Addendum

for Updates to

JAM Release 5.03
for Stratus COBOL

Part Number R333-00A

August 3, 1992

Addendum for Updates to JAM 5.03

Note of Explanation

This addendum describes new features in release 5.03 of JAM. This addendum is for the
Stratus COBOL Programmer’s Guide. There are separate addenda for Volumes 1 and 2 of
the JAM 5.03 documentation set.

Several insertion pages (or A—pages) are included for new library routines and utilities in
JAM 5.03. These pages should be inserted into your JAM Programmer's Guide and U'i-
lities Guide at the appropriate location. For example, page A-195 should be inserted be-
fore page 195.

Note that the page numbers for the Utilities Guide refer to the August 1, 1991 printing of
the JAM manual. Page numbers in the Programmer’s Guide refer to the March 1, 1991
printing of the Stratus COBOL Programmer's Guide.

Stratus COBOL Programmer’s Guide

Page 94: New Behavior and Return Codes for xsm_ascroll

The library routine xsm_ascroll takes as arguments a field number and an occur-
rence. It scrolls an array such that the requested occurrence is in the specified field. If the
requested occurrence cannot be placed in the specified field because it is one of the first
or last occurrences in a non—circular array, then xsm_ascroll scrolls the occurrence
onto the screen and returns the occurrence number of the occurrence that is actually in the
specified field.

Page 170: Inquiring Help Level via xsm_inquire

The global variable I_INHELP now contains the level of help that the user is in, instead
of just a true/false value. There may be up to five levels of help. Use sm_inquire to
query the value of this variable. A retum of zero indicates that the user is not in help, a
return of 1 through 5 indicates which help level the user is in.

Page 197: xsm_keyoption

Certain keys can not be translated via the KEY_XLATE argument to sm keyoptlon
These are: INS, REFR, SFTS, LP, and ABORT. They may, however, be disabled via the
KEY_ROUTING argument, or intercepted via a keychange function

Page 224: xsm msgread

The header file msgfile. incl. cobol is a user—created file that is necessary only if
you are using a memory—-esident message file.

JAM Release 5.03 Addendum 3 August 92 Page 1

Addendum for Updates to JAM 5.03

Page 249: Percent Escapes in xsm_query msg

Percent escapes are now supported for controlling the attributes of query messages. The
sequences are the same as those for xsm_emsg, and detailed on page 214. Note that $Mu
and $Md are not supported. Query messages from JPL can also now use percent escapes.

Page 295: MDT bits and Scrolling Arrays

When lines are inserted or deleted from scrolling arrays via INSL or DELL, the MDT bits
for all occurrences after the insertion or deletion are no longer set. In a database applica-
tion, this prevents the need for unnecessary processing to write potentially large amounts
data that have not changed. For large arrays, it can save a significant amount of proces-
sing time.

Page 2 JAM Release 5.03 Addendum 3 August 92

Addendum — Replacement Page for Utilities Guide

bin2cob

convert binary JAM files to COBOL copy files

SYNOPSIS
bin2cob [-fv] COBOL-file binary-file. ..
OPTIONS

-f Overwrite an existing output file.
-v Generate list of files processed.

DESCRIPTION

This program converts binary files created with other JAM utilities into COBOL
source. COBOL—file is usually a new file name. (To overwrite an existing file, you must
use the — £ option.)

When the utility creates the COBOL source file, it generates a copy file for each of the
binary input files. The name of the copy file is derived from the binary file name, with
the path and extension removed, and given the extension . incl.cobol. Each copy
file contains one 01 level with the name of the binary file followed by ~form. Under
that there are multiple 05 levels, all named £il1ler, that are given initial values repre-
senting the data in the binary file,

The application program should include the copy file in the program that uses it. The
_d variants of certain library routines (d_window, d form, d_at_cur,
d_keyset,d_msg _line)can then be used.

bin2cob copy files may be compiled, linked with your application, and added to the
memory-resident form list. (See the JAM Programmer’s Guide for more information
on memory-resident lists.) The following files may be made memory-resident:

® Kkey translation files (key2bin)
setup variable files (var2bin)
video configuration files (vid2bin)
message files (msg2bin)

JPL files (§p12bin)

® screen files (jxform)

There is no utility to convert ascll-file back to its original binary form after using
bin2cob. JAM provides other utilities that permit two—way conversions between
binary and ASCII formats. For screens, these utilities are bin2hex and £2asc.

JAM Release 5.03 Addendum 3 August 92 Page A-15

Addendum — Replacement Page for Utilities Guide

ERRORS

Insufficient memory available.
Cause: The utility could not allocate enough memory for its needs.
Corrective action: Try to increase the amount of available memory.

File ”%s” already exists; use '—-f’ to overwrite.
Cause: You have specified an output file that already exists.
Corrective action: Use the f flag to overwrite the file, or use another name.

”%s”: Permission denied.
Cause: An input file was not readable, or an output file was not writeable.
Corrective action: Check the permissions of the file in question.

Page A-16 JAM Release 5.03 Addendum 3 August 92

Addendum — Replacement Page for Programmer’s Guide

copyarray

copy the contents of one array to another

N

SYNOPSIS
77 destination-£fld pic $(9)9 comp-5.
77 source-fld pic $(9)9 comp-5.
77 status pic S(9)9 comp-5.
call “xsm_copyarray” using destination-fld, source-fld giving
status.
DESCRIPTION

This routine copies the contents of the array containing source-£1d into the array
containing destination-f1d. source-£fld and destination-£1d are field
numbers. They may be the field number of any of element in the respective array.

The developer is responsible for insuring that the arrays are compatible. Data in source
array occurrences that are too long for the destination array are truncated without warn-
ing. Data in source array occurrences that are shorter than the destination array's field
length are blank filled (with respect for justification).

If the source array has mcre occurrences than the destination array, the data in the extra
occurrences are discarded. If the source array has fewer occurrences than the destina-
tion array, trailing occurrences in the destination array are cleared of data (but not de—
allocated).

copyarray sets the ML'T bit and clears the VALIDED bit for each destination array
occurrence, indicating tha: the occurrence has been modified and requires validation.

The variant, xsm_n_copyarray, searches the LDB for either array if the named field
is not found on the screen. However, if the destination LDB item has a scope of 1,
meaning that it is a constant, then it is not altered and the function returns —1. .

RETURNS

~1 if either field is not found or if the destination array in the LDB has a scope of 1.
0 otherwise.

VARIANTS

call “xsm n copyarray” using destination-name, source—name
giving status.

RELATED FUNCTIONS

call ”xsm clear acray” using field-number giving status.

JAIA Release 5.03 Addendum 3 August 92 Page A-117

Addendum — Replacement Page for Programmer's Guide

call “xsm getfield” using buffer, field-number giving length.
call "xsm putfield” using field-number, data giving status.

Page A-118 JAM Release 5.03 Addendum 3 August 92

Addendum — Replacement Page for Programmer’s Guide

next_sync

find next synchronized array

SYNOPSIS
77 field number pic S(9)9 comp-5.
77 next-array pic S(9)9 comp-5.

call "xsm_next_sync” using field-number giving next—array.

DESCRIPTION

Given a field number, this function finds the next array synchronized with the given
field, and returns the field number of the corresponding element in that array. The next
synchronized array is defined as the one to the right. If field-number is in the righ-
most synchronized array, the function returns the corresponding element in the leftmost
synchronized array (ie- it ‘wraps around the screen).

RETURNS

The field number of the corresponding element in the next synchronized array if there
is one.
Otherwise, the field number the function was passed.

JAM Release 5.03 Addendum 3 August 92 Page A-231

Addendum — Replacement Page for Programmer’s Guide

soption

set a string option

SYNOPSIS

copy ”smmisc.incl.cobol”.
copy ”“smmisc2.incl.cobol”.
copy “smmisc3.incl.cobol”.

77 option pic S(9)9 comp-5.
77 newval display-2 pic x(256).
77 oldval display-2 pic x(256).

call ”“xsm_soption” using option, newval GIVING OLDVAL.

DESCRIPTION

Use xsm_soption to alter during run-time the default string options defined in
smsetup.incl.cobol. The following table lists the valid values for option:

Description
SO_EDITOR Editor to use in JPL windows.
“ SO_FEXTENSION | Screen file extension. "
I[SO—LP RINT Operating system print command.

SO0_PATH Search path for screens and JPL procedures.

These variables are fully documented in the JAM Configuration Guide, under “System
Environment and Setup Files.”

RETURNS

The old value for the specified option.
0 if the option is invalid or a malloc error occurred.

RELATED FUNCTIONS

call “xsm_option” using option, newval GIVING OLDVAL.

JAiA Release 5.03 Addendum 3 August 92 Page A-289

Addendum - Replacement Page for Programmer’s Guide

wrotate

rotate the display of sibling windows

SYNOPSIS

77 step pic S(9)9 comp-5.

77 status pic S(9)9 comp-5.

call ”“xsm_wrotate” using step giving status.
DESCRIPTION

If two or more sibling windows are on the top of the display, this function may be used
to rotate the sequence of the sibling windows. step is a positive or negative integer
equalling the number of screen rotations. If step is positive, the routine takes the top-
most sibling window and makes it the last sibling window for each instance of step.
If step is negative, the routine takes the last sibling window and makes it first. If
step is zero, no rotations are performed. See the figures below.

Figure 1: Screens a, b.and c are all siblings.Screen main is not a sibling.

Figure 2: Executing sm_wrotate (1) rotates the top sibling to the bottom
of the sibling stack. It rotates screen ¢ behind the other two sibling windows,
leaving screen b on top. Screen main is not affected.

JAM Release 5.03 Addendum 3 August 92 Page A-309

Addendum — Replacement Page for Programmer’s Guide

Figure 3: Executing sm_wrotate (-1) rotates the last sibling window to
the top, putting screen ¢ on top. The display is the same as Figure 1.

Figure 4: Executing sm_wrotate (2) rotates the first two sibling windows
off the the top. First it rotates screen c to the back, then screen b, leaving
screen a on top.

RETURNS

One less than the number of sibling windows on top of the window stack. .
0 if there are no sibling windows

RELATED FUNCTIONS

call ”"xsm_sibling” using should-it-be.

Page A-310 JAM Release 5.03 Addendum 3 August 92

