JAM

PL/1

Programmer’s
Guide

for Stratus

This is the PL/1 Programmer’s manual for JAM Release 5. It is as accurate as possible at
this time; however, both this manual and JAM itself are subject to revision.

Stratus and VOS are registered trademarks of Stratus Computer Inc.
JAM is a trademark of JYACC, Inc.

Other product names mentioned in this manual may be trademarks, and they are used for
idenufication purposes only.

Please send suggestions and comments regarding this document to:

Technical Publications Manager
JYACC, Inc.

116 John Street

New York, NY 10038

(212) 267-7722

© 1991 JYACC, Inc.
All rights reserved.
Printed in USA.

A Note to Language Interface Users

A Note To Language Interface Users

JYACC makes every effort possible to design language mterfaces that duplicate the ongi-
nal C Programmers Library. However, due to differences among various programming
languages, an exact one to one correspondence s not always possible. In some cases, rou-
tines contamned 1n the C version have been replaced with other routines designed to take
advantage of a particular programming language’s features.

Please note that your interface contains intentionally undocumented routines. Some of
these routines are no longer part of JAM, having been replaced by more efficient rou-
tines, and are included only for backward compatbility with applications created with
earlier versions of JAM. The rest are internal routines and are not intended to be directly
accessed by developers.

A-Note To Non—-UNIX Users

Throughout the manual, a forward slash (/) has been used to indicate a subdirectory. For
example,

/usr/local/file

means that £i 1e isa file in the directory 2ocal which is in turn a sub-directory of usz,
which is not the root directory.

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

TABLE OF CONTENTS

Chapter 1.
INtroductionciccteeeeececcssnsecsoscacccanes
1.1. ApphcationExecutableccoiiiiiiiiiiiiiiinen .,
1.1.1. Applications Using the JAM Executive
1.1.2, Applications Using a Custom Executive
1.2. AuthoringExecutableccciiiiiiniiiiiinennrrenenns
Chapter 2.
Hook Functionscceeeteeecancacccsscscsnnse
2.1. PreparationandInstallationcc00iviieccireeaeerennan
2.1.1. Typesof HOOKFunctionscceveenveneeennenns
212, InstalingFunctionsccceeeevvenneennonnnns
22, Writing Hook Functionsceveienenencrennnenceens
221, FieldFuncionsccocviievncerreveeennneronannns
Field Function Invocationc.ceveeeennnnennn
Field Function ATgUMENtScvcvveeneennereses
Field FunctionRetum Codesc0vieeenee.
Example Field Functionc.0iiiiinenennnnee.
222, ScreenFunctionscccevvvveriiecennncnaanes
Screen Function Invocationcccvvveeeeeennnnn
Screen Function Argumentsc.cccecvevennn.
Screen Function Retum Codescc0vevenann.
223. Control FUNCUONS .. vvviviiaesenrnnnnnenrennnnensns
Control Function Invocationccecenuvenn
Control Function Argumentsceeeeeennes.
Control FunctionReturnCodesccveene..
224, KeyChange FunCtionscovvveeeeninnnannns
Key Change Function Invocation
Key Change Function Arguments
Key Change Function ReturnCodes
225. GroupFunctionscveeeeieennncccennnnnnnss
Group Function Invocationccoeeveevnnnnns
Group Function ATGUMENtScc00ieenavenennnns
Group Function ReturnCodesc.cvvvveennnnnn
226. AsynchronousFunctionsvoveeveeennneens

JAM Release 5 1 March 91

YW NN

10
10
11
11
11
13
14
15
15
15
16
16
17
17
17
17
18
18
18
18
18
19
19
19

Page

JAM PL/1 Programmer’s Guide

Asynchronous Function Invocation....................
Asynchronous Function Arguments
Asynchronous Function Return Codes

227. InsertToggle FUnclonscceevvevnnviencnnnans
Insert Toggle Function Invocationc.ceceneens

Insert Toggle Function ATgumentscccevneness

Insert Toggle FuncuonReturnCodescocvvvvnens

228. CheckDigitFunctionscccoveirresnnecnnnnas
Check Digit Function Invocation

Check Digit Function Argumentscc.c.....

Check Digit Function RetumCodes

2.29. Initialization and Reset Functionsc.cc...u.
Initialization and Reset Function Invocation
Initialization and Reset Function Arguments
Initialization and Reset Function Return Codes

2.2.10. Recording and Playing Back Keystrokes
Record/Playback Function Invocation
Record/Playback Function Arguments
Record/Playback Function Retum Codes

22.11. StatusLine Functionscccviieiiiiiiinnnnnnn.
Status Line Function Invocationco0vuune

Status Line Function Argumentsoveveeiannnn

Status Line FunctionRetum Codes

22.12. VideoProcessing Functionsccovvienennnnns
Video Processing Function Invocation

Video Processing Function Argumentsccc0000

Video Processing Function Retum Codes

Other HOOK FUNCHONS . .cvvevvvvnenanaererrsnsnansas

23. Coding Strategy, RulesandPitfallsccocvvviinennnn
23.1. DisplaymngSCreenseevvverconesrossconsonas
232, ReCUISION...ccouereresorrarnnansascenssessnnsnnss

Chapter 3.

Local Data BlocK . cccceceecesccocesscronsscosascnne
3.1, LDBOCreationvcceeereeneraccccenacecensonsennnnenan
32. HowJAMusesthe LDBccoveiirvrnncecnnececanannenes
33, LDBACCESS covveentecoceannsannennasosssesesassasosocassoss

Chapter 4.
Built—in Control Functionscece00000tt000eens
jm_exit end processing and leave the currentscreen

Page n JAM Release 5 1 March 91

88888

NN NDNNN
Pk it ek ot et ek

SREEERRRIRREEBBBBRERERE

288

JAM PL/1 Programmer’s Guide

Jjm_gotop return to application’s top-levelform 33
jm_goform prompt for and display an arbitrary form 34
Jjm_keys simulate keyboardinputccciiiiiiiiiiiiiiieiiinaaa 35
jm_mnutogl switch between menu and data entry mode on a dual-purpose screen 36
jm_system prompt for and execute an operating system command 37
jm_winsize allow end-user to interactively move and resize a window 38
jpl mvoke aJPLprocedurecvveeeiverenncrnnenans 39
Chapter 5.

Keyboard Inputccocvteecencccencccccncnnes 41
51. Logical Keysovvveiiinieenininnnssscancensanssasasnens 41
52. KeyTranmslationccoeieiiineesasnoonntoncnenncnnes 42
53. KeyROUUDE.....cciierinenuosasietearnnscossescssancnss 42
Chapter 6.

Terminal Qutput Processingccceceeeeeneennee 45
6.1. Graphics Characters and Alternate Character Sets 45
62. TheStatusLinecoiveevriiinnenarsccnssnsenscasanrnna 46
Chapter 7.

Writing International (8 bit) Applications 49
7.0, Introductionc.ceceeeerorenrnncanscencrncessnanannens 49

7.1.1. General Overviewcivovvsvccsosccrsnennas 49
72, Localizallonveeviinerernscsesnssnsssnassassssennas 50
72.1. Background0iiiiiiiiiiiiiiiiiiinnnoanns 50
722. 8BitCharacterData.........covvievenernniscseanss 50
723. Date AndTimeFieldsccovinvvninrnnnnns 51
724. CumencyFieldsc.c.iiiviicienencncnreennnns 54
7.25. Decimal Symbolscoviiviiieiiinrncinncannas 56
7.26. Character FItersoievivierinersvecnonnnnas 57
72.7. Status ANdEmorMessagesccvevevennnnncenes 58
728. ScreensInThe Utilitiescevvvvvvnnenrasnnnsens 58
7.29. Screens In Application Programso0c0inenennn 58
7.2.10. MenuProcessingccovevvninntnnnnnnoncnns 58
7.2.11. Istform,Istdd,andjammapc0ivivnnnann. 59
7.2.12. RangeCheckscvvvvivviiniinnnriansnnssnsanas 59
7.2.13. Calculations Using @SUM and @DATE 60
72.14. xsm_dblvaland xsm_dtofield0t 60

JAM Release 5 1 March 91

Page m

JAM PL/1 Programmer’s Guide

7.2.15. xsm_is_yesand XSM_QUETY_MSEccveveenennneens
7216. BatchUtlitiesoeiiiiinierenernnnnnosananns

Chapter 8.
Writing Portable Applicationscco00veeene.
8.1. TerminalDependenciescoveeevvrnacercroacnsaecsnes

Chapter 9.

Writing Efficient Applicationscco00evveennnns
9.1. Memory-residentScreensciiiiiiiiiiriiiiiiieannnas
92. Memory-resident ConfigurationFilesccccevenn..
93. Message File Oplionscoviieiennnneninenrcrnaseensonness
94. Avoiding Unnecessary SCreenOutpULevviorrnreriennenanias
95. JPLvs.CompiledLanguagesccccuevvvevnncrrnennncrsenas

Chapter 10.
BlockModecccccveveeenccensncacscsscsnnsonnss
10.1. UsingBlockModeccccviiiiinnerarencerrnnsnernans
10.1.1. GeneralOverviewccceveiiinnnncasonnens
10.1.2, Authoringccccvivieennirccnenstnececssnnans
10.1.3. SelectingBlockModeccoveeiiaiiinennnnnean
10.1.4. Differences Between Block Mode And Interactive Mode ..
WindoWS ...oiiiinienernnnneniosnnnraresenssranes
MeENUS ...ivvriienniaosnancasonsnsessncsnsnnnanas
Character Validationccccoviiiiinnanneennns
FieldValidationcccvieiianneerioencsscnnans
ScreenValidationc.cviiiicnieennnanenn
Right Justified Fields0eeinninnnnt
Field Entry Function, Automatic Help, Status Text, etc. ...
CurrencyFieldscciiieniieneinennnancanenns
ShiftingFreldscoiiiiiiveveiereneienennes
ScrollingFieldscoiiiciiiviinareeerrenenens

Non-DisplayFieldsovvvitveiiiiiincannnnn.
SystemCallsc..ciiiiiiineiivneriennenereannns
ZOOM . .ivenenennnenssstonannrssnncenncannnnens

Page v JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

GIOUPSivivernunnneronnsnscnonnasrnssosanns 73

10.2. Wnting ABlockMode Driver.......cvoiiieintnencerananenann 73

102.1. Installationvvvvvesnccsesnsserennnnanenas 73

10.2.2. Application Program Support.............ccoeeveeenn. 74
Chapter 11.

Library Function Overviewccecceeeveeccccace 75
11.1. Imtiahization/ReESEl. ccvvveerrerronntsensencennssnsccenns 76
11.2. Screenand ViewportControlccciiiiiirineinnnsens 76
113. DisplayTerminal /Oc.ciitiiiiiiiiinnnnennnaeenenees 77
114. Field/ArmrayData ACCESSvvvvrnrrnenccnscncnnsssrsasansnns 78
11.5. Field/Array Attribute ACCESSvvvvvrrvtenrncrecccceccaens 79
11.6. GrOUP ACCESS «oovvvrruvnsnsocsssocassssansnssssnsassssnsns 80
11.7. Local Data BIock ACCESSovvvreiencnrronesnnrennneronanns 81
11.8. CursorControlcciiverriiiiirrrrresssssasscsnssannns 81
119, MessageDisplayciiviiiiiiienirennccnncansonnnnens 82
11.10. Scrollingand Shiftingcociiiiiieieracrcrrennaneesn 83
11,11, Mass StorageandRetrievalcciiiiiiiiiian..s 83
11.12. Validationccoviiienericsanerroscnnncsnnconssansonces 84
11.13. Global Data and Changing JAM’s Behaviorc...ccvveene. 84
11,14, Soft Keysand Keysetsccovvrriietiiinrnnecansrrsennraees 85
11.15. JAMExecutive Controlvviiiiiienininecannrennneanns 85
11.16. BlockMode Controlcccvviiiiieeinnasacnsrronenneans 86
11.17. Miscellaneousccieereeviesinsesansssnacsasnnssnanss 86
Chapter 12.

Function Referencececo00eeeeeecsscsccccces 87
achg change the display attribute of an occurrence within a scrolling

AITAY . .vcvevvonnertosnsosssesassensasasanssssasanennces 88
allget load screen fromthe LDB000viiincnenenennennann. 90
amt_format write data to a field, applying currency editing 91
ascroll scroll to a given OCCUITENCEvvevveinrennnncanrecennns 92
async install an asynchronous functionc.cvvveveennanenn 93
backtab backtab to the start of the last unprotected field 94
base_fldno get the field number of the first element of an amray 95
bel L7 9
bitop manipulate validation and data editing bits 97
bkrect set background colorofrectangleccc00eninnnn 99
blkinit initialize (and turn on) block mode terminal 100

JAM Release 5 1 March 91 Page v

JAM PL/1 Programmer’s Guide

bikreset reset (and turn off) block mode terminal 101
c_keyset closeakeyselcciiiiiiiiiiiiiiiterrerareriiaeaas 102
c_off tunthecursoroffccceiiierieriernreerennreaennens 103
c_on UM the CUISOTONcvvecneerervoncroccccnnooennsonens 104
c_vis turn cursor position displayonoroff 105
calc execute a math edit style expressionc0vhiiinnn.n 106
cancel resetthedisplayandexitoconiienneennenrinennnnnes 107
chg_attr change the display attribute ofafield 108
ckdigit validate check digitcovvevnninrrrinenninnnrienensnn 110
clall_mdts clearall MDT bDitS ...covvvrnnnnecvasnoeraneeronnannnsans 111
cl_unprot clearall unprotected fieldscovvivnennniiianie.. 112
clear_array clearalldatainanamaycovveevevvecrcncencennananans 113
close_windowclose current windowc.ccvvtcverneaaaaaanaann 114
d_msg_line display amessageon thestatusline 115
dblval getthe valueof afieldasarealnumber 118
dd_able turn LDB write—throughonoroff.................co00iett 119
deselect deselecta checklistoccurrencecovvvievnenrereonnsns 120
dicname setdata dictionary namecccevevenrrinconnascnarans 121
disp_off get displacement of cursor from startof field 122
dlength getthe lengthof afield’scontentscccviieinnnnnn.. 123
do_region rewrite partorallof ascreenlineciiiiienenen 124
doccur delete OCCUITENCES v v vvvveeinecnernnaerorasscasannesasass 126
dtofield write areal numbertoafieldooiiiiiiiiiien, 127
e variants that take a field name and element number 128
edit_ptr getspecial edit NG ...cuvvvvieenvnerironrenenninnnnnss 129
emsg display an error message and reset the message line without turning
ONEHECUISOruutviieaconsasnsnonsrsossnoasnnnnsaans 132
err_reset display an error message and reset the status line 135
fi_path return the full pathname ofafileccveivunnnnn. 136
finquire obtain information aboutafieldcociiiiinnnnn. 137
fldno get the field number of an array element or occurrence 139
flush flush delayed writestothedisplayccvvuneinnnns. 140
form displayascreenasaformcoiiiiiii i, 141
formlist update list of memory-residentfilesccuieentn. 143
fptr getthecontentofafieldcovivirinineenninnn, 144
ftog convert field references to group referencesoeeeeueen 145
ftype get the data type and precision ofafield 146
fval force field validationcieeeeiiiriiiiiiiiiinennens 148
getcurno getcurrent fieldnumberco0hiihiiiiiiiiiiiie, 150

Page vi

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

getfield copy thecontentsofafieldccvvevvveererecnnnnnn. 151
getjctrl get control string associated withakeyccovevvinnnss 153
getkey getlogical valueof thekeyhitooviiiiiiiiiiiiniinnnnss 154
gofield move thecursorintoafieldccooiiiiiiiiines, 156
gp_inquire obtain information about agroupc.vveieieennreannns 157
gtof convert a group name and index into a field number and occurrence 158
gval force group validationccevecvnnnencrrarnnesensons 159
gwrap get the contents of a wordwraparmaycccevvenennennns 160
hip_by_name display helpwindowc.cciiiiiiiiiiiiiiiiiinenn 161
home hOME the CUISOr ... iineeneeinneeossneanssssncansonannns 162
i_ variants that take a field name and occurrence number 163
ininames record names of initial data files for local datablock 164
initcrt initialize the display and JAM data structurescce00ess 165
mnput open the keyboard for data entry and menu selection 167
inquire obtain value of a global integer variable 168
intval get the integer value of afieldccaaait. 170
ioccur insert blank occurrences intoan arrayc..o00eceuaeen 171
is_no test fleld fOrno vvvvereveeenrineeceranreeccenccanaecanans 172
is_yes testfieldforyeso.ccciviiiiiineiinnreniesienannenans 173
isabort testand settheabortcontrol flagcovviiiieiinnnens 174
iset change value of integer global variable000s 175
isselected determine whether a radio button or checklist occurrence has
beenselectedcccciieriiiiiiriintraatssansaensane 177
issv determimne if ascreenisinthesavedlist.................c..... 178
itofield write an integer valuetoafieldccieiviiiiiiiinnaes 179
jclose close current window or form under JAM Executive control 180
jform display a screen as a form under JAMcontrol 181
jplcall executea JPL jplprocedureovvieriiiiirincaresanes 183
jplload execute the JPLIoadcommandcccovveinnnnnnnaes 184
Jplpublic execute the JPL publiccommandccovvvvvrernnnnn. 185
jplunload executethe JPLunloadcommandcoooieeennts 186
jtop start the JAMEXeCutiveciivvvvnverinsnssecccsannnes 187
Jwindow display a window at a given position under JAM control 188
keyfilter control keystroke record/playback filtering 190
keyhit test whether akey hasbeen typedaheadccvveuttns 191
keynit initialize key translationtablec00iuee, 192
keylabel get the printable name of alogicalkey00venen 193
keyoption setcursorcontrolkey optionsiiciiiiiiiiaenann 194
keyset OPENAKEYSEEvevrrnnnnnorsesenanssnnnssasnsnserans 196

JAM Release § 1 March 91 Page v

JAM PL/1 Programmer's Guide

kscscope
ksinq
ksoff
kson
1_close
I_open
last
Iclear
1db_init
leave
length
Ingval
Ireset
Istore
liofield
m_flush
max_occur
mnutogl

msg
msg_get
msgfind
msgread
mwindow
n_

name

nl

novalbit
null
num_occurs
o_
occur_no
off_gofield
option
oshift
pinquire
protect
pset
putfield

Page viil

query current keyset SCOPecvcvvienrrneereneennaannans 198
inquire about keyset information 199
turnoff softkeylabelsccciiiiiiiiiiiiin... 201
tumonsoftkeylabelscoiviiiiiiiiiiiiiiiii i 202
closealibrarycoiiiiiiiiii ittt it 203
openalibraryiiiiiiiiiiiiiiiiieiei ittt 204
position the cursor inthe lastfield 206
erase LDB entries Of ONe SCOPE e cvvvvvvneneneneenrnnnens 207
imtialize (or reinitialize) the localdatablock 208
prepare to leave a JAM apphication temporarily 209
get the maximum lengthofafield 210
get the long integer value of afield.......................... 211
reinitialize LDB entries of one scopevveniinnnninnnnn 212
copy everything from screentoLDB 213
placealongintegerinafieldcciiiiiiiinnn 214
flushthemessage eviviiviiinnereeennrrrnennnnnen 215
get the maximum number of occurrencesocevvenn.. 216
switch between menu mode and data entry mode on a dual-purpose

SCPELM .. rsnosrnsrsossanssastansasncnsanncnsosnsa 217
display a message at a given column on the status lne 218
find a message givenitsnumberccene, 219
find a message givenitsnumberciiiiniiinn, 220
read message fileintomemoryco0hiiniiiinan, 221
display a status message inawindow0iviinann 224
variants that take a fieldnameonlycut... 225
obtain field name given field number 226
position cursor to the first unprotected field beyond the current ine 227
forcibly invalidateafieldcvviiiiiiinenn.. 228
testiffieldismullcoiiiiiiiiiiiiiiiiiiiiiiiieen., 229
find the highest numbered occurrence containingdata 230
variants that take a field number and occurrence number 231
get the current occurrence NUMbETovvveereennnnennnens 232
move the cursor into a field, offset fromthe left 233
seta Screen Manageroptioncoviieeecnnereennernnnenns 234
shift a field byagivenamountcvvuenn. 235
obtain value of a global stringscccvvevrvnnnnnn. 236
ProteCL AN AITAY ... vvvenvnesinoensrosnsecesasannenennnnss 238
Modify value of global stringsccovvveereninnnnns 240
putastringintoafieldc.cciiiiiiiiiiniinn... 242

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

putjctrl associate a control string withakeycc.cvvviinnnn.. 244
pwrap puttexttoa wordwrapfieldco0iiiiiiiiiina.. 245
query_msg display a question, and return a yeS Or nOanSwer 246
qui_msg display a message preceded by a constant tag, and reset the

messagelmnecoviiiiiiiiiiiiiiiiriaiiranttirennaas 247
quiet_err display error message preceded by a constant tag, and reset the

L7 T T T 248
rd_part read part of a data structure to the currentscreen 249
rdstruct read data from a structure tothe SCreencvvvevennnnnsrns 251
rescreen refresh the data displayedonthescreenc.cviieeunens 253
resetcrt reset the terminal to operating system default state 254
resize notify JAM of a change in the display sizecc00nnee 255
return prepare for return to JAM applicationcoc00vennnnens 256
rmformlist empty the memory-resident formlistccvuvvnnen, 257
rrecord read data from a structure to a data dichonaryrecord 258
rscroll SCrOll AN AITAY . .. ivvievrevernnennssenrarsancnsssssnnens 260
s_val validate the CUITENt SCTEEN ... ocveevenrcerccnecssanaananans 261
sc_max alter the maximum number of occurrences allowed in a scrollable

AITAY <o vvvvvererrannsonersoessscnasasassanensaansnnane 263
sdtime - get formatted system date andtime0....n 264
select select a checklist or radio button occurrence00000tn 266
setbkstat set background text forstatuslineciiiiiiiiinnnas 267
setstatus turn alternating background status messageonoroff 269
sh_off determine the cursor location relative to the start of a shifung field 270
shrink_to_fit remove traiing empty array elements and shrink screen 271
sibling define the current window as being or not being a sibling window . 272
size_of_array get the number ofelementsc.c0cvviininnrncenans 274
sking obtain soft key information by position 275
skmark mark or unmark a soft key label by positionc00000 277
skset set characteristics of a soft key by position 279
skving obtain soft key informationbyvaluec..000et 281
skvmark mark asoftkeybyvalueccciiiiiiiiiiiinnnann.. 283
skvset set characteristics of asoftkeybyvaluecc0nues 284
strip_amt_ptr strip amount editing characters fromastring.................. 286
submenu_close close the current sSubmenucevevvevvenriersecasas 287
svscreen register a list of screensonthe save list 288
t_scroll test whetheranarraycanscrollcvvveviniinnennnnens 289
t_shift test whether fieldcanshiftccoiieinnrinenrecennes 290
tab move the cursor to the next unprotected field 291

JAM Release 5 1 March 91 Page ix

JAM PL/1 Programmer’s Guide

tst_all_mdts find firstmodifiedoccurrencecccvvviiiiiiern e innnnnn 292
uinstall install an application fanctionoovveeiennrennnnnnn 293
ungetkey push back a translated keyon theinput 295
unsvscreen remove screens fromthesave listcc0veieinnnnn.. 296
viewport modify viewport sizeandoffsetcvvvviiinnnn 297
vinit imtalize video translationtablescvevviiiiinnnnn 298
weount obtain number of currently open windows 299
wdeselect restore the formerly acavewindowciviiiiiin, 300
window display a window at a given position0i0nunn.. 301
winsize allow end-user to interactively move and resize a window 304
wrecord write data from a data dictionary record to a structure 305
wrt_part write part of the screen t0 2 SHUCWrEccevvevnnenennnann. 306
wrtstruct write data from the screentoastructurecvvvviennnnnn. 308
wselect activate awWindOWviiiiinenireniinniineninieennnann 309
Chapter 13.

Library Function Indexc0c00eveeeeenneneesas 311

INdeX .o vvvverceeecacccccoacsensssessnsnasncscssssses 319

Page x

JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Chapter 1.
Introduction

This document is intended for JAM Programmers. We discuss the development and cre-
ation of executable JAM programs incorporating the Screen Manager, developer—written
hook functions, and the JAM Executive. We will briefly touch on how custom executives
may be written. Finally, there is a comprehensive reference of JAM library functions.

Discussions on the creation of JAM screens, data dictionaries, and keysets are found in
the Author’s Guide. JPL 1s fully documented in the JPL Programmer’s Guide.
This document assumes that the reader has previously read the JAM Development Over-
view and the Author’s Guide. The Development Overview is particularly important as the
major architectural components of JAM are explained there in detail.
JAM is written in C, and the C programming interface and libraries are distributed with
every license. This PL/1 language interface document 1s an adaptation of the JAM C Pro-
grammer’s Guide.
You will need to program in PL/1 (or some other supported third—generation language) to
accomplish the following tasks:
8 To customize JAM to your eavironment or application by modifying
the main program provided in source form with the product.
8 To write hook functions that do application-specific and back~end pro-
cessing during the execution of the application.
® Toake full control of the application by writing an application—specific
executivel.

8 Tocreate executable JAM Programs.

As discussed in detail in the Development Overview, JAM Applications consist of
screens, a data dictionary, hook functions, and an executable program. The creation of

1. Itisstrongly recommended that the JAM Executive be used in all but the most unusual of carcumstances.
A companson of the JAM Executive with your own executive 15 presented in the Development Overview.

JAM Release 5 1 March 91 Page 1

JAM PL/1 Programmer's Guide

screens and data dictionaries is discussed in the Author’s Guide. JPL programming is dis-
cussed in the JPL Programmer’s Guide. In this chapter, we discuss how to create a JAM
program. Compilation and linking are specific to platforms and operating systems and are
discussed in the Installation Guide.

Two different versions of an application can be created with JAM. The Application Ex-
ecutable is the program delivered to the end-user to control the run time application. The
JAM Authoring Executable is used to create application components and test the applica-
tion during development. Only the JAM Authoring Executable will grant user access to
the Screen Editor, the Data Dictionary Editor, and the Keyset Editor. The JAM Authoring
Executable can only be used for the testing of applications that use the JAM Executive.

1.1.

APPLICATION EXECUTABLE

Application Executable programs fall into two categories: those that use the JAM Execu-
tive to manage the flow of control from screen to screen, and those that use an applica-
tion-specific executive. We discuss both of these approaches in the sections that follow,

1.1.1.

Applications Using the JAM Executive

In applications that use the JAM Executive, most of the control flow 1s encapsulated in
the screens. The majonty of the PL/1 programming task is to write hook functions (sec-

tion 2. page 7) that are called by the Screen Manager or by the JAM Executive when
certain events occur.

Applications that use the JAM Executive will need to be linked with the PL/! interface
Iibrary xi £, the Screen Manager library sm, the JAM Executive library jm, and, in gen-
eral, the standard math library on your system.

NOTE: Refer to the Stratus Software Release Bulletin for specifics of the VOS library
setup.

JYACC provides the main routine source code for applications that use the JAM Execu-
tive in a file called jmain. pl1. This routine performs various necessary initializations
before calling the function that starts up the JAM Executive. You may want to modify
this code to change JAM’s default behavior.

Page 2 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

112
Applications Using a Custom Executive

In rare cases, a developer may choose to write a custom executive, one that is specific to
a particular application. In custom executives, no library functions specific to the JAM
Executive should be used. The JAM Executive functions may only be used in applica-
tions using the JAM Executive — they are listed in section 11.15. on page 85. .

Applications that do not use the JAM Executive should be linked with the PL/1 interface
library xi £, the Screen Manager hibrary sm, and, in general, the standard math library, If
the LDB 1s needed, the JAM Executive library jm should also be linked in, but it is im-
portant the application not call any JAM Executive routines.

The “sample” application provided with JAM 1s a simple example of an application using
a custom executive.2 This application brings up a screen on which the end-user can enter
some account data, and then save the data and call it up again. There is a help screen, tied
to one of the function keys, which is implemented as a memory-resident screen, and a
hook written function that verifies the area code. The discussion below outlines the basic
steps that a custom executive should perform, using sample.pl1 as an example.

To follow this discussion, you should either print this file out, or call it up in an editor.
Refer to the Stratus Software Release Bulletin for the location of sample.pll. The
hook function AREACODE can be found in the same file.

Header Flles

JAM user defines are included as necessary, depending on the library routines utilized in
the program. The documentation for each hibrary routine indicates which, if any, header
files are required.

Declarations

A memory-resident screen is declared at the top of the program along with whatever vari-
ables are necessary.

Screen Manager Initialization

After all the header files and declarations at the top of the source module, the Screen Man-
ager and the terminal are first initialized with a call to xsm_initcrt. Since an empty
string is passed as the argument, the search path for screens is expected to be found in the
environment.

2 Note that JPL 1s available to applications that do not use the JAM Executive Note also that hook func-

tions may be installed and used in apphcations that donot use the JAM Executive. These applications, howev-
er, will not be able to use control strings.

JAM Rolease 5§ 1 March 91 Page 3

JAM PL/1 Programmer’s Guide

Install Hook Functions

Most Screen Manager hook functions are installed via the -retain_all argument to
the bind command. This is the case for the hook function areacode, which 1s called
as a field validation function. For certain types of hook functions, explicit installation is
necessary and should occur here—after initialization, but before displaying the first
screen. The various types of hook functions and their installation are described 1n detail in
Chapter 2.

Display the Main Form

After initialization 1s complete, the screen samplel. £ rmis opened as a form with a call
to xsm_r_ form. If an error occurs, the program will terminate.

Activate Screen

samplel. frm is activated within a loop. The loop terminates if the user strikes the
EXIT key, which causes the routine xsm_input to return with the return code EXIT
defined in smkeys.incl.pll. The actual data entry, cursor movement, help process-
ing, character edit masking, and validation are handled within xsm_1nput, so the pro-
grammer need not be concemed with them. Whenever the user strikes TRANSMIT,
EXIT, or some other function key, xsm_input returns control to the calling program. In
this case, the PF2, PF3 and EXIT keys cause specific actions. All other function keys
cause a beep and the while loop to continue, calling xsm_input agamn.

Open a Window

The PF3 key brings up the memory-resident screen that was declared earlier, and then
waits for the user to press a key.

Close a Window

During the run of any application, there is always a form displayed. When a new form is
displayed, all existing screens are implicitly closed. Windows, however, need to be ex-
plicitly closed if the application is to retreat to an underlying screen. After the PE3 win-
dow is displayed, when the user strikes a key the program calls xsm_close_window
to close this window.

Handle Errors

The executive should have a facility to handle errors. The PF2 key trggers a procedure,
PROCESS, which opens a window allowing the user to save or read data. While the spe-
cifics of this data manipulation are beyond the scope of this introductory discussion, use
of the error handling routine xsm_err_reset, which displays an error message on the

Page 4 JAM Release § 1 March 91

JAM PL/1 Programmer’s Guide

status line, 1s illustrated about halfway through the procedure listing. xsm_err_reset
takes a single string argument, and places that string on the status line. The user is forced
to acknowledge the error by striking the space bar3,

Reset the Terminal

Before the application terminates, it calls xsm resetcrt to reset terminal characteris-
tics to a state expected by the operating system. Here this occurs when the user presses the
EXIT key.

1.2.

AUTHORING EXECUTABLE

The Authoring Executable must use the JAM Executive, and may have developer—writ-
ten hook functions linked in. The main routine for the Authoring Executable is provided
in source form in a file called jxmain.pl1. You may want to modify that file to change
the default behavior of the authoring tool jxform. It is strongly suggested that JAM de-
velopers read and understand this code, as it is mstructive and may help with an under-
standing of the product.

The compiled Authoring Executable may be called with the optional command-line
switch —e. This will cause the authoring tool to start up directly within the Screen Editor
(as opposed to starting up in application mode).

Authoring executables must be linked with the PL/1 interface library xi £, the JAM Au-
thoring Library jx, the JAM Executive library jm, the Screen Manager library sm, and,
in general, the standard math library. Since these executables are linked with the JAM
Authoring Library jx, they may not be re—sold or distributed on machines for which
there is no software license from JYACC. This restriction applies only to Authoring Ex-
ecutables, which are intended for application development only.

NOTE: Refer to the Stratus Software Release Bulletin for specifics of the VOS library
setup.

3 Thedevelopermay change the way messages are acknowledged with the hibrary routine XSM_OPT ION.

JAM Release 5 1 March 91 Page 5

JAM PL/1 Programmer's Guide

Chapter 2.
Hook Functions

The primary coding task facing JAM programmers is writing hook functions. These
functions, which are called by the JAM Executive and by the Screen Manager when cer-
tain well-defined events occur, are written i PL/15,

In this chapter, we discuss how hook functions are written and installed. They must also
be compiled and linked into the JAM Application (or Authoning) Executable: see the In-
stallation Gude for detauls of that, We also discuss what JAM events have hooks accessi-
ble to developers and what arguments are passed to hook functions from any given hook.
Finally, we discuss in detail the vanous types of hook functions, showing examples of
some of them, and explaining how they are installed and used.

2.1.

PREPARATION AND INSTALLATION

Hook functions, once properly installed, are called at certain well- defined JAM events.
These events are outlined below 1n section 2.1.1. and discussed 1n detail later in the chap-
ter.

There are many events that have hooks accessible to developers. JAM passes different
arguments to the various hook functions, and interprets the return codes differently for
each one. It is important that hook functions process the arguments that are passed cor-
rectly, and that they return meaningful codes based on the events to which they are at-
tached.

Hook functions are installed individually, and are called at runtime by JAM when a cer-
tain event type occurs. Most hook functions are called by the Screen Manager. However,

5. Hook functions may also be wntten in C and other third-generaton programmung languages for which
TYACC supports a language interface In particular, Fortran, Cobol and PL/1 are available for JAM on some
platforms

JAM Release 5 1 March 91 Page 7

JAM PL/1 Programmer’s Guide

the hook functions invoked with control strings are called by the JAM Executive, and
will only be accessible to applications using a custom executive through JPL.

2.1.1.
Types of Hook Functions

There are twenty—two installable hook function types, six of which are installed when the
application is bound and sixteen of which are installed as mdividual functions. They are
briefly outlined below, and discussed in detail later in the document:

BFIELD_FUNC
These functions are installed using the —retain_all argument of the
bind command. The functions on this list may be designated in the Screen
Editor to be called by the Screen Manager as field entry, exit or validation
functions for specific fields. The JPL at ch verb may also be used to access
these functions.

BGROUP_FUNC
These functions are installed using the —retain_all argument of the
bind command. These functions may be designated in the Screen Edator to
be called by the Screen Manager as group entry, exit or validation functions
for specific groups (Radio Buttons and Checklists).

SSCREEN_FUNC
These functions are installed using the -retain_all argument of the
bind command. These functions may be designated in the Screen Editor to
be called by the Screen Manager as screen entry or exit functions on particu-
lar screens.

BCONTROL_FUNC
These functions are installed using the —retain_all argument of the
bind command. These functions may be entered and invoked from control
strings. They are often associated with functionkeys and menus in the Screen
Editoror withthe xsm_put jctrl library call. The JPL call verb can in-
voke control functions.

SDFLT_FIELD_FUNC
This is an individual function. It is installed using the library routine
xsm_n_uinstall,Onceinstalled, itis called on entry, exitand validation
for all fields.

BDFLT_GROUP_FUNC
Similar to the DFLT FIELD_FUNC, this individual function is called on
entry, exit, and validation for all groups.

Page 8 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

®DFLT_SCREEN_FUNC
Individual function called on entry and exit for all screens.

BKEYCHG_FUNC
Individual function called whenever JAM reads a key from the keyboard.
This allows for the application to intercept and process (and possibly trans-
late) keystrokes at the logical key level.

.INSCRSR_FUNC
Individual function called by JAM whenever the keyboard entry mode
toggles between insertand overstrike mode. Thisallows an application to up-
date the display, if desired, to provide an indication of the new mode. Often
used if there is no ablity to change cursor styles between insert and over-
strike modes.

ECKDIGIT_ FUNC
Individual function called by JAM for check digit validation of numeric
fields. Only necessary if the default check—digit algorithm provided with
JAM is not sufficient.

BUINIT_FUNC
Individual function called just before the Screen Manager and the physical
display are initialized at the start of the application.

SURESET_FUNC
Individual function called justafter the Screen Manager and the physical dis-
play are closed and reset at the end of the application, even if the application
aborts ungracefully.

SRECORD_FUNC
Individual function used to record keystrokes so they can be played back for
tutonials or for regression testing.

SPLAY FUNC
Individual function used to playback recorded keys.

NAVAIL FUNC
Individual function used in advanced record/playback algorithms.

®STAT FUNC
Individual function used to intercept JAM status Line processing and alter or
replace it.

SVPROC_FUNC
Individual function used to intercept JAM video processing and to alter or
replace it.

JAM Release 5 1 March 91 Page 9

JAM PL/1 Programmer's Guide

@BLKDRVR_FUNC
This is an individual function that acts as a block mode terminal driver. This
1s discussed in section 10.1.3.

BASYNC_FUNC
Individual function called asynchronously when JAM is waiting for key-
board input. This isinstalled via the library routinexsm_async. Oftenused
to poll external systems for mail delivery or the availability of data over a
communications line,

2.1.2,
Installing Functions

As mentioned above, certain hook functions must be installed explicitly with the library
routines xsm_n_uinstall or xsm_async, others are nstalled using the -re-
tain_all argument of the bind command.

xsm n_uinstall iscalled with three arguments. The first argument identifies the
type of function being installed, and may be one of the following values:

UINIT_FUNC CKDIGIT_FUNC STAT FUNC
URESET_FUNC BLKDRVR_FUNC DFLT_FIELD FUNC
VPROC_FUNC PLAY_FUNC DFLT_SCREEN_FUNC
KEYCHG_FUNC RECORD_FUNC DFLT_GROUP_FUNC
INSCRSR_FUNC AVAIL_FUNC

The second argument is the name of the function. The third argument identifies the lan-
guage. This argument should be 1 for all programming languages except C.

xsm_async is used exclusively for installing asynchronous functions. It takes as argu-
ments the address of the function and a timeout period.

The other function types, which are installed via the —-retain_all argument to the
bind command, are the following:

FIELD FUNC
SCREEN_FUNC
CONTROL_FUNC
GROUP_FUNC

2.2,
WRITING HOOK FUNCTIONS

Arguments passed to hook functions and return values received from hook functions vary
from hook to hook. In this section, we discuss the various JAM hooks n detail.

Page 10 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

2.2.1.
Field Functions

The Screen Manager will call field functions, if specified, on field entry, field exit, and
field validation. Calls to field entry and field exit functions are guaranteed to be paired for
any given field.

A single default field function may also be installed. It will be invoked on entry, exit, and
validation for every field. The default field function must be installed explicitly as via
xsm_n_uinstall.

JPL procedures may be directly specified as field functions in the Screen Editor by pre-
ceding their name with the string “jpl 7, for example jpl fieldfunc.

Field Function Invocation

Field functions are called for ficld entry whenever the cursor enters a field, including
when the field containing the cursor 1s activated by virtue of an overlying window being
closed. Field functions are called for field exit whenever the cursor leaves a field, includ-
ing when the field 1s exited because a window is popped up over the existing screen. Field
functions are called for validation whenever the field is validated. This occurs at the fol-
lowing times:
8 Aspart of field validation, when you exit the field or scroll to the next
occurrence by filling it or by hiting TAB or RETURN key. The BACK-
TAB and arrow keys do not normally cause validation. Field functions
are called for validation only after the field’s contents pass all other vali-
dations for the field.

B As part of screen validation when the XMIT key is struck.
B When the application code calls library routines for field validation.
Field functions may also be invoked from JPL with the atch verb.

For fields that are members of menus, radio buttons, or checklists, the validation function
is not called as part of validation. The validation function for such fields is called instead
when that field is selected. For checklist fields, the field validation function is also called
when the field is deselected.

Field functions specified for field entry via the Screen Editor are invoked after any in-
stalled default field function. Field functions specified for field exit or validation via the
Screen Editor are called before any installed default field function.

Field Function Arguments
All field functions receive four arguments:

JAM Release 5 1 March 91 Page 11

JAM PL/1 Programmer's Guide

1. The field number as an integer.
2. A buffer containmng a copy of the field’s contents.
3. The occurrence number of the data as an integer.
4. Aninteger bitmask containing contextual information about the valida-
tion state of the field and the circumstances under which the function
was called.
The contextual information in the last parameter includes the following bit masks’:
BVALIDED
If this is set (i.e. if the ‘bitwise and’ of param4 and VALIDED is not zero),
the field has passed all its validations and has not been modified since.
EMDT

If thisis set(i.e. if the ‘bitwiseand’ of pa ram4 and MDT is not zero), the field
data has been changed either from the keyboard or from the application code
since the current screen was opened$, JAM never clears this bit. The applica-
tion code may clear it directly with the xsm_bi t op library routine.

BK_ENTRY
If set (i.e.1f the ‘bitwise and’ of param4 and K_ENTRY 1s not zero), the field
function was called on field entry.

8K _EXIT
If set (i.e.1f the “bitwise and’ of param4 and K_EXTIT is not zero), the field
function was called on field exit?.

BK_EXPOSE
If set (i.e. if the ‘bitwise and’ of param4 and K_EXPOSE is not zero), the
field function was called because a window overlying the screen on which
the field resides was opened or closed!0.

BK_KEYS
Mask for the bits indicating which keystroke or event caused the field to be
entered, exited, or validated. The intersection of this mask and the fourth pa-

NO TAG.

The example field funcuon below contams a procedure called bitmask that 1s useful for checking whether
a pamicular flag (bit location in a banary value) 1s set. Source code for this procedure can also be found 1n the
sample applhication provided with JAM.

8. Note that when the screen 15 being opened, when the screen entry function modifies data 1 a field the
MDT bit1s not set. However, when the screen 1s exposed by vartue of an overlaid window being closed, modfi-
cation of field data in the screen entry function will cause the MDT bat 10 be set.

9. Note that if neither K_ENTRY nor K_EXIT are set, the field 1s being validated.

10 Tius means that if both K_ENTRY and K_EXPOSE are set, the field 1s being exposed. If K_EXIT and
K_EXPOSE are set, the field 18 being hudden.

Page 12 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

rameter to the field function should be tested for equality against one of the
six remaining values below:

BK NORMAL
If set (i.e. if the ‘bitwise and’ of param4 and K_KEYS equals K_NORMAL),
a “normal” key caused the cursor to enter or exit the field in question. For
field entry, “normal” keys are NL, TAB, HOME, and EMOH. For field exit,
only TAB and NL are considered “normal”.

BK_BACKTAB .
If set (i.e. if the ‘bitwise and’ of param4 and K_KEYS equals K_BACK-
TAB), the BACKTAB key caused the cursor to enter or exit the field in ques-
tion.

SK_ARROW
If set (i.e. if the ‘bitwise and’ of param4 and K_KEYS equals K_ARROW),
an arrow key caused the cursor to enter or exit the field i question,

@K SVAL
If set (i.e. if the “bitwise and’ of param4 andK_KEYS equalsK_SVAL), the
field is being validated as part of screen validation.

8K _USER
If set (i.e. if the “bitwise and’ of param4 andK_KEYS equalsK_USER), the
field is being validated directly from the apphication with the xsm_fval li-
brary routine.

8K _OTHER
If set (i.e. if the “bitwise and’ of param4 and K_KEYS equals K_OTHER),
some key other than backtab, arrow or those mentioned as “normal” caused
the cursor to enter or exit the field in question.

Field functions are called for validation regardless of whether the field was previously
validated. They may test the VALIDED and MDT bits to avoid redundant processing.

Field Function Return Codes

Field functions called on entry or exit should return 0. Field functions called for valida-
tion should return 0 if the field contents pass the validation criteria. Any non—zero return
code should indicate that the ficld does not pass validation. If the returned value is 1, the
cursor will not be repositioned to the offending field. Any other non-zero return value
will cause the cursor to be repositioned to the field that failed the validation. This is useful
because when the entire screen 1s undergomng validation, the field that fails validation

JAM Release 5 1 March 91 Page 13

JAM PL/1 Programmer's Guide

may not be the field where the cursor is.!!

Example Field Function
The following code illustrates how to interpret the fourth argument passed to a field func-

tion, and how to handle errors.
$1nclude ’smdefs.incl.pll’; /* basic JAM user defines */
apfuncl:

end

procedure (field number, field data, occurrence, misc bits)
returns (fixed_binary(31));

declare field number fixed binary(31):
declare field_data char (*) varying;
declare occurrence fixed binary(31);
declare misc_bits fixed_binary(31);
declare error fixed_binary(31);

if bitmask(misc_bits, VALIDED)
then return 0

/* and later... */
/* check for error */

if (error *= 0)
then do;
xsm_gofield(l);
xsm_quiet_err(’Re-enter all data.’);
return(l);
end;

return(0);

apfuncl;

/* The following procedure checks 1f a particular flag 1is set. %/
/* NOTE: *~unspec” only works on variables. Constants are passed */
/* into bitmask as parameters, so bitmask will work with them. */

bitmask:

end

procedure (xbits, ybits)

returns (bat (1));

declare (xbits,ybits) fixed binary(31);

return((unspec{xbits) & unspec(ybits)) *= *0’b);
bitmask;

11 Inmany cases,t1s better for the field validation function 1tself to reposition the cursor before displaying
an error message, otherwise the error message might be misleading

Page 14 JAM Rolease § 1 March 91

JAM PL/1 Programmer's Guide

2.2.2.
Screen Functions

The Screen Manager will call screen functions, if specified, on entry and exit of screens.
Calls to screen entry and screen exit functions are guaranteed to be paired for each screen.

A single default screen function may be installed. It will be invoked on entry and exit for
every screen. The default screen function is installed as viaxsm n_uinstall. Screen
functions specified as entry or exit functions for a screen via the Screen Editor are in-
stalled via the -retain_all argument t0 the bind command. JPL procedures may
also be directly specified as screen functions in the Screen Editor by preceding their name
with the string “jpl ", for example jpl screenfunc.

Because of the way LDB processing and form stack handling is done, it is neither recom-
mended nor supported to call any form or window display library routines from screen
entry or exit functions. If it is necessary to display windows at screen entry, the library
routine xsm_ungetkey can be invoked, passing as the argument a function key with a
control string that brings up a window.

Screen Function Invocation

Screen functions are called for screen entry whenever a screen is opened. Screen func-
tions are called for screen exit whenever a screen is closed. Optionally, screen functions
may also be called for entry when a screen is exposed by virtue of a window overlaying
it being closed or deselected, and called for exit when a window is popped up or selected
over the screen in question. This is not the default behavior because it would introduce
incompatibilities with earlier releases of JAM.

If you are not concermed with compatibility with earlier releases, it is strongly suggested

that you make the following library function call near the beginning of your application,

enabling the calling of screen functions when screens are exposed or hidden:
xsm_option (EXPHIDE OPTION, ON_EXPHIDE)

Screen functions specified for screen entry via the Screen Editor are invoked after any
installed default screen function. Screen functions specified for screen exit via the Screen
Editor are called before any installed default screen function.

Screen Function Arguments
All screen functions receive two arguments:
1. The screen name.

2. An integer bitmask contamning contextual information about the cir-
cumstances under which the function was called.

JAM Release 5 1 March 91 Page 15

JAM PL/1 Programmer’s Guide

The contextual information 1n the second parameter includes the following bit masks:

8K _ENTRY
If this is set (i.e. if the ‘bitwise and’ of param4 and K_ENTRY is not zero),
the function was called on screen entry.

®K _EXIT
If thus is set (i.e. if the ‘bitwise and’ of param4 and K_EXIT is not zero),
the function was called on screen exit.

BK_EXPOSE
If this is set (i.e. if the ‘bitwise and’ of param4 and K_EXPOSE is not zero),
the function was called because the screen was selected or deselected, or be-
cause a window was popped over the screen ora window that used to be over-
laid on the screen was closed!2.

@K _KEYS
Mask for the bits indicating which event caused the screen to be exited. The
intersection of this mask and the second parameter to the screen function
should be tested for equality against one of the two remaining values below:

EK_NORMAL
If set (i.e. if the ‘bitwise and’ of param4 and K_KEYS equalsK_NORMAL),
a“normal” call to xsm_close_window caused the screen to close.

BK OTHER
If set (i.e. if the ‘bitwise and’ of param4 and K_KEYS equals K_OTHER),

the screen is being closed because another form is being displayed or because
xsm_resetcrt is called.

Screen Function Return Codes
All screen functions should return 0.

2.2.3.
Control Functions

Control functions are called by the JAM Executive in the processing of control strings
and by JPL routines that call PL/1 functions. The JAM Executive will call control func-
tions, if specified and installed, when control strings that start with a caret (*) are ex-
ecuted. JPL procedures may also execute control functions by using the call verb.

12. Ifboth K_ENTRY and K_EXPOSE are set, the screen 18 being uncovered and activated by virtue of an

overlaid window being closed. If bothK_EXIT and K_EXPOSE are set, the screen 15 being covered and deacu-
vated by vartue of a window being popped up over it

Page 16 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

There is no default control function. Control functions are installed via the -re-
tain_all argument to the bind command. JPL procedures may be directly specified
as control functions by preceding the name of the procedure in a control string with the
string “jpl ".

A number of control functions of general use are built in to JAM. These built-ins can be
used by any JAM application. They are listed in Chapter 4.

Control Function Invocation

Control functions are called by the JAM Executive when a control string starting with a
caret is processed. Such control strings are often attached, via the Screen Editor, to func-
tion keys or to menu selections in control fields. In addition, the JPL verb call can be
used to invoke control functions.13

Control Function Arguments

Control functions receive a single argument, namely a buffer containing a copy of the
control string that invoked the function, without the leading caret. It is only the first word
on the control string that identifies the function, the rest of the string may contain arbi-
trary data that can be parsed and used as arguments.

Control Function Return Codes

Control functions may retumn any integer. The return value from a control function may
be used for conditional control branching in target lists (see the Authoring Guide). If there
15 no target list, and the control string returns a function key which has an associated con-
trol string in it’s own right, then that control string is executed.

224,
Key Change Functions

The key change function is called by the Screen Manager as keys are read from the key-
board from within the library routine xsm_getkey, which is called in the input process-
ing for all keys by JAM. Only one individual keychange function may be installed at a
time.

Keys placed on the queue with the library routine xsm_ungetkey or with the built-in
control function ~ jm—keys are not processed by the installed key change function.

13 The JPL call verb does not execute control strngs. & looks for functions to call.

JAM Release 5 1 March 91 Page 17

JAM PL/1 Programmer's Guide

The key change function is installed as KEYCHG_FUNC viaxsm n_uinstall,

Key Change Function Invocation

The key change function is called exactly once for every key read in from the keyboard or
supplied by the playback hook function described in section 2.2.10..

Key Change Function Arguments

The key change function is passed a single integer argument, namely the JAM logical key
that was read from the keyboard or received from the playback hook function.

Key Change Function Return Codes

The key change function returns the key to be substituted for the one passed as an argu-
ment. Any key returned 0 xsm_getkey will be returned by xsm_getkey toits caller.
However, if the key change function returns 0, xsm_getkey will get the next key from
the keyboard!4,

2.2.5.
Group Functions

The Screen Manager will call group functions, if specified, on entry, exit, and validation
of radio buttons and checklists. Calls to group entry and group exit functions are guaran-
teed to be paired for each group.

A single default group function may be installed. It will be invoked on entry, exit, and
validation for every group. The default group function 1s installed as via
xsm_n_uinstall.Group functions specified as entry, exit, or validation functions for
a given group 1n the Screen Editor are installed via the —-retain_all argument to the
bind command. JPL procedures may also be directly specified as group functions in the
Screen Editor by preceding their name with the string “jpl *, for example jpl
groupfunc.

Please note that field validation functions for fields that are members of groups or menus

are called at selection and, in the case of checklists, deselection as discussed above in sec-
tion 2.2.1. on page 11.

Group Function Invocation

Group functions are called for group entry whenever the cursor enters a group, including
the imes when the group containing the cursor is activated by virtue of an overlying win-

14, Sec the ibrary routine XSM_KEYOPTION for a different method of changing the function of a logical
key.

Page 18 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

dow being closed. Group functions are called for group exit whenever the cursor leaves a
group, including the times when the group is left because a window is popped up over the
existing screen. Group functions are called for validation whenever the group 1s vali-
dated. This occurs at any of the following times:

8 As part of group validation, when you exit the group by hitting TAB or
making a selection from an autotab group. The BACKTAB and arrow
keys do not normally cause validation.

@ As part of screen validation when the XMIT key is struck.

B When the application code calls library routines for group validation.

Group functions specified for group entry via the Screen Editor are invoked after any in-
stalled default group function. Group functions specified for group exit or validation via
the Screen Editor are called before any installed default group function.

Group Function Arguments

All group functions receive two arguments:
1. The group name.

2. Aninteger containing contextual information about the validation state

of the group and the circumstances under which the function was

called.
The information contained in the third argument to group functions is identical to that
passed mn the fourth argument to field functions. See section 2.2.1. on page 11 for an ex-
planation.
Group functions are called for validation regardless of whether the group was previously
validated. They may test the VALIDED and MDT bits to avoid redundant processing.

Group Function Return Codes

Group functions called on entry or exit should return 0. Group functions called for valida-
tion should return 0 if the group selections pass the validation criteria. Any non—zero re-
turn code should indicate that the group does not pass validation. If the returned value is
1, the cursor will not be repositioned to the offending group. Any other non-zero return
value will cause the cursor to be repositioned to the group that failed the validation.

2.2.6.
Asynchronous Functions

The installed asynchronous function is called periodically by the Screen Manager while
the keyboard input routine waits for user input. It can be used to poll or otherwise manipu-
late communications resources, or to update the display on the screen.

JAM Release 5 1 March 91 Page 19

JAM PL/1 Programmer’s Guide

The asynchronous function is installed individually as ASYNC_FUNC via the library rou-
tine xsm_async.

Asynchronous Function Invocation

The asynchronous function is called from the very lowest level of JAM keyboard input.
When the asynchronous function is installed, the device dnver clock on the terminal input
device is set to time out on its character read operation, and if a character is not read 1n that
time interval the asynchronous function is invoked before another character read opera-
tion is attempted. The time out interval is specified when the function is installed. The
time out is measured in tenths of seconds. The maximum interval 1s 255 (25.5 seconds).

Asynchronous Function Arguments
The asynchronous function is passed no arguments.

Asynchronous Function Return Codes

The asynchronous function should generally return 0. If it returns —1, it will not be called
agawn until at least one additional character has been read from the keyboard. The asynch-
ronous function may retum a key, which will be returned to xsm_getkey and on to the
application. If that key is a JAM logical key, no further translation will be done. If the
asynchronous function returns a data character, JAM will interpret it as a physical key-
board stroke.

22.7.
Insert Toggle Functions

The Screen Manager will call the Insert Toggle Function when switching between input
and overstrike mode for data entry. Generally this hook function will be used to update
some aspect of the display informing the user of the current mode.

The insert toggle function is installed individually as INSCRSR_FUNC via
xsm_n_uinstall. JAM automatically installs an insert toggle function that changes
the cursor style when the mode is changed. If an application installs its own insert toggle
function, the JAM function will be de-installed, and the new insert toggle function may
want to call the function directly.

Insert Toggle Function Invocation

The function will be invoked by JAM whenever the data entry mode shifts from insert to
overstrike mode or from overstrike to insert mode. Most often, this occurs when the end—
user strikes the INSERT key.

Page 20 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Insert Toggle Function Arguments

One integer argument is passed to the insert toggle function. It specifies the mode. If its
value is 1, JAM is entering insert mode. If it 1s 0, JAM is entering overstrike mode.

Insert Toggle Function Return Codes
The insert toggle function should return 0.

2.2.8.

Check Digit Functions

The Screen Manager will call the check digit function for any field that is marked for
check digit in the Screen Editor. It may be used to implement any desired check~digit al-
gorithm. If there is no check digit function installed in the application, JAM will use the
default library function xsm_ckdigit. A new check digit function is installed as
CKDIGIT_FUNC via the library routine xsm _n_uinstall.

Check Digit Function Invocation
l:hg check digit function is called by JAM during validation of fields marked for check
git.
Check Digit Function Arguments
The check digit function is passed the following arguments:
1. The integer number of the field undergoing validation.
2. The field contents.
3. The integer occurrence number for the data undergoing validation.
4. The integer modulus as specified in the Screen Editor.
5

The integer minimum number of digits as specified in the Screen Edi-
tor.

Check Digit Function Return Codes

The check digit function should retum 0 if the field passes the check digit validation. If a
non-zero value is returned, the cursor is positioned to the offending field and the field is

JAM Release 5 1 March 91 Page 21

JAM PL/1 Programmer's Guide

not marked as validated. It is assumed that the check digit function display its own error
messages.

2.29.
Initialization and Reset Functions

The initialization and reset functions are called by the Screen Manager on display setup
and display reset respectively. The initialization function can be used to set the terminal
type and the reset function can be used to handle any cleanup that the application needs to
do whether it is terminated gracefully or not.

Initialization and reset functions are installed individually as UINIT FUNC and URE-
SET_FUNC respectively viacalls to xsm n_uinstall.

Initialization and Reset Function Invocation

The initialization function is called from the library routine xsm_initcrt. When itis
called, JAM has not yet allocated its required memory structures, and the physical dis-
play charactenstics are still untouched by JAM. In general, it 1s suggested that hook func-
tions be installed after initialization with xsm _initcrt, but clearly this is an excep-
tion. The nitialization function must be installed before xsm_initcrt is called. This
function 1s installed as UINIT_FUNC via the library routine xsm_n_uinstall.

The reset function is called from the library routine xsm_resetcrt after JAM has re-
leased its memory and reset the physical display characteristics. Since the JAM abort
routine xsm_cancel calls xsm_resetcrt before the application terminates, the re-
set function is generally called at application exit whether the exit is graceful or not!5,
Thus function is installed as URESET_FUNC via the hbrary routine xsm n_uins-
tall.

Initialization and Reset Function Arguments

The initialization function is passed a single argument, namely a 30 byte character buffer
into which it may place the null-terminated string mnemonic identifying the terminal
type in use. This is primarily of use on operating systems without an environment. This
function can be used to obtamn the terminal type in some system-specific way.

The reset function is passed no arguments.

Initialization and Reset Function Return Codes
Both the imtialization and reset hook functions should return 0.

15 Interrupt handlers may need to be set by the developer to insure that XSM_CANCEL is called at all the
necessary hardware and software interrupt signals. It 15 suggested that this setup be done 1n the funcuion in-
stalled as an mmtiahzation function.

Page 22 JAM Release § 1 March 91

JAM PL/1 Programmer’s Guide

2.2.10.
Recording and Playing Back Keystrokes

The Screen Manager provides hooks for recording and playing back keystrokes. This fa-
cility could be used to implement simple macro capabilities, or to perform regression test-
ing on a JAM application. The developer should ensure that the record and playback
functions are not in use simultaneously.

Record and playback functions are installed individually as RECORD_FUNC and
PLAY FUNC respectively viaxsm n_uinstall.

Record/Playback Function Invocation

The record function is called from xsm_getkey when it has a translated key value in
hand that it is about to return to the application. The playback function is called from
xsm_getkey, when installed, in place of a read from the keyboard!S. For accurate re-
gression testing, the playback function may need to pause and flush the output to simulate
a realistic rate of typing, and may need to call the asynchronous function, if there is one.

Record/Playback Function Arguments

The record function 1s passed a single integer, which is the JAM logical key to record.
Generally that key is recorded in some fashion for a possible playback at a later date. The
playback function receives no arguments.

Record/Playback Function Return Codes

The record function should return 0. The playback function should return the logical key
that was recorded at an earlier time.

22.11.
Status Line Functions

The status line function is called by the Screen Manager whenever the status line is about
to be flushed, or physically written to the terminal device. It is intended for use on termi-
nals that require unusual status line processing, beyond the scope of the generic code, but
other uses are possible.

16. Since characters are recorded after processing by the key change function but played back before key

change translation, some key change functions may nterfere with the accurate playback of recorded key-
strokes. See the descniption of XSM_GETKEY n the Programmer’s Reference Manual for more information.

JAM Release 5§ 1 March 91 Page 23

JAM PL/1 Programmer’s Guide

The status line function is nstalled individually as STAT FUNC via xsm n_uins-
tall.

Status Line Function Invocation

The status line function is called when the status line is about to be physically written to
the terminal display. Because of delayed write, this may or may not be at the time when
the functions that specify message line text are actually called.

Status Line Function Arguments

The status line function receives no arguments. It can access copies of the text and attrib-
utes about to be flushed to the status line using the following library routine calls:

stat text = xsm pinquire (SP_STATLINE);
stat_attr = xsm pinquire (SP_STATATTR) ;

Status Line Function Return Codes

If the status hine function returns 0, JAM continues its usual processing and actually
writes out the status line. If the function returns any other value, JAM assumes that the
physical write of the status line was handled in the hook function.

2.2.12.
Video Processing Functions

The Screen Manager calls the developer—installed video processing function to allow for
special handling of various video sequences by the application. This is a specialized hook
required only when the JAM video file is unable to provide support for a particular type
of terminal.

The video processing function is installed individually as VPROC_FUNC via
xsm_n_uinstall.

Video Processing Function Invocation

The video processing function 1s called by JAM’s output routine just before a video out-
put operation is about to begin.

Video Processing Function Arguments

The video processing function receives two arguments. The first is an integer video pro-
cessing code defined 1n the header file smvideo. incl.pl1l and outlined in the table

Page 24 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

below. The second is an array of integers with parameters for the video processing code.
The number of parameters passed depends on the operation as shown in the table below.
For video processing codes that require no arguments, a NULL is passed.

Code Operation Description #of
params

V_ARGR remove area attribute

V_ASGR set area graphics rendition 11

V_BELL visible alarm sequence

V_CMSG close message line

V_COF turn cursor off

V_CON turn cursor on

V_CuB cursor back (left) 1
v_CuD cursor down 1
V_CUF cursor forward (right) 1
vV_Cup set cursor position (absolute) 2
vV_Cuu cursor up 1
V_ED erase entire display

V_EL erase to end of line

V_EW erase window to background 5
V_INIT initialization string f
V_INSON | set insert cursor style

V_INSOFF |set overstrike cursor style

V_KSET write to soft key label 2

V_MODE4 | single character graphics mode (also V_MODES, 6)

V_MODEO | set graphics mode (also V_MODEL1, 2, 3)

V_OMSG open message line

JAM Release 5 1 March 91 Page 25

JAM PL/1 Programmer's Guide

Code Operation Description #of
params

V_RESET |resetstring

|| V_RCP restore cursor position
ll V_REPT repeat character sequence 2
v_scp save cursar position
HV_SGR set latch graphics rendition 11

Video Processing Function Return Codes

When the video processing function returns 0, JAM will continue with normal process-
ing. If it returns any other value, JAM will assume that the operation has been handled in
the hook function. This allows the developer to implement only necessary operations.

Other Hook Functions

The Screen Manager provides an additional hook to handle block mode terminals. This
function is best viewed as a driver. Block mode is described in Chapter 10.

2.3,
CODING STRATEGY, RULES AND
PITFALLS

23.1.
Displaying Screens

There are a number of library functions provided for the display of screens as forms or
windows, In general, the following rules and gwidelines should be followed in choosing
between them and deciding when they can be used:

B The display of screens as forms or windows from within screen func-
tions at screen entry or screen exit is neither recommended nor sup-
ported.

Page 26 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

® The routines xsm_jform, xsm_jwindow, and xsm_jclose are
provided specifically for the display and destruction of screens in appli-
cations that use the JAM Executive. Applications not using the JAM
Executive should not use these routines. They are recommended over
the other screen display routines i applications that do use the JAM
Executive.

® The form display routine xsm_3form manipulates the form stack ap-
propriately. The use of any other form display routines in applications
that use the JAM Executive will exhibit unexpected behavior, as the
form stack will not be synchronized with the application flow.

23.2.
Recursion

The developer should be careful, when using hook functions, to avoid the recursion that
will come from nested hook function calls. Such recursion will not be easy to detect in the
source code itself: some understanding of the product mechanism is required.

For example, care should be taken when writing record, playback, or key change func-
tions that read from the keyboard, or status line functions that themselves cause the status
line to be flushed. A default screen entry function that in and of itself opens new screens
could be a problem.

JAM Release 5 1 March 91 Page 27

JAM PL/1 Programmer's Guide

Chapter 3.
Local Data Block

The Local Data Block, or LDB, is a region of memory for the storage of JAM field data
that is generally shared between screens. It is discussed in the JAM Development Over-
view and in the Author’s Guide.

3.1.

LDB CREATION

The LDB is created with the library routine call xsm _1db_init. This routine searches
for a data dictionary file created from the authoring tool with the Data Dictionary Editor,
For more information about the data dictionary and the Data Dictionary Editor, see the
Author’s Guide.

If the data dictionary file 1s found, it 1s read and a single LDB entry 1s created in memory
for every data dictionary entry that has a non—zero scope. Note that only the name of the
LDB entry 1s placed in memory, storage for the field data that is stored with the entry is
not aflocated until the entry is used.

After it is created, the LDB 1s initialized from ASCII text files. These files, described in
the Author's Guide, contain pairs of LDB names and values. The LDB entries named are
filled with the values that follow them 1n the files.

3.2.

HOW JAM USES THE LDB

JAM uses the LDB for the storage and propagation of field data from screen to screen in
the application. Every time a screen is opened, or exposed by the closing of a window that

JAM Release 5 1 March 91 Page 29

JAM PL/1 Programmer’s Guide_

covers 1t, every field on the screen named identically to an LDB entry 1s filled with the
value of the LDB entry. This occurs after the screen entry function is called.

Correspondingly, every time a screen is closed, or hidden when a window pops up over it,
every LDB entry that 1s named identically to a field on the screen is filled with the value
of the screen field. This occurs before the screen exit function is called.

When a screen 1s populated from the LDB at screen entry time, there is a subtle difference
between a new screen being opened and a screen being exposed when a covering window
is closed. When a screen 1s newly opened, only empty fields with corresponding LDB
entries will be populated from the LDB. When a screen is exposed, all fields that have
corresponding LDB entries will be populated.

3.3,
LDB ACCESS

Data in the LDB can be accessed with the library routines xsm n_getfield,
xsm_n_putfield,xsm i getfield,xsm i_putfield,and 'related functions
that access data by field name. These routines access the data on the current screen 1if the
field that is named exists on the current screen. If the field does not exist on the current
screen, these routines access the LDB.

During screen entry and exit processing only, the search order is reversed. During the
screen entry and exit functions, these access routines first search the LDB and then search
the screen. Thus 1s because the LDB is merged to the screen after the screen entry func-
tion, and the screen 1s stored to the LDB before the screen exit function. If the search or-
der were not reversed the data accessed would be invalid!8,

18 Ths could,n a very small number of cases, mtroduce some mcompatibihities with applications that were
wntten with earher releases of JAM If such compatbility problems anse, use the hbrary function XSM_OP-

TION setting the option ENTEXT_OPTION to FORM~FIRST.

Page 30 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Chapter 4.
Built—in Control Functions

This section describes control functions supplied with JAM. Note that the synopsis is for
a JAM control string, not a programming language source statement. The return value of
a control function can be used 1n a target list; see the Author’s Guide for information on

control strings and target lists.
You may use these functions in control strings and in JPL call statements.

JAM Release 5 1 March 91 Page 31

JAM PL/1 Programmer’s Guide

jm_exit
end processing and leave the current screen
SYNOPSIS

~jm_exit
DESCRIPTION

Clears the current form or window and returns to the previous one. If the current form 1s
the application’s top-level form, JAM will prompt and exit to the operating system.

The effect is like the default action of the run—time system’s EXIT key.
EXAMPLE

The following control string invokes a function named process. If it returns 0, another
function is invoked to reimtiahize the screen; but if it returns -1, the screen is exited. See
jm_gotop for another example.

L R v O A T O T

~A(-1="jm_exit; 0="reinit)process

The example below shows how a form or a window can be replaced by another form ora
window:

*(0=&w2) jm_exat

Page 32 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

jm_gotop

return to application’s top—level form

SYNOPSIS
~jm_gotop
DESCRIPTION

Returns to the application’s top-level screen, ordinarily the first screen to appear when
the application was run, All forms on the form stack and windows on the window stack
are discarded.

The run-time system’s SPF1 key performs the same action, unless you change it using
SMINICTRL.

EXAMPLE

The following menu makes use of both jm_exit and jm_gotop.

+
+

————— +

Query customer database_ custquery.jam__

Update customer database_ custupdate. jam_
Free-form query 'sql

Return to previous menu__ ~im_exit

Return to main menu ~3m_gotop,

4 0 e e e e s e

-— - -—+

JAM Release 5 1 March 91 Page 33

JAM PL/1 Programmer's Guide

jm_goform
prompt for and display an arbitrary form

e SRR TR T RSEERY

SYNOPSIS

~jm_goform

DESCRIPTION

Ths function pops up a window in which you may enter the name of a form; it will then
close all open windows and attempt to display the form, as if that form’s name had ap-
peared in a control string. It 1s useful for providing a shortcut around a menu system for
experienced users.

The result is the same as the default action of the run—-time system’s SPF3 key.
EXAMPLE

The following line, if placed in your setup file, will make the PF10 key act like SPF3 nor-
mally does:

SMINICTRL= PF10="jm_goform

Page 34 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

jm_keys
simulate keyboard input

DA

SYNOPSIS

~jm_keys keyname-or-string {keyname-or-string ...}

DESCRIPTION

Queues characters and function keys that appear after the function name for input to the
run—time system, using xsm_ungetkey. The run-time system then behaves as though
you had typed the keys.

Function keys should be written using the logical key mnemonics listed in
smkeys.incl.pll . Data characters should be enclosed between apostrophes /, back-
quotes * *, or double quotes “ ”. This function passes its arguments to xsm_ungetkey
in reverse order, so you supply them in the natural order.

jm_keys will process a maximum of 20 keys. This limit includes function keys plus
characters contained 1n strings.

EXAMPLE
Enter the name of your favorite bar, followed by a tab and the name of its owner:
~Jm_keys ’Steinway Brauhall’ TAB “James O’Shaughnessy”

Return to the preceding menu and choose the second option:
*Jm_keys EXIT HOME TAB XMIT

JAM Release 5 1 March 91 Page 35

JAM PL/1 Programmer’s Guide

jm_mnutogl

switch between menu and data entry mode on a dual-

purpose screen
T rg— ey oo R T S T R ™ PR Y
SYNOPSIS
~Jm_mnutogl {screen-mode}
DESCRIPTION

JAM supports the use of a single screen for both menu selection and data entry; one popu-
lar example is a data entry screen with a “menu bar”, The screen must, however, be either
one or the other at any given moment. This function switches the run—time system’s treat-
ment of the screen to the other mode. This function performs the same function as the
MTGL logical key.

An optional argument may be specified which will force the screen into a particular
mode, regardless of its current state. To specify menu mode, use the argument "M’ (or
'm’). To specify open—keyboard (data entry) mode, use the argument *O’ (or 0').

Page 36 JAM Release 5§ 1 March 91

JAM PL/1 Programmer's Guide

jm_system

prompt for and execute an operatlng system command

SYNOPSIS

~jm_system

DESCRIPTION

This function pops up a small window, in which you may enter an operating system com-
mand. When you press TRANSMIT, 1t closes the window and executes the command.
While the command is executing, your terminal 1s returned to the operating system'’s de-
fault I/O mode.

The run—time system’s SPF2 key invokes this function by default.
EXAMPLE

The following line, when placed in your setup file, will cause the PF10 key to act as SPF2
normally does:

SMINICTRL= PF1l0 = “j)m_system

JAM Release 5 1 March 91 Page 37

JAM PL/1 Programmer’s Guide

jm_winsize
allow end-user to interactively move and resize a win-
dow

o TN A St

SYNOPSIS

“jm_winsize

DESCRIPTION

Calling jm_winsize has the same effect as if the end-user had just hit the VWPT
(viewport) logical key. The viewport status line appears and the user can move, resize and
change the offset of the screen as well as move to any sibling windows. When the end-us-
er hits XMIT (transmit) the previous status line is restored.

[
Pt v A & v

In order for the end-user to able to move from one window to another, the windows must
be siblings. Windows may be specified as siblings by specifying && in a JAM control
string. See the sections on *“Viewports and Positioning” and “Control Strings” in the Au-
thor’s Guide for further informaton. This function parallels the hibrary routine

xsm_winsize.

Page 38 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Jpl
invoke a JPL procedure

L e

SYNOPSIS

~Jpl procedure [argument ...]

DESCRIPTION

This function invokes a procedure written in the JYACC Procedural Language. procedure
should be the name of a JPL procedure or module; anything following that will be passed
to the procedure as arguments. See the JPL Programmer’s Guide for the rules used by the

- JPL interpreter to determine which JPL procedure is executed. The value returned by
your procedure will be reumed by jpl for use in a target list.

This function is similar to the JPL jpl command. Colon expansion is done on the argu-
ments.

EXAMPLE

The control string below invokes a JPL function to concatenate two strings and store the
resultin target.

~jpl concat target “king” “kong”

JAM Release 5 1 March 91 Page 39

JAM PU/1 Programmer's Guide

Chapter 5. |
Keyboard Input

Keystrokes are processed in three steps. First, the sequence of characters generated by
one key is identified. Next the sequence is translated to an intemal value, or logical char-
acter. Finally, the internal value is either acted upon or returned to the application (“key
routing”). All three steps are table-driven. Hooks are provided at several points for appli-
cation processing; they are described in the chapter “Writing and Installing Hook Func-
tions”.

5.1.
LOGICAL KEYS

JAM processes characters internally as logical values, which frequently (but not always)
correspond to the physical ASCII codes used by terminal keyboards and displays. Specif-
ic physical keys or sequences of physical keys are mapped to logical values by the key
translation table, and logical characters are mapped to video output by the MODE and
GRAPH commands in the video file. For most keys, such as the normal displayable char-
acters, no explicit mapping is necessary. Certain ranges of logical characters are inter-
preted specially by JAM,; they are

® 0x0100 to 0x01£f: operations such as tab, scrolling, cursor mo-
tion

B 0x6101 to 0x7801: function keys PF1 - PF24
® 0x4101 to 0x5801: shifted function keys SPF1 -~ SPF24
B 0x6102 to 0x7802: application keys APP1 - APP24

JAM Release 5 1March91 Page 41

JAM PL/1 Programmer’s Guide

5.2.
KEY TRANSLATION

The first two steps together are controlled by the key translation table, which 1s loaded
during inibalization. The name of the table is found in the environment (see the configu-
ration guide for details). The table itself 1s derived from an ASCII file which can be modi-
fied by any editor; a screen—onented utility, modkey, is also supplied for creating and
modifying key translation tables (see the Utilities Guide).

JAM assumes that the first character of any multi—character key sequence to be translated
to a single logical key is a control character in the ASCII chart (0x00 to 0x1f£, 0x7f, 0x80
to 0x9f, or Oxff). All characters not in this range are assumed to be displayable characters
and are not translated.

Upon receipt of a control character, the keyboard input function xsm_getkey searches
the translation table. If no match is found on the first character, the key 1s accepted with-
out translation. If a full match is found on the first character, an exact match has been
found, and xsm_getkey returns the value indicated in the table. The search continues
through subsequent characters until either

1. anexact match on n characters is found and the n+1°th character in the
table is zero, or n is 6. In this case the value i the table is returned.

2. an exact match 1s found on n-1 characters but not on n. In this case
xsm_getkey attempts to flush the sequence of characters returned
by the key.

This last step is of some importance: if the operator presses a function key that1s not in the -
table, the Screen Manager must know “where the key ends”. The algorithm used is as fol-
lows. The table is searched for all entries that match the first n-1 characters and are of the
same type in the n’th character, where the types are digit, control character, letter, and
punctuation. The smallest of the total lengths of these entries is assumed to be the length
of the sequence produced by the key. (If no entry matches by type at the n’th character, the
shortest sequence that matches on n-1 characters is used.) This method allows
xsm_getkey to distinguish, for example, between the sequences ESC 0 x,ESC [
A,andESC [1 0 ~.

5.3.

KEY ROUTING

The mamn routine for keyboard processing is xsm_input. This routine calls
xsm_getkey to obtain the translated value of the key. It then decides what to do based
on the following rules.

Page 42 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

If the value is greater than Ox1ff, xsm_1nput returns to the caller with this value as the
return code.

If the value is between 0x01 and Ox1ff, the key is first translated via the key translation
table. This table is changed with the library routine xsm_keyoption. Then processing
is determined by a routing table. Use xsm_keyoption to get and set the routing infor-
mation for a particular key. The routing value consists of two bits, examined independent-
ly, so four different actions are possible:

1. If neither bit is set, the key 1s ignored.

2. Ifthe EXECUTE bit is set and the value is in the range 0x01 to Oxff, 1t
is wnitten to the screen (as interpreted by the GRAPH entry in the video
file, if one exists). If the value 1s 1 the range 0x100 to Ox 1£f, the appro-
priate action (tab, field erase, etc.) is taken.

3. Ifthe RETURN but is set, xsm_input returns the logical value to the
caller; otherwise, xsm_getkey 1s called for another value.

4, If both bits are set, the key is executed and then retumed.

The default settings are ignore for ASCII and extended ASCII control characters (0x01 —
Ox1f, 0x7f, 0x80 — 0x9f, Oxff), and EXECUTE only for all others. The default setting for
displayable characters is EXECUTE. All other ASCII and exteneded ASCII characters
are ignored. The application function keys (PF1-24, SPF1-24, APP1-24, and ABORT)
are not handled through the routing table. Their routing 1s always RETURN, and cannot
be altered. All other function keys (EXIT, SPGU elc...) are mitially set to EXECUTE.

. - Applications can change key actions on the fly by using xsm_keyoption. For exam-
ple, to disable the backtab key the apphcation program would execute
call xsm keyoption (BACK, KEY ROUTING, KEY_IGNORE)
To make the field erase key return to the application program, use
call xsm_keyoption(FERA, KEY ROUTING, RETURN)
Key mnemonics can be found in the file smkeys.incl.pll.

JAM Release 5 1 March 91 Page 43

JAM PL/1 Programmer’s Guide

Chapter 6.
Terminal Output Processing

JAM uses a sophusticated delayed-write output scheme, to minimize unnecessary and re-
dundant output to the display. No output at all is done until the display must be updated,
either because keyboard input is being solicited or the ibrary function xsm_£1lush has
been called. Instead, the run—-time system does screen updates in memory, and keeps track
of the display positions thus “dirtied”. Flushing begins when the keyboard is opened; but
if you type a character while flushing is incomplete, the run—time system will process it
before sending any more output to the display. This makes it possible to type ahead on
slow lines. You may force the display to be updated by calling xsm_£1ush.

JAM takes pains to avoid code specific to particular displays or terminals. To achieve this
it defines a set of logical screen operations (such as “position the cursor”™), and stores the

.. character sequences for performing these operations on each type of display in a file spe-
cific to the display. Logical display operations and the coding of sequences are detailed in
the Video Manual; the following sections describe additional ways in which applications
may use the information encoded in the video file.

6.1.
GRAPHICS CHARACTERS AND
ALTERNATE CHARACTER SETS

Many terminals support the display of graphics or special characters through alternate
character sets. Control sequences switch the terminal among the various sets, and charac-
ters in the standard ASCII range are displayed differently in different sets. JAM supports
alternate character sets via the MODEx and GRAPH commands in the video file.

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a particular char-
acter set. MODEO must be the normal character set. The GRAPH command maps logical

JAM Release § 1 March 91 Page 45

JAM PL/1 Programmer’s Guide

characters to the mode and physical character necessary to display them. It consists of a
number of entries whose form is

logical value = mode physical-character

When JAM needs to output logical wvalue it will first transmit the sequence that
switches to mode, then transmit physical-character. It keeps track of the current
mode, to avoid redundant mode switches when a string of characters in one mode (such as
a graphics border) is being written. MODE4 through MODE 6 switch the mode for a single
character only.

6.2.

THE STATUS LINE

JAM reserves one line on the display for error and other status messages. Many terminals
have a special status line (not addressable with normal cursor positioning); if such is not
the case, JAM will use the bottom line of the display for messages. There are several sorts
of messages that use the status line; they appear below in priority order.

1. Transient messages issued by xsm_err_reset orarelated function
2. Ready/wait status

3. Messages installed with xsm_d_msg_line or xsm _msg

4. Field status text

5. Background status text

There are several routines that display a message on the status line, waut for acknowledge-
ment from the operator, and then reset the status line to its previous state:
XSm_query msg, XsSm_err reset, xsm_emsg, xsm quiet_err, and
xsm_qui_msg. xsm_query_msg waits for a yes/no response, which it retums to the
calling program; the others wait for you to acknowledge the message. These messages
have highest precedence.

xsm_setstatus provides an alternating pair of background messages, which have
next highest precedence. Whenever the keyboard is open for input the status line displays
Ready; it displays Wait when your program is processing and the keyboard is not open.
The strings may be altered by changing the SM_READY and SM_WAXIT entries in the mes-
sage file.

If you call xsm_d_msg_line, the display attribute and message text you pass remain
on the status line until erased by another call or overridden by a message of higher prece-
dence.

Page 46 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

When the status line has no higher prionty text, the Screen Manager checks the current
field for text to be displayed on the status line. If the cursor 1s not in a field, or if itis in a
field with no status text, JAM looks for background status text, the lowest prionty. Back-
ground status text can be set by calling xsm_setbkstat, passing it the message text
and display attribute,

In addition to messages, the rightmost part of the status line can display the cursor’s cur-
rent screen position, as, for example, C 2, 18. This display is controlled by calls to
xsm_c_vis.

During debugging, callstoxsm _err_reset orxsm_quiet_err can be used to pro-
vide status information to the programmer without disturbing the main screen display.
Keep in mind that these calls will work properly only after screen handling has been ini-
tializedby acallto xsm_initcrt.xsm err_ reset andxsm_quiet_errcanbe
called with a message text that is defined locally, as in:

call xsm err reset(”ZIP CODE INVALID FOR THIS STATE.”);

However, the JAM library functions use a set of messages defined in an internal message
table. This table is accessed by the function xsm_msg_get, using a set of defines in the
header file smerror.incl.pll. The return value from xsm_msg_get can be used
as input for one of the status line functions.

The message table is iniialized from the message file identified by the environment vari-
able SMMSGS. Application messages can also be placed 1n the message file. See the sec-
tion on message files in the Configuration Guide.

JAM Release 5 1 March 91 Page 47

JAM PL/1 Programmer's Guide

Chapter 7.
Writing International (8 bit)
Applications

7.1,

INTRODUCTION

This chapter describes how to use the 8 bit internationalization capabilities that have been
incorporated into JAM Release 5.

- -From the point of view of someone who has used JAM without these features, a few dif-
ferences will be apparent immediately. Other, more subtle, differences will emerge as the
package is used in building language-independent applications. Finally, many of the
changes were made so that the development utilities could be localized for use in other
countries. These will largly go unnoticed by people using the package in English.

7.1.1.
General Overview

The purpose of the 8 bit NLS is to allow the JAM product and applications created with
with it to be “localized” for use in non-English-speaking countries, This means that the
product can be made to look like it originated in the country in which it is being used. All
prompts and messages can appear in the appropriate language and customs for formatting
dates, currency fields and the like can be observed. Notwithstanding this, many of the fea-
tures that are only visible to programmers will continue to be in English since many pro-
grammers are used to working in English.

JAM Release § 1 March 91 Page 49

JAM PL/1 Programmer's Guide

The capabilities described are limited to languages in which characters can be represented
in 8 buts of information and those that use a left—to—right entry order. This eliminates the
complexities associated with many far— and middle—eastern languages.

7.2,
LOCALIZATION

JAM and JAM applications can be localized by taking the following steps:
B Use the Screen Editor to translate all screens in the application.
® Modify and recompile the message file.

B Translate the documentation.

7.2.1.
Background

The JAM product was originally developed with some intemationalization issues in
mind. It has always used 8 bit character data, without appropriating a bit for internal use.
So one of the major demands of the international market was already satisfied.

Date and time formats have always been completely specified by the screen creator. The
wide variety of formats available in Release 4 could satisfy most requirements. InRelease
5, additional capabiliies were added to make it easier to convert screens from one lan-
guage to another. Currency formats were the least international of the features in the Re-
lease 4 product. Release 5 makes these completely language independent.

Each of the sections below discusses some aspect of intemationalization,

7.2.2.

8 Bit Character Data

As pointed out in the introduction, JAM supports 8 bit character data. Video files specific
to the terminal can give special instructions, if necessary, as to how to display internation-
al characters. This is needed if the terminal requires shifting to a different character set to
display non—-ASCII characters. Most terminals used in the international market will not
need to shift character sets,

The video file can also be used to translate between two different standards for interna-
tional characters. Thus the screens could be created with one standard and displayed using
a different one.

Page 50 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

The use of 8 bit characters for international symbols does not necessanly preclude the use
of graphics for borders, etc. Any unused entries 1n character set (e.g. 0x01 - Ox1f, or 0x80
- 0x9f) can be mapped to line graphics symbols.

JAM rarely, if ever, interprets characters present in screens or entered from the keyboard.
Internally it merely manipulates numbers. Any meaning as an alphabetic character,
graphics symbol, or whatever, is generally irrelevant to JAM. The cursor control keys
(arrows, tab, etc.), function keys, and soft keys are all assigned logical values that are out-
side the range 0x00 to OxfT, and thus cannot conflict with intemational characters.

Keyboards that support intemational character sets will usually produce a single (8 bit)
byte (perhaps with the high bit set) for each character. However there are some terminals
that generate a sequence to represent an international character. If so, modkey (or a text
editor) would be used to map the byte sequences into a logical value, just as the video file
-would be used to map the logical value to the sequence required by the display terminal.

If you have questions about how to display non-English characters or to receive them
from the keyboard, consult the chapters on keyboard and video processing.

7.2.3.

Date And Time Fields

Date and Time fields have been completely revamped in Release 5. They have been com-
bined to enable one field to have both date and time information. This, and the fact that
more flexibility was added to date and time formatting, required changes to the date and
time mnemonics. For example, n Release 4, the mnemonic mm was used for a 2-digit
month in Date fields as well as the specifier for minutes in Time fields. Clearly, this can-
not serve both purposes when the fields are combined.

In Release 5, the mnemonics for specifying date and time formats are stored in the mes-
sage file so they may be changed. In addition, they are stored in a “tokenized” form nter-
nally which provides two major benefits. First, the need to parse the formats at runtime is
eliminated, thus speeding up processing and reducing memory requirements. Second,
« screen designers in different countries editing the same screen will all see date and time
specifications in formats they are used to. For example, if an English screen designer
created a date field with the format mon/day/year, it might show up on a French sys-
tem asmois/jour/annee.

The problem of interchanging the month and day is dealt with later.

The table below shows the default message file entries for date and time mnemonics:

JAM Release 5§ 1 March 91 Page §1

JAM PL/1 Programmer’s Guide

Msg # Mnemonic | DatelTime Tokenized Description
Mnemonic Format

FM_YR4 YR4 $4y 4 digit year

FM_YR2 YR2 32y 2 digit year

FM_MON MON $m month number

FM_MON2 MON2 $£0m month number, zero fill

FM_DATE DATE %d date (day of month)

FM_DATE DATE2 $0d date, zero fill

FM_HOUR HR %h hour

FM_HOUR HR2 $0h hour, zero fill |

FM_MIN MIN M minute

FM_MIN2 MIN2 $0M minute, zero fill

FM_SEC SEC $s seconds

FM_SEC2 SEC2 $0s seconds, zero fill i

FM_YRDA YDAY $+d day of the year

FM_AMPM AMPM tp am/pm

FM_DAYA DAYA $3d abbreviated day name

FM_DAYL DAYL $*d long day name

FM_MONA MONA %3m abbrev. month name

FM_MONL MONL $*m long month name

Thus, a date field specified as mm/dd/yyyy in Release 4 would be MON2 /DATE2 /YR4
in Release 5. The £4to5 conversion program will convert the format to $m/%d/ %4y
internally so it will automatically show up correctly when the screen 1s edited. The mne-
monics were chosen to comrespond to ANSI standards. You can change them to suit your
own needs by ssmply changing the message file and running msg2bin. To change the
mnemonic for a4 digit year from YR4 to YYYY, forexample, change the message file line

Page 52 JAM Release § 1 March 91

JAM PL/1 Programmer’s Guide

FM_YR4 = YR4
to
FM_YR4 = YYYY

and runmsg2bin.

If all development is done 1n one language, the fact that different mnemonics for date and
time formats can be used for different languages is unimportant. What is important, how-
ever, is to be able to modify an application to operate in a different language. The goal is
that only the text of the screens and the message file should need to be changed.

Consider a screen with a date field of the form DAYA MONA DATE, YRA4.If executed
on a system with an English message file it might appear as

Mon Apr 4, 1989
whereas on a French system it would be
Lun Avr 4, 1989

This happens without changing the date format. All that has changed are the names and
abbreviations of the months and days which are also stored in the message file so it is a
simple matter to convert them.

Now consider a date field which in English should show up in mm/dd/yyyy form but
should appear in French as dd-mm~yyyy. In this case, the date format itself would have
to be modified. For this reason, 10 additional formats are supplied for the designer’s use.
For instance, in the message file the designer can specify a new date mnemonic called
REGULAR DATE. In the English message file this can be equated to mm/dd/yyyy and
in the French message file to dd—mm-yyyy. Thus, if the date format is specified as
REGULAR DATE, only the message file, not the screen, needs to be changed to convert
the date field to French.

For this capability, both the mnemonics and what they represent are specified in the mes-
sage file. The actual formats are stored in the message file in tokenized form so that there
is no need for a parser.

The following table shows the default message file entnies for these extra date mnemon-
ics:

Msg Number Date/Time | Toke- Corresponding Default

Mnemonic Mnemonic | nized Msgfile Entry

Form
FM_OMN_DEF_ | DEFAULT | %0f SM_ODEF_DTIM | %m/%d/%2y
DT E %h:%0M

FM_1MN_DEF_ |DEFAULT | %if SM_1DEF_DTIM | %m/%d/%2y
oT DATE E

S e ————— ——————— —— — —— —— __ ~= e

JAM Release 5 1 March 91 Page 53

JAM PU/1 Programmer’s Guide

Msg Number Date/Time | Toke- Corresponding Default
Mnemonic Mnemonic | nized Msgfile Entry
Form
FM_2MN_DEF_ | DEFAULT | %2f SM_2DEF_DTIM | %h:%0M
DT TIME E
FM_3MN_DEF_ |DE- %3f SM_3DEF_DTIM | %m/%d/%2y
DT FAULT3 E %h:%0M
FM_4MN_DEF_ |DE- %oAf SM_4DEF_DTIM | %m/%d/%2y
DT FAULT4 E %h:%0M
“FM_SMN_DEF_ DE- %5f SM_5DEF_DTIM | %m/%d/%2y
DT FAULTS E %h:%0M
FM_6MN_DEF__ |DE- %6f SM_6DEF_DTIM | %m/%d/%2y
DT FAULT6 E %h.%0M
FM_7MN_DEF_ |DE- %7f SM_7DEF_DTIM | %m/%d/%2y
DT FAULT7 E %h:%0M
FM_8MN_DEF_ |DE- %8f SM_8DEF_DTIM | %m/%d/%2y
DT FAULTS E %h.%0M
FM_SMN_DEF_ |DE- %9t SM_9DEF_DTIM | %m/%d/%2y
DT FAULTY E %h:%0M

Thus, if the screen designer specifies a date field with the format DEFAULT DATE, it
would show up in mm/dd/yy form. If the line

SM_1DEF_DTIME = %m/%d/%2y
in the message file were changed to
SM_1DEF_DTIME = $%d-%m-%2y

the date would show up in dd—-mm-yy form. To change the mnemonic for this date for-
mat to REGULAR DATE, the message FM_1MN_DEF_DT should be modified.

724
Currency Fields

Like Date and Time fields, Currency fields have been modified in Release 5. Since it is
not uncommon in Europe to be dealing with several currencies simultaneously, release 5

Page 54 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

does not force any one system on the screen creator. Thus, the formatting capabilities
were enhanced to support any convention the screen creator might desire. As with date
and time formats, a “default” format 1s supplied that causes the actual format to be taken
from the message file. For Currency fields however, this option is supplied only for the
parts of the format that may vary from one currency to another.

The new release allows the following items to be specified for Currency fields:
® the decimal symbol (usually dot or comma)
minimum number of decimal places
maximum number of decimal places
thousands separator (usually dot or comma; b = blank)
the currency symbol to be used (up to 5 characters)
the placement of that symbol (left, right or at decimal pt)
default currency from the message file (to replace the above entries)
rounding (round-up, round-down, round-adjust)
fill character
justification
clear if zero
apply if empty
There is a slight problem in specifying currency symbols when using the Screen Editor.
-.Since the currency symbol is entered 1nto a regular field, it is not possible to enter trailing
spaces (they are always stripped off). Thus, to specify a leading currency symbol sepa-
rated from the data by a space (FF 123.456, 78) you must use the message file. For

this reason, the dot (.) may be used to signify a space when entered into the currency
field. A dotin the message file for this purpose will appear as a dot.

The default currency formats are strings of the form rmxipecceee where:

ar = decimal symbol (usually comma or dot)

om = minimum number of decimal places

Ny = maximum number of decimal places

ot = thousands separator (usually comma or dot; b = blank)
up = placement of currency symbol (1, r or m)

Scccce = up to 5 characters for the currency symbol

Thus, if the screen designer specifies a currency field with the format CURRENCY, it
would show up in $999, 999. 99 form. If the line

JAM Release 5 1 March 91 Page 55

JAM PL/1 Programmer’s Guide

SM_ODEF_CURR = ”.22,1$”
in the message file were changed to
SM_ODEF_CURR = ~,22.1FF”

the field would show upas FF 999. 99, 99. To change the mnemonic for this currency
field, the message FM_OMN_CURRDEF should be modified. The following table shows
the default message file entries for the currency mnemonics:

Msg Number Mnemonic Currency Corresponding Msgfile | Default
Mnemonic Entry
FM_OMN_CURRDEF CURRENCY SM_ODEF_CURR 22,18
FM_1MN_CURRDEF NUMERIC SM_1DEF_CURR .09,
FM_2MN_CURRDEF PLAIN SM_2DEF_CURR .09
FM_3MN_CURRDEF DEFAULT3 SM_3DEF_CURR .09
FM_4MN_CURRDEF DEFAULT4 SM_4DEF_CURR .09
FM_5MN_CURRDEF DEFAULT5 SM_SDEF_CURR .09
FM_6MN_CURRDEF DEFAULT6 SM_6DEF_CURR .09
FM_7MN_CURRDEF DEFAULT?7 SM_7DEF_CURR 09
FM_8MN_CURRDEF DEFAULTS SM_8DEF_CURR .09
FM_S9MN_CURRDEF DEFAULTY SM_9DEF_CURR .09
7.2.5,

Decimal Symbols

JAM 5 will accomodate 3 decimal symbols which are used in different circumstances:
B System Decimal Symbol
B Local Decimal Symbol
B8 Field Decimal Symbol

The System Decimal Symbol is the one that library routines like atof and sprintf
use. The Local Decimal Symbol is the one that is used when local customs are followed

Page 56 JAM Release 5 1 March 91

x
¥

JAM PL/1 Programmer's Guide

(dot in Enghish; comma in French). The Field Decimal Symbol is the one specified for a
given field if that field is not observing local conventions. N

The System and Local Decimal Symbols are obtained from the operating system if the
operating system supports such things (see the installation notes for JAM for your operat-
ing system). The Local Decimal Symbol may be specified in the message file (message
SM_DECIMAL), in which case it overrides the operating system decimal symbol. Dot 1s
the system decimal 1f no symbol is specified in the message file and if the operating sys-
tem does not supply one.

The sections below describe the circumstances under which each of the different symbols
isused.

7.2.6.
Character Filters

The one time that JAM requires some knowledge of the meaning of the data is while en-
forcing the character filters on a field. The filters currently supported are digits only, nu-
menc, alphabetic, alphanumeric, and yes/no and regular expression.

To validate the data JAM uses the standard C macros: isdigit, isalpha, etc. JAM
5 assumes that the operating system supplies these macros 1n a form suitable for interna-
tional use. In absence of such operating system support, care should be taken when using
these capabilities.

Special code 1s used to process numeric fields since C does not provide an “isnumerc”
macro. If the field has a currency edit, JAM uses the Field Decimal Symbol to validate
the numeric entry. If the field has no currency edit or the currency edit has no decimal
symbol specified, JAM uses the Local Decimal Symbol,

Yes/no fields have always been internationalized in that the yes and no characters (y and
n-in English) are specified in the message file. Although some vendors will supply infor-
mation about these characters, the proposed ANSI standard does not address the issue.
Therefore, for reasons of portability, JAM will continue to use the message file for this
data.

Upper and lower case fields will also behave properly provided that t ouppe rand related
functions are language dependent. The present code assumes that the return from t oup-
per is appropriate for an upper case field. Therefore a lower case letter can appear in
such a field if there is no upper case equivalent for that letter. (The German “double s” has
no upper case equivalent.)

In processing regular expressions, JAM 5 uses the ASCI collating sequence for ranges
of characters. Therefore, the expression

JAM Release 5 1 March 91 Page 57

JAM PL/1 Programmer’s Guide

fa-2z)*

will match only the English lower case letters. The European character a, for example,
would not be matched by this expression.

7.2.7.
Status And Error Messages

All messages produced by JAM 5 are stored in the message file so they may be easily
localized. Each message is a complete phrase or sentence. Message components are never
pieced together because doing so would make it difficult to translate to a language that
has a sentence structure different from English.

7.2.8.
Screens In The Utilities

These screens were memory resident in Release 4. For international customers they must
be modifiable.

A linkable jxform is be provided, and the library containing the source for the screens
is made available. A developer may translate the screens and relink the utilities. Similar-
ly modkey is developer-linkable, and the source for its screens is provided. In this way
the screens remain memory resident and no compromise of speed need be made.

Unfortunately this solution is not ideal if several users on the same machine wish to use
different languages. To support this, the screens may be kept on disk. The current mecha-.
nmism of SMPATH allows run—time selection of the set of screens to be used.

72.9,
Screens In Application Programs

The same approach as discussed in the above section can be used for screens i applica-
tion programs. Thus different language screens can be kept in separate directories and the
user can specify which is to be used at run-tume.

7.2.10.
Menu Processing

xsm_input returns the first character of the selected entry. This, of course, is not lan-
guage independent. JAM utlities have been modified to use the current field number

Page 58 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

rather than the return value, Because it cannot be assumed that all entries will have unique
first letters, the st ring option is specified.

Application programs intended for an international market should not rely on the initial
character of the menu selection. The field number containing the cursor is a better way of
determining which selection the operator has made. However the field numbers may
change if the screen is redesigned. Note that this is not a problem when the JAM Execu-
tive is used, since the JAM Executive uses relative field numbers to determine the control
string to execute when a menu field is selected.

A new additional edit was instituted 1n JAM 4 that specifies the return code from a re—
turn entry (or menu) field. The screen creator specifies the return code (an integer)
when designing the screen. If this edit exists, xsm_input uses that value as the return
code to the calling program, If this edit does not exist, the usual return code is used.

7.2.11.
lstform, 1stdd, and jammap

These utilities list data about the screen in English. Since they are often used for docu-
mentation it 1s important that the text be translatable to other languages. Thus the textual
material, headings, etc., have been moved to the message file.

7.2.12.

Range Checks

-Range checks for numeric data are presently correctly handled since they use at of (as-

suming that the *“strip” routine works properly).

Alphabet data presents special problems. One of the major issues for internationalization
is the collating sequence of a language. For dictionary or telephone book processing the
problem is particularly troublesome. For example, upper and lower case letters compare
equal. Also, in a telephone book, St . and Saint compare equal, hyphens are 1ignored,
etc. In some languages even less demanding applications pose severe problems. For ex-
ample, ligatures compare equally to pairs of letters. The placement of vowels with diacrit-
1cal marks varies widely even among countries using the same language.

The proposed ANSI standard specifies a routine, st rcol1, that can be used to expand
the word into a format suitable for comparison by st rcmp. These routines assume that
the data supplied is a word in the local language. They will given unexpected results on
non-language data.

JAM is not designed to process languages in a way that requires such niceties. It does sort
names of fields and other objects, but that is done only to speed look-up. As long as the
sort routine and the search routine use the same algorithm, things will work.

JAM Release 5 1 March 91 Page 59

JAM PL/1 Programmer's Guide

In JAM, range checks are often given on non-language data. For example a menu selec-
tion might have a range of a to d. In certain languages an umlaut would fall into that range
if a language specific comparnison was made. This effect would complicate screen design.
Different screens would be needed for different countries, even if they used the same lan-

guage.

For these reasons no changes have been made to the Release 4 method of range checking.
strcmp and memcmp continue to be used. These compare the internal values of the
characters, without regard to their meanings in the local language.

7.2.13.
Calculations Using @sUM and @QDATE

These keywords have been retained even though they are language specific. Computa-
tions with dates assume the Gregorian calendar. No provison is made for other calendars.

72.14.
xsm_dblval and xsm dtofield

These routines use at of and sprint £ therefore correctly interpret the System Decimal
Symbol (radix character).

7.2.15.
xsm_is_yes and xsm_query msg

These routines use the characters in the message file for y and n and thus are already in-
ternationalized. They use t oupper to recognize the upper case vanations.

7.2.16.

Batch Utilities

All the utilities messages, including usage messages have been moved to the message file.

The mnemonics for logical keys (XMIT, EXIT, etc.) are not translated to other languages,
nor the mnemonics used in the video file, so the internal processing of the utilities need
not be modified.

Page 60 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Chapter 8.
Writing Portable Applications

The following section describes features of hardware and operating system software that
can cause JAM to behave in a non—unmiform fashion. An application designer wishing to
create programs that run across a varety of systems will need to be aware of these factors.

8.1.
TERMINAL DEPENDENCIES

JAM can run on display terminals of any size. On terminals without a separately addres-
sable status line, JAM will steal the bottom line of the display (often the 24th) for a status

--line, and status messages will overlay whatever 1s on that line. A good lowest common
denominator for screen sizes is 23 Lines by 80 columns, including the border (21 if two—
line soft key labels will be used).

Different terminals support different sets of attributes. JAM makes sensible compromis-
es based on the attributes available; but programs that rely extensively on attribute manip-
ulation to hughlight data may be confusing to users of terminals with an insufficient num-
ber of attributes. Colors will not show up on monochrome terminals, e.g. Use of graphics
character sets is particularly terminal dependent.

--Attnbute handling can also affect the spacing of-fields and text. In particular, anyone de-

«* signing screens to run on terminals with onscreen attnbutes must remember to leave
space between fields, highlighted text, and reverse video borders for the attributes. Some
terminals with area attributes also limit the number of attribute changes permitted per line
(or per screen).

The key translation table mechanism supports the assignment of any key or key sequence
to a particular logical character. However, the number and labelling of function keys on
particular keyboards can constrain the application designer who makes heavy use of func-

JAM Release 5 1 March 91 Page 61

JAM PL/1 Programmer’s Guide

tion keys for program control. The standard VT100, for instance, has only four function
keys. For simple choices among alternatives, menus are probably better than switching on
function keys.

Using function key labels, or keytops, instead of hard—coded key names 1s also important
to makang an application run smoothly on a variety of terminals. Field status text and oth-
er status line messages can have keytops inserted automatically, using the $K escape. No
such translation is done for strings written to fields; in such cases, you may want to place

the strings in a message file, since the setup file can specify terminal-dependent message
files.

Page 62 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Chapter 9.
Writing Efficient Applications

9.1.

MEMORY-RESIDENT SCREENS

Memory-resident screens are much quicker to display than disk-resident screens, since
no disk access is necessary to obtain the screen data. However, the screens must first be
converted to source language modules with bin2p11 or arelated utility (see the Utilities
Guide), then compiled and linked with the application program.

- xsm_d_form and related library functions can be used to display memory-resident

- screens; each takes as one of 1ts parameters the address of the global array containing the
screen data, which will generally have the same name as the file the original screen was
originally stored in.

A more flexible way of achieving the same object is to use a memory-resident screen list.
Bear in mind that the JAM Screen Editor can only operate on disk files, so that altering
memory-resident screens during program development requires a tedious cycle of test —
edit —remnsert with bin2pl1 ~recompile. The JAM library maintains an internal list of
memory-tesident screens that xsm_r window and related functions examine. Any
- screen found in the list will be displayed from memory, while screens not in the list will
- be sought on disk. This means that the application can be coded to use one set of calls, the
r-version, and screens can be configured as disk— or memory-resident simply by altering
the list.
Call xsm_formlist toadd a screen to JAM'’s memory-resident screen list.

Using memory-resident screens (and configuration files, see the next section) is, of
course, a space-time tradeoff: increased memory usage for better speed.

JAM Release 5 1 March 91 Page 63

JAM PL/1 Programmer's Guide

JAM will append the extension found in the setup variable SMFEXTENSION to screen
names (e g. in control fields) that do not already contain an extension; you must take this
into account when creating the screen list. JAM may also convert the name to uppercase
before searching the screen list; this is governed by the SMFCASE variable.

9.2,
MEMORY-RESIDENT CONFIGURATION
FILES

Any or all of the three configuration files required by JAM can be made memory resi-
dent. First a PL/1 source file must be created from the binary version of the file, using the
bin2pl1 utility; see the Utilities Guide. The source files created are not readily deci-
pherable. A call 1s then made to either xsm_msgread,xsm vinit,orxsm_ keyi-
nit, depending on the type of configuration file being installed.

If a file is made memory-resident, the corresponding environment variable or SMVARS
entry can be dispensed with.

9.3.

MESSAGE FILE OPTIONS

If you need to conserve memory and have a large number of messages in message files,
you can make use of the MSG_DSK option to xsm_msgread. This option avoids load-
ing the message files into memory; instead, they are left open, and the messages are
fetched from disk when needed. Bear in mind that this uses up additional file descriptors,
and that buffering the open file consumes a certain amount of system memory; you will
gain little unless your message files are quite large.

9.4,
AVOIDING UNNECESSARY SCREEN
OUTPUT

Several of the entries 1n the JAM video file are not logically necessary, but are there sole-
ly to decrease the number of characters transmitted to paint a given screen. This can have
a great impact on the response time of applications, especially on time—shared systems

Page 64 JAM Release 5 1 March 91

JAM PL/ Programmer’s Guide

with low data rates; but 1t is noticeable even at 9600 baud. To take an example: JAM can
do all its cursor positioning using the CUP (absolute cursor position) command. Howev-
er, it will use the relative cursor positton commands (CUU, CUD, CUF, CUB) if they are
defined; they always require fewer characters to do the same job. Similarly, if the terminal
is capable of saving and restoring the cursor position itself (SCP, RCP), JAM will use
those sequences instead of the more verbose CUP.

The global variable I_NODISP may also be used to decrease screen output. While this
variable is set to 0 (via xsm_iset), calls into the JAM library will cause the internal
screen image to be updated, but nothing will be written to the actual display; the display
can be brought up to date by resetting I_NODISP to 1 and calling xsm_rescreen.
With the implementation of delayed write this sort of trick is rarely necessary.

9.5.

JPL VS. COMPILED LANGUAGES

JPL code execution goes through an extra layer of intrepretation that compiled code, such
as PL/1, does not. In most cases, the total run time is too small to matter, but 1f a JPL func-
tion is long or loops many times and a delay is noted, it may pay to rewrite it in PL/1.

JAM Release 5 1 March 91 Page 65

JAM PL/1 Programmer’s Guide

Chapter 10.
Block Mode -

The purpose of this document is to describe the block mode capabilities of JAM from the
perspective of someone using the system and from the perspective of a developer that -
needs to write a block mode driver.

10.1.
USING BLOCK MODE

10.1.1.
General Overview

The purpose of the block mode interface is to allow JAM to be used with terminals, like

the HP2392A and IBM 3270’s, that operate in block mode. Such terminals, which are

hereinafter referred to as block mode terminals, operate differently than their interactive

or character mode counterparts in that they do not interact with the computer on every oo

keystroke. Instead, a formatted screen is sent to the terminal and processed by the termi- i -
nal locally. When a function key is pressed, data are transmitted to the computer and are

available to the program which sent the formatted screen. .

Block mode terminals typically have capabilities for defining protected and unprotected '
fields and sometimes allow a minimal set of character validations such as restricting a
field to only allow digits. They do not provide JAM-like capabilities such as shifting,
scrolling and provisions for post—field validation. It should therefore seem obvious that
an application will behave slightly differently on a block mode terminal than on an inter-
active one. The goal of the block mode interface, however, is to minimize these differ-
ences and, to the greatest extent possible, allow applications to be created that can operate

JAM Release 5 1 March 91 Page 67

L4

JAM PL/1 Programmer's Guide

in either mode without the need for the programmer to consider the differences. This is in
keeping with the JAM philosophy of creating terminal-independent applications.

10.1.2.
Authoring

Certain JAM utilities, like modkey, the Screen Editor, and the Data Dictionary Editor
only work in interactive mode. Thus, they can only be used with interactive terminals or
those that can be switched programmatically between block and interactive mode.

jxform is the JAM authoring utility. It allows the user to navigate through the screens
in an application and to invoke the Screen and Data Dictionary Editors when appropriate.
When used with block mode—only terminals, jxform does not permit entry into the
aforementioned utilities. When used with hybrid terminals (i.e. those that can switch be-
tween block and interactive mode programmatically), jxform forces interactive mode
before entering the utilities.

10.1.3.
Selecting Block Mode

JAM operates with three types of terminals: interactive—only, block mode-only, and hy-
brid. Block mode can be used with either of the latter two.

By default, JAM operates in interactive mode regardless of the terminal type. To operate
in block mode requires a block terminal drniver to be linked with the system. (Block termi-
nal dnvers are described in detail later.) This alone, however, will not mitiate block
mode; two additional things must be done.

First there must be acall to xsm_blkinit. This is generally done in the “main” routine
of the application, jmain.pl1. If this call is absent, the application will be run in inter-
active mode. Also the additional code to support block mode will not be linked with the
program. Thus programs not desiring block mode support are not penalized.

Second the correct block mode dniver must be selected. This can be done in one of two
ways.

If the application program author knows the correct driver he/she can install it by calling
xsm_uinstall. This should be done before calling xsm blkinit. Typically the
program will install a “hard—coded” driver, but it could instead key off of SMTERM, or
some other environment variable, to find the correct one. In this case the application will
run in block mode, independent of the end user’s preference.

The second method for selecting the driver leaves the job to the end user. If xsm_blki-
nit is called without previously installing a driver, the entry BLKDRIVER in the video

Page 68 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

file is examined. If it is absent, xsm_blkinit fails and the application remains in inter-
active mode. If it is present the name given there is used to find the correct driver. This is
done by a table lookup in a source routine (blkdrvr. c) that must be linked with the
application. Naturally all possible choices of the driver must also be linked with the pro-
gram. In this case the end user can override the application programers desire to use block
mode.

The design allows for three scenarios: the programmer can prohibit block mode (no call
to xsm_blkinit), the programmer can force block mode (xsm_install followed
by xsm_blkinit), or the programmer can permit block mode but allow the end user
final say (xsm_blkinit only).

Note that the application never calls sm_blkdrvr. The source code to that routine is
given to customers to enable them to extend the capabilities of the second method.

10.1.4.
Differences Between Block Mode And
Interactive Mode

Although every attempt has been made to preserve the look and feel of applications oper-
ating in block mode, the following differences between block mode and interactive mode
should be noted.

Windows

Windows work much as they do in interactive mode. The only noticable difference is that
the cursor is not be restricted to the active window as this 1s not possible in block mode.
In keeping with the concepts of interactive mode, however, only the fields on the active
window are unprotected.

- In interactive mode, menus utilize a “bounce bar” to track the cursor. The bounce bar

moves when cursor-positioning keys are pressed and when ascii-data-are typed. Since

block mode terminals do not return these keys, another approach must be taken. We sup-
ply two options:

In option 1, menu fields in block mode are unprotected, making it easy for an operator to
tab to them. To make a selection, the operator positions to the appropriate field and pres-
ses XMIT. Thus, selection 1s similar to interactive mode except there is no bounce bar and
there is no provision for selecting by typing the first N characters of the menu choice.

JAM Release 5 1 March 91 Page 69

JAM PL/1 Programmer’s Guide

If the operator mnadvertently types over a menu field there are no adverse consequences as
JAM will “remember” the contents and restore 1t at an appropriate time.

This approach works well since the same screens can be used for block and nteractive
mode operation. However, for those who do not wish to allow the operator to type over
menu choice fields, option 2 may be chosen. With option 2, JAM creates an unprotected
field to the left of each menu choice so the menu fields themselves can remain protected.
The operator can tab to these new fields to make a selection, or type the first character of
a menu field and press XMIT. The new fields to the left of the menu choices are created
as long as there is room on the screen even if it means they would be placed in a border or
a separate window. If there is no room on the screen because the menu field starts 1n posi-
tion 1 or 2, the system reverts to option 1.

The above works well for traditional menus, but two-level (pull- down) menus pose a
different problem in that the ONLY way to move horizontally in interactive mode is via
the arrows (since TAB moves between the entries of the sub—menu). Thus, 1n block mode
the following happens. When a pull-down menu is active, JAM unprotects all main menu
fields except the one with which the pull-down 1s associated. Thus, the operator can ei-
ther make a selection from the pull-down or tab to another main menu choice and press
XMIT causing its sub-menu to be activated.

The two options for processing menus described above work equally well for pull-down
menus,

Character Validation

The block mode interface takes advantage of the terminal’s capabilities for character vali-
dation. However, for situations in which the specified validations go beyond what the ter-
minal can handle, JAM will validate the character data during Screen Validation. The re-
sult will be something like this:

The operator enters alphabetic data in a digits—only field. When the XMIT key is pressed,
all fields are validated in the normal fashion, left—to-right, top—to-bottom. Thus, the cur-
sor will be positioned to the errant field and a message displayed.

Since programs do not rely on data being correct unless and until Screen Validation com-
pletes without error, this should pose no problem. The only consideration is that invalid
character data can get into the screen buffer and LDB if the operator enters incorrect char-
acters and then presses something like EXIT (this cannot happen in interactive mode be-
cause the invalid characters would not be allowed in the first place.

The only reason for mentioning this has to do with how punctuation characters in digits—
only fields are handled. Let’s say that a digits—only field got filled with slash (/") charac-
ters and this, in turn, got transferred to the screen buffer and hence to the LDB. On a sub-
sequent attempt to enter data into the field, an attempt to merge the slashes with the

Page 70 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

entered data would be made. But since the field has ALL slash characters, there would be
no room for the digits.

Thus, to eliminate the possibility of “punctuation character creep”, when reading data
from a digits-only field, JAM first strips out all punctuation characters from the field and
then merges in the punctuation characters from the screen buffer.

Field Validation

Clearly, fields are not vahidated when TAB and RETURN are pressed as in interactive
mode. Thus, like character validations, field validations will be deferred until Screen Val-
1dation. This should not be a problem since, even in interactive mode, the operator can
usually bypass field validation by using the arrow keys to move from field to field. There-
fore, programs should not rely on the data until Screen Validation passes without error in
either mode.

One type of field validation is worth noting. Consider a field with an attached function
which does a database lookup and displays information in another field. In interactive
mode, this would usually be executed when the field is completed, so the user would see
the result. Since thus 1s not really a validation, deferring it until Screen Validation would
not help because the data would never be seen by the operator. Therefore, if this type of
feature is contemplated in a block mode environment, the database lookup should be at-
tached to a function key rather than as an attached function.

Screen Validation

= -Screen validation works the same in interactive and block mode. The cursor will be posi-
tioned to the first field in error and a message will be displayed to the operator.

Right Justified Fields

Unless the block mode terminal supports this feature directly, the cursor will always be
positioned to the left side of right justified fields when the cursor enters them.

Field Entry Function, Automatic Help, Status Text,
etc.
These are disabled in block mode since JAM does not know when fields are entered.

Currency Fields

Currency edits are usually applied to fields as they are exited. In block mode, since this is
not possible, currency formatting is done during screen validation. Care should be taken

JAM Release 5 1 March 91 Page 71

JAM PL/1 Programmer's Guide

with right justified currency formats since subsequent entry may be difficult for the rea-
sons cited above in the section on right justified fields.

Shifting Fields

Normally fields shift when the left or right arrows are pressed with the cursor at the start
or end of a shifting field or, in the case of unprotected fields, when the operator types off
the edge of the field. Since arrows and data entry keys are not returned in block mode, this
is not possible. To utilize shifting fields in block mode, use the logical keys: Shift Left and
Shift Right. These shift the field by the shifting increment and work equally well in block
and mteractive mode.

An alternative 1S to use the Zoom feature if all shifting fields are limited to the width of
the screen.

Scrolling Fields

This is similar to the situation with shifting fields. In block mode, one can define function
keys as PAGE UP and PAGE DOWN, or use the Zoom feature,

Messages

Error messages are normally acknowledged by pressing the space bar, although the spe-
cific key used can vary depending on the setting of error message options. Also, options
govern whether the key should be used as the next keystroke or discarded after the mes-
sage is acknowledged. In block mode, ANY key that gets transmitted from the terminal
will suffice to acknowledge messages, regardless of what key is defined for that purpose.
Using or discarding the acknowledgement key apply equally to block mode and interac-
tive mode.

With query messages, JAM normally expects a Y or N response. In block mode, JAM
will create a field on the status line into which the Y or N response can be entered. This
entry must be followed by the XMIT key for it to be accepted. On terminals that have a
separate stauts line it 1s not possible to create such a field. In these cases, XMIT will be
treated as a positive response; EXIT will be treated as a negative response.

Insert Mode

Insert mode will operate in whatever way the block mode terminal supports. However,
since JAM never knows if insert mode is set or not in block mode, it will, for terminals in
which this 1s a problem, reset insert mode before transmitting data to the terminal. This is
so the new data will not be INSERTED nto the terminal buffer, causing all other data to
move around.

Page 72 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Non-Display Fields
If the block mode terminal supports this feature, it will be used.

System Calls

These operate as in interactive mode. However, before passing control to the OS, JAM
sets the terminal to the mode (block or interactive) expected by the OS, and resets 1t upon
return from the system call. The JAM routines xsm_leave and xsm_return do the
same.

Zoom

With the exception of the limitations expressed in the sections on shifting and scrolling,
Zoom works as in interactive mode.

Help and ltem Selection

With the exception of the imitations expressed in the sections on shifting, scrolling, field
entry and menu processing, these functions work as in interactive mode.

Groups
Radio buttons and check lists behave similar to menus as described above.

10.2,
WRITING A BLOCK MODE DRIVER

10.2.1.
Installation

There are two parts to the installation process. These were discussed in greater detail
above.

First a block terminal driver must be installed. This driver performs the low level commu-
nication between JAM and the terminal. The PL/1 interface does not currently support
writing your own block mode drivers.

JAM Release 5 1 March 91 Page 73

JAM PL/1 Programmer's Guide

Next the application program must initiate block mode by making the appropriate subrou-
tine call. The application program can also switch to interactive mode by means of a call.
The assumption is that the default is interactive mode, thus a call to set block mode is
needed even if that 1s the normal mode of the operating system. The application program
can also set some operating parameters by means of a subroutine call.

10.2.2.

Application Program Support

JAM programs assume that the terminal is in interactive mode. Explicit calls are needed
to switch from interactive to block and vice versa. To turn on block mode, the program
should call xsm blkinit. To turn off block mode (and turn on mnteractive mode) the
program calls xsm_blkreset. The Screen Editor The key mapping utility (modkey)
also requires interactive mode. The authonng utility (jx£orm) can be made to work in
block mode, switching to interactive mode when the Screen Editor is invoked. This can
be done by inserting the appropnate calls in jxmain.pll (provided) and relinking
jxform.

The routine xsm_option can be used to set some user-preference items.

Page 74 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Chapter 11.
Library Function Overview

In this chapter, we summanze the JAM library functions and list them in categones. All
JAM library function names begin with the prefix xsm_. However, in the Function Ref-
erence Chapter and in this chapter, the functions are listed without prefix for clanty.

In addition to stripping off the prefix in the listings that follow, groups of closely related
vanant functions are listed under a single root name. The functions xsm_r_ form,
xsm_d_form, and xsm_1_form, for example, are all grouped under the heading
form. Ina few cases, functions may be listed under a name that is not a portion of the the
function name but is suggestive of the utlity of the function. For example, the function
xsm_r_at_cur, which displays a window at the cursor position, is listed under the root
name window, along with xsm_r window (which displays a window at a fixed loca-
tion) and a number of other window display routines. The calling syntax of each function
is found in the SYNOPSIS section of the function listing in the Function Reference Chap-
ter.

Most JAM library routines fall into one of the following categories:
® Initialization/Reset

Screen and Viewport Control

Keyboard and Display 1/O

Field/Array Data Access

Field/Array Characteristic Access

Group Access

Local Data Block Access

Cursor Control

Message Display

JAM Release 5 1 March 91 Page 75

JAM PL/1 Programmer’s Guide

Scrolling and Shifung

Mass Storage and Retrieval

Validation

Global Data and Changing JAM’s Behavior

Soft Keys and Keysets

JAM Executive Control

Block Mode Control

Miscellaneous

The following sections summarize the functions that fall into these categories. Some list-
ings are found in more than one category.

11.1.

INITIALIZATION/RESET

The following library functions are called in order to 1nitialize or reset certain aspects of
the JAM runtime environment. Those that are necessary for the proper operation of JAM
are called from within the supplied main routine source modules jmain.pll and
jxmain.pll.

cancel reset the display and exit

dicname set data dictionary name

ininames record names of initial data files for local data block
initcrt initialize the display and JAM data structures
keyinit initialize key translation table

1db_init initialize (or reinitialize) the local data block
leave prepare to leave a JAM application temporanly
msgread read message file into memory

resetcrt reset the terminal to operating system default state
return prepare for return to JAM application

vinit initialize video translation tables

11.2.

SCREEN AND VIEWPORT CONTROL

The following routines are used to control viewports, the display of screens, and the form
and window stacks.

Page 76 JAM Release 5 1 March 91

. JAM PL/1 Programmer’s Guide

close window
form
hlp by name
issv

jclose

jform
jwindow
mwindow
shrink_to_fit
sibling

submenu_close
svscreen
unsvscreen
viewport
wcount
wdeselect
window
winsize
wselect

11.3.

DISPLAY TERMINAL I/O

The following routines provide the interface to JAM termunal I/O.

bel
bkrect

» do_region
flush
getkey
input
keyfilter
keyhit

close current window

display a screen as a form

display help window

determine if a screen in the saved list

close current window or form under JAM Executive control

display a screen as a form under JAM control

display a window at a given position under JAM control

display a status message in a window
remove trailing empty array elements and shrink screen

define the current window as being or not being a sibling win-

dow

close the current submenu

register a list of screens on the save list
remove screens from the save list

modify viewport size and offset

obtain number of currently open windows
restore the formerly active window
display a window at a given position

allow end-user to interactively move and resize a window

activate a window

beep!

set background color of rectangle

rewrite part or all of a screen line

flush delayed writes to the display

get logical value of the key hit

open the keyboard for data entry and menu selection
control keystroke record/playback filtering

test whether a key has been typed ahead

JAM Release 5 1 March 91

Page 77

JAM PL/1 Programmer's Guide

keylabel
keyoption
m_flush
rescreen
resize
ungetkey

11.4.

get the printable name of a logical key

set cursor control key options

flush the message line

refresh the data displayed on the screen
dynamically change the size of the display
push back a translated key on the input

FIELD/ARRAY DATA ACCESS

The following routines access the data in fields and arrays. Most routines 1n this section
have a number of variants that perform the same task but reference the field to be accessed
differently. In these cases, the calling syntax of the major vanant is listed under the SYN-
OPSIS section of the listing in the Function Reference Chapter. All other variants are
listed under the VARIANTS section.

Most field access routines have five variants, although some have fewer. The five possi-
ble variants are shown in the table below:

Vanants of Functions That Access Fields
Prefix Example Description
xsm_ xsm_intval (fieldnum); Access a field via field number.
xsm_n_ xsm_n_intval (fieldname) ; Access a field (or an entire
array) via field name. Access
the LDB if there is no field on
the screen.
xsm i_ {xsm i intval (fieldname, Access an occurrence via field
occurrence) ; name and occurrence number.
Access the LDB if there is no
field on the screen.
xsm_o__ xsm_o_intval (fieldnum, Access an occurrence via field
occurrence) ; number and occurrence number.
xsm e |xsm e_intval(fieldname, Access an element via field
element) ; name and element number.

Page 78

JAM Release 5 1 March 91

_ _JAM PL/1 Programmer's Guide

amt_format

write data to a field, applying currency editing

calc execute a math edit style expression
cl_unprot clear all unprotected fields
clear_array clear all data in an array

dblval get the value of a field as a real number
dlength get the length of a field’s contents
doccur delete occurrences

dtofield write a real number to a field

fptr get the content of a field

getfield copy the contents of a field

gwrap get the contents of a wordwrap array
intval get the integer value of a field
ioccur insert blank occurrences into an array
is_no test field for no

is_yes test field for yes

itofield write an integer value to a field
lngval get the long integer value of a field
ltofield place a long integer in a field

null test if field is null

putfielad put a string into a field

pwrap put text to a wordwrap field

strip_amt_ptr strip amount editing characters from a string

11.5.
‘FIELD/ARRAY ATTRIBUTE ACCESS

- The following routines access information about fields and arrays. Like the routines in the
- previous section on field and array data access, each of these routines generally have five
distinct variants. See the discussion in the introduction to the previous section for more
information on variants of JAM hibrary functions that access ficlds.
base_fldno get the field number of the first element of an array
bitop mampulate validaton and data edsting bits

chg_attr change the display attnibute of a field

JAM Release 5 1 March 91 Page 79

JAM PL/1 Programmer's Guide

cl_all mdts
dlength
edit_ptr
finquire
fldno

ftog

ftype

gtof

length
max_occur
name
num_occurs
protect
sc_max

size of_array
tst_all_mdts

11.6.

clear all MDT bits

get the length of a field’s contents

get special edit string

obtain information about a field

get the field number of an array element or occurrence
convert field references to group references

get the data type and precision of a field

convert a group name and index into a field number and occur-
rence

get the maximum length of a field

get the maximum number of occurrences

obtain field name given field number

find the highest numbered occurrence containing data
protect an array

alter the maximum number of items allowed 1n a scrollable
array

get the number of elements

find first modified occurrence in the screen

GROUP ACCESS

The following routines access groups, that 1s, radio buttons and check lists. Groups are
made up of fields that have attributes and data in them, but groups in and of themselves
are implemented as phantom fields which take up no screen real estate. The value of a
group indicates the set of selected consituent fields, although it 1s not recommended that
that value ever be accessed or modified directly with any of the field access routines dis-
cussed in the preceding sections.

The routines that follow are those that are recommended for accessing groups:

deselect
ftog
gp_inquire
gtof

Page 80

deselect a checklist occurrence
convert field references to group references
obtain information about a group

convert a group name and index into a field number and occur-
rence

JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

isselected determine whether a radio button or checklist occurrence has
been selected

select select a checklist or radio button occurrence

11.7.

LOCAL DATA BLOCK ACCESS

The following routines access the Local Data Block, or LDB. Note that any of the field
data access routines that reference fields by name or name and occurrence number (eg
xsm_nand xsm_i__variants) will access the LDB if the named field does not exist on
the active screen.

allget load screen from the LDB

dicname set data dictionary name

dd_able turn LDB write—through on or off

ininames record names of initial data files for local data block
lclear erase LDB entries of one scope

ldb_init initialize (or reinitialize) the local data block
lreset reinitialize LDB entries of one scope

lstore copy everything from screen to LDB

11.8.

CURSOR CONTROL

The following routines control the positioning and display of the cursor on the active
screen.

ascroll scroll to a given occurrence

backtab - backtab to the start of the last unprotected field
C_off turn the cursor off

c_on turn the cursor on

c_vis turn cursor position display on or off

disp off get displacement of cursor from start of field
getcurno get current field number

gofield move the cursor into a field

JAM Release 5 1 March 91 Page 81

JAM PL/1 Programmer's Guide

home
last
nl

occur_no
off gofield
rscroll
sh_off

tab

11.9.

home the cursor

position the cursor in the last field

position cursor to the first unprotected field beyond the current
line

get the current occurrence number

move the cursor into a field, offset from the left

scroll an array

determine the cursor location relative to the start of a shifting
field

move the cursor to the next unprotected field

MESSAGE DISPLAY

The following routines are intended for the access and display of runtime application

messages.
d_msg_line
emsg

err_reset
m_flush
msg
msg_get
msgfind
msgread
mwindow
query_ msg
qui_msg

quiet_err

setbkstat
setstatus

Page 82

display a message on the status line

display an error message and reset the message line, without
turning on the cursor

display an error message and reset the status line

flush the message hine

display a message at a given column on the status line

find a message given its number

find a message given its number

read message file into memory

display a status message 1n a window

display a question, and return a yes or no answer

display a message preceded by a constant tag, and reset the mes-
sage line

display error message preceded by a constant tag, and reset the
status line

set background text for status line

turn alternating background status message on or off

JAM Release 5 1 March 91

JAM PL/t Programmer’s Guide

11.10.
SCROLLING AND SHIFTING

The following routines provide access to shifting and scrolling fields and arrays.

achg change the display attnbute of an occurrence within a scrolling
array

ascroll scroll to a given occurrence

doccur delete occurrences

ioccur insert blank occurrences into an array

max_occur get the maximum number of occurrences

num_occurs find the highest numbered occurrence containing data

oshift shift a field by a given amount

rscroll scroll an array

sc_max alter the maximum number of items allowed in a scrollable
array

sh_off determine the cursor location relative to the start of a shiftng
field

t_scroll test whether an array can scroll

t_shift test whether field can shift

tst_all mdts find first modified occurrence

11.11,

MASS STORAGE AND RETRIEVAL

*;The following routines move data to or from sets of fields in the screen or LDB.

rd part read part of a data structure to the current screen
rdstruct read data from a structure to the screen
restore_data restore previously saved data to the screen
rrecord read data from a structure to a data dictionary record
wrecord write data from a data dictionary record to a structure
wrt_part write part of the screen to a structure

wrtstruct write data from the screen to a structure

JAM Release 5 1 March 91 Page 83

JAM PL/1 Programmer's Guide

11.12.

VALIDATION

The following routines provide an application interface to the field and group validation
processes.

bitop manipulate validation and data editing bits
ckdigit validate check digit

fval force field validation

gval force group validation

novalbit forcibly invalidate a field

s_val validate the current screen

11.13.

GLOBAL DATA AND CHANGING JAM’'S
BEHAVIOR

The following routines grant access to global data and provide a way to manipulate cer-
tain aspects of JAM and Screen Manager behavior.

async install an asynchronous function
dd_able turn LDB write—through on or off
finquire obtain information about a field
gp_inquire obtain information about a group
inquire obtain value of a global integer variable
isabort test and set the abort control flag

iset change value of integer global variable
keyfilter control keystroke record/playback filtering
keyoption set cursor control key options
1li_func install an application hook function
msgread read message file into memory
option set a Screen Manager option
pinquire obtain value of a global strings

pset Modify value of global strings

Page 84 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

resize dynamically change the size of the display
uinstall mnstall an application function
11.14.

SOFT KEYS AND KEYSETS

The following routines provide an application interface to JAM’s soft key support.

c_keyset close a keyset

keyset open a keyset

kscscope query current keyset scope

ksing inquire about key set information

ksoff turn off key labels

kson turn on key labels

sking obtain soft key information by position
skmark mark or unmark a softkey label by position
skset set characteristics of a soft key by position
skving obtain soft key information by value
skvmark mark a soft key by value

skvset set characteristics of a soft key by value
11.15.

.JAM EXECUTIVE CONTROL

“ The following routines, available only to applications using the JAM Executive, provide
JAM Executive services.

getjctrl get control string associated with a key

jclose close current window or form under JAM Executive control
jform display a screen as a form under JAM control

jtop start the JAM Executive

jwindow display a window at a given position under JAM control
putjctrl associate a control string with a key

JAM Release 5 1 March 91 Page 85

JAM PL/1 Programmer's Guide

11.16.

BLOCK MODE CONTROL

The following routines are used in applications requiring block mode support.

blkdrvr
blkinit
blkreset

11.17.

install block mode driver
initialize (and turn on) block mode terminal
reset (and turn off) block mode terminal

MISCELLANEOUS

fi_path
formlist
jplcall
jplload
jplpublic
jplunload
1l _close
1_open
rmformlist
sdtime
udtime

Page 86

return the full path name of a file
update List of memory-resident files
execute a JPL procedure

execute the JPL load command
execute the JPL public command
execute the JPL unload command
close a library

open a hibrary

empty the memory-resident form list
get formatted system date and time
format user—supplied date and time

JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Chapter 12.
Function Reference

All JAM function names begin with the prefix xsm_. In the Function Reference Chapter
functions are listed without the prefix and, in a few cases, under a name that is not a por-
tion of the function name — but that is suggestive of the utlity of the function. For exam-
ple, the function xsm_r_at_cur, which displays a window at a specified position, is
found under the listing name window, along with the function xsm_r_window. In
these cases, the calling syntax of each function is listed under the SYNOPSIS section of
the listing.

For each entry, you will find several sections:

8 A synopsis similar to a PL/1 function declaration, giving the types of the
arguments and return value.

B A description of the function’s arguments, prerequisites, results, and
side—effects.

-8 The function’s return values, if any, and their meanings.
B Alist of vanants.
B A hstof functions that perform related tasks.
® An example llustrating the function’s use.

» A routine that calls JAM functions should include the file smdefs.incl.pll. If
another file should be included, then it is referenced in the synopsis section.

To view functions by category, refer to the Library Function Overview (chapter 11.) To
view a complete list of functions alphabetically by the actual function name (including
the xsm_ prefix), see the Library Function Index (chapter 13.).

JAM Release 5 1 March 91 Page 87

JAM PL/1 Programmer's Guide

achg

change the display attribute of an occurrence within a
scrolling array

SYNOPSIS
declare field number fixed binary(31);
declare occurrence fixed binary(31);
declare display attribute fixed binary(31);
declare status fixed binary(31);

status = xsm o achg(field number, occurrence,
display_attribute);

DESCRIPTION

NOTE: This function has only two variants, xsm _o_achgandxsm_i_achg. Thereis
NO xsm_achg.

This function changes the display attribute of an occurrence within a scrollable array, If
the occurrence is onscreen, the attrnibute with which the occurrence 1s currently displayed
is changed as well. When the occurrence 1s scrolled to another position within the array
the new attribute moves with the occurrence. Use xsm_chg_att r if you want all of the
occurrences within the array to scroll through an attribute so that their appearance is de-
termined by their onscreen positions.

Possible values for the argument display_attribute are defined in the header file
smdefs.incl.pll, as shown in the table below:

Il Foreground Attributes Background Attributes
BLANK B_HILIGHT

REVERSE

UNDERLN

BLINK

HILIGHT

STANDOUT

DIM

ACS (alternate character set)

Page 88 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Foreground Colors Background Colors
BLACK B_BLACK
BLUE B_BLUE
GREEN B_GREEN
CYAN B_CYAN
RED B_RED
MAGENTA B_MAGENTA
YELLOW B_YELLOW
WHITE BELVHITE

Foreground colors may be used alone or with one or more highlights, a background color,
and a background highhight. If you do not specify a highlight or a background color, the
attribute defaults to white against a black background. Omitting the foreground
mnemonic will cause the attribute to default to black.

If display_attribute is zero, the occurrence’s display attribute is removed, leav-
ing it with the field display attribute. Then, if that occurrence is onscreen, it is displayed

with the attribute attached to its field.

This function will not work on an array that is not scrollable. Use xsm_chg_attr to
change the display attribute of an individual field.

RETURNS

-1 if the field isn’t found or 1sn’t scrollable, or if occurrence is invalid. 0 otherwise.

VARIANTS

status = xsm i achg(field name, occurrence, display attribute);

RELATED FUNCTIONS

- status = xsm _chg_attr(field number, display_attribute);

JAM Release 5 1 March 91

Page 89

JAM PL/1 Programmer's Guide

allget

load screen from the LDB

SYNOPSIS
declare respect_flag fixed binary(31):
call xsm_allget (respect_flag);
DESCRIPTION

This function copies data from the local data block to fields on the current screen with
matching names.

If respect_f£1ag is nonzero, this function does not write to fields that already contain
data, or that have their MDT bits set. If the flag is zero, all fields are initialized. When this
function is called by the JAM run—time system, or by your screen entry function, it does
not set MDT bits for the fields it initializes.

This function 1s called automatically by the JAM screen-display logic, unless LDB pro-
cessing has been tumed off using xsm_dd_able. Application code should not normally
need to call it.

RELATED FUNCTIONS

call xsm dd_able(flag);
status = xsm lstore();

Page 90 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

amt_format

write data to a field, applying currency editing

e e o
SYNOPSIS
declare field number fixed binary(31);
declare buffer char (256) varying;
declare status fixed binary(3l);
status = xsm _amt_format (field number, buffer);
DESCRIPTION

If the specified field has a currency edit, it is applied to the data in buf fer. If the result-
ing string is too long for the field, an error message is displayed. Otherwise, xsm_put~
field is called to write the edited string to the specified field.

If the field has no currency edit, xsm_put field is called with the unedited string.
RETURNS

-1 if the field is not found or the occurrence is out of range;
-2 if the edited string will not fit in the field;
0 otherwise.

VARIANTS

status = xsm_e_amt_format (field name, element, buffer);
status = xsm_i_amt_format (field name, occurrence, buffer);
status = xsm n_amt_format (field name, buffer);

status = xsm o _amt_format (field number, occurrence, buffer);

RELATED FUNCTIONS

status = xsm dtofield(field number, value, format);
outbuf = xsm_strip amt_ptr(field _number, inbuf,);

JAM Release 5 1 March 91 Page 91

JAM PL/1 Programmer’s Guide

ascroll

scroll to a given occurrence

o G
SYNOPSIS

declare field number fixed binary(31);

declare occurrence fixed binary(31):

declare status fixed binary(31);

status = xsm ascroll(field number, occurrence);
DESCRIPTION

This function scrolls the designated field so that the indicated occurrence appears
there. Synchronized arrays will scroll along with the target array.

The field need not be the first element of a scrolling array. You can use this function, for
instance, to place the nineteenth occurrence in the third onscreen element of a five—ele-
ment scrolling array.

The validity of certain combinations of parameters depends on the exact nature of the
field. For instance, if ficld number 7 is the third element of a scrolling array and occur-
rence is 1 a call to xsm_ascroll will fail on a non—circular scroling array but
succeed if scrolling is circular.

RETURNS

-1 if field or occurrence specification is invalid,
0 otherwise.

VARIANTS
status = xsm n_ascroll (field name, occurrence);

RELATED FUNCTIONS

lines = xsm_rscroll (field number, req_scroll);
status = xsm t_scroll (field_number);

Page 92 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

async

install an asynchronous function

s A

SYNOPSIS
declare func entry variable;
declare timeout fixed binary(31);
call xsm_async(func, timeout);

DESCRIPTION

This routine installs a a function that will be called regularly during keyboard processing
(ie.—xsm_input). The first parameter is the address of the function. Use the operating
system subroutine s$find_entry to find the entry point. The second parameter is the
umeout, in tenths of a second, between subsequent function calls.

The asynchronous function is called only when the keyboard is being read, and only if a
keystroke does not arrive within the specified umeout. The authonng utility, jxform,
uses an asynchronous function to update its cursor posiion display. An asynchronous
function might also be used to implement a real-time clock display.

RELATED FUNCTIONS

status = xsm _uinstall(usage, func, func name);

JAM Release 5 1 March 91 Page 93

JAM PL/1 Programmer’s Guide

backtab

acktab to the start of the last unprotected field

IR TR TR N RN TR

SYNOPSIS

call xsm backtab();

DESCRIPTION

When the cursor is in a field unprotected from tabbing into, but not in the first enterable
position, it is moved to the first enterable position of that field. However, if the cursor 1s
1n a field with a previous—field edit and one of the fields specified by the edit 1s unpro-
tected from tabbing, the cursor is moved to the first enterable position of that field. Other-
wise, the cursor 1s moved to the first enterable position of the tab-unprotected field with
the next lowest field number. If the cursor is in the first position of the first unprotected
field on the screen, or before the first unprotected field on the screen, 1t wraps backward
into the last unprotected field. When there are no unprotected fields, the cursor doesn’t
move.

If the destination field is shiftable, it 1s reset according to its justification. The first enter-
able position depends on the justification of the field and, in fields with embedded punc-
tuation, on the presence of punctuation.

Ths function doesn’t immediately trigger field entry, exit, or validation processing. Such
processing occurs based on the cursor position when control returns to xsm_input.

Ths function is called when the JAM logical key BACK is struck.
RELATED FUNCTIONS

field number = xsm_home();
call xsm last ()

call xsm nl();

call xsm_tab();

Page 94 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

base fldno
get the field nu

S

SYNOPSIS
declare field number fixed binary(31);
declare base_number fixed binary(31);
base_number = xsm base_ fldno(field number);
DESCRIPTION

A base field number is the field number of the first element of an array. Use
xsm_base_£f1ldno to obtain the base field number of an array.

RETURNS

The field number of the base element of the array containing the specified field, or
0 if the field number is out of range.

JAM Release 5 1 March 91 Page 95

JAM PL/1 Programmer's Guide

bel

SYNOPSIS
call xsm bel();
DESCRIPTION

Causes the terminal to beep, ordinarily by transmitting the ASCII BEL code toit. If there
isa BELL entry in the video file, xsm_bel will transmit that instead, usually causing the
terminal 1o flash instead of beeping.

Even if there is no BELL entry, use this function instead of sending a BEL, because certain
displays use BEL as a graphics character.

Including a %B at the beginning of a message displayed on the status line will cause this
function to be called.

Page 96 JAM Release 5 1 March 91

.

JAM PL/1 Programmer's Guide

bitop

manipulate validation and data editing bits

SYNOPSIS

$include ‘smbitops.incl.pll’;

declare field number fixed binary(31);

declare action
declare bit
declare status

fixed binary(31);
fixed binary(31);
fixed binary(31);

status = xsm bitop(field number, action, bit);

DESCRIPTION

You can use this function to inspect and modify validation and data editing bits of screen
fields, without reference to internal data structures. The first parameter identifies the field
to be operated upon.

action can include a test and at most one manipulation from the following table of
mnemonics, which are defined in smbitops.incl.pll:

HT’”T Meaning
BIT_CLR Turn bit off
“ IBmser Tum bit on
BIT_TOGL Flip state of bit
BIT_TST Report state of bit ”

> The third parameter is a bit identifier, drawn from the following table:-

Character edits

N_ALL

N_DIGIT

N_YES_NO

N_ALPHA

N_NUMERIC

N_ALPHNUM

N_FCMASK

JAM Release 5 1 March 91

Page 97

JAM PL/1 Programmer’s Guide

Field edits Field edits

N_RTJUST |N_REQD N_VALIDED N_MDT N_CLRINP
N_MENU N_UPPER N_LOWER N_RETENTRY |{N_FILLED
N_NOTAB N_WRAP N_ADDLEDS N_EPROTECT |N_TPROTECT
IIN_CPROTECT N_VPROTECT |N_ALLPROTECT |N_SELECTED

The character edits are not, strictly speaking, bits; you cannot toggle them, but the other
functions work as you would expect. N_ALLPROTECT is a special value meaning all
four protect bits at once.

N_VALIDED and N_MDT are the only bit operations that can apply to individual off-
screen and onscreen occurrences. The protection operations can apply to an array as a
whole, including offscreen occurrences (see xsm_aprotect). All other bit operations
are attached to fixed onscreen positions.

The variants xsm_e_bitop and xsm n_bitop can take a group name as an argu-
ment. The function will then affect the group buts.

This function has two additional variants, xsm _a_bitop and xsm_t_bitop, which
perform the requested bit operation on all elements of an array. Their synopsis appear be-
low. If you include BIT_TST, these variants return 1 only if bi t is set for every element
of the array. The variants xsm i bitopandxsm_o_bitop arerestricted toN_VAL-
IDED and N_MDT.

RETURNS

1 if there was no error, the act ion included
-1 if the field or occurrence cannot be found
-2 if the action or bit identifiers are invalid; a test operation, and bit was set
-3ifxsm i_bitop orxsm o_bitop was called with bit set to something
other than N_VALIDED orN_MDT
0 otherwise.

VARIANTS

status = xsm a bitop(array_name, action, bit);

status = xsm e bitop(array name, element, action, bit);
status = xsm i bitop(array name, occurrence, action, bit);
status = xsm _n_bitop(name, action, bit);

status = xsm_o_bitop(field number, occurrence, action, bit);
status = xsm_t_bitop(array_number, action, bit);

Page 98 JAM Release § 1 March 91

JAM PL/1 Programmer’s Guide

bkrect

set background color of rectangle

i, 3 R T H-

SYNOPSIS
declare start_line fixed binary(31);
declare start_column fixed binary(31):
declare num of lines fixed binary(31);

declare number_of_ columns fixed binary(3l);
declare background_colors fixed binary(31);
declare status fixed binary(31);
" gtatus = xsm _bkrect (start_line, start_column, num of_lines,
number_ of_ columns, background colors);

DESCRIPTION

This function changes the background color of a rectangular area of the current screen.
Any fields or elements that begin within the rectangular area will have their background
attributes changed to the specified attribute. This means that if there are any fields or ele-
ments that are not entirely contained within the rectangular area, a ragged edge will result.
Display text that falls with 1n the rectangular area will have its background attribute set.

The arguments start_line and start_column can have any value from 1 through
the number of lines (or columns) on the screen.

The background color must be one of the mnemonics defined in smdefs.incl.pll
(B_BLACK, B_BLUE, etc.). You can highlight the background color by oring the back-
ground color attribute with B_HILIGHT.

RETURNS

-1 if the starting line or column was invalid.
1 if the starting line and column were valid, but the rectangle had to be truncated to fit.
0 if no error.

JAM Release 5 1 March 91 Page 99

JAM PL/1 Programmer's Guide

blkinit

initialize (and turn on) block mode terminal

SYNOPSIS
declare return_value fixed binary(31):
return_value = xsm blkinit();
DESCRIPTION

This routine must be called by the application program to 1nitiate block mode terminal
action. A block mode terminal driver must have been previously installed.

This routine checks that a block mode terminal dniver 1s installed. If a driver is found, it
is called. The driver should return Q if all is successful.

Generally the return code can be ignored. If the terminal cannot be put into block mode it
will still work (possibly better) in interactive mode.

If the driver signifies that all is OK, the global variable sm_blkcontrol is set to point
to the local block terminal control handler. All Screen Manager calls for block mode sup-
port are made through this control routine.

On the first call to the present routine the driver 1s called with BLK_INIT to perform any
required initialization,

On subsequent calls BLK_BLOCK is called instead of BLK_INIT.

RETURNS

return value from driver if one exists.
-1 otherwise.

RELATED FUNCTIONS

return value = xsm blkreset ()’

Page 100 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

blkreset

reset (and turn off)

gk e e e A S N L e
SYNOPSIS

declare return_value fixed binary(31);

return _value = xsm _blkreset ();
DESCRIPTION

This routine must be called by the application program to reset block mode terminal ac-
tion. A block mode terminal driver must have been previously installed.

This routine checks that a block mode terminal dniver is installed. If a driver is found, it
is called. The driver should return O if all is successful.

Generally the return code can be ignored as the terminal is often already in interactive
mode. The exception 1s on those systems that are normally block mode. Many JAM pro-
grams rely on the fact that the terminal can be put into interactive mode.

Note that the driver is called with BLK_CHAR, not with BLK_RESET. The only time the
driver is called for a full reset is when JAM is about to go to the operating system — either
exiting or performing a “shell escape”.

RETURNS

return value from driver if one exists.
-1 otherwise.

RELATED FUNCTIONS

return_value = xsm blkinit ();

JAM Release 5 1 March 91 Page 101

JAM PL/1 Programmer’s Guide

c_keyset

close a keyset

SYNOPSIS
$include ‘smsoftk.inecl.pll’;
declare scope fixed binary(31);
declare status fixed binary(31);
status = xsm c_keyset (scope);
DESCRIPTION

This function closes the keyset of the given scope. It frees all memory associated with the
keyset and marks that scope as free, If the keyset was currently displayed, the keyset la-
bels are changed to reflect the new keyset.

See the keyset chapter of the Author’s Guide for a detailed explanation of keyset scopes.

Scope Mnemonic from Description
smsoftk.incl.pll
KS_APPLIC Application scope.
KS_FORM Form or window scope.
KS_SYSTEM jxform system key sets.
Use xsm_d_keyset and xsm_r_keyset to open keysets.
RETURNS
0 if there is no error
-2 if there is no keyset currently at that scope
=3 if the scope 1s out of range
RELATED FUNCTIONS

status = xsm_r_ keyset (name, scope);
status = xsm d keyset (address, scope);

Page 102 JAM Release 5 1 March 9t

JAM PL/1 Programmer’s Guide

c off

tu-rF the cursor off

SYNOPSIS
call xsm ¢ off();
DESCRIPTION

This function notifies JAM that the normal cursor setting is off. The normal setting is in
effect except:

B When a block cursor is in use, as during menu processing, the cursor is
off.

B While Screen Manager functions are writing to the display the cursor is
off.

¥ Within certain error message display functions the cursor is on.

If the display cannot tum its cursor on and off (V_CON and V_COF entries are not defined
in the video file), this function will have no effect.

Use xsm_c_on to turn the cursor on.

RELATED FUNCTIONS

call xsm_c_on{();

JAM Release § 1 March 91 Page 103

JAM PL/1 Programmer's Guide

c_on
turn the cursor on

g 2

SYNOPSIS

call xsm c_on{();

DESCRIPTION

This function notifies JAM that the normal cursor setting is on. The normal setting is 1
effect except:

B When a block cursor is n use, as during menu processing, the cursor is
off.

@ While Screen Manager functions are writing to the display the cursor is
off.

B Within certain error message display functions the cursor 1s on.

If the display cannot turn its cursor on and off (V_CON and V_COF entries are not defined
in the video file), this function will have no effect.

Use xsm_c_o£f£ to turn the cursor off.

RELATED FUNCTIONS

call xsm c¢_off();

Page 104 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

C_vis
turn cursor position display on or off

*:

SYNOPSIS

declare display fixed binary(31);
call xsm_c_vis(display):’

DESCRIPTION

Assigning a non—zero value to display displays subsequent status line messages with
the cursor’s position display. This includes background status messages. Messages that
would overlap the cursor position display are truncated.

Setting display to zero will cause subsequent status line messages to be displayed
without the cursor’s position display.

This function will have no effect if the CURPOS entry in the video file is not defined. In
that case the cursor position display will never appear.

JAM uses an asynchronous function and a status line function to perform the cursor posi-
tion display. If the application has previously installed either of those, this function will
override it.

JAM Release § 1 March 91 Page 105

JAM PL/1 Programmer’s Guide

calc

execute a math edit style

b LT B, DO Boce

SYNOPSIS
declare field_number fixed binary(3l);
declare occurrence fixed binary(31);
declare expression char (256) varying;
declare status fixed binary(31):;

status = xsm calc(field number, occurrence, expression);
DESCRIPTION

Use xsm_calc to execute a math edit style expression. With this function you can per-
form mathematical operations that use the contents of one or more fields and then insert
the result into a field.

The third parameter expression i1s a math edit style expression. See the JAM Au-
thor’s Guide for a complete description on how to create the expression.

The first two parameters, field number and occurrence identify the field and oc-
currence with which the calculation is associated. Normally you will not need to use them
and should set them both to 0.

- If you want to use relative references to fields in your expression, use the arguments
field_number and occurrence to specify the field to which they should be rela-
tive.

If in the event of a math error you want the cursor to move a specific field, specify that
field with field number. In addition, if the desired field is an occurrence within an
array, specifying the occurrence will cause the referenced array to scroll to
field_number.

RETURNS

-1 is returned if a math error occurred.
0 is returned otherwise.

Page 106 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

cancel

reset the display and exit

SYNOPSIS

declare arg fixed binary(31);
call xsm cancel (arg);

DESCRIPTION

This function is installed by xsm_initcrt to be executed if a keyboard interrupt oc-
curs. It calls xsm_resetcrt to restore the display to the operating system’s default
state, and exits to the operating system.

If your operating system supports it, you can also install this function to handle conditions
that normally cause a program to abort. If a program aborts without calling xsm_re-
setcrt, you may find your terminal in an odd state; xsm_cancel can prevent that,

The argument axg 1s a dummy argument. It should have the value zero.

JAM Release § 1 March 91 Page 107

JAM PL/1 Programmer’s Guide

chg_attr

change the dlsplay attribute of a field

RSN it VAR FOOR v W RERFL TR

SYNOPSIS
declare field number fixed binary(31);
declare display attribute fixed binary(31):
declare status fixed binary(31):

status = xsm_chg_attr(field number, display attribute);
DESCRIPTION

Use thus function to change the display attribute of an individual field or an element with-
in an array. To change an occurrence attribute so that the attribute moves with the occur-
rence use xsm_o_achg.

If the field 1s part of a scrolling array, then each occurrence may also have a display attrib-
ute that overrides the field display attnbute when the occurrence arrives onto the screen.

Possible values for display_attribute are defined in smdefs.incl.pll, as
shown in the table below:

Il Foreground Autnibutes 7ac=kgroundmtribules
[BLANK B_HILIGHT
REVERSE
UNDERLN ,
BLINK
HILIGHT
STANDOUT
DIM
ACS (alternate character set)
Foreground Colors Background Colors "
BLACK B_BLACK |
BLUE B_BLUE B
GREEN B_GREEN f

Page 108 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Foreground Colors Background Colors |
CYAN B_CYAN
RED B_RED
MAGENTA B_MAGENTA
YELLOW B_YELLOW
WHITE B_WHITE

Foreground colors may be used alone or ored with one or more highlights, a background
mnemonic, and a background highlight. If you do not specify a highlight or a background
mnemonic, the attribute defaults to white against a black background. Omitting the
foreground mnemonic will cause the attribute to default to black.

NOTE: The variant xsm_o_chg_attr does not take the usual arguments. The second
argument is an element rather than an occurrence.

RETURNS

-1 if the field is not found
0 otherwise.

VARIANTS

status = xsm e chg_attr(field name, element,

display_attribute);

status = xsm n_chg_attr(field name, display attribute);

status = xsm o_chg_attr(field number, element,

di sslay_at:tribute) ;

RELATED FUNCTIONS

status = xsm_o_achg(field number, occurrence,

display attribute);

JAM Release 5 1 March 91

Page 109

JAM PL/1 Programmer's Guide

ckdigit

validate check digit
oML SRR SRR I AR T WA TR RSN T NOIARTRA
SYNOPSIS

declare field number fixed binary(31):;

declare field data char (256) varying;

declare occurrence fixed binary(31);

declare modulus fixed binary(31);

declare minimum digits fixed binary(31):

declare status fixed binary(31);

status = xsm ckdigit (field number, field data, occurrence,
modulus, minimum digits);

DESCRIPTION

Thus function is called by field validation. It verifies that field_data contains the re-
quired mmmum number of digits terminated by the proper check digit. If not, it posts an
error message before returning. It can also be used to check any character string or field.
If field data is null, the string to check is obtained from the field number and
occurrence and an error message is displayed if the string is bad. If field_number
is zero, no message will be posted, but the function’s return code will indicate whether the
string passed 1ts check.

A fuller description of sm_ckdigit is included with the source code, which is distrib-
uted with JAM.

Note that this function can be replaced by a user—installed check digit function which
field validation will call instead. See the chapter on installing functions.

RETURNS

0 If the field contents are available and valid.

-1 If the field contents do not contain the minimum number of digits or the proper
check digit.

~2 If the length of £ield data is zero and the field or occurrence cannot be found

Page 110 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

cl_all_mdts

call xsm cl _all mdts();
DESCRIPTION

Clears the MDT (modified data tag) of every occurrence, both onscreen and off.

JAM sets the MDT bit of an occurrence to indicate that it has been modified, either by
keyboard entry or by a call to a function like xsm put field, since the screen was first
displayed (i.e., after the screen entry function returns).

RELATED FUNCTIONS

field number = xsm_tst_all mdts(occurrence);

JAM Release 5 1 March 91 Page 111

JAM PL/1 Programmer’s Guide

cl_unprot

SYNOPSIS

call xsm_cl_unprot ();
DESCRIPTION

Erases onscreen and offscreen data from all fields that are not protected from clearing
(CPROTECT). Date and time fields that take system values are re—-initialized. Ficlds with
the null edit are reset to their null indicator values.

This function is normally bound to the CLEAR ALL key.
RELATED FUNCTIONS

status = xsm aprotect (field_number, mask):;

Page 112 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

clear_array

clear all data in an array

SYNOPSIS
declare field number fixed binary(31);
declare status fixed binary(31);

status = xsm clear array(field number);

status = xsm _lclear_ array(field number);
DESCRIPTION

Both functions clear all data from the array containing the field specified by field_num-
ber. The value returned by xsm_num_occurs is changed to zero. The array 1s cleared
even if it is protected from clearing (CPROTECT).

xsm_clear_array alsoclears arrays synchronized with the specified array, except for
synchronized arrays that are protected from clearing.

xsm_lclear_array only clears the specified array.
RETURNS

-1 if the field does not exist;
0 otherwise.

VARIANTS

status = xsm_n_clear_array(field name);
status = xsm n_lclear. array(field name);

RELATED FUNCTIONS

status = xsm _aprotect (field_number, mask):;
status = xsm _protect (field number);

JAM Release 5 1 March 91 Page 113

JAM PL/1 Programmer’s Guide

close_window

close current window

SYNOPSIS
declare fixed binary(31);
status = xsm _close window();
DESCRIPTION

xsm_close_window is used to close a window opened by xsm_r_window (or vari-
ant), xsm_r_at_cur (or vanant), or xsm_mwindow.

The currently open window is erased, and the screen is restored to the state before the
window was opened. All data from the window being closed 1s lost unless LDB process-
ing is active, in which case named fields are copied to the LDB using xsm_lstore.
Since windows are stacked, the effect of closing a window is to return to the previous
window. The cursor reappears at the position it had before the window was opened.

When using the JAM Executive, use xsm_jclose toclose a form. xsm_jclose will
call xsm_jform to pop the form stack and open the new top form on the stack. In the
case of a window, xsm_jclose will call xsm_close_window to close the window.

RETURNS

-1 1s returned if there 1s no window open, (i.e. if the currently displayed screen is a form
or if no screen 1s displayed).
0 is returned otherwise.

RELATED FUNCTIONS

status = xsm_r window(screen name, start_line, start_column);
return value = xsm wselect (window_number) ;

Page 114 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

d_msg_line

dlsplay a message on the status line

h]

SYNOPSIS

declare message char (256) varying;
declare display attribute fixed binary(31l);
call xsm d_msg_line(message, display attribute):;

DESCRIPTION

The message in message is displayed on the status line, with an initial display attribute
of display_attribute. If the cursor position display has been turned on (see
xsm_c_vis), the end of the status line will contain the cursor’s current row and column.
Messages displayed with xsm_d_msg_1ine override both background and field status
text.

Messages posted with xsm _d_msg_line are displayed until the status line is cleared
by xsm d msg_line. They will persist from screen to screen until cleared. Clearing is
accomplished by passing xsm_d_msg_1ine an empty string for message and a 0 for
display_attribute. Once cleared, any currently overidden message will resume.
The function xsm_d_msg_line will itself be overridden by xsm_err_reset and
related functions, or by the ready/wait message enabled by xsm_setstatus.

Possible values for display attrabute are defined in smdefs.incl.pll, as
shown in the table below:

Attribute Mnemonic Hex Code | Aurnibute Mnemonic | Hex Code

Foreground Highlights Background Highlights
BLANK 0008 B_HILIGHT 8000
REVERSE 0010
UNDERLN 0020
BLINK 0040 |
HILIGHT 0080 I
STANDOUT 0800 |
DIM 1000 |

ACS (alternate character set) 2000 II

JAM Release 5 1 March 91 Page 115

JAM PL/1 Programmer's Guide

Attribute Mnemonic Hex Code | Atiribute Mnemonic | Hex Code

HW—WW Colors

BLACK 0000 B_BLACK 0000
IlBLUE 0001 B_BLUE 0100
[creeN 0002 B_GREEN 0200
[cyan 0003 B_CYAN 0300
[reD 0004 |B_RED 0400
MAGENTA 0005 B_MAGENTA 0500
I|YELLOW 0006 |B_YELLOW 0600
[wHITE 0007 |B_WHITE 0700

Foreground colors may be used alone or ored with one or more hughlights, a background
mnemonic, and a background highlight. If you do not specify a highlight or abackground
mnemonic, the attnbute defaults to white against a black background. Omitting the
foreground mnemonic will cause the attribute to default to black.,

Several percent escapes provide control over the content and presentation of status mes-
sages. The character following the percent sign must be in upper-case. Note that, if a mes-
sage containing percent escapes is displayed before xsm_initcrt is called, the percent
escapes will show up in the message.

If a string of the form $Annnn appears anywhere 1n the message, the hexadecimal number
nnnn is interpreted as a display attnbute to be applied to the remainder of the message. The
table gives the numeric values of the logical display attributes you will need to construct
embedded attnibutes. If you want a digit to appear unmediately after the attribute change,
pad the attribute to 4 digits with leading zeros. If the following character is not a legal hex
digit, then leading zeros are unnecessary.

If a string of the form $Kkeyname appears anywhere in the message, keyname 1s inter-
preted as a logical key mnemonic, and the whole expression is replaced with the key label
string defined for that key in the key translation file. If there is no label, the $K is stripped
out and the mnemonic remains. Key mnemonics are defined in smkeys.incl.pll;it
is of course the name, not the number, that you want here. The mnemonic must be in upper—
case.

If the message begins with a B, JAM will beep the terminal (using xsm_bel) before is-
suing the message.

Page 116 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

RELATED FUNCTIONS

call xsm_err_reset (message);
call xsm_msg(column, disp length, text);
status = xsm mwindow(text, line, column);

JAM Release 5 1 March 91 Page 117

JAM PL/1 Programmer's Guide

dblval

s T s S
e PRI S e

SYNOPSIS
declare field number fixed binary(31);
declare value float binary(53);
value = xsm dblval (field number);
DESCRIPTION

This function returns the contents of field_number as a real number. It calls
xsm_strip_amt_ptr to remove superfluous amount editing characters before con-
verting the data.

RETURNS

The real value of the field is returned.
If the field is not found, the function returns 0.

VARIANTS

value = xsm e_dblval(field name, element);
value = xsm_i_dblval(field name, occurrence);
value = xsm_n_dblval (field name);

value = xsm o_dblval(field number, occurrence);

RELATED FUNCTIONS

status = xsm dtofield(field number, value, format);
outbuf = xsm strip amt_ptr(field number, inbuf,);

Page 118 JAM Release § 1 March 91

JAM PL/1 Programmer’s Guide

dd_able

turn LDB write—through on or off

R

SYNOPSIS

declare flag fixed binary(31);
call xsm_dd able(flag):

DESCRIPTION

During normal JAM processing, named fields in the screen and local data block are kept
in sync. When a screen is displayed (and after the screen entry function completes), val-
ues are copied in from the LDB; when control passes from the screen (before the screen
entry function is executed), values are copied back to the LDB. Normally, when applica-
tion code reads or wnites a value to or from a named field/LDB entry JAM treats the name
as a field name unless no such field exists, in which case JAM treats the name as an LDB
entry name. During screen entry and exit processing, this logic 1s reversed in order to pre-
serve the illusion that screen and LDB entries that share the same name also share the
same data.

xsm_dd_able turns this feature off if £1ag is “0” and on if it is “1”. The feature is on
by default. When it is off, the LDB is never accessed.

JAM Release 5 1 March 91 Page 119

JAM PL/1 Programmer’s Guide

deselect
deselect a checklist occurrence

AR N i P e S A R AL

SYNOPSIS
declare group name char (256) varying;
declare group_occurrence fixed banary(3l);
declare status fixed binary(31);

status = xsm_deselect (group name, group_occurrence);
DESCRIPTION

Thus function allows you to deselect a specific occurrence within a checklist. The group
name and occurrence number is used to reference the desired selection. See the Author’s
Guide for a more detailed discussion of groups.

Use xsm_select to select a group occurrence and xsm_isselected to check
whether or not a particular group occurrence is currently selected.

NOTE: You can not deselect a radio button occurrence. Using xsm_select on aradio
button occurrence will automatically deselect the current selection.

RETURNS

-1 arguments do not reference a checklist occurrence.
0 occurrence not previously selected.
1 occurrence previously selected.

RELATED FUNCTIONS

status = xsm_isselected(group_name, group_occurrence);
status = xsm_select (group_name, group_occurrence);

Page 120 JAM Release 5 1 March 91

JAM PL/{1 Programmer's Guide

dicname

set data dictionary name

g AR SR m x&‘
SYNOPSIS

declare dic_name char (256) varying;

declare status fixed binary(31);

status = xsm_dicname (dic_name);
DESCRIPTION

This function names the application’s data dictionary, which is data.dic by default. It
must be called before JAM initialization, in particular before xsm_1db_init iscalled
to initialize the local data block from the data dictionary. The argument dic_name isa
character string giving the file name; JAM will search for it in all the directories in the
SMPATH variable.

You can achieve the same effect by defining the SMDICNAME variable in your setup file
equal to the data dictionary name. See the section on setup files in the Configuration
Guide.

Use the function xsm_pinquire to find the name of the data dictionary in use.
RETURNS

-1 if 1t fails to allocate memory to store the name,
0 otherwise.

RELATED FUNCTIONS
buffer = xsm_pinquire (which);

JAM Release § 1 March 91 Page 121

JAM PL/1 Programmer's Guide

disp_off

get displacement of cursor from start of field

SYNOPSIS

declare offset fixed binary(31):;
offset = xsm _disp off();

DESCRIPTION

Returns the difference between the first column of the current field and the current cursor
location. This function ignores offscreen data; use xsm_sh_off to obtain the total cur-
sor offset of a shiftable field.

RETURNS

The difference between cursor position and start of field, or
—1 if the cursor is not in a field.

RELATED FUNCTIONS

call field number = xsm_getcurno();
call offset = xsm_sh off():;

Page 122 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

dlength

get the length of a field’s contents

5 oS AL, SR 2k R0 0 RN
SYNOPSIS

declare field numberxr fixed binary(3l);

declare data_length fixed binary(31);

data_length = xsm dlength(field number);
DESCRIPTION

Returns the length of data stored in field number. The length does not include lead-
ing blanks in right justified fields, or trailing blanks in left—justified fields (which are also
ignored by xsm_get field). It does include data that have been shifted offscreen.

RETURNS

Length of field contents, or
-1 if the field is not found.

VARIANTS

data_length = xsm e dlength(field name, element);
data_length = xsm i dlength(field name, occurrence);
data_length = xsm n_dlength(field name);

data_length = xsm o_dlength(field number, occurrence);

RELATED FUNCTIONS
field length = xsm length(field number);

JAM Release 5§ 1 March 91 Page 123

JAM PL/1 Programmer's Guide

do_region

rewrite part or all of a screen line

SYNOPSIS
declare line fixed binary(31l);
declare column fixed binary(31);
declare length fixed binary(31);
declare display attribute fixed binary(31);
declare text char (256) varying;
call xsm do_region(line, column, length, display attribute,
text):;
DESCRIPTION

The screen region defined by 1ine, column, and length is rewritten. Line and
column are counted from zero, with (0, 0) the upper left-hand comner of the screen.

If text is zero, the screen region is redrawn with whatever display attrabute
has been assigned. If t ext 1s shorter than 1ength, itis padded out with blanks. In either
case, the display attnibute of the whole area 1s changed to display attribute.

Possible values for display_attribute are defined m smdefs.incl.pll, as
shown in the table below:

" Foreground Auributes Background Attnbutes

BLANK B_HILIGHT
REVERSE
UNDERLN

|| BLINK

[HiLGHT

[sTanDOUT

DIM
ACS (alternate character set)

Page 124 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

" Foreground Colors Background Colors
l| BLACK B_BLACK
[BLUE B_BLUE
GREEN B_GREEN
|| CYAN B_CYAN
[reD B_RED
MAGENTA B_MAGENTA
YELLOW B_YELLOW
[wHITE B_WHITE

Foreground colors may be used alone or ored with one or more highlights, a background
mnemonic, and a background highlight. If you do not specify a highlight or a background
mnemonic, the attribute defaults to white against a black background. Omitting the
foreground mnemonic will cause the attribute to default to black.

JAM Release 5 1 March 91 Page 125

JAM PL/1 Programmer’s Guide

doccur

delete occurrences

o S e R

SYNOPSIS
declare field number fixed binary(31);
declare occurrence fixed binary(31);
declare count fixed binary(31);
declare return_value fixed binary(31);

return_value = xsm o_doccur(field number, occurrence, count);

DESCRIPTION

NOTE: This function only exists in the o_ and i__ variations. There is NO xsm_doc-
cur since this function only applies to arrays.

This function deletes the data 1n count occurrences beginming with the specified oc-
currence. If the array 1s scrollable, then it deallocates count occurrences. The data in
occurrences following the last deleted occurrence are moved up in the array so that there
are no gaps. Fewer than count occurrences will be deleted if the number of remaining
allocated occurrences, starting with the referenced occurrence, 1s less than count.

If count is negative, occurrences are inserted instead, subject to hmitations explained at
xsm_ioccur. The function xsm_ioccur is normally used to add blank occurrences.

If occurrence is zero, the occurrence used is that of field number.If occur-
rence is nonzero, however, it is taken relative to the first field of the array in which
field_number occurs.

Any clearing-unprotected synchronized arrays will have the same operations performed
on them as the referenced array.

This function is normally bound to the DELETE LINE key.
RETURNS

~1 if the field or occurrence number was out of range;
-3 if insufficient memory was available;
otherwise, the number of occurrences actually deleted (zero or more).

VARIANTS

return_value = xsm i doccur(field name, occurrence, count);

Page 126 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

dtofield

write a real number to a field

b SR A g g

SYNOPSIS

declare field number fixed binary(31):;
declare value float binary(53):;
declare format char (256) varying:
declare status fixed binary(31);

status = xsm_dtofield(field number, value, format);

DESCRIPTION

The real number value is converted to human-readable form, according to format,
and moved into field_number via a call t0 xsm_amt_format. If the format
string 1s empty, the number of decimal places will be taken from a data type edit, if one
exists; failing that, from a currency edit, if one exists; or failing that, will default to 2.

The number of decimal places may be forced to be an arbitrary number n, via rounding,
by using the format string % . n£”. The format string %t . n£” may be used to truncate in-
stead of to round.

RETURNS

-1 is returned if the field is not found.
-2 is returned 1f the output would be too wide for the destination field.
0 is returned otherwise.

VARIANTS
status = xsm _e_dtofield(field name, element, value, format);
status = xsm i_dtofield(field name, occurrence, value, format);
status = xsm _n_dtofield(field name, value, format):;
status = xsm o dtofield(field number, occurrence, value,
format);
RELATED FUNCTIONS

status = xsm_amt_format (field number, buffer);
value = xsm _dblval(field number);

JAM Release 5 1 March 91 Page 127

JAM PL/1 Programmer’s Guide

e

va?ants that take a field name and element number

e, R IR g A L i g
SYNOPSIS

declare field name char(256) varying;

declare element fixed binary(31);

call xsm e ...(field name, element, ...);
DESCRIPTION

The e__ variant functions access one element of an array by field name and element num-
ber. For a description of any particular function, look under the related function without
e_ in its name. For example, xsm e_amt_format 1s described under
xsm_amt_format.

Despite the fact that they take a field name as argument, these functions do not search the
LDB for names not found in the screen because an element number 1s ambiguous when
referring to the LDB.

Page 128 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

edit_ptr
get special edi

DS AR D

t string

SYNOPSIS

declare buffer char (256) varying:

declare field number fixed binary(31);

declare edit_type fixed binary(31);

buffer = xsm_edit_ptr(field number, edit_type);
DESCRIPTION

This function searches the special edits area of a field or group for an edit of type
edit_type. The edit_type should be one of the following values, which are de-
fined in smdefs.incl.pll:

Edit type Contents of edit string
NAMED Field name
CPROG Name of field validation function
FE_CPROG Name of field entry function
FX_CPROG Name of field exit function
HELPSCR Name of help screen
HARDHLP Name of automatic help screen
HARDITM Name of automatic item selection screen
ITEMSCR Name of item selection screen
SUBMENU Name of pull-down menu screen
TABLOOK Name of screen for table-lookup validation
NEXTFLD Next field (contains both primary and alternate fields)
PREVFLD Previous field (contains both pnmary and alternate fields)
TEXT Status line prompt

JAM Release 5 1 March 91 Page 129

JAM PL/1 Programmer’s Guide

Edit type Contents of edit siring
MEMOL .. Nine arbitrary user-supplied text strings
MEMO9
JPLTEXT Attached JPL code
CALC Math expression executed at field exat
CKDIGIT Flag and parameters for check digit
FTYPE Data type for inclusion in structure
RETCODE Return value for menu or return entry field
CMASK Regular expression for field validation
CCMASK Regular expression for character validation
CKBOX Off'set and atiribute of checkbox in a group

ALTSC_CPROG

Name of alternate scrolling function

KEYSET Name of keyset associated with screen.

SDATETIME Date/time field with user format, initialized with system values.
UDATETIME Date/time field with user format, initialized by the user.
CURRED Currency field format, see smdefs.incl.pl1 for details.
NULLFIELD Null field representation.

RANGEL Low bound on range; up to 9 permitted

RANGEH High bound on range; up to 9 permitted

EDT_BITS

Normally for internal use (see smdefs.incl.pl1l for more

information.)

The string retumed by xsm_edit_ptr contains:

B The total length of the string (including the two overhead bytes and any

terminators) in its first byte.

Page 130

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

® The edit_type code in its second byte.

® The body of the edut in the subsequent bytes. Refer to the source listing

forthefile smdefs. incl. pll for specific information on how to in-

terpret each individual edit.
If the field has no edit of type edit_type, the returned buffer will contain a zero. If a
field has multiple edits of one type, such as RANGEH or RANGEL, then each additional
edit is added onto the end of the string following the same pattern as the first one. For
example, the first byte would contain the length of the string up to the end of the body of
the edit of RANGEH. Adding one to this number would give you the byte that contains
the length of the string containing information on RANGEL and so forth.

This function is especially useful for retrieving user—defined information contained in
MEMO edits.

In the case of groups, the edits PREVFLD, NEXTFLD, CPROG, FE_CPROG, and
FE_CPROG may be used to obtain group information.

RETURNS

The first (length) byte of the special edit of the field.
0 if the field or edit is not found.

VARIANTS

buffer = xsm n_edit_ptr(field name, edit_type); -

JAM Release 5 1 March 91 Page 131

JAM PL/1 Programmer's Guide

emsg

display an error message and reset the message line
without turning on the curso

SYNOPSIS

declare message char (256) varying;
call xsm emsg(message);

DESCRIPTION

This function displays message on the status line, if it fits, or mn a window if 1t is too
long. If the cursor position display has been turned on (see xsm_c_vis), the end of the
status line will contain the cursor’s current row and column. If the message text would
overlap that area of the status line, it will be displayed in a window 1nstead. The message
remains visible until the operator presses a key. The function’s exact behavior in dismiss-
ing the message is subject to the error message options; see xsm_option.

xsm_emsgq is identical to xsm_err_reset, except that it does not attempt to turn the
cursor on before displaying the message. It is similar to xsm_qui_msg, which inserts a
constant string (normally “ERROR:") before the message.

- Several percent escapes provide control over the content and presentation of status mes-
sages. The character following the percent sign must be in upper—case. Note that, if a mes-
sage containing percent escapes is displayed before xsm_initcrt 1scalled, the percent
escapes will show up in the message.

If a string of the form $Annnn appears anywhere in the message, the hexadecimal number
nnnn is interpreted as a display attribute to be applied to the remainder of the message. The
table gives the numeric values of the logical display attributes you will need to construct
embedded attributes. If you want a digit to appear immediately after the attribute change,
pad the attribute to 4 digits with leading zeros. If the following character is not a legal hex
digit, then leading zeros are unnecessary.

If a string of the form %Kkeyname appears anywhere in the message, keyname is inter-
preted as a logical key mnemonic, and the whole expression is replaced with the key label
string defined for that key in the key translation file. If there is no label, the $K is stripped
out and the mnemonic remains. Key mnemonics are defined in smkeys.incl.pll;it
is of course the name, not the number, that you want here. The mnemonic mustbe in upper—
case.

If the message begins with a $B, JAM will beep the terminal (using xsm_be1) before is-
suing the message.

Page 132 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

If $N appears anywhere in the message, the latter will be presented in a pop-up window
rather than on the status line, and all occurrences of %N will be replaced by new lines.

If the message begins with %W, it will be presented in a pop—up window instead of on the
status line. The window will appear near the bottom center of the screen, unless it would
obscure the current field by so doing; in that case, it will appear near the top.

If the message begins with $Mu or $Md, JAM will ignore the default error message ac-
knowledgement flag and process (for $Mu) or discard (for $Md) the next character typed.

Possible hex values for display attribute are defined in smdefs.incl.pl1l, as shown
in the table below:

Foreground Highlights | Background Highlights |

BLANK 0008 B_HILIGHT 8000
REVERSE 0010

UNDERLN 0020

BLINK 0040

HILIGHT 0080

STANDOUT 0800

DIM 1000

ACS (altemate character set) 2000 ___

JAM Release 5 1 March 91 Page 133

JAM PL/1 Programmer’s Guide

Attribute Mnemonic Hex Code | Attribute Mnemonic | Hex Code |
Foreground Colors Background Colors
lj BLACK 0000 [B_BLACK 0000
BLUE 0001 B_BLUE 0100
GREEN 0002 B_GREEN 0200
CYAN 0003 B_CYAN 0300
RED 0004 B_RED 0400
llﬁAGENTA 0005 B_MAGENTA 0500
YELLOW 0006 B_YELLOW 0600
ﬂWHITE 0007 B_WHITE 0700

Foreground colors may be used alone or ored with one or more highlights, a background
mnemonic, and a background highlight. If you do not specify a highlight or a background
mnemonic, the attnbute defaults to white against a black background. Omitting the
foreground mnemonic will cause the attribute to default to black.

RELATED FUNCTIONS

call xsm _err_ reset (message);
call xsm qui_msg(message);
call xsm _quiet_err(message);

Page 134

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

err_reset

display an error message and reset the status line

SYNOPSIS
declare message char (256) varying;
call xsm_err_reset (message)’;
DESCRIPTION

The message is displayed on the status line until acknowledged it by pressing akey. If
message is too long to fit on the status line, it is displayed in a window instead. If the
cursor position display has been turned on (see xsm_c_vis), the end of the status line
will contain the cursor’s current row and column. If the message text would overlap that
area of the status line, it will be displayed in a window instead. The exact behavior of
error message acknowledgement is governed by xsm_option. The initial message at-
tnbute is set by xsm_option, and defaults to blinking.

This function turns the cursor on before displaying the message, and forces off the global
flag sm_do_not_display. It is similar to xsm_emsg, which does not turn on the
cursor, and to xsm _quiet_err, which inserts a constant string (normally “ERROR:™)
before the message.

Several percent escapes provide control over the content and presentation of status mes-
sages. See xsm_emsg for details.

RELATED FUNCTIONS

call xsm_emsg{message);
call xsm _qui_msg (message);
call xsm quiet_ err(message);

JAM Release 5 1 March 91 Page 135

JAM PL/1 Programmer’s Guide

fi_path

SYNOPSIS
declare buffer char (256) varying;
declare file name char (256) varying;
buffer = xsm_fi_path(file_name);
DESCRIPTION

Use this function to find the full path name of a file. The file may be a screen or any other
type of file. The file’s full path name is returned in buffer.

The file name is first sought in the current directory. If that fails, the path given to
xsm_initcrt is checked. Finally the path defined by SMPATH is searched.

RETURNS

0 if the file cannot be found in any path.
Else, The path is returned in buffer.

Page 136 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

finquire

obtain information about a field

SYNOPSIS
$include ’‘smglobs.incl.pll’;
declare field number fixed binary(31);
declare which fixed binary(31);
declare value fixed binary(31l);
value = xsm finquire (field number, which);
DESCRIPTION

Use this function to obtain various information about a field. The variable which is a
mnemonic that specifies the particular piece of information desired.

Mnemonics for which are defined in the file smglobs.incl.pll. The following
values are available:

Mnemonic Meaning

FD_LINE Line that field is on.

FD_COLM Column of field’s first position.

FD_ATTR Field attributes (see smdefs.incl.pll).

FD_LENG Onscreen field length.

FD_ASIZE Onscreen array size (1 if scalar).

FD_ELT Onscreen element number.

FD_SHLENG Shiftable length.

FD_SHINCR Shift increment.

FD_SHOFS Current shift offset (number of positions field has been
shifted; 0 if shifted to left edge).

FD_SCINCR Scrolling increment (for Next/Prev page keys).

|[FD_SCFLAG Scrolling array circular? (T/F).

JAM Release § 1 March 91 Page 137

JAM PL/1 Programmer’s Guide

Mnemonic Meamng
—_— —— — —
FD_SCATTR Scrolling occurrence display attributes set with

xsm_i_achg; zero if onscreen element attributes is to be
used. For xsm_i_finquire variant only.

FD_FELT First onscreen occurrence of scrolling array (1 if scrolled to
top).
RETURNS
The value of which if found.
0 otherwise.
VARIANTS

value = xsm e_finquire(field name, element, which);
value = xsm i_finquire(field name, occurrence, which);
value = xsm _n_finquire(field name, which);

value = xsm o_finquire(field number, occurrence, which);

RELATED FUNCTIONS

value = xsm gp inquire(group_name, which):;
value = xsm_inquire (which):;

value = xsm _iset (which, newval);

buffer = xsm pinquire(which);

buffer = xsm pset (which, newval);

Page 138 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

fldno

get the field number of an array element or occurrence

A o B oy o s R kL
SYNOPSIS

declare field name char (256) varying;

declare field number fixed binary(31):

field_number = xsm_n_fldno(field name);
DESCRIPTION

NOTE: This function only exists in the e_, i , n_, and o__ variations. There is NO
xsm_fldno since this function determines the field number given other information.

The e__ variant returns the field number of an array element specified by field_name
and element. If element is zero, thenxsm_e_ £1dno retumns the field number of the
named field, or the base element of the named array.

The i__and o__ variants return the number of the field containing the specified occurrence
if the occurrence is onscreen, or 0 if the occurrence is offscreen.

The n__ variant returns the field number of a field specified by name, or the base field
number of an array specified by name, .

RETURNS

0 if the name is not found, if the element number exceeds 1 and the named ficld
is not an array, or if the occurrence is offscreen.

Otherwise, returns an integer between 1 and the maximum number of fields on the
current screen that represents the field number.

VARIANTS

field number = xsm e_fldno(field name, element);
field number = xsm i fldno(field name, occurrence);
field number = xsm o_fldno(field number, occurrence);

JAM Release 5 1 March 91 Page 139

JAM PL/1 Programmer's Guide

flush

flush delayed writes to the display

SYNOPSIS
call xsm_flush();

DESCRIPTION

Ths function performs delayed writes and flushes all buffered output to the display. It is
called automatically via xsm_input whenever the keyboard is opened and there are no
keystrokes available, i.e. typed ahead.

Calling this routine indiscriminately can significantly slow execution. As 1t is called
whenever the keyboard is opened, the display is always guaranteed to be in sync before
data entry occurs; however, if you want timed output or other non-interactive display, use
of this routine will be necessary.

RELATED FUNCTIONS

call xsm_flush();
call xsm rescreen{):

Page 140 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

form

display a screen as a form

SYNOPSIS
declare screen_name char (256) varying;
declare status fixed binary(31);

status = xsm_r_ form(screen_name);

declare screen_address bit (0);
declare status fixed binary(31);
status = xsm_d_form(screen_address);

declare 1lib_desc fixed binary(31);

declare screen_name char (256) varying;

declare status fixed binary(31);

status = xsm 1 form(lib desc, screen name);
DESCRIPTION

This set of functions is primanly intended to be used by developers who are writing their
own executive. These functions do not update the form stack, so 1t is generally nota good
idea to use them with the JAM Executive. To open a form while under the control of the
JAM Executive, use a JAM control string or xsm_jform.

These functions display the named screen as a base form. Bringing up a screen as a form
with xsm d_form, xsm_1_ form, xsm_r_ form causes the prewously displayed
form and windows to be discarded, and their memory freed. The new screen is displayed
with its upper left-hand comer at the extreme upper left of the display (position (0, 0)).

If an error occurs a return of —1 or —2 means that the previously displayed form is stll
displayed and may be used. Other negative return codes indicate that the display is unde-
fined. The caller should display another form before using Screen Manager functions.

When you use xsm_r_ form the named screen is sought first in the memory-resident
screen list, and if found there 1s displayed using xsm_d_form. Itis next sought in all the
open screen libraries, and if found is displayed using xsm_1_form. Next it 1s sought on
disk 1n the current directory; then under the path supplied to xsm_initcrt; then inall
the paths in the setup variable SMPATH. If any path exceeds 80 characters, it is skipped.
If the entire search fails, this function displays an error message and returns.

You may save processing time by using xsm_d_f ormto display screens that are memo-
ry—tesident. Use bin2pl1 to convert screens from disk files, which you can modify us-

JAM Release 5 1 March 91 Page 141

JAM PL/1 Programmer's Guide

ing jxform, to program data structures you can compile into your application. A
memory-resident screen is never altered at run-time, and may therefore be made share-
able on systems that provide for sharing read-only data. xsm_r_form can also display
memory-resident screens, if they are properly installed using xsm_formlist. Memo-
ry-resident screens are particularly useful in applications that have a limited number of
screens, or in environments that have a slow disk (e g. MS-DOS). screen_address
is the address of the screen 1n memory.

You may also save processing time by using xsm_1_form to display screens that are in
alibrary. A library is a single file containing many screens (and/or JPL modules and key-
sets). You can assemble one from individual screen files using the utility formlib. Li-
braries provide a conveuent way of distributing a large number of screens with an appli-
cation, and can improve efficiency by cutting down on the number of paths searched.

The library descriptor, 1ib_desc, is an integer returned by xsm_1_open, which you
must call before trying to read any screens from a library. Note that xsm_r_formalso
searches any open libraries.

To display a window use xsm_r_at_cur, xsm_xr_window, or one of their variants.

RETURNS

0 if no error occurred
-1 if the screen file’s format 1s incorrect; previous form still displayed and available
-2 1f the screen cannot be found or the maximum allowable number of files is
already open; previous-form still displayed and available
—4 if, after the screen has been cleared, the screen cannot be successfully
displayed because of a read error;
=5 1f, after the screen was cleared, the system ran out of memory;

RELATED FUNCTIONS

status = xsm_r window(screen_name, start_ line, start column);
status = xsm_r_at_cur(screen_name);

Page 142 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

formlist

update list of memory-resident files

SYNOPSIS

declare name char (256) varying;

declare address bit (0);

declare status fixed binary(31);

status = xsm_formlist (name, address);
DESCRIPTION

This function adds a JPL. module, keyset, or screen to the memory resident form list. Each
member of the list is a structure giving the name of the JPL module, screen, or keyset, as
a character string, and its address in memory. This function is commonly called from
main. It can be called any number of times from an application program to augment to
the memory resident list.

The library functions xsm r_form, xsm r window, xsm r_at_cur, and
xsm_xr_keyset all take a screen or keyset name as a parameter and search for it in the
memory-resident list before attempting to read the screen or keyset from disk. The jpl
command (see the JPL Programmer’s Guide) and the function xsm_jplcall search
the memory resident form list when looking for a JPL procedure to execute.

To make a JPL module, keyset, or screen memory resident, you can use the bin2pl1
utility to create a static PL/1 structure imtialized with the binary content of the object.
You must then compile and link the structure with the application executable.

RETURNS

-1 if insufficient memory is available for the new list;
0 otherwise.

RELATED FUNCTIONS

call xsm_rmformlist;

JAM Releasa 5 1 March 91 Page 143

JAM PL/1 Programmer's Guide

fptr

get the content of a field

R B
SYNOPSIS
declare field number fixed binary(31);
declare buffer char(256) varying;
buffer = xsm fptr(field number);
DESCRIPTION

This routine returns the contents of the field specified by field number. Leading
blanks in right—justified fields and trailing blanks in left—justified fields are stripped.

RETURNS

The field contents, or
0 if the field cannot be found.

VARIANTS

buffer = xsm e fptr(field name, element);
buffer = xsm i_fptr(field name, occurrence);
buffer = xsm_n fptr(field name);

buffer = xsm o_fptr(field number, occurrence);

RELATED FUNCTIONS

length = xsm_getfield(buffer, field number);
status = xsm putfield(field number, data);

Page 144 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

ftog

convert field references to group references

SYNOPSIS
declare field number fixed binary(31);
declare group occurrence fixed binary(3l);
declare buffer char (256) varying

buffer = xsm ftog(field number, group_occurrence);
DESCRIPTION

This function converts field references to group references. Use xsm_i_gtof to con-
vert them back.

This function returns the name of the group containing the referenced field and inserts its
group occurrence number into the address of occurrence.

RETURNS

The group name if found and indirectly through group_occurrence the
group occurrence number.
0 otherwise and group_occurrence is unchanged.

VARIANTS

buffer = xsm e ftog(field name, element, group_occurrence);
buffer = xsm_. L i _ftog(field name, occurrence, group_occurrence);
buffer = xsm n ftog(field name, group_occurrence);
buffer = xsm_o_ftog (field number, occurrence,

group occurrence);

RELATED FUNCTIONS

field number = xsm i gtof(group_name, group_occurrence,
occurrence) ;

JAM Release 5 1 March 91 Page 145

JAM PL/1 Programmer’s Guide

ftype
get the data type and premsuon of a field

S RAPRATA N TR TN Y T fomen R

SYNOPSIS
declare field number fixed binary(31);
declare precision_ptr fixed binary(31);
declare type fixed binary(31);
type = xsm_ftype (field number, precision_ptr):;
DESCRIPTION

This function analyzes the edits of a field or LDB entry, and returns data type information.
First the “type” (FTYPE) edit 1s checked, then the “currency” edit, the “date/ume” edit,
and finally the “character” edit.

Note that this differs from the functionality of xsm rdstruct, xsm wrtstuct,
xsm_rrecord, and xsm_wrecord. These functions only test the type > and character
edits. They use the currency edit only to determine the precision of a numeric field that
has no type edit.

This function returns an integer containing the data type code, plus any applicable flags.
The data type codes and flags are detailed in the tables below.

Data Type Code Meaning
FT_CHAR Type editis char string; or character edat 1s unfiltered, letters
only, alphanumeric, or regular expression
FT_INT Type edit is int
FT_UNSIGNED Type edit is unsigned int; or character edit is digut
FT_SHORT Type edit is short int
FT_LONG Type edit is long int
FT_FLOAT Type edit is float
FT_DOUBLE Type edit is double; or character edut is numeric
FT_ZONED Type edit is zoned dec.
FT_PACKED Type edit is packed dec.
| S

Page 146 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

[Data Type Code Meaning
DT_YESNO Character edit is yes/no
DT_CURRENCY Currency edit
DT_DATETIME Datefume edit
Flag Meaning
DF_NULL Null edit n -
DF_REQUIRED Data required edit (not applicable to LDB)
DF_WRAP Word wrap edit
DF_OMIT Type edut is omit.

To determine the data type code, check this integer for each flag in the fashion of the ex-
ample field function shown on page 14, starting with DF_OMIT and working up the list..
The value remaining will be the data type code.

Note that FT_OMIT is not listed as one of the data types. A field that has the type edit
omit will return the data type determined by any of the other edits, as well as a flag indi-
cating that 1t has the omit type edit.

The function will put the precision of float, double and currency values in the preci-
son_ptr argument.

RETURNS

major data type code plus any applicable flags (see tables above).
0 if field is not found

VARIANTS
type = xsm n_ftype(field number, precision_ptr);

JAM Rolease 5 1 March 91 Page 147

JAM PL/1 Programmer's Guide

fval
force field validation

R SRR s

SYNOPSIS
declare field number fixed binary(31);
declare status fixed binary(31);
status = xsm_fval (field number):
DESCRIPTION

This function performs all validations on the indicated field or occurrence, and returns the
result. If the field is protected against validation, the checks are not performed and the
function returns 0; see xsm_aprotect. Validations are done in the order listed below.
Some will be skipped if the field is empty, or if its VALIDED bit 1s already set (implying
that it has already passed validation).

“ Validation I Skip if valid | Skip if empty |]
required y n
must fill y y
regular expression y y
range y y
check—digit y y
date or tme y y
table lookup y y
currency format y n*

|| math expresssion n n

II field validation n n

|| JPL function n n

* The currency format edit contains a skip-if-empty flag; see the Author’s Guide.

If you need to force a skip-if-empty validation, make the field required. A field with em-
bedded punctuation must contain at least one non-blank non-punctuation character in or-

Page 148 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

der to be considered non-empty; otherwise any non blank character makes the field non—
empty.

Math expressions, JPL functions and field validation functions are never skipped, since
they can alter fields other than the one being validated.

Field validation is performed automatically within xsm_input when the cursor exits a
field via the TAB or NL logical keys. All fields on a screen are validated when XMIT is
pressed (see xsm_s_val). Application programs need call this function only to force
validation of other fields.

RETURNS

-2 1if the field or occurrence specification is invalid;
-1 1f the field fails any validation;

0 otherwise.

VARIANTS
status = xsm e_fval (array name, element);
status = xsm i fval (field name, occurrence);
status = xsm n_fval (field name);
status = xsm o_fval (field number, occurrence);

RELATED FUNCTIONS

status = xsm n_gval (group name) ;
status = xsm_s_val();

JAM Release 5 1 March 91 Page 149

JAM PL/1 Programmer's Guide

getcurno

get current field number

B R T e e N T iR

SYNOPSIS
declare field number fixed binary(31);
field number = xsm getcurno();
DESCRIPTION

This function returns the number of the field in which the cursor is currently positioned.
The field number ranges from 1 to the total number of fields in the screen.

RETURNS

Number of the current field, or
0 if the cursor is not within a field.

RELATED FUNCTIONS

occurrence = xsm occur_no();

Page 150 JAM Release 5§ 1 March 91

JAM PL/1 Programmer’s Guide

getfield

copy the contents of a field

SYNOPSIS
declare field_number fixed binary(31);
declare length fixed binary(31);
length = xsm getfield (buffer, field number);
DESCRIPTION

This function copies the data found in field number to buf fer. Leading blanks in
right—justified fields and trailing blanks in left—Jusuﬁed fields are not copied. The varia-
nts that reference a field by name will attempt to get data from the corresponding LDB
entry if there is no such field on the screen (except that the order is reversed during screen
entry/exit processing).

Responsibility for providing a buffer large enough for the field’s contents rests with the
calling program. This should be at least one greater than the maximum length of the field,
taking shifting into account.

In variants that take name as an argument, exther the name of a field or a group may be
used. In the case of groups, xsm_isselected ispreferred to xsm_getfield forde-
termining whether or not a group occurrence is selected. If xsm_n_getfield is called
on a radio button, the value in buffer will be the occurrence number of the selected
item. If xsm_i_getfield is called on a checklist, the value in the first occurrence of
the array will be the number of the first selected item in the group, the value in the second
occurrence will be the number of the next selected item in the group and so on. If a check-
list has, for example, three items selected, the fourth array occurrence will be empty.

Note that the order of arguments to this function is different from that to the related func-
tion xsm_putfield.

RETURNS

The total length of the field’s contents, or
-1 if the field cannot be found.

VARIANTS

length = xsm_e getfield(buffer, name, element);

length = xsm i getfield(buffer, name, occurrence);

length = xsm n_getfield(buffer, name);

length = xsm o_getfield(buffer, field number, occurrence);

JAM Release § 1 March 91 Page 151

JAM PL/1 Programmer’s Guide

RELATED FUNCTIONS

buffer = xsm fptr(field_number);
status = xsm_isselected(group name, group occurrence);
status = xsm_putfield(field number, data);

Page 152 JAM Release § 1 March 91

JAM PL/1 Programmer’s Gurde

getjctrl

get control string associated with a key

SYNOPSIS
$include ’smkeys.incl.pll’;
declare key fixed binary(31):;
declare default fixed binary(31);
declare buffer char (256) varying
buffer = xsm getjctrl (key, default);
DESCRIPTION

Each JAM screen contains a table of control strings associated with function keys. JAM
also maintains a default table of keys and control strings, which take effect when the cur-
rent screen has no control string for a function key you press. This table enables you to
define system—wide actions for keys. It is initialized from SMINICTRL setup variables.
See the section on setup in the Configuration Guide for further information.

This function searches one of the tables for key, a logical key mnemonic found n
smkeys.incl.pll, and returns a the associated control string. If default is zero, -~
the table for the current screen 1s searched; otherwise, the system-wide table is searched.

RETURNS

The control stnng
0 if none is found.

RELATED FUNCTIONS

status = xsm _putjctrl (key, .control_string, default).; —~

JAM Release 5 1 March 91 Page 153

JAM PL/1 Programmer’s Guide

getkey

get logical value of the key hit

ARG BANRAIN L T 3 Y SN

SYNOPSIS
$include ’‘smkeys.incl.pll’;
declare key fixed binary(31);
key = xsm _getkey():

DESCRIPTION

This function gets and interprets keyboard input and returns the logical value to the call-
ing program. Normal characters are returned unchanged. Logical keys are interpreted ac-
cording to a key translation file for the particular terminal you are using. See the Key-
board Input section in this guide, the Key Translation section 1n the Configuration Guide,
and the modkey section in the Utilities Guide. xsm_get key is normally not needed for
application programming, since it is called by xsm_input.

Logical keys include TRANSMIT, EXIT, HELP, LOCAL PRINT, arrows, data modifica-
tion keys like INSERT and DELETE CHAR, user function keys PF1 through PF24,
shifted function keys SPF1 through SPF24, and others. Defined values for all are in.
smkeys.incl.pll. A few logical keys, such as LOCAL PRINT and RESCREEN,
are processed locally in xsm_getkey and not returned to the caller.

There is another function called xsm_ungetkey, which pushes logical key values back
on the input stream for retrieval by xsm_getkey. Since all JAM input routines call
xsm_getkey, you can use it to generate any input sequence automatically. When you
use it, calls to xsm_getkey will not cause the display to be flushed, as they do when
keys are read from the keyboard.

There are a number of user—installed functions that may be called by xsm_getkey. For.
further information see the section on installing functions in the Programmer’s Guide.- ...

Finally, there is a mechanism for detecting an externally established abort condition, es-
sentially a flag, which causes JAM input functions to return to their callers immediately.
The present function checks for that condition on each iteration, and returns the ABORT
key if it is true. See xsm_isabort.

Application programmers should be aware that JAM control strings are not executed
within this function, but at a higher level within the JAM run-time system (i.e., functions
that call xsm_getkey. If you call this function, do not expect function key control
strings to work.

Page 154 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

The multiplicity of calls to user functions in xsm_getkey makes it a little difficult to
see how they interact, which take precedence, and so forth. In an effort to clarify the pro-
cess, we present an outline of xsm_getkey. The process of key translation is deliberate-
ly omitted, for the sake of clarty; that algorithm is presented separately, in the keyboard
translation section of the Programmer’s Guide.

***Gen 1
8 If an abort condition exists, return the ABORT key.
B If there 1s a key pushed back by ungetkey, return that.

® If playback is active and a key is available, take it directly to Step 2;
otherwise read and translate input from the keyboard. When the key-
board is read, then the asynchronous function (if one is installed) is
called during periods of keyboard inactivity.

% Step 2

8 Pass the key to the keychange function. If that function says to discard
the key, go back to Step 1; otherwise if an abort condition exists, return
the ABORT key.

8 If recording is active, pass the key to the recording function.
**¥ Step 3
8@ -If the routing table says the key is to be processed locally, do so.
8 If the routing table says to return the key, return it; otherwise, go back to
Step 1.
W If the key is a soft key, return 1ts logical value.
RETURNS

The standard ASCII value of a displayable key; a value greater than 255 (FF hex)
for a key sequence mn the key translation file.

RELATED FUNCTIONS

old flag = xsm keyfilter(flag):;
return value = xsm_ungetkey (key);

JAM Release 5 1 March 91 Page 155

JAM PL/1 Programmer’s Guide

gofield

move the cursor into a field

RCRCORREOG AR 3 R i I T o S AT TR S I T e
SYNOPSIS

declare field number fixed binary(31);

declare status fixed binary(31);

status = xsm gofield(field number);
DESCRIPTION

Positions the cursor to the first enterable position of field number. If the field is
shiftable, it is reset.

In aright-justified field, the cursor is placed in the nghtmost position and 1n a left—justi-
fied field, in the leftmost. In either case, if the field has embedded punctuation, the cursor
goes to the nearest position not occupied by a punctuation character. Use xsm _off_go-
field to place the cursor in position other than that of the first character of a field.

When called to position the cursor in a scrollable array, xsm _o_gofield and
xsm_i_gofield return an error if the occurrence number passed exceeds by more than
1 the number of allocated occurrences in the specified array. If the desired occurrence is
offscreen, it is scrolled on—-screen.,

This function doesn’t immediately trigger field entry, exit, or validation processing. Such
processing occurs based on the cursor position when control returns to xsm_input.

RETURNS

-1 if the field is not found.

0 otherwise.

VARIANTS
status = xsm e gofield(field name, element);
status = xsm i gofield(field name, occurrence);
status = xsm n_gofield(field name);
status = xsm o gofield(field number, occurrence);

RELATED FUNCTIONS

status = xsm off gofield(field number, offset);

Page 156 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

gp_inquire

SYNOPSIS
$include ’'smglobs.incl.pll’;
declare group_name char (256) varying:
declare which fixed binary(31);
declare value fixed binary(31);
value = xsm_gp_inquire (group name, which);
DESCRIPTION

Use this function to obtain various information about group. The variable which is a
mnemonic that specifies the particular piece of information desired.

Mnemonics for which are defined in the file smglobs.incl.pll. They are:

Mnemonic Meaning

GP_NoccCs | Numberof occurrences in the group (sum of number of occurrences of
all fields/arrays in group)
GP_FLAGS |Flags

RETURNS

The value of which, if found, or
-1 otherwise.

JAM Release 5 1 March 91 Page 157

JAM PL/1 Programmer's Guide

gtof

convert a group name and index into a field number and
occurrence

RIRGINY YD

SYNOPSIS

ST WSS RS T TR G

declare group name char(256) varying;
declare group occurrence fixed binary(31);
declare occurrence fixed binary(31);
declare field_number fixed binary(31);

field number = xsm_i gtof(group name, group occurrence,
occurrence) ;

DESCRIPTION

NOTE: This function only exists i the i_ variation. There is no xsm_gtof since
groups cannot be referenced by number.

Use this function to convert a group name and group_occurrence into a field number and
occurrence. The vanable group_name is the name of the group and group_occur-
rence is the specific field within the group.

The function returns the field number of the referenced field and inserts the occurrence
number into the memory location addressed by occurrence.

Using this function allows you to use other JAM library routines to manipulate group
fields by converting group references into field references.For mnstance, if you wanted to
access text from a specific field within a group you would need to use xsm_i_gtof to
get the field and occurrence number before you could use the function xsm_o_get-
field to retrieve the text.

RETURNS

The field number if found.
0 otherwise.

RELATED FUNCTIONS

buffer = xsm _ftog(field number, group_occurrence);

Page 158 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

gval

force group validation

SYNOPSIS
declare group_name char (256) varying;
declare status fixed binary(31);
status = xsm_n_gval (group_name) ;
DESCRIPTION

NOTE: This function only exists inthe xsm_n_gval variation. There isno xsm_gval
since groups cannot be referenced by number.

Use this function to force the execution of a group’s validation function. Use
xsm_s_val to validate all fields and groups on the screen.

RETURNS

-1 if the group fails any validation.
-2 if the group name is invalid.
0 otherwise.

RELATED FUNCTIONS

status = xsm_fval (field_number);
status = xsm s val();

JAM Release 5 1 March 91 Page 159

JAM PL/1 Programmer's Guide

gwrap

get the contents of a wordwrap array

e o O O S RO S Bt e o L G N R TR T
SYNOPSIS

declare buffer char (256) varying;

declare field number fixed binary(31);

declare buffer length fixed binary(31);

declare length fixed binary(31);

length = xsm gwrap(buffer, field number, buffer length);
DESCRIPTION

This function copies the contents of the array specified by field number, one occur-
rence at a time, nto buf fer, up to the size specified by buffer_ length. A space is
inserted before every non—empty occurrence, except the first.,

The variant xsm_o_gwrap copies the contents of the array, beginning with the specified
occurrence.

RETURNS

The length of transferrable data. If this is greater than buffer_length, then the data-
was truncated.
-1 if the field number is invalid or buffer_length is<O0.

VARIANTS

status = xsm o gwrap(buffer, field_number, occurrence,
buffer length);

RELATED FUNCTIONS

status = xsm pwrap(field number, text):

Page 160 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

hip_by name

display help window

SYNOPSIS
declare help_screen char (256) varying;
declare status fixed binary(31):
status = xsm _hlp by name (help_screen);
DESCRIPTION

The named screen is displayed and processed as a normal help screen, including input
processing for the current field (if any).

Refer to the Author’s Guide for instructions on how to create various kinds of help
screens and for details of the behaviour of help screens.

RETURNS

-1 if screen is not found or other error;
1 if data copied from help screen to underlying field;
0 otherwise.

JAM Release 5 1 March 91 Page 161

JAM PL/1 Programmer's Guide

home

home the cursor

SYNOPSIS

declare field number fixed binary(31);
field_number = xsm_home();

DESCRIPTION

This function moves the cursor to the first enterable position of the first tab—unprotected
field on the screen. If the screen has no tab—unprotected fields, the cursor is moved to the
first line and column of the topmost screen. However, if you are using the JAM Execu-
tive, the cursor may not be visible if there are no tab—unprotected fields.

The cursor will be put into a tab-protected field if it occupies the first line and column of
the screen and there are no tab-unprotected fields.

This function doesn’t immediately trigger field entry, exit, or validation processing. Pro-
cessing is based on the cursor position when control returns to xsm_input.

When the JAM logical key HOME is hit, xsm_home is called.
RETURNS

The number of the field in which the cursor 1s left, or
0 if the form has no unprotected fields and the home position 1s not in a protected field.

RELATED FUNCTIONS

call xsm_backtab();

status = xsm gofield(field number);
call xsm last();

call xsm nl{();

call xsm tab():;

Page 162 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

variants that take a field name and occurrence number

SR R O

SYNOPSIS
declare field name char (256) varying;
declare occurrence fixed binary(31);
call xsm i ...(field name, occurrence, ...);
DESCRIPTION

The i__ variants each refer to data by field name and occurrence number. An occurrence
is a slot within an array in which data may be stored. Occurrences may be either on or
off-screen. Since JAM treats an individual field as an array with one field, even a single
non-scrolling field is considered to have one occurrence. The JAM library contains rou-
tines that allow you to manipulate individual occurrences during run—time.

If occurrence is zero, the reference is always to the current contents of the named
field, or of the base field of the named array.

For the description of a particular function, look under the related function without i_in
-its name. For example, xsm_i_amt_format is described under xsm_amt_format.

If the named field 1s not part of the screen currently being displayed, these functions will
attempt to retrieve or change its value in the local data block.

JAM Release 5 1 March 91 Page 163

JAM PL/1 Programmer’s Guide

ininames

record names of initial data files for local data block

RO

SYNOPSIS
declare name_list char(256) varying;
declare status fixed binary(31);
status = xsm ininames (name_list);
DESCRIPTION

Use this routine to set up a list of initialization files for local data block entries. The file
names in the single stnng name_1ist should be separated by commas, semicolons or
blanks. There may be up to ten file names. You may achieve the same effect by defining
the SMININAMES variable in your setup file to the list of names. See setup files 1n the
Configuration Guide and the Data Dictionary chapter of the Author’s Guide for details.

The files contain pairs of names and values, which are used to imtialize local data block
entries by xsm_ldb_init. This function is called during JAM imtalization, so
xsm_ininames should be called before then. White space in the initialization files is
ignored, but we suggest a format like the following:

Yemperor® ”Julius Caesar”

#lieutenant” ”Mark Antony”

"assassin[l]” “Brutus”
"assassin[2]” “Cassius”

Entries of all scopes may be freely mixed within all files. We recommend, however, that
entries be grouped in files by scope if you are planning to use xsm_lreset. Use
xsm_lreset 1o clear all entries of a given scope before reinitializing them from a
single file.

RETURNS

=5 if insufficient memory is available to store the names;
0 otherwise.

RELATED FUNCTIONS

call xsm ldb init();
status = xsm lreset (file_name, scope);

Page 164 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

initcrt
initialize the display and JAM data structures

B b L D A G M

SYNOPSIS

declare path char (256) varying;
call xsm initecrt (path);

declare path char (256) varying;
call xsm_jinitcrt (path);

declare path char (256) varying;
call xsm_jxinitcrt (path);

DESCRIPTION

The function xsm_initcrt is intended for use only with a user-written executive. It is
called automaucally by the JAM Executive.

xsm_initcrt must be called at the beginning of screen handling, that is, before any
screens are displayed or the keyboard opened for input to a JAM screen. Functions that
set options, such as xsm_option, and those that install functions or configuration files
such as xsm_uinstall or xsm_vinit, are the only kind that may be called before
xsm_initcrt.

The argument path is a directory to be searched for screen files by xsm _r window
and variants. First the file is sought in the current directory; if it is not there, it is sought
in the path supplied to this function. If it is not there either, the paths specified in the envi-
ronment variable SMPATH (if any) are tned. The path argument must be supplied. If all
forms are in the current directory, or if (as JYYACC suggests) all the relevant paths are spe-
cified in SMPATH, an empty string may be passed. After setting up the search path,
xsm_initcrt performs several initializations:

1. [Itcalls a user—defined initialization routine. -

2. Itdetermines the terminal type, if possible by examining the environ-
ment (TERM or SMTERM), otherwise by asking the user.
3. It executes the setup files defined by the environment variables

SMVARS and SMSETUP, and reads in the binary configuration files
(message, key, and video) specific to the terminal.

4. Tt allocates memory for a number of data structures shared among
JAM library functions.

JAM Release 5 1 March 91 Page 165

JAM PL/1 Programmer’'s Guide

5. If supported by the operating system, keyboard interrupts are trapped
to a routine that clears the display and exits.

6. It inualizes the operating system display and keyboard channels, and
clears the display.

The functions xsm_jinitcrt and xsm_jxinitcrt arecalled by jmain.pll and

jxmain.pll respectively for applications that use the JAM Executive. They, in turn,
callxsm initcrt.

RELATED FUNCTIONS

call xsm_resetcrt();
call xsm jresetcrt();
call xsm_Jxresetcrt();

Page 166 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

input

open the keyboard for data entry and menu selection

SYNOPSIS
declare initial_mode fixed binary(31);
declare key fixed binary(31);
key = xsm_input (initial_mode);
DESCRIPTION

This routine is only used if you are writing your own executive. Use xsm_input toopen
the keyboard for either data entry or menu selection.

You specify which mode you wish to be in with the argument initial_mode. Possible
choices are defined in smdefs.incl.pll. They are:

BIN_AUTO JAM checks whether you specified the screen to begin menu mode or data
entry mode (See Author’s Guide).

BIN_DATA Start in data entry mode.
BIN_MENU Start in menu mode.

In most cases you will want to use IN_AUTO mode. Use IN_DATA or IN_MENU if you
wish to override the setting that you specified via the Screen Editor.

This routine calls xsm_getkey to get and interpret keyboard entry. While in data entry
mode ASCII data is entered into fields on the screen, subject to any restrictions or edits
that were defined for the fields. The routine returns to the calling program when it en-
counters a logical key, when a “return entry” field is filled or tabbed from, or a key with
the return bit set 1n the routing table.

If the logical value returned by xsm_getkey 1s TRANSMIT, EXIT, HELP, or a cursor
» position key, the processing is determined by a routing table. The routing options are set

with xsm_keyoption. See xsm_keyoption for more information.

This function replaces version 4.0 xsm choice, xsm_menu_proc, and

xsm_openkeybd. These functions only exist in your version S. 01 library for backward

compatibility. We strongly suggest that you do not use them in the future.

RETURNS

The key hit by the end—user that terminated the call to xsm_input, or the first character
of the selected menu item.

JAM Release 5 1 March 91 Page 167

JAM PL/1 Programmer's Guide

inquire
obtain value of a global integer variable
2000 R R A e B S 3 Nt e

SYNOPSIS

$include ’'smglobs.incl.pll’;

declare which fixed binary(31);

declare value fixed binary(31);

value = xsm_inquire(which);
DESCRIPTION

This function is used to obtain the current integer value of a global variable. The desired
variable is specified by whi ch. If the value of which is a true/false (the flag is on or off)
value then xsm_inquire retumns 1 for true and 0 for false. If you wish to modify a
global integer value use xsm_iset. The permissible values for which are defined in
smglobs.incl.pll. The following values are available:

Mnemonic Meaning

I_NODISP In non-display mode? (T/F). Initially FALSE, setting TRUE
causes no further changes to the actual display, although JAM’s
intemal screen image 1s kept up to date. This was release 4’s
sm_do_not_display flag.

I_INSMODE |In insert mode? (T/F).

I_INXFORM |In JAM screen editor? (T/F) Field validation routines are
generally still called when in editor; they can check this flag to
disable certain features.

I_MXLINES |Number of lines available for use by JAM on the hardware
display.

I_MXCOLMS | Number of columns available for use by JAM on the hardware
display.

— I_NLINES Maximum number of lines available on the current screen, not -
" including the status line.

I_NCOLMS Maximum number of columns available on the current screen, not
including the status line.

I INHELP Help screen is currently displayed? (T/F)

Page 168 JAM Release 5 1 March 91

“w

JAM PL/1 Programmer’s Guide

Mnemonic Meaning
I_BSNESS Screen manager is in control of display? (T/F). (Replaces rel. 4
inbusiness function).
I_BLKFLGS |Block mode is tumed on? (T/F)
SC_VFLINE | First screen line of viewport (0O-based).
SC_VFCOILM |Furst screen column of viewport (0-based).
SC_VNLINE [Number of lines in viewport.
SC_VNCOLM | Number of columns in viewport.
SC_VOLINE |Line offset of viewport.
SC_vocoLM | Column offset of viewport.
SC_NLINE Number of lines in screen.
SC_NCOLM Number of columns in screen.
SC_CLINE Current line number in screen,
SC_CCOLM Current column number in screen.
SC_NFLDS Number of fields on screen.
SC_NGRPS Number of groups on screen.
SC_BKATTR | Background attributes of screen.
SC_BDCHAR | Border character of screen.
SC_BDATTR | Border attributes of screen.
RETURNS

If the argument corresponds to an integer global variable, the current value of that vari-

able is returned.

1 true, flag is set to on.
0 false, flag is set to off.

-1 otherwise.

RELATED FUNCTIONS

value = xsm_finquire(field number, which);
value = xsm_gp_inquire(group_name, which);
value = xsm_iset (which, newval);

buffer = xsm pinquire(which);

buffer = xsm pset (which, newval);

JAM Release 5 1 March 91

Page 169

JAM PL/1 Programmer's Guide

intval
get the inte

oy

i ST b R R AR R S RTINS

SYNOPSIS
declare field number fixed binary(31):
declare value fixed binary(31);
value = xsm_intval (field number);
DESCRIPTION

This function returns the integer value of the data contained 1n the field specified by
field number. Any punctuation characters in the field, except a leading plus or minus
sign, are ignored.

RETURNS

The integer value of the specified field.
0 if the field is not found.

VARIANTS

value = xsm e intval(field name, element);
value = xsm i_intval(field name, occurrence);
value = xsm n_intval (field name);

value = xsm o_intval (field number, occurrence);

RELATED FUNCTIONS

status = xsm itofield(field number, value);

Page 170 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

joccur

insert blank occurrences into an array

L S e e R e S Baee03000022208 L P

SYNOPSIS
declare field number fixed binary(31);
declare occurrence fixed binary(31);
declare count fixed binary(31);

declare lines_inserted fixed binary(31):
lines_inserted = xsm o_ioccur(field number, occurrence, count);

DESCRIPTION

NOTE: This function only exists in the i__ and o__ variations. There is no xsm_ioc-
cur, since this function applies only to arrays.

Inserts count blank occurrences before the specified occurrence, moving that occur-
rence and all following occurrences down. If inserting that many would move an occur-
rence past the end of its array, fewer will be inserted. If the amay is scrollable, then this
function may allocate up to count new occurrences. This function never increases the
maximum number of occurrences an array can contain; xsm_sc_max does that. If
count is negative, occurrences will be deleted instead, subject to limitations described
in the page for xsm_doccur. In addition, this function never inserts more blank occur-
rences than the number of blank occurrences following the last non-blank occurrence
(that is, it won’t push data off the end of an array).

If occurrence is zero, the occurrence used 1s that of f£ield number. If occur-
rence is nonzero, however, it is taken relative to the first field of the array in which
field_ number occurs.

Any clearing—unprotected synchronized arrays will have the same operations performed
on them as the referenced array. Synchronized arrays that are protected from clearing will
remain constant. Therefore, a protected array may be used to number a list of data stored
in a non—-protected synchronized array as it grows and shrinks.

This function is normally bound to the INSERT LINE key.
RETURNS

-1 if the field or occurrence number is out of range.
=3 if insufficient memory is available.
otherwise, the number of occurrences actually inserted (zero or more).

VARIANTS

lines_inserted = xsm i_ioccur(field name, occurrence, count);

JAM Release § 1 March 91 Page 171

JAM PL/1 Programmer's Guide

iIS_Nno

test field for no

SYNOPSIS
declare field number fixed binary(31);
declare status fixed binary(31);
status = xsm_is_no(field number);
DESCRIPTION

The first character of the field contents specified by field number is compared with
the first letter of the SM_NO entry in the message file, ignonng case. If they match this
function will return a 1 for true. If they do not match for any reason, the function returns
a 0 for failure. There is no way to tell if the failure is due to a Y in the field or because of
some other problem. If you wish to check for a Y response use xsm_is_yes.

Thas function is ordinanly used with one-letter fields possessing the yes/no character
edit. In this case, the only characters allowed in the field are y, n, or space (which means
n). Unlike other functions, xsm_is_no does not ignore leading blanks.

RETURNS
1 if the field’s first character matches the first character of the SM_NO entry in the

message file,

0 otherwise.

VARIANTS
status = xsm e is _no(field name, element);
status = xsm i_is no(field name, occurrence);
status = xsm n is_no(field name);
status = xsm_o_is_no(field number, occurrence);

RELATED FUNCTIONS
status = xsm_is_yes(field number):

Page 172 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

IS_yes

test field for yes

SYNOPSIS
declarxe field number fixed binary(31);
declare status fixed binary(31);
status = xsm_is_yes(field number);
DESCRIPTION

The first character of the field contents specified by field number is compared with
the first letter of the SM_YES entry in the message file, ignoring case. If they match this
function will return a 1 for true, If they do not match for any reason, the function returns
a 0 for failure. There is no way to tell if the failure is due to an N 1n the field or because of
some other problem. If you wish to check for an N response use xsm_is_no.

This function is ordinarily used with oneletter fields possessing the yes/no character
edit. In this case, the only characters allowed in the field are y, n, or space (which means
n). Unlike other functions, xsm_is_yes does not ignore leading blanks.

RETURNS

1 if the field’s first character matches the first character of the SM_YES entry in the
message file.
0 otherwise.

VARIANTS

status = xsm e_is_yes(field name, element);
status = xsm_i_is_yes (field name, occurrence);
status = xsm n is yes(field name);

status = xsm o_is yes(field number, occurrence);

RELATED FUNCTIONS

status = xsm_is_no(field number);

JAM Release § 1 March 91 Page 173

JAM PL/1 Programmer’s Guide

isabort

test and set the abort control flag

ik, 3 AN

B TR T T RN
™ N &

SYNOPSIS

declare flag fixed binary(31);

declare old flag fixed bainary(31);

old flag = xsm_isabort (flag);
DESCRIPTION

Use xsm_isabort to set the abort flag to the value of £1ag, and return the old value.
£1ag must be one of the following as defined in smdefs.incl.pll:

Flag Meaning
ABT_ON set abort flag
ABT OFF clear abort flag
ABT_DISABLE twrn abort reporting off
| ABT=NOCHANGE do not alter the flag

Abort reporting is intended to provide a quick way out of processing in the JAM library,
which may involve nested calls to xsm_input. The triggenng event is the detection of
an abort condition by xsm_getkey, either an ABORT keystroke or a call to this func-
tion with ABT _ON (such as from an asynchronous function).

This function enables application code to verify the existence of an abort condition by
testing the flag, as well as to establish one.

RETURNS
The previous value of the abort flag.

Page 174 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

iset

change value of integer glo

SYNOPSIS

$include ’'smglobs.incl.pll’;

declare which fixed binary(31):

declare newval fixed binary(31);

declare value fixed binary(31);

value = xsm iset (which, newval);
DESCRIPTION

JAM has a number of global parameters and settings. This function is used to modify the
current value of integer globals. The vanable to change is specified by which. The new
value is specified by newval. If you wish to get the value of a global integer use
xsm_inquire.

The permissible values for the argument which are defined in the header file
smglobs.incl.pll. The following values are available:

Mnemonic Quantity Meaning
I_NODISP 0 Disable updating of display.
1 Enable updating of display. i
I_INSMODE 0 Enter overtype mode.
1 Enter insert mode.
RETURNS
If which is one of the permissible values, the former value of the appropniate variable
is returned.
1 True, the flag was set to on.
0 False, the flag was set to off.
-1 otherwise.
RELATED FUNCTIONS

value = xsm finquire(field number, which);

JAM Release 5 1 March 91 Page 175

JAM PL/1 Programmer’s Guide

value = xsm gp_inquire(group name, which);
value = xsm_inquire(which);

buffer = xsm pinquire(which);

buffer = xsm pset (which, newval);

Page 176 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

iIsselected

determine whether a radio button or checklist occur-
rence has been selected

e

SYNOPSIS

declare group_name char(256) varying;
declare group_occurrence fixed binary(31);
declare status fixed binary(31):

status = xsm_isselected(group name, group_occurrence);
DESCRIPTION

This function lets you check to see whether or not a specific occurrence within a check list
or radio button has been selected. The selection is referenced by the group name and oc-
currence number. If the occurrence is selected, xsm_isselected returnsa l. A 0 is
returned if the occurrence is not selected. See the Author’s Guide for a more detailed dis-
cussion of groups.

Radio button and checklist occurrences are selected by using xsm_select. Using
xsm_select onaradio button occurrence causes the current selection to be deselected.
Checklist occurrences are deselected with xsm_deselect.

RETURNS

-1 arguments do not reference a checklist or radio button occurrence.
0 not selected.
1 selected.

RELATED FUNCTIONS

status = xsm_deselect (group name, group_occurrence);
length = xsm getfield(buffer, field number);

value = xsm intval (field number);

status = xsm_select (group_name, group_occurrence);

JAM Release 5 1 March 91 Page 177

JAM PU/1 Programmer's Guide

ISSV

determine if a screen is in the saved list

SYNOPSIS
declare screen_name char (256) varying;
declare status fixed binary(31);
status = xsm_issv(screen_name);
DESCRIPTION

JAM maintains a list of screens that are saved in memory. This function searches the save
list for a single screen and returns 1 is the screen is found (See xsm_svscreen).

This function is generally called by applications at screen entry to avoid re-acquiring data
(via a database query) for previously saved screens. To accomplish this, first use
xsm_svscreen to add the screen to the save list upon screen exit. Next, use
xsm_issv to check the save list upon screen entry. If the screen is on the save hist, you
know that it has been previously displayed.

RETURNS

1 if the screen 1s 1n the saved list.
0 otherwise.

RELATED FUNCTIONS

status = xsm_svscreen(screen_list, count);

Page 178 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

itofield

write an integer value to a field

SYNOPSIS
declare field number fixed binary(31);
declare value fixed binary(31);
declare status fixed binary(31);
status = xsm itofield(field number, value);
DESCRIPTION

The integer passed to xsm_itofield is converted to characters and placed in the spe-
cified field. A number longer than the field will be truncated, on the left or right, accord-
ing to the field’s justification, without warning,

RETURNS

-1 if the field is not found.
0 otherwise.

VARIANTS

status = xsm e _itofield(field name, element, value);
status = xsm_i_itofield(field name, occurrence, value);
status = xsm n_itofield(field name, value);

status = xsm o_itofield(field number, occurrence, value);

RELATED FUNCTIONS

value = xsm intval (field number);

JAM Release 5 1 March 91 Page 179

JAM PL/1 Programmer's Cuide

jclose

close current window or form under JAM Executive con-
trol

SYNOPSIS

declare status fixed binary(3l):
status = xsm_jclose();

DESCRIPTION

The active screen is closed, and the display is restored to the state before the screen was
opened. xsm_jclose should only be used when the JAM Executive is in use.

In the case of closing a form, xsm_jclose pops the form stack and calls xsm_jform
to display the screen on the top of the form stack.

In the case of closing a window, xsm_jclosecallsxsm close_window. Since win-
dows are stacked, the effect of closing a window is to retum to the previous window. The
cursor reappears at the same position it had before the window was opened.

RETURNS

-1 if there 1s no window open, i.. if the currently displayed screen 1s a form
(or if there is no screen displayed).
0 otherwise.

RELATED FUNCTIONS

status = xsm_close_window();
status = xsm jform(screen name) ;
status = xsm_jwindow(screen_name) ;

Page 180 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

jform

display a screen as

SYNOPSIS

declare screen_name char (256) varying;

declare status fixed binary(31);

status = xsm_jform(screen_name);
DESCRIPTION

This function must be used with the JAM Executive. If you are not using the JAM Ex-
ecutive, use xsm_r_form or one of its variants. If you wish to display a window under
JAM control, use xsm_jwindow.

This function displays the named screen as a form. You may close the form with
xsm_jclose, or leave the task to the JAM Executive (e.g., when the user presses the
EXIT key). Bringing up a screen as a form causes the previously displayed form and win-
dows to be discarded, and their memory freed. The new form 1s placed on top of the
JAM'’s form stack.,

The difference between xsm_jform and xsm_r_form, other than the function argu-
ments, is that only xsm_j f orm manipulates the form stack. Since xsm_jform calls
xsm_r_form, refer to xsm_r_form for information on other details, such as how the
screen to be displayed is found.

The character string screen_name uses the same format as that of a JAM control
string that displays a form. In addition to the screen’s name, you may optionally specify
the position of the form on the physical display, the size of the viewport, and which por-
tion of the form will be positioned in the viewport’s top-left corner. See the Authoring
Reference in the Author’s Guide for details of viewport positioning. The following are all
legal strings:
status = xsm_jform(’ foxm’);
Display form’s first row and column at the top-left comer of the physical display.
status = xsm_jform(’ (20,10) form’);
Display form’s first row and column at the 20th row and 10th column of the physical dis-
play.
status = xsm_jform(’ (20,10,15,8) form’);
Display the first row and column of the form at the 20th row and 10th column of the phys-
ical dusplay in viewport that is 15 rows by 8 columns.

A form may be larger than the viewport. If the viewport does not fit on the screen where
indicated, JAM will attempt to place it entirely on the display at a different location. If

JAM Release 5 1 March 91 Page 181

JAM PU/1 Programmer’s Guide

you specify a viewport that is larger than the physical display, the viewport will be the
size of the physical display. If you wish to change the viewport size after the window is
displayed, use xsm_viewport.

RETURNS

0 if no error occurred.
-1 if the screen file’s format is incorrect.
-2 1if the screen cannot be found.
-4 1if, after the display has been cleared, the screen cannot be successfully displayed
because of a read error.
=5 if, after the display was cleared, the system ran out of memory.

RELATED FUNCTIONS

status = xsm r form(screen name);
status = xsm_jwindow(screen_name) ;

Page 182 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

iplcall

execute a JPL jpl procedure

R AT ¥ AR BT
SYNOPSIS
declare jplcall text char (256) varying;
declare return_value fixed binary(31);
return_value = xsm_jplcall (jplcall_text);
DESCRIPTION

This function executes a JPL procedure precisely as if the following JPL statement were
executed from within a JPL procedure:

Jpl jplcall_text

For example, if the value of jplcall_text were:
verifysal :name 50000

then

and
jrl verifysal :name 50000

would be equivalent. See the JPL Programmer’s Guide for further information on the JPL
jpl command.

RETURNS

-1 if the procedure could not be loaded.
Otherwise, the value returned by the JPL procedure.

JAM Release 5 1 March 91 Page 183

JAM PL/1 Programmer’s Guide

jplload

execute the JPL load command

NG e I AR A £ W

SYNOPSIS
declare module name_list char(256) varying;
declare status fixed binary(31):;
status = xsm_jplload(module_name list);
DESCRIPTION

This function is the PL/1 interface to the JPL. 1oad command. Use this command to load
one or more modules into memory.

The character string module_name_1list may be one or more module names. Sepa-
rate module names with a space.

Calling xsm_jplload has precisely the same effect as using the JPL 1oad command.
See the JPL Programmer’s Guide for further information on the JPL 10ad command.

Use xsm_jplunload to remove a module from memory.

RETURNS

-1 if there is an error.
0 otherwise.

RELATED FUNCTIONS

status = xsm_jplpublic (module_name_list):;
status = xsm_jplunload(module name);

Page 184 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

jplpublic
execute the JPL public command

LR R, SR

SYNOPSIS
declare module_name_list char(256) varying;
declare status fixed binary(31);
status = xsm_jplpublic (module_name list);
DESCRIPTION

This function is the PL/1 interface to the JPL public command. Use this command to
load one or more modules into memory.

The character string module_name may be one or more module names. Separate mod-
ule names with a space.

Calling xsm_jplpublac has precisely the same effect as using the JPL public com-
mand. See the JPL Programmer’s Guide for further information on the JPL public
command.

Use xsm_jplunload to remove a module from memory.

RETURNS

-1 if there is an error.
0 otherwise.

RELATED FUNCTIONS

status = xsm_jplload(module name_list);
status = xsm_jplunload (module_name);

JAM Release 5 1 March 91 Page 185

JAM PL/1 Programmer's Guide

jplunload

g L M LA A P g R TR e ot v eV Y i 4 4

SYNOPSIS
declare module_name char (256) varying:;
declare status fixed binary(31):;
status = xsm_jplunload(module name);
DESCRIPTION

This function is the PL/1 interface to the JPL unload command. Use this command to
remove one or more modules from memory. Modules are read into memory by using ei-
ther xsm_jplpublic or xsm_jplload or via the corresponding JPL commands.

Calling xsm_jplunload has precisely the same effect as using the JPL unload com-
mand. See the JPL Programmer’s Guide for further information on the JPL unload
command.

The character stnng module_name may be one or more module names. Separate mod-
ule names with a space.

RETURNS

-1 if there is an error.
0 otherwise.

RELATED FUNCTIONS

status = xsm_jplload(module_name list);
status = xsm_Jjplpublic (module name_list);

Page 186 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

jtop

start the JAM Executive

L

SYNOPSIS
declare screen_name char (256) varying;
declare status fixed binary(31);
status = xsm_jtop(screen_name);
DESCRIPTION

All applications using the JAM Executive must include a call to xsm_jtop. This func-
tion starts the JAM Executive. The argument screen_name is the name of the first
screen that your application displays. It will be displayed as a form. Once xsm_jtop s
called the JAM Executive is in control until the user exits the application.

The JAM Executive makes calls to various JAM functions that handle all of the tasks
needed to control the flow of an application such as opening the keyboard for input, open-
ing and closing forms and windows, and processing all control strings.

If you do not use xsm_jtop you will have to write your own procedures to control the
flow of your application. See the JAM Development Overview for a more detailed dis-
cussion of the JAM Executive.

RETURNS
0 Always.

JAM Release § 1 March 91 Page 187

JAM PL/1 Programmer's Guide

jwindow

display a window at a given posmon under JAM control

SYNOPSIS
declare screen_ name char(256) varying;
declare status fixed binary(31);
status = xsm_jwindow(screen_name);
DESCRIPTION

This functrion must be used with the JAM Executive. If you are not using the JAM Ex-
ecutive, use xsm_x_window or one of its variants. If you wish to display a form under
JAM control, use xsm_jform.

Thus function displays the named screen as a window, by calling xsm_r_window. You
may close the window with a call to xsm_jclose, orleave the task to the JAM Execu-
tive (e.g., when the user presses the EXIT key).

There is currently no difference between xsm_jwindow and xsm_r_window except
for their arguments (although xsm _jwindow 1s not supported uniess the JAM Execu-
tive is in use). See the description of xsm_r_window for the details of the behavior of
xsm_jwindow.

The character string screen_name uses a format similar to that of a JAM control string
that displays a window. Use a single ampersand to specify a stacked window and a double
ampersand to specify a sibling window. If the ampersand is omitted, then the screen will
be opened as a stacked window. In addition to the screen’s name, you may optionally
specify the position of the window on the physical display, the size of the viewport, as
well as which portion of the window will be positioned in the viewport’s top-left corner.
The positioning and s1zing syntax 1s identical to that of xsm_jform. See xsm_jform
for examples of acceptable strings.

RETURNS

0 if no error occurred during display of the screen

-1 if the screen file’s format is incorrect

-2 if the form cannot be found

=3 if the system ran out of memory but the previous screen was restored

RELATED FUNCTIONS

status = xsm_jclose();
status = xsm_jform(screen_ name);

Page 188 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

status = xsm_r window(screen_name, start_line, start_column);

JAM Release 5 1 March 91 Page 189

JAM PL/1 Programmer's Guide

keyfilter

control keystroke record/playback filtering
PN T S AR AL g T A - et et v S vl v g w3
SYNOPSIS
declare flag fixed binary(31);
declare old_flag fixed binary(31);
old_flag = xsm keyfilter(flag):
DESCRIPTION

This function tumns the keystroke record/playback mechanism of xsm_getkey on
(flag = 1) or off (f1ag = 0). If no key recording or playback function has been in-
stalled, turning the mechanism on has no effect.

It returns a flag indicating whether recording was previously on or off.
RETURNS
The previous value of the filter flag.
RELATED FUNCTIONS
key = xsm_getkey () ;

Page 190 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

keyhit

test whether a key has been typed ahead

- e 200 3000,
SYNOPSIS
declare interval fixed binary(31);
declare status fixed binary(31);
status = xsm keyhit (interval);
DESCRIPTION

This function checks whether a key has already been hit; if so, it returns 1 immediately. If
not, it waits for the indicated interval and checks again. The key (if any is struck) is not
read in, and 1s available to the usual keyboard input routines.

intexrval isin tenths of seconds; the exact length of the wait depends on the granularity
of the system clock, and 1s hardware— and operating-system dependent. JAM uses this
function to decide when to call the user—supplied asynchronous function.

If the operating system does not support reads with timeout, this function ignores the in-
terval and only returns 1 i1f a key has been typed ahead.

RETURNS

0 if no key is available,
non-0 otherwise.

RELATED FUNCTIONS

key = xsm_getkey ()

JAM Release § 1 March 91 Page 191

JAM PL/1 Programmer's Guide

keyinit
initialize key translation table
VRN 000 R e R e R R R T e S v gy ™ Beigivint v St iy -

B N e AR

SYNOPSIS
declare key_ address bit (0);
declare status fixed binary(31);
status = xsm keyinit (key_address);
DESCRIPTION

This routine is called by xsm_initcrt as part of the initialization process, but it can
also be called by an application program (either before or after xsm_initcrt)toinstall
a memory-resident key translation file.

To install a memory-resident key translation file, key _address must contain the ad-
dress of a key translation table created using the key2bin and bin2p11 utilities.

RETURNS

0 if the key file is successfully installed.
Program exit if the key file is invalid.

VARIANTS

status = xsm n_keyinit (key_ file);

Page 192 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

keylabel

get the printable name of a logical key

e ot SRR Y R T e A S R

SYNOPSIS
$include ’smkeys.incl.pll’;
declare buffer char(256) varying;
declare key fixed binary(31);
buffer = xsm keylabel (key);

DESCRIPTION

Returns the label defined for key in the key translation file; the label is usually what is
printed on the key on the physical keyboard. If there is no such label, returns the name of
the logical key from the following table. Here is a list of key mnemonics:

Logical Key Mnemonics
EXIT XMIT HELP FHLP BKSP TAB NL BACK
HOME DELE INS LP FERA CLR SPGU SPGD

LSHF RSHF LARR RARR |DARR UARR REFR EMOH

INSL DELL Z00OM SFTS |MIGL VWPT MOUS

PF1-PF24 SPF1-SPF24 APP1-APP24 SFT1-SFT24

If the key code 1s invalid (not one defined in smkeys. incl. pl1l), this function returns
an empty string,

RETURNS
A string naming the key, or an empty string if it has no name.

JAM Release § 1 March 91 Page 193

JAM PL/1 Programmer's Guide

keyoption

set cursor control key optlons

SYNOPSIS
$include ‘'smkeys.incl.pll’;

declare key
declare mode

declare newval
declare oldval

DESCRIPTION

fixed binary(31);
fixed binary(31);
fixed binary(31);
fixed binary(31);
oldval = xsm keyoption(key, mode, newval):;

TR R T W TS

provie v Doty

Use xsm_keyopt ion toalter at run-time the behaviorof xsm_input when a particu-
lar key is pressed. The default values for key options are built in to JAM. This function
only works with cursor control keys. Cursor control keys include all JAM logical keys,
except for PF, SPF, and APP keys. See “Key File” in the Configuration Guide.

There are three different possible values for mode: KEY ROUTING, KEY_GROUP, and
KEY_XLATE. The mnemonics that they use are defined in smkeys. incl.pll.Allof
these modes draw on the following values for key.

Logical Key Mnemonics
EXIT XMIT HELP FHLP |BKSP TAB NL BACK
HOME DELE INS LP FERA CLR SPGU SPGD
LSHF RSHF LARR RARR |DARR UARR REFR EMOH
INSL DELL ZOOM SFTS |MTGL VWPT MOUS

BKEY_ ROUTING

Allows access to the EXECUTE and RETURN bits of the routing table. This mode 1s
generally used to disable a key or to control explictly what action is taken when a key is
hit. The following mnemonics may be assigned to newval:

1. KEY_IGNORE Disables key. JAM does nothing when key is struck.

2. EXECUTE The action normally associated with key is executed. May
be ored with RETURN.

Page 194

JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

3. RETURN No action 1s performed, but the function retums to the caller
in your code. Used to gain direct control of key’s action. May be ored
with EXECUTE.

@KEY GROUP

Allows access to the group action bats. Use this function to control the action of the cursor

when it is within a group. The following values may be assigned to newval:

L.

BKEY

VF_GROUP Obey group semantics. Hitting key will cause the cursor
to move to the next field withun the group in the indicated direction. If
this mnemonic is ored with VF_ CHANGE the cursor will exit the group
in the indicated direction.
VF_CHANGE This value has no effect, unless it is ored with
VF_GROUP. In this case the cursor will exit the group in the indicated
direction.
0 Assigning zero to newval will cause key to treat a field within a
group as if 1t were not part of a group.
VF_OFFSCREEN Offscreen data will scroll onscreen from the direc-
tion indicated.
VF_NOPROT key will move cursor into a field protected from tab-
bing.

XLATE

Allows access to the cursor table, Use this routine to assign key the action preformed by
newval.newval may be any of the logical keys listed in the table above. This can often

replace a user-supplied key change function.
RETURNS

-1 if some parameter is out of range.
the old value otherwise.

JAM Release 5 1 March 91 Page 195

JAM PL/1 Programmer’s Guide

keyset
open a keyset

DY

R Y e y R R R R i T e TR e e

SYNOPSIS
$include ’smsoftk.incl.pll’;
declare name char (256) varying:;
declare scope fixed binary(31);
declare status fixed binary(31);

status = xsm_r keyset (name, scope);

declare address bit (0);

declare scope fixed binary(31);

declare status fixed binary(31);

status = xsm d_keyset (address, scope);
DESCRIPTION

Usexsm_d_keyset andxsm_r_keyset to display a keyset. The parameter name 1s
the name of the keyset. scope must be one of the -mnemonics listed in
smsoftk.incl.pll. Application programs will normally use scope KS_APPLIC.
Values for scope are defined in smsoftk.incl.pll. For a more detailed explana-
tion of scope sce the Key Set chapter of the Author’s Guide.

If there is currently a keyset of the specified scope the name of that keyset 1s compared
with the name passed. If they are the same the present routine returns immediately. This
means that if you want to “refresh” a keyset with a new copy from disk, you must first
close the keyset with acall to xsm_c_keyset.

If the call 1s not successful then the current keyset remains displayed and an error message
is posted to the end-user, except where noted otherwise.

The most commonly used variant is xsm_r_keyset. You do not need to know where
the keyset resides because xsm_r_keyset searches for you. It looks first in the
memory resident form list, next in any open libraries, then on disk in the directory speci-
fied by the argument to xsm_initcrt, and finally in the directories specified by
SMPATH. Keyset files may be mixed freely with screen files 1n the screen hst and in li-
braries.

You may save processing time by using xsm_d_keyset to display a memory-resident
keyset. address 1s a pointer to the keyset in memory. Use the utility bin2p11 to create

Page 196 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

program data structures, from disk-based keysets, that you can compile into your
application.

To close a keyset use xsm_c_keyset.
RETURNS

0 If no error occurred during display of the keyset.
-1 If the format incorrect (not a keyset).
-2 if the keyset cannot be found. No message is posted to the end-user.
=3 If the terminal doesn’t support soft keys (or scope out of range).
—4 If there is a read error.
=5 If there is a malloc failure.

JAM Release 5 1 March 91 Page 197

JAM PL/1 Programmer’s Guide

kscscope

query current keyset scope

SR VW) S
SYNOPSIS

$include ’smsoftk.incl.pll’;

declare scope fixed binary(31);

scope = xsm _kscscope();
DESCRIPTION

This routine returns the scope of the current keyset or -1 if no keyset 1s currently active.

This function can be used to determine whether or not the apphcation keyset (as opposed
to the system keyset) is currently displayed.

Values for scope are defined in smsoftk.incl.pll.
RETURNS

Current scope, or
-1 if not found.

RELATED FUNCTIONS

status = xsm ksing(scope, number keys, number_ rows,
current_row, maximum len, keyset_name);

status = xsm_skving(scope, value, occurrence, attribute,
labell, label2);

Page 198 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

ksing

mqunre about keyset information

SYNOPSIS

$include ‘smsoftk.incl.pll’;

declare scope fixed binary(31);
declare number_keys fixed binary(31);
declare number_rows fixed binary(31):;
declare current_row fixed binary(31);
declare maximum len fixed binary(31):;
declare keyset_name char (256) varying:
declare status fixed binary(31);

status = xsm_ksing(scope, number keys, number_rows,
current_row, maximum len, keyset_name);

DESCRIPTION

Use this routme to obtain the name, number of rows, number of items within a row, and
current row of a keyset currently in memory. You supply the keyset’s scope and five
addresses to hold the information returned by xsm_skinqg. scope must be one of the
mnemonics defined in smsoftk.incl.pll.

The function places the number of rows in the keyset in number_row, the number of
soft keys per row in number_keys, and the current row number in current_row.
The name of the keyset is placed in the pre-allocated buffer keyset_name. The size of
keyset_name is specified by maximum 1len. If the name of the keyset 1n longer then
keyset_name, then xsm_ksingq fills the buffer to the end wathout adding a null char-
acter, otherwise a null character is added to the end of the string. The null pointer may be
used for any or all of the parameters about which you do not desire information.

RETURNS

0 if information is returned.
-1 if there is no active keyset for the given scope.
—2 for an invalid scope.

RELATED FUNCTIONS

scope = xsm kscscope();
size = xsm skinq(scope, row, softkey, value, display_attribute,
labell, label2);

JAM Release § 1 March 91 Page 199

JAM PL/1 Programmer's Guide

status = xsm_skvinqg(scope, value, occurrence, attribute,
labell, label2);

Page 200 JAM Release 5§ 1 March 91

JAM PL/1 Programmer's Guide

ksoff

turn off soft key labels

oo R RN Lk R S

SYNOPSIS

call xsm _ksoff();
DESCRIPTION

When akeyset is opened with any of the library routines, the labels are automatically dis-
played. If you do not wish to display the labels at any point within your application, use
xsm_ksoff to um the display off.

If you wish to turn them the label display back on, use xsm_kson.
RELATED FUNCTIONS

call xsm kson();

JAM Release 5 1 March 91 Page 201

JAM PL/1 Programmer’s Guide

kson

e
SYNOPSIS

call xsm kson({();
DESCRIPTION

Normally, keyset labels are displayed when a keyset is called up. The only way the dis-
play can be turned off 1s with the library routine, xsm_ksof£. Use this routine to turn
the label display back on.

RELATED FUNCTIONS
call xsm ksoff();

Page 202 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

| close

close a library

SYNOPSIS
declare lib_desc fixed binary(31);
declare status fixed binary(31);
status = xsm 1 close(lib_desc);
DESCRIPTION

Closes the hibrary indicated by 1ib_desc and frees all associated memory. The library
descriptor is a number returned by a previous call to xsm_1_open.

RETURNS

-1 is returned if the library file could not be closed.
-2 is remurned if the hibrary was not open.
0 is returned if the library was closed successfully,

RELATED FUNCTIONS

status = xsm_l_at_cur(lib_desc, screen_name);

status = xsm_1 form(lib_desc, screen_name);

lib desc = xsm 1 open(lib_name);

status = xsm 1 window(lib_desc, screen_name, start_line,
start_column);

JAM Release 5 1 March 91 Page 203

JAM PL/1 Programmer's Guide

|_open
open a libra

S e R BRSNSV | VIR SRR LTV T WM, Ra

SYNOPSIS

declare lib_name char (256) varying;
declare lib_desc fixed binary(31);
1lib_desc = xsm 1 open (lib name);

DESCRIPTION

You must use xsm_1_open to open a library before you use a JPL. module, a keyset, or
a screen that is stored in the library. Use the utility formlib to create a library, (See the
JAM Utilites Guide).

This routine allocates space in which to store information about the library, leaves the li-
brary file open, and returns a descriptor identifying the library. The descriptor may subse-
quently be used by xsm_1_window and related functions, to display screens stored n
the hbrary. The library can also be referenced implicitly by xsm r window,
xsm_r_keyset, and xsm_jplcall, as well as related functions, which search all
open libraries.

The library file is sought in all the directories identified by SMPATH and the parameter to
xsm_initcrt. If you define the SMFLIBS variable in your setup file as a list of library
names xsm_1_open will automatically be called for those libraries. The xsm_r__rou-
tines will then search in the specified libranes.

Several libraries may be kept open at once. This may cause problems on systems with
severe limits on memory or simultaneously open files.

RETURNS

-1 if the library cannot be opened or read.

-2 if too many hbraries are already open. ‘
-3 if the named file is not a library.

-4 if insufficient memory is available.

Otherwise, a non—negative integer that identifies the library file.

RELATED FUNCTIONS

return value = xsm_jplcall (jplcall text):;
status = xsm_Jjplload (module name list);
status = xsm_jplpublic(module name_list);
status = xsm_ 1 at_cur(lib_desc, screen_name);

Page 204 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

status = xsm_1_close(lib desc);

status = xsm 1_form(lib_desc, screen name);

status = xsm_l1_window(lib desc, screen_name, start_line,
start_column);

status = xsm _r_at_cur(screen_name);

status = xsm_r form(screen_name);

status = xsm_r keyset (name, scope);

status = xsm_r window(screen_ name, start_line, start_column);

JAM Release 5 1 March 91 Page 205

JAM PL/1 Programmer’s Guide

last

posi

SYNOPSIS

call xsm_last ()

DESCRIPTION

Use this function to place the cursor at the first enterable position of the last tab-unpro-
tected field of the current screen. If the last field unprotected from tabbing is right justi-
fied, the cursor is placed in the rightmost position of the field, By the same token, if the
last unprotected field is left justified, the cursor is placed in the leftmost position of the
field.

Unlike xsm_home,xsm_last will not reposition the cursor if the screen has no unpro-
tected fields.

This function doesn’t immediately trigger field entry, exit, or validation processing. Such
processing occurs based on the cursor position when control returns to xsm_input.

This function is called when the JAM logical key EMOH 1s struck.
RELATED FUNCTIONS

call xsm backtab();

field number = xsm home():
call xsm nl():

call xsm_tab();

Page 206 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Iclear

erase LDB entries of one scope .

v PO, R Dot B N0 R
SYNOPSIS
declare scope fixed binary(31);
declare status fixed binary(31);
status = xsm_lclear(scope);
DESCRIPTION

This function erases the values stored in the local data block for all names having a scope
of the argument scope. Legal values for scope are between 1 and 9. Constant vaniables
having scope 1 can be erased.

Refer to the LDB chapter of the Programmer’s Guide for a discussion of the scope of
LDB entries.

RETURNS

-1 if scope is invalid.
0 otherwise.

RELATED FUNCTIONS

status = xsm lreset (file_name, scope):;

JAM Release 5 1 March 91 Page 207

JAM PL/1 Programmer’s Guide

ldb_init

initialize (or reinitialize) the local data block

o A T T S e Y M D Lo e
SYNOPSIS

call xsm _ldb_init():
DESCRIPTION

This function creates an empty index of named data items by reading the data dictionary,
then loads values into them from initialization files. Data Dictionary entries with a scope
of 0 are not loaded into the LDB. There is no LDB pror to the first execution of this func-
tion.

Selected parts of the LDB, namely those assigned a certain scope, can be remmitialized us-
ingxsm lclear orxsm lreset.

This function is called explicitly in jmain.pll and jxmain.pll. Other functions
that affect its behavior, such as xsm_dicname and xsm_ininames, should be called
first.

RELATED FUNCTIONS

status = xsm_dicname(dic_name);
status = xsm_ininames (name_list);
status = xsm lreset(file name, scope);

Page 208 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

leave

SYNOPSIS

call xsm_leave();
DESCRIPTION

At times it may be necessary to leave a JAM application temporarily. For example you
may need to escape to the command interpreter or to execute some graphics functions. In
such a case, the terminal and its operating system channel need to be restored to their nor-
mal states.

Thus function should be called before leaving. It clears the physical screen (but not the
internal screen image); resets the operating system channel; and resets the terminal (using
the RESET sequence found in the video file).

RELATED FUNCTIONS

call xsm_return():

JAM Release 5 1 March 91 Page 209

JAM PL/1 Programmer’s Guide

length
get the maximum length of a field
R — .

SYNOPSIS

declare field number fixed binary(31);

declare field length fixed binary(31);

field length = xsm length(field number):;
DESCRIPTION

This function returns the maximum length of the field specified by £ield_number. If
the field 1s shiftable, its maximum shiftng length is returned. This length 1s as defined in
the JAM Screen Editor, and has no relation to the current contents of the field. Use
xsm_dlength to get the length of the contents.

RETURNS

Length of the field.
0 if the field is not found.

VARIANTS

field length = xsm n_length(field name);
RELATED FUNCTIONS

data length = xsm dlength(field number);

Page 210 JAM Reolease 5 1 March 91

JAM PL/1 Programmer's Guide

Ingval

value of a field

SR R IR

SYNOPSIS

declare field number fixed binary(31);
declare value fixed binary(31);
value = xsm_lngval (field number);

DESCRIPTION

This function returns the contents of £ield number, converted to a long integer. All
non-digit characters are ignored, except for a leading plus or mmnus sign.

RETURNS

The long value of the field.
0 if the field 1s not found.

VARIANTS

value = xsm e lngval(field _name, element);
value = xsm _i_lngval (field name, occurrence);
value = xsm_n lngval(field name);

value = xsm_o_lngval (field number, occurrence);

RELATED FUNCTIONS

value = xsm_intval (field number);
status = xsm ltofield(field number, value);

JAM Release 5 1 March 91 Page 211

JAM PL/1 Programmer’s Guide

Ireset

reinitialize LDB entries of one scope

- o - _ ! N
AN Lk s TN V- A A VL A A

R A

SYNOPSIS

declare file_name char (256) varying;

declare scope fixed binary(31);

declare status fixed binary(31);

status = xsm lreset (file name, scope);
DESCRIPTION

This function sets local data block entries to values read from £ile name. The scope
must be between 1 and 9. References in the file to LDB entries not belonging to scope
are ignored. All variables belonging to scope are cleared before remitializing. This
means that xsm_lreset erases variables that are not in the file.

The file may be in the current directory, or in any of the directories listed in the SMPATH
environment variable. It contains pairs of names with values, each enclosed in quotes.
While all whites space outside the quotes is ignored, we recommend for readability that
the file have one name—value pair per line. If an entry has multiple occurrences, 1t may be
subscripted in the file, Here are a few sample pairs:

"husband” “Ronald Reagan”
"wife(l]” “Jane Wyman”
*wife([2]” “Nancy Davis”

If you plan to use this function, we recommend that you group your variables in separate
files by scope. You can use xsm_ininames to hist a number of files for initialization.

RETURNS

-1 if file not found or scope out of range.
0 otherwise.

RELATED FUNCTIONS

status = xsm lclear (scope);

Page 212 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Istore

copy everything from screen to LDB
SYNOPSIS
declare status fixed binary(31);
status = xsm_lstore():
DESCRIPTION

This function copies data from the screen to local data block entries with matching names.

The JAM Executive automatically calls xsm 1store when bringing up a new screen
or before closing a window. This function need not be called by application code except
under special circumstances.

RETURNS

-3 if sufficient memory 1s not available.
0 otherwise.

RELATED FUNCTIONS

call xsm _allget (respect_flag);

JAM Release 5 1 March 91 Page 213

JAM PL/1 Programmer’s Guide

ltofield

place a long integer in a field

e g
Nrvw s

SYNOPSIS
declare field number fixed binary(31);
declare value fixed binary(31);
declare status fixed binary(31);
status = xsm_ltofield(field number, value);
DESCRIPTION

The long integer passed to this routine 1s converted to human—readable form and placed
in field_number. If the number is longer than the field, it is truncated without warn-
mng, on the right or left depending on the field’s justfication.

RETURNS

-1 1f the field is not found.
0 otherwise.

VARIANTS

status = xsm e ltofield(field name, element, value);

status = xsm i ltofield(field name, occurrence, value);
status = xsm n_ltofield(field name, value);

status = xsm o_ltofield(field number, occurrence, value); -

RELATED FUNCTIONS

status = xsm jtofield(field number, value);
value = xsm_lngval (field number);

Page 214 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

m_flush

flush the message line

SYNOPSIS

call xsm m flush{);

DESCRIPTION

This function forces updates to the message line to be written to the display. This 1s useful
if you want to display the status of an operation with xsm_d_msg_1ine, without flush-
ing the entire display as xsm_£1ush does.

RELATED FUNCTIONS

call xsm flush();

JAM Release 5 1 March 91 Page 215

JAM PL/1 Programmer’s Guide

max_occur
get the maximum number of occurrences

SYNOPSIS
declare field number fixed binary(3l):;
declare maximum fixed binary(31):
maximum = xsm_max_occur(field number);
DESCRIPTION

This function returns the maximum number of occurrences that the array can hold as de-
fined in the JAM Screen Editor or by xsm_sc_max. If you wish to find out the highest
occurrence number of an array that actually contains data, use xsm_num_occurs.

RETURNS

0 if the field designation is invalid.

1 for a non—scrollable single field.

The number of elements 1n a non—scrollable array.

The maximum number of occurrences in a scrollable array.

VARIANTS
maximum = xsm _n_max occur(field name);

RELATED FUNCTIONS

number = xsm_num occurs (field number);

Page 216 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

mnutog|

switch between menu mode and data entry mode on a
dual—-purpose screen

A

SYNOPSIS
declare screen-mode fixed binary(31);
declare old mode fixed binary(31);
old mode = xsm mnutogl (screen_mode) ;
DESCRIPTION

JAM supports the use of a single screen as both a menu and a data entry screen, but the
screen must be in one or the other “mode™ at any given moment. This function can be used
to change the mode of the screen and to test which mode the screen is in currently. The
mode argument may have one of four values as defined in smdefs.incl.pli:

Value Meaning
IN_AUTO No action (generally used just to test the return value).
IN_DATA Change the screen to data entry mode.
IN_MENU Change the screen to menu mode.
IN_TOGL Toggle the screen from one mode to the other (akin to the MTGL
logical key).

This function is similar to the built-in control function jm_mnutogl.

RETURNS

The mode that the screen was in before the function was called (IN_DATA or IN_MENU.)
-1 if the mode specification is invalid.

JAM Release 5 1 March 91 Page 217

JAM PL/1 Programmer’s Guide

msg
display a message at a glven column on the status line
. T SRR TRIN T TR AT e

SYNOPSIS
declare column fixed binary(31);
declare disp_length fixed binary(31):
declare text char (256) varying;
call xsm msg(column, disp_length, text);
DESCRIPTION

The message is merged with the current contents of the status line, and displayed begin-
ning at column. disp_length gives the number of characters to display.

On terminals with onscreen attributes, the column position may need to be adjusted to
allow for attributes embedded in the status line. Refer to xsm_d_msg_1line for an ex-
planation of how to embed attributes and function key names in a status line message.

This function 1s called by the function that updates the cursor position display (see
xsm_c_vis).

RELATED FUNCTIONS

call xsm d msg_line(message, display attribute);

Page 218 JAM Release 5 1 March 91

JAM PL/1 Programmer's Gude

msg_get

find a message given its number

SYNOPSIS

%include ’smerror.incl.pll’;

declare buffer char (256) varying;
buffer = xsm msg get (number);

DESCRIPTION

The messages used by JAM library routines are stored in binary message files, which are
created from text files using the JAM utility, msg2bin. Use xsm_msgread to load
message files for use by this function.

This function takes the number of the message desired and returns the message, or a less
informative string if the message number cannot be matched.

Messages are divided into classes based on their numbers, with up to 4096 messages per
class. The message class is the message number divided by 4096, and the message offset
within the class 1s the message number modulo 4096. Predefined JAM message numbers
and classes are defined in smerror.incl.pll.

RETURNS

The desired message, if found
otherwise, the message class and number, as a string

RELATED FUNCTIONS

buffer = xsm msgfind(number);
status = xsm_msgread(code, class, mode, arg);

JAM Release § 1 March 91 Page 219

JAM PL/1 Programmer’s Guide

msgfind

age given its number

JERRR e R e e o e e e I A A
SYNOPSIS

%$include ’smerror.incl.pll’;

declare buffer char (256) varying;

declare number fixed binary(31);

buffer = xsm msgfind (number);
DESCRIPTION

Thus function takes the number of a Screen Manager message, and returns the message
string. It is identical to xsm_msg_get, except that 1t returns zero if the message number
1s not found.

Screen Manager message numbers are defined in smerror.incl.pll.

RETURNS

The message
0 if the message number is out of range

RELATED FUNCTIONS

buffer = xsm msg_get (number);
status = xsm _msgread(code, class, mode, arg);

Page 220 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

msgread

read message file into memory

O s S 3 REERb L0 3

$include ’'smerror.incl.pll’;
declare code char (256) varying;
declare class fixed binary(31);
declare mode fixed binary(31);
declare arg char (256) varying;
declare status fixed binary(31):
status = xsm msgread(code, class, mode, arg);
DESCRIPTION

Reads a single set of messages from a binary message file into memory, after which they
can be accessed using xsm_msg_get and xsm_msgfind. The code argument selects
a single message class from a file that may contain several classes:

Code Class Message Type
SM SM_MSGS Screen Manager
FM FM_MSGS Screen Editor
JM JM_MSGS JAM run-time
JX JX_MSGS Data Dictionary & Control Strings
jvT UT_MSG Utilities
[otank) Undesignated user

class identifies a class of messages. Classes 0-7 are reserved for user messages, and
several classes are reserved to JAM; see smerror.incl.pll. As messages with the
prefix code are read from the file, they are assigned numbers sequentially beginning at
4096 times class.

mode is a mnemonic composed from the following list. The first five indicate where to
get the message file; at least one of these must be supplied. The latter four modify the
basic action.

JAM Release 5 1 March 91 Page 221

JAM PL/1 Programmer's Guide

Mnemonic Action

MSG_DELETE Delete the message class and recover its memory.
MSG_DEFAULT Use the default file defined by the setup variable SMMSGS.
MSG_FILENAME Use the file named by arg.

MSG_ENVIRON Use the file named in an environment vanable named by
arg.
"MSG_MEMORY Use a memory-resident file whose address is given by arg.
“ MSG_NOREPLACE | Modifier: do not overwrite previously installed messages.
I[MSG_DSK Modifier: leave file open, do not read into memory
|| MSG_INIT Modifier: do not use screen manager error reporting.
I] MSG_QUIET Modifier: do not report errors.

You can or MSG_NOREPLACE with any mode except MSG_DELETE, to prevent over-
writing messages read previously. Error messages will be displayed on the status line, if
the screen has been imtalized by xsm_initcrt; otherwise, they will go to the standard
error output. You can or MSG_INIT with the mode to force error messages to standard
error. Combining the mode with MSG_QUIET suppresses error reporting altogether.

If you or MSG_DSK with the mode, the messages are not read into memory. Instead the
file is left open, and xsm_msg_get and xsm_msgfind fetch them from disk when
requested. If your message file is large, this can save substantial memory; but you should
remember (o account for operating system file buffers in your calculations.

arg contains the environment vanable name for MSG_ENVIRON; the file name for
- MSG_FILENAME; or the address of the memory-resident file for MSG_MEMORY. It
may be passed as zero for other modes.

RETURNS

0 if the operation completed successfully.
1 if the message class was already in memory and the mode included
MSG_NOREPLACE.
2 if the mode was MSG_DELETE and the message file was not in memory.
-1 if the mode was MSG_ENVIRON and the environment variable was undefined.
-2 1f the mode was MSG_ENVIRON or MSG_FILENAME and the message file could
not be read from disk; other negative values if the message file was bad or insufficient
memory was available.

Page 222 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

RELATED FUNCTIONS

buffer = xsm_msg_get (number) ;
buffer = xsm msgfind (number);

JAM Release 5 1 March 91 Page 223

JAM PL/1 Programmer's Guide

mwindow
dlsplay a status message in a window
R BRI TETITR T TGS ML SRR s vy

SYNOPSIS
declare text char (256) varying;
declare line fixed binary(31):
declare column fixed binary(31);
declare status fixed binary(31);
status = xsm _mwindow (text, line, column);
DESCRIPTION

Thus function displays text in a pop—up window, whose upper left-hand comer appears
at 1ine and column. The line and column are counted from 0. If 1ine is 1, the top of
the window will be on the second line of the dlsplay The window itself is constructed on
the fly by the run—time system. No data entry is possible i it, nor is data entry possible in
underlying screens as long as it is displayed.

Due to the delayed write feature in JAM, you should call xsm_flush to cause the
screen to be updated and the message to be displayed, unless you 1 call xsm _input di-
rectly after the call to xsm mwindow. xsm_close_window may be used to close a..
window called with xsm mwindow.

All the percent escapes for status messages, except %M and %W, are effective. Refer to
xsm_err_reset for a list and full description. If either 1ine or column is negative,
the window will be displayed according to the rules given for xsm_r_at_cur.

RETURNS

-1 if there was a malloc failure.
1 if the text had to be truncated to fit in a window.
0 otherwise,

RELATED FUNCTIONS

call xsm d msg_line(message, display_attribute);

Page 224 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

n

variants that take a field name only

SYNOPSIS
declare field name char (256) varying;
call xsm n_...(field name, ...);
DESCRIPTION

The n__ functions access a field by means of the field/group name. For a complete de-
scription of individual functions, look under the related function without n__ in its name.
For example, xsm_n_amt_format is described under xsm_amt_ format. If the
named fi eld/gmup 15 not on the screen, these functions will attempt to access a similarly
named entry in the local data block.

JAM Release 5 1 March 91 Page 225

JAM PL/1 Programmer’s Guide

name

obtain field name given field number

i e o B A N R oaana, wny W e Y R e
SYNOPSIS

declare buffer char (256) varying;

declare field number fixed binary(31);

buffer = xsm name (field number);
DESCRIPTION

Given a field number, xsm_name returns a buffer that contains the field name referenced
by field number.

RETURNS

The name of the field referenced, if found.
0 otherwise.

Page 226 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

n|

position cursor to the first unprotected field beyond the
current line

SYNOPSIS

call xsm nl();

DESCRIPTION

This function moves the cursor to the next occurrence of an array, scrolling if necessary.
Unlike the down-arrow, it will allocate an empty scrolling occurrence if there are no
more below but the maximum has not yet been exceeded.

If the current field is not scrolling, the cursor s positioned to the first unprotected field,
if any, following the current line of the form. If there are no unprotected fields beyond the
current field, the cursor 1s positioned to the first unprotected field of the screen.

If the screen has no unprotected fields at all, the cursor is positioned to the first column of
the line following the current line. If the cursor is on the last line of the form, 1t goes to the
top left-hand comer of the screen.

This function doesn’t immediately trigger field entry, exit, or validation processing. Such
processing occurs based on the cursor position when control returns to xsm_input.

This function is ordinarily bound to the RETURN key.
RELATED FUNCTIONS

call xsm backtab()’

field number = xsm home();
call xsm last();

call xsm_tab();

JAM Release 5 1 March 91 Page 227

JAM PL/1 Programmer’s Guide

novalbit

forcibly invalidate a field

ER g R Ry AT R R A O R o R v TR N e,
SYNOPSIS

declare field number fixed binary(31);

declare status fixed binary(31):

status = xsm_novalbit (field number);
DESCRIPTION

Resets the VALIDED bit of the specified field, so that the field will again be subject to
validation when it is next exited, or when the screen 1s validated as a whole.

JAM sets a field’s VALIDED bit automatically when the field passes all its validations.
The bit is initially clear, and is cleared whenever the field is altered by keyboard input or
by a library function such as xsm_putfield.

RETURNS

-1 if the field is not found.
0 otherwise.

VARIANTS

status = xsm_e novalbit (field name, element);
status = xsm i novalbit (field name, occurrence);
status = xsm n_novalbit (field name);

status = xsm o_novalbit (field number, occurrence);

RELATED FUNCTIONS

status = xsm fval (field_number);
status = xsm s val();

Page 228 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

null

test if field is null

i A Lo g

SYNOPSIS

declare field number fixed binary(31);

declare status fixed binary(31);

status = xsm null (field number);
DESCRIPTION

Use xsm_null to test a field to see whether it has both the null edit and contains the null
character string that has been assigned to that field. See null edits in the Author’s Guide.

RETURNS

1 If the field has the null edit and contains the appropriate null character string.
-1 if the field does not exist.
0 otherwise.

VARIANTS

status = xsm e null (field name, element);
status = xsm_i_null (field name, occurrence);
status = xsm_n_null (field name);

status = xsm o_null (field number, occurrence);

JAM Release 5 1 March 91 Page 229

JAM PL/1 Programmer's Guide

num_ocCcurs

find the hlghest numbered occurrence containing data
- - B R R S NN T

SYNOPSIS
declare field number fixed binary(31);
declare number fixed binary(31);
number = xsm_num_occurs(field number);
DESCRIPTION

This function returns the highest occurrence number of the amray specified by
field number that actually contains data. The field number may be that of any field
with the array.

Most of the time the highest numbered occurrence containing data will be the same as the
number of occurrences actually containing data. However, 1t is possible to have blank oc-
currences preceding occurrences containing data,

This count is different from the maximum capacity of an array, which you can retrieve
with xsm_max_occur.

RETURNS

The highest numbered occurrence containing data.
0 if there is no data in the field.
-1 if the field 1s not found.

VARIANTS

number = xsm n_num occurs(field name);

Page 230 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

o

variants that take a field number and occurrence number

SYNOPSIS
declarxe field number fixed binary(31);
declare occurrence fixed binary(31);
call xsm o_...(field number, occurrence, ...):;
DESCRIPTION

The o__ functions refer to data by field number and occurrence number. An occurrence 1s
a slot within an array of fields in which data may be stored. Occurrences may be either on
or off-screen. Since JAM treats an individual field as an array with one field, even a
single non-scrolling field is considered to have one occurrence. The JAM library con-
tains routines that allow you to manipulate individual occurrences during run—time.

If the occurrence is zero, the reference is always to the current contents of the specified
field.

For the description of a particular function, look under the related function without o_in
1ts name. For example, xsm_o_amt_format is described under xsm_amt_format.

JAM Release 5 1 March 91 Page 231

JAM PL/1 Programmer's Guide

occur_no

get the current occurrence number

SYNOPSIS
declare occurrence fixed binary(31);
occurrence = xsm occur_no();
DESCRIPTION

This function returns the occurrence number of the field beneath the cursor. If the field is
an element of a non—scrollable array, the occurrence number 1s the same as the field’s ele-
ment number. Likewise, the occurrence number of a single non-scrolling field is 1.

RETURNS

0 if the cursor is not in a field.
Otherwise, the occurrence number.

RELATED FUNCTIONS

field number = xsm getcurno();

Page 232 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

off_gofield

move the cursor into a field, offset from the left

SYNOPSIS
declare field number fixed binary(31):;
declare offset fixed binary(3l);
declare status fixed binary(31):
status = xsm off gofield(field number, offset);
DESCRIPTION

This function moves the cursor into field number, at position of £set within the
field’s contents, regardless of the field’s justification. The field’s contents will be shifted
if necessary to bring the appropriate piece onscreen.

If of £set islarger than the field length (or the maximum length if the field is shiftable),
the cursor will be placed in the rightmost position.

RETURNS

-1 if the field is not found.
0 otherwise.

VARIANTS

status = xsm e off gofield(field name, element, offset);
status = xsm_ L 4 _off gofield(field name, occurrence, offset);
status = xsm n off _gofield(field name, offset);

status = xsm_o__off_gofield(field_number, occurrence, offset);

RELATED FUNCTIONS

offset = xsm disp off();
status = xsm gofield(field number):;
offset = xsm_sh off();

JAM Release 5 1 March 91 Page 233

JAM PL/1 Programmer’s Guide

option

set a Screen Manager option

R ol o AR AR BT

SYNOPSIS
declare option fixed binary(31);
declare newval fixed binary(31);
declare oldval fixed binary(31);
oldval = xsm option(option, newval):;
DESCRIPTION

Use xsm_option to alter during run—time the default Screen Manager options defined
n smsetup.incl.pll. Possible options include, error window attributes, delayed
write options, cursor display and zoom options. See the “Setup File” section in the Con-
figuration Guide for a list of options and possible values. Use xsm_keyoption toalter
the behavior of cursor control keys.

If you wish to simply inquire as to an option’s current value, use the value NOCHANGE
(defined in smsetup.incl.pll) for newval.

This functon replaces the following version 4.0 functions: xsm_ch_emsgatt,.
xsm_ch_form atts, xsm ch gmsgatt, xsm-ch_umsgatt, xsm dw_op-
tions, xsm_er_options, xsm fcase, xsm fextension, xsm ind_set,
XxsSm mp ¢ options, xsm | mp__ string, xsm ok optlons, xsm_stextatt,

and xsm_zm_options. They are included in your version 5.0 library only for back-
ward compaublhty We strongly recommend that you do not use them in-the-future.

RETURNS

The old value for the specified option.
-1 if the option is out of range.

RELATED FUNCTIONS

oldval = xsm_keyoption (key, mode, newval);

Page 234 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

oshift

shift a field by a given amount
SYNOPSIS
declare field number fixed binary(3l);
declare offset fixed binary(31l):
declare return_value fixed binary(31):;

return value = xsm oshift (field number, offset):;

DESCRIPTION

This function shifts the contents of field _number by of£set positions. If of fset
is negative, the contents are shifted right (data past the left-hand edge of the field become
visible); otherwise, the contents are shifted left. Shufting indicators, if displayed, are ad-
justed accordingly.

The field may be shifted by fewer than o £ £ set positions if the maximum shifting width
is reached with less shifung.

RETURNS

The number of positions actually shifted.
0 if the field is not found or is not shifting.

VARIANTS

return value = xsm n_oshift (field name, offset);

JAM Release 5 1 March 91 Page 235

JAM PL/1 Programmer’s Guide

pinquire

obtain value of a global string

SYNOPSIS
%include ’'smglobs.incl.pll’;
declare buffer char(256) varying;
declare which fixed binary(31);
buffer = xsm pinquire (which);
DESCRIPTION

This function is used to obtain the current value of a global pointer variable. The
mnemonics for which are defined in smglobs.incl.pll. If you wish to modify a
global string use xsm_pset.

Pointer values for which are defined in smglobs.incl.pll. They are:

Mnemonic Meaning

P_YES The Y character for YES/NO field. This is returned as a three
character string. The first character is the lowercase yes value, the
second character 1s the uppercase yes value, and the third character
is the null terminator.

P_NO The N character for YES/NO field. This is returned as a three
character stning. The first character 1s the lowercase no value, the
second character is the uppercase no value, and the third character is
the null terminator,

P_DECIMAL |This is returned as a three character string. The first character is the
user’s decimal point marker, the second character is the operating
system’s decimal point marker, and the third character is the null
terminator.

P_FLDPTRS |Pointer (o an array of field structures. The implementation of these
structures is very release dependent.

P_TERM Returns the name JAM uses as the terminal identifier or the null
string 1f not found.

P_SPMASK |Pointer to an memory-resident full size form containing all blanks.

Page 236 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Mnemonic

P_USER Pointer to developer—specified region of memory. This pointer is not
set by JAM; it is set and maintained, if desired, by the application.

SP_NAME Name of the active screen.

SP_STATLI | Text of current status line.

NE

SP_STATAT |Auributes of current status line (pointer to array of unsigned short

TR integers).

P_DICNAME |Name of data dictionary file.

v_ Any of the “V_" mnemonics defined in smvideo.incl.pll
may be passed to obtain various video related informaton.

In general, the objects pointed to by the pomnters returned by xsm_pinqui re have lim-
ited duration and should be used or copied quickly (except for P_USER, which is main-
tained by the application). The P_ pointers point to the actual objects within JAM. The
SP_ pointers point to copies of the objects. Since the characteristics of these objects are
implementation dependent, they may change in future releases of JAM. In no case (ex-
cept P_USER) should the objects be modified directly through the pointers returned by
xsm_pinquire.Use xsm_pset to modify selected objects).

RETURNS

If the argument corresponds to a global pointer variable, the value of that variable is

returned.
0 otherwise,

RELATED FUNCTIONS

value = xsm finquire(field number, which);
value = xsm gp_ inquire(group name, which);
value = xsm_iset (which, newval);
buffer = xsm _pset (which, newval);

JAM Release 5 1 March 91 Page 237

JAM PL/1 Programmer's Guide

protect

protect an array

SYNOPSIS

declare field number fixed binary(31);
declare mask fixed binary(31);
declare status fixed binary(3l);

status
status
status
status
status
status

xsm_aprotect (field number, mask);
xsm_aunprotect (field number, mask):
xsm_protect (field number);
xsm_unprotect (field number);
xsm_lprotect (field number, mask);
xsm_lunprotect (field number, mask):;

DESCRIPTION

There are four types of protection associated with fields and arrays, any combination of
which may be assigned: data entry, tabbing into, - clearing, and validauon..
xsm_protect and xsm_unprotect always setand clear all four types of protection.

The remaining protection functions set and clear any combination of protection, as speci-

fied by mask. The mnemonucs for mask are defined in smdefs.incl.pll and are

listed below. Combinations may be specified by oring mnemonics together.

._Mmmask - Meaning
EPROTECT protect from data entry
TPROTECT protect from tabbing into and from entering via any
other key
CPROTECT protect from clearing
VPROTECT protect from validation
ALLPROTECT protect from all of the above

Protection is associated an individual field (1.e. an element), and with an array as a whole.
Therefore, all offscreen array occurrences always share the same level of protection,

Page 238

JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

while the onscreen occurrences have the levels of protection (possibly all different) asso-
ciated with their host fields (1.e. elements). Since protection is associated with individual
fields, and not with individual occurrences, deleting an occurrence with xsm_doccur
will not scroll up the protection with the occurrences.

xsm_protect, xsm_unprotect, xsm_lprotect, and xsm_lunprotect set
and clear protection for individual fields. xsm_aprotect and xsm_aunprotect set
and clear protection for all of the fields of an array, and for the array as a whole (the
field_number may specify any field in the array). For example, unprotecting an array
withxsm_aunprotect will undo protection done by xsm_lprotect. A subsequent
callto xsm_1lprotect will re-protect the specified field of the array, but can never af-
fect the offscreen occurrences of the array.

Caution: It is generally safer to protect and unprotect arrays with xsm_aprotect and
xsm_aunprotect, rather than with the field—oriented protection functions.

RETURNS
-1 if the field does not exist;

0 otherwise.

VARIANTS
status = xsm n protect(field name);
status = xsm e protect (field name, element);
status = xsm n_unprotect (field name);
status = xsm e unprotect (field name, element):;
status = xsm _n_lprotect (field name, mask);
status = xsm__e_lprotect(field_name, element, mask);
status = xsm_n_lunprotect (field_name, mask);
status = xsm_e_lunprotect (field name, element, mask);
status = xsm_n_aprotect (field name, mask);
status = xsm n_ aunprotect (field_name, mask);

JAM Release 5 1 March 91 Page 239

JAM PL/1 Programmer's Guide

pset

Modify value of global strings

& RN o o m;‘si:}ﬁﬁﬁ:}‘“\ oy
SYNOPSIS
$include ’smglobs.incl.pll’;
declare buffer char (256) varying;
declare which fixed binary(31);
declare newval char (256) varying;
buffer = xsm_pset (which, newval):;
DESCRIPTION

Y- 10 - S e

This function is used to modify the contents of a global string. The string you wish to
change is specified by which. The value that you wish to change the vanable to is speci-
fied by newval. If you wish only to get the value of a global string use xsm_pin-

quire.

The following values for which, defined in smglobs.incl.pll, are available:

Mnemonic Meaning

is the null termmator.

P_YES The Y character for YES/NO field. This is specified by a three
character string. The first character is the lowercase yes value, the
second character is the uppercase yes value, and the third character.

the null terminator.

P_NO The N character for YES/NO field. Thus is specified by a three
character string. The first character is the lowercase no value, the
second character is the uppercase no value, and the third character is

terminator.

RETURNS

P_DECIMAL |Thus is specified by a three character string. The first character is the
- user’s decimal point marker, the second character 1s the operating '
system’s decimal point marker, and the third character s the null

S e —— ——————

If which is one of the above, the old contents of the corresponding array are returned.

0 otherwise.

RELATED FUNCTIONS

value = xsm iset (which, newval);

Page 240 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

buffer = xsm pinquire (which);

JAM Release 5 1 March 91 Page 241

JAM PL/1 Programmer’s Guide

putfield

put a string into a field

Rt b A R AN SRR s T e e A o
SYNOPSIS

declare field number fixed binary(31):;

declare data char (256) varying;

declare status fixed binary(31);

status = xsm putfield(field number, data);
DESCRIPTION

The string data is moved into the field specified by field_number. Strings that are
too long will be truncated without warning, while strings shorter than the destination field
are blank filled (to the left if the field is nght justified, otherwise to the night). If data is
a null string, then the field is cleared. This causes date and time fields that take system
values to be refreshed.

This function sets the field’s MDT bit to indicate that it has been modified, and clears its

VALIDED bit to indicate that the field must be revalidated upon exit. xsm_n_put-—

field and xsm_i_putfield will store data in the LDB if the named field is not

present in the screen. However, if the LDB item has a scope of 1 (constant),-its contents-
will be unaltered and the function will return -1.

In variants that take name as an argument, name can be either the name of a field or a
group. In the case of a group, the functions xsm_select and xsm_deselect-should
be used to change the group’s value.

Notice that the order of arguments to this function 1s different from that of arguments to
the related function xsm getfield.

RETURNS
-1 if the field is not found; 0 otherwise.
VARIANTS

status = xsm e_putfield(name, element, data);

status = xsm_i putfield(name, occurrence, data);

status = xsm n_putfield(name, data):;

status = xsm o_putfield(field number, occurrence, data);

RELATED FUNCTIONS

status = xsm_deselect (group name, group_occurrence);

Page 242 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

length = xsm getfield(buffer, field number);
status = xsm_select (group_name, group_occurrence);

JAM Release 5 1 March 91 Page 243

JAM PL/1 Programmer’s Guide

putjctrl

associate a control strlng with a key

BT T L IR R

SYNOPSIS
$include ’smkeys.incl.pll’;
declare key fixed binary(31);
declare control_string char (256) varying;
declare default fixed binary(31);
declare status fixed binary(31);

status = xsm _putjctrl(key, control string, default);

DESCRIPTION

Each JAM screen contains a table of control strings associated with function keys. JAM
also maintains a default table of keys and control strings, which take effect when the cur-
rent screen has no control string for a function key you press. This table enables you to
define system-wide actions for keys. It is initialized from SMINICTRL setup variables.
See the section on setup in the Configuration Guide for further information.

- This function associates cont rol st ring with key in one of the tables, replacing-the—.

control string previously associated with key (if there was one). If default 1s zero, the
control string will be installed in the current screen, and will disappear when you exit the
screen; otherwise, it will go 1nto the system—wide default table. If cont rol_stringis
empty, the existing control string, if any, will be deleted. If both screen and defaultcontrol .
strings exist for a given key, deleting the control string for the screen will put the default
control string into effect.

If you install a default control string for a key that is defined in the current screen, the
defimtion in the screen will be used. Note also that JAM will not search the form or win-
dow stack for function key definitions; only the current screen and the default table are .
consulted. Mnemonics for key are in smkeys.incl.pll. The syntax for control
strings is defined in the Author’s Guide.

RETURNS

=5 if insufficient memory is available; 0 otherwise.

Page 244 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

pwrap

ko o L e R e e ks PR

SYNOPSIS

declare field number fixed binary(31);

declare text char (256) varying;

declare status fixed binary(31);

status = xsm_pwrap(field number, text);
DESCRIPTION

This function copies text to a wordwrap field specified by field number. Wraps
occur at the end of words. The last character of every Line is a space. If a word is longer
than one less than the length of the field, the word is broken one character short of the end
of the field, a space is appended, and the remainder of the word wraps to the next line.

The variant xsm_o_pwrap copies the text into an array beginning at the specified oc-
currence.

Waming: If you attempt to copy data that is too large for the wordwrap field to hold,
xsm_pwrap will truncate the excess text.

RETURNS

-1 if the field number is mvalid.
-2 if the text was truncated because it was too long for the field.
0 otherwise.

VARIANTS
status = xsm o_pwrap(field number, occurrence, text):;

RELATED FUNCTIONS

length = xsm _gwrap(buffer, field number, buffer_length);

JAM Release 5 1 March 91 Page 245

JAM PL/1 Programmer's Guide

query_msg

WO VI WA WAAL M W
LY N e 'V\N\v\lwu\

SYNOPSIS
declare message char (256) varying;
declare reply fixed binary(31);
reply = xsm_query msg (message);
DESCRIPTION

The message is displayed on the status line, until you type a yes or a no key. A yes key
is the first letter of the SM_YES entry in the message file (or the XMIT key), and a no key
is the first letter of the SM_NO entry (or the EXIT key); case 1s ignored. At that point, this
function returns the lower case letter as defined in the message file to its caller.

All keys other than yes and no keys are ignored.
RETURNS

Lower—case ASCII 'y’ or 'n’, according to the response.
RELATED FUNCTIONS

call xsm d msg _line(message, display attribute);
status = xsm_1s_no(field number);
status = xsm is_yes (field number);

Page 246 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

qui_msg
display a message preceded by a constant tag, and re-
set the message line

Y R I OOV DR/ o Do SRR

SYNOPSIS
declare message char (256) varying;
call xsm_qui_msg (message);

DESCRIPTION

This function prepends a tag (normally “ERROR:") tome s sage, and displays the whole
on the status line (or in a window 1f it is too long). The tag may be altered by changing the
SM_ERROR entry in the message file. The message remains visible untl the operator
presses a key. Refer to the description of setup in the Configuration Guide for an exact
description of error message acknowledgement. If the message is longer than the status
line, it will be displayed in a window instead. If the cursor position display has been
turned on (see xsm_c_vas), the end of the status line will contain the cursor’s current
row and column. If the message text would overlap that area of the status line, it will be
displayed in a window instead.

This function is identical to xsm_quiet_err, except that it does not tumn the cursor on.
It 1s similar to xsm_emsg, which does not prepend a tag.

Several percent escapes provide control over the content and presentation of status mes-
sages. See xsm_emsg for details.

RELATED FUNCTIONS

call xsm emsg(message);

call xsm_err reset (message);

oldval = xsm option{option, newval);
call xsm quiet_err(message);

JAM Release 5 1 March 91 Page 247

JAM PL/1 Programmer's Guide

quiet_err
display error message preceded by a constant tag, and
reset the status line

L B R AR OOV ST B OSSRV E DTSR b R R e
SYNOPSIS

declare message char (256) varying;

call xsm _quiet err(message);
DESCRIPTION

This function prepends a tag (normally “ERROR™) to me s sage, turns the cursor on, and
displays the whole message on the status line (or in a window if it is too long). This func-
tion is identical to xsm_qui_msg, except that it turns the cursor on. It is similar to
xsm_err_reset, which does not prepend a tag. Refer to xsm_emsg for an explana-
tion of how to change display attributes and insert function key names within a message.

RELATED FUNCTIONS

call xsm_emsg (message);

call xsm err_reset (message);

oldval = xsm _option(option, newval);
call xsm _qui_msg(message);

Page 248 JAM Release 5§ 1 March 91

JAM PL/1 Programmer’s Guide

rd_part

read part of a data s

tructure to the ¢

oI AR SR

e

Y

SYNOPSIS

declare screen_struct bit (0);
declare first_field fixed binary(31);
declare last_field fixed binary(31);

call xsm rd _part (screen struct, first_field, last field):;

DESCRIPTION

This function copies data from a structure to all fields between first field and
last_field within the current screen, converting individual members as appropriate.
An array and its scrolling occurrences will be copied only if the first element falls be-
tween first_field and last_field. This routine is commonly used with
xsm_wrt_part, which writes part of the screen to a structure. If you wish to read infor-
mation into the entire screen, use xsm_rdstruct. To read information into a data dic-
tionary record, use xsm _rrecord. Use xsm putfield to write a string to an
individual field.

A data structure named screen can be created from the screen file screen. jam via
the £2st ruct utility as follows:

f2struct -gPL1l screen.jam

Each member of the structure is a field of the type specifed in the Screen Editor. If you
specify the type omi t., data will not be written mto the field. See “Data Type” in the Au-
thor’s Guide and £2st ruct in the Utilities Guide for further information.

Once created, the declaration may be treated exactly like any other structure declaration.
You can ignore the items that represent fields which do not fall within the bounds of the
specifed fields. However, the structure definition must contain all of the ficlds on the
screen. The argument screen_struct is the address of a variable of the type of struc-
ture generated by £2st ruct.

The arguments that represent the range of fields to be copied, first_field and
last_field are passed as ficld numbers.

The structure may be initialized with xsm wrt_part or with data from elsewhere.
Structure members within the specified range which will not be imitialized prior to calling
xsm_rd _part must be zeroed—out or you risk crashing your application when garbage
is read into the screen.

Remember, you must update the structure declaration whenever you alter the screen from
which it was generated.

JAM Release 5 1 March 91 Page 249

JAM PL/1 Programmer's Guide

RELATED FUNCTIONS

status = xsm putfield(field number, data):

call xsm_rd struct (screen struct, byte count);

call xsm_rrecord(structure ptr, record name, byte count);
call xsm wrt_part (screen_struct, first field, last_field);

Page 250 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

rdstruct

read data from a structure to the screen
S R B A o S R e s M D R T o T R R RS AN R

SYNOPSIS
declare screen_struct bit (0} ;
declare byte_count fixed binary(31);
call xsm rd struct (screen_struct, byte count);
DESCRIPTION

This function copies data from a structure to the current screen, converting individual
members as appropriate. It is commonly used with xsm_wrt st ruct, which writes data
from fields on the current screen to a structure. If you wish to read information into a
group of consecutively numbered fields, use xsm_rd_part. To read mformation from
a data dictionary record, use xsm_rrecord. Use xsm_putfield to write a string to
an individual field.

A data structure named screen can be created from the screen file screen. jam via
the £2struct utlity as follows:

f2struct -gPLl1l screen.jam

Each member of the structure is a field of the type specifed in the Screen Editor. If you
specify the type omi t, data will not be written into the field. See “Data Type™ in the Au-
thor’s Guide and £2struct in the Unlities Guide for further information.

Once created, the declaration may be treated exactly like any other structure declaration.
The argument screen_struct is the address of a variable of the type of structure gen-
erated by £2struct.

The argument byte_count is an integer variable. xsm_rdstruct will store in
byte_count the number of bytes copied from the structure.

The structure may be iitialized with xsm_wrtstruct or with data from elsewhere.
Members within the structure that will not be initialized prior to calling
xsm_rdstruct must be zeroed—out or you risk crashing your application when
garbage is read into the screen.

Remember, you must update the structure declaration whenever you alter the screen from
which it was generated.

RELATED FUNCTIONS

status = xsm putfield(field number, data);

JAM Release § 1 March 91 Page 251

JAM PL/1 Programmer’s Guide

call xsm_rd part (screen_struct, first_field, last field):;
call xsm rrecord(structure ptr, record name, byte count);
call xsm_wrtstruct (screen_struct, byte count);

Page 252 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

rescreen

refresh the data displaye

oo T TP

d on the screen

R g e R

SYNOPSIS

call xsm_rescreen();

DESCRIPTION

This function repaints the entire display from JAM’s internal screen and attribute buffers.
Anything written to the screen by means other than JAM library functions will be erased.
This function is normally bound to the RESCREEN key and executed automatically
within xsm_getkey.

You may need to use this function after doing screen I/O with the flag
xsm_do_not_display turned on, or after escaping from an JAM application to
another program (see xsm_leave). If all you want is to force writes to the display, use
xsm_flush.

RELATED FUNCTIONS

call xsm flush()’
call xsm return();

JAM Release 5 1 March 91 Page 253

JAM PL/1 Programmer's Guide

resetcrt

reset the terminal to operating system default state

I BB

SYNOPSIS

call xsm_resetcrt{);
call xsm_jresetcrt();
call xsm_jxresetcrt():

DESCRIPTION

The function xsm_resetcrt is generally used only when you are writing your own
Executive. It resets terminal characteristics to the operating system’s normal state, Be
sure to call xsm_resetcrt be called when leaving the Screen Manager environment
(before program exit).

All the memory associated with the display and open screens is freed However, the buff-
ers holding the message file, key translation file, etc. are not released. A subsequent call
to xsm_initcrt will find them in place. Then xsm_resetcrt clears the screen and
turns on the cursor, transmits the RESET sequence defined in the video file, and resets the
operating system channel.

The JAM Executive calls xsm_resetcrt via xsm_jresetcrt (or viar
xsm_jxresetcrt in the case of an authoring executable) automatically as part of its
exit processing. It should not be called by application programs except 1n case of-abnor-
mal termmation.

RELATED FUNCTIONS

call xsm _cancel();
call xsm leave();

Page 254 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

resize

notify JAM of a change in the display size
SYNOPSIS
declare rows fixed binary(31);
declare columns fixed binary(31);
declare status fixed binary(31);
status = xsm_resize(rows, columns);
DESCRIPTION

This function enables you to change the size of the display used by JAM from the default
defined by the LINES and COLMS entries in the video file. It makes it possible to use a
single video file in a windowing environment. Applications can be run 1n different sized
windows with each application setting its display size at run time. It can also be used for
switching between nomal and compressed modes (e.g. 80 and 132 columns on
VT100—compatible terminals).

If the specified rectangle is larger than the physical display, the results will be unpredict-
able. You may specify at most 255 rows or columns.

This function clears the physical and logical screens; any displayed forms or windows,
together with data entered on them, are lost.

RETURNS

-1 if a parameter was less than 0 or greater than 255.
0 if successful.
Program exit on memory allocation failure.

JAM Release 5§ 1 March 91 Page 255

JAM PL/1 Programmer’s Guide

return

prepare for return to JAM application

Ay

gt A SRR S b R i ¥

--------- } R A AR+ R R ey

SYNOPSIS

call xsm_return();

DESCRIPTION

This routine should be called upon returning to a JAM application after a temporary exit.

It sets up the operating system channel and initializes the display using the SETUP string
from the video file. It does not restore the screen to the state it was in before xsm_leave
was called. Use xsm_rescreen to accomplish that, if desired.

RELATED FUNCTIONS

call xsm_leave():;
call xsm resetcrt()’

Page 256 JAM Release 5 1 March 91

JAM PL/t Programmer's Guide

rmformlist
empty the memory—resident form list

ey R o R e e R B A R R R A R R e

SYNOPSIS

call xsm rmformlist;

DESCRIPTION

This function erases the memory-resident form list established by xsm formlist,and
releases the memory used to hold it. It does not release any of the memory-resident JPL
modules, key sets, or screens themselves. Calling this function will prevent
xsm_r_window,xsm_r_keyset,xsm_jplcall, and related functions from find-
ing memory-resident objects.

RELATED FUNCTIONS

status = xsm_formlist (name, address);

JAM Release 5 1 March 91 Page 257

JAM PL/1 Programmer’s Guide

rrecord

read data from a structure to a data dlctlonary record

SYNOPSIS
declare structure_ptr bit (0);
declare record name char (256) varying;
declare byte count fixed binary(31):

call xsm rrecord(structure ptr, record name, byte_count);

DESCRIPTION

This function reads data from a PL/1 structure into fields on the current screen that are
part of a common data dictionary record. If a field is not on the current screen then the
data is wnitten to the LDB. This routine is commonly used with xsm wrecord, which
writes data from a data dictionary record to a PL/1 structure. If you wish to read data into
all of the fields within the current screen, use xsm_rdst ruct. To copy data to a group
of consecutively numbered fields, use xsm rd part.Usexsm putfield to write a
string to an individual field.

A data structure named recoxd can be created from the data dictionary file data.dic
via the dd2st ruct utility as follows:

dd2struct -gPL1l data.dic

Each structure member is a field within a data dictionary record that 1s of the type speci-
fied in the Screen Editor. Data will be written into the field onscreen even if the omit
type is specified. See “Data Type” in the Author’s Guide and dd2 st ruct n the-Uulities
Gude for further information.

Once created, the declarations may be treated exactly like any other structure declara-
tions. The argument st xruct_ptr is the address of a variable of one of the structure
types generated by dd2st ruct. The argument record_name is the name of the data
dictionary record from which the structure was created.

The argument byte_count 1s a pointer to an integer. Upon return from.
xsm_rrecord, the value contamned in the integer will be the number of bytes or
characters read from the structure. The value will be 0 1f an error occurred.

The structure may be mitialized with xsm_wrecord or with data from elsewhere.
Members within the structure that will not be nitialized prior to calling xsm rrecord
must be zeroed—out or you nisk crashing your application when garbage is read into the
screen or the LDB.

Remember, you must update the structure declaration whenever you alter the data
dictionary from which 1t was generated.

Page 258 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

RELATED FUNCTIONS

status = xsm putfield(field number, data);

call xsm _rd part(screen_struct, first field, last_field);
call xsm_rd struct (screen_struct, byte count);

call xsm wrecord(structure ptr, record name, byte_count);

JAM Release 5 1 March 91 Page 259

JAM PL/1 Programmer’s Guide

rscroll

SYNOPSIS
declare field number fixed binary(31);
declare req_scroll fixed binary(31);
declare lines fixed binary(31);
lines = xsm _rscroll (field number, req_scroll);
DESCRIPTION

This function scrolls an array along with any synchronized arrays by req_scroll oc-
currences. If req_scroll is positive, the array scrolls down (towards the bottom of the
data); otherwise, it scrolls up.

The function returns the actual amount scrolled. This could be the amount requested, or
a smaller value if the requested amount would bring the array past its beginning or end. If
0 is returned it means that the array was at its beginning or end, or an error occurred. Neg-
ative numbers indicate scrolling up occurred.

RETURNS

The actual amount scrolled. Positive numbers indicate downward scrolling while
negative numbers mean upward scrolling.
0 if no scrolling or error.

VARIANTS
lines = xsm n rscroll(field name, req scroll);

RELATED FUNCTIONS

status = xsm_ascroll (field number, occurrence):
status = xsm t_scroll(field_ number);

Page 260 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

s_val

validate the current screen

f’:\. b A BT D R e o b e g g
SYNOPSIS

declare status fixed binary(31);

status = xsm_s_val():;
DESCRIPTION

This function validates each field and occurrence, whether on or offscreen, that is not pro-
tected from validation (VPROTECT). It is called automatically from xsm_input when
the TRANSMIT key is hit while in data entry mode. xsm_sval also validates groups.

When the first element of a scrolling array is encountered, earlier offscreen occurrences
are validated first. When the last element of a scrolling array is encountered, later off-
screen occurrences are validated immediately after that element.

If synchronized arrays exist, the following occurs. When an offscreen occurrence 1s vali-
dated, the corresponding occurrences from synchronized arrays are validated as well.
Synchronized array are validated in order according to their base field number. The off-
screen occurrences preceding the synchronized arrays are validated before the first ons-
creen occurrence of the first (lowest base field number) of the synchronized arrays. Simi-
larly, the offscreen occurrences following the arrays are validated immediately after the
last onscreen occurrence of the last (highest base field number) array.

f Valudation Skip if valid | Skip if empty
kuired y n
ll must fill y y
“ regular expression y y
“range y y
II check-digit y y
II date or time y y
ll table lookup y y
Il currency format y n*
|| math expresssion n n

JAM Release 5 1 March 91 Page 261

JAM PL/1 Programmer’s Guide

Validation Skip if valid | Skip if empty
field validation n n

II JPL function n n

* The currency format edit contains a skip~if-empty flag; see the Author’s Guide.

If you need to force a skip—if-empty validation, make the field required. A field with em-
bedded punctuation must contain at least one non-blank non—punctuation character in or-
der to be considered non—empty; otherwise any non blank character makes the field non-
empty.

If an occurrence fails validation, the cursor is positioned to it and an error message dis-
played. If the occurrence was offscreen, its the array 1s first scrolled to bring it onscreen.
This routine returns at the first error; any fields past will not be validated.

RETURNS

-1 if any field fails validation.
0 otherwise.

RELATED FUNCTIONS

status = xsm fval (field number);

Page 262 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

SC_max

alter the maximum number of occurrences allowed in a
scrollable arra

R —"—_
SYNOPSIS
declare field number fixed binary(31);
declare new_max fixed binary(31);
declare actual_max fixed binary(31);
actual_max = xsm sc_max (field number, new_max);
DESCRIPTION

This function changes the maximum number of occurrences allowed in £ield num-
ber, and n all synchronized arrays. The original maximum is set when the screen is
created. If the desired new maximum is less than the hughest numbered occurrence that
contamns data,-the-new maximum will be set to the number of that occurrence (i.e., the
value returned by xsm_num_occurs). The maximum can decrease only to a value be-
tween the highest numbered occurrence containing data and the previous maximum. It
can never be less than the number of elements in the array.

RETURNS

The actual new maximum (see above).
0 if the desired maximum is invalid, or if the array is not scrollable.

VARIANTS
actual _max = xsm n_sc_max(field name, new_max);

RELATED FUNCTIONS

maximum = xsm max occur (field number);
number = xsm_num occurs(field number);

JAM Release 5 1 March 91 Page 263

JAM PL/1 Programmer's Guide

sdtime

get formatted system date and time

Rl ¥ R DS ADEERENET XY o WAREEEARERTNI Mo 3008 B DR E R A A T Tl

SYNOPSIS
declare buffer char (256) varying;
declare format char (256) varying;
buffer = xsm_sdtime (format);

DESCRIPTION

Ths function gets the current date and/or time from the operating system and returns 1t in

the form specified by format.

format is a stning beginning with y or n followed by any combination of date/me to-
kens and literal text. y indicates a 12-hour clock; n (or any other character) indicates a

24-hour clock. This character must be given, even if the format does not include time

tokens. The tokens are described in the table below. These tokens are case—sensitive.

Unit Description Token
Year 4 digit (e.g., 1990) 4y
2 digt (e.g., 90) Y2y
Month 1 or 2 dugit (1 - 12) $m
2 digit (01 - 12) $0m
full name (e.g., January) $*m
3 character name (e.g., Jan) %3m
Day 1 or 2 digit (1 - 31) $d
2 digit (01 -31) $0d
Day of the Week full name (e.g. Sunday) $*d
3 character name (e.g., Sun) $3d
Day of the Year digit (1 - 365) $+d

Page 264 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Unit Description Token |

T{_Tmr — 1 or 2 digit (1 - 12 or 1 — 24) %$h

2 digit (01 -12 or 01 -24) $0h
Minute 1 or 2 digit (1 - 59) M

2 digit (01 - 59) $0M
Second 1 or 2 digit (1 - 59) %s

2 digit (01 - 59) $0s
AM or PM for use with a 12-hour clock %p
Literal Percent use % as a literal character %%
Ten Default Formats SM_ODEF_DTIME $0f
(from the message file) SM_1DEF_DTIME $1f

SM_9DEF_DTIME $09f

At runtime, JAM strips off the first character of format. If the character is y, it uses a
12-hour clock; else it uses the default 24-hour clock. Next it examines the rest of for-
mat, replacing any tokens with the appropriate values. All other characters are used liter-
ally. Therefore, be sure to put a y or an n (or perhaps a blank) at the beginning of for-
mat. If you donot, JAM strips off the first token’s percent sign and it treats the rest of the

token as literal text.

You may also retrieve a date/time format from a field using xsm_edit_ptr,

The text for day and month names, AM and PM, as well as the tokens for the ten default
formats, are all stored 1n the message file. These entries may be modified. See the Config-

uration Guide for details.

Note: This function replaces Release 4’s xsm_sdate and xsm_st ime function.

RETURNS

The current date/time in the specified format.

Empty if format is invalid.

RELATED FUNCTIONS

status = xsm_calc(field number, occurrence, expression);

JAM Release 5 1 March 91

Page 265

JAM PL/1 Programmer’s Guide

select

select a checklist or radio button occurrence

- L L I M e w3
SYNOPSIS
declare group name char (256) varying;
declare group_ occurrence fixed binary(31);
declare status fixed binary(31);

status = xsm_select (group name, group_occurrence);
DESCRIPTION

This function allows you to select a specific occurrence within a checklist or radio button.
The group name and occurrence number are used to reference the desired selection.

Use xsm_deselect to deselect a checklist occurrence.

Selecting a radio button occurrence automatically causes the currently selected radio but-
ton to be deselected, because exactly one occurrence in a radio button group must be se-
lected at all umes. See the Author’s Guide for a more detailed discussion of groups.

Use xsm_isselected to check whether or not a particular radio button or checklist
occurrence is currently selected.

RETURNS

—1 arguments do not reference a checklist or radio button occurrence.
0 occurrence not previously selected.
1 occurrence previously selected.

RELATED FUNCTIONS

status = xsm_deselect (group_name, group_ occurrence);
status = xsm_isselected(group_name, group occurrence);

Page 266 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

setbkstat

set background text for status Ilne

ﬁ At

SYNOPSIS

declare message char (256) varying;
declare display attribute fixed binary(31);
call xsm_setbkstat (message, display attribute);

DESCRIPTION

The message is saved, to be shown on the status line whenever there is no higher prior-
ity message to be displayed. The highest priority messages are those passed to
xsm_d_msg_line, xsm_err_reset, xsm_quiet_err, Or xsm_query_msg;
the next highest are those attached to a field by means of the status text option (see the
JAM Author’s Guide). Background status text has lowest priority.

Possible values for the display_attribute argument are defined in the header file
smdefs.1incl.pll, as shown in the table below:

Foreground Attributes Background Attributes
BLANK B_HILIGHT
REVERSE
UNDERLN
BLINK
HILIGHT
STANDOUT
DIM
ACS (alternate character set)

Foreground Colors Background Colors

BLACK B_BLACK
BLUE B_BLUE
GREEN B_GREEN
CYAN B:CYAN

JAM Release 5 1 March 91 Page 267

_JAM PL/1 Programmer’s Guide

Foreground Colors Background Colors
RED B_RED
MAGENTA B_MAGENTA
YELLOW B_YELLOW
WHITE B_WHITE

Foreground colors may be used alone or ored with one or more highlights, a background
mnemonic, and a background highlight. If you do not specify a highlight or a background
mnemonic, the attribute defaults to white aganst a black background. Omitting the
foreground mnemonic will cause the attribute to default to black.

xsm_setstatus sets the background status to an alternating ready/wait flag; you
should turn that feature off before calling this routine,

Refer to xsm_d_msg_line for an explanation of how to embed attribute changes and
function key names 1nto your message.

RELATED FUNCTIONS

call xsm _d msg_line(message, display attribute);
call xsm_setstatus (mode);

Page 268 JAM Release § 1 March 91

JAM PL/{ Programmer’s Guide

setstatus

turn alternating background status message on or off

TR R vty T T R R A T AT RS T WMV v
SYNOPSIS

declare mode fixed binary(31);

call xsm setstatus (mode);
DESCRIPTION

If mode is non—zero, alternating status flags are turned on. After this call, one message
(normally Ready) is displayed on the status line while JAM is waiting for input, and
another (normally Wait) when it is not. If mode is zero, the messages are turned off.

The status flags will be replaced temporarily by messages passed to xsm_err_reset
or a related routine. They will overwrite messages posted with xsm d_msg_line or
xsm_setbkstat.

The alternating messages are stored 1n the message file as SM_READY and SM_WAIT,
and can be changed there. Attribute changes and function key names can be embedded in
the messages; refer to xsm_d_msg_1ine for mnstructions.

RELATED FUNCTIONS

call xsm_setbkstat (message, display attribute);

JAM Release 5 1 March 91 Page 269

JAM PL/1 Programmer’s Guide

sh_off

determine the cursor location relative to the start of a
shifting field

________________ - - o I o A SV i g S
............................. R R R AR RTINS g s vy

SYNOPSIS

declare offset fixed binary(31);
offset = xsm_sh off();

DESCRIPTION

Retumns the difference between the start of data in a shiftable field and the current cursor
location. If the current field is not shiftable, it returns the difference between the leftmost
column of the field and the current cursor location, like xsm_disp_off.

RETURNS

The difference between the current cursor position and the start of shiftable data in
the current field.
-1 if the cursor is not 1n a field.

RELATED FUNCTIONS

offset = xsm disp off();

Page 270 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

shrink_to_fit

remove trallmg empty array elements and shrink screen
R A RS

SYNOPSIS

call xsm_shrink_to_fit();
DESCRIPTION

Use this routine to dynamically downsize the current screen when you don’t know how
many elements of an array are going to be populated with data at run time. This routine
removes all trailing elements in all arrays on screen and then shrinks the screen to a size
Just large enough to accommodate the displayed data. If no data is placed in the array, the
entire array will be removed. Only the currently displayed copy of the screen in memory
is altered.

Thus routine only downsizes the array and screen. It will not enlarge an array or screen
that 1s too small to hold the information, so be sure to create, within the Screen Editor, an
array and screen that can hold the largest amount of data that you plan on inserting.

JAM Release 5 1 March 91 Page 271

JAM PL/1 Programmer’s Guide

sibling
define the current window as being or not being a sibling
window

g kA R EE VY
SYNOPSIS
declare should_it_be fixed binary(31):;
call xsm sibling(should it_be);
DESCRIPTION

Users may switch between the active window and all siblings of that window while they
are in viewport mode. S1ibling windows must be next to each other on the window stack.
When a window is defined as a sibling, then 1t and the window immediately beneath 1t on
the window stack are considered to be siblings of one another. The user enters viewport
mode when either the VWPT (viewport) logical key is pressed or when the application
program makes a call to xsm_winsize.

Use thus function to define whether or not the current window is defined as sibing To
change the current sibling status of a window assign should_1t_be to:

0 No, it 15 not a sibling window.
1 Yes, it is a sibling window.

To understand how sibling windows work, imagine you have a stack of three windows:

window_top, window_middle, and window_bottom. To make window_top

and window_middle siblings of each other, define window_top as a sibling win-

dow. They are now considered siblings of each other. You can then add a third sibling to

the pair, by defining window_middle as a sibling window. This results in win-

dow_middle and window_bottom becoming siblings of one another and conse-

quently, window_top and window_bottom are also siblings of each other. There is

no limit to the number of siblings window you may chain together mn this fashion, as long.
as the windows are adjacent to each other on the stack.

If you wish to bring a different window to the top of the stack, use xsm_wselect. To
get the number of windows currently in the window stack use xsm_wcount.

The base form can be a sibling of the windows adjacent to 1t.
RELATED FUNCTIONS

return_value = xsm wcount () ;
status = xsm winsize();

Page 272 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

return value = xsm _wselect (window_number) ;

JAM Release 5 1 March 91 Page 273

JAM PL/1 Programmer's Guide

size_of array

get the number of elements

. SO S W Ve
R v S TRTYR

SYNOPSIS
declare field number fixed binary(31);
declare size fixed binary(31);
size = xsm size_of_ array(field number);
DESCRIPTION

This function returns the number of elements in the array contaiming field number.
Elements are the onscreen portion of an array. An array always has at least one element.

RETURNS

0 if the field designation is invalid.
1 if the field 1s not an array.
The number of elements in the array otherwise.

VARIANTS
size = xsm n_size of array(field name);

RELATED FUNCTIONS

maximum = xsm max occur.(field number); —

Page 274 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

sking
obtain soft key information by position

RN

-~ A% A SAaaaan. 3

SYNOPSIS
$include ’'smsoftk.incl.pll’;

R ORRS

$include ’smkeys.incl.pll’;

declare scope fixed binary(31);
declare row fixed binary(31):
declare softkey fixed binary(31);
declare value fixed binary(31);
declare display attribute fixed binary(31);
declare labell char (256) varying;
declare label2 char (256) varying;
declare status fixed binary(31);

size = xsm_skinq(scope, row, softkey, value, display attribute,
labell, label2);

DESCRIPTION

Use this routine to obtain the value, attributes, and label of a soft key contained in a keyset
currently in memory, given a soft key’s position within a keyset.

The soft key is referenced by the keyset 1t belongs to, its row within the keyset, and its
position within that row. Use scope to reference a particular keyset. Mnemonics for
scope are defined in smsoftk.incl.pll, Foramore detailed explanation of scope
see the Keyset chapter of the Programmer’s Guide.

The logical value of the specified soft key is placed in value. This will be a number that
corresponds to a mnemonic defined in smkeys.incl.pll. A value of 0 means the key
is inactive.

- - The attributes (color, blinking etc . . .) of the label will be placed indisplay_attrib-
ute. The attribute should be one of the mnemonics listed in smdefs.incl.pll.

The first and second row labels are placed in 1abell and 1abel2 respectively. You
should pre-allocate at least nine elements for 1abel1 and 1abel2 buffers (eight for the
label characters and one for the null character).

If you do not desire information about one or more of these parameters you may assign
the parameters the null pointer.

JAM Release 5 1 March 91 Page 275

JAM PL/1 Programmer’s Guide

If you want general information about a keyset, see xsm_ksing. If you want the scope
of the current keyset, use xsm_kscscope.

WARNING: This routine can not be used when the keyset contains a greater number of
keys per row than the terminal does. When this occurs JAM automatically breaks the
rows to position them correctly on the monitor. This means that you will not be able to
reliably reference a particular soft key by its row and position. Instead, use
xsm_skving.

RETURNS

0 iof information has been retumned.

-1 if there is no active keyset for the given scope.
-2 for an invalid scope.

~3 if the row/soft key is out of range.

RELATED FUNCTIONS

scope = xsm kscscope();

status = xsm_ksing(scope, number keys, number_rows,
current_row, maximum len, keyset_ name);

status = xsm skving(scope, value, occurrence, attribute,
labell, label2);

Page 276 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

skmark

mark or unmark a soft key label by position

RPNy S RARBRRIR L Hh B RebodP BRI G W i

$rASINEh0a00 SR ANO000N000, SN SIMAINIIAD SN0 O 29

SYNOPSIS

$include ’smsoftk.incl.pll’;

declare scope fixed binary(31);
declare row fixed binary(31);
declare softkey fixed binary(31);
declare mark fixed binary(31);
declare status fixed binary(31);
status = xsm_skmark (scope, row, softkey, mark);

DESCRIPTION

Use this routine to mark or unmark a soft key label 1n an open keyset. The mark is made
in the last position of the first Iabel.

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its
position within that row. Use scope to reference a particular keyset. Possible values for
scope are defined in smsoftk.incl.pll. The argument row is the row number in
which the desired softkey resides. Rows are counted from top to bottom, beginning
with 1. The argument softkey is the position number within row of the desired soft
key. Positions are numbered left to right, beginning with 1.

The argument ma rk may be any single ASCII character. An asterisk (*) is the most com-
monly used mark. To unmark the key use the space character (* °) for mark.

The marking or unmarking of a soft key is often done to indicate a selection on a function
key that toggles between two options.

--WARNING: This routine can not be used when the keyset contains a greater number of

keys per row than the terminal does. When this occurs JAM automatically breaks the

« rows to position them correctly on the monitor. This means that you will not be able to

-reliably reference a particular soft key by its row and position. Instead, use
xsm_skvmark.

RETURNS

0 if the marking was successful.

-1 if there is no keyset of the specified scope.
-2 if the scope is out of range.

-3 if the row/soft key is out of range.

JAM Release 5 1 March 91 Page 277

JAM PL/1 Programmer’s Guide

RELATED FUNCTIONS

status = xsm_skvmark (scope, value, occurrence, mark);

Page 278 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

skset
set characteristics of a soft key by position

FO It L LI LR S e T SRRIEETEARSRECINIRNR N N B, Wi

SYNOPSIS

$include ’smsoftk.incl.pll’;
$include ’smkeys.incl.pll’;

$include ’smkeys.incl.pll’;

declare scope fixed binary(31):;
declare row fixed binary(31);
declare softkey fixed binary(31);
declare value fixed binary(31);
declare attribute fixed binary(31);
declare labell char (256) varying;
declare label2 char (256) varying;
declare status fixed binary(31);

status = xsm_skset (scope, row, softkey, value, attribute,
labell, label2):

DESCRIPTION

This routine can be used to modify a soft key’s scope, value, attribute, or label of any cur-
rently open keysets. You may modify one or more of these specifications with each call of
xsm_skset.

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its
position within that row. Use scope to reference a particular keyset. Possible values for
scope are defined in smsoftk.incl.pll. The argument row is the row number in
which the desired softkey resides. Rows are counted from top to bottom, beginning
with 1. The argument softkey 1s the position number within row of the desired soft
key. Positions are numbered left to nght, beginning with 1.

The value refers to the logical key name to be assigned to the soft key. Available
mnemonics are defined in smkeys. incl.pll. If you do not want to change the log-
ical name, assign -1 to value.

The attribute (color, blinking, etc.) is specified by using mnemonics listed in
smdefs.incl.pll.If you do not want to change att ribute, assign it 0. (Note: If
you set both the background and foreground to black, xsm_skset will set the fore-
ground to white, provided that the terminal supports background color.)

JAM Release 5 1 March 91 Page 279

JAM PL/1 Programmer's Guide

The vanables 1abell and label2 are the first and second lines of the labels respec-
tively. If you do not wish to change one of the labels, assign it the null pointer.

WARNING: This routine can not be used when the keyset contans a greater number of
keys per row than the terminal does. When this occurs JAM automatically breaks the
rows to position them correctly on the monitor. This means that you will not be able to
reliably reference a particular soft key by its row and position. Instead, use
xsm_skvset.

RETURNS

0 if no error has occurred.

-1 if there is no active keyset for the given scope.
~2 for an invalid scope.

-3 if the row/soft key 1s out of range.

RELATED FUNCTIONS

status = xsm_gkvset (scope, value, occurrence, newval,
attribute, labell, label2);

Page 280 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

skving

obtain soft key information by value

6,2 R

SYNOPSIS

$include ’‘smsoftk.incl.pll’;

$include ’smkeys.incl.pll’;

declare scope fixed binary(31);
declare value fixed binary(31);
declare occurrence fixed binary(31);
declare attribute fixed binary(31);
declare labell char (256) varying;
declare label2 char (256) varying:
declare status fixed binary(31);

status = xsm_skving(scope, value, occurrence, attribute,
labell, label2):;

DESCRIPTION

Use ths routine to obtain the label text and attributes of a soft key contained in a keyset
currently in memory, given the soft key’s value. It can be used when the terminal has a
different number of keys than the keyset was designed for.

The soft key is referenced by the keyset it belongs to, its value, and its occurrence within
the keyset. Use scope to reference a particular keyset. Possible values for scope are
defined in smsoftk.incl.pll. The value of the soft key is one of the mnemonic
defined 1n smkeys.incl.pll. The argument occurrence specifies which occur-
rence of a key with the specified value is desired (in case of duplicates).

The attributes (color, blinking etc . . .) of the label will be placed in attribute. The
value of the attributes correspond to amnemonic, or some combination of ored mnemon-
ics listed in smdefs.incl.pll.

-- The first and second row labels are placed in 1abell and 1abel2 respectively. You
should pre-allocate at least nine elements for Label1 and 1abel2 buffers (eight for the
label characters and one for the null character).

If you do not desire information about one or more of these parameters you may assign
the parameters the null pointer.

For general information about a keyset, see xsm_ksingq. If you want the scope of the
current keyset, use xsm_kscscope.

JAM Release 5 1 March 91 Page 281

JAM PL/1 Programmer's Guide

RETURNS

0 if information has been returned.

-1 if there is no active keyset for the given scope.

-2 for an 1nvalid scope.

=3 if there is no soft key with the given value/occurrence.

RELATED FUNCTIONS

size = xsm sking(scope, row, softkey, value, display_attribute,
labell, label2):;

Page 282 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

skvmark

mark a soft key by value

SYNOPSIS

$include ’smsoftk.incl.pll’;

$include ’smkeys.incl.pll’;

declare scope fixed binary(31);
declare value fixed binary(31);
declare occurrence fixed binary(31);
declare mark fixed binary(31);
declare status fixed binary(31);

status = xsm_skvmark (scope, value, occurrence, mark);

DESCRIPTION

Use this routine to mark or unmark a soft key label 1n an open keyset. The mark is made
in the last position of the first label.

The soft key is referenced by the keyset it belongs to, its value and its occurrence within
the keyset. Use scope to reference a particular keyset. Possible values for scope are
defined in smsoftk.incl.pll. The value of the soft key is one of the mnemonic
- defined 1n smkeys.incl.pll. The argument occurrence is the nth ume that
value appears in the keyset. If you wish to mark all occurrences of value assign 0 to
occurrence.

The argument mark may be any single ASCII character. An asterisks (*) is the most
commonly used mark. To unmark the key use the space character (° *) formark.

The marking or unmarking of a soft key is often done to indicate a selection on a function
key that toggles between two options.

RETURNS

0 if the mark was successful.
-1 if there is no active keyset for the given scope.
-2 for an invalid scope.
=3 if there is no soft key with the given value/occurrence.

RELATED FUNCTIONS

status = xsm_skmark (scope, row, softkey, mark):

JAM Release 5§ 1 March 91 Page 283

JAM PL/1 Programmer’s Guide

skvset

set charactenstlcs of a soft key by value

- ~ W we
PN AW o oV eV W v i e

SYNOPSIS
$include ’'smsoftk.incl.pll’;

$include ’smkeys.incl.pll’;

declare scope fixed binary(31);
declare value fixed binary(31);
declare occurrence fixed binary(31);
declare newval fixed binary(31):
declare attribute fixed binary(31);
declare labell char (256) varying;
declare label2 char (256) varying;
declare status fixed binary(31);

status = xsm_skvset (scope, value, occurrence, newval,
attribute, labell, label2);

DESCRIPTION

This routine can be used to modify the scope, value, attribute, or label of a soft key within
a currently open keyset. You may modify one or more of these specifications with each
call of xsm_skset.

The soft key is referenced by the keyset 1t belongs to, its value and 1ts occurrence withm
the keyset. Use scope to reference a particular keyset. Possible values for scope are
defined in smsoftk.1ncl.pll, The value of the soft key is one of the mnemonic
defined in smkeys.incl.pll. The argument occurrence is the nth time that
value appears in the keyset. If you wish to change all occurrences of value assign 0 to
occurrence.

The value of newvalue refers to the logical key name to be assigned to the soft key.
Available mnemonics are defined in smkeys . 1ncl.pll. If you do want to change the
logical name, assign -1 to value.

The attribute (color, blinking, etc.) is specified by using mnemonics listed in
smdefs.incl.pll.If youdo not want to change att ribute, assign it 0. (Note: If
you set both the background and foreground to black, xsm_skset will set the fore-
ground to white, provided that the termnal supports background color.)

The variables 1abel1 and 1abel2 are the first and second lines of the labels respec-
tively. If you do not wish to change one of the labels, assign 1t the null pointer.

Page 284 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

RETURNS

0 if no error occurred
—1 if there 1s no acuve keyset for the given scope
-2 for an invalid scope
-3 1f there 1s no soft key with the given value/occurrence,

RELATED FUNCTIONS

status = xsm_skset (scope, row, softkey, value, attribute,
labell, label2);

JAM Release 5 1 March 91 Page 285

JAM PL/1 Programmer's Guide

strip_amt_ptr
strip amount editing characters from a string
.............. T

.......................... Sk

R S B O A D DRt

declare field number fixed binary(31):;
declare inbuf char (256) varying;
declare outbuf char(256) varying;

outbuf = xsm strip amt ptr(field number, inbuf);
DESCRIPTION

Strips all non—digit characters from the string, except for an optional leading minus sign
and decimal pont. If inbuf is not empty, field number is ignored and the passed
string 1s processed 1n place.

If inbuf is empty, the contents of £ield_number are used.
RETURNS

The stripped text,
01f inbuf 1s empty and the field number 1s invalid.

RELATED FUNCTIONS

status = xsm _amt_format (field number, buffer);
value = xsm _dblval (field_number);

Page 286 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

submenu_close

close the current submenu

o IR R A R e T Y P I R,
SYNOPSIS
declare status fixed binary(31l);
status = xsm_submenu close();
DESCRIPTION

Submenus are ordinarily closed before xsm _input returns. It may, however, be told to
leave them open by using the OK_LEAVEOPEN option, either m the setup file or via
xsm_option. See the Configuration Gude for details. Regardless of how this option is
set, submenus are automatcally closed whenever the underlying window is closed with
xsm_close_window.

This function, then, is needed only when all of the following conditions are true.
1. OK_LEAVEOPEN is in use.
2. The submenu 1s no longer needed.
3. Access is needed to the underlying window.

RETURNS

~1 if there is no submenu currently open.
0 otherwise.

RELATED FUNCTIONS

status = xsm close_window () ;

JAM Release 5 1 March 91 Page 287

JAM PL/1 Programmer's Guide

svscreen

register a list of screens on the save list

R L A R R RN SR N X ™ P v PR T s a3
SYNOPSIS

declare screen_list char (256) varying;

declare count fixed binary(31);

declare status fixed binary(31):;

status = xsm_svscreen(screen_list, count);
DESCRIPTION

JAM maintains a list of screens that are saved in memory. The number of screens to be
added is given by count. You may add screens to the list anywhere within your code,
however the screen 1s not actually placed in memory until it 1s closed for the first ime.
This means that the ume saving factor only comes into play 1n subsequent openings of the
screen. Any data entered into a screen will not be saved until the screen 1s closed.

Screens are removed from the list with xsm_unsvscreen. You can check to see if a
screen 1s on the save hist with xsm issv. Checking the list pnior to calling
xsm_svscreen, however, 1s not crucial as any attempt to add a screen that is already on
the list will have no effect.

This routine saves processing time at the expense of memory. It is best suited for use with
screens that both require large amounts of data to be read in from elsewhere (databases,
other files, etc.) and do not allow the user to enter data. For instance, if you have a help
screen that needs to be populated by a data base and is going to be called up more then
once, you can re-display the screen much more quickly by saving the screen in memory.

RETURNS

0 is returned if no error occurred.
1 is returned 1if registration failed (out of memory).

RELATED FUNCTIONS

status = xsm issv(screen_name);
call xsm unsvscreen(screen_list, count);

Page 288 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

t scroll

R T TN S SRRSO SRS
SYNOPSIS
declare field number fixed binary(31);
declare status fixed binary(31);
status = xsm t_scroll (field number);
DESCRIPTION

This function returns 1 if the array in question is scrollable, and 0 if not. The argument
field number may be any field within the array.

RETURNS

1 if the array is scrolling.
0if it is not scrolling or if no such field_number.

RELATED FUNCTIONS

status = xsm t_shift (field number);

JAM Release 5 1 March 91 Page 289

JAM PL/1 Programmer's Guide

t shift

R P M SR AR S T S PN Ty Sl - S Tt S v P
SYNOPSIS

declare field number fixed binary(31):;

declare status fixed binary(31);

status = xsm t_shift (field number);
DESCRIPTION

This function retumns 1 if the field in question is shiftable, and 0 if not or if there 1s no such
field.

" RETURNS
1 if field is shifting.
0 1f not shifing or £ield_number 1s invalid.

RELATED FUNCTIONS

status = xsm t_scroll (field number);

Page 290 JAM Release 5 1 March 91

. JAM PL/1 Programmer's Guide

tab

SYNOPSIS

call xsm_tab():

DESCRIPTION

If the cursor is in a field with a next—field edit and one of the fields specified by the edit
is unprotected from tabbing, the cursor is moved to the first enterable position of that
field. Otherwise, the cursor is advanced to the first enterable position of the next tab un-
protected field on the screen.

" This function doesn’t ilﬁlr_l_edlately-u'i.gger —field—eliu;. ;iin or validal.i_on—l;rocessing. Such
processing occurs based on the cursor position when control returns to xsm_input.

RELATED FUNCTIONS

call xsm backtab();

field number = xsm home();
call xsm_last();

call xsm nl{():

JAM Release 5 1 March 91 Page 291

JAM PL/1 Programmer's Guide

tst all mdts

find f|rst modlfled occurrence

RV - T s - 2 4P B b i
SYNOPSIS
declare occurrence fixed binary(31):;
declare field number fixed binary(31);
field number = xsm _tst_all mdts(occurrence);
DESCRIPTION

This function tests the MDT bits of all occurrences of all fields on the current screen, and
returns the base field and occurrence numbers of the first occurrence with 1ts MDT set, if
there is one. The MDT bit indicates that an occurrence has been modified, either from the
keyboard or by the application program, since the screen was displayed (or since 1ts MDT
was last cleared by xsm_bitop).

This function returns zero if no occurrences have been modified. If one has been modi-
fied, it returns the base field number, and stores the occurrence number in occurrence.

RETURNS

0 if no MDT bit is set anywhere on the screen

The number of the first ficld on the current screen for which some occurrence has its
MDT bit set. In this case, the number of the first occurrence with MDT set is returned
1l occurrence.

RELATED FUNCTIONS

status = xsm_bitop(field number, action, bit):
call xsm cl all mdts{();

Page 202 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

uinstall

install an appllcatlon functlon

SYNOPSIS
declare usage fixed binary(31);
declare func_name char (256) varying;
declare func entry variable;
declare language fixed binary(31);
declare status fixed binary(31);

status = xsm uinstall(usage, func_name, func, language);

DESCRIPTION

This function installs an application routine that will be called from JAM library func-
tions. Installation enables JAM to pass control to your code in the proper function con-
text.

The possible values for usage are defined in the table below (and in the file:
smdefs.incl.pll). See section 2.1.1. for more detailed descriptions of the various
function types.

If an application is bound with the —retain_all option, then JAM can find the entrypoint
func from the name. Most functions will install themselves automatically the first ume
they are called. Functions may also be explicitly installed. func_name is the name of

. the function. Use the operating system subroutine s$£ind_entry to find the entry
point, or use the variant xsm n_uinstall, which will find it for you. language
should be set to 1 when programming in PL/1.

Value for usage Function type Section — Page
UINIT_FUNC Iniializaton 229. - p.22
URESET_FUNC Reset 229. - p.22
VPROC_FUNC Video processing 2212 - p.24
CKDIGIT_FUNC Check digit computation 228. - p.21
KEYCHG_FUNC Keychange 224. - p.17
INSCRSR_FUNC Insert/overwrite toggle 221 - p. 11
PLAY_ FUNC Playback recorded keys 22.10. - p.23

JAM Release 5 1 March 91 Page 293

JAM PL/1 Programmer's Guide

“ Value for usage Function bpe Section —~ Page
RECORD_FUNC Record keys for playback 22.10. - p.23
AVAIL FUNC Check for recorded keys 2210. - p.23
BLKDRVR_FUNC Block Driver function
STAT_FUNC Status line function 22.11. - p.23

" DFLT_FIELD_FUNC Default Field function 221, - p.11

II DFLT_SCREEN_FUNC Default Screen function 222, - p.15

II DFLT_SCROLL_FUNC Default Scroll driver

" DFLT_GROUP_FUNC Default Group function 225. -~ p.18

RETURNS

1 if funcuon was successfully installed.

-1 if malloc failure occurred.

VARIANTS

status = xsm_n uinstall(usage, func_name, language);

RELATED FUNCTIONS

call xsm_async(func, timeout);

Page 294

JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

ungetkey

push back a translated key on the mput

SYNOPSIS
%include ’smkeys.incl.pll’;
declare key fixed binary(31);
declare return_value fixed binary(31);
return value = xsm ungetkey (key):
DESCRIPTION

This function saves the translated key given by key so that it will be retrieved by the next
call to xsm_getkey. Muluple calls are permitted. The key values are pushed onto a
stack (LIFO).

When xsm_getkey reads akey from the keyboard, it flushes the display first, so that the
operator sees a fully updated display before typing anythmg Such is not the case for keys
pushed back by xsm_ungetkey; since the input is coming from the program, it is re-
sponsible for updating the display itself.

RETURNS

The value of its argument, or
-1 if memory for the stack is unavailable.

RELATED FUNCTIONS

key = xsm_getkey ()’

JAM Release 5 1 March 91 Page 295

_JAM PL/1 Programmer’s Guide

unsvscreen

remove screens from the save list
R A SRR S B ey VTR TR TA T ST NS

SYNOPSIS
declare screen_list char (256) varying;
declare count fixed binary(31);
call xsm_unsvscreen(screen_list, count);
DESCRIPTION

JAM maintains a list of screens that are saved in memory. This function is used to remove
screens from the save list. The argument count specifies the number of screens to be
removed from the save list. See xsm_svscreen.

This function can be used at any point within your code. It is not necessary for the screen
to be open at the time of the call. Any memory allocated to hold the screen 1s freed at the
time of the call unless the screen is open. The memory associated with an open screen 1s
de-allocated when that screen is closed. If a screen 1s not on the save list, a call to
xsm_unsvscreen has no effect.

RELATED FUNCTIONS

status = xsm_issv(screen_name);
status = xsm_svscreen (screen_ list, count);

Page 296 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

viewport

modlfy vnewport size and offset

SYNOPSIS
declare position_row fixed binary(3l);
declare position_col fixed binary(31);
declare size_row fixed binary(31):
declare size col fixed binary(31);
declare offset_row fixed binary(31l);
declare offset_col fixed binary(31);

call xsm_viewport (position_row, position_col, size_row,
size col, offset_row, offset_col);

DESCRIPTION

This function dynamically sizes the current screen’s viewport. A viewport has a maxi-
mum size of the screen or physical display — whichever is smaller. Use size_row and
size_column to specify the number of rows and columns, respectively.

You can position the viewport anywhere on the physical display. To do this, think of your
physical display as a grid made up of rows and columns that are one character apart. The
top left comer of your screen monitor is at position row 0, column 0 . Now use the argu-
ments position_row and position_col to specify the coordinates of the view-
port’s position.

Likewise, you can also specify which row and column of the screen will initially appear
at top left corner of the viewport. Again starting at row 0, column 0, count from the top
left of the screen to get the coordinates for of fset_row and of fset_col.

This function performs range checks on all parameters and suitably modafies them if nec-
essary. In particular, be aware that a non-positive value of size_row and size_col
will set the viewport to the maximum size in that dimension.

JAM Release 5 1 March 91 Page 297

JAM PL/1 Programmer’s Guide

vinit

MR DL
SYNOPSIS
declare video_address bit (0);
declare status fixed bainary(31);
status = xsm vinit (video_address):;
DESCRIPTION

This routine is called by xsm_initcrt as part of the iitialization process. It can also
be called directly by an application program. video_address contains the address of
a memory resident video file. Such a file must be created by the vid2bin and bin2c
utilities, then compiled into the application.

RETURNS

0 if intialization is successful.
program exit if video file is invalid or if video_address 1s zero and SMVIDEQ is
undefined.

Note: The variant xsm n_vinit has no return value.

VARIANTS

call xsm n_vinit (video_file);

Page 298 JAM Release § 1 March 91

. JAM PL/1 Programmer's Guide

wcount
obtain number of currently open windows

Sy

declare return_value fixed binary(31)
return _value = xsm wcount();
DESCRIPTION

This function returns the number of windows currently open. The number is equivalent to
the number of windows in the window stack.

To select the screen beneath the current window, subtract 1 from the value returned by
xsm_wcount, and then use the result as the argument to xsm_wselect.

This routine 15 useful when you are bringing another window to the top of the window
stack (making the window active) with xsm wselect.

RETURNS

The number of windows.
0 if the base form 1s the only open screen.
~1 if there is no current screen.

RELATED FUNCTIONS

return_value = xsm wselect (window_number);

JAM Release 5 1 March 91 Page 299

JAM PL/1 Programmer's Guide

wdeselect
restore the formerly active window

declare status fixed binary(31);
status = xsm_wdeselect ()’

DESCRIPTION

This function restores a window to its original position in the window stack, after it has
been moved to the top by acall to xsm_wselect. Information necessary to perform this
task is saved during each call to xsm_wselect, but is not stacked. Therefore a call to
this routine must follow a call to xsm_wselect if 1t is to properly restore the window
to its original position. Note that xsm_wdeselect does not have to be called if the win-
dow ordering on the stack 1s acceptable.

RETURNS

-1 if there is no window to restore.
0 otherwise.

RELATED FUNCTIONS

call xsm sibling(should it be);
return_value = xsm wcount ()
return_value = xsm_wselect (window_number) ;

Page 300 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

window

display a window at a given position

AL LI S o L R P A TR A R 1 e]
SYNOPSIS

declare screen_name char (256) varying;

declare start_line fixed binary(31);

declare start_column fixed binary(31):

declare status fixed binary(31);

status = xsm_r window(screen_name, start_line, start_column);

declare screen_name char (256) varying;
declare status fixed binary(31);
status = xsm_r_ at_cur(screen name);

declare screen_address bit (0);

declare start_line fixed binary(31);
declare start_column fixed binary(31);
declare status fixed banary(31);

status = xsm_d window (screen_address, start_line,
start_column);

declare screen_address bit (0);
declare status fixed binary(31);
status = xsm d_at_cur(screen_address);

declare lib desc fixed binary(31):
declare screen_name char (256) varying;
declare start_line fixed binary(31);
declare start_column fixed binary(31):
declare status fixed binary(31);

status = xsm 1 window(lib_desc, screen_name, start_line,
start_column);

declare 1lib_desc fixed binary(31);
declare screen_name char (256) varying;
declare status fixed binary(31);

status = xsm 1 at_cur(lib_desc, screen_name);

JAM Release 5 1 March 91 Page 301

JAM PL/1 Programmer's Guide

DESCRIPTION

This set of functions 1s primarily intended to be used by developers who are wniting their
own executive. To open a window while under the control of the JAM Executive, use a
JAM control string or xsm_jwindow.

Use xsm d window, =xsm 1l window, Or xsm r window to display
screen_name with its upper left-hand comer at the specnfied line and column. The line
and column are counted from zero. If start_line is 1, the window 1s displayed start-
ing at the second line of the screen.

Usexsm d_at_cur,xsm 1_at_cur,and xsm _r_at_cur to display a window at
the current cursor position, offset by one line to avoid hiding that line’s current display.

Whatever part of the display the new window does not occupy will remain visible, How-
ever, only the topmost (active) window and its fields are accessible to keyboard entry and
library routines. JAM will not allow the cursor outside the topmost window. If you wish
to shuffle windows use xsm_wselect.

If the window will not fit on the display at the location you request, JAM will adjust its
starting position. If the window would hang below the screen and you have placed its up-
per left-hand comer in the top half of the display, the window is simply moved up. If your
starting position is in the bottom half of the screen, the lower left hand corner of the win-
dow 1s placed there. Similar adjustments are made in the horizontal direction.

When youuse xsm_r_window the named screen is sought first in the memory-resident
screen list, and 1f found there is displayed usmg xsm_d_window. It1s next sought i all
the open libraries, and if found is displayed using xsm_l_w;ndow Next it 1s sought on
disk in the current directory; then under the path supplied to xsm_initcrt; theninall
the paths in the setup vanable SMPATH. If any path exceeds 80 characters, it is skipped.
If the entire search fails, this function displays an error message and returns.

You may save processing time by using xsm_d_window and xsm_d_at_cur to dis-
play screens that are memory-resident. Use bin2c to convert screens from disk files,
which you can modify using jx£form, to program data structures you can compile into
your application. A memory-resident screen is never altered at run—time, and may there-
fore be made shareable on systems that provide for sharing read-only data.
xsm_r_window and xsm_r_at_cur can also display memory-resident screens, if
they are properly installed using xsm_formlist. Memory-resident screens are partic-
ularly useful in applications that have a limited number of screens, or in environments
that have a slow disk (e.g. MS-DOS). screen_address ic the address of the screen in
memory.

You may also save processing time by using xsm 1_windowand xsm 1 at_curto
display screens that are in a library. A library is a single file containing many screens
(and/or JPL modules and keysets). You can assemble one from individual screen files us-

Page 302 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

ing the utility formlib. Libraries provide a convenient way of distnbuting a large num-
ber of screens with an application, and can improve efficiency by cutting down on the
number of paths searched.

The library descriptor, 1ib_desc, is an integer returned by xsm_1_open, which you
must call before trying to read any screens from a library. Note that xsm_r_window and
xsm_r_at_cur also search any open hibranes.

If you want to display a form use xsm_r form or one of its variants. Use
xsm_close_window to close the window.

RETURNS

0 if no error occurred during display of the screen;

-1 if the screen file’s format is incorrect;

-2 1if the screen cannot be found;

-3 if the system ran out of memory but the previous screen was restored;

-5 is returned if, after the screen was cleared, the system ran out of memory.
—6 is returned if the library is corrupted.

RELATED FUNCTIONS

status = xsm close_window();
status = xsm _r form(screen_name);
status = xsm_jwindow (screen_name);

JAM Release 5 1 March 91 Page 303

JAM PL/1 Programmer’s Guide

winsize
allow end—user to interactively move and resize a win-
dow

P A v g

SYNOPSIS

declare status fixed binary(31);
status = xsm winsize();

DESCRIPTION

Calling xsm_winsize has the same effect as if the end-user had just hit the VWPT
(viewport) logical key. The viewport status line appears and the user can move, resize and
change the offset of the screen as well as move to any sibling windows. When the end-us-
er hits XMIT (transmit) the previous status line is restored. If you wish to resize the view-
port yourself, use xsm_viewport.

In order for the end—user to able to move from one window to another, the windows must
be siblings. Windows are defined as siblings of one another either with xsm_sibling
or by calling up a window as a sibling with a JAM control string. See the sections on
“Viewports and Positioning™ and “Control Strings” 1n the Author’s Guide for further mn-
formation.

RETURNS
-1 if call fails.
0 otherwise.

RELATED FUNCTIONS

call xsm sibling(should it be);
call xsm viewport (position_row, position_col, size_row,
size_col, offset_row, offset_col);

Page 304 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

wrecord

write data from a data dictionary record to a structure

T T R S Ty R O R R D T S N v O e T e, ESBERNT
SYNOPSIS

declare structure_ptr bit (0);

declare record name char (256) varying;

declare byte count fixed binary(31);

call xsm_wrezord(structure_ptr, record name, byte_count);

DESCRIPTION

Ths function wnites data from fields within the current screen that are part of a common
data dicuonary record to a PL/1 structure. If a field is not on the current screen, then the
data is read from the LDB. This routine is commonly used with xsm_rrecord, which
reads data from a structure to a data dictionary record. If you wish to write data only from
the current screen, use xsm_wrtstruct. To write data from a group of consecutively
numbered fields, use xsm_wrt_part. Use xsm _getfield to wnte information
from an 1ndividual field to a string.

A data structure named record can be created from the data dictionary file data.dic
via the dd2struct utility as follows:

dd2struct -gPLl data.dic

- Each structure member 1s a field within a data dictionary record that is of the type speci-
fied in the Screen Editor. See “Data Type” in the Author’s Guide and dd2st ruct in the
Utilities Guide for further information.

Once created, the declarations may be treated exactly like any other structure declara-
tions.-The argument struct_ptr is the address of a vanable of one of the structure
types generated by dd2st ruct. The argument record_name 1s the name of the data
dictionary record, from which the structure was created.

The argument byte_count is a pointer to an integer. Upon return from
xsm_wrecord, the value contained in the integer will be the number of bytes or
characters written to the structure. It will be 0 1f an error occurred.

RELATED FUNCTIONS

status = xsm putfield(field number, data):;
call xsm rrecord(structure_ptr, record name, byte_count);

JAM Release 5 1 March 91 Page 305

JAM PL/1 Programmer’s Guide

wrt_part

write part of the screen to a structure

D0 wWRME MY ot N s SN R R BNER e VR Sl RRAL B b e,
SYNOPSIS

declare screen_struct bit (0) ;

declare first_field fixed binary(31);

declare last_field fixed binary(31):;

call xsm wrt part (screen struct, first_field, last_field):;
DESCRIPTION

This function wntes the contents of all fields between first_field and
last_field toadata structure in memory. An array and its scrolling occurrences will
be copied only if the first element falls between £irst_field and last_field.
Group selections are not copied. This routine 1s commonly used with xsm_rd_part,
which reads part of a structure wnto the current screen. If you wish to write the contents of
all of the fields within the screen use xsm_wrtstruct. To write information from a
data dictionary record, use xsm_wrecord. Use xsm_get £ield to write information
from an individual field to a string.

A data structure named screen can be created from the screen file screen. jam via
the £2st ruct utility as follows:

f2struct -gPLl1 screen.jam

Each member of the structure is a field of the type specified in the Screen Editor. See
“Data Type” in the Author’s Guide and £2st ruct in the Uulities Guide for further in-
formation.

Once created, the declaration may be treated exactly like any other structure declaration.
You can ignore the members that represent fields that do not fall within the bounds of the
specified fields. However, the structure defimtion must contain all of the fields on screen.
The argument screen_struct is the address of a variable of the type of structure gen-
erated by £2struct.

The arguments that represent the range of fields to be copied, first_field and
last_field are passed as field numbers.

Remember, you must update the structure declaration whenever you alter the screen from
which it was generated.

RELATED FUNCTIONS

status = xsm putfield(field number, data):

Page 306 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

call xsm _rd part (screen_struct, first_field, last_field);
call xsm wrtstruct (screen_struct, byte count);

JAM Release 5 1 March 91 Page 307

JAM PL/1 Programmer’s Guide

wristruct

write data from the screen to a structure

B SUATLEME RSN o T R ST R - - A T
SYNOPSIS

declare screen_struct bit (0);

declare byte_count fixed binary(31);

call xsm_wrtstruct (screen_struct, byte_count);
DESCRIPTION

This function writes the contents of all of the fields within the current screen to a PL/1
structure. It will not copy group selections. This routine 1s commonly used with
xsm_rdstruct which reads data from a structure to all of the fields within the current
screen. If you wish to write the contents of a group of consecutively numbered fields into
astructure use xsm_wrt_part. To write information from a data dictionary record, use
xsm_wrecord. Use xsm_getfield to write the contents of an individual field into
astring.

A data structure named screen can be created from the screen file screen. jamvia
the £2st ruct utility as follows:

f2struct -gPLl screen.jam

Each member of the structure is a field of the type specified in the Screen Editor. See
“Data Type” in the Author’s Guide and £2 st ruct in the Utidlities Guide for further in-
formation,

Once created, the declaranon may be treated exactly like any other structure declaration.
The argument screen_struct is the address of a variable of the type of structure gen-
erated by £2struct. If you specify the type omit, data will not be written into the
field.

The argument byte_count is an integer variable. xsm_wrtstruct will store there
the number of bytes copied to the structure.

Remember, you must update the structure declaration whenever you alter the screen from
which it was generated.

RELATED FUNCTIONS

status = xsm putfield(field number, data):;
call xsm_rd struct (screen_struct, byte count);
call xsm_wrt_part (screen_struct, first_field, last_field);

Page 308 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

wselect

activate a window

TR, PR AE R WS R ST O T IR LRI SR AR U T SRR
SYNOPSIS

declare window_number fixed binary(31);

declare return_value fixed binary(31):

return_value = xsm wselect (window_number);
DESCRIPTION

Although JAM allows you to display multiple windows at one time, only one window
may be active. Windows may overlap each other, or may be tiled (no overlap). The win-
dow at the top of the window stack is the acuve window, and the only window accessible
to library routines and keyboard entry. Use xsm_wselect to bring a window to the ac-
tive position on top of the window stack. If any of the referenced window is hidden by an
overlying window, it will be brought to the forefront of the display. In either case, the cur-
sor 1s placed within the window. JAM will restore the cursor to its position when the
screen was most recently de-activated.

The window to be activated is referenced by its number in the window stack. Windows
are numbered sequentially, starting from the bottom of the stack. The form underlying all
the windows (the base form) is window 0, the first window displayed is 1 and so forth.
Since a screen’s number depends on its posiion on the window stack, calling xsm_wse-
. lect will alter a window’s number as well as it position on the stack.

Alematively, windows may be referenced by their screen name with the variant
xsm_n_wselect. If you use this routine, you do not have to worry about keeping track
of the non—active window’s position on the stack. However, xsm_n_wselect will not
find windows displayed with xsm_d_window orrelated functions, because they do not
record the screen name.

Here are two different ways of using window selection. One way to use this is to select a
hidden screen, update it (using xsm_put £ield) and deselect it (using xsm_wdese-
lect). The portion of the hidden screen that 1s visible will be updated with the new data.

Because of delayed write the update will be done when the next keyboard input is sought.

The other method 1s to select a hidden screen and open the keyboard; in this case, the se-
lected screen becomes visible, and may hide part or all of the screen that was previously
active. In this way you can implement multi-page forms, or switch among several win-
dows that tile the screen (do not overlap).

JAM Release § 1 March 91 Page 309

JAM PL/1 Programmer's Guide

RETURNS

The number of the window that was made active (either the number passed, or the
maximum 1f that was out of range).

-1 if the window was not found or the window was not open.
VARIANTS

return value = xsm n_wselect (window_name) ;

RELATED FUNCTIONS

call xsm_sibling(should 1t_be);
return_value = xsm_wcount () ;
status = xsm wdeselect ()

Page 310 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Chapter 13.
Library Function Index

This chapter lists all JAM library functions, sorted by name, Function names appear on
the left, and the section of the Function Reference Chapter in which the function is de-
scribed appears on the right.

status = xsm_lclear array(field number);c..cceuane.n clear_array
status = xsm_lprotect (field number, mask);c.ciciveienannn. protect
status = xsm_lunprotect (field number, mask);cvcieaainnn. protect
status = xsm_a_bitop(array_name, action, bit); 000000, bitop
xsm_allget (respect_flag); ...ccceciiiiinieiiiiiininatieneecannnnanns allget
status = xsm_amt_format (field number, buffer); amt format
status = xsm_aprotect (field_number, mask); tecnsssnes protect
status = xsm_ascroll (field number, occurrence);ceecceess-ne ascroll
xsm_async(func, timeout);cccciceiieeens seneese esscesnensrnnes async
status = xsm_aunprotect (field number, mask);ccciciiienns protect
xsm_backtab();ccieeean.n feesaanaas tetseesccetraceanacanan .. backtab
base_number = xsm base_fldno(field number);cc....s base_fldno
XSM bel(); cececnvecenncrssccaransessncaccssnnnccsansane seacecencsssessas DBl
status = xsm _bitop(field_number, action, bit); feesena bitop
status = xsm bkrect (start_line, start_column, num of lines,
number_of columns, background_colors); bkrect
return_value = xsm blkinit () (); ...c..ceu..n. “etencsstantnananann blkinit
return_value = xsm_blkreset () (}; .ceeurcerinnrenninncenanccncnss blkreset
status = xsm_c_keyset (scope);s0u0.en ctetsecaressanns «+.. c_keaysat
-xsm_c_off(); i.oiiiiieanaat Geereresccersetceettanettanannnenannn c_off
XSm_C on(}; .-c.vncecncnrnns ceveesessanas theecsesecsasnsensae fennnaes c_on
xsm_c_vis(display); ..c.cciceciencciccanonenns e rcaaneean- ceaanen c vis
status = xsm_calc(field number, occurrence, expression); cale
XSm_cancel(arg); «.c.ccetiecinsanetonccsrancnosurcccasesceansae crenan cancel

status = xsm_chg_attr(field number, display attribute); chg attr

status = xsm_ckdigit (field_number, field_data, occurrence,
modulus, minimum diglts); ...ceiecniocacaronncan veee.. ckdigit

JAM Release § 1 March 91 Page 311

JAM PL/1 Programmer's Guide

xsm_cl_all mdts(); cecucievenancnaanes feemesasscrtresnaraaans cl_all mdts
xsm_cl_unprot(); ..cccineannnen ersaeas sesescescanssannsancenane cl_unprot
status = xsm_clear_ array(field number);i0uinn.s clear_array
status = xsm_close_window() (); ...cccunnnanns trsererassesaas close_window
status = xsm_d_at_cur(screen_address); teseenessscennteennas window
status = xsm_d_form(screen_address); csesecnnrstenatanasanns form
status = xsm_d_keyset (address, SCOP@); ..-uciecnriacrcnranansannnn keyset
xsm_d msg_line(message, display attribute);c.c00nane d msg_line
status = xsm_d_window(screen_address, start_line, start_column); . window
value = xsm_dblval(field number); crsnans sesaesennasene dblval
xsm_dd_able(flag); tesesasrssasenenns cesestecstesssannens dd able
status = xsm_deselect (group_name, group OCCULXENCE); .:.ecsvasass desealect
status = xsm _dicname(dic _name); sevesriseneannaanans dicname
offset = xsm disp off() ()7 «evvnrninniniiiiiinenaniinaen. +es.. disp_off
data_length = xsm dlength(field number);c.c.ocvinanen. dlength
xsm_do_region(line, column, length, display_attribute, text); . do_region
status = xsm _dtofield(field_number, value, format); dtofield
xsm_e_...{fleld name, element, ...); cciceecercananiirarranrantnanunns e_
status = xsm_e_lprotect (field_name, element, mask); PR protact
status = xsm_e_lunprotect (field name, element, mask); protect
status = xsm_e_amt_format (f1eld_name, element, buffer); amt_format
status = xsm_e_bitop(array name, element, action, bat); bitop
status = xsm_e_chg_attr(field name, element, display attribute); chg_attr
value = xsm_e_dblval(field _name, element);vccvneevecnscnnasn dblval
data_length = xsm_e_dlength(field name, element);ccue. dlength
status = xsm_e_dtofield(field name, element, value, format); ... dtofield
value = xsm _e_finquire(field name, element, which); finquire
field _number = xsm_e_fldno(field_name, element);ccnveevcrocns fldno
buffer = xsm e fptr(field name, element);c...ciiiieernnnnnnnns fptr
buffer = xsm_e_ftog(field name, element, group_occurrence); ftog
status = xsm_e_fval (array name, element);c.iciiciiecnnrane fval
length = xsm e _getfield(buffer, name, element);cicvcueenn gotfield
status = xsm_e_gofield(field name, element);ccveeennes gofield
value = xsm_e_intval(field name, element);ccccvetinriannnn, intval
status = xsm e_1s_no(field name, element);iiiiiiinarnnenn is_no
status = xsm e _is_yes(field name, element);ciecreunncnnnns is_yes
status = xsm_e itofield(field_name, element, value); itofield
value = xsm_e_lngval(field name, element);ccvecinennnns 1ngval
status = xsm_e_ltofield(field_name, element, value); ltofield
status = xsm _e_novalbit(field name, element);ccvecenncennns novalbit
status = xsm_e_null(field name, element);cc.ccieeerecarenrnans null
status = xsm_e_off_gofield(field name, element, offset); off_gofield
status = xsm_e_protect(field name, element); cesenns protect
status = xsm e_putfield(name, element, data);ccciveerncnes putfield

Page 312 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

status = xsm_e_unprotect(fleld_name, element); ..ccicciiiacansena protect
buffer = xsm_edit_ptr(field number, edit_type); «.....cccvveenes edit_ptr
XSM_emsg (mesSsSage); .veiececrccaccsnararscaanans ceseerecanssssannan .. emsg
xsm_err_reset (message); ..ccecveiirccninnaannans Prseieessenneasn err_reset
buffer = xsm_fi_path(file_name); ceeectataasaananns £i path
value = xsm_finquire (field_number, which); ...ivecincenccncannes finquire
XSm_flUsSh(); .oiveeviumnncencnosaarannercensrasrscseenansecansannns . flush
status = xsm_formlist (name, address);c.c.ccecerenrinacnnes formlist
buffer = xsm_fptr(field number); ceesnecaccanns erenane fptr
buffer = xsm_ftog(field number, group_OCCUrrence); ..ceoceeceseascses ftog
type = xsm_ftype(field number, precision_ptr); ssrsensescansia ftype
status = xsm_fval(field number);ceccceencennse tescessnsnananan fval
field_number = xsm getcurno()(); .ecuscvncecacevennnn fesseesaaans getcurno
length = xsm_getfield(buffer, field number); ceracreenses getfield
buffer = xsm _getjctrl(key, default);cccuaven teeaacsnnans getjctrl
key = xsm_getkey() (});c..--. seeseeseacasesenasecsascencvaanans getkey
status = xsm_gofield(field number);ccevecuecerecncnnncanss gofield
value = xsm_gp_inquire(group_name, which); wessemsns . gp_inquire
length = xsm_gwrap(buffer, field_number, buffer length); gwrap
status = xsm_hlp_by name(help screen); ceseennas hlp_by name
field number = xsm home() (}; ..covcevrnrerirncnecacsnrnnncnasaccneas home
xsm_1_...(field name, occurrence, ...); cccnciieninicoann. ressesscannas i

status = xsm_i_achg(field_name, occurrence, display_attribute); achg
status = xsm_i_amt_format (field name, occurrence, buffer); ... amt format

status = xsm_1_bitoplarray_name, occurrence, action, bit); bitop
value = xsm_i_dblval(field name, occurrence); seesansan dblval
data_length = xsm_1_dlength(field name, occurrence); dlength
return_value = xsm_i_doccur(field name, occurrence, count); doccur
status = xsm_i_dtofield(field_name, occurrence, value, format); dtofield
value = xsm_1_finquire(field_name, occurrence, which); finquire
field number = xsm_1_fldno(field_name, occurrence); ceacnasaee £fldno
buffer = xsm 1_fptr(field name, occurrence);ciceceureraanasnes fptr
buffer = xsm_i_ftog(field_name, occurrence, group_occurrence); ftogq
status = xsm_1_fval(field_name, occurrence); ...c.c.eccenvanas eesenn fval
length = xsm i getfield(buffer, name, occurrence); gatfield
status = xsm_1_gofield(field name, occurrence); veseses. gofiaeld
field number = xsm 1_gtof (group_name, group_occurrence, occurrence); gtof
value = xsm_i_intval{field_name, occurrence);ece-uveaes «sv. intval
lines_inserted = xsm_i_ioccur(field name, occurrence, count); ioccur
status = xsm 1_is_no(field_name, occurrence);c...c..nn cees. 18 _mo
status = xsm_i_1s_yes(field name, occurrence); «+.. 18 _yes
status = xsm i 1tofield(field_name, occurrence, value); itofield
value = xsm_i_lngval(field name, occurrence);iievescuncass lngval
status = xsm_i_ltofield(field_name, occurrence, value); ltofield

JAM Release § 1 March 91 Page 313

JAM PL/1 Programmer's Guide

status = xsm_1i_novalbit (field_name, occurrence);c..c.cueues novalbit
status = xsm_1_null(field_name, occurrence);cecccceearsenananans null
status = xsm_i_off gofield(field_name, occurrence, offset); . off_gofield
status = xsm_1_putfield(name, occurrence, data); putfield
status = xsm_ininames(name_list);ccieciecneniniannninnanns ininames
xsm_initert(path); c.eurerinnnerenriorancecieencesecnacecccannnss initert
key = xsm_input (1nitial mode);uceicciinnciriteatocannaaranns input
value = xsm_inquire(which); sssecasaesassesancnanssoarranns inquire
value = xsm_intval(fleld number);ciiccrirninicnnernaannsn intval
status = xsm_1s_no(field number);c.cccueeciirnnciectarranacnns is_no
status = xsm_1s_ves(field number); 0., crennens is_yes
old flag = xsm_1sabort(flag);ccuiurrnnicnenircnnrinnnannans isabort
value = xsm_iset (which, newval); ceesan teescssiennan veevesnsen iset
status = xsm_isselected(group_name, group occurrence); isselected
status = xsm_1ssv(screen name); erssesasecrareasanrsena tee.. 188V
status = xsm_itofield(field number, value); itofield
status = xsm_jclose()();cucuninan Creeetmesveasensresnonnns .+« Jclose
status = xsm_Jjform(screen Name);ccceeecnncenacsransarasans e-s. Jform
xsm_jinitert(path); - .iiiniiiiniioinieiiieniriteirtetaeitnneann, .. initcrt
return_value = xsm_jplcall (jplecall text);cecvevueiinnn. .+ jplecall
status = xsm_jplload(module name_ liSt); .ecccncerncrreennnnnnns .- jpllead
status = xsm_jplpublic(module_name_list);ccveacnn. -««. Jplpublic
status = xsm_jplunload{module_name); frenasecnesarsennaa jplunload
XSM_JresetCrt(); -ccvececrenanaaacacssecenoccsransaasnrnnacsanons . resetcrt
status = xsm jtop(screen Name);ei.vvnencesccnnssasascasnacnnane Jtop
status = xsm_jwindow(screen_name); fresssrseasenaencaaan jwindow
xsm_jxinitert(path); ... coiiaaniiaaain., seemsscnasrsesnessrne initcrt
xsm_jxresetcrt(); ...-ciiiriiiiiiacnennaaans tesacssnessncsanrnane resatcrt
old_flag = xsm keyfilter(flag);c..v... eeesrsensscannconn keyfilter
status = xsm _keyhit(interval); ..c.cvesiientiecnrcnanenscennecans keyhit
status = xsm_keyinit(key address);ccceeecicneninennncinnnn keyinit
buffer = xsm _keylabel(key); .ccceuiresacncenn cesearesarreassnanas keylabel
oldval = xsm_keyoption(key, mode, newval); ...c.ceccveecannoancs keyoption
scope = xsm_kscscope() (}); ccoceciniciiarnecrenans edsessasneanes kscscope
status = xsm_ksing(scope, number_keys, number_rows, current_row,

maximum_len, keyset _name); Petrsesasenssacnna ksing
XSM KSOFf () cucveeeenrocnnnansecnetentecnsceacasseasancansannanrnaa ksoff
xsm_kson(); ceeeenncnn tresevesarane essansassanans seseasesavsascenans kson
status = xsm_1 at_cur(lib_desc, screen name);c.oovvucensanes window
status = xsm_l_close(lib desc);ccveciiennn. crricseaseaneann 1_close
status = xsm_l_form(lib_desc, screen_name);c...ccieininsecnananss form
1lib desc = xsm 1 _open(lib name);cvcveeccacnncannn crseeestaanns 1_open
status = xsm_l_window(lib_desc, screen_name, start_line,

start_column); ccicecncceecnneneon eseranana vesaesnsanas window

Page 314 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

XSM_last (}); ceeievcarnananracantaccrsecsatacnnocnanns tesaseassasnnaa last
status = xsm_lclear(scope); ceesacenasenaaans teesescannans leclear
xsm_1db_1nit ()7 -ceeeciniiiaeiititiiie e cre st ta et aacanann 1db_init
xsm _leave(); .ccvceesciccaioncaenann vencseanunnnnn senseeassscaancana laave
field_length = xsm_length(field number);ccccceiiieninnnaannas length
value = xsm_lngval (field number);cccecnenns cersesecnnean ingval
status = xsm_lreset (file_name, scope);c0.... ceancesennene lreset
status = xsm_lstore() (), ...-cccerreereceecnnnnnnans vesssscsanane lstore
status = xsm_ltofield(field number, value);cccouvereenunne ltofield
xsmm flush(); ...ccviiiiinnrrreacinectescnactoececncanscaccnnnnnn flush
maximum = xsm_max_occur{field number); srenecnaen max_occur
old mode = xsm_mnutogl(screen_mode);ccccecrriacannenacancnnan mnutogl
xsm_msg (column, disp_length, text);cccvuiaans ersssnsnen . m8g
buffer = xsm msg get(number);cii.ccuiiiirtcrencacannsanns meg_get
buffer = xsm _msgfind(number); ..ccccccveerncnncnnaecsacsnscsanans magfind
status = xsm _msgread(code, class, mode, Arg); .ccciccecenceansans msgread
status = xsm_mwindow(text, line, column);ciceeeinvecscnnnene mwindow
xsm n_...(field name, ...); ..iciieiiciiiiiiciitatettecnnanrsensaoannn n_
status = xsm_n_lclear_ array(field name);ccceeecncannces clear_array
status = xsm_n_lprotect (field_name, mask); ...c.iieciiinccnnnanns protect
status = xsm n_lunprotect(field name, mask); cssenense protect
status = xsm_n_amt_format (field_name, buffer); amt format
status = xsm_n_aprotect (field name, mask); ...cccciieiiiiiieannns protect
status = xsm_n_ascroll(field name, occurrence);cceeeceassa- ascroll
status = xsm_n_aunprotect (field name, mask); ...ccccevevecnaae .». protect
status = xsm_n_baitop(name, action, bit);cciiiiiincianas, bitop
status = xsm n_chg_attr(field name, display_attribute); chg_attr
status = xsm n_clear_array(field name);cccceecnneancns +x-. clear_
value = xsm_n_dblval(field name);ceeviirrieincnnccnonnans ««.. dblval
data_length = xsm_n_dlength(field name);c.ccceaviinnnns ... dlength
status = xsm_n_dtofield(field name, value, format); dtofield
buffer = xsm n_edit_ptr(field name, edit_type); edit_ptrx
value = xsm_n_finquire(field name, which);ccccivcercaennns finquire
field_number = xsm n_fldno(field name); Certrsensenacnaannanns £fldno
buffer = xsm _n_fptr(field name); D PR fptr
buffer = xsm_n_ftog(field name, group_occurrence); ...cereecesescses ftog
type = xsm n_ftype (field number, precision_ptr); ee.e ftype
status = xsm n_fval(field name); veeene feestsererataanneennan . fval
length = xsm n_getfield(buffer, name);ccccveiveuncss e-... gotfiald
status = xsm_n_gofield(field name);civeiiiccirennrnnannns gofield
status = xsm _n_gval{group name);cc...vueeee tetcecisancsannse . gval
value = xsm_n_intval(field name);ccieviimricnccncnnnannss intval
status = xsm_n_1s no{field name);i.riiiticracrnncrencnen is_no
status = xsm_n_is_yes(field name);ccceiiinn.n. cesiesan is_yes

JAM Release 5§ 1 March 91 Page 316

JAM PL/1 Programmer’s Guide

status = xsm _n_itofield(field name, value);ccvccvannnne itofield
status = xsm_n_keyinit (key_file); teassnascassanacans keyinit
field_length = xsm_n_length(field name); cetesiensananacanann length
value = xsm_n_lngval (field name);c.c... crssensenreas feenane 1ngval
status = xsm_n_ltofield(field name, value); erese ltofield
maximum = xsm_n_max_occur{(field name); crresiireaaanaans max_occur
status = xsm_n novalbit (field name);c.cuicreniniiennacanane novalbit
status = xsm_n_null(field name);ccccecvecencnnacnanacneensanane null
number = xsm_n_num_occurs(field name);c.ciiiiiiaanae num_occurs
status = xsm_n off gofield(field name, offset); off gofield
return_value = xsm n_oshift (field name, offset); cisnane oshift
status = xsm_n_protect (field name);c.cierceiicneennrananaans protect
status = xsm_n_putfield(name, data);cccieoiinaaiiaiinnnen putfield
lines = xsm_n_rscroll(field name, req_scroll);cciceveaans rscroll
actual_max = xsm_n_sc max(field name, new max); ...c.cecciccranans 8c_max
size = xsm_n_size_of array(field name); size of_array
status = xsm_n_unprotect(field name);ciiiiiitiiiannnens protect
xsm_n_vinit (video_file); ...cccveananan. fessesscsrasnseacnanarnacen vinit
return_value = xsm n wselect (window _name);cc.cvecinenennnae wselact
buffer = xsm_name (field number);ccccciecreirnnncarnanancannas . name
xsm_NLl(); coievncccnnnannnn ceeeisiescateseretestteatisttanastarenannns nl
status = xsm_novalbit (field number);c.veeieceicnncnncnannns novalbit
status = xsm_null (field_number); crenrsesiesiescssaseteannaan null
number = xsm_num_occurs(field number);cccviiiicnnnnns num_occurs
xsm_o_...(field number, occurrence, ...); .c.eciscentcrccnacetccaraannan o

status = xsm_o_achg(field_number, occurrence, display attribute); .. achg
status = xsm_o_amt_format (field number, occurrence, buffer); . amt_format

status = xsm o _bitop(field_number, occurrence, action, bit); bitop
status = xsm_o_chg_attr(field number, element,

display attribute); eseasssaansescasasranaa chg_attr
value = xsm_o_dblval(field number, occurrence); treeniccnnans dblval
data length = xsm o_dlength(field number, occurrence); dlength

return_value = xsm_o_doccur(field_number, occurrence, count); doccur
status = xsm_o_dtofield(field number, occurrence, value, format);dtofield

value = xsm_o_finquire (field number, occurrence, which); finquire
field_number = xsm o_fldno(field number, occurrence);-..... . fldno
buffer = xsm_o_fptr(field number, occurrence);-cecru-resee .. fptr
buffer = xsm o_ftog(field number, occurrence, group_occurrence); ... ftog
status = xsm_o_fval(field number, occurrence);ceuuu.e sees. fval
length = xsm_o_getfield(buffer, field_number, occurrence); getfield
status = xsm_o_gofield(field number, occurrence);c.ceeeeeeas gofield
status = xsm_o_gwrap (buffer, field number, occurrence,

buffer_length); ..v.ciereeriireccnecnenccnennss ceesane gwrap
value = xsm_o_intval (field_number, occurrence);c.eecveseuness intval

Page 316 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

lines_inserted = xsm_o_ioccur (field_number, occurrence, count); .. loccur

status = xsm_o_is_no(field_number, occurrence);cececencnns is_no
status = xsm_o_is_yes(field number, occurrence);cce-resecncce. is_yes
status = xsm_o_itofield(field number, occurrence, value); itofield
value = xsm_o_lngval(field number, occurrence);c... +e=.. lngval
status = xsm_o_ltofield(field number, occurrence, value); ltofield
status = xsm_o_novalbit (field number, occurrence); .c....sve.. ... novalbit
status = xsm_o_null (field_number, occurrence);c.seeu-. PR null
status = xsm_o_off_gofield(field_number, occurrence, offset); off_gofield
status = xsm_o_putfield(field number, occurrence, data); putfield
status = xsm_o_pwrap (field_number, occurrence, text);cu..e . pwrap
occurrence = xsm occur no{) {); ..cecevnecaaaann, trtsecnsescannaanes occurno
status = xsm_off_gofield(field_number, offset); off gofield
oldval = xsm_option(option, newval);ceeveecmreicinacnnacnanns option
return_value = xsm_oshift (field number, offset);c.....0a.. oshift
buffer = xsm_pinquire(which);cciiciianiairennnennancecannns pinquire
status = xsm protect(field number);i.i.ciiiniiiiiiiaann,. protect
buffer = xsm_pset (which, newval);cceciunnns B T pset
status = xsm putfield(field number, data);ccccuciucnnans putfield
status = xsm_putjctrl(key, control_string, default); putjctrl
status = xsm_pwrap(field number, text); teeeesasssennas pwrap
reply = xsm_query msg(message); ..cieceecccansacnsaas creasuresaan query msg
xsm_qul_msg(message); ..-cccseccacnnss Areussceaacnns secsstcenenna qui_msg
xsm_quiet_err(message); -....-cccic-nnn teceennesnnnen . quiet_exr
status = xsm_r_at_cur(screen_fname);c..ccvcecracccnnasanocanas window
status = xsm_r_ form(screen_name);ccccercccansan “esescsecenannaas form
status = xsm_r_keyset (name, scope); ..c..cefieeccann ctsesassennase keysat
status = xsm_r_window(screen_name, start_line, start_column); window
xsm_rd_part (screen_struct, first_field, last_field); rd part
xsm_rd_struct (screen_struct, byte count); ...c.ccveieccenncannes rd_struct
xsm_rescreen(); R tetsecctaresennanns cereane rascreen
xsm_resetert(); ceesnanae trreacsssnesssuatnacnnna Presans resatoxt
status = xsm_resize(rows, COlUMNS); ..civecevcacccccnencennonancans resize
xsm_return();-.. teeersacesecsserataatsasstacetanaraonaenan return
xsm_rmformlist; crsamccaacesrnanane serecsseanse esses.. rmformlist
xsm_rrecord(structure_ptr, record name, byte count); rrecord
lines = xsm_rscroll (field number, req_scroll);cecevreaense rscroll
status = xsm_s_val()({); ...ccennnananaans secevssccansranan ceseassans 8_val
actual_max = xsm_sc_max(field number, new max);c.c..c.-. ss.. BC_max
buffer = xsm_sdtime(format); tesessassssavssenae ees. 8dtima
status = xsm_select (group_name, group_OCCULXencCe);ceeec-es Balect
xsm_setbkstat (message, display attrabute);cceivenereces . setbkstat
xsm_setstatus(mode); terensesasnsas etcarcetrtenasanas . setstatus
offset = xsm_sh off() ()7 ..eveecneranricreercersoneaasaasanns .-.. sh_off

JAM Release 5 1 March 91 Page 317

JAM PL/1 Programmer’s Guide

xsm_shrink_to_fit()i seereeercacninncnccnannns cedtnasenrnes shrink to_fit
xsm_sibling(should_it be); ..ccereeecvrcnnaneen sieesnassernacenns sibling
size = xsm_size_of array(field number);cecceicuccvene size_of_ array
s1ze = xsm_skinqg(scope, row, softkey, value, display_attribute,

labell, label2); .ccvevececennscsancas Weeeseesancsenansacan sking
status = xsm_skmark (scope, row, softkey, Mark); c.oceencnaccennanns skmark
status = xsm_skset (scope, row, softkey, value, attribute,

labell, label2); svoveeereensccnaaces veesvnsasensan creeraa skset
status = xsm_skving(scope, value, occurrence, attribute,

labell, label2); reresnanacncs cecaensersniannaans skving
status = xsm_skvmark (scope, value, occurrence, mark); ceenne skmark
status = xsm_skvset (scope, value, occurrence, newval, attribute,

labell, label?); Ptectmecsanrecaaeanenrasaaansana skvset
outbuf = xsm_strip amt_ptr(field number, inbuf); strip_amt ptr
status = xsm_submenu_close() (); -..cevinreciaeancanniaanes submenu_close
status = Xsm_svscreen (screen_list, count}; svscreaen
status = xsm_t_batop(array_number, action, bilt); ..cccieescccnerens bitop
status = xsm_t_scroll(field number);c.cccicecioann freaeans t_scroll
status = xsm t_shift(field_number); tresscnenanns cesnnaens tshift
xsm_tab(); ceciveaenaiiienacanannn fesseastesacecnestenrsastsesanasane tab
field_number = xsm_tst_all _mdts(occurrence); tst_all mdts
status = xsm uinstall(usage, func, func _name); uinstall
return_value = xsm _ungetkey(key);c.ceriiiiiniiciiiiiinonen. ungetkey
status = xsm_unprotect (field number);ccueniiennnan veeesnan protect
xsm_unsvscreen (screen_list, count); “ssessesersanacans unsvscreen
xsm_viewport (position_row, positlon_col, size_row, size col,

offset_row, offset_col); ceeseresrsann creenns viewport
status = xsm_vinit (video_address); eseursennsraasreancanesn vinit
return_value = xsm wcount(} ()7 ..ccaereranans Cemeececsaannesnannans wcount
status = xsm_wdeselect () ();eceennecncecrnaannnnnn R wdeselect
status = xsm_winsize(){}; sedaseestesedvataseascsasteanransas winsize
xsm_wrecord (structure_ptr, record_name, byte_count); wracord
xsm_wrt_part (screen_struct, first_field, last_field); wrt_part
xsm_wrtstruct (screen_struct, byte_count);ccccciiciniienaen wrtstruct
return_value = xsm wselect (window_number); seaenes ... wselect

Page 318 JAM Release § 1 March 91

JAM PL/1 Programmer's Guide

INDEX

A

Abort, 174

Application
abort, 107, 174
code, 2
See also hook function
customuzation, 1
data, 50—51, 168—169, 175—176,
236—237, 240—241
library routines, 84—85
development, 5, 26—27
See also hook function
efficiency, 63—65
flow, 2
mtialization, 2, 42, 76, 165—166
localization, 50—60
memory. See memory
messages, 46—47
portability, 61—62
reset, 254
suspend, 209

Application executable, 2—5

Array
base field, 95
clear, 113
element, xsm_e vanants, 78, 128
library routines — attribute access, 79—80
hbrary routines - data access, 78—79
occurrence
xsm_j variants, 78, 163
Xxsm_o vanants, 78, 231
scrolling, 289
size, 274
word wrap, 160, 245

ASCII, non—ASCII display, 50

ASYNC_FUNC, 10
See also asynchronous function

JAM Release 5 1 March 91

Asynchronous function, 19—20
arguments, 20
installation, 93
invocation, 20
return codes, 20
atch, 11

Authoning
executable, 5

Jx library, 5

tool See jxform
Authoring executable, 5

BACK, library routine, 94

BLKDRVR_FUNC, 10
See also block mode

Block mode, 67—74
initialization, 100
library routines, 86
reset, 101

Built-in control functions, 3139
Jm_exit, 32—33
Jm_goform, 34—35
Jm_gotop, 33—34
Jm_keys, 35—36
Jm_mnutogl, 36—37
Jjm_system, 37—38
Jm_winsize, 38
JpL 39

C

call, 16
Character data, 8-bit, 50—51

Check digit function, 21—22
arguments, 21
invocation, 21
return codes, 21-—22

Page 319

JAM PL/1 Programmer's Guide

Checklist
See also group
deselect, 120

CKDIGIT_FUNC, 9
See also check digit function

CLR, library routines, 112
Configuration, memory-resident, 64

Control function, 16—17
arguments, 17
mvocation, 17
return codes, 17

Control string

access, 153

set, 244
CONTROL_FUNC, 8

See also control function

Cursor
displacement, 122
home, 162
hbrary routines, 81 —82
location, 150, 270
move, 156, 233
off, 103
on, 104
position display, 105

D

Data dictionary, file, name, 121

Data entry, 167

Data entry mode, ym_mnutogl, 36—37
Delayed wnite, 45

DFLT_FIELD_FUNC, 8, 11
See also field function, default

DFLT_GROUP_FUNC, 8, 18, 19
See also group function, default

DFLT_SCREEN_FUNC, 9, 15
See also screen function, default

Display area, color, 99

Display attributes
change, 88—89
field, 108—109
portability, 61
rectangle, 99

E

EMOH, library routines, 206
Error handling, 4

Executable. See application or authoring ex-
ecutable

Executive
See also JAM Execunve
custom, 3—5

F

Field

character edit, 57—58
mtemnationalization, 57—358

characteristic, 97—98, 129—131,

137—138

clear, 112

currency, 54—56, 91, 286
internauonalization, 54—56

data, 144, 151—152, 242243

dateftime format, 51—354
internationalization, 51-—54

display attributes, 108—109

floating point value, 118, 127

group conversion, 145

integer value, 170, 179

length, 123, 210

library routines — attribute access, 79—80

hbrary routines — data access, 78—79

long integer value, 211, 214

math, 106

MDT bit, 292

Page 320 JAM Release 5 1 March 91

JAM PL/1 Programmer’s Guide

Field (continued)
name, 226
xsm_e variants, 78, 128
xsm_i variants, 78, 163
Xxsm_n variants, 78, 225
null, 229
number, 139
shifting, 290
Field function, 11—14
arguments, 11—13
default, 11
invocation, 11
returnt codes, 13—14
FIELD_FUNC, 8
See also field function

File, find, 136

Form
See also screen
display, 4, 34, 141—142, 181—182

Form stack, library routines, 76—77
Function. See hook function, library routines

G

GRAPH, 45—46
Graphics characters, 45—~46

Group
charactenisuc, 157
field conversion, 158
library routines, 80—81
selection, 177, 266

Group function, 18—19
arguments, 19
default, 18, 19
mvocation, 18—19
return codes, 19

GROUP_FUNC, 8
See also group function

JAM Release 5 1 March 91

H

Help, display, 161
HOME, library routines, 162
Hook function, 2, 7—27

See also individual hook function types by
name

arguments, 7

development, 10—26

individual, 7

installation, 4, 7—10, 293

recursion, 27

return codes, 7

types (overview), 8—10

Initialization function, 22

arguments, 22
invocation, 22
return codes, 22—-23

Input/output, 154—155

flush, 140
library routines, 77—78
user, 167

INSCRSR_FUNC, 9

See also insert toggle function

Insert toggle function, 20—21

arguments, 21
mvocation, 20
return codes, 21

Internationalization, 49—60

8 bit characters, 50—51
character filters, 57—58
currency fields, 54—56, 56
date and time mnemonics, 52, 53
date/time fields, 51—54
decimal symbols, 56—57
documentation utilities, 59
hibrary routines, 60

menu processing, 58—59
messages, 58, 60

product screens, 58

range checks, 59—60
screens, 58

Page 321

JAM PL/1 Programmer’s Guide

Interrupt handler, 22, 107 Key change function, 17—18
arguments, 18
invocation, 18
J retwrn codes, 18
Keyboard, 41—43
JAM mput, 167
behavior, 234 portability, 61
customizanon, 1 Keyboard translation
Executive, 2 mitialization, 192
See also JAM Executive internationalizaton, 51
initialization, 3
library routines — global behavior, KEYCHG_FUNC, 9
8485 See also key change function
library routines — global data, 84—85 Keyset
JAM Executive close, 102
authonng executable, 5 labels, 201, 202
form display, 181—182 memory-resident, 196
mtialization, 2 open, 196—197
jm Lbrary, 2,3, 5 query, 199—200
library routines, 85 scope, 198
screen close. 180 Keytops. 62
screen display, 27
start, 187
window display, 188—189 L
jammap, internationalization, 59
JPL, 183 Language. See programming language or in-
callmg control functions from, 16 ternationalization
compared to compiled code, 65 LDB, 29—30
_[pl built—in function, 39 access, 30
mod on, behavior, 119
Jxform, ification, § Clear, 207
creation, 29
data propagation, 29-—30, 90, 213
K iniualization, 29, 208
imbalization files, 164
Key jm library, 3
input, 154—155, 295 library routines, 81
logical, 41, 154—155 reset, 212
name, 193
routng, 42—43, 194—195 Library
simulated, 35—36 close, 203
soft. See soft key open, 204—205
translation, 41, 42 Library functions. See library routmes

Page 322 JAM Release 5 1 March 91

JAM PL/1 Programmer's Guide

Library routines, 75—86, 87
array attnibute access, 79—80
array data access, 78—79
behavior, 84—85
block mode, 86
cursor control, 81—82
field attribute access, 79—80
field data access, 78—79
global data, 84—85
group access, 80—S81
mtiahization, 76
JAM Executive control, 85
keysets, 85
LDB access, 81
mass storage, 83
message display, 82
reset, 76
screen control, 76—77
scrolling, 83
shifung, 83
xsm_close_wmdow, 4
xsm_dtofield, internationalization, 60
xsm_flush, 45

Istdd, internationalization, 59
Istform, intemationalization, 59

Math, 106
Memory

library routines — mass storage, 83
messages, 64

resident configuration, 64

resident file list, 143

resident keyset, 196

resident screens, 63—64, 288, 296

Menu, submenu, 287
Menu mode, ym_mnutogl, 36—37
Message, 46—47

disk based, 64

display, 115—117, 132—134, 135, 217,
218, 224, 246, 247, 248, 267—268,
269

file intiahization, 221—223

xsm_getkey, ;2 flush, 215
Xsm_mutcrt, " 42 internationalization, 58
xsm_!np;tl.,l o library routines, 82
xsm_mls '27 retnieval, 219, 220
2:::;;:& o status line priority, 46
xanwindow, 27 MODEX. 4546
xsm_keyoption, 43
xsm_ldb_init, 29
xsm_option, 30 N
Xsm_ _msg, internationahization, 60 .
xsm_:‘_‘_‘fzm i NL, library routmes, 227
xsm_rescreen, 65
Xxsm_resetcrt, 5 O
soft keys, 85
termunal input/output, 77-—78
validation, 84 oc:lm 230
viewport control, 76—77 delete, 126

License, 5 display attributes, 88—89

insert, 171
Load, 184 number, 232
Local Data Block. See LDB scroll to, 92
JAM Release S 1 March 91 Page 323

JAM PL/1 Programmer's Guide

Operating System command, ym_system,
3738

P

PLAY_FUNC, 9
See also playback function

Playback function, 23
arguments, 23
filter, 190
mvocation, 23
return codes, 23—24

Programmung language, 1
Protection, 238—239
Public, 185

R

Radio button See group
Record function, 23
arguments, 23
filter, 190
invocation, 23
return codes, 23—24

RECORD_FUNC, 9
See also record function

Regular expression, 57

Reset function, 22
arguments, 22
mvocation, 22
retumn codes, 22—23

S

Screen
See also form; window
close, 32, 180
data propagation, 90

Page 324 JAM Release 5

display, 26—27

mternationalization, 58

hbrary routines, 76—77
memory-resident, 63—64, 178, 288, 296
memory-resident list, 63

restore, 251—252

search, 63

store, 249—250, 306—307, 308

top, 33

Screen function, 15—16
arguments, 15
default, 15
invocation, 15
return codes, 16
screen display, 26

Screen Manager
behavior, 234
mitialization, 3
sm hbrary, 2,3, 5
SCREEN_FUNC, 8
See also screen function

SCROLL_FUNC See scrolling, alternative

Scrolling, 260
library routines, 83

Scrolling array
maximum number of occurrences, 216,
263
occurrence, 92
Shifting
field, 235
Library routines, 83

Sibling window, 272—273

Soft key
charactenstic, 275—276, 279280
library routines, 85
mark, 277—278, 283
Source code
jmain.c, 2
Jxmam.c, 5
main routines, 76

Stacked window, 272—273

1 March 91

JAM PL/1 Programmer’s Guide

STAT_FUNC, 9
See also status line function

Status line
access, 4
flush, 215
library routines, 82
message, 115—117, 132, 135, 217, 218,
246, 247, 248, 2617, 269
message priorty, 46
terminal, 46—47
Status line function, 23—24
arguments, 24

mvocation, 24
return codes, 24

T

TAB, lbrary routines, 291

Terminal
bell, 96
graphics character display, 45—46
library routines, 77—78
output, 45—47, 65, 124—125, 140
portability, 45, 61—62
refresh, 253
resize, 255
status line, 46—47

Top screen, 33

U

UINIT_FUNC, 9
See also mitiahization function

Unload, 186

URESET_FUNC, 9
See also reset function

v

Vahdation
buts, 97—98
check dig:t, 110
field, 148
field function invocation, 11
group, 159
group function mnvocation, 19
invalidate field, 228
library routines, 84
screen, 261-—262

Video mapping
character sets, 45—46
file, 45
initialization, 298
internationalization, 51
optimization, 64—65

Video processing function, 24—26
arguments, 24—26, 25
invocation, 24
return codes, 26

Viewport, 297, 304
Library routines, 76—77

VPROC_FUNC, 9
See also video processing function

w

Window
See also screen
close, 4,114
count, 299
display, 188—189, 301303
message, 224
selection, 300, 309-—310

Window stack, library routmes, 76

JAM Release 5 1 March 91 Page 325

