 JAM 7.0 Application Development Guide

 sm_wdeselect () ;

 break ;

 case ’T’:
 case ’t’:
 /* Output display terminal report */
 fprintf (fp, ” \n \nTerminal Report: \n”) ;

 /* Terminal Type */
 fprintf (fp, ”\tTERM TYPE: %s \n”,
 sm_pinquire (P_TERM)) ;

 /* Display mode */
 if (sm_inquire (I_NODISP))
 fprintf (fp, ”\tDISPLAY OFF \n”) ;
 else
 fprintf (fp, ”\tDISPLAY ON \n”) ;

 /* Input mode */
 if (sm_inquire (I_INSMODE))
 fprintf (fp, ”\tINSERT MODE \n”) ;
 else
 fprintf (fp, ”\tTYPEOVER MODE \n”) ;

 /* Block mode */
 if (sm_inquire (I_BLKFLGS))
 fprintf (fp, ”\tBLOCK MODE \n”) ;

 /* Physical display size */
 fprintf (fp, ”\tDISPLAY SIZE: %d x %d \n”,
 sm_inquire (I_MXLINES),
 sm_inquire (I_MXCOLMS)) ;

 break;

 default:
 /* Unrecognized report type */
 fprintf (fp, ”\tIllegal Report Type \n \n”) ;
 return (–3) ;
 }

 /* Once again, based on the type output... */
 switch (*report_out)
 {
 case ’|’ :
 /* It was a pipe, so close it. */
 pclose (fp) ;
 sm_err_reset (”Pipe successful”) ;
 break ;

Sample Hook Functions

1558 Hook FunctionsChapter

 case ’!’ :
 /* It was an O/S command. Close file... */
 fclose (fp) ;

 /* Gobble up the exclamation point */
 report_out++;

 /* Look for tildes */
 if (ptr = strchr (report_out, ’~’))
 {
 /* Found the tilde. Substitute the
 file name for it. */
 *ptr = ’\0’;
 sprintf (msg_buf, ”%s%s%s”,
 report_out, fn, ptr+1) ;
 }
 else
 {
 /* No tilde. Append file name to
 O/S command. */
 sprintf (msg_buf, ”%s %s”,
 report_out, fn) ;
 }

 /* Do the command. */
 system (msg_buf) ;

 /* Delete temp file and free its name. */
 remove (fn) ;
 free (fn) ;
 sm_err_reset (”Command Invoked”) ;
 break ;

 case ’\0’:
 /* Message window. Get size of file... */
 size = ftell (fp) ;

 /* Allocate memory for it. */
 ptr = malloc (size + 1) ;

 /* Rewind the file */
 fseek (fp, SEEK_SET, 0) ;

 /* Read it into the malloced buffer. */
 fread (ptr, sizeof (char), size, fp) ;

 /* Close and delete file, free file name */
 fclose (fp) ;
 remove (fn) ;

Sample Hook Functions

156 JAM 7.0 Application Development Guide

 free (fn) ;

 /* null terminate memory buffer of report */
 ptr[size] = ’\0’;

 /* Replace all space–newlines with %N */
 for (ptr1 = ptr ;
 ptr1 = strchr (ptr1, ’\n’) ;
 ptr1++)
 {
 ptr1[–1]=’%’;
 ptr1[0]=’N’;
 }

 /* Pop up the message window */
 sm_message_box
 (ptr, 0, SM_MB_OK|SM_MB_ICONNONE, 0) ;

 /* Free up the malloced buffer. */
 free (ptr) ;
 break ;

 default :
 /* File appended, just close it. */
 fclose (fp) ;
 sm_err_reset (”File appended”) ;
 break ;
 }
 return (0) ;
}

Automatic Screen

The following screen function, intended as the application’s automatic screen
function, maintains information on how long screens are open, and the total
amount of time they are active. Note the use of the P_USER pointer, a general
purpose pointer that you can manipulate, which JAM associates with an open
screen.

This function keeps track of the length of time that the user has spent with a screen
open and active. It is intended to be installed as the default screen function for an
application. Note that in the example, the times are shown on the status line, but
they could be logged to a file for time management analysis.

For this function to operate correctly, the setup variable EXPHIDE_OPTION must be
set to ON_EXPHIDE, so JAM calls hook functions on screen overlay and
reexposure.

Sample Hook Functions

1578 Hook FunctionsChapter

The time() call used in this function is ANSI C. On UNIX platforms it returns the
number of seconds elapsed since January 1, 1970, GMT.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */
#include <time.h> /* ANSI time() Header File */

/* Data structure to hold aggregate times by screen */
struct my_info
{
 time_t opentime ; /* Time screen was opened */
 time_t acttime ; /* Time screen was activated */
 double usedtime; /* Aggregate time active */
 double totaltime ;/* Aggregate time open */
};

int
auto_sfunc (name, context)
char *name ; /* Screen Name */
int context ; /* Context for function call */
{
 struct my_info *my_info_ptr ; /* Time buf pointer */
 char *action_verb = /* Text of context */
 ”inspecting” ;
 time_t current_time ;
 int do_free = 0 ; /* Flag, set to free
 memory */
 char msg_buf[128] ; /* Message buffer */

 /*
 * We make assumptions here: screens that are not named
 * are unimportant and should not have logging done.
 * This will exclude dynamically created message
 * windows.
 */
 if ((! name) || (! *name))
 {
 return (0) ;
 }

 /* Get the current time. (ANSI Standard call) */
 current_time = time ((time_t *)0) ;

 /* Get the pointer to time structure
 associated with this screen */
 my_info_ptr = (struct my_info *)sm_pinquire (P_USER) ;

 /* Figure out which context we are called in. */
 if (context & K_ENTRY)

Sample Hook Functions

158 JAM 7.0 Application Development Guide

 {
 if (context & K_EXPOSE)
 {
 /*
 * Screen exposed (activated) when
 * overlying window was closed.
 * Set context string verb and
 * add to the aggregate open time.
 */
 action_verb = ”activating” ;
 my_info_ptr–>totaltime =
 my_info_ptr–>totaltime +
 difftime (current_time,
 my_info_ptr–>opentime) ;

 }
 else
 {
 /* Screen opened. */
 action_verb = ”opening” ;

 /* Allocate memory for time structure */
 my_info_ptr =
 (struct my_info *)
 malloc (sizeof (
 struct my_info)) ;
 if (! my_info_ptr)
 {
 sm_err_reset (”No memory”) ;
 sm_cancel (0) ;
 }

 /* Associate the buffer with screen */
 sm_pset (P_USER, (char *)my_info_ptr) ;

 /* Set initial time values */
 my_info_ptr–>opentime = current_time ;
 my_info_ptr–>usedtime = 0 ;
 my_info_ptr–>totaltime = 0 ;
 }

 /* Set initial value of aggregate active time */
 my_info_ptr–>acttime = current_time ;
 }
 else
 {
 if (context & K_EXPOSE)
 {
 /* Screen overlaid with window. */
 action_verb = ”deactivating” ;

Sample Hook Functions

1598 Hook FunctionsChapter

 }
 else
 {
 /* Screen closed. */
 action_verb = ”closing” ;
 /* Set flag to free the time structure */
 do_free = 1 ;
 }
 /* Calculate new aggregates. */
 my_info_ptr–>usedtime =
 my_info_ptr–>usedtime +
 difftime (current_time,
 my_info_ptr–>acttime) ;

 my_info_ptr–>totaltime =
 my_info_ptr–>totaltime +
 difftime (current_time,
 my_info_ptr–>opentime) ;
 }

 /* Format the message. */
 sprintf (msg_buf, ”Now %s screen %s.”
 ” Seconds active: %.1f.”
 ” Seconds open: %.1f.”,
 action_verb, name,
 my_info_ptr–>usedtime,
 my_info_ptr–>totaltime) ;

 /* If time structure memory should be freed, free it. */
 if (do_free)
 {
 free (my_info_ptr) ;
 }

 /* Output the message. Could be to log file,
 here it is to stat line */
 sm_err_reset (msg_buf) ;

 return (0) ;
}

Automatic Field
This section has two sample functions:

� auto_ffunc puts general information about the current field on the status
line.

� memoval uses a field’s memo edits to pass non-standard information to that
field’s automatic field function.

Sample Hook Functions

160 JAM 7.0 Application Development Guide

This function puts general information about the current field on the status line.
This function is installed as the automatic field function in a JAM application; it is
called on entry, exit, and validation for all fields.

On field entry, the function places information about the field on the status line:its
name, if any, number, and occurrence offset. If the field is a selected member of a
group—for example, radio buttons or checklists—the status line shows the text of
the selected field, the group name, and the group occurrence.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */

int
auto_ffunc (f_number, f_data, f_occurrence, context)
int f_number ; /* Field Number */
char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int context ; /* Context Bits */
{
 char *f_name ; /* Field Name */
 char *g_name ; /* Group Name */
 char *slct ; /* selected or deselected */
 int g_occurrence ; /* Group Number */
 char stat_line[128];/* Status line string */

 /* If called on field exit, clear the status line. */
 if (context & K_EXIT)
 {
 sm_setbkstat (””, WHITE) ;
 }

 /* If called on entry, format and display status line */
 else if (context & K_ENTRY)
 {
 /* Obtain the field name */
 f_name = sm_name (f_number) ;

 /* Format the status line */
 if (f_name && *f_name)
 sprintf (stat_line, ”Current Field: ”
 ”%s[%i] (#%i[%i])”,
 f_name, f_occurrence,
 f_number, f_occurrence) ;
 else
 sprintf (stat_line,
 ”Current Field: #%i[%i]”,
 f_number, f_occurrence) ;

 /* Display the status line */
 sm_setbkstat (stat_line, BLUE | HILIGHT) ;

Example 1

Sample Hook Functions

1618 Hook FunctionsChapter

 }

 /*
 * If we get here, it is neither entry nor exit so it must
 * be validation. In this case, see if the field is the
 * member of a group. If it is, the validation function
 * was called because the field was selected, or in the
 * case of checklists, deselected. Note that
 * menu selection events will not be flagged, because
 * menus are not groups.
 */
 else if (g_name = sm_o_ftog (f_number,
 f_occurrence,
 &g_occurrence))
 {
 /* Determine if selected or deselected */
 if (sm_isselected (g_name, g_occurrence))
 slct = ”selected” ;
 else
 slct = ”deselected” ;

 /* Format and print status line message */
 sprintf (stat_line, ”\”%s\” %s, group %s[%d]”,
 f_data, slct, g_name, g_occurrence) ;

 sm_setbkstat (stat_line, BLUE | HILIGHT) ;
 }

 /* Return code of zero means that everything is fine. */
 return (0) ;
}

This second example of an automatic field function shows how to use a field’s
memo edits to pass non-standard information to that function. This function
validates each field against the contents of its memo edits.

This function is to be installed as a non-prototyped field validation function in a
JAM application, either on the FIELD_FUNC list or as the DFLT_FIELD_FUNC.

The function validates fields according to a list of values that are found in the first
memo text edit. Possible values in the memo text edit are separated by spaces.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */

int
memoval (f_number, f_data, f_occurrence, context)
int f_number ; /* Field Number */

Example 2

Sample Hook Functions

162 JAM 7.0 Application Development Guide

char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int context ; /* Context Bits */
{
 char *memo_text ; /* Memo text string */
 char *token_ptr ; /* Token */
 char msg[128] ; /* message string */

 /* If called on field entry or exit, or if already
 validated, or if empty, just exit right off. */
 if ((context & K_EXIT) ||
 (context & K_ENTRY) ||
 (context & VALIDED) ||
 (! *f_data))
 {
 return (0) ;
 }

 /* Get the first memo text edit string. */
 if (! (memo_text = sm_edit_ptr (f_number, MEMO1)))
 {
 /* There is no memo text edit string. */
 return (0) ;
 }

 /* Duplicate the string. (Note: pass over the two length
 bytes returned by sm_edit_ptr) */
 if (! (memo_text = strdup (memo_text + 2)))
 {
 /* Memory allocation error. */
 return (0) ;
 }

 /* Cycle down the memo text string grabbing tokens.
 If we have a match, break out of loop. */
 for (token_ptr = strtok (memo_text, ” ”) ;
 token_ptr && strcmp (token_ptr, f_data) ;
 token_ptr = strtok (NULL, ” ”)) ;

 /* Free up memory. */
 free (memo_text) ;

 /* If we found matching token, validate OK. */
 if (token_ptr)
 return (0) ;

 /* Error condition. Create error string. */
 sprintf (msg, ”Invalid value %s in field. ”
 ”Valid values are: %s.”, f_data,
 sm_edit_ptr (f_number, MEMO1) + 2) ;

Sample Hook Functions

1638 Hook FunctionsChapter

 sm_ferr_reset (0, msg) ;

 /* Return and reset cursor. */
 return (2) ;
}

Demand Field
The following local field hook functions can be called by individual fields to
perform initialization and validation based on external criteria:

Two field functions to include on the field function list are defined here. The first
one, fentry , initializes the value in a field provided that it has not changed since
the screen was opened. The second one, fvalid , validates the contents of a field.
The functions that retrieve the initialization data and lookup the validation data are
externally defined and are application-specific.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */

/* Externally defined functions */
extern char *do_my_initialize () ; /* Get data for field
 initialization */
extern int my_lookup () ; /* Lookup data for field
 validation */
int
fentry (f_number, f_data, f_occurrence, f_context)
int f_number ; /* Field Number */
char *f_data ; /* Field Data */
int f_occurrence ; /* Array Index */
int f_context ; /* Context bits */
{
 /* Initialize if the field has not been modified
 since the screen was opened. */
 if (! (f_context & MDT))
 {
 sm_putfield (f_number, do_my_initialize ()) ;
 }

 return (0) ;
}

int
fvalid (f_number, f_data, f_occurrence, f_context)
int f_number ; /* Field Number */
char *f_data ; /* Field Contents */
int f_occurrence ; /* Occurrence number for field */
int f_context ; /* Context bitmask */

Sample Hook Functions

164 JAM 7.0 Application Development Guide

{
 char msg_buf[80];/* Message line buffer */

 /* If the field is already valid, merely return. */
 if (f_context & VALIDED)
 return (0) ;

 /* If the field is invalid based on external
 lookup, return error. */
 if (my_lookup (f_data))
 {
 /* Error, so reposition field. */
 sm_gofield (f_number) ;

 sprintf (msg_buf, ”Invalid data %s.”, f_data) ;
 sm_ferr_reset (0, msg_buf) ;

 /* Return code of 1 indicates validation fail */
 return (1) ;
 }
 return (0) ;
}

Automatic Group

The group function auto_gfunc is installed as the automatic group function—that
is, a function that is called whenever group entry, exit, or validation occurs. On
entry, this function installs the keychange function keychg , which lets users select
group fields by pressing the X key. On group exit, auto_gfunc deinstalls
keychg.

Note that preexisting keychange functions should be stacked by auto_gfunc .
keychg also chains existing keychange functions along, but it is assumed that they
are written in C. Preexisting keychange functions in some other supported 3GL
language may not be properly chained by this function.

For a more extended example of keychange functions, see page 171.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smkeys.h” /* screen manager Logical Keys */

static int keychg () ;
static struct fnc_data o_keychg ; /* Old keychg */
static struct fnc_data *fnc_ptr ; /* Hook Pointer */
static struct fnc_data keychg_struct/* New keychg */
 = { 0, keychg, 0, 0, 0, 0 };

Sample Hook Functions

1658 Hook FunctionsChapter

int
auto_gfunc (name, context)
char *gp_name ; /* Group Name */
int context ; /* Context bits */
{
 /* If called on group entry.... */
 if (context & K_ENTRY)
 {
 /* Install the new keychange function */
 fnc_ptr = sm_install (KEYCHG_FUNC,
 &keychg_struct,
 (int *)0) ;

 /* If there was an old one, store it away. */
 if (fnc_ptr)
 {
 memcpy ((char *)&o_keychg,
 (char *) fnc_ptr,
 sizeof (struct fnc_data)) ;
 }
 else
 {
 memset ((char *)&o_keychg, 0,
 sizeof (struct fnc_data)) ;
 }
 }
 /* If called on group exit...... */
 else if (context & K_EXIT)
 {
 /* If there was an old keychange function */
 if (fnc_ptr)
 {
 /* Re–install it. */
 sm_install (KEYCHG_FUNC, &o_keychg,
 (int *)0) ;
 }
 else
 {
 /* Get rid of the current one anyway. */
 sm_install (KEYCHG_FUNC, NULL,
 (int *) 0) ;
 }
 }

 return (0) ;
}

static int
keychg (key)

Sample Hook Functions

166 JAM 7.0 Application Development Guide

int key ;
{
 /* If there was an old keychange function */
 if (o_keychg.fnc_addr)
 {
 /* Chain the old keychange function. */
 key = (o_keychg.fnc_addr)(key) ;

 /* WARNING: This is not completely general, since
 old keychange functions not written in C
 may not be called properly. */
 }

 /*
 * Now do the new keychange. Basically, we want to select
 * group members by typing ”x”, move the cursor to the
 * next group member immediately after selection, and have
 * the NL key move to the next selection.
 */
 switch (key)
 {
 case ’x’ :
 case ’X’ :
 key = NL ;
 break ;

 case NL :
 key = ’ ’ ;
 break ;
 }

 return (key) ;
}

External Help
sm_PiXmDynaHook is a help function that JAM uses to invoke its own help
facility, created with Dynatext . Use the External Help Tag property of screens,
menus, and screen-resident widgets to specify help context identifiers. This
identifier is passed to the help function when the user invokes help from an
application component.

The following help driver is supplied with JAM; it invokes context-sensitive help
from the screen editor.

/*** sample client code for dyna help server ***/
/** Includes **/
#include ”smmach.h”
#include ”smproto.h”

Sample Hook Functions

1678 Hook FunctionsChapter

#include ”smxmuser.h”
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <sys/wait.h>
#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <X11/StringDefs.h>
#include ”xmhelphk.h”

/* typedef */
typedef struct PiXmDynaPath_s PiXmDynaPath_t;
struct PiXmDynaPath_s
{

char *pszDynaCollection;
char *pszDynaBook;

};

/** statics **/
static Atom xaServer = (Atom)0;
static Atom xaRequest = (Atom)0;
static PiXmDynaPath_t dynaPath = {NULL, NULL};

static XtResource xresDyna[] =
{

{ ”helpPath”, ”HelpPath”, XtRString, sizeof(char *),
 XtOffsetOf(PiXmDynaPath_t, pszDynaCollection),

XtRString,
 ”/u/apps/ebt22” },
{ ”editorHelpFile”, ”EditorHelpFile”, XtRString,

sizeof(char *), XtOffsetOf
(PiXmDynaPath_t, pszDynaBook), XtRString, ”editors” },

};

int sm_PiXmDynaHook PROTO((char *));
static int PiXmInitHelp PROTO((Display *));
static void PiXmSendMsg PROTO((Display *, Window, char *));

/*
NAME

The Hook function to the Dyna Server. Takes ”Tag” string
and makes a help server request. However if the ”Tag” is
the string ”SM_RESERVED_QUIT_TAG” then server is killed.

SYNOPSIS
iRetVal = sm_PiXmDynaHook(pszTag);
char *pszTag; The ”Tag” identification string
int iRetVal;

Sample Hook Functions

168 JAM 7.0 Application Development Guide

DESCRIPTION
0) If tag is ”SM_RESERVED_QUIT_TAG” the quit. Otherwise.
1) Get the path of the help file
2) Initialize the server (if needed)
3) Build the server request
4) send the request

RETURNS
Returns

PI_ERR_NONE on success
PI_ERR_NO_MORE on failure

*/
int
sm_PiXmDynaHook PARMS((pszTag))
LASTPARM(char *pszTag)
{

char pszMessage[512];
Display *dpy = sm_xm_get_display();
Boolean bQuiting = strcmp(pszTag, ”SM_RESERVED_QUIT_TAG”);

if (dynaPath.pszDynaBook == NULL)
{

XtGetApplicationResources(sm_xm_get_base_window(),
&dynaPath, xresDyna, XtNumber(xresDyna), NULL, 0);

}

if (!PiXmInitHelp (dpy))
return(PI_ERR_NO_MORE);

sprintf(pszMessage,
”command=ebt–link collection=%s book=%s
target=ancestor(ancestor(idmatch(’Tagname’,’%s’)))
stylesheet=fulltext.v showtoc=true”,
dynaPath.pszDynaCollection, dynaPath.pszDynaBook,
pszTag);

PiXmSendMsg (dpy, DefaultRootWindow(dpy), pszMessage);
return(PI_ERR_NONE);

}

/*
NAME

PiXmInitHelp – Start the server if needed. Set server
atoms.

SYNOPSIS
iRetVal = PiXmInitHelp(dpy);
Display *dpy;
int iRetVal;

DESCRIPTION
 Start the server if needed. Set the server atoms.

Sample Hook Functions

1698 Hook FunctionsChapter

RETURNS
Returns

PI_ERR_NONE on success
PI_ERR_NO_MORE on failure

*/
static
int
PiXmInitHelp PARMS((display))
LASTPARM(Display *display)
{

int iPid;
int iDummy;
char *pszShellPath; /* pointer to SHELL environment var */
char *pszShell; /* the last segment of the path */
void (*pfuncIntr)(), (*pfuncQuit)(), (*pfuncTstp)();
char *server_name = ”SM_JAM_DYNA_HELP_SERVER”;
char *selection_name = ”SM_JAM_DYNA_HELP_SELECTION”;
char *request_name = ”SM_JAM_DYNA_HELP_REQUEST”;
int iRetVal = 1;
static Boolean bCreatedServer = FALSE;

XInternAtom (display, selection_name, False);
xaServer = XInternAtom (display, server_name, False);

if (!bCreatedServer)
XSetSelectionOwner(display, xaServer, None,
CurrentTime);

if ((!bCreatedServer) || XGetSelectionOwner(display,
xaServer) == None)

{

#ifdef SIGTSTP
#define SIGNAL(a,b) signal(a,b)

pfuncTstp = SIGNAL(SIGTSTP, SIG_DFL);
#else
#define SIGNAL(a,b)
#endif

/* see if there is a SHELL variable */
pszShellPath = getenv (”SHELL”);

if (!pszShellPath || !pszShellPath[0])
pszShellPath = ”/bin/sh”;

if (!(iPid = fork()))
{

pszShell = strrchr(pszShellPath, ’/’);
if (!pszShell || !pszShell[1])

pszShell = pszShellPath;

execlp (pszShellPath, pszShell, ”–c”,
”xmjxhelp”, (char *)0);

Sample Hook Functions

170 JAM 7.0 Application Development Guide

exit (–1);
}

}

bCreatedServer = TRUE;

pfuncIntr = signal(SIGINT, SIG_IGN);
pfuncQuit = signal(SIGQUIT, SIG_IGN);

while (XGetSelectionOwner(display, xaServer) == None)
{

if(waitpid(iPid, &iDummy, WNOHANG))
{

/* server failed */
iRetVal = PI_ERR_NO_MORE;
break;

}
else
{

sleep(1);
}

}

signal (SIGINT, pfuncIntr);
signal (SIGQUIT, pfuncQuit);
SIGNAL (SIGTSTP, pfuncTstp);

xaRequest = XInternAtom(display, request_name, False);
return(iRetVal);

}

/*
NAME

PiXmSendMsg – Send the msg request to the help server.

SYNOPSIS
PiXmSendMsg(dpy, xwin, pszMsg);
Display *dpy;
Window xwin;
char *pszMsg;

DESCRIPTION
Send the msg request to the help server.

*/

static
void
PiXmSendMsg PARMS((dpy, xwin, pszMsg))
PARM(Display *dpy)
PARM(Window xwin)
LASTPARM(char *pszMsg)
{

Sample Hook Functions

1718 Hook FunctionsChapter

XChangeProperty(dpy, xwin, xaRequest, XA_STRING, 8,
PropModeReplace, (unsigned char *) pszMsg,

strlen(pszMsg)+1);
XConvertSelection(dpy, xaServer, XA_STRING, xaRequest,

xwin, CurrentTime);
XFlush(dpy);

}

Timeout
screen_saver is a timeout function that acts as a screen saver that is invoked
after ten minutes of keyboard inactivity. The same function restores the screen
when a key is typed.

/* Include files */
#include ”smdefs.h”

int screen_saver(int why_called)
{
 if (why_called == TF_TIMEOUT) /*clear the screen
 after timeout */
 {
 sm_clrviscreen ();
 }
 else if (why_called == TF_RESTART) /*restore screen
 after key hit */
 {
 sm_rescreen ();
 }

 /* Returning STOP_CALLING means this function is not
 * called again every ten minutes
 */

 return (TF_STOP_CALLING)
}

Key Change
The following key change function intercepts each occurrence of the user entering
an exclamation point or striking the EXIT key.

This application keychange function causes sm_getkey to intercept two keys, the
exclamation point and the logical EXIT key. When the user types an exclamation
point, this function asks if an operating system shell is wanted. If so, a shell is
provided. If the user types EXIT, the function ensures that the user really wants to
EXIT before returning the EXIT back to sm_getkey .

Sample Hook Functions

172 JAM 7.0 Application Development Guide

Note that if the user escapes to the shell or does not want to EXIT, the keychange
function swallows the keystroke. If the user does not want the shell or wants to
EXIT, the keystroke is passed back to sm_getkey .

Note also preprocessor directives on whether or not the JAM executive is in use. If
the JAM executive is in use, we do not query about the EXIT if there are control
strings associated with EXIT. Also, we can use the standard JAM operating system
escape.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smkeys.h” /* screen manager Logical Keys */

#define EXIT_CONFIRM ”Do you want to EXIT? (y/n)”
#define SHELL_CONFIRM ”Do you want to go to OS? (y/n)”

int keychg (int the_key)/* Key read from keyboard by
 * sm_getkey */
{
 static int recursive ; /* Flag ensuring no recursion. */

 /* First ensure that we are not called recursively */
 if (recursive) return (the_key) ;

 /* Set recursive flag */
 recursive++ ;

 /* Based on the key read from the keyboard..... */
 switch (the_key)
 {
 case EXIT:
 /*
 * If the read key is an EXIT, make sure that there are
 * no control strings associated with EXIT and confirm
 * that the user really wants to EXIT. If the user does
 * not want to, set the key to zero. The JAM_EXECUTIVE
 * macro is not defined in any JAM header file. It
 * is used here to distinguish between applications that
 * use the JAM executive and those that don’t.
 */
 if (
#ifdef JAM_EXECUTIVE
 ! sm_getjctrl (EXIT, 0) &&
 ! sm_getjctrl (EXIT, 1) &&
#endif
 (sm_query_msg (EXIT_CONFIRM)
 == ’n’))
 {
 the_key = 0 ;
 }

Sample Hook Functions

1738 Hook FunctionsChapter

 break ;

 case ’!’:
 /*
 * If the read key is an exclamation point, confirm
 * that the user really wants to escape to the shell
 * If so, escape to the shell and gobble up the key.
 * If not, merely pass the key on back
 */
 if (sm_query_msg (SHELL_CONFIRM)
 == ’y’)
 {
 sm_leave () ;

 /* SHELL UNDER UNIX */
 system (”sh –i”) ;

 sm_return () ;
 sm_rescreen () ;

 the_key = 0 ;
 }
 break ;
 }

 /* Clear the recursion flag. */
 recursive = 0 ;

 /* Pass the key back up. (If it is changed to zero,
 we gobbled it.) */
 return (the_key) ;
}

Error

The following error hook function writes all user messages to a log file.

#include <smdefs.h>

/* log all messages sent to the user to the file ”err.txt” */

int myerr(int msgno, char *msgtxt, int quiet_mode)
{
 FILE *fp;

 /* by default, use ’msgtxt’ param & no prepended
 * ”ERROR ” string
 */
 char *err_msg = msgtxt;

Sample Hook Functions

174 JAM 7.0 Application Development Guide

 char *quiet_txt = ””;

 /* if msgno != –1, retrieve msg text from msg file */
 if (msgno != –1)
 err_msg = sm_msg_get(msgno);

 /* if called via the ’quiet’ variety of error function */
 if (quiet_mode)
 quiet_txt = ”ERROR: ”;

 fp = fopen(”err.txt”, ”a+”);

 if (fp == NULL) {
 perror(”error opening ’err.txt’”);
 exit(1);
 }

 fprintf(fp, ”myerr: %s’%s’\n”, quiet_txt, err_msg);
 fclose(fp);

 return 0;
}

Insert Toggle
The following example shows a function that displays the current insert/overwrite
mode at the end of the status line. This function is installed as the INSCRSR_FUNC
hook function, called whenever JAM moves from insert to overstrike mode or vice
versa. The status line displays INS when in insert mode, and OVR when in
overstrike mode.

This routine assumes that cursor position display is not in use. You may also need a
STAT_FUNC function for this, as JAM overwrites the status line with messages,
thus destroying the INS/OVR message.

The last column of the status line is not written; JAM does not permit writing to the
last position of a screen if it causes automatic hardware scrolling.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */

/* Buffer Sizes */
#define STAT_LINE_LEN 80

int inscrsr (int enter_ins_mode);
 /* enter_ins_mode is non–zero if about to
 * enter insert mode, zero if about
 * to enter overstrike mode
 */

Sample Hook Functions

1758 Hook FunctionsChapter

{
 if (enter_ins_mode)
 sm_d_msg_line (”INS”, 0) ;
 else
 sm_d_msg_line (”OVR”, 0) ;
 return (0) ;
}

Initialization and Reset

The following code shows an example of initialization and reset functions. Note
that most of the initialization need not be done in the initialization hook. It could
be done before sm_initcrt is called.

The two functions below, uinit and ureset , are to be installed as the initializa-
tion and reset functions respectively. uinit is used to initialize the automatic
variable start_time. Then uinit asks the user to enter a terminal type, and passes
the string back to sm_initcrt for processing. Finally, uinit establishes error
handling that causes the application to terminate gracefully on a number of
software signals.

ureset calculates the elapsed time that the user has been in the application and
prints it to the terminal.

Note that ssignal is ANSI C. The signals SIGINT, SIGABRT, and SIGTERM are
all part of ANSI C and the posix standard, and are meaningful on most but not all
platforms.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include <signal.h> /* software signals */

static time_t start_time ; /* Application start time */

int
uinit (term)
char * term ; /* 30–byte buffer with terminal type */
{
 char * ptr ;

 /* Determine current time as starting time. */
 start_time = time ((time_t*)0) ;

 /* Get terminal type from user. (If nothing entered,
 system will use the environment.) */
 printf (”Please enter terminal type: ”) ;
 if (! fgets (term , 29 , stdin)) * term = ’\0’ ;

Sample Hook Functions

176 JAM 7.0 Application Development Guide

 term[29] = ’\0’ ;
 if (ptr = strchr (term , ’\n’)) * ptr = ’\0’ ;

 /* Establish necessary signal handling. */
 ssignal (SIGINT , sm_cancel) ;
 ssignal (SIGABRT , sm_cancel) ;
 ssignal (SIGTERM , sm_cancel) ;
 return (0) ;
}

int
ureset ()
{
 int hours , minutes , seconds ;

 /* Determine elapsed time since start of application
 and calculate hours, minutes, and seconds
 elapsed. */
 seconds = (int)difftime (time ((time_t *)0),
 start_time) ;
 minutes = seconds / 60 ;
 seconds %= 60 ;
 hours = minutes / 60 ;
 minutes %= 60 ;

 /* Print out time report. */
 printf (”Application active for %d hours, %d minutes, ”
 ”%d seconds.\n”, hours, minutes, seconds) ;

 return (0) ;
}

Record and Playback

The following example shows how record and playback might work together in a
JAM regression test.

The two functions record and play implement a simple mechanism for recording
and later playing back keystrokes in a JAM application. The keystrokes are
recorded to and played back from a file. The interval in seconds between
keystrokes is also saved so that the playback function can pause to simulate real
user behavior.

The following lines can be included in the main function to allow for conditional
record and playback, assuming that the first parameter passed to the program was
an optional indicator for record or playback:

Sample Hook Functions

1778 Hook FunctionsChapter

if (argc > 1)
{
 switch (argv[1][0])
 {
 case ’r’ :
 case ’R’ :
 sm_install(RECORD_FUNC, &record_struct,(int *)0);
 break ;
 case ’p’ :
 case ’P’ :
 sm_install (PLAY_FUNC, &play_struct, (int *)0) ;
 break ;
 }
}

It is preferable for the main function to initialize the variable r_time rather than
counting on this record/playback system to do it. Used as written, the interval
before the very first key that the user types is not accurately recorded, and hence
not accurately played back.

/* Include Files */
#include ”smdefs.h” /* screen manager Header Files */
static int intbuf[2] ; /* Buffer for read/write of
 * keystroke data */
static FILE *fp ; /*File pointer for keystroke file */
static time_t r_time ; /*Time first character was gotten */
static time_t c_time ; /* Current time;
 * interval=difftime(c_time, r_time)
 */
static char key_file[] /* Name of keystroke file */
= ”recplay.key” ;

int
record (key)
int key ; /* Key to be recorded */
{
 /* If the file has not been opened, open it and
 initialize r_time */
 if (! fp)
 {
 /* Set the initial time. */
 r_time = time ((time_t *)0) ;

 /* Open file */
 fp = fopen (key_file, ”w”) ;

 /* Turn on record/playback system */
 sm_keyfilter (1) ;
 }

Sample Hook Functions

178 JAM 7.0 Application Development Guide

 /* Get the current time */
 c_time = time ((time_t *)0) ;

 /* Store the key to record in the data buffer */
 intbuf[0] = key ;

 /* Store the time interval in the data buffer */
 intbuf[1] = floor (difftime (c_time, r_time)
 + 0.5) ;

 /* Now write the data buffer to the keystroke file */
 if ((! fp) ||
 (fwrite ((char *) intbuf, sizeof (int),
 2, fp) != 2))
 {
 /* Write failed. Close everything down.... */
 fclose (fp) ;
 fp = NULL ;
 intbuf[0] = 0 ;
 sm_keyfilter (0) ;
 sm_err_reset (”Recording Terminated...”) ;
 }

 return (0) ;
}

int
play ()
{
 /* If the file has not been opened, open it and
 initialize r_time */
 if (! fp)
 {
 r_time = time ((time_t *)0) ;
 fp = fopen (key_file , ”r”) ;
 sm_keyfilter (1) ;
 }

 /* Now read the keystroke file, one keystroke into
 the data buffer */
 if ((! fp) ||
 (fread ((char *) intbuf, sizeof (int),
 2, fp) != 2))
 {
 /* Read failed. Close everything down.... */
 fclose (fp) ;
 fp = NULL ;
 intbuf[0] = 0 ;
 sm_keyfilter (0) ;
 sm_err_reset (”Playback Terminated....”) ;

Sample Hook Functions

1798 Hook FunctionsChapter

 return (0) ;
 }

 /* Get the current time */
 c_time = time ((time_t *)0) ;

 /* Decrement interval from data buffer by measured
 interval */
 intbuf[1] –= floor (difftime (c_time, r_time)
 + 0.5) ;

 /* Sleep some more if we should. */
 if (intbuf[1] > 0)
 {
 sm_flush () ;
 sleep (intbuf[1]) ;
 }

 /* Return the key to sm_getkey for processing */
 return (intbuf[0]) ;
}

Control

The following example shows two closely related functions that you can include on
a control function list. The mark_low function marks all fields on the current
screen with numeric values less than zero with an attribute change. The function
mark_high marks all fields on the current screen with numeric values higher than
1000. The same functionality is duplicated as the prototyped function mark_flds
(see page 148).

Note that both mark_low and mark_high call the static function mark_flds
which actually does the work. This may seem like unnecessary indirection, but it
means that the control strings used are very simple, as shown here:

^mark_low
^mark_high

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */

/* Macro Definitions... */
/* Attributes used to mark fields */
#define MARK_ATTR REVERSE | HILIGHT | BLINK
#define MARK_GT 1 /* Indicates ”Greater Than” */
#define MARK_LT –1 /* Indicates ”Less Than ” */

Sample Hook Functions

180 JAM 7.0 Application Development Guide

static int mark_flds () ;

int
mark_low (control_string)
char *control_string;/* Control string text passed by JAM */
{
 /* Mark all fields less than zero */
 return (mark_flds (0, MARK_LT)) ;
}

int
mark_high (control_string)
char *control_string ;/* Control string text passed by JAM */
{
 /* Mark all fields greater than one thousand */
 return (mark_flds (1000, MARK_GT)) ;
}

static int
mark_flds (bound, operator)
int bound ; /* Boundary on fields to mark */
int operator ; /* Operator, MARK_GT or MARK_LT */
{
 int fld_num ; /* Field Number */
 int num_of_flds ; /* Number of Fields */

 /* Determine number of fields */
 num_of_flds = sm_inquire (SC_NFLDS) ;

 /* Cycle through all the fields on the screen */
 for (fld_num = 1 ; fld_num <= num_of_flds ; fld_num++)
 {
 /* Depending on the operator... */
 switch (operator)
 {
 case MARK_GT:
 /* Mark fields that are
 greater than the
 given bound. */
 if (sm_dblval (fld_num)
 > (double) bound)
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }

 break;

 case MARK_LT:
 /* Mark fields that are less

Sample Hook Functions

1818 Hook FunctionsChapter

 than the given bound */
 if (sm_dblval (fld_num)
 < (double) bound)
 {
 sm_chg_attr (fld_num,
 MARK_ATTR) ;
 }
 break;
 }
 }
 return (0) ;
}

The next example shows how a number of entries in a control function list might
map to the same function, report , which uses the identifying string as an implied
first argument. Significant argument processing is done in this example.

report creates a report about the state of the current field, screen, window stack,
or display. The report can be appended to a file, passed as an argument to an
operating system command, piped to an operating system command, or displayed
in a JAM message window.

report is installed under four names in the CONTROL_FUNC function list for JAM
control functions. When a control string calling this function is invoked, the entire
control string is passed as an argument to this function. The name used to invoke
the function is an implied argument and specifies which report to generate: field,
screen, window stack, or display. The remainder of the control string specifies
what to do with the report output. This can be one of the following four categories:

1. If there is nothing on the control string following the name, the report is
printed in a pop-up JAM message window. For example, the following control
string will generate a report about the current field and display the report in a
pop-up message window:

^rep_field

2. If the arguments start with an exclamation point (!), the rest of the control
string is taken to be an operating system command. In this case, a temporary
file with the report will be created, and the file name will be appended to the
operating system command. However, if the operating system command has a
tilde (~) in it, the tilde will be replaced with the name of the file before the
command is invoked. In any event the file is deleted after the command is
invoked. Two example control strings that would cause a screen report to be
printed on a UNIX system are shown below:

^rep_screen !lp –c –s
^rep_screen !lp –c ~ > /dev/null 2>&1

3. If the arguments start with a vertical bar (|), the rest of the control string is
taken to be an operating system command. In this case, however, the report

Sample Hook Functions

182 JAM 7.0 Application Development Guide

will be created as the standard input of the specified command. Many
operating systems call this piping. The example shown here will cause a
window stack report to piped through the UNIX command tail and printed, so
that only 20 lines of output will be printed:

^rep_wstack |tail –20 | lp –c –s

4. If the arguments do not start with a vertical bar or with an exclamation point,
the assumption is that it is a file that is named. The file will be created if it
does not exist, or appended to if it does exist. The following example will
append a display terminal report to the file report.fil :

^rep_term report.fil

This function installation is preceded with the following definitions and declara-
tions, commonly found in funclist.c :

extern int report () ;
struct fnc_data report_funcs[] = {
 SM_OLDFNC(”rep_field”, report),
 SM_OLDFNC(”rep_screen”, report),
 SM_OLDFNC(”rep_wstack”, report),
 SM_OLDFNC(”rep_term”, report)
} ;

int report_count = sizeof (report_funcs)
 / sizeof (struct fnc_data) ;

The actual installation of the function is done with the following call to
sm_install , usually found in sm_do_uinstalls , defined in funclist.c :

sm_install (CONTROL_FUNC, report_funcs, &report_count) ;

Note that the function list has four function entries with different names, all of
which refer to the same function pointer. In the case of CONTROL_FUNC functions,
the entire control string is passed to the called function in a string, the name used to
invoke the function can—and in this case does—serve as an implied argument.

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */

int
report (report_type)
char *report_type ; /* Text of invoking control
 string –– later
 truncated to the
 name of the desired

Sample Hook Functions

1838 Hook FunctionsChapter

 report */
{
 char *report_out; /* Report output designation */
 char *fn = NULL; /* Name of output file */
 char *ptr, *ptr1; /* Character pointers */
 char msg_buf[128];/* Message buffer */
 FILE *fp ; /* File pointer for output */
 int size ; /* Size of output file */
 int cur_no ; /* Current field number */
 int select ; /* Current window stack index */

 /* Set report output designator to control string
 * arguments
 */
 for (report_out = report_type ;
 *report_out && (! isspace (UNSIGN(*report_out))) ;
 report_out++) ;

 /* If control string has arguments.... */
 if (*report_out)
 {
 /* Truncate the report type with a terminator */
 *report_out = ’\0’;

 /* Gobble up unnecessary white space */
 for (report_out++ ;
 *report_out &&
 (isspace (*report_out)) ;
 report_out++) ;

 /* Based on what output type we designated: */
 switch (*report_out)
 {
 case ’!’ :
 /* OS command. Open temp file */
 fn = tempnam (NULL, ”rprt”) ;
 fp = fopen (fn, ”w”) ;
 break ;

 case ’|’ :
 /* Pipe. Open the pipe */
 fp = popen (report_out + 1,
 ”w”) ;
 break ;

 default :
 /* Other. Open the file */
 fp = fopen (report_out, ”a+”) ;
 break ;
 }

Sample Hook Functions

184 JAM 7.0 Application Development Guide

 /* If we could not open the file, show error */
 if (! fp)
 {
 sprintf (msg_buf,
 ”Cannot open stream for %s.”,
 report_out) ;
 sm_err_reset (msg_buf) ;
 return (–1) ;
 }
 }

 /* If no report output specified, open temp file for
 storing message window stuff. */
 else
 {
 fn = tempnam (NULL, ”rprt”) ;
 fp = fopen (fn, ”w+”) ;
 report_out = ”” ;
 }

 /* Now, based on the report_type, which is the name
 with which the function was invoked, create
 the reports. Note that all newlines are
 preceded with spaces, this is so that in the
 case of the message windows we can replace
 all space–newlines with %N, the newline
 indicator for JAM windows. */
 if (! strcmp (report_type, ”rep_field”))
 {
 /* Output a field report */
 fprintf (fp, ” \n \nField Report: \n”) ;

 /* Field Identifier and contents */
 fprintf (fp, ”\tFIELD: %d (%s[%d]) = %s \n”,
 cur_no = sm_getcurno (),
 sm_name (cur_no),
 sm_occur_no (),
 sm_fptr (cur_no)) ;

 /* Field sizes */
 fprintf (fp, ”\tLENGTH: onscreen: %d ”
 ”Max: %d \n”,
 size = sm_finquire (cur_no, FD_LENG),
 sm_finquire (cur_no, FD_SHLENG)
 + size) ;

 fprintf (fp, ”\t# OCCURRENCES: onscreen: %d ”
 ”Max: %d \n”,
 sm_finquire (cur_no, FD_ASIZE),

Sample Hook Functions

1858 Hook FunctionsChapter

 sm_max_occur (cur_no)) ;
 }
 else if (! strcmp (report_type, ”rep_screen”))
 {
 /* Output screen report */
 fprintf (fp, ” \n \nScreen Report: \n”) ;

 /* Screen Name */
 fprintf (fp, ”\tSCREEN: %s \n”,
 sm_pinquire (SP_NAME)) ;

 /* How much of screen is visible */
 fprintf (fp, ”\t%% VISIBLE IN VIEWPORT: %d \n”,
 100 *
 (sm_inquire (SC_VNLINE) *
 sm_inquire (SC_VNCOLM)) /
 (sm_inquire (SC_NCOLM) *
 sm_inquire (SC_NLINE))) ;
 }
 else if (! strcmp (report_type, ”rep_wstack”))
 {
 /* Output Window stack report */
 fprintf (fp, ” \n \nWindow Stack Report: \n”) ;

 /* Cycle through all the windows. */
 for (select = 0 ;
 sm_wselect (select) == select ;
 select++)
 {
 /* Window number... */
 fprintf (fp, ” \n\tWindow %d: \n”,
 select) ;

 /* Screen name */
 fprintf (fp, ”\t\tscreen: %s \n”,
 sm_pinquire (SP_NAME)) ;

 /* Number of fields and groups */
 fprintf (fp, ”\t\t# of Fields: %d ”
 ”# of Groups: %d \n”,
 sm_inquire (SC_NFLDS),
 sm_inquire (SC_NGRPS)) ;

 sm_wdeselect () ;
 }
 sm_wdeselect () ;
 }
 else if (! strcmp (report_type, ”rep_term”))
 {
 /* Output display terminal report */

Sample Hook Functions

186 JAM 7.0 Application Development Guide

 fprintf (fp, ” \n \nTerminal Report: \n”) ;

 /* Terminal Type */
 fprintf (fp, ”\tTERM TYPE: %s \n”,
 sm_pinquire (P_TERM)) ;

 /* Display mode */
 if (sm_inquire (I_NODISP))
 fprintf (fp, ”\tDISPLAY OFF \n”) ;
 else
 fprintf (fp, ”\tDISPLAY ON \n”) ;

 /* Input mode */
 if (sm_inquire (I_INSMODE))
 fprintf (fp, ”\tINSERT MODE \n”) ;
 else
 fprintf (fp, ”\tTYPEOVER MODE \n”) ;

 /* Block mode */
 if (sm_inquire (I_BLKFLGS))
 fprintf (fp, ”\tBLOCK MODE \n”) ;

 /* Physical display size */
 fprintf (fp, ”\tDISPLAY SIZE: %d x %d \n”,
 sm_inquire (I_MXLINES),
 sm_inquire (I_MXCOLMS)) ;

 }
 else
 {
 /* Unrecognized report type */
 sprintf (msg_buf, ”Illegal report type %s”,
 report_type) ;
 sm_err_reset (msg_buf) ;
 fprintf (fp, ”%s \n \n”, msg_buf) ;
 return (–3) ;
 }
 /* Once again, based on the type output... */
 switch (*report_out)
 {
 case ’|’ :
 /* It was a pipe, so close it. */
 pclose (fp) ;
 sm_err_reset (”Pipe successful”) ;
 break ;

 case ’!’ :
 /* It was an O/S command. Close file... */
 fclose (fp) ;

Sample Hook Functions

1878 Hook FunctionsChapter

 /* Gobble up the exclamation point */
 report_out++;

 /* Look for tildes */
 if (ptr = strchr (report_out, ’~’))
 {
 /* Found the tilde. Substitute the
 file name for it. */
 *ptr = ’\0’;
 sprintf (msg_buf, ”%s%s%s”,
 report_out, fn, ptr+1) ;
 }
 else
 {
 /* No tilde. Append file name to
 O/S command. */
 sprintf (msg_buf, ”%s %s”,
 report_out, fn) ;
 }

 /* Do the command. */
 system (msg_buf) ;

 /* Delete temp file and free its name. */
 remove (fn) ;
 free (fn) ;
 sm_err_reset (”Command Invoked”) ;
 break ;

 case ’\0’:
 /* Message window. Get size of file... */
 size = ftell (fp) ;

 /* Allocate memory for it. */
 ptr = malloc (size + 1) ;

 /* Rewind the file */
 fseek (fp, SEEK_SET, 0) ;

 /* Read it into the malloced buffer. */
 fread (ptr, sizeof (char), size, fp) ;

 /* Close and delete file, free file name */
 fclose (fp) ;
 remove (fn) ;
 free (fn) ;

 /* null terminate memory buffer of report */
 ptr[size] = ’\0’;

Sample Hook Functions

188 JAM 7.0 Application Development Guide

 /* Replace all space–newlines with %N */
 for (ptr1 = ptr ;
 ptr1 = strchr (ptr1, ’\n’) ;
 ptr1++)
 {
 ptr1[–1]=’%’;
 ptr1[0]=’N’;
 }

 /* Pop up the message window */
 sm_message_box
 (ptr, 0, SM_MB_OK|SM_MB_ICONNONE, 0) ;

 /* Free up the malloced buffer. */
 free (ptr) ;
 break ;

 default :
 /* File appended, just close it. */
 fclose (fp) ;
 sm_err_reset (”File appended”) ;
 break ;
 }
 return (0) ;
}

Status Line

The following example shows how to write a status line hook function. It is called
whenever the logical status line is about to be flushed to the physical display, and
ensures that the status line is always printed highlighted and in uppercase.

This function is to be installed as a status line hook function. The following
declarations and definitions, generally found in funclist.c or in the main
routine source module prepare this routine for installation:

/* Include Files */
#include ”smdefs.h” /* screen manager Header File */
#include ”smglobs.h” /* screen manager Globals */

int
statln ()
{
 int n_columns ; /* Physical display width */
 char * stat_text ; /* Status line text */
 unsigned short * stat_attr;/* Status line attributes */
 int i ; /* Loop counter */

Sample Hook Functions

1898 Hook FunctionsChapter

 int c; /* Upper case stat text char */

 /* Determine width of display */
 n_columns = sm_inquire (I_MXCOLMS) ;

 /* Allocate memory for local buffers */
 stat_text = malloc (n_columns + 1) ;
 stat_attr = (short *)calloc (n_columns,
 sizeof (short)) ;

 /* Copy status text and attributes into buffers */
 strcpy (stat_text , sm_pinquire (SP_STATLINE)) ;
 memcpy ((char *) stat_attr ,
 sm_pinquire (SP_STATATTR) ,
 n_columns * sizeof (short)) ;

 /* Loop through every character on the status line */
 for (i = 0 ; i < n_columns ; i++)
 {
 /* Set character to upper case */
 /* Note UNSIGN is defined in smmachs.h to
 remove sign extension */
 c = stat_text [i];
 if (islower (UNSIGN(c)))
 c = toupper (UNSIGN(stat_text[i])) ;
 stat_text[i] = c ;

 /* Add hilight attribute */
 stat_attr[i] |= HILIGHT ;
 }

 /* copy local buffer back into JAM internal buffers */
 sm_pset (SP_STATLINE , stat_text) ;
 sm_pset (SP_STATATTR , (char *) stat_attr) ;

 /* Free memory */
 free (stat_text) ;
 free (stat_attr) ;

 return (0) ;
}

191

Moving Data Between
Screens

JAM lets you move data between screens two ways:

� Load and activate screens as local data blocks, or LDBs. LDBs automatically
initialize and capture field data on screen entry and exit, respectively.

� Issue JPL send and receive commands or their equivalent library functions.
These let you explicitly write and read screen data to and from temporary
buffers.

Using Local Data Blocks

JAM screens can be used as vehicles for initializing and saving values on other
screens. A screen that performs this background role is called a local data block, or
LDB. When a screen serves as an LDB, JAM uses its fields, or LDB entries, to
transfer data to and from corresponding fields on the current screen. By using
LDBs, applications can transfer data between screens automatically.

JAM matches LDB entries and screen fields by name. Only named fields and LDB
entries take part in LDB processing, or write-through. One or more screens can be
loaded into memory as LDBs and activated. When JAM enters or exits a screen, it

99

Using Local Data Blocks

192 JAM 7.0 Application Development Guide

checks whether any LDBs are active. If one or more LDBs are active, JAM
performs LDB write-through as follows:

� At screen entry, JAM initializes or overwrites fields from their matching LDB
entries. Screen entry occurs when a screen opens and, optionally, when it is
reexposed, depending on the value of EXPHIDE_OPTION. In both cases, JAM
writes LDB values to the screen after it executes the screen’s entry function.

The LDB always overwrites existing screen data, even if the field has input
protection. One exception applies: at screen open, the LDB respects initial
field data specified through the screen editor.

� At screen exit, JAM writes field data back to the LDB entries. Screen exit
occurs when a screen closes and, optionally, when it is overlaid by another
screen, depending on the value of of EXPHIDE_OPTION. JAM writes screen
data to the LDB before it executes the screen’s exit function.

If data is transferred between arrays, JAM allocates for the target array the number
of occurrences required to accommodate the incoming data, up to the array’s
maximum number of occurrences.

LDB write-through occurs after execution of the screen entry function and the
screen module’s unnamed procedure. Avoid using either venue to write values
directly to fields if the LDB also writes to those fields. However, you can
circumvent this restriction as follows:

1. Write a procedure or function that populates the fields with the desired values.

2. Attach this procedure or function to an unused logical key—for example,
APP22=^myproc .

3. In the screen entry procedure, push this key onto the input queue with the
built-in function jm_keys . For example:

call jm_keys APP22

After the LDB writes its values to the screen, JAM’s screen manager pops all data
off the input queue. Given the previous example, when JAM gets APP22, it calls
myproc and executes its contents.

JAM regards the selections that the user make in a selection group—radio buttons,
toggle buttons, checkboxes, and list boxes—as the value of that group. You can use
LDBs to propagate that value—that is, repeat the selections— from one screen to
another. To ensure consistent results, make sure that the screen selection groups
and their corresponding LDB entry have the same number of fields arranged in the
same order, and have the same contents.

JAM does not move values between an LDB and the screen when an error window
opens or closes, because these windows do not allow data entry. LDB write-

LDB write-through
versus screen modules

selection groups

restrictions

Using Local Data Blocks

1939 Moving Data Between ScreensChapter

through is invalid for any widget type that is read-only: static labels, lines, and
boxes.

LDB entries and their corresponding fields should have the same data length and
number of occurrences. Otherwise, data might be lost for one of these reasons:

� If the length of the target LDB entry or field is shorter than the source data,
JAM truncates the data.

� If the maximum number of occurrences specified for the target LDB entry or
field is less than the number of occurrences allocated for the source, JAM
discards the overflow occurrences.

Loading and Activating LDBs
Multiple LDBs can be loaded into memory; of these, one or more can be active at
any time. You can activate an LDB only if it is already loaded; only active LDBs
are open to read and write operations. If active LDBs have entries with the same
name, JAM uses the entry on the most recently activated LDB.

JAM assigns a unique integer handle to each loaded LDB. Most runtime functions
that access loaded LDBs have variants that let you specify the LDB by its handle
or by its name. In this chapter, references to functions use name variants only.

You can load multiple instances of the same LDB. For example, you might do this
to prevent data from multiple invocations of the same screen from overwriting
each other. Because JAM assigns a unique handle to each loaded LDB, you can
reference these LDBs either collectively by their common name, or individually by
their separate handles.

A displayed screen can act as an LDB, but only if it is loaded and activated as
such. Note that displayed LDB screens offer numerous opportunities for changing
LDB data before it reaches its destination—for example, through user input or
field- and screen-level processing. If you display LDB screens, be careful to
safeguard this transitional data.

At application startup, JAM tries to load and activate LDBs as follows:

1. Looks for the configuration variable SMLDBLIBNAME and opens all screens in
the specified libraries as LDBs.

2. Looks for the configuration variable SMLDBNAME. For example:

SMLDBNAME = screen1.jam | screen2.jam | screen3.jam

3. Looks for the library ldb.lib and the screens stored in it.

4. If ldb.lib does not exist, JAM searches the path for screen ldb.jam .

LDB handles

loading multiple
instances of an LDB

using displayed screens
as LDBs

Default
Activation

Using Local Data Blocks

194 JAM 7.0 Application Development Guide

JAM provides several functions for loading and activating, and deactivating and
unloading LDBs at runtime:

� sm_ldb_load loads an LDB into memory and returns its integer handle.

� sm_ldb_state_set lets you activate a loaded LDB and make it available for
LDB write-through. Use this function also to deactivate an LDB; the LDB
remains loaded but inaccessible to LDB write-through.

� sm_ldb_unload removes an LDB from memory, whether active or not.

You can change the state of an LDB from read/write to read-only through
sm_ldb_state_set . Screens can read from this LDB on screen entry but cannot
modify it on exit; consequently, a read-only LDB cannot be used to transfer values
from one screen to another. You can use read-only LDBs to maintain constant
values for initializing field data.

JAM has an LDB save stack for push and pop operations. You can remove all
loaded LDBs from memory and push them onto the LDB stack with
sm_ldb_push . Each push operation creates a new entry in the stack, which lists
the LDB names and their status—whether active or not. JAM maintains stack
entries in first-in/last-out order. The number of lists you can save depends on the
amount of memory available on your system.

To restore the last-pushed list of LDB’s to memory, call sm_ldb_pop . This
function removes all loaded LDBs from memory. It then restores to memory the
LDBs in the LDB save stack’s topmost—that is, most recently pushed—list. If any
LDBs were active at the time they were unloaded, sm_ldb_pop restores them to
active status.

Getting Information on LDBs

JAM provides several functions that let you get information about loaded and
active LDBs and manipulate their values:

� sm_ldb_get_active , sm_ldb_get_next_active —tell which LDBs are
active and their order of activation.

� sm_ldb_get_inactive and sm_ldb_get_next_inactive let you
determine which LDBs are loaded but inactive and in what order they were
loaded.

� sm_ldb_state_get tells whether an LDB is active or whether it is read-only.

� sm_ldb_is_loaded tests whether an LDB is loaded.

Runtime
Loading and
Activation

Read-only LDBs

push and pop LDBs

Sending and Receiving Data

1959 Moving Data Between ScreensChapter

� sm_ldb_getfield gets the current values in an LDB entry.

� sm_ldb_handle returns the handle of the specified LDB. Use this with
sm_ldb_next_handle to get the handles of an LDB that is loaded more than
once.

� sm_ldb_name gets the name of a handle-specified LDB.

� sm_ldb_putfield changes the value of an LDB entry.

Library functions and JPL procedures that reference fields by name—for example,
sm_n_getfield and sm_n_putfield —seek them first on the screen, then in the
LDB. However, on two occasions, JAM reverses the search order: on screen entry
or exit, JAM reverses the search order and first looks in the LDB for the requested
data. JAM writes LDB data to the screen after screen entry and writes it back to the
LDB before screen exit. Reversing the search order ensures retrieval of the latest
data. If the LDB does not contain the requested entry, JAM looks for a correspond-
ing field on the screen.

You can directly specify LDB entries through sm_ldb_getfield and
sm_ldb_putfield and their respective variants. These functions require you to
specify an entry’s LDB screen by its name or handle. In JPL, you can reference
LDB entries as follows:

@ldb(ldb-screen)! ldb-entry

Sending and Receiving Data

JAM provides JPL commands and equivalent library functions to transfer data be-
tween screens without LDBs. You typically perform send and receive operations as
follows:

1. Write data—JPL variables, string constants, and widget values—to a buffer, or
bundle.

2. Read data from the bundle into receiving widgets.

Send and receive operations have several advantages over LDB usage:

� A finer level of control over data transfer. You can use any screen- and
field-level hook—entry, exit, and validation—to send and receive data. As
developer, you explicitly tell JAM what data to send and when to send it. You
also avoid unintentionally overwriting field data with the LDB, and vice-versa.

� More economical use of memory. This can be especially important in
environments with limited memory like MS-DOS.

field references and
LDB entries

advantages over LDBs

Sending and Receiving Data

196 JAM 7.0 Application Development Guide

� Sent data is always delivered to the receiving screen intact. Only the receiving
field length decides whether incoming data is received whole or is truncated.

� Send/receive operations do not require the source and target fields to share the
same name.

The following sections describe send and receive operations in general terms. For
detailed information on relevant JPL and library function calls and options, refer to
the Language Reference.

Bundles

Send and receive commands and functions act on bundles, which provide tempo-
rary storage for the data you wish to transfer between screens. You can name
bundles for explicit access. JAM can maintain up to ten bundles, including one that
can be unnamed. If you send data without specifying a bundle name, JAM writes
the data to an unnamed bundle; this data is available to the next receive request that
omits specifying a bundle name.

Sending Data

JPL’s send command and its library function counterparts write screen data to a
buffer that is accessible to other screens.

JPL’s send command initializes a bundle and populates it with one or more data
items. You can send field and array values, a specific range of occurrences,
variables, and constants.

For example, the following send command initializes bundle1 and sends three
data items to it. The third data argument, credit[1..] , specifies all occurrences
in the array:

send bundle ”bundle1” data credit_acctno, ”1000”, credit[1..]

If you use JAM library functions, you must issue at least three calls in this order:

1. Create a new bundle with a call to sm_create_bundle .

2. Create items in the bundle through successive calls to
sm_append_bundle_item .

3. Populate each bundle item with one or more occurrences of data through
sm_append_bundle_data . Each call to sm_append_bundle_data
appends a single occurrence of data to the specified item.

JPL send

Library Function
Calls

Sending and Receiving Data

1979 Moving Data Between ScreensChapter

When you are finished sending data to a bundle, you can optionally call
sm_append_bundle_done to optimize memory allocated for a send bundle.

For example, the following function iterates over all screen-resident widgets and
sends their data to the bundle myBundle :

include <smdefs.h>

int sendScreenDataToBundle(int numFields)
{
 int i, ret;
 if !(sm_create_bundle(”myBundle”))
 return ret;
 for (i = 1; i <= numFields; i++)
 {
 sm_append_bundle_item(”myBundle”);
 sm_append_bundle_data(”myBundle”,i,sm_fptr(i));
 }
sm_append_bundle_done(”myBundle”);
return 0;
}

Receiving Data
JPL’s receive command and its counterpart sm_get_bundle_data read data
from a bundle. The receive command reads bundle data directly into the speci-
fied widgets; sm_get_bundle_data reads a single occurrence from the specified
bundle item into a buffer and returns with a pointer to that buffer.

JPL’s receive command specifies the bundle to read and reads its data items into
the target fields. For example, the following receive command reads bundle1
and puts its data into three fields:

receive bundle ”bundle1” data acctno, credit_amt, credit

receive reads data in the same order that it was sent. Because the bundle retains
no information about its data sources, the send and receive calls should
sequence widgets in the same order to ensure that the receiving widgets get the
correct data. JAM does not check whether receive data is valid for the target fields.

Unless the receive command includes the keep argument, when it returns, JAM
destroys the bundle and frees the memory allocated for it. The keep argument
keeps the bundle and its data in memory and available for later receive operations.

You can use JAM library functions to ascertain a bundle’s state and get individual
occurrences of data from it. In the next example, sm_get_bundle_item_count
and sm_get_bundle_occur_count , respectively, get the number of items in a

JPL receive

Library Function
Calls

Sending and Receiving Data

198 JAM 7.0 Application Development Guide

bundle and the number of occurrences in each item. This example also gets the
data from each specified item occurrence through successive calls to
sm_get_bundle_data .

include <smdefs.h>

/*get the bundle item count and pass it along*/
getNumBundleItems(void)
{
 if !(is_bundle(”myBundle”))
 return –1
 getNumOccurs(sm_get_bundle_item_count(”myBundle”));
 sm_free_bundle(”myBundle”);
 return 0;
}

/*get the occurrence count for each bundle item
 *and put occurrence data into screen widgets
 */
void getNumOccurs(int numItems)
{
 int itemCt, oCt, item[numItems];

 for (itemCt = 1; itemCt <= numItems; itemCt++)
 {
 item[itemCt] =
 sm_get_bundle_occur_count(”myBundle”, itemCt);
 for (oCt = 1; oCt <= item[itemCt]; oCt++)

 /*get data from, each item occurrence, put it into
 *corresponding widget occurrence
 */
 sm_o_putfield
 (itemCt, /*widget number */
 oCt, /*occurrence offset*/
 sm_get_bundle_data(”myBundle”, itemCt, oCt));
 }

When you finish reading bundle data, destroy the bundle and free its memory by
calling sm_free_bundle .

JAM also provides these library functions:

� sm_get_next_bundle gets the name of the bundle created before the one
specified. You can use this function to traverse the list of all existing bundles.

� sm_is_bundle verifies the existence of a bundle. Use this function to save
processing overhead.

199

Error Handling and
Messages

JAM supports plain messages, status messages, and dialog messages. Messages can
be sent to the status line or a window can be created to display a message.
Messages can be hard coded into the application or stored in a message file.
Message files can be loaded at initialization or at any time. JAM allows you to
translate certain message constants—these are found in the provided message file.
For more information on the message file, refer to page 41 in the Configuration
Guide. You can also write a hook function that executes every time one of the error
message display functions is called. The error hook function is described below.
Described at the end of this chapter is the status line display hierarchy.

Table 19 describes the functions which display errors, messages, and status
information, as well other functions related to message storage and retrieval. For
more detail see the individual reference pages for these functions in the Language
Reference.

1010

200 JAM 7.0 Application Development Guide

Table 19. Error and message related functions

Function Description Comments

sm_d_msg_line Display message in status line Can change display attributes of message.

sm_femsg Display message in status line or
window

Awaits user acknowledgement. (Messages are
always displayed in a window in GUI environ-
ments. Character JAM chooses message place-
ment based on message length. Use MES-
SAGE_WINDOW set-up variable to configure
character JAM behavior.)

sm_ferr_reset Display message in status line or
window

Identical to sm_femsg when displayed in win-
dow. When displayed on status line, puts cursor
on at current field.

sm_fqui_msg Display message in status line or
window

Identical to sm_femsg except that it prepends a
tag—for example, ERROR:—to the specified
message. Gets the tag from the SM_ERROR
entry in the message file.

sm_fquiet_err Display message in status line or
window

Identical to f_err_reset except that it
prepends a tag —for example, ERROR:—to the
specified message. Gets the tag from the
SM_ERROR entry in the message file.

sm_inimsg Get initialization error message For example, if a call to sm_msginit is unable
to initialize a message file—supply sm_inimsg
with the error code returned from the failed
function and a description of the function itself.
sm_inimsg uses this information to return a
string that you can display.

sm_m_flush Flush the status line Forces JAM to display updates to the status
line. This is useful if you want to display the
status of an operation with sm_d_msg_line
without flushing the entire display (e.g. with
sm_flush).

sm_message_box Display dialog option box Creates a dialog box that displays a message
and requests the user to select a button. (e.g.
Yes/No, Abort/Retry/Cancel). JAM prevents
further interaction with the application until the
function returns with the user’s selection.

sm_msg Display message at specific col-
umn of status line

Merges the specified message with the current
contents of the status line and displays it at the
specified column.

Error Hook Function

20110 Error Handling and MessagesChapter

Function CommentsDescription

sm_msg_get Get contents of stored message Gets a message from a message file previously
loaded by sm_msgread . Message files are
binary files, created through the JAM utility
msg2bin . If not found, return message class
and number.

sm_msg_find Get contents of stored message Finds the message specified and returns a
string. Unlike sm_msg_get this function re-
turns 0 if the message is not found.

sm_msgread Read/load/delete messages Reads a single set of messages from a binary
message file into memory, based on class and
prefix values. access these loaded messages
through sm_msgget or sm_msg_find You can
also use sm_msgread to delete messages, or to
read them but not load them into memory so
they can be fetched from the disk when re-
quested, saving substantial memory.

sm_setbkstat Display low-priority message in
status line

Saves the contents of a message for display on
the status line when there is no other message
with a higher priority to display.

sm_setstatus Toggle status line flags The alternating messages are stored in message
file variables SM_READY and SM_WAIT.

Note: GUI applications should avoid posting message dialog boxes while the
mouse button is down. For example, do not call sm_femsg from a widget’s exit
function if the user can mouse click out of that widget into a push button. Doing so
can confuse Motif and cause unexpected behavior.

Error Hook Function

JAM calls the error function whenever you call one of JAM’s error message
display routines—for example, sm_fquiet_err , or sm_ferr_reset . You can
use the error function for special error handling—for example, to write all error
messages to a log file. Refer to page 137 for more information.

Status Line

202 JAM 7.0 Application Development Guide

Status Line

JAM reserves one line on the display for error and other status messages. Many
terminals have a special status line. If not, JAM uses the bottom line of the display
for messages.

There are several types of messages that use the status line; they are described here
in order of their priority from highest to lowest:

� Error or any other overwrite message

� Status text from sm_d_msg_line

� “Wait” message

� Field and menu item status text

� Form status text

� “Ready” message

� Background status text

Error messages
Several functions can be executed to display a message on the status line, wait for
acknowledgment from the operator, and then reset the status line to its previous
state: sm_ferr_reset , sm_femsg , sm_fquiet_err , and sm_fqui_msg . All
these functions wait for the message to be acknowledged. Their messages have
highest precedence.

sm_d_msg_line messages
The library functions sm_d_msg_line and sm_msg cause the display attributes
and message text you pass to remain on the status line until erased by another call
to the same function or is overridden by a message of higher precedence.

Ready/Wait
The library function sm_setstatus provides an alternating pair of background
messages. Whenever the keyboard is open for input the status line displays Ready ;
Wait is displayed when your program is processing and the keyboard is not open.
You can change (translate, rephrase, etc.) the display text by editing the SM_READY
and SM_WAIT entries in the JAM message file.

Field/Menu item status
When the status line has no higher priority text, the screen manager checks the
current field or selected menu item for text to be displayed on the status line. If the

Status Line

20310 Error Handling and MessagesChapter

cursor is not in a field or on a menu item, or if the current field or item has no
status text, JAM looks for background status text.

Background status
Background status text, the lowest priority of message display, can be set by
calling the library function sm_setbkstat and passing it the message text and
display attributes.

SECTION THREE

The SQL Executor

Chapter 11 Database Initialization . 207

Chapter 12 Database Connections . 213

Chapter 13 Using Cursors . 217

Chapter 14 Reading Information from the Database 223

Chapter 15 Writing Information to the Database 239

Chapter 16 Error Processing in Database Applications 255

Chapter 17 Database Transactions . 265

207

Database Initialization
Before your application can access any data, you first have to connect to an
initialized database engine. This chapter describes how to initialize one or more
database engines. Chapter 12 describes how to connect to an engine.

When you initialize database engines, you are setting which database engines will
be available for your application. After an engine is initialized, you can connect to
it using the transaction manager, JPL procedures, or C functions.

Initializing One or More Engines

A database engine is a DBMS (Database Management System) product. It is
identified by a specific vendor and version. For example, SYBASE 10, ORACLE
6.0, and ORACLE 7.0 are three distinct engines. A JAM database driver is a C
library or a DLL that handles all communication between JAM and a DBMS. A
JAM support routine is the name of the main entry point, or function, in a JAM
database driver. Database initialization tells JAM which database driver and which
support routine to use to access a DBMS. JAM supports static initialization on all
platforms and dynamic initialization on a subset of platforms.

In static initialization, an application identifies the support routines it will use at
compile time, and it links with both JAM database driver libraries and the DBMS
interface libraries.

In dynamic initialization, the application identifies the desired support routines at
runtime. No compilation is needed to change the initialization. For example, in
Windows, the JAM7.INI file supports dynamic initialization.

1111

Initializing One or More Engines

208 JAM 7.0 Application Development Guide

By default, JAM is distributed with a driver for JYACC’s database engine, JDB.
Drivers are also available for other database engines.

In a JAM application, you can access one or more database engines. The
application must have a driver for each engine, and it must initialize the engine
before declaring a connection.

Using dbiinit.c for Static Initialization

A list of the support routines available for your application is included in the
module dbiinit.c . This file is automatically created from settings found in your
makefile when you first build your jamdev and jam executables. When you run
JAM, the library function dm_init is called for each support routine listed in
dbiinit.c .

If the initialization is successful, the support routine returns zero. In some cases,
the support routine rejects the initialization and returns an error code. In these
cases, there might be insufficient memory, the engine might not be installed, or the
application might have initialized the same support routine more than once. If such
an error occurs when executing jmain or jxmain , JAM will display an error
message and terminate.

If necessary, you can create a new version of dbiinit.c . First, you need to delete
the current dbiinit.c file, edit the database settings in the JAM makefile, and
then run the makefile. For more information, refer to page 211.

Description of dbiinit.c

The file dbiinit.c contains:

� A function declaration for one or more support routines and a corresponding
transaction model.

� A list of engines to initialize in the structure vendor_list .

� A list of default transaction models in the structure pfuncs .

A sample vendor_list structure appears as follows:

static vendor_t vendor_list[] =
{
/* {” engine-name”, support-routine, case-flag , (char *) 0}, */

{”jdb”, dm_jdbsup, DM_DEFAULT_CASE, (char *) 0},
{ 0, 0, 0, 0 }

};

Initializing One or More Engines

20911 Database InitializationChapter

engine-name can contain any character string you wish. If an application uses two
or more database engines, the mnemonic engine-name tells JAM which database
engine to use. Most of the examples in this manual use a vendor name as the
mnemonic, for example sybase or oracle , but any character string that is not a
keyword is valid. Engine names are case-sensitive.

The support-routine name is usually in the form dm_vendor_codesup where
vendor_code is an abbreviated vendor name. Some examples are:

� dm_orasup for ORACLE

� dm_sybsup for SYBASE

� dm_infsup for Informix

case-flag determines how JAM uses case when mapping column names to JAM
variables for SQL SELECT statements. JAM variables can be widgets on the screen,
JPL variables, or LDB variables. Using the case setting, you can create all your
JAM variables in a particular case and have JAM do the conversion to that case for
you. The case-flag values are described in Table 20.

Table 20. case-flag Options

case_flag Option Description

DM_PRESERVE_CASE p(reserve) Use the case returned by the en-
gine. The column names must
exactly match the JAM variable
names.

DM_FORCE_TO_LOWER_CASE l(ower) Force all column names returned
by an engine to lower case. For
this value, use lower case when
naming JAM variables.

DM_FORCE_TO_UPPER_CASE u(pper) Force all column names returned
by an engine to upper case. For
this value, use upper case when
naming JAM variables.

DM_DEFAULT_CASE d(efault) Use the default value set by JY-
ACC in the support routine. Re-
fer to the Database Drivers sec-
tion in the Database Guide to
find the value for a specific en-
gine.

For example, ORACLE returns all column names in upper case. If the case flag is
set to DM_PRESERVE_CASE, the application needs JAM variables with upper case

Initializing One or More Engines

210 JAM 7.0 Application Development Guide

names. To map columns to JAM variables with lower case names, set the case flag
to DM_FORCE_TO_LOWER_CASE. SYBASE, on the other hand, is case sensitive and
can return column names in upper, lower, or mixed cases. To map SYBASE
columns to single case JAM variables, you can set the case flag to either
DM_FORCE_TO_UPPER_CASE or DM_FORCE_TO_LOWER_CASE.

The last argument, (char *)0 , is provided for future use.

Using JAM7.INI for Dynamic Initialization
In JAM for Windows, you have two methods of initializing a database engine. One
method, which is described in the previous sections, compiles support for a
database into the executable. The other method uses specifications in your
JAM7.INI file to initialize database engines at runtime when the JAM program is
started.

To set the database engines in your JAM7.INI file, add a database-specific section
to the file. The syntax is:

[databases]
installed = engine-name [engine-name]

[dbms engine-name]
case={upper | lower | preserve | default}
driver= driver DLL
model= model DLL

engine-name can contain any character string you wish. If an application uses two
or more database engines, the mnemonic engine-name tells JAM which database
engine to use. Most of the examples in this manual use a vendor name as the
mnemonic, for example sybase or oracle , but any character string that is not a
keyword is valid. Engine names are case-sensitive. This entry is required.

case determines how JAM uses case when mapping column names to JAM
variables for SQL SELECT statements. JAM variables can be widgets on the screen,
JPL variables, or LDB variables. Using the case setting, you can create all your
JAM variables in a particular case and have JAM do the conversion to that case for
you. The case options are described in Table 20. This entry is optional.

driver DLL is provided by JYACC for use with a particular database engine and is
set by the installation program. For additional information about the DLL for a
specific engine, refer to the README.vendor-code file in the \JAM7\NOTES
directory. (vendor-code is a three letter abbreviation for the vendor, for example,
syb for SYBASE.) This entry is required.

model DLL is the name of the transaction model provided by JYACC for use with
the transaction manager. For information about the transaction model for a specific

Making a New dbiinit.c to Change Static Initialization

21111 Database InitializationChapter

engine, refer to the README.vendor-code file in the \JAM7\NOTES directory. This
entry is required if you are using transaction manager.

Initialization Procedure
As a part of initialization, JAM calls the support routine for information on the
particular DBMS. This includes the following information:

� The engine’s capabilities (e.g., whether the engine can execute stored
procedures or support multiple connections).

� The required formatting for character, date, and null strings being passed to the
database.

� The default for case handling.

In addition, JAM sets up some structures at initialization, including structures for
tracking the number and names of all connections to an engine.

Setting the Default Engine
An application with two or more initialized engines sets the default engine with the
command

DBMS ENGINE engine-name

or sets the current engine for a statement by including the WITH ENGINE clause. If
an application initialized more than one engine, it must set the default or current
engine when declaring connections to different engines. Once a connection is
declared, the default connection determines the default engine.

Making a New dbiinit.c to Change Static Initialization

When you run the JAM makefile, the mkinit command creates a new version of
dbiinit.c , if one does not already exist. To make a new version of dbiinit.c ,
delete the current version, edit the database engine settings in the JAM makefile,
and run the makefile containing the new settings. The command appears in the
makefile as follows:

mkinit [–dnlup]dbs=engine-name ...

The square brackets indicate the optional command flags and do not need to be
typed. You need to enter one of the command flags for each engine.

Making a New dbiinit.c to Change Static Initialization

212 JAM 7.0 Application Development Guide

Most of the command flags deal with the case conversion for column names. When
a query retrieves a column value, JAM looks for a JAM variable with the same
name as the column name and places the value in that variable. However, some
database engines only create column names in a specific case or allow mixed cases.
Using the case setting, you can create all your JAM variables in a particular case
and have JAM do the conversion to that case for you.

–d Use the default case conversion set in the support routine. Refer to the
Database Drivers section in the Database Guide to find the setting for a
particular database engine.

–n Do not install this engine in dbiinit.c .

–l Convert the column names to lower case JAM variable names.

–u Convert the column names to upper case JAM variable names.

–p Preserve the case of the column names when converting to JAM variable
names.

dbs
A three-letter abbreviation that JAM specifies for the database. For example, the
abbreviation for JDB is jdb . The abbreviation for SYBASE is syb . Refer to the
Database Drivers section in the Database Guide to find the abbreviation for a
particular database engine.

If you specify an invalid abbreviation, you will get an unresolved external error
when you try to link.

engine-name
The name you want to use for the engine in DBMS ENGINE statements and WITH
ENGINE clauses.

Options and
Arguments

213

Database Connections
Once the engine is initialized, you need to establish a connection before your
application can access any data. You can use the Connection option on the
Database menu or you can use the DBMS DECLARE CONNECTION command in a
JPL procedure or C function.

Connecting to a Database Server

Once a database engine is initialized, the application must connect to it before it
can perform operations. The DBMS command for declaring a connection is:

DBMS [WITH ENGINE engine-name] \
DECLARE connection-name CONNECTION FOR \
OPTION ” argument” [OPTION ” argument ”]

If a WITH ENGINE clause is not specified, the connection is declared for the default
engine. The connection names specified in the statement are case-sensitive.

Different engines support different options. Common options include USER,
PASSWORD, DATABASE and SERVER. If an option included in the DECLARE
CONNECTION statement is not supported by the engine, the database driver reports
error number 53254—Bad arguments . To see a list of options for a specific
engine, refer to the Database Drivers section in the Database Guide.

Alternatively, in JAM editor programs like jamdev , there is a Connection option
on the Database menu. After you choose a database engine, the options available
for that engine are displayed.

1212

Connecting to a Database Server

214 JAM 7.0 Application Development Guide

Description of a Database Connection

A declared connection is a named structure describing a session about an engine.
This information includes:

� A connection name.

� Logon information supplied by the option arguments, for example, a user and
database name.

� A data structure for a default SELECT cursor.

� Pointers to other structures associated with the connection, including named
cursors (thus when an application closes a connection, JAM is able to close all
open cursors on the connection).

Once a connection is opened, the application can operate on the database tables.

Setting the Default Connection

When you are using multiple connections, you should set a default connection.
This is done with the following command:

DBMS CONNECTION connection-name

You can override the default connection using a WITH CONNECTION clause which
specifies a connection to be used for a single statement. For example:

DBMS WITH CONNECTION oracon SQL SELECT * FROM customers

Remember that a connection is always associated with an initialized engine.
Setting a connection as the current or default connection also sets the current or
default engine.

Connections to Multiple Engines

If an application is using two or more engines, a connection must be declared for
each engine. You can then set a default connection. For example:

DBMS WITH ENGINE sybase DECLARE sybcon CONNECTION FOR \
USER ”:uname” PASSWORD ”:pword” SERVER ”birch”

DBMS WITH ENGINE oracle DECLARE oracon CONNECTION FOR \
USER ”:uname” PASSWORD ”:pword”

DBMS CONNECTION sybcon
DBMS SQL SELECT * FROM titles WHERE title_id = :+title_id

Closing Connections

21512 Database ConnectionsChapter

In the example, connections are declared on the engine sybase and the engine
oracle . JAM will get the values for USER and PASSWORD from the variables
uname and pword at runtime. The connection sybcon is chosen as the default.
Therefore, JAM performs the SELECT on the connection sybcon and uses the
support routine of sybcon ’s engine to execute the query.

Multiple Connections to a Single Engine
Some database engines permit two or more simultaneous connections. Refer to the
Database Drivers section in the Database Guide to see if this option is available for
a specific engine. If you wish to take advantage of this feature on a valid engine,
you need to declare a named connection for each session on the engine. For
example:

DBMS ENGINE sybase
DBMS DECLARE s1 CONNECTION FOR \

USER ”:uname” PASSWORD ”:pword” SERVER ”birch”
DBMS DECLARE s2 CONNECTION FOR \

USER ”:uname” PASSWORD ”:pword” SERVER ”maple”
DBMS CONNECTION s1

This example declares two connections on the sybase engine and sets the default
connection to be s1 . JAM will get the values for USER and PASSWORD from the
variables uname and pword at runtime.

If you execute an additional connection statement for an engine supporting
multiple connections, the support routine opens the additional connection and JAM
keeps a count of the number of active connections for the engine. If the engine
does not support multiple connections or if the connection name is not unique,
JAM returns the error DM_ALREADY_ON.

Closing Connections

The application can close connections by executing the following command for
each declared connection:

DBMS CLOSE CONNECTION connection-name

Alternatively, it can close all connections on an engine by executing the following
command:

DBMS [WITH ENGINE engine-name] CLOSE_ALL_CONNECTIONS

The Disconnect option on the Database menu uses this command to close the
connections on a specified engine.

217

Using Cursors
A cursor is a SQL object associated with a specific query or operation. JAM stores
information on each cursor, including:

� The cursor’s name.

� The cursor’s connection.

� Any cursor attributes assigned with the following DBMS commands: ALIAS ,
CATQUERY, COLUMN_NAMES, FORMAT, OCCUR, START, STORE, and UNIQUE.

� Other operation-specific information (e.g., the number of rows to fetch,
information on target variables or binding parameters, etc.).

When a cursor is declared, JAM creates a structure for it and adds its name to a list
of open cursors. The cursor is available throughout the application until the
application closes the cursor or closes the cursor’s connection. JAM frees the
structure when the cursor is closed. Cursor names are case-sensitive so CUR1 and
cur1 are two distinct names.

Every connection has one or two default cursors which JAM automatically creates.
An application may also declare named cursors on a connection. A JAM
application may use either or both of these types of cursors.

The default cursors are convenient for SQL statements that are executed once, and
for applications using only one select set at a time. All database commands
executed with the JPL command DBMS SQL use default cursors.

1313

Using a Default Cursor

218 JAM 7.0 Application Development Guide

Named cursors are convenient for SQL statements that are executed several times.
A cursor is declared for a statement; executing the cursor executes the statement.
Named cursors often improve an application’s efficiency because the same
statement does not need parsing each time it is executed. Named cursors are also
necessary for applications using more than one select set at a time.

The rest of this chapter describes the use of cursors in an application. Please note
that the discussion of how data is passed between an application and a database is
covered in Chapter 15.

JAM provides several DBMS commands for changing the default behavior for a
cursor associated with a SELECT statement. The commands are ALIAS , CATQUERY,
COLUMN_NAMES, FORMAT, OCCUR, START, and UNIQUE. They are discussed in
Chapter 14 of this manual and in Chapter 11 of the Database Guide.

Using a Default Cursor

For most engines, JAM automatically declares two default cursors—one for SQL
SELECT statements and one for non-SELECT statements (such as UPDATE). In a few
cases, where the engine’s standard is a single default cursor, JAM adheres to that
standard and declares one default cursor. On such engines, an additional option,
CURSORS, is supported in the engine’s DECLARE CONNECTION statement. It
permits you to choose between one or two default cursors for the connection. For
more information on how cursors are handled for each engine, refer to the
Database Drivers section of the Database Guide.

A default SELECT cursor is associated with a particular connection, namely the
connection in effect when a SELECT statement is executed. For example:

DBMS CONNECTION c2
DBMS SQL WITH CONNECTION c1 \

SELECT title_id, name FROM titles \
WHERE genre_code = ’ADV’

DBMS SQL UPDATE titles SET pricecat = :+pricecat \
WHERE title_id = :+title_id

The first statement sets c2 as the default connection. The second statement uses
WITH CONNECTION to set c1 as the current connection for the SELECT statement.
In the UPDATE statement, no connection is specified. Therefore, JAM uses the
default connection c2 .

An application may also close the default cursor if it is not needed. For more
information, refer to page 222.

Using a Named Cursor

21913 Using CursorsChapter

Using a Named Cursor

You can create one or more named cursors to access and manipulate data. The
sequence is as follows:

� Declare one or more named cursors.

� Execute cursor(s).

� Close cursor(s).

Declaring a Cursor
Named cursors are created with a declaration statement. The statement names the
cursor and associates it with a connection and a SQL statement. If a connection is
not named in the declaration, JAM uses the default connection.

DBMS [WITH CONNECTION connection-name] \
DECLARE cursor-name CURSOR FOR SQL-statement

An application may declare a named cursor for any valid SQL statement. For
example:

DBMS DECLARE c1 CURSOR FOR SELECT * FROM rentals

The SQL statement is not executed until the cursor is executed:

DBMS WITH CURSOR c1 EXECUTE

The cursor may be executed any number of times. The name of the cursor must be
a valid JAM identifier. The cursor name is case-sensitive.

A cursor may use colon-variables in the DECLARE CURSOR statement. For
example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM rentals WHERE rental_date = :+today

The variable today is de-referenced when the cursor is declared. It is not
de-referenced when the cursor is executed. An application may use colon variables
or colon-plus variables anywhere in the statement.

To de-reference variables each time the cursor is executed, use bind tags in the
DECLARE CURSOR statement. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM rentals WHERE rental_date = ::rental_date

DBMS WITH CURSOR c1 EXECUTE USING rental_date = today

Supplying
Values Using
Colon
Expansion

Supplying
Values Using
Binding

Using a Named Cursor

220 JAM 7.0 Application Development Guide

The bind tag is two colons followed by any valid identifier. Note that the bind tag
is not an actual variable. When the cursor is executed, the application must provide
a literal value, a valid variable name, or a JAM expression for each bind tag. When
the example is executed, the application will fetch all rentals where rental_date
is the value of the variable today . To execute the select again where rent-
al_date is another value, change the contents of today and re-execute the cursor:

today = @date(today) – 1
DBMS WITH CURSOR c1 EXECUTE USING rental_date = today

You can also supply a new variable for the bind tag:

DBMS WITH CURSOR c1 EXECUTE USING rental_date = yesterday

Literals and expressions are also valid values for a bind tag. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM titles WHERE title LIKE ::title_qbe

DBMS WITH CURSOR c1 EXECUTE USING title_qbe = ”Citizen Kane”

or

DBMS WITH CURSOR c1 EXECUTE USING \
title_qbe = title_val ## ”%”

The first example supplies the literal ”Citizen Kane” as the value for the bind tag.
The second example uses JAM concatenation operator to append the contents of
the title_val variable followed by % as the value for the bind tag.

It is not required to supply the bind tag names in the EXECUTE USING statement. If
the tag names are not supplied, JAM associates the first variable with the first tag,
the second variable with the second tag, etc. For example:

DBMS DECLARE c1 CURSOR FOR \
SELECT * FROM customers \
WHERE first_name LIKE ::first_qbe \
AND last_name LIKE ::last_qbe

DBMS WITH CURSOR c1 EXECUTE USING f1, f2

JAM uses the contents of f1 as the value for bind tag ::first_qbe and uses the
contents of f2 as the value for bind tag ::last_qbe .

A bind tag is valid for any column value in a DECLARE CURSOR statement. A bind
tag is not permitted for SQL keywords, table names, or columns names. Therefore,
bind tags are valid for column values in any of the following:

� WHERE clause of SELECT, UPDATE, and DELETE statements

� SET clause of UPDATE statements

� VALUES clause of INSERT statements

Using a Named Cursor

22113 Using CursorsChapter

For example:

DBMS DECLARE c1 CURSOR FOR \
UPDATE pricecats SET price = ::newprice \
WHERE pricecat = ::pricecat

 DBMS WITH CURSOR c1 EXECUTE USING \
newprice = price_fld, pricecat = pricecat_fld

DBMS DECLARE c1 CURSOR FOR \
INSERT INTO pricecats \
(pricecat, pricecat_dscr, rental_days, price, late_fee) \
VALUES (::p1, ::p2, ::p3, ::p4, ::p5)

DBMS WITH CURSOR c1 EXECUTE USING \
p1 = pricecat, p2 = pricecat_dscr, p3 = rental_days, \
p4 = price, p5 = late_fee

Bind tags are also valid for stored procedure parameter values.

Note that the command DBMS EXECUTE does not permit the WITH CONNECTION
clause. The cursor remains associated with the connection specified by name or by
default in the DECLARE statement. For example:

DBMS CONNECTION sybcon
DBMS DECLARE cur1 CURSOR FOR SELECT * FROM titles
DBMS CONNECTION oracon
DBMS WITH CURSOR cur1 EXECUTE
DBMS SQL UPDATE

When cursor cur1 is declared JAM associates it with the default connection
sybcon . Although the default connection is changed to oracon before the cursor
is executed, the connection associated with cur1 does not change. When the cursor
is executed, the JAM performs the SELECT on connection sybcon . The default
connection oracon performs the subsequent UPDATE.

Even though a cursor is usually declared with a SQL statement, a different syntax
is available for use in the transaction manager. Once the transaction manager
creates the select cursor during a TM_GET_SEL_CURSOR event, the variable
@tm_sel_cursor contains the name of the select cursor. Using this variable, you
can write a hook function to declare the cursor and to execute any additional
processing. Then, subsequent transaction events attach the SQL statement by
re-declaring the cursor.

In the following example, the make_cursor hook function declares the cursor and
sets a variable to hold select results with the DBMS CATQUERY command. Then, if
you choose the VIEW or SELECT command in the transaction manager, this hook
function is called and is followed by the transaction events that re-declare and

Executing a
Cursor with
Multiple
Connections

Using a
Transaction
Manager Cursor

Closing a Cursor

222 JAM 7.0 Application Development Guide

execute the cursor with the applicable SQL statement, writing the select results to
the title_all variable.

proc make_cursor (event)
if event == TM_SEL_BUILD_PERFORM
{
DBMS DECLARE :@tm_sel_cursor CURSOR
DBMS WITH CURSOR :@tm_sel_cursor CATQUERY title_all
return TM_PROCEED
}
return TM_PROCEED

A cursor may be re-declared on the same connection for another SQL statement.
For example:

DBMS DECLARE abc CURSOR FOR \
SELECT cust_id, title_id FROM rentals \
WHERE return_date IS NULL

DBMS WITH CURSOR abc EXECUTE

DBMS DECLARE abc CURSOR FOR \
SELECT * FROM titles WHERE title_id = ::title_num

DBMS WITH CURSOR abc EXECUTE USING title_num

You can also modify the cursor behavior, if the cursor is associated with a SQL
SELECT statement, using additional DBMS commands provided by JAM. These
commands include ALIAS , CATQUERY which can be used with FORMAT,
COLUMN_NAMES, OCCUR, START, and UNIQUE. They are discussed in Chapter 11 of
the Database Guide. Here we note that these settings are not lost when a cursor is
re-declared, but only when the cursor is closed.

A cursor cannot be re-declared for a different connection. To re-use the cursor
name on a different connection, you must first close the cursor.

Closing a Cursor

To close a cursor and free its data structure, execute the following:

DBMS CLOSE CURSOR cursor-name

Cursors are also closed when the application closes the the connection.

To close the default cursor, execute:

DBMS CLOSE CURSOR

The default cursor remains closed unless the application executes a DBMS SQL
SELECT statement. JAM will automatically re-open the cursor when it is needed.

Modifying a
Cursor

223

Reading Information
from the Database

The SQL executor provides access to a database engine through one of JAM’s
database drivers. You can enter SQL statements using the SQL syntax supported by
your database engine. In the SQL executor, you also have access to a series of
commands to help you return the information to JAM variables. These commands
are included in each of JAM’s database drivers and can be used in either JPL
procedures or C functions.

A JAM application receives two types of information from a database:

� Data requested by a SELECT statement.

� Error and status codes.

This chapter discusses how this information flows from one or more databases to
variables in a JAM application, in particular the destination and format of data
returned by SQL SELECT statements. For more information about error and status
codes, refer to page 255.

An application can also receive data as the result of executing a stored procedure.
Since all engines do not support stored procedures, and the syntax of commands
varies among those that do, refer to the Database Drivers section of the Database
Guide for more information.

1414

Fetching Data Using SELECT Statements

224 JAM 7.0 Application Development Guide

The information on how data is mapped to JAM variables also applies to
processing in the transaction manager even though most of the examples in this
chapter use JPL procedures and colon processing to construct the SQL SELECT
statements.

Fetching Data Using SELECT Statements

When a SELECT statement is passed to an engine, JAM performs several steps
before transferring data to JAM variables.

1. JAM counts the number of columns in the query and records information on
each column’s name, length, and data type, noting whether it is a character,
date or numeric data type.

2. For each column, it searches for a JAM variable destination. If a destination
exists, JAM records the length of the variable. If no JAM destination exists for
a column, or if the destination is an LDB variable with initialized text, JAM
does no fetches for the column. Refer to the following section for more
information on JAM destinations.

3. It determines the number of rows to fetch. This number usually equals the
number of occurrences in the smallest JAM destination variable, or 0 if there
are no target variables. Refer to page 228 for more information.

4. Finally, JAM formats data before writing it to the destination variables if the
database column has a date data type, or if the destination variable has a null,
currency, or precision edit. Refer to page 234 for more information.

The sequence above describes a SQL SELECT that writes database column values
to occurrences of a widget, JPL variable, or LDB variable. You can also direct the
results of a SELECT to a text file or concatenate all the values in a row to a single
JAM variable. Refer to page 237 for more information.

JAM Targets for a SELECT Statement

For an application to retrieve data from a database, there must be an unambiguous
mapping between a selected database column and its JAM destination. There are
two ways of associating JAM target variables with database columns.

� Give a JAM target variable the same name as a database column. This is called
automatic mapping.

� Explicitly declare a JAM variable as the target of a database column. This is
called aliasing.

JAM Targets for a SELECT Statement

22514 Reading Information from the DatabaseChapter

Automatic Mapping
By default when executing a SELECT statement, JAM will search for variables with
the same names as the specified columns. These JAM variables can be widgets,
JPL variables, or LDB variables. For the statement,

DBMS SQL SELECT title_id, name, pricecat FROM titles

to return values to JAM variables, the table titles must have at least three
columns: title_id , name and pricecat . If any of these columns does not exist
in the table titles , the engine returns an error.

The application can have a JAM destination variable for none, some, or every
named column in the SQL SELECT statement. To return the values of all three
columns to the application, there must be a JAM variable for each column. The
variables can be named title_id , name and pricecat . If one of these variables
does not exist, JAM ignores the values belonging to that particular column.

JAM also permits the use of the * in the SELECT statement,

DBMS SQL SELECT * FROM titles

Using automatic mapping, JAM looks for a variable for each column in the table
titles . Columns without matching variables are simply ignored. This is not
treated as an error.

You can use one or more qualified column names in SELECT statements. For
example,

DBMS SQL SELECT titles.title_id, titles.name,
titles.pricecat FROM titles

The JAM targets, however, must be given unqualified names: title_id , name
and pricecat .

When using automatic mapping, the case of the JAM variable names should
correspond to the case flag used in the engine initialization. If the engine’s case
flag is DM_FORCE_TO_LOWER_CASE, the JAM variables for a SELECT statement
should have lower case names. If the case flag is DM_FORCE_TO_UPPER_CASE, the
JAM variables should have upper case names. If the case flag is
DM_PRESERVE_CASE, the JAM variables should match the exact case of the
database columns. For information on a particular engine’s case flag, refer to the
Database Drivers section of the Database Guide.

Aliasing
Aliasing is used when automatic mapping is inconvenient or impossible to use. In
particular, aliasing is necessary when selecting any of the following:

using qualified column
names

matching the engine’s
case flag

JAM Targets for a SELECT Statement

226 JAM 7.0 Application Development Guide

� A column whose name is not a legal JAM variable name.

� A column whose name conflicts with other JAM variable names in the
application.

� A computed column or the result of an aggregate function (e.g., COUNT, SUM,
AVG, MAX, MIN).

Aliasing is not limited to these conditions. Any or all columns can be aliased if
desired. For example, you can alias a column if its name is not descriptive or if you
wish to name target variables for a particular table and column.

JAM provides the command DBMS ALIAS to specify aliases. On some engines,
you can also use the engine’s SELECT syntax to specify aliases.

DBMS ALIAS is associated with a SELECT cursor, either a named cursor or the
default SELECT cursor. If a cursor is not named, the aliases affect all SELECT
statements executed with the default cursor. You can assign aliases by name or by
position. The following syntax aliases a column name to a JAM variable:

DBMS [WITH CURSOR cursor-name] ALIAS column1 jam-var1 \
[, column2 jam-var2 ...]

The following syntax aliases a column position to a JAM variable:

DBMS [WITH CURSOR cursor-name] ALIAS jam-var1 \
[, jam-var2 ...]

Only one DBMS ALIAS statement can apply at any one time to any named or
default cursor. In that statement, either named or positional aliasing can be used,
but both forms can not be used in a single DBMS ALIAS statement.

To turn off aliasing, execute DBMS ALIAS without any arguments. Again, if a
cursor name is given, aliasing is turned off on the named cursor. If no cursor name
is given, aliasing is turned off on the default cursor.

The case of the column names in the DBMS ALIAS statement should correspond to
the case flag used in the engine initialization. If the engine’s case flag is
DM_FORCE_TO_LOWER_CASE, the column names should be in lower case. If the
case flag is DM_FORCE_TO_UPPER_CASE, the column names should be upper case.
If the case flag is DM_PRESERVE_CASE, the column names should use the exact
case of the database columns. The case of jam-var should always match the exact
case of the JAM variable name. For information on a particular engine’s case flag,
refer to the Database Drivers section of the Database Guide.

If an application aliases a column to a JAM variable that does not exist, JAM
ignores the column’s values. This is not treated as an error.

Using DBMS
ALIAS

turning off aliasing

JAM Targets for a SELECT Statement

22714 Reading Information from the DatabaseChapter

First, consider an example that aliases column names to JAM variables. For
example,

DBMS ALIAS first_name first, last_name last
DBMS SQL SELECT cust_id, first_name, last_name FROM customers

JAM writes the values from the column first_name to the variable first and it
writes the values of column last_name to the variable last . Since no alias was
given for cust_id , it maps it to a variable of the same name. This is illustrated in
Figure 11.

Table customers:

DBMS ALIAS aliases:

JAM screen:

cust_id first_name last_name

2 Alexander Scott
3 Melissa Stedman
4 Ellen Warren

first_name –> first last_name –> last

cust_id

first lastAlexander Scott

2

Figure 11. The mapping of a SELECT statement when aliases are used.

Aliases can also be given after declaring a named cursor. For example,

DBMS DECLARE cust_cursor CURSOR FOR \
SELECT cust#, member_date, member_status FROM customers

DBMS WITH CURSOR cust_cursor ALIAS ”cust#” cust_num
DBMS WITH CURSOR cust_cursor EXECUTE

Since cust# is not a legal JAM variable name, the application must declare an
alias for the column if it is to receive the column’s value. Before executing the
cursor, the application aliases column cust# to variable cust_num . The cursor
keeps this alias until the application turns it off with DBMS ALIAS or closes the
cursor with DBMS CLOSE CURSOR. If a column name is not a valid JAM identifier,
enclose it in quote characters; this ensures that JAM parses it correctly.

Now consider an example that uses positional aliases. For example,

DBMS ALIAS min_rent, max_rent, avg_rent
DBMS SQL SELECT MIN(num_rentals), MAX(num_rentals),

AVG(num_rentals) FROM customers

Aliasing by
Column Names

Aliasing by
Column
Positions

Fetching Multiple Rows

228 JAM 7.0 Application Development Guide

JAM writes the aggregate function values to the alias variables. The value of
MIN(num_rentals) is written to the variable min_rent , MAX(num_rentals) is
written to the variable max_rent , and AVG(num_rentals) is written to the
variable avg_rent . Note that there is no automatic mapping available for values
resulting from calculations or aggregate functions. If the application had not
declared aliases, the values would not be written to JAM variables.

Of course, the application should turn off the positional aliases when it is finished.
If it does not turn them off before executing the next SELECT statement on that
cursor, JAM will attempt to write the values of the first three columns to the three
positional alias variables. If those variables are no longer available, JAM will
ignore the first three columns in the select set.

Many engines support aliasing in their SELECT statement syntax. In interactive
mode, this permits the user to specify for a view a column heading that is different
than the database column name. Typically, the syntax is

SELECT column1 heading1, column2 heading2...FROM table

In interactive mode, the values of column1 are placed under the heading heading1,
and the values of column2 are places under the heading heading2. Please note that
in this syntax a space separates a column from its alias, and a comma separates the
column-alias set from the next column or column-alias set. Some engines might
support another syntax. Refer to your database engine documentation for details.

If an engine supports aliasing in a SELECT statement, JAM will also support it. You
can follow the syntax of the engine, replacing heading with the name of the
appropriate JAM variable.

For example, if the syntax shown above is supported by the engine, than the
following could be used in a JAM application,

DBMS SQL SELECT title_id id, name, pricecat price FROM titles

When this statement is executed, the DBMS tells JAM that the columns id , name,
and price were selected. JAM will look for variables with those names. If there is
a variable title_id available, this SELECT statement will not write to it because
the engine has aliased it to id .

Although this form is supported, using DBMS ALIAS is recommended, especially
for applications accessing more than one engine. JAM provides identical support
for DBMS ALIAS on all engines.

Fetching Multiple Rows
A select set often contains more than one row. JAM must determine how many
rows it can fetch at one time from a select set. Subsequent rows in the select set are
fetched by executing one or more DBMS CONTINUE commands.

Aliasing with the
Engine’s
SELECT Syntax

Fetching Multiple Rows

22914 Reading Information from the DatabaseChapter

Determining the Number of Occurrences
JAM uses the following guidelines in determining the number of rows to fetch:

� If an occurrence number was specified with a target variable name, only one
row is fetched.

� If a target is a multitext widget with the Word Wrap property set to Yes, only
one row is fetched.

� If using browse mode, only one row is fetched. (Refer to the Database Drivers
section of the Database Guide to see if the engine supports browse mode.)

� Otherwise, JAM examines the number of occurrences in each of the targeted
variables. Usually, all the target variables have the same number of occur-
rences. If this is true, JAM fetches a row for each occurrence. If the targets do
not have the same number of occurrences, JAM finds the target variable with
the least number of occurrences and fetches that number of rows.

Therefore, if the targets for the SELECT statement contain both a single line
text widget and an array, only one occurrence is fetched. Similarly, if the target
variables are multitext widgets and one of those widgets has the Word Wrap
property set to Yes, only one occurrence is fetched for the entire set.

Be careful of LDB variables that are unintentional targets of a SELECT especially
when using the wild card * in a SELECT or when executing a SELECT in a screen
entry function.

For example, consider an application using the wild card:

DBMS SQL SELECT * FROM table

The application has onscreen widgets for some of the columns in the table. The
LDB, however, contains an entry with the name of one of these unrepresented
columns. If the onscreen fields have 20 occurrences and the LDB entry has 5
occurrences, only five rows will be fetched at a time.

Also, consider an application that executes a SELECT in a screen entry function. By
default, JAM first searches the LDB and then the screen for JAM variables when
executing screen entry functions. Therefore, if a variable is represented both as an
onscreen field and as an LDB variable, a screen entry function will write to the
LDB variable before the LDB merge writes to the onscreen field. If the LDB
variable and the field do not have the same number of occurrences, data is lost or
appears lost when the LDB merge updates the screen fields.

Scrolling Through a SELECT Set
Most applications must be capable of handling a fluctuating number of data rows.
Based on the type of data selected and the hardware in use, you can use either or
both types of scrolling—scrolling arrays or non-scrolling arrays.

Fetching Multiple Rows

230 JAM 7.0 Application Development Guide

If scrolling arrays are used as the destination variables of a SELECT statement, the
entire select set is fetched in a single step. To view the rows, press the page up and
page down keys (logical keys SPGU and SPGD) .

Otherwise, the application uses single-element fields or non-scrolling arrays as the
destination variables of a SELECT statement. The select set is fetched incremental-
ly. To permit the user to scroll backward and forward in the set, the application
must set up a method to execute the JAM scrolling commands.

The two methods are described in detail below.

Scrolling arrays are useful for small to mid-sized sets. Set the Scrolling property
under Geometry to Yes. Set the # of Occurrences property or leave it blank, which
indicates an unlimited number of occurrences. Because the application must keep
the entire select set in memory, the realistic limit might be much lower on a
platform like MS-DOS or for a SELECT involving many columns.

With this approach, you create large scrolling arrays with more occurrences than
the number of rows you expect to be in the select set. When the SELECT is
executed at runtime, there is no penalty for unused occurrences; JAM allocates
only whatever memory is needed to hold the returned rows. Therefore, a JAM
screen might contain variables each with 10 elements and 1000 occurrences. If a
select set contained only 75 rows, JAM would allocate memory for 75 occurrences
in each of the variables; it would not allocate memory for the 925 unused
occurrences.

There are several ways of verifying that the arrays actually contained enough
occurrences to hold the entire select set. Most often the application examines the
value of the global variable @dmretcode . JAM writes a no-more-rows status code
to this variable when the engine signals that it has returned all requested rows. The
value of this variable can be examined after a SELECT statement. Refer to page 255
for more information on @dmretcode and related variables. An example
procedure is shown below:

proc select_all
DBMS SQL SELECT cust_id, first_name, last_name, \

member_status FROM customers
if @dmretcode == DM_NO_MORE_ROWS

msg esmg ”All rows returned.”
else

msg emsg ”Application could not display all customers.”
return

This approach is very easy to use. Since all the rows are fetched at once, the
application makes only one request of the database server and it is free to use the
default SELECT cursor to make new selects.

It is not the best method for large SELECT sets. If the application is too slow
displaying the data or is sluggish after the rows have been fetched, you should
consider using non-scrolling arrays or some other alternative scroll driver.

Using Scrolling
Arrays

Fetching Multiple Rows

23114 Reading Information from the DatabaseChapter

Non-scrolling arrays are useful for mid-sized to large select sets. JAM does not
impose any limit on the number of rows that can be displayed with this method.

For widgets to be non-scrolling arrays, the Array Size property is set to > 1 and
Scrolling is set to No. At least two JPL procedures are needed to view the select
set. The first procedure executes the SELECT statement and fetches the first
screenful of rows. The second procedure executes a DBMS CONTINUE to fetch the
next screenful of rows from the select set. The second procedure might be executed
many times before the user sees all the rows.

Note: In multi-user environments, you should know how the engine ensures read
consistency—the guarantee that data seen by a SELECT does not change during
statement execution. The engine might be using rollback segments or shared locks
to provide read consistency. Since a shared lock prevents other users from updating
locked rows, applications on these engines should release the lock as soon as
possible.

For example, the current screen has widgets named for the columns in the table
titles . Each widget has Array Size set to 5. The application uses procedures like
the following to select data from a table and view additional rows:

proc select_video
DBMS SQL SELECT * FROM titles
return

proc continue_select
DBMS CONTINUE
return

as well as control strings like the following to execute the procedures:

PF1=^select_video
PF2=^continue_select

Assume that table titles contains 12 rows. When you press the PF1 key, the
application executes the JPL procedure select_video and writes rows 1 through
5 to the screen. If you press PF2, the application executes the procedure contin-
ue_select which clears the arrays and writes rows 6 through 10 to the screen. If
you press PF2 again, the application executes continue_select again which
clears the arrays and writes rows 11 and 12 to the screen. If you press PF2 a third
time, the application does nothing because there are no more rows in the select set.

Non-scrolling arrays use less memory than scrolling arrays. With non-scrolling
arrays, the application needs only enough memory for the rows displayed on
screen. The other rows are buffered either in a binary disk file or by the database
server. With large select sets, this approach often improves the application’s
performance and response time.

Using
Non-scrolling
Arrays

Fetching Multiple Rows

232 JAM 7.0 Application Development Guide

This approach requires a little more work. The application needs procedures to
handle the scrolling and possibly the remapping of cursor control keys. Also, the
method restricts the SELECT cursor. If the application needs to perform other
SELECT statements while scrolling through this set, the application must declare
named cursors to execute additional SQL statements.

In addition to DBMS CONTINUE, an application can simulate scrolling through a
SELECT set by using the following commands:

DBMS CONTINUE_UP scrolls up a screenful of rows

DBMS CONTINUE_TOP scrolls to the first screenful of rows

DBMS CONTINUE_BOTTOM scrolls to the last screenful of rows

Some engines have native support for these commands. For example, the engine
might buffer the rows in memory on the server. However, JAM also provides its
own support for these commands. Use DBMS STORE FILE to set up a continuation
file for a named or default SELECT cursor. When it is used, JAM buffers SELECT
rows in a temporary binary file. The syntax of the command is:

DBMS [WITH CURSOR cursor-name] STORE FILE [filename]

The command is supported on all engines. To select and view data, an application
uses procedures like the following:

proc select_video
DBMS STORE FILE vidlist
DBMS SQL SELECT * FROM titles
return

proc scroll_down
DBMS CONTINUE
return

proc scroll_up
DBMS CONTINUE_UP
return

proc scroll_top
DBMS CONTINUE_TOP
return

proc scroll_end
DBMS CONTINUE_BOTTOM
return

Then, you attach these procedures to push buttons or function keys. The following
example attaches the procedures to function keys:

Scrolling
Commands

Fetching Multiple Rows

23314 Reading Information from the DatabaseChapter

PF1=^select_video
PF2=^scroll_down
PF3=^scroll_up
PF4=^scroll_top
PF5=^scroll_end

Using the same number of rows and occurrences as earlier, when you press the PF1
key, the application executes the JPL procedure select_video and writes rows 1
through 5 to the screen. If you press PF2, the application executes the procedure
scroll_down which clears the arrays and writes rows 6 through 10 to the screen.
If you press PF3, the application executes scroll_up which clears the arrays and
writes rows 1 through 5 to the screen. If you press PF5 the application executes
scroll_end which clears the arrays and writes the last 5 rows in the SELECT set,
rows 8 through 12, to the screen.

Instead of using function keys or push buttons to call the JPL procedures which
execute the JAM scrolling commands, you might prefer the standard page up and
page down keys to the PF keys. The values of the logical keys SPGU and SPGD
can be reassigned with the JAM library function sm_keyoption . Therefore, the
application might use an entry and exit function to change how SPGU and SPGD
work on a screen or in a field. The entry function calls sm_keyoption so that
SPGD acts like the function key that calls the scroll up procedure, and calls
sm_keyoption so that SPGU acts like the function key that calls the scroll down
procedure. The exit function calls sm_keyoption to restore the default behavior.

An example of this behavior in a widget entry and exit function is shown below.
The widget’s Entry Function and Exit Function properties are set to entry_exit
which calls sm_keyoption . The function keys APP1 and APP2 are set to call the
JPL procedures scroll_up and scroll_down described above. When you click
on the widget, the standard page up and page down keys can be used to scroll
through the data.

/* APP1=^scroll_up
 APP2=^scroll_down */

proc entry_exit(f_no f_data, f_occ, f_flag)
if (f_flag & K_ENTRY)
{

call sm_keyoption (SPGD, KEY_XLATE, APP1)
call sm_keyoption (SPGU, KEY_XLATE, APP2)

}
else if (f_flag & K_EXIT)
{

call sm_keyoption (SPGU, KEY_XLATE, SPGU)
call sm_keyoption (SPGD, KEY_XLATE, SPGD)

}
return

Remapping
Logical Keys for
Scrolling

Format of Select Results

234 JAM 7.0 Application Development Guide

If you use widget or LDB arrays as the destinations of a SELECT, you can specify
the maximum number of rows to fetch and the first occurrence to write to in the
array destination. The command is

DBMS [WITH CURSOR cursor-name] OCCUR int [MAX int]
DBMS [WITH CURSOR cursor-name] OCCUR CURRENT [MAX int]

Refer to page 131 in the Database Guide for more information on this command.

You can also change the number of rows fetched by using the command

DBMS [WITH CURSOR cursor-name] START int

The command tells JAM to read and discard int – 1 rows before writing the rest of
the select set to JAM variables.

Refer to Chapter 11 in the Database Guide for more information on this command.

Format of Select Results

Before writing a database column value to a JAM variable occurrence, JAM
determines the data type of the database column.

In all cases, if the value equals the engine’s null (e.g., NULL), JAM clears the
variable. If the variable has the Null Field property set to Yes, JAM automatically
converts the null string to the one assigned by the widget properties.

If any value is longer than the variable, the data is truncated.

If a column has a character data type, the value is simply written to the target
variable. If the variable has the Word Wrap property set to Yes or the Justification
property set to Right, the property is applied.

If a column has a date data type, JAM formats the value before writing it to a JAM
variable. If the variable has a date-time edit, JAM uses it. If the variable does not,
JAM uses the format assigned to the message file entry SM_0DEF_DTIME. By
default, the entry is

SM_0DEF_DTIME = %m/%d/%2y %h:%0M

For example, April 1, 1994 10:05:03 would be formatted as 4/1/94
10:05 . When the message file default is used, JAM assumes a 12-hour clock.

For information on date-time formats, refer to the Editors Guide and the
Configuration Guide.

Controlling the
Number of Rows
Fetched

Choosing a
Starting Row in
the SELECT Set

Character
Column

Date-time
Column

Format of Select Results

23514 Reading Information from the DatabaseChapter

If a column has an integral type, JAM converts the value to a long. JAM then
converts the value to ASCII and writes it to the variable, truncating any data longer
than the destination variable.

If a column has a real type, JAM converts the value to a double. Before writing the
value to a JAM variable, JAM examines the widget’s Data Formatting and C Type
properties to help determine the precision.

� Data Formatting⇒ Numeric and C Type⇒ Default

If the value is less precise than the edit’s minimum number of decimal places,
the value is padded to the minimum number of decimal places. If the value is
more precise, it is rounded or adjusted to the currency edit’s maximum number
of decimal places. Note that the round up, round down, or adjust option of the
currency edit is applied.

� Data Formatting⇒ None and C Type⇒ Float/Double/Int/Long Int/Short Int

If the C type is one of the integer types, the value is adjusted by standard
rounding to 0 places. If the C type is float or double, the value is padded or
adjusted to the type’s precision.

� Data Formatting, C Type and Precision properties conflict

• If the value is less precise than the currency edit’s minimum number of
decimal places, the value is padded to the minimum number of decimal
places.

• If the value is more precise than the minimum number of places, JAM
compares the currency’s maximum number of places and the C type’s
precision, and uses the less precise of the two.

• If it uses the currency’s maximum number of places, then it also uses the
currency’s round up, round down, or adjust option as well as any fill
characters.

• If it uses the C type precision, it adjusts by standard rounding to the
precision.

� Data Formatting⇒ None and C Type⇒ Default

The precision is taken from the data type being returned.

Refer to the Editors Guide for more information on currency formats.

If a column has an binary data type, JAM sets the column type to be DT_BINARY.
Before writing data to the widget, JAM checks the C Type property. If the C Type
is Hex Dec, then JAM converts the binary data to a hexadecimal string. Otherwise,
JAM passes the binary data as is.

Numeric Column

Binary Columns

Format of Select Results

236 JAM 7.0 Application Development Guide

Generally, binary data is fetched either into variables declared with DBMS BINARY
or into widgets with a C Type property of Hex Dec. Otherwise, incorrect binding
might result.

By default, when a column is selected, JAM returns all values. There is also a
command for displaying only a column’s unique values,

DBMS [WITH CURSOR cursor-name] UNIQUE column \
[, column ...]

JAM replaces a repeating value with an empty string.

This command is useful if an application is selecting values from a table which
uses two or more columns as the primary key. For example, if the table projects
has the columns project_id , staff , task_code and the columns project_id
and staff constitute the primary key, an application could suppress the repeating
values in one of the columns of the primary key to improve readability on the
screen. Figure 12 illustrates the data in the project table.

project_id staff task_code

1001 Jones A
1001 Carducci A
1001 Bryant C
1004 Carducci B
1004 Mohr A
1004 Silver B
1004 Thomas D
1031 Jones E

Figure 12. The primary key of the projects table is (project_id, staff).

The following commands select the data and format it to suppress repeating values:

DBMS DECLARE proj_cur CURSOR FOR \
SELECT * FROM projects ORDER BY project_id

DBMS WITH CURSOR proj_cur UNIQUE project_id
DBMS WITH CURSOR proj_cur EXECUTE

Fetching Unique
Column Values

Format of Select Results

23714 Reading Information from the DatabaseChapter

Figure 13 is a sample screen displaying the results.

1001 Jones A
Carducci A
Bryant C

1004 Carducci B
Mohr A
Silver B
Thomas D

1031 Jones E

EmployeeProject Task

Figure 13. The JAM layout is easier to read than the table layout.

Refer to Chapter 11 in the Database Guide for more information.

Redirecting Select Results to Other Targets

If you need other destinations for SELECT statements, DBMS CATQUERY allows you
to concatenate a full result row and write it to either a JAM variable or a text file.

DBMS [WITH CURSOR cursor-name] CATQUERY TO jam-variable \
[SEPARATOR text] [HEADING [ON | OFF]]]

DBMS [WITH CURSOR cursor-name] CATQUERY TO FILE filename \
[SEPARATOR text] [HEADING [ON | OFF]]

There is also a command for formatting the results,

DBMS [WITH CURSOR cursor-name] FORMAT [column] format

For more information on both of these commands, refer to Chapter 11 in the
Database Guide.

239

Writing Information to
the Database

The following sections discuss how JAM passes data from an application to a
database. The topics are the following:

� Colon preprocessing: using the colon preprocessor to put JAM values into
SQL statements. Its forms are :variable, :+variable, and :=variable.

� Parameters: binding values to SQL parameters when executing a named
cursor. Their form is ::variable.

Colon Preprocessing

JAM supports colon preprocessing as part of its standard JPL syntax. This standard
colon preprocessing is described in the JPL section of the Language Reference.
One or more colon variables can appear anywhere in a DBMS statement. One
exception applies: the first word in the statement cannot be colon-expanded.
Therefore, the following two statements are illegal:

:verb SELECT * FROM students
:command EXECUTE cursor1

JPL must know the command word to perform syntax checking and compilation
before executing a JPL statement.

1515

Colon Preprocessing

240 JAM 7.0 Application Development Guide

In addition to the standard forms of colon preprocessing, JAM’s database drivers
support special forms of colon preprocessing for values sent to a database. The
forms are:

:+variable Colon plus for preprocessing of column values

:=variable Colon equal for preprocessing of operator and column values

These forms of colon preprocessing replace a variable with its value and format it
in a style that is appropriate for a column value in an INSERT statement, an
UPDATE statement, or a WHERE clause. They are described below.

Before colon preprocessing a statement, JPL determines which engine to use. If
executing a DBMS statement, the JPL parser examines the statement for a WITH
ENGINE clause. If it finds the clause, it uses the specified engine. If it finds a WITH
CONNECTION clause, it uses the connection’s engine. If neither clause is used, JPL
uses the engine of the default connection. Note that colon-plus processing is not
necessary in statements using the WITH CURSOR clause. The only WITH CURSOR
statement that uses column values is DBMS EXECUTE and this statement uses
binding, not colon-plus processing, to supply column values.

For each :+ variable used in the JPL statement, the following steps are performed:

1. The standard colon preprocessor replaces the variable :+ variable with the
value of variable.

2. The colon-plus processor examines the following widget properties to
determine the variable’s JAM type in order to know how to format the data:

• C Type under Identity

• Null Field under Format/Display

• Data Formatting under Format/Display

• Keystroke Filter under Input

3. If the JAM widget has a Data Formatting value set or if it is a character string,
the processor formats the value according to engine-specific rules. Character
strings are usually enclosed in quotation characters. For other format types, the
processor calls a function to strip amount editing characters, such as dollar
signs, from the value. Finally, the new value is returned to the JPL statement.

The following sections describe these steps in detail.

Colon-plus
Processing

Colon Preprocessing

24115 Writing Information to the DatabaseChapter

Step 1: Perform Standard Colon Preprocessing
JAM will search for variable in the following places:

� JPL variables local to the procedure that JPL is executing.

� JPL variables local to the module containing the procedure that JPL is
executing.

� Widgets on the current screen.

� LDB variables.

When it finds the variable, it copies its value to an internal work buffer. Any
formatting is performed on this copy. The variable’s contents remained unchanged.

Note that when JAM is executing a screen entry function, JAM by default will
search for variable in the LDB before searching the current screen. For more
information on variables and their scope, refer to the JPL section of the Language
Reference.

Step 2: Determine the Variable’s JAM Type
A widget or LDB variable has exactly one JAM type. Since a variable may have
more than one of the qualifying properties, JAM uses some precedence rules when
assigning the JAM type by performing these checks:

1. Checks the Null Field property under Format/Display to see if the variable
contains a null value.

2. Checks the C Type property setting under Identity. This property has the
highest priority in determining the variable’s JAM type.

3. Checks the Data Formatting property under Format/Display for Numeric
settings indicating currency formatting and for Date/Time settings.

4. Checks the Keystroke Filter property under Input.

If the variable does not fall into one of these categories, it is assigned the JAM type
of FT_CHAR.

The JAM types are:

DT_BINARY FT_CHAR FT_INT FT_UNSIGNED

DT_CURRENCY FT_DOUBLE FT_LONG FT_VARCHAR

DT_DATETIME FT_FLOAT FT_PACKED FT_ZONED

DT_YESNO FT_HEX FT_SHORT

Colon Preprocessing

242 JAM 7.0 Application Development Guide

This assignment is explained in more detail in the following sections.

Null Field Property
First, JAM looks to see if the variable is a null value. If the value is null, it is not
necessary to determine the JAM type. To determine if the value is null, JAM
checks to see if the widget or LDB entry has the Null Field property set to Yes. If
the value of the variable equals this null edit string, the processor replaces the
value with the engine’s null string. On most engines, it is the string NULL. For
example, the widget named rating_code has the following properties set under
Format/Display:

Property Name Property Entry

Null Field Yes

Null Text *

Repeating Yes

If you do not enter text in the rating_code widget, it is null and JAM displays
the string, **** as the widget contents. JAM’s database driver would convert the
string **** to NULL (i.e., the value of the engine’s null string) before passing it to
the database engine.

If you enter text in the rating_code widget, the processor proceeds to determine
the variable’s JAM type from other widget properties described in the following
sections.

It should be noted that if a numeric field is blank or empty, JAM substitutes NULL
as the column’s value for that field, even if the Null Field property is set to No. If
the column has been specified as NOT NULL in the database, the engine will return
an error.

C Type Property
Next, JAM looks at the C Type property under Identity. If the C Type property is
not set to Default or Omit, it is used to assign a JAM type.

When you create a widget on the screen, JAM automatically assigns the Default C
type to the widget. However, if you copy the widget from a repository imported
from your database tables, the database importer assigns a C type based on the
column’s data type. You may also explicitly set a C type.

blank numeric fields

Colon Preprocessing

24315 Writing Information to the DatabaseChapter

The JAM type for the C Type property values are as follows:

C Type JAM Type

Char String FT_CHAR

Hex Dec FT_HEX

Int FT_INT

Unsigned Int FT_UNSIGNED

Short Int FT_SHORT

Long Int FT_LONG

Float FT_FLOAT

Double FT_DOUBLE

Zoned Dec FT_ZONED

Packed Dec FT_PACKED

Data Formatting Property
Next, JAM examines the Data Formatting property under Format/Display. If set to
Date/Time, the JAM type is DT_DATETIME. If set to Numeric, the JAM type is
DT_CURRENCY.

Keystroke Filter Property
If the Data Formatting property is set None, JAM examines the Keystroke Filter
property under Input:

� Digits Only values are assigned the JAM type FT_UNSIGNED.

� Yes–No values are assigned the JAM type DT_YESNO.

� Numeric values are assigned the JAM type FT_DOUBLE.

FT_CHAR Assignment
For all other widget and LDB variables, and for all JPL variables, JAM assigns
FT_CHAR as the JAM type.

Beware of C type property setting that may conflict with other properties. For
example, if a widget has a C Type setting of Int and a Data Formatting setting of
Date/Time, its JAM type would be FT_INT . The Date/Time format would be

Type Conflicts

Colon Preprocessing

244 JAM 7.0 Application Development Guide

enforced for user entry but JAM’s database drivers would not convert the date-time
string into a format the engine would recognize.

Note: You may also use the sm_ftype library function to determine a variable’s
JAM type. The assignments are the same as those in the table above, except for
JPL variables. The library function sm_ftype returns 0, not FT_CHAR, for JPL
variables.

Step 3: Format a Non-null Value
Once a non-null variable’s JAM type is determined, this classification is used to
perform any necessary formatting before returning the formatted text to JPL.

DT_DATETIME Variables
If the JAM type is DT_DATETIME, the processor calls the support routine to format
the text in the engine’s default syntax for dates. Some support routines store a JAM
date-time format string in the style of the engine. When formatting a field value, it
may simply pass the format string and value to JAM’s date-time routines to
reformat the string. Other support routine may call a conversion function from the
DBMS library to perform the task.

Of course, the actual result is dependent on the engine. For example, if the value in
a date-time field is December 31, 1999 3:05 PM and the current engine is using the
ORACLE support routine, JAM formats the date like this:

TO_DATE(’31121999 150500’, ’ddmmyyyy hh24miss’)

If the engine is using the SYBASE support routine, however, JAM formats the date
as follows:

’Dec 31,1999 3:5:0:000PM’

Some engines support more than one data type for date-time columns. For more
information, refer to the Engine Notes section of the Database Guide.

FT_CHAR Variables
If the JAM type is FT_CHAR, the processor checks if the engine uses quote and
escape characters. By default, an engine uses a single quote for quote_char , and
a single quote for escape_char .

The processor first determines the size of the formatted text by adding the length of
the unformatted text, the number of embedded quote_char ’s in the text, and (for
the enclosing quote characters). If it cannot allocate a buffer large enough for the
text, the processor returns the SM_MALLOC error. If the allocation is successful, the
processor writes the formatted text to the buffer. It puts a quote_char at the first

Colon Preprocessing

24515 Writing Information to the DatabaseChapter

position in the buffer and, as it copies each character from the source string to the
buffer, it compares the character with quote_char . If the character equals
quote_char the processor puts an escape_char before the embedded
quote_char . A final enclosing quote_char is put at the end of the text.

For example, JAM would format the field value

Ms. Penelope O’Brien

to

’Ms. Penelope O’’Brien’

JAM would format the field value

Reported record sales for ”The Novice’s Guide to PC’s”

to

’Reported record sales for ”The Novice’’s Guide to PC’’s”’

A few engines do not support both single and double quotes within a character
string. For engine-specific information, refer to the Engine Notes section of the
Database Guide.

FT_HEX Variables
If the JAM type is FT_HEX, JAM converts the widget’s hexadecimal string to a
binary format before writing it to the database. The valid hexadecimal string must
be an even-length, null-terminated string consisting only of the following letters
and numbers: 0–9, A–F, a–f. No character validation on the string is performed on
field exit, but if the string cannot be converted, an error occurs when the SQL
statement is executed.

For FT_HEX data, colon plus and colon equal processing are not available.
However, regular colon expansion can be used.

Single text widgets containing binary data have a maximum size of 127 bytes. To
successfully write data longer than 127 bytes, either declare a variable using DBMS
BINARY or change the Widget Type to Multitext and set the Word Wrap property to
Yes.

FT_Numeric and DT_CURRENCY Variables
For the remaining JAM types, the processor calls the JAM function
sm_strip_amt_ptr to strip editing characters from the numerical string. The
function strips all non-digit characters except for an optional leading negative sign
and a decimal point. Refer to the Language Reference for more information on
sm_strip_amt_ptr . The colon preprocessor does not use precision edits when
formatting numeric values.

Colon Preprocessing

246 JAM 7.0 Application Development Guide

For example, JAM would format

$500,000.00

as

500000.00

JAM would format

(–89.003)

as

–89.003

It would format

001–02–0003

as

001020003

If you wish to preserve embedded punctuation in numeric fields, set the widget’s C
Type property to Char String.

For more information, refer to the Database Drivers section of the Database Guide.

If a numeric or currency field is empty or blank, JAM substitutes NULL as the
column’s value for that field, even if the Null Field property is set to No. If the
column has been specified as NOT NULL in the database, the engine will return an
error.

Colon-equal Processing
To specify a null value in a search criteria, most engines require the syntax

SELECT select_list FROM table WHERE column IS NULL

To permit you to select rows where a column value is either known or unknown
(i.e., NULL), use the colon-equal processor. For example,

DBMS SQL SELECT * FROM titles WHERE rating_code :=rating_code

If the widget named rating_code has the following properties set under
Format/Display:

Property Name Property Entry

Null Field Yes

Null Text *

Repeating Yes

Empty Numeric
Variables

Colon Preprocessing

24715 Writing Information to the DatabaseChapter

JAM would format the value

PG

as

= ’PG’

thus executing

SELECT * FROM titles WHERE rating_code = ’PG’

It would format the field’s “null” value

as

IS NULL

thus executing

SELECT * FROM titles WHERE rating_code IS NULL

Examples

The current screen has a widget named last_name . It has the following property
settings:

Property Category and Name Property Entry

Identity⇒ C Type Default

Input⇒ Keystroke Filter Unfiltered

Format/Display⇒ Data Formatting None

Format/Display⇒ Null Field No

With these settings, the JAM type is FT_CHAR. If the widget last_name contained
the text D’Angelo when the following statement was executed:

DBMS SQL SELECT * FROM customers
WHERE last_name = :+last_name

JAM would pass the query

SELECT * FROM customers WHERE last_name = ’D’’Angelo’

Widget with
Default Settings

Colon Preprocessing

248 JAM 7.0 Application Development Guide

If the widget last_name was empty, JAM would pass the empty string, not the
null string as follows:

SELECT * FROM employee WHERE last_name = ’’

Null conversion is performed only on variables with a null field edit.

If the current screen contains a widget member_date with the following property
settings:

Property Category and Name Property Entry

Identity⇒ C Type Default

Input⇒ Keystroke Filter Digits Only

Format/Display⇒ Data Formatting Date/Time

Format/Display⇒ Format Type Various

Format/Display⇒ Null Field Yes

Format/Display⇒ Null Text 00/00/00

Assume that back slash characters are an edit mask applied to the field. Since a
Date/Time setting has a higher precedence than the Keystroke Filter setting, the
JAM type for this widget is DT_DATETIME. If you enter the date 12/31/93 and
execute the following function,

DBMS SQL WITH CONNECTION oracle_conn \
INSERT INTO customers (cust_id, last_name member_date) \

VALUES (:+cust_id, :+last_name, :+member_date)

and the engine, for example, were ORACLE, JAM would pass the following
statement to the engine:

INSERT INTO customers (cust_id, member_date) VALUES \
(43, ’D’’Angelo’, \
 TO_DATE(’31121991 000000’, ’ddmmyyyy hh24miss’))

If you did not enter any text in the widget member_date , its contents would be
00/00/00 and JAM would pass the following statement to the engine:

INSERT INTO customers (cust_id, last_name, member_date) \
VALUES (43, ’D’’Angelo’, NULL)

Widget with
Date/Time and
Null Field
Settings

Colon Preprocessing

24915 Writing Information to the DatabaseChapter

Often it is useful to use the Digits Only setting in the Keystroke Filter property for
widgets that accept numeric values, such as a telephone number. If this is the only
edit on the field, the colon-plus processor will format the widget’s value as an
unsigned integer, removing embedded punctuation and leading zeros. However, if
you reset the C Type property to Char String, the colon-plus processor will format
the field’s contents as a character string, preserving embedded punctuation and
leading zeros.

The property settings are as follows:

Property Category and Name Property Entry

Identity⇒ C Type Char String

Input⇒ Keystroke Filter Digits Only

Format/Display⇒ Data Formatting None

Format/Display⇒ Null Field No

For example, if you enter 00912 in the postal_code widget and execute the
following statement:

DBMS SQL SELECT * FROM customers \
WHERE postal_code = :+postal_code

JAM would pass the following query to the engine:

SELECT * FROM customers WHERE postal_code = ’00912’

Note that if the Keystroke Filter property is set to Digits Only but the C Type is not
set to Char String, the following query would be passed to the engine:

SELECT * FROM customers WHERE postal_code = 912

Setting the widget’s C Type property to Hex Dec is one method used to fetch
binary values to JAM screens. With this setting, when binary data is fetched in a
SQL SELECT statement, JAM converts the binary value to a hexadecimal string. If
any subsequent database updates use this data, it is converted back to a binary
format before being passed to the database engine.

Property Category and Name Property Entry

Identity⇒ C Type Hex Dec

Widget with
Digits Only and
Char String
Settings

Widget with C
Type of Hex Dec

Using Parameters in a Cursor Declaration

250 JAM 7.0 Application Development Guide

Using Parameters in a Cursor Declaration

Some engines permit parameters in the SQL statement of a cursor declaration
statement. Therefore, they permit one or more values to be supplied when the
cursor is executed. On those engines that do not support binding (e.g., Progress and
SYBASE), JAM internally supports cursors with parameters.

When JAM executes a DECLARE CURSOR statement, it scans the statement for
parameters. For all engines, JAM recognizes the following syntax to be a
parameter:

:: parameter

Note that many vendors use a single colon to begin a parameter name. Since this
form conflicts with the colon preprocessor, two colons must be used in JPL. The
second colon prevents the colon processor from performing variable substitution.
Some vendors, such as Informix, use a single question mark to represent a
parameter. JAM also recognizes these engine-specific forms.

If JAM finds a parameter, it sets up a data structure for it. It will attempt to find a
value for the parameter when the cursor is executed. Parameters may be used to
supply column values for any SELECT, INSERT, UPDATE, or DELETE statement.
For example,

DBMS DECLARE a_cursor CURSOR FOR \
SELECT * FROM customers WHERE last_name = ::xyz

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO actors VALUES (::actor_id, ::last_name, \
::first_name)

DBMS DECLARE c_cursor CURSOR FOR \
UPDATE customers SET address1=::address1, \
address2=::address2, city=::city, \
state_prov=::state_prov, postal_code=::postal_code \
WHERE cust_id=::cust_id

DBMS DECLARE d_cursor CURSOR FOR \
DELETE FROM users WHERE logon_name=::id

The binding data structures are stored with an individual cursor. Therefore, the
application should give a unique name to each parameter belonging to a single
cursor. A cursor cannot have two parameters with the same name.

A value for a parameter is supplied in the USING clause of an EXECUTE statement,

DBMS WITH CURSOR cursor EXECUTE USING arg [, arg ...]

Using Parameters in a Cursor Declaration

25115 Writing Information to the DatabaseChapter

JAM looks for the keyword USING before passing the cursor’s query to the DBMS.
If it finds the keyword, it assumes the arguments which follow are parameter
values. If an arg is not quoted, JAM assumes it is a variable and performs variable
substitution and formatting. Values and parameters may be bound by position. For
example,

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO roles VALUES (::p1, ::p2, ::p3)

....
DBMS WITH CURSOR b_cursor EXECUTE \

USING title_id, actor_id, role

Values and parameters may also be bound explicitly by name,

DBMS DECLARE b_cursor CURSOR FOR \
INSERT INTO roles VALUES (::p1, ::p2, ::p3)

....
DBMS WITH CURSOR b_cursor EXECUTE \

USING p3=role, p1=title_id, p2=actor_id

Note that p3 , p1 , and p2 are not JAM variables but role , title_id , and
actor_id are. JAM uses the values of role , title_id , and actor_id to
execute the INSERT. To supply a literal value to the INSERT, put the value in
quotes:

DBMS WITH CURSOR b_cursor EXECUTE \
USING p3=role, p1=”89”, p2=actor_id

JAM formats binding values in a method similar to the colon-plus processor. This
is discussed in detail in the next section.

On those engines that support parameters, using them often improves the efficiency
of the application, especially when a query is executed several times. On engines
where JAM simulates support, such as SYBASE, the use of parameters will be less
efficient. However, the convenience and the greater ease of portability may
compensate for the additional processing.

Parameter Substitution and Formatting

An arg in a USING clause can be:

� A quoted string

� A JAM variable

Colon-plus processing is not necessary because JAM automatically formats the
value of parameter variables. If the variable is an array, an occurrence number may

Using Parameters in a Cursor Declaration

252 JAM 7.0 Application Development Guide

be given. If no occurrence is given, JAM concatenates all the non-empty
occurrences in the array, separating the occurrences with a single space. Substrings
are not permitted.

For each cursor, JAM maintains binding information. When a cursor’s statement
uses parameters, JAM stores the names of the parameters. When a cursor is
executed, JAM compares the values in the DBMS EXECUTE statement with the
binding information from the cursor’s declaration. This permits both positional and
explicit binding.

JAM uses a data structure to store the formatted text and JAM type of arg. If arg is
not quoted, JAM assumes it is a variable and calls sm_ftype to determine the
variable’s ftype code and flags. Like the colon-plus processor, the binding routine
distinguishes between empty and null variables; a variable is null if it the Null
Field property is set to Yes and the variable contains the null string.

If the ftype is DT_DATETIME, JAM calls the support routine to convert the value
to a binary date-time value. Refer to the discussion of DT_DATETIME (on page 248)
for more information.

No processing is done on the values of FT_CHAR variables or quoted strings.

For all other types, JAM strips characters other than digits, the decimal point, and a
leading negative sign from the value.

Below are some examples showing the different formats for arg in a USING clause.

DBMS DECLARE x CURSOR FOR \
SELECT * FROM titles \
WHERE title_id=::p1 OR genre_code=::p2

newid and newtype are LDB variables
DBMS WITH CURSOR x EXECUTE \

USING p1=newid, p2=newtype

For p1, a literal value is supplied.
For p2, code is a JPL variable with the initial text
”film_type.” film_type is also a widget on the current
screen and this widget supplies the parameter’s value.
DBMS WITH CURSOR x EXECUTE USING p1=’92’, p2=:code

id and vid_type are field arrays. i is a JPL variable
DBMS WITH CURSOR x EXECUTE \

USING p1=id[i], p2=vid_type[i]

Using Parameters in a Cursor Declaration

25315 Writing Information to the DatabaseChapter

Examples

If the current screen contained a widget named rent_amount with the following
property settings:

Property Category and Name Property Entry

Identity⇒ C Type Default

Input⇒ Keystroke Filter Numeric

Format/Display⇒ Data Formatting Numeric

Format/Display⇒ Format Type Local Currency

For this widget, the JAM type would be DT_CURRENCY.

If you entered the total $1,000.99 in this widget and executed the following
statements:

DBMS DECLARE sales_cursor CURSOR FOR \
SELECT * FROM customers WHERE rent_amount > ::x

...
DBMS WITH CURSOR sales_cursor EXECUTE USING x=rent_amount

the engine would execute

SELECT * FROM customers WHERE rent_amount > 1000.99

If the current screen contained a widget named notes which is a null field and an
array, its property settings would be:

Property Category and Name Property Entry

Identity⇒ Widget Type Text

Identity⇒ C Type Default

Geometry⇒ Array Size 3

Input⇒ Keystroke Filter Unfiltered

Format/Display⇒ Data Formatting None

Format/Display⇒ Null Field Yes

Format/Display⇒ Null Text

Using Currency
Formats

Using Multiline
Text Widgets
and Arrays

Using Parameters in a Cursor Declaration

254 JAM 7.0 Application Development Guide

For this widget, the JAM type would be FT_CHAR.

If you executed the following statements:

DBMS DECLARE ins_cursor CURSOR FOR \
INSERT INTO customers (cust_id, notes) VALUES (::p1, ::p2)

...
DBMS WITH CURSOR ins_cursor EXECUTE USING cust_id, notes

When the array is empty, the DBMS would execute

INSERT INTO customers (cust_id, notes) VALUES (123, ’’)

If, however, the array contained text, JAM would concatenate the non-empty
occurrences into one long string which the DBMS would insert into the column
notes .

INSERT INTO customers (cust_id, notes) VALUES (123, ’This
customer wants to be notified when A River Runs Through It is
available for rental.’)

The same behavior would apply if the Widget Type is Multitext and the Word
Wrap property is set to Yes.

255

Error Processing in
Database Applications

JAM provides global variables and hook functions to help you manage errors in a
database application. A default error handler is installed to display messages from
JAM’s database drivers and from the database engine. In addition, you can write
and install a customized error handler for your application either in JPL or in C.
This need not be complicated. With a single JPL procedure, you can change the
way errors are handled and control which messages are displayed.

This chapter discusses:

� The behavior of the default error handler.

� The global variables containing error and status information from JAM’s
database drivers and from the database engine.

� The hook functions available for writing your own error handlers.

� The installation of an error handler for your application.

1616

Default Error Handler

256 JAM 7.0 Application Development Guide

Default Error Handler

JAM installs a default error handler which is used when executing DBMS
commands. If an error occurs, the default error handler displays the following
information in a dialog box:

� An engine-independent error message from JAM’s database driver.

� The first 255 characters of the statement which caused the error.

� The engine that reported the message, if applicable.

� The engine’s error number and error message, if applicable.

Figure 14. Sample error message from the default error handler.

For all errors, the default error handler returns a –1 to its caller. If an error occurs
while executing JPL, JAM aborts the JPL procedure where the error occurred. An
aborted JPL procedure always returns –1 to its caller.

An application may override the default handler by installing its own function to
handle errors. It may also install an exit function to process all error and status
information and to display this information in the application. This is covered in
the following sections.

Using Variables with Error and Status Information

25716 Error Processing in Database ApplicationsChapter

Using Variables with Error and Status Information

JAM supplies several pre-defined variables where it stores error and status data for
the application. After executing a DBMS statement, JAM updates these variables
with any error, warning or status information returned by the engine. In addition to
the engine-specific codes and messages, JAM also supplies engine-independent
codes and messages to the variables @dmretcode and @dmretmsg. These
messages are defined in dmerror.h .

The global variables available through JAM’s database interface are automatically
defined at initialization. All the global variable names used in the database
interface begin with the characters @dm. Since the character @ is not permitted in
user-defined JAM variables, these variables will never conflict with any screen,
LDB or JPL variables defined by your application.

These variables and their values are available to JPL commands and to JAM
library functions like the _n_ variants of sm_getfield and sm_fptr .

The variables are automatically maintained by JAM. Before executing a DBMS
statement, JAM clears the contents of all its global variables. After executing the
statement and before returning control to the application, JAM updates the
variables to indicate the current status.

Using Variables with Error and Status Information

258 JAM 7.0 Application Development Guide

Variable Description

@dmretcode The status of the last executed DBMS statement. Its
value is 0 or one of the codes defined in dmerror.h .

@dmretmsg A message describing the status of the last executed
DBMS statement. Its value is either empty or one of
the messages from the JAM message file. If
@dmretcode is 0, this variable is empty.

@dmengerrcode An engine-specific error code for the last executed
DBMS statement. Its value is 0 or an engine-specific
code. If 0, the engine did not detect any errors.

@dmengerrmsg An engine-specific error message for the last
executed DBMS statement. If @dmengerrcode is
empty, this variable is also empty.

@dmengwarncode An engine-specific warning code or bit setting for the
last executed DBMS statement. If empty, the engine
did not detect any warning conditions.

@dmengwarnmsg An engine-specific warning message describing the
warning code for the last executed DBMS statement. If
@dmengwarncode is a byte or is blank, this variable
is also empty.

@dmengreturn The return code from the last executed stored proce-
dure. Its value is either blank or an integer. If blank,
the engine did not supply a return code.

@dmrowcount The number of rows fetched to JAM variables by the
last SELECT or CONTINUE statement. On some en-
gines, it can also contain the number of rows affected
by an INSERT, UPDATE or DELETE statement.

@dmserial An engine-generated value for a serial column. Its
value is 0 or an appropriate serial value for the col-
umn.

For more information on these variables, refer to the Database Reference and the
Database Drivers sections of the Database Guide.

Using the Error Hook Functions

25916 Error Processing in Database ApplicationsChapter

Using the Error Hook Functions

JAM provides the following hooks for database error functions:

ONENTRY This function is called before executing any DBMS command
from JPL or C.

ONEXIT This function is called after executing any DBMS command from
JPL or C.

ONERROR This function is called if an error occurs while executing any
DBMS command from JPL or C.

The hook functions may be written in JPL or C.

A JPL hook function is installed as follows:

DBMS { ONENTRY | ONEXIT | ONERROR } JPL entry-point

where entry-point is an entry point to a JPL module. An entry point may be a
procedure name or a file name. Refer to the JPL section of the Language Reference
for more information.

A C hook function is installed as follows:

DBMS { ONENTRY | ONEXIT | ONERROR } CALL function

where function is a prototyped function. A prototyped function appears on JAM’s
PROTO_FUNC list. It must be prototyped with three arguments: two strings and an
integer. For example:

static struct fnc_data pfuncs[] =
{

{sm_flush()”, flush, 0, 0, 0, 0 },
...
{ function(s,s,i)”, function, 0, 0, 0, 0 },

}

For more information on prototyped functions, refer to Chapter 8.

To turn off an error hook function, execute the command with no arguments. For
example:

DBMS ONERROR

For more information and examples of each hook function, refer to Chapter 11 in
the Database Reference.

Using the Error Hook Functions

260 JAM 7.0 Application Development Guide

ONENTRY Function

Before executing a DBMS command from JPL or C, JAM executes the application’s
installed ONENTRY function. An ONENTRY function is useful for logging or
debugging statements. You may also use an ONENTRY function to modify the JAM
environment, for instance, to remap cursor control keys or change protection edits
on widgets.

ONEXIT Function

After executing a DBMS command from JPL or C, JAM executes the application’s
installed ONEXIT function. An ONEXIT function is useful for logging or debugging
statements. Like ONENTRY, you may use an ONEXIT function to modify the JAM
environment, for instance, to remap cursor control keys or change protection edits
on widgets. This function is also useful for checking error and status codes after
each command.

ONERROR Function

If an error occurs in the database driver while executing a DBMS command from
JPL or C, JAM executes the application’s installed ONERROR function. An
ONERROR function can display the values of the global error variables. It may also
display the text of the command that failed. The application may also use this
function to log error information in a text file.

An ONERROR function overrides JAM’s default error handler. The function controls
the display of error messages. If the error occurred while executing a command
from JPL, the ONERROR function also determines whether control is returned to the
procedure or to the procedure’s caller.

If you are using JPL, it is recommended that you install an ONERROR function. This
ensures consistent error handling throughout the application and reduces the
amount of code needed to handle errors. If an ONEXIT function is also installed,
JAM calls the ONEXIT function, then the ONERROR function.

Function Arguments

The error hook functions receive three arguments:

1. A copy of the first 255 characters of the command line. If the command was
executed from JPL, this is the first 255 characters after the JPL command
word DBMS or DBMS SQL .

Using the Error Hook Functions

26116 Error Processing in Database ApplicationsChapter

2. The name of the current engine. If the command used a WITH ENGINE or
WITH CONNECTION clause, the argument identifies this engine. If no WITH
clause is used, the argument identifies the default engine.

3. A context flag identifying why this function was called. For an ONENTRY
function, its value is 0. For an ONEXIT function, its value is 1. For an
ONERROR function, its value is 2.

Return Codes

The return code from an ONENTRY function is ignored if the current command was
executed from JPL. If the command was executed from C, the return code is
returned to the calling function. To ensure compatibility with future releases, it is
recommended that this function return 0.

The return code from an ONEXIT function is ignored unless an error occurred while
executing a DBMS command using JPL. If the return code from the function is
non-zero, JAM will abort the JPL procedure where the error occurred. If the
command is executed from C, the return code is returned to the calling function.

If the application is also using an ONERROR function, the return code from the
ONERROR function overrides the return code from the ONEXIT function.

If an application is using an installed error handler, the error handler determines the
handling for errors that occur while using JPL.

If an error occurs in JAM’s database interface while executing JPL, a non-zero
return code aborts the JPL procedure where the error occurred. The procedure’s
caller (either JAM or another JPL procedure) gains control. If the return code is 0,
the JPL procedure resumes control; JAM will execute the next statement in the JPL
procedure.

If an error occurs in JAM’s database interface while executing a C function, the
ONERROR return code is returned to the calling function.

The return code from an ONERROR function overrides the return code from an
ONEXIT function.

ONENTRY

ONEXIT

ONERROR

Installing an Error Handler

262 JAM 7.0 Application Development Guide

Installing an Error Handler

It is recommended that you install an error handler for your application. The error
handler may be written in either in JPL or C. This allows you to customize the
error messages appearing in your application. You can use any of the global
variables as part of this error handler. For example, it may use @dmretmsg to
display a message from JAM’s database driver or @dmengerrmsg to display an
engine-specific error message. It may also display its own messages depending on
the values in @dmretcode and @dmengerrcode .

The procedure’s return code determines whether or not JPL continues or aborts the
procedure it was executing.

There are two classes of errors in JAM’s database drivers:

� Syntax or logic error in a DBMS statement.

Some examples are executing a DBMS command that is not supported by the
current engine, using an invalid keyword, executing a cursor that has not been
declared, or failing to declare a connection before executing a DBMS SQL
statement. These errors are detected by JAM’s database driver. These errors
update the global variables @dmretcode and @dmretmsg.

� Engine error.

Some examples are attempting to SELECT from a non-existent table or
column, inserting invalid data in a column, logging on with invalid arguments,
or attempting to connect to a server that is not running. These errors are
detected by the engine and passed to JAM’s database driver. These errors
update the global variables @dmretcode , @dmretmsg, @dmengerrcode ,
@dmengerrmsg.

Note that there are also JAM and JPL errors which are not a part of JAM’s
database driver. A JPL procedure may fail because of JPL syntax or colon
preprocessing errors. If a JPL error occurs, JAM displays an error message
describing the error, the source of the JPL statement, and the statement that failed.
Furthermore, it aborts the JPL procedure where such an error occurred and returns
control to the procedure’s caller. It is assumed that JPL and JAM errors are
detected and corrected during application development. The only time that an
application may need special handling for these errors is during transaction
processing. This is discussed in Chapter 17.

An ONERROR function overrides JAM’s default error handler. The function controls
the display of error messages. If the error occurred while executing a command
from JPL, the ONERROR function also determines whether control is returned to the
procedure or to the procedure’s caller.

Installing an Error Handler

26316 Error Processing in Database ApplicationsChapter

Developers using JPL are encouraged to use an ONERROR function. This ensures
consistent error handling throughout the application and reduces the amount of
code needed to handle errors. If an ONEXIT function is also installed, JAM calls the
ONEXIT function, then the ONERROR function.

This procedure first checks if the error is DM_ALREADY_ON. In this case, it simply
displays a message and returns 0. For all other errors, it checks for an engine error
code. If there is an engine error, it displays the statement and engine-specific error
message. For any other errors, it displays the standard JAM message.

proc screen_entry
DBMS ONERROR jpl dbi_error_handler
.
.
.

return

proc dbi_error_handler (stmt, engine)

if (@dmretcode == DM_ALREADY_ON)
{

msg emsg ”You are already logged on.”
return 0

}

if (@dmengerrcode != 0)
{

msg emsg @dmretmsg ”%N” ”Statement :stmt” ”%N” \
”:engine Error :@dmengerrcode :@dmengerrmsg”

}
else
{

msg emsg ”Application Error: :@dmretmsg ” \
”See the DBA for assistance.”

}

return 1

Example

265

Database Transactions
This chapter describes database transactions and JAM’s support of a database
engine’s transaction processing.

Introduction to Transactions

A database transaction is a logical unit of work on a database. The unit of work is
usually a set of statements that update a database in a consistent way. Either all of
the statements in the unit must be completed or none of the statements should be
completed at all.

In the videobiz application, these are two of the transactions:

� A video rental transaction.

The first statement in the transaction inserts a row into the rentals table
supplying a customer identification code, title code, copy number, rental date,
and due date. The second statement of the transaction involves an update to
the customers table for the rental amount and the number of rentals. The
third statement updates the tapes table in order to increase by 1 the number
of times the tape has been rented and to change the status of the rental.

� A new video transaction.

This transaction involves inserts into four tables: titles , tapes ,
title_dscr , and roles . The insert into the titles table supplies the

1717

Engine-specific Behavior

266 JAM 7.0 Application Development Guide

name, title code, director information, film length, price category, and film
type code. Multiple inserts into the tapes table enters information about each
copy of the video. Multiple inserts into the title_dscr table store the film
description. Multiple inserts are made into the roles table, each one
supplying an actor code and a role.

Transaction processing is sometimes a difficult topic for new developers. For one
thing, transaction processing is very engine dependent and thus it requires a clear
understanding of the engine’s behavior. For another, transaction processing in a
JAM application requires careful error processing. For some errors, the application
must explicitly tell the engine to undo the transaction. The application must test for
these errors.

Engine-specific Behavior

As noted earlier, transaction processing is not implemented consistently among
SQL databases. Developers should review the documentation on transaction
processing supplied by the database vendor before using JAM features.

Generally, transaction processing falls into two types: those that support explicit
transactions and those that support auto transactions. An explicit transaction starts
with a BEGIN statement; an auto transaction generally starts with the first
recoverable statement after a logon, COMMIT, or ROLLBACK. Usually an engine
supports either explicit transactions or auto transactions, but not both.

On engines supporting explicit transactions, each COMMIT or ROLLBACK must have
a matching BEGIN. On engines supporting autocommit modes, the application may
use any number of COMMIT or ROLLBACK statements; if there is no recoverable
statement, the COMMIT or ROLLBACK is ignored.

Engines have different ways of handling transactions that are not terminated by an
explicit commit or rollback. Some engines automatically commit or rollback the
transaction. Others may leave the database in an inconsistent state. Under no
circumstances should the application use the engine’s default behavior to terminate
a transaction.

The use of explicit rollbacks and commits:

� Protects the integrity of the database.

� Makes new and updated data available to the rest of the application and other
users at the logical end of the transaction.

� Releases locks set on tables by the transaction which would otherwise be held
until the connection closes, permitting the rest of the application or other users
to begin new transactions on the tables.

Error Processing for a Transaction

26717 Database TransactionsChapter

� Reduces the chances for unrelated operations to interfere with one another.

� Produces applications which are less database-dependent.

Finally, although vendors supply commands for transaction processing in their
SQL language, you should use DBMS COMMIT, DBMS ROLLBACK, and other
transaction commands provided by JAM. Using DBMS SQL to specify engine-spe-
cific commit and rollback processing is not recommended. Using the DBMS
versions permits JAM to establish necessary structures and it provides better error
handling if a transaction fails.

Error Processing for a Transaction

There are various kinds of errors that can occur during an application. The engine
is responsible for recovery from system failures such as power loss. Also, if a
single statement fails for some reason in the middle of execution, the engine is
responsible for rolling back the effects of that statement. If that statement was
executed in a transaction, however, the application must execute an explicit
rollback to undo any work done between the start of the transaction and the failed
statement.

At the very least, a JAM application must execute a rollback when the engine
returns an error to the application. An example of this would be when the engine
rejects an insert because the row’s primary key is not unique. If the insert were
part of a transaction, the application should stop executing the transaction and
execute a rollback to undo any work done by previous statements in the transac-
tion.

As an additional precaution, it is recommended that you execute a rollback for any
error that occurs during the transaction, including an error detected by JAM before
a statement is passed to the engine. An error detected by JAM rather than the
engine is usually the result of a development or maintenance error rather than bad
user input (e.g., a statement’s colon-plus or binding variable cannot be found
because a JAM field was renamed). While these errors should be rare, the
application should provide handling for them.

If the transaction processing is done with the C library functions provided by
JAM’s database drivers, error codes from JAM are returned to the calling function,
either directly or via an installed error handler. If a transaction requires very
sophisticated error handling, it may be easier to use these JAM library functions
rather than JPL.

One method for transaction processing in JPL uses a generic JPL procedure as a
transaction handler. This JPL procedure could perform the following:

Error Processing for a Transaction

268 JAM 7.0 Application Development Guide

� Define and declare a JPL variable, jpl_retcode.

� Call a JPL subroutine that contains the actual transaction statements.

� On return from the subroutine, examine the JPL variable, jpl_retcode. If it is 0,
the subroutine, and therefore the transaction, executed successfully. If it is not
zero, the subroutine was aborted by a JAM or by the error handler. For either
type of error, it executes a rollback.

A sample of such a procedure is shown in the JPL code below. The actual
transaction statements are executed in the subroutine whose name is passed to this
procedure. This transaction handler can be used with the default error handler or
with an installed error handler that returns the abort code (1) for all errors.

proc tran_handle (subroutine)
{

vars jpl_retcode

Call the subroutine.
jpl_retcode = :subroutine

Check the value of jpl_retcode. If it is 0, all
statements in the subroutine executed successfully
and the transaction was committed. If it is 1,
the error handler aborted the subroutine. If it
is –1, JAM aborted the subroutine. Execute a
ROLLBACK for all non–zero return codes.

if jpl_retcode
{

msg emsg ”Aborting transaction.”
DBMS ROLLBACK

}
else
{

msg emsg ”Transaction succeeded.”
}
return 0

}

In this application, there are JPL procedures containing transactions which update
the database. The new_cust procedure adds a new customer to the database:

proc new_cust()
{

DBMS SQL INSERT INTO customers
DBMS COMMIT
return 0

}

Error Processing for a Transaction

26917 Database TransactionsChapter

To execute this new customer transaction, the application should execute the
following JPL statements:

vars newCust = ”new_cust()”
call tran_handle (newCust)

Once tran_handle has set up the variable, it calls the procedure new_cust .
Whether new_cust is successful or unsuccessful, control is always returned to
tran_handle .

Refer to the Database Drivers section in the Database Guide for a list and
description of the supported transaction commands for each engine.

SECTION FOUR

SQL Generation

Chapter 18 SQL Generator . 273

273

SQL Generator
SQL (Structured Query Language) is the database manipulation language used by
many relational database management systems.

Earlier chapters in this manual provide information about including SQL
statements as part of your JPL procedures or C functions. This chapter discusses
how the SQL generator builds SQL statements from various screen and widget
properties.

In the current release, the major interface to the SQL generator is the transaction
manager. The standard transaction models used by the transaction manager call the
SQL generator to create SQL statements at runtime. This chapter briefly discusses
the transaction manager commands corresponding to the major SQL statements.

For basic information about SQL and about constructing SQL statements, refer to
Chapters 2 and 3 in the Database Guide. For information about including SQL
statements in JPL procedures, refer to Chapters 14 and 15 in this manual.

SQL Generation Overview

This chapter contains a major section for each type of SQL data manipulation
statement: SELECT, INSERT, UPDATE, and DELETE. The syntax of the statement is
presented first, followed by a discussion of each element in the statement. Since
some of the guidelines used for database tables and columns are the same for all
SQL statements, those guidelines are listed here.

1818

SQL Generation Overview

274 JAM 7.0 Application Development Guide

Specifying Tables
The table view widgets in JAM contain most of the database table information. The
following guidelines apply to database tables:

� The table name used in the SQL statement is the Table property, found in the
Database category of the table view properties.

� In order for a database table to be included in a SQL statement, a table view
corresponding to that database table must exist on the screen.

� If the screen has more than one table view, links defining the relationship
between table views must also exist on the screen for automatic SQL
generation to occur.

� The table view must be Updatable in order to generate SQL INSERT, UPDATE
and DELETE statements for that table.

� Since you can apply a transaction manager command to one or more table
views, all the table views on a screen do not necessarily participate in each
command.

Specifying Columns
The widgets in each table view generally correspond to the database columns. The
following guidelines apply to database columns:

� The column name is the Column property, found in the Database category of
the widget properties.

� A correlation name (generally table-name.column-name) is used in the SQL
statement unless the Expression properties under the Database heading are set
to other values. A correlation name is used in case the column is a member of
two different database tables.

� To update a column in a table, a widget corresponding to that column must
exist in the table view associated with that table.

� In order to participate in SQL SELECT, INSERT and UPDATE statements, the
corresponding widget properties, Use In Select, Use In Insert, and Use In
Update, must be set to Yes. This is the default setting.

Generating SQL in the Transaction Manager
The transaction manager is the major interface to the SQL generator in the current
release. When you use the transaction manager, the SQL statements are automati-

SQL Generation Overview

27518 SQL GeneratorChapter

cally generated from the various property settings. You can change the SQL
statements by editing the properties or by adding hook functions to handle certain
transaction manager requests. For more information on writing hook functions,
refer to Chapter 22.

The following table outlines which transaction manager commands are needed to
generate the different types of SQL statements:

SQL Statement Transaction Manager Command

DELETE Generated via SAVE command after rows have been deleted
or cleared of data in update mode. Table view must be
updatable.

INSERT Generated via SAVE command after new rows have been
inserted in update or new modes. Table view must be
updatable.

SELECT Generated via VIEW and SELECT commands. In order to
update selected data, the SELECT command must be used.

UPDATE Generated via SAVE command after data has been modified in
update mode. Table view must be updatable.

Example Tables
In order to illustrate the SQL generation, the examples in this chapter use the
following database tables which are part of a database called vacation :

CREATE TABLE vacations
(

destination CHAR (30) NOT NULL,
num_days INTEGER,
type_id CHAR (10),
travel_costs FLOAT,
hotel FLOAT,
meals FLOAT,
PRIMARY KEY (destination)

)

CREATE TABLE customers
(

cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (15),
PRIMARY KEY (cust_id)

)

SQL Generation Overview

276 JAM 7.0 Application Development Guide

CREATE TABLE cust_trips
(

cust_id INTEGER NOT NULL,
destination CHAR (30) NOT NULL,
paid_flag CHAR (1),
paid_date DATETIME,
PRIMARY KEY (cust_id, destination),
FOREIGN KEY (cust_id) REFERENCES customers (cust_id),
FOREIGN KEY (destination)

REFERENCES vacations (destination)
)

Please note that the SQL examples in this chapter may not match the SQL
generated by JAM. This can occur for the following reasons:

� The SQL generated by JAM is for a specific database engine.

� The order of items in the statements sometimes depends on the order in which
widgets are added to the screen. In this case, the order should not affect the
results.

The examples contain tables listing which properties you need to set for each
widget and table view in order to produce the necessary SQL. Generally, the
properties are located in the Database category of the Properties window.

SELECT Statement Overview

27718 SQL GeneratorChapter

Figure 15. The Database category in the Properties window.

SELECT Statement Overview
The SQL generator generates one SQL SELECT statement per server view. Recall
that a server view consists of a table view and all other table views linked to that
table view with a server link. Therefore, a master-detail situation, which requires a
sequential link, generates at least two SELECT statements, one for the master
(parent) table view, and one for the detail (child) table view.

Here is the syntax of the SQL SELECT statements that can be generated by JAM’s
SQL generator.

SELECT [distinct-keyword] select-list
FROM table-list
[WHERE where-condition]
[GROUP BY group-by-list]
[HAVING having-condition]
[ORDER BY order-by-list]

SELECT Statement Overview

278 JAM 7.0 Application Development Guide

The following table lists the major elements in a SQL SELECT statement, and
briefly describes how to set properties to trigger generation of those elements.
More detailed information is presented in the sections following the table.

SQL Element Property Settings

distinct-keyword For the table view, set the Database⇒ Distinct property
to Yes.

select-list For each widget in the server view, the value in the
Database⇒ ColumnName property unless an expression
has been set under the Use In Select property. The Use
In Select property must also be set to Yes.

table-name For the table view, the value in the Database⇒ Table
property.

WHERE clause In the applicable widgets, set the Use In Where property
to Yes and choose the desired Operator property. The
following operators are available:
=, <>, <, <=, >, >=, in, like, like%,
%like%, not in, not like, not like%,
not %like%

Joins: For the link, set the Transaction⇒ Type property
to Server. Also, the Relations property must contain the
column names to be joined and must list join as the rela-
tion type.

GROUP BY clause For aggregate functions, this clause is automatically
generated. Otherwise, for the applicable widgets, enter
the column name in the Database⇒ Group By property.

HAVING clause For the applicable widgets, enter the search condition in
the Database⇒ Having property.

ORDER BY clause For the table view, enter the widget name(s) associated
with the column name(s) in the Database⇒ Sort Widgets
property, followed by ASC or DESC.

Other SQL elements that can be part of a SQL SELECT statement include:

SQL Element Property Settings

Aggregate functions For the applicable widgets, enter the aggregate function
in the Expression section of the Database⇒ Use In
Select property.

SELECT Statement Overview

27918 SQL GeneratorChapter

SQL Element Property Settings

BETWEEN predicate Use hook function to call the function
dm_gen_change_select_where .

EXISTS clause Use hook function to call the function
dm_gen_change_select_where .

IN clause For the applicable array, set the Use In Where property
to Yes and select the In operator. On the screen, enter
values in the array before executing the SELECT state-
ment.

LIKE predicate For the applicable widgets, set the Use In Where prop-
erty to Yes and select the one of the Like operators. On
the screen, enter a value in the specified widget before
executing the SELECT statement.

Null values For the applicable widgets, set the Database⇒ Use If
Null property to Yes. Under Format/Display, set the
Null Field property to Yes and enter the Null Text to be
displayed on the screen.

Operators Can only be set for WHERE clauses in SELECT state-
ments. For the applicable widgets, set the Use In Where
property to Yes and choose the desired Operator.

Stored procedures Use hook function.

Subqueries Use hook function to call the function
dm_gen_change_select_where .

If a desired SQL statement cannot be generated automatically, you can write a
transaction hook function either to supply the custom SQL or to call the SQL
modification functions. For more information on writing transaction hook
functions, refer to Chapter 22.

Setting the DISTINCT keyword

If a table view’s Distinct property is Yes, then JAM supplies the correct word for
the database, either DISTINCT or UNIQUE, and applies it to the server view.

SELECT Statement Overview

280 JAM 7.0 Application Development Guide

Setting the Select List

The select-list is a list of columns, expressions or aggregate functions whose values
you want to fetch from the database. The select-list is derived from all of the
widgets in the server view whose Use In Select property is set to Yes. Each of these
widgets contributes one item to the select-list—either the value of the widget’s Use
In Select⇒ Expression property, if set, or the widget’s Column Name.

If the widget’s Column Name is used, it appears in the following format:

table-view-name.column-name

Example 1
Get the total cost of each vacation. The desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations

Create five widgets, and make them members of a table view associated with the
table vacations . For Widget 5, set the Use In Insert and Use in Update properties
to No which prevents this derived column from being included in INSERT and
UPDATE statements.

SELECT Statement Overview

28118 SQL GeneratorChapter

Table View

#1
Column Name: destination
UseInSelect: Yes

#2
Column Name: travel_costs
UseInSelect: Yes

#3
Column Name: hotel
UseInSelect: Yes

#4
Column Name: meals
UseInSelect: Yes

#5
Column Name:
UseInSelect: Yes
Expression: travel_costs+hotel+meals
UseInInsert: No
UseInUpdate: No

Name: tview1
Table: vacations

Setting the Table List
The table-list is a comma-separated list of all of the Database⇒ Table properties of
the table views in the server view. For each table, a correlation name, or alias, pairs
the database table with its associated table view name.

If a database table is imported to the repository by a user that is not the owner of
the table, two table view properties, Identity⇒ Name and Database⇒ Table, also list
the owner name. In this case, the owner name appears in the table list in the format:

owner. table-name

Setting the Where Condition

The where-condition is derived from the widgets whose Use In Where property is
Yes. If more than one widget has this setting, the AND keyword is used to join the

Using an
Operator

SELECT Statement Overview

282 JAM 7.0 Application Development Guide

conditions. A where-condition compares data entered in the widget with data in the
database column. The column name is derived from the widget’s Column Name
property. The comparison operator is the value of Use In Where⇒ Operator. The
supported operators are:

= < > in like like% %like%

<> <= >= not in not like not like% not %like%

If the widget is an array, the value used for the operator must be entered in the first
occurrence of the array, except for the in operator. The in operator uses the data in
all of the array occurrences to construct the IN clause.

Example 2
Get the total cost for a particular destination. The desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination = destination

Create the widgets described in Example 1. Add the following values to Widget 1
which is associated with the column destination :

Object and Property Value

Widget 1

Database⇒ Use In Where Yes

Database⇒ Use In Where⇒ Operator =

Example 3
If you change the Operator to like% , you can use the pattern matching capability
of the database to search for the desired destination:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination LIKE destination%

Object and Property Value

Widget 1

Database⇒ Use In Where Yes

Database⇒ Use In Where⇒ Operator like%

SELECT Statement Overview

28318 SQL GeneratorChapter

On the screen, enter an expression, for example Lon , as the value for destina-
tion before choosing the SELECT or VIEW command. The destinations beginning
with those letters will be displayed on the screen.

Example 4
If you change the Operator to in and make the widget an array, a series of
destinations can be entered for database searches.

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE destination IN (destination, destination, ...)

Object and Property Value

Widget 1

Geometry⇒ Array Size 5 (any integer value is valid)

Database⇒ Use In Where Yes

Database⇒ Use In Where⇒ Operator in

The array can be any size allowing you to enter a name in each occurrence before
choosing the SELECT or VIEW command.

Normally, widgets whose data is blank or null do not contribute to the where-condi-
tion (where null is defined as setting the widget’s Null Field property to Yes). To
force these widgets to contribute, set Use In Where⇒ Use If Null to Yes. In that
case, blank data will be treated as a null database values and a WHERE clause will
be generated.

The text of the WHERE clause depends on the setting for the Operator property. If
the operator is =, then the text is WHERE column IS NULL . If the operator is <>,
then the text is WHERE column IS NOT NULL .

If the property Use In Where⇒ Use If Null is set to No (the default), then no WHERE
clause will be generated for the SELECT statement if destination is null or
blank.

Example 5
Select rows where the values in a column are null. The desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
WHERE hotel IS NULL

Selecting Null
Values

SELECT Statement Overview

284 JAM 7.0 Application Development Guide

For Example 1, add the following settings to Widget 3 which is associated with the
column hotel .

Object and Property Value

Widget 3

Database⇒ Use In Where Yes

Database⇒ Use In Where⇒ Operator =

Database⇒ Use In Where⇒ Use If Null Yes

If the Database⇒ Use In Select⇒ Expression contains an expression and the
Database⇒ Column Name is blank, the select expression cannot be used in the
where-condition unless you use one of the SQL modification functions.

Setting the Group-by List

The SQL generator automatically builds a GROUP BY clause if any widget’s Use In
Select⇒ Expression property uses one of the following aggregate functions: AVG,
COUNT, SUM, MIN, MAX. No other aggregate functions are automatically detected.

When an aggregate function is detected, the group-by-list automatically includes
the column name of every widget in the server view provided the widget’s Use In
Select property is set to Yes and the Use In Select⇒ Expression is not considered
an aggregate.

If one widget contains an automatically detected aggregate function, and another
widget contains an undetected aggregate function, then JAM will erroneously add
the other widget’s column name to the group-by-list. Therefore, that widget’s
Database⇒ Column Name should be blank.

Example 6
Get the average travel, hotel and meal costs, grouped by type of trip. The desired
SQL is:

SELECT type_id, AVG(travel_costs), AVG(hotel), AVG(meals)
FROM vacations
GROUP BY type_id

Create four widgets that are members of a table view associated with the table
vacations . The table view property Transaction⇒ Updatable should be set to No
to prevent update and insert attempts. Note that the keywords AVG, COUNT, SUM,
MIN, and MAX are not case-sensitive.

Using a Select
Expression

Automatic
GROUP BY
Clause

SELECT Statement Overview

28518 SQL GeneratorChapter

Table View
Name: tview1
Table: vacations
Updatable: No

#1
Column Name: type_id
UseInSelect: Yes

#2
UseInSelect: Yes
Expression AVG(travel_costs)

#3
UseInSelect: Yes
Expression: AVG(hotel)

#4
UseInSelect: Yes
Expression: AVG(meals)

When the SQL generator cannot detect the presence of an aggregate function in
one of the widgets’ Use In Select⇒ Expression, a widget’s Database⇒ Group By
property must be set. Enter the names of the columns whose values will be used to
group the data.

Example 7
Get the standard deviation of the total cost, grouped by type of trip. The desired
SQL is:

SELECT type_id, STDDEV(travel_costs+hotels+meals)
FROM vacations
GROUP BY type_id

Create two widgets that are part of a table view associated with the table
vacations . The table view property Transaction⇒ Updatable should be set to No
to prevent update and insert attempts. The Group By property must be set explicitly

Specifying a
GROUP BY
Clause

SELECT Statement Overview

286 JAM 7.0 Application Development Guide

because Widget 2 contains an aggregate function that is not automatically detected
by the SQL generator.

Object and Property Value

Widget 1

Database⇒ Column type_id

Database⇒ UseInSelect Yes

Database⇒ Group By type_id

Widget 2

Database⇒ UseInSelect Yes

Database⇒ UseInSelect⇒ Expression STDDEV(travel_costs+hotel+meals
)

Table View

Database⇒ Table vacations

Transaction⇒ Updatable No

Another use of the Database⇒ Group By property is to specify multiple column
names, including columns not included in the select-list. The following example
demonstrates this.

Example 8
Get the average net cost of each destination, grouped by their travel costs and their
type. The desired SQL is:

SELECT travel_costs, AVG(travel_costs+hotel+meals)
FROM vacations
GROUP BY travel_costs, type_id

Create two widgets that are a part of a table view associated with the table
vacations . Even though JAM automatically detects the presence of an aggregate

Specifying
Multiple
Columns

SELECT Statement Overview

28718 SQL GeneratorChapter

function (AVG), the Group By property needs to be set because none of the widgets
in the table view correspond to the type_id column.

Property Value

Widget 1

Database⇒ Column travel_costs

Database⇒ UseInSelect Yes

Widget 2

Database⇒ UseInSelect Yes

Database⇒ UseInSelect⇒ Expression AVG(travel_costs+hotel+meals)

Database⇒ GroupBy type_id

Table View

Database⇒ Table vacations

Transaction⇒ Updatable No

Setting the Having Condition

The having-condition applies an additional search condition once the result rows
have been determined. Generally, the HAVING clause appears in conjunction with a
GROUP BY clause.

The having-condition is derived from the widgets whose Database⇒ Having
property is not empty. If more than one widget in the server view has this setting,
the AND keyword is used to join these conditions.

Example 9
Get the average vacation cost, grouped by type. Only report those types whose
average cost is below 1000. The desired SQL is:

SELECT type_id, AVG(travel_costs+hotel+meals)
FROM vacations
GROUP BY num_days
HAVING AVG(travel_costs+hotel+meals) < 1000

SELECT Statement Overview

288 JAM 7.0 Application Development Guide

Create the widgets described in Example 6. Complete the following changes to
Widget 4.

Object and Property Value

Widget 4

Database⇒ Having AVG(travel_costs+hotel+ meals) < 1000

Setting the Order-by List

The order-by-list sorts the result rows according to the values in specified columns.
The order-by-list is built from the Database⇒ Sort Widgets property of the table
view. To specify a sorting order, enter a list of widget names and an optional order
specifier (case-insensitive). The valid order specifiers are:

� DESC Descending order

� ASC Ascending order

When the SQL is generated, JAM specifies the sorting order in a manner
acceptable to the database engine. The order specifier should be separated from the
widget name by white space. If no order specifier is entered following a widget
name, then ascending order is assumed. If more than one widget is specified, each
widget should be on a separate line. The SQL generator uses the widget name to
determine the associated column or select expression to be sorted.

Example 10
Get the total cost of each vacation, ordered by cost in descending order. The
desired SQL is:

SELECT destination, travel_costs, hotel, meals,
travel_costs+hotel+meals
FROM vacations
ORDER BY travel_costs+hotel+meals DESC

SELECT Statement Overview

28918 SQL GeneratorChapter

Make the following additions to the widgets described in Example 1. A name is
entered for Widget 5 since the widget name, not the column name, is specified in
the Sort Widgets property.

Object and Property Value

Widget 4

Identity⇒ Name net_cost

Table View (vacations)

Database⇒ Sort Widgets net_cost desc

Generating SELECT Statements for Multiple Database Tables

The examples so far have dealt with only one database table at a time. This section
illustrates how JAM can retrieve information from multiple database tables for the
same application screen. The number of SELECT statements issued by the SQL
generator depends on the type of link set in the link properties. For table views
specified with server links, JAM issues a single statement, with a join in the WHERE
clause. For table views specified with sequential links, JAM issues multiple
statements using values fetched in the parent table view to create the where
condition in the child table view.

For equi-joins, joins where the operator is = (which includes self-joins), JAM
automatically generates the necessary SQL. It does not generate SQL for other
types of joins, such as outer joins. The information needed to build the join is
found in the link’s properties. The link between the joined table views specifies
Server as the type of link and contains the names of the columns included in the
WHERE clause.

You can specify the joining columns by selecting the link’s Transaction⇒ Relations
property. The Relations dialog box enables you to enter or modify parent and child
column names. You must also specify the relationship between the parent and child
columns as join . For each join relation specified, the where condition will include
one expression of the form

parent_table.parent_column = child_table.child_column

Note that the link’s Transaction⇒ Relations property also accepts field names, but
these are valid only for sequential links (see below).

If there are multiple joined columns, then the expressions will be chained with the
keyword AND. If more than one table view in the server view represents the same

Specifying Joins
in the Where
Condition

SELECT Statement Overview

290 JAM 7.0 Application Development Guide

database table, then the SQL generator will automatically supply table alias names
as needed. Thus, self–joins can be generated automatically.

Example 11
Join each customer’s name and trip destination. The desired SQL is:

SELECT customers.cust_id, first_name, last_name, destination
FROM customers, cust_trips
WHERE customers.cust_id = cust_trips.cust_id

1. Create three widgets that are members of a table view associated with the
table customers : cust_id , first_name , and last_name .

2. Create a widget to be in a table view associated with the table cust_trips :
destination .

3. Create a link between the two table views with the link type as Server.

Table View

Name: tview2
Table: cust_trips

#1
Column Name: cust_id
UseInSelect: Yes #2

Column Name: first_name
UseInSelect: Yes

#3
Column Name: last_name
UseInSelect: Yes

#4
Column Name: destination
UseInSelect: Yes

Link

Name: tview1+tview2
Type: Server
Relations: cust_id cust_id join

Table View

Name: tview1
Table: customers

By setting the Link Type to Server, a single SELECT statement is generated to
populate both the parent and child table views. The Relations property sets
cust_id in the parent table view is to be joined with cust_id in the child table
view. The Relations property value is displayed as cust_id cust_id join .

SELECT Statement Overview

29118 SQL GeneratorChapter

When the Link Type is specified as Sequential, JAM generates one SQL SELECT
statement for the parent table view, and one for the child. Sequential links must be
specified for master-detail screens where there are several detail rows associated
with one master row. For sequential links, the SQL for the child’s where-condition
contains an expression similar to:

widget-data-in-parent-table-view = child_table.child_column

Therefore, the link’s Transaction⇒ Relations property must specify both a column
in the child’s table, and a widget or column in the parent’s table view.

Example 12
This example uses the same widgets as the previous example, but this time the
destination widget is an array in addition to the link type being Sequential.
Both examples list the customer’s name and trip destination. The desired SQL is:

SELECT cust_id, first_name, last_name, phone
FROM customers

SELECT destination
FROM cust_trips
WHERE cust_trip.cust_id = value in customers.cust_id

1. Create three widgets that are members of a table view associated with the
table customers : cust_id , first_name and last_name .

2. Create one widget to be in a table view associated with the table
cust_trips : destination .

3. Create a link between the two table views with the link type as Sequential.

Generating
Multiple
Statements

Generating INSERT Statements

292 JAM 7.0 Application Development Guide

Table View

Name: tview2
Table: cust_trips

Table View

Name: tview1
Table: customers

Link

Name: tview1+tview2
Type: Sequential
Relations: cust_id cust_id join

#2
Column Name: first_name
UseInSelect: Yes

#3
Column Name: last_name
UseInSelect: Yes

#4
Column Name: destination
UseInSelect: Yes

Array Size: 4 (any integer)

#1
Column Name: cust_id
UseInSelect: Yes

If the column specified in the Parent section of the Relations property corresponds
to more than one widget in the table view, the widget name must be used in the
Relations property instead of the column name, with the somewhat unusual
notation:

:: widget-name[+0]

Generating INSERT Statements

An INSERT statement enters a new row into a database table. The SQL generator
executes an INSERT statement for a single table, and only for Updatable table
views.

Specifying a
Widget in the
Relations
Property

Generating INSERT Statements

29318 SQL GeneratorChapter

If a screen contains more than one table view, the link property Insert Order
determines whether the statement for the parent table view or the child table view
is generated first.

The following INSERT statement is followed by a list detailing how the SQL
elements are specified in various widget and table view properties. If a certain SQL
element is not supported, you can write a statement to utilize that element as part of
a transaction hook function.

INSERT INTO table-name [(column-list)]
VALUES (value-list)

SQL Element Property Settings

table-name For the table view, the value in the Database⇒ Table
property.

column-list For each widget in the table view, the value in the
Database⇒ ColumnName property. The Use In Insert
property must also be set to Yes.

value-list Contains a value for each column in the column list
taken from the current widget data. If a Use In
Insert⇒ Expression is provided, then it is used in place
of the data in the widget. If the data in a widget is null,
then JAM supplies an appropriate representation of null
for the database.

Subqueries Use hook function.

Setting the Table Name
The table-name is derived from the Database⇒ Table property of the table view.

Setting the Column List
The column-list determines which columns will have data entered into the database.
To be included in the column-list, the widget’s Use In Insert property must be set to
Yes and the column listed in the Column Name property. The Column Name
property cannot be blank.

Setting the Value List
If a column is included in the column-list, a value is entered for that column in the
value-list. The value is taken from the current widget data unless the widget’s Use

Generating INSERT Statements

294 JAM 7.0 Application Development Guide

In Insert⇒ Expression property is set. The Expression property overrides the data
entered in the widget.

Example 13
Insert values into the customers and cust_trips tables. To illustrate insert
expressions, paid_flag will always be entered as Y. The desired SQL is:

INSERT INTO customers (cust_id, first_name, last_name, phone)
VALUES (cust_id, first_name, last_name, phone)

INSERT INTO cust_trips
(cust_id, destination, paid_flag, date_paid)
VALUES (cust_id, destination, ’Y’, date_paid)

1. Create four widgets to be in a table view associated with the table custom-
ers . Since data will be inserted into the database table, the table view must be
Updatable and the widgets corresponding to the Primary Keys must be
onscreen.

2. Create three widgets and make them members of a table view associated with
the table cust_trips . Since data will be inserted into the database table, the
table view must be Updatable and the widgets corresponding to the Primary
Keys must be onscreen.

3. Create a link between the two table views.

Generating INSERT Statements

29518 SQL GeneratorChapter

Table View
Name: tview2
Table: cust_trips
Primary Keys: cust_id,

destination
Updatable: Yes

Link

Name: tview1+tview2
Type: Sequential/Server
Relations: cust_id cust_id join
Insert Order: Parent First

#1
Column Name: cust_id
UseInInsert: Yes

#2
Column Name: first_name
UseInInsert: Yes

#3
Column Name: last_name
UseInInsert: Yes

Table View
Name: tview1
Table: customers
Primary Keys: cust_id
Updatable: Yes

#4
Column Name: phone
UseInInsert: Yes

#6
Column Name: paid_date
UseInInsert: Yes

#4
Column Name: destination
UseInInsert: Yes

#5
Column Name: paid_flag
UseInInsert: Yes
Expression: ’Y’

Hidden: Yes

Implementing Optimistic Database Locking
If you choose not to use the engine’s strategies for database locking, you can
implement optimistic locking using version columns. First, create a version column
in your database table that is one of the following data types: integer, float, or
character string. Then, set the Version Column property to Yes for the correspond-
ing widget.

In SQL INSERT statements, if the widget’s Version Column is set to Yes, the
database column corresponding to that widget is added to the column list and to the
VALUES clause. In the INSERT statement, the column value is automatically set to
1. The widget designated as the version column must also have the Use In Insert
property set to Yes and the C Type property set to either Int, Float, Double or Char
String.

Generating UPDATE Statements

296 JAM 7.0 Application Development Guide

If used in the transaction manager, the default class setting for the version column
is updatable and the styles corresponding to this class are applied.

CREATE TABLE customers (
cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (12),
version INTEGER,
primary key (cust_id));

Example 14
Insert values into the customers table. The desired SQL is:

INSERT INTO customers
(cust_id, first_name, last_name, phone, version)
VALUES (cust_id, first_name, last_name, phone, 1)

Object and Property Value

Widget 5

Identity⇒ C Type Int

Database⇒ Column version

Database⇒ Version Column Yes

Database⇒ Use In Insert Yes

Generating UPDATE Statements

An UPDATE statement updates column values in a database table. The standard
models in the transaction manager generate UPDATE statements for each Updatable
table view if widget data in that table view has been changed.

If a screen contains more than one table view, the link property Update Order
determines whether the statement for the parent table view or the child table view
is generated first.

The following UPDATE statement is followed by a list detailing how the SQL
elements are specified in various widget and table view properties. If a certain SQL
element is not supported, you can write a statement to utilize that element as part of
a transaction hook function.

Generating UPDATE Statements

29718 SQL GeneratorChapter

UPDATE table-name SET column-name = value [, ...]
WHERE primary-key = before-image-data

SQL Element Property Settings

table-name For the table view, the value in the Database⇒ Table
property.

column-name For every widget in the table view, the value in the
Database⇒ Column property. The Use In Update prop-
erty must be set to Yes.

value The current widget data. If a Use In Update⇒ Expres-
sion is provided, then it is used in place of the data in
the widget. If the data in a widget is null, then JAM sup-
plies an appropriate representation of null for the data-
base.

WHERE clause The columns specified in the table view’s Data-
base⇒ Primary Keys property.

before-image-data The data in the widgets which corresponded to the pri-
mary keys of the table before changes were made. This
may not be the values currently stored in the widget.

Setting the Table Name

The table-name is derived from the Database⇒ Table property of the table view.

Specifying the SET Clause

The columns listed in the SET clause are derived from all of the widgets in the
table view whose Use In Update property is set to Yes. The column-name is
derived from the widget’s Column Name. The new-value is the value currently in
the widget, unless Use In Update⇒ Expression property is set. If the Expression is
set, it overrides the value in the widget.

Setting the Primary Keys

The primary-key is derived from the Database⇒ Primary Keys property of the table
view. Each primary key column listed in the property is included in the WHERE
clause.

Generating UPDATE Statements

298 JAM 7.0 Application Development Guide

Example 15
Update the phone number for a customer. The desired SQL is:

UPDATE customers SET phone = new_phone,
WHERE cust_id = cust_id

Create four widgets and make them members of a table view associated with the
table customers . Widget 3, with Use In Select set to Yes, displays the current
phone number. Widget 4 using the select expression suggests a new phone number
for the customer. Widget 4 also has the Use In Update property set to Yes so it is
the value in this widget that gets written to the database.

Object and Property Value

Widget 1

Database⇒ Column cust_id

Database⇒ Use In Select Yes

Widget 2

Database⇒ Column phone

Database⇒ Use In Select Yes

Widget 4

Database⇒ Column new_phone

Database⇒ Use In Update Yes

Table View 1

Database⇒ Table customers

Database⇒ Primary Keys cust_id

Transaction⇒ Updatable Yes

Implementing Optimistic Database Locking
If you choose not to use the engine’s strategies for database locking, you can
implement optimistic locking using version columns. First, create a version column
in your database table that is one of the following data types: integer, float, or
character string. Then, set the Version Column property to Yes for the correspond-
ing widget.

In SQL UPDATE statements, if the widget’s Version Column is set to Yes, the
database column corresponding to that widget is added to the SET clause and to the

Generating DELETE Statements

29918 SQL GeneratorChapter

WHERE clause. In the SET clause, the column value is automatically incremented by
1. In the WHERE clause, the previous value of the column is listed. Therefore, if
someone else has updated or deleted the row, the version column in the WHERE
clause should no longer match the database value and the statement fails.

The widget designated as the version column must also have the Use In Update
property set to Yes and the C Type property set to either Int, Float or Char String.

If used in the transaction manager, the default class setting for the version column
is updatable and the styles corresponding to this class are applied.

UPDATE table-name SET column-name = value [, ...],
version-column = before-image-value + 1
WHERE primary-key = before-image-value
AND version-column = before-image-value

For the example, a version column has been added to the customers table:

CREATE TABLE customers (
cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (12),
version INTEGER,
primary key (cust_id));

Example 16
Update values in the customers table. The desired SQL is:

UPDATE customers
SET first_name = first_name, last_name = last_name,
phone = phone
WHERE cust_id = cust_id AND version = version

Another method of optimistic locking would be to set the In Update Where
property to Yes. With this method, the value in the widget is included in the WHERE
clause of the SQL UPDATE statement.

Note that if this method is used, the Version Column property for the widget must
be set to No.

Generating DELETE Statements

A DELETE statement removes rows from a database table. The SQL generator
executes a DELETE statement only for Updatable table views.

Setting In
Update Where

Generating DELETE Statements

300 JAM 7.0 Application Development Guide

If a screen contains more than one table view, the link property Delete Order
determines whether the statement for the parent or child table view is generated
first.

The following DELETE statement is followed by a list detailing how the SQL
elements are specified in various widget and table view properties. If a certain SQL
element is not supported, you can write a statement to utilize that element as part of
a transaction hook function.

DELETE FROM table-name WHERE primary-key = before-image-data

SQL Element Property Settings

table-name For the table view, the value in the Database⇒ Table
property.

WHERE clause The columns specified in the table view Primary Keys
property (Database category).

before-image-data The data in the widgets corresponding to the primary
keys of the table before changes were made. Note that
this may or may not be the values which are currently
displayed in the widget.

Implementing Optimistic Database Locking

If you choose not to use the engine’s strategies for database locking, you can
implement optimistic locking using version columns. First, create a version column
in your database table that is one of the following data types: integer, float, or
character string. Then, set the Version Column property to Yes for the correspond-
ing widget.

In SQL DELETE statements, if the widget’s Version Column is set to Yes, the
database column corresponding to that widget and its before image value is added
to the WHERE clause. Therefore, if someone else has updated or deleted the row, the
version column in the WHERE clause should no longer match the database value and
the statement fails.

The widget designated as the version column must also have the Use In Delete
property set to Yes and the C Type property set to either Int, Float or Char String.

DELETE FROM table-name
WHERE primary-key = before-image-value
AND version-column = before-image-value

Viewing the SQL Statements

30118 SQL GeneratorChapter

For the example, a version column has been added to the customers table:

CREATE TABLE customers (
cust_id INTEGER NOT NULL,
first_name CHAR (20),
last_name CHAR (25),
phone CHAR (12),
version INTEGER,
primary key (cust_id));

Example 17
Delete values from the customers table. The desired SQL is:

DELETE FROM customers
WHERE cust_id = cust_id AND version = version

Object and Property Value

Widget 5

Identity⇒ C Type Int

Database⇒ Column version

Database⇒ Version Column Yes

Database⇒ Use In Select Yes

Another method of optimistic locking would be to set the In Delete Where property
to Yes. With this method, the value in the widget is included in the WHERE clause of
the SQL DELETE statement.

Note that if this method is used, the Version Column property for the widget must
be set to No.

Viewing the SQL Statements

You can view the statements made by the SQL generator by:

� Using the debugger. This option provides the greatest flexibility. You can even
send the generated SQL statements to a log file.

� Selecting the Trace On option from the Database menu in test and application
modes. This option is less flexible, but is quicker and is often sufficient.

Setting In Delete
Where

Viewing the SQL Statements

302 JAM 7.0 Application Development Guide

Examples

The following examples list the sample SQL found in this chapter and the actual
SQL from the SQL generator. These statements were prepared for JDB, JYACC’s
prototyping database, and might appear differently for other database engines.

The following example selects rows where the column destination matches a
value entered on the screen.

Example 2
SELECT destination, travel_costs, hotel, meals,

travel_costs+hotel+meals
FROM vacations
WHERE destination = destination

The SQL generator first declares a cursor for the SELECT statement. The
where-condition is specified using a binding parameter (:w0) so that the value is
supplied when the cursor is executed, not when it is declared.

declare dm_jdb1_19 cursor for select tview1.destination,
tview1.travel_costs, tview1.hotel, tview1.meals,
travel_costs+hotel+meals
from vacations tview1 where ((tview1.destination = :w0))

Then, an ALIAS statement matches the column name with the widget name. If the
widget is not named, the widget number is used in the ALIAS statement. The
following statement matches widget #1 with the first column in the SELECT
statement, tview1.destination , etc.

with cursor dm_jdb1_19 alias #1, #2, #3, #4, #5

Finally, it executes the SELECT statement. The value of the binding parameter w0 is
set to be data currently in the first occurrence of widget destination .

with cursor dm_jdb1_19 execute using w0 = destination[1]

The following example inserts rows into both the parent and child table views.

Example 13
INSERT INTO customers (cust_id, first_name, last_name,

phone)
VALUES (cust_id, first_name, last_name, phone)

INSERT INTO cust_trips (cust_id, destination, paid_flag,
paid_date)
VALUES (cust_id, destination, ’Y’, paid_date)

Viewing
SELECT
Statements

Viewing INSERT
Statements

Viewing the SQL Statements

30318 SQL GeneratorChapter

The SQL generator first declares a cursor for the first INSERT statement. The
values-list is specified using binding parameters that have a prefix v_ preceding the
column name (like, :v_cust_id).

declare dm_jdb1_18 cursor for insert into customers
(cust_id, first_name, last_name, phone)
values (:v_cust_id, :v_first_name, :v_last_name,
:v_phone)

Then, the SQL generator executes the INSERT statement. The value for the
parameter v_cust_id is the data currently in the first occurrence of widget
cust_id .

with cursor dm_jdb1_18 execute using v_cust_id = cust_id[1],
v_first_name=first_name[1], v_last_name=last_name[1],
v_phone=phone[1]

In the INSERT statement for the second table view, binding parameters are only
needed for three of the columns. The value for the third column is provided by the
Use In Insert⇒ Expression property.

declare dm_jdb1_18 cursor for insert into cust_trips
(cust_id, destination, paid_flag, paid_date)
values (:v_cust_id, :v_destination, ’Y’, :v_paid_date)

with cursor dm_jdb1_18 execute using v_cust_id = cust_id[1],
v_destination = destination[1], v_paid_date = paid_date[1]

The following example enters a customer’s new phone number.

Example 15
Update the phone number for a customer. The desired SQL is:

UPDATE customers SET phone = new_phone
WHERE cust_id = cust_id

The SQL generator first declares a cursor for the UPDATE statement. The bind
parameters for where–condition use the prefix w_ and the parameters for the SET
clause use the prefix s_ . Bind parameters are used so that the values are supplied
when the cursor is executed, not when it is declared.

declare dm_jdb1_2 cursor for update customers
set phone = :s_phone
where cust_id = :w_cust_id

Then, the SQL generator executes the UPDATE statement. The value for the
parameter s_phone is set to be data currently in widget new_phone . The values
for the parameter w_cust_id is in the before image data for this row, indicated by

Viewing
UPDATE
Statements

Modifying the SQL Statements

304 JAM 7.0 Application Development Guide

@bi. In the following statement, @bi(#1)[1] indicates that the parameter’s value
is in the before image data, from widget #1 , in occurrence 1.

with cursor dm_jdb1_2 execute using
s_phone = new_phone[1],
w_cust_id= @bi(#1)[1]

Modifying the SQL Statements

The automatically generated SQL statements may need additional modifications
that cannot be set with the widget, table view or link properties. For additional
modifications, you can write a transaction hook function to provide the desired
SQL. For SQL SELECT statements, you can also use one of the C functions JAM
provides to modify the SQL. The functions include:

� dm_gen_change_execute_using — Add or replace a bind value in a DBMS
EXECUTE statement.

� dm_gen_change_select_from — Edit the FROM clause in a SELECT
statement.

� dm_gen_change_select_group_by — Edit the GROUP BY clause in a
SELECT statement.

� dm_gen_change_select_having — Edit the HAVING clause in a SELECT
statement.

� dm_gen_change_select_list — Edit the select list in a SELECT
statement.

� dm_gen_change_select_order_by — Edit the ORDER BY clause in a
SELECT statement.

� dm_gen_change_select_suffix — Append text to the end of a SELECT
statement.

� dm_gen_change_select_where — Edit the WHERE clause in a SELECT
statement.

For more information on each function, refer to the Language Reference. For more
information on writing transaction hook functions, refer to Chapter 22.

SECTION FIVE

The Transaction
Manager

Chapter 19 Introduction to the Transaction Manager 307

Chapter 20 Transaction Manager Basics . 309

Chapter 21 Transaction Manager Components . 327

Chapter 22 Customizing Transaction Manager . 369

Chapter 23 Transaction Manager Commands . 395

Chapter 24 Transaction Manager Troubleshooting 463

307

Introduction to the
Transaction Manager

This section contains the following documentation for using the transaction
manager:

� Transaction Manager Basics (Chapter 20) — Explains the process used in
building a sample screen and then goes through a sample session.

� Transaction Manager Components (Chapter 21) — Contains a detailed
explanation of each of the transaction manager components, like modes, table
views, and links.

� Customizing Transaction Manager (Chapter 22) — Explains some of the
modifications you might make to transaction manager processing, including
writing your own hook functions.

� Transaction Manager Commands (Chapter 23) — Reference guide to each of
the transaction manager commands listing the transaction events for each
command and explaining the processing that occurs with each event.

� Transaction Manager Troubleshooting (Chapter 24) — Guidelines for building
transaction manager screens as well as explanations of transaction manager
errors.

The easiest way to make a screen that uses the transaction manager is to use the
screen wizard which is available in the screen editor. For information about the
screen wizard, refer to Chapter 5 in the Editors Guide.

1919

309

Transaction Manager
Basics

This chapter introduces basic transaction manager processing. The first section
describes the process used to build an application screen. It explains how objects
were imported from the database and then copied from the repository. It defines the
widgets, table views and links that make up this screen. Then, the second section
goes step-by-step through a sample session with the transaction manager giving an
overview of the available commands and explaining how the transaction modes
and styles can effect the availability of widgets and commands.

To help explain the concepts in this chapter, we are going to look at a sample
screen which is based on the videobiz database. In this screen, you can enter a
video title by name or identification code and view the actors appearing in that
video and the role that each actor played. You can also enter a new video with the
corresponding actors and roles. A picture of the screen appears in Figure 16.

2020

Building an Application Screen

310 JAM 7.0 Application Development Guide

Figure 16. Sample screen which will be used to explain transaction manager processing.

Alternatively, you can use the screen wizard to build an application screen which
uses the transaction manager. The screen wizard is available with the File⇒ New
option in the screen editor. For information about using the wizard, refer to Chapter
5 in the Editors Guide.

Building an Application Screen

Building the sample screen was easily accomplished using the database importer
and the visual object repository. First, the videobiz database was created in JDB
and imported into the repository. The database importer created a repository entry
for each database table. Since the name of the repository entry corresponds to the
database table name, the entries can be easily identified.

Each repository entry contains:

� A widget corresponding to each database column. One of the properties for the
widget is the column name. Other widget properties are also set based on the
column’s data type.

Building an Application Screen

31120 Transaction Manager BasicsChapter

� A label for each database column.

� A table view containing database table information.

� Links based on any foreign key definitions for the database table.

Widgets, table views and links were then copied from the repository to the
application screen. Since objects copied from the repository inherit property
settings, the application screen contains much of the information needed for SQL
generation and database access automatically.

Copying Repository Objects
For the sample screen, the following tables list the objects that were copied from
the repository.

Table 21. Objects copied from the titles repository entry.

Repository Entry Type of Widget Name

titles Text title_id, name, genre_code,
dir_last_name, dir_first_name,
film_minutes, rating_code, re-
lease_date, pricecat

Labels LTitle_id, LName, LGenre_code,
LDir_last_name, LDir_first_name,
LFilm_minutes, LRating_code, LRe-
lease_date, LPricecat

Table View titles (copied automatically with the
text widgets)

Link K1titles (pricecats+titles)

Table 22. Objects copied from the roles repository entry.

Repository Entry Type of Widget Name

roles Text actor_id, role

Labels LActor_id, LRole

Table View roles (copied automatically with the
text widgets)

Link K1roles (titles+roles), K2roles (ac-
tors+roles)

Building an Application Screen

312 JAM 7.0 Application Development Guide

Table 23. Objects copied from the actors repository entry.

Repository Entry Type of Widget Name

actors Text first_name, last_name

Labels LFirst_name, LLast_name

Table View actors (copied automatically with the
text widgets)

Table 24. Objects copied from the pricecats repository entry.

Repository Entry Type of Widget Name

pricecats Text pricecat_dscr

Labels LPricecat_dscr

Table View pricecats (copied automatically with
the text widgets)

When you are creating a screen, the order used to copy objects from the repository
can be important. If a screen contains multiple table views, copy the information
for the table views which will be the major table views in the screen first. This
ensures that any primary key widgets copied to the screen will be in the major, or
parent, table view.

Since the focus of our sample screen is information about each video title, widgets
and links from the titles repository entry were copied first. Then, the actor
information was added to the screen.

The database stores the actor information in two different tables, actors and
roles . Since the roles table contains a title_id column which provides the
necessary link to the titles table view, information from that repository entry
was copied next. Note that it was not necessary to copy the title_id widget itself
from the roles entry; the transaction manager will use the title_id widget in
the titles table view for SQL generation. Just the actor_id and the role
widgets were copied to the screen—actor_id because it is part of the primary
key. Since actor_id was already onscreen, all that was needed from the actors
entry was first_name and last_name .

Finally, since the price category codes are not self-explanatory, pricecat_dscr
was copied from pricecats to provide better descriptions.

Sequence for
Copying Objects

Building an Application Screen

31320 Transaction Manager BasicsChapter

Table Views and Links

The table views and links that were copied from the repository are JAM objects
needed by the transaction manager to perform its processing. The following
sections present a basic description of table views and links. If you need additional
information, refer to page 354.

A table view is a group of related widgets, generally belonging to the same
database table. If a widget is a member of a table view in the repository, JAM
automatically adds the widget to a table view of the same name in the destination.
If the table view does not exist, JAM creates it using the properties of the table
view in the repository. Thus, most table views are created automatically by the
database importer and then copied from the repository as the widgets are copied.

Although the members of a table view generally belong to the same database table,
this is not always the case. If a widget contains a derived value, perhaps from a
database calculation or aggregate function, the widget can be added to a table view
even through it does not correspond to a database column.

The sample screen contains four table views:

� actors

� pricecats

� roles

� titles

The purpose of the sample screen is to enter information about a video title and
assign the actors in the database that appear in that video. The Updatable property,
which determines whether data in the corresponding table can be updated, was set
to No for the actors and pricecats table views since the actors and price
categories should already be entered in the database before using this screen.

However, just knowing the table views on a screen does not tell the transaction
manager which table view should be processed first. To obtain this information, the
transaction manager looks at the link properties for the screen.

A link defines the relationship between two table views. The link properties list
which columns or widgets connect the two table views, list the type of link—server
or sequential, and list which table view is designated as the parent and which table
view is designated as the child.

Table Views

Links

Building an Application Screen

314 JAM 7.0 Application Development Guide

Designating the parent and child table views helps determine the root table view
and the order of processing for the table views.

When you copy links from the repository, the settings for the Parent and Child
properties might need to be reversed for a particular screen. You can easily
determine the current values by looking at the link in the editor. The link is
displayed as the parent table view name plus (+) the child table view name.

In our sample screen, some of the Parent and Child properties had to be edited.
Since the purpose of the screen is to display information about a video title,
titles needs to be the root table view and therefore must be the parent table view
for any link in which it appears. Since the K1titles link had titles as the child
table view, the Parent and Child properties of that link were changed for this
screen. titles became the Parent and pricecats the Child.

For the K2roles link, roles became the Parent, and actors the Child.
Otherwise, the transaction manager could not determine the root table view.

Note: When you reverse the Parent and Child settings, you must also edit the
Relations property if the columns joining the two tables do not have the same
name. This was not needed for our sample screen since the pricecat column in
the titles table has the same name as the pricecat column in the pricecats
table.

There are two types of links—sequential and server. The link type determines how
SELECT statements are performed. In the case of a sequential link, the transaction
manager executes a SELECT statement for each table view, generating the
statement for the parent table view first. In the case of a server view, the transac-
tion manager executes a single SELECT statement for the parent and child table
views using a database join operation.

In the sample screen, there is a sequential link between the titles and roles
table views. There is a server link between the titles and pricecats table
views and another server link between the roles and actors table views.

Setting the
Parent and Child
Table Views

Setting the Link
Type

Building an Application Screen

31520 Transaction Manager BasicsChapter

Figure 17. DB Interactions screen for the sample screen showing the linked table views and
the link type.

You can view the table views and links for a screen using the DB Interactions
screen. On this screen, a ^ (caret) designates a sequential link, and a | (pipe)
designates a server link.

The link type only determines how SELECT statements are processed. Other link
properties determine the order of other SQL statements. Generally, for INSERT and
UPDATE statements, the statement for the parent table view is generated first. For
DELETE statements, the statement for the child table view is generated first

The table view listed at the top of the DB Interactions screen is the root table view,
the first table view to process for this screen. The transaction manager determines
the root table view from the Parent and Child properties of all of the links on a
screen. Since the purpose of the screen is to provide information about each video
title, titles is the root table view for our sample screen.

If you get an error message that the root table view cannot be determined, check
the Parent and Child properties for the link. Often, these properties need to be
reversed for one or more links. If changing these properties does not resolve the
error, you can set the root table view manually in the screen properties.

The DB Interactions screen also graphically illustrates the table view tree that the
transaction manager uses to perform its processing. When a command is selected,
the transaction manager traverses this table view tree, issuing statements to each
table view, or server view, in order to fetch or update data in the database.

Determining the
Root Table View

Tree Traversal

Building an Application Screen

316 JAM 7.0 Application Development Guide

A server view is either a single table view or a group of table views connected with
server links. In our sample screen, there are two server views:

� titles (which includes the pricecats table view)

� roles (which includes the actors table view)

The links that are defined for a screen can also be used to specify validation links.
When a validation link exists, you can enter a value in a widget, in either new or
update mode, and the transaction manager looks up that value in the linked
database table. If the value exists, it displays data for any widgets in the child table
view. If the value does not exist, it displays the error Invalid Entry .

It is very simple to specify a validation link. Create the desired link if it does not
exist. Then, set the Validation Link property for the widget to that link.

The sample screen has a validation link to check the entry for a price category. The
Validation Link property on the pricecat widget specifies the link between the
titles and pricecats table views. When a new video title is entered and a valid
price category is entered in pricecat , the description of that category is displayed
in the pricecat_dscr widget.

Validation link processing is only performed in new and update modes, as part of
the NEW, COPY or SELECT commands, when you are entering or updating data.
Otherwise, the data in a validation link is displayed using a SQL SELECT
statement. Since the data in the child table view should already be entered in the
database, the child table view in a validation link should be non-updatable.

There is also a validation link entered for the actor_id widget to the actors
table view. If you enter a valid actor identification code, the actor’s name is
automatically displayed.

Validation Links

Using the Transaction Manager

31720 Transaction Manager BasicsChapter

Editing the Properties
Once the screen contains the necessary widgets, table views and links, you might
choose to edit some of the Database or Transaction properties. Editing the
properties can change the transaction manager processing for a command or
change the SQL generation performed for commands.

For our sample screen, properties were changed for the title_id and name
widgets. For title_id , the Use In Where property was set to Yes and Operator
was set to =. For name, the Use In Where property was set to Yes and Operator was
set to like% . Before selecting data, enter an identification code or a part of a video
title. Then, when you choose the SELECT or VIEW commands, the transaction
manager will display the desired information. For more information on setting
properties for SQL generation, refer to Chapter 18.

Push buttons were also added to the screen to perform the transaction manager
commands. For information on specifying transaction manager commands, refer to
page 329.

Using the Transaction Manager

Once the application screen exists with its widgets, table views and links properly
defined, the screen is ready to use. Let’s follow the transaction manager through a
session in test mode using the sample screen.

Opening the Screen
Processing for the transaction manager begins when you open an application
screen. On screen entry, the transaction manager automatically executes the
following steps:

� Calls the START command which assigns a transaction name to this session
with the transaction manager.

� Checks the tree traversal of the table views and links to make sure that the root
table view can be determined and that there are no circular links.

� Verifies that the functions specified in the table views’ Function property are
available.

� Sets the screen to initial mode and applies any styles specified for that mode.

If a named function cannot be found or if the root table view cannot be determined,
an error message is issued and the transaction manager stops its processing.

Using the Transaction Manager

318 JAM 7.0 Application Development Guide

Defining the Menu Options

The screen is displayed with the specified menu. If a menu has not been specified,
JAM provides a default menu for prototyping and development. Your production
application will use its own menus, push buttons, and tool bars to call transaction
manager.

The options on the Database menu primarily handle your database connection.

Option Description

Connect Displays the options needed to declare a connection to the
specified database engine. Enter the necessary information
and press OK.

Disconnect Closes the connection to the database.

Trace On Activates the trace setting which displays each database driv-
er statement in a screen window.

Trace Off Deactivates the trace setting.

Set Connect Select the default connection if the database engine allows
multiple connections.

In addition to using the Trace On option to view the statements that are issued for
each command, you can also use the debugger to view SQL generation and
transaction manager event processing.

The commands listed on the Transaction menu are the basic commands needed to
run the transaction manager. Once a connection to the database is established, you

Database Menu

Transaction
Menu

Using the Transaction Manager

31920 Transaction Manager BasicsChapter

can execute any of the transaction manager commands. You can also choose any of
the following commands from the Transaction menu:

Option Description

View Retrieves one or more rows from the database for viewing
purposes only.

Select Retrieves one or more rows for possible updates.

Continue Fetches the next group of rows if a previous VIEW, SELECT,
or CONTINUE did not return all rows.

New Clears the screen so the user can enter new data.

Copy Copies the data currently on the screen, allowing the user to
change it in order to enter a new row.

Save Generates the statements necessary to update the database
with the new or edited information.

Close Aborts the current processing.

Clear Clears the data from the screen.

It is important to note that the NEW command only prepares the screen for data
entry. It does not insert information into the database. You must execute SAVE after
data is entered on the screen to complete the insert. Similarly, you must also
execute SAVE for the database to perform any updates to data retrieved with the
SELECT command.

The commands on the Transaction menu are called using the sm_tm_command
function. Only some of the available commands are listed on the Transaction
menu. For a complete listing of the commands and options available with
sm_tm_command, refer to Chapter 23 in the Application Development Guide.

Transaction Modes

The transaction manager has a series of transaction modes which determine the
availability of each command. When JAM displays the default Transaction menu,
some of the commands are greyed out, indicating that they are not available. This

Using the Transaction Manager

320 JAM 7.0 Application Development Guide

is because the current mode precludes using those commands. The modes set by
the transaction manager, along with the commands that set those modes, are:

Mode Description Command Selection

initial Indicates that no processing is in progress. START and CLOSE

new Allows new data to be entered. NEW and COPY

update Allows existing data to be modified. SELECT and
COPY_FOR_UPDATE

view Allows existing data to be displayed. VIEW and
COPY_FOR_VIEW

When you execute a command, the transaction manager checks if the command is
available in the current mode and changes to the transaction mode. If the command
is unavailable in the current mode, the transaction manager reports an error. Each
screen may have its own mode at any given time.

When you open a screen, the transaction manager automatically issues a START
command which puts the screen into initial mode. For more information on the
interaction of transaction commands and modes, refer to page 346.

Establishing a Connection
Once the screen is open, select the Connect option on the Database menu to
establish a database connection. On the first screen, Choose Engine, you can select
a database engine and a connection name. After you press OK, the options for a
particular engine are listed. For JDB, a file list is displayed allowing you to select
the file containing the JDB database.

After choosing the engine options, the database connection is established using the
DBMS commands ENGINE, DECLARE CONNECTION, and CONNECTION. In the
following example, the ENGINE command makes JDB the default engine. Then,
the DECLARE CONNECTION command establishes a connection to the default
engine using the options entered on the connection screen. For JDB, the only
available option is DATABASE. Other database engines may have different options.
Finally, the CONNECTION command sets the default connection.

In a production application, you will provide a JPL procedure or C function to
open the database connection. For example:

DBMS ENGINE jdb
DBMS DECLARE dm_jdb1_conn CONNECTION FOR DATABASE ”videobiz”
DBMS CONNECTION dm_jdb1_conn

Using the Transaction Manager

32120 Transaction Manager BasicsChapter

Displaying Data in the Transaction Manager
Earlier sections mentioned the two commands in the transaction manager which
are used to display data from an existing database, VIEW and SELECT. Once a
connection is established to the database, the commands can be invoked. You may
recall that VIEW is used only to display information; SELECT is used when you
allow the user to modify the selected data. For our sample session, let’s use the
SELECT command.

When the SELECT command is executed, data is fetched from the database and
displayed in the appropriate widgets using the DBMS commands DECLARE CURSOR,
ALIAS , and EXECUTE. The DECLARE CURSOR command creates a named cursor
for the SQL SELECT statement. The ALIAS command maps the column name or
select expression to the JAM destination variable. This allows you to have a widget
name that is different from the database column name if you need it. Then, the
EXECUTE command performs the SQL statement associated with the cursor named
in the WITH CURSOR clause. If the SQL statement included bind parameters, the
USING clause lists both the parameter and the widget whose onscreen value will be
substituted.

DBMS DECLARE jdb1 CURSOR FOR SELECT ...
DBMS WITH CURSOR jdb1 ALIAS ...
DBMS WITH CURSOR jdb1 EXECUTE USING ...

This series of statements is performed for each server view, with a server view
being a table view and all table views joined to it via a server link. Since our
sample screen contains two server views, this series of statements would be
executed two times. The first series would retrieve a video title and its associated
price category from the titles and pricecats tables. The second series would
fetch the actors appearing in that video and the name of their roles.

Since the titles table view has a sequential link with the roles table view,
values in the titles table view (which is the parent) are used to fetch data for the
child table view. The widget used to supply the value is named in the Relations
property of the link. For our sample screen, the current value in title_id is used
automatically to build a WHERE clause which will fetch only the actors in that
video.

If the JAM targets for the select set are arrays, the first row fetched goes to the first
occurrence, the second row to the second occurrence, etc.

The CONTINUE command in the transaction manager fetches the next set of data
for the screen. For the root table view, the next row, or set of rows, is fetched. For
any child table views connected by sequential links, additional SQL SELECT
statements are issued, using the values from the parent table view in the WHERE
clause. For each subsequent CONTINUE command, another set of data is fetched. If
there are no additional rows, nothing is done.

Scrolling
through the
Select Set

Using the Transaction Manager

322 JAM 7.0 Application Development Guide

There are two ways to allow users to scroll forward and backward through a select
set. Usually you will create scrolling JAM widgets or a JAM grid for displaying
the data. In environments where memory is limited, you may fetch only a small
number of rows to the JAM may fetch only a small number of rows to the JAM
application and buffer the rest in a file on disk. This is known as using a
continuation file or a store file.

To use a continuation file with transaction manager, you need to edit the Fetch
Directions property for either the screen or the table view. If Fetch Directions is set
to Up/Down–all modes or Up/Down–view mode, the transaction manager fetches
the data to a continuation file. Then, issuing a CONTINUE_BACK command displays
the previous set of data, and issuing a CONTINUE_TOP command displays the first
set of data.

Note that JAM does not set backward scrolling via continuation files as the default
since JAM does not update the continuation file when the onscreen data is
changed. Scrolling backward shows the original, fetched data. If you set Fetch
Directions to be Up/Down in all modes, be aware that once a SAVE command is
issued, you need to re-execute SELECT in order to see any updated data. For more
information on the Fetch Directions property, refer to page 377.

Styles

As you execute some of the transaction commands, you might notice changes in
the widgets’ behavior. Text fields may prevent input, menu choices may be
deactivated, push buttons may be activated, etc. These changes occur because JAM
has predefined style and class settings for each transaction mode.

The style and class settings give a consistent user interface to the application.
Widgets available for data entry can have the same focus and protection settings.
They can even have the same color. All of this can occur without having to write
any source code or set any properties in the screen editor.

The definitions for the styles and classes are kept in a file named styles.sty . For
an application, you can use the predefined styles and classes, edit the style and
classes settings to new values, or define your own styles and classes.

Let’s look at our sample screen when you choose the SELECT command. The
command, which retrieves rows from the database for possible edit, sets the
transaction mode to update. The title_id and actor_id widgets are protected,
preventing any edits to primary key fields. The pricecat_dscr , first_name ,
and last_name widgets are protected since they are in non-updatable table views.
If you try to edit the values in these fields, the screen editor beeps, reminding the
user that the fields are protected. The remaining fields are available to be updated.

Applying Styles

Using the Transaction Manager

32320 Transaction Manager BasicsChapter

For more information on styles and classes, refer to Chapter 18 in the Editors
Guide.

Modifying Data in the Transaction Manager
If you execute a command that will modify data, such as NEW, SELECT, COPY or
COPY_FOR_UPDATE, the transaction manager initiates before-image processing for
all updatable table views. JAM’s before image remembers the original values of
the fetched data. Then, when you execute SAVE, the transaction model generates
the necessary statements so that the database matches the current data on the
screen.

The transaction manager SELECT command queries the database for information so
that it can be updated. When you execute the SELECT command, the transaction
manager fetches the first screenful of data for each of the linked table views. Then,
each time you execute the CONTINUE command, the transaction manager fetches
the next screenful of data.

JAM keeps track of the changes the user makes while the screen is in update mode.
When the application executes SAVE, the transaction manager generates the
statements to update the database. If the application attempts any other transaction
manager operation, the transaction manager will ask the user if it should discard
the changes. If the user chooses to discard, the transaction manager will proceed to
the next command without changing the database. If the user chooses not to
discard, transaction manager returns control to the screen. You may modify this
behavior if you wish.

When before image processing is activated, each time a field is modified in some
way (data is edited, data is cleared, new data is entered), the data previously in the
field is copied into memory and the transaction manager is notified that data on the
screen has changed. Then, when the SAVE command is selected, the transaction
manager looks at the changes and determines which statements are necessary to
update the database so that it matches what is currently on the screen.

For any command which can modify the database, such as SELECT, NEW, COPY and
COPY_FOR_UPDATE, the transaction manager must synchronize the widgets in a
server view. This ensures that any updates occur on the same occurrence of each
widget in the server view. Each time the SELECT, NEW, COPY and COPY_FOR_UP-
DATE commands are chosen, the transaction manager attempts to synchronize the
widgets in a server view if:

� The table view is updatable.

� The widgets’ Synchronization property is set to Default or Yes.

� If the Synchronization property is set to Default, then if the widgets’ Use In
Select, Use In Insert, and Use In Update properties are set to Yes.

Updating Data

Updating Data in
Arrays

Using the Transaction Manager

324 JAM 7.0 Application Development Guide

If you get a synchronization error, check to see if the widgets can be set to the
same number of occurrences. If this is not possible, review the Use In Select, Use
In Insert, and Use In Update properties for each widget to see if they can be
changed. Another property change you can make is setting the Synchronization
property to No.

However, changing the Synchronization property to No does not change the way
JAM fetches data to arrays. The number of rows fetched from the database equals
the least number of occurrences set for any widget in the server view whose Use In
Select property is set to Yes.

To delete data in the transaction manager, execute the CLEAR command, followed
by SAVE. This removes all the data displayed on the screen from the database.

The user can also use the logical key DELL to delete a line. Since the transaction
manager synchronizes the arrays in a server view, using this key will delete the
same occurrence in every array in the server view. You can program a delete line
event by calling the function sm_doccur .

For deletions, the transaction models call the SQL generator to build a SQL
DELETE statement with a WHERE clause built from the before image values of the
primary key widgets.

To insert data in the transaction manager, execute the NEW command, let the user
complete the data entry, and then execute SAVE. This inserts a row in each table
view that was modified on the screen.

If the data is in arrays or grids, the user can use the logical key INSL, which inserts
a line. Since the transaction manager synchronizes the arrays in a server view,
using this key will insert a line in each array in the server view. You can program
an inert line event by calling the function sm_ioccur .

For inserts, the transaction models call the SQL generator to build a values list for
the widgets in the table view whose Use In Insert property is set to Yes.

If at any time in this process, you wish to abort the edits to the screen, you can
execute the CLOSE command which discards the user’s changes and puts the screen
in initial mode.

The processing for each command in the transaction manager is determined by the
transaction model. Source files for sample transaction models are distributed with
JAM, one for each engine. The transaction manager translates each command into
a series of transaction events. The processing for each event is listed in the model;
however, you can change the processing for any event by writing a transaction
hook function. For more information about writing hook functions, refer to page
384.

Deleting Data

Inserting Data

Discarding Your
Changes

Command
Processing

Using the Transaction Manager

32520 Transaction Manager BasicsChapter

Closing the Screen

When you close a screen, the transaction manager performs the necessary exit
processing. This includes:

� Calling the FINISH command which closes any open cursors and closes the
current transaction manager transaction.

� Verifying that the functions specified in the table view’s Function property are
available, in case they are needed for the FINISH command.

If a named function cannot be found, an error message is issued.

327

Transaction Manager
Components

This chapter describes in detail each of the components used in the transaction
manager. Before referring to this chapter, you should be familiar with the
transaction manager processing described in Chapter 20. The subjects in this
chapter are:

� Transaction manager screen wizard

� Transaction manager commands

� Transaction events

� Transaction modes

� Styles and classes

� Repository

� Table views

� Links

� Transaction models

2121

Screen Wizard

328 JAM 7.0 Application Development Guide

� Before image processing

� Hook functions

The following screen, which is based on the videobiz database, is used to
illustrate the various concepts in this chapter. The steps performed to create this
screen are outlined in Chapter 20.

Figure 18. Sample screen which can be used to query or to enter information about video
titles.

Screen Wizard

The transaction manager screen wizard is the easiest method for creating screens
that use the transaction manager. The screen wizard option is available when you
choose File⇒ New in the screen editor.

The screen wizard can make three different types of screens—Master, Master-De-
tail, and Master-Detail-Subdetail—as long as you have imported your database to a
repository. For more information, refer to Chapter 5 in the Editors Guide.

Transaction Manager Commands

32921 Transaction Manager ComponentsChapter

Transaction Manager Commands

A series of transaction manager commands are available for use in the transaction
manager. Each command executes a different type of processing. For example,
there is a command to select data from the database and a command to clear the
data from the screen. When you choose a command, the transaction manager
executes the transaction events associated with that command.

The default menu contains a subset of these commands for use in prototyping and
development. However, you can override this menu at any time with one of your
own menus, or you can use push buttons to execute commands.

When you choose a transaction manager command, you also set the transaction
mode for the screen. Changing the transaction mode can also change the protection
settings and display attributes of widgets on the screen. For more information
about transaction modes, refer to page 346.

This section contains information applying to all transaction commands. This
includes a short description of each command, information about how to specify
commands, and a description of how the command is applied to the table view tree.
For detailed information on each transaction manager command, including the
transaction events associated with the command, refer to Chapter 23.

Transaction Manager Commands

330 JAM 7.0 Application Development Guide

Description of the Commands

The commands available in the transaction manager are:

Option Description

Change Change to another transaction.

Clear Clears the data from the screen.

Close Aborts the current processing.

Continue Fetches the next group of selected rows.

Continue_Bottom Fetches the last set of rows using a continuation file.

Continue_Down Fetches the group set of rows using a continuation file.

Continue_Top Fetches the first set of rows using a continuation file.

Continue_Up Fetches the previous set of rows using a continuation file.

Copy Copies the data currently on the screen, allowing the user
to change it in order to enter a new row.

Copy for Update Changes the transaction mode to update, allowing the
user to change the data currently on the screen.

Copy for View Changes the transaction mode to view so the data is for
viewing purposes only.

Fetch Retrieves one or more rows for a single table view.

Force Close Aborts the current processing.

New Clears the screen so that the user can enter new data.

Refresh Reapplies the styles and classes to the screen.

Save Generates the statements necessary to update the data-
base with the new or edited information.

Select Retrieves one or more rows from the database for pos-
sible updates.

View Retrieves one or more rows from the database for view-
ing purposes only.

It is important to note that the NEW command only prepares the screen for data
entry. It does not insert information into the database. You must execute SAVE after
entering data on the screen to complete the insert. Similarly, you must also execute

Transaction Manager Commands

33121 Transaction Manager ComponentsChapter

SAVE for the database to reflect the updates to data retrieved with the SELECT
command.

Specifying Commands

Transaction manager commands are called using the function sm_tm_command.
Once you specify a command, the transaction manager applies the command to
each table view in the tree, unless you define table view parameters. To specify the
command for specific table views, you need to include a table view name and
specify the portion of the tree to be affected by the command.

For most transaction manager commands, a similar syntax is used:

sm_tm_command (” command-name [table-view [table-view-scope]]”)

command-name is one of the following transaction manager commands:

CLEAR CONTINUE_DOWN FETCH SAVE

CLOSE CONTINUE_TOP FORCE_CLOSE SELECT

CONTINUE CONTINUE_UP NEW VIEW

CONTINUE_BOTTOM

table-view, if specified, is one of the table views on the screen.

table-view-scope, an optional parameter, is generally one of the following values:

� TV_AND_BELOW which applies the command to the specified table view and all
server views below it in the tree. This is the default setting if no parameter is
supplied.

� BELOW_TV which applies the command to the server views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command to the specified server view only.

For example, the following invocation of the VIEW command without a table view
or scope parameter applies this command to each linked server view, starting with
the root table view:

sm_tm_command(”VIEW”)

Sample
Command
Specification

Transaction Manager Commands

332 JAM 7.0 Application Development Guide

To specify this command for the titles table only, you would need the table view
name and the parameter TV_ONLY which limits the command to the specified table
view.

sm_tm_command(”VIEW titles TV_ONLY”)

When a command is specified without a table view parameter, the command is
applied to all linked table views. This is called a full command and the variable
TM_FULL is set to 1. For example:

sm_tm_command(”VIEW”)

If a table view parameter is included, the command is only set to the specified
portion of the tree. This is called a partial command and TM_FULL is set to 0. For
example:

sm_tm_command(”VIEW titles TV_ONLY”)

Note that in the sample screen, the following two commands would be equivalent
since the second command with the table view parameter specifies the root table
view. However, TM_FULL is set to 1 for the first command and to 0 for the second
command.

sm_tm_command(”VIEW”)

sm_tm_command(”VIEW titles”)

You can query for the current value of TM_FULL using sm_tm_inquire .

There are commands which copy data on the screen so that it can then be edited,
viewed, or updated. These commands cannot be specified with table view and
scope parameters. The commands are:

sm_tm_command (”COPY”)

sm_tm_command (”COPY_FOR_UPDATE”)

sm_tm_command (”COPY_FOR_VIEW”)

Since START is called automatically on screen entry, you only need to specify this
command to create additional transaction manager transactions. Besides the
transaction name, the syntax can also contain a table view name and a scope
parameter.

sm_tm_command (”START transaction [table-view [table-view-scope]]”)

FINISH is called automatically on screen exit and closes the current transaction
manager transaction. If you have specified additional transactions with the START

Full and Partial
Commands

Specifying
COPY

Specifying
START

Specifying
FINISH

Transaction Manager Commands

33321 Transaction Manager ComponentsChapter

command, you should also close them using the FINISH command. The following
procedure closes two additional transactions and then changes back to the main
transaction which is closed on screen exit.

proc close_tran
vars main_tran
main_tran = sm_tm_pinquire(TM_TRAN_NAME)
call sm_tm_command(”CHANGE tran1”)
call sm_tm_command(”FINISH”)
call sm_tm_command(”CHANGE tran2”)
call sm_tm_command(”FINISH”)
call sm_tm_command(”CHANGE :main_tran”)
return

CHANGE allows you to change to an active transaction in the transaction manager.
The transaction must already exist from a call to the START command.

sm_tm_command (”CHANGE transaction-name”)

Executing Transaction Manager Commands

Each transaction manager command consists of a series of transaction events.
When a command is selected, the events for that command are issued for each
table view in the specified transaction tree.

The link properties determine the table view tree for the screen. To automatically
participate in command processing, a table view should have at least one link to
another table view in the transaction tree (or must be the only table view in the
tree). When a screen is opened, the transaction manager checks the transaction tree
to make sure that the root table view of the screen can be determined and that there
are no circular links.

If the transaction manager reports that it cannot determine the root table view,
check the Parent and Child properties of each link to see if the settings need to be
reversed. If those properties are correct, set the root table view manually in the
screen properties.

Specifying
CHANGE

Transaction Manager Commands

334 JAM 7.0 Application Development Guide

Figure 19. The DB Interactions screen presents a graphical picture of the transaction tree.

For the VIEW and SELECT commands that query information from the database, a
SQL SELECT statement is issued for each server view in the tree. For the SAVE
command, the SQL INSERT, UPDATE, or DELETE is issued for each table view.

On the sample screen, the events passed to the standard transaction models would
generate the following SQL when the VIEW command is selected:

� A SQL SELECT statement joining the titles table (the root table view) and
the pricecats table, which is connected to titles with a server link.

� A SQL SELECT statement joining the roles and actors tables.

A SQL join is done if the server view contains more than one table view. For the
table views in a server view, the Link Type property must be Server and the
Relations property must be specified as a join.

Even though you can define the portion of the table view tree in your command
specification, you must understand the events associated with each command to
further modify command processing. For more information about transaction
events, refer to page 337.

Attaching Commands to Push Buttons

The push buttons on our sample screen use sm_tm_command to query for video
information, to display information about the next video or to display additional
actors.

Making Push
Buttons

Transaction Manager Commands

33521 Transaction Manager ComponentsChapter

Figure 20. Push buttons on the sample screen which execute transaction manager commands.

The push button Select Titles... selects information about video titles using
the following command string (^ is the command syntax for push buttons):

^sm_tm_command(”SELECT”)

The push button More Titles... displays information about the next video title
using the following command string:

^sm_tm_command(”CONTINUE”)

The push button More Actors... fetches any additional actors and the role they
played and so it needs information from just the roles and actors tables. The
command string specifies the starting table view:

^sm_tm_command(”CONTINUE roles”)

In the sample screen, the Class property was also set for each push button.
Predefined classes already exist in JAM which can be applied to any menu item or
push button. These predefined classes define whether the items assigned this class
should be active or inactive in a transaction mode. If the class is marked as inactive
in a mode, the menu item or push button will greyed out automatically if a
command changes the screen to that mode.

For example, the Class property for the push button Select Titles... is
view_button . The Class property for the push buttons More Titles... and
More Actors... ,which display additional database information, are set to
continue_button . Since the continue_button class is set to inactive in initial
mode, the push buttons More Titles... and More Actors... are greyed out
when the screen is first opened.

Setting the
Class Property

Transaction Manager Commands

336 JAM 7.0 Application Development Guide

Table 25. The active/inactive style settings for each class and transaction mode that can be
applied to push buttons and menu items.

Class initial mode new mode view mode update_occ,
update mode

clear_button active active active active

close_button inactive active active active

continue_button inactive inactive active active

continue_view_button inactive inactive active inactive

copy_button active active active active

new_button active inactive active inactive

save_button inactive active inactive active

view_button active inactive active inactive

Errors

The following error conditions are associated with commands:

� The command is invalid in the current transaction mode. For more information
on the modes needed for each command, refer to page 346.

� The command syntax does not allow the specified parameter. For more
information on the syntax for each command, refer to Chapter 23.

� A transaction manager transaction is not in progress. Transactions are created
with the START command which is called automatically on screen entry.
However, screen entry calls the unnamed JPL procedure before it calls the
START command. For this reason, transaction manager commands cannot be
invoked in the unnamed procedure.

 For more information on controlling error processing in the transaction manager,
refer to page 371.

Transaction Events

33721 Transaction Manager ComponentsChapter

Transaction Events

As the transaction manager processes commands, it generates transaction events, in
response to each command. Each event is “sent” to the table views involved in the
transaction manager transaction. A transaction event can be thought of as a request
for a table view to do some of the processing required by a command. In fact, the
events generated by the transaction manager in response to commands are referred
to as requests in order to differentiate them from other types of transaction events.
Another important type of transaction event is a slice, which is described later.

The table view-specific processing is carried out by the transaction model
associated with the table view. It is the model that knows, for example, whether or
not to perform generation and execution of SQL in response to an event. Even
though the processing for each event is defined and carried out by the model, it is
important to note that some command processing, such as mode changes, occurs in
the transaction manager itself. This processing cannot be modified directly;
however, it can be affected by hook functions, by changes in the model and by
additional command processing.

Traversal

When no errors occur, a request is normally sent to all table views on the screen.
This allows each table view to participate in the fulfillment of each command. The
order in which the table views receive the request is known as the traversal order
of the request. Transaction manager builds a tree of table views, starting with the
root table view, using the links defined on the screen. Normally, transaction
manager traverses the tree, starting with the root, sending requests to each parent
table view before that table view’s children. However, link properties may be used
to change the order when inserting, updating, or deleting records. In addition, the
transaction manager commands that do table view traversal can accept an argument
that specifies the initial table view.

Consider the transaction command VIEW. The transaction manager generates the
requests TM_PRE_VIEW, TM_VIEW, and TM_POST_VIEW. First, TM_PRE_VIEW is
sent to the root table view, and then to each descendent of the root table view in
parent-first traversal order. The process is repeated with TM_VIEW and
TM_POST_VIEW. In each of the standard transaction models supplied with JAM,
SQL generation and execution takes place within processing of the TM_VIEW
request. TM_PRE_VIEW and TM_POST_VIEW give each table view a chance to
prepare prior to and after the SQL generation and execution. In each of the
standard models, nothing is done in TM_PRE_VIEW or TM_POST_VIEW. However,
they could be used, for example, to initiate and clear database locks that control
read consistency.

Transaction Events

338 JAM 7.0 Application Development Guide

Even though the processing may take place within one request, there may be
several transaction events that make up that request. When a request is subdivided
into further events, those events are called slices. Unlike requests, all the slices that
make up a request are processed on the same table view in succession. Then, the
request processing moves to the next table view. This is accomplished by using an
event stack.

Event Stack

As each request is sent to the transaction model, it is pushed onto the transaction
manager event stack and processed for each table view in the tree. The transaction
manager processes events on the stack until the stack is empty. This means that the
stacked events are processed before the next request, and therefore before the
transaction manager continues with table view traversal.

Events are popped from the stack and processed in the reverse order from the order
used to push them onto the stack. Thus, if events are to be processed in the order A,
B, C; they must be pushed onto the stack in the order C, B, A.

There are three library functions that deal with the event stack:

� sm_tm_push_model_event — Place an event on the stack.

� sm_tm_pop_model_event — Remove an event from the stack to prevent it
from occurring. sm_tm_pop_model_event returns the event number, or 0 if
the stack is empty.

� sm_tm_clear_model_events — Clear the event stack.

In the standard transaction models, the model is responsible for slicing requests.
Therefore, any hook functions can simply return TM_PROCEED to indicate that
processing should continue and can be unaware of the next event name. Note that
the hook function for an event is invoked before the transaction model invokes that
same event.

The following example appears in a similar form in all of the transaction models.
In this example, the requests TM_SELECT and TM_VIEW are further subdivided into
slices and those slices are pushed onto the event stack in reverse order.

Example

Transaction Events

33921 Transaction Manager ComponentsChapter

case TM_SELECT:
case TM_VIEW:

/* Put slices onto the stack only if it is the current
 * server view
 */

tv = sm_tm_pinquire(TM_TV_NAME);
sv = sm_tm_pinquire(TM_SV_NAME);
if (tv && sv && *sv && !strcmp(tv,sv))
{

sm_tm_push_model_event(TM_SEL_CHECK);
sm_tm_push_model_event(TM_SEL_BUILD_PERFORM);
sm_tm_push_model_event(TM_SEL_GEN);
if (!sel_cursor[0])
{

sm_tm_push_model_event(TM_GET_SEL_CURSOR);
}

}

For a list of the transaction events associated with each command and a description
of the processing performed by those events, refer to Chapter 23.

Adding Your Own Transaction Events

It is possible for you to define your own transaction events and push them onto the
stack as long as you specify them correctly and understand how the event stack
performs its processing.

All transaction events have an integer associated with them. For user supplied
events, the integer must be greater than 2047. The specification of the event can be
in a header file or in the transaction model.

The transaction model must also list the event in the case statements at the
beginning of the file. Otherwise, the model considers the event to be invalid. As
part of that operation, you may choose to write your own function to add to the
model. Be sure to track any changes you make to the transaction model since it
may change in upcoming JAM releases.

An example of adding transaction events appears in the transaction model for JDB.
Since referential integrity is not implemented in JDB, the transaction model checks
for duplicate rows when you add new data. This was accomplished by adding two
events to the JDB model and calling those events after an insert.

#define DUP_GEN 9901
#define DUP_BUILD_PERFORM 9902
.
.
.

Example

Transaction Events

340 JAM 7.0 Application Development Guide

case TM_INSERT_EXEC:
if (check_pkey)
{

sm_tm_push_model_event(TM_SEL_CHECK);
sm_tm_push_model_event(DUP_BUILD_PERFORM);
sm_tm_push_model_event(DUP_GEN);

}
retcode = nsel_exec(EXEC_INSERT);
break;

case DUP_GEN:
retcode = dup_gen();
break;

case DUP_BUILD_PERFORM:
retcode = dup_build_perform();
break;

Querying for Events

There are two library functions that deal with event names and numbers:

� sm_tm_event — Returns the event number associated with an event name.

� sm_tm_event_name — Returns the event name associated with an event
number.

Summary of Events in Transaction Manager Commands

The following tables lists the typical events found in the standard transaction
models for each command. They omit some specialized behavior found in a few
models. However, they include a broad range of error possibilities, although
encountering some of these errors might not be “typical.”

The headings in each table distinguish commands, requests, two levels of slicing,
and two levels of error checking. The three events that are typically generated as a
result of return values from other events, namely TM_TEST_ERROR,
TM_TEST_ONE_ROW and TM_NOTE_FAILURE, are abbreviated in the last two
columns by the first letter of the third words in their names,E, O and F respectively.
(The other error events are not “typically” generated.)

The requests are shown in chronological order within their commands. The slices
are shown in chronological order within their requests. The error checking events
are done after the events that give rise to them, and before any other event
processing.

Transaction Events

34121 Transaction Manager ComponentsChapter

For compactness, whenever it is possible, the lower level events are shown on the
same line as the higher level events that give rise to them. Thus, the entry for the
FETCH command compresses the information about 6 events into the following two
lines:

Command Request Slice Slice Error Error

FETCH TM_FETCH . . E F
. . TM_SEL_CHECK E F

� The FETCH command generates only one request, TM_FETCH.

� TM_FETCH in its own right can cause a TM_TEST_ERROR event to be generated
by the transaction manager (by returning TM_CHECK).

� The TM_TEST_ERROR event can cause a TM_NOTE_FAILURE event to
generated by transaction manager (by returning TM_FAILURE).

� TM_FETCH also has a slice that it generates, TM_SEL_CHECK.

� TM_SEL_CHECK can cause a TM_TEST_ERROR event to be generated by
transaction manager (by returning TM_CHECK).

� The TM_TEST_ERROR event can cause a TM_NOTE_FAILURE event to
generated by transaction manager (by returning TM_FAILURE).

It should also be noted that, for example, the line for the TM_SEL_BUILD_PER-
FORM event in the CONTINUE command has two events (E and F) in its first ERROR
column, because TM_SEL_BUILD_PERFORM can return TM_CHECK, in addition to
TM_FAILURE and TM_OK. This line is to be read as associating the second F with
the E, not with the first F. It is the TM_TEST_ERROR event from TM_CHECK that can
give rise to a further TM_NOTE_FAILURE event.

Note that there are differences between the stated behavior of TM_POST_SAVE1 in
the SAVE command and in the various other commands. For SAVE, there may have
been a variety of database operations that will not occur for the other commands in
the standard transaction models. This increases the complexity of the processing,
and the number of possible events.

For a description of the processing for each event, refer to Chapter 23.

Transaction Events

342 JAM 7.0 Application Development Guide

Command Request Slice Slice Error Error

CHANGE

CLEAR TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F
. TM_PRE_CLEAR
. TM_CLEAR
. TM_POST_CLEAR

CLOSE TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F

CONTINUE TM_FETCH . . E F
. . TM_SEL_CHECK. E F
. TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT
. TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

CONTINUE_BOTTOM TM_CONTINUE_BOTTOM E,F F
. . TM_SEL_CHECK. E F
. TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT
. TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

Figure 21. CHANGE, CLEAR, CLOSE, CONTINUE, and CONTINUE_BOTTOM commands.

Transaction Events

34321 Transaction Manager ComponentsChapter

Command Request Slice Slice Error Error

CONTINUE_DOWN TM_CONTINUE_DOWN . E,F F
. . TM_SEL_CHECK. E F
. TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT
. TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

CONTINUE_TOP TM_CONTINUE_TOP . E,F F
. . TM_SEL_CHECK. E F
. TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT
. TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

CONTINUE_UP TM_CONTINUE_UP. . E,F F
. . TM_SEL_CHECK. E F
. TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT
. TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

Figure 22. CONTINUE_DOWN, CONTINUE_TOP, and CONTINUE_UP commands.

Transaction Events

344 JAM 7.0 Application Development Guide

Command Request Slice Slice Error Error

COPY TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F
. TM_PRE_COPY
. TM_COPY
. TM_POST_COPY

COPY_FOR_UPDATE TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F
. TM_PRE_COPY_FOR_UPDATE
. TM_COPY_FOR_UPDATE
. TM_POST_COPY_FOR_UPDATE

COPY_FOR_VIEW TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F
. TM_PRE_COPY_FOR_VIEW
. TM_COPY_FOR_VIEW
. TM_POST_COPY_FOR_VIEW

FETCH TM_FETCH . . E F
. . TM_SEL_CHECK E F

FINISH TM_FINISH . . E F

FORCE_CLOSE TM_PRE_CLOSE
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F

NEW TM_PRE_CLOSE
. TM_CLOSE
. TM_QUERY
. TM_DISCARD
. TM_POST_CLOSE TM_POST_SAVE1
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2 F
. TM_PRE_NEW
. TM_NEW
. TM_POST_NEW

Figure 23. COPY, COPY_FOR_UPDATE, COPY_FOR_VIEW, FETCH, FORCE_CLOSE, and NEW
commands.

Transaction Events

34521 Transaction Manager ComponentsChapter

Command Request Slice Slice Error Error

REFRESH

SAVE TM_PRE_SAVE
. TM_SAVE
. TM_DELETE TM_GET_SAVE_CURSOR F
. . TM_DELETE_DECLARE E,F F
. . TM_DELETE_EXEC O,F F
. TM_UPDATE TM_GET_SAVE_CURSOR F
. . TM_UPDATE_DECLARE E,F F
. . TM_UPDATE_EXEC O,F F
. TM_INSERT TM_GET_SAVE_CURSOR F
. . TM_INSERT_DECLARE E,F F
. . TM_INSERT_EXEC O,F F
. TM_POST_SAVE TM_POST_SAVE1 E,F F
. . . TM_GIVE_UP_SAVE_CURSOR E F
. . . TM_POST_SAVE2 F
. . TM_POST_SAVE2

SELECT TM_PRE_SELECT
. TM_SELECT TM_GET_SEL_CURSOR F
. . TM_PREPARE_CONTINUE E F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_SELECT

START TM_START

VALIDATE_LINK TM_PRE_VAL_LINK
. TM_VAL_LINK TM_GET_SAVE_CURSOR F
. . TM_VAL_GEN F
. . TM_VAL_BUILD_PERFORM E,F F
. . TM_VAL_CHECK E F
. TM_POST_VAL_LINK

VIEW TM_PRE_VIEW
. TM_VIEW TM_GET_SEL_CURSOR F
. . TM_PREPARE_CONTINUE F
. . TM_SEL_GEN F
. . TM_SEL_BUILD_PERFORM E,F F
. . TM_SEL_CHECK E F
. TM_CLEAR
. TM_POST_VIEW

Figure 24. REFRESH, SAVE, SELECT, START, VALIDATE_LINK , and VIEW commands.

Transaction Modes

346 JAM 7.0 Application Development Guide

Transaction Modes

The transaction manager has a series of transaction modes which determine the
availability of each transaction command. For example, when you display the
default Transaction menu, some of the commands are greyed out, indicating that
they are not available because the current mode precludes using those commands.
The following table lists the modes set by the transaction manager and the
commands that initiate those modes:

Mode Description Command Selection

initial Indicates that no processing is in progress. START and CLOSE

new Allows new data to be entered. NEW and COPY

update Allows existing data to be modified. SELECT and
COPY_FOR_UPDATE

view Allows existing data to be displayed. VIEW and
COPY_FOR_VIEW

The table lists the commands that set the listed mode. The following commands do
not change the transaction mode but are only available in certain modes:

� CONTINUE (and its variants) and FETCH are only available in update or view
mode.

� SAVE is only available in new or update mode.

The CLEAR command, which clears the screen, is available in all modes and has no
effect on the mode setting.

When you execute a command, the transaction manager checks the current
transaction mode and either changes the mode or reports an error if the current
mode is invalid for the command. Each screen may have its own mode at any given
time.

In addition, when the mode changes, the appearance and protection of widgets can
also change depending on the style and class settings for the widget. For more
information on styles and classes, refer to page 349.

Command Availability
The following table lists whether a transaction command is valid in the specified
mode and whether full or partial commands are allowed. Full commands operate

Transaction Modes

34721 Transaction Manager ComponentsChapter

on the entire table view tree and do not include a table view or scope parameter.
For example:

^sm_tm_command (”VIEW”)

Partial commands have a table view parameter and only operate on a portion of the
tree:

^sm_tm_command (”VIEW roles”)

Note that the default Transaction menu may have some of these commands as
inactive in the current mode. The table is included to illustrate what range of
specification is possible for transaction manager commands.

Table 26 uses the following codes:

� Y – Valid for full or partial commands

� N – Invalid

� F – Valid for full commands; invalid for partial commands

� P – Valid for partial commands; invalid for full commands

Transaction Modes

348 JAM 7.0 Application Development Guide

Table 26. Listing of the transaction manager commands that are valid in each transaction
mode.

Transaction Command Initial Mode New Mode Update
Mode

View Mode

CHANGE Y Y Y Y

CLEAR Y Y Y Y

CLOSE Y Y Y Y

CONTINUE N P Y Y

CONTINUE_BOTTOM N P Y Y

CONTINUE_DOWN N P Y Y

CONTINUE_TOP N P Y Y

CONTINUE_UP N P Y Y

COPY F F F F

COPY_FOR_UPDATE F F F F

COPY_FOR_VIEW F F F F

FETCH N N Y Y

FINISH Y Y Y Y

FORCE_CLOSE Y Y Y Y

NEW F Y F F

REFRESH Y Y Y Y

SAVE N Y Y N

SELECT Y Y Y *

START Y Y Y Y

VIEW Y Y Y Y

* A partial SELECT in view mode is treated as a partial VIEW command; a full SELECT in view
mode is treated as a SELECT command.

Styles and Classes

34921 Transaction Manager ComponentsChapter

Styles and Classes

As you execute some of the transaction commands, you might notice changes in
the widgets’ behavior. Text fields may prevent input, menu choices may be
de-activated, push buttons may be activated, etc. These changes occur because
JAM has predefined style and class settings for each transaction mode.

The style and class settings give a consistent user interface to the application.
Widgets available for data entry can have the same focus and protection settings.
They can even have the same color. All of this can occur without having to write
any source code or set any properties in the screen editor.

The definitions for the styles and classes are kept in a file named styles.sty . For
an application, you can use the predefined styles and classes, edit the style and
classes settings to new values, or define your own styles and classes.

Classes
JAM’s predefined classes establish three categories for data in an application
screen:

� Data included for informational purposes only which should not be updated.

� Data that needs to be entered into the database.

� Data that once entered into the database should not be updated, such as
primary keys.

The names of these predefined classes are:

Transaction Class Description

non_updatable Widget is a member of a non-updatable table view.

updatable Widget is not part of the table’s primary key and is a mem-
ber of an updatable table view.

primary_key Widget is part of the table’s primary key and is a member
of an updatable table view.

In addition, there are other predefined classes to use with menu selections and push
buttons. For more information on these classes, refer to page 335.

Each widget has a Class property. Initially, the Class property for the text widgets
is set to “default,” and JAM determines the widget’s class from values in other

Styles and Classes

350 JAM 7.0 Application Development Guide

properties. Since the Class property for the widgets in our sample screen is set to
“default,” Figure 25 lists which class is applied to each widget.

Figure 25. The sample screen with the default class setting for each data widget.

In the sample screen, the classes are assigned as follows:

� title_id and actor_id are primary keys so the class for these two widgets
becomes primary_key .

� first_name , last_name and pricecat_dscr are members of table views
where the Updatable property is set to No so their class is non_updatable .

� The class for the remaining widgets is updatable .

However, you can change the class of any widget by editing the Class property.

The access to widgets in each of these classes needs to change as the transaction
mode changes. For example, you need to enter a value in a primary key field for an
insert, but you would want to prevent updates to this field. Changes in access are
determined by the style assigned to each transaction mode.

Specifying Styles
When you specify a style, you set a series of widget properties in any of the
following categories: focus protection, clearing protection, input protection,

Styles and Classes

35121 Transaction Manager ComponentsChapter

validation, keystroke filter, background color, and foreground color. The following
styles are predefined:

Style Property Settings

change allow focus, input, clearing, and validation

edit allow focus, input, clearing, and validation

show prevent focus, input, and clearing
allow validation

visit allow focus and validation
prevent input and clearing

In addition, there are other predefined styles to use with menu selections and push
buttons. For more information on these styles, refer to page 335.

Specifying Classes
When you specify a class, you assign a style to each of the transaction modes. For
JAM’s predefined classes, the styles assignments are listed in Table 27.

Table 27. Style settings for each of the default classes.

Transaction
Class

initial new view update
occ

update

non_updatable edit show visit show show

primary key edit edit visit visit edit

updatable edit edit visit change edit

For the predefined series of classes, the style settings accomplish the following:

Transaction Class Description

non_updatable For widgets in a non-updatable table view, data displayed
in the widget cannot be edited in any mode.

primary_key For widgets that are part of the table’s primary key in an
updatable table view, the data displayed in the widget can-
not be edited in update mode or in view mode.

updatable For widgets in an updatable table view that are not part of
the table’s primary key, the data can be edited except in
view mode.

Styles and Classes

352 JAM 7.0 Application Development Guide

Note that there are two styles corresponding to update mode. When data is fetched
in update mode to arrays, it is usually desirable to treat the occurrences with
fetched data differently than the occurrences without fetched data. For example,
JAM normally prevents input on a Primary Key widget when it contains data
fetched from the database. This prevents the user from changing the value of the
key. However, when there is no fetched data in an occurrence, JAM normally
allows input in the Primary Key widget to order to enter new records.

To enable a different behavior for occurrences with fetched data, you associate two
styles with update mode when you create a transaction class. One style is for
occurrences with fetched data (referred to in the styles editor as update_occ
mode), and one is for occurrences without fetched data (referred to in the styles
editor as update mode).

Before fetching data, JAM applies the style corresponding to update to the
occurrences of each widget. After fetching data into a widget, JAM applies the
update_occ style to each occurrence containing fetched data (even if what was
fetched was blank or null).

In addition, there are other predefined classes to use with menu selections and push
buttons. For more information on these classes, refer to page 335.

Let’s look at our sample screen when you execute the SELECT command. The
command, which retrieves rows from the database for possible edit, sets the
transaction mode to update. The title_id and actor_id widgets are protected,
preventing any edits to primary key fields. The pricecat_dscr , first_name ,
and last_name widgets are protected since they are in non-updatable table views.
If you try to edit the values in these fields, the screen editor beeps, reminding the
user that the fields are protected. The remaining fields are available to be updated.

You can edit the predefined styles or define new styles for your application if
needed. For more information on styles, refer to Chapter 18 in the Editors Guide.

Applying Styles
and Classes

Repository

35321 Transaction Manager ComponentsChapter

Repository

Since the repository is used as a basis for many transaction manager screens, a
description of how the repository can be used is included here.

Constructing the Database First
To build screens for use with the transaction manager, it is recommended that you
begin by designing and building the database. JYACC has a series of database
interfaces to JAM for many DBMS products. This includes products by several
DBMS vendors as well as JYACC’s prototyping database, JDB.

Once the database exists, use JAM to create a repository and import your database
tables into the repository. A separate repository screen is created for each table in
the database. This repository screen contains the following objects:

� Text widgets for each of the database columns.

� Labels for each widget corresponding to the database column names.

� A table view listing all the database columns as members of that table view.

� Links corresponding to the foreign key definitions.

If your database engine does not support primary and foreign key definitions, it is
recommended that you modify your repository screens to contain that information.
Enter the primary keys as part of the Database category in the table view
properties. For any foreign key definitions, you need to create a link and enter all
the link properties. For information on how to create links, refer to the Editors
Guide.

You may wish to enhance the repository in other ways. You may want to make the
link names more descriptive. You may want to create additional repository screens
to contain push buttons and other widgets used throughout the application.

Once the repository exists, you can start building your application screens by
copying objects from the repository screens. For the objects imported from the
database, the database column and table information needed by the transaction
manager already exists. However, you may wish to edit other widget properties.

Constructing the Screens First
Even though it is recommended that you start by constructing the database, it is not
mandatory. You can start the development process by building screen prototypes.

Table Views

354 JAM 7.0 Application Development Guide

Then, in order to use the transaction manager, you need to add the database
information later through inheritance or by editing the properties for the widgets,
table views, and links. Depending on the size of the application, this could be a
large task which would be avoided by starting with the database.

Constructing Screens with the Screen Wizard
When you create screens with the screen wizard, two entries are made in your
repository:

� smwizard

� smwizis

The transaction manager screen wizard is the easiest method for creating screens
that use the transaction manager. The screen wizard option is available when you
choose File⇒ New in the screen editor.

The screen wizard can make three different types of screens—Master, Master-De-
tail, and Master-Detail-Subdetail—as long as you have imported your database to a
repository. For more information, refer to Chapter 5 in the Editors Guide.

Table Views

A table view is a group of related widgets, generally belonging to the same
database table. If a widget is a member of a table view in the repository, JAM
automatically adds the widget to a table view of the same name in the destination.
If the table view does not exist, JAM creates it using the properties of the table
view in the repository. Thus, most table views are created automatically by the
database importer and then copied from the repository to application screens.

Even though the members of a table view generally belong to the same database
table, this is not always the case. If a widget contains a derived value, perhaps from
a database calculation or aggregate function, the widget can be added to a table
view even through it does not correspond to a database column.

An application screen can even have a blank table view without any members,
even though, by definition, a table view is a group of widgets. In fact, empty table
views are sometimes necessary for SQL generation.

Table View Properties
Table views have properties just like other screen objects. Some of the properties
are derived from the information in the database:

Table Views

35521 Transaction Manager ComponentsChapter

� The name of the table view, generally the same as the database table.

� The name of the database table corresponding to this table view.

� The primary key (or unique index) columns for the database table.

� The columns that are in the database table. (This list is for reference only.)

� The widgets used to sort the data fetched from the database.

Some of the properties determine what processing occurs for the table view in the
transaction manager:

� A setting to determine whether the database table can be updated. If you want
the widgets that are a part of this table view to display information, but not
allow anyone to update this information, set Updatable to No.

� The transaction hook function to be called for this table view. If specified, the
hook function is called for each transaction event.

� The transaction model to use for this table view. If blank, the transaction
manager uses the standard model.

� The Fetch Directions property which determines if non-sequential scrolling is
allowed for the table view.

To view a table view’s properties, select the table view on the DB Interactions
screen or the Widget List, and then switch focus to the Properties window.

Table Views in a Repository

A table view is created automatically when you import a database table into the
repository. This table view is named for the database table and is stored with the
repository entry. Then, when you copy a widget from this repository entry, JAM
again creates the table view, provided the widget belonged to a table view in the
repository.

Table Views in an Application Screen

When you copy a widget from your repository to an application screen, JAM
creates the table view for that widget, if it was a member of a table view in the
repository. If you copy additional widgets from the same repository entry, those
widgets will automatically be added to the correct table view in the application
screen.

Table Views

356 JAM 7.0 Application Development Guide

If you copy widgets from another repository entry, JAM creates a new table view,
corresponding to the database table for those widgets.

For a widget to participate in transaction manager processing and SQL generation,
the widget must be a member of a table view. All the members of a table view that
participate in SQL INSERT, UPDATE and DELETE statements must have the same
number of onscreen occurrences and the same number of maximum occurrences.

New widgets that you create on the screen can be added to the appropriate table
view. Generally, widgets that you add to table views are used to perform
calculations or to display information derived from the database table. For
information on how to add members to a table view, refer to Chapter 21 in the
Editors Guide.

If desired, a table view can be created manually. This is especially useful if you
want to execute a self join in the SQL generation. For more information on
creating table views, refer to Chapter 21 in the Editors Guide.

Setting the Root Table View
The root table view determines the base of the event processing occurring on the
current screen. For example, in a master-detail screen, the master database table
would be the root table view. In most cases, the transaction manager determines the
root table view automatically and displays it at the top of the DB Interactions
screen.

The transaction manager uses the Parent and Child properties of the links on a
screen to calculate the root table view. If it is unsuccessful, the screen displays the
error message “Root table view name not supplied or not valid.” If you get this
message, check the Parent and Child properties for the link. Often, these properties
need to be reversed for one or more links. If changing these properties does not
resolve the error, you can set the root table view manually in the screen properties
under Transaction.

Example
The sample screen contains four table views:

� actors

� pricecats

� roles

� titles

Links

35721 Transaction Manager ComponentsChapter

Figure 26. DB Interactions screen for the sample screen.

In the sample screen, you can enter information about a video title and assign the
actors in the database that appear in that video. The Updatable property was set to
No for the actors and pricecats table views since the actors and price
categories should already be entered in the database before using this screen.

Since the purpose of the sample screen is to provide information about each video
title, titles has been correctly designated as the root table view.

Links
A link defines the relationship between two table views. If a screen contains more
than one table view, you need to have links joining the various table views which
describes their relationship. Otherwise, the unlinked table views will not participate
in any command processing.

Note: Advanced users may choose to write hook functions or JPL procedures to
start transaction manager transactions for unlinked table views.

Creating Links
When you import a database table to the repository, JAM automatically creates
links corresponding to the foreign key definitions for that database table. Then,
when you create an application screen, you copy the applicable links along with the
other database widgets.

Links

358 JAM 7.0 Application Development Guide

If a table view is not linked to any other table view, you need to create the link
manually and enter the necessary properties. The parent and child table views must
be defined for the link. The columns joining the two table views must be specified
in the Relations property. In addition, the link type may need to be changed.

To help explain links, let’s look at the sample screen:

It contains four table views:

� titles

� roles

� actors

� pricecats

Every table view is linked to at least one other table view on the screen:

� titles+roles

� roles+actors

� titles+pricecats

Setting the Parent and Child Properties
In a link, one table view is designated as the parent and the other table view is
designated as the child. This designation helps determine the root table view and
the order of processing for the table views.

Links

35921 Transaction Manager ComponentsChapter

Generally, the database table associated with the Parent table view is different than
the one associated with the Child table view. One exception to this condition is for
SQL self-joins where the same database table is associated with both the Parent
and Child table views.

When you copy links from the repository, you might need to reverse the order of
the Parent and Child properties. For example, the table view to be designated the
root table view must be the Parent table view in any link in which it appears.

You cannot have a cycle appearing in the link specifications. For example, if
link1 declares the titles table to be the parent and the roles table to be the
child, link2 cannot have the roles table be the parent and titles be the child.
That constitutes a circular link. Remember, however, that links are specific to one
screen. On another screen, the relationship specified in link2 could exist.

You cannot have the same table view in both the Parent and Child properties. If
this occurs, the error message “Maximum depth exceeded” is displayed.

The DB Interactions screen also graphically illustrates the table view tree that the
transaction manager uses to perform its processing. When a screen is first
displayed, a tree is generated using the table views and links to determine the
server views. Each server view is either a single table view or a group of table
views connected with server links. In our sample screen, there are two server
views:

� titles (which includes pricecats)

� roles (which includes actors)

Setting the Link Type

There are two types of links—sequential and server. The link type determines how
SQL SELECT statements are performed. In the case of a sequential link, the
transaction manager executes a SELECT statement for each table view, generating
the statement for the parent table view first, followed by a statement for the child
table view. In the case of a server view, the transaction manager executes a single
SELECT statement including both the parent and child table views. Server links are
so named because the database server does the work, generally using a database
join. Sequential links are so named because the statements are done sequentially.

In our sample screen, the link type for the titles and roles table views is
sequential. One row in the titles table has the potential of having several
associated rows in the roles table. Therefore, the processing for the titles table
view is done first followed by the processing for the roles table view. The link
type for the roles and actors table views is server. The link type for the titles

restrictions

Tree Traversal

Links

360 JAM 7.0 Application Development Guide

and pricecats table views is also server. There is a one-to-one relationship
between actor_id in the roles table and actor_id in the actors table. The
database server can perform a join to obtain the necessary information.

Figure 27. DB Interactions screen for the sample screen.

You can view the table views and links for a screen using the DB Interactions
screen. On this screen, a ^ (caret) designates a sequential link, and a | (pipe)
designates a server link.

The link type only determines how SELECT statements are processed. Other link
properties determine the order of other SQL statements. Generally, for INSERT and
UPDATE statements, the statement for the parent table view is generated first. For
DELETE statements, the statement for the child table view is generated first

Setting the Relations Property
The Relations property specifies the columns or widgets that connect the two table
views. You can also specify whether the relationship is a join or a lookup.

Generally, the Relations Type for two table views is specified as Join. The column
or columns needed to construct a SQL join for the two table views are listed in the
Parent and Child columns.

The Relations Type can also be specified as Lookup. With this setting, a widget in
the child table view can supply a suggested value for a widget in the parent table

Using Join

Using Lookup

Links

36121 Transaction Manager ComponentsChapter

view. When you execute a validation link in the transaction manager, the widget in
the parent table is supplied with the suggested data. This suggested value can then
be edited, if necessary, in order to save the correct information to the database.
Note that the lookup relations are ignored when executing VIEW and SELECT.

The only restriction for the Lookup property is that the parent and the child table
views must relate to each other directly, without any table views between them.

Using Validation Links

The links that are defined for a screen can also be used to specify validation links.
When a validation link exists, you can enter a value in a widget in either new or
update mode. When you move to the next field, the transaction manager checks to
see if it exists in the database. If the value exists, it displays data for any widgets
belonging to the child table view named in the link. If the value does not exist, it
displays the error Invalid Entry .

It is very simple to specify a validation link for a widget. Create the desired link if
it does not exist. Then, in the widget’s Database properties, set the Validation Link
property to that link.

Validation link processing is only performed in new and update modes, as part of
the NEW, COPY, COPY_FOR_UPDATE, or SELECT commands, when you are entering
or updating data. Otherwise, the data in a validation link is displayed using a SQL
SELECT statement. Since the data in the child table view should already be entered
in the database, the child table view in a validation link should be non-updatable.

It should be noted that the validation link is processed after all other field level
validation. Therefore, JAM executes the field validation function and field level
JPL before it calls the validation link processing.

Also, if you are using a validation link in an array, you need to set the Link Type to
be Server. If the Link Type is Sequential, SQL generation assumes a one-to-many
(1:n) relationship instead of a one-to-one (1:1).

In the sample screen, there is a validation link to check the entry for the price
category. The Validation Link property on the pricecat widget specifies the link
between the titles and pricecats table views. When a new video title is
entered and a valid price category is entered in the pricecat widget, the
description of that category is displayed in the pricecat_dscr widget. Typically,
the child table view, in this case pricecats , is non-updatable.

Example

Links

362 JAM 7.0 Application Development Guide

Figure 28. The validation link on the pricecat widget checks for a valid entry and displays
information in the pricecat_dscr widget.

A foreign key in a table references the primary key columns of another table. For
example, the titles table contains the column pricecat ; the pricecat column
is a foreign key that references the pricecat column in the pricecats table. No
application should enter a value for pricecat in the titles table unless the
value already exists in the pricecats table.

A JAM validation link enforces a foreign key integrity constraint. When a JAM
link is to used to enforce a foreign key, the parent table view ”references” the child
table view. The parent table view will be updatable; the child table view must be
non–updatable.

A JAM validation link performs the following steps by default:

� Validates a foreign key integrity constraint for the current field in the
updatable table view.

� Selects columns from the referenced table to the non–updatable child table
view.

The first step verifies that the value in the field with the validation link is valid. To
test it, it generates and executes the following statement

dbms declare cursor cursor for select 1 from pricecats
where ((pricecats.pricecat == ::l0))

dbms with cursor cursor alias @null
dbms with cursor cursor execute using l0 = pricecat[1]
dbms close cursor cursor

If the value in the widget pricecat[1] exists, @dmrowcount is set, and
transaction manager knows the value is valid. Transaction manager deliberately
avoids selecting any data to the application. If transaction manager attempted to
fetch to the pricecat widget, the field would be cleared when no data was found.
By fetching to @null , transaction manager avoids overwriting the user’s data
entry.

Enforcing
Foreign Keys
with Validation
Links

Links

36321 Transaction Manager ComponentsChapter

If the first select is successful, transaction manager generates and executes a
second select to populate any fields in the pricecats table view:

dbms declare cursor for select pricecats.pricecat_dscr
from pricecats where ((pricecats.pricecat == ::l0))

dbms with cursor cursor alias pricecat_dscr
dbms with cursor cursor occur 1 max 1
dbms with cursor cursor execute using l0 = pricecat[1]

If the first select fails, JAM displays the error Invalid Entry .

A validation link may also perform the following optional step:

� Selects columns from the referenced table to fields in the updatable table view.

This allows the validation link to supply some suggested values for other fields in
the updatable table view.

For example, consider a change to the definition of the titles table:

create table titles (
title_id int not null,
title char(20),
genre_code char(5),
...
pricecat char(1),
preview_days int,
primary key (title_id),
foreign key (pricecat) references pricecats (pricecat));

That is, consider that the titles table contained an additional column pre-
view_days . A value for rental_days is already stored in the pricecats table
but the video store wishes to allow the store manager to alter the number of rental
days for very popular new titles without changing the title’s price category. The
store will use the preview_days value to override the default number of rental
days. When the store manager is entering a new title, the application will give the
manager an opportunity to supply a new value for the preview_days but will
fetch the current pricecats value as the suggested value. To support this, the
application must modify the Relations property for the link named in the validation
link from:

pricecat join pricecat

to

pricecat join pricecat
preview_days lookup rental_days

Now transaction manager will generate the following select statements to enforce
the foreign key:

Adding a
Lookup to a
Validation Link

Transaction Models

364 JAM 7.0 Application Development Guide

dbms declare cursor cursor for select pricecats.rental_days
from pricecats where ((pricecats.pricecat == ::l0))

dbms with cursor cursor alias preview_days
dbms with cursor cursor occur 1 max 1
dbms with cursor cursor execute using l0 = pricecat[1]
dbms close cursor cursor

Instead of fetching to @null , now the transaction manager selects the price
category’s rental days to the preview_days field in the updatable table view
titles . If it is successful, it continues with the select to populate the non_updat-
able table view pricecats :

dbms declare cursor for select pricecats.pricecat_dscr
from pricecats where ((pricecats.pricecat == ::l0))

dbms with cursor cursor alias pricecat_dscr
dbms with cursor cursor occur 1 max 1
dbms with cursor cursor execute using l0 = pricecat[1]

The store manager may choose to use the suggested value or may change the value
in the preview_days field to any other value. When the title information is saved,
the preview_days value is saved in the titles table. The pricecats table
remains unchanged.

The transaction manager will use the lookup relation only when performing a
validation link. It is ignored when the transaction manager executes a VIEW or
SELECT command.

Transaction Models
Even though the transaction commands available in the transaction manager are the
same for every database engine, the processing that occurs for the transaction
commands varies from engine to engine. For this reason, the transaction manager
puts the main processing for the transaction commands in the transaction model.

The transaction model is a program in C or JPL. JYACC distributes sample
transaction models for each database engine it supports. There is at least one
transaction model for each database engine; however, you can have different
models for the same engine depending on the processing needed by your
application.

Included in the name is an abbreviation which identifies the database engine. Some
of the transaction models include tmjdb1.c for JDB, tmora1.c for ORACLE,
tmsyb1.c for SYBASE, and tminf1.c for INFORMIX. These models are
referred to as the standard transaction models.

The transaction model performs the detail work for the transaction manager. The
transaction model can handle things that are application, engine or strategy
specific. This includes the following:

Transaction Models

36521 Transaction Manager ComponentsChapter

� Cursor management strategies.

� Locking strategies.

� Data fetching strategies.

� Database transaction strategies.

You can modify the transaction model that is distributed with JAM; however, the
transaction model is subject to change with each new release. You can also change
the model behavior by writing your own transaction hook functions, a much
simpler task than editing the model itself. If you do decide to modify the
transaction model, you should be familiar with how the database engine processes
database transactions, locking procedures and database cursors. For more
information on writing transaction hook functions, refer to Chapter 22.

By default, the transaction manager accesses the standard transaction model
developed for the specified engine. However, you can also set the transaction
model in the screen editor as part of the table view properties or the screen
properties.

Cursor Usage
A database cursor is a database object associated with a specific query or
operation. Since cursors can be expensive in terms of memory, the way database
cursors are used varies from engine to engine.

A JAM cursor may or may not correspond to a database cursor. With SYBASE,
declaring a new JAM cursor opens a SYBASE dbproc —which is an expensive
operation. Since declaring a JAM cursor is expensive in SYBASE, the transaction
model does not close the JAM cursor at the end of each request. It reuses the cursor
once it is declared and closes the JAM cursor when it closes the connection.
Transaction models for other database engines close the JAM cursor after
executing a statement.

Database Transaction Strategies
A database transaction is a series of steps that must be completed as a group. Once
all of the steps are completed, the transaction is committed (i.e., saved) to the
database. If all of the steps in a database transaction cannot be completed, the steps
are rolled back so that none of the steps are completed. This keeps the database in a
consistent state.

For example, in the videobiz database, checking out a video to a customer is a
database transaction. To complete this transaction, you must be able complete three

Before Image Processing

366 JAM 7.0 Application Development Guide

steps: enter the rental of the video in the rentals table, update the tapes table to
reflect the status of the video tape, and update the number of rentals in the
customers table.

As a general rule, database engines use one of two database transaction strategies.
One strategy uses BEGIN, COMMIT, and ROLLBACK commands to define a
transaction. The second strategy just uses the commands COMMIT and ROLLBACK to
define a transaction. Usually, engines using the second strategy also have access to
an AUTOCOMMIT mode which commits every statement as it is executed.

Since database engines have different methods of implementing database
transactions, the transaction model for a particular engine reflects those differ-
ences. Before editing the transaction model, you need to be familiar with the
behavior of the database engine you are using.

The volume of database transactions in your application might also affect the
processing contained in your transaction model. If you need to issue a COMMIT
command frequently, you might need to change the transaction model to do that
processing for you.

Since the transaction model is different for each engine, refer to the comments in
the model’s source code for a more complete description of the transaction model
behavior.

Before Image Processing

When you execute a transaction manager command that could modify data, such as
SELECT, NEW, COPY, or COPY_FOR_UPDATE, the transaction manager initializes
before image processing for all updatable table views. When before image
processing is active, the transaction manager keeps track of any changes to the data
displayed on the screen while keeping the previous value, the before image, in
memory. Then, when you execute the SAVE command, the transaction manager
translates any changes to the data into the SQL statements needed to update the
database. Before image is initialized using the function sm_bi_initialize .

Since the SAVE command generates different types of statements, depending on
whether it needs to insert, update or delete data, the transaction manager checks the

Hook Functions

36721 Transaction Manager ComponentsChapter

value of the variable TM_OCC_TYPE to see what kind of change was made to the
row or occurrence. The values of TM_OCC_TYPE are:

BI_DELETED The occurrence was deleted.

BI_INSERTED New data was entered.

BI_KEY_CHANGED Primary key was edited. The before image and the
current value of a key field are different.

BI_KEY_NULLED Primary key was changed to NULL.

BI_UPDATED Data was updated. The before image and the current
value of a non-key field are different.

BI_UNCHANGED No changes were made.

BI_UNDETERMINED Error occurred since change was undetermined.

If you choose not to save your changes to the database, the transaction manager
throws away the changes, but the previous value is not restored to the screen.

You can query for the current value of TM_OCC_TYPE using the library function
sm_tm_inquire . The standard transaction models use the library function
sm_bi_compare to query for the type of change made to a row or occurrence. The
values for TM_OCC_TYPE are defined in tmusubs.h .

Hook Functions

Transaction manager hook functions are available for changing the processing
associated with any transaction event. A transaction manager hook function is
passed one argument, the event name.

Hook functions are installed by entering the hook function name in the table view’s
Function property. You can have a hook function for each table view; however, for
database queries, the hook function must be specified in the first table view of a
server view.

The following return codes are available for transaction manager hook functions:

Hook Functions

368 JAM 7.0 Application Development Guide

Return Value Meaning
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑTM_OK

ÑÑThe event processing succeeded.

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑTM_FAILURE

ÑÑThe event processing failed.

ÑÑTM_PROCEED

ÑÑAfter completing the hook function, proceed as if
this function had never been called. In the case of a
transaction hook function, this means that the trans-
action model will be called.

ÑÑTM_CHECK

ÑÑTest to see if an error occurred. This is used in data-
base-based transaction models to check for SQL
execution errors.

ÑÑÑTM_CHECK_ONE_ROW

ÑÑÑIn to an error test, test to see that exactly one row
was affected.

ÑÑÑTM_CHECK_SOME_ROWS

ÑÑÑIn addition to an error test, test to see that one or
more rows were affected by the processing.

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑTM_UNSUPPORTED

ÑÑThe event was not recognized.

For more information about writing transaction hook functions, refer to page 384.

369

Customizing
Transaction Manager

The transaction manager allows you to quickly prototype application screens.
However, once the screens are built, you probably will want to modify the
transaction manager processing to better suit the needs of your application.

Some of these customizations are relatively simple. Since instructions are included
in other sections of the documentation, they are listed here only for reference.

� Adding your own menu bar.

� Specifying in a transaction manager command which portion of the table view
tree receives the command.

� Editing the table view’s Sort Widgets property to order the data fetched from
the database.

� Specifying with the Updatable property whether the information from a
database table can be changed.

� Editing the widget properties that control the SQL generation. Possible
changes include displaying values of aggregate functions on the screen and
differentiating which widgets participate in the various SQL statements and
WHERE clauses.

� Adding fields containing computed values to a table view.

2222

Controlling Database Locking

370 JAM 7.0 Application Development Guide

� Adding new styles and classes.

Some of the customizations are more difficult and are covered in the following
sections:

� Controlling database locking to allow for concurrent users.

� Controlling error message display.

� Reusing and redeclaring cursors in the transaction manager.

� Controlling the display and update of database information.

� Querying and setting transaction manager values using the property API.

� Writing hook functions to change SQL generation, control command
processing, and set widget properties at runtime.

Controlling Database Locking

Once information has been fetched from the database and it is time to update that
information, you need to make sure that the data has not been updated by another
user.

There are two basic strategies for dealing with this issue. One strategy uses the
database engine locking facilities to prevent other users from fetching and/or
modifying data. The other strategy, called optimistic locking, involves database
design and the creation of a version field in the database tables. The version field
can either be a specific data type provided by the engine, such as a timestamp, or it
can be a numeric data type that is incremented with every update.

Implementing Optimistic Locking
Optimistic locking is based on the assumption that users rarely need to edit the
same piece of data at the same time. Therefore, two or more users may access the
same information. Checks are performed when the database is updated, not when
the data is fetched.

In JAM, there are two basic methods for implementing optimistic locking. You can
designate a widget to be a version column and let JAM add that column to the
necessary statements, or you can designate a column to be added to the WHERE
clause in a SQL UPDATE or DELETE statement.

In the first method, the version column in the database table corresponds to a
widget having the Version Column property set to Yes and the C Type property set

Error Processing in the Transaction Manager

37122 Customizing Transaction ManagerChapter

to Int, Long Int, or Float. The value chosen for C Type property should match the
column’s data type. Once this occurs, during a SQL INSERT statement, the version
column is included both in the column list and the VALUES clause. The value is
automatically set to 1. For SQL UPDATE statements, the version column is
automatically incremented by 1 to a new value in the SET clause while the previous
value is included in the WHERE clause. For SQL DELETE statements, the version
column is automatically included in the WHERE clause. For both UPDATE and
DELETE statements, if the value in the WHERE clause matches the database value,
the database modification is performed.

Note that for the widget having the Version Column property set to Yes, the In
Delete Where and In Update Where properties must be set to No, and the Insert
Expression and Update Expression must be blank.

The other method uses a data type provided by the database, such as a timestamp.
For this method, set the In Delete Where and In Update Where properties to Yes
for the widget corresponding to the column. The value fetched to the widget is
added to the WHERE clause. If the value in the WHERE clause matches the database
value, the database modification is performed.

You should not set the In Delete Where or In Update Where properties to Yes on a
version column field. If Version Column is also set to Yes, the transaction manager
will report the error Version Column setting is incompatible with
the properties In Delete Where, In Update Where .

For examples using the Version Column, In Delete Where, and In Update Where
properties, refer to Chapter 18 in the Application Development Guide.

Implementing Engine Locking

The standard transaction models distributed with JAM do not implement any
pessimistic locking features; however, the PRE_SELECT and POST_SAVE events
could be edited to implement engine locking using dm_dbms to pass the necessary
commands to the database engine.

Error Processing in the Transaction Manager

A transaction manager command is composed of a series of transaction events. If
an error occurs while processing an event, the TM_STATUS variable is set to a value
other than zero. When the transaction manager completes all the event processing
for a command, it then displays an error message.

This section includes information about:

Error Processing in the Transaction Manager

372 JAM 7.0 Application Development Guide

� Setting the value of TM_STATUS.

� Error processing for transaction events.

� Setting error messages and error numbers in the transaction manager.

For information about the cause of transaction manager errors, refer to Chapter 24.
For information about how hook functions deal with errors, refer to page 384.

TM_STATUS Variable

You can test for the current value of TM_STATUS using the library function
sm_tm_inquire(TM_STATUS) .

The default processing by the transaction manager will set TM_STATUS to –1 if
there is an error, but you can define other non–zero values for errors if needed.

Generally, the transaction manager sets TM_STATUS to a non–zero value only if its
current value is zero. In this way, the value set by the first error is not overwritten
by errors in later events.

TM_STATUS can be set to return a certain value in all conditions or only to return
that value if its previous value is zero.

A model or hook function may set the return value unconditionally by calling:

sm_tm_iset(TM_STATUS, return_value)

However, the standard models set the TM_PROPOSE_STATUS parameter:

sm_tm_iset(TM_PROPOSE_STATUS, return_value)

This sets the TM_STATUS variable only if the previous value was zero. This
prevents a non-zero return value resulting from a previous error from being
overridden. The standard models also use this after they call the function dm_dbms
to execute SQL statements. This preserves non-zero values that may have been set
by a error handler (if some other non-zero value had not already been set in
TM_STATUS).

Event Processing after Errors

Most of the transaction manager commands are subdivided into three transaction
requests:

Testing the
Value of
TM_STATUS

Setting the
Value of
TM_STATUS

Processing for
Requests

Error Processing in the Transaction Manager

37322 Customizing Transaction ManagerChapter

� TM_PRE_command-name

� TM_command-name

� TM_POST_command-name

For example, the VIEW command is divided into three requests: TM_PRE_VIEW,
TM_VIEW, and TM_POST_VIEW.

Generally, an error does not prevent the processing of the PRE_ and POST_
requests, but will prevent processing of the “main” request. Even if an error occurs
in PRE_ or POST_ request processing, it does not interfere with table view
traversal. However, traversal for the “main” request ceases when an error is
encountered, and never even begins if an error is encountered in PRE_ processing.
Traversal for POST_ processing begins immediately after “main” processing
ceases.

Let’s look at the processing of the three requests associated with the VIEW
command: TM_PRE_VIEW, TM_VIEW, and TM_POST_VIEW. Normally, each table
view processes TM_PRE_VIEW. Next, each table view processes TM_VIEW. Then,
each table view processes TM_POST_VIEW. If an error is encountered during
TM_PRE_VIEW, then processing continues to the TM_POST_VIEW request, but no
TM_VIEW processing is done. In particular, this allows TM_POST_VIEW to clean up
actions taken by TM_PRE_VIEW. However, if an error is encountered during
TM_VIEW processing, the processing immediately switches to TM_POST_VIEW.

When an error occurs (setting TM_STATUS to a non-zero value), any transaction
events on the event stack continue to be processed. Since all the slices for a
request can be pushed onto the stack at the same time, processing for each slice
would occur even if there is an error.

If there are no events on the stack, then processing continues as if the original
event had failed. If desired, you can clear the event stack by calling
sm_tm_clear_model_events .

Controlling Error Messages
If the TM_STATUS variable is not zero when sm_tm_command completes its
processing of a command, the transaction manager displays an error message. The
content of the message indicates the first error that the transaction manager
encountered.

Even though this is the standard behavior for errors in the transaction manager, it
can be changed by setting the following variables:

� TM_EMSG_USED — Controls whether the error message is displayed.

Processing for
the Event Stack

Error Processing in the Transaction Manager

374 JAM 7.0 Application Development Guide

� TM_MSG_TEXT — Unconditionally sets the error message text.

� TM_PROPOSE_MSG_TEXT — Sets the error message text only if a message text
has not already been set.

� TM_MSG — Unconditionally sets the error message number.

� TM_PROPOSE_MSG — Sets the error number only if a previous error number
was not set.

You can set whether you want the transaction manager error message to be
displayed using:

sm_tm_iset(TM_EMSG_USED, flag)

If flag is zero, then sm_tm_command displays an error message. If flag is
non–zero, then sm_tm_command does not display an error message, even if an
error was encountered.

The most common use of this facility is to disable the transaction manager error
message in cases where the error message has already been reported to the user and
the transaction manager error message is merely a duplicate.

An example of this could be part of a database error handler as illustrated in the
following JPL procedures. The entry procedure is called on screen entry and
activates the error handler. The dberror procedure specifies the content of the
error handler and tests for a connection error. If a database connection does not
exit, the error handler displays the database driver error, but disables the duplicate
transaction manager error.

proc entry
DBMS ONERROR JPL dberror
return

proc dberror
if @dmretcode == DM_NO_CONNECT
{

call sm_tm_iset(TM_EMSG_USED, 1)
msg emsg ”JAM DB: ” @dmretcode ” ” @dmretmsg ”%N”\
”Engine Error: ” @dmengretcode ” ” @dmengretmsg}

else
msg emsg ”JAM DB Error: ” @dmretcode ” ” @dmretmsg ”%N”\
”Engine Error: ” @dmengretcode ” ” @dmengretmsg

You can specify the text of an error message using the following:

sm_tm_pset(TM_MSG_TEXT, text)

sm_tm_pset(TM_PROPOSE_MSG_TEXT, text)

Error Message
Display

Error Message
Content

Controlling Cursor Behavior

37522 Customizing Transaction ManagerChapter

Setting TM_MSG_TEXT specifies the content of the message in all conditions.
Setting TM_PROPOSE_MSG_TEXT specifies the content of the message only if a
message has not already been specified.

When an error occurs in a transaction event, the transaction manager always sets
TM_PROPOSE_MSG_TEXT which in turn sets TM_MSG_TEXT only if it is empty. It is
the value of TM_MSG_TEXT that gets displayed when sm_tm_command finishes.

The standard models also use this call after they call the function dm_dbms to
execute SQL statements. They thus preserve non-empty values that may have been
set by a error handler (if some other non-empty value had not already been set in
TM_MSG_TEXT).

To change the message displayed for a transaction manager error, you must set
these error message variables. The error message variables take precedence over
the error number variables.

If no message text has been set by a call to sm_tm_pset or by an error in the
transaction manager itself, error message display can be specified by calling:

sm_tm_iset(TM_MSG, msg_nbr)

sm_tm_iset(TM_PROPOSE_MSG, msg_nbr)

The msg_nbr parameter is a message number on the message file. TM_MSG is used
to set the message number in all conditions. TM_PROPOSE_MSG sets the message
number if no previous message number has been established. When
sm_tm_command finishes processing the command, the message corresponding to
the specified number is displayed.

The text of transaction manager error messages are located in the JAM message
file. The message numbers occur in two groups, one ranging in value from 53308
to 53013 and the other ranging in value from 53376 to 53423.

Suppressing Transaction Manager Error Messages
If you want to suppress the transaction manager messages, you can call the
sm_tm_iset(TM_EMSG_USED, flag) function in the standard transaction
model, in the database error handler, or in a hook function. If flag is set to a
non–zero value, the transaction manager does not display an error message.

Controlling Cursor Behavior
The transaction events generally declare and close any JAM cursors needed to
perform command processing. However, in some cases, special treatment of
cursors may be needed.

Error Message
Numbers

Controlling Cursor Behavior

376 JAM 7.0 Application Development Guide

Declaring Cursors
Generally, a DECLARE CURSOR statement is associated with a cursor name and a
SQL statement. However, in the transaction manager, other formats are available in
order to modify the processing for SELECT statements.

Instead of specifying the cursor name, you can use the variable @tm_sel_cursor .
When this variable is colon expanded, the name of the default SELECT cursor used
by the transaction manager is supplied. For example:

DBMS DECLARE :@tm_sel_cursor CURSOR FOR SELECT ...

Also, the DECLARE CURSOR statement can be issued without a SQL statement. If
you use this format, the DECLARE CURSOR statement merely adds the cursor to the
list of open cursors. Later, the cursor can be redeclared with the necessary SQL
statement. This allows you to take advantage of commands like DBMS CATQUERY
which maps a series of select expressions into one JAM target. The following
example uses this command:

proc catquery_hook (event)

if (event == TM_SEL_BUILD_PERFORM)
{

DBMS DECLARE :@tm_sel_cursor CURSOR
DBMS WITH CURSOR :@tm_sel_cursor CATQUERY
return TM_PROCEED

}
...

return TM_PROCEED

Using the Default Cursors
When you connect to a database engine, JAM’s database drivers automatically
create default cursors to use for SQL statements. Generally, one of the cursors is
used for database queries and performs the SQL SELECT statements. The other is
used for database modifications and performs any SQL UPDATE, INSERT and
DELETE statements.

Depending on the engine, creating a JAM cursor can be very expensive. In
SYBASE, for example, each JAM cursor is a dbproc . For this reason, the standard
transaction model for SYBASE takes the default cursor initiated in the database
driver for transaction manager processing, for its exclusive use. Also, the
transaction manager for SYBASE does not automatically close all the cursors until
a FINISH command is executed.

The flags controlling the use of cursors are defined in the transaction model. If you
wish to edit these flags, modify the model and recompile the executable.

Displaying Data

37722 Customizing Transaction ManagerChapter

Displaying Data
The transaction manager automatically generates the necessary SQL statements for
displaying and updating data based on the properties for each widget on the screen.
For a description of the widget properties that can be used to control SQL
generation, refer to Chapter 18.

Selecting Data
Two commands select data from the database: VIEW and SELECT. With the VIEW
command, the data is for display only; no updates are allowed. With the SELECT
command, updates are allowed.

The CONTINUE command in the transaction manager fetches the next set of data
for the screen. For the root table view, the next row, or set of rows, is fetched. For
any child table views connected by sequential links, additional SQL SELECT
statements are issued, using the values from the parent table view in the WHERE
clause. For each subsequent CONTINUE command, another set of data is fetched. If
there are no additional rows, nothing is done.

There are two ways to allow users to scroll forward and backward through a select
set. Usually you will create scrolling JAM widgets or a JAM grid for displaying
the data. In environments where memory is limited, you may fetch only a small
number of rows to the JAM may fetch only a small number of rows to the JAM
application and buffer the rest in a file on disk. This is known as using a
continuation file or a store file.

To use a continuation file with transaction manager, you need to edit the Fetch
Directions property for either the screen or the table view. If Fetch Directions is set
to Up/Down–all modes or Up/Down–view mode, the transaction manager fetches
the data to a continuation file. Then, issuing a CONTINUE_BACK command displays
the previous set of data, and issuing a CONTINUE_TOP command displays the first
set of data.

Note that JAM does not set backward scrolling via continuation files as the default
since JAM does not update the continuation file when the onscreen data is
changed. Scrolling backward shows the original, fetched data. If you set Fetch
Directions to be Up/Down in all modes, be aware that once a SAVE command is
issued, you need to re-execute SELECT in order to see any updated data.

The Fetch Directions property has four possible values:

� Down Only–all modes

� Up/Down–view mode

� Up/Down–all modes

� –default–

Scrolling
through the
Select Set

Setting the
Fetch Directions
Property

Displaying Data

378 JAM 7.0 Application Development Guide

If the value is Down Only–all modes , only the CONTINUE command is valid.
For the CONTINUE command, the transaction manager issues a TM_CONTINUE
request.

If the value is Up/Down–view mode , the following commands are available in
view mode in addition to CONTINUE:

� CONTINUE_BOTTOM

� CONTINUE_DOWN

� CONTINUE_TOP

� CONTINUE_UP

If the value is Up/Down–all modes , these commands are available in view and
update modes. Remember that if you set Fetch Directions to this value, you must
re-fetch the data after a SAVE command, so that the user can view the updates and
so that before-image processing can be re-initialized. JAM does not update the
continuation file. If a SAVE command is not executed and the user redisplays the
data with any of the CONTINUE_ commands, the original, un-modified data is
displayed, and the transaction manager has no mechanism to prevent the user from
updating the row a second time.

If the table view’s Fetch Directions property is specified as default , the screen’s
Fetch Directions property is consulted to see if the commands are valid. If the
screen’s Fetch Directions property is also specified as default , this is the
equivalent of Down only–all modes .

There are actually two methods for finding out the number of rows fetched. The
first method calls sm_tm_inquire(TM_OCC_COUNT) . This gives you the number
of rows fetched for the current table view. You can test for this in the
TM_SEL_CHECK event.

An alternate method is to write a hook function to test for the value of @dmrow-
count . Since the transaction manager uses DBMS commands in the database driver
to fetch and update data, you can test for the value of any of the global variables in
the database driver. However, since the @dm variables are cleared before each DBMS
command, you must copy this value to another location if you need it for further
processing.

For the transaction manager commands VIEW and SELECT, you can test for number
of rows fetched by writing a hook function for the TM_SEL_CHECK event.
Remember to set the hook function on the server view, with a server view being the
first table view in a group of table views joined by server links. Otherwise, the
hook function is not called.

Finding the
Number of Rows
Fetched

Displaying Data

37922 Customizing Transaction ManagerChapter

proc num_rows (event)
if event == TM_SEL_CHECK

{
vars retcode
retcode = @dmrowcount
}

return TM_PROCEED

The check for the value of @dmrowcount is performed in the TM_SEL_CHECK
event since this event occurs after the SQL statement has been generated in
TM_SEL_BUILD_PERFORM, but before the next DBMS command which resets the
variable.

Since the SELECT command fetches data for possible database updates, the
primary key fields for any updatable table views must be on the screen. If a
primary key column is not a member of the current table view, it must be a member
of one of the parent table views.

Also, all the widgets in a server view having the Use In Update property set to Yes
must have the same number of onscreen occurrences and the same number of
maximum occurrences. If not, the error message will say that the table view is not
synchronized.

Note that for primary key fields, if you edit the primary key value, the standard
transaction models issue a SQL DELETE statement for the old value followed by a
SQL INSERT statement for the new value.

For the SELECT command, each member of the table view must have the same
number of occurrences in order for automatic synchronization of the table view to
occur. When a table view is synchronized, you can easily insert and delete data in
each occurrence. For the VIEW command, members no not need the same number
of occurrences since the data is not updated.

To override this behavior for the SELECT command, you can set the Synchroniza-
tion property to No for any widget. This allows the SQL SELECT statement to be
executed. However, setting this property to No does not change how JAM fetches
data. For any SQL SELECT statement, the number of rows fetched equals the least
number of occurrences for any widget in the server view. If one widget in the table
view has three occurrences and another widget in the same table view has five
occurrences, JAM fetches three rows.

Remember that a Multiline Text widget with Word Wrap set to Yes is considered to
be a single occurrence so that only one row is fetched for the server view.

Deleting Data
After a CLEAR command clears data from the screen, the SAVE command in the
standard transaction models generates SQL DELETE statements in order to delete

Selecting Data
for Update

Synchronizing
the Table View

Using Traversal Properties

380 JAM 7.0 Application Development Guide

those rows from the database. If the widgets affected by the CLEAR command are
arrays or grids, a statement is issued for each onscreen occurrence. To clear a
single occurrence in an array or grid, press the DELL logical key or call the
sm_doccur function to delete the line of data. Of course, the table view must be
updatable in order for the statements to be generated.

Note that the standard transaction models will issue a SQL DELETE statement for
the row any time the primary key widgets have been cleared. This allows you, in
addition to the above methods, to use the property API to find the primary key
fields so that you can programmatically clear them in order to delete the data.

Using Traversal Properties

In JAM, it is the property API that is used to set property values at runtime. When
you are using the transaction manager, you can use the property API syntax to
query for information about objects in the current traversal tree, like server views.
These properties often have no equivalent in the screen editor’s Properties window.
Since they contain information about the traversal tree, they are called traversal
properties.

Note that a table view is defined to be a server view if:

� It is the root table view.

� A sequential link connects this table view to its parent, not a server link.

If you use a table view instead of a server view with server view properties, no
error is reported. Instead, it returns the information for just that table view. For
example, if you used a table view for num_svs_below (number of server views at
or below this server view), the value returned is 1 which is derived from the table
view itself.

The following categories and types of information are available:

� Fields

• tv — The table view containing the specified field.

• sv — The server view containing the specified field.

� Table views

• sv — The server view containing the specified table view.

• num_fields –The number of fields in the specified table view.

Using Traversal Properties

38122 Customizing Transaction ManagerChapter

• field — The field in the table view corresponding to the specified table
view and field number. Note that the table view field number specified
here does not correspond to the JAM field number.

• parent — The parent table view for the specified table view. Since the
property does not apply for the root table view, JAM returns an empty
string if the root table view is specified.

• parent_link —The link name where the specified table view is the
child. Since the property does not apply for the root table view, JAM
returns an empty string if the root table view is specified.

• num_children —The number of child table views for the specified table
view.

• child — The child table view corresponding to the specified table view
and number.

• num_key_columns — The number of primary key columns for the
specified table view. For the names of the primary keys, use the
primary_keys property.

Note that this information is only available for updatable table views after
a SELECT, NEW, COPY, or COPY_FOR_UPDATE command. Otherwise, you
get an error. If this is specified in a JPL procedure, you receive the Bad
field name, #, or subscript message.

The primary key columns may not be members of the table view itself.
They can appear in a parent or grandparent table view.

• key_field — The primary key field for the specified table view and
primary key number. This is only available for updatable table views after
a SELECT, NEW, COPY, or COPY_FOR_UPDATE command.

• key_constant — The primary key constant for the specified table view
and constant number. This is only available for updatable table views after
a SELECT, NEW, COPY, or COPY_FOR_UPDATE command.

• num_sorts — The number of entries in the Sort Widgets property of the
table view.

� Server views

• bi_status — The occurrence number of the server view. This property
is used in conjunction with the following flags: PV_BI_FETCHED,
PV_BI_EMPTY, and PV_BI_CHANGED.

PV_BI_FETCHED indicates that the before image of the row was fetched
from the database. PV_BI_EMPTY indicates that the before image of the

Using Traversal Properties

382 JAM 7.0 Application Development Guide

row is empty; therefore, the occurrence was inserted by the user.
PV_BI_CHANGED indicates that the before image of the row has been
edited.

• num_svs_below — The number of server views at and below the
specified server view. If a table view which is not a server view is
specified, the integer returned is for the specified table view and its direct
children.

• field_below — The field name in or below the specified server view
which corresponds to the specified field number.

• num_fields_below — The number of the fields in and below the
specified server view.

• num_sv_fields — The number of fields in a server view.

• num_tvs — The number of table views in a server view. If the table view
is not the first table view in the server view, the integer returned is for the
specified table view and its direct server view children.

• num_tvs_below — The number of table views at and below the
specified table view.

• source_occ — The occurrence in the parent table view that was valid
when the child table view was last fetched.

• sv_field — The field name for the specified server view and field
number.

• sv_below — The server view at or below the specified server view
which corresponds to the specified server view number.

• tv — The table view in a server view which corresponds to the specified
server view and table view number.

• tv_below — The table view at or below the specified table view which
corresponds to the specified table view number.

� Links

• num_relations — The number of entries in the Relations property of
the link.

Note that if a table view or link is not in the current traversal tree, no information is
available. If this is specified in a JPL procedure, you receive the Bad field
name, #, or subscript message.

Using Traversal Properties

38322 Customizing Transaction ManagerChapter

Finding Table View and Server Views

It is important to understand how the property API processes table views and
server views. Let’s look at a DB Interactions screen which graphically illustrates
table views and server views.

Figure 29. DB Interactions screen illustrating a series of table views and server views.

In this screen, there are three server views: rentals , users , and titles —
rentals because it is the root table view, users and titles because they have
sequential links to their parent table view.

The property num_svs_below is the number of server views at or below the
specified server view. If rentals is specified, the property API returns 3 servers
views: rentals , users and titles . However, if customers is specified, the
property API returns 1. Even though customers is part of a server view which has
server views below it, customers itself is not a server view and has no children
with sequential links. The 1 is returned for customers itself.

Examples

The example is a simple one. On field entry, it finds which table view the current
field is a member of and executes the transaction manager VIEW command
specifying that table view.

Writing Hook Functions

384 JAM 7.0 Application Development Guide

proc get_tv_query
if K_ENTRY
{

vars value1
value1 = name–>tv
call sm_tm_command(”VIEW :value1”)

}
return

Writing Hook Functions
A transaction hook function replaces part of the functionality provided by a
transaction model. You can write transaction hook functions to:

� Modify generated SQL.

� Supply hand-coded SQL or stored procedure calls to replace generated SQL.

� Modify or query properties using the property API.

� Change error handling.

In order to use a transaction hook function, you need to:

� Write a hook function which includes:

• The event whose functionality you want to modify or replace.

• The processing to be added to the event.

• The return code which tells the transaction manager how to proceed.

� Install the hook function by setting the table view’s Function property to the
name of the JPL procedure containing the function.

This section explains how to write a simple hook function, how to specify the
appropriate return code, how to modify processing for SQL SELECT statements,
and how to modify processing for SQL INSERTS, UPDATES and DELETES.

Writing a Simple Hook Function
One use of hook functions is to provide hand-coded SQL to replace generated
SQL. Here is a simple hook function that executes a SQL statement:

proc my_simple_hook (event)
if event == TM_VIEW || event == TM_SELECT
{

DBMS SQL \
SELECT title_id, name, genre_code

return TM_CHECK
}
return TM_PROCEED

Writing Hook Functions

38522 Customizing Transaction ManagerChapter

For this example, the Function property on the titles table view is set to
my_simple_hook . The hook function is called each time an event is processed for
this table view.

Since transaction hook functions are passed one argument, the transaction event,
you need to specify which events you want to modify. In the example, the SQL
statement replaces the processing for TM_VIEW or TM_SELECT events. For all other
events, the return code TM_PROCEED tells the transaction manager to go ahead and
call the transaction model, as if the hook function had not been called, so that the
transaction model’s processing is performed.

With the sample hook function, for TM_VIEW and TM_SELECT, the transaction
manager uses the database driver’s DBMS SQL command to retrieve data from
titles table. The return code TM_CHECK, which tells the transaction manager to
test for an error, is used so that the transaction manager can check for database
errors from the SELECT statement.

Specifying a Return Code

It is important to specify the correct return code at the end of your hook function
since it tells the transaction manager what to do next. The following table
summarizes the possible return values.

Return Value Meaning

ÑÑTM_FAILURE

ÑÑÑThe event processing failed.
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑTM_OK

ÑÑThe event processing succeeded.
ÑÑTM_PROCEED

ÑÑÑProceed to the next step. For hook functions, this is
to call the transaction model.

ÑÑTM_CHECK

ÑÑÑA test should be made to determine if an error
occurred.

ÑÑTM_CHECK_ONE_ROW

ÑÑÑA test should be made to determine if an error
occurred. Furthermore, the event processing
succeeded only if exactly one row was affected.

ÑÑTM_CHECK_SOME_ROWS

ÑÑÑThe transaction model should be consulted to deter-
mine if an error occurred. Furthermore, the event
processing succeeded only if one row or more rows
were affected.

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑTM_UNSUPPORTED

ÑÑThe event was not recognized.

Writing Hook Functions

386 JAM 7.0 Application Development Guide

Let’s look at what happens if the SQL statement has a return code of TM_PROCEED:

if event == TM_VIEW || event == TM_SELECT
{

DBMS SQL \
SELECT title_id, name, genre_code FROM titles

return TM_PROCEED
}

Since TM_PROCEED tells the transaction manager to go ahead and call the
transaction model, as if the hook function had not been called, the transaction
model’s processing would also be performed after the DBMS SQL statement was
executed. The processing for these requests in the standard transaction models
creates a select cursor, builds the structures to bring back data for all the members
of the table view whose Use In Select property is set to Yes, generates the SQL for
the SELECT statement, and then executes the statement.

Since the processing for all the events takes place quickly, you might not visually
notice that both sets of processing are performed unless you view the processing in
the debugger and break on each transaction manager event.

Note that if both a hook function and a transaction model is called for a single
event by using TM_PROCEED, the processing in the hook function takes place
before the processing in the model.

The return code in the sample statement could be set to TM_OK. TM_OK is used
when the processing is contained in itself, needs no processing performed by the
model, and needs no checking for database errors. Since the sample statement does
not need any processing in the model, this return code is one possibility.

if event == TM_VIEW || event == TM_SELECT
{

DBMS SQL \
SELECT title_id, name, genre_code FROM titles

return TM_OK
}

Even though the return code TM_OK does not check for database errors, the
standard transaction models set TM_STATUS to –1 whenever the database error
handler returns an error. If the sample statement caused the database error handler
to be invoked, for example by specifying an invalid column name, first the
database error handler returns an error. Then, the transaction manager returns an
error that a transaction model or hook function had an error.

if event == TM_VIEW || event == TM_SELECT
{

DBMS SQL \
SELECT title_id, title_name, genre_code FROM titles

return TM_OK
}

Specifying
TM_PROCEED

Specifying
TM_OK

Writing Hook Functions

38722 Customizing Transaction ManagerChapter

Three return codes are designed specifically for checking for errors from the
database engine and from JAM’s database drivers: TM_CHECK,
TM_CHECK_ONE_ROW, and TM_CHECK_SOME_ROWS. TM_CHECK is used to check for
any error from JAM’s database drivers. If one is found, the transaction manager
displays a message to that effect. The event TM_TEST_ERRORS is pushed onto the
stack for this return code. This is the best return code for the sample statement.

if event == TM_VIEW || event == TM_SELECT
{

DBMS SQL \
SELECT title_id, name, genre_code \
FROM titles WHERE title_id = :+title_id

return TM_CHECK

TM_CHECK_ONE_ROW pushes the TM_TEST_ONE_ROW event onto the stack. This
event checks the value of @dmrowcount , a global variable available in JAM’s
database drivers, to make sure its value is equal to 1. This return code is used
following SQL statements that modify the database to make sure that only one row
was affected.

TM_CHECK_SOME_ROWS pushes the TM_TEST_SOME_ROW event onto the stack.
This event checks the value of @dmrowcount to make sure its value is greater than
or equal to 1. This can be used to make sure that SQL SELECT statements return
rows from the database.

TM_FAILURE pushes the TM_NOTE_FAILURE event onto the event stack. The type
of error message displayed by the transaction manager depends on the value of
various transaction manager variables, like TM_STATUS or TM_EMSG_USED. For
more information about transaction manager error processing, refer to page 371.

In the previous section, the sample hook function, my_better_hook , replaced a
SQL SELECT statement. A slight variant is presented below. The difference is that
the variant does its own checking for errors. In this case, it is only checking the
@dmretcode , which would also be checked when TM_CHECK is returned. When
checking for errors from database access, it is always important to check
@dmretcode .

proc my_checking_hook(event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT actor_id, first_name, last_name \
FROM actors \
WHERE actor_id = ::actor_id

DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING actor_id
if @dmretcode != 0 return TM_FAILURE
return TM_OK

}
return TM_PROCEED

Checking for
Database Errors

Specifying
TM_FAILURE

Performing Error
Checking

Writing Hook Functions

388 JAM 7.0 Application Development Guide

The standard transaction models use TM_UNSUPPORTED to indicate that the event is
not supported in the transaction model. This is important to note in case you add
transaction events to the model. This return code pushes the TM_NOTE_UNSUP-
PORTED event onto the event stack.

Modifying Select Statement Processing

An earlier section described a simple hook function that replaced the automatically
generated SQL with a SQL SELECT statement. You could use that format when
replacing the entire TM_VIEW or TM_SELECT request; however, many times it
would be easier to just modify the generated SQL, not replace it. In order to do
this, you need to understand the commands, requests and slices that work together
to display data in the transaction manager.

Two transaction manager commands fetch data from the database: SELECT, which
allows you to update the selected data, and VIEW, which displays data for viewing
purposes only. Three requests that are generated for the VIEW command—
TM_PRE_VIEW, TM_VIEW, and TM_POST_VIEW. Similarly, three requests are
generated for the SELECT command—TM_PRE_SELECT, TM_SELECT, and
TM_POST_SELECT. In the standard models, even though all three requests are
generated for each command, the processing is performed in the main request for
each command. For the SELECT command, the main request is TM_SELECT, and
for VIEW, it is TM_VIEW.

The events are defined to encompass a small enough chunk of processing to make
replacement of a single event a fairly simple task. However, there is much more
processing associated with the TM_VIEW and TM_SELECT requests than is
suggested by my_simple_hook function in the previous section. The additional
processing is related to the fact that the model is designed for use with a database,
whereas the transaction manager is built with more general purposes in mind (e.g.
use with on-line transaction processing systems). To accommodate the needs of
specific transaction models, each model is allowed to generate additional events
while handling an event. A model’s ability to generate events is important, because
it allows the model designer to package functionality into small, re-usable chunks.
The standard models generate the following events in response to receipt of
TM_VIEW and TM_SELECT events. In a manner of speaking, the transaction model
“slices” the transaction manager request into “smaller” events. These events are
referred to as slices.

The transaction manager always generates one type of request per table view
traversal, and typically generates only a single request. For example, all table
views will receive a TM_PRE_VIEW event before any table view receives a
TM_VIEW event (unless errors are encountered). On the other hand, the slices
generated in response to a single request are always received by a table view before
the traversal process continues.

Unsupported
Events

Writing Hook Functions

38922 Customizing Transaction ManagerChapter

The following slices are generated for the TM_VIEW and TM_SELECT events:

� TM_GET_SEL_CURSOR — Allocate a JAM cursor for use by the SELECT
statement. Depending on the database, a JAM cursor may or may not
correspond to a database cursor.

� TM_PREPARE_CONTINUE — Checks the value of the Fetch Directions
property for the table view.

� TM_SEL_GEN — Generate data structures that will be used to build the SQL
statements needed to view the data. This slice and the next slice are separated
to enable “tweaking” of the SQL that is about to be built.

� TM_SEL_BUILD_PERFORM — Build and execute the SQL statements needed
to view the data. Use the JAM cursor allocated in the TM_GET_SEL_CURSOR
step.

� TM_SEL_CHECK — Check to determine whether to give up the JAM cursor
allocated in the TM_GET_SEL_CURSOR step. This cursor is given up here only
if the select set is exhausted.

Here is a another hook function that executes a SQL statement. It is better than the
my_simple_hook example because it uses the transaction model’s cursor
management and error reporting capabilities. The special variable @tm_sel_cur-
sor contains the name of the cursor to be used to execute the SQL SELECT
statement.

The hook function is called for the TM_SEL_BUILD_PERFORM event. This event
was chosen since it builds and executes the SQL statements. Since this slice is
generated for both the TM_SELECT and TM_VIEW requests, this hook function will
be called for either request.

proc my_better_hook (event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT title_id, name, genre_code \
FROM titles \
WHERE title_id = ::title_id

DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING title_id
return TM_CHECK

}
return TM_PROCEED

In some cases, you may want to check for errors by writing error checking code
within the hook function. In that case, you should return TM_FAILURE if an error is
encountered, and TM_OK if there is no error.

Replacing a
SQL SELECT
Statement

Writing Hook Functions

390 JAM 7.0 Application Development Guide

Note that my_better_hook permits the TM_SEL_GEN slice to be handled by the
transaction model, which (in the case of the standard models) will have JAM build
unneeded data structures. For slightly better performance, that slice can be skipped
as follows:

proc my_faster_hook (event)
if event == TM_SEL_BUILD_PERFORM
{

DBMS DECLARE :@tm_sel_cursor CURSOR FOR \
SELECT title_id, name, genre_code \
FROM titles \
WHERE title_id = ::title_id

DBMS WITH CURSOR :@tm_sel_cursor EXECUTE USING title_id
return TM_CHECK

}
if event == TM_SEL_GEN

return TM_OK
return TM_PROCEED

In addition to writing hook functions which replace the SQL SELECT statement,
you can also write hook functions to modify the automatic SQL generation. Use
one of the following C functions which are prototyped in tmusubs.h :

� dm_gen_change_execute_using — Modifies the bind parameters in the
EXECUTE USING statement.

� dm_gen_change_select_from — Modifies the table list in a SQL SELECT
statement.

� dm_gen_change_select_group_by — Modifies the GROUP BY clause in a
SQL SELECT statement.

� dm_gen_change_select_having — Modifies the HAVING clause in a SQL
SELECT statement.

� dm_gen_change_select_list — Modifies the select list in a SQL SELECT
statement.

� dm_gen_change_select_order_by — Modifies the ORDER BY clause in a
SQL SELECT statement.

� dm_gen_change_select_suffix — Adds the specified text to the end of a
SQL SELECT statement.

� dm_gen_change_select_where — Modifies the WHERE clause in a SQL
SELECT statement.

For more information on each function, refer to the Language Reference. A sample
hook function which adds a column and its corresponding table to the SELECT
statement is shown below.

Modifying SQL
Generation

Writing Hook Functions

39122 Customizing Transaction ManagerChapter

proc titles_hook (event)

vars retval(5)

if (event == TM_SEL_BUILD_PERFORM)
{
retval = dm_gen_change_select_list(””, ”name”, ”name”, \

DM_GEN_APPEND)

retval = dm_gen_change_select_from \
(””, ”titles”, ”titles”, DM_GEN_APPEND)

if (retval != 0)
return TM_FAILURE
}

return TM_PROCEED

Replacing Other SQL Statements
SQL INSERT, UPDATE, and DELETE statements are generated as part of the
processing of the transaction manager SAVE command, but only if data has been
modified or new data has been entered. In total, the transaction manager may
generate up to six types of requests when processing a SAVE command. They are
generated in the following order:

� TM_PRE_SAVE —Indicates that save processing has started.

� TM_SAVE — The standard models do nothing.

� TM_DELETE — Standard models generate SQL DELETE statements for records
to be deleted; one per modified record.

� TM_UPDATE — Standard models generate SQL UPDATE statements for records
to be updated; one per modified record. Note that changing the primary key is
implemented by deleting the record with the old value and inserting a record
with the new value.

� TM_INSERT — Standard models generate SQL INSERT statements for records
to be updated; one per entered record.

� TM_POST_SAVE — Standard models do commit and rollback processing here.
Rollback processing occurs if there was an error in the saving process.
Commit processing occurs only for full implementations of the SAVE
command, not partials.

The reason that TM_DELETE is generated before TM_UPDATE and TM_INSERT is to
prevent duplicate record errors. This is also why TM_UPDATE is generated before

Writing Hook Functions

392 JAM 7.0 Application Development Guide

TM_INSERT. Note also that a single cursor is used for all save operations. This
permits all save operations to be part of the same database transaction.

The standard models further slice the TM_DELETE, TM_UPDATE, and TM_INSERT
requests. Note that slicing is performed only if the slices are needed. For example,
when a row is being inserted, no slices are generated for the TM_DELETE request.
The three slices for each of these requests are:

� TM_GET_SAVE_CURSOR — This event is generated only if this is the first
TM_INSERT, TM_UPDATE, or TM_DELETE event for the SAVE command.
Allocate a cursor for use as the save cursor, and—if needed by the database—
begin a database transaction.

� TM_request_DECLARE — Generate the SQL statement and use the generated
statement in the declaration of the cursor. The processing of this slice avoids
cursor re-declaration if the proper SQL statement is already declared.

� TM_request_EXEC — Execute the declared cursor.

Supplying custom INSERT, UPDATE, and DELETE statements should normally be
done in the TM_request_DECLARE events, since they will occur only when a new
cursor must be declared (which can be a somewhat expensive operation, depending
on the database).

Here’s a hook function that provides custom SQL INSERT, UPDATE, and DELETE
statements:

proc my_save_hook(event)
if (event == TM_DELETE_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
DELETE FROM actors WHERE actor_id=::w_actor_id

return TM_CHECK
}
if (event == TM_UPDATE_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
UPDATE actors SET first_name=::s_first_name, \
last_name=::s_last_name \
WHERE actor_id=::w_actor_id

return TM_CHECK
}
if (event == TM_INSERT_DECLARE)
{

DBMS DECLARE :@tm_save_cursor CURSOR FOR \
INSERT INTO actors (actor_id, first_name, last_name) \
VALUES (::v_actor_id, ::v_first_name, ::v_last_name) \
WHERE actor_id=::w_actor_id

return TM_CHECK
}
return TM_PROCEED

Writing Hook Functions

39322 Customizing Transaction ManagerChapter

The variable @tm_save_cursor contains the name of the cursor to be used to
perform the save operations. During the handling of these events, the standard
models execute the cursor whose name is stored in @tm_save_cursor .

In the execution of the cursor, the bind variables (e.g. ::v_first_name) are
matched to actual data by assuming that the bind variable name is the column name
preceded by a prefix, as follows:ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑUse

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑPrefix

ÑÑExample

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑWHERE clause

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑw_

ÑÑw_actor_id

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑSET clause

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑs_

ÑÑs_actor_id

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑVALUES clause

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑv_

ÑÑv_actor_id

For information about how the bind variables are used in SQL generation, refer to
Chapter 18.

395

 Transaction Manager
Commands

This chapter describes the sm_tm_command function and the transaction
commands that can be called using this function. The section for each command
contains the following information:

� Syntax — Lists the command and its parameters.

� Description — Gives an explanation of the command.

� Sequence — Lists other transaction manager commands that may be needed
before or after this command.

� Requests — Lists the transaction requests and slices that can be generated with
a command. This information is useful when writing a transaction hook
function to change the processing in a request or when modifying the
transaction model. For information on writing transaction hook functions,
refer to page 384.

2323

396 JAM 7.0 Application Development Guide

Some requests refer to the following transaction attributes:

TM_FULL Indicator of whether it is a full (1) or
partial (0) command.

TM_OCC Occurrence number being processed.

TM_OCC_COUNT The number of occurrences in the table
view.

TM_STATUS Error indicator.

TM_VALUE General purpose integer.

Use the library functions sm_tm_inquire , sm_tm_pinquire , or sm_tm_pcopy
to test the value of transaction attributes. Use the library functions sm_tm_iset
and sm_tm_pset to set transaction attributes. All of these library functions are
described in Chapter 6 of the Language Reference.

sm_tm_command

39723 Transaction Manager CommandsChapter

sm_tm_command
Executes a transaction command

#include <tmusubs.h>

int sm_tm_command (cmd_string);

Contains one of the following transaction commands and its associated parameters:

CHANGE CONTINUE_DOWN COPY_FOR_VIEW REFRESH

CLEAR CONTINUE_TOP FETCH SAVE

CLOSE CONTINUE_UP FINISH SELECT

CONTINUE COPY FORCE_CLOSE START

CONTINUE_BOTTOM COPY_FOR_UPDATE NEW VIEW

The parameters may include a table view name and/or command scope. Refer to
the following sections in this chapter for each command’s syntax.

• STATUS of the current transaction.

sm_tm_command executes the specified transaction manager command.

When specifying a command, the table view name is case sensitive; however, the
command name and the optional parameters following the table view name are not
case sensitive.

By definition, a command is in progress from the moment sm_tm_command is
called until the moment it returns. As it processes most commands, sm_tm_com-
mand invokes transaction hook functions and transaction models. These, in turn,
should not invoke transaction manager commands, because the transaction
manager cannot process its commands recursively. This implies that they should
not close the active screen (which triggers a FINISH command), or cause any other
screen to be displayed that contains table views (which triggers a CHANGE
command).

After recognizing a transaction command, the transaction manager either sets the
transaction mode or checks the transaction mode to see if the specified command is
available with the current mode. If the command is not supported in the current

cmd_string

Returns

Description

Transaction Modes

sm_tm_command

398 JAM 7.0 Application Development Guide

mode, or if the command is not recognized, then the transaction manager displays
an error message that the mode does not permit the specified command. It also sets
the value of TM_STATUS to –1, which causes sm_tm_command to return a value of
–1. For more information on command availability in transaction modes, refer to
page 346.

Most commands traverse the table views in a particular order to issue requests to
transaction models and hook functions. The most common order is referred to as
table/server view order. A server view is defined as:

� A single table view having no server links to other table views.

� A group of table views connected by server links.

Tree traversal in table/server view order begins at the root table view or at the
specified table view. The traversal covers all table views within the server view,
and then moves on to the next server view. The Parent and Child properties for
each link help determine the traversal order. The tree traversal reaches a parent
table view before its child, but there may be intervening table views (in the same
and different server views).

A transaction manager transaction must be in progress in order to call commands.
Transactions are created with the START command which is called automatically
on screen entry. However, the JAM events that occur on screen entry call the
unnamed JPL procedure before calling the START command. For this reason,
transaction manager commands cannot be invoked in the unnamed procedure.

int sm_tm_command (”SELECT titles BELOW_TV”);

Errors in the transaction manager set TM_STATUS to –1.

In addition, there are return values for transaction models or transaction hook
functions that set the value of TM_STATUS. The following table lists the return
codes, the events that get generated for each return code, and the processing that
occurs for the event.

Tree Traversal

Restriction

Example

Errors

sm_tm_command

39923 Transaction Manager CommandsChapter

Table 28. Return values for transaction hook functions and transaction models.

Return Code Event Processing

TM_OK None Do not invoke the transaction
model.

TM_PROCEED None Invoke the transaction model.

TM_FAILURE TM_NOTE_FAILURE Call sm_tm_failure_message .

TM_UNSUPPORTED TM_NOTE_UNSUPPORTED Call sm_tm_failure_message .

TM_CHECK TM_TEST_ERROR Call sm_tm_dbi_checker .

TM_CHECK_ONE_ROW TM_TEST_ONE_ROW Call sm_tm_dbi_checker .

TM_CHECK_SOME_ROWS TM_TEST_SOME_ROWS Call sm_tm_dbi_checker .

Once you select a transaction command, the transaction manager generates the
transaction events defined for that command. These events are defined to perform
the processing needed for the command. The major events for each command are
called requests. Some requests are further subdivided into more events, called
slices, by transaction models or user hook functions.

The transaction manager has an event stack, onto which the transaction events are
pushed. As the events are processed, they are popped from the stack. For more
information on the event stack, refer to page 337.

The following table lists all the transaction manager events. A description of the
general processing performed by each request or slice is part of the documentation
for a command in which it is used. To see the processing done for a particular
database engine, refer to the transaction model for that engine. For a summary list
of the commands, requests, and slices, refer to page 340.

Table 29. List of transaction events available in the transaction manager. For each request
or slice, the command where they are documented is also listed.

Event Command

TM_CLEAR CLEAR

TM_CLOSE CLOSE

TM_CONTINUE_BOTTOM CONTINUE_BOTTOM

Requests

sm_tm_command

400 JAM 7.0 Application Development Guide

Event Command

TM_CONTINUE_DOWN CONTINUE_DOWN

TM_CONTINUE_TOP CONTINUE_TOP

TM_CONTINUE_UP CONTINUE_UP

TM_COPY COPY

TM_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_COPY_FOR_VIEW COPY_FOR_VIEW

TM_DELETE SAVE

TM_DELETE_DECLARE SAVE

TM_DELETE_EXEC SAVE

TM_DISCARD CLOSE

TM_FETCH FETCH

TM_FINISH FINISH

TM_GET_SAVE_CURSOR SAVE

TM_GET_SEL_CURSOR SELECT

TM_GIVE_UP_SAVE_CURSOR SAVE

TM_INSERT SAVE

TM_INSERT_DECLARE SAVE

TM_INSERT_EXEC SAVE

TM_NEW NEW

TM_NOTE_FAILURE Part of error processing

TM_NOTE_UNSUPPORTED Part of error processing

TM_POST_CLEAR CLEAR

TM_POST_CLOSE CLOSE

TM_POST_COPY COPY

TM_POST_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_POST_COPY_FOR_VIEW COPY_FOR_VIEW

TM_POST_NEW NEW

sm_tm_command

40123 Transaction Manager CommandsChapter

Event Command

TM_POST_SAVE SAVE

TM_POST_SAVE1 SAVE

TM_POST_SAVE2 SAVE

TM_POST_SELECT SELECT

TM_POST_VAL_LINK Part of validation link processing

TM_POST_VIEW VIEW

TM_PRE_CLEAR CLEAR

TM_PRE_CLOSE CLOSE

TM_PRE_COPY COPY

TM_PRE_COPY_FOR_UPDATE COPY_FOR_UPDATE

TM_PRE_COPY_FOR_VIEW COPY_FOR_VIEW

TM_PRE_NEW NEW

TM_PRE_SAVE SAVE

TM_PRE_SELECT SELECT

TM_PRE_VAL_LINK Part of validation link processing

TM_PRE_VIEW VIEW

TM_QUERY CLOSE

TM_SAVE SAVE

TM_SEL_BUILD_PERFORM SELECT

TM_SEL_CHECK FETCH

TM_SEL_GEN SELECT

TM_SELECT SELECT

TM_START START

TM_TEST_ERROR Part of error processing

TM_TEST_ONE_ROW Part of error processing

TM_TEST_SOME_ROWS Part of error processing

TM_UPDATE SAVE

sm_tm_command

402 JAM 7.0 Application Development Guide

Event Command

TM_UPDATE_DECLARE SAVE

TM_UPDATE_EXEC SAVE

TM_VAL_BUILD_PERFORM Part of validation link processing

TM_VAL_CHECK Part of validation link processing

TM_VAL_GEN Part of validation link processing

TM_VAL_LINK Part of validation link processing

TM_VIEW VIEW

CHANGE

40323 Transaction Manager CommandsChapter

CHANGE
Switches to another transaction

int sm_tm_command (”CHANGE transaction-name”);

The name of a valid transaction manager transaction.

CHANGE switches to another transaction, making it the current transaction. To use
this command, you must specify the transaction name. If the transaction does not
exist, the previous transaction remains active. In cases where you move between
two screens, the command is automatically issued as part of JAM’s screen proces-
sing.

For the current transaction name, call sm_tm_pinquire(TM_TRAN_NAME) .

To specify a new transaction, use the START command.

There are no requests generated by the CHANGE command.

For an example which also uses the START command, refer to page 455.

transaction-name

Description

Requests

Example

CLEAR

404 JAM 7.0 Application Development Guide

CLEAR
Clears data in widgets

int sm_tm_command (”CLEAR [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CLEAR clears the data displayed on the screen for any widget belonging to a valid
table view. CLEAR has two major uses:

� Clear onscreen data so that you can enter selection criteria for a subsequent
VIEW or SELECT.

� Clear onscreen data so that SAVE processing will delete the database rows
represented.

table-view-name

table-view-scope

Description

CLEAR

40523 Transaction Manager CommandsChapter

In order to delete rows from the database, the table view must be updatable. If the
table view is non-updatable, the data is cleared from the screen, but SQL DELETE
statements are not issued.

The CLEAR command does not change the transaction mode.

Push buttons and menu selections for the CLEAR command may choose to set the
Class property to clear_button . By default, clear_button is active in all
transaction modes.

To delete rows, CLEAR must be followed by the SAVE command.

To perform a query-by-example, execute CLEAR before entering a value for the
SELECT or VIEW commands.

The following requests can be generated by the CLEAR command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

Table 30. Main transaction manager requests for the CLEAR command.

Request Traversal Typical Processing

TM_PRE_CLEAR By table/server view from
the specified table view

Do nothing

TM_CLEAR By table/server view from
the specified table view

Do nothing (sm_tm_clear is
called for the table view by the
transaction manager after this
request)

TM_POST_CLEAR By table/server view from
the specified table view

Do nothing

Sequence

Requests

CLOSE

406 JAM 7.0 Application Development Guide

CLOSE
Closes the current database transaction, allowing you to discard or save your changes

int sm_tm_command (”CLOSE [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

If you have made changes in the table views on which CLOSE operates after a
SELECT, NEW, COPY, or COPY_FOR_UPDATE command, CLOSE displays a dialogue
box which allows you to discard any changes entered. If you press OK, the changes
are discarded. If you press Cancel , you will be returned to the screen so you can
save your changes.

CLOSE sets the transaction mode to initial unless a table view is specified. In
the default styles file, the style assigned to initial mode clears any protections on
the widgets.

table-view-name

table-view-scope

Description

CLOSE

40723 Transaction Manager CommandsChapter

Push buttons and menu selections for the CLOSE command may choose to set the
Class property to close_button . By default, close_button is inactive in initial
mode but active in all other modes.

This command is useful after SELECT, NEW, COPY, or COPY_FOR_UPDATE in order
to discard your changes.

Table 31. Transaction manager requests for the CLOSE command if changes have been made
to the screen.

Request Traversal Typical Processing

TM_PRE_CLOSE By table/server view from
the specified table view

Note that CLOSE or SAVE
processing is beginning.
(Processing identical for
TM_PRE_SAVE)

TM_CLOSE By table/server view from
the specified table view.
Traversal ends if TM_VALUE
is set to TM_DIS-
CARD_ACTION or
TM_EXIT_ACTION.

Appropriate responses are
those listed for TM_QUERY
below, but typical proces-
sing is to do nothing.

TM_QUERY By table/server view from
the specified table view, but
restricted to table views, if
any, in which there has been
a change that would entail a
SAVE command. Traversal
ends if TM_VALUE is set to
TM_DISCARD_ACTION or
TM_EXIT_ACTION

A message is chosen accord-
ing to the value of
TM_FULL. If 1, the displayed
message is for the complete
table view tree. If 0, the
message is for a portion of
the tree.

sm_message_box , which
displays the message, gives
a choice of OK and CANCEL.
TM_DISCARD_ACTION and
TM_EXIT_ACTION are the
corresponding values passed
back to TM_VALUE.

Sequence

Requests

CLOSE

408 JAM 7.0 Application Development Guide

Request Typical ProcessingTraversal

TM_DISCARD By table/server view from
the specified table view

Set a discard flag, consulted
by TM_POST_SAVE1

TM_POST_CLOSE By table/server view from
the specified table view

Slices: TM_POST_CLOSE,
TM_POST_SAVE1,
TM_POST_SAVE2. These
slices are described under
the SAVE command, but no
save cursor will exist.

The TM_CLOSE and TM_QUERY requests have four possible return values:
TM_NO_ACTION, TM_DISCARD_ACTION, TM_SAVE_ACTION, and
TM_EXIT_ACTION. The standard transaction models use two of these return
values:

� TM_DISCARD_ACTION, which discards the changes to the data

� TM_EXIT_ACTION, which returns you to the screen in order to choose the
SAVE command or make additional changes.

If TM_SAVE_ACTION is used as a return value, all the requests associated with the
SAVE command (except TM_PRE_SAVE and TM_POST_SAVE) are completed, but
this processing is not used in the standard models.

Table 32. Slice processing for the CLOSE command.

Slices Typical Processing

TM_POST_CLOSE Processing is identical to that of TM_POST_SAVE
described under SAVE.

TM_POST_SAVE1 Described under SAVE, but no save cursor will
exist

TM_POST_SAVE2 Described under SAVE

CONTINUE

40923 Transaction Manager CommandsChapter

CONTINUE
Fetches the next set of information from the database

int sm_tm_command (”CONTINUE [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CONTINUE fetches the next set of information from the database. If there are no
additional rows, this command has no effect.

CONTINUE does not set the transaction mode but requires view or update mode.
A partial CONTINUE command is also permitted in new mode.

Push buttons and menu selections for the CONTINUE command may choose to set
the Class property to continue_button . By default, continue_button is
active in view and update modes.

table-view-name

table-view-scope

Description

CONTINUE

410 JAM 7.0 Application Development Guide

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE for the specified table view and any table views linked to it via server
links. This displays the next set of rows for that server view. Then SELECT or VIEW
processing is done for any additional child table views.

If your screen has multiple table views and you want to fetch data for only one
table view, it is suggested that you use FETCH instead of CONTINUE.

If the setting of the Fetch Directions property, as discussed in the CONTINUE_DOWN
command, permits the CONTINUE_DOWN command to be executed, the data
displayed by this command for the specified server view may come from a
continuation file. The warnings for CONTINUE_DOWN then apply.

Use CONTINUE after SELECT or VIEW which generate a database query and display
the first set of query results.

The following requests can be generated by the CONTINUE command to ascertain
whether the changes from the previous command have been saved and, if desired,
to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated:

� TM_FETCH (described under FETCH)

� TM_PRE_SELECT (described under SELECT)

� TM_SELECT (described under SELECT)

� TM_POST_SELECT (described under SELECT)

� TM_PRE_VIEW (described under VIEW)

� TM_VIEW (described under VIEW)

warning about
continuation files

Sequence

Requests

CONTINUE

41123 Transaction Manager CommandsChapter

� TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR
requests are generated for all subordinate table views, but not for table views at the
same level of the tree. TM_CLEAR requests are described under CLEAR.

CONTINUE_BOTTOM

412 JAM 7.0 Application Development Guide

CONTINUE_BOTTOM
Fetches the last set of rows from the file

int sm_tm_command (”CONTINUE_BOTTOM [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CONTINUE_BOTTOM fetches the last set of rows from the file. The availability of
this command is dependent on the setting of the Fetch Directions property for the
server view or screen. If the Fetch Directions property is set to Up/Down–all
modes, this command is available in update or view mode. If the Fetch Direc-
tions property is set to Up/Down–view mode , this command is available only in
view mode. Otherwise, an error is generated. For more information on setting the
Fetch Directions property, refer to page 377.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_BOTTOM for the specified table view and any table views linked to it

table-view-name

table-view-scope

Description

CONTINUE_BOTTOM

41323 Transaction Manager CommandsChapter

via server links. This displays the last set of rows for that server view. Then
SELECT or VIEW processing is done for any additional child table views.

You should be aware that the data displayed with this command is from a
continuation file. It is not re-fetched from the database. Therefore, any updates
made to the data in this server view either by you, or by another user, are not
displayed. In order to display those updates, you must again fetch the data from the
database with a VIEW or SELECT command.

The advantage of using JAM’s continuation file is that it prevents having shared
locks on data. However, if the Fetch Directions property is set to Up/Down–all
modes, you are responsible for implementing the necessary locking scheme for
concurrent users. For more information on using the Version Column property to
implement optimistic locking, refer to page 370.

If you want to use the database engine’s facilities for non-sequential scrolling, you
need to edit the transaction model.

Push buttons and menu selections for the CONTINUE_BOTTOM command may
choose to set the Class property to continue_button which activates the option
only in view and update modes or to continue_view_button which activates
the option only in view mode.

Use CONTINUE_BOTTOM after SELECT or VIEW which generate a database query
and display the first set of query results or after any other CONTINUE command.

The following request is generated by the CONTINUE_BOTTOM command:

Request Traversal Typical Processing

TM_CONTINUE_BOTTOM The table views in the
specified server view

See below

Sequence

Requests

CONTINUE_BOTTOM

414 JAM 7.0 Application Development Guide

Table 33. Transaction manager request and slice processing for the CONTINUE_BOTTOM
command.

Slices Typical Processing

TM_CONTINUE_BOTTOM A select cursor must have been set up for the server
view encompassing the current table view or nothing
more is done.

Calls sm_tm_continuation_availability to
check if the command is available. If not, an error is
issued.

On entry, TM_OCC_COUNT specifies the maximum
number of occurrences to be fetched. If
TM_OCC_COUNT is zero on entry, it means that there
is no explicit limit being imposed. The TM_OCC
member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this
request, TM_SEL_CHECK sets it to contain the number
of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to
report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the
select cursor. Otherwise, report the number of rows
fetched to TM_OCC_COUNT.

The following requests can be generated by the CONTINUE_BOTTOM command to
ascertain if the changes from the previous command have been saved and, if
desired, to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

� TM_PRE_SELECT (described under SELECT)

CONTINUE_BOTTOM

41523 Transaction Manager CommandsChapter

� TM_SELECT (described under SELECT)

� TM_POST_SELECT (described under SELECT)

� TM_PRE_VIEW (described under VIEW)

� TM_VIEW (described under VIEW)

� TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR
requests are generated for all subordinate table views, but not for table views at the
same level of the tree. TM_CLEAR requests are described under CLEAR.

CONTINUE_DOWN

416 JAM 7.0 Application Development Guide

CONTINUE_DOWN
Fetches the next set of rows from the file

int sm_tm_command (”CONTINUE_DOWN [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CONTINUE_DOWN fetches the next set of rows from the file. Note that even though
the commands CONTINUE_DOWN and CONTINUE both display the next set of data,
CONTINUE_DOWN generates different a request than CONTINUE.

The availability of CONTINUE_DOWN is dependent on the setting of the Fetch
Directions property for the server view or screen. If the Fetch Directions property
is set to Up/Down–all modes , this command is available in update or view
mode. If the Fetch Directions property is set to Up/Down–view mode , this
command is available only in view mode. Otherwise, an error is generated. For
more information on setting the Fetch Directions property, refer to page 377.

table-view-name

table-view-scope

Description

CONTINUE_DOWN

41723 Transaction Manager CommandsChapter

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_DOWN for the specified table view and any table views linked to it via
server links. This displays the next set of rows for that server view. Then SELECT
or VIEW processing is done for any additional child table views.

You should be aware that the data displayed with this command is from a
continuation file. It is not re-fetched from the database. Therefore, any updates
made to the data in this server view either by you, or by another user, are not
displayed. In order to display those updates, you must again fetch the data from the
database with a VIEW or SELECT command.

The advantage of using JAM’s continuation file is that it prevents having shared
locks on data. However, if the Fetch Directions property is set to Up/Down–all
modes, you are responsible for implementing the necessary locking scheme for
concurrent users. For more information on using the Version Column property to
implement optimistic locking, refer to page 370.

If you want to use the database engine’s facilities for non-sequential scrolling, you
need to edit the transaction model.

Push buttons and menu selections for the CONTINUE_DOWN command may choose
to set the Class property to continue_button which activates the option only in
view and update modes or to continue_view_button which activates the
option only in view mode.

Use CONTINUE_DOWN after SELECT or VIEW which generate a database query and
display the first set of query results or after any other CONTINUE command.

The following request is generated by the CONTINUE_DOWN command:

Request Traversal Typical Processing

TM_CONTINUE_DOWN The table views in the
specified server view

See below

Sequence

Requests

CONTINUE_DOWN

418 JAM 7.0 Application Development Guide

Table 34. Transaction manager request and slice processing for the CONTINUE_DOWN
command.

Slices Typical Processing

TM_CONTINUE_DOWN A select cursor must have been set up for the server
view encompassing the current table view or nothing
more is done.

Calls sm_tm_continuation_availability to
check if the command is available. If not, an error is
issued.

On entry, TM_OCC_COUNT specifies the maximum
number of occurrences to be fetched. If
TM_OCC_COUNT is zero on entry, it means that there
is no explicit limit being imposed. The TM_OCC
member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this
request, TM_SEL_CHECK sets it to contain the number
of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to
report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the
select cursor. Otherwise, report the number of rows
fetched to TM_OCC_COUNT.

The following requests can be generated by the CONTINUE_DOWN command to
ascertain if the changes from the previous command have been saved and, if
desired, to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

� TM_PRE_SELECT (described under SELECT)

CONTINUE_DOWN

41923 Transaction Manager CommandsChapter

� TM_SELECT (described under SELECT)

� TM_POST_SELECT (described under SELECT)

� TM_PRE_VIEW (described under VIEW)

� TM_VIEW (described under VIEW)

� TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR
requests are generated for all subordinate table views, but not for table views at the
same level of the tree. TM_CLEAR requests are described under CLEAR.

CONTINUE_TOP

420 JAM 7.0 Application Development Guide

CONTINUE_TOP
Fetches the first set of rows from the file

int sm_tm_command (”CONTINUE_TOP [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CONTINUE_TOP fetches the first set of rows from the file. The availability of this
command is dependent on the setting of the Fetch Directions property for the
server view or screen. If the Fetch Directions property is set to Up/Down–all
modes, this command is available in update or view mode. If the Fetch Direc-
tions property is set to Up/Down–view mode , this command is available only in
view mode. Otherwise, an error is generated. For more information on setting the
Fetch Directions property, refer to page 377.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_TOP for the specified table view and any table views linked to it via

table-view-name

table-view-scope

Description

CONTINUE_TOP

42123 Transaction Manager CommandsChapter

server links. This displays the first set of rows for that server view. Then SELECT
or VIEW processing is done for any additional child table views.

You should be aware that the data displayed with this command is from a
continuation file. It is not re-fetched from the database. Therefore, any updates
made to the data in this server view either by you, or by another user, are not
displayed. In order to display those updates, you must again fetch the data from the
database with a VIEW or SELECT command.

The advantage of using JAM’s continuation file is that it prevents having shared
locks on data. However, if the Fetch Directions property is set to Up/Down–all
modes, you are responsible for implementing the necessary locking scheme for
concurrent users. For more information on using the Version Column property to
implement optimistic locking, refer to page 370.

If you want to use the database engine’s facilities for non-sequential scrolling, you
need to edit the transaction model.

Push buttons and menu selections for the CONTINUE_TOP command may choose to
set the Class property to continue_button which activates the option only in
view and update modes or to continue_view_button which activates the
option only in view mode.

Use CONTINUE_TOP after SELECT or VIEW which generate a database query and
display the first set of query results or after any other CONTINUE command.

The following request is generated by the CONTINUE_TOP command:

Request Traversal Typical Processing

TM_CONTINUE_TOP The table views in the
specified server view

See below

Sequence

Requests

CONTINUE_TOP

422 JAM 7.0 Application Development Guide

Table 35. Transaction manager request and slice processing for the CONTINUE_TOP
command.

Slices Typical Processing

TM_CONTINUE_TOP A select cursor must have been set up for the server
view encompassing the current table view or nothing
more is done.

Calls sm_tm_continuation_availability to
check if the command is available. If not, an error is
issued.

On entry, TM_OCC_COUNT specifies the maximum
number of occurrences to be fetched. If
TM_OCC_COUNT is zero on entry, it means that there
is no explicit limit being imposed. The TM_OCC
member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this
request, TM_SEL_CHECK sets it to contain the number
of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to
report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the
select cursor. Otherwise, report the number of rows
fetched to TM_OCC_COUNT.

The following requests can be generated by the CONTINUE_TOP command to
ascertain if the changes from the previous command have been saved and, if
desired, to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

CONTINUE_TOP

42323 Transaction Manager CommandsChapter

� TM_PRE_SELECT (described under SELECT)

� TM_SELECT (described under SELECT)

� TM_POST_SELECT (described under SELECT)

� TM_PRE_VIEW (described under VIEW)

� TM_VIEW (described under VIEW)

� TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR
requests are generated for all subordinate table views, but not for table views at the
same level of the tree. TM_CLEAR requests are described under CLEAR.

CONTINUE_UP

424 JAM 7.0 Application Development Guide

CONTINUE_UP
Fetches the previous set of rows from the file

int sm_tm_command (”CONTINUE_UP [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

CONTINUE_UP fetches the previous set of rows from the file. The availability of
this command is dependent on the setting of the Fetch Directions property for the
server view or screen. If the Fetch Directions property is set to Up/Down–all
modes, this command is available in update or view mode. If the Fetch Direc-
tions property is set to Up/Down–view mode , this command is available only in
view mode. Otherwise, an error is generated. For more information on setting the
Fetch Directions property, refer to page 377.

If your screen has multiple table views, the transaction manager issues a DBMS
CONTINUE_UP for the specified table view and any table views linked to it via

table-view-name

table-view-scope

Description

CONTINUE_UP

42523 Transaction Manager CommandsChapter

server links. This displays the previous set of rows for that server view. Then
SELECT or VIEW processing is done for any additional child table views.

You should be aware that the data displayed with this command is from a
continuation file. It is not re-fetched from the database. Therefore, any updates
made to the data in this server view either by you, or by another user, are not
displayed. In order to display those updates, you must again fetch the data from the
database with a VIEW or SELECT command.

The advantage of using JAM’s continuation file is that it prevents having shared
locks on data. However, if the Fetch Directions property is set to Up/Down–all
modes, you are responsible for implementing the necessary locking scheme for
concurrent users. For more information on using the Version Column property to
implement optimistic locking, refer to page 370.

If you want to use the database engine’s facilities for non-sequential scrolling, you
need to edit the transaction model.

Push buttons and menu selections for the CONTINUE_UP command may choose to
set the Class property to continue_button which activates the option only in
view and update modes or to continue_view_button which activates the
option only in view mode.

Use CONTINUE_UP after SELECT or VIEW which generate a database query and
display the first set of query results or after any other CONTINUE command.

The following request is generated by the CONTINUE_UP command:

Request Traversal Typical Processing

TM_CONTINUE_UP The table views in the
specified server view

See below

Sequence

Requests

CONTINUE_UP

426 JAM 7.0 Application Development Guide

Table 36. Transaction manager request and slice processing for the CONTINUE_UP
command.

Slices Typical Processing

TM_CONTINUE_UP A select cursor must have been set up for the server
view encompassing the current table view or nothing
more is done.

Calls sm_tm_continuation_availability to
check if the command is available. If not, an error is
issued.

On entry, TM_OCC_COUNT specifies the maximum
number of occurrences to be fetched. If
TM_OCC_COUNT is zero on entry, it means that there
is no explicit limit being imposed. The TM_OCC
member on entry specifies the first occurrence to be
fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this
request, TM_SEL_CHECK sets it to contain the number
of rows fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to
report the number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the
select cursor. Otherwise, report the number of rows
fetched to TM_OCC_COUNT.

The following requests can be generated by the CONTINUE_UP command to
ascertain if the changes from the previous command have been saved and, if
desired, to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The following requests can also be generated for any child table views:

� TM_PRE_SELECT (described under SELECT)

CONTINUE_UP

42723 Transaction Manager CommandsChapter

� TM_SELECT (described under SELECT)

� TM_POST_SELECT (described under SELECT)

� TM_PRE_VIEW (described under VIEW)

� TM_VIEW (described under VIEW)

� TM_POST_VIEW (described under VIEW)

If TM_VIEW or TM_SELECT for a parent table view returns no data, TM_CLEAR
requests are generated for all subordinate table views, but not for table views at the
same level of the tree. TM_CLEAR requests are described under CLEAR.

COPY

428 JAM 7.0 Application Development Guide

COPY
Duplicates the data on the screen so it can be edited

int sm_tm_command (”COPY”);

COPY copies the data on the screen for use in the next insertion.

After you select COPY, the following steps occur:

1. If you have made changes in the table views on which this command operates
in a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are asked if you
want to discard your changes. If you press OK, the changes are discarded;
however, the data remains visible and is treated as though you had just typed it
in after a NEW command. If you press Cancel, you will be returned to the
screen so you can save your changes.

2. The data currently displayed on the screen is copied.

3. The transaction mode is set to new. By default, this mode clears all the
protection bits in updatable table views to reflect that data entry is available in
those widgets.

4. Edit the data as much as you wish. Select SAVE to insert the data into the
database. If you select SAVE without changing any data, then the transaction
manager generates an INSERT statement for the duplicate data. Depending on
the engine, this could result in a duplicate entry or in an engine error.

Push buttons and menu selections for the COPY command may choose to set the
Class property to copy_button . By default, copy_button is active in all
transaction modes.

COPY is available after you enter new data using NEW and SAVE. It is also available
after SELECT or VIEW which display data on the screen. Select SAVE after you fin-
ish your edits.

Description

Sequence

COPY

42923 Transaction Manager CommandsChapter

The following requests can be generated by the COPY command to ascertain
whether the changes from the previous command have been saved and, if desired,
to discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

Since no TM_DISCARD request is made for the COPY command, the discard flag
used in TM_POST_SAVE1 will not be set.

Table 37. Transaction manager requests for the COPY command.

Request Traversal Typical Processing

TM_PRE_COPY By table/server view from
the specified table view

Do nothing

TM_COPY By table/server view from
the specified table view

Do nothing
(sm_bi_init_copy is called
for the table view by the trans-
action manager after this
request)

TM_POST_COPY By table/server view from
the specified table view

Do nothing

NEW

Requests

See Also

COPY_FOR_UPDATE

430 JAM 7.0 Application Development Guide

COPY_FOR_UPDATE
Changes the transaction manager to update mode

int sm_tm_command (”COPY_FOR_UPDATE”);

COPY_FOR_UPDATE changes the current mode to update . This allows the data
currently displayed on the screen to be modified, as though it had been fetched
from the database. After you select COPY_FOR_UPDATE, the transaction manager
initializes before image processing.

If you edit the data and select SAVE, the transaction manager will generate
statements as if the data now on the screen had come from a SELECT command. If
corresponding data is not in the database, the results may not be what you expect.

Push buttons and menu selections for the COPY_FOR_UPDATE command may
choose to set the Class property to continue_button since, by default,
continue_button is active in view or update modes.

COPY_FOR_UPDATE is available from any mode. Select SAVE after you finish your
edits.

The following requests can be generated by the COPY_FOR_UPDATE command to
ascertain whether the changes from the previous command have been saved and, if
desired, discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

Description

Sequence

Requests

COPY_FOR_UPDATE

43123 Transaction Manager CommandsChapter

Table 38. Transaction manager requests for the COPY_FOR_UPDATE command.

Request Traversal Typical Processing

TM_PRE_COPY_FOR_UPDATE By table/server view
from the specified
table view

Do nothing

TM_COPY_FOR_UPDATE By table/server view
from the specified
table view

Do nothing
(sm_bi_initialize
and sm_bi_copy are
called for the table view
by the transaction man-
ager after this request)

TM_POST_COPY_FOR_UPDATEBy table/server view
from the specified
table view

Do nothing

COPY_FOR_VIEW

432 JAM 7.0 Application Development Guide

COPY_FOR_VIEW
Changes the transaction manager to view mode

int sm_tm_command (”COPY_FOR_VIEW”);

COPY_FOR_VIEW makes view the current mode. After you select
COPY_FOR_VIEW, the transaction manager disables before image processing.
Changes to the data currently on the screen no longer generate updates to the data-
base with a SAVE command.

Push buttons and menu selections for the COPY_FOR_UPDATE command may
choose to set the Class property to continue_button . By default, con-
tinue_button is active in view or update modes.

COPY_FOR_VIEW is available after any command.

The following requests can be generated by the COPY_FOR_VIEW command to
ascertain whether the changes from the previous command have been saved and, if
desired, discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

Description

Sequence

Requests

COPY_FOR_VIEW

43323 Transaction Manager CommandsChapter

Table 39. Transaction manager requests for the COPY_FOR_VIEW command.

Request Traversal Typical Processing

TM_PRE_COPY_FOR_VIEW By table/server view
from the specified
table view

Do nothing

TM_COPY_FOR_VIEW By table/server view
from the specified
table view

Do nothing
(sm_bi_suppress is
called for the table view
by the transaction man-
ager after this request)

TM_POST_COPY_FOR_VIEWBy table/server view
from the specified
table view

Do nothing

FETCH

434 JAM 7.0 Application Development Guide

FETCH
Fetches the next set of data from the database

int sm_tm_command (”FETCH [table-view-name [{ FETCH_SIMPLE | FETCH_SPECIAL }]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for the root table
view.

Start the fetch with the first occurrence. The number of rows fetched depends on
the size of the arrays. This is the parameter used if neither FETCH_SIMPLE nor
FETCH_SPECIAL is specified, or if no table view name is specified.

Allows you to override the occurrence number and the size of the array.

To use the FETCH_SPECIAL parameter, you must set the value of TM_OCC and
TM_OCC_COUNT with sm_tm_iset before calling this command. When
FETCH_SPECIAL is specified, TM_OCC is consulted for the start position and
TM_OCC_COUNT is consulted for the count.

FETCH fetches the next set of rows for the specified table view.

If your screen has multiple table views and you want to fetch data for all of them at
the same time, it is suggested that you use CONTINUE instead of FETCH.

Push buttons and menu selections for the FETCH command may choose to set the
Class property to continue_button . By default, continue_button is active in
view and update modes.

This command is available after SELECT or VIEW, both of which generate a data-
base query and display the first set of query results.

table-view-name

FETCH_SIMPLE

FETCH_SPECIAL

Description

Sequence

FETCH

43523 Transaction Manager CommandsChapter

The following requests can be generated by the FETCH command:

Request Traversal Typical Processing

TM_FETCH No tree traversal, since per-
formed only for the speci-
fied table view

Slices: TM_FETCH,
TM_SEL_CHECK

Table 40. Slice processing for the FETCH command.

Slices Typical Processing

TM_FETCH A select cursor must have been set up for the server view
encompassing the current table view or nothing more is
done.

On entry, TM_OCC_COUNT specifies the maximum number
of occurrences to be fetched. If TM_OCC_COUNT is zero on
entry, it means that there is no explicit limit being imposed.
The TM_OCC member on entry specifies the first occurrence
to be fetched into.

TM_OCC_COUNT is then zeroed. (At the end of this event,
TM_SEL_CHECK sets it to contain the number of rows
fetched.)

The data is fetched.

TM_SEL_CHECK is pushed onto the event stack to report the
number of rows fetched.

TM_SEL_CHECK If there was an error in earlier processing, give up the select
cursor. Otherwise, report the number of rows fetched to
TM_OCC_COUNT.

Give up the select cursor if there are no more rows unless a
continuation file is in use.

Requests

FINISH

436 JAM 7.0 Application Development Guide

FINISH
Closes the current transaction manager transaction

int sm_tm_command (”FINISH”);

FINISH contains the screen exit processing needed by the transaction manager and
is called automatically on screen exit. If you use only the default transaction man-
ager transaction on your screen, you would not need to explicitly call this com-
mand.

As part of its processing, FINISH closes the current transaction, which has been set
with the START or CHANGE commands. In cases where you initiate multiple
transactions on the same screen by calling the START command, you would need to
call the FINISH command to close those transactions before exiting the screen.

The FINISH command is called after the named screen exit function and after the
default screen function. After FINISH , the transaction manager data structures for
what had been the current transaction no longer exist.

The following request is generated by the FINISH command:

Request Traversal Typical Processing

TM_FINISH By table/server view
from the root table
view.
Done both for hook
functions and the
transaction model.

Slice: TM_FINISH

Description

Requests

FINISH

43723 Transaction Manager CommandsChapter

Table 41. Slice processing for the FINISH command.

Slices Typical Processing

TM_FINISH Give up the save cursor (if it is in use) and the select cursor
for the server view encompassing the current table view (if
it is in use). For engines where giving up a cursor involves
closing the cursor, the return value will be TM_CHECK.

Give up data areas allocated to this transaction, but not
areas that are allocated for the transaction model, since
there may be other transactions that are still active.

For an example which also uses the START command, refer to page 455.

Example

FORCE_CLOSE

438 JAM 7.0 Application Development Guide

FORCE_CLOSE
Unconditionally discards the changes to the screen

int sm_tm_command (”FORCE_CLOSE [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

FORCE_CLOSE discards the changes to the screen without a query message. If a
table view is not specified, it sets the transaction mode to initial .

Push buttons and menu selections for the FORCE_CLOSE command may choose to
set the Class property to close_button . By default, close_button is active in
all but initial mode.

This command is useful after SELECT, NEW or COPY in order to discard your
changes.

table-view-name

table-view-scope

Description

Sequence

FORCE_CLOSE

43923 Transaction Manager CommandsChapter

The following requests can be generated by the FORCE_CLOSE command to dis-
card changes that may have been made to the screen.

Table 42. Transaction manager requests for the FORCE_CLOSE command.

Request Traversal Typical Processing

TM_PRE_CLOSE By table/server view from
the specified table view

Note that SAVE/CLOSE proces-
sing is beginning. Identical pro-
cessing is performed for
TM_PRE_SAVE.

TM_DISCARD By table/server view from
the specified table view

Set a discard flag, consulted by
TM_POST_SAVE1

TM_POST_CLOSE By table/server view from
the specified table view

Slices: TM_POST_CLOSE,
TM_POST_SAVE1,
TM_POST_SAVE2

For some engines, the proces-
sing in TM_POST_SAVE1 may
suggest a change to initial
mode at the end of this request.

Table 43. Slice processing for the FORCE_CLOSE command.

Slices Typical Processing

TM_POST_CLOSE Processing is identical to that of TM_POST_SAVE
described under SAVE.

TM_POST_SAVE1 Described under SAVE, but no save cursor will
exist

TM_POST_SAVE2 Described under SAVE

Requests

NEW

440 JAM 7.0 Application Development Guide

NEW
Prepares screen for data entry

int sm_tm_command (”NEW [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. A table view may only be
specified if the mode has already been set to new. This parameter is case sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

NEW clears each field and prepares it for data entry. To insert data successfully, all
the fields in a table view that are participating in the SQL INSERT statement need
to have the same number of occurrences.

After you select NEW, the following steps occur:

1. If you have made changes in the table views on which this command operates
in a previous NEW, COPY or SELECT, you are asked if you want to discard your
changes. If you press OK, the changes are discarded and fields in the specified

table-view-name

table-view-scope

Description

NEW

44123 Transaction Manager CommandsChapter

table views are cleared. If you press Cancel, you will be returned to the screen
so you can save your changes. You must then select NEW again.

2. The fields are cleared of all previous values.

3. The transaction mode is set to new. By default, this mode clears all the
protection bits in updatable table views to reflect that data entry is available in
those widgets.

4. Before image processing for the screen is enabled. Any changes made to the
screen following this step can then be processed using SAVE.

Push buttons and menu selections for the NEW command may choose to set the
Class property to new_button . By default, new_button is active in initial and
view modes.

To save the additions, select SAVE as the next transaction command. To discard the
additions, select CLOSE or FORCE_CLOSE.

If you are entering a series of rows, COPY copies the data on a screen so it can then
be edited, without having to enter the data again.

The following requests can be generated by the NEW command to ascertain whether
the changes from the previous command have been saved and, if desired, discard
those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

Sequence

Requests

NEW

442 JAM 7.0 Application Development Guide

Table 44. Transaction manager requests for the NEW command.

Request Traversal Typical Processing

TM_PRE_NEW By table/server view from
the specified table view

Do nothing

TM_NEW By table/server view from
the specified table view

Do nothing
(sm_bi_initialize and
sm_bi_copy are called for the
table view by the transaction
manager after this request)

TM_POST_NEW By table/server view from
the specified table view

Do nothing

REFRESH

44323 Transaction Manager CommandsChapter

REFRESH
Refreshes the screen in order to update the style and class settings

int sm_tm_command (”REFRESH”);

REFRESH reapplies the styles and classes for the current mode.

There are no requests generated by the REFRESH command.

Description

Requests

SAVE

444 JAM 7.0 Application Development Guide

SAVE
Saves the changes made on the screen to the database

int sm_tm_command (”SAVE [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

SAVE compares the current screen to the before image data and generates the nec-
essary statements needed to update the database.

After you select SAVE, the following steps occur:

1. The transaction manager checks to see that the mode is not initial or view .

2. For engines requiring it, the transaction model starts a database transaction.

table-view-name

table-view-scope

Description

SAVE

44523 Transaction Manager CommandsChapter

3. The transaction model calls the SQL generator to execute the necessary
statements according to the changes that were entered on the screen.
Statements can only be generated for updatable table views.

Note that some database engines discard the select set when a commit or
rollback is performed. For those engines, the standard transaction models give
up the select cursor after a commit or rollback.

4. If an error is encountered, the database transaction is rolled back. If no errors
are reported and the SAVE command has been specified as a full command, the
transaction model commits the database transaction.

Push buttons and menu selections for the SAVE command may choose to set the
Class property to save_button . By default, save_button is active in new and
update modes.

The transaction manager is aware of any primary key changes. If the primary key
is updated, the standard transaction models delete the row containing the old value
of the primary key and insert a row contains the new value of the primary key. If
the primary key is cleared, the standard transaction models delete the row
corresponding to the cleared key fields.

The following requests can be generated by the SAVE command:

� TM_PRE_SAVE

� TM_SAVE

� TM_DELETE

� TM_UPDATE

� TM_INSERT

� TM_POST_SAVE

primary key changes

Requests

SAVE

446 JAM 7.0 Application Development Guide

Table 45. Transaction manager requests for the SAVE command.

Request Traversal Typical Processing

TM_PRE_SAVE By table/server view from
the specified table view

Note that SAVE/CLOSE proces-
sing is beginning. Set the reuse
cursor flag to 0. (Processing is
identical for TM_PRE_CLOSE.)

TM_SAVE By table/server view from
the specified table view

Do nothing

TM_DELETE Modify table views in the
order specified in the link
properties, with one
request in each table view
for each row in that table
view that has changed

Slices: TM_DELETE,
TM_GET_SAVE_CURSOR,
TM_DELETE_DECLARE,
TM_DELETE_EXEC

TM_UPDATE Modify table views in the
order specified in the link
properties, with one
request in each table view
for each row in that table
view that has changed

Slices: TM_UPDATE,
TM_GET_SAVE_CURSOR,
TM_UPDATE_DECLARE,
TM_UPDATE_EXEC

TM_INSERT Modify table views in the
order specified in the link
properties, with one
request in each table view
for each row in that table
view that has changed

Slices: TM_INSERT,
TM_GET_SAVE_CURSOR,
TM_INSERT_DECLARE,
TM_INSERT_EXEC

TM_POST_SAVE By table/server view from
the specified table view

Slices: TM_POST_SAVE,
TM_POST_SAVE1,
TM_GIVE_UP_SAVE_CURSOR,
TM_POST_SAVE2

Table 46. Slice processing for the SAVE command.

Slices Typical Processing

TM_GET_SAVE_CURSOR If a name does not exist for the save cursor, gen-
erate it. For some engines, special processing
may be necessary to begin a transaction.

SAVE

44723 Transaction Manager CommandsChapter

Slices Typical Processing

TM_DELETE Find out what type of change was made to the
current occurrence by checking the return code
from sm_bi_compare .

If the return code is BI_KEY_CHANGED,
BI_KEY_NULLED, or BI_DELETED, push the
TM_GET_SAVE_CURSOR, TM_DELETE_DECLARE
and TM_DELETE_EXEC events onto the stack.

TM_DELETE_DECLARE For some engines, give up any select cursor
relating to this table view. Call dm_exec_sql to
declare the save cursor for this deletion, unless
the occurrence is part of an array and previously
generated SQL is being reused.

TM_DELETE_EXEC Call dm_exec_sql to execute the save cursor
for this deletion. The return value is
TM_CHECK_ONE_ROW which tests that only one
row was deleted.

TM_UPDATE Find out what type of change was made to the
current occurrence by checking the return code
from sm_bi_compare .

If the return code is BI_UPDATED, push the
TM_GET_SAVE_CURSOR, TM_UPDATE_DECLARE
and TM_UPDATE_EXEC events onto the stack.

TM_UPDATE_DECLARE For some engines, give up any select cursor
relating to this table view. Call dm_exec_sql to
declare the save cursor for this update, unless the
occurrence is part of an array and previously
generated SQL is being reused.

TM_UPDATE_EXEC Call dm_exec_sql to execute the save cursor
for this update. The return value is
TM_CHECK_ONE_ROW which tests that only one
row was updated.

TM_INSERT Find out what type of change was made to the
current occurrence by checking the return code
from sm_bi_compare .

If the return code is BI_KEY_CHANGED or
BI_INSERTED, push the TM_GET_SAVE_CUR-
SOR, TM_INSERT_DECLARE and
TM_INSERT_EXEC events onto the stack.

SAVE

448 JAM 7.0 Application Development Guide

Slices Typical Processing

TM_INSERT_DECLARE For some engines, give up any select cursor
relating to this table view. Call dm_exec_sql to
declare the cursor for this insertion, unless the
occurrence is part of an array and previously
generated SQL is being reused.

TM_INSERT_EXEC Call dm_exec_sql to execute the save cursor
for this insertion. The return value is
TM_CHECK_ONE_ROW which tests that only one
row was inserted.

TM_POST_SAVE If this is the first TM_POST_SAVE event since the
last TM_PRE_CLOSE or TM_PRE_SAVE, push the
TM_POST_SAVE1 event on the stack. Otherwise,
if the saving worked flag was set to 1 in
TM_POST_SAVE1 processing, push the
TM_POST_SAVE2 event on the stack.

TM_POST_SAVE1 The existence of a save cursor indicates that SQL
statements were executed so the saving
worked flag is set to 1.

If there is a save cursor and if TM_STATUS is
equal to 0 (indicating that the statements
executed successfully) and if TM_FULL is equal
to 1 (indicating a full SAVE command), a DBMS
COMMIT is executed with a return code of
TM_CHECK.

If there is a save cursor and if TM_STATUS is
non–zero (indicating that the statements failed), a
DBMS ROLLBACK is executed with a return code
of TM_CHECK. For rollbacks, the saving
worked flag is reset to 0 since no changes were
actually made.

If there is no save cursor, the saving worked
flag is set to 1 if, and only if, the discard flag is
set (see TM_DISCARD).

If the saving worked flag is set to 1, the
TM_POST_SAVE2 event is pushed, to perform
that processing for this first table view. If there
was a save cursor, the TM_GIVE_UP_SAVE_CUR-
SOR event is pushed, to give up the save cursor.

SAVE

44923 Transaction Manager CommandsChapter

Slices Typical Processing

Note: Some engines discard the select sets when
commits and rollbacks are performed. For those
engines, TM_VALUE is set to suggest changing to
initial mode at the end of the TM_POST_SAVE
request if a commit or rollback was done.

TM_GIVE_UP_SAVE_CURSORGive up the save cursor.

TM_POST_SAVE2 Call sm_bi_initialize . Set TM_OCC to 1 and
TM_OCC_COUNT to –1; then, call sm_bi_copy .

SELECT

450 JAM 7.0 Application Development Guide

SELECT
Fetches data from the database to be updated

int sm_tm_command (”SELECT [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

SELECT fetches data from the database so it can be modified. In order to success-
fully update data or insert new data, all the fields in a server view which are
included in the select list need to have the same number of occurrences.

After you choose SELECT, the following steps occur:

1. If you have made changes in the table views on which this command operates
in a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are asked if you
want to discard your changes. If you press OK, the changes are discarded and

table-view-name

table-view-scope

Description

SELECT

45123 Transaction Manager CommandsChapter

fields in the specified table views are cleared. If you press Cancel, you will be
returned to the screen so you can save your changes.

2. The transaction mode is set to update unless a table view is specified and the
mode is not initial mode. By default, update mode protects the primary key
fields from data entry and sets the display attributes differently for key and
non–key fields.

3. The screen displays the first set of data for all linked table views.

When you choose SELECT, the standard transaction models have the SQL
generator execute a SQL SELECT statement for the database table named in
the root table view and any table views connected to it via a server link. Then,
recursively, SQL SELECT statements are issued for the child table views
having sequential links, and any table views connected to those child table
views by server links.

4. The before image, or snapshot, of the screen is taken for the screen‘s
updatable table views. An updatable table view must have its primary key
fields on screen. Any changes made to the screen following this step can then
be processed using a SAVE command.

Push buttons and menu selections for the SELECT command may choose to set the
Class property to view_button . By default, view_button is active in initial
or view modes.

If you want to select a specific record or group of records, set the widget’s Use in
Where property to Yes and the type of operator to be used in the WHERE clause.
Then, in the transaction manager, choose CLEAR to clear the fields, enter a value in
your query field, and then choose SELECT. The screen displays the specified
information.

To save the changes or additions made to the selected data, choose SAVE as the
next transaction command.

To display the next row of information, choose CONTINUE as the next transaction
command. If you have updated the data on the screen, a dialogue box asks if you
want to discard your changes. If you press OK, the changes are discarded. If you
press Cancel , you will be returned to the screen so you can save your changes.

To discard any changes you have made to the screen, choose CLOSE or
FORCE_CLOSE.

using qbe

Sequence

SELECT

452 JAM 7.0 Application Development Guide

The following requests can be generated by the SELECT command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

The SELECT command generates TM_CLEAR requests if TM_SELECT for a parent
table view returns no data. In that case, TM_CLEAR is generated for all subordinate
table views, but not for table views at the same level of the tree. TM_CLEAR
requests are described under CLEAR.

Table 47. Transaction manager requests for the SELECT command.

Request Traversal Typical Processing

TM_PRE_SELECT By table/server view from
the specified table view

Do nothing

TM_SELECT By table/server view from
the specified table view

Slices: TM_SELECT,
TM_GET_SEL_CURSOR,
TM_PREPARE_CONTINUE,
TM_SEL_GEN,
TM_SEL_BUILD_PERFORM,
TM_SEL_CHECK
(sm_bi_initialize is called
for the table view by the trans-
action manager after this
request. If rows were fetched,
sm_bi_copy is also called.)

TM_POST_SELECT By table/server view from
the specified table view

Do nothing

Requests

SELECT

45323 Transaction Manager CommandsChapter

Table 48. Slice processing for the SELECT command.

Slices Typical Processing

TM_SELECT TM_OCC_COUNT is zeroed. At the end of processing
for this request, it will contain the number of rows
fetched (set, if at all, by TM_SEL_CHECK).

If the table view is the first one in the current server
view, push the TM_GET_SEL_CURSOR event (only
if there is no select cursor already) and the
TM_PREPARE_CONTINUE, TM_SEL_GEN,
TM_SEL_BUILD_PERFORM, and TM_SEL_CHECK
events onto the stack.

If the table view is not the first one in the server
view, nothing more is done for this request, and the
number of rows fetched for this request is correctly
reported as zero.

TM_GET_SEL_CURSOR If a name does not exist for the JAM select cursor,
generate it.

(Depending on the engine, a JAM cursor may or
may not correspond to a database cursor.)

TM_PREPARE_CONTINUE If the select cursor does not already exist, a dummy
DECLARE CURSOR command is issued.

If sm_tm_continuation_validity reports that
continuation file commands (like CONTINUE_TOP)
are valid, DBMS STORE FILE is issued. If the
function reports that those commands are invalid,
DBMS STORE is issued.

TM_SEL_GEN Generate data structures with dm_gen_sql_info
that will be used in the TM_SEL_BUILD_PERFORM
slice to build the SQL statements.

TM_SEL_BUILD_PERFORM Build, and then (if there was no error in building)
perform SQL SELECT (and other DBMS com-
mands) with dm_exec_sql . Free the select info.

SELECT

454 JAM 7.0 Application Development Guide

Slices Typical Processing

TM_SEL_CHECK If there was an error in earlier processing, give up
the select cursor. Otherwise, report the number of
rows fetched to TM_OCC_COUNT. Give up the select
cursor if there are no more rows unless a continua-
tion file is in use. (On engines where this means
that the cursor is closed, the return code is
TM_CHECK. Otherwise, the return code is TM_OK.)

If TM_SELECT for a parent table view returns no data, TM_CLEAR requests are
generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.

START

45523 Transaction Manager CommandsChapter

START
Initializes a new transaction tree

int sm_tm_command (”START transaction-name [table-view-name [table-view-scope]]”);

The name of a transaction to be used for this screen.

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

START initiates a transaction manager transaction and makes it the current transac-
tion. The mode is set to initial . Since this command is called automatically on
screen entry whenever a root table view can be determined, the only situation
where you would need to call this command is if you are using more than one
transaction manager transaction on the same screen.

A transaction manager transaction must be in progress in order to call commands.

transaction-name

table-view-name

table-view-scope

Description

START

456 JAM 7.0 Application Development Guide

Note that in the JAM screen entry events, the unnamed JPL procedure is called
before the START command. For this reason, transaction manager commands
cannot be invoked in the unnamed procedure. After the START command is called,
JAM then calls the default screen function and the named screen entry function.

Once a transaction has been initiated with the START command, you can make it
the current transaction using the CHANGE command.

The following requests can be generated by the START command:

Request Traversal Typical Processing

TM_START By table/server view from
the specified table view.
Done both for hook func-
tions and the transaction
model.

Do nothing

The following example illustrates the use of the START, CHANGE, and FINISH
commands in order to execute transaction manager commands on an unlinked table
view.

In this example, pricecats is the unlinked table view. The procedure
start_new_tran first finds the name of the current transaction, starts a new
transaction for the pricecats table view, and then changes to that transaction in
order to execute a VIEW command. The procedure change_to_main changes
back to the original transaction in order to execute transaction manager commands
on those table views. The procedure change_to_new_tran changes to the new
transaction in order to execute transaction manager commands on the pricecats
table view. The procedure exit is set as the value of the Screen Exit property.

JPL Procedures:

vars main_tran(31)

proc start_new_tran
main_tran=sm_tm_pinquire(TM_TRAN_NAME)
call sm_tm_command(”START price_tran pricecats”)
call sm_tm_command(”CHANGE price_tran”)
call sm_tm_command(”VIEW”)
return

Sequence

Requests

Example

START

45723 Transaction Manager CommandsChapter

proc change_to_main
call sm_tm_command(”CHANGE :main_tran”)
return

proc change_to_new_tran
call sm_tm_command(”CHANGE price_tran”)
return

Screen exit property set to the following procedure.
proc exit(screen, flags)
if (flags & K_EXIT)
{
 call sm_tm_command(”CHANGE price_tran”)
 call sm_tm_command(”FINISH”)
 call sm_tm_command(”CHANGE :main_tran”)
 call sm_tm_command(”FINISH”)
}
return

VIEW

458 JAM 7.0 Application Development Guide

VIEW
Fetches data from the database for display purposes

int sm_tm_command (”VIEW [table-view-name [table-view-scope]]”);

The name of a table view in the current transaction. This parameter is case
sensitive.

If table_view_name is specified, the command is applied according to the scope
parameter. Since the entire table view tree may not be included, this is known as a
partial command, and sm_tm_command sets TM_FULL to 0.

If table_view_name is not specified, the command is applied for each table/server
view, starting with the root table view. This is known as a full command, and
sm_tm_command sets TM_FULL to 1.

One of the following parameters, which must be preceded by a table view name.

� TV_AND_BELOW which applies the command to the specified table view and all
table views below it on the tree. If no parameter is specified, the transaction
manager acts as though TV_AND_BELOW was supplied.

� BELOW_TV which applies the command to the table views below the specified
table view.

� TV_ONLY which applies the command to the specified table view only.

� SV_ONLY which applies the command only to the table views of the specified
server view.

VIEW fetches data from the database for viewing purposes only.

When VIEW is selected the following steps occur:

1. If you have made changes in the table views on which this command operates
in a previous NEW, COPY, COPY_FOR_UPDATE, or SELECT, you are asked if you
want to discard your changes. If you press OK, the changes are discarded and
fields in the specified table views are cleared. If you press Cancel, you will be
returned to the screen so you can save your changes.

table-view-name

table-view-scope

Description

VIEW

45923 Transaction Manager CommandsChapter

2. The transaction mode is set to view unless a table view is specified. By
default, view mode protects all fields from data entry.

3. The screen displays the first set of data for all linked table views.

When you choose VIEW, the standard transaction models have the SQL
generator execute a SQL SELECT statement for the database table named in
the root table view and any table views connected to it via a server link. Then,
recursively, SQL SELECT statements are issued for the child table views
having sequential links, and any table views connected to those child table
views by server links.

If the query does not return any rows for the first server view, no data will be
displayed for the remaining server views. (A query which successfully returns
rows sets TM_OCC_COUNT as part of the TM_SEL_CHECK slice. When
TM_OCC_COUNT is greater than 0, the query is generated for the next server
view.)

Push buttons and menu selections for the SELECT command may choose to set the
Class property to view_button . By default, view_button is active in initial
or view modes.

If you want to select a specific record or group of records, you need to set the Use
in Where property to Yes and set the type of operator to be used in the WHERE
clause. Then, in the transaction manager, choose CLEAR to clear the fields, enter a
value in your query field, and then choose VIEW. The screen displays the specified
information.

To display additional data, choose any CONTINUE command.

The following requests can be generated by the VIEW command to ascertain
whether the changes from the previous command have been saved and, if desired,
discard those changes:

� TM_PRE_CLOSE (described under CLOSE)

� TM_CLOSE (described under CLOSE)

� TM_QUERY (described under CLOSE)

� TM_DISCARD (described under CLOSE)

� TM_POST_CLOSE (described under CLOSE)

using qbe

Sequence

Requests

VIEW

460 JAM 7.0 Application Development Guide

The VIEW command generates TM_CLEAR requests if TM_VIEW for a parent table
view returns no data. In that case, TM_CLEAR is generated for all subordinate table
views, but not for table views at the same level of the tree. TM_CLEAR requests are
described under CLEAR.

Table 49. Transaction manager requests for the VIEW command.

Request Traversal Typical Processing

TM_PRE_VIEW By table/server view from
the specified table view

Do nothing

TM_VIEW By table/server view from
the specified table view

Slices: TM_VIEW,
TM_GET_SEL_CURSOR,
TM_PREPARE_CONTINUE,
TM_SEL_GEN ,
TM_SEL_BUILD_PERFORM,
TM_SEL_CHECK (sm_bi_sup-
press is called for the table
view by the transaction man-
ager after this request.)

TM_POST_VIEW By table/server view from
the specified table view

Do nothing

Table 50. Slice processing for the VIEW command.

Slices Typical Processing

TM_VIEW TM_OCC_COUNT is zeroed. At the end of processing
for this request, it will contain the number of rows
fetched (set, if at all, by TM_SEL_CHECK).

If the table view is the first one in the current server
view, push the TM_GET_SEL_CURSOR event (only
if there is no select cursor already) and the
TM_PREPARE_CONTINUE, TM_SEL_GEN,
TM_SEL_BUILD_PERFORM, and TM_SEL_CHECK
events onto the stack.

If the table view is not the first one in the server
view, nothing more is done for this request, and the
number of rows fetched for this request is correctly
reported as zero.

VIEW

46123 Transaction Manager CommandsChapter

Slices Typical Processing

TM_GET_SEL_CURSOR If a name does not exist for the JAM select cursor,
generate it.

(Depending on the engine, a JAM cursor may or
may not correspond to a database cursor.)

TM_PREPARE_CONTINUE If the select cursor does not already exist, a dummy
DECLARE CURSOR command is issued.

If sm_tm_continuation_validity reports that
continuation file commands (like CONTINUE_TOP)
are valid, DBMS STORE FILE is issued. If the
function reports that those commands are invalid,
DBMS STORE is issued.

TM_SEL_GEN Generate data structures with dm_gen_sql_info
that will be used in the TM_SEL_BUILD_PERFORM
slice to build the SQL statements.

TM_SEL_BUILD_PERFORM Build, and then (if there was no error in building)
perform SQL SELECT (and other DBMS com-
mands) with dm_exec_sql . Free the select info.

TM_SEL_CHECK If there was an error in earlier processing, give up
the select cursor. Otherwise, report the number of
rows fetched to TM_OCC_COUNT. Give up the select
cursor if there are no more rows unless a continua-
tion file is in use.

If TM_VIEW for a parent table view returns no data, TM_CLEAR requests are
generated for all subordinate table views, but not for table views at the same level
of the tree. TM_CLEAR requests are described under CLEAR.

463

Transaction Manager
Troubleshooting

This chapter lists some guidelines to use when creating transaction manager
screens and lists the common errors along with the actions to take to correct them.

Guidelines for Creating Screens

In constructing an application screen, it is recommended that you observe the
guidelines in the following sections.

Using Table Views
� If you are using more than one table view on the screen, you may want to copy

the widgets for the root/parent table view first.

In a master/detail screen, the primary key columns need to reside in the parent
table view in order to display values and to use those values in SQL
generation. By copying the widgets for the root/parent table views first, you do
not need to edit the table view members.

� If you want to insert, update or delete information in a database table, the
primary key columns for that table must be in the current table view or in a
parent table view.

2424

Guidelines for Creating Screens

464 JAM 7.0 Application Development Guide

� The number of occurrences must be the same for all the members of a table
view participating in SQL INSERT, UPDATE, and DELETE statements.
Otherwise, the transaction manager generates an error.

� If you add a new widget to the screen and you want that widget to participate
in SQL generation or transaction management, then the widget must be a
member of a table view. For information on how to add members to a table
view, refer Chapter 21 in the Editors Guide.

� A widget’s protection properties can be changed at runtime corresponding to
the class and style settings for each transaction mode. As a result, you may
choose not to edit these properties in the screen editor or to edit the class and
style settings instead.

If you need additional styles and classes or if you need to edit the default
styles and classes, you can do so in the styles editor.

Using Links
� Remember to copy the links that you need from the repository screen.

� Check the DB Interactions window for the screen. If you have unlinked table
views, you need to either copy the link from a repository screen or create a
new link.

If the DB Interactions window lists invalid links because of missing table
views, add the table views to the screen. If the table views are not needed, you
can leave the invalid links on the screen or delete them.

� Check your link properties. You may need to change the link type or reverse
the parent-child values.

� Do not specify circular links among two or more table views. If link1 sets
tview1 as the parent table view and tview2 as the child table view, then
another link on the screen cannot have tview2 as the parent and tview1 as
the child.

Setting Widget Properties
� To execute database queries based on specific column values, set the Use in

Where and Operator properties in the Database category for the applicable
widgets.

� A widget can only belong to one table view; however, two widgets can
reference the same database column.

Errors in the Transaction Manager

46524 Transaction Manager TroubleshootingChapter

Errors in the Transaction Manager

The following transaction manager error messages are listed in alphabetical order
with a possible cause and solution for each message. Those containing an error
constant are stored in the JAM message file. Those without an error constant are
caused by errors in SQL generation.

Bad arguments (DM_BAD_ARGS)

Cause: General error. One cause is that the START command was issued without a
transaction name. Another cause is that a bad value was specified for the
return code in a hook function.

Action: n/a

Bad field name, #, or subscript at line line-number

Cause: This standard JPL error generally indicates the JPL procedure or variable
causing the error. One cause which is not a syntax error is using the
property API to query for the value of server view, table view or link
when it is not in the current traversal tree or for the value of
num_key_columns when a database modification command is not in
effect.

Action: Edit the JPL procedure.

Bad mode (DM_TM_BAD_MODE)

Cause: Command availability varies according to the transaction mode.
Action: 1) Refer to page 346 for the command availability in each mode. 2) Use

the COPY_FOR_UPDATE and COPY_FOR_VIEW commands, which set the
mode, when appropriate. 3) For menu items and push buttons, set the
Class property which controls the active/inactive property according to
the transaction mode.

Column column-name not found in table view table-view-name
specified in link link-name

Cause: 1) Invalid column name specified in the link’s Relations property. 2)
Parent and Child entries for the Relations need to be reversed.

Action: Edit the Relations property to contain the column names which join the
two table views named in the link. Check that the column names exist in
the corresponding Parent and Child table views.

Discard all changes? (DM_TM_DISCARD_ALL)

Cause: A transaction manger command was executed without saving the changes
made to the onscreen data.

Action: Choose Yes to discard all changes. Choose No to return to the screen so
that the SAVE command can be executed.

Errors in the Transaction Manager

466 JAM 7.0 Application Development Guide

Discard latest changes? (DM_TM_DISCARD_LATEST)

Cause: A transaction manger command was executed without saving the changes
made to a portion of the onscreen data.

Action: Choose Yes to discard all changes. Choose No to return to the screen so
that the SAVE command can be executed.

Error executing JAM/DBi command (DM_TM_DBI_ERROR)

Cause: An error occurred while executing a command in one of JAM’s database
drivers.

Action: Refer to error for action.

Error in User Hook Function or Transaction Model
(DM_TM_HOOK_MODEL_ERROR)

Cause: This error lists whether a model or function is being accessed, the name of
the model or function, and the event that failed. One common usage is to
display the failed event after an error has been reported from the database
engine.

Action: Generally, the engine error is more descriptive of the problem.

Invalid field type for Version Column (DM_TM_VC_TYPE)

Cause: Version columns must have the C Type property set to Int, Long, Float or
Double.

Action: Change C Type property. As a result, database re-design may be
necessary.

Invalid sort order type specified in the sort–columns edit of
tableview table-view

Cause: Value entered for the sort type is invalid.
Action: Change the sort order type to ASC or DESC.

Invalid widget widget specified in the sort–columns edit of
tableview table-view.

Cause: The Sort Widgets property does not contain a valid widget name.
Action: Check the table view’s Sort Widgets property and make sure the widget is

on the screen, remembering that it is the widget name and not the database
column name that must be specified.

Loop in transaction manager event processing
(DM_TM_EVENT_LOOP)

Cause: Transaction hook function specified in Function property is defined
without passing it the event argument.

Action: Add (event) after the procedure name.

Cause: Transaction hook function has incorrect or invalid return code specified,
for example, TM_CHECK instead of TM_PROCEED when no database driver
statement was issued for that event.

Action: Change return code.

Errors in the Transaction Manager

46724 Transaction Manager TroubleshootingChapter

Maximum depth exceeded

Cause: 1) There is a circular link in the Parent and Child properties. 2) A link has
both the Parent and Child properties set to the same table view.

Action: Check Parent and Child properties for each link, editing where necessary.

mode does not permit command command (DM_TM_CMD_MODE)

Cause: Command availability varies according to the transaction mode.
Action: 1) Refer to page 346 for the command availability in each mode. 2) Use

the COPY_FOR_UPDATE and COPY_FOR_VIEW commands, which set the
mode, when appropriate. 3) For menu items and push buttons, set the
Class property which controls the active/inactive property according to
the transaction mode.

More than one row affected (DM_TM_ONE_ROW)

Cause: TM_CHECK_ONE_ROW, which calls the TM_TEST_ONE_ROW event to check
that @dmrowcount is equal to 1, has been set as the return code either in
the transaction model or in a hook function.

Action: Change the return code in the model or hook function. Change the SQL
generation, for example, by expanding the Primary Key values so that
only one row is changed. Check the data in the database to make sure that
duplicate key values have not been entered.

No rows affected (DM_TM_SOME_ROWS)

Cause: TM_CHECK_SOME_ROWS, which calls the TM_TEST_SOME_ROWS event to
check that @dmrowcount is equal to or greater than 1, has been set as the
return code either in the transaction model or in a hook function.

Action: If error is valid, do nothing. Otherwise, change the return code in the
model or hook function.

No select columns specified, first table view table-view.

Cause: For all the members of this table view, either the Column Name property
is blank or the Use In Select property is set to No.

Action: Set the appropriate properties for each widget.

No such command as command (DM_TM_NO_SUCH_CMD)

Cause: The syntax of sm_tm_command is incorrect.
Action: Edit the call to sm_tm_command so that a valid command name is the first

parameter of its quoted command string.

No such scope as in scope (DM_TM_NO_SUCH_SCOPE)

Cause: The syntax of sm_tm_command is incorrect.
Action: Edit the call to sm_tm_command so that a valid scope parameter follows

the command and table view parameters.

No such table view as in table-view (DM_TM_NO_SUCH_TV)

Cause: The syntax of sm_tm_command is incorrect.
Action: Edit the call to sm_tm_command so that a valid table view name follows

the command parameter in the quoted command string.

Errors in the Transaction Manager

468 JAM 7.0 Application Development Guide

Primary key not specified for updatable Tableview table-view
(DM_TM_PRIMARY KEY)

Cause: For commands that could result in database modifications, like SELECT,
NEW, COPY, or COPY_FOR_UPDATE, the transaction manager checks that
the primary key fields for a table view are available.

Action: 1) Specify the table view’s primary keys in the Primary Keys property.

Root table view name not supplied or not valid
(DM_TM_NO_ROOT)

Cause: Table view parameter supplied with START command is not valid.
Action: Edit START command specification.

Cause: More than one table view appears on a screen and there are no link
widgets.

Action: Create a link widget with the appropriate Parent, Child and Relations
property settings.

Table name not specified for tableview table-view.

Cause: Table property is blank for this table view.
Action: Enter the name of the database table in the table view’s Table property.

For the format needed by a specific database driver, refer to the Database
Driver section.

Table name not specified for Tableview (DM_TM_TBLNAME)

Cause: Table property is blank for this table view.
Action: Enter the name of the database table in the table view’s Table property.

For the format needed by a specific database driver, refer to the Database
Driver section.

Tableview table-view is updatable but its primary key is
incomplete.

Cause: For commands that could result in database modifications, like SELECT,
NEW, COPY, or COPY_FOR_UPDATE, the primary key fields of an updatable
table view must either be a member of that table view or one of its parent
table views. It does not have to be in the direct parent, it can be in the
“grandparent” table view.

Action: 1) Add the field to the desired table view. 2) Check the link’s Relations
property to see if the shared fields between the table views is complete.
3) Change the table view to non-updatable. 4) Check the link’s Relations
property to make sure the relation type is valid.

Transaction model not found (DM_TM_NO_MODEL)

Cause: Model specified in table view or screen properties is not initialized.
Action: Specify valid model or leave blank to use standard model.

Errors in the Transaction Manager

46924 Transaction Manager TroubleshootingChapter

Transaction unspecified or unavailable (DM_TM_NO_TRANSACTION)

Cause: Transaction manager command was called in an unnamed JPL procedure.
Since JAM calls the unnamed JPL procedure before it calls the START
command on screen entry, an error occurs.

Action: Call the command after the START command has been invoked, for
example, in the screen entry procedure.

Cause: More than one table view appears on a screen and there are no link
widgets.

Action: Create a link widget with the appropriate Parent, Child and Relations
property settings.

Cause: START command was not issued because of error in table view tree or
because the table view parameter specified with the command was
invalid.

Action: Check Parent and Child properties. Check specification of additional
START commands.

Unable to synchronize server view (DM_TM_SYNCH_SV)

Cause: For all updatable table views, the transaction manager synchronizes the
table views when a command that could modify data is issued, for
example, SELECT, NEW, COPY, or COPY_FOR_UPDATE.

Action: 1) If possible, set all the members of the same table view whose Use in
Update property is set to Yes to the same number of occurrences. 2)
Change the Synchronization property to No. For more information , refer
to page 377.

User Hook Function not found (DM_TM_NO_HOOK)

Cause: The table view’s Function property specifies a name that is not available
either as a JPL procedure or as a prototyped function.

Action: 1) Check the value of the Function property. 2) Check the prototyped
function list. 3) Check that the JPL procedure name matches the Function
property and that the JPL module is available.

Version Column setting on widget is incompatible with the
properties property_name

Cause: If a widget’s Version Column property is Yes, then the properties In
Delete Where and In Update Where must be set to No.

Action: 1) Set the properties to the correct values.

SECTION SIX

Application Issues

Chapter 25 ������������� 	��������� . 473

Chapter 26 �������� 	������� ������������ . 479

Chapter 27 �������� �������������� ������������ 481

Chapter 28 ���� ������� . 495

Chapter 29 	��������� ��� ����������� . 519

Chapter 30 ������������
�������� . 529

Chapter 31 Dynamic Data Exchange . 545

Chapter 32 Mouse Interface . 553

473

Input/Output
Processing

This chapter describes:

� How keyboard input is processed — including which library functions are
called to carry out such processing.

� How JAM and JAM applications use the information encoded in the video file
to process output.

All user input to a JAM application is processed through a keyboard translation file
or table before being handled by JAM. Similarly, all output to the display monitor
is processed through a video mapping table.

This translation of input and output is done to avoid code specific to particular
displays or terminals, and thereby preserve terminal independence. JAM and JAM
applications can run on a variety of terminals, provided that the appropriate
keyboard and video configuration files are identified. These configuration files are
used by the application at initialization to establish the keyboard and video
translation.

2525

Processing Keyboard Input

474 JAM 7.0 Application Development Guide

Processing Keyboard Input

Keystrokes are processed in three steps:

1. The sequence of characters generated by one key is identified.

2. The sequence is translated to an internal value, or logical character.

3. The internal value is either acted upon or returned to the application (key
routing).

All three steps, described in this section, are table-driven. Hooks are provided at
several points for application processing; refer to page 115.

Logical Keys
JAM processes characters internally as logical values, which usually correspond to
the physical ASCII codes used by terminal keyboards and displays. JAM uses the
key translation file to map specific physical keys or sequences of physical keys to
logical values, and the video file’s MODE and GRAPH entries to map logical
characters to video output. For most keys, such as displayable data characters, no
explicit mapping is necessary. Certain ranges of logical characters are interpreted
specially by JAM:

0x0100 to 0x01ff Operations such as tab, scrolling, cursor motion

0x6101 to 0x7801 Function keys PF1 to PF24

0x4101 to 0x5801 Shifted function keys SPF1 to SPF24

0x4103 to 0x5a03 ALT keys ALTA to ALTZ

0x6102 to 0x7802 Application keys APP1 to APP24

Key Translation
The first two steps in JAM’s processing of keyboard input—identification and
translation—are controlled by the binary key translation file, loaded at initializa-
tion. JAM finds the file’s name in a setup file or in the environment (refer to the
Configuration Guide for details). The binary file is derived from an ASCII file that
you can modify with any text editor.

JAM assumes that the first input character of a multi-character key sequence is a
control character in the ASCII chart (0x00–0x1f, 0x7f, 0x80–0x9f, or 0xff) and

Processing Keyboard Input

47525 Input/Output ProcessingChapter

attempts to translate the character to a single logical key. Characters outside this
range are assumed to be displayable characters and are not translated.

Note: This algorithm assumes that a timing interval (KBD_DELAY entry in the
video file) has not been specified. For more information, refer to page 111 in the
Configuration Guide.

On receiving a control character, the keyboard input function sm_getkey searches
the key translation file for a sequence beginning with that character. If no match is
found on the first character, JAM accepts the key without translation. If a match is
found on the first character, an exact match, sm_getkey returns the indicated
value. The search continues through subsequent characters until one of the
following conditions is true:

� An exact match on n characters is found and the nth+1 character in the file is
0, or n is 6. In this case, the value in the file is returned.

� An exact match is found on n–1 characters but not on n. In this case,
sm_getkey attempts to flush the sequence of characters returned by the key.

The latter condition is of some importance: if the user presses a function key that is
not defined in the file, JAM must know where the key sequence ends. The
following algorithm is then used:

� The file is searched for all entries that match the first n–1 characters and are of
the same type in the nth character, where the types are digit, control character,
letter, and punctuation. The smallest of the total lengths of these entries is
assumed to be the length of the sequence produced by the key.

� If there is no entry matches by type at the nth character, the shortest sequence
that matches on n–1 characters is used. Hence, sm_getkey can distinguish,
for example, between the sequences ESC O x , ESC [A , and ESC [1 0 ~ .

If you have a KBD_DELAY entry in your video file, you can specify key sequences
in the key translation file that are substrings of other sequences. For example, the
sequences ESC and ESC [C can both have logical values, even though one is a
substring of the other. In this case, JAM waits the specified timing interval, as
indicated in the KBD_DELAY entry, between processing characters to determine if a
character is a single keystroke or belongs to a sequence of keystrokes.

Key Routing

The third step in processing keyboard input is handled by the library function
sm_input . This function calls sm_getkey to obtain the translated value of the
key. It then decides what to do based on the following rules:

with timing interval set

Processing Terminal Output

476 JAM 7.0 Application Development Guide

If the logical value is greater than 0x1ff, sm_input returns the value as the return
code.

If the value is between 0x01 and 0x1ff, the key is translated via the key translation
file. The processing of the key is then determined by a routing table. You can alter
the default behavior of keys (cursor control) within this range with the library
function sm_keyoption as well as set the routing information for a particular key.
The routing value consists of two bits, examined independently, so four different
actions are possible:

� If neither bit is set, the key is ignored.

� If the EXECUTE bit is set and the logical value is in the range 0x01 to 0xff, it
is written to the screen (as interpreted by the GRAPH entry in the video file, if
one exists). If the value is in the range 0x100 to 0x1ff, the appropriate action
(Tab, field erase, etc.) is taken.

� If the RETURN bit is set, sm_input returns the logical value to the caller;
otherwise, sm_getkey is called for another value.

� If both bits are set, the key is executed and then returned.

The default settings are ignored for ASCII and extended ASCII control characters
(0x01 – 0x1f, 0x7f, 0x80 – 0x9f, 0xff), and EXECUTE only for all others. The
default setting for displayable characters is EXECUTE. All other ASCII and
extended ASCII characters are ignored. The function keys (PF1 to PF24, SPF1 to
SPF24, APP1 to APP24, and ABORT) are not handled through the routing table.
Their routing is always RETURN, and cannot be altered. All other function keys
(EXIT, SPGU etc.) are initially set to EXECUTE.

You can program your application to change key actions at runtime by using
sm_keyoption . For example, to disable the Backtab key, you execute the
following function:

sm_keyoption(BACK, KEY_ROUTING, KEY_IGNORE)

To make the field erase key return to the application program, use

sm_keyoption(FERA, KEY_ROUTING, RETURN)

Logical key mnemonics are defined in the smkeys.h file in the include directory.

Processing Terminal Output
JAM defines a set of logical screen operations (such as positioning the cursor) and
stores the character sequences for performing these operations in a video file
specific to the display. Logical display operations and the coding of sequences are
described in Chapter 7 of the Configuration Guide.

value greater than 0x1ff

value between 0x01 and
0x1ff

changing key actions at
runtime

Processing Terminal Output

47725 Input/Output ProcessingChapter

This section describes the ways in which JAM uses and ultimately, the way
applications use the information encoded in the video files to determine how and
what output your terminal displays.

How JAM Handles Output

JAM uses a delayed write output scheme to minimize unnecessary and redundant
output to the display. No output at all is done until the display must be updated,
either because keyboard input is solicited or the library function sm_flush is
called. Instead, the runtime system does screen updates in memory and keeps track
of the display positions. Flushing begins when the keyboard is opened; but if you
type a character while flushing is in progress, the runtime system processes it
before sending any more output to the display. Therefore, you can type ahead on
slow displays. You can force the display to be updated by calling sm_flush .

Graphics Characters and Alternate Character Sets

Many terminals support the display of graphics or special characters through
alternate character sets. JYACC provides 8-bit alternate character sets (for
example, those that translate from IBM PC extended character to Latin-1). These
tables can be installed by calling the library function sm_xlate_table . Control
sequences switch the terminal among the various sets, and characters in the
standard ASCII range are displayed differently in different sets. JAM supports
8-bit to 7-bit translations via the MODEx and GRAPH entries in the video file.

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a particular
character set. MODE0 must be the normal character set. The GRAPH command maps
logical characters to the mode and physical character necessary to display them. It
consists of a number of entries whose form is

logical value = mode physical–character

When JAM needs to output logical value it first transmits the sequence that
switches to mode, then transmits physical–character . It keeps track of the
current mode to avoid redundant mode switches when a string of characters in one
mode (such as a graphics border) is being written. MODE4 through MODE6 switch
the mode for a single character only.

479

Writing Portable
Applications

This chapter describes features of hardware and operating system software that can
cause JAM to behave in a non-uniform fashion. If you want to create and write
programs that run across a variety of systems, you need to be aware of these
factors.

Terminal Dependencies

Some of the general differences found from terminal to terminal are described in
this section. In addition, recommendations and considerations are included to help
ensure that your application can be ported to terminals that differ from your
development environment.

JAM can run on display terminals of any size. On character-based terminals
without a separately addressable status line, JAM uses the bottom line of the
display—typically, line 24—for a status line, and status messages overlay that
line’s contents. To ensure enough room for status line and screen displays, design
for an average screen size of 23 lines by 80 columns, including the border.

Different terminals support different sets of attributes. JAM makes sensible
compromises based on the attributes available. However, do not design programs

2626

display area

display attributes

Ensuring Portability with Library Functions

480 JAM 7.0 Application Development Guide

that rely extensively on attribute manipulation to highlight data, which might not
be evident on terminals with an insufficient number of attributes. For example,
colors do not display on monochrome terminals. On the other hand, consider
designating the appropriate color combinations in the event that your application is
ported to terminals that support color. Also, use of graphics character sets is
especially terminal-dependent.

Attribute handling can also affect the spacing of fields and text. In particular, if you
design screens to run on terminals with onscreen attributes, leave space between
fields, highlighted text, and reverse video borders for the attributes. Some
terminals with area attributes also limit the number of attribute changes permitted
per line or per screen.

Use color aliases to ensure cross-GUI color compatibility.

The key translation table mechanism supports the assignment of any key or key
sequence to a particular logical character. However, if you make excessive use of
function keys for program control, the number and labelling of function keys on
particular keyboards can cause constraint. For instance, the standard VT100 has
only four function keys. In this case, consider using menus rather than function
keys to implement choice among alternatives.

Use key labels in your key translation file instead of hard-coded key names. This
helps ensure portability to a variety of terminals. With the %K escape, the key labels
can be automatically inserted in field status text and other status line messages. To
include the key name in a field, use the sm_keylabel to return a printable name
of the logical key.

Ensuring Portability with Library Functions

The header file smmach.h contains information that library functions need in order
to deal with certain machine, operating system, and compiler dependencies. These
include:

� The presence of certain C header files and library functions.

� Byte ordering in integers and support for the unsigned character type.

� Pathname and command line argument separator characters.

� Pointer alignment and structure padding.

The header file is thoroughly commented. Follow the directions in the file and use
the information pertinent to your machine and operating system.

key translation

key labels

481

Writing International
Applications

This chapter describes:

� Usage of JAM’s 8-bit internationalization capabilities to support language-de-
pendent applications.

� Translation concerns and issues.

� Translation of your JAM applications for international distribution.

JAM’s Approach to Internationalization

JAM’s support for 8-bit international character sets lets you customize JAM
applications for use in non-English-speaking countries. This means that an
application can be made to look native to the country in which it is being used. All
prompts and messages can appear in the appropriate language, and customs for
formatting dates, currency fields and the like can be observed. So while you might
develop an application in English, you can make sure that your application can be
easily adapted to a non-English-speaking audience as well as to a multilingual
audience.

2727

Localization

482 JAM 7.0 Application Development Guide

The capabilities described here are specific to those languages in which characters
can be represented in 8 bits of information and those that use a left-to-right entry
order. JAM does not support the complexities associated with languages that
observe other conventions.

Supported Features

� JAM uses 8-bit character data without appropriating a bit for internal use.

� Date and time formats and currency formats are specified by you in the JAM
message file, and therefore can be completely language-independent.

� JAM library functions sm_dblval and sm_dtofield , which read and write
real values, respectively, use the C standard library functions atof and
sprintf to interpret the system decimal symbol (radix character) correctly.

� JAM library functions sm_is_yes and sm_query_msg use the characters
designated in the SM_YES and SM_NO entries in the JAM message file.
Therefore, if you translate the message file, the screen use and display of those
values are automatically internationalized. These functions use toupper to
recognize upper-case variations.

Localization

JAM applications can be localized by taking the following steps:

1. Translate all screens in the application via the screen editor or by using f2asc
(page 565 and translate the ASCII output to the desired languages. Refer to
page 490 for other translation options and considerations.

2. Translate and recompile the JAM message file and any application message
files.

3. Translate the documentation.

8-Bit Character Data
JAM supports 8-bit character data. Video files specific to the terminal can give
special instructions, if necessary, on how to display international characters. This is
needed if the terminal requires shifting to a different character set to display
non-ASCII characters. Most terminals used in the international market do not need
to shift character sets.

Localization

48327 Writing International ApplicationsChapter

The video file can also be used to translate between two different standards for
international characters. Thus, screens can be created with one standard and
displayed using a different one.

The use of 8-bit characters for international symbols does not necessarily preclude
the use of graphics for borders, etc. Any unused entries in a character set, such as
0x01 through 0x1f or 0x80 through 0x9f, can be mapped to line graphics symbols.

JAM rarely, if ever, interprets characters present in screens or entered from the
keyboard. Internally it merely manipulates numbers. Any meaning as an alphabetic
character, graphics symbol, or whatever, is generally irrelevant to JAM. Cursor
control keys, such as arrows and TAB, and function keys are all assigned logical
values that are outside the range 0x00 to 0xff, and thus cannot conflict with
international characters.

Keyboards that support international character sets usually produce a single 8-bit
byte (perhaps with the high bit set) for each character. However, there are some
terminals that generate a sequence to represent an international character. If so, you
can use a text editor to map the byte sequences into a logical value, just as the
video file is used to map the logical value to the sequence required by the display
terminal.

For more information on how to display non-English characters or to receive them
from the keyboard, refer to page 473 on keyboard input and terminal output.

Date and Time Fields

The mnemonics for specifying date and time formats are stored in the JAM
message file, and therefore are easily accessible. In addition, they are stored
internally in a tokenized form. This provides two major benefits:

� No parsing of format is required at runtime, thus speeding up processing and
reducing memory requirements.

� Date and time specifications are in formats that can be customized to local
language, thus accommodating both English-speaking and non-English-speak-
ing developers.

For example, an English-speaking programmer can create a date field with the
format mon/day/year , and it might show up on a French system as mois/jour/
annee . Interchanging of month and day is covered later in this chapter.

Table 51 shows the default message file entries for date and time mnemonics.

Localization

484 JAM 7.0 Application Development Guide

Table 51. Default message file entries for date and time substitution variables

Date/Time
tag

Substitution
variable Token Description

FM_YR4 YR4 %4y 4 digit year

FM_YR2 YR2 %2y 2 digit year

FM_MON MON %m month number

FM_MON2 MON2 %0m month number, zero fill

FM_DATE DATE %d date (day of month)

FM_DATE DATE2 %0d date, zero fill

FM_HOUR HR %h hour

FM_HOUR HR2 %0h hour, zero fill

FM_MIN MIN %M minute

FM_MIN2 MIN2 %0M minute, zero fill

FM_SEC SEC %s seconds

FM_SEC2 SEC2 %0s seconds, zero fill

FM_YRDA YDAY %+d day of the year

FM_AMPM AMPM %p am/pm

FM_DAYA DAYA %3d abbreviated day name

FM_DAYL DAYL %*d long day name

FM_MONA MONA %3m abbreviated month name

FM_MONL MONL %*m long month name

The date and time substitution variables correspond to ANSI standards. You can
change them to suit your own needs by simply editing the JAM message file and
then running msg2bin to make the changes available to JAM. For example, to
change the substitution variable for a 4 digit year from YR4 to YYYY, change this
message file line:

FM_YR4 = YR4

to the following format:

FM_YR4 = YYYY

Next, run msg2bin . For information about this utility, refer to page 49 in the
Configuration Guide.

If all development is done in one language, the fact that different mnemonics for
date and time formats can be used for different languages is unimportant. It is

changing the date/time
substitution variables

Localization

48527 Writing International ApplicationsChapter

important, however, to modify an application to operate in a different language.
Only the text on the screens and the message file should require changes.

Consider a screen with a date field of the form DAYA MONA DATE, YR4 . If
executed on a system with an English message file it might appear as follows:

Mon Apr 4, 1989

On a French system, it might look like this:

Lun Avr 4, 1989

This happens without changing the date format. Only the names and abbreviations
of the months and days are changed. These are stored in the message file, so it is a
simple matter to convert them.

Now consider a date field which in English appears as mm/dd/yyyy , but in French
should appear as dd–mm–yyyy. In this case, the date format itself must be
modified. For this reason, 10 additional formats are provided. For instance, you
can specify a new date mnemonic in the message file; call it REGULAR DATE. In
the English message file this can be equated to mm/dd/yyyy and in the French
message file to dd–mm–yyyy. Thus, if the date format is specified as REGULAR
DATE, only the message file, not the screens, needs to be changed to convert the
date field to French format.

For this capability, both the mnemonics and what they represent are specified in
the message file. The actual formats are stored in the message file in tokenized
form so that there is no need for a parser.

Table 52 shows the default message file entries for the extra date mnemonics.

Table 52. Default date/time substitution variables and corresponding formats

Message file
date/time tag

Substitution
Variable Token Corresponding format tag Default format

FM_0MN_DEF_DT DEFAULT %0f SM_0DEF_DTIME %m/%d/%2y %h:%0M

FM_1MN_DEF_DT DEFAULT DATE %1f SM_1DEF_DTIME %m/%d/%2y

FM_2MN_DEF_DT DEFAULT TIME %2f SM_2DEF_DTIME %h:%0M

* DEFAULT %3f SM_3DEF_DTIME %m/%d/%2y %h:%0M

* DEFAULT %4f SM_4DEF_DTIME %m/%d/%2y %h:%0M

* DEFAULT %5f SM_5DEF_DTIME %m/%d/%2y %h:%0M

* DEFAULT %6f SM_6DEF_DTIME %m/%d/%2y %h:%0M

*FM_3MN_DEF_DT through FM_9MN_DEFDT are undefined in the distributed JAM message file.

translating names of
months and days

editing the date format

Localization

486 JAM 7.0 Application Development Guide

Message file
date/time tag Default formatCorresponding format tagToken

Substitution
Variable

* DEFAULT %7f SM_7DEF_DTIME %m/%d/%2y %h:%0M

* DEFAULT %8f SM_8DEF_DTIME %m/%d/%2y %h:%0M

* DEFAULT %9f SM_9DEF_DTIME %m/%d/%2y %h:%0M

*FM_3MN_DEF_DT through FM_9MN_DEFDT are undefined in the distributed JAM message file.

So, if you specify a date field with the format DEFAULT DATE, it appears in
mm/dd/yy form. If you change this message file line:

SM_1DEF_DTIME = %m/%d/%2y

to this:

SM_1DEF_DTIME = %d–%m–%2y

the date appears in dd–mm–yy form. To change the substitution variable for this
date format to REGULAR DATE, modify the message entry FM_1MN_DEF_DT as
follows:

FM_1MN_DEF_DT = REGULAR DATE

Currency Fields
The formatting capabilities for currency fields support any convention you desire.
As with date and time formats, a default format is supplied that causes the actual
format to be taken from the JAM message file.

You can specify the following items for currency fields:

� Radix separator or decimal symbol — Usually period or comma.

� Minimum and maximum number of decimal places.

� Thousands separator — Usually period, comma or blank.

� Currency symbol — Up to 5 characters and its placement.

If you type a currency symbol into a regular field on a screen, you cannot include
trailing spaces, because they are always stripped off. So, to specify a leading
currency symbol separated from the data by a space, for example,
FF 123.456,78 , you must use the message file. For this reason, the period (.)
can be used to signify a space when entered into the currency field. A period in the
message file for this purpose appears as a period.

including spaces in
currency fields

Localization

48727 Writing International ApplicationsChapter

Currency formats are defined as rmxtpccccc:

r Radix separator or decimal symbol, usually a period or comma.

m Minimum number of decimal places.

x Maximum number of decimal places.

t Thousands’ separator. for example, a comma or period; b for a blank.

p Placement of currency symbol: l for left, r for right, or m indicating
at decimal point.

ccccc Currency symbol: up to 5 characters, including blank spaces.

Therefore, in the format ”.22,l$” , the period/decimal point represents the r; 2
represents m and indicates the minimum number of decimal places; 2 represents x
and indicates the maximum number of decimal places; the comma represents t and
serves as the thousands’ separator; l represents p and indicates that the currency
symbol be placed on the left; the dollar sign ($) represents ccccc, the currency
symbol.

Therefore, if you specify a currency field with the format Local currency , it
appears in $999,999.99 form. If you change this message file entry:

SM_0DEF_CURR = ”.22,l$”

to this format:

SM_0DEF_CURR = ”,22.lFF”

the field displays data in the form FF 999.99,99 .

To change the mnemonic for this currency field, modify the message entry
FM_0MN_CURRDEF. Table 53 shows the default formats and currency mnemonics
for message file entries.

Table 53. Default message entries for defining currency formats

Currency tag
Substitution
variable

Corresponding
format tag Default Format

SM_0MN_CURRDEF Local cur -
rency

SM_0DEF_CURR ”.22,l$”

SM_1MN_CURRDEF 2 decimal
places w/
commas

SM_1DEF_CURR ”.22,”

SM_2MN_CURRDEF 0 decimal
places w/
commas

SM_2DEF_CURR ”.00,”

*SM_3MN_CURRDEF through SM_9MN_CURRDEF are undefined in the JAM message file.

changing a currency
mnemonic

Decimal Symbols

488 JAM 7.0 Application Development Guide

Currency tag Default Format
Corresponding
format tag

Substitution
variable

SM_3MN_CURRDEF DEFAULT SM_3DEF_CURR ”.22,”

through DEFAULT SM_4DEF_CURR ”.22,”

SM_9MN_CURRDEF DEFAULT SM_5DEF_CURR ”.22,”

are undefined in the DEFAULT SM_6DEF_CURR ”.22,”

JAM message file DEFAULT SM_7DEF_CURR ”.22,”

DEFAULT SM_8DEF_CURR ”.22,”

DEFAULT SM_9DEF_CURR ”.22,”

*SM_3MN_CURRDEF through SM_9MN_CURRDEF are undefined in the JAM message file.

Decimal Symbols
JAM accommodates three decimal symbols which are used in different circum-
stances:

System Decimal Symbol
The character obtained from the operating system (if supported by the operating
system) (refer to the Installation Notes for your operating system), and used by C
library routines like atof and sprintf . The default is period.

Local Decimal Symbol
Used when local customs are followed (dot in English; comma in French).
Obtained from the operating system if supported by the operating system) (see the
JAM Installation Notes for your operating system). The Local Decimal Symbol
may be specified in the message file (tag entry SM_DECIMAL), in which case it
overrides the system decimal symbol. Period is the default if no symbol is specified
in the message file and if the operating system does not supply one.

Field Decimal Symbol
Specified for a given field if that field is not observing local conventions.

The sections below describe the circumstances under which each of the different
symbols is used.

Keystroke Filter Translation
The one time that JAM requires some knowledge of the meaning of the data is
while enforcing the keystroke, or character, filters on a field. The filters are digits
only, numeric, alphabetic, alphanumeric, yes/no, edit mask, and regular expression.

Translation Considerations

48927 Writing International ApplicationsChapter

To validate the data, JAM uses the standard C macros: isdigit , isalpha , etc.
JAM assumes that the operating system supplies these macros in a form suitable
for international use. In the absence of such operating system support, care should
be taken when using these capabilities.

Special code is used to process numeric fields since C does not provide an
“isnumeric” macro. If the field has a currency edit, JAM uses the Field Decimal
Symbol to validate the numeric entry. If the field has no currency edit or the
currency edit has no decimal symbol specified, JAM uses the Local Decimal
Symbol.

Yes/no fields have always been internationalized in that the yes and no characters
(y and n in English) are specified in the message file. Although some vendors
supply information about these characters, the proposed ANSI standard does not
address the issue. Therefore, for reasons of portability, JAM continues to use the
message file for this data.

Upper and lower case fields will also behave properly provided that toupper and
related functions are language dependent. The present code assumes that the return
from toupper is appropriate for an upper case field. Therefore a lower case letter
can appear in such a field if there is no upper case equivalent for that letter. (The
German “double s” has no upper case equivalent.)

In processing regular expressions, JAM uses the ASCII collating sequence for
ranges of characters. Therefore, this expression matches only English lower-case
letters:

[a–z]*

The European character ä, for example, is not matched by this expression.

Translation Considerations
This section describes some of the things you should take into account when you
release your application to an international audience. You can easily modify JAM
to meet your particular needs and in some cases, JAM handles the translation
internally. This section describes:

� How JAM interprets language-specific information.

� Things to consider when you are in the process of developing an application
that needs to be internationalized.

Translating Status and Error Messages
Runtime messages and prompts produced by JAM are stored in the JAM message
file so they can be easily localized. Each message is a complete phrase or sentence.

Translation Considerations

490 JAM 7.0 Application Development Guide

Message components are structured in such a way to make translation to a
non-English sentence structure can be easily managed.

In addition, you might consider adding an identifier to each message so that editing
a translated message file can be easily handled. This can facilitate the maintenance
of multiple message files as well.

Logical key mnemonics such as XMIT and EXIT are not translated to other
languages, nor are the mnemonics used in the video file, so the internal processing
of the utilities need not be modified.

Refer to page 47 in the Configuration Guide for details on modifying the JAM
message file.

Translating Screens in Application Programs
There are a number of approaches to translating your application screens. If your
application requires translation for international distribution, consider the
following questions:

� How many translations are needed?

� Do users need access to multiple languages at runtime? When they start the
application only, or during a session?

� Is the application relatively complete and static, or are changes and enhance-
ments still be made?

The answers to these questions determine which method to use. In any event you
must provide the translator with the information that needs to be translated, and
pictures of the screens to provide some context. In addition, screen size and
spacing should be considered when translating screens to other languages.

There are essentially three different approaches you can take to provide an
application to a multilingual audience. Each approach requires some up-front
planning, and some development strategy. The localization process can be
performed at:

� Distribution time

� Installation time

� Runtime, which can be either at startup or dynamically at the user’s request.

There are probably several ways to approach the development of a product that
needs to be translated and distributed in multiple languages. One of the most
obvious methods is to simply translate application screens to each of the languages

Translation Considerations

49127 Writing International ApplicationsChapter

that you support. How you release these language-specific screens can be handled
in a variety of ways as well, regardless of when the localization process takes
places. You can use JAM configuration variables to identify the desired set of
screens. For example:

� Create multiple libraries; each one contains a set of screens translated to a
specific language. By setting the SMFLIBS configuration variable either at
distribution, installation, or runtime, you or a user can access the desired
language-specific library.

� Store sets of screens in language-specific directories. By setting the SMPATH
configuration variable you or a user can define which directory to search at
runtime. For example, your application might have a Spanish directory as well
as many other directories. Upon installation, the user can specify the desired
directory path in the SMPATH variable.

� Create sets of screens corresponding to each language; name the screens using
an extension that identifies the language, such as logon.eng for English and
logon.fre for French. Use the SMFEXTENSION variable, which identifies
screen filename extensions, to define which screens to open. To implement
this change dynamically, you can use the library function sm_soption . In this
way, the user can choose, for example, a radio button, which sets the variable
SMFEXTENSION to open the .fre screens.

The following sections describe only some of the other methods you can consider
when you are developing your application.

A distribution translation means that when the application leaves your facility, it is
released with a specific set of screens. The end user receives exactly what you
send.

Method One
Develop language-specific repositories. At distribution time, use the binherit
utility (refer to page 66) to update the content of each screen by using the
appropriate repository for the required language.

Method Two
At design time, define the initial text for all widgets as a variable or token, for
example %Name%, %Address%, etc. When the screens are completed, use the
f2asc utility (refer to page 565) to convert the binary screens to ASCII format.
Provide your translator with the tokenized references. Then develop a translation
script that will search the ASCII file and replace the token with the translated
constant. The function of the translation utility would be to find and replace
tokenized text, replacing %Name% with Name for English, or Nom for the French
version.

using configuration
variables

Distribution
Translation

Translation Considerations

492 JAM 7.0 Application Development Guide

Each ASCII translation can be easily maintained and updated as screens change.

Once the ASCII translations are made, they can be converted back to screens in
binary format (with f2asc) and distributed accordingly.

Advantages to these methods are:

� File naming conventions can be adhered to across all libraries.

� Screen dimensions and widgets can be easily adjusted and repositioned to
accommodate languages and sentence structure that might require more space
on a screen.

� Adding a new language only requires a new translation.

Disadvantages to these methods are:

� Maintenance across many different languages can be time consuming.

� You must distribute more than one library to an end user who requires more
than one language.

� Languages cannot be changed dynamically at runtime.

An installation translation means that the application is packaged with more than
one language, and the desired language is installed. You can provide an installation
mechanism whereby the user can set a JAM configuration variable (see page 491)
to point to and open a set of language-specific screens.

Advantages to this method is that the end user can decide which language to
install.

Disadvantages to this method are:

� Requires disk space to accommodate storage of multiple sets of screens.

� Languages cannot be changed dynamically at runtime.

A runtime translation means that the end user can dynamically change languages at
runtime. Depending on your users requirements, they may only need to select a
preferred language at start up, or they may need to change languages during a
session.

Method One
A start up method can be implemented in the same way described for an
installation translation. Essentially, you provide some mechanism whereby the user
can choose which language to display. For example, on a logon screen you could

advantages

disadvantages

Installation
Translation

Runtime
Translation

Translation Considerations

49327 Writing International ApplicationsChapter

provide radio buttons that correspond to each supported language. The user can
choose the desired language. This in turn, would set a configuration variable to
point to and open the appropriate library, directory, or set of screens.

An advantage of this method is that a multilingual organization can easily run the
application; each user can choose their preferred, or native language without
requiring a reinstallation of the software.

A disadvantage of this method is that the installation requires enough disk space to
accommodate all the translated screens.

Method Two
Design your screens to include all translations in one screen binary. You can do this
by creating dynamic labels as scrolling arrays with only one onscreen occurrence,
and then synchronizing all the label arrays on the screen, you can provide an
occurrence for each language you support. The user, via a programmatic call, can
scroll the array to the language of choice. For example, the third occurrence might
be Italian, while the fourth occurrence is Japanese. So, if the user chooses Italian,
via a screen entry function the third occurrence is displayed. If Japanese is
specified, the labels can be programmatically scrolled to the fourth occurrence and
so on.

Advantages to this method are:

� All translations exist in one place with each screen binary.

� The user can choose, while working in the application, which language to
display.

A disadvantage to this method is that some translations require more space than
others; your screens must be designed with these limitations in mind.

Interpreting Range Checks

Range checks for numeric data are handled by the C library routine atof
(assuming that the “strip” routine works properly).

One of the major issues for internationalization is the collating sequence of a
language. For dictionary or telephone book processing the problem is particularly
troublesome. For example, upper- and lower-case letters are compared equally.
Also, in a telephone book, St. and Saint are compared equally, hyphens are
ignored, etc. In some languages even less demanding applications pose severe
problems. For example, ligatures compare equally to pairs of letters. The
placement of vowels with diacritical marks varies widely even among countries
using the same language.

of numeric data

of alphabetic data

Translation Considerations

494 JAM 7.0 Application Development Guide

The proposed ANSI standard specifies a routine, strcoll , that can be used to
expand the word into a format suitable for comparison by strcmp . These routines
assume that the data supplied is a word in the local language. They will give
unexpected results on non-language data.

JAM is not designed to process languages in a way that requires such niceties. It
does sort names of fields and other objects, but that is done only to speed look-up.
As long as the sort routine and the search routine use the same algorithm, things
will work.

In JAM, range checks are often given on non-language data. For example a menu
selection might have a range of a to d. In certain languages an umlaut would fall
into that range if a language-specific comparison was made. This effect would
complicate screen design. Different screens would be needed for different
countries, even if they used the same language.

The C routines strcmp and memcmp are used to range check on non-language data.
The routines compare the internal values of the characters, without regard to their
meanings in the local language.

Interpreting Math Calculations

The keywords @sum (yields the sum of all occurrences in given array) and @date
(yields the number of days between 1/1/1753 and the argument to @date), though
language-specific, can be computed accurately based on formats stored in the JAM
message file. Computations with dates assume the Gregorian calendar. No
provision is made for other calendars.

of non-language data

495

JAM Debugger
Whereas we may intuitively think of an application’s behavior as being dictated by
user actions, it is more accurate to say that an application’s behavior is determined
by the interactions of the application’s components, one of which is user actions.
The components of a JAM application are:

� JAM events, internal actions that cause a change in the processing flow of the
application, such as a screen exit.

� JPL code.

� Data within JAM variables.

� JAM screens.

� Widgets, such as controls for your JAM screens.

� User actions, more generally, user events.

Debuggers are essential tools for programmers building complex applications. The
JAM debugger is provided as an aid to JAM application developers. The JAM
debugger analyzes the application components and allows you to view the
application’s execution from various perspectives with varying degrees of detail.

Debugger Features
The debugger lets you perform these tasks:

� Step through events, stopping at your discretion to examine data.

2828

How the Debugger Works

496 JAM 7.0 Application Development Guide

� Set breakpoints at events or JPL code on which to interrupt program
execution.

Breakpoints can be set on GUI events such as screen and field events, program
execution events such as database and transaction manager events, as well as
source code locations. A further refinement of event filtering is available for
certain GUI events: breakpoints on screen, field, group, and grid events can be
further restricted to specific sub-events.

� Examine application data:

• data in JAM variables and arrays

• screen properties

• widget properties

• monitor the value of a JPL variable or expression

� Step through your JPL code.

An improved source browser screen allows you to view source code modules
from disk files, open libraries, memory resident modules, public JPL modules,
the window stack and the program stack. Breakpoints can be set on their
contents.

� Call a function.

When program execution is interrupted, you can direct the debugger to invoke
an installed function or a JPL procedure, or evaluate a JPL expression.

� Stop at a change in a variable or expression.

� Run the debugger in expert mode.

Set the debugger to expert mode and take advantage of advanced features from
the Tools menubar option, such as: calling installed functions, application data
watch, sorting breakpoints and other useful features. In normal mode (the
default), breakpoint events are predefined, requiring only activation by the
user to make use of event filtering.

� Review debugger activity in the log file.

Debugger messages can be written to a user-specified log file. An option is
available to dump the contents of all current debugger windows to the log file.

How the Debugger Works
Many debuggers do their work by invoking the applications they analyze. The
JAM debugger is different. It is invoked by your application, that is, by JAM.

How the Debugger Works

49728 JAM DebuggerChapter

When the debugger is linked in and initialized, as it is in the development
executable jamdev , JAM will notify it of each significant event in the application,
as it occurs. Each time it is called in this way the debugger analyzes the event and
saves any information it needs. In most cases the debugger then immediately
returns control to the application, giving no indication of its presence. Some
events, however, cause it to emerge from the background—awaken—to halt the
application and display its state.

The DBUG key immediately awakens the debugger. On other events, the debugger
recalls what you have directed it to do and awakens accordingly—for instance, if
the event triggers a breakpoint you have defined, or if the value of an expression
you are monitoring has changed. The debugger comes to the foreground and awaits
your actions: provide additional analysis of the application, modify data, set
breakpoints, or put it back to sleep and return control to your application.

The View Menu: Debugger Views Into Your Application

The debugger provides several windows to monitor application execution, each
offering a different view into the application. The windows can be opened and
closed from the View menu by choosing from these options:

Status
Displays the current debugger operation or the event currently being traced.

Source Code
The Source Code window displays JPL for internal or external modules. A
breakpoint at the current line in the displayed code (where the text cursor is) can be
set or un-set by choosing Breaks⇒ Toggle Location Break. A breakpoint can be set
or un-set at any line in the displayed code by double-clicking anywhere in the line.
Breakpoints are identified by an asterisk following the line number. For more
information on using the Source Code window, refer to page 505.

Figure 30. The Source Code window displays a file with a breakpoint set at line 44.

How the Debugger Works

498 JAM 7.0 Application Development Guide

Breakpoints
This window lists all the breakpoints. Activation of a breakpoint is indicated by a
“+” (active) or “–” (inactive) preceding the breakpoint. Activate or deactivate the
breakpoint currently selected by choosing Breaks⇒ Enable or Breaks⇒ Disable.
Alternatively, the activation state of a breakpoint can be toggled by double-clicking
on the line. Use Breaks⇒ Select All if you want to enable or disable all breakpoints
listed.

Figure 31. The Breakpoints window shows currently identified breakpoints.

In normal mode, the following predefined breakpoints are listed in the Breakpoints
window: Screen Events, LDB Events, Control Strings, JPL Trace, Field Events,
Group Events, Installed Functions, Database Events, TM Events and Grid Events.
Any location breakpoints that are set will also appear in the window, as will any
breakpoints you create in expert mode. Note that if the debugger is run in expert
mode, the predefined list of breakpoints will be removed. Refer to page 512 for
more information on setting breakpoints.

If a selected breakpoint is a location breakpoint, you can choose
Breaks⇒ Show Source to view the source code.

For more information on this window, refer to page 512.

Data Watch
In this window you can monitor the values of any variables, JPL expressions, or
values of properties. Enter the name of the variable or the expression. The values
are updated and displayed as execution proceeds.

Event Stack
During JPL or control string execution, this window shows the hierarchy of nested
calls to procedures/control strings.

Configuring the Debugger

49928 JAM DebuggerChapter

Figure 32. View the call hierarchy in the Event Stack window.

Pending Keys
Displays which keys are pushed onto the input queue.

Configuring the Debugger
Debugger operation preferences are set from the Options menu, and saved in the
file jamdebug.cfg , in the current working directory. You should not manually
modify this file.

Log File Preferences
Debugger activity can be logged to a user-specified file. Log file preferences are
set in the Status Log Options window. Choose Options⇒ Status Log... to raise the
Status Log Options window.

Figure 33. The Status Log Options dialog allows you to specify your log file preferences.

In this window you can:

� Enable the log file – all events will automatically be logged from the start of
the session.

Configuring the Debugger

500 JAM 7.0 Application Development Guide

� Specify the log file to which debugger activity messages should be logged.
The default file is jamdebug.log in the current working directory.

� Specify whether or not to append to the existing log file or overwrite it.

� Specify whether to log a date/time stamp to each new entry in the log file.
Note that performance may improve on some platforms if this option is not
set.

While in the debugger you can view the contents of the log file at any time by
choosing File⇒ Open⇒ Log File.

Other Debugger Preferences

The following debugger preferences are available directly from the Options menu :

Save Preferences on Exit
Save Preferences on Exit automatically saves for future sessions the window
configuration and other debug settings that are in effect when you exit this session.
This also has the effect of saving the contents of any Data Watch and Breakpoints
settings. Contrast with File⇒ Save Preferences, which saves preferences
immediately.

Expert Mode
Choose whether to run the debugger in expert mode.

Auto Raise/Close
This option provides for automatic window management. When set, upon entry, the
debugger determines which windows contain any relevant data at the moment, and
raises them accordingly. It also closes those that were open during the last
debugger invocation if they do not have any relevant data.

When this option is disabled, the debugger, when awakened, restores its windows
exactly as you left them.

Animation
Set Animation to execute the debugger in animation mode. The debugger will
show changes to its windows as the occur, while waiting for a breakpoint to be
executed.

Trace Database Warnings
Include all warnings in Database events tracked by the debugger.

Accessing the Debugger

50128 JAM DebuggerChapter

Trace TM Warnings
Include all warnings in transaction manager events tracked by the debugger.

Accessing the Debugger

JAM is shipped with the debugger already linked in. The debugger runs in the
background during test and application modes. Once the debugger has been
enabled, debugger windows automatically come to the foreground when a break
event or breakpoint occurs. You can also manually break execution and open the
debugger windows by pressing the DBUG key, or by choosing
Options⇒ Debugger. The debugger can be setup and activated in test and
application mode, and it can be enabled in edit mode for immediate activation in
test mode.

Enabling the Debugger from the Screen Editor

To enable the debugger from the screen editor, choose Options⇒ Enable Debugger
from the menu bar to instruct the debugger to awaken immediately upon entry into
test mode.

Database Import Tracing in the Screen Editor

The debugger can be invoked from the screen editor to trace transaction manager
import JPL. To trace any JPL import code, it must be in ASCII format. In the JAM
distribution, the JDB import table code exists in binary format (dmjdb.bin). You
must first convert any database import code to ASCII format with the f2asc
utility. Follow these steps to trace TM import code in the screen editor:

1. Be sure the JPL import code is in ASCII format.

2. Connect to the database and open the repository.

3. Enter test mode.

4. Enter the debugger, choose View⇒ Breakpoints and activate the TM Events
breakpoint.

5. Exit to the screen editor.

6. Choose Options⇒ Debugger Config... Check Enable Debugger and Trace TM
Import.

Accessing the Debugger

502 JAM 7.0 Application Development Guide

7. Choose File⇒ Import⇒ Database Table to wake up the debugger and display
the code in a window.

8. You can now use the function keys to trace through the JPL code:

Key Function

F8 Trace⇒ To Event⇒ This Level

F9 Trace⇒ To Event⇒ Any Level

F10 Trace⇒ To Breakpoint

Accessing the Debugger in Test or Application Mode

Within test mode, you can enter the debugger by choosing Options⇒ Debugger, or
by pressing the DBUG key. To put the debugger to sleep and return to test mode,
choose File⇒ Resume Application.

From application mode, if you have not yet opened your application, or if the
application menu bar is not displayed, the debugger can be entered by choosing
Options⇒ Debugger from the JAM menu bar, or by pressing the DBUG key. If the
application menu bar is displayed, you can enter the debugger by pressing the
DBUG key. Alternatively, you can switch menu bar scope to jamdev by pressing
the SFTS logical key, from where you will have access to Options⇒ Debugger.

Exiting the Debugger

The File menu contains two options that let you exit a debugger session:

� File⇒ Resume Application puts the debugger to sleep. JAM preserves the
previous debugger state; if the debugger is re-entered, all break points and
configuration preferences remain unchanged. However, all breakpoints and
break events are ignored until you explicitly reactivated the debugger. If you
invoked the debugger from test mode, Resume Application will return you to
test mode.

� File⇒ Exit Application aborts the current JPL execution and quits the
debugger. If you entered the debugger from application mode, Exit Applica-
tion gives you the option of returning to application mode or exiting JAM to
the operating system. If you were in test mode, it returns you to the screen
editor. Use this option to break out of infinite loops.

The Debugger Menu Bar

50328 JAM DebuggerChapter

The Debugger Menu Bar

The debugger menu bar provides you with easy access to debugging operations.
Following is a brief overview of the File, View and Tools menu options. The
features controlled by the remaining menu options are described in their own
task-defined sections; a cross-reference is defined for these options.

Figure 34. The Debugger menu bar. Note that the Tools menu only appears if the Debugger is
run in expert mode.

File
The operations associated with the File menu are:

Open
Allows you to open a source module, the current source code, or the log file.
Whichever is chosen, the data will be displayed in the Source Code window. For
more information on Source Code window operations, refer to page 505.

Close Window
Choose to close the active window. If you attempt to close the last remaining
window, the debugger presents a message dialog requesting confirmation that you
want to quit the debugger.

Save Preferences
Choose to save for future debugger sessions the window configuration and other
debug settings that are in effect at the present time. Using this setting, you can
establish the preferences you want for future debugger sessions, but remain free to
make any changes in the present session that will not affect the saved preferences.
Contrast with Options⇒ Save Preferences on Exit, which will save them at the state
they are in when you exit. For more information on setting debugger configura-
tions, refer to page 499.

Resume Application
Choose to put the debugger to sleep. Exit the debugger with Resume Application
when you wish to continue executing your application.

The Debugger Menu Bar

504 JAM 7.0 Application Development Guide

Exit Application
Choose to exit the debugger when you wish to quit execution of your application
and return to application mode, or quit JAM entirely.

For more information on Resume Application and Exit Application, refer to page
502.

Tools
The Tools menu can be only accessed when the debugger is running in expert
mode, accomplished via the Options menu. The following features are available
from the Tools menu:

Application Data
Choose to instantly view and access any variable displayed in the Source Code
window. For information on using the Application Data window, refer to page 518.

Call...
Choose Tools⇒ Call... to raise the Call Installed Function window. Enter the name
of any available prototyped function, along with any arguments. The return value,
if any, will be displayed in the status window after the function returns. The
function call will be logged to the log file if it has been enabled.

Sort Breakpoints
This feature sorts all breakpoints listed in the Breakpoints window. First the
activated breakpoints are listed alphabetically, then the inactive breakpoints.

Sort Watch Data
This Tools feature allows you to sort all variables and/or expressions listed in the
Data Watch window. For further information on this window, refer to page 517.

Write Windows to Log
Use this option to write the contents of the debugger screens to the log file. The log
file has to be enabled for this to take affect. The log file is enabled by setting the
Enable Status Log check box found on the Status Log Options window; this
window is opened from the Options menu.

Once the log file is enabled, this Tools feature writes the contents of the active
debugger screens to the log file.

View
The debugger provides several windows to monitor your application’s execution.
Refer to page 497 for a full description of the options available from the View
menu.

Viewing JPL

50528 JAM DebuggerChapter

Windows Menu
Options available from the Windows menu allow you to:

� Bring a chosen window into focus.

� Arrange the debugger windows in either tiled or cascade format.

� Choose an application window to examine its programmatic components. For
information on viewing application screen information, refer to page 509.

Edit

The Edit menu commands provide standard file editing operations, such as Copy,
Paste, and string search commands Find and Find Next, that you can use when
accessing text data in the Source Code window. For more information on the
Source Code window, refer to page 505.

Trace

The Trace features allow you to step through program execution one event or
breakpoint at a time. For more information on tracing, refer to page 511.

Breaks

Commands from the Breaks menu are used to establish and manipulate break
points in your application—places where execution will be interrupted and the
debugger will assume control. For further information on setting breakpoints, refer
to page 512.

Options

Choose from the Options menu to set your debugger preferences. For information
on debugger preferences and configuration, refer to page 499.

Viewing JPL

Choose View⇒ Source Code to open the Source Code window and view source
code from your application. Use this window to view screen, widget, and grid

Viewing JPL

506 JAM 7.0 Application Development Guide

validation JPL, as well as external JPL modules. Breakpoints can be set on any line
of code that is displayed in the window. The Edit menu provides string search
capabilities that you can use to locate strings in the displayed code.

The Source Code window can display any JPL code contained within your
application. The JPL code can be:

� Current source code — the source that is currently being executed. The current
source code is automatically displayed when the debugger is stepping through
it.

� Active source code — code that is on the program stack, where it may be
waiting for current or intermediate JPL or some other event to complete.

� Inactive source code — JPL procedures that are part of the application but
have not yet been called or have already returned. If inactive source code is
read into the Source Code window, it is referred to as called-up source code.

To read called-up source code into the Source Code window, choose
File⇒ Open Source Module to gain access to the debugger’s file browsing
mechanism. In this way you can also view any text files in the Source Code
window (including C source code files), but you cannot set breakpoints in
them.

File Browsing: Begin at the Open Source Module Window

The Open Source Module window is used to read a module into the Source Code
window. It is also used to select a module from which to establish a location
breakpoint.

Figure 35. The Open Source Module is used to read a module into the Source Code window or
select a source file for the Edit Breakpoint window in Location mode.

To read a JPL module into the Source Code window:

Viewing JPL

50728 JAM DebuggerChapter

9. Choose File⇒ Open⇒ Source Module.

The debugger opens the Open Source Module window.

10. Choose Browse in and select the location of the module from the menu
selections that appear:

• Disk Files — any screen or JPL file

• Open Libraries — JPL or screens in any open library

• Memory Resident Modules — screens compiled into your application

• Public Files — JPL files loaded by the public command

• Program Stack — currently active JPL

• Window Stack — open screens

If Disk Files is chosen, a file selection box opens from which you can choose
the file. If any of the other locations are chosen, the Browser window is
opened. The title bar on the browser window will reflect the location chosen.
If there is no source code available for the chosen location, a message dialog
informs you.

Figure 36. The Browse window displays the available JPL code corresponding to the browser
location selection. Here, Browse in, Window Stack is chosen, and this is reflected in
the title bar.

11. Select the file from the file selection box or the browser. Choose OK to accept
the selection and dismiss the file selection box or the browse dialog and send
the module to the Open Source Module window. The type of the module
selected is automatically set in the Load Module as: field. The type will be
one of:

Viewing JPL

508 JAM 7.0 Application Development Guide

• JPL File

• Screen JPL

• Field JPL

• Grid JPL

• Text File

If a request to open a JAM screen file (.jam) contains JPL modules of more
than one type, for instance screen, field, and grid widget JPL, the choices are
presented in the Load Module as: field, from which you must select the
type of the JPL module you are interested in.

Figure 37. A JAM screen file on disk is selected for viewing.

12. Choose OK in the Open Source Module window to accept the choice and
dismiss the window.

The debugger displays the Source Code window with the contents of the specified
module.

Figure 38. The Source Code window displays screen JPL code from the video list screen from
the Videobiz sample application.

Viewing Application Screen Information

50928 JAM DebuggerChapter

To toggle a breakpoint on or off on the current line of code displayed in the Source
Code window, choose Breaks⇒ Toggle Location Break, or simply double-click
anywhere in the line. Breakpoints are identified by an asterisk following the line
number.

Viewing Application Screen Information

The debugger provides access to all the programmatic components of your
application screens. Select the screen to examine by choosing
Windows⇒ Application⇒ application-screen. The following choices are available
from Application Window on the menu bar:

Screen JPL
Select this option to view screen JPL in the Source Code window. This is an
alternative to using File⇒ Open⇒ Source Module (refer to page 505).

Screen Information
This selection opens the Screen Inquire window that displays screen information:

Figure 39. This Screen Inquire window displays useful information on a screen from the
Videobiz sample application.

The Show JPL button is enabled if the screen has its own JPL module.

Field Information
This selection opens the Field Inquire window that displays the information related
to fields on your application screen:

Set Breakpoints
in the Source
Window

Viewing Application Screen Information

510 JAM 7.0 Application Development Guide

Figure 40. The Field Inquire window displays useful information on a field on a screen from
the Videobiz sample application.

If the field has its own JPL, the Show JPL button is enabled.

Group Information
This selection opens the Group Inquire window that displays information related to
groups on the screen:

Figure 41. The Group Information window.

Stepping through Program Execution

51128 JAM DebuggerChapter

Control Strings
This option invokes the Control Strings window, which shows all function keys
and JAM logical keys that are assigned control strings at the application and the
screen level.

Figure 42. The Control Strings window shows that the exit JAM function is attached to the
JAM EXIT key.

Done
Choose Done to return to the debugger menu bar.

Note: To see additional properties or attributes of any screen or widget you can
use the JPL properties syntax to define an expression in the Data Watch or
Application Data windows. Refer to page 518 for information on using the
Application Data window. Refer to page 517 for information on using the Data
Watch window. For information on JPL properties syntax, refer to page 24 in the
Language Reference.

You can use Data Watch to inspect a property of the application, a screen, or
widget, with an expression using the JPL properties syntax.

Stepping through Program Execution

When the debugger breaks program execution and comes to the foreground, you
can step through the execution of your application with the options provided by
Trace. In normal (non-expert) mode, the Trace menu has these options:

Trace⇒ To Any Event
If the current context is a JPL procedure or control string, the debugger steps to the
next executable statement or string and stops. Otherwise, the debugger stops at the
next event.

Trace⇒ To Breakpoint
Program execution resumes until the next breakpoint is reached.

Setting Breakpoints

512 JAM 7.0 Application Development Guide

If you run the debugger in expert mode you can fine tune tracing to differentiate
between parent, child, and same-level events. Trace⇒ To Event⇒ Any Level is
identical to normal mode Trace⇒ To Any Event, and Trace⇒ To Breakpoint is the
same in both modes.

Trace⇒ To Event⇒ Any Level
If the current context is a JPL procedure or control string, the debugger steps to the
next executable statement or string and stops. Otherwise, the debugger stops at the
next event.

Trace⇒ To Event⇒ This Level
If the current context is a JPL procedure call, the debugger “steps over” that
procedure’s statements, and breaks on the next statement at the same level, if any.
If the context is a control string, the debugger steps over any strings embedded
within it. Otherwise, the debugger breaks at the next event ignoring sub-events.

Trace⇒ To Event⇒ Higher Level
The debugger recognizes breaks only at the next level up in the event stack. If
execution is already at the topmost level, program execution resumes, breaking
only for JPL breakpoints.

Note that the debugger provides toolbar icons and keyboard accelerators to execute
tracing commands, providing a more efficient method to step through program
execution.

Automatic Stepping Using Animation
The debugger can be set to run on ‘automatic pilot’, where application execution
events can be observed hands-off in the various View windows. To enable this
feature, toggle on Animation (choose Options⇒ Animation), and then choose
Trace⇒ To Breakpoint. The debugger refreshes all open windows on each
execution event until the next breakpoint occurs. For example, if the Source Code
window is open, the debugger scrolls through each line in the current JPL
procedure as it executes; if the Data Watch window is open, variable values are
refreshed whenever they change.

Animation proceeds until it is explicitly turned off from the Options menu. You can
also interrupt animation with the EXIT key.

Setting Breakpoints
The debugger recognizes all major execution events in a JAM application as
potential breakpoints—that is, events on which the debugger assumes control.

Expert Mode

Setting Breakpoints

51328 JAM DebuggerChapter

Breakpoints can be set at:

� Locations in code: JPL statements (within screen, widget, and grid validation,
as well as in files).

� Program execution events and sub-events.

� A change in the value of a variable or expression.

Note: The debugger gets control at every execution event and potential break-
point. The debugger then decides whether or not to awaken, and whether or not to
break execution. It makes the decision whether or not to awaken based on the
user’s Trace choice, and whether breakpoint conditions are satisfied.

If you are not running the debugger in expert mode, you can set location
breakpoints in the Source Code window and modify the predefined execution
events in the Breakpoints window. However, in expert mode, you also have
available the Edit Breakpoint window, from which you can add and modify
breakpoints of both types.

Location Breakpoints

Location breakpoints are JPL statements that are marked in order to stop program
execution and bring the debugger to the foreground whenever JAM encounters it.
You can set breakpoints on any JPL code that is displayed in the Source Code
window. To set a breakpoint, select a line of code and choose
Breaks⇒ Toggle Location Break, or double-click on the line. The debugger
prefixes the line with an asterisk (*).

To clear a breakpoint from a specific JPL statement, use the same procedure for
setting the breakpoint—setting and clearing breakpoints is a toggle-state process.

Breakpoints can be set on both called-up source code as well as current (active)
source code. Refer to page 505 for further information.

Setting Breakpoints on Execution Events

The JAM debugger provides breakpoint access at a variety of execution events. A
finer control of event filtering is available for certain GUI events when running the
debugger in expert mode.

Choose View⇒ Breakpoints to display the Breakpoints window. The predefined
events are already listed. To activate an event selected in the list, either double-
click on the item or choose Breaks⇒ Enable. Disable a breakpoint by double-click-

Normal Mode

Setting Breakpoints

514 JAM 7.0 Application Development Guide

ing or choosing Breaks⇒ Disable. Activation of an event breakpoint is indicated by
a plus sign (+) prefix. If the breakpoint is not activated, it is prefixed with a minus
(–).

You can set breakpoints on these predefined execution events:

Screen Events
Break on all screen entry and exit events. Screen events have sub-events defined,
which you may selectively enable in expert mode.

LDB Events
Break on each LDB read or write operation.

Control Strings
Break on execution of each control string. If you have embedded control strings,
the debugger breaks on each of these depending on the current “step” level.

JPL Trace
Break on every line of JPL execution. To step through each line of code, choose
Trace⇒ Breakpoint. To break at a specific line of line, toggle break on the line in
the Source Code window and turn off JPL Trace in the Breakpoints window. Trace
to Breakpoint will then continue execution and break at the specific line of code.

Field Events
Break on all field entry, validation, and exit events. Field events have sub-events
defined, which can be accessed in expert mode.

Group Events
Break on all group entry and exit events. Group events have sub-events defined.

Installed Functions
Break when JAM is about to call any C function. Installed functions are C
functions that are either installed by calling sm_install or are identified in
funclist.c . The debugger recognizes calls to automatic functions, for example,
the automatic screen function that is called on all screen entry and exit events, as
well as other contexts where a C function can be called, for instance in a control
string, with the JPL CALL statement, or upon field entry.

Database Events
Break on any database interface event, including DBMS commands and SQL
statements.

Setting Breakpoints

51528 JAM DebuggerChapter

TM Events
Break on any transaction manager event. This includes transaction manager
commands, requests and slices.

Grid Events
Break on any grid widget events. Grid events have sub-events defined, which can
be accessed in expert mode.

Event Filtering in Expert Mode with the Edit Breakpoints Window
Expert mode provides access to sub-event filtering. In expert mode, the
Breakpoints window is initially empty. Use the Edit Breakpoint window to add or
modify breakpoints. The Edit Breakpoint screen is raised by choosing
Breaks⇒ Add when you want to add a breakpoint and/or by Breaks⇒ Edit when
you wish to edit an existing breakpoint.

The Edit Breakpoints window can be used to edit both location and event
breakpoints, and to perform other actions. The window has two modes: Event and
Location. Select the appropriate check box: Break At Event for event (the default
setting), and Break At Location to edit source code breakpoints.

Figure 43. In expert mode, use the Edit Breakpoints window to add or modify breakpoints of
all types.

You can direct the debugger to make activation of a breakpoint dependent upon the
value of an expression. If a valid JPL expression is entered in the On Change in
Expression text widget, the debugger will only stop at the event/location
breakpoint (assuming it has been activated) if the value of the expression changes,

Break on
Change in
Expression

Setting Breakpoints

516 JAM 7.0 Application Development Guide

i.e., the value changes from what it was when Trace⇒ To Breakpoint was chosen.
Set break at Any Event if you want the debugger to awaken as soon as the change
occurs.

You can direct the debugger to call a specified function each time the breakpoint is
reached. Enter the JPL or installed function to be executed in the Call on Break
text widget. You also have the option of instructing the debugger to call the
function without stopping execution; check Continue After Call if this
behavior is desired.

Select from the pop-up menu of events next to At . The sub-event menu appears
when the event selected has sub-events defined. These events and their sub-events
are listed in the following table:

Table 54. Events and their corresponding sub-events for which breakpoints can be applied.

Screen Events Field Events Group Events Grid Events

Any sub-event Any sub-event Any sub-event Any sub-event

Entry Entry Entry Entry

Exit Exit Exit Exit

Validation Validation Row entry

Calculation Row exit

Validation

When you have selected the event breakpoint, choose OK to add it to the list in the
Breakpoints window. If the Active Breakpoint box is checked, it will be added to
the list activated (+). Uncheck this box if you wish to add it to the list in the
inactive state (–).

The Edit Breakpoint window opens in Location mode when you are editing a
location breakpoint. Typically, you will do this after double-clicking on a line in
the Source Code window, which adds the location to the breakpoint window, from
where you can select it.

If the Edit Breakpoint window is in Event mode initially, you can check Break At
Location and the Edit Breakpoint window allows you to select a module and line
number at which to establish a breakpoint. If the module and line number that you
wish to break on are known to you, simply enter them in the Module: and Line:
text widgets. Otherwise, you can choose Browse... to initiate file browsing. The
Open Source Module window is opened.

Call on Break

Event Mode

Location Mode

Monitoring Variables and JPL Expressions

51728 JAM DebuggerChapter

For instruction on how to specify a file from the Open Source Module, refer to
page 506. When you have chosen the module from Open Source Module, it is sent
to the Edit Breakpoint window.

Figure 44. Use the Edit Breakpoint window in Location mode to set a code location
breakpoint.

To add the location breakpoint, choose OK from the Edit Breakpoint window. The
Edit Breakpoint window is dismissed and the location breakpoint is added to the
list of breakpoints, visible in the Breakpoints window. If Active Breakpoint was
checked on the Edit Breakpoint window, the breakpoint is automatically active;
otherwise it is inactive. To find a particular line number, view the file in the Source
Code window.

In general, you will find it easier to set location breakpoints by reading the code
into the Source Code window and directly setting the breakpoint there. Refer to
page 508 for further information on setting breakpoints in the Source Code
window.

Monitoring Variables and JPL Expressions
When running the debugger you can examine the contents of variables or
expressions and observe runtime changes as follows:

1. Open the Data Watch window by choosing View⇒ Data Watch.

2. Type in the names of the variables or the expressions you want to observe.

The debugger displays the values of the variables/expressions on the Data
Watch window, updating them as execution proceeds. The location of any
variables specified is also identified.

Add the
Breakpoint

Monitoring Variables and JPL Expressions

518 JAM 7.0 Application Development Guide

You can use Data Watch to inspect a property of the application, a screen, or
widget, with a JPL expression. For more information on referencing JAM objects
and properties, refer to page 24 in the Language Reference.

To clear a variable/expression, delete it from the list. To clear all variables/expres-
sions, press CLR.

Modifying and Monitoring Application Data in Expert Mode

If you are running the debugger in expert mode, you can take advantage of the
enhanced data watching abilities available with the Application Data window.

You can instantly view and access any variable displayed in the Source Code
window by moving the cursor into the variable and then choosing
Tools⇒ Application Data to open the Application Data window.

The Application Data window provides the following capabilities:

� Displays the current value of the variable. If the variable is an array, you can
choose which occurrences to view.

� Set a breakpoint at the touch of a button. The breakpoint will occur whenever
the value of the variable or expression changes.

� Add the variable or expression to the Data Watch window.

� Change the current value of the variable.

519

Preparing Applications
for Release

Before delivering an application to its users, you need to package it for delivery.
There are several ways to package a JAM application for distribution. Typically,
the screens, menus, and JPL are shipped in one or more libraries. The configuration
files and the application executable are shipped as separate files. If desired, the
screens, menus, JPL modules, and the configuration files can be shipped as part of
the application executable.

This chapter outlines optimization options and requirements that precede delivery.
You should also review the configuration guide for information on specific files
and directories that JAM requires for distribution.

Required Files
The list of files that you must include in a distribution varies, depending on the
application’s components and the platform on which it runs.

Common Files
All JAM applications have the following files in common:

� JAM executable.

� JAM screens.

2929

Optional Files

520 JAM 7.0 Application Development Guide

� Library of JAM screens jam.lib .

� Message file msgfile.bin .

� Video and keyboard files for all terminal types on which the application is to
run.

GUI Files
GUI applications require resource files: on the Macintosh, the JAM preferences file
inside the Preferences folder, JAM7.INI for Windows, and XJam for Motif.

Optional Files

The following files are optional, depending on your application’s components and
how it is configured:

� Library of JAM menu bars jammn.lib

� JPL files, either in binary or text format.

� Menu binary files.

� Default LDB screen ldb.jam .

� Message file in binary format for your own messages.

� Default setup file smvars.bin . You can specify the required setup and
configuration variables elsewhere—for example, in your system’s initializa-
tion file.

Specifying Files and Directories

You can use the smvars file to specify all the files and directories that JAM needs
to run. The user only needs to set the SMTERM and SMVARS environment variables,
which tell JAM which video and key files to use and where to find the applica-
tion’s files. Refer to page 5 in the Configuration Guide for more information about
setting up your system environment.

Alternatively, you can specify required files through calls to JAM library functions:

� sm_keyinit initializes the key translation file from the specified key file.

� sm_vinit initializes the video translation file from the specified video file.

Modifying Source Code

52129 Preparing Applications for ReleaseChapter

� sm_soption supplies the search path for JAM binaries.

� sm_msgread reads a message file into memory.

� sm_l_open opens a JAM library.

Detailed information on each of these functions and their variants is available in
the Language Reference.

Modifying Source Code
You can edit the source file jmain.c to change the default behavior of JAM
applications. jmain.c has four functions defined in it: main , initialize ,
start_up , and cleanup which you can modify:

� main is defined globally and is the entry point to the entire application
program. main calls the statically defined functions initialize , start_up ,
and clean_up . Code necessary to your application can be inserted into the
main routine. Any code inserted before initialize is executed before any
JAM function has been executed.

� initialize allocates internal data structures and sets the terminal character-
istics. Code inserted after initialize but before start_up is executed after
JAM allocates internal data structures and sets the terminal characteristics, but
before there are any screens and before there is a local data block.

� start_up creates local data blocks (LDBs) and the application’s startup
screen. Code inserted after start_up but before clean_up is executed after
JAM exits the last screen, but before memory structures are deallocated and
the terminal is reset.

� cleanup exits back to the operating system and restores the terminal’s display
state. Code called after clean_up is executed after all JAM functions have
been executed.

If a finer granularity is needed, you can edit initialize , start_up , and
clean_up themselves. Do so only if you understand JAM thoroughly.

Note: In general, you should not modify jmain.c to install hook functions. Most
hook functions can be declared in funclist.c . A few hook function types,
however, must be installed before or during initialization in jmain.c . For more
information on hook function installation, refer to page 115.

Subsystem Installation
After the definition of the main function, there are a number of JAM subsystem
macro definitions. They are all set to 0 by default. To turn on a subsystem, set the
corresponding macro to 1. The following sections describe JAM subsystems.

Storing Screen and JPL Files in Libraries

522 JAM 7.0 Application Development Guide

ALT_SCROLLING
If the application installs and uses a custom scroll driver (described on page 529),
this subsystem must be enabled.

MEMORY_SCREENS
If this subsystem is installed, screens displayed by the JAM can linked into the
application as data and maintained in memory. If not installed, screens can only be
read from disk. Installing this subsystem increases memory requirements but
improves execution speed.

JTERM_COMPRESSION
This subsystem increases the communication efficiency and execution speed for
applications when they are accessed by the terminal emulator Jterm. It increases
the application’s memory requirements.

Storing Screen and JPL Files in Libraries
JAM binaries—screens, JPL files, and menu bars—can all be stored and
distributed in libraries. The formlib utility acts as the application librarian. For
more information on this utility, refer to page 561.

Memory-Resident Screens
The screen editor creates binary screen files that are disk-resident. Memory-resi-
dent screens are much quicker to display than disk-resident screens, because no
disk access is necessary to obtain the screen data. However, the screens must first
be converted to source language modules with bin2c or a related utility, then
compiled and linked with the application program. For information about
converting screens with bin2c , refer to page 563.

You can install screens on a memory-resident list. This is a list maintained by JAM
that specifies memory-resident screens and other binaries. When JAM attempts to
open a screen, it first looks in this list for the requested screen; any screen found
there is displayed from memory, while screens not in the list are sought on disk. In
this way, you can open screens irrespective of their actual location—for example,
with sm_r_form . You can later change the location of the screen without changing
the calls to open them, simply by changing the memory-resident list.

The screen list is a pointer to an array of structures:

struct form_list
{
 char *form_name;
 char *form_ptr;
} *sm_memforms;

Memory-Resident Configuration Files

52329 Preparing Applications for ReleaseChapter

To initialize it, an application uses code as in the following example:

#include ”smdefs.h”
extern char mainform[], popup1[];
extern char popup2[], helpwin[];

struct form_list mrforms[] =
{
 ”mainform.jam”, mainform,
 ”popup1.jam”, popup1,
 ”popup2.jam”, popup2,
 ”helpwin.jam”, helpwin,
 ””, (char *)0
};
...
sm_formlist(mrforms);

The last entry in the screen list has an empty string for the name and a null pointer
for the screen data. This marks the end of the list and is required. The call to
sm_formlist adds the screens in the form_list structure to JAM’s memory-res-
ident list.

JAM appends the extension found in the setup variable SMFEXTENSION to screen
names that do not already contain an extension; take this into account when
creating the screen list. JAM might also convert the name to uppercase before
searching the screen list, as determined by the SMFCASE variable.

Alternatively, if you are using a custom executive, sm_d_form and related library
functions can be used to display memory-resident screens; each takes as one of its
parameters the address of the global array containing the screen data, which
usually have the same name as the file in which the original screen was originally
stored.

Note: Because the JAM screen editor can only operate on disk files, altering
memory-resident screens during program development requires a tedious cycle of
test—edit—reinsert with bin2c—recompile. Therefore you should make screens
memory-resident only at the very end of your development process.

Memory-Resident Configuration Files

Any or all of the three configuration files required by JAM can be made memory-
resident. You must create a C source file from the binary version of the file with
bin2c . The source files created are not readily decipherable. The following code
makes all three files memory-resident:

Message File Options

524 JAM 7.0 Application Development Guide

/* Memory-resident message, key, and
 * video files */
extern char key_file[];
extern char video_file[];
extern char msg_file[];

/* ...more declarations... */

sm_keyinit (key_file);
sm_vinit (video_file);
sm_msgread (”SM”, SM_MSGS, MSG_MEMORY|MSG_INIT, msg_file);
sm_jinitcrt (””);

/* ...possibly initialize function and
 * form lists */

/* ...application code */

If a file is memory-resident, the corresponding environment variable or SMVARS
entry is unnecessary.

Message File Options

If you need to conserve memory and have a large number of messages in message
files, call sm_msgread with an argument of MSG_DSK. This avoids loading the
message files into memory; instead, they are left open, and the messages are
fetched from disk when needed. This uses up additional file descriptors, and
buffering the open file consumes a certain amount of system memory; no
significant benefit is gained unless your message files are very large.

Memory-Resident JPL

JPL public and memory-resident modules can be made memory-resident. First,
compile the module with jpl2bin and convert the binary to a source language
character array with bin2c or a related utility. Then, add the modules to the
memory-resident list via sm_formlist and compile and link the source with your
application.

Public modules can reside in files or libraries. Refer to page 7 in the Language
Reference for an explanation of the various JPL modules. Making a JPL module
memory-resident reduces I/O time and makes it part of the JAM executable. This
can prevent accidental loss or editing of your JPL code by the end user.

JPL Versus C

52529 Preparing Applications for ReleaseChapter

JPL Versus C

Because JPL is an interpreted language, code execution undergoes an extra layer of
interpretation that C avoids. In most cases, the total runtime difference is
insignificant unless a JPL function is long or loops many times. In that case, it may
pay to rewrite the procedure in C.

Minimizing Screen Output

Several entries in the JAM video file are not logically necessary, but are there
solely to decrease the number of characters transmitted to paint a given screen.
This can have a great impact on the response time of applications, especially on
time-shared systems with low data rates; but it is noticeable even at 9600 baud.

For example, JAM can do all its cursor positioning with the CUP (absolute cursor
position) command. However, it uses relative cursor position commands (CUU,
CUD, CUF, CUB) if they are defined; they always require fewer characters to do
the same job. Similarly, if the terminal can save and restore the cursor position
itself (SCP, RCP), JAM uses those sequences instead of the more verbose CUP.

The global variable I_NODISP vsm also be used to decrease screen output. While
this variable is set to 0 (via sm_iset), calls into the JAM library cause the internal
screen image to be updated, but nothing is written to the actual display; the display
can be brought up to date by resetting I_NODISP to 1 and calling sm_rescreen .
With delayed write, this technique rarely necessary.

Small and Medium Memory Models

JAM applications assume usage of a large memory model. If you are compiling a
DOS application that uses JAM library routines and you want it to use a small or
medium memory model, change the declaration for sm_fmalloc —found in
smproto.h —so that the return is explicitly cast to char * inststead of VOIDPTR.
Otherwise, the application is liable to abort when it attempts to dereference a
two-byte address for this function’s return value as if it were a four-byte pointer.

Stub Functions

Some JAM facilities can be omitted from an application if they are not used by
defining certain literals in the application. This can result in substantial memory

Stub Functions

526 JAM 7.0 Application Development Guide

savings; however, it requires that JAM libraries not be pre-linked or pre-bound—
that is, not supported on all systems. You can stub out these facilities:

Table 55. Subsystems that you can stub out from an application

Subsystem #define

Math package NOCALC

Scrolling functions NOSCROLL

Time and date functions NOTIMEDATE

JAM help screens NOHELP

Shifting fields NOSHIFT

Range checking functions NORANGE

Word wrap NOWRAP

Field zoom expansion NOZOOM

Regular expressions NOREGEXP

Form libraries NOFORMLIB

JPL NOJPL

Runtime JPL compiler NOJPLCOMP

Save/restore screen data NOSRD

Local print NOLPR

Area attributes NOAREA

Window selection NOWSEL

Keytop translation NOLKEYLAB

Shift/scroll indicators NOINDICATORS

User window resizing NOWINSIZE

Mouse handling routines NOMOUSE

Save screen to memory NOSVSCREEN

To omit any one or combination of the above, #define the appropriate macro in
your application, then #include the stubs file. This must only be done once,
preferably in the application’s main routine source file. For example, if the
application does not use scrolling fields, you can omit the scrolling functions in the
application source as follows:

Stub Functions

52729 Preparing Applications for ReleaseChapter

#define NOSCROLL
#include ”smdefs.h”
#include ”smstubs.c”

main ()
{
 /* ...the application code... */
}

The effect of defining the macro and including smstubs.c is to declare stub
routines in the application; this causes the linker not to add the real routines from
JAM library to the application. The primary benefit lies in the amount of code
space that is saved. The stubbing technique does not work on systems where the
library is itself a linked entity, such as a sharable library.

If range, math, and JPL support are all stubbed out, you can also omit linking the C
math library (–lm flag on UNIX systems, math library on MS-DOS systems).

If the runtime JPL compiler is stubbed out, file, public modules can still be used if
they are precompiled with jpl2bin .

529

Alternative Scrolling
By default, storage of scrolling arrays is handled internally by JAM, which stores
them in its own memory buffers. It is also possible for this data to be stored by the
application, external to JAM—for example, in memory or disk. In this case, the
application must install a scrolling driver which is called by JAM with an interface
defined by JAM. Installation of a scrolling driver replaces JAM’s default scroll
driver. The driver is called to initialize the array, get and put occurrences, and so
on.

An alternative scroll driver can reduce application memory usage when used to
control the scrolling of large arrays. Scroll drivers can be freely mixed on a screen.
Each driver can be specified to manage any number of arrays and any number of
drivers can be used at once.

Normally, a non-scrolling widget can hold as many occurrences of data as the
display allows. In character mode, this corresponds to the number of lines the
widget occupies onscreen. The data held in non-scrolling widgets is kept as part of
the normal screen data structure. However, by setting the Scrolling property to Yes,
you can enter a number of occurrences that is equal to or greater than the number
of visible occurrences. You can also enter 0 to specify an unlimited number of
occurrences.

Because the amount of data kept in scrolling widgets can grow large, the data for
offscreen occurrences is managed separately from onscreen. Management of
offscreen data is handled either by JAM’s default scroll driver, or by a custom-writ-
ten driver, which you can specify in the Alt Scroll Func property. If this property is
left blank or the name is invalid, JAM uses its own scroll driver.

3030

Array Geometry Properties

530 JAM 7.0 Application Development Guide

JAM ships with the sources to two scrolling drivers in the samples/altscroll
directory, and the header file which defines the interface is in smaltsc.h . JYACC
customers are encouraged to develop their own scrolling drivers to suit their needs.

Array Geometry Properties

JAM defines an array and its size through its number of elements, occurrences, and
its largest used occurrence ID. For more information on arrays, refer to page 79.
The following terms are used in this chapter to describe an array’s properties:

occurrences
The actual data held by an array, whether on- or offscreen.

element
An onscreen occurrence. An element refers to a fixed location on the screen,
regardless of the actual data in it.

max_occurs
The maximum size of a scrolling array, expressed in number of occurrences, set by
the array’s Number of Occurrences property. The array’s maximum can be
unlimited if this property is set to 0. Consequently, the scrolling driver usually does
not try to allocate buffers to hold max_occurs occurrences of data .

luid
JAM needs to know how many buffers are allocated for a scrolling array. This
number is known as the largest used item (occurrence) ID or luid. This represents
how many buffers are allocated, rather than how much data is in the array. The
luid value grows as more data is put into the array, but shrinks only at explicit
command.

num_occurs
The actual number of occurrences, equal to the occurrence number of the last
non-blank entry in the array. The value of num_occurs can be expressed as
follows: num_occurs <= luid <= max_occurs .

Installation

53130 Alternative ScrollingChapter

Installation

You can bundle multiple scrolling drivers into a JAM application. Scrolling drivers
are installed in funclist.c in sm_do_uinstalls . Two types installations are
important:

� A default scrolling driver, used when an array does not specify which driver to
use or the specified driver is not installed.

� Installation of alternate drivers that are available in the executable.

The definition and installation of the default driver in funclist.c looks like this:

static struct fnc_data udfunc[] =
{
 SM_OLDFNC(”virtmem”, sm_vmbscroll),
};

static int udcount =
 sizeof (udfunc) / sizeof (struct fnc_data);
sm_install (DFLT_SCROLL_FUNC, udfunc, &udcount);

The definition and installation of the list of drivers in funclist.c looks like:

static struct fnc_data ufuncs[] =
{
 SM_OLDFNC(”virtmem”, sm_vmbscroll),
 SM_OLDFNC(”dosmem”, sm_mbscroll),
 SM_OLDFNC(”dummy”, adummy),
};

static int ucount =
 sizeof (ufuncs) / sizeof (struct fnc_data);
sm_install (SCROLL_FUNC, ufuncs, &ucount);

If no default scrolling driver is installed, JAM uses the one in mb_scroll.c , the
memory-based scrolling driver.

JAM Interaction With Scrolling Drivers

When JAM initializes an application, it calls all scrolling drivers and asks them to
install themselves. Similarly, when the application exits, JAM calls the driver for
clean up. While the driver is active, JAM calls the routine once for each new
scrolling array that JAM creates—for example, on screen open—telling it to
initialize the array.

Scroll Driver Interface

532 JAM 7.0 Application Development Guide

While the array is active, JAM moves data back and forth between itself and the
driver and informs the driver of other changes to the array—for example, insertion
or deletion of occurrences.

When the array is destroyed—for example, its window closes—the driver is called
to release all the data associated with the array.

Scroll Driver Interface
All scroll drivers have a single entry point. JAM passes the driver two parameters.
The first is a pointer to an altsc_t structure; the second parameter is an operation
code, indicating what action JAM needs the scrolling driver to perform. Following
is an example definition of a scrolling driver:

int
scroll_driver (as_ptr, action_code)
altsc_t *as_ptr;
int action_code;

Scroll Driver Action Codes
The interface to the scrolling driver is through the mechanism of various action
codes. Each action code represents one particular functionality. As can be seen by
the table below, three codes are not currently used.

Table 56. Scroll driver action codes

Action Explanation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_DLT_FUNC

ÁÁDelete a range of lines.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_GDATA_FUNC

ÁÁGet data from the driver.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_GTSPC_FUNC

ÁÁReserve space for occurrences.

ÁÁAS_INIT_FUNC

ÁÁInitialization, called when a new scrolling array is
created—for example, a screen is open with a scrolling
array using this driver.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_INSRT_FUNC

ÁÁInsert blank lines.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_INST_FUNC

ÁÁÁInstallation: driver is being installed, called only once.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_PDATA_FUNC

ÁÁPut data to the driver.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_RESET_FUNC

ÁÁReset, called when JAM is shutting down.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAS_RLS_FUNC

ÁÁÁRelease, called when a scrolling array is deleted—for
example, the screen is being closed.

Scroll Driver Interface

53330 Alternative ScrollingChapter

The altsc_t Structure

The following table describes the altsc_t structure, passed as the first parameter
to a scrolling driver.

Table 57. The altsc_t structure

Member name Description Type

Driver-maintained information:

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁscrolldata

ÁÁPointer to structure maintained by driver.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁVOIDPTR

Scrolling information:*
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁluid

ÁÁID of the largest-used occurrence

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned int
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁmax_items

ÁÁMaximum number of occurrence

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned int

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁshs

ÁÁLargest non-blank occurrence

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned int

Occurrence information:

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁitem

ÁÁoccurrence number

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned int
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁlen

ÁÁLength of the occurrence

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned char
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁattr

ÁÁOccurrence attributes

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁattrib_t

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁvalids[AS_VAL]

ÁÁOccurrence validation bits

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned char

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ*text

ÁÁOccurrence data

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁunsigned char

Other parameters:
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁnumber

ÁÁInteger parameter

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁint

*This information is supplied on all calls except for INIT and RESET.

A pointer to an altsc_t structure is the first parameter to a scroll driver. The
altsc_t structure serves two purposes:

� Lets the scrolling driver save information about an array between calls.

� Acts as a vehicle for passing data between the driver and JAM.

Because a scrolling driver can manage several arrays at once, it needs a way to
keep track of the data for each array. The scrolldata member of the altsc_t
structure serves this purpose. When the driver is called to AS_INIT_FUNC, the
driver should store a pointer in the scrolldata member, usually to an internal
structure. JAM assumes that the driver uses the pointer in scrolldata to access

Action Codes

534 JAM 7.0 Application Development Guide

the offscreen data. The scrolldata pointer can only be changed during the INIT
call; all other calls pass back the same pointer saved from the INIT call.

The altsc_t structure also passes data into and out of the driver. The scrolling
information parameters—luid , max_items , and shs —are passed so the driver
knows the size of the array, current and potential. However, the luid and shs
parameters are only completely accurate for the AS_INSRT_FUNC and
AS_DEL_FUNC calls; otherwise, they are approximate. The occurrence information
parameters—item , len , attr , valids , and text —are used to pass information
about specific occurrences into and out of the driver. The other parameters
—number , vptr —are used only for specific calls.

These members are discussed later in the description of each action.

Return Values

The scrolling driver generally returns 0 if the function is supported and it succeeds,
-1 if the function is not supported, and some other non-zero value if the function
fails. Exceptions are noted in the action code descriptions.

Action Codes

Many actions are required to update members of the altsc_t structure that is
passed to the driver. Although the scrolling driver has one entry point, almost all
drivers are implemented as a giant switch statement that calls other routines. For
example, JAM’s default scrolling driver mbscroll.c looks like this:

int
sm_mbscroll (as_ptr, option)
altsc_t *as_ptr;
int option;
{
 int retcode = 1;
 switch (option)
 {
 case AS_INIT_FUNC:
 retcode = mb_initscr (as_ptr);
 break;

 case AS_GDATA_FUNC:
 retcode = mb_getitem (as_ptr);
 break;

 case AS_PDATA_FUNC:

Action Codes

53530 Alternative ScrollingChapter

 retcode = mb_putitem (as_ptr);
 break;

 case AS_INSRT_FUNC:
 retcode = mb_insitem (as_ptr);
 break;

 case AS_DLT_FUNC:
 retcode = mb_delitem (as_ptr);
 break;

 case AS_GTSPC_FUNC:
 retcode = mb_setluid (as_ptr);
 break;

 case AS_RLS_FUNC:
 retcode = mb_rlsscrl (as_ptr);
 break;
 }
 return retcode;
}

The following sections describe the calling protocols and functionality expected for
the routines associated with these action codes.

Action Codes

536 JAM 7.0 Application Development Guide

AS_INST_FUNC

1 Success
0 Failure—the driver is not installed.

AS_INST_FUNC expects a routine that is called once when JAM starts up. Note that
if an application causes JAM to initialize and reset more than once, the function is
called repeatedly. No buffer is passed to the driver—instead, it gets NULL.

This routine usually initializes the driver’s global properties, allocate buffers,
initialize virtual memory, open files. However, it can perform no tasks at all,
especially if the initialization is performed for each array by AS_INIT_FUNC

Return Value

Description

Action Codes

53730 Alternative ScrollingChapter

AS_RESET_FUNC

AS_RESET_FUNC expects a routine to call when JAM terminates with
sm_resetcrt . The routine can perform any desired final clean up—deleting
temporary files, freeing memory allocated in the INST function, and so on.

This routine has no input or output parameters and returns no value. It should only
be called by JAM when it has released all active arrays with AS_RLS_FUNC.

Description

Action Codes

538 JAM 7.0 Application Development Guide

AS_INIT_FUNC

max_items
The maximum number of occurrences in the array. If the value of max_items
subsequently changes, JAM calls the AS_GTSPC_FUNC function to inform the
driver of the new limits.

len
Maximum width of the text of each occurrence.

scrolldata
Set to point to a driver-specific data structure that keeps track of the data for the
array. This value is associated with the array; all future calls to the scrolling driver
that refer to this array get the scrolldata value passed in the altsc_t structure.

0 Success
–1 Failure

AS_INIT_FUNC expects a routine that is called when JAM starts handling scrolling
data for an array. From the max_items and len parameters, the driver determines
roughly how much data the array can hold.

Input
Parameters

Output
Parameters

Return Value

Description

Action Codes

53930 Alternative ScrollingChapter

AS_RLS_FUNC

scrolldata
The pointer to the driver’s internal buffer.

0 Success
–1 Failure

AS_RLS_FUNC expects a routine that is called when JAM destroys an array. The
routine should then free any resources allocated for the array.

JAM ignores the return value from this call. Thus, the scrolling driver must inform
the user about any failure and take the appropriate action—for example, exit the
program.

Input
Parameters

Return Value

Description

Action Codes

540 JAM 7.0 Application Development Guide

AS_GDATA_FUNC

scrolldata
The pointer to the driver’s internal buffer.

item
The occurrence number to get.

len
Length of the occurrence. This represents the size of JAM’s buffer; the scrolling
driver should not overrun this length.

text
A buffer to get the text.

attr
The display attribute of the occurrence.

text
The routine should fill the buffer pointed to by text with the text of the occurrence
as passed to the routine by PDATA.

valids
The occurrence’s validation bits; these are packed into a unique form.

0 Success
–1 Failure

AS_GDATA_FUNC expects a routine that gets the data of an occurrence in a scrolling
array. This routine might be called because the occurrence scrolled onscreen, or in
response to a request for data from a C or JPL routine—for example, a call by
sm_getfield .

Occurrence data contains text, display attributes, and validation flags. JAM
allocates a buffer to hold this data and passes a pointer to the buffer in the text
member. The AS_GDATA_FUNC routine should update the attr , text , and valids
members in the structure. These should be updated with values previously passed
in by the AS_PDATA_FUNC routine, although a clever driver can manufacture them.

Note: An empty occurrence must be blank-filled.

Input
Parameters

Output
Parameters

Return Value

Description

Action Codes

54130 Alternative ScrollingChapter

AS_PDATA_FUNC

scrolldata
The pointer to the driver’s internal buffer.

item
The occurrence number to save.

len
Length of the occurrence.

attr
The display attribute of the occurrence.

valids
The validation bits of the occurrence.

text
The text to save.

0 Success
–1 Failure

AS_PDATA_FUNC expects a routine that is called when JAM wants to update
offscreen data in the driver. The routine should save the contents of the attr ,
valids , and text members.

Note: The routine cannot assume that text is null-terminated; rather, it should save
all len bytes of it.

Input
Parameters

Return Value

Description

Action Codes

542 JAM 7.0 Application Development Guide

AS_DLT_FUNC, AS_INSRT_FUNC

scrolldata
The pointer to the driver’s internal buffer.

item
The occurrence number to start at—the first deleted occurrence or first newly
inserted occurrence.

number
The number of occurrences to delete or insert.

len
Length of the occurrence.

attr
The display attribute to give to new occurrences.

valids
The validation bits to give to new occurrences.

text
The text to put into new occurrences.

Number of lines actually inserted/deleted, should equal number .

AS_DLT_FUNC and AS_INSRT_FUNC expect routines to insert and delete array
occurrences, respectively. These routines typically manipulate indexes or lists to
implement the deletion/insertion.

New entries that are inserted into the array, or trailing occurrences that are left
blank when occurrences are deleted, should have their attr , valids , and text
set from the values that are passed in the structure. A NULL pointer for text
indicates an empty string.

Input
Parameters

Return Value

Description

Action Codes

54330 Alternative ScrollingChapter

AS_GTSPC_FUNC

scrolldata
The pointer to the driver’s internal buffer.

number
The new luid to use.

The number of occurrences it has resources allocated for. Usually, the return is the
same as number .

AS_GTSPC_FUNC expects a routine that tells the driver the largest occurrence, or
luid , that it must keep track of. Any buffers or resources currently allocated for
keeping track of data above number occurrences can be freed.

Input
Parameters

Return Value

Description

545

Dynamic Data
Exchange

JAM supports Windows Dynamic Data Exchange (DDE), which lets applications
share data through client/server links. JAM supports both client and server links
with other applications. As a DDE server, a JAM application exports data from a
field. As a DDE client, it imports data from another application into a field.

JAM as a Server

As a DDE server, JAM can export data from a named field to a client application.
The client application specifies a DDE service, topic and item. In JAM, these
correspond to the application name, screen name and field name, respectively.

For example, an Excel spreadsheet can request a link between one of its cells and a
JAM field. The request must include the name of the JAM server name, the screen
name, and the field name. If the request succeeds, a DDE connection is created
between that spreadsheet window and the JAM screen; this connection initially
consists of the requested link, and can also accommodate other links that the client
might request later.

3131

JAM as a Server

546 JAM 7.0 Application Development Guide

Enabling Connections
Before a client application can request links to a JAM application, two conditions
must be true:

� The JAM application must be running.

� The application must be enabled as a DDE server.

To enable JAM as a server, call sm_dde_server_on or include this setting in the
initialization file JAM7.INI :

DDEServer=on

Creating Links
Clients can create links to a JAM screen either through the clipboard or by
explicitly issuing a request.

You can use the Windows clipboard data to create a link to a JAM application:

1. Copy data from a JAM field to the clipboard. The clipboard data includes the
link information required by DDE: service, topic, and item.

2. Paste link the clipboard data into the client application. The link information
that is embedded in the pasted data initiates a link request from this client to
the originating JAM screen.

You can also create links to a JAM screen through explicit requests in the client
application’s DDE syntax. Refer to your client application’s documentation for
details on its DDE syntax.

Note: Prefix the topic name with ampersands (& or &&) if you want the JAM screen
to open as a stacked or sibling window.

The following examples show DDE syntax for several widely used Windows
applications:

Quattro Pro for Windows
@DDELINK([myJamApp|&&mainScreen.jam]”totalData”)

MS Word for Windows
{DDEAUTO myJamApp &mainScreen.jam totalData \t}

MS Excel for Windows
=myJamApp|mainScreen.jam!totalData

Paste Links

Links Specified
in Client Syntax

JAM as a Server

54731 Dynamic Data ExchangeChapter

Processing Links
It is the client application’s responsibility to connect with a JAM screen and create
links to the required fields. Most client applications automatically establish a
connection when they request a link.

When DDE gets a link request that is intended for a JAM application, it processes
it as follows:

1. Finds a match between the specified service and a JAM application that is
already running.

2. Checks whether the JAM application is enabled as a DDE server.

3. Matches the specified topic to a screen and checks whether a connection
already exists.

4. Opens the screen, if necessary, and matches the specified item to a field.

5. Creates a link between the client and the field.

Links remain in effect until they are explicitly closed by the client or the JAM
application exits. JAM maintains links for a screen that is inactive or closed, and
resumes data updates when the screen reopens. The client’s connection to a JAM
screen remains active until all links to the current screen are destroyed.

JAM destroys links only at the request of the client or when the JAM application
terminates. When the client destroys its last link to a screen, its connection to that
screen is broken.

Updating Client Data
A client can create three kinds of links to JAM fields:

Hot Links
JAM automatically updates the client with new data as soon as linked field data
changes. Hot links are maintained only for fields on the active screen.

Warm Links
JAM notifies the client when linked field data changes. The client must then
request the data. Notice is sent only for fields on the active screen. Requests for
data succeed only if the linked field is on an active screen or in the LDB.

Cold Links
JAM updates the client with new field data only when the client requests it.
Requests for data succeed only if the linked field is on an active screen or in the
LDB.

JAM as a Client

548 JAM 7.0 Application Development Guide

If the linked field is an array, JAM supplies all occurrences in the array. Occur-
rences are separated by carriage returns (\r) and newlines (\n). Leading blanks in
right-justified fields and trailing blanks in left-justified fields are omitted.

JAM supplies text data to client applications. It is the client’s responsibility to
perform any necessary data conversion such as string to numeric. For example, if
the client is a Microsoft Excel spreadsheet, the spreadsheet cell should wrap the
formula for the DDE reference in a value function call as below; this converts the
link text data into a number:

=value(JAM|screen.jam!textdata)

Other methods are specific to each client application.

Disabling JAM as a Server
You can disable JAM as a server at runtime through sm_dd_server_off . JAM
continues to maintain all previous links to clients; however, it ignores all client
requests that are made after this call.

JAM as a Client
When a JAM application acts as a DDE client, it imports data into fields from an
external server application. JAM can request hot, warm, and cold links.

DDE can maintain multiple connections between the JAM application and server
application; only one connection is allowed between a JAM screen and a given
server window. Each connection can maintain multiple links.

For example, a JAM screen can request a hot link between one of its fields and a
cell in an Excel spreadsheet. The request must include the name of the Excel
program, the spreadsheet’s filename, and the cell identifier. If the request succeeds,
a DDE connection is created between the JAM screen and the specified spread-
sheet; this connection initially consists of the requested link, and can also
accommodate other links that the client might request later. Subsequent changes in
the server cell data are reported to JAM and automatically are written to its linked
field.

Enabling Connections
Before JAM can connect to a server application, it must be enabled as a DDE
client. To enable JAM as a client, call sm_dde_client_on or include this setting
in the initialization file JAM7.INI :

DDEClient=on

Array Data

Data Conversion

JAM as a Client

54931 Dynamic Data ExchangeChapter

Creating Links
As a DDE client, JAM can request hot, warm, and cold links. For more on link
types, see page 550. You can create links in three ways:

� Call one of JAM’s paste link functions, which get server data from the
clipboard.

� Specify server data with one of JAM’s connect functions.

� Specify server data in the initialization file.

You can paste server data from the Windows clipboard into a JAM field on the
active screen with one of these JAM paste link functions:

sm_dde_client_paste_link_hot
sm_dde_client_paste_link_warm
sm_dde_client_paste_link_cold

These functions take a single argument—the field to get server data. JAM gets the
actual data and link information from the clipboard—server, topic, and item—and
paste links the data into the specified field.

JAM also provides a set of library functions that explicitly specify the server data
required:

sm_dde_client_connect_hot
sm_dde_client_connect_warm
sm_dde_client_connect_cold

These functions take four arguments: the server, topic, item, and target JAM field.
The format for server, topic, and item arguments is specific to each server
application. Refer to the server application’s documentation for this information.
Table 58 shows the syntax used by three widely used Windows applications.

Table 58. Sample server syntax for Windows applications.

Quattro Pro MS Word for Windows MS Excel

Server QPW Winword Excel

Topic C:\SALES.WB1 C:\WORK\SALES.DOC C:\XL\SALES.XLS

Item $A:$B$1..$B$1 DDE_LINK1 R1C2

For example, the following JPL statement creates a cold link between a JAM client
and an Excel spreadsheet:

retval = sm_dde_client_connect_cold \
 (”Excel”,”C:\XL\SALES.XLS”,”R1C2”,”total”)

Refer to the Language Reference for more information about these functions.

Paste Links

Explicit Links
Through Library
Functions

JAM as a Client

550 JAM 7.0 Application Development Guide

You can use the initialization file to create hot links. This lets you specify and edit
links for an application without changing the screens themselves. Only hot links
are supported from the initialization file.

The initialization file for JAM contains a JAM DDE section, where you can specify
links to server applications as follows:

screenname ! fieldname = service | topic ! item

For example, a link to a Quattro Pro spreadsheet might look like this:

salesScrn!totalSales=QPW|C:\myAcct\sales.wb1!$A:$A$10..$A$10

The format for server, topic, and item arguments is specific to each server
application. Refer to the server application’s documentation for this information.
Table 58 shows the syntax used by three widely used Windows applications.

Processing Link Requests

A link request from a JAM application consists of these steps:

1. DDE checks whether the server application is running and the specified topic
is open. Both conditions must be true; otherwise, the link request fails.

2. DDE checks whether a connection already exists between the server topic and
the requesting JAM screen. If none exists, DDE attempts to create one.

3. After DDE verifies or establishes a connection, it creates the specified
link—hot, warm, or cold—between the specified JAM field and the server
item. It then updates the field data according to the link type.

If a link request fails for any reason—for example, because the server application
is not running—JAM posts an error message.

Updating Data from the Server

JAM updates link data according to the link type:

� Hot link — Data is updated on the client whenever it changes on the server.

� Warm link — The server notifies the client of a change in data, but sends new
data only at the client’s request.

� Cold link — Data is updated only at the client’s request. The server does not
notify the client of data changes.

Links Specified
in Initialization
File

Execute Transactions

55131 Dynamic Data ExchangeChapter

If a field has warm or cold link data, the application must explicitly request updates
from the server by calling sm_dde_client_request . This function can be called
only for fields on the active screen.

When warm link data changes, DDE notifies JAM that new data is available from
the server. JAM then calls a callback function—either its own or one installed by
the developer—and passes it the screen name and field name of the link. For
information about writing callback routines, refer to sm_dde_install_notify in
the Language Reference.

DDE does not notify the JAM client of any changes in cold link data.

Note: Because sm_dde_request can be called only for fields on the active
screen, an application that uses warm links should queue notices for data on
inactive screens.

JAM tries to update all occurrences in the array with server data. Data flows into
the array starting with the first occurrence. When JAM reaches the end of the
occurrence or encounters a tab, carriage return, or newline in the server data, it
skips to the next occurrence. JAM eliminates leading white space—tabs, carriage
returns, and new lines—before writing the data. The process ends when there is no
more data or the end of the array is reached.

Destroying Links to Server
When a screen closes, JAM destroys all links on that screen. You can also
explicitly destroy links on the active screen with sm_dde_client_disconnect .

Disconnecting from a Server
JAM maintains its connection to a server application as long as an open screen
contains a link to that application. When the last screen containing a link to a
server closes, JAM breaks the connection.

Execute Transactions

The execute transaction lets a client execute a command on a server. As a client,
JAM can initiate execute transactions on a server application; as a server, JAM can
be the recipient of commands issued by a client.

As a DDE client, JAM can execute a command on a server with which it already
has a connection by calling sm_dde_execute :

sm_dde_execute(server,topic,command);

Array Data

Poke Transactions

552 JAM 7.0 Application Development Guide

The server decides whether to execute or ignore the command. You can check the
function’s return value to determine the outcome of the call.

As a server, JAM can receive a command issued by a client. For example, a
Quattro Pro spreadsheet might contain this EXECUTE statement:

{EXECUTE B1, ”^updateData.jpl”}

JAM executes the command string like any control string.

For information about specifying execute transactions from client applications,
refer to that application’s documentation.

Poke Transactions

A poke transaction lets a client send data to a server. As a client, JAM can initiate
poke transactions on a server application; as a server, JAM can be the recipient of
commands issued by a client.

As a DDE client, JAM can poke data into a server with which it already has a
connection by calling sm_dde_poke :

sm_dde_poke(server,topic,item,data);

The server decides whether to execute or ignore the command. You can check the
function’s return value to determine the outcome of the call.

As a server, JAM can be the target of a poke transaction issued by a client. For
information about executing poke transactions from client applications, refer to
that application’s documentation.

553

Mouse Interface
This chapter shows how to evaluate and process mouse events, mouse data, and
contextual information. Topics include:

� Trapping mouse events.

� Using JAM library functions to get mouse data, such as the location of the
mouse click and which buttons were pressed.

� Getting and modifying the mouse pointer’s state.

Trapping Mouse Events

You can intercept single and double mouse clicks on an application-wide basis
through JAM’s key change hook function. You can also intercept double clicking
on an individual widget through its Double Click property. Both techniques are
discussed in the sections that follow.

Using Key Change Functions
With JAM’s key change hook function, you can intercept single and double mouse
clicks throughout the program. JAM’s key file (smkeys.h) defines these two
events through the logical keys MOUS for single mouse clicks, and MDBL for double
clicks. A key change function that tests for these logical keys can use JAM library

3232

Trapping Mouse Events

554 JAM 7.0 Application Development Guide

functions to examine the state of the mouse cursor and mouse buttons, and perform
special processing accordingly.

For example, the following code shows in skeletal format a key change function
that tests for a single click mouse event outside a field, and then determines which
button, if any, is down. It also conditionally tests for different combinations of
mouse events with keyboard modifiers, such as Shift+click versus Ctrl+click. Most
of the processing relies on sm_ms_inquire to test the mouse’s state. For detailed
information on using this function, refer to page 555. For more information on key
change functions, refer to page 136.

int keychg (int which_key)
{
 int ms_btn;
 switch (which_key)
 {
 case MOUS:

 /*is mouse click outside field? */
 if (sm_ms_inquire(MOUSE_FIELD) < 0
 {
 ms_btn = (sm_ms_inquire(MOUSE_BUTTONS) & 0x49;

 /*is any button down?*/
 if (ms_btn > 0)
 {
 /*test which button is down*/
 switch (mouse_button)
 {
 ...
 }
 /*is any keyboard modifier also down */
 if (sm_ms_inquire(MOUSE_SHIFT))
 {
 ms_kbd = sm_ms_inquire(MOUSE_SHIFT);
 switch (ms_kbd) /*which key is down? */
 {
 ...
 }
 ...
}

Trapping Double Clicks on a Widget
Several widget types have the double_click property, which lets you specify an
action that is triggered by double clicking on a widget. double_click gets a
control string as its value. This control string can specify to call a function, invoke
an operating system command, or open another screen.

Getting Mouse Data

55532 Mouse InterfaceChapter

The following widget types have the double_click property:

� Single line text

� Dynamic label

� Combo box

� List box that is a select-any type or is defined as a selection group

� Multiline text

Getting Mouse Data

JAM provides library functions and application properties that get information
about the mouse’s current state:

� The mouse click’s location

� The state of the mouse buttons

� Other keys that were pressed when the mouse click occurred

� The amount of elapsed time between mouse clicks

Mouse Click Location

The library function sm_ms_inquire lets you test the last mouse click’s line and
column location on a JAM screen or on the physical display. Several runtime
properties also offer access to the field and screen on which the last mouse click
occurred.

To determine the line and column location of the last mouse click, supply
sm_ms_inquire with arguments of MOUSE_LINE and MOUSE_COLM, respectively.
To get the mouse click’s line and column within a JAM screen, supply
MOUSE_FORM_LINE and MOUSE_FORM_COLM. For example, the following routine
gets the mouse click coordinates on a map that is displayed on a static label:

Line and
Column

Getting Mouse Data

556 JAM 7.0 Application Development Guide

void get_mouse_coords(void)
{
 int longitude, latitude;

 /* make sure the user clicked somewhere on the map */
 if (sm_ms_inquire(MOUSE_FIELD) > 0 &&
 sm_prop_get_str
 (PR_APPLICATION, PR_MOUSE_FIELD_NAME) == ”mapLbl”)
 {

 longitude = sm_ms_inquire(MOUSE_FORM_COLM);
 latitude = sm_ms_inquire(MOUSE_FORM_LINE);
 return get_map_location(longitude, latitude);
 }
}

The previous example also uses sm_ms_inquire and sm_prop_get_str to test
whether a mouse click occurred inside a field and the field’s identity:

if (sm_ms_inquire(MOUSE_FIELD) > 0 &&
 sm_prop_get_str
 (PR_APPLICATION, PR_MOUSE_FIELD_NAME) == ”mapLbl”)

When supplied an argument of MOUSE_FIELD, sm_ms_inquire returns either the
field number in which the mouse click occurred, or –1 if the mouse click occurred
outside the field.

You can also use these runtime properties to get the name of the field and
occurrence in which a mouse click occurred:

� mouse_field and mouse_field_name respectively get the number and
name of the field in which the last mouse click occurred.

� mouse_field_occ gets the number of the occurrence in which the last mouse
click occurred.

All mouse properties are application-level properties, accessible through the @jam
modifier. For example, this all-purpose code obtains the data in the last clicked-on
occurrence of any field:

vars data
data = @widget(@jam–>mouse_field_name)[@jam–>mouse_field_occ]

mouse_form is an application runtime property that gets the name of the screen on
which a mouse click occurred. Like other mouse properties, it is accessible through
the @jam modifier as in this example:

vars mouse_screen
mouse_screen = @jam–>mouse_form

Field

Screen

Getting Mouse Data

55732 Mouse InterfaceChapter

Mouse Button State

You can get the state of each mouse button—up, down, just pressed, or just
released—by supplying sm_ms_inquire an argument of MOUSE_BUTTONS. If
successful, the function returns an integer bit mask. The function puts the requested
data in three segments of three bits each, where each segment represents one of
three mouse buttons—left, middle, and right. The three lowest-order bits contain
left button data; if the mouse has only one button, only these bit settings are
significant. The middle three bits contain data for the middle button, if any. The
three highest-order bits contain right button data.

Each bit within a three-bit segment can be set as follows, from lowest- to
highest-order bit:

0/1 Up/down
1 Just pressed
1 Just released

For example, the bit settings returned for a just-initiated point and click opera-
tion—left button is down and just pressed—can be represented as follows:

Right Button Middle Button Left Button

0 0 0 0 0 0 0 1 1

A click and drag operation that is in progress—right button is down—can be
represented like this:

Right Button Middle Button Left Button

0 0 1 0 0 0 0 0 0

Only four combinations of bit settings are meaningful to JAM and recognized as
representing valid button states:

� Up — 0 0 0

� Down — 0 0 1

� Down and just pressed — 0 1 1

� Up and just released — 1 0 0

For example, the following routine tests whether any mouse buttons are down: it
bitwise AND’s sm_ms_inquire ’s return value with 0x49, thereby masking off all
but the first, fourth, and seventh-order bits:

Getting Mouse Data

558 JAM 7.0 Application Development Guide

/*find out whether any button is down */
int is_any_button_down(void)
{
 return sm_ms_inquire (MOUSE_BUTTONS) & 0x49;
}

Keyboard Modifiers
By supplying sm_ms_inquire with an argument of MOUSE_SHIFT, you can find
out whether a mouse click occurred with one or more of these keys pressed down:
Shift, Ctrl, and Alt. The function returns an integer bit mask whose three
lowest-order bits are set to indicate which of the three keys, if any, were pressed.
These bits are set as follows, from lowest- to highest-order bit:

1 Shift key is down
1 Ctrl key is down
1 Alt key is down

For example, a return value of 2 (0 1 0) indicates that the Ctrl key is down,
while a return value of 5 (1 0 1) indicates that the Alt and Shift keys are both
down. The second of these returns can be represented as follows:

ShiftCtrlAlt

1 0 1

In the following example, the return value of sm_ms_inquire(MOUSE_FIELD) is
bitwise AND’d with 0x06 in order to mask off the lowest-order bit (Shift). This
lets the program determine whether Alt or Ctrl, or both, were pressed down during
the last mouse click:

if (sm_ms_inquire(MOUSE_SHIFT))
{
 /*test for Alt and Ctrl keys only */
 ms_kbd = sm_ms_inquire(MOUSE_SHIFT) & 0x06;
 switch (ms_kbd)
 {
 case 0x02: /*Ctrl key is down */
 ...
 break;

 case 0x04: /*Alt key is down*/
 ...
 break;

 case 0x06: /*Alt+Ctrl keys are down */
 ...
 break;
 }

Changing the Mouse Pointer State

55932 Mouse InterfaceChapter

Elapsed Time Between Mouse Clicks
sm_mus_time reports the number of milliseconds that elapsed since an unspeci-
fied time. You can compare this value to the value reported on previous or
subsequent mouse clicks—for example, to determine whether two successive
mouse clicks should be interpreted as a double mouse click.

Note: Ordinarily, you can use the key change function to intercept double mouse
click events. For more information, refer to page 553.

Changing the Mouse Pointer State

sm_delay_cursor sets the mouse pointer to be either the default cursor or the
delay cursor, or gets the mouse pointer’s current state, according to the supplied
argument. It can also specify to change the cursor’s state automatically, depending
on whether the application is awaiting input or not.

For GUI platforms, you can set a screen’s default cursor through its Pointer
property. In Windows and Motif, the default cursor is an arrow. The delay cursor in
Windows is an hourglass; in Motif, the delay cursor is usually a wristwatch icon.
You can change Motif’s default cursor through the pointerShape resource.

Because character-mode JAM does not change the mouse pointer shape,
sm_delay_cursor resets the background status line message to the value of
SM_WAIT or SM_READY. Note that you can turn background status messages on and
off through sm_setstatus .

sm_delay_cursor takes a single integer argument, one of these constants:

SM_AUTO_BUSY_CURSOR

Sets the mouse pointer to toggle automatically between the default cursor and the
delay cursor, depending on whether the application is awaiting input or not. The
default cursor appears whenever JAM is awaiting input.

SM_BUSY_CURSOR

Changes the mouse pointer into the delay cursor.

SM_DEFAULT_CURSOR

Restores the default cursor.

SM_SAME_CURSOR

Leaves the mouse pointer unchanged. Use this argument to get the pointer’s current
state.

GUI cursors

character-mode
behavior

Changing the Mouse Pointer State

560 JAM 7.0 Application Development Guide

SM_TEMP_BUSY_CURSOR

Temporarily changes the mouse pointer to the delay cursor. JAM restores the
mouse pointer to the default cursor after JAM refreshes the screen.

561

Development Utilities
This appendix describes utilities that are useful in the development process.

Creating and Maintaining Libraries

JAM’s formlib utility lets you create and maintain libraries of JAM screens,
menus, and binary JPL files, as well as repositories.

formlib –c [fluv] library filename...]

formlib –d [luv] library filename...]

formlib –r [luv] library filename...]

formlib –t [luv] library filename...]

formlib –x [fluv] library filename...]

formlib –m library

formlib –g cfg-str library

formlib – { s+|s– } [–v] library

–c
Create a new library that contains the files named.

AA

Synopsis

Options and
Arguments

Creating and Maintaining Libraries

562 JAM 6.0 Application Development Guide

–d
Delete the named files from the library.

–r
Replace/add the named files to the library.

–t
Generate a list of the library’s contents.

–x
Extract the named files from the library. If none are named, all are extracted. Do
not include wildcard specifiers in the file name.

–f
Allow the output file to overwrite an existing file.

–l
Convert binary file names to lower case before processing.

–u
Convert binary file names to upper case before processing.

–v
Generate list of files processed.

–m
Compact library/repository to eliminate wasted space.

–g
Define a configuration management string.

–s
Set (+) or clear (–) the SYSLIB flag.

formlib creates libraries in which you can store JAM screens and binary JPL
files. You can also store ASCII files in a JAM library; however, only binary files
are accessible at runtime or through the screen editor. formlib can also be used to
maintain and get information about existing libraries; for example, you can put a
library under source management control, or get a list of its contents.

Description

Converting Binary Files to C Data Structures

Appendix 563A Development Utilities

File specifications can include any wildcard or pattern-matching symbols that are
valid for your operating system. For example, this command on a MS-DOS system
puts all files with the .jam extension into the library screenlib :

formlib –c screenlib *.jam

The –l and –u options are useful for operating systems like UNIX that are
case-sensitive. For example, this UNIX command creates the library newlib and
adds all *.jam files in the current directory in it; all receive lowercase names—for
example, MAIN.JAM is identified as main.jam .

formlib –cl newlib *

For information about source control management options, refer to page 361 in the
Editors Guide.

Converting Binary Files to C Data Structures

 bin2c converts JAM binaries—screens, menus, and JPL modules—into C
character arrays.

bin2c [–fluv] ascii–file screen...

ascii–file
The name of the output file.

input-file
The name of the input file

–f
Overwrite an existing output file.

–l
Convert file names sent to output to lower case.

–u
Make array of UCHAR instead of char .

–v
Generate list of files processed.

Synopsis

Options and
Arguments

Converting Binary Screens to Hex ASCII

564 JAM 6.0 Application Development Guide

When bin2c creates the ASCII C file, it generate an array for each of the binary
input files. An array in the file has one of these two form:

char src–file[] = { contents of file };

UCHAR src–file[] = { contents of file };

where src–file is the name of the source binary file with its path and extension
stripped off. If you use the –l option, src-file is in lower case.

Files created with bin2c arrays can be compiled, linked with your application, and
added to the memory-resident form list with sm_formlist . For more information
on memory-resident lists, refer to this function and to page 522. The following files
can be made memory-resident:

� Screens

� JPL modules

� Menus

� Key translation files

� Setup variable files

� Video configuration files

� Message files

You cannot convert a file to its original binary form after using bin2c . JAM
provides other utilities that permit two-way conversions between binary and ASCII
formats. For screens, these utilities are bin2hex and f2asc .

Converting Binary Screens to Hex ASCII

jamdev creates binary screen files. Use bin2hex to convert these to and from
hexadecimal for porting screens across different systems.

bin2hex –c [flv] ascii–file screen...

bin2hex –x [flv] ascii–file

ascii–file
With –c , ascii–file is the output file. All of the binary input files will be converted
to hexadecimal ASCII and added to ascii–file. Pathnames are stripped off;

Description

Synopsis

Options and
Arguments

Converting Screens Between Binary and ASCII

Appendix 565A Development Utilities

extensions are left intact. If you use –l , the screen names in ascii–file will be in
lower case.

With –x , ascii–file is the input file. bin2hex extracts each screen in ascii–file and
puts each file in the current directory. If you use –l , the screen names are in lower
case. Selective extraction of screens from ascii–file is not supported. Only one
argument is supported with the –x option; additional arguments are ignored.

–c
Create an ASCII file from one or more screen.

–x
Extract all screens contained in an ASCII source; selective extraction is not
supported.

–f
Overwrite an existing file.

–l
Convert file names sent to output to lower case.

–v
Generate list of files processed.

Converting Screens Between Binary and ASCII

The screen editor creates binary screen files. You can use f2asc with –a to create
an ASCII listing of a screen’s contents and edits, modify the file, and convert it
back to a binary screen file using f2asc –b .

f2asc –a [cf] ascii–file [–i header file] screen...

f2asc –b [f] ascii–file

ascii–file
With the –a option, ascii-file is the name of the file to receive ASCII version of
screen. With the –b option, ascii-file is the name of the file to convert into a binary
screen.

Synopsis

Options and
Arguments

Converting Screens Between Binary and ASCII

566 JAM 6.0 Application Development Guide

screen
The file name of a screen to convert to ASCII.

–a
Create ASCII listing of one or more screens.

–b
Create or extract all binary screens from an ASCII listing. Note that this option
does not accept an output file name.

–c
Do not generate comment lines (–a option only).

–f
Overwrite an existing file.

–i
Include header file at beginning of ASCII output.

With f2asc , either the –a or –b option must be used. With –a , you must specify
the name of at least one screen, (or use wildcard characters). With –b , screen
names are ignored. The –b option automatically extracts all screen files from
ascii–file.

f2asc is typically used for documenting applications. It is also useful for editing
tasks that are best performed by text editors—for example, global search and
replace operations.

The text file generated by f2asc describes the contents of the screen—the widgets
that compose it and their respective properties. It is broken into sections by object
type, starting with the screen itself, then any groups on the screen, followed by the
fields of the screen in numerical order, and finally the labels and boxes on the
screen. Each object within the object types begins with its own header:

S: screenname
C: control-string
G: groupname
T: tableviewname
F: fieldname
L: labelname
B: boxname

Description

ASCII Output

Converting Screens Between Binary and ASCII

Appendix 567A Development Utilities

Comments appear in lines beginning with the # character. There are two types of
keywords describing object properties, flags and values:

� A flag keyword is by itself and requires no other information—for example
the NUMERIC keyword represents the numeric field type property and needs no
value. A flag keyword can appear on the same line as other keywords.

� A value keyword must be accompanied by more information—it is followed
by and equals sign (=) and a value represented by another keyword or a
number or string. For example GROUP=group 1 shows that a field belongs to
group 1 of a screen. Value keywords that begin with PI describe graphical
properties of an object. Other keywords that are specific to JAM add-on
products, such as its CASE interface and ReportWriter, can also appear.

569

Videobiz Database
This appendix describes the database tables in the videobiz database. The
following information is listed for each table:

� Column names.

� Data type of each column.

� Length of character columns.

� Status of column detailing whether it is a primary or foreign key and whether
it can accept null values.

� Description of the data to be entered into the column.

� Sample entry.

BB

Videobiz Schema

570 JAM 6.0 Application Development Guide

Videobiz Schema

The following tables outline the database tables in the videobiz database. A
diagram of the schema appears in Figure 45 on page 577.

Table 59. Actors table.

Column Name Data Type Length Status Sample Description

actor_id integer primary key
not null

87 Unique number code for each actor.

last_name char 25 not null Ullmann Actor’s last name or only name.

first_name char 20 Liv Actor’s first name.

Table 60. Codes table.

Column Name Data Type Length Status Sample Description

code_type char 32 primary key
not null

genre_code Type of code. Corresponds to column
name.

code char 4 primary key
not null

ADV Code value.

dscr char 40 Adventure Description of code value.

Videobiz Schema

Appendix 571B Videobiz Database

Table 61. Customers table.

Column Name Data Type Length Status Sample Description

cust_id integer primary key
not null

2 Unique number code for each cus-
tomer.

last_name char 25 not null Scott Customer’s last name.

first_name char 20 not null Alexander Customer’s first name.

address1 char 40 5601 Wilson Customer’s address.

address2 char 40 Additional address information.

city char 25 Geneva City customer lives in.

state_prov char 10 NY State/Province.

postal_code char 10 10234 Postal code.

phone char 15 515–221–4111 Customer’s telephone number.

cc_code char 4 VISA Code for type of credit card. List in
codes table.

cc_number char 16 4000... Number on credit card.

cc_exp_month integer 2 Month of credit card expiration.
1=January, 12=December.

cc_exp_year integer 1994 Year of credit card expiration (4
digits).

member_date datetime 1991/05/30
00:00:00

Date when customer became a
member.

member_status char 1 not null A Current status of membership. Val-
ues include: (A)ctive, (I)nactive,
(F)requent renter.

num_rentals integer not null 105 Total number of rentals customer
has made.

rent_amount float not null 175.00 Total amount of money paid by
customer.

notes char 254 Likes ADV
videos.

Comments about customer.

Videobiz Schema

572 JAM 6.0 Application Development Guide

Table 62. Flag table.

Column Name Data Type Length Status Description Sample

yesno char 1 Flag used in the sample application. Y

Table 63. Pricecats table.

Column Name Data Type Length Status Sample Description

pricecat char 1 primary key
not null

N Unique letter code for each category.

pricecat_dscr char 40 New
Release

Category description.

rental_days integer not null 2 Number of rentals days available in
this category.

price float not null 2.50 Amount to be paid for rentals in this
category.

late_fee float not null 2.00 Amount of late fee for rentals in this
category.

Videobiz Schema

Appendix 573B Videobiz Database

Table 64. Rentals table.

Column Name Data Type Length Status Sample Description

cust_id integer primary key
foreign key
not null

3 Code identifying the customer for
this rental.

title_id integer primary key
foreign key*
not null

69 Code identifying the video title for
this rental.

copy_num integer primary key
foreign key
not null

2 Copy of this video being rented.

rental_date datetime primary key
not null

1993/10/29
19:56:00

Date/time the video was rented.

due_back datetime not null 1993/11/01
00:00:00

Date the video is due back to avoid
late fee.

return_date datetime NULL Actual date/time the video was re-
turned; NULL until then.

price float not null 3.50 Rental fee for video at time rental
was made.

late_fee float not null 1.00 Late fee per day for video at time
rental was made.

amount_paid float not null 3.50 Total amount paid on this rental as of
current date.

rental_status char 1 not null C Status of rental. Values include
(C)urrently out, Back and (P)aid,
(B)alance is due.

rental_com-
ment

char 76 NULL Comments about rental, if any.

modified_date datetime not null 1993/10/29
19:56:00

Date this record was last modified.

modified_by integer foreign key
not null

2 Last user who modified record.

*title_id is a foreign key from the tapes table, in combination with copy_num.

Videobiz Schema

574 JAM 6.0 Application Development Guide

Table 65. Roles table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

actor_id integer primary key
foreign key
not null

87 Unique number code for each actor.

role char 40 Marianne Role the actor plays in the video.

Table 66. Tapes table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

copy_num integer primary key
not null

1 Number identifying the copy of this
video.

status char 1 not null O Code specifying the current status of
this copy. Values include (A)vailable,
(R)eserved, (O)ut, (I)nactive.

times_rented integer not null 53 Number of times this copy has been
rented.

Videobiz Schema

Appendix 575B Videobiz Database

Table 67. Titles table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
not null

33 Unique number code for each video
title.

name char 60 not null Scenes from
a Marriage

Video title.

genre_code char 4 CLAS Code specifying the video category.
Values include: ADLT, ADV, CHLD,
CLAS, COM, HORR, MUS, MYST,
SCFI, TV, VID. See codes table.

dir_last_name char 25 Bergman Director’s last name.

dir_first_name char 20 Ingmar Director’s first name.

film_minutes integer 168 Length of the video.

rating_code char 4 PG Rating code given the film by the
Motion Picture Association of Amer-
ica. Values include: G, PG, PG13, R,
NC17. See codes table.

release_date datetime 1974/01/01
00:00:00

Year the film was released to movie
theatres.

pricecat char 1 foreign key
not null

G Code taken from the pricecats
table specifying the price category.

Table 68. Title_dscr table.

Column Name Data Type Length Status Sample Description

title_id integer primary key
foreign key
not null

33 Unique number code for each video
title.

line_no integer primary key
not null

1 Line number of the video description.

dscr_text char 76 Relationship
of a couple...

Description of the video.

Videobiz Schema

576 JAM 6.0 Application Development Guide

Table 69. Users table.

Column Name Data Type Length Status Sample Description

user_id integer primary key
not null

3 Unique number code for each em-
ployee/system user.

logon_name char 8 jack User’s logon name.

password char 8 forest User’s password.

last_name char 25 Ryan User’s last name.

first_name char 20 Jack User’s first name.

customer_flag char 1 Y Y allows access to customer subsys-
tem.

admin_flag char 1 N Y allows access to administrative
subsystem.

marketing_flag char 1 Y Y allows access to marketing subsys-
tem.

frontdesk_flag char 1 Y Y allows access to front desk subsys-
tem.

Videobiz Schema

Appendix 577B Videobiz Database

rentals

users

logon_name
password
last_name
first_name

tapes
title_id
copy_num

title_dscr
title_id
line_no

roles

titles

pricecats actors

codes

title_id
actor_id

last_name
first_name
address1
address2
city
state_prov
postal_code
phone
cc_code
cc_number
cc_exp_month
cc_exp_year
member_date
member_status
num_rentals
rent_amount
notes

name
genre_code
dir_last_name
dir_first_name
film_minutes

pricecat_dscr
rental_days
price
late_fee

last_name
first_name

code_type
code

rating code
release_date
pricecat

amount_paid
rental_status
rental_comment
modified_date
modified_by

status
times_rented

dscr_text role

title_id

actor_idpricecat

dscr

cust_id
title_id
copy_num
rental_date

due_back
return_date
price
late_fee

user_id

customers
cust_id

flag

yesno
customer_flag
admin_flag
marketing_flag
frontdesk_flag

Figure 45. Diagram of the videobiz database.

579

Index
Symbols

:: (parameters), in DECLARE CURSOR command,
250–255

:+ (colon–plus processing), 240
See also Colon preprocessing

:= (colon–equal processing), 246–247
See also Colon preprocessing

& (ampersand), in control string, 110

&& (double ampersand), in control string, 110

@ (at), to reference database driver variable, 257–259

@date, international support, 494

@sum, international support, 494

@tm_sel_cursor, default select cursor name, 221, 376

^ (caret), in control string, 112

A
Aggregate functions

aliasing to widgets, 227–228
in automated SQL generation, 284–285

ALIAS, dbms command, aliasing column names,
225–226

Aliasing, column names to widgets, 225–228

Alphabetic data, range checking, 493

Alternative scrolling. See Scrolling array, alternative
scroll driver

Application
base form, 69
code. See Hook functions
development, overview, 3–31
exiting base form, 70
initialization, key translation file, 474
localization, 482–494
memory. See Memory
menu, attaching, 89
size, 525

Application data, 482–483

Application mode, 6

Array
about, 79
clearing all data, 84
deleting occurrence, 85
elements, 78
inserting occurrence, 85
occurrence. See Occurrence
scrolling. See Scrolling array

580 JAM 7.0 Application Development Guide

ASC keyword, in Sort Widgets property, 288

ASCII, non–ASCII display, 482

ASCII output
menus, 98
screens, 565

Automatic hook functions
defined, 116
example, 159–163, 164–166
installing

field function, 128
group function, 133
screen function, 124

AVAIL_FUNC. See Record function

B
Background status, displaying, 203

Backward scrolling, viewing database rows, 232–233

Base form, 69
exiting, 70

Before image processing, 366–367
in automated SQL generation, 297, 300
modifying data in transaction manager, 323

bin2c, 524, 563–564

bin2hex, 564–565

Binary columns
reading from database, 235
writing to database, 249

Binding, supplying database column values, 219,
250–255

binherit, 66–68
arguments and options, 67
error messages, 68

C
C function, executing from control string, 112–113

C Type property
See also JAM type
formatting fetched data, 235–237
setting for version columns, 370–371

C Type property (continued)
writing values to database

character strings, 249
hexadecimal strings, 249
numeric data, 245

Caret function. See Control function

Case sensitivity
alias names, 226
column names, 209, 210
connection names, 213
cursor names, 217
engine names, 209, 210
transaction manager commands, 397
widget names, 225

CATQUERY, dbms command, writing results to wid-
get or file, 237

CHANGE, transaction manager command, switching
transactions, 403

Character data, 8–bit, 482–483

Character strings
reading from database, 234
writing to database, 244, 249

Check box widget. See Group

Check digit function, 139–140
return codes, 139
standard arguments, 139

Child property, determining child table view, 314,
358–359

CKDIGIT_FUNC. See Check digit function

Class property
for menu items, 335–336
for push buttons, 335–336

Classes. See Transaction classes

CLEAR, transaction manager command, clearing data
in widgets, 404–405

CLOSE, transaction manager command, closing data-
base transaction, 406–408

CLOSE CONNECTION, dbms command, closing da-
tabase connections, 215

CLOSE CURSOR, dbms command, closing database
cursor, 222

CLOSE_ALL_CONNECTIONS, dbms command,
closing database connections, 215

Index 581

Colon preprocessing
colon equal, 246
colon plus, 240
examples, 247–249
writing to a database, 239–249

Column Name property, in automated SQL generation,
280, 293, 297

COMMIT, dbms command, committing transactions,
266–267

Compress, library, 561

Configuration, memory–resident files, 523

CONNECTION, dbms command, setting database
connection, 214

Connections. See Database connections

Continuation file
scrolling through select set, 232
specifying, in the transaction manager, 322, 377

CONTINUE
dbms command, fetching next set of rows, 231–232
transaction manager command, fetching next set of

data, 409–411

CONTINUE_BOTTOM
dbms command, fetching last set of rows, 232
transaction manager command, fetching last set of

rows, 412–415

CONTINUE_DOWN, transaction manager command,
fetching next set of rows, 416–419

CONTINUE_TOP
dbms command, fetching first set of rows, 232
transaction manager command, fetching first set of

rows, 420–423

CONTINUE_UP
dbms command, fetching previous set of rows, 232
transaction manager command, fetching previous

set of rows, 424–427

Control function, 142–143
example, 179
return codes, 142
standard argument, 142

Control string, 109–114
calling JPL, 112–113
debugger view of assignments, 511
executing function from, 112–113

executing OS command from, 113–114
target string in, 112

CONTROL_FUNC. See Control function

Conversion utilities
bin2c, 563–564
bin2hex, 564–565
f2asc, 565–567
m2asc, 97

COPY, transaction manager command, copying data
for edit, 428–429

COPY_FOR_UPDATE, transaction manager com-
mand, changing to update mode, 430–431

COPY_FOR_VIEW, transaction manager command,
changing to view mode, 432–433

Currency format
default entries in message file, 487
fetching from database, 235
internationalization, 486–488
writing to database, colon–plus processing, 245

Cursor
See also Cursor (database)
changing delay state, 559
position

after check digit function, 139
after field validation, 128
after group validation, 133

Cursor (database), 217–222
closing, 214, 222
declaring, 219–222, 250–252
redeclaring, 222

in transaction manager, 221
transaction manager usage, 375–376
transaction model usage strategies, 365
using bind values, 219–221, 250–253
using colon expansion, 219
using the default, 218

D
Data

See also Application data; Field data
clearing, in the transaction manager, 404–405
copying, in the transaction manager, 428–429
deleting, in the transaction manager, 379–380
inserting, in the transaction manager, 440–442

582 JAM 7.0 Application Development Guide

Data (continued)
modifying, in the transaction manager, 323–324,

444–449
selecting

in the transaction manager, 321–322, 377–379,
450–454, 458–462

using a database driver, 223–237
writing to a database, 239–254

Data Formatting property
formatting fetched data, 235
using in database updates, 243

Database columns
aliasing to widgets, 225–228
automatic mapping to widgets, 225
importing to a repository, 63–64
in automated SQL generation, 274, 280–281, 293,

297

Database connections
closing, 215
declaring, 213–215, 320
setting current, 214
setting default, 214
using more than one, 214

Database drivers
initializing, 207–211

in Windows, 210–211
selecting data, 223–237
writing to a database, 239–254

Database engines
accessing, 213–215
adding support for an engine, 211
initializing, 207–211

in Windows, 210
optimistic locking, 370–371
setting current, 211, 214
setting default, 211, 214
using more than one, 214–215
viewing error messages, 257–259

Database menu, connecting to the database, 318

Databases
importing database to a repository, 63–64
optimistic locking, 370–371
reading information from, 223–237
transaction processing, 265–269
writing information to, 239–254

Date/time format
fetching from database, 234
internationalization, 483–486
writing to database, 248

colon–plus processing, 244

DB Interactions, 383
viewing link types, 315
viewing transaction tree, 315–316, 359

dbiinit.c
creating new, 211–212
initializing database engines, 207–211

DDE, 545–552
callback function, 551
cold links

creating for JAM client, 549
updated from JAM server, 547

cold paste links, creating for JAM client, 549
destroying links on JAM client, 551
disabling JAM as server, 548
enabling JAM as client, 548
enabling JAM as server, 546

in initialization file, 546
executing command from JAM client, 551
executing command on JAM server, 552
hot links

creating for JAM client, 549
specifying in initialization file, 550
updated from JAM server, 547

hot paste links, creating for JAM client, 549
links

created on JAM server, 546
creating for JAM client, 549–550
specifying in initialization file, 550
updated from JAM server, 547

paste links
created on JAM server, 546
creating for JAM client, 549

poking data from JAM client, 552
poking data into JAM server, 552
requesting link data, 551
updating JAM client data, 550
warm links

creating for JAM client, 549
updated from JAM server, 547

warm paste links, creating for JAM client, 549

Debugger, 495–518
accessing, 501–502

in application and test mode, 501
accessing source code, 505

Index 583

Debugger (continued)
animation, 500, 512
Application Data, 503
Application Data window, 518
breakpoints, 498

location, 513
setting, 512
setting in JPL, 508
setting on events, 513
sorting, 503

Breaks menu, 504
calling a function, 503
calling a function on breakpoint, 516
configuring, 499
Data Watch window, 517
DBUG key, 497, 501
dumping windows to log file, 503
Edit Breakpoints window, 515

add breakpoint, 517
event mode, 516
location mode, 516

Edit menu, 504
enable in screen editor, 501
event filtering, 515

sub-events, 516
event stack, 498
exiting, 501
expert mode, 496, 500, 515
features, 495
file browsing, 505
file menu, 502
how it works, 496
log file preferences, 499
menu bar, 502
monitor variables and expressions, 498
Open Source Module, 505
Options menu, 505
pending keys, 499
preferences, 499
saving preferences, 500, 502
source code, module type, 507
Source Code window, 497
step through execution, 511–512
Tools menu, 503
Trace menu, 504
tracing, 511

expert mode, 512
variable and expression monitoring, 517
view menu, 497

Debugger (continued)
viewing control string assignments, 511
viewing screen information, 508

control strings, 511
field information, 509
group information, 510
screen information, 509
screen JPL, 509

viewing source code, 505
watch data, sorting, 503
Windows menu, 504

DECLARE CONNECTION, dbms command, making
database connection, 213–215

DECLARE CURSOR, dbms command
creating database cursor, 219–222, 250–252
using bind values, 219–221, 250–253
using colon expansion, 219

Declaring hook functions. See Hook functions

Delay cursor, 559

Delayed write, 477
flushing, 477

Delete Order property, in automated SQL generation,
300

DELETE statement, SQL generation from properties,
299

Demand hook functions, 116
example, 163–164
installing

field function, 128
group function, 133
screen function, 124

DESC keyword, in Sort Widgets property, 288

DFLT_GROUP_FUNC. See Group function

DFLT_SCREEN_FUNC. See Screen function

DFLT_SCROLL_FUNC. See Scrolling array, alterna-
tive scroll driver

Disk–based scrolling. See Scrolling array, alternative
scroll driver

Display. See Terminal

Display area, size for portability, 479

Display attributes, portability, 479–480

Distinct property, for table view, in automated SQL
generation, 279

584 JAM 7.0 Application Development Guide

E
ENGINE, dbms command, setting database engine,

211

Engines. See Database engines

Error function, 137–138
return codes, 137
standard arguments, 137

Error handling, 199–203
installing database error handler, 262–264

Error hook function, 201
example, 173

Error messages
See also Error messages (database); Message file;

Status line
transaction manager, 465–469
translating, 489

Error messages (database), 255–263
customized processing, 259–262
default processing, 256
engine–specific messages, 257–259
error handler, 260–261
exit handler, 260–261
generic database driver messages, 257–259
installing error handler, 259–264
transaction error handling, 267–270
transaction hook functions, 387
warning codes, 257–259

EXECUTE, dbms command, executing statement, 219

External menu, 92

F
f2asc, 565–567

FETCH, transaction manager command, fetching next
row of data, 434–435

Fetch Directions property, 377–378

Field
See also Widgets
characteristics, internationalization, 488–489
currency. See Currency format
date/time format. See Date/time format
displaying status of, 202

function. See Field function
getting current field number, 79
MDT bit. See Validation
validation. See Validation
VALIDED bit. See Validation

Field data
clearing all fields, 84
clearing from array, 84
getting length, 80
reading, 80
testing

all fields for changes, 82
for yes value, 81
if null, 81

testing for no value, 81
writing, 83–84

Field function, 124–129
example of automatic function, 159
example of demand function, 163
passing non–standard arguments into, 161
return codes, 128
standard arguments, 126

Field number
assignment, 78
getting for current field, 79

Field validation, 81
causes, 125

FIELD_FUNC. See Field function

FINISH, transaction manager command, closing cur-
rent transaction, 436–437

FORCE_CLOSE, transaction manager command, dis-
carding changes, 438–439

Foreign keys, enforcing with validation link, 362–363

Form
See also Screen
opening, 73

Form stack, 70

FORMAT, dbms command, formatting result set, 237

Formatting text
for a database, 239–249, 251–252
from a database, 234–237

formlib, 561–563

funclist.c. See Hook functions

Function. See Hook functions

Index 585

Function keys
associating with control string, 109
setting default behavior, 110

Function list. See Hook functions

G
Global data. See Application data

GRAPH keyword, 474
using, 477

Graphics characters, 477

Grid function, 129–132
return codes, 131
standard arguments, 129

GRID_FUNC. See Grid function

Group
converting to field number, 79
getting name from field reference, 80
validation, 132

GROUP BY clause, in automated SQL generation,
284–287

Group By property, in automated SQL generation,
284–287

Group function, 132–134
example of automatic function, 164
return codes, 133
standard arguments, 132

GROUP_FUNC. See Group function

H
HAVING clause, in automated SQL generation,

287–288

Having property, in automated SQL generation,
287–288

Help function, 134
example, 166
return codes, 134
standard arguments, 134

Hexadecimal strings
converting binary columns, 235
writing to database, 245, 249

Hook function arguments
check digit, 139
control, 142
error, 137
field, 126
grid, 129
group, 132
help, 134
initialization, 140
insert toggle, 138
key change, 136
playback, 141
record, 141
reset, 140
screen, 122
timeout, 135
transaction manager, 146
video processing, 144

Hook function return codes
check digit, 139
control, 142
error, 137
field, 128
Grid, 131
group, 133
help, 134
initialization, 140
insert toggle, 138
key change, 136
playback, 141
record, 141
reset, 140
screen, 124
status line, 143
timeout, 135
transaction manager, 147, 385–388
video processing, 145

Hook function types
check digit, 139
control, 142
database driver errors, 146
error, 137
field, 124
grid, 129
group, 132
help, 134

586 JAM 7.0 Application Development Guide

Hook function types (continued)
initialization, 140
insert toggle, 138
key change, 136
playback, 141
prototyped, 120
record, 141
reset, 140
screen, 122
status line, 143
timeout, 134
transaction manager, 146–147, 384–393
video processing, 144

Hook functions
See also Hook function types
automatic, 116
demand, 116
installing, 117–120
standard arguments, 117
transaction manager, 384–393

I
I/O processing, 473–477

Import, of database objects to a repository, 63–64,
310–312

In Delete Where property, in automated SQL genera-
tion, 301

IN keyword, in automated SQL generation, 283

In Update Where property, in automated SQL genera-
tion, 299

Inheritance, 65–67
updating (binherit), 66–68

Initialization, database engines, 207–211

Initialization function, 140–141
example, 175
return codes, 140
standard argument, 140

Input, keyboard, 474–476

INSCRSR_FUNC. See Insert toggle function

INSERT statement, SQL generation from properties,
292–296, 302–303

Insert toggle function, 138–139
example, 174
return codes, 138
standard argument, 138

Internationalization, 481–494
8–bit characters, 482–483
currency formats, 486–488
date/time formats, 483–486

substitution variables, 485
decimal symbol, 488
keystroke filters, 488–489
library functions, 482
messages, 482
of application screens, 490–493
range checks, 493–494
status and error messages, 489–490

Interrupt handler, 140

J
JAM, modifying, 521

JAM events, 495

JAM type
character strings

fetching from database, 234
writing to database, 244–245, 247–251

converting to C type, 243
currency formats, writing to database, 243, 245–246
date and time formats

fetching from database, 234
writing to database, 243, 244–246, 248

hexadecimal strings, writing to database, 245
numeric data

fetching from database, 235
writing to database, 245–246, 249

using to enter data, 241–244
using to format selected data, 234–237

jmain.c. See Source code, main routines

Join, in automated SQL generation, 289

JPL
compared to compiled code, 525–527
memory–resident, 524
stubbing out, 527

JPL calls, from control string, 112–113

JPL variable, watching through debugger, 517

Index 587

Jterm, enabling data compression, 522

K
KBD_DELAY keyword, 475

Key
remapping, for viewing select set, 233
routing, 475–476

Key change function, 136–137
example, 171
return codes, 136
standard argument, 136

Key label, portability, 480

Key translation, 474–475
internationalization, 483
portability, 480

Keyboard
portability, 480
processing, 473–477

Keyboard interface, Invoking pop–up menu without
mouse, 96

KEYCHG_FUNC. See Key change function

Keystroke Filter property
translation support, 488–489
using in database updates, 243
using to format database values, 248, 249

L
Language. See Internationalization

LDB, 191–195
activating

at application startup, 193
at runtime, 194

loading
at application startup, 193
at runtime, 194
multiple instances of, 193

popping, 194
pushing, 194
read–only, 194
referencing entries, 195

LDB (continued)
selection group data write–through, 192
write–through and screen entry, 192

Library
creating, 561–563
maintaining, 561–563

Links, 313, 357–364
creating, 357–358
guidelines for using, 464
in automated SQL generation, 289–293
restrictions, 359
sequential, 314–315, 359–360
server, 314–315, 359–360
setting child table view, 314, 358–359
setting parent table view, 314, 358–359
traversal properties, 382
validation, 316, 361–364

adding lookup, 363–364
enforcing foreign keys, 362

Local Data Block. See LDB

Logical key, 474
invoking control string from, 109

Lookup specification, in Relations dialog box, 363

M
m2asc, 97

Math expression, international support, 494

MDT bit, 81
See also Validation
clearing for all fields, 82
setting, 81
testing to find first modified field, 82

Memory, optimization, 521–527

memory model, compiling for small and medium, 525

Memory–resident
configuration files, 523
JPL, 524
message file, 524
screens, 522

installing, 522

Memory–resident list, preparing files for, 564

588 JAM 7.0 Application Development Guide

Menu
ASCII format, 98
ASCII/binary conversion, 97
creating at runtime, 95
definition, 87
deleting at runtime, 95
deleting items at runtime, 95
displaying as toolbar, 87, 92
external reference, 92
inserting items at runtime, 95
installing, 89–92

for application, 90
for screen, 90
for widget, 90
identical instances of, 90
unique instances of, 91

loading script into memory, 88
pop–up for field

invoking, 96
invoking from keyboard, 96

removing from display, 96
scope assignment and display, 89

Menu bar, displaying items on, 92

Menu item
displaying on menu bar, 92
displaying on toolbar, 92
displaying status of, 202
setting status in transaction style, 335–336
transaction classes for, 335–336

Menu Name property, 90

Menu runtime properties, 93

Menu script
loading into memory, 88–89
unloading from memory, 96

Menu Script File property, 88

Message
See also Message file; Status line
displaying

background status, 203
on status line, 202

error, 199–203
functions, 200–203

Message file
disk–based, 524
internationalization

currency formats, 486–488
date/time formats, 483–486

translating, 482

MODE0 to MODE6 keyword, 474
interpreting, 477

Mouse events
getting name of last clicked–on field, 556
getting name of last clicked–on screen, 556
getting state of buttons, 557

N
NEW, transaction manager command, entering new

data, 440–442

Null edit
colon–equal processing, 246–247
writing null value to database, 242, 248

Null Field property
in automated SQL generation, 283
writing null values to database, 242, 248

Null value, writing to database, 242, 248

Numeric data
range checking, 493
reading from database, 235
writing to database, 245–246

for empty fields, 246

O
OCCUR, dbms command, setting occurrence for SE-

LECT, 234

Occurrence
deleting, 85
group. See Group
inserting, 85

ONENTRY, dbms command, calling function before
dbms command, 260–261

ONERROR, dbms command, installing error handler,
260–261

ONEXIT, dbms command, calling function after dbms
command, 260–261

Index 589

Operating system, accessing from control string, 113

Operator property, in automated SQL generation,
281–283

Operators, supported in WHERE clause, 281

Optimistic locking, property settings, 370–371

ORDER BY clause, in automated SQL generation,
288–289

Output processing, 476–477
messages, 202

P
Parameters, for binding, in DECLARE CURSOR com-

mand, 219, 250–255

Parent property, determining parent table view, 314,
358–359

PLAY_FUNC. See Playback function

Playback function, 141–142
example, 176
return codes, 141
standard argument, 141

Pop–up menu, invoking, 96
through function call, 96

Popup Menu property, for widgets, 90

Portability, 479–480
smmach.h, 480
terminal, 476

Precision, in SELECT results, 235

Primary Keys property, in automated SQL generation,
297–298, 300

Properties
transaction manager, 380–384
traversal properties, 380–384

PROTO_FUNC. See Prototyped function

Prototyped function, 120–122
examples, 148
get standard arguments, 120
valid prototypes, 122

Push button widget
setting status in transaction style, 335–336
transaction classes for, 335–336

R

Radio button widget. See Group

Range, checking, 493–494

Ready/Wait status, displaying, 202

Record function, 141–142
example, 176
return codes, 141
standard argument, 141

RECORD_FUNC. See Record function

REFRESH, transaction manager command, refreshing
the screen, 443

Regular expression, 489

Relations property, 360–361
in automated SQL generation, 289, 291, 292

Repository, 61–68
importing database objects, 63–64, 310–312,

353–354
screen wizard entries, 65
storing screen templates, 63

Repository entry, copying from, 311–312

Reset function, 140–141
example, 175
return codes, 140
standard argument, 140

Return codes, transaction hook functions, 385

ROLLBACK, dbms command, rolling back transac-
tions, 266–270

Root table view, setting, 356

Routing. See Key, routing

590 JAM 7.0 Application Development Guide

Rows
no more rows status, 230
number fetched, 228
retrieving multiple rows, 228
scrolling through result set, 232–233

S
Sample application, 33–57

SAVE, transaction manager command, saving database
changes, 391–393, 444–449

Scope. See Menu

Screen
See also Window
about, 69–75
ASCII/binary conversion, 565–567
C data structure conversion, 563–564
closing, 75
control string, 109
creating, screen templates, 63
display defaults, 73

overriding, 74–75
entry function. See Screen function
exit function. See Screen function
function. See Screen function
hexadecimal conversion, 564–565
internationalization. See Internationalization
memory–resident, 522

enabling installation, 522
menu, attaching, 89
opening, 73–74

as a form, 70, 73
as a sibling window, 71
as a window, 70, 73
at specific size/dimension, 74–75
from control string, 73, 110–112
through library functions, 73
with size/dimension arguments, 111

validation. See Validation
viewport, 74, 111

Screen function, 122–124
example of automatic function, 156
return codes, 124
standard arguments, 122

Screen properties, 75

Screen runtime properties, 75

SCREEN_FUNC. See Screen function

SCROLL_FUNC. See Scrolling array, alternative
scroll driver

Scrolling, specifying backward scrolling, 232–233

Scrolling array
alternative scroll driver, 529–543

action codes, 532
array size, 530
delete lines, 542
enabling, 522
get data, 540
initialize, 538
insert blank lines, 542
installing, 531, 536
put data, 541
release, 539
reserve space, 543
reset, 537
struct parameter, 533

occurrence. See Occurrence
viewing database information, 230

SELECT, transaction manager command, fetching data
for update, 450–454

SELECT statement
aliasing columns to widgets, 225–226
automatic mapping of column names, 225
concatenating result row, 237
destination of, 224, 237

aggregate functions, 227
format of results, 234–237
number of rows fetched, no more rows status, 230
scrolling through result set, 228
specifying multiple tables, in automated SQL gen-

eration, 289–292
SQL generation from properties, 277–292, 302
suppressing repeating values, 236–237
transaction manager, writing hook function,

388–393
unique column values, 236–237
writing results

to a file, 237
to a specific occurrence, 229, 234
to word-wrapped arrays, 229

Selection group
deselecting, 83
getting selection data, 82
propagating data through LDB, 192
selecting, 83
testing for selection, 82

Index 591

Self-joins, in automated SQL generation, 290

Send data, 195–198
getting bundle status, 197
reading bundle data, 197–198

through JPL, 197
through library functions, 197

writing data to bundle, 196–197
through JPL, 196
through library functions, 196

Sequential link type, 314–315, 359–360
in automated SQL generation, 291

Server link type, 314–315, 359–360
in automated SQL generation, 289–290

Server views, 315–316
traversal properties, 381–384

SET clause, in automated SQL generation, 297

Sibling window
See also Window
assigning status to existing window, 72
changing stacked window to, 72
setting for next window, 72

smmach.h, 480

Sort Widgets property, in automated SQL generation,
288–289

Source code
main routines, modifying, 521–527
platform–dependent, 480
stub functions, 525

SQL
automated, 273–304
modifying automated SQL, 304, 390–391
viewing generated statements, 301

SQL generator, 273–304
modifying automated SQL, 304

SQL statements, declaring cursors for, 219–222

Stacked window. See Window

Standard arguments, 117
check digit function, 139
control function, 142
error function, 137
field function, 126

Standard arguments (continued)
grid function, 129
group function, 132
help function, 134
initialization function, 140
insert toggle function, 138
key change function, 136
playback function, 141
prototyped function, getting for, 120
record function, 141
reset function, 140
screen function, 122
timeout function, 135
video processing function, 144

START
dbms command, setting starting row, 234
transaction manager command, initiating transac-

tion, 455–457

STAT_FUNC. See Status line function

Status line
default message, overriding, 202
message functions, 200–203
message priority, 202
message types, 202–203
terminal, portability, 479

Status line function, 143–144
example, 188
return codes, 143

STORE, dbms command, setting continuation file,
232–233

Stub functions, 525

Styles. See Transaction styles

Sub–system, 521

Support routine
See also Database drivers
database engines, 209

SYBASE, transaction manager cursor usage strategies,
365

Synchronization property, 379

System. See Operating system

System decimal, interpreting, 482

T
Table property, for table view, in automated SQL gen-

eration, 281, 293, 297, 300

592 JAM 7.0 Application Development Guide

Table views, 313, 354–357
creating, 354, 355
guidelines for using, 463–465
identifying as root, 315, 356
properties for SQL generation, 274, 281, 293, 297,

300
setting child table view, 314, 358–359
setting parent table view, 314, 358–359
synchronizing, 379
traversal properties, 380–383

Tables
in automated SQL generation, 274, 281, 293, 297,

300
storing in repository, 63–64

Target string, 112

Terminal
graphics character display, 477
output, 477, 525
portability, 476, 479
status line, 202

Test mode, 6

Timeout function, 134–136
example, 171
return codes, 135
standard arguments, 135

TIMEOUT_FUNC. See Timeout function

Toolbar, 92–93
adding items, 92
displaying, 87
enabling display, 92

Transaction
error handling, 267–270
in the transaction manager

changing transactions, 403
closing the current transaction, 436–437
starting a new transaction, 455–457

processing database transactions, 265–269
transaction model strategies, 365–367

Transaction classes, 349–352
defaults, for fields, 349–350, 351–352
menu options, setting for, 335–336
push buttons, setting for, 335–336
style assignments by mode, 351

Transaction events, 337–345, 399–402
adding to the stack, 339

Transaction events (continued)
after an error, 372–373, 398–400
by transaction manager command, 340–345
event stack, 338–339
unsupported events, 388

Transaction manager
before image processing, 323, 366–367
changing to update mode, 430–431
changing to view mode, 432–433
classes, 349–352
clearing data in widgets, 404–405
closing a screen, 325
closing current transaction, 436–437
closing database transaction, 406–408
commands, 329–336, 395–461

listing of events, 340–345, 399–402
connecting to the database, 318, 320
copying data, for edit, 428–429
creating screens for, 310–317, 353–354
customizations, 369–393
deleting data, 324, 379–380
description of, 309–325
discarding changes, 438–439
entering new data, 324, 440–442
error processing, 371–375

controlling display, 374
error list, 465–469

fetching data, 321–322, 377–379
for update, 323–325, 379, 450–454
for view, 458–462
getting first set of rows, 420–423
getting last set of rows, 412–415
getting next set of rows, 409–411, 416–419,

434–435
getting previous set of rows, 424–427
number of rows fetched, 378–379
setting backward scrolling, 377–378

hook functions, 146–147, 384–393
checking for database errors, 387
DELETE statement, 391–393
INSERT statement, 391–393
return codes, 147, 398–400
SELECT statement, 388–393
specifying return codes, 385–388
standard arguments, 146
UPDATE statement, 391–393

initiating a transaction, 455–457
opening a screen, 317
processing for transaction commands, 395–461
refreshing the screen, 443

Index 593

Transaction manager (continued)
restrictions, 398
saving database changes, 444–449
setting the transaction mode, 397
specifying commands, 331
SQL generation, 274–277
switching transactions, 403
transaction events, 337–345, 399–402
transaction requests, 337–345
tree traversal, 315–316, 337–338, 359, 398
troubleshooting, 463–469
using the Transaction menu, 318–319

Transaction manager commands, 329–336, 395–461
availability by mode, 346–348
listing of events, 340–345
specifying full commands, 332
specifying partial commands, 332
specifying the table view, 397

Transaction mode, 346–348
availability of commands, 346–348
changing to initial mode, 406–408, 438–439
changing to new mode, 440–442
changing to update mode, 430–431, 450–454
changing to view mode, 432–433, 458–462
setting, 319–320, 397

Transaction model, 324, 364–366
cursor usage strategies, 365
initializing, 207–208
return codes, 385, 398–400
specifying in Windows, 211
transaction strategies, 365–366

Transaction styles, 322–323, 349–352
defaults, 350–351
for menu items, 335–336
for push buttons, 335–336

Translating, 489–494
applications, 482–494
currency fields, 486–488
message file, 483

U
UINIT_FUNC. See Initialization function

UNIQUE, dbms command, suppressing repeating val-
ues, 236–237

Updatable property, in automated SQL generation,
292, 296, 299

Update Order property, in automated SQL generation,
296

UPDATE statement, SQL generation from properties,
296–299, 303–304

URESET_FUNC. See Reset function

Use If Null property, in automated SQL generation,
283

Use in Insert property
expression, 293–295
in automated SQL generation, 293

Use in Select property
expression, 280–281, 284
in automated SQL generation, 280–281

Use in Update property
expression, 297
in automated SQL generation, 297

Use in Where property, in automated SQL generation,
281–284

Utilities, updating inheritance (binherit), 66–68

V
Validation, 81

clearing MDT bit, 82
field, 125
field function invocation, 125
MDT bit, 81
screen, 125
setting VALIDED bits, 81
testing screen for modified data, 82
validation bit, 81
XMIT key, 125

Validation bit, 81
setting, 81

Validation Link property, 361–364
setting on a widget, 316

VALIDED bit. See Validation

Variable, watching through debugger, 517

Version Column property, 370–371
in automated SQL generation, 295–296, 298–299,

300–301

594 JAM 7.0 Application Development Guide

Video file, 474

Video mapping
character sets, 477
file, 474, 476–477
internationalization, 483
optimization, 525

Video processing function, 144–146
arguments, 144
return codes, 145
standard argument, 144

videobiz, description of database, 569–575

VIEW, transaction manager command, fetching data
for view, 458–462

Viewport, 74
specifying size/dimension, in control string, 111

VPROC_FUNC. See Video processing function

W
WHERE clause, in automated SQL generation,

281–284, 297, 299, 300, 301

Widget name
assigning, 78
case sensitivity, 225
getting, 79

Widget runtime properties, getting, 81–82

Widgets
See also Field
copying from repository, for transaction manager,

311–312

Widgets (continued)
menu, attaching, 90
properties

affecting colon preprocessing, 241–244
affecting formatting, 241–244

storing templates in repository, 64
validating, 81

Window
See also Screen
changing focus among siblings, 72
changing from sibling to stacked, 72
changing from stacked to sibling, 72
deselecting, 72
giving focus to, 72
opening, 73

as sibling, 71
setting next as sibling, 72

Window stack, 70–73
changing order, 72

WITH CONNECTION, dbms command, setting data-
base connection, 214

WITH ENGINE, dbms command, setting database
engine, 211

Word wrapped text, fetching column values, 229

X
XMIT key (transmit), screen validation, 125

Y
Yes/No, translating, 482

