
VOLUME I

• Overview

• Author's Guide

• Configura~ion Guide

• Utilities Guide

• Appendices

• Index

JAM®
Release 5.03

JYACC Application Manager

November 20, 1992

© 1992 JYACC, Inc.

This is the manual for JAM® Release 5.03. It is as accurate as possible at this time;
however, both this manual and JAM itself are subject to revision.

J AM is a registered trademark of JYACC, Inc.

DEC, VT100, and VT220 are trademarks of the Digital Equipment Corporation.

IBM is a trademark of International Business Machines, Incorporated.

Windows is a trademark and MS-DOS is a registered trademark of Microsoft
Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

OSFlMotif is a trademark of the Open Software Foundation.

UNIX is a registered trademark of AT&T.

Sun workstation is a trademark of Sun Microsystems, Inc.

HP is a trademark of the Hewlett-Packard Company.

Other product names mentioned in this manual may be trademarks of their respective
proprietors, and they are used for identification purposes only.

Please send suggestions and comments regarding this document to:

Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038

(212) 267-7722

© 1992 JYACC, Inc.
All rights reserved
Printed in USA.

,

/

Master List of
Contents

The JAM Release 5.03 Manual is printed in two volumes. Eacb volume comprises sev
eral parts. Tabbed separators are provided to simplify access to the major parts. The
parts are listed below.

Overview Tab:

Volume I

JAM Development Overview
New Features

Author's Guide Tab:
Author's Guide

Configuration Guide Tab:
Configuration Guide

Utilities Guide Tab:

Appendices Tab:

Index Tab:

JPL Guide Tab:

Utilities Guide

Glossary
Upgrade Guide

Master Index for: JAM Development Overview, Author's
Guide, Configuration Guide, Utilities Guide, Glossary,
Upgrade Guide, JPL Guide, and Programmer's Guide

Volume II

JPL Guide

Programmer's Guide Tab:
Programme.r's Guide

JAM Release 5.03 20 Nov 92

JAM
Development

Overview .

TABLE OF CONTENTS

Chapter 1
Introduction

Chapter 2

. 1

~Ilt i!i JJ~~ . ~
2.1 Components of the JAM Architecture 3

2.1.1 JAM's Core: The Screen Manager. 4
2.1.2 JAM's Controller: The JAM Executive................... 4
2.1.3 Screen Manager/JAM Executive Interaction 5
2.1.4 The Local Data Block. 6
2.1.5 JPL. 7

2.2 Components of JAM. 7
2.2.1 The Authoring Tool . 7
2.2.2 J AM Libraries . 7
2.2.3 Source Code •....•..•....•.•...•...•••.............. 8
2.2.4 Screens. 8
2.2.5 Configuration FIles 8
2.2.6 JAM Utilities. 8

2.3 Components of a JAM Application 9
2.3.1 JAM Screens. 10
23.2
2.3.3
2.3.4
2.3.5

Chapter 3

The Data Dictionary
C Hook Functions
JPL Modules
J AM Application Executable

11
11
12
12

JAM Application Development 13
3.1 Creating and Editing Application Screens . 13
3.2 Creating and Editing the Data Dictionary 15
3.3 Iteratively testing an application 15

JAM Release 5.03 20 Nov 92 Pagei

JAM Development Overview

Chapter 4
JAM Control Flow .. 17

4.1 Keyboard and Video Translation 17
4.2 Sample PersOIUlel Application - User's View. 19 ./

4.3 The Personnel Application - Developer's View 23
4.3.1 Personnel Application Screens 23
4.3.2 The Data Dictionary 28
4.3.3 JPL Modules .. 28
4.3.4 C Functions. 29

4.4 The Screen Manager I JAM Executive Dialogue. 29
4.4.1 JAM's Dialogue in the Sample Application. 33

4.5 Keeping Track of Forms and Windows 34
4.5.1 The Screen Manager's Window .Stack 34
4.5.2 The JAM Executive's Form Stack 35
4.5.3 Stack Overview..................................... 37
4.5.4 The Form and Window Stacks in the Sample Application. 37

4.6 Local Data Block Processing 39
4.7 JAM Flow Summary .. 40

Chapter 5
JAM PIlilosophy .. 43

5.1 JAM Features. 43
5.1.1 Display Hardware Portability 43
5.1.2 Terminal Keyboard Portability 44
5.1.3 Application Portability 44
5.1.4 Data-Driven Soft User Interface 44
5.1.5 Event-Driven Algorithm 45

5.2 JAM Development Methodology. 45
5.2.1 The Use of Prototypes. 46
5.2.2 Design Strategy. 46

Index ... 49

Page ii JAM Release 5.03 20 Nov 92

Chapter 1

Introduction

~:.[E]:::::':;:::::::::::::::::::::::: .:~-: . .
.: -: . .
:: .. : .. :.:.;.::.:.: .. :.:.::.:.,::

This document is intended for new J AM® developers, or JAM developers who want to
get a better understanding of the product. This document is intended to provide a con
ceptual overview of JAM. JAM is a powerful tool for prototyping and developing ap
plications, and is structurally unlike other tools available. This document will help you
better understand and exploit JAM.

JAM is part of a family of JYACC products. The following table describes the rest of
the family:

Product Description

JAMlDBi Interface for SQLrelational database systems

JAMlDBi ReportWriter Report writer for JAMlDBi

J AMlPi for Motif Presentation interface for the Motif GUI

JAMlPi for Microsoft Windows Presentation interface for Microsoft Windows

J AMlPi for Graphics Presentation interface for Graphics

Jterm Color Tenninal Emulator optimized for JAM

JAM Release 5.03 20 Nov 92 Page 1

Chapter 2

WhatisJAM?

~::[B.::::::::::::::::::'::/::::.: :~ .. · . · . · . · .
:: .. :..:.: ... ;.::.: .. :.: : .. -:

JAM is a software toolkit that aids developers in prototyping and building applications
with sophisticated user interfaces. Although there are some data manipulation algo
rithms built into JAM, its primary use is building those application components that
interact with end-users and the computer. JAM has been used in applications ranging
from order entry and customer infonnation systems to expert systems for project plan
ning to real-time manufacturing applications.

In this chapter, we look briefly at the components of JAM.

2.1

COMPONENTS OF THE JAM
ARCHITECTURE
In the following sections, we briefly discuss the architectural components of JAM that
work together in a JAM application.

JAM Release 5.03 20 Nov 92 Page 3

JAM Development OveNiew

2.1.1

JAM's Core: The Screen Manager
JAM's main concern is the user interface. The fundamental building blocks for user
interfaces are screens. Consequently, the core of the JAM product is the Screen Manag
er, a set ofC library routines 1 accessible to the programmer for the display and manipu
lation of screens and screen field data2.

The Screen Manager is also responsible for interpreting user input to the application,
whether it be data input, function key and menu selections, or other keys that move the
cursor through the fields on a screen. Sometimes the Screen Manager will process user
input; other times it will return to the calling program or call a developer-written func
tion. Generally, input pertaining to a given screen will be processed by the Screen Man
ager either directly or by calling developer-written functions we designate /wok/unc
tions, while input that causes an interaction between screens will be returned by the
Screen Manager and processed at a higher level.

Very sophisticated user interfaces can be created with the Screen Manager alone. How
ever, the fundamentally unique component in JAM's toolset is the JAM Executive de
scribed in the next section.

The JAM Screen Manager operates on screen binaries which are data structures
created and maintained by the JAM Screen Editor (section 2.3.1 on page 10). These
structures specify all of the information the Screen Manager needs to do its job, includ
ing the size of the screen, the positions and attributes of the fields, the restrictions on
user input, etc.

2.1.2

JAM's Controller: The JAM Executive
The JAM Executive is a routine supplied with JAM that uses data in screens to control
the flow of an application from screen to screen. This eliminates the need to write C
code to control the application flow. The supplied executive algorithm is flexible
enough to allow the construction of virnlally any application. By using the JAM

1. JAM is written in C. and is distributed with the C programming interface. Developers who prefer to use
Fortran. Cobol. or PUI can. on some platforms. obtain library interface modules for their language of choice
from JYACC. In this documentation set, we will often speak of the C language when referring generally to
supported thir~eneration languages as a group.

2. Screens. fields. and other screen components will be discussed in detail at a number of other points in
this documentation. It is sufficient at this point to understand that a screen is a rectangular region displayed
on the user's display tenninal, and that screens often have fields on them for the entry and display of applica
tion data.

Page 4 JAM Release 5.03 20 Nov 92

. -.....

Chapter 2: What is JAM?

Executive, you can begin to prototype and build applications without doing any low
level programming.

Like the Screen Manager, the JAM Executive can be directed to call developer-written
C f1lllctions dwing an application. Unlike the Screen Manager, thougb, it is not a collec
tion of routines. The JAM Executive is a single routine whicb invokes the Screen Man
ager in ways that allow application control information to reside in screens.

Just as the Screen Manager hides screen details from the calling programs, the JAM
Executive bides details of screen interactions from the applications. Quite often, these
details may change, resulting in a substantially difft!rent user interface without affect
ing any application code. This means that wben user interface specifications cbange in
a project, the application code may not need to be altered.

It is possible to write applications that do not use the JAM Executive. In this case, you
will need to write your own executive from scratch. Only in rare cases will this be nec
essary; the JAM Executive is more powerful than it may appear at frrst glance. Most of
the documentation will assume the use of the JAM Executive. In this document, the
words "JAM application" often mean "an application using the JAM Executive".

For a brief discussion of deciding when to write your own executive, please see section
5.2 on page 45.

2.1.3

Screen Manager/JAM Executive Interaction
It is critical for JAM Programmers to understand the relationship between the JAM
Executive and the Screen Manager. The JAM Executive provides the glue that links the
screens of the application together by directing the Screen Manager to display screens
in a particular order. The Screen Manager is responsible for actually displaying screens
and opening a dialogue with the user on those screens (Le. opening the keyboard for
user input). The Screen Manager moves the cursor, modifies the display, and processes
data entered and keys struck by the user. When a flDlction key is struck or a menu selec
tion is made, the Screen Manager immediately returns control to the JAM Executive
along with information about whicb function key or menu selection was cbosen. The
JAM Executive then peeks at the screen itself to determine what action is associated
with the function key or menu event If the indicated action is that a new screen should
be opened, the JAM Executive directs the Screen Manager to do so and the cycle starts
anew. If some other action is indicated, the Executive takes that action and then directs
the Screen Manager to nH)pen the dialogue with the user on the same screen. This pro
cess is shown in Figure 1.

JAM Release 5.03 20 Nov 92 PageS

JAM Development Overview

Figure 1: Simple Schematic Model of the JAM Screen Manager/Executive Interac
tion.

2.1.4

The Local Data Block
The Local Data Block, or LDB, is another important feature of JAM. It is a set of rou
tines and structures used to share application field data among screens.

The LDB is created at nmtime from the data dictionary, a fue of LDB fields and their
characteristics. The data dictionary is created with the Data Dictionary Editor (section
2.3.2 on page 11). Aside from driving the creation of the runtime LOB, the data dictio
nary can be used in a DUmber of ways during development to ensure the consistency of

Page 6 JAM Release 5.03 20 Nov 92

Chapter 2: What is JAM?

fields across screens in an application, and to link the data in an application with exist
ing data bases or other data sources.

Every time a screen is made active by the Screen Manager at runtime, its fields are pop
ulated with data from associated fields in the LDB. When the screen is closed or made
inactive, all its fields are copied to their associated fields in the LDB. Tbis eliminates
the need to write code to move data from screen to screen, and allows application hook
functions to access field data regardless of whether or not it is on the active screen.

2.1.5

JPL
JAM comes with an interpreter for the JYACC Procedural Language, or JPL. JPL is a
procedural language, often preferable to C for simple field validations and data manip
ulations3. The JPL syntax supports calls to C functions - these can be developer-writ
ten hook functions or functions from JAM's libraries. JPL is fully described in the JPL
Guide.

2.2

COMPONENTS OF JAM
The JAM product is packaged as a number of programs and data mes. In the sections
that follow, we briefly discuss the main components of the product and how they are
used. For a me by file description, please see the Installation Guide.

2.2.1

The Authoring Tool
The authoring tool j xform is the core development tool provided with JAM. It allows
developers to nm JAM applications just as an end user might, and also provides direct
access to the Screen Editor, the Keyset Editor, and the Data Dictionary Editor. It is de
scribed in detail in the Author's Guide.

2.2.2

JAM Libraries
Several runtime libraries are supplied with the product These libraries include the fol
lowing:

3. Developers who are also using JAMlDBi can embed SQL queries for accessing their relational database
directly into their JPL code.

JAM Release 5.03 20 Nov 92 Page 7

JAM Development Overview

2.2.3

• The Screen Manager routines. The Screen Manager libraries include
the JPL support routines.

• The JAM Executive routine and its supporting routines. The JAM
Executive libraries include the LDB routines.

• The authoring support routines4• These allow developers to create a
new versions of the authoring tool linked with developer-written hook
functions.

Source Code
JAM supplies some source code with the product that may be used and/or modified.
There are two main source modules: jxrnain. c is used for compiling and linking new
versions of the authoring tool and jrnain. c is used for compiling and linking JAM
Application Executables.

2.2.4

Screens
To accommodate natural language localization requirements, all the screens and belp
screens used by the authoring tool are supplied so that they can be customized.

2.2.5

Configuration Files
Several default configuration files are included. These mes are used by JAM to operate
properly with the video display hardware, your keyboard, and other aspects of a hard
ware and software environment For more information, please see the Configuration
Guide.

22.6

JAM Utilities
These utilities are used for a variety of tasks that make the development and mainte
nance of JAM applications and JAM configuration mes easier. The utilities are docu
mented in detail in the Utilities Guide.

4. Please note that you are only licensed to use the authoring support runtime libraries to create new ver
sions of the authori ng tool that incocporate functions you have written yourself. You are not licensed to distrib
ute applications linked with this library.

PageS JAM Release 5.03 20 Nov 92

Chapter 2: What is JAM?

There are three utilities that may prove particularly important to developers. f2asc
transfers screens back and forth between binary and ASCII representations. dd2asc
does the same thing for data dictionaries. The j amcheck tool is used to ensure that all
the fields in a particular application are consistent with each other and with the data
dictionary entries. In addition to flagging potential inconsistencies, j amcheck can
globally propagate changes made to a single field across all the screens in an applica
tion.

2.3

COMPONENTS OF A JAM APPLICATION
JAM applications generally bave the five components discussed in the following sec
tions: screens, data dictionaries, JPL modules, developer-written C book functions, and
the JAM Application Executable. These are illustrated in Figure 2.

JAM Release 5.03 20 Nov 92 Page 9

JAM Development Overview

Screens

JPL Modules
parms ret_code

while ! i < 10)
(

return XMIT

JAM Application
Executable

'/:... :.,:::
...)):

Figure 2: Components of a JAM Application.

,

2.3.1

JAM Screens

Hook Functions

int
myhook (n1,n2)
int n1,n2;
(

Data
Dictionary

Screens are the fundamental building blocks of JAM applications. They contain the
information the Screen Manager needs to display them as well as the control informa
tion used by the JAM Executive to control the flow of the application. Screens are
created and modified with the Screen Editor which is part of the main authoring tool
jxform, and are stored as screen binaries. Screen Binaries are the static data represen-

Page 10 JAM Release 5.03 20 Nov 92

)'

Chapter 2: What is JAM?

tations of screens used by the Screen Manager at runtime to build and display a screen
on the display terminal. Screen binaries are usually files, but may be turned into C lan
guage data structures and compiled into the JAM Application Executable, or combined
into screen libraries.

Screens are rectangular display areas, and are not limited in size by the display termi
nal. Depending on the Screen Manager routine used to display a screen, it can be dis
played as aform or as a window. When a screen is displayed as a form, all previously
open screens on the display are closed. When a screen is displayed as a window, it is
overlaid on top of whatever screens may already exist on the display. Therefore, there
can be at most one form displayed at a given time, but any number of windows may be
stacked on one another. A screen can contain hooks to call C or JPL routines when the
screen is opened or closed.

Screens contain constant display text and fields for application data entry and display.
Fields may be designated for data entry, as individual selections in a menu, or as mem
bers of radio button groups and check-list groups.

Fields may be assigned a variety of characteristics. These include identifying names,
edit masks restricting the field to certain kinds of data, display attributes, and hooks to
C or JPL routines to call when the field is entered, exited or validated.

Application control flow information is stored in the screens as control strings. Control
Strings are associated with either menu selections or function keys. Control strings can
display (and transfer control to) other screens, execute operating system commands or
programs, or invoke C or JPL routines.

2.3.2

The Data Dictionary
The data dictionary is used to create the LDB when a JAM application starts. It is a list
of entries that are associated by name with screen fields. All of the characteristics that
can be associated with screen fields can be designated also for data dictionary entries.
The data dictionary is commonly stored in a binary fIle called data. die, and is
created and maintained with the Data Dictionary Editor linked with the j xform utility.
The Screen Editor also has the capability to place screen fields as entries into the data
dictionary and to create screen fields from entries in the data dictionary.

2.3.3

C Hook Functions
Both the Screen Manager and the JAM Executive can invoke developer-written C
functions. These functions must be compiled and linked into the JAM Application
Executable and properly installed. See the Programmer's Guide for details.

JAM Release 5.03 20 Nov 92 Page 11

JAM Development Overview

2.3.4

JPL Modules
A JPL module is a collection of JPL procedures. JPL is interpreted and can be stored as
ASCII text or as compiled5 binary data in JPL modules. A JPL module can be any of the
following:

• Disk-based, stored in a file,

• Memory resident, linked in to the JAM Application Executable, or

• Screen resident, attached to a screen or particular screen field.

JPL code can be written with a text editor or entered into the screen binary with the
Screen Editor.

2.3.5

JAM Application Executable
The executable program that drives your application is called the JAM Application
Executable. It is created by the linker on your machine from the supplied (and possibly
modified) main source module jrnain. c, the Screen Manager library, the JAM
Executive, and all the C hook functions written to be invoked as callbacks by the JAM
Executive or the Screen Manager. The JAM Application Executable is your applica
tion program. It generally contains little control flow information. The control informa
tion is fOtmd on the screens.

5. Compiled JPL is not native machine code. but rather a tokenized and syntax--checked binary version of
the JPL source.

Page 12 JAM Release 5.03 20 Nov 92

.,

~::(EJ::::::::::::::::::::::::;:::::: :~: · . · . · . · .
:: .. : .. :.:.: .. :.: ;.: .. : .. ::

Chapter 3

JAM Application Development
Developers prototyping and building JAM applications use the authoring tool,
jxform. This utility is a JAM Application Executable linked with the JAM Execu
tive, the Screen Manager, the Screen Editor, and the Data Dictionary Editor. At the top
level (application mode), j xf orm navigates through the application just as the runtime
executable will for the end-user. However, jxforrn also provides direct access to the
Screen Editor and the Data Dictionary Editor which allows the developer to create or
modify key parts of the application while simulating and testing the end-user experi
ence. When a particular screen is active, the developer can immediately enter the
Screen Editor, modify that screen, test it, and return to it in application mode at the
same spot in the application. Control strings are created and modified in the Screen Edi
tor in order to affect and control application flow. Similarly, the developer can edit the
data dictionary and continue running the application using the new file. JPL modules
can also be edited on the fly.

The only things that cannot be changed from within the jxform utility are the devel
oper-written C functions linked to the authoring tool. To use new developer-written C
functions, the tool must be re-linked and re-started. Linking developer-written code
into the authoring tool or into the JAM Application Executable is discussed in detail in
the Programmer's Guide.

3.1

CREATING AND EDITING APPLICATION
SCREENS

1
Generally, a developer starts creating a new application by creating screens with the
Screen Editor. Screens contain display information, data entry regions, and application

JAM Release 5.03 20 Nov 92 Page 13

JAM Development Overview

control information. The creation and subsequent development of screens is the bulk of
the authoring task.

Once in the Screen Editor, the developer can specify some characteristics for the screen "\
itself. Screens have dimensions, colors and borders. In addition, the developer can
specify the names of C or JPL hook functions to be called when the screen is opened or
closed.

Display data is added to the screen as text or graphics characters. Fields are placed on
the screen by typing underscores. Characteristics can then be associated with the fields.
There are approximately fifty modifiable field characteristics including field names,
field edits, next and previous fields, display attributes, and help text In many cases, the
default characteristics are sufficient C or JPL hook functions can be attached to specif
ic fields and invoked on field entry, exit, or validation. Fields can be made into horizon
tal or vertical arrays, and any array can be designated to be able to hold more data oc
currences than are acwalIy visible onscreen at any given point in time. Since the
end-user can scroll forward and backward through such arrays, they are called scrolling
arrays.

Fields and display data can be moved and/or copied around the screen using the Screen
Editor, either individually or in selected blocks. Fields can also be copied into the data
dictionary while in the Screen Editor, and the data dictionary can similarly be used to
populate the screen with fields. This is useful for the propagation of consistent fields on
screens throughout the development of the application, and for faithful propagation of
field data from screen to screen at runtime.

The developer will compose control strings and associate them on the screen be is edit
ing with menu selections or function keys. The JAM Executive interprets control
strings at runtime to:

• Open and transfer control to additional screens as base forms or win
dows,

• Execute operating system commands or programs, and

• Invoke JPL or C functions.

The behavior of a screen can be tested from within the Screen Editor to ensure that the
fields work correctly. Control Strings, however, must be tested in the top level applica
tion mode of the jxform utility.

Page 14 JAM Release 5.03 20 Nov 92

\.. ,

,/

Chapter 3: JAM Application Development

3.2

CREATING AND EDITING THE DATA
DICTIONARY
There are four mechanisms for creating or modifying the data dictionary:

3.3

• The Screen Editor can be used to add a screen field to the data dictio
nary, to bring a data dictionary entry into a screen, or to compare the
characteristics of a screen field and an associated data dictionary
entry.

• The Data Dictionary Editor, invoked from application mode, can be
used to add delete, and change data dictionary entries.

• The dd2asc utility converts JAM data dictionary fIles between
binary and ASCII formats. This facilitates the manipulation of the data
dictionary outside of the authoring tool, perhaps to integrate the JAM
data dictionary with that of a CASE tool or a DBMS.

• The j arncheck utility compares screen fields with data dictionary
entries. Optionally, it can propagate data dictionary field characteris
tics through all of the screen fields.

ITERATIVELY TESTING AN
APPLICATION
The authoring tool can switch among the Screen Editor, the Data Dictionary Editor, and
application mode, where the developer simulates end-user runtime experience. There
fore, problems with screens, the data dictionary, and JPL code can be fixed in-line and
immediately re-tested without need for a time-consuming compile- link-test cycle.
Only developer-written C functions will need such a cycle6. Such functions are always
linked into the runtime application executable and may be linked into the authoring tool
for complete application testing and development

6. U you are using JAMlDBi. SQL queries may be tested from application mode.

JAM Release 5.03 20 Nov 92 Page 15

Chapter 4

JAM Control Flow

~::[E]::::::::::::::::::::::::::::::: :~: · . · . · . · .
:: .. : .. :.:.: :.: .. :.:.: .. : .. ::

In this chapter, we discuss the algorithms employed by the Screen Manager and by the
JAM Executive, and how the two interact with each other in a JAM Application
Executable. We go into substantial detail in describing the model; it may not be neces
sary for the reader to fully lDlderstand all aspects of this chapter before embarking on a
JAM project

4.1

KEYBOARD AND VIDEO TRANSLATION
All user input to a JAM application is processed through a keyboard translation table
before being handled by the Screen Manager. Similarly, all JAM output to the physical
display monitor is processed through a video mapping table fIrSt This is shown sche
matically in Figure 3.

JAM Release 5.03 20 Nov 92 Page 17

JAM Development Overview

- -- --...--

Rgure 3: Keyboard and Video Translation.

This translation is done to preserve terminal independence. JAM applications can run
on a variety of temlinals, provided that the appropriate keyboard and video configura
tion files are created. These configuration fIles are used by the application at initializa
tion to create the keyboard and video translation tables. The creation of these files is
discussed in the Configuration Guide.

Page 18 JAM Release 5.03 20 Nov 92

\

Chapter 4: JAM Control Flow

Physical keystrokes on the terminal are translated into JAM logical keys. Thus, the
Screen Manager only interprets keys that are members of the JAM logical keyboard,
discussed in detail in the Author's Guide. Of particular interest to our discussion are the
JAM logical function keys, which are named PFI through PF24, SPFI through SPF24,
and APPI through APP24. These function keys, shifted function keys, and application
functions keys cause the Screen Manager to terminate the user dialogue and to return to
the JAM Executive. The EXIT and TRANSMIT keys also terminate the dialogue, but
in addition they have some default actions associated with them.

4.2

SAMPLE PERSONNEL APPLICATION
USER'S VIEW
Here we describe an example personnel application to facilitate our discussion of JAM.
Our example consists of the personnel part of a human resources application. The user
can search a simple data base of employees, update the record for a given employee,
and look at a salary history for that employee.

JAM Release 5.03 20 Nov 92 Page 19

JAM Development Overview . -': . '. :.'

. :;:::;:::::;:::;:;
',:;:::: :

· ;};;
· ..
' ..

.... :: "

• ". •• I • · .

.

11" .?, .••....•.••...•.• 111';1111'''. Ii'. • .• ~.'. •.• •.. ·.'.ii.· .;1.),: ••• ,,:',
Ii · if ••••.• '1 .;;!;!;'i".i·. , .. ,; .. ' .: .. ·k •.• • . . ' •.•. t. • ••••• ') .' '.

: : ; ::;,;:. ;': ; ... :.;:

. :. : . ;::::777'7 . 7::8":{ : :.: ;:::;:: : :::;?::: :::< : ::::::: >? . : *'~; : > ; :. . . . :>::': :

Enter username & password. Strike PFI to sign on & enter menu mode.

Rgure 4: Human Resources Application Main Menu, rnainscrn.

The frrst screen of the application is shown in Figure 4. This screen, named
rnainscrn, has data entry fields for a username and a password, and a menu of sub-
applications relevant to human resources. This screen is initially treated as a data entry
screen, and the cursor is positioned in the username field.

The user types a username and a password, and strikes PFI to validate the pair and
switch into menu mode. The status line is changed as well. so the screen appears as
shown in Figure 5.

Page 20 JAM Release 5.03 20 Nov 92

\

Chapter 4: JAM Control Flow

'. :

/:::\ .. :' . \: : . ;
\: .. : :

.. :: . :".:.,

.:.:.::

:r:~t: .
:': : .:;:.: . . .:: .;.: .:.' : . :: :~::::: :

Highlight your desired appli~ation and strike TRANSMIT

Rgure 5: rnainscrn in Menu Mode.

At any time on this screen, the user can leave the application by striking the EXIT key.
The user can enter the personnel application by selecting Personnel from the menu.
In that case, the employee screen ernpscrn, shown in Figure 6, is displayed as a form.

JAM Release 5.03 20 Nov 92 Page 21

JAM Development Overview

PF1:Salary History PF2:Search PF3:Update PFIO:Main Menu

Figure 6: Personnel Application Employee Screen empscrn.

On the empscrn screen, the user can enter the name, ID number, or any other search
criteria for an employee, and strike the PF2 key to search some data base. Successive
striking of the PF2 key will browse through employee records that match the entered
criteria, unless the user types new information in any field, in which case the search is
started again. Striking the PF3 key will update the current employee record with any
data the user changed about the selected employee, and the PFIO key returns the user to
the Main Menu. Note that the default effect of the EXIT key is also to return to
mainscrn.

While the empscrn screen is active, the user strikes PFI to display the Salary History
screen salhist as a pop-up window shown in Figure 7. This screen has detailed in
formation about past salary reviews. The end-user cannot add or change information
here, but strikes PFIO to return to the main menu. The EXIT key closes the salhis t
pop-up window and returns to the Employee Screen.

Page 22 JAM Release 5.03 20 Nov 92

Chapter 4: JAM Control Flow

PFIO: Main Menu

Figure 7: Personnel Application Salary History Window salhist.

4.3

THE PERSONNEL APPLICATION -
DEVELOPER'S VIEW
As discussed in section 2.3 on page 2.3, a JAM application consists of C routines, JPL
routines, screens, a data dictionary, and a JAM Application Executable. In this section,
we briefly discuss bow these parts of the Personnel Application are created.

4.3.1

Personnel Application Screens
The application screens are created witb tbe Screen Editor, one of the tools built into tbe
autboring program, jxform. The screens mainscrn, empscrn, and salhist are

JAM Release 5.03 20 Nov 92 Page 23

JAM Development Overview

all created as files witb the Screen Editor7. A developer's view of mainscrn is shown
in Figure 8.

..

Rgure 8: Developer's View of rnainscrn

Control string to
switch to menu
mode if ~sername
and password are
OK.

. .

Control string to
display and open
empscrnas a form

The rnainscrn screen has two data entry fields, one for username and one for pass
word. The username field is named "unarne" and has no other distinguishing character
istics. The pas sword field is named "pword" and is marked as no~isplay. There is
a menu of four choices in the center of the screen for access to the various applications:
benefits, personnel, newsletter, and recruiting. To the right of

7. Details of screen creation are found in the Author's Guuu.

Page 24 JAM Release 5.03 20 Nov 92

Chapter 4: JAM Control Flow

these are four non-display control fields, one associated with each menu selection and
protected from entry so that the user is never aware of their presence. The name of the
top level screen for each of the respective sub-applications is entered into these control
fields. In the case of the personnel menu selection, the control string is "empscrn".
Finally, the screen has a control string associated with the PFI key to validate the user
name and password fields and to toggle the screen from data entry to menu mode. This
control string ""'jpl passcheck" invokes aJPL routine.

The developer's view of empscrn is shown in Figure 9.

Control string to pop up salhist
asa window.

Control string to invoke the
search hookfunction.

Control string to invoke the
update hook function.

Control string to return to
mainscrn as a/orm.

PF1: Salary History PF2: Search PF3: Update PF10: Main Menu

Rgure 9: Developer's View of empscrn.

JAM Release 5.03 20 Nov 92 Page 25

JAM Development Overview

Since the ernpscrn screen is the top-level screen for a application, a JPL routine is
attached as a screen entry function with the string "jpl authorize personnel"
to ensure that the user is authorized to use the personnel application. Four function keys
are associated with some actions: the PFI key is given the control string "&salhist",
the PF2 key is given the control string ""search", the PF3 key is given the control
string ""update", and the PF10 key is given the control string "rnainscrn".

The developer's view of salhist is shown in Figure 10.

Page 26 JAM Release 5.03 20 Nov 92

~'>.
.\

Chapter 4: JAM Control Flow

PF10: Main Menu

Control string to return to
rnainscrn as ajorm.

Figure 10: Developer's View of salhist.

The salhist screen has the employee name field protected so that the user cannot
place the cursor there. Review date and Salary are implemented as synchronized scrol
ling arrays8 protected only from data entry. One function key is associated with action:

8. Synchronized scrolling arrays are discussed in the Author's Guide.

JAM Release 5.03 20 Nov 92 Page 27

JAM Development Overview

the PFI0 key is given the control string "rnainscrn". The salhist screen also has
a screen entry function specified as getsalhist : idnum9.

4.3.2

The Data Dictionary
Every data entry field whose value is propagated from screen to screen is in the data
dictionary. The fieldS are placed in the data dictionary either through the Screen Editor,
or with the Data Dictionary Editor. Both are described in detail in the Author's Guide.
Note that every entry in the data dictionary is given a scope. All fields of a given scope
canbe cleared or initialized at the same time if desired.

A developer's view of the data dictionary is shown in Figure 11.

NAME

idnum
name
pword
uname

Data Dictionary

SCOPE

2 -
2 -
3 -
3

COMMENT

employee number
employee name
user's password
user's name

Rgure 11: Developer's View of the Data Dictionary

4.3.3

JPL Modules
Two JPL modules are used in this application. The ftrst one is stored in the screen
binary for the rnainscrn screen and contains the passcheck procedure. This proce
dure veriftes that the username and password identify a valid user. In addition, pass
check changes the contents of the status line and toggles rnainscrn into menu mode.

9. By using colon expansion and function prototyping. both of which are described in the Author's Guide
and in the Programmer's Guide. hook functions can be passed variable parameters in this way.

Page 28 JAM Release 5.03 20 Nov 92

"-

\

Chapter 4: JAM Control Flow

The second JPL module is stored in a me named authorize. It contains the autho
r i ze procedure, and is used by the top screen of each sub-application to check user
authorization for that sub-application.

JPL syntax and scoping rules are described in detail in the JPL Guide.

4.3.4

C Functions
Three C functions were written for this application. The frrst, search, searches the
underlying database for an employee that matches the criteria placed on ernpscrn.
The second, update, updates the employee record with new or modified information.
The third, getsalhist, searches the underlying database for the salary history of the
employee with the id number passed as an argument. These C functions must be com
piled and linked in with the Screen Manager and the JAM Executive to create a new
JAM Application Executable. This executable could have any name. In our example it
is named humres.

The guidelines for writing, installing, and linking C functions are found in the Pro
grammer's Guide.

4.4

THE SCREEN MANAGER I JAM
EXECUTIVE DIALOGUE
The application is started by executing the JAM Application Executable from the oper
ating system and passing it the name of the top level screen as an argument In our ex
ample, we would use the following command:

humres mainscrn

The main program, jrnain. c, provided in source form with JAM, is linked into the
JAM Application Executable, possibly after some modification by the developer (See
the Programmer's GUide). It initializes the JAM environment using several environ
ment variables and configuration files. The Local Data Block is created from the in
formation in the data dictionary, and LDB entry values are assigned from LDB initial
ization files if any exist. LDB initialization mes are described in detail in the Author's
Guide. They are used to initially populate the LDB with data.

Mter initialization is complete, the main program invokes the JAM Executive with the
library function call srn_j top, passing, as an argument, the name of the top level

JAM Release 5.03 20 Nov 92 Page 29

JAM Development Overview

screen in the application, Inainscrn in our examplelO• The Executive immediately
directs the Screen Manager to open the to{}-level screen as a form with the library func
tion call sIn_r_forrn, and then instructs the Screen Manager to activate (start a dia
logue with the user on) that screen with the library function call sm_input. From that
point, the Screen Manager, within sIn_input, handles user interaction with the
screen: moving the cursor, entering data, and providing help. When a function key is
struck or a menu choice is selected, the Screen Manager routine sm_input returns
control to the JAM Executive along with information about what function key or menu
choice was selectedil .

The JAM Executive then looks into the screen to fmd the control string associated with
the function key or menu selection. If an invalid control string is found, or if no control
string is found, then the dialogue with the user will be re-started with a call to the
Screen Manager function sm_input. As is described in detail in the Author's Guide,
control strings can direct the JAM Executive to take one of five actions:

• If the control string begins with a caret character (/\), the remainder of
the string is interpreted as the name and arguments for an installed de
veloper -written hook function. If the function name is j pI, so that the
control string starts with the string /\ j pI, the remainder of the string
is interpreted as the name and arguments for a JPL procedure. The
function can return a function key just as SIn_input does, in which
case the JAM Executive will process the associated control string. Al
ternatively, the routine can return zero, in which case the JAM Execu
tive will ask the Screen Manager to re-start the dialogue on the cur
rently displayed screen with a call to sm_inpu t.

• If the control string begins with an exclamation point (!), the remain
der of the string is interpreted as an operating system command. A
sub--process is spawned and the command is run in that sub--process.
Before calling the command, the JAM Executive calls the Screen
Manager function SIn_leave to save the state of the screen and sets
the terminal characteristics to the mode expected by the operating sys
tem. On return from the command, the JAM Executive calls SIn_re
t urn to reset the terminal characteristics and re-paint the screen. It
then directs the Screen Manager to re-start the dialogue on the cur
rently displayed screen with a call to sm_input.

• If the control string begins with a single ampersand (&), the remainder
of the string is interpreted as the name of a screen to be popped up as

10. If all users of an application have the same top-level saeen, the developer may choose to hardcode that
name in the jmain.c source code.

11. Note that the JAM Exerutive makes the Screen Manager calls automatically. For the basic navigation
from screen to screen, no C programming is required on the part of the developer.

Page 30 JAM Release 5.03 20 Nov 92

- """'\

Chapter 4: JAM Control Flow

a window. The Screen Manager is requested to display the window
with a call to sm_r_window, and then directed to activate that win
dow with a call to sm_input.

• If the control string begins with a double ampersand (&&), the remain
der of the string is interpreted as the name of a screen to be popped up
as a sibling window. Sibling windows allow the end-user to cycle
through displayed windows without closing them. The Screen Manag
er is requested to display the window with a call to srn_r_window, to
make it into a sibling window with a call to srn_s i b 1 i ng I and then
to activate it with a call to sm_input.

• Any control string that does not begin with any of these special char
acters is interpreted as the name of a screen to be displayed as a form.
The Screen Manager is requested to close all open windows and forms
and open the named form with a call to srn_r_forrn. It is then di
rected to activate that form with a call to sm_input.

The algorithm for JAM Control Flow is shown schematically in Figure 12.

JAM Release 5.03 20 Nov 92 Page 31

JAM Development Overview

.-... ...
U)

-o
c:
o o
1\
II
II
Q)

"C o o
c: ...
:I ...
Q)

a:

First character
of control strin

... -----+

OIS Com

Executive && ------..

& ---..

r

Hook
Functions

Screen
Manager

Figure 12: JAM Application Control Flow.

Note that in every case, the JAM Executive ends its cycle of action with a call to the
Screen Manager flDlction sIn_input. The sIl'Linput routine always returns to the
JAM Executive with a function key or menu selection, which leads in turn to the inter
pretation of a new control string. It is also important to note that the Screen Manager
itself can, at certain specific times, invoke JPL or C routines. In particular, book func
tions can be attached to screen entry and exit, field entry and exit, group entry and exit,
and field validation.

Page 32 JAM Release 5.03 20 Nov 92

Chapter 4: JAM Control Row

4.4.1

JAM's Dialogue in the Sample Application
In the case of our sample application, the JAM Application Executable is passed the
name of the top level screen, rnainscrn, as an argument The JAM Executive, in tum,
is invoked with that argument and asks the Screen Manager to open rnainscrn as a
form. The Screen Manager then handles the dialogue with the user, who enters a user
name and password and strikes PFI. The Screen Manager returns to the JAM Execu
tive, indicating that PFI was struck, and then the JAM Executive examines the screen
to fmd the associated control string. Since the control string "jpl passcheck is
associated with the PFI key, the JAM Executive invokes the JPL interpreter to execute
the JPL passcheck procedure. passcheck cbecks the usemame and password
combination, modifies the belp text on the status line, and then toggles the screen to
menu mode. It then returns to the JAM Executive, which instructs the Screen Manager
to re-open the dialogue with the user, but at this time in menu mode.

The user selects the personnel menu choice, which causes the Screen Manager to
return control back to the JAM Executive. The JAM Executive looks into the screen
and fmds that the control string ernpscrn is associated with the menu selection. The
J AM Executive detects that the control string is requesting that control be transferred
to a new screen, and directs the Screen Manager to open ernpscrn as a form and to
start a dialogue with the user. On opening the screen, the Screen Manager invokes the
screen entry jpl procedure, authorize. When authorize ensures that the user is
authorized to use the sub-application, it returns to the Screen Manager. The Screen
Manager then allows the user to tab through the form and enter information in the
fields. If authorization fails, the JPL procedure forces return to the main menu.

When the user strikes the PF2 key to initiate a search, the Screen Manager returns to
the JAM Executive. The JAM Executive fmds the control string "search associated
with the PF2 key, and invokes the developer-written C function named search. The
function uses the screen field data entered by the user to structure a query and search the
personnel data base. The response to the query is loaded into fields on the screen and
control is returned to the JAM Executive, which directs the Screen Manager to re-open
a dialogue with the user 00 that screen.

When the user strikes PF3 to update the employee, the Screen Manager returns to the
JAM Executive which invokes the update C function to update the data base. On re
turn from update, the JAM Executive directs the Screen Manager to re-start a dia
logue on the ernpscrn screen.

The user strikes one of two keys, EXIT or PFIO to return from ernpscrn to
rnainscrn. The EXIT key has no associated control string, so the JAM Executive
takes the default action of closing the current screen (ernpscrn) and re-opening the
previously displayed screen. The PFIO key does have an associated control string,

JAM Release 5.03 20 Nov 92 Page 33

JAM Development Overview

namely the string "mainscrn". This directs the JAM Executive to close all open
screens and to bring up mainscrn as a fonn. The two keys, in this case, bring the same
result through two different mechanisms.

While on the empscrn screen, the user can strike PFI to see the employee's salary
history. The JAM Executive determines that the control string &salhist is
associated with PFI, and directs the Screen Manager to display and activate the
salhist screen as a window. When the salhist screen is activated, its screen entry
function getsalhist is invoked. getsalhist is passed the identification number
of the employee from the LDB, and the function fills the fields on the salhist screen
with the results of a salary history query to the database.

While on the salhist screen, the user can scroll through the salary history records,
but has no way of modifying them since they are protected from data entry. When the
user strikes PFIO, the mainscrn screen is displayed as a form, which causes both
salhist and empscrn to be closed. The user can also strike the EXIT key. This
causes the JAM Executive to direct the Screen Manager to close the current screen
(salhist in this case), and re-activate the underlying empscrn screen.

4.5

KEEPING TRACK OF FORMS AND
WINDOWS
As we discussed earlier, the EXIT key has a default action on a JAM screen. If the de
veloper of an application does not associate a control string with the EXIT key, it causes
the current screen to close and activates the previously displayed screen. If the active
screen is a window, the window closes and the underlying screen is restored on the dis
play and re-activated. If the current screen is a form, the form is closed and the pre
viously visited form, not any intervening windows that might bave been visi~ is
freshly opened. JAM's mecbanisms for keeping track of previously displayed forms
and of a stack of windows is discussed in the following sections.

4.5.1

The Screen Manager's Window Stack
The Screen Manager handles the overlaying of one window upon another. Internally, it
maintains a stack of windows. The base of the window stack is always the currently
displayed form. Any number of windows can be stacked one upon another, with the
active window on the top of the stacie. The Screen Manager bandIes the ordering of the

Page 34 JAM Release 5.03 20 Nov 92

Chapter 4: JAM Control Flow

windows and the underlying data structures. The Screen Manager function
sIn_r_window displays a window over the existing screen, storing the obscured data
in the process. The Screen Manager function sIn_cIose_window closes the active
window and restores the underlying data.

The JAM Executive uses sIn_r_window when processing control strings starting
with ampersands (& or &&). It uses sm_cIose_window to process the EXIT key
when no control string is associated with EXIT and the active screen is a window. The
JAM Executive does not maintain information about the ordering of windows in an
application - that is entirely handled by the Screen Manager.

Note that the Screen Manager keeps all the information about all the windows in the
window stack in memory. When a window is made active by virtue of an overlaid win
dow being closed, it is not re~pened and re-displayed from the screen binary. Rather,
the window is restored to its former state with information from the window stack.

The Screen Manager stacks windows one upon another as the JAM Executive pro
cesses successive control strings that start with ampersands. Control strings that invoke
hook functions or operating system commands do not affect the window stack12, but
when a control string specifying form display is processed, all windows are closed and
the window stack is purged from memory.

The same screen can appear more than once in the window stack. For this reason, devel
opers should be aware that certain design strategies can use large amounts of memory.
If windowl 's PF2 control string is &window2, and window2's PFI control string is
&windowl, then successive striking of PFI and PF2 will continue to pop up new
instantiations of windowl and window2 continually allocating new memory on the
window stack.

4.5.2

The JAM Executive's Form Stack
The JAM Executive maintains its own stack of screens, but only the screens that have
been previously displayed as forms. The form stack is used to process the EXIT key
thus allowing the end-user to return to an earlier portion of the application. The display
of forms with the sIn_r_form routine does not overlay existing screens, but closes
them and clears the window stack. The sIn_r_forrn routine, as part of the Screen

12. Unless the hook function explicitly calls library routines to display or close screens.

JAM Release 5.03 20 Nov 92 Page 35

JAM Development Overview

Manager, does not manipulate the form stack. The JAM Executive manipulates the
fonn stack in conjunction with sIn_r_form calls)3.

When the active screen is a form, and the user strikes the EXIT key, the default action
taken by the JAM Executive is to remove the screen's name from the form stack and to "-
direct the Screen Manager to display the previously visited form in the application.
Successive strikes of the EXIT key will continue traversal of the previous fonns in a
Last-In-First-Out (LIFO) manner. When EXIT is struck on the top level form of the
application, the application will terminate. The JAM Executive implements the ability
to backtrack through forms by maintaining a form stack. Unlike the window stack, the
fonn stack contains only screen names and is not used for the preservation of screen
data Only certain state information like cursor position and whether the form was be-
ing used in data entry or menu mode is preserved. This implies that changes made on a
fonn and not explicitly saved by your application will not be automatically recreated
when the form is re-visitedI4.

The form stack is, in fac4 not a purely LIFO structure. As the JAM Executive processes
successive control strings requesting the display of forms, the names of the displayed
forms are pushed onto the form stack. However, the JAM Executive searches back
through the form stack before it pushes a new form name, and if the name to be pushed
is found earlier in the stack, all intervening form names are popped off and discarded.

As an example, picture an application with three forms: forml, form2, and form3.
Forml is the top level form, and is consequently the flfSt form pushed onto the stack.
The user then moves to form2 by pressing the PFl key, and form2 is pushed onto the
stack. Finally, the user presses the PF3 key. This displays form3, and pushes it onto the
stack. At this poin4 the user is viewing form3 as a base form, and forml, form2, and
form3 are on the form stack in that order.

On form3, the PFI key has the control string forml associated with it When the user
strikes PFI, the forml screen is displayed again, but since it exists earlier in the form
stack, the intervening references to form2 and form3 are discarded. When the user

13. Since the JAM Executi ve maintains the form stack, calls to Screen Managerform display routines in the
smJJorm family from hook functions may have unpredictable behavior. This is because the form stack will
not be properly synchronized with the screens that were displayed previously in the application. In general.
developers will want to use the supplied JAM Executive support routines smJorm. smjwindow. and
smjclose to open and close screens. These library functions. only a vai lable to those using the JAM Executive.
ensure that both the form and window stacks are properly managed at aU times.

The JAM Executive routine sm.Jfonn calls the Saeen Manager routine smJ_form and appropriately
manipulates the form stack. The JAM Executive routine smjwindow calls the Screen Manager routine
sm_f_window. The JAM Executive routine sm..Jclo.w calls the Screen Manager routine sm_c1ose_window
when the active screen is a window; but if the active screen is aform it pops the form stack and caJIs the Screen
Manager routine sm_r_form to display the previously visited form.

)4. Note that any changes made to fields that have corresponding entries in the LocaI Data Block will appear
to be restored, but this is a feature of the Local Data Block processing and not JAM' s form and window stacks.
For more information on Local Data Block processing. please see section 4.6 on page 39.

Page 36 JAM Release 5.03 20 Nov 92

/

Chapter 4: JAM Control Flow

strikes EXIT from the forml form, the application terminates since the last fonn in tbe
form stack is popped15.

This modified stack behavior for forms means that any given screen can occupy at most
one slot in the form stack at any given point in time.

4.5.3

Stack Overview
In conclusion, the following window and form stack rules apply:

4.5.4

.• When a screen is displayed as a fonn, the current window stack is
closed and discarded.

• When a screen is displayed as a fonn, the form stack is searched for
earlier instances of that screen. If it is found, all intervening screen
names are popped off the form stack and discarded. If it is not found,
the screen name is pushed onto the form stack.

• When a form is closed by the default action of the EXIT key, the form
stack is popped and the previously displayed screen at the top of the
fonn stack is re~isplayed, without any regard to the previous state of
the fonn. Any intervening windows are ignored. If the form stack is
empty, the application terminates.

• When a screen is displayed as a window, it is laid over all currently
displayed screens and placed on the window stack.

• When a window is closed by the default action of the EXIT key, the
underlying screen is restored to the state it was in when it was de-acti
vated. It is not re-opened.

The Form and Window Stacks in the Sample
Application
In the sample personnel application, the form and window stacks never get very large.
At the top level of the application, mainscrn is the only screen on the form stack.
From rnainscrn, when the user strikes the EXIT key, mainscrn is popped from the
form stack and the fonn stack becomes empty. The application terminates.

15. By default, JAM will ask the user for confirmation before exiting the top level screen. A developer can
also suppress default EXIT processing on that screen to make the application harder or impossible to leave.

JAM Release 5.03 20 Nov 92 Page 37

JAM Development Overview

When the user selects the personnel application and moves to the employee query
screen, the name of the screen, empscrn, is pushed onto the form stack. From that
screen, the user can use either EXIT or PFIO to return to the top level screen. If the user
strikes EXIT, empscrn is popped from the form stack, leaving mainscrn on the
stack. When the user strikes PFIO, the modified push algorithm, explained in the pre
ceding section, scans the form stack for a mainscrn entry. When found, all interven
ing screens (in this particular case, none) are popped and mainscrn is displayed.

When the user displays the salary history screen as a window, the fonn stack is not mo
dified. salhist is pushed onto the window stack. When EXIT is pressed, salhist
is closed, popped off of the window stack, and the underlying empscrn screen is re
stored and activated. When PFIO is struck, the JAM Executive frrst calls sm_r_form
to close all windows and clear the window stack, and then searches for mainscrn on
the form stack. When it is found, the intervening empscrn screen is popped off the
stack and mainscrn is displayed again.

Application
Screen

:::II ·;;:e:· ·,:it::

::~ ...

. . . .
... :::::::.: :::: .:

Form Stack

~
U
til
c:

-r-!
co
E

co
E

c:
~
U
til
0.
E
QJ

Window Stack

c:
~
U
til
c:

.r-!
co
E

c:
~
U
til
0..
E
QJ

QJ til

Figure 13: Form and Window Stacks in the Personnel Application.
Note that the form and window stacks uniquely determine where you
are in the application.

Page 38 JAM Release 5.03 20 Nov 92

'.

Chapter 4: JAM Control Flow

In Figure 13, the window and fonn stacks are pictured for every screen configuration in
the application. Note that the behavior of JAM with regard to the fonn and window
stacks implies the following points:

4.6

• No screen will be found more than once on the form stack.

• The application's top screen is always at the base of the form stack.

• The screen at the top of the form stack (the currently displayed form)
is always at the base of the window stack.

LOCAL DATA BLOCK PROCESSING
As discussed earlier, the Local Data Block is a region in memory set aside for the stor
age of field data used by the entire application. It is dynamically created from the de
scription of field elements in the data dictionary file for your application (section 2.3.2,
page 11). Storage for LDB entry values is not allocated until it is used.

The LOB consists of entries indexed by name. These entries are directly correlated with
any fields of the same name that exist on screens in the application 16. Whenever a
screen is opened or activated, any named fields that have corresponding entries in the
LOB are initialized with data from the LOB. Whenever a screen is made inactive or
closed, all the data in named fields that have corresponding entries in the LOB are writ
ten to those entries in the LOB.

The correspondence between field names and LOB entries allows JAM to provide the
following features:

• Field data is automatically preserved as the user moves from screen to
screen, provided that the fields in questions are linked to entries in the
LOB.

• Application code uses the same JAM library routines to access fields
on the active screen by name and to access LOB entries by name. This

16. The way a field is labelled on a screen has no relationship to its name. Field names are assigned to fields
as identifying characteristics. A field might, for example, be labelled "First Name" but it might be named
"fname". The field name, and not its label, is the identifying characteristic that relates it entry in the Local Data
Block.

JAM Release 5.03 20 Nov 92 Page 39

JAM Development Overview

means that application code need not know whether a data item exists
on the current screen. The JAM library calls sm_n_getfield and
sm_n-lJu t fie 1 d (and variants) will automatically access the screen
if the named field exists on the current screen, or the LDB if the named
field does not exist on the current screen.

In the sample human resources application, the user's usemame and password is saved
in the LDB when the user moves from mainscrn to any sub-application. This means:

• Returning to the main menu does not require the user to re-enter a us
emame or password.

• The screen entry routine au thor i ze, used by every sub-application
to ensure that the user is authorized for that sub-application, can ac
cess the usemame and password from the LDB.

In addition, in the personnel sub-application, the employee's name and identification
number are stored in the LDB. This allows the employee's name to be automatically
propagated from ernpscrn to salhist, and allows the screen entry function get
salhist on the salhist screen to access the identification number.

LDB entries can be initialized with data when the application starts by using initializa
tion fIles. The syntax of these text fIles is described in the Author's Guide. The identifi
cation of these fIles to the application is described in the Configuration Guide.

4.7

JAM FLOW SUMMARY
In short, the program that drives a JAM Application, the JAM Application Executable,
has a main loop that cycles back and forth between the JAM Executive, which pro
cesses control strings, and the Screen Manager, which displays screens and interacts
with the user. The application architecture is summarized in Figure 14. The control
strings are resident on screens.

Page 40 JAM Release 5.03 20 Nov 92

\

.'.: .' Chapter 4: JAM Control Flow

JAM Application Executable

JPL
Modules

LOB
Inll

Data

Memory
Resident
JPL

JAM
Executive

JPL
nterpreter

Hook

Screen
Manager

Keyboard ~"III
Con fig.

Keyboard
Translation
Table

--

Figure 14: JAM Flow Summary

Form
Stack

Window
Stack

Video
Mapping
Table

Screen

Binaries

- -Vldeo
Conflg.

The Screen Manager maintains a window stack of all screens that are currently open.
Only the top screen on the window stack is active, meaning that the user interacts with
the application through that screen. The JAM Executive maintains a form stack of all
the screens that are visited as forms in the application.

JAM Release 5.03 20 Nov 92 Page 41

JAM Development Overview

Through control string processing, the JAM Executive calls developer-written hook
functions or JPL routines. The Screen Manager can call these same functions or rou
tines at screen entry or exit, field entry or exit, group entry or exit, or field validation.
Hook functions and JPL routines can invoke one another. Hook functions are written in
C or some other third generation language and linked in to the J AlVf Application
Executable. JPL routines are available to the JAM Applic<!uon Executable as memory-·
resident data structures, as disk-resident fIles, or in screens.

The Local Data Block, a region in memory that assists in me sharing of field data be
tween screens in the application, is created from the data dktionary when the applica
tion starts. It is also populated with data from its initialization flIes at that time. lbe
Screen Manager stores screen field data into the LDB whenever a screen is made inac
tive, and restores screen field data from the LDB whenever a screen is made active.

To preserve display terminal independence, the Screen Manag~r does not ~.3d tl:le
user's input directly nor write to the user's monitor directly. User input is filtered fIrst
through a key translation table, so that any physical keystroke· or sequence on the physi··
cal keyboard can be mapped to JAM's set of logical function and d:ata keys. All ap
plication output is filtered through a video mapping table. The keyboard translation
table is created at startup time from the keyboard configuration me for the terminal in
use. The video mapping table is similarly created from a video de3cription fue for the
terminal in use.

Page 42 JAM Release 5.03 20 Nov 92

~:[E]:::::::::::::::::::::::::::::::: :~: · .
· . · .
:: .. : .. : ::: ... ;.: : .. ::

ChapterS

JAM Philosophy

In this chapter, we briefly address various aspects of JAM and JAM development from
a conceptual perspective. We discuss the ways JAM differs from other products you
might use to create screen-intensive windowed applications.

5.1

JAM FEATURES
JAM has a number of featw-es that make it a powerful development tool. In this sec
tion, we discuss some of these features, referencing other parts of the documentation
where additional details can be found

5.1.1

Display Hardware Portability
All JAM terminal output is fIltered through a video mapping table. This table is
created, when the application starts, from a video configuration file that contains es
cape sequences that the terminal in use understands.

The video configuration fIles are maintained as ASCII text and edited with any text
editor. Their syntax is described in the Utilities Guide, along with the description of the
vid2bin utility. The vid2bin utility takes the video configuration text files as input
and creates binary video configuration files suitable for use by any JAM application.

JAM generally requires that the terminal in use be identified in the environment For
details, see the Configuration Guide.

JAM Release 5.03 20 Nov 92 Page 43

'. ,

JAM Development OveNiew

5.1.2

Terminal Keyboard Portability

All JAM keyboard input is filtered through a keyboard translation table. This table is
created, when the application starts, from a keyboard configuration file that translates
physical keystrokes to JAM logical keys. These fJles can be used to support the deliv
ery of an application to users of different types of keyboards, or by users to customize
their own keyboards.

The keyboard configuration files are created either with a text editor or with the
rnodkey utility. The key2bin utility takes these ASCII configuration files as input
and creates binary keyboard description files suitable for use by any JAM application.

For details, see the Utilities Guide and the Configuration Guide.

5.1.3

Application Portability
JAM applications are generally portable across a wide variety of hardware platforms
and operating sy2~ems, These range from personal computers running MS-DOS to
mini--computers and workstations running UNIX to VMS super-minis. For details, see
the Configuration Guide.

5.1.4

Data-Driven Soft User Interface

Many screen manager products generate source code that displays screens when com
piled and linked into the application. JAM screens are created as binary data files and
are manipulated by the Screen Manager as data structures. This means that screens can,
at the discretion of those responsible for maintaining an application, be substantially
changed after the application is on line without requiring re--<.:ompilation or re-linking.
In fact, different users of the same application can have a different view into that ap
plication by virtue of using different screens.

Utilities are provided to generate source data structures from screen binaries for devel
opers who wish to have screens compiled into the application. See the bin2c utility in
the Utilities Guide for details.

Page 44 JAM Release 5.03 20 Nov 92

Chapter 5: JAM Philosophy

5.1.5

Event-Driven Algorithm
Botb tbe Screen Manager and tbe JAl\t1 Executive implement event driven algorithms.
Developers write code in JPL or C that is executed by tbe Screen Manager and the JMI
Executive when events occur. JAM handles tbe low level details of events, placing
only minimal requirements on de'veloper-written code. The Screen Manager handles
events such as screen entry and exit, field entry and exit, group entry and exit, field and
group validation. The JAM Executive handles events such as menu or function key
selections. All information associating events with actions is stored in screens.

For more information on JAM Application Control Flow, see chapter 4 on page 17.

5.2

JAM DEVELOPMENT METHODOLOGY
There are at least three possible strategies for using JAM to develop and implement an
application:

• Use tbe JAM Executive to prototype and/or ultimately implement the
application.

• Use tbe JAM Executive to prototype tbe application, and tben write
an executive for the production version.

• Write an executive, as part of the bottom up development and imple-
mentation of the application.

The JAM Executive is a powerful routine which may appear deceptively simple. There
are compelling reasons to use it in all but the rarest of cases. The strongest of these
reasons follow:

• Use of the JAM Executive will allow modification and testing of the
application during development under control of tbe authoring tool,
jxform.

• Use of the JAM Executive will minimize tbe amount of time spent in
compile-link-test cycles.

• Use of the JAM Executive will make maintenance of the application
simpler and cleaner. Substantial modifications can be made to the user
interface without changing the application code. In fact, the user inter
face may be modified in some cases without bringing the application
off-line.

JAM Release 5.03 20 Nov 92 Page 45

JAM Development Overview

•. Use of the JAM Executive will keep the application architecturally in
line with the emerging dominant style of event-driven bit-mapped
windowing applications.

There are few good reasons for not using the JAM Executive. These include:

• Some aspect of the JAM Executive algorithm is fundamentally in
compatible with the application.

• The application has memory constraints that can not be met using the
J AM Executive. This would typically happen only on operating sys
tems that do not support virtual memory models.

For tips on writing an executive, please see the Programmer's Guide. Since we strongly
recommend use of the JAM Executive, the remainder of the discussion that follows
will assume its use.

5.2.1

The Use of Prototypes
In our consulting practice at JYACC, we emphasize application prototyping. JAM is
especially well suited to development methodologies that rely heavily on proto typing
since the absence of code does not restrict the application from traversing through the
screens. This allows the development team to get a good sense of the look and feel of
the fmal application, even before the hook functions are complete.

Projects undertaken with more traditional tools often lose momentum before comple
tion because little of the progress can be noted early and changes in the specification
lead to lengthy delays. An application shell of just screens, fleshed out gradually with
more and more functionality in the code that runs behind the screens, allows a develop
ment project to have tangible success early on. In addition, the ease with which screens
can be modified and manipulated during development or after deployment will bring
timely gratification to the end users as their project specifications change and mature.

5.2.2

Design Strategy
JAM allows you to design your application in a fluid and natural top-down fashion.
Create the screens you know about, link them together, and see what you have. Add a
bit of code here and there. Add some more screens. Add more code. Change some exist
ing screens. When the application feels right and the end-users like it, it can be re
leased, but it is still quite possible for you to modify it further from time to time.

Page 46 JAM Release 5.03 20 Nov 92

\
1

Chapter 5: JAM Philosophy

JAM allows end-users themselves to be an intimate part of the development process.
An end-user can initiate a project without full specifications by generating a number of
screens and establishing their hierarchy basically outlining the flow of an application.
What bener specification could there be? The authoring tool creates and modifies
screens and links in a way that allows fine tuning changes to be made later. All the
"real" programming that remains to be done is to flesh out the linked set of screens with
function calls, either to interpreted JPL procedures or to lower level language functions
that are compiled in to the J AM Application Executable itself. Typically programmers
will write those functions, but they are at least partially specified by where they are
included in the screen hierarchy.

The application evolves in a natural and intuitive way, with the authors continuing to
manipulate and fme-tune screens, global data, and application hierarchy and control
flow, while the programmers can concentrate on the underlying code that will be re
lated to user events. Like word processing tools for documents, JAM allows the cre
ators of applications to split the work into the technical and non-technical, the drudgery
and the creative, and the design and the implementation, in a way that is fundamentally
natural, intuitive and flexible.

Apart from being efficient, this aspect of JAM development allows individuals in orga
nizations to cross traditional role boundaries. Programmers, end users, strategic plan
ners, managers, and interface designers can all share in the actual implementation of
the product, which can lead to enhanced communication and a better application. This
malleable aspect of JAM development has further reaching consequences as well. It
can allow for degrees of informality in the development process that would lead to
chaos in the traditional model. Distinctions between specification, prototyping, design,
implementation, and piloting can be blurred, which can lead in tlDll to applications that
more comfortably fit the tasks of the individuals who use them.

JAM Release 5.03 20 Nov 92 Page 47

INDEX
Symbols

1,30

&,30,35

&&,31,35

',,30

"jpl,30

A
Ampersand. See & symbol

APPI-24,19

Application, 9--12
code,5,13
components, 9-12
configuration, 8
creation, 14
data, 6,39

access,39
propagating, 7,14.36

development, 3, 6, 7,13-15.23-29,
45-47

example. 19-29,33-34
executable. See Application executable
flow, 5-6,6, 11,12, 17-42,32,41
input/output See Input/output
portability, 18, 44
program. 12
prototype, 5, 13,46
saeen stack rules, 37, 39
start, 29
termination, 36
testing,13,15

Application executable, 8,10, 12, 13,40,41

Array, 14
See also Field
example, 27

Authoring, 13-15
environment, 7
routines, 8

Authoring tool. See jxform

c
Caret See" symbol

Configuration,8,18,29,41

Control string, 11
creation, 14
example, 24, 25
form, 31
book function, 14,30
interpretation, 14
JAM Executive search, 30
JPL,30
lead characters, 32
operating system command, 30
screen, 30, 31
sibling window, 31
stacked window, 30
window, 30,31,35

D
Data dictionary, 6, 10, 11

See also LOB
convert from ASCn, dd2asc, 9, 15
convert to ASCII, dd2asc, 9, 15
creation, 11, 15
defmed,11
example, 28, 28
external integration, 15
file, 11,39

JAM Release 5.03 20 Nov 92 Page 49

JAM Development Overview

Data Dictionary Editor, 6, 7, 11, 15

DBi, 1,7,15

dd2asc, 9, 15

Display data, 14

Display terminal. See Terminal

E
Environment, 8, 29

Exclamation point. See I symbol

Executive
See also JAM Executive
custom, 5

EXIT, 19
default processing, 34-39

f2asc,9

Field

F

array. See Array
characteristics, 11, 14
consistency, 9, 15
creation, 14
described, 11
example, 24,24
hook function, 11, 14
name, 39

Form, 11,31
See also Screen
close, 34, 37
display, 37
stack. See Form stack

Form stack, 35-37, 41
described, 36
evolution, 36
example, 36--39, 38

Function. See Hook function

Function key, 5, 19
control string, 11, 24
example, 25
returned by Screen Manager (sm_input),

30

H
Hookfunction,4,5,10, 11, 12,32,41

call,32
control string, 14,30
data access, 7
example, 27
field, 11, 14
installation, 13
screen, 11, 14

I
Input/output, 4, 5, 17-19,18

Int~ationalization,8

J
JAM

architecture, 3-7, 32, 40, 41
components, 3-12
configuration, 18
defmed, 1,3
examples, 3
Executive. See JAM Executive
library, 7-8, 12
product components, 7-9
product screens, 8
Source Code, 8

JAMExecutive,4-5,6,12,41
compared to custom executive, 45-46
defmed,4 .
form stack. See Form stack
routines, 8

See also Library routines
screen control, 35-37
Screen Manager interaction, 5-6, 29-34,

32
start, 30

Page 50 JAM Release 5.03 20 Nov 92

JAMIPi
graphics. 1
Motif. 1
Wmdows.l

jamcheck.9. 15

JPL, 7, 41
See also "jpl
C access, 7
compiled, 12
database access, 7
module. 10, 12
routines, 8

Jtenn. 1

jxfonn. 7. 10. 13

K

Key
See also Input/output; Keys indexed by

, name
logical. 19
translation, 17,18,41

Keyboard. See Key

Keyset Editor. 7

L
Language. See Programming language or

Internationalization

LDB. 6-7,39-40,41
data propagation, 36, 39 .
dermed,6
entry. 39
example. 40
initialization. 29,40
routines, 8

\ - .: ..

Library routines
LDB access. 40
sm_close_ window. 35
sm_input, 30. 32

return value. 32
smjclose. 36
smjfonn.36
smjtop.29
smjwindow.36
SID_leave. 30
sm_n-8etfield. 40
sm_n-putfield. 40
sm_rjorm, 30. 35
sm_cwindow. 31. 35
sm_return. 30

. sm_sibling. 31

License, 8

Local Data Block. See LDB

M
Menu, 5

control string, 11
example. 24, 24

Index

Screen Manager interaction (sm_input),
30

o
Operating system, command, control string.

30

p

PFI-24, 19

Portability. 18

Programming language. 4. 11
!PL,7

Prototype. See Application. prototype

JAM Release 5.03 20 Nov 92 Page 51

JAM Development Overview

R
Recursion. See Recursion

ReportWriter, 1

s
Screen, 10, 10-11

activate, 39
characteristics, 14
close, 34
convert to/from ASCII, f2asc, 9
creation, 10
described, 10
development, 13-14
display, 5, 11, 32
example, 23-28, 24
expose, 35, 37
hook function, 11, 14
JPL,12
open,39
order, 5, 6
stacks,34-39

See also Form stack or Wmdow stack

Screen binary, 4, 11

Screen Editor, 4, 7, 10, 13-14
data dictionary access, 14, 15

Screen Manager, 4, 6, 41
defmed,4
JAM Executive interaction,~, 19,

29-34,32
routines,8,12,30-31

See also Library routines
screen control, 11, 34-35
window stack. See Wmdow stack

Scrolling array, 14

Sibling window, 31
See also Wmdow

sm_ routines. See Library routines

Source code, main routines, 8, 12, 29

Stack. See Form stack; Wrndow stack

Stacked window, 31
See also Wrndow

T
Terminal

characteristics, 30
portability, 18,43,44

TRANSMIT. See XMIT

u
Utilities, 8-9

See also Utilities indexed by name

v
Video mapping, 17, 18, 41, 43

w
Wmdow,11

See also Screen
close, 34, 37
display, 34, 37
stack. See Wmdow stack

Wmdow stack, 34-35, 37, 41
described, 35
evolution, 35
example, 37-39, 38
overflow, 35

x
XMIT, 19

Page 52 JAM Release 5.03 20 Nov 92

New Features
in JAM

Release 5

~:lEl;;;;;;::::;;::::;;;;;;:;::;;;;;: ;~; · . · .
· .
:: .. : .. : ... :-.:-: :.: .. : .. :.

Chapter 1

Categories of New Features

This document summarizes the major new features and product enhancements of JAM
Release 5. These featW"es are organized into 8 groups:

• Screen and Window Management

• Keyboard and Input Management

• Widgets and Menus

• Field Edits and Attributes

• Screen Editor Enhancements

• Improvements to IPL

a Internationalization

• Miscellaneous

JAM Release 5.03 20 Nov 92 Page 1

~:;[EJ.;;;;;::;;:;;;;;:::;:;/::;::: :~; · . · . · . · .
:: .. : .. :.; :: :.:. ... : .. ::

Chapter 2

Summary of New Features

2.1

SCREEN AND WINDOW MANAGEMENT

2.1.1

Viewports
The viewport facility enables the use of virtual screens that are larger than their display
size. You may even create virtual screens that are larger than the physical display. The
viewport facility determines which portion of a virtual screen is visible at a given time,
as well as the size and position of the "viewport" into the virtual screen, that appears on
the display.

As a user tabs through the fields in a virtual screen, JAM automatically scrolls the
viewport, bringing the necessary fields into view at the appropriate time. The user may
optionally use the VIEWPORT key to move, resize, and scroll the viewport manUally.
This key also controls sibling windows, discussed later in this section.

To pop up a window called "xyz" at line 5, column 10 in a 10 by 40 viewport, the fol
lowing control string would be specified:

&(5,10,10,40)xyz

The last two parameters are optional. If omitted, the viewport and screen sizes will be
the same, unless the virtual screen is larger than the display. In that case, the viewport
will be the size of the display.

If the virtual screen has a border, scroll bars appear in the right and bottom borders indi
cating that only part of the screen is visible. The size of the scroll bar indicates what

JAM Release 5.03 20 Nov 92 Page 3

New Features in JAM Release 5

percentage of the screen is shown, while its position indicates which section of the
screen is visible.

2.1.2

Shrink-to-Fit Windows Option
Developers may now make a window shrink-to-fit. This function call will dynamically
shrink a window based on the amount of data in the screen. The "shrink-to-fit" feature
is particularly useful in item selection lists when the developer doesn't know the nwn
ber of items that will be present For example, in a scrolling array with 15 on-screen
elements where only 3 lines are retrieved, it appears awkward in a "normal" window
because of the 12 blank lines. A "shrink-to-fit" specification would reduce this win
dow by 12 lines. This feature is enabled by a call to the function
srn_shrink_to_fit.

2.1.3

Relative Placement of Windows
In Release 4, windows are specified by the actual line and column at which they are to
appear on the display. Release 5 allows window positions to be specified in relation to
each other.

For example, assume three automatic windows are brought up next to each other on line
10 of the screen. If they are specified with absolute coordinates and later need to be
modified to appear on line 9, each window must be modified. When relative coonti
nates are u~ only the position of the flfSt window needs to be changed. A plus (+) or
minus (-) sign is used to indicate relative placement In the example below, the win
dow will open 5 rows below and 3 columns to the right of the top left hand comer of the
calling screen:

&(+S,-3)window.name

2.1.4

Help Screens with JAM Control Strings
Release 5 supports JAM control strings on help and item selection screens. This en
hancement enables paging through item selection lists that are stored in external files.
Additionally, globally defmed function keys will now worle on help screens.

Page 4 JAM Release 5.03 20 Nov 92

Chapter 2: Summary of New Features

2.1.5

Sibling Windows
In JAM 4, windows are stacked with only the topmost window accessible to the user.
Programs select underlying windows via the wselect library routine. With JAM 5, de
velopers can invoke a window and designate it as a sibling. Siblings are considered to
be at the same level as the current window, as opposed to stacked on top of it. The user
can switch freely among sibling windows via the viewport key.

There may be multiple levels of sibling windows. For example, if a sibling window is
active and a stacked window is opened, the underlying sibling windows cannot be se
lected by the user until the stacked window is closed. Stacked windows, however, may
open other sibling windows which can be freely selected by the user.

Sibling windows are specified in JAM control strings by two ampersands (&&win
downame). Stacked windows are specified by a single ampersand.

Sibling windows are handled by a single call to a new input routine (defined below).
Return occurs when a function key is pressed or a menu selection is made, but not when
the user moves from one sibling window to the next. If necessary, the program can
make calls to see which sibling was active when an event occurred, or the program can
process the windows in a pre-<ietermined order, whichever is more convenient.

2.1.6

Screen Entry and Exit Routine Enhancements
In version 4, screen entry functions were called when a screen was opened; exit func
tions were called when the screen was closed (i.e. removed from the window stack).
Release 5 provides an additional option to call these functions when the screen is made
active and inactive. The why called parameter tells the routine the circumstances under
which the routine was called.

A screen is made active when it is first opened or when a window on top of it is closed.
A screen is made inactive when a window on top of it opens or when the screen is re
moved from the window stack. The activeiinactive hooks are especially useful for set-

. ting screen-wide options such as installing keychange functions.

JAM 5 resolves the problem in screen entry procedures which prevented access to
screen fields that exist in the LDB. This eliminates the current work-around solution
of calling sm_allget. The similar problem of setting fields in screen exit procedures
has been eliminated as well. This is discussed further in the Programmer's Guide.

JAM Release 5.03 20 Nov 92 Page 5

New Features in JAM Release 5

2.2

KEYBOARD AND INPUT MANAGEMENT

2.2.1

New Keyboard Input Routine
Release 5 provides a new keyboard input routine that handles menus, data entry screens
and hybrids. This replaces the sIn_menuproc, SITLopenkeybd and
sIn_choice functions of Release 4. The old routines will still be available in Release
5 for compatibility.

Screens with only data entry fields will operate in data entry mode; screens with only
menu fields will operate in menu mode. For screens with both types of fields, a devel
oper may specify which mode to start in. A menu toggle key has been introduced to
allow switching between the two modes. This routine makes the j am_menu field ob
solete.

2.2.2

Mouse Support
J AM responds to mouse clicks in a number of ways:

2.2.3

• During data entry, clicking the mouse cursor on a field will reposition
the text cursor to that field.

• Clicking while the mouse cursor is positioned on a menu or radio but
ton field will select that item.

• Clicking on a checklist field will toggle its state.

• If the status line contains mapped key tops (%K ...), clicking on a key
top is equivalent to typing that key.

• If keysets are used, clicking on the soft key label is equivalent to typ
ing that soft key.

Key Remapping
In JAM 5, any cursor or edit keys can be mapped to any other key without calling the
key change functions. For example, the NL (Return) can be easily changed to XMIT
using a screen entry function.

Page 6 JAM Release 5.03 20 Nov 92

, .

Chapter 2: Summary of New Features

2.2.4

Developer-Specified Backward Tabbing
Order
Using the PREVFLD field edit. developers can now defme the order in which backward
tabbing will occur.

2.2.5

Soft Keys
Certain terminals on the marke~ notably those from Hewlett Packard and AT&T, have
areas on the screen in which you can display the actions associated with the various
function keys. In Release 4 we provided library routines for writing text into these la
bels, but left the application responsible for ensuring that those actions occurred. In
Release 5 we extend this capability by introducing the concept of soft keys.

Soft keys are keys whose logical value may change during the course of an application.
In one context. a particular key may translate to HELP, while in another context. the
same key may act as PFI. The associated screen labels indicate what action a soft key
will take. This feature is especially useful on terminals with a limited number of func
tion keys. The logical translations and screen label text for soft keys are defined in a
keyset.

In the key translation ftle for a terminal, the function keys, or some other set of key
strokes, are defined as the soft keys. When one of these is pressed, JAM uSes the cur
rent key set to translate the keystroke into a logical value. In the absence of a keyset the
translation is to the corresponding PF key (Le. - soft key 1 = P F 1, etc.).

Release 5 provides a Keyset Editor which allows keysets to be built and maintained.
Keysets may contain multiple rows of key defmitioDS. Eacb defmition contains a label,
an optional display attribute, and the translated logical value. A MORE key may be de
fined that allows the user to view the next row of labels. .

Several levels of keysets are provided. There can be an application level keyset as well
as screen level keysets. Wben in the Screen Editor there is an additional system level
keyset, used for JAM navigation and the Screen/Data Dictionary Editors.

JAM must be configured properly in order to enable soft keys, and an entry must be
made in the video me. Soft keys may be simulated on terminals for which there is no
hardware support.

JAM Release 5.03 20 Nov 92 Page?

New Features in JAM Release 5

2.3

WIDGETS AND MENUS

2.3.1

Radio Buttons
radio buttons present a list of choices to the user, but allow one, and only one, to be
selected. The choices are displayed on the screen as in the example below:

- noodles rice

Figure 1: A radio button grouping.

The text in the choice fields is protected from data entry. The user makes a selection by
positioning the bounce bar on the desired choice, and pressing the select key, as with
menus.

2.3.2

Checklists
Checklists are similar to radio buttons except that any number of entries, including
none, may be selected. Checklists come in three styles:

• Button lists work: similarly to a menu, in that you move a bounce bar to the desired
option and press a select key.

• Check box lists contain fields to the left of the choices that are marked when selections
are made. The character(s) used to mark check boxes are stored in the video
me, so they can be changed from terminal to terminal.

• Check box with bounce bar is similar to check box, except that as the cursor moves
through the boxes, a bounce bar tracks the cursor over the choice fields to
the right of the boxes.

There may be multiple checklists and radio buttons on the same screen. Checklists and
radio buttons are treated as data entry fields for the purpose of the menu toggle capabili
ty.

PageS JAM Release 5.03 20 Nov 92

\

Chapter 2: Summary of New Features

2.3.3

Field Groups
Checklists and radio buttons are calledfield groups, because they are usually composed
of several distinct fields. For the purpose of tabbing however, each group is treated as
a single field. That is, a tab will cause the cursor to leave one group and go to another
group or field. As such, there are group entry and exit fWlctions, and next and previous
group edits.

Field groups must have names that are distinct from field names and the names of other
groups. A program may access a group by name, in which case it will get the entries
that have been selected. Groups can also appear in structures and in the LDB, thereby
permitting the passage of selected entries from one screen to another.

2.3.4

Menu Selection
The user may select from menus and checklists by:

1. pressing the NL key (usually ENTER).

2. pressing the XMIT key.

3. typing the first uppercase letter of a menu item.

2.3.5

SAA Compliance
The Release 5 input routine provides an option to leave sub-menus open after a selec
tion is made. This brings JAM pulHlown menus into compliance with SAAJCUA
standards.

2.4

FIELD AND EDIT ATTRIBUTE FEATURES

2.4.1

Currency Fields
Release 5.0 allows considerable flexibility in specifying numeric and currency fields.
The following criteria may be specified:

JAM Release 5.03 20 Nov 92 Page 9

New Features in JAM Release 5

• Decimal symbol

• Number of decimal places (min and max)

• Thousands separator

• Currency symbol (up to 5 characters)

• Placement of currency symbol Oeft, right, decimal point)

• Local format (developer defined mnemonic that defmes each of the
above)

• Rounding (floor, ceiling, round)

• Justification (left, right)

• Fill character

• Unlimited number of currency formats in the same screen

2.4.2

Numeric Fields
Developers can specify the default radix separator (decimal point) in the message ftle.

2.4.3

Date and Time Fields
In addition to the ability to specify almost any date and time format, developers may
now defme mixed time and date formats in a single field. Ten pre--defined local for
mats are provided.

2.4.4

Extended Display Attributes
Release 5.0 adds support, both for new display attributes, and new combinations of at
tributes. Among these are:

• Independent foreground and background colors

• Background highlighting

• Graphics attribute

Page 10 JAM Release 5.03 20 Nov 92

\ ,

'.
"

I

Chapter 2: Summary of New Features

• Standout attribute

The graphics attribute is used on terminals which implement line drawing graphics
characters with on-screen or area attributes (such as Hewlett Packard terminals). Re
lease 4 was limited to support for latch-type attributes for graphics.

Standout can be implemented at the user's discretion. For example, it might be used for
italics on terminals which support such a font

Release 5 supports the notion of a working pen in the Screen Editor. With this feature,
display data is created using a certain type of pen. If you are using a IDGHLIGHT RED
pen for instance, new characters will be shown in highlight red. When you change the
pen, new characters are written with the new colors and attributes. You can change
pens every time you select new attributes, via the PF4 key. An option on this window
allows you to change the current display area, the pen or both. Pressing PF4 with the
cursor outside of a field or display area has the effect of only changing the pen. This
permits display text with different attributes to appear adjacent to each other in screens.

2.4.5

Support for Null Values in Fields
When a field is created, the screen designer can specify what the field should look like
if it contains no data. Whenever the field is empty, this null value string will be shown
in the field. Library functions are available to determine if a field contains a null (eg.

srn_is_null)

2.4.6

Changes to Field Naming Conventions
Release 5 relaxes the restrictions on field names, so that, among otber thing~ field
names may contain characters in foreign alphabets.

2.4.7

Field Entry and Exit Routine Enhancements
A new type of field edit, field exit [unction, has been added. This is primarily used to
undo anything tbat may have been done in tbe field entry procedure. Cmrently, the
field validation fWlction must be used to do thi~ but in the default case, field validation
routines are only called when the user tabs or returns out of tbe field.

JAM Release 5.03 20 Nov 92 Page 11

New Features in JAM Release 5

JAM guarantees that screen and field entry and exit functions will be called symmetri
cally: If an entry function is called, the associated exit function will be called exactly
one time. Furthermore, if the exit function is called and the screen or field is revisited,
the entry function is guaranteed to be called again. In summary, if you need certain
options to be set for a given screen or field, you can set them in the entry function and
reset them in the exit function.

The developer may install default screen, field, and group functions to avoid attaching
the same edit on all fields when the function to process them is the same.

2.4.8

Error Message when a .J·PL or C Procedure is
not found
In Release 5, JPL or C procedures which cannot be found at runtime will cause an error
message to be displayed

2.4.9

Extended Data Types
Packed and roned decimal types are provided for use in data structures.

2.5

SCREEN EDITOR FEATURES AND
ENHANCEMENTS

2.5.1

Block Move and Copy
Multiple fields may be moved and copied in groups while maintaining their relation
ship to each other on the screen.

2.5.2 .

Clipboards
Release 5 introduces a Screen Editor feature called clipboards. Clipboards are available
for moving data between screens, or to temporarily save fields which must be deleted
to make room for other fields. 26 clipboards are available.

Page 12 JAM Release 5.03 20 Nov 92

Chapter 2: Summary of New Features

Groups of fields can be saved in clipboard "template" files and later recalled and
merged into new screens. This is useful for creating objects (e.g. name and address
blocks) and populating them on multiple screens.

2.5.3

Line Drawing
Release 5.0 supports a line drawing mode, in which the arrow keys can be used to draw
lines in anyone of ten different styles. As you change directions, JAM provides an
appropriate corner character. If you cross another line of the same style and attribute,
an intersection character is generated. To draw a box, one may specify the corners and
J AM will create the connecting lines of the box all at once. Line styles can be specified
in the video me.

2.5.4

Minor Screen Editor Improvements
Some of the major improvements have been cited in other sections. In addition we have
the following enhancements:

2.6

• The Screen Editor always begins in DRAW mode

• JAMlDBi processing is turned off in the Screen Editor to avoid
lengthy time-outs and to prevent developers from inadvertently putt
ing default data into fields

• In DRAW mode, the tab key stops at all fields and display areas.

• srn_ins ta 11 may specify that a user function should be turned off in
(ie. - not called by) the editor.

IMPROVEMENTS TO JPL

2.6.1

JPL Tokenization
JPL procedures can be tokenized and placed in binary files. This substantially speeds
up runtime parsing. This is also called JPL compilation.

JAM Release 5.03 20 Nov 92 Page 13

New Features in JAM Release 5

2.6.2

JPL Libraries
JPL procedures can now be stored inform libraries or within an executable. This en
hancement eliminates the need to keep many fIles around at runtime. It also eliminates
the possibility of users inadvertently modifying JPL procedures.

2.6.3

JPL PROCedure
Multiple JPL subroutines (or procedures) can be declared and stored in the same edit or
me. These procedures can be made available only to other procedures in the same file
or edit, or to all procedures. Named JPL procedures can be attached to screens via the
PF3 window of the Screen Editor. They are not automatically executed when the
screen is opened, but are available to field-level JPL as subroutines, and to function
keys which invoke JPL procedures via "jpl. In addition, an unnamed procedure at
tatched to a screen is executed when the screen is opened. This allows for the creation
and initialization of variables that are global to the procedures attatched to the screen.

2.6.4

JAM Library Access from JPL
Access to many of the JAM library routines is provided via JPL. Parameters are parsed
and converted into the types needed by the called functions. This capability is also
available for developer-written functions. It works as follows:

When a function is specified in a function list, the function name may be followed by
a junction prototype, which dermes the number of parameters the function needs and
their types. JAM picks this up when the function is called and converts the arguments
appropriately.

Page 14 JAM Release 5.03 20 Nov 92

\

Chapter 2: Summary of New Features

2.7

INTERNATIONALIZATION

2.7.1

Creating Applications for Non-English
Speakers
JAM can now be used to develop applications for use with any language that is read
from left to right and that uses characters that can be represented in eight bits of in
formation. While it has always been possible to create "non-English" applications,
some of JAM's features had to be disabled to do so. Release 5 makes it possible to use
JAM's full capabilities when creating such applications, and makes it easier to convert
applications from one language to another and to write applications for use with more
than one language.

Text appearing in JAM applications generally comes from screens and the message
file. To convert an application from one language to another, the display data on all
screens and the text in the message file must be modified. The length of text strings
may be changed freely without affecting program operation.

This works well for prompts and messages, but JAM must also accommodate the vari
ous conventions for displaying and entering dates, numeric data and currency informa
tion. JAMS handles this by allowing the screen designer to specify Currency and
Daternme formats for fields. This can be done on a field by field basis, or globally, so
the formats need be specified only once for the entire application. If specified globally,
the formats are stored in the message file so they may be changed along with message
text to accommodate different languages or local customs.

An application may support more than one language, by having a set of screens and
messages for each language. The appropriate language set is then selected at initializa
tion, either through an environment variable or user prompt

2.7.2

Localizing JAM for Non-English Speaking
Developers
Assuming appropriate licenses have been granted, the JAM package itself can be con
verted to languages other than English without modifying source code. The localiza-

JAM Release 5.03 20 Nov 92 Page 15

New Features in JAM Release 5

tion process involves cbanging the JAM screens (including belp screens), translating
the documentation, and modifying the message file. Once this is done, all prompts,
messages and status text is sbown in the new language. Even mnemonics for specifying
date, time and currency edits will be translated. Programmers, though, still must in- -\
voke library routines by their existing English-based names.

2.8

MISCELLANEOUS

2.8.1

Utility to Convert Screens Between ASCII and
Binary
A new utility, f2asc is available for converting screens created with the Screen Editor
to an ASCII format suitable for use with a text editor. The ASCII file can subsequently
be converted back into a JAM-compatible form.

This feature can be useful for keeping screens tmder a source code control system such
as SCCS, copying JPL procedures from one screen to another, or making global
changes to screens via a text editor.

2.8.2

User-defined Synchronized Arrays
Release 4 includes rules for determining when arrays are considered synchronized, they
must:

1. start on the same line

2. have the same number of on-screen occurrences

3. have the same number of total occurrences

4. have the same distance between elements

In Release 5, fields that do not meet these criteria can also be designated as syncbro
nized, as long as they have the same number of on-screen and off-screen of occur
rences. This permits multi-line scrolling arrays, which are particularly useful in data
base applications.

Page 16 JAM Release 5.03 20 Nov 92

Chapter 2: Summary of New Features

2.8.3

Function Naming Convention Changes
Functions attached to fields and screens may have names that contain up to 31 charac
ters.

2.8.4

Disk-based Scrolling
Release 4 provided the ability to define scrolling fields with a maximum of 9,999 oc
currences each. Data in these fields was stored in memory (allocated as needed as en
tries were made). Nonetheless, if all occurrences were filled, memory for all entries
had to be allocated.

In Release 5 we provide the ability to write scroll drivers and use these drivers to handle
off-screen data. Each driver is given a name which may be attached to scrolling fields
when they are created. When these fields scroll, JAM calls entry points in the ap
propriate driver to get and put off-screen occurrences.

Drivers may be written to access sequential text fIles, database tables or even the LOB.
This allows the application to use less memory and perfOffil operations such as scrolling
backwards through database tables, which are not possible with standard scrolling.

Sample drivers are provided by JYACC along with documentation for writing custom
ones. Refer to the section on Alternative Scrolling in the JAM Programmer's Guide.

2.8.5

Performance Improvements
Release 5 supports various performance optimizations, targeted toward exploiting ter
minal capabilities in order to reduce screen output Algorithms for area and on-screen
attributes have been refined as well.

The screen stack has been reorganized. In Release 4, JAM had a single screen area for
the current display. When a window was opened, Wlderlying data would be copied to
a save area, and then restored when the window was closed In Release 5, each window
has its own save area which gets mapped to the pbysical screen when the screen is up
dated. This dramatically accelerates moving and wselect-ing windows. It also
makes opening and closing windows somewhat faster.

JAM Release 5.03 20 Nov 92 Page 17

New Features in JAM Release 5

2.8.6

New Library Routines
Over 65 new library routines have been added. Groups of new routines are:

• Routines to access to all global variables

2.8.7

•
•
•

•
•

A function to truncate an array and all synchronized arrays

Functions to get and put JAM control suings

A function to keep a screen image in memory. All screen data, includ
ing field contents, scroll buffers and relevant structures stay intact
wben the screen is closed. Wben the screen is subsequently reopened,
the structures in memory are reused rather than recreated. See
sm_svscreen in the JAM Programmers Guide.

A function to set a rectarigle on the screen to a given background at
tribute. See sm_bkrect in the JAM Programmers Guide.

Functions to associate developer-defmed pointers with screens, so
that one can maintain screen-specific data without baving to create
and maintain a custom window stack.

Block Mode Terminal Support
Release 5 of JAM provides support for block mode terminals such as the IBM 3270,
and other tenninals that do not interact with the host computer on a keystroke by key
stroke basis. All of JAM's help and windowing capabilities are available.

While any screens created with the Screen Editor will work with block mode terminals,
care should be taken when using certain feabJres to avoid placing a data entry burden on
the user. For example, shifting fields will not automatically shift when the cursor gets
to the end of the field. JAM will pennit the user to use the shift left and shift right
function keys or the zoom key.

Other things to consider:

• field entry and exit functions are disabled during block mode.

• field validation functions are called during screen validation only.

• character edits are deferred until screen validation, unless handled by
the terminal.

• screen, data dictionary, and Keyset Editors will not work in block
mode due to their highly interactive nature.

Page 18 JAM Release 5.03 20 Nov 92

-" ,
1 ,

Chapter 2: Summary of New Features

• normally, telTIlinal characteristics are specified in video files. This is
not possible with block mode because of the vast differences between
different block mode terminals. Therefore, for each type of block
mode terminal, a set of "driver" routines must be written. JYACC will
provide sample drivers and documentation for writing custom ones.

JAM Release 5.03 20 Nov 92 Page 19

Author's
Guide

TABLE OF CONTENTS
Chapter 1

Introduction . 1
1.1 Should You Read This Guide? 1

Chapter 2
Keyboard Entry '. 3

2.1 Introduction. 3
2.2 Documenting Your Key Translation. 4
2.3 Logical Key Actions In General . 8
2.4 Data Entry .. 12
2.S Menus . 12
2.6 Item Selection. 13
2.7 Checklist and Radio Button Groups. 13

Chapter 3
The Authoring Environment 15

3.1 Entering and Exiting the Authoring Utility IS
3.2 Operating in Application Mode 16

Chapter 4
The Screen Editor 19

4.1 InbOOuctiOll. ... 19
4.2 Entering and Exiting the Screen Editor (SPFS) 20
4.3 Screen Editor Functions .. 22

4.3.1 Draw and Test Modes (PF2) 23
Display Data .. 23
Fields . 26

4.3.2 Saeen Characteristics (PF3) . 28
Screen Size ... 29
Screen Border . 29
Screen Background Color. 30
Field Drawing Symbols 31
Screen-level JPL Procedures 32
Starting Mode for Runtime Screen. 33
Screen Level Help . 33
Screen Entry and Exit Functions. 34
Screen Level Keyset . 35

JAM Release 5.03 20 Nov 92 Pagei

Author's Guide

4.3.3

4.3.4
4.3.5

4.3.6
4.3.7
4.3.8
4.3.9
4.3.10

4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17

Chapter 5

Set/Change Field Characteristics (PF4)
Field Display Attributes
Character Edi ts
Field Edits
Field Attachments
Miscellaneous Edits
Field Size .. .
Data Type .. ,
Field Summary (PF5)
Select Mode for Editing (PF6)
Establishing Select Sets (PF6, PF3, PFI0)
Select Mode Operations (pF4, PF5, PF7, PF8)
The Clipboard (PF2)
Simple Editing Commands (PF7, PF8)
Repeating Operations (PF9)
Shifted Function Key Menu(pFI0)
J~ControISOings(SPF1)
Create Special Objects (SPF2)
Shortcut Menu Creation
Shortcut Group Creation
Screen Name Field Creation
Field and Group Names (SPF3)
Data Dictionary Search (SPF4)
Add to Data Dictionary (SPF5)
Group Attributes (SPF6)
Synchronized Arrays (SPF7)
Character Graphics (SPF8)
Line Drawing (SPF9)

35
37
37
40
48
58
69
72
74
76
77
77
78
80
80
81
82
83
84
85
88
88
89
91
92
95
96
97

The Data Dictiolla.rY Editor ~ 99
5.1 Introduction. 99
5.2 Entering the Data Dictionary Editor (SPF6) 100
5.3 Exiting The Data Dictionary Editor. 101
5.4 Data Dictionary Editor Functions 102

Page ii

5.4.1 Add Data Dictionary Entries (PF2) 102
Data Dictionary Groups 103
Scope of Field and Group Entries .. 104
Data Dictionary Records 104

JAM Release 5.03 20 Nov 92

Table of Contents

5.4.2 Modify Existing Entries (PF3) .. 105
5.4.3 Modify Field Characteristics (PF4) 106
5.4.4 Deleting and Undeleting Entries (PF5,PF6) 106
5.4.5 Searching for Entries (PF7, PF8) .. 106
5.4.6 Go to a Specified Line (PF9) , 107
5.4.7 Default Entry Settings (PFIO)•................ 108

5.5 LDB Initialization .. 109

Chapter 6
The Keyset Editor 111

6.1 Introduction To Soft Keys 111
6.2 Keysets. 112

6.2.1 The Keyset Editor . 113
Entering A Soft Key Value .. 114
Entering A Soft Key Label. 114

6.2.2 Keyset Editor Function Keys 115
6.3 Keyboard Translation Table . 116
6.4 Selection of Keysets . 117
6.5 Video File . 117

6.5.1 The KPAR Statement 118
6.5.2 The KSET Statement 118

6.6 Simulated Soft Keys.. 119
6.7 Keyset Portability Considerations 119

Chapter 7
Authoring Reference 121

7.1 Colon preprocessing . 121
72 Control Strings 124

72.1 Form Control Strings 124
7.2.2 Stacked Window Control Strings. 125
7.2.3 Sibling Window Control Strings.. 126
7.2.4 C Function Control Strings. 126

Target Lists ... 128
7.2.5 JPL Procedure Control Strings. 129
7.2.6 Program Control Strings. 130

7.3 Help Screens. .. 130
7.3.1 Help Screen With Display Data Only. 01
7.3.2 Help Screen Containing A Menu 131
7.3.3 Help Screen With Data Entry Fields. 132
7.3.4 Help Screen With Field-Level Help Sub--Screens 133

JAM Release 5.03 20 Nov 92 Page iii

Authors Guide

7.4 Local Data Block ... 135
7.5 Menus. .. 136

7.5.1 Dynamic Menus 139
7.6 Regular Expressions. .. 140

7.6.1 Forming Regular Expressions , 140
Simple Expressions. .. 140
Character Classes 141
Concatenating Subexpressions 142
Repeating Subexpressions .. 142
Re-matching Subexpressions 142

7.6.2 Regular Expression Examples 142
7.6.3 Summary of Special Characters In Regular Expressions , 143

7.7 Scrolling Arrays 144
7.7.1 Single Scrolling Arrays. .. 144
7.7.2 Synchronized Arrays. .. 148

7.8 Validation. .. 150
7.8.1 Fields That Are Not Part of a Group. • 150
7.8.2 Fields That Are Part of a Menu or Group. 151
7.8.3 Group Validation.. 152

7.9 Viewports and Positioning 152
7.9.1 Introduction .. 152
7.9.2 Specifying a Viewport .. 154
7.9.3 The VIEWPORT Key 158

Index . 159

Page iv JAM Release 5.03 20 Nov 92

Chapter 1

Introduction

1.1

SHOULD YOU READ THIS GUIDE?
You should read this guide if you will be authoring applications with JAM. Since au
thoring is the theme that unifies JAM, you should also read this guide, perhaps at a
faster pace, if you are working with JAM in other ways. In either case, first read the
Overview; it discusses terminology and concepts that are essential to understanding this
guide.

JAM is designed to help you, the application builder, rapidly build sophisticated ap
plications. You use JAM to provide the look and feel required by the users, and to pro
vide application-specific processing. JAM helps you by taking the drudgery out of:

• creating complex screens,

• interconnecting screens,

• linking screens with database operations, and

• linking screens with customized application logic.

The process of creating, interconnecting, and linking is called authoring. Other pro
cesses are required to build applications with JAM, including the processes of confi
guring JAM, adding application-specific processing using procedural languages such
as JPL (JYACC's Procedural Language) and C, and adding application-specific data
base processing using JAMJDBi (JYACC's JAM Database Interface). The table below
helps you determine which JAM guides contain detailed information relevant to your
task.

JAM Release 5.03 20 Nov 92 Page 1

Author's Guide

If you are doing: Then you will find details in:

Authoring JAM Author's Guide

J AM Configuration JAM Configuration Guide

JPL Processing JAM JPL Guide

C Processing . JAM Programming Guide

Database Processing JAM/DBi Guide for your database

In all cases, please read the JAM Overview frrsl

Page 2 JAM Release 5.03 20 Nov 92

""1
I
J

Chapter 2

Keyboard Entry

2.1

INTRODUCTION

~::[E:::::::::::::::::::::::::::< :~.: . .
. .
.: .. : .. :.:.::.:.::.:: .. : .. :.:.,:.

The purpose of this cbapter is to explain keystroke translation and data entry conven
tions.

JAM applications are developed for an imaginary keyboard, called the logical key
board, that bas more keys than any commercially available physical keyboard. The
logical keyboard includes keys sucb as PF1, DELETE CHAR, ZOOM, TRANSMIT,
EXIT, HELP, A, and x. A JAM key ttanslation ftle defines, for a particular pbysical
keyboard, the translation from pbysical keystrokes to logical keys. For example, the
IBM PC keyboard has no physical key labelled ZOOM. The IBM PC key translation ftle
distributed with JAM defmes the physical keystroke Al t z to be the logical ZOOM
key. This physical key to logical key translation ensures that any JAM application will
work with almost any physical keyboard.

In the JAM documentation, unless otherwise explicitly noted, a reference to a key is a
reference to a logical key. For example, "Press the HELP key" means "Press the com
bination of physical keystrokes that is translated to the logical HELP key by your key
translation ftle". To use JAM, you must document (at least mentally) the key transla
tion that you are using. You must also know what actions JAM will take as you press
logical keys. The purpoSe of this chapter is to assist you in both areas. If you wish to
change your key translation, or wish to create a key translation, please read the Utilities
Guide description of the modkey utility. Key translation occurs in the JAM library
function sm_getkey, and may be changed by the user-defmable function
srn_keychg. These functions are described in the Programmer's Guide.

JAM Release 5.03 20 Nov 92 Page 3

Author's Guide

Your key translation is defmed by your key translation me. The Configuration Guide
contains a complete description of how to configure your software environment in or
der to use a particular key translation file. You may need to read and understand your
key translation file in order to document the key translation you are using. The
modkey utility, described in the Utilities Guide, is helpful in interpreting key transla
tion meso

2.2

DOCUMENTING YOUR KEY
TRANSLATION
JAM comes with over 300 pre-defmed logical keys, 255 of which are the logical data
keys like p, and #. JAM translates the physical data keys on your keyboard into the
corresponding logical data keys, without using the key translation me. For example,
the physical p key is always translated into the logical p key. Logical data keys are
displayed in whatever manner your video monitor normally displays physical keys.
Therefore, for portability, only data keys corresponding to ASCII display characters
should be used 1.

The JAM logical keyboard is shown in Figure 1 on page 6. Note that for readability,
data keys (Q, w, E, R, T, Y, ...) and keys that are rarely used (PF13-24, SPF13-24,
APP13-24, and SFTl-242) are omitted from the diagram. We suggest that you use
this keyboard diagram to document the physical keystrokes corresponding to each log
ical key shown. In Figure 2 on page 7, we have done this for the ffiM PC keyboard,
according to the key translation file provided with JAM for that keyboard.

JAM provides a mechanism, called keytOps, for displaying the physical keystrokes cor
responding to a logical function key for the keyboard currently in use. For example, the

1. The ASCII character set is composed of eight bit characters in the range of 0 to 255 (hex FF). Characters
in the ranges hex 20 to hex 7E and hex AO to hex FE are ASCII data characters. Characters outside of those
ranges are ASCII control characters. Control characters have mnemonic names; the character hex IB (decimal
27) is called the escape key, or ESC. When you pres.! a physical key, the keyboard generates a sequence of
one or more characters. JAM converts these characters into logical keys by assigning a logical key number
between 1 and 65535. Logical values between I and hex FF represent logical data keys and are displayable
data. Logical values above hex FF represent the other logical keys. ASCII data characters received from the
keyboard are assigned the logical key number equal to their ASCII value (i.e., they are not really translated).
Sequences beginning with an ASCII control character are translated, via the translation defined by the key
translation file, to a logical data or function key. If an ASCII control character does not begin any sequence
of physical keys defined in the key translation file, then it becomes a logical data key; this is useful for ma
chines, such as mM PCs, that use ASCn control codes for displayable data (although it is inherently non-por
table).

2. Soft keys are most commonly used with terminals that have physical soft keys. Therefore, we have cho-
sen not to clutter the logical keyboard diagram with soft keys

Page 4 JAM Release 5.03 20 Nov 92

Chapter 2: Keyboard Entry

keytop for the logical EXIT key on an mM PC keyboard is usually Esc, since the Esc
key is usually the physical key corresponding to EXIT. Key tops are described in the
Configuration Guide, in the rnodkey section of the Utilities Guide, in the Status Text
section of this guide (page 56-there is an example as well), and in the status line func
tion sections of the Programmer's Guide.

JAM Release 5.03 20 Nov 92 PageS

CD
"0
°5
C)

CJ)

'o
.s=.
"5 «

/0

aaaaaaaaaa
a~a~~aaa~a

I-EXIT I [HELP-I [FRLP) I PRINT! I REFR I [!.ff<1L) IINSERTI IDELETEI I VWPT I
I , I , I , I , I , I , I , I , I ,

CfAB-) [BA£Kl rsrnl
I , I , I ,

[ClEAR) I FERA I I BKSP I hETURtJ
I I I I I I I I

~ a ~
I ITRANSMITI I

~llzOOM',~ a ~ IIRIGHT',

a a Logical Key a a
Figure 1: JAM Logical Keyboard Template

~
~
z
o
N

C')
o
..0

m
CD

G)
a:

~ ..,

co
CD
g>

C.

i::'
C
W
"'0
co
o
.0
>
Q)

~

N
Q)

a.
cu

.L:;

<->

•

.lEIL..rm:L...rm:L..mn....rm:L..rm:L...r:m::LJ:ffil.J:ffil...lffiQl..
CICJDLJDCJI::E:JDDCE:Jc::ECJDDCE:JCED
JmIL....I:mIL.Jmn....J]ffiL...IffiIL.J]E!L....mm....J]E!L.J]E!L.Jm]§L
~~~uw:::JUiEUUll.UUiEJUll.UUll.U~ 

[ EX!!] [!!ELP I 
I I 

[FHLP I 
I I 

I PRINT I I REFR I [MTGtJ IINSE,@ 

I I 
IDELE!9 I VWPT I 

I. _ Esc I 1_ ChiFl All Fl C1r1 P I [ Clrl PgUp I I ~It I'I'L I I _ I". Del I I AllY 

I TAB I 
I I 

I BACK I 
I I 

I SFTS I 
I 

I CLEAR I I FERA I I BKSP I r::ETURH 
I_Tap Sh Tab Ails I C1r1 PgOn I I _C1rI ~nd I I += I. El1!er ] 

ffi 
End 

~ ~ A1ti P U 

a I'Z:~'I ~ " ~FT', I'::" ,liu:tTI I 
~ Altd ~ P On Logical Key ~ ~ C1r1L 

Figure 2: JAM Logical Keyboard Template for the IBM PC 

I • 
I 

I 
I 
• 

,.... 
Q) 

~ 
0.. 

~ 
> 
0 

Z 
0 
C\I 

C') 
0 
Lri 
Q) 
(/) 

m a; 
a: 
2l 
l1li( .., 



Ayth0r's GYide 

2.3 

LOGICAL KEY ACTIONS IN GENERAL 
The action associated with a logical key may vary between applications, screens, fields, 
or modes as defined by the application developer. For example, on a menu, the space 
bar moves between menu selections; on an unprotected fiel~ the space bar leaves a 
space - and these default behaviors may be modified by the developer (see the Config
uration Guide). In this section, we list all of the translated JAM logical keys, and the 
actions usually performed by each key. The behavior of keys in specific situations, 
such as within menus, item selection lists (see page 54), checklists and radio buttons 
(see section 4.3.10), is discussed in this section, as well as in the corresponding sections 
of the Authoring Reference chapter. Note that the behavior of keys in these situations 
may be drastically changed by a developer. See the Configuration Guide and the JAM 
library function SIn_ op t i on for details. 

In the JAM Logical Key Translation table below, Short Name is the logical function 
key name used when programming. Long Name is the logical function key name com
monly used when describing the logical key. The physical keystroke column is left 
blank for you to document your physical to logical key translation. 

Pages JAM Release 5.03 20 Nov 92 

\ 
\ 



Chapter 2: Keyboard Entry 

Figure 3: JAM Logical Function Keys 

Short Long Name Description Physical 
Name Keystrokes 

APP1- APP1-APP24 Application function keys. Typically associated with 
APP24 application specific actions. 

BACK BACKTAB Move cursor to previous field. Validation normally 
inhibited. 

BKSP BACKSPACE Delete character to left of cursor and move the cursor 
to that position. 

CLR CLEAR ALL Clear all clear-unprotected occurrences on active 
screen. System date and time fields are updated. 

DARR DOWN Validation normally inhibited. In a scrolling array, 
ARROW scroll through the allocated occurrences of this array 

before moving on to another field. 

DELE DELETE Delete character under cursor. 
CHAR 

DELL DELETE Delete the data in the current line, and move up all 
LINE data in occurrences below this one in this and all syn-

chronized arrays not protected from clearing. In draw 
mode, delete the current line and move up lines below. 

EMOH LAST FIELD Move cursor to beginning of last tab--unprotected field 
(reverse of HOME). 

EXIT EXIT Return to the next higher level screen. 

FERA FIELD In left-justified field, clear from the cursor to end of 
ERASE field. In right-justified field, erase entire field. Sys-

tem date and time fields are updated. 

FHLP FORM HELP Display help window for screen. 

HELP HELP Display help window for field, or for screen if field 
has no help. 

HOME HOME Move cursor to first tab-unprotected field. If no field 
is tab-unprotected, move to top left-hand comer of 
screen. 

JAM Release 5.03 20 Nov 92 Page 9 



Aythor's GYide 

Short Long Name Description Physical 
Name Keystrokes 

INS INSERT Toggle mode of data entry between insert and over-
CHAR write. Initial mode is overwrite. 

INSL INSERT UNE Insert a blank line, moving down all data in occur-
rences below this one in this and all synchronized ar-
rays that are not protected from clearing. Fails if last 
occurrence in any array is already ftlled. In draw 
mode, move down the current line and lines below. 

LARR LEFT Validation normally inhibited. At beginning of shift-
ARROW ing field; shift field and synchronized fields to right 

LP LOCAL Print the screen image or save it to a fLIe. See 
PRINT SMLPRINT in the Configuration Guide. 

LSHF LEFT SHIFT Shift field to the left 

MTGL MENU Toggle between data entry and menu modes. A mouse 
TOGGLE click will also perform this· action. 

NL RETURN Move cursor to flfst tab-unprotected field below CUf-

(new- rent line, wrapping to the top line if none are below. If 
line) in last element of a scrolling array, scroll down this 

and synchronized arrays. In draw mode, move cursor 
to beginning of next line. 

PF1- PF1-PF24 Program function keys. Typically associated with ap-
PF24 plication specific actions. 

RARR RIGHT Validation normally inhibited. At end of shifting 
ARROW field, shift field and synchronized fields to left. 

REFR RESCREEN Clear physical display and re-draw screen. 

RSHF RIGHT SHIFT Shift field to the right 

SFT1- SFT1-SFT24 Soft keys. Soft keys are translated into other JAM 
SFT24 logical function keys. 

SFTN NEXT ROW Select next row of soft keys. None-SFIN 
can only be 
assigned to 
SFTI-SFT24 

Page 10 JAM Release 5.03 20 Nov 92 



Chapter 2: Keyboard Entry 

Short Long Name Description Physical 
Name Keystrokes 

SFTP PREVIOUS Select previous row of soft keys. None-SFfN 
ROW can only be 

assigned to 
SFfl-SFf24 

SFTS SOFTKEY Toggles between application and system (e.g. 
SELECT jxform) keysets. 

SPF1- SPF1-SPF24 Shifted program function keys. Typically associated 
SPF24 with application specific actions. 

SPGD SCROLL UP Scroll array and synchronized arrays up several lines. 
Scrolling up means moving towards the beginning of 
the array.' 

SPGU SCROLL Scroll array and synchronized arrays down several 
DOWN lines. Scrolling down means moving towards the end 

of the array. 

TAB TAB Move cursor to next tab-unprotected field. If in last 
such field, move to frrst such field. Field validation is 
performed. Cursor remains in field if validation fails. 
In draw mode, move to next field, regardless of 
protection, or to· next display data. 

UARR UPARROW Validation normally inhibited. In a scrolling array, 
scroll through the allocated occurrences of this array 
before moving on to another field. 

VWPT VIEWPORT Enter viewport control mode. The viewport may be 
moved, re-sized, or shifted. Sibling windows may be 
activated. 

XMIT TRANSMIT Make changes in active screen effective, often closing 
active screen. All fields on screen are validated. 

ZOOM ZOOM Expand the scrolling and/or shifting fleld into a pop-
up window. Data may be changed in the pop-up win-
dow. 

JAM Release 5.03 20 Nov 92 Page 11 



Aythor's GYide 

2.4 

DATA ENTRY 
At runtime, data entry is permitted only in fields that are not protected from data entry. 
When you type a data character, it is copied to the field under the cursor, subject to 
certain rules and restrictions. The rules and restrictions depend on the character and 
field edits applied to the field. A character edit rejects unacceptable characters as they 
are typed, usually with a bell. For example. no letters may be typed into a dig i ts 
only field. A field edit rejects an unacceptable field as a whole. and repositions the 
cursor at the beginning of the rejected field3. A field edit is applied only when the field 
is validated. 

Field validation normally occurs when a field is tabbed out of or is completely filled. 
In addition, all fields on the screen are validated when TRANSMIT is pressed. If an 
entry fails its field edit, then the cursor is repositioned at the beginning of the field. The 
field may be exited, without validation, by using the arrow keys. Note that the begin
ning of right-justified fields is the rightmost poSition of the field As new characters 
are typed into the beginning of a right-justified field, the remaining characters shift to 
the left. 

The behavior of JAM during data entry processing may be changed by the library ftmc
tion sm_option. 

2.5 

MENUS 
In a menu, there is a reverse-video cursor, referred to as a bounce bar, that appears over 
the current menu choice. The TAB, RIGHT ARROW, DOWN ARROW, and space bar 
keys an move the cursor to the next choice. The BACKTAB, LEFT ARROW, UP AR
ROW, and BACKS PACE keys all move the cursor to the previous choice. Pressing 
TRANSMIT or RETURN selects the menu choice Wlder the bounce bar. Alte~atively, 
typing the first character of a choice (actually, enough characters to identify the choice 
uniquely) will cause that choice to be selected. 

It is possible to have a screen behave alternatively as a data entry screen and as a menu 
screen. The MTGL (menu toggle) key toggles the active screen between data entry and 
menu mode. A mouse click will also perform this action. Clicking in a menu field 
toggles into menu mode. Clicking in a data entry field toggles into data entry mode. 

3. A field edit may also specify justification and upperllower case translation. These edits are applied as 
characters are typed, and are not part of the validation process. 

Page 12 JAM Release 5.03 20 Nov 92 



Chapter 2: Keyboard Entry 

The behavior of JAlVI during menu processing may be changed by the library function 
sm_opt ion. For example, the selection can be based on the first upper case character 
of a choice rather than the [lfSt character. 

2.6 

ITEM SELECTION 
An item selection screen provides a list of choices from which the user may choose in 
order to enter data into a field (see page 54). The effect of keystrokes on an item selec
tion screen is identical to the effect of keystrokes on a menu screen. 

The behavior of JAM during item selection processing may be changed by the library 
function sIn_option. 

2.7 

CHECKLIST AND RADIO BUTTON 
GROUPS 
The user can select one or more fields of a group (exactly one in the case of radio button 
groups). Therefore, JAM displays both the cursor position and the current selections 
from the group. The cursor may be represented by a normal cursor, by displaying the 
current field in reverse video (i.e. with a bounce bar), or by displaying the field with 
blinking (or some other attribute that can be seen in a field with a bounce bar). Each 
selected field may be represented by a bounce bar or by a checkbox to the left side of 
the field. 

Each example below shows a group with three choices: eggs, noodles, and rice (also 
known as the selection text). In each example, eggs are selected, and the cursor is on 
noodles. The examples use reverse video and blinking attributes (blil~king k~oks like 
l.hi~:), but the actual attributes depend on the capabilities of the video display. Further
more, the examples apply equally well to radio buttons and checklists. 

rice I 
Figure 4: Group With No Boxes 

JAM Release 5.03 20 Nov 92 Page 13 



Aythor's GYide 

X eggs rice 

Figure 5: Group With Boxes and Bounce Bar 

X eggs M noodles rice 

Rgure 6: Group With Boxes and No Bounce Bar 

The space bar moves the cursor to the next choice within the group. The TAB key moves 
the cursor out of the group. The UP ARROW, DOWN ARROW, BACKTAB, LEFT AR
ROW, RIGHT ARROW, and BACKS PACE keys work as they do in the absence of a group. 
Typing enough characters to identify a choice uniquely, selects that choice. Pressing 
RETURN (not TRANSMIT) selects the choice tmder the cursor. If the group contains 
radio buttons, then selection of a radio button automatically de-selects the previous 
selection. 

The behavior of JAM during group processing may be changed by the library function 
sm_option. 

Page 14 JAM Release 5.03 20 Nov 92 



tSJ::[EJ::::::::::::::::::::::::::::::: 

:~:: · . · . · . · . 
:: ................ :: 

Chapter 3 

The Authoring Environment 
In this chapter we present a description of operation of the authoring utility j x form. A 
developer generally uses jxform in the following ways: 

3.1 

• test the application in application mode. This is the top level mode of 
operation for jxform. In application mode, a developer can run the 
application, ensuring that the links from screen to screen are properly 
designed 

• enter the Screen Editor to create and edit screens. A developer can 
quickly switch between screen development and testing. 

• enter the Data Dictionary Editor to create and edit the data dictionary. 
A developer maintains a list of data elements and their characteristics 
in the data dictionary to ensure that fields found on more than one 
screen have the same characteristics, and to ensure that the actual data 
are consistent from screen to screen at run time. 

ENTERING AND EXITING THE 
AUTHORING UTILITY 
The JAM authoring utility is entered by typing the following command at the operating 
system prompt: 

jxform saeenname 

where screen name specifies the name of the top level screen for the application you 
wish to author. jxform searches for the file containing the screen. The name of the 

JAM Release 5.03 20 Nov 92 Page 15 



Author's Guide 

file, usually screenname. j am, depends on the environment and/or operating system in 
use. If screenname is omitted or is not found, it may be specified after j xform starts. 

The display will clear, and the authoring utility will attempt to find a data dictionary 
and initialize the local data block (see the Glossary and the Overview for explanations 
of tenns not defined here). You may see some diagnostic messages from the system, 
and a directive on the status line asking you to hit the space bar to continue. If you have 
not created a data dictionary, or if the data dictionary has errors, a message such as the 
following appears: 

No Data Dictionary file. 
Index not initialized. 

These messages are informational. You can run JAM without a data dictionary. 

If screen name . j am exists, then it will display as a form with the status line shown be
low. 

Go to 
top-level 
screen. 

Execute 
program. 

I 

Go to 
any 
screen. 

Screen 
Editor 

I 

Data Dic
tionary 
Editor 

Known as 
the view
port key. 

I 
ShFltop ShF2shell ShP3goto ShPSedit ShF6dd ShF9win
dow 

Rgure 7: Status Line in Application Mode 

To exit the authoring utility, press EXIT. You will be asked for confirmation before 
being returned to the operating system. 

3.2 

OPERATING IN APPLICATION MODE 
When you enter the authoring environment as described above, you are placed in Ap
plication Mode. In this mode, you can simulate the application you are authoring. This 

Page 16 JAM Release 5.03 20 Nov 92 



Chapter 3: The Authoring Environment 

means that you can test all the following aspects of the application as if it were in run
time mode: 

• Data entry with all edits applied. 

• Special processing including help, item selection, and table lookup. 

• JPL and C functions (other languages if you have a JAM language in
terface) associated with screen, field, and group entry/exit 

• Screen-to-screen movement 

• JPL and C functions associated with function keys and menu selec
tions. 

• Exits to other programs and to operating system commands. 

To test C functions, you must create an executable program that contains those func
tions along with the rest of the authoring utility. The Programmer's Guide contains 
instructions for making your own authoring executable. 

Certain function keys have special meaning in application mode and during runtime. In 
application mode, they are displayed on the status line as listed below. At nmtime, they 
will not be displayed unless explicitly displayed by the author. 

• S PF 1: Go to top screen. The top level screen of the application is displayed. This 
clears all other screens from the form and window stacks. 

• SPF2: 

• SPF3: 

• SPF9: 

Execute operating system command. You are prompted for an operating 
system command. JAM handles setting and resetting display terminal 
characteristics. When the operating system command terminates, you 
must press the space bar to continue. 

Go to any screen. You are prompted for the name of the screen. This allows 
you to jump anywhere within an application. 

Control the viewport of the active screen. You can move or resize the view
port, re-position the screen beneath the viewport, or switch to a sibling 
window. For more infonnation on viewports and sibling windows, see the 
Authoring Reference chapter. 

There are three additional special keys that are active only in application mode of the 
authoring utility. 

• SPF4: Invoke the Keyset Editor. This key is active only if soft key support is in
cluded as explained in the Configuration Guide. 

• SPF5: Invoke the Screen Editor. 

• SPF6: Invoke the Data Dictionary Editor. 

JAM Release 5.03 20 Nov 92 Page 17 



~::lE::::::::::::::::::::::::::::::: :~: · . · . · . · . 
:: .. : .. :.: .... :.:.: .... : .... : .. :: 

Chapter 4 

The Screen Editor 

4.1 

INTRODUCTION 
In this chapter we present a detailed description of the operation of the Screen Editor, 
presenting the fearures in the order that they are encountered by a developer. A devel
oper generally uses the Screen Editor in the following ways: 

• create and edit screens. A developer uses the Screen Editor to populate 
screens with fields, display data, and screen-to--screen links. Once 
screens are created, they are stored in flIes as screen binaries. 

• compose the links to C functions and JPL procedures. The links are the 
bridges to application processing. A developer creates and edits the 
references on screens that cause transfer of control to C functions and 
JPL procedures. 

• test the functionality of individual screens. Inter-screen testing, on the 
other hand, is done from within application mode of the authoring util
ity. 

Most of the development work done while authoring is done in the Screen Editor. This 
includes placing graphics and text on the screen, populating the screen with fields, me
nus and groups, attaching hook functions written in C or JPL, and specifying links to 
other screens and programs. 

As of release 5, the f2asc utility is provided to convert screens between the binary 
format used by the Screen Editor (and at runtime) and an ASCII text format This fea
ture can be used to make global changes (such as adding the prefix g 1_ to all field 

JAM Release 5.03 20 Nov 92 Page 19 



Authors Guide 
3 ' 

} -

names) with an operating system utility (e.g. a text editor or a find and replace program) 
that are more difficult through the Screen Editor. It can also be used to place screens 
into source code control systems (such as sees and Res in UNIX). Please see the Uti
lities Guide for more information. 

4.2 

ENTERING AND EXITING THE SCREEN 
EDITOR (SPF5) 
The Screen Editor can be entered from application mode by pressing SPFS. The Screen 
Editor can be entered directly from the operating system by typing: 

jxform -e ~BMW 

You may specify a list of screens to edit by typing: 

jxform -e ~1 ~_ 

Note that certain platforms support wildcard expansion for specifying multiple screens. 

The display will clear; and the Screen Editor Entry Screen will be displayed as shown 
below. The screen has two fields; one for the name of the screen to edit and one. which 
is optional. for the name of a screen to use as a template. Screens are always created and 
edited as flles4• 

JYACC SCREEN EDITOR 

Screen name: 

Template: 
____ ~Templates are 

optional. 

Figure 8; Screen Editor Entry Screen 

4. JAM is packaged with utilities that convert screen files into C language source code data structures so 
that programmers can include memory-resident screens in their runtime versions of JAM. Screens may also 
be stored in screen libraries. It is important to note. however. that the Screen Editor can operate only on screen 
files. 

Page 20 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

A template screen provides a starting point for a new screen; templates help to stan
dardize the screens in an application. Caution: A template slwuld not be used when 
editing an existing screen; the template will replace the existing screen. If you specify 
a template screen, you will be asked to accept the template by pressing XMIT, or to 
reject it by pressing EXIT. 

Once the Screen Editor Entry Screen is complete, press XMIT to begin editing the 
screen. If the screen you specify does not exist, then you will be creating a new screen. 
Initially, the Screen Editor will be in DRAW mode (the word DRAW appears on the 
status line). The status line shown below will be displayed (the status line is terminal 
dependent). It indicates which function keys can be pressed to move fields, assign field 
characteristics, etc. 

F2drawF3scrnF4fldFSsurnmF6selF7moveF8copyF9repF10mo 

Figure 9: Screen Editor Status Line 

Pressing EXIT will exit the Screen Editor as long as no pop-up windows are open and 
the Screen Editor is in DRAWffEST mode (as opposed to SELECT or LINE DRAW 
modes, discussed later). The Screen Editor Exit Screen, shown below, is displayed. 

II1II screen xtmenu.jam 
rename screen and save it under new name 
continue processing this screen 
process another screen 
exit from Screen Editor 

Figure 10: Screen Editor Exit Screen 

The menu in the Screen Editor Exit Screen has the following options: 

- save screen screen_filename 
Save the screen on disk in a file named screen_filename. 

-rename screen and save it under new name 
Save the screen under a new name. You are prompted for the new name. 
The original file is untouched. 

- continue processing this screen 
Return to the Screen Editor. 

- process another screen 
Edit another screen. If a list of screens was specified (e.g. j xform -e 
s 1 . jam s2. j am), then the next screen in the list will be presented. 

JAM Release 5.03 20 Nov 92 Page 21 



Author's Guide 

• exit 

4.3 

Otherwise you are prompted for the screen name. Warning: the current 
screen will not be saved .. 

Return to application mode. Return to the operating system if the editor was 
invoked with jxform -e. 

SCREEN EDITOR FUNCTIONS 
The functions and modes of the Screen Editor are accessed via the function keys PF2 
through PFIO and SPFI through SPF9. PF2 through PFIO are displayed on the status 
line, while SPFI through SPF9 are displayed on the Shifted Function Key Menu -
which is accessed by pressing PFIO. The ordering of this section follows the ordering of 
the function keys, as listed below. 

• PF2 Drawlfest Mode Toggle. 

• PF3 Screen Characteristics. 

• PF4 Field Characteristics. 

·PF5 

·PF6 

·PFl 

·PF8 

·PF9 

·PFIO 

• SPFI 

·SPF2 

·SPF3 

·SPF4 

·SPF5 

·SPF6 

·SPFl 

Page 22 

Field Characteristics Summary. 

Select Mode. This enables use of the clipboard and block move/copy. The 
actions of the function keys changes in select mode. 

Move. 

Copy. 

Repeat Last Action. 

View Shifted Function Key Menu. 

Assign Control Strings to Function Keys. 

Create Special Objects. Shortcut methods for creating menus, radio but
toDS, checklists, and screen name fields. 

Show Field and Group Names. 

Data Dictionary Search 

Add to Data Dictionary 

Group Attributes. Create or change radio buttons and checklists. 

Synchronize Arrays. 

JAM Release 5.03 20 Nov 92 

1 
, 
I 

.' 



·SPF8 

·SPF9 

4.3.1 

Special Graphics Characters. 

Line Drawing Mode. 

Draw and Test Modes (PF2 ) 

Chapter 4: The Screen Editor 

The Screen Editor always begins in draw mode, the basic mode for creating and editing 
fields, display data, and borders. The status line contains the word DRAW. In draw mode, 
you can enter data anywhere on the screen; use the arrow, TAB, and NL keys to position 
the cursor. Fields can be created by typing successive underscores, and then pressing 
XMIT. The display shows an exact image of the edited screen, except that fields appear 
as underlined or highlighted areas, regardless of their display attributes. 

From draw mode, you can enter test mode by pressing PF2. The PF2 key is a toggle 
between draw mode and test mode. The status line will cbange by replacing the word 
DRAW with the word TEST. Underscores will be converted to fields. Test mode is used 
to try out the screen, to see whether it operates as planned. All screen and field cbarac
teristics are in force, but it is not as complete as the simulation available in application 
mode because control strings cannot be executed. This means there is no way to test 
application flow from screen to screen in test modeS. 

In both draw mode and test modes, the EXIT key displays the Screen Editor Exit win
dow. In either mode, you can press any of the function keys listed on the status line, PF2 
througb PFIO. The shifted function keys SPFI througb SPF9 are also available, al
though their functions are different than those they have in application mode. The fea
tures accessible from function keys are described in the following sections. 

Draw and test modes also function differently with respect to pressing HELP or 
SCREEN HELP. In draw mode, you receive context sensitive help for using the Screen 
Editor. In test mode, you receive the developer--defmed context sensitive help that is 
attached to the field or the screen. 

Display Data 
Display data is constant data on the screen, such as screen beadings, field labels, and 
graphics. Borders, status line messages, and data in fields are not considered to be dis

. play data See pages 96 and 97 for a discussion of creating cbaracter graphics and draw-
ing lines and boxes. . 

5. Hoole functions (except thO!e invoiced from control strings) written in JPL are executed in test mode, but 
those written in the C language are invoiced only if they are compiled into a customized authoring executable. 
See the Programmer's Guide for information about building a customized authoring executable to run the Au
thoring Utility. 

JAM Release 5.03 20 Nov 92 Page 23 



Author's Guide 

To enter display data on the screen, the Screen Editor must be in draw mode. If the edi
tor is in test mode you must press PF'2 to get there. Use the arrow keys, the TAB key, 
and the NL key to position the cursor, and then enter characters via the keyboard. Any 
character can be entered. However, characters defmed to be draw field symbols (often 
the underscore) will be converted into fields when XMIT is pressed. 

We need to introduce the notion of a display area. This is an area of display data that is 
treated as a unit. It consists of display data that are on one line, not interrupted by a 
field, not spanning any change in display attributes or color, and not separated by more 
than one blank. Note that in draw mode, pressing the TAB key will move the cursor to 
the next display area, field, or border position. 

As you enter display data on the screen, you have some basic editing capabilities. The 
BACKSPACE key deletes the character just before the cursor and moves the cursor 
back one space. The DELETE key deletes the character under the cursor, and the IN
SERT key toggles the character entry mode between insert mode and typeover mode. If 
the teIminal supports more than one cursor style, then JAM will adjust the cursor to 
indicate insert/typeover mode. The FIELD ERASE key will erase characters to the end 
of a display area. The INSERT LINE and DELETE LINE keys insert and delete entire 
lines on the screen and shift the remaining lines appropriately, although they will not do 
anything if adding or deleting a line would change the distance between elements of an 
array (arrays are discussed on page 27). SELECT mode (see page 92) provides more 
advanced block move and copy capabilities. . 

Display Attributes 

While you are entering display data, press PF4 to set display attributes and colors. This 
will cause the Display Attributes Screen to pop up, as shown below. 

Page 24 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

FOREGROUND: 
non-display low (dim) 
underline standout 
reverse y alt char 
highlight y 
blinking 
color white current color 

BACKGROUND: 
highlight 
color black current 

background color 
SCOPE: 
pen both Use NL to make 

selection. 
SELECTED ATTRIBUTES 

Figure 11: Display Attributes Screen 

If the cursor is in a display area or field, then the attributes of that area or field are 
shown. The foreground and background attributes are set by typing y or n into each 
field to be modified. Note that most PCs do not support highlighted background colors, 
and many terminals do not support background colors at all. Typing y into either col
or field will cause the Color Menu to display as shown below (typing y is the only way 
to display the Color Menu). 

Blue 
Green 
Cyan 
Red 
Magenta 
Yellow 
White 

Select a color by moving the cursor 
and pressing XMIT, or by pressing 
the first upper case character of the 
color. 

Figure 12: Color Menu 

You can assign an attribute even on a terminal that does not support that attribute (e.g. 
color on a monochrome terminal). JAM will attempt to simulate the attribute (e.g. un
derlines can be simulated with underscores), or will ignore the attribute (as in the case 

JAM Release 5.03 20 Nov 92 Page 25 



Author's Guide 

of color on a monochrome terminal). Note that this is true everywhere that display at
tributes can be specified, including fields, display areas, borders, and screen back
ground. 

The selected attributes are shown in context at the bottom of the Display Attributes 
Screen in the field marked SELECTED ATTRIBUTES. This way they can be seen 
before they are applied. 

You have the choice of setting attributes for the display area beneath the cursor (Le. the 
field or display text), for the pen, or for both. Make this cboice in the SCOPE section of 
the Display Anributes Screen. SCOPE is a radio button (see page 85). Move the cursor 
to the pen field by pressing TAB repeatedly. pen will blink (on most terminals) to indi
cate that the cursor is on it. Use the space bar to cycle the cursor through the pen, 
area, and both fields. Press NL to select a scope; the selected field will be displayed 
in reverse video (on most terminals). If the cursor is not in a display area, you will be 
able to set attributes only for the pen. 

The pen is a new feature in release 5. Setting attributes for the pen means that, from that 
time on, all display text on this screen will be created with the specified attributes. By 
changing the pen attributes, you can create adjacent text with different display attrib
utes. Note that creating contiguous text with different display attributes actually creates 
different display areas. 

Note that "reverse video" items have only one color. A compatible background color 
is automatically chosen. 

Fields 
Fields are areas of the screen that can hold application data. The data within fields are 
the only screen data which the underlying JAM application can access. Fields may be 
established individually, or combined into groups or menus (see page 83). 

The data in fields can be accessed and/or modified in a number of different ways, de
pending on how the fields are specified by the developer: 

• The user can manipulate a field within the limits imposed by the de
veloper via field protection (see page 41). 

• Field data is automatically moved between fields and the local data 
block. 

• Attached hook functions (see page 59) can manipulate field data. 

• JAM developers can place initial data in fields when the application is 
created. 

Each field must be contained within a single line of the screen. Field creation is a two
step process. First, type draw field symbols (usually underscores) where you want to 

Page 26 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

create the field. Then, to translate these field place-holders into real fields, hit the 
XMIT key to compile the screen. 

When a screen is compiled, any areas containing underscores (or other draw field sym
bols) that are not within an existing field or side border are converted into fields. All the 
fields are then renumbered from left to right" and then from top to bottom, starting with 
1. Screens are automatically compiled whenever any of the following happens: 

• The PF2 key is pressed to toggle from draw to test mode. 

• The )GAIT key is pressed. 

• The EXIT key is pressed, resulting in display of the Screen Editor Exit 
window. 

A field may contain initial data that is displayed whenever the screen is opened. Initial 
data is entered in draw mode and, if the field is unprotected, in test mode by simply 
typing the initial data into the field. It is often useful to use the ZOOM feature when 
entering initial data into shifting fields and arrays in draw mode. Note that, when a 
screen is opened. the initial data will override LDB data for a field. See the Authoring 
Reference chapter, page 135, for more information about the interaction between the 
LDB and fields on screens. 

For each field, a number of characteristics may be defined. Field characteristics affect 
screen behavior. Characteristics include: 

• Identifiers Field names andfield numbers identify fields to the Screen Manager, to the 
JAM Executive and to the application. However, the local data block rec
ognizes only field names. Field numbers are assigned automatically when 
the screen is compiled and are not under the control of the author. Field 
names are assigned and maintained exclusively by the author. Reference 
by field name is generally safer than reference by field number, because 
field mnnbers can change each time the screen is changed. 

• Sizes A field's size is measured in terms of its on-screen width, and its total on
screen and off-screen width. A shifting field is a field whose off-screen 
width is greater than zero. In addition, a field is part of an array. An array's 
size is measured in terms of its number of occurrences and elements. The 
number of elements is the number of fields (fields are always on-screen) 
in the array. The number of occurrences is the array's total capacity (on
and off-screen). The number of populated occurrences is the occurrence 
number of the highest array occurrence containing data. The default size 
characteristic is an array of one element and one occurrence for a simple 
field. 

• Attributes Attributes include character and field level edits that restrict, format, and 
validate data input. Attributes also affect the appearance of fields and field 
data. 

JAM Release 5.03 20 Nov 92 Page 27 



Authors Guide 

• Attachments. Attachments include JPL procedures and C functions that are invoked 
at field entry, exit, or validation. They also include help screens, status text, 
item selection screens, and next/previous field ordering specifications. 

You can delete, move, and copy fields. When a field is moved, all of the field's charac
teristics are moved with it except its field number, which is dependent on the field's 
location relative to other fields on the screen. When a field is copied, the same is true 
except that the new field is unnamed, because field names must be unique within a 
screen. 

4.3.2 

Screen Characteristics (PF3) 
From either test or draw mode, pressing PF3 displays the Screen Characteristics Screen 
shown below. 

Number of lines ~ 

border? (yin) 

background color? 
JPL procedures n 

help screen: 
screen entry: 
screen exit: 
key set: 

Number of columns 

style Q attribute? 

Wdraw field- symbols? 
start as menu? 11 

Rgure 13: Screen Characteristics Screen 

Screen characteristics are changed by modifying the appropriate fields. In some cases 
(e.g. attribute), an additional window is displayed with additional characteristics. 
To view the additional window, enter a y in the field. Press XMIT to confrrm changes 
made to a particular window and to close the window. Press EXIT to cancel changes 
made to that window and to close the window. The details of the screen characteristics 
window are explained below. 

Page 28 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

Screen Size 
. By default, JAM sets the size of any screen you create to be the size of the physical 
display, less one line for status (unless the terminal has a separate status line) and one 
or two lines if simulated soft keys (see the Keyset Editor chapter, page 119) are used. 
Since many standard displays have 24 lines, it is often good to limit the screen size to 
23 lines (21 or 22 if simulated soft keys are used). On the other hand, since JAM 
screens are virtual screens, you can create screens as large as 254 lines by 254 columns. 
When a virtual screen is larger than the physical display, then the screen is viewed 
through a mechanism called a viewport (page 152). You can also create screens that are 
smaller than the display for use as pop-up windows. 

To change the size of the current screen, modify the fields labelled Number of 
lines and Number of columns. The specified dimensions are the dimensions of 
the virtual screen, not of the viewport Viewport size and position are not pre-deter
mined screen characteristics. They are specified when screen display is requested. See 
the chapter on control strings in the Authoring Reference Chapter for information about 
setting viewport size and position. 

Screen Border 
A border around a screen can increase its visibility, especially if it is used as a pop-up 
window. By default, JAM creates screens without borders. A border has a style (num
bered 0-9) and display attributes (such as intensity, foreground color, and background 
color)6. 

Type n in the border (y / n) ? field to delete an existing border. To create or modify 
a border, type y in this field. Additional fields will appear: style and attribute. 

The default border style is O. To change the border style, type the number of the desired 
style into the sty 1 e field. As you change the border style, the style of the border of the 
Screen Characteristics Screen itself changes, allOwing you to sample the styles. 

The default border attributes are reverse video highlight with a color of white. To 
change display attributes, type y in the attribute? field. The Display Attributes 
Screen (see page 24) will pop up as shown below so that you can change the border's 
display attributes. 

6. The border style is an index, and not a particular character set, stored with the screen. Therefore, byedit
ing the video file and running the vid2bin utility desaibed in the Utilities Guide, the actual character set 
associated with a particular border style index can be changed, and the look of the screen can be changed with
out ever entering the Screen Editor. 

JAM Release 5.03 20 Nov 92 Page 29 



Author's Guide 

FOREGROUND: 
non-display low (dim) 
underline standout 
reverse y: alt char 
highlight y: 
blinking 
color white current border color 

BACKGROUND: 
highlight 

current border color black 
background color 

SCOPE: 
pen - both cannot be changed 

for a border 
SEL~CTED ATTRIBUTES 

Figure 14: Display Attributes Screen For Border 

Screen Background Color 

The default background color is black with no highlighting. To change the screen's 
background color, type y into the background color? field. The Display Attrib
utes Background Color Screen will pop up as shown below. 

BACKGROUND: 
highlight 
color black-...... - current color 

SELECTED ATTRIBUTES 

Rgure 15: Display Attributes Background Color Screen 

To specify a highlighted color, enter y into the highl ight field. To specify the color 
itself, enter y into the color field. The Color Menu will pop-up (see Figure 12 on 
page 25). 

Page 30 JAM Release 5.03 20 Nov 92 

'" 
1 
I 

J 

" 



Chapter 4: The Screen Editor 

Field Drawing Symbols 

The default field drawing symb.ol is the underscore. A field is painted onto the screen 
by typing underscores and pressing XNiIT. By defaul~ the field is unprotected, under
lined, and highlighted. The developer then assigns edits and attachments to the field. As 
you will see in following sections, the process of fully characterizing a field can be a 
rather long one. Therefore, you can create up to nine field drawing symbols, each with 
its own set of default characteristics. To use the same draw field symbols on several 
different screens, define them on one screen and use that screen as a template for the 
others. 

To specify draw field symbols, type y in the draw field symbols? field. The 
Draw Field Symbols Screen, pictured below, will pop up. Initially, only the underscore 
will be defmed; you can defme up to eight more symbols in the spaces provided. To add 
or change a draw field symbol, position the cursor inside a pair of brackets and type the 
desired symbol. 

Number of lines ~ Number of columns 

border? (yin) style Q attribute? 

background color? _ -draw field· symbols? y 
~ ........ .aa. .............................. ? n 

·draw field- symbols: 

[-] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 

position to symbol and press -field
key to change default characteristics. 

Figure 16: Draw Field Symbols Screen 

r-
I---

To assign field characteristics to a symbol, move the cursor to that symbol and press the 
PF4 key. The Field Characteristics Screen will pop up. You can assign field characteris
tics to the symbol, as described later in this chapter. 

JAM Release 5.03 20 Nov 92 Page 31 



Author's Guide 

Screen-level JPL Procedures 
Procedures written in JPL, JYACC Procedural Language, may be stored in the JPL Pro
cedures Screen that is attached to a screen. These procedures can be called whenever 
the screen is active (Le. is the top-level screen). The advantages of storing JPL proce
dures in a screen's JPL Procedures Screen are: 

• The JPL is partially syntax-<:hecked and compiled when the JPL Pro
cedures Screen is closed. 

• The JPL is stored with the screen, rather than in a separate file. 

• The first procedure, if nameless, is called when the screen is opened. 
This enables initialization of variables, including JPL· variables, 
screen fields, and Local Data Block entries. 

The JPL Guide contains more complete information about JPL procedures. Note that 
you can test screen-level JPL procedures in application mode, but not in test mode. 

To enter or modify JPL procedures, type y into the JPL Procedures? field. The 
JPL Procedures Screen will pop up as shown below, enabling JPL entry and editing. 

Enter JPL program text: 

This is a JAM scrolling array. 

F4 for file operations 

Figure 17: JPL Procedures Screen 

Since the screen contains a JAM scrolling array, you may use the JAM keys DELETE 
LINE and INSERT LINE to delete and insert lines. As in other Screen Editor screens, 
you must press XIvfIT to accept the changes made to the JPL. Pressing EXIT will dis
card all changes. 

Page 32 JAM Release 5.03 20 Nov 92 

.. -: 
I 



Chapter 4: The Screen Editor 

It is often convenient to use a text editor to create JPL, and then to use the PF4 feature 
to update the JPL Procedures Screen. You can read and write JPL files from within the 
JPL Procedures Screen by pressing PF4 to display the JPL File Operations Screen 
shown below. 

write 

file: 

Use NL to make 
---- selection. 

Figure 18: JPL File Operations Screen. The screen has a 
read/write radio button and a data entry field for specifying the 
file name. 

Select read to import text at the current cursor position, or write to export text, and 
type in the name of the HIe in the field provided. Press XJvIIT to perfonn the selected 
operation, or press EXIT to abort the operation. 

Starting Mode for Runtime Screen 
A screen can behave both as a menu and as a data entry screen, but not at the same time; 
menus are active only when the screen is in menu mode, while data entry is possible 
only in data entry mode. When a screen has menu fields and no other unprotected 
fields, it is always in menu mode. When a screen has no menu fields, it is always in data 
entry mode. However, if a screen has both menu fields and unprotected data entry 
fields,the end user can toggle the mode by using the MENU TOGGLE key or a mouse 
click. In that case, JAM's default is to start the screen in data entry mode. 

To start a screen in menu mode, type y in the s tart in menu mode? field. The 
field is ignored at runtime, unless the screen has both menu fields and tmprotected data 
entry fields. 

Screen Level Help 
You can designate a help screen for the screen as a whole. Help screens are always dis
played as windows so as not to destroy the tmderlying screen. The help screen is dis
played when the SCREEN HELP key is pressed or when the HELP key is pressed and 
the cursor is not in a field with its own help or item selection screen. 

To designate a help screen for the screen you are currently editing, move the cursor to 
the help screen field and enter the name of the help screen. You can optionally 

JAM Release 5.03 20 Nov 92 Page 33 



Author's Guide 

precede the screen name with the row and column, in parentheses, at which the help 
screen is to appear. In the following example, the screen hints will be displayed at 
row 5, column 25: 

help screen: (S,2S1hints 

Additional positioning parameters may be specified; please see the discussion on posi
tioning field help screens (page 53). See the Authoring Reference for infOlmation on 
the design of help screens. 

Screen Entry and Exit Functions 
Screen entry and exit functions, also referred to as screen functions, are used to process 
data at the time of screen entry and exit. Screen functions can be written in C or JPL. 
The Programmer's Guide describes the default arguments passed to screen functions. 

To specify a screen function written in C, enter the function's name and arguments in 
either the screen entry field or the screen exit field. To specify a screen func
tion written in JPL, enter the word jpl, followed by the JPL procedure name andargu
ments. Colon preprocessing (see page 121) is performed on the function's arguments: 
any argument preceded with a colon is assumed to be a field name (or a local data block 
entry name, or a group name) and is replaced with the contents of the field. The follow
ing example shows a screen entry function named setup written in C, and a screen 
exit function named cleanup written in JPL. 

screen entry: """'se ..... t .... uu.:.D __ 
screen exit: 1pl cleanup 

Caution: These are not control strings. Therefore, do not precede the function name 
with a caret("). 

A screen's entry function is called whenever the screen is made active. This occurs 
when the screen is opened or when a screen is made active with the VIEWPORT key. 
A screen's exit function is called whenever the screen is made inactive. This occurs 
when the screen is closed or when the screen is made inactive with the VIEWPORT 
key. JAM guarantees that the screen entry and exit functions will be paired; for every 
time the screen entry function is called, the screen exit function will be called exactly 
once. 

For compatibility with earlier releases of JAM, the screen entry function is not called 
when & screen is made active by virtue of being exposed when a window overlying the 
screen is closed. Similarly, the screen exit function is not called when a screen is made 
inactive by virtue of being hidden when a window is opened that overlies the screen. 
You may alter this behavior so that screen entry and exit functions will be called when 
a window is exposed or hidden as follows. Either make the following library call (gen
erally in jrnain. c): 

Page 34 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

sm_option ( EXPHIDE_OPTION, ONEXPHIDE ); 

or include the following statement in your setup file: 

EXPHIDE_OPTION = ON_EXPHIDE 

There is a mechanism for calling the same screen entry and/or exit functions for all or 
most screens in an application. See the Programmer's Guide for details. 

Screen Level Keyset 
JAM has an optional set of keys known as soft keys. Soft keys allow the developer to 
create a set of special function keys with associated labels that appear on the screen 
monitor. The logical translation of a soft key varies, depending on the row of labels 
which appears on the monitor when the key is pressed. 

A keyset supplies the translation of a soft key into a logical key. It also contains the text 
that is used to display the correct labels on the screen. Keysets are created using the 
Keyset Editor (chapter 6). You may have more than one keyset in an application, for 
example an application level key set and a screen level keyset The translation of soft 
keys will change depending on which keyset is currently in use. 

To specify a screen level key set, enter the name of the keyset in the keyset field. 
Whenever this screen is open, the specified keyset will be active, unless a window with 
its own keyset is opened on top of it, or the application program overrides it When this 
screen is closed, the application level keyset, or another open window's keyset, be
comes active. If neither of these is available, then the default key set is activated (see 
page 117 ). 

Soft keys and key sets are discussed at length in the Keyset Editor chapter, as well as in 
the Programmer's Guide. 

4.3.3 

Set/Change Field Characteristics (PF4) 
Most field characteristics are set via the PF4 key. To modify a field's characteristics, 
place the cursor on the field and press PF4; the Field Characteristics Menu will be dis
played, as shown below. 

JAM Release 5.03 20 Nov 92 Page 35 



Authors Guide 

display 
char edits 
field edits 
attachments 
misc. edits 
size 
type 

field 4 
of 12 

Number of this field. 

Number of fields on the screen. 

Rgure 19: Field Characteristics Menu 

The Field Characteristics Menu is the gateway to a hierarchy of menus and data entry 
screens 7• The possible selections are briefly explained in the list below, and then de
tailed in the sections that follow. 

• display 
Appearance of a field and its data. Note that the display characteristics of 
a field can be different than the display characteristics of an occurrence, in 
which case the occurrence's characteristics prevail (see sm_achg in the 
Programmer's Guide). 

• char edits 
Restrictions on enterable characters, enforced as each character is typed. 

• field edits 
Restrictions on enterable data, enforced when field is validated. Also, field 
protection and upper/lower case mapping. 

• attachments 
Field name, tab-ordering, help screen, and item selection screen. 

• misc. edits 
Attached functions, currency formatting, range checking, math calcula-
tions. 

7. 1bis menu hierarchy is the same one used when setting characteristics for draw field symools and for 
data dictionary entries. 

Page 36 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

• size 
On-screen and off-screen field width. Number of array elements and oc
currences . 

• type C language data type to be used for a field when the field is copied into a 
C data structure. 

To set field characteristics in any of the above categories, make the corresponding 
menu selection. Note that all of the fields of an array share the same set of field charac
teristics. To return to draw or test mode, press the EXIT key, or cboose the exit option 
on the menu. 

Field Display Attributes 
By default, fields are underlined and bighligbted on display terminals that support those 
attributes. JAM "fakes" underlining with underscores on terminals that do not support 
underlining. The default foreground and background colors are white and black. To 
change the display attributes of a field, cboose display from the menu. The Display 
Attributes Screen will appear as shown below. The Display Attributes Screen is de
scribed fully on page 24. 

FOREGROUND: 
non-display 
underline 
reverse y 
highlight y 
blinking 
color 

BACKGROUND: 
highlight 
color 

low (dim) 
standout 
alt char 

white 

black 

--..- current color 

--_. current color 

SCOPE: r----------_+-change field 
both 

L-.. ________________ change fu-

ture text 

Figure 20: Display Attributes Screen For Field 

Character Edits 
Character edits provide a mecbanism to ftlter field input on a cbaracter-by-character 
basis. If the end user attempts to enter a cbaracter into the field wbich does not matcb 

JAM Release 5.03 20 Nov 92 Page 37 



Author's Guide 

the cbaracter edits specified, the warning bell will ring and that cbaracter will be re
jected. By default, the cbaracter edits for a field are set to unfiltered, meaning that any 
cbaracter is accepted when typed. 

To place a cbaracter edit on a field, cboose char edi t s from the menu. The Charac
ter Edits Menu will appear as sbown below. Exactly one cbaracter edit must be in force 
at all times; that edit will be shown in reverse video. 

unfiltered (all) 
digits only 
yes/no field 
letters only 
numeric (+, -, . ) 
alphanumeric 
regular exp 

Rgure 21: Character Edits Menu 

To change the edit, select a new edit from the menu by typing the first letter of its name 
or by positioning the reverse video bounce bar and pressing XMJT. 

The available character edits are described below: 

• unfiltered 
Allows entry of all characters with no restrictions. 

• digits only 
Allows entry of the digits 0-9 only. If left-justified, no blanks are allowed 
to the left of any digit. If right-justified, no blanks are allowed to the right 
of any digit Therefore, when a digit is entered into the middle of an other
wise empty field, it is rejected (due to the leading/trailing blanks). This edit 
permits the use of embedded plIDctuations as explained below. 

• yes/no field 
Allows entry of only the initial letters of "yes" and "no". This edit uses the 
initial letters, in upper and lower case, of the SM_ YES and SM_NO entries 
in the message files. By default, this allows y, Y, n, N, or space, which is 
converted to n. The message me can be cbanged to support non-English 
equivalents to Y and N. 

• let ters only 
Allows only a-z, A-Z, and the space character. JAM actually uses the C 

Page 38 JAM Release 5.03 20 Nov 92 



• numeric 

Chapter 4: The Screen Editor 

library function isalpha which, on some systems, includes characters 
such as U. This edit permits the use of embedded punctuations as explained 
below. 

Allows entry of digits, the plus or minus sign, and at most one decimal 
point. If present, the plus or minus sign must be lefttnost in the field. If left 
justified, no blanks are allowed to the left of any character entered. If right 
justified, no blanks allowed are to the right Therefore, when a valid char
acter is entered into the middle of an otherwise empty field, it is rejected 
(due to the leading/trailing blanks). This edit permits the use of embedded 
punctuations as explained below. 

• alphanumeric 
Allows entry of any digits, the letters a-z and A-Z, and the space character. 
JAM actually uses the C library functions isalpha and isdigit 

• regular exp 
Allows entry of characters that match a regular expression (a pattern), en
tered by the author in the Regular Expression window that pops up when 
this selection is made. For example, the regular expression [A-Z]. * 
matches any string that begins with a capital letter. There is a detailed de
scription of regular expressions in the Authoring Reference chapter. 

Embedded Punctuation 

A special feature of digits-only, letters--only, and alphanumeriC fields is that punctua
tion characters within the field are passed over during normal data entryS. The punctua
tion characters themselves must be entered in draw mode; they can not be entered or 
deleted in test mode or at application run time9. This feature is useful for telephone 
numbers, social security numbers, and other punctuated strings. For example, consider 
a field for the entry of a telephone number of the form nnn/ nnn-nnnn. We don't want 
the user to enter the punctuation characters / and -. Create the field in draw mode by 
typing 12 underscores. Press XMIT to compile the tmderscores into a field. Press PF4, 
followed by c and then d to make the field be digits only. Press XMIT to return to draw 
mode. Enter / and - in the fourth and eighth positions respectively. The field should 
look like: 

_1_-__ 

S. JAM uses the C library function i spune to determine whether or not a character is a punctuation char
acter. On some systems. i spune considers the space to be a punctuation character. but JAM never considers 
the space to be a punctuation character. 

9. The JAM library function Sffi-.pUt field can be used to change (or delete) the punctuation characters 
at runtime if its data argument is anything other than a zero length character string. 

JAM Release 5.03 20 Nov 92 Page 39 



Author's Guide 

Press PF2 to enter test mode. The punctuation characters will remain in place while you 
type digits - even if you press the FIELD ERASE key. 

Embedded punctuation also works within scrolling arrays. When a new array occur
rence is allocated, embedded punctuation is copied from the flrst occurrence of the 
array to the newly allocated occurrence. Therefore, as the array scrolls, every enterable 
fleld is correctly initialized with the embedded punctuation. See the Scrolling Array 
section (page 144) of the Authoring Reference for a discussion of scrolling arrays and 
allocation of occurrences. 

Field Edits 
Field edits validate and format data keyed into a field. Field edit validation differs from 
character edit validation in that entry is rejected not on a character by character basis, 
but according to the contents of the fleld as a whole. With the exception of upper and 
lower case translation, fleld edits are not mutually exclusive. Therefore, they are speci
fied by a data entry screen with yes/no fields. By default, JAM creates fields with no 
field edits in effect 

To modify the field edits for a field, choose field edits from the menu. The Field 
Edits Screen will appear as shown below. The Field Edits Screen is a list of edits that 
can individually be turned on or off by typing y or n after them. When the Field Edits 
Screen is displayed, all field edits that are currently in force are followed by a y. 

right justified 
data required 
protection 
return entry 
clear on input 
null field 

Rgure 22: Field Edit Screen 

upper case 
lower case 
must fill 
no auto tab 
menu field 
regular exp 

These 
arey/n 
fields. 

To enable an edit, type y after it To disable an edit, type n. Certain edits, such as 
protection, have a submenu for specifying more detailed infonnation. The submenu is 
displayed only when y is typed, even if the y is already present; when you tab through 
the field, you must re-type y to get the submenu. When you are satisfied with your 
selection of field edits, press XMIT to effect the change. If you press EXIT instead, the 
field edits will stay as they were, except that changes made on submenus remain in ef
fect The field edits are discussed in detail in the sections that follow. 

Right Justified Fields 
By default, JAM fields are left justified, and characters are entered from left to right 
one after the other across the field. If you specify that a field is to be right justified, 

Page 40 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

characters are entered starting at the rightmost position of the field; the rightmost posi
tion is considered to be the beginning of the field. As each additional character is en
tered, the previously entered data is shifted one position to the left. When you tab into 
a right-justified field, the cursor is positioned at the righunost position. 

There are some idiosyncrasies of right-justified fields that should be noted: 

• The FIELD ERASE key clears the entire field, instead of from the cur
sor to the end of the field 

• Insert mode is implicitly on in the rightmost position. Therefore, JAM 
will beep if you attempt to enter a character into the rightmost position 
of a completely filled field. Use the clear-on-input edit to force re
typing of the entire field. 

• When restricted under character edits to digits-only or numeric-only 
fields, there can be no blanks to the right of any character. 

Data Required Fields 

You may want to force a user to enter certain infOimation on data entry screens. When 
a field is specified to be data required, then it must contain at least one non-blank char
acter before it can be tabbed from by the end user. If it is a digits-only, numeric, or 
alphanumeric field, it must have at least one character in it; punctuation characters en
tered in draw mode do not count If the field is left blank by the end user, JAM displays 
an error message and repositions the cursor to the beginning of the field. Note that entry 
in array fields is required only for the allocated array occurrences, which always in
cludes the array elements. See the Scrolling Arrays section (page 144) of the Authoring 
Reference chapter for a discussion of when occurrences are allocated 

If a data required field also has a null edit, then the field must be non-null in order to 
pass validation (the null indicator string does not satisfy the requirement for 
data). 

Field Protection 

A field can be protected from data entry, tabbing into, clearing, and validation. Typing 
y in the protection field will cause the Field Protection Screen to be displayed, as 
shown below. This screen allows you to specify any combination of field protections by 
entering a y or an n after each type of protection. 

JAM Release 5.03 20 Nov 92 Page 41 



Author's Guide 

protected from: 
data entry 
tabbing into 
clearing 
validation 

These 
are yin 
fields. 

Rgure 23: Field Protection Screen 

Each type of protection is explained below: 

• data entry 
All characters typed into the field will be rejected. with a beep. The CLEAR 
ALL, FIELD ERASE, DELETE CHAR, DELETE LINE, and INSERT 
LINE keys will not work in the field. DELETE LINE and INSERT LINE 
will work in a field parallel to one protected from data entry, as long as it 
is not also protected from clearing. In Figure 24, the extprice field is pro
tected from data entry, but unprotected from clearing, so INSERT LINE 
and DELETE LINE will work in the parallel fields. The JAM library func
tions may still enter data into fields protected from data entry. 

• tabbing into 
The cursor cannot be moved into the field by the user. JAM library func
tions can still move the cursor into the field. 

• clearing 
The CLEAR ALL, FIELD ERASE, DELETE LINE, and INSERf LINE 
keys will not clear the contents of the field. Certain JAM library functions 
can be used to clear the field. 

• validation 
Field validation will not be performed, even when the screen as a whole is 
validated. Character edits will still be enforced. JAM library functions 
cannot be used to validate a field that is protected from validation. 

A noteworthy combination is protection from data entry , but not from tabbing. This 
combination is recommended when a scrolling or shifting field should not be modified, 
but must be shifted or scrolled in order to view the field's entire content. 

A field derived from other fields on the screen (e.g. extended price is derived from 
quantity and unit price) can be protected from everything except clearing. This permits 
the user to clear the derived field, while prohibiting direct (and possibly erroneous) 
changes to the field. For example, consider the synchronized arrays (i.e., they scroll 
together: see page 70) protected on a screen as shown below: 

Page 42 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

part quantity price extprice 

Figure 24: Protection Example 

On the above screen, the user cannot directly change extprice.The user can clear an 
entire row by pressing the DELElE LINE key. This works because the arrays are syn
chronized and because extprice is not protected from clearing. CLEAR ALL will 
work also in this case. 

For groups, protecting a field within the group from data entry and clearing means that 
the user cannot select an tm-selected field or de-select a selected field 

Return Entry Fields 

Normally, on data entry screens, the Screen Manager returns control to the JAM 
Executive when a function key is pressed. The JAM Executive processes the associated 
control string, if one exists. If you designate a tield to be return entry, the Screen Man
ager will return control to the JAM Executive whenever the field is filled or tabbed out 
of. 

Typing y in the return entry field will pop up the Return Code Screen as shown below. 
This screen has one field on it, which is an integer that the Screen Manager will return 
to the JAM Executive. 

JAM Release 5.03 20 Nov 92 Page 43 



Author's Guide 

enter return code 

(or press \ then a key for 
the logical value of that key) 

Rgure 25: Return Code Screen 

The return code may be entered in any of several formats: 

• A decimal integer, like 50. 

• An octal integer with a leading zero, like 062. 

• An hexadecimal integer with a leading Ox, like Ox32. 

• An ASCII character, with surrounding apostrophes, like'S' . 

• A JAM key mnemonic, as an alphanumeric string. As indicated on the 
window, you may also press the \ key, followed by the desired func
tion key, to generate the mnemonic automatically. 

If you do not specify a return code, the Screen Manager will rettnn the ASCII value of 
the rightmost character in the field In general, unless you are writing your own execu
tive, return entry fields will be useful only if the return code is a JAM logical function 
key, such as XM:IT, EXIT, PF 1, PF2, etc. In such cases, the application will act as if the 
user pressed the logical function key, except that XMIT will not cause validation of the 
fields on the screen. 

Clear on Input 

In a field designated clear on input, the field is automatically cleared of previous data 
whenever a new character is typed in the beginning position. This feature is useful for 
right-justified or currency fields, in which overwriting previous data might be confus
ing for the user. It is also useful for fields that tend to change completely, if they change 
at all. Note that a clear on input field is not cleared if the user moves beyond the begin
ning position and types a character. 

Null Field 

The null field edit enables a field to be null by providing a special string, called a null 
indicator string, that differentiates a null field from a field that is not null (e.g. from a 
blank: field). When you designate a field to have a null field edit, the Null Indicator 
Screen is displayed as shown below. 

Page 44 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

enter null indicator string 

replicated? 

Figure 26: Null Indicator Screen 

There are two enterable fields on the Null Indicator Screen. The first field, labelled en
ter null indicator string, is where you enter the null field string. Up to 256 
characters may be entered. The second field, labelled replicated, is a yes/no field. 
If you enter y in that field, the null indicator will be repeated to fill the field. For exam
ple, specifying a replicated null indicator string of a single asterisk (*) would fill a null 
field with asterisks, up to the length of the field. If the null indicator string is not speci
fied, then both the null indicator string and replication are taken from the message me. 
This provides a mechanism for specifying an application-wide (and language custo
mizable) default 

The following conditions must hold for a field to be considered to be null: 

• The field must have the null field edit. 

• The field must contain the null indicator string. 

A user can make a field (with the null edit) null by clearing the field with FIELD 
ERASE or by entering the null indicator string (replicated, if replication is specified) 
into the field. Using the space bar to blank the field will not make the field null, it will 
simply make the field blank. In addition, a field that contains no initial data and is not 
populated by data from the LDB (except for the null indicator string) will be displayed 
as a null field when the screen is displayed. 

The null indicator string will be cleared under exactly the same circumstances that a 
clear-on-input field would be cleared - when data is entered into the first position of 
the field before being entered elsewhere in the field. 

Programmers should use the function sm_null to determine whether or not a field is 
null. The function sm_getfield will return the content of a field, which is the null 
indicator string (possibly replicated) in the case of a null field. 

Upper and Lower Case Fields 

These edits translate data entry to upper or lower case as each character is typed. Non
alphabetic characters are not affected. Upper and lower case translation are mutually 
exclusive. Applying one of these edits to a screen name field (see page 88) causes the 
screen name to be displayed in the specified case. See the Programmer's Guide for 
internationalization considerations. 

JAM Release 5.03 20 Nov 92 Page 45 



Author's Guide 

Must Fill Fields 

A field designated must fill is considered valid in the following cases: 

• if the field is completely empty, or 

• if the field has no blanks. This includes leading, trailing, and em
bedded blanks. 

If a field must be mled (i.e. an empty field is not acceptable), then it should be assigned 
both the must fin and data required edits. 

No Auto Tab Fields 

Normally, when a user fills the last position of a field, the cursor will behave as though 
the TAB key were pressed. The field is validated and, if it passes, the cursor jumps to 
the beginning of the next field. For fields specified as no auto tab, however, the user 
must use TAB, NL, or some other cursor motion key to leave the field. The cursor will 
remain in the last position, and as each character is typed, it will replace the previous 
character in the last position. This edit is ignored for fields in groups, as they have their 
own internal auto tab edit. 

Menu Fields and Submenus 

A field must have the menu field edit in order to be menu selectable. Such a field is 
called a menu selection field. The menu field edit has no impact on a screen's behavior 
when the screen is in data entry mode. For a complete discussion of menu building, see 
the menu section of the Authoring Reference, chapter NO TAG A shortcut method of 
building a menu is described later in this chapter (see SPF2 on page 84); the shortcut 
method automatically creates the menu selection fields. The purpose of this section is 
to discuss the effect of the menu field edit, and to discuss submenus. 

Typing y in the menu field will cause the Menu Field Screen to be displayed, as shown 
below. 

enter return code 
(or press \ then a key for 

the logical value of that key) 

submenu name 

Rgure 27: Menu Field Screen 

Page 46 JAM Release 5.03 20 Nov 92 

l 
1 , 
I , 



Chapter 4: The Screen Editor 

The Menu Field Screen allows you to specify a return code or a submenu. In order for 
the menu selection to cause an action (when using the JAM Executive), at least one of 
the following items must be present: 

• A control string in the field following the menu field. The control 
string is ignored if a submenu is specified; the action to be taken will 
be specified on the submenu. 

• A return code. The return code is ignored if a submenu is specified; the 
return value will come from the submenu. 

• A submenu. 

The return code may be entered in any of several formats: 

• A decimal integer, like 50. 

• An octal integer with a leading zero, like 0 62. 

• An hexadecimal integer with a leading Ox, like Ox32. 

• An ASCII character, with surrounding apostrophes, like's' . 

• A JAM key mnemonic, as an alphanumeric string. As indicated on the 
window, you may also press the \ key, followed by the desired func
tion key, to generate the mnemonic automatically. 

If you do not specify a return code in the window, the Screen Manager will return the 
ASCII value of the leftmost character in the field. In general, unless you are writing 
your own executive, the return code will be useful only if it is a JAM logical function 
key, such as XMIT, EXIT, PFI, PF2, etc. In such a case, the application will act as "if the 
user pressed the logical function key, except that XMIT will not cause validation of the 
fields on the screen. 

In the submenu field, you can type the name of another screen to serve as a pull down 
menu for the selection. Submenus work as follows: When the cursor enters a menu 
field with a submenu, the submenu window is automatically pulled down. All cursor 
motion keys operate normally in the submenu, except the left and right arrow keys; they 
move to the previous or next selection in the main menu, and pull down a new submenu 
if that selection has one. To create a main menu with submenus, create the main menu's 
selection fields from separate fields, not from fields in an array - otherwise each main 
menu field will share the same submenu. Since the shortcut menu building feature 
creates an array, it should not be used to create a menu that will have submenus. How
ever, the shortcut method can be used to create the submenus themselves. 

Regular Expressions 

You can attach a regular expression (a pattern) to a field For example, the regular ex
pression [A A-Z] [A-Z] * matches any string that doesn't start with a capital letter, but 

JAM Release 5.03 20 Nov 92 Page 47 



Author's Guide 

otherwise contains only capital letters. The contents of the field are compared to the 
regular expression when the field is validated, not as each character is entered as is the 
case with a regular expression character edit Note that a field may have both a regular 
expression character edit and a regular expression field edit. JAM does not compare 
these edits for consistency, but you can use both regular expressions to your benefit. For 
example, you could use the character edit to restrict the field to a set of characters (e.g. 
[0-9]) and use the field edit to establish a pattern (e.g. 9 .. to match any number be
tween 900 and 999). 

To enter a regular expression, type a y in the regular expression field. The Regular Ex
pression Screen will display as shown below. 

enter regular expression: 

Rgure 28: Regular Expression Screen 

Use ZOOM 
to enter a 
long pattern. 

Regular Expressions are discussed in detail in the Authoring Reference Chapter. Use 
the HELP key to review the syntax of regular expressions while in the Screen Editor. 
The syntax of the regular expression is checked when you press XMIT to save the ex
pression and exit the Regular Expression Screen. 

Wben deciding between using a regular expression in a character edit and a field edit, 
consider the complexity of the pattern. If the pattern is simple, then the character edit 
might be better because JAM immediately beeps when an invalid character is entered. 
However, if it is complex, then the user may not know why JAM beeped. If a field edit 
is used, then JAM displays a message, and positions the cursor to the invalid character 
when an error is encOlnltered. 

Field Attachments 
Field attachments are specified in the Field Attachments Screen shown below. 

The available field attachments are described in the sections that follow. Briefly, the 
attachments are: 

• field name 
Name that identifies a field on a screen . 

• next field 
Name or number of field to go to when TAB is pressed. 

Page 48 JAM Release 5.03 20 Nov 92 

---, 
I 

. , 



Chapter 4: The Screen Editor 

field name 
previous field 
next field 
help screen 
item selection 
table lookup 
status text 
memo text 1 

2 

___________ or __________ _ 

or 
automatic (yin) 
automatic (yin) 

Figure 29: Reid Attachments Screen 

• previous field 
Name or number of field to go to when BACKTAB is pressed. 

• help screen 
Wmdow to display when field help is requested. 

• item selection 
Wmdow of items to choose from when field help is requested. Help screen 
and item selection are mutually exclusive. 

• table lookup 
Screen containing list of acceptable field values used to validate field. An 
item. selection screen may be used for table lookup. 

• status text 
Help text displayed on the status line when the cursor is in the field. Status 
text can be used to display keystroke instructions (e.g. Hi t Enter) in a 
keyboard independent fashion (e.g. Hi t %KXMIT) . 

• memo text 
Up to nine lines of text for comments or for programmatic use. 

Field Name 

A field name identifies a field on the screen. No other field or group on the screen may 
share the name, except for fields in the same array; individual array occurrences are 
referenced by field name and occurrence number. A nameless field can be identified 
only by field number, which is tricky because the number can change automatically as 
the screen is edited. A field name can be used to refer to a field both within the Screen 
Editor (e.g. to specify the next field) and in application code. However, a field must be 
named if its contents are to be shared with the local data block. 

When a field is copied, the copy retains all characteristics of the original except the 
name - otherwise a duplicate name would result Fields on different screens can share 

JAM Release 5.03 20 Nov 92 Page 49 



Author's Guide 

the same name, but it is good practice to share names only when the fields share the 
same data or field characteristics. In that way, data and characteristics can be shared 
through the local data block and the data dictionary respectively. 

Field names can be up to 31 characters long, and must start with an alphabetic charac
ter, an underscore, a dollar sign, or a period. The rest of the name can contain alphanu
meric characters, underscores, dollar signs, and periods. Field names are case sensitive, 
so that a field named item is different than a field named I tern. 

Previous and Next Fields 

The default TAB ordering of fields (i.e. the order in which fields are visited by the cur
sor when TAB is pressed repeatedly, or when auto-tabbing occurs) is the same order in 
which the fields are numbered: left to right, and then top to boUom. The default BACK
TAB ordering of fields (Le. the order in which fields are visited by the cursor when 
BACKTAB is pressed repeatedly) is the reverse of the default TAB ordering. The next 
field and previous field entries enable changing the TAB and BACKTAB ordering of 
the fields on a screen. 

The previous/next field designations have no effect on the cursor positioning keys or on 
theNLkey. 

A previous/next field designation is ignored if it refers to a field that is nonexistent or 
protected from tabbing into. In these cases, the previous/next field designation is said to 
fail. The Field Attachments Screen provides for two previous field designations and 
two next field designations; in either case if the first fails, the second is tried. If the 
second fails, the default field ordering is used. 

Previous and next fields can be designated by field name or by field number. They may 
also be designated by group name, as described at the end of this section. Field numbers 
must be preceded by a # sign. For example, # 12 refers to field number 12. You can use 
relative referencing to refer to a field relative to the field number of the current field. 
Relative references must be preceded by a plus or a minus sign. The fieldjust before the 
current field is -1. The fifth field following the current field is + 5. To refer to the cur
rent field, use + 0 or - 0 . 

You can designate a particular array occurrencesubparagraph by appending the occur
renee number in square brackets to the field designation. Again, the number may be 
absolute or relative. The following are all valid previous/next field designations: 

Page 50 JAM Release 5.03 20 Nov 92 



item 
#23 

+ 2 4 24th fld after current fld 
-3 
item[4] 
item[-3] 
+3 [-4] 4th ocCurrence prior to the 

current occurrence of the 3rd 
field after the current field. 

The following is not a valid designation: 

item+l 

Chapter 4: The Screen Editor 

Note that every occurrence of an array has the same previous and next field designa
tion. If a designated previous/next field is also part of an array, and the designation con
tains no occurrence subscript, then the cursor is positioned in the designated array at the 
same occurrence number that it was in when it left the previous array. If the occurrence 
number is greater than the maximum nwnber of occurrences in the designated field, the 
previous/next field operation fails, and the alternate, if one exists, is attempted. 

For example, consider two horizontal arrays named horizl and horiz2 on the 
screen pictured below. 

horizl: 

horiz2: 

The arrow shows the desired tab ordering. 

Figure 30: Next Reid Example Wrth Horizontal Arrays 

By default the cursor would tab through horizl before moving to horiz2. Let's 
modify the tab order so that tabbing moves the cursor from top to bottom, then from left 

JAM Release 5.03 20 Nov 92 Page 51 



Author's Guide 

to right To effect this, designate the next field for horiz1 to be horiz2 (with no 
subscript!), meaning "please tab next to horiz2, with the cursor in the same occurrence 
of horiz2 as it was in horiz1". Designate the next field for horiz2 to be ho-
riz1 [+1], meaning "please tab next to horiz1, with the cursor in the next occur- .~ 

rence of horiz1". 

As another example, consider two synchronized scrolling arrays (see page 70) named 
array1 and array2, positioned on the screen as pictured below. Synchronized arrays 
scroll together. 

arrayl array2 

The arrow shows the desired tab ordering. 

Figure 31: Next Reid Example With Vertical Arrays 

By default, the cursor would tab from the first occurrence of array1 to the first occur
rence of array2 to the second occurrence of array1 to the second occurrence of 
array2 and so forth. Scrolling through the occurrences of an array would require 
pressing the NL or DOWN ARROW key. Let's modify the tab order so that tabbing 
moves the cursor through the screen in columns: all occurrences of array1 and then 
all occurrences of array2. 

To effect this, designate the next field for array1 to be array1 [ + 1], meaning 
"please tab next to the next occurrence of this same array." Remember, every field of an 
array shares the same next field designation. In addition, JAM will scroll an array, if 

Page 52 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

necessary, to make offscreen occurrences visible 10. When you reach the end of 
arrayl Gust beyond the maximum occurrence number), that next field designation 
will fail. Therefore, designate the alternate next field for arrayl to be array2 [1] , 
which will move the cursor to the top of the second array, and scroll both arrays so that 
their first occurrences are displayed in the top field of each array. Likewise, designate 
the next field for array2 to be array2 [+ 1] , and the alternate next field to be what
ever field should be entered after tabbing through array2. Use the previous field edits 
to make BACKTAB have the opposite effect 

A group name (see page 85) may be specified as the previous and/or next field. This 
will cause the cursor to jump to the first field of the group. To cause the group to be 
entered in the Nth field of the group, append [N] to the group name. For example, 
cit y [ 3] refers to the third field in the city group. 

Within a group, the next and previous field edits detennine the next and previous fields 
when the SPACE and BACKSPACE keys are pressed (since these keys cycle through 
the fields in a group), The next and previous group edits (see page 92) determine where 
the TAB and BACKTAB keys take the cursor (since these keys cause the cursor to leave 
the group). 

Help Screen 

A field help screen can be displayed either when the user presses the HELP key, or auto
matically when the cursor enters a field that has not been marked as validated (see the 
Authoring Reference section on validation, page 150, for a discussion of when fields 
are marked as validated). To make the help screen display automatically upon field 
entry, type a y into the automatic (yin) field. Note that a data entry field on the 
help screen automatically inherits the characteristics of the helped field, and its con
tents are transferred to the helped field. A detailed discussion of the JAM help facility, 
including help screen design techniques, is located in the Authoring Reference chapter 
(section 7.3). 

To specify a field level help screen, enter the name of the help screen in the he Ip 
screen field, optionally preceded by positioning parameters (also discussed in the 
reference in section 7.9) enclosed in parentheses. For example, the following entry 
specifies that the upper left corner of the cus tomer . hlp screen is to be displayed at 
row 5 and column 10 of the physical display when help is requested: 

help screen: (S,lO)custorner.hlp 

The full format of the position specification is: 

( row, col, height I width I wow, veal) 

10. The TAB key, in this case, causes array occurrences to be allocated. if necessary. befOl'e scrolling the 
array. N orrnall y. only the NL key has this effect. Please see the disQlSSion in section 7.7 of the Authoring Refer
ence (page 144). 

JAM Release 5.03 20 Nov 92 Page 53 



Author's Guide 

where: 

• row is the row of the physical display at which to position the upper 
left comer of the help window's viewport. If row starts with a + or -
then row is the row offset, relative to the top left comer of the current 
screen, at which to position the upper left corner of the help window's 
viewport. 

• col is the column of the physical display at which to position the upper 
left corner of the help window's viewport. If col starts with a + or -
then col is the column offset, relative to the top left comer of the cur
rent screen, at which to position the upper left corner of the help win
dow's viewport. 

• height is size of the viewport in rows. 

• width is the size of the viewport in columns. 

• vrow is the row of the help window to be initially displayed in the up
per left corner of the viewport. 

• veal is the column of the help window to be initially displayed in the 
upper left comer of the viewport. 

If you do not specify a position, JAM will attempt to display the entire help screen 
without hiding the field. See section 7.9.2 on page 154 for more information on posi
tioning. Note that there can be no ampersand (&) preceding the help screen entry, be
cause the entry is not a control string. 

Starting with JAM release 5, function keys work on help screens. 

Item Selection 

An item selection screen lets a user fill a field from a list of possible entries. The list can 
be static (created within the Screen Editor) or dynamic (created at runtime, possibly 
from a database query using J AMlDBi, via a screen entry function or through the local 
data block). The list can either contain the complete set of valid entries, or a set of com
monly used entries. 

An item selection screen can be displayed either when the user presses the HELP key, 
or automatically when the cursor enters a field that has not been validated To make the 
item selection screen display automatically upon field entry, type a y into the auto
rna t i'c (y / n) field. It is not possible to have both an item selection screen and a help 
screen for a field, although the Screen Editor does not detect the conflict 

When the item selection screen is displayed, the user can move to the desired entry and 
press XMIT to copy the entry back to the field. Pressing EXIT leaves the field un
changed. Item selection does TWt restrict data entry into a field, it only provides a list of 

Page 54 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

possible choices. To restrict the choices to the entries in the item selection screen use 
the table lookup feature described in the next section. 

To specify an item selection screen, enter the name of the screen in the i tern selec
t ion field, optionally preceded by positioning parameters (also discussed in the refer
ence) enclosed in parentheses. For example, the following entry specifies that the upper 
left corner of the states. i tm screen is to be displayed at row 5 and column 10 of the 
physical display when help is requested: 

item selection: (5,lO)states,itm 

If you do not specify a position, JAM will attempt to display the help screen without 
hiding the field. Note that there can be no ampersand (&) preceding the item selection 
screen entry, because the entry is not a control string. 

An item selection screen may consist of any combination of fields, including scrolling 
and non-scrolling arrays. All should have the menu field edit. The lengths of the fields 
on the item selection screen need not be the same as the length of the associated field on 
the underlying screen. If the item selection fields are longer, as in the example below, 
only the flISt part of the field is copied. The rest of the field can contain information that 
is helpful to the user. If the underlying field has the right justified field edit, and is short
er than the item selection field, then the rightmost part of the item selection field will be 
copied. 

Order # 1342 Date Oct 16 

Part # 

HOI small handle (standard) 
H01B small handle (brass) 
HOIG small handle (gold) 
H02 large handle (standard) 
H02B large handle (brass) 
H02G large handle (gold) 

Figure 32: Item Selection Screen Example 

When an item selection screen is fllied dynamically, consider using the JAM library 
function sm_svscreen to avoid repeating the effort required to determine the entries. 
You can shrink the screen to fit the number of selections by calling the library function 
sm_shrink_to_fi t. See the Programmer's Guide for details. 

JAM Release 5,03 20 Nov 92 Page 55 



Author's Guide 

Starting with JAM release 5, function keys work on item selection screens. 

Table Lookup 

The table lookup entry . serves a purpose very closely related to item selection. In the 
table lookup entry, you also specify the name of a screen, but the screen is not 
displayed at runtime. Instead, its contents are used to validate the entry in the field. 

Commonly, an item selection screen is also used for table lookup (in fact, they are 
created in the same fashion). This ensures that the list of entries on the item selection 
screen (the fields with the menu edit) are the only entries permitted in the field. Even 
though the table lookup screen is not displayed, the screen is otherwise processed like 
a normal screen: the screen binary is re-read and screen entry and exit functions are 
called. This can cause significant redundant overhead, particularly if a database query 
is used to populate the screen. In such a case, or when the same table lookup is to be 
used repeatedly, consider using the JAM library function SIn_SVscreen. See the Pro
grammers Guide for details. 

To specify a table lookup screen, enter the name of the screen in the table lookup 
field. For example, the following entry specifies that the states. i tIn screen is to be 
used for table lookup: 

table lookup: states,itm 

Note that the table lookup is done only for non-blank fields. Specify the 'data required' 
field edit if the field cannot be blank. 

Status Text 

Status text attached to a field is displayed on the status line whenever the cursor is in 
that field. You can embed display attribute and key top codes in the status text that will 
be translated at nm time. These codes are briefly described below; for a more complete 
reference, please see the documentation for the function srn_d_Insg_l ine in the Pro
grammers Guide. 

• If a string of the form %Annnn appears anywhere in the stabJS text, 
where nnnn is a four digit hexadecimal number, the corresponding 
display attribute will be applied to the remainder of the text, or until 
another %A is found. To combine attributes, add the numbers together 
in hexadecimal. The possible values for nnnn are shown below. 

Page 56 JAM Release 5.03 20 Nov 92 

."j 
i 

.. , 
I 



Chapter 4: The Screen Editor 

Attribute Hex Code Attribute Hex Code 

Non Display 0008 Blinking 0040 

Reverse Video 0010 Highlighted 0080 

Underlined 0020 Low Intensity 1000 

Foreground Colors Background Colors 

Black 0000 Black 0000 

Blue 0001 Blue 0100 

Green 0002 Green 0200 

Cyan 0003 Cyan 0300 

Red 0004 Red 0400 

Magenta 0005 Magenta 0500 

Yellow 0006 Yellow 0600 

White 0007 White 0700 

• If a string of the form %Kkkkk appears anywhere in the message, kkkJc 
is interpreted as the short name of a JAM logical key (e.g XMIT, 
EXIT, PF1, etc.). See section 2.3 of the Keyboard Entry chapter for a 
list of logical key names. If that key has a key top defmed in the key 
translation file for the keyboard being used, that label will replace the 
%K and the name. For example, %KEXIT is replaced with Esc when 
using the JYACC-provided keyboard file for the mM PC. This en
ables keystroke instructions using the labels on the keys of the real 
keyboard. If there is no key top, the %K is stripped out and the name 
remains. 

• If the status text begins with a %B, JAM will issue a beep on the termi
nal. 

Memo Text 

Attaching memo text to a field is a feature provided by JAM to allow authors to attach 
information to a field that is not provided by any of JAM's edits. JAM makes no use of 
the information in the memo text fields, but programmers can inspect the text and take 
action on it using the sIn_edi t-ptr library routine. Alternatively, comments can be 
stored in the memo text field. Nine lines of memo text are available. Since the field is 
scrollable, the ZOOM key can be used to view all nine lines at once. 

JAM Release 5.03 20 Nov 92 Page 57 



Authors Guide 

Prior to JAM release 5, memo text was commonly used to pass parameters to field and 
screen functions. This need is greatly reduced by the ability to prototype functions. Pro
totyped functions can access hook string arguments; this was not possible for field and 
screen functions prior to release 5. The Programmer's Guide contains a discussion of 
function prototyping. 

Miscellaneous Edits 
Miscellaneous edits are specified in the Miscellaneous Edits Menu shown below. 

field function 
date or time field 
math or check digit 
currency format 
range checks 
jpl procedure 

Rgure 33: Miscellaneous Edits Menu 

The available miscellaneous edits are described in the sections that follow. Briefly, the 
edits are: 

• field function 
Field entry, exit, and validation functions written in C or JPL. 

• date or time field 
Date and time field edits. 

• math or check digit 
Math and check digit calculations. 

• currency format 
The currency symbol, decimal symbol, decimal places, thousands separa
tor, and other edits can be specified. 

• range checks 
Up to 9 separate numeric or lexicographic ranges can be specified. 

• JPL procedure 

Page 58 

A complete JPL procedure, including JPL subroutines, can be entered here. 
This procedure is called by JAM as part of the field validation process. 

JAM Release 5.03 20 Nov 92 

. ~ 
I 

I 



Chapter 4: The Screen Editor 

Field Functions 

Field functions, selected from the Miscellaneous Edits menu, are hook functions writ
ten in C or JPL that are called by JAM at the field entry, exit, and validation hooks (The 
hook is where the function is attached). The function name, and optionally the argu
ments, are specified by entering a hook string into the Field Function Screen shown 
below. 

validation function 
field entry function ____________________ __ 
field exit function 

Rgure 34: ReId Function Screen 

The format of a hook string that calls a C function is: 

ctrncn.n» {q ... } 

For example, the following hook strings call C functions: 

hilight 
chgcolor red 
chgcolor :color 

The format of a hook string that calls a JPL function is: 

j p 1 JpIfUnctwme {q .•. } 

For example, the following hook strings call JPL functions: 

jpl lookup 
jpl chkmin 1000 
jpl chkmin :minval 

Note that, unlike control strings, hook strings that call functions do not start with a car
etC' ). 

You must prototype screen, field, and group hook functions in order to pass them argu
ments. Colon preprocessing is performed on the arguments before the arguments are 
parsed. JPL will not execute a field function if the control line includes an argument. (A 
JPL function may use the "atch" command to pass an argument to an installed field 
function.) If the hook function is not prototyped, then it is passed the field number, oc
currence number, contents, and a flag indicating the type of hook (entry, exit, or valida
tion). Please see the Programmer's Guide for details on installing hook functions, pro
totyping functions, and hook function arguments. Colon preprocessing is discussed in 
the AuthOring Reference cbapter (section 7.1). 

JAM Release 5.03 20 Nov 92 Page 59 



Author's Guide 

A field entry function is called when the cursor enters a field. A field exit function is 
called when the cursor leaves a field. JAM guarantees that a field exit function will be 
called exactly once for each time the corresponding field entry function is called. 
Therefore, a field exit function is called when the cursor is on a field in a screen that is 
de-activatedll. Correspondingly, a field entry function is called for the field that the 
cursor is positioned upon when a screen is activatedI2. The Programmer's Guide ex
plains how to install default field entry and exit functions on an application-wide basis. 

A field validation function is called whenever a field is validated. By default, this oc
curs when the field is tabbed from (with TAB or via auto-tab) and when the XMIT key 
is pressed. For fields that are members of menus, radio buttons, or checklists, the val
idation function is not called as part of validation. The validation function for such 
fields is called instead when that field is selected. For checklist fields, the field valida
tion function is also called when a field is deselected. 

Prior to JAM release 5, field validation was often used to do field exit processing; field 
exit functions should now be used since exiting a field does not always cause field val
idation to be performed (e.g. when EXIT is pressed, when a field is exited via an arrow 
key). See the JAM library function SIlLoption in order to change the circumstances 
under which field validation occurs. 

Date And Time Field 

A date or time edit. selected from the Miscellaneous Edits Menu, can be used to enforce 
a format for entered dates or times, or to determine the format in which the system date 
or time is displayed. A date/time format string consists of literal characters and sub
stitution variables. A literal character forces entry of that particular character. A sub
stitution variable forces entry of a string that matches the format specified by the sub
stitution variable. For example, the format string HR: MIN: SEC would accept 
09 : 19 : 21. The DaterHme Field Screen is shown below. 

date/time field 
format 
system date/time? (y/n) y 
12-hour clock? (y/n) n 

Rgure 35: Datemme Reid Screen 

Enter the format string in the format field. To specify that the field should be ini
tialized with the system date/time, type a y in the system date/t ime? (y In) field. 

11. Screen de-activation occurs when an active screen is closed or hidden. 

12. Screen activation occurs when a new screen is opened or when a de-activated screen is exposed. 

Page 60 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

To specify a 12 hour clock, type a y in the 12-hour clock? (yin) field. Type an 
n for a 24 hour clock. 

A system date/time field is updated when the screen is opened, when the FIELD 
ERASE key is pressed while the cursor is on the field, when the CLEAR key is pressed 
(FIELD ERASE and CLEAR will work only if the field is not protected from clearing), 
or when a new array occurrence is allocated. 

The substitution variables for date/time fonnat strings are shown in the table below. 

Substitutio User Input Substitutio User Input 
n Variable n Variable 

YR4 4 digit year DAYL long day name 

YR2 2 digit year DAY A abbreviated day name 

MON month number HR hour 

MON2 month number, zero HR2 hour, zero filled 
filled 

MONL long month name MIN minute 

MONA abbreviated month MIN2 minute, zero filled 
name 

DATE day of month SEC second 

DATE2 day of month, zero filled SEC2 second, zero filled 

YDAY day of year AMPM am orpm 

DEFAULT MONIDATElYR2 DEFAULT HR:MIN2 
DATE TIME 

DEFAULT MONlDATElYR2 HR:MIN2 

Substitution variables must be entered in upper case! 

Figure 36: Substitution Variables for Date and Time. 

The following table contains several sample fonnat strings. 

JAM Release 5.03 20 Nov 92 Page 61 



Authors Guide 

Format String Example of Acceptable Input 

MON2IDATE2IYR2 03/03/89 

DATE2IMON2IYR4 19/09/1956 

DAYL MONL DATE, YR4 Saturday December 26, 1954 

HR:MIN2AMPM 2:04PM 

DEFAULT 3/3/89 14:04 

Rgure 37: Example Datemme Format Strings 

To assist development standardization. a developer can defme a substitution variable to 
take the place of an entire format string. For example, the variable STDDATE could be 
defined to be an installation-standard date format This can be useful in applications 
that may be used with multiple languages where different date formatting conventions 
are used. Please refer to the Configuration Guide for more information. 

Math or Check Digit 

Math and check digit calculations, selected from the Miscellaneous Edits Menu, can be 
attached to a field. The calculations are performed when the field is validated. Math 
calculations can access and change any field, group, or LDB entry. A check digit cal
culation is used to validate a digits-only field according to a standard check digit algo
rithm. The mod-I 0 and mod-II algorithms are supported 13. The Math and Check Digit 
Screen is shown below. 

math: 

check digit: modulus __ minimum number of 
digits 

Figure 38: Math and Check Digit Screen 

13. The source code to the check digit validation function sm_ckdig i tis (X"ovided with the JAM library, 
and may be modified to support other check digit algorithms. 

Page 62 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

You can attach one check digit calculation and one or more math calculations to a field. 
Math calculations are separated by semicolons, even if they are on different lines. 

A math expression starts with an optional floating point size specification for the des
tination field. This specification has the form % m. n or % t m. n where m specifies the 
total number of characters in the output and n the number of digits after the decimal 
point. The t forces truncation, rather than rounding, of the result. If no size is supplied, 
the total length defaults to the length of the destination field or LOB entry. The nwnber 
of decimal places defaults to the number of decimal places in the currency edit attached 
to the destination field; if there is no currency edit, it defaults to the precision given in 
the float, double, zoned, or packed data type edit attached to the destination field; if 
there is no data type edit, it defaults to two decimal places. 

The optional size specification is followed by the destination field designation (e.g. 
field name or number), an equal sign, and the body of the expression. The expression 
body can contain numeric constants, field designations, parentheses, and the arithmetic 
operations +, -, *, /, and A (raise to a power). 

Fields can be designated by name or by number. Field numbers must be preceded by a 
# sign. For example, #12 refers to field number 12. You can use relative referencing to 
refer to a field relative to the field number of the current field. Relative references must 
be preceded by a plus or a minus sign. The field just before the current field is # -1. The 
fifth field following the current field is #+ 5. To refer to the current field, use # + 0 or 
# - o. You can designate a particular array occurrence by appending the occurrence 
number in square brackets to the field designation. Again, the number may be absolute 
or relative. If a designated field is part of an array, and the designation contains no oc
currence subscript, then the current occurrence number is used as the array index. The 
current occurrence number is the occurrence number of the data in the field being pro
cessed. If the current occurrence number is greater than the nwnber of occurrences in 
the designated array, an error results. 

Typical math expressions look like this: 

%8.0 #3 = VI * 12 + 2 

flda[2) = (flda[l] - 6.235) I fldb[l) 

As an example of referring to the current field, consider the following two math expres
sions: 

11-3 = 11+0 * 11+3 

In the first expression, the field that occurs three fields before the current field is set to 
the value obtained by multiplying the value in the current field by the value in the third 
field after the current field. In the second expression, the field three fields before the 
current field is set to the sum of the value of the current field and the integer six. 

JAM Release 5.03 20 Nov 92 Page 63 



Author's Guide 

There are two special functions available in math expressions: @sum and @date. 
@surn yields the sum of all the occurrences in a given array: 

@sum(array!} Total values in array1. 

@sum( 112) Total values in the array containing field 2. 

@date yields the number of days between 1/111753 and the argument to @date. The 
argument must be either a field (name or number) or LDB entry (name) with a date edit 
(or in MON/DATE/YR2 or MON/DATE/YR4 format), or a literal date in the format spe
cified in the message me under the beading SM_CALC_DATE. The default literal for
mat is %rn%d%4y (MON/DATE/YR4). The following are each valid examples: 

@date(quarterday) 

@date( 11-1) 

@da t e ( 3 /31/1985 ) 

An error occurs if the specified field does not bave the proper format The number re
sulting from the calculation is interpreted as the number of days elapsed since 1/111753. 
If a destination field is a date field, then the result is displayed according to the date 
field's format; otherwise the date is displayed as the number of days since 1/1/1753. If 
field1 and field2 are both date fields, 

Eield2 = @date(fieldl) + 30 

will set the date in fie 1 d2 to 30 days past the date in fie 1 d 1. 

The following expression sets daysgoneby to the number of days between field1 
and field2: 

daysgoneby = ~date(Eield2) - @date(fieldl) 

Currency Format 

The currency format edit, selected from the Miscellaneous Edits Menu, is used to des
ignate a field to bold monetary values. Numeric data is formatted and displayed as a 
monetary amount. The formatting occurs during field validation. Non-numeric data 
entered into a currency field is discarded. Therefore, it is usually less confusing to the 
user if the field also bas the clear on input field edit 

See the Programmer's Guide for a fuller discussion of internationalization consider
ations. 

The Currency Fonnat Screen is shown below. 

Page 64 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

local format 

decimal symbol 
places: minimax (0-9) 
000 separator (b=blank) 
currency symbol 

at: left right 

round: up down 
.fill character 
left justify (yin) 
clear if zero (yin) 
apply if empty (yin) 

middle 

adjust 

Figure 39: Currency Format Screen 

Fill in the screen, using the edits described in the following list 

• local format 
The name of a local format defmed in the message me. It is case sensitive. 
Local formats are stored in the message ftIe so that the same application 
running in two different countries can use identical screens, but the curren
cy fields would be fonnatted according to local custom and monetary lDlits. 
The local format establishes the values for currency formatting: decimal 
symbol, places, {)()() separator, currency symbol, and currency symbol posi
tion. When a local format is specified, the previously listed format entries 
cannot be changed. Additional information is given below. 

• decimal symbol 
The character used as the decimal separator (radix separator). Any single 
character may be used.14 

• places: minimax 
The minimum number of decimal places followed by the maximum num-
ber of decimal places. In both cases, these must be numbers between 0 and 
9. If none are entered, the minimum defaults to 0 and the maximum to nine. 

14. The decimal symbol defaults to the value of S~DECIMAL in the JAM message file (usually a single 
dot). H SM_DECIMAL is not in the message file, then JAM tries to determine the decimal symbol by asking 
the operating system. Some operating systems do not support this feature, For those that do, the mechanism 
for specifying the decimal symbol varies from operating system to operating system. See the JAM Installation 
Guide for your operating system. 

JAM Release 5.03 20 Nov 92 Page 65 



Author's Guide 

.000 separator 
A single character thousands separator. Use b to indicate a blank space. If 
none is chosen, no thousands separation will occur. 

• currency symbol 
A one to five character currency symbol. Because currency symbol 
is a regular JAM field, it is not possible to enter trailing spaces, as they are 
stripped off. To specify a leading currency symbol separated from the data 
by a space (e.g. FF 123.456, 78) use a period to indicate the space. If 
no symbol is entered, no symbol will be used to denote currency. The cur
rency symbol may occur to the left (the default) or right of the amount, or 
in place of the decimal point Place a y by the left, right, or middle entry 
to specify currency symbol placement If middle, the currency symbol 
overrides the decimal symbol. 

• decimal round 
The amount may be rounded up, rounded down, or adjusted by standard 
rounding (Le. round up above .5) to the number of decimal places specified 
(the default). Enter a y by one of the three rounding options. The following 
table shows the effect of rounding on several example numbers. Note the 
impact that rounding has on negative numbers. 

Number Entered Round Up Round Down Adjust 

2.056 2.06 2.05 2.06 

-2.056 -2.05 -2.06 -2.06 

2.055 2.06 2.05 2.06 

Figure 40: Rounding to 2 Decimal Places (Maximum) 

• fill character 
A character that will replace any blank after formatting. 

• left justify 
By default, a currency field is right justified. Enter a y here if you want it 
left justified. Note that this justification occurs after validation. If you want 
the user to begin entering data in the rightmost position in the field, assign 
the field the right justify field edit (see page 40). 

• cle'ar if zero 
Enter a y here if the field is to be cleared when validated if the amount in 
the field is zero. For example, suppose the field is eight characters long and 
right-justified with the asterisk as the fill character. If the field is 0 and not 
cleared, then it will display as: 

Page 66 JAM Release 5.03 20 Nov 92 

.., 
I 



Chapter 4: The Screen Editor 

*******0 

• apply if empty 
Enter a y here if the format is to be applied even when the field is blank (ie. 
- the operator TABs out of the field), in which case JAM displays a for
matted zero (e.g. $ ° . 00). This has no effect if clear if zero is speci
fied. 

The possible local format names are defmed by the message file entries 
FM_OMN'_CURRDEF through FM_9MN'_CURRDEF. The corresponding formats are de
fined by the message me entries SM_ODEF _CURR through SM_9DEF _CURRo The 
table below shows the default message file entries. 

Message File Entry Local Format Message File Entry Local Format 
for Local Format Name (enter for Local Format Specification 

Name into local Specification 
formatfield) 

~OMN'_CURRDEF CURRENCY SM_ODEF_CURR .22,1$ 

FM_IMN_CURRDEF PLAIN SM_IDEF_CURR .09, 

FM_2MN_CURRDEF NUMERIC SM_2DEF_CURR .09 

FM_3MN_CURRDEF DEFAULT3 SM_3DEF_CURR .09 

FM_4MN_CURRDEF DEFAULT4 SM_4DEF_CURR .09 

FX-SMt·CCURRDEF DEFAULTS SM_SDEF_CURR .09 

~6MN_CURRDEF DEFAULT 6 SM_6DEF_CURR .09 

~7MN_CURRDEF DEFAULT7 SM_7DEF_CURR .09 

FM_8MN_CURRDEF DEFAULT8 SM_8DEF_CURR .09 

FM_9MN_CURRDEF DEFAULT9 SM_9DEF_CURR .09 

Figure 41: Default Message Rle Entries for Local Currency Formatting 

Each local format specification string is of the form rrnxtpccccc, where: 

r 

m 

decimal symbol, usually., ,. or b (blank). 

minimum number of decimal places 

JAM Release 5.03 20 Nov 92 PageS7 



Author's Guide 

x 

t 

P 
ccccc 

maximum number of decimal places 

thousands separator, usually 0, " or b (blank). 

placement of currency symbol: l=left, r=right, m=middle. 
up to 5 characters for the currency symbol. 

Given the default message me, the following table shows how several strings would be 
formatted according to the CURRENCY, NUMERIC, and PLAIN local formats: 

Entered Data Formatted Data 

CURRENCY NUMERIC PLAIN 

12345 $12,345.00 12,345 12345 

1234 $1,234.00 1,234 1234 

123.45 $123.45 123.45 123.45 

123.456 $123.46 123.456 123.456 

Figure 42: Local Currency Formatting Examples 

Range Checks 

This option, selected from the Miscellaneous Edits Menu, allows specification of up to 
nine· ranges of minimum and maximum values for a field. If the field contains a digits
only or numeric character edit, the values entered will be compared numerically. In all 
other cases, the values will be compared as character strings. 

If, for a given range check pair, only the lower bound is specified, then all field data 
greater than or equal to that lower bound are accepted. Correspondingly, if only the up
per bound is specified, then all field data less than or equal to that upper bound are ac
cepted. Empty fields are always considered in range. 

The Range Check Screen is shown below. 

Page 68 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

range 1 to 
range 2 to 

. range 3 to 
range 4 to 
range 5 to 
range 6 to 
range 7 to 
range 8 to 
range 9 to 

Figure 43: Range Check Screen 

JPL Procedure 

A complete JPL procedure, including JPL subroutines, can be entered here. This field
level JPL procedure is called by JAM as part of the field validation process, just after 
the field validation function. Refer to the JPL Guide for instructions on writing JPL 
procedures. 

To enter JPL code, choose the jpl procedure option from the Miscellaneous Edits 
menu. The JPL Procedure Screen will appear. See the section on screen-level JPL, page 
32, for a discussion of this screen. 

The JPL code entered here can be called only when the field is vali~ and only from 
here; it cannot be called by the field validation function. Store JPL in the screen-level 
JPL Procedures Screen (or in a fIle) if the procedures must be called from field func
tions, control strings, or from within JPL procedures for other fields. The advantages of 
storing JPL procedures in a field-level JPL Procedures Screen are: 

• The JPL is partially syntax--checked and compiled when the JPL Pro
cedures Screen is closed. 

• The JPL is stored with the screen, rather than in a separate fIle. 

• The JPL code can be copied from screen to screen, via the data dictio
nary, for use by the same field on different screens. 

Field Size 
A field must occupy at least one position on the screen. However, JAM fields are virtu
al in the sense that the capacity of a field can be larger, in two dimensions, than its ons-

JAM Release 5.03 20 Nov 92 Page 69 



Authors Guide 

creen capacity: a field can shift and scroll. Shifting extends a field;s width beyond its 
on screen width. Scrolling permits a field to hold more data items than will fit onscreen. 

Each JAM field is part of an array, even if it is the only field in the array. The first array 
field (usually the field painted with the draw field symbol) is called the base field. 
Additional fields of the same array are created by specifying that the field has more 
than one element; the base field is the frrst element of the array. Each element has a 
unique field number, but shares every other characteristic with the other elements of the 
array. The array slots that can contain data are called occurrences. The elements of an 
array are the mechanism through which the array's occurrences are viewed (much like 
a viewport permits the entire screen to be viewed in sections). A scrolling array can 
have more occurrences than elements. A simple array has the same number of occur
rences as elements. 

Array OCClDTences can be allocated up to the maximum number of OCClDTences speci
fied for the array. See the Scrolling Arrays section (page 144) of the AuthOring Refer
ence chapter for a discussion of when occurrences are allocated. The number of allo
cated occurrences is never less than the number of array elements. The number of the 

. highest numbered non-blank allocated occurrence in the array is called the number of 
populated occurrences. Programmer's note: the library functions SIn_Inax_occurs 
and SIn_num_occurs return the maximum and populated number of occurrences re
spectively. 

Scrolling arrays can be synchronized so that they scroll together. This helps manage 
related information in table-oriented screens. Any set of scrollable arrays on a screen 
can be synchronized, provided that they have the same number of onscreen elements 
and the same maximum number of OCClDTences. Manual synchronization of arrays is 
discussed later in this chapter (see SPF7 on page 95). JAM will automatically synchro
nize two or more arrays if they are parallel. Parallel arrays meet the following criteria: 

• They have the same number of onscreen elements. 

• They have the same maximum number of occurrences. 

• If vertical, all base fields must start on the same row, and the offset 
between elements must be the same. 

• If horizontal, all base fields must start on the same column, and the 
sum of onscreen field length and distance between elements must be 
the same. 

To recap, a field's size has four parameters: 

• The onscreen length. 

• The maximum length. 

• The number of array elements. 

Page 70 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

• The maximum number of array occurrences. 

To modify the field size parameters, choose size on the Field Characteristics menu. The 
Field Size Screen will appear as shown below. It contains the field's current size param
eters. 

Onscreen Information 
Length: 
Number of elements: ___ . 
Distance between elements: ___ Horizontal?_ Word wrap?n 

Offscreen Information 

Maximum shifting length: 
Number of occurrences: 
Circular? Isolate? 

Alternative scrolling method: 

Figure 44: Field Size Screen 

The following information can be modified: 

• Length 

Increment: 
Page size: 

The onscreen length of the field. The field can not overlap another field or 
extend into the screen border. 

• Number of Elements 
The number of onscreen field elements in the array. Each element has its 
own field number. 

• Distance between Elements 
The number of columns between successive horizontal array elements or 
one greater than the number of rows between successive vertical array ele
ments (ie. - if the distance = I, then the elements will appear on successi ve 
lines). The default value is 1. 

• Horizontal? 
For a vertical array (elements above and below each other in a column) en
ter n or leave blank. For a horizontal array (elements stretching out right 
and left of each other) enter y. 

• Word wrap? 
Enter y so that words will shift between occurrences to avoid being split, 

JAM Release 5.03 20 Nov 92 Page 71 



Author's Guide 

and to avoid large unused portions of occurrences. This is useful for blocks 
of text in vertical arrays. 

• Maximum shifting length 
The maximum length of data to be put in the field. Must be greater than the 
on screen length to make the field shiftable. 

• Increment 
The number of characters by which the field data should be shifted when 
the user moves the cursor beyond the on screen field edge. 

• Number of occurrences 
The maximum number of occurrences to be put in the army. This must be 
greater than or equal to the number of on screen elements to make a scrol
lab Ie array. If no number is entered, then the array is a simple array. Simple 
arrays cannot be synchronized. 

• Page size 
The number of occurrences by which a PAGE UP or PAGE DOWN key
stroke should scroll the field. For the default, leave blank. This must be less 
than or equal to the number of elements. By default, this quantity is one less 
than the number of elements, or one for a scrolling field with one element 

• Circular? 
Enter y if the scrolling algorithm should wrap around from the last occur
rence of a scrolling array to the first, or from the first to the last, when the 
down/up arrow keys (that would normally leave the array) are pressed. 
Note that all array occurrences must be allocated for the array to scroll cir
cularly. 

• Isolate? 
Enter y if the array is parallel to one or more other arrays and you do not 
want it to be automatically synchronized with them. 

• Alternative scrolling method 
A hook string to invoke an alternative scroll driver to handle scrolling for 
the array. This can be used, for example, to apply the optional disk-based 
scrolling technique supplied with JAM in order to save memory. You can 
also write your own scroll driver and install it as the default driver in order 
to control the scrolling process. See the Programmer's Guide for more in
formation. 

Data Type 
The data type is used by the f2struct utility to construct C language data structures. 
These structures are used by certain JAM library functions (e.g. sm_rdstruct and 

Page 72 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

sm_wrtstruct) to exchange data between JAM and C programs. In addition, the 
sIl'Lftype library routine examines the data type edit when determining a field's ma
jor data type. The Data Type Menu is shown below. 

omit 
char string 
int 
unsigned int 
short int 
long int 
float 
double 
zoned dec. 
packed dec. 

Figure 45: Data Type Menu 

The special type omi t means that the field should be omitted from the data structure. 
The actual labels used for generating the data structures are taken from the message 
file, where they may be adapted to suit your programming language. The default mes
sage file comes with type labels suitable for C language programming. In addition, 
zoned and packed decimal data types are provided. 

The data types int, unsigned int, short int, long int, float, and 
double affect colo~lus processing in JAMlDbi. Refer to the JAMlDbi manual for 
details. 

If you select float, double, zoned dec, or packed dec then the Data Type 
Precision Screen is displayed as shown below. 

JAM Release 5.03 20 Nov 92 Page 73 



Author's Guide 

For this selection a prec1s1on must be given. 
This is the number of decimal places which will 
be retained on the right of the decimal point. 
It must be a number between 0 and 15: 2-

Sign prompt appears for zoned and packed only. 

I 
Enter 'y' to retain a sign or 'n' to ignore it y 

Figure 46: Data Type Precision Screen 

The default precision is the number of decimal places in the currency edit, if any, or 2 
otherwise. It is used by srn_rdstruct and sm_wrtstruct to determine the number 
of decimal places to preserve. It is also used in math calculations, in the absence of a 
clDTency edit, to determine the number of decimal places to display. 

The packed dec and zoned dec types may either be signed or unsigned. When 
either packed dec or zoned dec are specified, the Data Type Precision Screen 
displays a sign retention prompt. Enter y for sign~ or n for unsigned. Sign retention 
is used by f2struct and dd2struct to determine the size of fields in the data struc
ture it creates, and by srn_rdstruct and sm_wrtstruct to determine how to trans
fer data between the structure and the field. It does not impact math calculations. 

See the Programmer's Guide (sm_rdstruct and srn_wrtstruct) and Utilities 
Guide (dd2struct) for more information. 

4.3.4 

Fiel.d Summary (PFS) 

Viewing and editing field characteristics by wading through the entire PF4 menu tree 
can be tedious; the Field Summary Screen is provided for viewing and changing fre
quently modified field characteristics. To display the Field Summary Screen, position 
the cursor in a field and press PF5. The Field Summary Screen appears as shown below. 

Page 74 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

Field Summary tUtU 
Name ___________ _ Char Edits uoEilt 

Information in the shaded area cannot be changed here. 

Figure 47: Reid Summary Screen (Note: for readability, the 
screen shown here is not exactly as it appears in JAM.) 

While the Field Summary Screen is active, you can press PF4 to enter the PF4 menu 
hierarchy. Beware: any changes made while navigating that hierarchy will be lost if 
the Field Summary Screen is closed by typing EXIT; use XMIT to save your 
changes. 

Each field characteristic is fully described elsewhere in this chapter, but we will briefly 
discuss how to make changes to the characteristicS listed in the Field Summary Screen. 
Note that some characteristics can be viewed here, but not changed . 

• Name 
Field name. It can be changed by typing into the field . 

• Char Edits 

• Length 

• (Max) 

This is a circularly scrolling array with one element displaying the field's 
character edit To change the edit, Use the up and down arrow keys to select 
the one you want. The one that is visible when you hit XMIT on the window 
will be used. 

The field's onscreen length. It can be changed by typing into the field. 

The field's maximum shifting length. It can be changed by typing into the 
field . 

• Onscreen Elerns 
The number of elements (on screen fields) in the array. It can be changed 
by typing into the field. 

• Distance 
The distance from one array.element to the next It cannot be changed di
rectly. To modify, press PF4 and enter the regular menu hierarchy. 

JAM Release 5.03 20 Nov 92 Page 75 



Author's Guide 

• (Max Occurrences) 
The maximum number of occurrences in the array. It can be changed by 
typing into the field. 

• Display Att 
The field's display attributes. These can not be modified directly. To 
modify, press PF4 and enter the regular menu hierarchy. 

• Field Edits 
The field's edits. These can not be modified directly, use the PF4 key. 

• Other Edits 
Other attachments and edits. Use the PF4 key to modify. 

4.3.5 

Select Mode for Editing (PF6) 
Select mode is used to move and copy sets of fields and display areas within a screen 
and between screens. It is also used to delete fields and modify display attributes for 
sets of fields. A clipboard permits these screen components to be saved between editing 
sessions. To enter select mode, press the PF6 key when in draw or test mode. The status 
line will indicate select mode by displaying an @ in the first poSition. The full status line 
is pictured below. 

@.F2clip F3box F4di sp FSdel F6se 1 F7move F8copy F9 rept F10resel 

Figure 48: Select Mode Status Line 

Press the EXIT key to exit select mode and return to draw or test mode. As you can see 
from the status line pictured above, the function keys perform different functions in se
lect mode than they do in draw or test mode. 

In select mode. you derme and operate on select sets. A select set is a set of display 
areas and/or fields which are operated on as a unit You might think of a select set as 
being similar to a highlighted block of text in a word processor environment Like such 
a block. you can copy or move or delete a select set, or save it to a fIle. In the following 
sections. we will discuss derming and operating on select sets. The function keys are 
summarized briefly below. . 

• PF2 clip Activate clipboard menu. 

• PF3 box Draw box to define select set. 

• PF4 disp Change display attributes of select set 

Page 76 JAM Release 5.03 20 Nov 92 

'1 , 
J 



Chapter 4: The Screen Editor 

• PF5 del Delete select set The set is copied to clipboard Z. 

• PF6 sel Select or de-select an object 

• PF7 move Move select set. 

• PF 8 copy Copy select set 

• PF9 rept Repeat last operation. 

• PFIO resel Reselect set from previous select mode session. 

In select mode, the cursor behaves as if in draw mode; however, text cannot be entered. 

Establishing Select Sets (PF 6, PF 3, PF 10 ) 

As mentioned above, select mode is entered by pressing PF6 when in draw or test mode. 
If the cursor is in a field or display area when PF6 is pressed, then that field or display 
is the initial member of the select set; otherwise the select set will be empty initially. 
Each field and display area in the select set is marked by highlighted square brack
ets( [ D. 
The Field Select (PF6) key toggles a field or display area in and out of the select set In 
otber words, to add a field or a display area to the select set, position the cursor on it and 
press PF6. To deselect the field or display area, press PF6 again. 

The Box Select (PF3) key selects the fields and display areas in a rectangular region of 
tbe screen. If part of a field is in tbe box, then the whole field will be selected (opera
tions cannot be performed on parts of fields). If part of a display area is in the box, only 
that part will be selected. 

To use Box Select, place the cursor in one of the four comers of the region you wish to 
select Press the PF3 key, which places a highlighted asterisk (*) at the cursor position. 
This is called tbe anchor position. Now move the cursor to the opposite comer of tbe 
box. You will see asterisks appear at the other comers of the box as you move the cur
sor, but tbe original anchor asterisk will not move. Press PF3 again to add everything 
inside the box to the select set (XMIT, PF4, PF5, PF7, and PF8 also work). To abort the 
operation, press EXIT. 

The Reselect (PFIO) key, re-selects everything that was selected last time you left se
lect mode. Re-select is useful for performing a different operation on the same set of 
items. Note that when you press PFIO the first time you enter select mode in a screen 
editing session, nothing will happen. This is because there is nothing to re-select. 

Select Mode Operations (PF4, PF5, PF7 I PF8) 

The Display (PF4) key is used to set the display attributes for all the fields and display 
areas in a select set. Pressing PF4 causes the Display Attributes Screen (see page 24) to 

JAM Release 5.03 20 Nov 92 Page 77 



Author's Guide 

display. The members of a select set can have different display attributes. Only those 
attributes changed from the Display Attributes Screen will be changed for the members 
of the select set. For example, if two fields with different attributes are selected (say one 
is highlighted and the other blinking) and the attributes window is used to assign a color 
of blue, only the color will be inherited when the attributes window is closed. The 
fields will still maintain all of their other unique attributes. To set an attribute to the 
default value that comes up when the attributes screen is opened, you must tab to that 
attribute and actively set it. So, for example, to set the foreground color of the select set 
to white, tab to the color field and select white. See page 24 for a discussion of the Dis
play Attributes Screen. 

The Delete (PF5) key deletes all fields and display areas in the select set. The deleted 
items are moved to clipboard z. If you delete something by mistake, it can be restored 
from clipboard Z as discussed later in this chapter. Note that only the last deleted set 
may be "undeleted". 

The Move (PF7) key moves a select set around the screen. To move a select set, press 
PF7. The contents of the selected items will vanish, leaving only the highlighted brack
ets that define the select set Use the arrow keys to re-position the select set. Press PF7 
again to complete the move. The Copy (PF8) key works the same way except that the 
select set is copied to a new location rather than moved. 

A move or copy is rejected if it would result in overlapping fields. Overlapped display 
text is replaced by the overlapping field or display text Display text that overlaps a 
field becomes initial data for that field. Note that newly created fields inherit all field 
characteristics of the copied field except the field name. This is because field names 
must be unique on a screen. 

If a copied field is part of a group, then the newly created field becomes part of the same 
group. 

The Repeat (PF9) key applies the most recent operation to another, or to the same, se
lect set 

The Clipboard (PF2) 
The clipboard enables copying select sets from screen to screen. For example, you can 
use the clipboard to make all name and address blocks, including descriptive text, on all 
screens of your application look the same. 

By convention, we speak of "the clipboard". In reality, JAM supports 26 clipboards, 
named" A through z. Clipboard Z is used by JAM to store the most recently deleted 
field, display area, or select set; the previous content of Z is overwritten. You can 
"undo" a deletion by retrieving the contents of clipboard Z. 

To use the clipboard, press PF2 from select mode. The Clipboard Control Screen will 
display as shown below. 

Page 78 JAM Release 5.03 20 Nov 92 

""1 

I 
I 

.. , 



Chapter 4: The Screen Editor 

screen to clipboard 
clipboard to screen 
save clipboard to file 
read clipboard from file 
empty clipboard 

Figure 49: Clipboard Control Screen 

This screen is a menu of clipboard commands; to execute one, type the frrst letter of the 
command or position the oounce bar over the command and press XMIT. You will be 
prompted for the clipboard name (a default will appear) and, if necessary, for a file 
name. The Clipboard Control Screen with prompts is shown below. After supplying the 
information, press XMIT to invoke the command. 

display clipboard 
to clipboard 

to screen 
:: 1 i!~ I:·,-:::,:,!.::i· " 

read clipboard from file 
empty clipboard 

clipboard [A-Z] A 
file 

Figure 50: Clipboard Control Screen With Prompts 

The Clipboard Control menu commands are explained below: 

• display clipboard 
Show the content of the specified clipOOard. Press space bar to return to the 
Clipboard menu. 

• screen to clipboard 
Copy the select set to the specified clipboard. The clipboard name will de
fault to the frrst empty clipboard. 

• clipboard to screen 
Copy the content of the specified clipboard onto the screen. The Clipboard 
Control Screen is temporarily closed, and the contents of the clipboard are 
displayed at the cursor position on the edited screen. Use the arrow keys 
to move the clipboard contents around the screen as a unit. Press PF8 to 
complete the copy and return to the Clipboard menu (XMJT and PF7 also 
work). Press EXIT to abort. 

JAM Release 5.03 20 Nov 92 Page 79 



Author's Guide 

• save clipboard to file 
Save the specified clipboard to the specified file. The clipboard is saved as 
a screen that has the same display attributes as the original screen, and the 
size of the smallest box that can contain the select set This file can be 
opened as a JAM screen. Background attributes and draw field symbols are 
also retained, although if the clipboard is pasted onto an existing screen, 
they are lost 

• read clipboard from file 
Retrieve the clipboard content from a file created with the save clip
board to file command. Since clipboards are saved as JAM screens, 
any JAM screen can be retrieved in this fashion. When a screen is retrieved 
through the clipboard, its background color is lost and its border becomes 
multiple display areas. 

• empty clipboard 
Delete the content of the specified clipboard. 

Clipboard operations on select sets that include partial or complete groups will retain 
the group relationship. If a field that is part of a group is copied to the screen from the 
clipboard, then it is added to the group on the screen, if that group exists (i.e. if the 
name of the group in the clipboard is the same as the name of the group on the screen). 
If that group doesn't exist, then a new group is created with the attributes saved in the 
clipboard. 

4.3.6 

Simple Editing Commands (PF7, PF8) 
The select mode move and copy operations, described above, are directly available in 
draw/test mode for single fields or display areas. To move or copy a field/area, move 
the cursor to that field/area and press PF7 or PF8 respectively. The field/area will be 
marked by highlighted square brackets. Move the field/area (or copy field/area) with 
the arrow keys to the desired location, and press PF7 or PF8 again. 

4.3.7 

Repeating Operations (PF9) 
The select mode repeat operation, described above, is directly available in draw/test 
mode via the PF9 key. The last operation performed in draw/test mode is repeated when 
PF9 is pressed. The operations that can be repeated include: move, copy, graphics, and 
change field characteristics. 

Page 80 JAM Release 5.03 20 Nov 92 

"".l 
I , 



Chapter 4: The Screen Editor 

The repeat function works by recording and replaying keystrokes. This may produce 
surprising results in certain circumstances. For example, changing the field entry func
tion name on a field, toggling from typeover to insert mode, and then moving the cursor 
to another field and pressing PF9 will result in inserting the new name in front of the 
existing name (as opposed to replacing the old name with the new name). Even if you 
remain in typeover mode, the replacement text must be longer than the replaced text 
(the safest method is to use FIELD ERASE before entering the new function name). 

4.3.8 

Shifted Function Key Menu{PFIO) 
The shifted function keys SPFI through SPFIO also have meaning to the Screen Editor. 
They are not listed on the status line, but may be viewed by pressing the more key, 
PFIO. This will display the Shifted Function Key Menu shown below. 

::::.:~t: ....... : .... :.. ... .. 

Jam control strings 
create special objects 
Field or group names 
Data dict. search 
Add to data dict. 
Group Attributes 
Synchronized arrays 
Special characters 
Line drawing 

[Esc ] 
[ShFl ] 
[ShF2 ] 
[ShF3 ] 
[ShF4 ] 
[ShF5 ] 
[ShF6 ] 
[ShF7 ] 
[ShF8 ] 
[ShF9 ] 

Figure 51: Shifted Function Key Menu 

The keytops for 
your keyboard will 
be displayed. 

The Shifted Function Key options, which are explained in the following sections, can 
be accessed in one of three ways: 

• Press the Shifted Function Key in draw or test mode. To do this, you 
need to know which key to press without any guidance on the display. 
This is the quickest method. 

• Press PFIO in draw or test mode to display the Shifted Function Key 
Menu. The menu lists the shifted function keys; you can press the 
shifted function key itself while the menu is displayed, and the system 
will act exactly as if it had been pressed in draw or test mode. 

• Press PFIO in draw or test mode to display the Shifted Function Key 
Menu. Select an option by poSitioning the bounce bar and pressing 

JAM Release 5.03 20 Nov 92 Page 81 



Author's Guide 

XMIT or by typing the frrst letter of the option. The system will act 
exactly as if the key had been pressed in draw or test mode. 

To keep the documentation simple, the shifted function key operations are discussed as 
if they are invoked merely by pressing the shifted function key in draw or test mode. ~l 

4.3.9 

JAM Control Strings (SPF1) 
Control strings (see the Overview and the AuthOring Reference) direct the JAM Execu
tive to display forms, display windows, call C and JPL programs, and invoke operating 
system programs. The Control String Screen, shown below, is used to associate control 
strings with function keys . 

. SET JAM CONTROL STRINGS 

AUTO 
EXIT 
XMIT 
PFl 
PF2 
PF3 
PF4 
PF5 
PF6 
PF7 

"I'" ""II"IU"'"'''' 
Rgure 52: Control String Screen 

ZOOM 
helps when 
entering 
long control 
strings. 

A screen's Control String Screen contains a scrollable array of the control strings 
associated with function keys. This assignment of control strings to fimction keys ap
plies only to the edited screen. The Configuration Guide explains how to make global 
assignments. See section 7.2 on page 124 for a detailed discussion of control strings. 

The keys that can have control strings assigned to them are XIvIIT, EXIT, PFI through 
PF24, SPFI througb SPF24, and APPI through APP24. There is a special "key" named 
AUTO (there is no JAM logical key named AUTO) that can be assigned a control 

Page 82 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

string. To make an assignment, enter a control string on the line following the name of 
the key. If the control string is long, you may fmd the ZOOM key useful. When you 
enter a control string in the Control String Screen, it is stored with the screen, but takes 
up no space on the display. 

For example, the following assignments cause XMIT to display the form lookup, PFI 
to display the window curs tat, PF2 to call the C function sendmsg, and PF3 to call 
the JPL function chkerr: 

XMIT lookup 
PFl &curstat 
PF2 "sendmsg 
PF3 "jpl chkerr 

Hint to enable a key to behave like EXIT, use the control string "j rn_ ex it. To disable 
the EXIT key, use "nop. "jrrLexit and "nop are built-in functions. See the Pro
grammer's Guide for detail information on these and other built-in functions, or see 
section 7.2.4 on page 126 for a brief discussion. 

The AUTO control string is invoked each time the screen is activated (Le. when the 
screen is opened or exposed). The AUTO control string may be used to open a window 
which has an AUTO control string for opening another window and so on. This way a 
series of windows can be opened automatically. If AUTO control strings are used to 
open a series of windows, then closing the last window in the chain will cause them all 
to close. 

4.3.10 

Create Special Objects (SPF2) 
The special objects are menus, groups (radio buttons and checklists), and screen name 
fields. SPF2 creates these Objects quickly, using the most common attributes. Note that 
this is a shortcut-the objects may need to be modified (in some cases created from 
scratch using another method) to meet application requirements. See the Authoring 
Reference chapter for additional information on groups and menus. See SPF6 below 
(page 92) for information on assigning group attributes. 

To create a menu, group, or screen name field, press SPF2 to display the Create Special 
Objects Screen shown below-then make the appropriate menu selection. 

JAM Release 5.03 20 Nov 92 Page 83 



Author's Guide 

screen name field 
group 
menu 

Rgure 53: Create Special Objects Screen 

Shortcut Menu Creation 
Shortcut menu creation allows you to create a vertical or horizontal menu composed of 
two arrays. The first array contains the menu selection text The second array contains 
the menu control strings. Control strings and menus are described in the Authoring Ref
erence (sections 7.2 and 7.3 respectively). 

Selecting menu from the Create Special Objects Screen will display the Menu Shortcut 
Screen shown below. 

number of entries 
description field length 
distance between entries _1 __ 
horizontal? (yin) 

control field onscreen length 
control max (shifting) length 

Rgure 54: Menu Shortcut Screen 

Complete the entries in the Menu Shortcut Screen as follows: 

• number of entries 
The number of ODscreen menu selections (nmnber of elements in the menu 
selection array). 

• description field length 
The length of the menu selection fields (they will contain the text of the 
menu selections) . 

• distance between entries 
The distance between menu entries, measured in columns for horizontal 

Page 84 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

menus and in rows for vertical menus. For horizontal menus, the distance 
is measured between the end of a menu control field and the start of the next 
menu selection field. 

-horizontal? (yin) 
Enter y for a horizontal menu or n for a vertical menu. 

- control field onscreen length 
The on screen length for the menu control fields. 

- control max (shifting) length 
The maximum length for the menu control fields. 

The two arrays will be separated by one space. Both arrays will contain the number of 
elements specified in the Number of entries field. The first array will be the 
selection array, and the second will be the control string array. Return to draw mode to 
enter the selection strings into the frrst array and the control strings into the second 

Since the shortcut menu building feature creates an array, it should not be used to create 
a menu that will have submenus. However, the shortcut method can be used to create 
the submenus themselves. See page 46 for a full description of menus and submenus. 

Shortcut Group Creation 
Shortcut group creation allows you to create a vertical or horizontal radio button group 
or checklist A checklist is a group of fields of which any number may be selected A 
radio button group is a group of fields of which exactly one (no more, no less) is always 
selected A selection is made by pressing the NL key, or by pressing the first letter of the 
selection text Groups are described in greater detail in the AuthOring Reference. 

Selecting group from the Create Special Objects Screen will display the Group Short
cut screen shown below. 

JAM Release 5.03 20 Nov 92 Page 85 



Authors Guide 

group name 
group type Radio Button 
with boxes (yin) y 

offset of box bounce bar? 
modify box attribute? 

auto tab? (yin) 

number of entries 
description field length 
distance between entries 1-
horizontal? (yin) 

Figure 55: Group Shortcut Screen 

Complete the entries in the Group Shortcut Screen as follows: 

• group name 
Group names follow the same rules as field names; they can be up to 31 
characters long, and must start with an alphabetic character. A group and 
a field may not share the same name on a screen. Note that groups may not 
be referenced by number. 

• group type 
Radio Button or Checklist The group type field is actually a radio button 
group. Position the cursor with the space bar, then press NL to make the 
selection . 

• with boxes? (yin) 
Enter y to create a selection box to the left of each selection field. Selected 
fields will have an X displayed in the box; the selection box character is de
[med in the video me. You will be prompted for the offset of box, 
bounce bar?, andrnodify box attribute?.characteristics. See 
the examples later in this section. Note that, although boxes are displayed 
on the screen, they are not fields (they do not appear in DRAW mode). If 
a box happens to overlap a fiel~ then the box will not be displayed. 

• offset of box 
The number of spaces between the box and the selection text 

• bounce bar? 

Page 86 

By default, the cursor is displayed in the box. Type y to also display the 
selection text in toggled reverse video. 

JAM Release 5.03 20 Nov 92 

. -~ 

! 
I , 



Chapter 4: The Screen Editor 

• modify box attribute? 
Type y to display the Display Attributes Screen in order to change the dis
play attributes of the box. 

• auto tab? (yin) 
By default, the cursor does not move when a selection is made. Enter y to 
simulate a TAB when a selection is made. The default effect of a TAB is 
to leave the group. This default can be overridden witb the next group at
tribute. 

• number of entries 
The number of on screen group selections. An array with this number of 
elements will be created. 

• description field length 
The lengtb of tbe group selection fields (tbey will contain the text of the 
group selections). 

• distance between entries 
The distance between group entries, measured in columns for horizontal 
groups and in rows for vertical groups. For horizontal groups, tbe distance 
is measured between the end of a group selection field and tbe start of the 
next selection box (or group selection field if the group has no boxes). 

• horizontal ? (yIn) 
Enter y for a horizontal group or n for a vertical group. 

Each example below shows a group witb three choices: eggs, noodles, and rice (also 
known as the selection text). In each example, eggs are selected, and the cursor is on 
noodles. The examples use reverse video and blinking attributes (blinking in the exam
ple is indicated by grayed out text). The actual attributes depend on the capabilities of 
the video display. Furthermore, the examples apply equally well to radio buttons and 
checklists . 

- rice 

Figure 56: Group Wrth No Boxes 

JAM Release 5.03 20 Nov 92 Page 87 



Author's Guide 

X eggs rice 

Figure 57: Group With Boxes and Bounce Bar 

X eggs IJ noodles rice 

Rgure 58: Group Wrth Boxes and No Bounce Bar 

Screen Name Field Creation 
It is often convenient to have the name of a screen appear somewhere on the screen. If 
the name were entered as display text, it would have to be changed manually if the 
screen were renamed or copied. JAM provides a method for creating a screen name 
field, which is simply that any field whose name is j am_name will automatically pick 
up and display the name of the screen from the operating system at runtime. Note that 
the name will not display in draw or test mode. 

Selecting screen name field from the Create Special Objects Screen, automati
cally creates this field and returns the Screen Editor to draw/test mode. By default, the 
field is protected from entry or clearing. The upper and lower case field edits can be 
used to control the case in which the screen name is displayed. Note that the file name 
suffix (if any) specified by the configuration variable SMFEXTENSION is not displayed 
in the screen name field. Therefore, if SMFEXTENSION is . jam, then a screen stored 
in a file named mainmenu . Jam would be display in the jam_name field as rnain
menu. 

4.3.11 

Field and Group Names (SPF3) 
The PF5 and SPF6 keys display the name of an individual field or group. Sometimes, it 
is convenient to see all field or group names at once. Press SPF3 to see all field names 
at once. Each field on the screen, even if non-display, is displayed with its field name 
in place of its normal content The field name is truncated to the length of the field. An 
example screen is shown below. 

Page 88 JAM Release 5.03 20 Nov 92 

. , 



Chapter 4: The Screen Editor 

ernpid, __ Iname __ _ 

depa phone 

jam_name --1_ screen 
name 

fname __ _ field 

Figure 59: Screen With Reid Names Visible 

Names longer than the field length are truncated (e.g. depa above). At this point, any 
function key other than PF2 will return the Screen Editor to draw/test mode. The PF2 
key is a toggle between field name and group name display; pressing the PF2 key once 
will replace the field names with group names. Pressing PF2 again will replace the 
group names with field names. 

4.3.12 

Data Dictionary Search (SPF4) 

Use the SPF4 key to create a field from a data dictionary (DD) entry, or to check the 
consistency between a field and its corresponding data dictionary entry. To create a 
fiel~ press SPF4 while the cursor is not in a field. The Data Dictionary Search Screen 
is display~ as shown below. 

JAU Release 5.03 20 Nov 92 Page 89 



Author's Guide 

NAME 
industry 
origin 
empcount 
EOF 

Data Dictionary Listing 

COMMENT 
SIC code 
headquarters country 
number of employees 

Endcompare P7find P8next P9goto Esccancel 

Rgure 60: Data Dictionary Search Screen 

Select an entry, and press X?vflT; a field with the characteristics specified in the data 
dictionary will be created on the screen at the current cursor position. PAGE DOWN, 
PAGE Up, PF7 (fmd), PF8 (next), and PF9 (go to line number) may be used to select the 
desired entry. The Data Dictionary Editor chapter contains a more detailed description 
of this screen. 

To compare a field with a data dictionary entry, press SPF4 while the cursor is in a field. 
The Data Dictionary Search Screen is displayed. When an entry is selected, the attrib
utes of the entry and the field will be compared on the Data Dictionary Comparison 
Screen shown below. 

Page 90 JAM Release 5.03 20 Nov 92 

'1 , , 
) 



Chapter 4: The Screen Editor 

Field in Current Screen: 

Name gty Char Edits numeric Type double 
Length _6__ (Max ___ ) Onscreen Elerns _1 __ 

··~·~~~~I~~~~~:'qA€"E#~~@~S~B#¢*t(..;lii· •.• ···i .. . ............••.•....... 
Field': Edit:s: . RT-JUST CLR-INP· MUST-FILL·. «<"::<.:: .•.•.... 

:Ott.¢f·,'y~4:it~:::;':,.,:::.~(;E$::::::: :;:::((':::2>\,'''',:::''.'\)(:::. .... 
... . ... :.. ... :-:::< .. j~.:.:.,.~.:~~.~:.? ... »«.. . :,:",:-:-:.: .. -: >:':-:':': :': . ... . . .. ... . ." .. " . . ... . 

.. .. . '. ;.:-:.::.:.: .. :-:: .... -:::.:::;.-::.;. .::- ... :::::::::\:\ .. . 

< .• :<.::>:::...... .. ·.2·)\ri:¢.t~i\th.\p4·B~)hf¢t·i·$.h~iY·;::::·::·::·-.:(. ... ...: :'.<:: 

.... :: ::::-:::::.:.::::::::::: .. ::>::::::::.:::::: . .;.:-..... ,.... . ..... .' ............ ',.,' .. 
';'.;.',. ..... .......... :-:.,:::<.::::::>::,:::,::::::':.;.:> :', :..-:.' . .;.;............. ... ..... ... ... . ...... ",:::.:.,::,':: -: .. .;:-... -::-:-:-... -: .... :-: .. -::: .. :........... ' ...... . 

·H~~.::9#Y· .:. :.·.'::::::·······~t#.F:·:·~~A~:~ .. J1;f9Wf,.,:··:/1'X~~:'<##~:~.ah~9:·4n~< 

1111. ... ... ....... ..: .. :-:-::.-:>: .... -:-: ..... , 
. ..... ...... ..... ....... ':: ............. ::":' .' ....... .......................... .. ...... ........ ... .. 

Information in the shaded area cannot be changed here 
(use PF4 to modify). 

Endexecute P4rnodify PScopyDD P6restore Esccancel 

Figure 61: Data Dictionary Comparison Screen (Note: for readability, 
the screen shown here is not exactly as it appears in JAM.) 

A field's (not an entry's) characteristics can be changed from within the Data Dictio
nary Comparison Screen. Press PF4 to change a characteristic that cannot be changed 
directly from the Comparison screen. Press PF5 to change the characteristic of the field 
under the cursor to the characteristic defined in the DD. Press PF6 to restore the charac
teristic of the field to its original state. 

Fields that are not in the shaded area can be changed directly. To change the charac
ter edits or type, move the cursor to that field and press the up or down cursor 
keys (or the newline key) to cycle through the possible choices. To confirm the changes 
press XMIT; to abort, press EXIT. 

4.3.13 

Add to Data Dictionary (SPFS) 
Use the SPF5 key to create a data dictionary entry from a field. Place the cursor in a 
field and press S PF5. An entry in the Data Dictionary will be created that has all of the 

JAM Release 5.03 20 Nov 92 Page 91 



Authors Guide 

field's characteristics. An error will result if the cursor is not in a field, if the field is not 
named, or if the name already exists in the DD. 

The entry's scope (see page 1(0) will be the scope defined as the default for newly 
created DD entries. The entry will not become part of the local data block in application 
mode until the rebui Id index command is selected from within the DD editor (see 
page 5.3) or until the application is re-started. 

4.3.14 

Group Attributes (SPF6) 
Use SPF6 to create a group from existing fields, to add or delete fields to/from a group, 
or to change the attributes of a group. Groups were discussed briefly under SPF2 (page 
85), where a shortcut technique for group creation was described. Additional informa
tion is available in the the Authoring Reference chapter. 

A group is a set of fields, one or more of which may be selected by the user. While the 
value of a field is the data contained by the field, the value of a group is the list of se
lected fields in the group. There are two types of groups: radio buttons and checklists. 
A radio button group has exactly one selected field at all times; selecting a field auto
matically de-selects the previously selected field. A checklist can have any number of 
its fields selected. 

To create a group, first create all the fields that are to be part of the group. You can 
create the group before creating any fields, but it is usually easier to create the fields 
first The fields can be placed close to each other, or far apart The fields can be part of 
one or more arrays (possibly scrolling). Each occurrence of each array is individually 
selectable. 

After the fields are cr~ position the cursor in one of the fields and press SPF6. Al
ternatively, to add or drop fields from an existing group, or to change the attributes of 
an existing group, position your cursor in a field which is a member of the group, and 
press SPF6. The Group Attributes Screen will be displayed as shown below. 

Page 92 JAM Release 5.03 20 Nov 92 



Chapter 4: The Screen Editor 

group name 
group type Radio Button 
with boxes (yin) y 

offset of box bounce bar? 
modify box attribute? 

auto tab? (yin) 
previous group _____________ or 
next group 
validation function 
group entry function 
group exit function 
number of entries 

or 

P2group to DD P3dd search F4type P6delete 

Figure 62: Group Attributes Screen 

The entries on the Group Attributes Screen are described below: 

• group name 
Group names follow the same rules as field names; they can be up to 31 
characters long, and must start with an alphabetic character. A group and 
a field may not share the same name on a screen. Changing the group name 
will not delete the group; the selected fields will be moved from the exist
ing group to the new group. Note that groups may not be referenced by 
number. 

• group type 
Radio Button or Checklist The group type field is actually a radio button 
group. Position the cursor with the space bar, then press NL to make the 
selection . 

• with boxes? (yin) 
Enter y to create a selection box to the left of each selection field. Selected 
fields will have an X displayed in the box; the selection box character is de
fined in the video file. You will be prompted for the offset of box, 
bounce bar?, and modify box attribute? characteristics. 

• offset of box 
The number of spaces between the box and the selection text 

JAM Release 5.03 20 Nov 92 Page 93 



· Author's Guide ":" 

• bounce bar? 
By default, the cursor is displayed in the box. Type y to display the cursor 
by showing the selection text in toggled reverse video. 

• modify box attribute? 
Type y to display an Attributes Screen in order to change the display attrib
utes of the box. 

• auto tab? (yin) 
By default, the cursor does not move when a selection is made. In a radio 
button group, setting the autotab attribute to y will cause the cursor to leave 
the group when a selection is made. In a checklist, this attribute will cause 
the cursor to move to the next item in the group, just as if the space bar were 
pressed. 

• previous group 

• next group 
The name of a group or field to move to when BACKTAB (for previous 
group) or TAB (for next group) is pressed. These may be specified in the 
same manner as the next and previous field designations discussed on page 
50. 

• validation function 

• group entry function 

• group exit function 
Hook strings for calling group hook functions. The hook string includes the 
name, and optionally the arguments, of the hook function. JAM guarantees 
that the group exit function will be called exactly once for each call to the 
group entry function. The validation function is called when the group is 
exited with the TAB key, and when XMIT is pressed. A validation function 
of a field within the group is called only when the field is selected (the same 
is true of fields that are part of a menu). For checklists, the field validation 
function is also called when a field is deselected. The Programmer's Guide 
describes the hook fimctions in greater detail. The syntax of these hook 
strings is the same as the syntax of field function hook strings, described 
on page 59. 

• number of entries 
The number of onscreen group selections. This cannot be changed here. To 
add or delete entries, follow the instructions given below. 

The following function keys are active when the Group Attributes Screen is displayed: 

• PF2 Add the group definition to the data dictionary. The group !ll.Iru; contain 
fields in order for it to be added, although the fields themselves are not add· 

Page 94 JAM Release 5.03 20 Nov 92 

'., 
I 
I 



·PF4· 

·PF5 

Chapter 4: The Screen Editor 

ed to the DD. In fact, no field information is maintained in the group entry 
in the DO. The OD entry contains only the group name, number of occur
rences and the group's attributes. See page 103 for more information on 
groups in the data dictionary. 

Search the data dictionary for a group entry. The Data Dictionary Search 
Screen will display, but with only groups listed. See page 89 for a descrip
tion of that screen. On the Data Dictionary Search Screen, press XMIT to 
copy the attributes of the selected group into the Group Attributes Screen. 
This can be used to assign attributes to a new group, to compare the attrib
utes of a group with the attributes stored in the DO, or to update the attrib
utes of a group from the DD. 

Designate a type for the group so that the f 2 s t ru c t utility can include 
it in a programming language structure for the screen. See page 72 for a 
discussion of type. 

Delete the group defmition entirely. This does not delete the fields in the 
group; they revert to not belonging to a group. 

When you are done entering or modifying group attributes, press XMIT to select the 
group of field, or EXIT to abort. Pressing XMIT will save the modified attributes, close 
the Group Attributes Screen, and highlight the fields that currently compose the group; 
these fields are selected with highlighted brackets. Move the cursor from field to field, 
selecting and deselecting fields to be included in the group by toggling with the PF6 
key. Press XMIT to place the selected fields into the group with the attributes specified 
by the Group Attributes Screen. To abort the group selection, press EXIT (this does not 
undo changes made to the group's attribUtes). Note that no field can be in two groups. 

4.3.15 

Synchronized Arrays (SPF7) 
Scrolling arrays can be synchronized so that they scroll together. This helps manage 
related information in table-oriented screens. Any set of scrollable arrays on a screen 
can be synchronized, provided that they have the same number of onscreen elements 
and the same maximum number of occurrences. 

Parallel arrays are automatically synchronized by JAM. Automatic synchronization is 
discussed on page 70. To manually synchronize a set of arrays, press the SPF7 key 
while the cursor is on one of the arrays. Using the arrow keys, move the cursor to anoth
er scrolling array and press PF6 to select it. Select (or de-select) additional arrays by 
moving the cursor and pressing PF6. Each selected array will be highlighted. If an array 
that you try to select has a different number of onscreen elements from the other se
lected arrays, JAM will reject the selection and issue an error message. However, JAM 

JAM Release 5.03 20 Nov 92 Page 95 



Author's Guide 

is more forgiving about the maximum number of occurrences. When selecting a set of 
arrays to synchronize, the Screen Editor will adjust the maximum number of occur
rences of all selected arrays to the highest maximum number of occurrences of the se-
lected arrays. This change occurs on the screen. . '1 

When you have completed your selection, press XMIT to synchronize the arrays or 
EXIT to abort. 

To de-synchronize one or more (including all) arrays in a set of synchronized arrays, 
press SPF7 while the cursor is on one of the arrays. All of the arrays synchronized with 
that array (including itselO will be highlighted. To de-synchronize an array, move the 
cursor on it and press PF6. Press XMIT to complete the de-synchronization, or EXIT to 
abort. The only way to de-synchronize parallel arrays is to use the isolate option on the 
size window (page 71). 

4.3.16 

Character Graphics (SPF8) 
Press SPF8 to add graphiCs characters to the screen. At that point, the Graphics Selec
tion Screen, filled with character graphics defmed for your terminall5, will be dis
played. See the discussion of video flIes in the Configuration Guide for a discussion of 
how JAM determines the content of the Graphics Selection Screen. To select a graphics 
character and place it on the underlying screen, position the cursor over the graphics 
character and press Xl\1IT. To insert the character repeatedly, press the PF9 (repeat) key 
instead of bringing up the window again. Note that character graphics are just charac
ters, and follow the same rules as text characters for display attributes. To draw lines 
with graphic characters, use the line drawing mode described in the next section. 

An example Graphics Selection Screen is shown below. 

15. Note that if you design a screen with ctwacter graphics on one display and use it on another with a differ
ent character graphics set, the screen may look different. This is because when the screen is saved, only the 
ASCll code for the character in question is stored, and character graphic ASCII codes vary from display termi
nal to display tenninal. 

Page 96 JAM Release 5.03 20 Nov 92 

.', 



Chapter 4: The Screen Editor 

... 
.. " ..... : .. . . 

~ s • • + + • g 0 I r:! 9 l' ~ ~ .. 
411 t II U ~ • ~ t ! ~ f- L -e A ~ .. 

C 
II ... A- " 

.... 0 A- li .... II A .... II 

I:!. U e a a a a ~ e e e 1 1 1 A 
··0 "" If 

A- li " A " II 0 
II 

£ A E a3 0 0 0 u u y U ¢ y 

~ 
, , , , 

IV 
IV 

~ ~ f a 1 0 U n N g Q 6 r -, 2 I 
II , 

III I I I • ~ r l: « » "' a: 17 III • III .. 
0- JJ 7" ~ 8 0 6 co $ E n - ± L ~ - { -

J , ,..., 0 • • n 2 I i' ,..., V' 

r-T , rr=;r ~ F=;: ~ [-11' 11 

I II I II 

~ + ~ I~ JL ~I ~ * ~ I~ * ~I ,r 
L 1 J ~ JL ~ ~ J. ~ U. lJ. II - - . .. .. .. . . 

. -......... -

Rgure 63: Graphics Selection Screen for IBM PC 

4.3.17 

Line Drawing (SPF9) 
Press SPF9 to draw lines and boxes. The Line Drawing Style Screen is displayed as 
below. There are ten line graphic styles available, labelled 0--9. When you enter a new 
style number, the sample box in the screen is redrawn to show what that style looks like. 

JAM Release 5.03 20 Nov 92 Page 97 



Author's Guide 

style number .l 

The appearance of the 
styles is tenninal de
pendent. 

Figure 64: Line Drawing Style Screen 

Mter choosing a style and pressing XMIT, the Screen Editor will be in line draw mode, 
and the status line will look like: 

@F2Pen down F3box F4display FSstyle 

Rgure 65: Line Drawing Mode Status Line 

Move the cursor via the cursor keys to draw a line. When the cursor changes direction, 
a corner character is inserted. When a line crosses another line of the same style, an 
intersect character appears. 

Four function keys are available in line drawing mode: PF2, PF3, PF4, and PF5. PF2 
toggles between pen up and pen down. Pen up mode allows you to reposition the cursor 
without drawing lines. PF3 places toggles into box draw mode, putting an asterisk at the 
current cursor position to mark one corner of a box. As the cursor moves, a second 
asterisk moves to indicate the diagonally opposite comer of the box. The box is drawn 
when PF3 is pressed again. PF4lets you change the pen's display attributes on the Dis
play Attributes Screen (see page 24). PF5 allows you to change the line drawing style 
on the Line Graphics Style window. 

Please. note that line graphics mode is merely a convenient way of placing character 
graphics on the screen. The screen retains only the ASCII character codes for the lines. 

Page 98 JAM Release 5.03 20 Nov 92 



~::[E]::::::::::::::::::::::::::::::: :~: · . · . · . · . 
:: .. : .. : ...... :.: .... :.:.: .. :..:: 

ChapterS 

The Data Dictionary Editor 

5.1 

INTRODUCTION 
In this chapter we present a description of operation of the Data Dictionary Editor, 
presenting the features in the order that they are encOlmtered by a developer. A data 
dictionary is a repository of characteristics of fields, groups, and records (records are 
collections of fields and groups used by several JAM library functions). Fields and 
groups can be copied to and from screens (some restrictions apply to groups). Field and 
group characteristics can be compared to data dictionary entry charncteristics from 
within the Screen Editor, the j arneheek utility compares, and optionally fixes, consis
tency between all screens and the data dictionary. In addition, JAM creates the local 
data block (LOB) from the data dictionary (DD) at runtime. The LDB holds data that 
is transferred between screens at runtime. Please see the JAM Overview for a more 
complete discussion of the DD and the LDB. Please see the Authoring Reference chap
ter (page 135) for a discussion of the interaction between the LDB and screens. 

A developer generally uses the Data Dictionary Editor in the following ways: 

• create new data dictionary entries. 

• modify or delete existing data dictionary entries. 

JAM looks for the data dictionary in a binary fIle named data. die. The name that 
JAM looks for can be changed with the environment variable SMDICNAME (see the 
Configuration Guide), or with the library function sm_diename (see the Program
mer's Guide). The data dictionary file may also be edited by converting the binary file 
to an ASCn file with the dd2ase utility, editing it, and converting it back to a binary 
me with dd2ase (see the Utilities Guide). 

JAM Release 5.03 20 Nov 92 Page 99 



Author's Guide 

5.2 

ENTERING THE DATA DICTIONARY 
EDITOR (SPF6) 
The Data Dictionary Editor can be entered from application mode by pressing S PF 6. 
The display will clear, and the Data Dictionary Maintenance Screen will be displayed 
as shown below. 

Data Dictionary Maintenance 
NAME SC RIG COMMENT 

EOF 

~2add F3mod F4fld F5del F6undel P7find F8next F9goto F10dflt O{O 

entry#/total entries ---1 

Figure 66: Data Dictionary Maintenance Screen (Note: for readability, 
the screen shown here is not exactly as it appears in JAM.) 

If you are creating a new data dictionary file, then the message 
ERROR: Cannot read data.dic. 

will be displayed. Press the space bar to clear the message. The message will be re
placed with a status line showing function keys, as shown above, and you may continue 
with an empty data dictionary. The Data Dictionary Maintenance Screen has four ar
rays: 

-NAME 

Page 100 

The name of the entry must be unique within the dictionary. It can be any 
name that is a legal field name (see page 49). 

The scope of the entry. A scope of 0 prevents the entry from creating a cor-

JAM Release 5.03 20 Nov 92 

.,~ 

I 
I 
I 



Chapter 5: The Data Dictionary Editor 

responding LDB entry. A scope of 1 to 9 groups this entry with other entries 
for clearing and initializing entries as a group. See page 104 for additional 
information. 

The entry type. Leave blank for a field entry. Type R for a record, or G for 
a group . 

• COMMENT 
Any enterable text. The COMMENT field can be searched from within the 
DD editor to assist with finding entries. 

The cursor is positioned to the left of the current entry. The ARROW, TAB, BACK
TAB, NL, PAGE UP, and PAGE DOWN keys will change the current entry. The func
tion keys shown on the status line perform actions that are described later. 

5.3 

EXITING THE DATA DICTIONARY 
EDITOR 
To exit the editor, type EXIT whenever the Data Dictionary Maintenance Screen is ac
tive. The Data Dictionary Exit Screen is displayed as shown below. 

l1li new Data Dictionary file 
rebuild index and save Data Dictionary 
continue editing Data Dictionary 
exit Data Dictionary Editor 

Figure 67: Data Dictionary Exit Screen 

The menu in the Data Dictionary Editor Exit Window has the following options: 

• save 

• rebuild 

Save the data dictionary on disk . 

Save the data dictionary on disk, then re-initialize the local data block. A 
rebui Id is necessary only to continue the authoring session with an LDB 
that reflects that latest changes to the dictionary. All data in the LDB is lost, 
and all LDB initialization files (see the Authoring Reference chapter) are 

JAM Release 5.03 20 Nov 92 Page 101 



Author's Guide 

re-read, just as if the authoring utility were re-started from the operating 
system. 

• continue 

• exit 

5.4 

Return to the Data Dictionary Editor. 

Return to application mode. The data dictionary is not saved - use the 
save option to save the dictionary prior to exiting. 

DATA DICTIONARY EDITOR FUNCTIONS 
The functions of the Data Dictionary Editor are accessed via the function keys PF2 
through PFIO. These keys are displayed on the status line, as shown on page 100. The 
ordering of this section follows the order of the function keys, as listed below. 

• PF2 Add new entries. 

·PF3 

·PF4 

·PF5 

·PF6 

·PF7 

·PF8 

·PF9 

·PFIO 

5.4.1 

Modify entries. 

Modify fiel~ group, or record characteristics. 

Delete current entry. 

Undelete most recently deleted entry. 

Fmd entry by name or comment 

Find next entry. 

Go to an entry by line number. 

Set default field characteristics. 

Add Data Dictionary Entries (PF2) 
To add an entry above an existing entry, position the cursor on the existing entry and 
press PF2. One or more lines will open up for the addition of new entries, and the cursor 
will be positioned in the NAME column on the fIrSt new line. The current line (the line 
in which the entry will be entered) will be marked by an asterisk (.). Cursor movement 
will be restricted to that line. The status line will change to reflect the fact that the func
tion keys will perform different actions. For an empty dictionary, the screen will appear 
as follows: 

Page 102 JAM Release 5.03 20 Nov 92 



Chapter 5: The Data Dictionary Editor 

Data Dictionary Maintenance 
NAME SC RIG COMMENT 

* 2. 

EOF 

BXITsave!exit NLsave!cont F4field BXITcancel 

Figure 68: Adding New Data Dictionary Entries (Note: for readability, 
the screen shown here is not exactly as it appears in JAM.) 

Enter the entry name, the scope (which defaults to 2), and R or G if the entry is a record 
or group respectively. Entering R will cause the Record Defrnition Screen to pop up; 
records are dicussed below. Entering G will cause the Group Attributes Screen to pop 
up; see page 93. A comment can be entered if desired. Press XMIT to add the entry to 
the data dictionary and return to the normal status line, NL to add the entry and continue 
adding more on the lines below, or PF4 to assign field or group or record characteristics. 
PF4 displays the Field Characteristics Menu (page 36), Record Definition Screen, or 
Group Attributes Screen depending OIl the entry type. To abort the addition of the new 
entry on which the cursor is positioned, press EXIT. 

Data Dictionary Groups 
The data dictionary maintains the name and number of occurrences associated with a 
group, as well as the previous, next, and group functions. It also maintains the group 
type (checklist or radio button) and box information. There is no information about the 
fields that belong to the group. These facts have several implications: 

• Creating a group from the DD does not create the fields in the group. 
It is the developer's responsibility to ensure that the group contains the 
proper fields. 

• A group mUst have at least one field before being added to the DD via 
the SPF5 (Add to DO) feature of the Screen Editor (page 91). This tells 
the 00 how many occurrences to specify for the group. 

• A group entry in the LOB maintains a list of selected fields (identified 
by occurrence number within the group), not the contents of those 

JAM Release 5.03 20 Nov 92 Page 103 



Author's Guide 

fields. Therefore, a radio button group entry bas one occurrence (since 
only one field can be selected) and a checklist group entry has as many 
occurrences as there are occurrences in the group. 

Scope of Field and Group Entries 

Every field and group DD and LDB entry has a scope, although scope is not a character
istic of a field or group on a screen. A DD entry can have a scope between 0 and 9. A 
scope of I through 9 tells JAM to create a corresponding entry in the LDB at runtime. 
A scope of 0 tells JAM not to create a corresponding entry at runtime. Therefore, aDD 
entry with a scope of 0 is used only during development in order to facilitate consisten
cy between fields and groups on different screens. 

LDB entries can be cleared and reset as a group, based on scope, via the JAM library 
functions sm_lclear and sm_lreset. An LDB entry with a scope of 1 is consid
ered to be constant Entries with a scope of 1 cannot be cbanged after the LDB is fust 
initialized (see page 109), except via sm_lclear and sm_lreset. 

LDB scopes may, for example, be used to manage the contents of collections of LDB 
entries. Consider an insurance application that tracks group policies and individuals 
within each group. The insurance company name and address could be given a scope of 
1, since they would not change. Entries relating to a group policy, such as the group 
policy number, could be given a scope of 2. Entries relating to an individual policybold
er, such as the name of the policyholder, could be given a scope of 3. Each time the 
application begins dealing With a new policyholder, scope 3 entries could be cleared. 
Eacb time the application begins dealing with a new group policy, scope 2 entries could 
be cleared. 

Data Dictionary Records 

A record is a list of fields and groups. Several JAM library functions access the local 
data block via structures created from data dictionary records. See the Progammer's 
Guide (e.g. sm_rrecord) and the Utilities Guide (dd2struct) for additional 
information. Note that records are not the primary method of accessing LDB entries 
programmatically; the primary method is to access them like fields via sm_getfield 
and srn-putfield. 

Records are created and modified on the Record Definition Screen shown below. The 
screen is displayed when R is entered into the type field, or when PF4 is pressed while 
the cursor is on an entry that defines a record. 

Page 104 JAM Release 5.03 20 Nov 92 



Chapter 5: The Data Dictionary Editor 

Record 

Fields 

F4 for data type menu 

Figure 69: Record Definition Screen 

Enter re
cord 
name here. 

Enter 
field 
and group 
names 
here. 

To create a new record, enter the record's name and the names of the fields and groups 
that compose the record Note that a record should not be a component of a record. Al
though the Data Dictionary Editor allows this, the dd2struct routine will create an 
error. The rules for constructing a field name (see page 49) apply to constructing a re
cord name. The name of an existing record cannot be modified on this screen; use PF3 
instead. 

You may optionally specify a programming language data type for any given compo
nent in the record. The language data type impacts the programming language structure 
generated by dd2struct. While the cursor is placed on the component name, press 
PF4 to pop up the Data Type Menu (see page 73). If you do not specify programming 
language data type for a record component, the data type of the named data dictionary 
entry will be used. 

Press XMIT to save the record components or press EXIT to abort. 

5.4.2 

Modify Existing Entries (PF3) 
To modify any characteristic of an existing entry, position the cursor to that entry and 
press PF3. You may modify any characteristic, including the name, scope, type, and 
comment This differs from pressing PF4 in that name, scope, type, and comment can
not be modifed with PF4. All function keys work exactly as when adding new entries. 

JAM Release 5.03 20 Nov 92 Page 105 



Author's Guide 

5.4.3 

Modify Field Characteristics (PF4) 
PF4 is a shortcut for pressing PF3 to modify an entry, followed by pressing PF4 to 
change that entry's field, group, or record characteristics. Striking the PF4 key from the 
top level of the Data Dictionary Editor is a shortcut for striking PF3 to modify the cur
rent entry and then PF4 to modify field characteristics. 

5.4.4 

Deleting and Undeleting Entries (PF5 I PF6) 
To delete an entry, position the cursor next to it and press PF5. The entry will be im
mediately deleted without asking for confmnation. The most recently deleted entry can 
be restored with the PF6 key. When you press PF6, a line opens above the cursor and 
the most recently deleted entry is inserted there. You can use PF5 and PF6 to move 
items around in the data dictionary, but be careful. PF6 will undelete only the last dele
tion. If you delete two entries in a row the ftrst of the two will be unrecoverable (except, 
possibly, by aborting the editing session). 

5.4.5 

Searching for Entries (PF7, PF8) 
Press PF7 to search for a data dictionary entry. The Search String Screen will be dis
played as shown below. 

enter string ____________________________ _ 

search comment? (enter 'y') 

Figure 70: Search String Screen 

To search for a string, simply type in the text The search string, in addition to ordinary 
text, niay contain certain special characters: 

• To search for a name that begins with a sequence of characters, enter 
those characters preceded by a caret ( A). 

• The question mark (?) is a wild card, matching any single character. 

Page 106 JAM Release 5.03 20 Nov 92 

I 
1 



Chapter 5: The Data Dictionary Editor 

• The asterisk (*) is a wild card, matching any string of zero or more 
characters. 

These wild card characters do not have the same meaning when used in regular expres
sions for field validation. Here are some examples of search strings: 

• The search string "abc fmds the first entry after the cursor position 
that begins with abc. If the caret were missing from the search string, 
the frrst entry that contained the string abc would be found. 

• To find an entry whose name contains xyz but whose beginning char
acters are unknown, enter x:y z as a search string. This will also fmd 
strings with x:y z in the beginning. 

• To find an entry whose first character is a, whose second character is 
b or c, whose third character is d, and has a z somewhere following 
the d, enter the search string "a? d * z. This string would also match 
entries whose second character is other than b or c . 

To search the comments rather than the names of entries, enter y in the search com
ment? (enter I y I ) field. 

A search may be repeated by striking the PF8 key. Searches start at the current cursor 
position and go to the end, then wrap around to the beginning of the data dictionary and 
continue to the line above the current position. 

5.4.6 

Go to a Specified Line (PF 9) 

To go to an entry specified by line number, press the PF9 key. You will prompted for the 
desired number in the Line Number Screen shown below. 

enter line number 

Figure 71: Line Number Screen 

Entering 0 or 1 will position the cursor on the frrst line of the data dictionary. Entering 
a number greater than the total number of entries will position the cursor at the end of 
the data dictionary (i.e. at the EOF marker). 

JAM Release 5.03 20 Nov 92 Page 107 



Author's Guide 

5.4.7 

Default Entry Settings (PF10) 
When an entry is added to the data dictionary, it is given default characteristics. To 
change the default characteristics, press PFIO to display the Data Dictionary Defaults 
Screen shown below. 

Data Dictionary Defaults 

Char Edits unfilt Type char string Scope ~ 

!!\1~~'~~~~:~W~~I~~i~II~~~;;;~;~;liI1i,iJ~ 
:·:\· .. :·j:fjl::·:li·0:~.I·:\\·::::··:\:··:\\::\:'\·:·.:\\::.!::'::,:.-.::: .. \\]':::':.\::\.\ .. ',.\.! .. :'\\\\]\.;\·::\·:)·:·\:[·,,\\·:·]:·\::·,:::: .. ]\·:"· ... 1··\,\,·,\.:'.,,\,';'].:!\:!::::!:.:': .. ':!!\::.::::,,: .. :::']',.:::,:.:]':.': 

I nformation in the shaded area cannot be changed here 
(use the PF4 key). 

XMXTsave/exit F4modify BXXTcancel 

Figure 72: Data Dictionary Defaults Screen (Note: for readability, 
the screen shown here is not exactly as it appears in JAM.) 

The following characteristics can be set 

- Char Edits 

-Type 

• Scope 

- Length 

• (Max 

This is a circularly scrolling array that defines the character edit Use up 
and down arrow keys to display the desired edit and then tab out Whatever 
is left in the field when XM:IT is pressed is selected. 

This is a circularly scrolling array that defmes the data type . 

The scope of the data dictionary entry. Scope is a digit between 0 and 9. 

The onscreen length . 

) 

The maximum length. If the field is copied to a screen, and the maximum 
length is greater than the onscreen length, then the field will shift 

.Onscreen Elerns 
The number of on screen array elements. 

Page 108 JAM Release 5.03 20 Nov 92 

'i 
i 
I 



Chapter 5: The Data Dictionary Editor 

• Distance 
The number of lines or columns between elements that are vertical or hori
zontal respectively . 

• (Max Occurrences) 
The maximum number of occurrences. 

To set defaults for other characteristics, press the PF4 key while the Data Dictionary 
Defaults Screen is displayed. The Field Characteristics Menu (see page 36) will pop up. 
When you are done with setting defaults, press XMIT to save the new settings or press 
EXIT to discard them. 

5.5 

LOB INITIALIZATION 
As discussed on page 104, the LOB is created from DD entries having a scope between 
1 and 9. By default, all LOB entries are empty. The LOB is created and initialized by a 
call to sm_Idb_ini t, which generally occurs before sm_j top is called in the main 
routine provided with JAM (see the Programmer's Guide). Entries may be initialized to 
specified values via LDB initialization files. 

An initialization file is a text file that contains a list of pairs of an LDB entry name and 
a value. Each pair must be on a separate line. Each LDB entry name and value must be 
surrounded by quotation matXs. For example. to initialize the LOB entry compa
ny_name with the value JYACC. the initialization file should contain the following 
line: 

Individual occurrences of entries can be initialized by subscripting the entry name as 
shown below. 

JAM searches the directories specified in SMPATH for the LOB initialization fIles. Any 
of the flIes can initialize variables of any scope, but by convention, cons t . ini and 
global. ini initialize entries of scope 1, tran. ini initializes entries of scope 2. 
and local. ini initializes entries of scope 3. These ftIe names can be changed using 
the SMININAMES configuration variable. See the Configuration Guide for details. A 
complete example initialization fIle is shown below: 

JAM Release 5.03 20 Nov 92 Page 109 



Author's Guide 

"company_name" 
"co_street(l)" 
"co_street(2)" 
"co_street(3)" 
"co_city(l)" 
·co_city(2J· 
"co_city(3j" 
"co_state(l]" 
·co_state(2] " 
"co_state(3]" 
"co_zipcode(l)" 
·co_zipcode(2]" 
"co_zipcode(3)" 

Page 110 

"JYACC" 
"116 John Street" 
"12 Route 17 North" 
"55 William Street *200" 
"New York" 
"Paramus· 
"Wellesley" 
"NY" 
"NJ" 
"MA· 

"10038" 
"07652" 
"02181" 

JAM Release 5.03 20 Nov 92 

.~ 

, 
J 



Chapter 6 

The Keyset Editor 

6.1 

~::[E]:::::::::::::::::::::::::::::: :~. . . . . 
:: ..... : ........ :.: .. :.:.: .. : ... : 

INTRODUCTION TO SOFT KEYS 
Soft keys are physical keys that may have more than one logical value. Labels on the 
terminal display the cwrent logical value of each key. You may define several rows of 
soft keys, but only one row will be displayed at a time. The logical translation of a soft 
key varies, depending on the row of labels which appears on the monitor when the key 
is pressed. Often, one soft key is given the function of cbanging rows. Thus the end
user can change the value of a key. In this sense soft keys are different from regular or 
"bard" keys. 

Soft keys can be particularly useful when a terminal bas few function keys. They allow 
the keys to be "multiplexed," with the same key serving multiple functions, even on the 
same screen. Another advantage of soft keys is that they are "self-documenting," so as 
the user moves between rows, or from screen to screen, the labels change to indicate the 
function of a key in a given context 

The diagram in Figure 73 below, shows a sample screen with soft keys. 

JAM Release 5.03 20 Nov 92 Page 111 



Author's Guide 

Sample Screen with Soft Keys 

Field 1: 

Field 2: 

: 13 .11!1:1·:·:::::14 

SFT1 SFT2 SFT3 SFT4 SFT5 SFT6 

~J~JJJ~~JJ~~~~~J~~~J~J~J~ 
~J~JJJJJJJJJ~~~~J~~JJJJ~J 
~J~J~JJJJ~JJ~~~JJJ~JJJJJ~ 
~J~JJJJJJ~JJ~~~~J~~JJJJJ~ 

Rgure 73: The screen labels indicate the function of soft keys. 

Some terminals, particularly HP and AT&T models, provide hardware support for soft 
keys. On terminals with many function keys, the soft key labels may be used for help 
text If your terminal does not provide hardware support for soft keys, JAM can simu
late the functionality of soft keys, although the area available for screens will be slight
ly reduced. 

6.2 

KEYSETS 
A keyset supplies the mapping of soft keys into logical keys. It also contains the text 
that displays in the label areas on the screen. There may be more than one row of soft 
keys in a keyset Each row bas a particular mapping and set of labels. Keysets are 
created using the keyset editor. 

You may have more than one keyset in an application, for example an application-wide 
keyset and several screen specific keysets. Screen-specific keysets are designated in 

Page 112 JAM Release 5.03 20 Nov 92 



Chapter 6: The Keyset Editor 

the keyset field of the Screen Editor's Screen Characteristics Screen, as explained on 
page 35 of the Screen Editor chapter. The translation of soft keys changes depending 
on which keyset is currently in use. In the absence of a keyset, soft keys have default 
translations and labels. 

6.2.1 

The Keyset Editor 
The keyset editor is entered from application mode of j xform by pressing SPF4. You 
may also enter the editor by pressing SFT4 (soft key 4)16. The entry and exit screens 
are similar to those of the Screen Editor. 

The main screen for the keyset editor is shown in Figure 74 below. 

JYACC KEYSET EDITOR UTILITY 

Row 1 

Values 

~:}', : ,':: ,: : : 

_2 
Rgure 74: The Keyset Editor screen. Enter soft key values 
and labels here. 

Notice that the diagram in Figure 74 shows six numbered labels across the bottom of 
the screen. This is the key set editor's base key set The number of labels you will see 
depends on your video file, discussed on page 117. 

The editor displays one row of programmable soft keys at a time. There may be up to 
24 soft keys in each row. Use the blank lines in the center of the screen to enter the soft 

16. The Keyset Editor is available from the authoring environment only when it is linked in to the authoring 
executable. JAM is generally shipped without the keyset editor linked in. as only those using terminals that 
support soft keys will generally have need of it. If the keyset editor is not linked in to your authoring execut
able. you will need to modify jxrnain. c and re-link j xform. See the Programmer's Guide for details. 

JAM Release 5.03 20 Nov 92 Page 113 



Author's Guide 

key values, and the blank label areas to enter the labels. You may scroll from one row 
to the next with the PAGE UP and PAGE DOWN keys. 

Entering A Soft Key Value 
The value is what JAM translates the key press into. A soft key value may be any of the 
following: 

• The logical name of any JAM key. It may be entered in upper or lower 
case; if recognized it will be changed to upper case. The acceptable 
logical key names are: 

EXIT XMIT HELP 
BACK HOME DELE 
SPGU SPGD LARR 
EMOH INSL DELL 
SFfS VWPT PFI-PF24 

FHLP BKSP 
INS LP 
RARR DARR 
ZOOM MTGL 
SPFI-SPF24 

TAB NL 
FERA CLR 
UARR REFR 
LSHF RSHF 
APPI-APP24 

• The logical name of one of the special soft key navigational functions: 

I. SFfN (go to the Next row of soft keys) 
2. SFfP (go to the Previous row of soft keys) 
3. SFfx (go to row x. xis a value between 1 and 24) 

These special functions can only be assigned to soft keys; they cannot 
be defmed in the keyboard translation table (page 116). SFfN is 
sometimes referred to as the MORE key. Pressing the MORE key 
brings up the next row in the keyset On the last row of soft key labels, 
the MORE key brings up the fIrst row, in a circular fashion. SFTP per
forms the opposite function, bringing up the previous row of soft keys. 
SFTx brings up row x of the keyset x may be a number between 1 and 
24. Note that there is no limit to the number of rows in a keyset, only 
to the values of the navigational function. 

• Any number (entered in decimal, hex or octal format). If you want the 
soft key translated to a graphics or international character, enter the 
ISO number here. 

• Any single character (not in quotes). 

An entry which does oot satisfy one of these 4 categories will be treated as an error, and 
a message will be displayed. 

Entering A Soft Key Label 
A soft key label consists of 2 lines of up to 8 characters each. It contains the text that 
will be displayed on the screen when this keyset is in operation. Usually the label text 

Page 114 JAM Release 5.03 20 Nov 92 

, 
\ , 



Chapter 6: The Keyset Editor 

contains the key's name and/or a description of the key's function. If possible, make 
the fIrst line of each label unique among the key set, as the user may have only 1 line 
available for labels. 

The length of the labels is specified via the PF3 function key (see below). On terminals 
where the video rue specifIes fewer characters than the keyset editor does, the labels 
will be truncated (see page 117 for more on the video fIle). 

6.2.2 

Keyset Editor Function Keys 
The following function keys are in operation in the keyset editor: 

• PF3 displays a keyset global configuration window which allows the developer 
to change: 

·PF7 

1. the number of soft keys in each row of the keyset 
2. the length of the labels. 
3. the default display attributes of blank labels. 

Be careful when changing the global configuration of a partially or fully 
constructed keyset, as it is possible to lose data (for example by shortening 
the length of the labels). If you make a modification in this window, JAM 
will show you a "preview" of your changes when you exit the window. The 
resized keyset is displayed read-only, and you may scroll through the vari
ous rows with the PAGE UP and PAGE DOWN keys. This preview feature 
can be very useful for viewing how a key set might appear on a different 
terminal. Press lRANSMIT to accept the changes, or EXIT to cancel 
them. 

displays an attribute window for changing the attributes of the label at the 
current cursor position. All attributes (and colors) are listed even though 
the terminal may not support them. This permits creation of a keyset on 
one terminal that will be used on another. We suggest setting the reverse 
video attribute, so the soft keys labels will appear inside of a rectangle on 
any terminal. Note that PF4 cannot be used to alter blank labels; use PF3 
for that 

inserts a blank row in front of the current row. 

deletes the cwrent row. Use this key with care, as there is no "undo" fea
ture. (You can always exit without saving, however.) 

prompts for a row number and then moves (not copies) that row in front of 
the current row. 

JAM Release 5.03 20 Nov 92 Page 115 



Author's Guide 

·PF8 prompts for a row number and then copies that row in front of the current 
row. This feature can be used to propagate a template row to new rows 
where, for example, each row has MORE on the left and EXIT and HELP 
on the right. 

repeats a "change attribute" (PF4) operation. If the attributes of a soft key 
are changed, the PF9 key, when pressed on another soft key, will cause its 
attributes to be similarly modified . 

• INSL (INSert Line) inserts a blank soft key description at the current cursor loca
tion, shifting subsequent descriptions one position to the right 

• DELL (DELete Line) deletes a single soft key description at the current cursor 
location, shifting subsequent descriptions one position to the left 

In addition, NL, TAB, BACKTAB and the cursor keys can be used to move around the 
editor screen. Scroll PAGE UP moves to the previous row of keys, and PAGE DOWN 
moves to the next row in a circular fashion. Scrolling will generate one (and only one) 
blank row of keys for input. 

6.3 

KEYBOARD TRANSLATION TABLE 
The keyboard translation table (keyboard mapping) used by JAM is terminal specific. 
It is constructed using the rnodkey utility. The utility key2hin is then used to gener
ate the binary file that is actually used by JAM. 

If a terminal supports soft keys, they should be defmed using rnodkey. rnodkey allows 
up to 24 soft keys. Their logical names are SFI'1 through SFf24. Most terminals 
which support soft keys use 8 keys, although some emulators support 12. 

If a terminal does not provide hardware support for soft keys, you may still want to 
defme specific keystroke sequences (for example Alt-l through Alt-8) as your soft 
keys. If you do not defme them, then soft keys will not be available. 

NOTE: Be sure your keyboard translation table has a SFTS (Soft key set) function key 
defmed. SFTS toggles between the user-defmed keyset and the system keyset when in 
application mode of jxforrn. H you do not have a SFTS key defmed, you will not be 
able to test your keyset 

Page 116 JAM Release 5.03 20 Nov 92 

..., 
1 , 



Chapter 6: The Keyset Editor 

6.4 

SELECTION OF KEYSETS 
As mentioned above there is always a default keyset The default key set has one row. 
The soft keys SFTI through SFf24 are translated to PFI to PF24, and the labels read: 
fl through f24. 

Most applications will load an application-level key set as part of their initialization (in 
jrnain. c). Each screen may also specify a screen-level keyset that overrides the ap
plication-level keyset for the duration of the screen. Screen-level key sets are stacked 
as windows are opened. If an open screen has a screen-level key set and a window with
out one is opened, then the screen-level keyset (not the application-level keyset) is in 
use. At any time, an application program may override the keyset currently in use .. 

Keysets are referenced by name as disk flIes, memory resident "files", or members of 
a library. The search rules used by JAM to find a keyset are identical to those used to 
find a screen. A keyset may be made memory resident by using the bin2c utility and 
then registered to JAM by means of the form list Keysets may be placed in libraries, 
either together with screens and JPL procedures or in separate key set libraries. 

Two additional keyset scopes are the system-level keyset, used by jxform, and the 
override-level keyset which is displayed only by JAM. JAM uses the override-level 
keysetduring error messages, query_msg, etc. 

Because a keyset can consist of several rows, the keyset is tailored to a specific class of 
terminals (those with the given number of soft keys). As explained below, keysets may 
be used on terminals with a different number of soft keys. Generally this presents no 
problems; however in some rare cases it may be necessary to have different keysets for 
different terminals. This can easily be controlled by putting keysets in libraries and 
specifying which library is desired in the setup file. Alternatively, different keysets 
may be placed in different directories and then the SMPATH configuration variable can 
be used to control which keyset is selected. 

6.5 

VIDEO FILE 
A simple alteration to the video file must be made in order to display the soft key labels. 
In the absence of a video file entry, no labels will be displayed but the soft keys will still 
be processed. 

JAM Release 5.03 20 Nov 92 Page 117 



Author's Guide 

6.5.1 

The KPAR Statement 
The video file entry KPAR (Keyset PARameters) enables soft key labels. An example 
is shown below: 

KPAR= LENGTH=8 NUMBER=8 SIMULATE ATTRIBUTE 1LINE 

The keywords LENGTH, NUMBER and ATTRIBUTE apply to both simulated and hard
ware supported soft keys: 

• LENGTH indicates the length of each label; 

• NUMBER indicates how many labels can display in one row on the terminal; 

• ATTRIBUTE indicates that the soft key labels can utilize the attribute settings of the 
terminal. 

SIMULATE and 1LINE apply only to simulated soft keys: 

• SIMULATE designates that the soft keys are simulated. 

• 1LINE tells the soft key simulator to reserve only one line for soft keys. (The 
default is to reserve 2 lines.) 

Be careful not to specify more function keys in your video file than will fit on the 
screen. If you do, then the last few labels on the right will not appear on the display, but 
the soft keys associated with them will still be active. A good rule of thumb is that the 
number of columns on your terminal must be greater than: NUMBER x ( LENGTH + 
1). Therefore 8 keys of length 8 will fit on an 80 column monitor, but 9 keys of length 
8 will not 

6.5.2 

The KSET Statement 
If the terminal you are using provides hardware support for soft keys (Le. - they are 
not simulated), then you also need to specify the sequence that the soft keys should send 
to the terminal. This video file entry is called KSET. It is passed up to 15 parameters. 
The frrst is the soft key number, from 1 to NUMBER. The second and third are pointers 
to the two label lines. They poirit to null-terminated strings of length LENGTH. The 
next 12 parameters are the attribute parameters in precisely the same format as passed 
to SGR and ASGR. See the Configuration Guide for details. The following sequence 
for the HP2392A terminal is typical: 

KSET= ESC & f %d k 16 dOL %s %s ESC & j B 

Page 118 JAM Release 5.03 20 Nov 92 



Chapter 6: The Keyset Editor 

6.6 

SIMULATED SOFT KEYS 
Soft keys may be simulated on terminals that do not provide hardware support Simply 
reserve one or two lines on the bottom of each screen in your application and set up the 
video me using the SIMULATE keyword in the KPAR statement as described above, in 
section 6.5 You do not require a KSET statement in your video me if you are simulating 
soft keys. 

6.7 

KEYSET PORTABILITY 
CONSIDERATIONS 
A keyset specifies a number of soft key labels in each row. The video file specifies the 
number of soft keys that are physically available on the terminal in use. The following 
rules are used to map a keyset to a terminal when the number of soft keys they specify 
does not match. 

If the terminal (as specified in the video me) has more soft keys than are specified in the 
keyse~ each row on the terminal will contain several complete rows from the key set 
For example, if a terminal has 10 soft keys and is displaying a keyset with 4 soft keys 
per row, the display will show 8 soft keys (2 rows) at a time. 

Keep in mind that calls to the SFIN function will bring up the next row of displayable 
labels. Calls to SFrx will bring up row 'x'. Row 'x' is defined in terms of the display, 
not in terms of the keyset editor's specifications. Therefore, when the terminal has 
more soft keys than specified in the keyset editor, SFrx may not perform as you might 
expect In the above example, for instance, a call to SFf2 will bring up rows three and 
four as defined in the keyset editor. Calls to SFfx, where 'x' is greater than the number 
of displayable rows available will bring up the last row of labels. 

If the terminal has fewer soft keys than are specified in the keyse~ each row of the key
set will be split into multiple rows on the terminal, and each row will end with a MORE 
key as its rightmost key. Blank rows (i.e. those with only a MORE key) will be deleted, 
and then 2 special rules are applied: 

• If there is only one row, the MORE key is removed. 

• If there are exactly 2 rows and the second row has only one key plus a 
MORE key, the two rows are combined into one by discarding the 
MORE key from eacb row. 

JAM Release 5.03 20 Nov 92 Page 119 



Author's Guide 

The label that appears on the MORE key will be the same label that appears on any 
SFfN key in the row. If there is no SFIN key in the row, then the label will be as speci~ 
fied in the message fIle (usually ''MORE''). 

The rules for SFfN and SFfx stated above apply in this case as well. 

If you plan to port your application to multiple platforms, it is a good idea to end each 
row of soft keys with a MORE key (SFfN). This way, no matter what configuration 
yom terminal or keyset specifies, the user will be able to access all soft keys available. 
Note that if you change the number of keys av3tlable per row in the keyset editor after 
you have defmed a set of keys, the editor will automatically insert a MORE key at the 
end of each row for you. 

Page 120 JAM Release 5.03 20 Nov 92 

. ", 
I 

I 



Chapter 7 

Authoring Reference 

~:lE::::::::::::::::::::::::::·::::: : ftA-. . . ~ ~ . 
:: .. : .. :.: .. : ... : .... :.: ........ : 

This chapter contains useful information for JAM developers. It is arranged alphabeti
cally by topic. The topics and page numbers are listed below: 

• Colon Preprocessing. . . . . . . . . .. 121 

• Control Strings . . . . . . . . . . . . . .. 124 

• Help Screens . . . . . . . . . . . . . . . .. 130 

• Local Data Block ............. 135 

• Menus. . . . . . . . . . . . . . . . . . . . .. 136 

• Regular Expressions . . . . . . . . . .. 140 

• Scrolling Arrays .............. 144 

• Validation ................... 150 

• Viewports and Positioning ...... 152 

7.1 

COLON PREPROCESSING 
Hook string arguments are scanned for colon variables. A colon variable is a colon fol
lowed by the name of a field, group, or LDB entry (field or group). Each colon variable 
is replaced with its value. The combination of scanning and replacement is called colon 
preprocessing. Colon preprocessing takes place before the hook string is executed. 
Colon preprocessing is used extensively in JPL. See the JPL Guide for more informa
tion. 

JAM Release 5.03 20 Nov 92 Page 121 



Author's Guide 

Consider a JPL procedure named addinto that computes the sum of two integers and 
stores the sum into a variable. It requires three arguments: 

• the name of the destination variable, 

• the ftrst value to be added, and 

• the second value to be added. 

The following control string is invoked to store the sum of opl (whose content is cur
rently 300) and op2 (whose content is currently 500) into bigsum: 

~jpl addinto bigsum :opl :op2 

The colon preprocessor would scan the control string and replace: opl and : op2 with 
their contents. JAM would then execute the resulting control string: 

~jpl addinto bigsum 300 500 

To preserve a colon in a hook string, precede the colon with a backslash( \), precede the 
colon with another colon, or follow the colon with a space. In the flISt two cases, only 
the colon remains. In the third case, the colon and space both remain. To cause colon
expanded text to be re-scanned for colon variables, use : * instead of a single colon. 
See the discussion of colon preprocessing in the JPL Guide for more information. 

The hook strings affected by colon preprocessing are categorized in Figure 75 below. 
Colon preprocessing doesn't affect the entire hook string, only the portions of the hook 
string indicated in the table below. Function prototyping is a requirement for colon pre
processing of all hook strings that invoke C functions. This is because such a hook 
string can have arguments only if it is prototyped. 

In the case of prototyped functions, colon expanded arguments whose contents may 
contain spaces should be enclosed in quotation marks (see Figure 76). 

Category Subcategory Restrictions 

Control Strings " strings Applies to the arguments (Le., the entire 
string after the function name). 

" j p 1 strings Applies to the arguments (i.e., the entire 
string after "jpl procname). 

! strings Applies to entire string. 

& strings Not performed. 
&& strings 

form strings 

Page 122 JAM Release 5.03 20 Nov 92 

.. '1 
I 
I 



Chapter 7: Authoring Reference 

Category Subcategory Restrictions 

Field, Group, and jpl strings Applies to entire string after j pI proc-
Screen Function name. 
Hook Strings 

strings that invoke Applies to entire string after function 
C functions name. The function must be prototyped 

Figure 75: Colon Preprocessing of Hook Strings 

The following table shows several hook strings before and after colon preprocessing. 
Assume that the value of opl is 300, the value of op2 is 500, the value of 1 urnped 
is 300 500, and the value of text is enter. 

Hook String Be/ore Pre-processing Hook String After Pre-processing 

"jpl add :opl :op2 "jpl add 300 500 

"jpl add :lurnped "jpl add 300 500 

"jpl :text :op2 "jpl :text 500 

"jpl display : :opl "jpl display :opl 

"jpl display \:opl "jpl display :opl 

"jpl display "Err: oops" "jpl display "Err: oops" 

"myfunc :opl :op2 "myfunc 300 500 

":text ":text 

! : text :opl :op2 !enter 300 500 

myhook :opl :op2 myhook 300 500 

myhook ":lumped" myhook 300 500 

myhook : lumped myhook 300 

Figure 76: Hook String Colon Preprocessing Examples 

Remember that colon preprocessing is performed fust Then the resulting string is pro
cessed as if it were the original string. 

JAM Release 5.03 20 Nov 92 Page 123 



Author's Guide 

7.2 

CONTROL STRINGS 
A control string is associated with a function key or with a menu selection field in order 
to specify window display, form display, JPL execution, C function execution, or pro
gram execution. The association of a control string with a function key is done within 
the Control Strings Screen (see page 82). The association of a control string with a 
menu selection field is done by placing the control string in the field following the 
menu selection field, called the menu control field (see page 84 and the Menu section 
of this chapter). A control string can also be executed directly from JPL procedures 
with the use of the ca 11 verb. 

The type of action performed by a control string is determined by the leading characters 
in the control string. The table below summarizes the leading characters and the corre
sponding actions. The sections that follow explain these actions in detail. 

Leading Action Type Example 
Character 

None Display form. rna1nmenmu 

& Display stacked window. &(5,20)status 

&& Display sibling window. &&(5,20)status 

I\. Invoke C function. "'drop acctno 

I\.jpl Invoke JPL procedure. "'jpl chkcust Iname 

, Invoke P"ln!'laLll. !wordproc :filename 

Rgure n: Leading Characters of Control Strings 

7.2.1 

Form Control Strings 
A form control string has no special leading characters. The first word in the string is 
interpreted as the name of a screen to be displayed as a form. The screen name may be 
preceded by viewport parameters (page 152). When a screen is displayed as a form, all 
open windows (including the base form) are first closed. If the form name is not already 
on the form stack, then it is added. Otherwise, the form stack is popped until the form 
name is on top of the stack. See the JAM Overview for a more complete discussion of 
the form and window stacks. 

Page 124 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

Several examples of form control strings are presented below: 

Form Control String Comments 

mainmenu Display rnainmenu at row 1, column 1 
of the physical display. 

(5,20)rnainmenu Display mainrnenu at row 5, column 
20 of the physical display. 

(l,l,lO,40,S,5)rnainmenu Display mainmenu in a 10 row by 40 
column viewport positioned at row 1, 
column 1 of the physical display. Row 
5, column 5 of the screen will be initial-
ly positioned at the top left comer of the 
viewport. 

Figure 78: Form Control String Examples 

7.2.2 

Stacked Window Control Strings 
A stacked window control string starts with a single ampersand (&). The frrst word in 
the string is interpreted as the name of a screen to be displayed as a stacked window. 
The screen name may be preceded by viewport parameters (page 152). When a screen 
is displayed as a stacked window, all open windows (including the base form) remain 
open, and the new window is displayed above the older windows. Stacked windows 
were the only type of window supported by JAM prior to release 5. 

Several examples of stacked window control strings are presented below: 

JAM Release 5.03 20 Nov 92 Page 125 



Author's Guide 

Stacked Window Control String Comments 

&mainrnenu Display mainrnenu at row 1, column 1 
of the physical display. 

&(5,20)rnainmenu Display rnainmenu at row 5, column 
20 of the physical display. 

&(l,l,lO,40,5,5)rnainmenu Display mainmenu in a 10 row by 25 
column viewport positioned at row 1, 
column 1 of the physical display. Row 
5, column 5 of the screen will be initial-
ly positioned at the top left comer of the 
viewport. 

Figure 79: Stacked Window Control String Examples 

7.2.3 

Sibling Window Control Strings 
A sibling window control string starts with a double ampersand (&&). The fIrst word in 
the string is interpreted as the name of a screen to be displayed as a sibling window. The 
screen name may be preceded by viewport parameters (page 154). When a screen is 
displayed as a sibling window, all open windows (including the base fonn) remain 
open, and the new window is displayed above the older windows. The new window 
becomes a sibling of the previously active window, and of all windows that are siblings 
to the previously active window. The user can freely move between sibling windows by 
pressing the VIEWPORT key (see page 158). The stacked window examples in 
Figure 79 apply to sibling windows (just add a second ampersand). A window's mode 
may be converted between stacked and sibling via the library function SIn_sibling. 

7.2.4 

C Function Control Strings 
A C function control'string starts with a caret ("). The first word in the string is inter
preted as the name of a C function to be invoked. The C function name may be preced
ed by a target list (see below). The arguments to the function (but not the function name 
itself) are processed by the colon preprocessor as described in section 7.1 C functions 
called from control strings are often referred to as contralfunctions. 

There are three types of C functions that can be invoked: developer-written, JAM li
brary, and built-in. Developer-written ftmctions must be installed with SID_install. 

Page 126 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

JAM library functions must be prototyped and installed. The built-in functions should 
not be prototyped or installed See the Programmer's Guide for a discussion of proto
typing and installing functions. The Programmer's Guide also contains reference pages 
for the built-in functions; they are summarized briefly below: 

• jrn_exit 
Close active screen and return to previous screen, precisely as if EXIT were 
pressed. 

• jrn_gotop 
Return to the top level screen, precisely as if SPFI were pressed. 

• jrn_goform 
Open a window that prompts for the name of a screen to display, precisely 
as if SPF3 were pressed 

• j rn_keys log/csCkey_ocstrin9-'ist 
Place the specified JAM logical keys on the keyboard input queue, to be 
processed by JAM as if each logical key were pressed in order. For exam
ple, "Ajrn_keys EXIT CLR" makes JAM behave as if EXIT and CLR 
were pressed in succession; ""jrn_keys HOME 'hello'" will cause 
JAM to aetas if the HOME key were pressed and then the word 'hello' was 
typed. 

• jrn_rnnutogl 
Toggle the active screen between menu mode and data entry mode, precise
ly as if MTGL were pressed. 

• jrn_systern 
Open a window that prompts for a program to be executed by the operating 
system, precisely as if SPF2 were pressed. 

Several C function control strings are presented below: 

JAM Release 5.03 20 Nov 92 Page 127 



Author's Guide 

C Function Control String Comments 

"'drop acctno 

"'verify :narne :idnurn Invoke ver i fy, passing the contents of name 
and i dn urn as arguments. 

"'jrn_exit Invoke the built-in function j rn_exi t to simu-
late the default action of the EXIT key. 

"'jrn_keys CLR HOME Invoke the built-in function j rn_keys to simu-
late pressing CLR followed by HOME (clear 
the screen and move the cursor to the home 
position). 

Figure 80: C Function Control String Examples 

The C function must return an integer. If the integer corresponds to the value of a JAM 
logical function key, then the JAM Executive processes that key. For example, if a 
function returns PF4, then JAM behaves as if PF4 had been pressed by the user. The 
function should return 0 if there is no key to process. 

Target Lists 
A target list is a list of function return values associated with control strings. As dis
cussed above, the value returned by a control function is normally interpreted as a log
ical function key to be processed by the JAM Executive. A target list provides an alter
native mechanism for controlling the actions to be taken as a result of the execution of 
a control function or of a JPL procedure (JPL procedure control strings are discussed 
below). It enables conditional execution of multiple control strings. 

For example, the following control string invokes the function named inquire. If 
inquire returns -1, then the built-in function jrn_exi t is invoked. Otherwise, noth
ing happens (Le. the active screen remains active): 

A(_l = Aj~exit)inquire 

Syntactically, a target list appears, in parentheses, after the caret and before the function 
name. The list consists of semi~olon separated pairs of the form: 

retum_ value ::: controLstring 

where return_ value is a decimal or hexadecimal (specified by starting with Ox) integer 
returned by the function. The controLstring will be executed when the actual return 
value matches return_value. If the target item contains only a control string, then that 
control string is executed by default when none of the preceding return values are 
matched. Since the pairs are evaluated from left to right, the default should be the last 
item in the target list 

Page 128 JAM Release 5.03 20 Nov 92 

-"r , 
I 



Chapter 7: Authoring Reference 

Target lists may be nested to any depth. That is, a control string in a target list may 
contain its own target list The following example illustrates nesting, multiple target 
items, and a default item: 

~(-l=~(~jm_exit)cleanup; l=&success; &&(5,5)defwin)process 

Tbe control string fIrst invokes the C function named process. If process returns 
-1, then cleanup is invoked. Tbe built-in function jrn_exit is invoked wben 
cleanup returns, regardless of the value returned by cleanup. If process returns 
1, then the screen success is displayed as a window. If process returns any other 
value, then the screen defwin is displayed as a sibling window at row 5, column 5 of 
the pbysical display. 

Colon preprocessing is performed on control strings in a target list (not on the return 
value) after the control string's return value is matcbed. Therefore, a nested control 
string with a colon-expanded argument can be impacted by cbanges to the the value of 
the colon variable by a C function called earlier within the same control string. For ex
ample, in the following control string, the value of uname passed to ident can be 
cbanged by the function lookup: 

~(Aident :uname)lookup 

7.2.5 

JPL Procedure Control Strings 
A JPL procedure control string starts with a caret followed by the word j p 1 (ie. -
Ajpl). The second word in the string is interpreted as the name of a JPL procedure to 
be invoked The procedure name may be preceded by a target list (see above). Tbe argu
ments to the function (but not the function name itself) are processed by the colon pre
processor as described in section 7.1 

Several JPL procedure control strings are presented below: 

JPL Procedure Control String Comments 

Ajpl chkcust lname 

Ajpl find :lname Invoke find, passing the contents of 
Iname as an argument 

Figure 81: JPL Procedure Control String Examples 

The JPL procedure must return an integer. If the integer corresponds to the value of a 
JAM logical function key, then, in the absence of a target list, the JAM Executive pro
cesses that key. For example, if a procedure returns PF4, then JAM bebaves as if PF4 

JAM Release 5.03 20 Nov 92 Page 129 



Authors Guide 

bad been pressed by the user. Tbe procedure should return 0 if there is no key to pro
cess. 

7.2.6 

Program Control Strings 
A program control string starts with an exclamation point (!). The entire string follow
ing the exclamation point is interpreted as a program and its arguments to be executed 
by the operating system. At runtime, the string (program name and arguments) are 
colon-preprocessed and passed to the operating system for execution. After the pro
gram execution is complete, the user is prompted to press the space bar before returning 
to JAM. 

Several examples of program control strings are presented below: 

Program Control String Conunents 

!wordproc : filename Invoke the word processor to edit the 
file whose name is stored in the vari-
able filename. 

!dir Display a directory listing under 
some o~ting systems. 

Rgure 82: Program Control String Examples 

7.3 

HELP SCREENS 
JAM's help screen feature associates a help window with a field or an entire screen. To 
associate a help screen with a field or screen, follow the instructions on pages 33 and 
53. Each help screen is created with the Screen Editor. The purpose of this section is to 
describe the several ways in which help screens can function and to describe how to 
construct help screens. The following types of help screens are described in this sec
tion: . 

• Help Screen With Display Data Only. 

• Help Screen Containing A Menu 

• Help Screen With Data Entry Fields 

Page 130 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

• Help Screen With Field-Level Help Sub-Screens 

In all cases, a help screen may have its own screen-level help screen associated with it. 
In addition, as of JAM release 5, function keys associated with control strings work on 
help screens. 

7.3.1 

Help Screen With Display Data Only 
The simplest help screens, like the screen shown below, are display-only. The screen 
may contain fields with protection from data entry and tabbing into, possibly filled 
from the LDB or from a screen entry function. The help window is closed when EXIT 
is pressed. 

Instructions for cost field: 

Enter the price in units of the 
local currency of the originating 
bank. 

Figure 83: Oisplay-Only Help Screen 

Any help screen with no unprotected fields or menu fields will be treated as display 
only. To create a scrolling help screen, create a scrolling array with a word-wrap edit, 
and protect it from data-entry and clearing. 

7.3.2 

Help Screen Containing A Menu 
A help screen can contain a menu that calls up additional help screens, as in the help 
screen shown below. 

JAM Release 5.03 20 Nov 92 Page 131 



Author's Guide 

SAVINGS TRANSACTIONS 

Valid codes for savings transactions 
are listed below. For more help, enter 
a transaction code letter. When you 
are finished, press EXIT. 

II deposit 
W withdrawal 
C cash check 
I interest calculation 
M money order 

Rgure 84: Help Screen Containing A Menu 

To create a help screen with a menu: 

• Create a screen with fields that have the menu field edit (see page 46). 
Don't create menu control fields; they are ignored during help screen 
processing. 

• For each menu field, use the help screen field attachment (page 53) to 
specify an associated lower-level help screen. 

When the user makes a selection from the menu, the associated lower-level help screen 
will appear. 

7.3.3 

Help Screen With Data Entry Fields 
In some cases, it may be desirable for the user to be able to enter data into a screen 
while the associated help screen is displayed. This can be done if the help screen is 
created with a field for data entry. 

When the help screen is displayed, the content of the associated field is copied into the 
field on the help screen. The user may then enter data into the help screen field. When 
the user presses XMIT, the content of the help screen field is copied back into the 
associated field, and the help screen closes. If the user presses EXIT, then the field is 
not copied. 

The help function provides for data entry automatically whenever the help screen con
tains exactly one field that is not protected from data entry and tabbing into. The data 

Page 132 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

entry field on the help screen is normally defmed to be the same length as the associated 
field. If the data entry field is too short, then it is automatically made shiftable, with a 
maximum length equal to the length of the associated field. If it is too long, then it is 
shortened. In addition, the following edits are copied to the field·on the help screen: 

• character 

• right justified 

• upper or lower case 

• data required 

• must fill 

• clear on input 

• check digit 

• currency format 

• range check 

7.3.4 

Help Screen With Field-Level Help 
Sub-Screens 
The help function will not process both data entry and menu fields on the same screen. 
However. it is possible to provide additional help screens for a data entry help screen by 
associating help with the help screen data entry fiel~ or by associating help with pro
tected fields. 

The screen shown below is an example of the use of the latter feature. 

JAM Release 5.03 20 Nov 92 Page 133 



Author's Guide 

Face Amount of Insurance 

For most plans, enter the INITIAL AMOUNT*. 
For DECREASING TERM* plans, enter 3/5 of 
the initial amount. For RIDERS* providing 
coverage for CHILDREN*, enter 3 times the 
initial amount. 

The face amount may be entered 1n the field 
directly below: 

To copy the above amount to the face amount 
field, press XMIT. To leave this help 
screen without copying the amount, press 
EXIT. 

*For glossary, position cursor on the 
starred word and press HELP. 

Figure 85: Help Screen Wrth ReltH-evel Help Sub--Screens 

When the cursor is positioned on one of the keywords (shown in capitalized text) and 
the HELP key is pressed, the associated lower-level help screen is displayed. To create 
a help screen using this feature: 

• Create a help screen with all text entered as display data 

• Replace each keyword by underscores, and press XMIT to convert the 
underscores into fields. 

• Re-enter the keywords into the fields. Make the keywords distinguish
able from the rest of the text by using display attributes, or by using 
other means such as capitalization. 

• Protect each keyword field from data entry, but not from tabbing, and 
assign it a help screen (page 53). 

Item selection screens may also be viewed as help screens. Item selection is described 
on page 54. 

Page 134 JAM Release 5.03 20 Nov 92 

.J 



Chapter 7: Authoring Reference 

7.4 

LOCAL DATA BLOCK 
The purpose of this section is to discuss the interaction between entries in the LDB and 
fields and groups on a screen. The LDB is created from the data dictionary (DD) at run
time (and when the authoring tool is entered in application mode). The DD editor is 
discussed in chapter 5 on page 99. Access to the DD from the Screen Editor is discussed 
in the Screen Editor chapter in sections 4.3.12 (Data Dictionary Search) and 4.3.13 
(Add to Data Dictionary) on pages 89 and 91. LDB initialization is discussed on page 
109. Manipulating the LDB entries by scope is discussed on page 104. 

The LDB is a table of entry names with associated values. Each entry is either a field 
entry or a group entry. Each entry has a maximum number of occurrences and a length, 
as defined by the corresponding entry in the DD. Field entries also have field character
istics needed for proper formatting of data, such as the currency format. The values in 
the LDB are maintained for the duration of the application; they do not disappear when 
a screen is closed. Therefore, the LDB can be used to move data between screens and 
to preserve data that is displayed only on a single screen after the screen has been 
closed. Most of the discussion below applies equally to field and group entries; for con
venience we will generally use the term field to mean a field or a group entry. 

Screen fields and LDB entries are matched by name. If the field name is the name of a 
field entry in the LDB, then the field is said to be in the LDB. When a user enters data 
into a field that is in the LDB, then the data is copied to the LDB before any other 
screen is displayed. When a screen containing fields in the LDB is displayed, the fields 
are filled with the content of the corresponding LDB entry. However, initial data in a 
field (data entered into the field with the Screen Editor) overrides the content from the 
LDB. Note that truncation occurs when the length of the destination (screen field or 
LDB entry) is less than the length of the source (screen field or LDB entry). If the maxi
mum number of occurrences in the destination (i.e. the number returned by the library 
function sm_max_occurs) is less than the allocated number of occurrences in the 
source, then data is copied until the destination is full. In all cases, the allocated number 
of occurrenceS of the destination is set to the number of occurrences actually copied. 

JAM library functions that access field values by field name (e.g. sm_n_getfield) 
seek them first on the screen, and then in the LDB, except at screen entry, when the 
order is reversed. Math calculations and JPL procedures work in the same fashion. This 
preserves the illusion that fields in the LDB are always accessible and always have the 
latest values in them. However, functions, math calculations, and JPL procedures that 
refer to fields by number do not search the LDB - LDB entries do not have field num
bers. 

One important characteristic of a group entry is that its value is the list of selected group 
occurrence numbers. Each selected occurrence number is stored in one occurrence of 

JAM Release 5.03 20 Nov 92 Page 135 



Author's Guide 

the group entry. The value 0 indicates the end of the list (no entry will contain a 0 if all 
occurrences are selected). Placing a group in the LDB causes the same group on differ
ent screens to have the same set of selected fields. However, a group entry in the LOB 
does not hold the contents of the fields in the group. It is the developer's responsibility 
to ensure that two groups linked through the LDB have the same number of fields, in 
the same order, with the same contents. This can be accomplished most easily by plac
ing the group's fields in the LOB and by using the Screen Editor clipboard to copy the 
group from screen to screen dUring development 

As is true of the DO, a group entry and a field entry cannot share the same name in the 
LDB. However, the matching of screen fields to LDB entries and screen groups to LOB 
entries is done without regard to whether the LDB entry is intended to be a field or 
group entry. 

7.5 

MENUS 
The purpose of this section is to describe how to build the types of menus that can be 
built with JAM. The following topics are discussed elsewhere: 

assigning the menu field edit . . .. page 46 
submenus ................... page 46 
shortcut menu creation . . . . . . . .. page 84 

A screen can behave both as a menu and as a data entry screen, but not at the same time; 
menus are active only when the screen is in menu mode, while data entry is possible 
only in data enJry mode. When a screen has menu fields and no other unprotected 
fields, it is always in menu mode. When a screen has no menu fields, it is always in data 
entry mode. However, if a screen has both menu fields and unprotected data entry 
fields,the end user can toggle the mode by using the MENU TOGGLE key, or by click
ing the mouse in one type of field or the other. On these mixed use screens, JAM's 
default is to start the screen in data entry mode. To force a screen to start in menu mode, 
modify the screen's characteristics as described on page 33. 

Menus that are processed by the JAM Executive have one pair of fields for each menu 
item: a menu selection field and a menu control field. The menu selection field contains 
the text of the menu selection; it must also have the menu field edit assigned to it (see 
page 46). If the screen will also be used in data entry mode, then the selection field 
should be protected from tabbing into. The menu control field contains the control 
string (see page 124) associated with the menu item. The control field must have a field 
number that is one greater than the field number of the associated selection field. The 
easiest way to do that is to place the control field on the same line as the selection field 

Page 136 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

and immediately to its right. The control field should be made non-display. To mini
mize the use of screen real estate, the control field can be made into a shifting field with 
as few as one onscreen character position. An example menu is shown below in 
Figure 86 as it would appear in DRAW mode with its control fields visible. It is shown 
again in Figure 87 as it would appear in TEST mode (or application mode or at run
time), with a bounce bar indicating the current choice. The bounce bar appears in 
toggled reverse video, so if a menu field already had the reverse-video edit, the bounce 
bar would appear in non-reverse video. Note that a menu will have a bounce bar in 
TEST mode only if the screen is in menu mode (as opposed to data entry mode). 

Hospital Admissions 

Please select an activity: 

Check-in 
Audit 
Patient Locator 
Electronic Mail 

selection 
field 

admit 
audit 
direct 
!mail 

control 
field 

Figure 86: Menu Screen In Draw Mode 

Hospital Admissions 

Please select an activity: 

Audit 
Patient Locator 
Electronic Mail 

selection 
field 

bounce bar 
-------- shows current 

choice 

Figure 87: Menu Screen In Test Mode 

JAM Release 5.03 20 Nov 92 Page 137 



Author's Guide 

A user moves the bolll1ce bar with the TAB, BACKTAB, BACKSPACE, arrow, and 
space bar keys. Pressing X?v1IT or NL selects the current choice, and thereby executes 
the control string found in the corresponding control field. Alternatively, typing the fIrSt 
character of a selection field (or multiple characters if more than one field starts with 1 

the same character) causes that menu item to be selected. If more than one character is 
required, then the bounce bar moves to the next possible selection as characters are 
typed. Note that if all menu selection fields are wholly upper case or wholly lower case, 
then JAM ignores case, so that a and A are equivalent 

The processing of menus may be changed by the library function SIn_option. For ex
ample, the selection can be based on the fIrSt upper case character of a choice rather 
than the first character (as in the Screen Editor's Color Menu shown on page 25). 

While many menus consist of a vertical list of options (Figure 87), JAM permits any 
organization for menus, including horizontal menus (Figure 88) or more exotic menus, 
such as Figure 89 , in which the menu selections are the headings of introductory para
graphs. These other menus work because JAM considers all non-blank fields with the 
menu field attribute to be menu selection fields. 

Checking Account Maintenance: 

Inquire Close Balance 

Press PF4 for interest rates. 

Rgure 88: Horizontal Menu 

Page 138 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

For more information, press the space bar 
until the product is highlighted, then 
press NL: 

o Low service charges 
o Interest bearing 
o Automatic transfers 

CDs 
o 6 months to 5 years 
o Available for IRAs 
o Money market rates 

SAVINGS ACCOUNTS 
o High interest 
o Passbook and 

statement 

BROKERAGE SERVICES 
o All markets 
o Low commissions 
o Tie to checking 

accounts 

Figure 89: Topical Menu 

7.5.1 

Dynamic Menus 
It is sometimes desirable to create a menu whose content changes as circumstances dic
tate. For example, security considerations might require that a user be able to see and 
execute authorized menu options only. This is possible because JAM never considers 
blank fields to be menu selection fields. Therefore, a dynamic menu may be created by 
performing the following steps: 

• Create a screen with enough menu edit fields to hold the maximum 
possible number of menu selection fields. Also create corresponding 
menu control fields. 

• Fill the selection and control fields at runtime from the LOB or with a 
screen entry ftmction. Leave unneeded menu edit fields blank. If you 
wish to always have the same choices appear at the same poSition on 
the screen,· then leave blank fields as placeholders rather than placing 
all blank fields at the end of the screen. 

• If you wish to shrink the screen to fit around the resulting menu, then 
call the library function sm_shrink_to_fit after the menu fields 
have been populated. 

JAM Release 5.03 20 Nov 92 Page 139 



Author's Guide 

7.6 

REGULAR EXPRESSIONS 
A regular expression is a pattern or template made up of characters. It divides ordinary 
character strings into two kinds: those that match the pattern, and those that don't 

JAM supports regular expressions in the style of the UNIX editors, and uses them to 
check that the contents of a field conform to a pattern. The pattern can be defmed in a 
way that is extremely flexible, and unlike most JAM edits can be used to restrict differ
ent parts of the field to different character types, or classes. 

Regular expressions can be installed as character edits or field edits. When installed as 
a character edit, the input is matched one character at a time with the regular expression 
and invalid input is rejected immediately. When installed as a field edit, the entire field 
is matched against the regular expression when the field is validated. Character level 
regular expressions are also verified at field validation in case the user has deleted a 
character, causing the string to become invalid. 

When JAM checks a field against a regular expression, it steps through the field data 
and the regular expression together. It matches as many field characters as it can against 
the flfSt subexpression before going on to the next, and quits at the frrst mismatch. 

Here is an example of a regular expression. This one defmes a sort of 10 number that is 
three digits, followed by a dash, followed by at least three letters or numbers, possibly 
more, up to the length of the field: 

[O-9]\{3\}-[a-zA-ZO-9]\{3,\} 

7.6.1 

Forming Regular Expressions 
There are two kinds of rules for constructing a regular expression. One kind tells you 
how to form a simple expression, and the other tells you how to combine expressions 
into more complex expressions. The basics of regular expressions are quite simple; 
however, by combining them, you can quickly arrive at expressions that are quite com
plex. The following discussion, therefore, proceeds from simple rules for forming sim
ple expressions to more complicated rules for combining and repeating expressions. 

Simple Expressions 
The simplest regular expression is a single character, which matches itself. The regular 
expression z matches the string "z". There are only a few characters that are special and 
do not match themselves; they are explained in the ensuing discussion. 

Page 140 JAM Release 5.03 20 Nov 92 

I 

" 



Chapter 7: Authoring Reference 

Blanks are not special, but they are not ignored either. A blank in a regular expression 
matches a blank in a field. 

A dot ( . ) is a special character; it matches any single character, including (but not lim
ited to) itself. The backslash (\) is also special. It is a quote character: it forces the fol
lowing character to match itself even if that character is special. For instance, the se
quence \ . matches the dot ".", and the sequence \ \ matches a single backslash. 

The backslash also makes certain ordinary characters special. Examples of these are the 
quoted braces and quoted parentheses used for repeat counts and grouping respectively. 
See the following sections for details. 

Character Classes 
A group of characters between brackets ( [ ] ) matches a single occurrence of any of the 
characters. [13579] matches any odd digit, and [aA] matches an a of either case. 
The group of characters is called a character class. The order of the characters in the 
class is not significant. In fact, when JAM saves a regular expression, it sorts the char
acters in the character class by ASCII value. 

Long lists of consecutive characters can be abbreviated using a hyphen (-). For 
instance, [a-z] matches any lowercase letter, and [A-Za-z] matches any letter at 
all. Because of the ASCII collating sequence, [A-z] matches all letters plus some 
punctuation characters that fall between Z and a. You may use any number and com
bination of characters and ranges within one set of brackets. 

Character Classes can be negated by placing a caret (~) immediately after the opening 
bracket in the class. This will cause the class to match any character not in the class. 
The expression [~O-9+. -] matches any non-numeric character. 

Special Characters in Character Classes 

NOTE: Only the caret, the hyphen, and the closing bracket are special characters with
in a character class. The backslash is not a special character and cannot be used as the 
quote character in a character class. It stands for itself. 

Listed below are the exceptions, when a carat, hyphen or bracket stands for itself: 

• The caret stands for itself if it is not the first character. 

• The closing bracket stands for itself if it is the frrst character, or if it is 
the frrst character after an opening caret 

• The hyphen stands for itself if it is the frrst or last character, or if it is 
the first character after an opening caret. 

For example, to accept any character except ~, -, [, ], ., or \, use the following: 

[AJ [. \"-J 

JAM Release 5.03 20 Nov 92 Page 141 



Author's Guide 

Concatenating Subexpressions 
The simplest way of combining two or more expressions is to put one after another. 
They then match whatever matches the ftrst, followed by whatever matches the next, 
and so on. The expression JYACC matches the string "JYACC', the expression 
a [ 0 - 9] matches an a followed by a digit 

Repeating Subexpressions 
The asterisk (*) causes the preceding subexpression to match zero or more characters 
that match the subexpression, instead of only one character. The expression [0-9] * 

I 

matches any number of digits or none at all. To force at least one digit, the expression 
[ 0 - 9] [0 - 9 ] * is used. 

A more defmite repeat count for an expression can be specified by enclosing the count 
in quoted curly braces \ { and \}. The repeat count follows the subexpression to be 
repeated, and takes one of the following three forms: 

• \ {n \ } exactly n repetitions 

• \ {n I \ } n or more repetitions 

• \ {n I In \} at least n repetitions but no more than In 

For example, [0 - 9 ] \ { 5 \} matches a numeral of exactly five digits, or an old-style 
zip code. 

Re-matching Subexpressions 
To re-match an expression or sequence of expressions, use quoted parentheses \ ( and 
\) around them. If you place a quoted number later in your expression, say \n, it will 
match whatever the nth subexpression surrounded by \ ( \) matched. Note that the 
subexpression is not reproduced, but the actual character data is. The expression 
\ ( [0-9] * \) \ . \ 1 matches 123.123, or any other real number where the integer 
and fractional parts are the same, but it will not match 123 . 45. 

7.6.2 

Regular Expression Examples 
Some examples of regular expressions follow below: 

[ill fcC] feE) matches ice, iCE, iCe, Ice, IcE, ICe, or ICE. 

212 - [0-9] \ {3 \} - [0-9) \ {4 \} matches any phone nu:rilber in the Manhattan or 
Bronx boroughs of New York City. 

[0-9) \ {3 \} - [0-9] \ {2 \} - [0-9) \ {4 \} matches any social security number. 

[a-zA-Z_l [0-9a-zA-Z_l * matches an identifter in the C programming language. 

Page 142 JAM Release 5.03 20 Nov 92 

. " 
I 

I 
J 



Chapter 7: Authoring Reference 

7.6.3 

Summary of Special Characters In Regular 
Expressions 

Character Name Function 

\ backslash makes any special character, including itself, 
ordinary. Makes { } () and digits special in 
certain contexts. 

. dot matches any single character. 

[ ] square brackets surround a character class expression. 

* asterisk causes the preceding character class or single 
character expression to match zero or more 
occurrences. 

\ ( \ ) quoted parentheses surround an arbitrary subexpression for the 
purpose of re-matching. 

\1 quoted digits re-match a previous expression enclosed in 
quoted parentheses \ ( \ ) 

\{ \} quoted curly surround a repeat count to the preceding 
braces character class or single character expression. 

Figure 90: Special Characters (not within a Character Class) 

Character Name Function 

"- caret negates the character class when it immedi-
ately follows [ 

- hyphen denotes a character class range unless it is 
the ftrst or last character in class. 

] square brackets closes character class unless it is the frrst 
character, or the ftrst character after an open-
ing" 

Figure 91: Special Characters within a Character Class 

The caret (") and dollar sign ($), which represent the start and end of a line respectively 
in some UNIX utilities, do not have that special meaning within JAM regular expres-
sions. \ 

JAM Release 5.03 20 Nov 92 Page 143 



Author's Guide 

7.7 

SCROLLING ARRAYS 
The purpose of this section is to explain the behavior of scrolling arrays, particularly in 
response to keyboard entry. The frrst section discusses single scrolling arrays. The se
cond section discusses synchronized scrolling arrays .. There are several sections of the 
Screen Editor chapter that should be read prior to reading this section: 

I. The description of scrolling and simple arrays, maximum and allo
cated array size, and automatic synchronization of arrays that is dis
cussed with respect to the Field Size Screen, starting on page 69. 

2. The description of how to synchronize arrays manually, starting on 
page 95. 

7.7.1 

Single Scrolling Arrays 
The capacity of an array is measured in tenns of the maximum number of occurrences 
that it can contain. However, it is often desirable for an array to behave as if it contained 
fewer occurrences. Consider a scrolling array named friends with three elements 
and a maximum of 100 occurrences (hopefully this is not too optimistic), shown in 
Figure 92 below. The array begins with three allocated occurrences, since JAM always 
allocates at least enough occWTences to hold the onscreen occurrences (elements). 

1. 
2. 
3 . 

friends 

Onscreen occurrences 

There are 3 allocated 
occurrences 

The shaded area con
tains the offscreen oc
currences. The dashed 
appearance of these oc
currences indicates that 
they are unallocated. 

Figure 92: The friends Scrolling Array 

Page 144 JAM Release 5.03 20 Nov 92 

., 
I 



Chapter 7: Authoring Reference 

Cursor movement keys move among the allocated occurrences of a scrolling array, 
leaving the array only when the last (or frrst) allocated occurrence is reached. Cursor 
movement keys never move the cursor into unallocated occurrences. If the user presses 
PAGE DOWN within the friends array as shown in Figure 92, JAM displays a message 
that indicates that no more data may be viewed. This behavior prevents the user from 
needlessly scrolling through the often large number of blank occurrences at the end of 
an array. If the user presses the DOWN ARROW key with the cursor in the third occur
rence of fr iends, then the cursor moves to the next field on the screen (or to the first 
occurrence of friends if it is the only unprotected field on the screen or if friends 
is a circular array). 

Consider the partially ftlled friends array shown in Figure 93 below. 

friends 
1. Stephan 
2. Eileen 
3. Debbie 

Onscreen occurrences 

There are 3 allocated 
occurrences. 

Figure 93: The array partially filled. 

The user now has three friends entered, and would like to enter a fourth friend. Pressing 
OOWN ARROW won't work. The solution is to press the NL key. If the cursor is on the 
last allocated occurrence of a scrolling array, and if more occurrences can be allocated 
(ie.-the number of allocated occurrences is less than the maximum number of occur
rences), then NL will allocate a new occurrence and scroll the array so that the cursor 
is positioned in the newly allocated occurrence, as shown in Figure 94. 

JAM Release 5.03 20 Nov 92 Page 145 



Author's Guide 

friends 
The arrows indicate that 
there are off-screen al
located occurrences. 

2. Eileen 
3. Debbie 
4 . 

Onscreen occurrences 

There are 4 allocated 
occurrences. 

Figure 94: f r i ends Wrth A Newty Allocated Occurrence 

Although TAB doesn't normally cause new occurrences to be allocated, it can if the 
"next field" edit is used. For example, TAB behaves exactly like the NL key (until the 
maximum occurrence number is reached) if the next field specified for friends is 
f r i ends [ + 1] . Please see the more detailed example in the Screen Editor chapter that 
is associated with Figure 31 (page 52). Two other special cases where an occurrence 
can be allocated without pressing NL, are if the field has AUTOTAB enabled, and it is 
filled, or if the array is a "word wrap" array, and a field is filled. 

Once an occwrence is allocated, aU cursor movement keys can be used to scroll the 
array to enter data into the occurrence. Therefore, pressing the UP ARROW key with 
the cursor on E i 1 een in Figure 94 scrolls the array and moves Stephan to the top of 
the screen, as shown below in Figure 95 (note that the fourth occurrence is still allo
cated). Following the UP ARROW with three DOWN ARROWs scrolls the array back 
to how it looks in Figure 94. A subsequent OOWN ARROW moves the cursor to the 
next field on the screen (or back to Eileen if friends is the only unprotected field 
on the screen) without scrolling the array. 

Note that in arrays with a distance between elements that is greater than 1, it is possible 
to place a field between two consecutive elements of an array. In such a case, the UP 
ARROW and DOWN ARROW keys will move among the occurrences of the array 
rather than into the field as long as the array is a scrolling array. This is consistent with 
the way arrow keys are deflDed for scrolling arrays. 

Page 146 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

Onscreen occurrences 

The arrows indicate that 
there are off-screen al
located occurrences. 

There are 4 allocated 
occurrences altogether. 

Figure 95: A Blank Offscreen Allocated Occurrence 

The data required edit (page 41) is affected by the number of allocated occurrences. It 
requires that each allocated occurrence have data. Therefore, none of the above exam
ple f r i ends screens except Figure 93 would pass the data required edit, as they each 
have at least one blank allocated occurrence. 

Occurrences can also be allocated with the INSERT LINE key and by writing data into 
an un-allocated occurrence with a library function (such as sIn_i-putfield), with 
JPL (e.g. cat friends [99] Robert), or with a math edit calculation. The IN
SERT LINE key moves the data in the occurrence beneath the cursor, and in all subse
quent occurrences, down one occurrence and allocates an occurrence for the highest 
numbered occurrence moved (subject to not exceeding the maximum number of occur
rences). INSERT LINE does not cause a new occurrence to be allocated if it is just 
pushing an empty occwrence off the screen. In addition, INSERT LINE does not work 
in an array that is protected from clearing (otherwise it would be impossible to maintain 
a synchronized list of numbered items - see the example associated with Figure 96 on 
page 149.) 

Occurrences (in an array that is not protected from clearing) can be de-allocated with 
the DELETE LINE and CLR keys - except that the ftrst N occurrences, where N is the 
number of onscreen occurrences (elements), can never be de-allocated. FIELD ERASE 
and the space bar cannot de-allocate an occurrence. The DELETE LINE key deletes 

. the data in the occurrence beneath the cursor, moves the data in subsequent occurrences 
up one occurrence, and de-allocates the last allocated occurrence, unless that occur
renee is onscreen or protected from clearing. Using DELETE LINE to de-allocate an 
occurrence does not affect the validation state of the items in the array. The CLR key 
de-allocates all allocated occurrences. 

JAM Release 5.03 20 Nov 92 Page 147 



Author's Guide 

Occurrences that are allocated in arrays with embedded punctuation are treated special
ly when allocated. When a new array occurrence is allocated, embedded punctuation is 
copied from the fIrst occurrence of the array to the newly allocated occurrence. Please 
refer to the Screen Editor chapter (page 39) for a discussion of embedded punctuation. 

7.7.2 

Synchronized Arrays 
The behavior of synchronized arrays is largely determined by the following rules en
forced by JAM: 

1. If pressing a key would cause a synchronized array to scroll if it were 
un synchronized, then pressing that key will cause the array to scroll 
along with all of its synchronized arrays. 

2. Each array in a set of synchronized arrays always has the same num
ber of allocated occurrences as every other member of the set. This 
means that if a key press allocates (de-allocates) and occurrence of 
an array, then the same occurrence is allocated (de-allocated) for ev
ery array synchronized with that array. A consequence of this rule is 
that if JAM cannot de-allocate an occurrence from one synchronized 
array, perhaps because the army is protected from clearing, then 
JAM will not de-allocate that occurrence from any synchronized 
array. The usefulness of this consequence is shown below by exam
ple. 

Consider the newfriends screen shown below in Figure 96. It is identical to the 
friends screen, except that it has two additional arrays, both synchronized with 

/ friends: frnurn and frsex. frnum is fully protected, friends and frsex are 
unprotected. Note that the original friends screen had nmnbers on it, but they were 
present only to show the occurrence nWllber. The purpose of frnum is to make it easy 
to count the number of friends and to keep track of the position of the cursor within the 
list of friends. 

Page 148 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

frnurn friends 
Stephan 
Eileen 
Debbie 

frsex 
M 
F 
F 

1'~)11!:I:::I1!:!~!;;;:[\:i::;::1!~'1;'\i,;:!'\:!i;; 
::~~~;;::3~t~~::;::::';:~':;[i;!::I;;,~:::' 

Onscreen 
occurrences 

There are 1 00 allocated 
occurrences. 

Figure 96: newfriends With Synchronized Arrays 

The cursor movement keys will scroll all three arrays through all allocated occurrences 
- which is all tOO occurrences. Every occurrence of frnurn contains data, and is 
therefore allocated. Since all synchronized arrays must have the same number of allo
cated occurrences, all three arrays must have 100 occurrences. Let's move Frank up 
on the list of friends, just behind Eileen. The following keystrokes will accomplish 
the task: 

1. Press DOWN ARROW five times to position the cursor on top of 
Frank. 

2. Press DELElE LINE to delete Frank. Since frnum is protected 
from clearing, it does not change (we don't want a gap in our number 
sequence) and therefore the number of allocated occurrences in all 
three arrays remains at tOO. The data in the friends array is moved 
up to replace Frank. The data in the frsex array is moved up to 
remain associated with the proper friends. 

3. Press UP ARROW three times to position the cursor on top of Deb
bie. 

4. Press INSERT LINE to insert a blank line between Eileen and 
Debbie. frnum still doesn't change, since it is protected from 
clearing, but the data in the other two arrays move down. 

5. Re-enter Frank into friends and Minto frsex. 

JAM Release 5.03 20 Nov 92 Page 149 



Author's Guide 

7.8 

VALIDATION 
JAM maintains a bit for each field (and group), called the validation bit, that indicates 
whether or not the field (or group) has passed its edits. The validation bit is initially 
cleared when a screen is displayed. It is cleared again each time the content of the field 
is changed. It is set each time the field passes its validation tests; for example, when the 
user tabs out of the field. JAM also maintains a modified data tag bit (MDn for each 
field (and group). The MDT bit is cleared when the screen is displayed (after the 
screen's entry function is called), and is set when the content of the field (or group) is 
changed. JAM never clears a field's MDT once the screen is displayed, but it can be 

,cleared with the library function sm_bi top. 

JAM performs validation processing of a field (or group) without regard to the setting 
of the field's (or group's) validation bit If validation requires significant processing 
(such as a database lookup), then the validation bit should be tested by the validation 
function and unnecessary validation processing should be avoided. In addition, the 
MDT can be used, in conjunction with the validation bit, to prevent unnecessary valida
tion of fields (and groups) that were populated with valid data from the LOB, by a 
screen entry function, or via initial data, and have not changed since the screen was 
displayed. 

7.8.1 

, Fields That Are Not Part of a Group 
This section contains information about validation that pertains to fields that are not 
part of a group. The edits that are part of the validation process for a field and that must 
be fulfIlled before the field's validation bit is set are: 

• field edits 

• dateltime format 

• check digit 

• currency format 

• field validation function (C or JPL) 

• field-level JPL procedure 

In addition, the math calculation associated with a field is performed as part of the val
idation process. If all of the above edits are fulfIlled, then the field's validation bit is set 
The order of processing, which stops as soon as an edit fails, is: 

Page 150 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

1. The field edits, date/time format. and check digit 

2. The math calculation. 

3. The currency format 

4. The field validation function. 

5. The field-level JPL procedure. 

Field validation occurs when the following events occur, and only for fields that are not 
protected from validation (page 41): 

1. The cursor leaves the field due to a TAB (or NL) or an auto-tab. Nor
mally, the arrow keys do not cause validation. The library function 
SIn_opt ion can be used to cause validation to occur whenever the 
cursor leaves a field. Be careful in the case of cross-field validations; 
e.g., consider a screen with a country field and a city field. If the user 
enters France into the country field, and then Rome into the city field, 
the validation function would reject Rome and then prevent the user 
from moving the cursor to the country field in order to change the 
cotmtry to Italy. An individual field can also be validated by calling 
the library function sIn_fval. 

2. The XMIT key is pressed. All fields on the screen are validated. This 
occurs whether or not there is a control string associated with XMIT. 
Note that XMIT is the only key that causes all fields to be validated. 
Other keys can perform the same function if specified by a call to the 
library function sIn_keyopt ion. All of the fields on a screen can be 
validated by a call to the library function srn_s_ val. 

7.8.2 

Fields That Are Part of a Menu or Group 

This section contains information about validation that pertains to fields that are part of 
a menu or group. Validation does not occur when a menu or group field is exited by 
tabbing or when the XMIT key is pressed For menu fields and radio buttons, it occurs 
only when the field is selected. For checklists, it occurs when the field is selected or 
de-selected with a key, such as NL or the frrst letter of the content of the field. Note that 
the library functions sm_select and sm_deselect do not cause a group field's validation 
function to be executed. 

JAM Release 5.03 20 Nov 92 Page 151 



Author's Guide 

7.8.3 

Group Validation 
This section contains information about validation that pertains to groups. The valida
tion process for a group consists solely of calling the group's validation function. 

Group validation occurs when the following events occur: 

7.9 

1. The cursor leaves the group due to a TAB, or a BACKTAB. Normal
ly, the arrow keys do not cause validation. The library function 
sm_opt ion can be used to cause validation to occur whenever the 
cursor leaves a group. An individual group can also be validated by 
calling the library function sm_gva l. 

2. The XMIT key is pressed. All groups on the screen are validated. 
Note that XMIT is the only key that causes groups to be validated. 
Other keys can perform the same function if specified by a call to the 
library function sm_keyopt ion. All of the groups on a screen can 
be validated by a call to the library function sm_s_val. 

VIEWPORTS AND POSITIONING 

7.9.1 

Introduction 
The viewport facility enables the use of virtual screens that are larger than their display 
size. You may even create virtual screens that are larger than the physical display. The 
viewport facility determines which portion of a virtual screen is visible at a given time, 
as well as the size and position of the "viewport" into the virtual screen, that appears on 
the display. 

A viewport is always smaller than or equal in size to the virtual screen being viewed, 
and is never larger than the physical display. If the virtual screen has a border, then 
scroll bars, each consisting of a pair of arrows, will appear at the bottom and right hand 
side of the viewport, to indicate that only part of the screen is visible. The size of the 
scroll bar relative to the size of the border indicates the percentage of the virtual screen 
that is shown. The position of the scroll bar arrows along the border indicates which 
section of the screen is visible. 

Page 152 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

ople to com: 
eir country:" 

AGREE 

DISAGREE 

NO OPINI 

viewport 

AGREE 

NAME: 

virtual screen 

Figure 97: Schematic of a viewport into a virtual screen. Note 
how the scroll arrows indicate both how much of the virtual 
screen and which section of it is visible. The position of the hor
izontal scroll arrows to the left indicates that the viewport is 
showing the left-hand portion of the virtual screen. Their close
ness indicates that the viewport is showing a small horizontal 
section of the screen. The position of the vertical scroll arrows 
near the top of the border indicates that the viewport is show
ing the top portion of the screen. The separation of the arrows 
indicates that a large vertical section of the screen is shown. 

As a user tabs through the fields in a virtual screen, JAM automatically scrolls the 
viewport, bringing the necessary fields into view at the appropriate time. The user may 
optionally use the VIEWPORT key to move, resize, and scroll the viewport man"ually. 
This key also controls sibling windows, discussed on page 126. 

JAM Release 5.03 20 Nov 92 Page 153 



Author's Guide 

7.9.2 

Specifying a Viewport 
The size of a viewport is specified via the positioning parameters in the control string 
that displays a screen. It is also specified in the strings that display screen and field belp 
screens, and item selection screens. Please note that wben we refer to the size of the 
pbysical display, we really mean the portion of the pbysical display that is available for 
the presentation of screens (with borders). Typically, one row is reserved for the status 
line and one or two rows may be reserved for soft key labels. Tbe fonnat specification 
is as follows: 

( row, col, height, width, vrow, veal) screen-name 

wbere: 

• row specifies the row of the physical display at wbich to position the 
upper left comer of the viewport. Coordinates are based at 1. A row 
specification may be in absolute or relative coordinates. Relative 
coordinates refer to the upper left band comer of the calling screen. 
For example, -5 indicates: "display this viewport 5 rows above the top 
left hand comer of the previous screen". 

• col specifies the column of the physical display at which to position 
the upper left comer of the viewport Coordinates are based at I. Col
umn specifications may also use relative coordinates. A negative 
number indicates positioning to the left of the underlying screen. 

• height specifies the height of the viewport in rows. A height of zero 
indicates that the viewport should be as tall as the virtual screen (but 
never larger than the physical display). 

• width specifies the width of the viewport in columns. A width of zero 
indicates that the viewport should be as wide as the virtual screen (but 
never larger than the physical display. 

• vrow specifies which row of the virtual screen to display at the top of 
the viewport. The border is counted as part of the screen. 

• veal specifies which column of the virtual screen to display at the left 
edge of the viewport. 

If you specify a vrowor veal, then the cursor will appear in the upper left comer of the 
viewport, whether there is a field there or not The cursor will respond to the cursor keys 
freely, until it encounters an unprotected field, or the TAB key is pressed. Once it is in 
a field, the cursor will behave normally (that is, it will be restricted to moving among 
unprotected fields). 

Page 154 JAM Release 5.03 20 Nov 92 



Chapter 7: Authoring Reference 

The positioning parameters are optional. If they are specified, then they may be integer 
constants, names of fields on the screen, or names of LDB entries. If none are specified, 
then JAM will attempt to display the entire screen in a viewport the size of the screen at 
such a position that it does not hide the field that the cursor was in when the screen was 
called (or in the upper left hand corner of the display if the screen is called as a form). If 
the virtual screen is larger than the display and no parameters are specified, JAM will 
create a viewport the size of the display that contains the first unprotected field (or the 
upper left corner of the screen if there are no such fields). If only some of the parame
ters are specified; then JAM will use defaults for the unspecified items. 

Relative positioning is a powerful tool, as the position of a window becomes context 
sensitive. If the underlying screen is moved, a relatively positioned window will still 
appear in the appropriate location when it is called. If necessary, JAM will scroll the 
calling screen in its viewport in order to display the window at the relative location spe
cified. 

Normally, it is not necessary to specify positioning parameters, but if you do, keep in 
mind that in order to use, for example, the veal parameter, you must specify all of the 
parameters to the left of it. 

Below are some sample viewport specifications: 

• Display the screen SInOO as a window at row 6, column 7 of the physical dis
play: 

&(6,7)smoo 

(6,7) physical display coordinates (6,31) 
:!j{;~:~::::::::::~::~:::::::::::::;::::~::::::::::~:~::~:::!~~j 

I:::::: I 
Ifield3 I 
Ifield4 i 
ii!!:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i:!: (row col) 

(20,7) (20,31)--- ' 

SInOO is 13 rows X 25 columns 

Figure 98: Viewport Specification: & (6, 7) SInOO 

JAM Release 5.03 20 Nov 92 

physical 
display 

Page 155 



Author's Guide 

• Display srnoo as a window at row 6, column 7, in a viewport 8 rows tall and as 
wide as the screen. The frrst unprotected field in smoo will appear within the 
viewport: 

&(6,7,8,O)smoo 

(13,7) 
.""", (row, col) 

(13,31) 

smoo is 13 rows x 25 columns 

Rgure 99: Viewport SpecifICation: & ( 6 , 7 , 8 , 0 ) smoo 

physical 
display 

• Display smoo as a sibling window at row 6, column 7, in a viewport 8 rows tall 
and 9 rows wide, with row 4, column 5 of smoo at the top left. 

&&(6,7,8,9,4,S)smoo 

Page 156 JAM Release 5.03 20 Nov 92 

., 
j 
I 



Chapter 7: Authoring Reference 

(13,7) 
,- (row, col) 

(13,15) 

srnoo is 13 rows x 25 columns 

~ physical 
display 

Figure 100: Viewport Specification: & ( 6 I 7 I 8 I 9 I 4 I 5) srnoo 

• Display srnoo as a stacked window 7 rows below and 6 rows to the left 
of the calling screen, in a viewport 5 rows tall and as wide as the 
screen. 

& (+ 7, -6, 5, o) smoo 

:~!~~ ~%7~E~"~:"7:~:~~;~:>1 

relative 
(+7,-6) 

It also contains text. 

and fields: 

. This is screen smoo. I 
~::::: Jl~~'M'm_4 
... <r:~;:;::s:~~'. : 

srnoo is 13 rows x 25 columns 

physical 
display 

Figure 101: Viewport Specification: & (+ 7 I -6 I 5 I 0) srnoo 

JAM Release 5.03 20 Nov 92 Page 157 



Author's Guide 

7.9.3 

The VIEWPORT Key 
The developer may assign a key to the logical viewport function. This key allows the 
user to move, resize and scroll (offset) the viewport. It also may be used for selecting 
sibling windows. In application mode of jxform, SPF9 (labelled window on the sta
tus line) performs the same function as the VIEWPORT key. Pressing the VIEWPORT 
key brings JAM into viewport mode. Asterisks will appear at the corners of the active 
viewport The following functions are enabled in viewport mode and are displayed on 
the status line (note that the selected function will appear in all caps on the status line): 

• PF2move 
This is the default when you enter viewport mode. If the viewport is smaller 
than the physical display, select this function to reposition the viewport 
Press PF2 and use the cursor keys to position the asterisks at the desired 
location. Note that only the asterisks will move. Press PF3, PF4, or PF5 to 
anchor the viewport and begin another viewport function; or press XMIT 
or EXIT to anchor the viewport and leave viewport mode. 

• PF3resize 
Press PF3 and use the cursor keys to resize the viewport from the lower 
right hand corner. When the asterisks indicate the desired size, press anoth
er function key to confirm. At this point, the screen will be updated. When 
the viewport is the size of the virtual screen, it can no longer be expanded. 

• PF40ffset 
Press PF4 and use the cursor keys to scroll (change the offset 00 the virtual 
screen within the viewport. Press XMIT (or another function key) when 
fmished JAM automatically scrolls the viewport as you tab through fields 
in order to bring the next field into view. 

• PFSnext window 
Press PF5 to activate the next open sibling window. The asterisks will move 
to the selected window. The PF5 key may be pressed repeatedly to cycle 
through all available sibling windows. Press XMIT (or another function 
key) to confirm your selection. The creation of sibling windows is dis
cussed on page 126. 

Press EXIT or XMIT to leave viewport mode. The selected sibling window will be ac
tive when you leave viewport mode. 

If the mouse is supported for JAM on your platform, it may be used to 'perfonn view
port key functions. Refer to the mouse document. 

Page 158 JAM Release 5.03 20 Nov 92 

" 



INDEX 
Symbols 

., in regular expressions, 141, 143 

I, invoke a program, 124, 130 

?, wildcard character, 106 

:, colon preprocessing, 121-123 

n, in regular expressions, 143 

&, open a stacked window, 124, 125 

&&, open a sibling window, 124, 126 

#, field number, 50, 63 

%, floating point formatter, 63 

%A, display attributes in messages, 56-57 

%B, bell for error messages, 57 

%K, key labels in messages, 57 

%t, floating point formatter, 63 

@, select mode indicator, 76 

@date, calculations with dates, 64 

@sum, sum of array occurrences, 64 

-, in regular expressions, 143 

• 
box select, 77 
in regular expressions, 142, 143 
wildcard character, 107 

in regular expressions, 141, 143 
in search strings, 106 
invoke a C function, 124! 126 

I\jpl, invoke a JPL routine, 124, 129 

\ 
colon preprocessing in hook strings, 122 
in regular expressions, 141, 143 

A 
Alphanumeric, character edit, 39 

Ampersand. See & symbol 

APPl-24,9 
control string, 82,124 

Application 
data, 26 

propagating, 135-136 
testing, 15, 17, 23 

Application mode, 15, 16-17 
defmed,16 
function keys, 17 
status line, 16 

Argument processing, 121 

Array 
base field, 70 
circular, 72 
element, 27, 70 
horizontal, 71 
next field, 50-53, 146 
number of elements, 75 
occurrence. See Occurrence 
offset, 71, 75 
parallel, 70, 95-96 
previous field, 50-53 
scrolling. See Scrolling array 
size, 27, 70, 71, 75 
synchronized. See Scrolling array, syn

chronize 
word wrap, 71 

Arrow keys, 9, 10, 11 
Data Dictionary Editor, 101 
field exit, 12 
groups, 14 
line drawing, 98 
menu, 12, 138 
Screen Editor, 23 
submenus, 47 

JAM Release 5.03 20 Nov 92 Page 159 



Author's Guide 

ASCII 
character set, 4 
data dictionary format, 99 
screen format, 19 

Attachments, 36, 48-58 

Attributes. See Display attributes 

Authoring 
defined, 1 
environment, 15-17 
tool. See jxform 

AUTO control string, 82, 83 

Auto tab, 46,87,94 

B 
BACK,9 

Data Dictionary Editor, 101 
groups, 14 
menu. 12, 138 
previous field, 50 

BACKSPACE. See BKSP 

BACKTAB. See BACK 

Base field, 70 

Bell, status line text, 57 

bin2c,117 

BKSP,9 
in menu, 12, 138 
Screen Editor. 24 

Border. 29-30 
attributes. See Display attributes 
creation, 29 
deletion, 29 
styles, 29 

Bounce bar, 12,86,94.137 

Box select, 77 

Built-in control functions, 127 
jm_exit, 83, 127 
jm...,goform, 127 
jm...,gotop, 127 
jm_keys. 127 
jm_mnutogl. 127 
jm_system. 127 

c 
C function, control string, 124. 126-129 

C language. data structures. See Data struc-
tures 

Caret See" symbol 

Case. data entry fields. 45 

Character edit See Field. character edit 

Character set. graphics. 96-97 

Check digit function, 58,62 

Checklist. See Group 

Circular scrolling array, 72 

CLEAR ALL. See CLR 

Clear on input, field edit, 44 

Clipboard, 76. 78-80. 136 
control menu. 79 
copy from screen, 79 
display content, 79 
file, 79 
name, 79 
paste to screen. 79 
purge, 80 
retrieve from file, 80 
store to file. 80 

CLR,9 
dateltime initialization. 61 
protection from. 42 
scrolling array, 147 

Colon preprocessing, 34,59, 121-123 

Color 
display attribute, 25 
screen background, 30 

Page 160 JAM Release 5.03 20 Nov 92 

.J 



Configuration 
data dictionary, 99 
key translation fues, 4 
LDB initialization, 109 

Control string, 82-83, 124-130 
C function, 124, 126-129 
colon preprocessing, 122-123 
form, 124-125 
function key, 124 
hook function, 124, 126-129 
JPL, 124, 129 
lead characters, 124 
menu, 47, 124 
operating system command, 124, 130 
screen, 124 
sibling window, 124, 126 
stacked window, 124, 125-126 
target list, 128-130 
window, 124, 125-126 

Currency formats, 44, 58, 64-68, 151 
configuration, 67 
precision, 74 

Cursor 
bounce bar, 12 
menu, 12 

Custom scrolling. See Scrolling array, alter
native scrolling method 

Cut and paste operations. See Clipboard 

D 
DARR. See Arrow keys 

Data dictionary 
ASCII, dd2asc, 99 
compare field to, 89 
configuration, 99 
create field from, 89 
create LDB entry from, 99, 135-136 
creation, 100 
defmed, 99 

Data dictionary (continued) 
entry 

characteristics, 103, 106 
comment, 10 1 
create from field, 91-92 
creation,91,95,102-103 
default, 92, 108-109 
deletion, 106 
editing, 105 
field type, 101 
group type, 101, 103--104 
name, 100 
record type, 101 
scope, 92, 100, 104, 108 
search, 106-107 
type, 101 

field names, 50 
file, 99 
rebuild index, 92 
record, 101, 104-105 

creation, 104 
data type, 105 
defmed,104 
name, 105 

save, 101 
search, 89-91 
search for group, 95 
utilities 

dd2asc, 99 
dd2struct, 74 

Data Dictionary Editor, 15,99-110 
exit, 101-102 
go to line, 107 
purpose, 99 
re-initialize LOB, 101 
rebuild index, 101 
save data dictionary, 101 
start, 17, 100-101 

Data entry, 12, 46 
data entry mode, 12, 33 
help, 132-133 
menu mode, 12,33,136 

Index 

Data entry mode. See Data entry, data entry 
mode 

Data required, field edit, 41, 147 

JAM Release 5.03 20 Nov 92 Page 161 



Author's Guide 

Data structures, 72-74 Display data, 23-26 

Data types, precision, 74 
attributes, 24 

See also Display attributes 

data. die, 99 character graphics, 96-97 l 

Date, calculations with, 64 
copy, 78 i 
creation, 24 

I 

Date/time format, 58, 60-62, 151 defmed,23 

standardization, 62 delete, 78 

system date/time, 60 editing, 24 

DBi, 1, 54 
line graphics, 97-98 
move, 78 

dd2asc,99 DOWN ARROW. See Arrow keys 

dd2struct,74 Draw field symbol, 26,31,31 
creation, 31 "-

DELE,9 default field characteristic, 31 
protection from, 42 
Screen Editor, 24 

template, 31 

Draw mode, 21,23 
DELETE CHAR. See DELE 

DELETE LINE. See DELL E 
DELL,9 

Edit See Field, field edit 
Keyset Editor, 116 '1 

protection from, 42 Element. See Array, element 

Screen Editor, 24 Embedded punctuation, 39-40 
scrolling array, 147 EMOH,9 

Digits only, character edit, 38 Entry function 

Display area, 24 field. See Field function 

copy, 80 group. See Group, entry function 

creation, 26 
screen. See Screen function 

defmed,24 Exclamation point. See I symbol 

editing, 24 EXIT,9 
move, 80 control string, 82 

Display attributes, 24-39, 25 disable, 83 

border, 29 exit canceling changes, 28 

colors, 25 exit Data Dictionary Editor, 10 1 

field, 36, 37, 76 
exit jxform, 16 

keyset labels, 115 
exit Screen Editor, 21 

line drawing, 98 
exit select mode, 76 

message/status text, 56-57 
simulate, 83 

pen,26 Exit function 

scope, 26 field. See Field function 

screen background color, 30 group. See Group, exit function 

select set, 77 screen. See Screen function 

simulation, 25 Expressions. See Regular expression 

Page 162 JAM Release 5.03 20 Nov 92 



F 
f2asc, 19 

f2struct, 72 

FERA,9 
date/time initialization, 61 
field punctuation, 40 
null field, 45 
protection from, 42 
right justified fields, 41 
Screen Editor, 24 
scrolling array, 147 

FHLP,9,33 
Screen Editor, 23 

Field, 26-28 
absolute referencing, 50 
access, 26 
add to data dictionary, 91-92 
add to group, 92-95 
alphanumeric, 39 
array. See Array; Scrolling array 
attachments, 28, 48-58 
attributes,27,36,37,76 

See also Display attributes 
character edit, 12, 36, 37-40, 42, 75 
characteristics, 27-28, 35-74, 36, 91, 92 

default, 31 
check digit, 58, 62-64 
clear on input, 44 
compare to data dictionary, 89 
consistency, 99, 104 
copy, 28,49,78,80 

See also Clipboard; Select mode 
create from data dictionary, 89 
creation, 23,26-27 
currency. See Currency formats 
data entry, 12 
datarequUed,41,46,56;147 
data type, 37, 72-74 
dateJtime format. See Date/time format 
delete, 78 

undo, 78 
described,26 

Field (continued) 
digits only, 38, 41 

See also Embedded punctuation 
display attributes, 37 

Index 

draw symbols. See Draw field symbol 
edit. See Field, field edit 
entry function. See Field function 
exit function. See Field function 
field edit, 12,36,40-48, 76, 151 
function. See Field function 
help screen, 49, 53-54 
identification, 27-32, 50 
initial data, 27, 78, 135 
item selection. See Item selection 
jPL,58, 69, 151 
LDB entry, 135-136 
length, 27, 70, 75 
lower case, 45 
math,151 

See also Math 
MDT bit See Validation 
memo text, 49, 57-58 
menu field. See Menu, field 
miscellaneous edit, 58-69 
move, 28, 78, 80 

See also Select mode 
must fIll, 46 
name,27,48,49-50,75,88-89 
next field, 48, 50-53, 146 
no auto tab, 46 
null,44-45 
number, 27,49,50, 63 
numeric, 39, 41 
previous field, 49, 50-53 
protection, 41~3 

See also Protection 
punctuation,39-40 
range,58,68 
regular expression. See Regular expres-

sion 
relati ve referencing, 50 
remove from group, 92-95 
return code, 43-44, 47 
return entry, 43-44 
right justified, 12,40-41, 44 
screen name, 88 

JAM Release 5.03 20 Nov 92 Page 163 



Author's Guide 

Field (continued) 
scrolling. See Scrolling array 
select, 77 . 

shifting. See Shifting field 
size, 27-32, 37, 69-72, 71,75 
status line. See Status line 
status text, 49, 56-57 
summary, 74-76 
tabbing order, 49, 50-53 
table lookup, 49, 56 
time format. See Date/time format 
unfiltered, 38 
upper case, 45 
validation. See Validation 
VALIDED bit. See Validation 

Field edit. See Field, field edit 

FIELD ERASE. See FERA 

Field function, 58, 59-60, 151 

Floating point, 63 

Form 
See also Screen 
control string, 124-125 
display, 124-125 
name, 124 

Form stack, 124 

Function. See Built-in control functions; 
Control function 

Function key 
See also APPI-24; Key; Key tops; 

PFI-24;SPFI-24 
application, 17 
application mode, 17 
control string, 124 

G 

Graphics characters, 96-97 

Group 
add fields, 92-95 
attributes, 92-95 
auto tab, 87, 94 
bounce bar, 86, 94 
check boxes, 93 
checklist, 85, 86, 92 
clipboard operations, 80 
create data dictionary entry, 95 
create from data dictionary, 95 
creation, 85-88,92-95 
data dictionary entry, 101, 103-104 
data type, 95 
entry function, 94 
example, 13-14, 87 
exit function, 94 
field copy, 78 
keyboard entry, 13-14 
LOB entry, 135-136 
name, 86,88-89,93 
next field, 53 
next group, 94 
previous field, 53 
previous group, 94 
protection, 43 
radio button, 85, 86, 92 
remove fields, 92-95 
selection, 13-14, 85, 151 
selection text, 13 
shortcut, 85-88 
type,86,93 
validation,94,151,152 

H 
HELP, 9, 33, 53 

item selection, 54 
regular expression, 48 
Screen Editor, 23 

Help, 23, 130-134 
advanced, 133 
automatic, 53 
creation, 33, 130 
data entry, 132-133 
field-level, 49, 53-54 
menu, 131-132 
screen-level, 33 

Page 164 JAM Release 5.03 20 Nov 92 



HOME,9 

Hook function, 59 
controlsblng, 126-129 
group, 94 

Hook sblng, 59 
argument processing, 121-123 
format, 59 

I 
IBM PC, logical keyboard template, 7 

Initialization 
See also LDB, initialization 
LDB, 109-110 

INS,10 
Screen Editor, 24 

INSERT CHAR. See INS 

INSERT LINE. See INSL 

Insert mode, right justified fields, 41 

INSL,10 
Keyset Editor, 116 
protection from, 42 
Screen Editor, 24 
scrolling array, 147 

Item selection, 49, 54-56 
automatic, 54 
data propagation, 54 
keyboard entry, 13 
menu field edit, 55 

J 
JAM Executive, Screen Manager interaction, 

43 

jam_name, 88 

jamcheck, 99 

Index 

jm_ control functions. See Built-in control 
functions 

JPL 
See also Ajpl 
control string, 129 
field level, 58, 69 
file operations. 33 
procedures window, field module, 32,58, 

69 
screen level, 32, 34 

Justification, data entry, 40-41 

jxform, 15-17 
See also Authoring 
application mode. See Application mode 
exit, 16. 
keyset, 116 
start, 15-16,20 

K 
Key, 3-15 

See also Keys indexed by name 
arrow. See Arrow keys 
behavior, 8-11 
logical,4-5 

as a return code, 44, 47 
message/status text, 57 

soft. See Soft key 
translation, 3-12, 116 

Key translation file, 3-4, 116 

key2bin, 116 

Keyboard, 3-15 
See also Key 
data entry. See Data entry 
group entry, 13-14 
item selection entry, 13 
logical, 3-5, 6 

mMPC,7 
menu entry, 12-13 
scrolling array entry, 144-149 
template, 4-5, 6 

mMPC,7 

JAM Release 5.03 20 Nov 92 Page 165 



Authors Guide 

Keyset, 35, 112-116 
See also Soft key 
application-level, 117 
configuration variables 

KPAR,118 
KSET,118 

default. 117 
display attributes, 115 
editor. See Keyset Editor 
global confIguration, 115 
override-level, 117 
portability, 117,119-120 
screen-level, 35, 117 
selection, 117 
stack, 117 
system-level, 117 
video fLle support, 117-118 

Keyset Editor, 111-120 
copy row, 116 
delete row, 115 
delete soft key, 116 
display attributes, 115 
exit, 113 
insert row, 115 
insert soft key, 116 
move row, 115 
repeat. 116 
start, 17, 113 

Keytops, 4 
message/status text. 56-57 

KPAR,118 

KSET, 118-120 

L 
LARR. See Arrow keys 

LAST FIEW. See EMOH 

LDB,135-136 
access, 135 
clear, 104 
configuration, 109 
creation, 99 

LOB (continued) 
defIned, 135 
entry 

characteristics, 135 
constant. 104 
dermed,135 
group type, 135-136 
scope, 104 
size, 135 

field names, 49-50 
mitialization, 16, 101, 109-110,135 

example, 109-11 0 
item. selection population, 54 
rebuild index, 92, 101 
record access, 104 
reset, 104 

LEFf ARROW. See Arrow keys 

LEFf SHIFT. See LSHF 

Letters only, character edit, 38-39 

Library routines 
SID_bitop, 150 
SID_d_DlSs.-line,56 
sm_deselect, 151 
SDl_dicname, 99 
sm_edit-ptr,57 
sm_ftype, 73 
SID_fval,151 
SIDJetfield, 45 
sm-8etkey, 3 
sm..,g val , 152 
SID_install, 126 
SID._is_null, 45 
smj top , 109 
SDlJceychg, 3 
smJceyoption, 151 
sm_Iclear,l04 
SID_Idb_mit. 109 
sm_1reset, 104 
SDlJllax_occW'S,70 
SID_num_occW'S, 70 
sm_option, 12, 13,14,60, 138, 151 
smJdstruct, 72 
SDl_s_val. 151, 152 
SID_select, 151 
sm_shrink_to_fit, 55, 139 

Page 166 JAM Release 5.03 20 Nov 92 



Library routines (continued) 
sm_sibling, 126 
sm_svscreen, 55,56 
sm_ wrtstruct, 73 

Line drawing, 97-98 
status line, 98 

LOCAL PRINT. See LP 

Logical keyboard, 3 
See also Key; Keyboard 
template, 6, 7 

Lower case, field edit, 45 

LP,10 

LSHF,1O 

M 
Mapping, keyboard. See Key, translation 

Math, 58, 62-64 
@date, 64 
@sum, 64 
currency precision, 74 
data type precision, 74 
expression, 63 
multiple calculations, 63 
special functions, 64 

MDT bit. See Validation 

Memo text See Field, memo text 

Menu, 136-139 
control field, 84, 136 
controlsbing,I24,138 
creation,84 
data entry mode, 33 
dynamic, 139 
field, 46-47, 55, 136 
help, 131 
keyboard entry, 12-13 
menu mode, 12, 136 

Menu (continued) 
pulldown, 47 
return code, 47 
selection, 12, 138,151 
selection field, 84, 136 
shortcut, 84-85 
submenu,46-47,85 
testing, 137 
validation, 151 

MENU TOGGLE. See MTGL 

Message, bell, 57 

Miscellaneous edits, field, 36, 58-69 

Index 

Mode. See Application mode; Line drawing; 
Screen Editor, draw mode; Screen Edi
tor, test mode; Select mode 

Modified data tag. See Validation, MDT bit 

modkey, 3,4,116 

MORE. See SFfN 

Mouse, menu toggle, 12, 136 

MTGL, 10, 12, 33, 136 

Must fill, field edit, 46 

N 
Next field. See Field, next field 

NEXT ROW. See SFfN 

NL,10 
adding data dictionary entries, 103 
allocate array occurrence, 145 
Data Dictionary Editor, 101 
group selection, 14, 85 
menu selection, 12, 138 
Screen Editor, 23 

No auto tab, field edit, 46 

Null field, field edit, 44-45 

Numeric, character edit, 39 

JAIl Release 5.03 20 Nov 92 Page 167 



Author's Guide 

o 
Ckcurrence, 27, 144-149 

alloc~ed,61, 144-148 
d~a required, 147 
defmed,70 
number, 49, 72 

maximum, 71, 76 

Operating system, command, 130 

p 

Parallel array. See Array, parallel 

Paste. See Clipboard 

PC, keyboard template, 7 

Pen 
display attributes, 26 
line drawing, 98 

PFl-24,10 
control string, 82, 124 
data dictionary comparison, 91 
Data Dictionary Editor, 102 
default keyset, 117 
group attribute selection, 94-95 
Keyset Editor, 115 
line drawing, 98 
Screen Editor, 22 
select mode, 76 
viewport, 158 

Pick list See Item selection 

Portability, keyset, 117, 119-120 

PREVIOUS ROW. See SFTP 

Print See LP 

Programming utilities 
binary to ASCII C, bin2c, 117 
data dictionary, dd2struct, 74 
screens, f2struct, 72 

Protection, 41-43 
clearing, 42 
data entry, 42 
derived fields, 42 
example, 43 
menu field, 136 
scrolling field, 42 
shifting field, 42 
tabbing into, 42 
validation, 42 

Pro to typed function 
arguments, 59 
compare to memo text, 58 

Pulldown menu, 47 

Punctuation, embedded, 39-40 

R 
Radio button. See Group 

Range check. 58, 6~9 

RARR. See Arrow keys 

Record. See Data dictionary, record 

REFR,10 

Regular expression, 39, 140-143 
character edit, 39-42 
field edit, 47-48 
help, 48 

Relative positioning, 155 

RESCREEN. See REFR 

RETURN. See NL 

Retwn code, menu, 47 

Return entry, field edit, 43-44 

Reverse video, display attribute, 26 

RIGHT ARROW. See Arrow keys 

Right justified field. See Field, right justified 

RIGHT SHIFf. See RSHF 

RSHF,10 

Page 168 JAM Release 5.03 20 Nov 92 

";l 
I 
1 



s 
Scope 

data dictionary entry, 92, 100--101, 104, 
108 

of display attributes, 26 

Screen 
See also Viewport 
ASCII, f2asc, 19 
AUTO control string, 82, 83 
border. See Border 
characteristics, 28, 2S-35 
color, 30 
compile, 27 
control suings, 82-83 
creation, 21 
date/time initialization, 61 
editing, 21 
entry function. See Screen function 
exit function. See Screen function 
help screen, 33-34 
JPL,32-33 
keyset,35 
mode, 33 
name, 15, 20, 20 
name field, 88 
position, 53-54 
rename, 21 
save,21 
size,29 
template, 20, 20, 21, 31 
testing, 19,23 
top, 15 
utilities 

f2asc, 19 
f2struct,72 
j amcheck, 99 

validation, 151 
virtual, 29, 152 

Screen Editor, 15, 19-98 
clipboard. See Clipboard 
colors, 25 
compile screen, 27 
controlsuings, 82-83 

Screen Editor (continued) 
data dictionary access, 89-91 
display attributes, 25 
draw mode, 21, 23 
editing, 80 
exit, 21, 21, 22 
field characteristics, 35 
field summary, 74-76 
function keys, 22-23 
group creation, 85-88 
help, 23 
menu creation, 84-85 
more key, 81-82 
rename screen, 21 
repeat operation, 80-81 
save screen, 21 
screen characteristics, 2S-35 
screen testing, 23 
select mode, 76-80 

See also Select mode 
shortcuts, 83-88 
start, 17,20-22 
status line, 21 
switch screens, 21 
test mode, 23 

Screen function 
entry function, 34-35, 54 
exit function, 34 

SCREEN HELP. See FHLP 

Index 

Screen Manager, JAM Executive interaction 
43 ' 

SCROLL DOWN. See SPGU 

SCROLL UP. See SPGO 

Scrolling array, 144-149 
alternative scroll driver, 72 
base field, 70 
circular, 72 
data required, 147 
dermed,70 
isolate, 72 
next field, 146 
occurrence. See Occurrence 
page size, 72 
size, 70, 144 
synchronize, 70, 95-96, 14S-149 

JAM Release 5.03 20 Nov 92 Page 169 



Author's Guide 

Select mode, 76-80 
box select, 77 
clipboard. See Clipboard 
de-select field, 77 
exit, 76 
operations on select sets, 77-78 
re-select, 77 
repeat operation, 78 
select field, 77 
select set 

copy, 78 
creation, 77 
defmed,76 
delete, 78 
display attributes, 77 
move, 78 
operations, 77-78 
undelete, 78 

start, 76 
status line, 76, 76 

Select set 
See also Select mode, select set 
mark, 77 
undelete, 78 

SFTI-24,JO 
default keyset, 117 
defmition, 116 
soft key navigation, 114, 119 

S~,JO, 114,119,120 

SFTP, 11, 114 

SFTS, 11, 116 

Shifting field 
defmed,70 
increment, 72 
m~urnlengtb,27, 70, 72, 75 
menu control field, 137 
size,70 

Sibling window 
See also Wmdow 
control string, 126 
display, 126 
selection, 158 

sm_ routines. See Library routines 

SMDICNAME,99 

SMFEXTENSION,88 

Soft key, 35, 111-112 
See also Keyset 
defmed,111 
enabling, 118 
hardware support, 112, 118 
key translation. See Key translation rue 
label, 111, 114-115 
row, 111, 114 
simulated, 112, 119 
value, 114 

SOFTKEY SELECT. See SFTS 

Source code, control, 20 

SPFI-24,11 
control string, 82, 124 
default 

application mode, 17 
runtime, 17 

Screen Editor, 22, 81-82 

SPGD,ll 

SPGU,l1 

Stacked window 
See also Wmdow 
control string, 125-126 
display, 125-126 

Status line 
application mode, 16 
bell,57 
display attributes, 56-57 
field status text, 49, 56-57 
key tops code, 56-57 
line drawing, 98 
Screen Editor, 21 
select mode, 76 

Submenu, 47 

Synchronized array. See Scrolling array, syn
chronize 

System dateltime, 60 

Page 170 JAM Release 5.03 20 Nov 92 

"1 
I , 



T 
TAB,ll 

Data Dictionary Editor, 101 
draw mode, 24 
field validation, 12, 60, 151 
groups, 14 
menu, 12, 138 
next field, 50 
Screen Editor, 23 

Tabbing order, 49,50-53, 146 

Table lookup, 49, 56 

Target list, 128-130 

Template. See Screen, template 

Terminal 
bell,57 
portability, 117, 119-120 

Test mode, 23 

Tune format. See Date/time format 

Top screen, 15 

TRANSMIT. See XMIT 

u 
UARR. See Arrow keys 

UnfIltered, character edit, 38 

UP ARROW. See Arrow keys 

Uppa- case, field edit, 45 

Utilities. See Utilities indexed by name 

v 
Validation, 12, 150-152 

automatic help, 53 
check digit, 151 
field, 58, 151 
field edit, 40-48, 151 

Validation (continued) 
field function invocation, 59~0 
field JPL procedure, 58, 69 
group, 94, 151-152 
MDT bit, 150 
protection from, 42 
screen, 151 
table lookup, 56 
VALIDED bit, 150 

VALIDED bit See Validation 

Video flle, 117-118 

VIEWPORT. See VWPT 

Viewport, 29, 152-158 
See also Screen 
move, 153 
positioning, 53-54, 154-157 
relative positioning, 155 
resize, 153 
scrolling, 153 
size, 29 

Viewport key, application mode, 17 

VIrtual screen, 29, 152 

~,ll,34, 126, 153, 158 

w 
Wmdow 

See also Screen 
close, 124 
control string, 125-126 
display, 125-126 
open by AUTO control string, 83 

Word wrap, 71 

x 
XMIT,l1 

adding data dictionary entries, 103 
begin group selection, 95 
character graphics selection, 96 

Index 

JAM Release 5.03 20 Nov 92 Page 171 



Author's Guide 

XMIT (continued) 
compile screen, 27 
control string, 82 
create field from data dictionary, 90 
create field in Screen Editor, 23 
field validation, 12 
group validation, 152 
item selection, 54 
meriu selection, 12, 138 
Screen Editor accept change, 28 
screen validation, 12,60, 151 
select fields for group, 95 
select line draw style, 98 

synchronize arrays, 96 

v 
Yes/no field, character edit, 38 

z 
ZooM,l1 

composing control strings. 83 
memo text fields. 57 

Page 172 JAM Release 5.03 20 Nov 92 



Configuration 
Guide 



TABLE OF CONTENTS 

Chapter 1 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Conventions Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Chapter 2 
Key Translation File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
2.2 Key Translation File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.2.1 Key Mnemonics and Values ............................ 6 
2.2.2 ASCn Character Mnemonics and Hex Values .............. 10 

2.3 Modifying Key Translation Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.3.1 Changing Keys for Users and Developers ................. 11 

Accessing Extended Keys on the PC ..................... 12 
2.3.2 Using International and Composed Characters. . . . . . . . . . . . . . 12 

2.4 Using Alternate Key Translation Ftles . . . . .. . . .. . . . .. . . . .. . . .. .. . .. 13 

Chapter 3 
Message File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.2 Message File Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
3.3 Modifying Messages .......................................... 17 
3.4 Adding Messages ............................................. 18 
3.5 Embedding Attributes and Key Names in Messages ........... ~ . . . . . . 19 

3.5.1 %A - Change Display Attributes ........................ 19 
3.5.2 %K - Display Key Label .............................. 21 
3.5.3 %B - Beep the Terminal ............................... 21 
3.5.4 %N - Use a Carriage RetlDll in Message Text. . . . . . . . . . . . . . 21 
3.5.5 % W - Display Message in a Pop-up Window . . . . . . . . . . . . . . 22 
3.5.6 %Md - Force User to Acknowledge Error Message ......... 22 
3.5.7 %Mu - Use Any Key to Acknowledge Error Message ....... 22 

3.6 Customizing Date-Tune Formats. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
3.6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
3.6.2 The Defaults ........................................ 23 
3.6.3 The Date Tune Tokens ................................ 25 

JAM Release 5.03 20 Nov 92 Pagei 



Configuration Guide 

3.6.4 Making The Changes ................................. 27 
Customizing the Default Formats . . . . . . . . . . . . . . . . . . . . . . . . 27 
Creating Defaults for Non-English Applications .. . . . . . . . . . . 27 
Creating Defaults in a Non-English Version of JAM. . . . . . . . . 28 1 

3.6.5 Literal Dates in Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 , 

3.7 Currency FOI1Ilats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
3.7.1 The FOI1Ilats ............................ "............ 30 
3.7.2 Making Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

3.8 JAM Decimal Symbols ........................................ 31 
3.9 Using Alternate Message Files. . . . . . . . . . . . . .. . . . .. . . . .. . . .. . . . .. . 31 

Chapter 4 
System Environment and Setup Files . . . . . . . . . . . . . . . . . . . 33 

4.1 Introduction ................................................ . 33 
4.1.1 New Features for Release 5 ........................... . 33 

4.2 Commonly Used and Required Variables ......................... . 36 
42.1 JAM Initialization ................................... . 37 

4.3 The 'fwo Setup Files .......................................... . 38 
4.4 Input FIle Line FoI1Il.at ........................................ . 38 "' , 

4.5 SebJp Varia.bles .............................................. . 39 
, 

45.1 Configuration FIle Setups ............................. . 39 
4.6 Setups for SID_input .......................................... . 41 

4.6.1 Display Attributes ................................... . 41 
4.6.2 Setups for User Input ................................ . 42 

Cursor Appearance and Movement ...................... . 42 
Menus ............................................ . 44 

4.6.3 Setups for Messages ................................. . 45 
4.6.4 Shifting, Scrolling, and Zooming Setups ................. . 48 
4.6.5 Setups for JAM Wmdows ............................. . 49 
4.6.6 Setups for FIle Names and Extensions ................... . 50 
4.6.7 Setups for Group Attributes ........................... . 51 
4.6.8 Misc.ellaneous Serups ................................ . 52 

4.7 Bl<:><:k Mooe Q¢()I1S •••••••••••••••••••••••••••••••••••••••••• 53 
4.8 Sample Setup File ............................................ . 54 

Page ii JAM Release 5.03 20 Nov 92 



Table of Contents 

Chapter 5 
Video File .......................................... 57 

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
5.1.1 How to Use this Chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
5.1.2 Why Video Files Exist ................................ 58 
5.1.3 Text File Format ..................................... 58 
5.1.4 Minimal Set of Capabilities ............................ 59 
5.1.5 A Sample Video Ftle . . . . .. . . . . . . . . . . . .. . .. . . . . . . . . . . . . 59 
5.1.6 An MS-DOS Video File. .. . . . .. . . .. . . . .. . . . .. .. .. . . . .. 60 

5.2 Video Flle FOOllat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
5.2.1 Keyword Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Basic Capabilities (page 77) ............................ 65 
Erasure Commands (page 79) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
Cursor Position (page 80) .............................. 65 
Cursor Appearance (page 81) ........................... 65 
Display Attributes (page 82) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Message Line (page 90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Soft Key Labels (page 91) ............................. 66 
Graphics (page 93 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Borders and line Drawing (page 95) ..................... 67 
Indicators (page 98) ............. . . . . . . . . . . . . . . . . . . . . . 67 
Drivers (page 99) .................................... 67 
Miscellaneous (page 99) .............................. 67 

53 Parameterized Character Sequences. . . . .. . . . . . . . . . .. . . . .. . . .. . . . .. 67 
. 5.3.1 Summary of Percent Commands ........................ 68 

Output Commands ................................... 69 
S tack Manipulation and Arithmetic Commands . . . . . . . . . . . . . 69 
Parameter Sequencing and Changing Commands ........... 70 
Control How Commands .............................. 70 
Terminfo Co~ds Not Supported ..................... 70 

5.3.2 Automatic Parameter Sequencing. . . . . . . . . . . . . . . . . . . . . . . . 70 
5.3.3 Stack Manipulation and Arithmetic Commands. . . . . . . . . . . . . 71 
5.3.4 Parameter Sequencing Commands. . . . . . . . . . . . . . . . . . . . . . . 72 
5.3.5 Output Commands ................................... 72 
5.3.6 Parameter Changing Commands. . . . . . . . . . . . . . . . . . . . . . . . . 73 
5.3.7 Control Flow Commands .............................. 74 
5.3.8 The List Command ........ . . .. . . . . . . . .. . . . . . . .. . . . . . . 75 
5.3.9 Padding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

JAM Release 5.03 20 Nov 92 Page iii 



Configuration Guide 

5.4 Constructing or Modifying a Video File, Entry by Entry ............. . 77 
5.4.1 Basic Capabilities ................................... . 77 
5.4.2 Screen and Line Erasure .............................. . 79 
5.4.3 Cursor Position ' ..................................... . 80 
5.4.4 Cursor Appearance .................................. . 81 
5.4.5 Display Attributes ............................ ' ....... . 82 

Attribute Types ..................................... . 83 
Specifying Latch Attributes ........................... . 84 
Specifying Area Attributes ............................ . 87 
Attributes that Do Not Affect Space ..................... . 88 
Color ............................................. . 88 

5.4.6 Message Line ...................................... . 90 
5.4.7 Soft Key Labels ..................................... . 91 
5.4.8 Graphics and International Character Support ............. . 93 

Graphics Charncters ................................. . 93 
5.4.9 Borders and Line Drawing ............................ . 95 

Borders ........................................... . 95 
Line Dra.wing ...................................... . 97 -. , 

5.4.10 Indica.tors .......................................... . 98 I 

Shifting and Scrolling .................... . . . . . . . . . . . . . 98 
Bell ............................. ' ................. . 98 
Selection Box for Groups ............................. . 98 

5.4.11 Drivers ............................................ . 99 
Mouse. ............................................ . 99 
Block Mooe ........................................ . 99 

5.4.12 Miscel.lane:<Jus.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Display Cursor Position on the Status Line ............... . 99 
Compression ....................................... . 100 

][r)(I~" ••••••••••••••••••••••••••••••••••••••••••••••••• Jl()Jl 

Page iv JAM Release 5.03 20 Nov 92 



Chapter 1 

Introduction 

~:'(EJ':::::::::::::::::::::/:::::: : g...: . . 
: : . . 
:: .. : .. : ........ : .... :.: .... : ... : 

The flexibility of JAM is twofold. It may be adapted for both hardware and software 
needs. This part of the manual, the JAM Configuration Guide, describes how you can 
make these changes. 

The JAM configuration directory (con fig) includes the following ASCII and binary 
files: 

• vid, vid. bin 

• keys, keys.bin 

• msgfile, msgfile.bin 

• smvars,smvars.bin 

By using these files you can adapt JAM to the following: 

• the terminals attached to your system 

• the layout of your system 

• the defaults for JAM's behavior 

• the content and style of messages 

When configuring JAM for the terminals attached to your system, you must have a vid
eo and a key translation file for each type of terminal. The video translation fLle tells 
JAM how to drive the display, and the key translation fLle tells JAM how to interpret 
the character sequences produced by the keyboard attached to a terminal. JAM is com-

o patible with any ANSI terminal, and it has over fIfty key and video fLIes for specific 
vendor terminals. In the unlikely event that none of the distributed key and video files 
work with your terminal, these files may also be built from scratch with help from this 
guide. However, most readers will probably use these two chapters for reference and for 
customizing distributed video and key files. 

JAM Release 5.03 20 Nov 92 Page 1 



Configuration Guide 

When configuring JAM to the layout of your system, you must tell JAM where to find 
its screen and help libraries, its configuration files, etc. Typically, these paths are speci
fied in an smvars me. An environment variable SMVARS is set to the directory path to 
the binary version of this file. 

When setting defaults for JAM behavior, you may use the srnvars me to specify the 
color of error windows, the methods of acknowledging error messages, and the behav
ior of cursor control keys like Tab or arrow keys, etc. 

Finally, when adapting the content and style of messages for developers and users, the 
message me may be modified. All text in JAM comes from the message file. "Please 
hit the space bar" may be changed to "Press the space bar to resume application". This 
me also contains the default values for SM_YES, SM_NO, days of the week, months of 
the year, as well as date/time and currency formats. 

The remainder of this guide is divided into four chap~ne for each of these files in 
the JAM config directoryl. As we discuss each me, we will also suggest changes and 
enhancements you may wish to make to the me. You may need to modify none of them, 
or you may need to modify all of them. If you make changes, you will be modifying the 
ASCII version of a configuration file. Since JAM always uses the binary versions of 
these files at initialization, you must convert a me to binary after editing it Each ftle 
has its own utility for this conversion-vid2bin for video files; key2bin for key 
mes; msg2bin for message mes; var2bin for setup files. The JAM Utilities Guide 
has more information on these utilities. 

1.1 

CONVENTIONS USED 
- Ii teral We use this font for words which you will type verbatim. In particular, we 

use this font for all our examples. In addition, when we name a confIgura
tion file, a configuration keyword, JAM utility, or JAM library function 
we use this font to distinguish it from the standard text 

-Italics We use bold italic to show where file names, configuration values, and oth
er values should appear. You should replace these with the appropriate 
names in your applications. 

I. In most Release 5 installations. JAM screen and help libraries are also stored in the con fig directory. 
These libraries are usually not altered. However. to permit the locali1Jltion of JAM for non-English speaking 
developers. these libcaries rna y be adapted after JY ACC has granted the appropriated licenses. The conversion 
or modification of these libraries is not documented in this guide. 

Page 2 JAM Release 5.03 20 Nov 92 

l 
I 
I 

! 



Chapter 2 

Key Translation File 

2.1 

INTRODUCTION 

~:[E]:::::::::::::::::::::::::::::::: :~: · . · . · . · . 
:: .. : .. :.: ...... : .... :.:.: .. : ... : 

To build a JAM application, you must be able to enter ASCII data characters (Le., A, q, 
8, !, 7, ?, ], ... ) and to indicate certain logical key values to JAM-EXIT, XMIT, PF1, 
SPF1, etc. Since physical keyboards vary from system to system, JAM uses a key 
translation flle to translate a sequence typed to a physical keyboard into a logical key 
which JAM understands. The logical keys are deflned as hexadecimal values in the in
clude me smkeys. h. This flle is terminal-independent, while a key translation file is 
terminal--dependent ibmkeys, vt220keys, wy7Skeys are a few of the available 
key translation files. JAM provides a modkey utility to help you build and edit key 
translation mes. 

Regardless of your system, we expect all keyboards to have keys for the ASCII data 
characters; these data keys require no translation and are not included in the key 
translation flle. We cannot expect different keyboard types, however, to have the same 
number of function keys, or to have logical keys named HELP and TRANSMIT. There
fore, a key translation me must specify a physical key which will work as a HELP key, 
and another as a TRANSMIT, and so on. When you press that key during a JAM ap
plication JAM looks at the key translation me and matches the key sequence with a 
logical value. In this way, JAM is able to interpret TRANSMIT when you press a "Do" 
key, or an "End" key, or whatever physical key is mapped to TRANSMIT in your key 
translation file. 

Pressing a physical key transmits a unique code or sequence of codes; in a key transla
tion file, this key never has more than one logical value. For example, "Return" key 
may have the logical value TRANSMIT, or it may have the logical value NL (new line), 

JAM Release 5.03 20 Nov 92 Page 3 



Configuration Guide 

but it cannot have botb values in tbe same key file. If a timing interval is specified in tbe 
video file, tben one key may use another key's sequence as a leact-in. For example, if 
the FI key on a particular keyboard sends ESC [ a, you can still use ESC itself as a 
J AM key. If no timing interval is specified, tben one key cannot contain another key as 
a lead-in. Refer to section 5.4.1 on page 77 for a instructions on setting an interval via 
KBD_DELAY. 

Not surprisingly, witb a one-to-one mapping tbere are not enough keys on a commer
cially available physical keyboard to represent tbe JAM logical keyboard. To accom
modate the larger logical keyboard, we combine two or more physical keys to represent 
a logical key. For example, on a PC we often map tbe logical key ZOOM to Alt-Z. 

If you use JAM on terminals with different operating systems and keyboards then each 
terminal must have its own key translation file. If necessary, you may also create more 
than one key translation file for a terminal. This way you can tailor the key mapping for 
a particular application. Another, and usually better, solution is to create application 
keysets. 

A keyset is a "soft" keys translation flIe. A keyset allows you to use the same small set 
of keys to represent different JAM keys at different times, in an application-dependent 
manner. Normally, a keyset uses eight function keys. The terminal's key translation file 
tells JAM what sequence a soft key actually sends. This sequence is then translated 
based on the active keyset An application may use any number of keysets. For exam
ple, every screen in an application could have its own keyset When the screen is 
opened, the labels defmed in its key set would appear in a row on the screen. In addition, 
a keyset may specify more than one row, so that when a key is pressed, the next row of 
the keyset is displayed on the screen. A screen without a specified keyset uses a default 
keyser; if the screen is brought up as a window it will use the keyset of the form beneath 
it 

JAM provides a keyset editor for derming keysets. You must modify jxmain. c and 
jrnain. c to create and use keysets. See the JAM Programmer's Guide for details on 
modifying these flIes. See the JAM Author's Guide for instructions on using the keyset 
editor. To display key labels, you must modify the video file. See the video flIe chapter 
in this guide. 

In slJ1D!ll3!Y, srnkeys. h defines the independent JAM logical keyboard. A key 
translation flIe, like ibrnkeys or wy85keys, maps the ASCII values returned from a 
physical keyboard to the names of logical keys; it is terminal-<lependent A keyset 
maps a soft key to the name of a logical key; it is designed for a specific application. 
Keysets are terminal independent, except that the number of keys per row may be tai
lored for a particular terminal. 

Page 4 JAM Release 5.03 20 Nov 92 



Chapter 2: Key Translation File 

The rest of this chapter describes: 

• How to read the entries in the key translation me (page 5); 

• How to modify a key translation file (page 11); 

• Using alternate key translation mes in portable applications (page 13). 

Please see the chapter on keyboard input in the Programmer's Guide for a discussion of 
key processing in JAM applications. . 

2.2 

KEY TRANSLATION FILE SYNTAX 
Each entry in a key file has the form: 

loglcal-lcey( key-label) = characte~equence 
logicaJ-key is the mnemonic or the hexadecimal value of a JAM logical key. For ex
ample, the 10gicallRANSMIT key is represented by the mnemonic XMIT or by the hex 
value Oxl04. The mnemonics and hex values for all the JAM logical keys are defined 
in smkeys . h. Beginning on page 6 is a list of these mnemonics and values. 

Whether you use the mnemonic or the hexadecimal value, there will be no difference 
when executing the application or when using rnodkey. For example, whether you use 
XMIT or Oxl04 for /og/csl-key, its definition will be displayed in the rnodkey win
dow "Derme Cursor Control and Editing Keys." See the Utilities Guide for more in
formation. 

You may assign the same logical-lcey two (or more) different character-sequences. 
For example, in a key fIle for the PC you might make these entries: 

HELP(Ctrl Fl) = NUL ~ 

HELP(Alt H) = NUL # 

When this key file is used with a PC, both Ctrl-Fl and Alt-H will execute HELP. In 
modkey, the first entry will be displayed in the window for "Derme Cursor Control and 
Editing Keys" and the second entry for HELP will be displayed in "Define Miscella
neous Keys." 

key-label, which must be enclosed in parentheses, is the letter, mnneral, character, or 
character string engraved on a physical key top. One or more physical key labels may be 

. included inside the parentheses, for example (AI t Fl). key~abe/is optional, but very 
useful. It is stored in the key translation fIle and can be accessed at run-time through 
various library ftmctions and the %K escape in status-line messages. (See 
d_msg_l ine in the JAM Programmer's Guide.) Key labels are often helpful in user 
messages and prompts. 

JAM Release 5.03 20 Nov 92 PageS 



Configuration Guide 

character-sequence follows the equal sign. It is up to six characters long, not includ
ing blanks. JAM will translate character-sequence to be the logical key on the left of 
the equals sign. 

When a physical key is pressed, it transmits a character code which is unique from the 
code produced by any other key on the keyboard. character-sequence is the sequence 
of characters produced by a keystroke. Eacb complete character sequence may have 
only one logical value. Although one sequence may include another as a substring. If 
you assign the same character-sequence more than once in rnodkey, JAM will display 
an error message. If you are using a text editor to create a key translation me, JAM 
displays an error message when you attempt to convert the me with key2bin. If you 
assign a character sequence that includes another key's sequence as its lead-in, 
rnodkey will issue a warning that states "Key overlaps with a FUNCTION key.", but it 
will allow the sequence. 

Lines beginning with a pound sign # are treated as comments. They are ignored by the 
conversion utility key2bin. 

Below are some sample entries from a key translation me. 

EXIT (Fl) = SOH ~ CR 
XMIT (Enter) = SOH 0 CR 
TAB = HT 
BACK = NUL SI 
BKSP = BS 

# These are the arrow keys 
RARR = ESC [ C 
LARR = ESC [ D 
UARR = ESC [ A 
DARR = ESC [ B 

# The next entry uses a hex value rather 
# than a mnemonic for logical-key 
Oxl08 = DEL 

2.2.1 

Key Mnemonics and Values 

The following list is taken from the include me srnkeys . h which defines the JAM 
logical keyboard. We marked the entries required by j xform with "**,, and the recom
mended entries with "*". 

Page 6 JAM Release 5.03 20 Nov 92 



Chapter 2: Key Translation File 

Logical Key Mnemonic Hex Value Description 

EXIT OxlO3 exit** 

XMIT OxlO4 transmit** 

HELP OxlO5 help on field* 

FHLP OxlO6 help on screen or form 

BKSP OxlO8 backspace* 

TAB OxlO9 tab* 

NL OxlOa newline* 

BACK OxlOb backtab* 

HOME OxlOe go to first field on screen* 

DELE OxlOe delete character* 

INS OxlOf insert/overwrite character toggle* 

LP Oxl10 local print 

FERA Oxlll field erase* 

CLR Oxl12 clear all Wlprotected* . 

SPGU Oxl13 scroll up a page 

SPGD Oxl14 scroll down a page 

LSHF Oxl16 left shift 

RSHF Oxl17 right shift 

LARR Oxl18 left arrow* 

RARR Oxl19 right arrow· 

DARR Oxlla down arrow* 

UARR Oxllb up arrow* 

JAM Release 5.03 20 Nov 92 Page 7 



Configuration Guide 

Logical Key Mnemonic Hex Value Description 

REFR Oxlle refresh screen * 

EMOH Oxllf go to last field on screen 

INSL Ox120 insert line* 

DELL Ox121 delete line* 

ZOOM Ox122 zoom on field * 

SFTS Ox123 soft key select 

MTGL Ox124 toggle menu mode 

VWPT Ox125 adjust viewport 

MOUS Ox126 indicate mouse event 

SFTN OxlOO2 select next set of soft keys 

SFTP OxlOO3 select previous set of soft keys 

Note: The documentation on error messages and error acknowledgment often refers to 
an "error acknowledgment key" whose default is the space bar. Since the space bar is a 
data entry key, it cannot used as a logical key. Instead, the key is dermed as the setup 
variable ER_ACK_KEY. It may cbanged in the smvars file, in a setup file, in the sys
tem environment, or at runtime with the library function sm_opt ion. See the chapter 
on setup mes in this guide for more information. 

In the table below, we list the mnemonics and hexadecimal values for function keys, 
shifted function keys, application function keys, and soft keys. 

Page 8 JAM Release 5.03 20 Nov 92 

'I 
I 
! 



Chapter 2: Key Translation File 

PF Hex SPF Hex APP Hex SIT Hex 

PFI Ox6l0l SFPl* Ox4l0l APPI Ox6l02 SFTI Ox6l05 

PF2* Ox620l SPF2* Ox420l APP2 Ox6202 SFT2 Ox6205 

PF3* Ox630l SPF3* Ox430l APP3 Ox6302 SFT3 Ox6305 

PF4* Ox640l SPF4* Ox440l APP4 Ox6402 SFT4 Ox6405 

PF5* Ox650l SPF5* Ox4S0l APPS Ox6502 SFT5 Ox6505 

PF6* Ox660l SPF6* Ox460l APP6 Ox6602 SFT6 Ox6605 

PF7* Ox670l SPF7 Ox470l APP7 Ox6702 SFT7 Ox6705 

PF8* Ox680l SPF8 Ox480l APP8 Ox6802 SFT8 Ox6805 

PF9* Ox690l SPF9 Ox490l APP9 Ox6902 SFT9 Ox6905 

PFlO* Ox6aOl SPFIO Ox4aOl APPIO Ox6a02 SFTIO Ox6a05 

PFll Ox6bOl SPFll Ox4bOl APPll Ox6b02 SFTll Ox6b05 

PF12 Ox6cOl SPF12 Ox4cOl APP12 Ox6c02 SFT12 Ox6c05 

PF13 Ox6dOl SPF13 Ox4dOl APP13 Ox6d02 SFT13 Ox6d05 

PF14 Ox6eOl SPF14 Ox4eOl APP14 Ox6e02 SFT14 Ox6e05 

PF15 Ox6fOl SPF15 Ox4fOl APP15 Ox6f02 SFT15 Ox6f05 

PF16 Ox700l SPF16 Ox500l APP16 Ox7002 SFT16 Ox7005 

PF17 Ox7l0l SPF17 Ox5l0l APP17 Ox7l02 SFT17 Ox7l05 

PF18 Ox720l SPF18 Ox520l APP18 Ox7202 SFT18 Ox7205 

PF19 Ox730l SPF19 Ox530l APP19 Ox7302 SFT19 Ox7305 

PF20 Ox740l SPF20 Ox540l APP20 Ox7402 SFT20 Ox7405 

PF2l Ox750l SPF2l Ox550l APP2l Ox7502 . SFT2l Ox7505 

PF22 Ox760l SPF22 Ox560l APP22 Ox7602 SFT22 Ox7605 

PF23 Ox770l SPF23 OxS70l APP23 Ox7702 SFT23 Ox7705 

PF24 Ox780l SPF24 Ox580l APP24 Ox7802 SFT24 Ox7805 

JAM Release 5.03 20 Nov 92 Page 9 



Configuration Guide 

2.2.2 

ASCII Character Mnemonics and Hex Values 

This table lists two- and three-letter ASCII mnemonics for control and extended con
trol characters: 

Mnemonic Hex Mnemonic Hex Mnemonic Hex Mnemonic Hex 

NUL OxOO DLE OxlO DCS Ox90 

SOH OxOl DCl Oxll PUI Ox91 

STX Ox02 DC2 Ox12 PU2 Ox92 

ETX Ox03 DC3 Ox13 STS Ox93 

EOT Ox04 DC4 Ox14 IND Ox84 CCH Ox94 

ENQ OxOS NAK OxlS NEL Ox8S MW Ox9S 

ACK Ox06 SYN Ox16 SSA Ox86 SPA Ox96 

BEL Ox07 ETB Ox17 ESA Ox87 EPA Ox97 

BS OxOS CAN Ox18 HTS Ox88 

HT Ox09 EM Ox19 HTJ Ox89 

NL OxOa SUB Oxla VTS Ox8a 

VT OxOb ESC Oxlb PLD Ox8b CSI Ox9b 

FF OxOc FS OxIc PLU Ox8e ST Oxge 

CR OxOd GS Oxld RI Ox8d OCS Ox9d 

SO OxOe RS Oxle SS2 Ox8e PM Oxge 

SI OxOf US Oxlf SS3 Ox8f APC Ox9f 

SP IOX20 I DEL IOX7f I 

Page 10 JAM Release 5.03 20 Nov 92 



Chapter 2: Key Translation File 

2.3 

MODIFYING KEY TRANSLATION FILES 
Modifying a key translation file involves 3 steps: 

1. Use a text editor or the modkey utility to create a new ASCII key 
file. You can modify one of the ASCII key fIles supplied with JAM, 
or create a completely new key fIle. 

2. Use key2bin to create a binary version of the ASCn key rue. 

3. Change the value of the SMKEY setup variable to the name of the new 
binary key fIle. During initialization, JAM reads the key me speci
fIed by SMKEY into memory. (The default value for SMKEY is set in 
the conf ig file smvars. If you modify smvars, you must convert 
it to binary with the utility var2bin. See the chapter on setup files 
in this guide for more information.) The choice of SMKEY is terminal 
dependent 

2.3.1 

Changing Keys for Users and Developers 
You may wish to change the mappings of logical keys for the preferences of users or 
developers. For example, in the distributed key files for the pc, XMIT is mapped to the 
physical "End" key, and NL is mapped to the "Enter" key. The key translation fIle en
tries are: 

XMIT(End) = NUL 0 
NL(Enter) = CR 

NUL 0 is the sequence transmitted by the PC's "End" key; when JAM receives this 
sequence from the keyboard it carries out its XMIT function. Similarly, CR is trans
mitted by the PC's "Enter" key and JAM responds appropriately. 

If you prefer to use the "Enter" key for XMIT and the "End" key for NL, you could 
change the key fIle entries to read: 

XMIT(End) = CR 
NL(Enter) = NUL 0 

The Enter key would be used for TRANSMIT, and the End key would be used where 
newline is needed, like word-wrapped arrays. Remember that changes made to the key 
file will affect the entire application. You may use the library function sm_keyop
tion to change the behavior of logical keys at run-time. See your Programmer's 
Guide for more information. 

JAM Release 5.03 20 Nov 92 Page 11 



Configuration Guide 

Accessing Extended Keys on the PC 
Developers who are building applications for PCs with extended keyooards may wish 
to use the additional keys and key combinations provided. By default, these keys arel 
not recognized in the distributed PC version of JAM. Before these keys can be defined 
in modkey, you must add a special flag for each class of key or key combination to the 
video me entry INIT. The classes are listed in the table below. 

Flag Description 

XKEY Allows access to the F 11 and F 12 function keys. 

GRAYKEYS Distinguishes between gray and white cursor positioning keys. 
For example, this option allows you to assign one value to the 
gray up arrow key and another value to the white up arrow key. 

MULTI SHIFT Permits the use of sequences using the key combinations: 
Ctrl-Alt-,Shift-Alt-,andCtrl-Shift-Alt-

For example, an INIT sequence that activates the Fll and F12 keys might look like, 

INIT = C 0, 7, 2, XKEY 

Mter converting the altered video files with vid2bin, you may then define the keys 
with rnodkey. For example, you might define Fll and F12 in the "Define Miscella
neous Keys" window as supplementary HELP and F1-ll..P keys. Their defmitions in the 
ASCn fIle would appear as 

HELP (Fll) = NUL NEL 
FHLP (F12) = NUL SSA 

Extended keys are documented in the PC video files. The INIT entry is fully docu
mented in the Video File chapter of this guide. 

2.3.2 

Using International and Composed 
Characters 
JAM accepts and interprets 8-bit international characters automatically. Some termi
nals, however, use character sequences which correspond to international characters. 
Some terminals also allow the user to compose characters (by programming a key to 
transmit a specified character sequence). To support either siruation, you frrst should 
assign the sequence to ahex value in the range OxAO - OxFE in the key fIle. A corre-

Page 12 JAM Release 5.03 20 Nov 92 



Chapter 2: Key Translation Rle 

sponding entry in the GRAPH table of the video fIle would specify the display (see 
Graphics and Foreign Character Support in the Video FIle chapter in this guide). With
out a GRAPH entry, the 8-bit character is transmitted as is, and must be interpreted by 
the terminal. 

2.4 

USING ALTERNATE KEY TRANSLATION 
FILES 
Many applications must support more than one type of keyboard. JAM allows you to 
provide this support without recompiling the application for each keyboard. Each ter
minal must have a working key file and video fIle. The application's smvars file 
should list the paths for the available key and video ftles. If the user's SMTERM variable 
is set correctly, JAM will select the correct key and video ftle from the smvars file 
during initialization. Please see the Setup File chapter in this guide for more informa
tion. 

JAM Release 5.03 20 Nov 92 Page 13 



Chapter 3 

Message File 

3.1 

INTRODUCTION 

~:[E]::::::::::::::::::::::::::::::: :~: 
:: .. :-.:.: ...... : .... :.:.: .. : .. : 

The JAM libraries use the configuration fIle rnsgfile as the text source of messages 
and date strings. The text in rnsgf i le may be adapted for developers' or end users' 
needs. Since JAM uses binary configuration mes at runtime. you must convert any new 
or modified message files with the utility rnsg2bin. 

JAM uses the include file srnerror. h to define identifiers (manifest constants) for all 
the messages used by the JAM libraries. In rnsgfile, these identifiers are "system 
tags" which are assigned message text If user messages are added to the fIle. JAM 
numbers them consecutively starting at zero, when the ftle is converted with rnsg2bin. 
During initialization, JAM looks for the environment variable SMMSGS. This variable 
gives the full pathname of a binary message ftle; by default, it is rnsgf i le. bin. 

There are obvious advantages to storing message text in binary ftles. Messages do not 
need to be "hard coded" for either JAM or a JAM application. When developing an 
application. message text is edited and compiled without recompilation of the applica
tion. Storing JAM's system messages in an accessible binary me means that any mes
sage may be modified to suit the needs of developers. In fact, the message text in the 
message file may be translated to another language. If you created a French version of 
the message fIle, the status line messages which identify physical keys with logical val
ues would all appear in French. System dates would use French names for the days of 
the week and months of the year. Formats for date and currency edits would be adapted 
to French standards. It might be useful to translate some error messages as well; for 
example, "Entry is required." However, the translation of run-time error messages is 
complicated since we do not document when and what functions call a particular error 
message. 

JAM Release 5.03 20 Nov 92 Page 15 



Configuration Guide 
1 ,.' 

Although you may not need to modify any of the entries in the message me, you will 
probably want to add messages and create application message files. This chapter ex
plains how to do this. In addition, many JAM defaults are defined in the message file 
(the date and currency formats; the values of SM_YES, SM_NO, day and month mne
monics). Familiarity with the message me may help you with functions that use these 
defaults. 

The rest of this cbapter describes: 

• Reading entries in the message file (page 16); 

• Modifying a message (page 17); 

• Adding message entries and creating message files (page 18); 

• Embedding attributes and key names in messages (page 19); 

• Customizing date and time formats (page 22); 

• Customizing currency formats (page 29); 

• Using alternate message files (page 31). 

3.2 

MESSAGE FILE SYNTAX 
Each entry in a message fIle has the form: 

TAG = MaAgfl 

TAG is a single word (no embedded blanks). It may include letters, digits, and under
scores. 

If TAG identifies a system message, it is defmed in the include fIle srnerror. hand 
it begins with a standard prefix. Below is a list of the system prefixes; these prefIXes are 
reserved and may not be used for other messages. 

• SM messages and strings used by the JAM run-time library. 

• FM 

• JM 

messages issued by the Screen Editor. 

additional run-time messages used by JAM. 

• JX messages issued by jxforrn. 

• UT messages issued by JAM utilities. 

The equals (=) sign following TAG is required. Blanks are allowed both before and after 
the equals sign. 

Page 16 JAM Release 5.03 20 Nov 92 

1 
I 

1 

·1 
\ 

I , 
.1 



Chapter 3: Message File 

Message can be any alphanumeric string that does not contain carriage returns. If Mes
sage is longer than one line, use a backslash to end the lines which are continued. For 
example, 

P~FATALERR = Application unable to post your \ 
transaction. Contact your system manager. 

JAM will automatically display long status-line messages in a window, so that the en
tire message is visible. Message may also contain percent sequences that specify ap
pearance, positioning, and acknowledgement information. (See page 19.) 

You may include comments in the message file by beginning the comment line with a 
pound sign (#). These lines will be ignored when the file is compiled with the utility 
rnsg2bin. 

If Message begins and ends with the same quote character, JAM will strip off the 
quotes when displaying the message. Use quote characters, then, to display leading 
blanks in a message. 

An excerpt from a sample message file is shown below. 

SM_RENTRY = Entry is required. 
SM_MUSTFILL = Must fill field. 
SM_CKDIGIT = Check digit error. 
SM_NOHELP = No help text available. 

# The following are user messages. 
US_INSUF = Insufficient funds. 
RESERVED = 
US_SUPV = See supervisor. 

When the me containing these messages is compiled with rnsg2bin, the utility uses 
the TAGs to distinguish between system and user messages. It assigns the user messages 
consecutive numbers starting from zero; the defmitions of system message are taken 
from srnerror. h. It is the responsibility of the application programmer to maintain 
the ordering of user messages and the assignment of their identifiers. See Section 3.4 
for more information. 

While a prefIX is not required in a user TAG, it is often useful. All entries with the same 
prefix may be loaded into memory with a call to the library function sIn_rnsgread. 

3.3 

MODIFYING MESSAGES 
The ASCII version of the message ftle can be modified using a text editor. After making 
the changes, run the utility rnsg2bin to convert the file to binary. 

JAM Release 5.03 20 Nov 92 Page 17 



Configuration Guide 

For example, if the me was modified as follows: 

SM_DAYLl = domingo 
SM_DAYL2 = lunes 
SM_DAYL3 = martes 
SM_DAYLl = miercoles 
SM_DAYLl = jueves 
SM_DAYLl = viernes 
SM_DAYL7 = sabado 

the long names for days of the week would be displayed in Spanish, rather than English, 
in date edits using the system clock. 

3.4 

ADDING MESSAGES 
New messages may be added to the message me. As described in the previous section, 
the new message must have a unique TAG which does not begin with any of the system 
prefixes. msg2bin will number the new messages consecutively starting from zero. To 
use the message, you must defme its TAG in the application program according to the 
assignment made by rnsg2bin. 

For example, if you added these three entries to the message file, 

US_LNSUF = Insufficient funds. 
RESERVED = 
US_SUPV = See supervisor. 

then an application program compiled with the following defmitions: 

'define US_INSUF 0 
idefine RESERVED 1 
idefine US_SUPV 2 

could issue these calls: 

sm_quiet_err (sm_msg_get (US_INSUF)) i 

sm_err_reset (sm_msg_get (U_SUPV))i 

If you needed to change the text of a new message, you would modify the message ftIe 
and convert it to binary with rnsg2bin. You would not need to recompile the applica
tion program. 

If any message is missing from the message ftIe and a call is made to display the mes
sage, only the message number (from the #define statement) is displayed. For exam
ple, if the entry for SM_RENTRY was deleted from the message ftIe, and an end-user 
failed to enter data in a field where entry was req~ the status line would display the 
number corresponding to SM_RENTRY in srnerror . h. 

Page 18 JAM Release 5.03 20 Nov 92 

1 



Chapter 3: Message File 

User messages may also be stored in separate message fIles, loaded witb calls to 
sm_msgread, and accessed in the Same way as described above. 

3.5 

EMBEDDING ATTRIBUTES AND KEY 
NAMES IN MESSAGES 
Several percent escapes provide control over tbe content and presentation of status 
messages. The cbaracter(s) following the percent sign are case-sensitive and must be 
typed in exactly as described. This will avoid conflicts with percent escapes used by 
printf and tbe tokens used by date/time formats. Some percent escapes must appear 
at the beginning of the message, or may be used only by error messages; the restrictions 
are noted in the appropriate cases. The percent escapes are the following: 

For all messages: 

• %A 

• %K 

• %B 

Change display attributes. 

Display key label. 

Beep the terminal. 

For error messages requiring acknowledgement: 

• %N Use a carriage return in the message text and display the mes-
sage in pop-up window. 

• %W Display message in a pop-up window. 

• %Md Force the user to acknowledge an error message. 

• %Mu Permit any keypress to serve as both error acknowledgement 
and data entry. 

3.5.1 

%A - Change Display Attributes 
%Ahhhh placed anywhere in the text of a message cbanges the display attributes of the 
text that follows it hhhh is a hexadecimal number whicb will be interpreted as a dis
play attribute. It may represent one attribute or the sum to two or more attributes. If you 
wish to display a digit immediately after the attribute change. pad the attribute to four 
digits with leading zeros. If the character following the attribute cbange is not a legal 
bex digit, the leading zeros are unnecessary. The listing below is taken from the defini
tions given in the include fIle smattrib. h. 

JAM Release 5.03 20 Nov 92 Page 19 



Configuration Guide 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Attributes Background Attributes 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (a1temate character set) 2000 

Foreground Colors Background Colors 

BLACK (colors are additive) 0000 B_BLACK (default) 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA OSOO 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B_WHITE 0700 

NORMAL_ATTR 0007 
(usually white) 

For example: 

SM_WARNBIG= %A44Warning.\ 
%A0004Form is larger than screen size. 

This would cause the message to appear in red characters against the default black 
background with "Warning." in blinking characters. You can use %A escape sequences 
with all status-line and error messages. It overrides any setup variable assignment 
which may have altered the defaults for message attributes. 

Page 20 JAM Release 5.03 20 Nov 92 



Chapter 3: Message File 

If you use %A without specifying a color, the default foreground color is BLACK. Since 
the default background for the status line is also black, developers using color terminals 
should include a color code when using %A. 

3.5.2 

%K ~ Display Key Label 
%K/ogicsJ-key placed anywhere in the text of a message causes JAM to interpret log
ics/-keyas a mnemonic defined in smkeys • h. If a key label has been defmed for the 
logical key in the key translation ftle, the key label will replace the percent sequence in 
the message text If there is no key label (or no such logical key) %K is stripped off and 
logics/-key remains in the message text. For example, if the key translation file con
tains the entry: 

XMIT(End) = NULL 0 

and the message ftle contains the entry: 

SG_CONFIRM = Press %KXMIT to confirm. 

the status line would display: 

Press End to confirm. 

You can use a %K sequence in all status-line and error messages. 

Note: If %K is used on the status line, and a user clicks on the keylabel text with a 
mouse, JAM responds as if the user had pressed the physical key. See Mouse Support 
for details on mouse installation and use.2 

3.5.3 

%B - Beep the Terminal 
%B in a status-line or error message rings the terminal bell (using sm_be 1) when the 
message is displayed. You may configure JAM to send a "visible" bell, such as flashing 
the screen, by putting a BELL entry in the video ftle. See the section on Indicators in 
the Video FIle Chapter. 

3.5.4 

%N - Use a Carriage Return in Message Text 
%N anywhere in an error message is replaced with a carriage return. Any message with 
one or more iN's is automatically displayed in a pop-up window, usually at the bottom 
of the screen. 

2. Mouse support is available foc PC users. Documentation is included with the PC releases of JAM. 

JAM Release 5.03 20 Nov 92 Page 21 



Configuration Guide 

3.5.5 

%w - Display Message in a Pop-up Window 
%w at the beginning of an error message causes the message to be displayed in a pop-up 
window rather than on the status line. The window will appear at the bottom center of 
the screen unless it hides the current field. In that case, the window will appear at the 
top center of the screen. If you precede %W with %K, %A, or message text, the %w will be 
treated as part of the message text and not as a percent escape. 

3.5.6 

%Md - Force User to Acknowledge Error 
Message 
%Md at the beginning of an error message forces the user to press the acknowledgment 
key to clear the message. This is usually the default behavior for error messages. If you 
have altered the default by using the library function sm_option or by altering the 
setup file, you can use this percent sequence to force the user to press the acknowledge
ment key to clear a message. The keypress will not be processed as data. %Md will not 
work if it follows a %A, %K, or message text 

The acknowledgment key is usually the space bar. This default may be changed in a 
setup me with the variable ER_ACK_KEY. 

3.5.7 

%Mu - Use Any Key to Acknowledge Error 
Message 
%Mu at the beginning of an error message causes the next key press to be both message 
acknowledgment and keyboard input %Mu will not work if it follows a %A, %K, or any 
message text 

3.6 

CUSTOMIZING DATE-TIME FORMATS 
The fotmats, substitution text, and substitution variables for displaying dates and time 
are defined in the message file. 

Page 22 JAM Release 5.03 20 Nov 92 



Chapter 3: Message Fila 

3.6.1 

Introduction 
You may modify date/time entries to achieve any of the following: 

• Customized formats for date/time fields. 

• Customized formats and translated text for dateitime fields in non
English applications. 

• Customized formats, translated text, and translated mnemonics for 
date/time fields in a non-English version of JAM. 

In j x form, if you specify a date/time format as DEFAULT, the field will contain the 
current date and time in the form 

11/30/90 13: 05 

This format may be changed so that when DEFAULT is specified, the date appears in 
another format, such as 

November 30, 1990 - 1:05 PM 

This is done by changing the tokens assigned to the message entry SM_ODEF _DTlME. 

If you are customizing the message me for non-English applications, you will need to 
translate the text entries which name the days of the week and the months of the year. 
This text is assigned to the entries SM_DAYAl ..• SM_DAY A 7, SM_DAYL 1 .•• 
·SM_DAYL 7, SM_MONAl .•. SM_MONA12, SM_MONLl .•. SM_MON12. You may also 
wish to change the format for DEFAULT to reflect local customs; this is done by modi
fying SM_ 0 DEF _DTlME. With these modifications, a date in a field with the format 
DEFAULT could appear as 

30 novembre 1990 1:05 PM 

If you are customizing JAM for non-English speaking developers, you will translate 
many of the messages in the message file. In addition to translating the text for the days 
of the week and months of the year and localizing formats, you may also translate the 
names of substitution variables. In jxform, then, French-speaking developers could 
use substitution variables like MOIS2, ANNEE4, JOURA, while Spanish-speaking de
velopers could use variables like MES2, Mto4, and DiAA, rather than using the English 
variables MON2, YR4, and DAYA. 

3.6.2 

The Defaults 
When using jxform with the distributed message file, these substitution variables are 
equivalent These can be changed by the developer: 

JAM Release 5.03 20 Nov 92 Page 23 



Configuration Guide 

Shortcut Mnemonic Equivalent 

DEFAULT MON/DATE/YR2 HR:MIN2 

DEFAULT DATE MON/DATE/YR2 

DEFAULT TIME HR:MIN2 

DEFAULT3 MON/DATE/YR2 HR:MIN2 

DEFAULT4 MON/DATE/YR2 HR:MIN2 

DEFAULTS MON/DATE/YR2 HR:MIN2 

DEFAULT 6 MON/DATE/YR2 HR:MIN2 

DEFAULT7 MON/DATE/YR2 HR:MIN2 

DEFAULT8 MON/DATE/YR2 HR:MIN2 

DEFAULT 9 MON/DATE/YR2 HR:MIN2 

Below is an excerpt from msgf i Ie which defines the names of the default substitution 
variables. 

FM_OMN_DEF_DT = DEFAULT 
FM - 1 Ml'CDEF _DT = DEFAULT DATE 
FM_2MN_DEF_DT = DEFAULT TIME 
FM_3l-n-CDEF _DT = DEFAULT3 
FM_ 4Ml'CDEF _DT = DEFAULT4 
FM_SMl'CDEF _DT = DEFAULTS 
FM_6MN_DEF_DT = DEFAULT6 
FM_7MN_DEF_DT = DEFAULT7 
FM_8MN_DEF_DT = DEFAULTS 
FM_9Ml'CDEF _DT = DEFAULT9 

The entries in the next excerpt define the formats. There is a one-to-one correspon
dence between the substitution variables defmed above and the formats defined below. 
(The tokens in the formats are explained in the next section.) 

SM_ODEF_DTIME = %m/%d/%2y %h:%OM 
SM_1DEF_DTIME = %m/%d/%2y 
SM_2DEF_DTIME = %h:%OM 
SM~3DEF_DTIME = %m/%d/%2y %h:%OM 
SM_4DEF_DTIME = %m/%d/%2y %h:%OM 
SM_SDEF_DTIME = %m/%d/%2y %h:%OM 
SM_6DEF_DTIME = %m/%d/%2y %h:%OM 
SM_7DEF_DTIME = %m/%d/%2y %h: %OM 
SM_SDEF_DTIME = %m/%d/%2y %h:%OM 
SM_9DEF_DTIME = %m/%d/%2y %h:%OM 

Page 24 JAM Release 5.03 20 Nov 92 



Chapter 3: Message File 

Therefore, FM_ OMN_DEF _DT defines the name of the frrst substitution variable, which 
is DEFAULT and SM_ODEF _DTlME defines its format, %m/ %d/ %2y %h: %OM. 

Developers use the FM_ entries when creating date/time fields on screens. The FM_ en
tries are understood only by jxform. All runtime date/time functions use the SM_ en
tries. If a developer uses sm_sdtime or SIILudtirne to format a date or time at run
time, the function call uses tokens, not the Screen Editor mnemonics like MONL or 
DEFAULT DATE. 

3.6.3 

The Date Time Tokens 

When you specify a date format as a field edit in jxform you will use one of the datel 
time substitution variables. However, when specifying a format in the message me or 
as an argument to sm_sdtime or srn_udtime, you must use some combination of 
tokens. This way, JAM does not need to parse the message file, and the library func
tions may be used without knowing the names of substitution variables defmed or mo
dified in the message file. When JAM performs date calculations using a format, it will 
replace tokens with their appropriate values. All other characters in the format (i.e., 
commas, slashes, colons, etc.) will be used literally. The tokens are listed below. Most 
of these substitute numeric values; for those that substitute text, we indicate the mes
sage entries which they use. 

Description Token Message Entries/or Text 

Year: 

4 digit %4y 

2 digit %2y (Use Setup File to specify century break) 

Month: 

numeric (lor 2 digit) %rn 

numeric (2 digit) %Om 

abbreviated name (3 char) %3m SM_MONA1 .•• SM_MONA12 

full name %*m SM_MONL1 ••• SM_MONL12 

JAM Release 5.03 20 Nov 92 Page 25 



Configuration Guide 

Description Token Message Entries/or Text 

Day of the Month: 

numeric (lor 2 digit) %d 

numeric (2 digit) %Od 

Day of the Week: 

abbreviated name (3 cbar) %3d SM_DAYA1 ... SM_DAYA7 

full name %*d SM_DAYL1 ... SM_DAYL7 

Day of the Year: 

numeric (1-365) %+d 

Time: 

hour (1 or 2 digit) %h 

hour (2 digit) %Oh 

minute (lor 2 digit) %M 

minute (2 digit) %OM 

secOnd (1 or 2 digit) %s 

second (2 digit) %Os 

AM and PM %p SM_AM, SM_PM 

Default Formats: 

formats s~cified in message %Of - %9f SM_ODEF_DTlME to 
me entries3 SM_9DEF_DTlME 

Other: 

literal percent sign %% 

Page 26 JAM Release 5.03 20 Nov 92 



Chapter 3: Message File 

3.6.4 

Making The Changes3 

Customizing the Default Formats 
If you wish dates formatted with DEFAULT to appear like November 30, 1990 
1 : 0 5 PM then change the entry 

SM_ODEF_DTIME = %m/%d/%2y %h:%MO 

to 

SM_ODEF_DTIME = %*m %d, %4y %h:%MO %p 

and compile the file with msg2bin. 

The tokens for SM_3DEF _DTlME through SM_9DEF _DTlME are the same as the to
ken default for SM_ 0 DEF _DTlME. These additional entries are provided so that you 
may create your own dateltime formats. You also may rename the appropriate substitu
tion variable. For example, change the entries FM_3MN_DEF _DT and 
SM_3DEF _DTlME to the following: 

SM_3DEF_DTIME = %+d/%4y 

If the date is 11/30/90 and a dateltime field is formatted in jxform with DAYO
FYEAR, the date will appear as 

334/1990 

Creating Defaults for Non-English Applications 
If you are developing an application for French endusers, you should create a French 
version of the message file. Make a copy of the file and translate the text assigned to 
SM_DAYA1 ••• SM_DAYA7, SM_DAYL1 •• SM_DAYL7, 
SM_MONA1 ••• SM_MONA12, and SM_MONL 1 ••. SM_MONL 12. For example, 

SM_DAYA1 = dim 
SM_DAYA2 = lun 
SM_DAYA3 = mar 

SM_DAYL4 = mercredi 
SM_DAYLS = jeudi 
SM_DAYL6 = vendredi 

3. These tokens are provided so that defau1t formats may be used with the library functions slTLsdt ime 
and sm_udtime. 

JAM Release 5.03 20 Nov 92 Page 27 



Configuration Guide 

SM_DAYL 7 = samedi 

SM_MONAl = jan 
SM_MONA2 = tev 
SM_MONA3 = mar 

SM_MONL7 = juillet 
SM_MONL8 = aoQt 
SM_MONL9 = septembre 
SM_MONL1O = octobre 
SM_MONLll = novembre 
SM_MONL12 = decembre 

If you will use DEFAULT to format date/time fields, you should modify its format ac
cording to European customs. For example, 

and then the date specified with the format DEFAULT would appear as 30 novembre 
1990 13:05. 

This method is particularly useful if you are distributing the same application to endus
ers who speak different languages. A user's srnvars file or system environment can 
specify the names of the applicable message file and screen libraries. Date/time fields 
created with jxforrn will display the date in a language and format familiar to the in
dividual end-user, but all programming code may be independent of the enduser's lan
guage. 

Creating Defaults in a Non-English Version of JAM 
If you localizing JAM for non-English speaking developers, you will translate month 
and day text as above, and customize formats. In addition, you will also translate the 
names of substitution variables. These entries are adjacent in the message file, begin
ning with FM_YR4 and ending with FM_9MN_DEF _DT. For example if you are trans
lating for French-speaking developers, these entries might begin like the following, 

FM_YR4 = ANNEE4 
FM_YR2 = ANNEE2 
FM_MON = Mors 
FM_MON = MorS2 
FM_DATE = JOUR 

Developers would use these substitution variables to create dateJtime formats in 
jxforrn. For example, JOUR-MOIS-ANNEE2. Developers specifying formats for the 
library functions sm_sdtime or srn_udtime must use the tokens described in Sec
tion 3.6.3 

Page 28 JAM Release 5.03 20 Nov 92 

-'j 

I 
I 



Chapter 3: Message File 

3.6.5 

Literal Dates in Calculations 
In the message file there is also an entry for specifying the format of literal dates used 
in @date calculations. The message me entry SM_CALC_DATE specifies this format 
By default, it is %rn/%d/ %4y. For example, srn_calc could be used with a literal date 
to count the number of days until the millennium. 

sm_calc (0,0, 'days = ~date(1/1/2000)- @date(today)') i 

3.7 

CURRENCY FORMATS 
In Release 5, developers may create an unlimited number of currency formats on a 
screen. You may modify the message file to store ten default currency formats. Like the 
date/time message entries, an SM_ entry defmes a format, and a corresponding FM_ 
entry defmes the name of a substitution variable which may used in jxforrn to specify 
the format See the table below. 

Message Entry Substitution Corresponding Default 
Variable Message Entry Formal 

FM_OMN_CURRDEF = CURRENCY SM_ODEF_CURR = ".22,1$" 

FM_IMN_CURRDEF = NUMERIC SM_IDEF_CURR = ".09," 

FM_2MN_CURRDEF = PLAIN SM_2DEF_CURR = ".09" 

FM_3MN_CURRDEF = DEFAULT3 SM_3DEF_CURR = ".09" 

FM_4MN_CURRDEF = DEFAULT4 SM_4DEF_CURR = ".09" 

F'M_SMN_CURRDEF = DEFAULTS SM_SDEF_CURR = ".09" 

FM_6MN_CURRDEF = DEFAULT6 SM_6DEF_CURR = ".09" 

FM_7MN_CURRDEF = DEFAULT7 SM_7DEF_CURR = ".09" 

~8MN_CURRDEF = DEFAULT8 SM_8DEF_CURR = ".09" 

FM_9Mt-'CCURRDEF = DEFAULT9 SM_9DEF_CURR = ".09" 

JAM Release 5.03 20 Nov 92 Page 29 



Configuration Guide 

3.7.1 

The Formats 
Currency formats have the form dmxtpccccc where 

• d = decimal symbol (usually a period or comma) 

• m = 

• x = 

minimum number of decimal places 

maximum number of decimal places 

• t = thousands' separator (Le., a comma or period; use b for a blank) 

• p = placement of currency symbol (1, r, or m) 

• ccccc = currency symbol (up to 5 characters, including blank spaces) 

Therefore, in the format " . 22 , 1 $ " 

d = Period is the decimal symbol. 
m = 2 2 is the minimum number of decimal places. 
x = 2 2 is the maximum number of decimal places. 
t = Comma is the thousands' separator. 
p = I Currency symbol is placed on the left 
ccccc = $ Dollar sign is the currency symbol (1 character). 

3.7.2 

Making Changes 
For example. you may need to add a format for the French Franc. You could make the 
following changes to the message file: 

FM_9MN_CURRDEF = FRANC 

and compile the message rtle with msg2bin. 

A number displayed with the format CURRENCY would appear in this form: 

$999,999.99 

The same Dlnnber displayed with the format FRANC would appear in this form: 

999.999,99 F 

Please note that blank spaces before and after currency character(s) become a part of 
the currency symbol. This makes it possible to specify leading or trailing blanks in a 
format 

Page 30 JAM Release 5.03 20 Nov 92 



Chapter 3: Message File 

3.8 

JAM DECIMAL SYMBOLS 
JAM accommodates 3 types of decimal symbols. These decimals differ in scope and 
function. 

The system decimal symbol is the character used by the operating system when translat
ing characters to internal values or vice versa (e.g., C routines atof, sprintf, etc.). 

The local decimal symbol is defmed by the message fIle entry for SM_DEC I MAL (de
fault = .) It can replace the system symbol within the scope of a JAM application. If 
the system and local symbols are different, JAM will translate appropriately when in
teracting with system routines. The SM_DEC IMAL entry is useful when the system dec
imal symbol is inappropriate or inconvenient for application developers. 

Afield decimal symbol is defmed by a cWTency edit for a specific field. This symbol is 
used only for data entry validation and the display of field values. Field decimal sym
bols are useful when you need to handle multiple decimal conventions within a single 
application. See the chapter Writing International Applications in the Programmer's 
Guide for more information. 

3.9 

USING ALTERNATE MESSAGE FILES 
The SMMSGS environment variable specifies the file to be read into memory at initial
ization. If you are serving an international market, you may want to give users the op
tion of selecting from alternate message files. At run-time the user set can the environ
ment variable SMMSGS for the appropriate message file. Note that the alternative files 
for an application must be identical in terms of the number and sequencing of user mes
sages. (See Adding Messages on page 18.) 

JAM Release 5.03 20 Nov 92 Page 31 



~;=[E::::::::::::::::::::::::::::::: :~: · . · . · . 
:: .. : .. :.:.: .. :.:.: .. :.:.::.:.,:: 

Chapter 4 

System Environment and 
Setup Files 

4.1 

INTRODUCTION 
JAM supports a number of configuration or setup variables which provide a convenient 
way for you to control many operating parameters in the JAM run-time system and 
utilities. These variables may appear in the system environment, or in one of two spe
cial setup files described in this chapter. 

This chapter assumes that you have some knowledge of the operating system which you 
are using. In particular, it assumes you know how to set environment variables. DOS 
users should be familiar with the command set and the autoexec. bat file. UNIX 
users should be familiar with the command setenv and shells mes like .login or 
. prof i leo If you are unfamiliar with these topics you should consult your operating 
system docmnentation before proceeding. In addition, new JAM users should see the 
readme file or installation notes distributed with JAM. This file gives OS-specific 
examples for setting environment variables needed to run JAM. It also lists and de
scribes the contents of all the JAM subdirectories, which is a useful reference for new 
users. 

4.1.1 

New Features for Release 5 
All Release 4 setup features and variables are supported. In Release 5, however, many 
of these features have new names, and many variables that controlled more than one 

JAM Release 5.03 20 Nov 92 Page 33 



Configuration Guide 

option have been split into two or more variables. Many additional features have been 
added as well. In new applications, we recommend that you use the Release 5 variables. 
Below is a list of the Release 4 variables and their equivalents in Release 5. 

Release 4 Release 5 Page 

SMCHEMSGATT EMS GATT 46 

QUIETATT 46 

SMCHQMSGATI' QMSGATT 46 

SMCHUMSGATT EW_BORDSTYLE 47 

EW_BORDATT 48 

EW_DISPATI' 48 

SMCHFORMATI'S JW_BORDSTYLE 49 

JW_BORDATI' 50 

JW_DISPATI' 50 

JW_FLDATT 50 

SMCHSTEXTATI' STEXTATI' 46 • 

SMD I CNAME no change 40 

SMDWOPTIONS DW_OPTIONS 52 

SMEROPTIONS ER_ACK_KEY 47 

ER_KEYUSE 47 

ER_SP_WIND 47 

SMFCASE FCASE 50 

SMFEXTENSION no change 50 

SMFLIBS no change 40 

Page 34 JAM Release 5.03 20 Nov 92 

, " 

1 , 
J 



· Chapter 4: System Environment and Setup Fules 

Release 4 Release 5 Page 

SMINDSET IND_OPTIONS 49 

IND_PLACEMENT 49 

SB_OPTIONS 49 

SMINICTRL no change 40 

SMININAMES no change 41 

SMMPSTRING IN_MNUSTRING 44 

I N_MNUFOL 0 45 

SMOKOPTIONS IN_BLOCK 42 

IN_WRAP 44 

IN_RESET 44 

I N_VARR OW 43 

IN_HARROW 42 

IN_VALID 44 

I N_ENDCHAR 43 

SMUSEEXT F_EXTSEP 51 

F_EXTREC 50 

F_EXTOPT 51 

SMZMOPTIONS ZM_SH_OPTIONS 48 

ZM_SC_OPTIONS 48 

In Release 4 each setup variable had its own library function. In the current release, 
however, most JAM setup variables may be set at runtime with a single library func
tion, sIn_option. See the JAM Upgrade Guide for a listing. 

JAM Release 5.03 20 Nov 92 Page 35 



Configuration Guide 

4.2 

COMMONLY USED AND REQUIRED 
VARIABLES 
The following list summarizes the most commonly used environment variables: 

• SMMSGS 

• SMVIDEO 

• SMKEY 

• SMVARS 

• TERM 

• SMTERM 

File name for message text 

File name for video information. 

File name for keyboard translation. 

File name for consolidating configuration variables. 

Terminal mnemonic. 

Substitute for TERM 

The first three are required They name configuration files used by JAM to describe its 
operating environment. JAM finds them by looking either in the system environment, 
or in a binary file named by SMVARS. If it fails to fmd either the variables or the config
uration fIles themselves, it will post a message and exit 

The system variable TERM and the JAM variable SMTERM are used in with SMVARS. 

You may replace the three environment variables with SMVARS. This variable gives the 
name of a binary fIle containing the other screen manager variables. A typical SMVARS 

source file might look like the following: 

SMKEY = (vt\vt9S0)/jarn/config/vtkeys.bin 
SMKEY = (vt100)/jarn/config/vt100keys.bin 
SMVIDEO = /jarn/config/vtlOOvid.bin 
SMMSGS = /usr/local/msgfile.bln 
SMPATH = /appl/masks 

The lists enclosed in parentheses are terminal types; JAM uses them to fmd the ap
propriate fIles for your terminal. The SMVARS source file must be converted to binary 
using var2bin; the system environment then needs only the name of the binary file 
(and perhaps your terminal), such as 

SMVARS= /usr/local/srnvars.bin 
TERM= vt100 

The terminal type, used to match against the lists in parentheses, is taken from the vari
able SMTERM, or from TERM if that is not present. If you want JAM to recognize a 
terminal mnemonic different from TERM, put it in SMTERM. For example, the text edi
tor might work fine with the terminal in VT100 emulation, but JAM could want the 
features of VT220 emulation; you could set TERM to VT100 and SMTERM to VT220. 

Page 36 JAM Release 5.03 20 Nov 92 

1 
I 



Chapter 4: System Environment and Setup Fules 

4.2.1 

JAM Initialization 
Application programs initialize JAM by calling ini tcrt. This call must precede 
most library routine calls. Exceptions are calls which install memory-resident mes
sage, key and video files, or which set options. ini tcrt first calls an optional user
supplied initialization routine, which may initialize the character string sIn_term. 
Main programs written in C are provided for those systems that require it, if C functions 
are to be used. These already call ini tcrt. Other systems permit other language main 
programs, but usually require a system function to be called before any C routine, in
cluding ini tcrt. 

ini tcrt then looks for SMVARS and SMSETUP in the system envirorunent, and uses 
them to read setup flIes. Subsequently, setup variables are sought first in the system 
environment and then in the setup meso 

Next the terminal type is determined and placed in an internal character array called 
sIn_term. An application program can force a terminal type by setting sIn_term be
fore ini tcrt is called. If the array is empty, the setup variable SMTERM is sought 
next, then TERM. If neither is found, initialization is attempted without a terminal type. 

SMMSGS comes next If this variable is not found, or Insginit is unable to read it, 
JAM will abort initialization. Initialization errors in flIe 110 are reported using the C 
library function perror; these messages are system-dependent Other errors encoun
tered before the message fIle is loaded use hard-coded messages. Afterward, all error 
messages are taken from the message file. 

Video and keyboard initialization are next attempted, in that order using keyini t and 
vinit. If JAM still cannot determine which configuration files to use, it prompts the 
user for a terminal type, and retries the entire sequence. 

After enswing that the environment is set up, ini tcrt initializes the operating sys
tem's terminal channel. It is set to "no echo" and non-buffered input If other changes 
are desired (e.g., from 7 to 8 data bits), they can be made in the user initialization rou
tine. 

Next the initialization string found in the video file is transmitted to the terminal. The 
video chapter in this guide gives details; here we simply note that system calls can be 
embedded in the string. Often this feature can be used in place of a user initialization 
routine. . 

JAM Release 5.03 20 Nov 92 Page 37 



Configuration Guide 

4.3 

THE TWO SETUP FILES 
You can use configuration variables by creating a text file of name = value pairs as 
described in the next section, and then running the var2bin utility to convert the file 
to a binary format 

There are two files in which you may place setup variables. The first is named by the 
system environment variable SMVARS. If your operating system does not support an 
environment, this file will be in a hard-coded location; SMVARS itself may not be put 
in a setup file. The second fIle is named by the SMSETUP configuration variable, which 
may be defmed in the SMVARS file or in the system environment 

Any setup variable may occur in either file. If a variable ~urs in both, the one in 
SMSETUP takes precedence. These variables may also be specified in the system envi
ronment, which takes precedence over any values found in the files, and can be used to 
entirely replace the fIles. 

Typically, the SMVARS file will contain installation-wide parameters, while the SMSE
TUP file will contain parameters belonging to an individual or project. 

4.4 

INPUT FILE LINE FORMAT 
Each line of the input file bas the form 

nllme = IIslue 

where name is one of the keywords listed below, the equal sign is required, and value 
is a string or another keyword. If a line gets too long, it may be continued onto the next 
by placing a backslasb (\) at the end. Lines beginning with a pound sign (#) are com
ments and are ignored by var2bin. 

Certain variables, notably the JAM hardware configuration fIles-key translation and 
video--have values that depend on the type of terminal you are using. For those vari
ables, there may be many entries in the input file in the form 

nllmll = (tllnn I tllnn2 I ... I tIInnN) IIlIlue 

This signifies that the variable name uses the fue called value for terminals of type 
term1, term2, etc. For example, 

SMKEY = (ibm) /usr/jam/config/ibmkeys.bin 
SMKEY = (hplhp2392Ihpblk) /usr/jam/config/hpkeys.bin 

Page 38 JAM Release 5.03 20 Nov 92 



Ghapter 4: System Environment and Setup Fules 

It is not necessary to give terminal names if you are only interested in one fIle. You may 
also provide, along with a number of terminal~ualified entries, one entry that is not 
terminal~ualified. This will serve as the default and it must be last in the list 

Variables that are terminal-dependent are noted below. 

4.5 

SETUP VARIABLES 
Broadly speaking, setup variables fall into three classes: those that specify other config
uration files, those that are essentially parameters to library routines, and those that 
specify defaults for file naming. 

4.5.1 

Configuration File Setups 
SMEDITOR 

SMKEY 

SMLPRINT 

SMMSGS 

Name of the text editor to use in JPL procedure windows of the 
screen editor when PF5 is pressed. 

SMEDlTOR= vi 

Pathname of the binary file containing a key translation table for 
your terminal. Refer also to the key2bin and modkey utilities, 
the chapter on key files in this guide, and the library functions 
sllLkeyini t and sm_getkey. This variable is terminal-de
pendent, and may be overridden by the system environment 

SMKEY= (vtlOO)/usr/jarn/config/vtlOOkeys.bin 

Operating system command used to print the fIle generated by the 
local print key (LP). It must contain the string %s at the place 
where the fIle name should go. This variable may be overridden 
by the system environment It is optional. 

SMLPRINT= print %s 

Pathname of the binary file containing error messages and other 
printable strings used by the JAM run-time system and utilities. 
Refer also to the msg2bin utility, the chapter on message fIles in 
this guide, and the library functions msg_read and msg_get. 
This variable is terminal-dependent, and may be overridden by 
the system environment 

SMMSGS = /usr/config/msgfile.bin 

JAM Release 5.03 20 Nov 92 Page 39 



Configuration Guide 

SMPATH 

SMSETUP 

SMVIDEO 

SMDICNAME 

SMFLIBS 

SMINICTRL 

Page 40 

List of directories in which the JAM runtime system should 
search for screens and JPL procedures. Place a vertical bar I be
tween directory paths. No blank spaces should appear in the setup 
string. Refer to the library procedure sIn_r_window. This vari
able is tenninal-dependent, and may be overridden by the system 
environment It is optional. 

SMPATH = /usr/app/formsl/usr/rne/testforrns 

Pathname of one additional binary fIle of setup variables. This 
variable is tenninal--dependent, and may be overridden by the 
system environment It is optional. 

SMSETUP = hpsetup.bin 

Pathname of the binary fIle containing video control sequences 
and parameters used by the JAM run-time system. Refer also to 
the vid2bin utility, the video chapter in this guide, and the li
brary function SIn_vi nit. This variable is terminal--dependent, 
and may be overridden by the system environment. 

SMVIDEO = \ 
(vtlOOlxlOO)/usr/jam/config/vtlOOvid.bin 

Pathname of the application's data dictionary. See the library 
function sIn_dicname. May be overridden in the system envi
ronment 

SMDICNAME = /usr/app/dictionary.dat 

Patbname of a screen library that is to remain open while JAM is 
active. Each open library should have its own entry. See the li
brary functions srn_r_window and srn_1_open. 

SMFLIBS = /usr/app/gen1ib 
SMFLIBS = /usr/rne/rny1ib 

May occur many times. Each occurrence binds a function key to a 
control string, which the JAM nmtime system will use in the ab
sence of a control string in the screen. To disable a JYACC-sup
plied default function key, bind it to a control string function that 
does nothing or one which calls SIn_be 1. See the library function 
SItLPutj ctrl. 

SMINICTRL = PF2 = Atogg1e_rnode 

JAM Release 5.03 20 Nov 92 

~1 
I 
1 , 



SMININAMES 

4.6 

Chapter 4: System Environment and Setup Fules 

Supplies a list of local data block initialization file names for use 
by sIn_ldb_ini t. It is equivalent to the library function 
sIn_ininames. The file names are separated by commas, 
blanks, or semicolons; there may be up to ten of them. See the sec
tion on LDB initialization in the Author s Guide for more informa
tion on creating and formatting the files. 

SMININAMES = tables.ini; config.ini 

SETUPS FOR sm_input 
The following variables control features of sIn_inpu t. There is a sample statement for 
each of these variables at the end of the chapter. These variables may also be changed 
at runtime with the library function SIn_opt ion. 

4.6.1 

Display Attributes 
Many of the variables take display attributes as parameters. Here is a table of display 
attribute keywords: 

Foreground Color Background Color Attribute 

B_HILIGHT NORMAL_ATTR 

BLACK B_BLACK BLANK 

BLUE B_BLUE REVERSE 

GREEN B_GREEN UNDERLN 

CYAN B_CYAN BLINK 

RED B_RED HILIGHT 

MAGENTA B_MAGENTA STANDOUT 

YELLOW B_YELLOW DIM 

WHITE B_WHITE ACS 

JAM Release 5.03 20 Nov 92 Page 41 



Configuration Guide 

For a single display attribute, you may select from this table one color and any number 
of other attributes. In a setup me, separate the or-ed attributes with blanks, commas, or 
semicolons. 

EW_BORDATT = REVERSE HILIGHT GREEN 
EW_DISPATT = RED, B_WHITE; BLINK 

With sm_option, use a comma to separate a variable from its attributes. Use vertical 
bars to separate or-ed attributes. 

sm_option (EW_BORDATT, REVERSE I HILIGHT I GREEN); 
sm_option (EW_DISPATT, RED I B_WHITE I BLINK); 

4.6.2 

Setups for User Input 
The following variables may be defined in a setup fIle, or at runtime with sm_opt ion. 
(D) indicates the default option for a variable. 

In a setup fIle, the format is variable = option. For example, 

There is a statement for each variable in the sample setup fIle at the end of this chapter. 

At runtime, the format is sm_option (variable, opt/on). For example, 

You may also use sm_option and the option NOCHANGE to determine the runtime 
setting of any variable described in this section. For example, 

sm_option (IN_BLOCK, NOCHANGE)i 

will return the current value of IN_BLOCK, either OK_NOBLOCK or OK_BLOCK. The 
function call will not cbange the value of IN_BLOCK. 

Cursor Appearance and Movement 

IN_BLOCK Set Cursor Appearance. 

OK_NOBLOCK Cursor occupies one character position in a field. (D) 

OK_BLOCK Current field is changed to reverse video to simulate a 
large cursor. The cursor occupies the entire field. 

IN_HARROW Set Horizontal Arrow Movement 

OK_FREE Free cursor movement 

Page 42 JAM Release 5.03 20 Nov 92 

"1 
I 



OK_SWATH 
OK_NXTLINE 

IN_VARROW 
OK_FREE 
OK_RESTRICT 
OK_COLM 

Chapter 4: System Environment and Setup Fules 

The cursor moves left and right in the current field, but it 
does not leave the field. 

The cursor is positioned to the closest field on the current 
line. 
Same as OK_COLM. 
The cursor is positioned to the nearest field in the column 
closest to the current column. Wrapping is observed, if 
set. 
The cursor is positioned to the field closest to the current 
line and column. The calculation uses the diagonal dis
tance, assuming a 5 to 2 aspect ratio. 

Left-arrow backtabs to the end of the previous field, and 
right-arrow tabs to the first character in the next field. 
Wrapping is observed if set The next and previous field 
edits are not observed. (D) 
Like OK_TAB, but the next field and previous field edits 
are observed. 

Set Vertical Arrow Movement. 
Free cursor movement 
Vertical arrow keys ignored in current field. 
The cursor is positioned to the nearest field that overlaps 
the current column. Wrapping is observed, if set 

The cursor is positioned to the closet field that overlaps 
the swath containing the current field Wrapping is ob
served if set 
The cursor is positioned to the nearest field whose line is 
closest to the current line. Wrapping is observed, if set 
(0) 
The cursor is positioned to the field nearest the current 
line and column. 
Down arrow tabs to the first character in next field; up 
arrow backtabs to last character in the previous field. The 
next and previous field edits are not observed. (D) 
Like OK_TAB, but the next field and previous field edits 
are observed. 

Specify Treatment Of Last Character In No 
Auto Tab Field. 
Last character in no auto tab field is repeatedly overwrit
ten. (D) 

JAM Release 5.03 20 Nov 92 Page 43 



Configuration Guide 

OK_NORESET 

OK_RESET 

Menus 

Teffilinal beeps when user attempts to overwrite last 
character in no auto tab field. 

Set Options for Field-reset. 

Note that IN_RESET is ignored on word-wrapped 
fields. 
Arrow keys can enter the middle of a field. (D) 

When field is entered, cW'Sor always goes to flfSt charac
ter position, based on justification and punctuation edits. 

Set Conditions For Validation On Field Exit. 

Validation is performed whenever field is exited (NL, 
TAB, BACKTAB, arrows, etc.). 
Validation is performed only when TAB or NL is 
pressed. Using the arrow keys to leave a field will not 
validate the field. (D) 

Set Options For Arrow Wrapping. 
Arrow keys wrap. Vertical arrows wrap from top to bot
tom. Right arrows wrap to the beginning of next line (or 
first line). Left arrows wrap to end of previous line (or 
last line). (0) 

Arrow keys do not wrap. Terminal beeps if user tries to 
move the cursor past the edge of the active screen. 

IN_MNUSTRING Set Menu Handling Options. 
OK_NOSTRING Compare on single key. Each data key struck by the end

user is compared against the initial character of each 
menu selection. As soon as a match is found, the entry is 
selected. Therefore, if a menu contains two or more 
selections beginning with the same character, the second 
and subsequent entries cannot be selected by a data key. 

OK_STRING Compare on key sequence. Data keys are collected until 
the saved sequence is long enough to match one entry un
ambiguously. As keystrokes are collected, the cursor 
moves to the entry which is closest to the top and that 
matches the keystrokes so far. (D) 

Page 44 JAM Release 5.03 20 Nov 92 

...... 
1 
1 



Chapter 4: System Environment and Setup Fules 

IN_MNUFOLD Set Case-sensitivity For Menu Selections. 
OK_NO FOLD Must match exactly. Begins matching on frrst character. 

To make a selection, the user must use case exactly as it is 
shown. 

OK_UPPER Allow upper-alSe match. Matches on the capital letter 
contained in the entry, rather than the frrst letter in the 
entry. The keypress may be in either case. 

OK_LOWER Allow lower-case match. Matches on the lower-case 
letter contained in the entry, rather than the frrst letter in 
the entry. The keypress may be in either case. 

OK_UPPER_OR_LOWER Allow either case. Begins matching on flrst character. 
This option ignores case, unless two entries begin with 
the same letter in different cases. (D) 

IN_SEARCH Set Search Options For Menu Selections. 
OK_ONSCREEN Match on-screen only. Ignore entries which are off

screen because of a virtual screen or a scrolling array. 

OK_ON_AND_OFFSCREEN 

IN_SUBMENU 

OK_CLOSE 

OK_LEAVE 0 PEN 

4.6.3 

Match off-screen also. (D) 

Set Submenu Options. 

Oose submenu window once selection is made. (D) 

Leave submenu window open on selection. 

Setups for Messages 
The following variables control message display. (D) indicates the default option. The 
fOIm in the srnvars file is variable = option. There is a sample statement for each of 
these variables at the end of the chapter. Note that the BLANK attribute keyword is 
ignored for messages. 

SMSGPOS 

number 

SMSGBKATI' 

display attributes 

Set Position of Message Line. 
Set the position for the message line by specifying a 
single nwnber (1 is the top line of the display). This vari
able is ignored if the terminal has a hardware status line. 

Set Background Attributes for Message Line. 
Set message line background attribute. Default is 
BLACK. See Section 4.6.1 for a list of the keywords. 

JAM Release 5.03 20 Nov 92 Page 45 



Configuration Guide 

STEXTATT 

display attributes 

QMSGATT 

display attributes 

EMS GATT 

display attributes 

QUIETATT 

display attributes 

Set Attributes for Status Messages. 

Change the default display attribute for field status text 
See Section 4.6.1 for a list of the keywords. The default is 
STEXTATT = WHITE.4. 

Set Attributes for Query Messages. 

. Supply a default display attribute for sm_query mes
sages. The default is QMSGATT = CYAN REVERSE 
HILIGHT. If you change this variable without setting a 
color, the default foreground color becomes BLACK. 
Please see the note on STEXTATT for more information. 
See Section 4.6.1 for a list of the keywords. 

Set Attributes for Error Messages. 

Change the display attributes of messages displayed with 
sm_emsg and sm_err_reset, and the tag portion of 
srn_quiet_err and sm_qui_rnsg messages. By de
fault, the tag portion is "ERROR: ". This is from the mes
sage file entry SM_ERROR. The default is EMSGATT = 
WHITE BLINK HILIGHT. 

If you change this variable without setting a color, the de-
fault foreground color for error messages becomes .. 1 

BLACK. Please see the note onSTEXTATT for more in
formation. See Section 4.6.1 for a list of the keywords. 

Set Attributes for "Quiet" Error Messages. 

Change the display attributes of messages displayed with 
srn_quiet_err and srn_qui_rnsg messages. Default 
is WHITE. See EMSGATT for changiog the attributes of 
the "ERROR: " tag which is used with these messages. 

If you change this variable without setting a color, the de
fault foreground color for these messages becomes 
BLACK. Please see the note on STEXTATT for more in
formation. See Section 4.6.1 for a list of the keywords. 

The following three variables control error message acknowledgement 

4. If you change the attributes but do not specify a color, the default color becomes BLACK. For instance, 
if you used the entry STEXTATr = BLINK, JAM will display status messages with the foreground attrib
utes BLINK and BLACK. If you were using the default message line background (see SMSGBKATT), status 
messages would not be visible because they would be black text on a black background. To avoid this, we rec
ommend that you always specify a foreground or background color when setting attributes text. If this is not 
convenient, you may set the variable SMSGBKA'IT to a color other than BLACK. 

Page 46 JAM Release 5.03 20 Nov 92 



ER_KEYUSE 

ER_NO_USE 

ER_SP_WIND 

ER_YES_SPWIND 

EW_BORDSTYLE 

NOBORDER 

Chapter 4: System Environment and Setup Fules 

Define Error Acknowledgement Key. 
There are no keywords-the value must be specified ex
plicitly. The key can be given as number (in decimal, 
hex, or octal) representing an ASCII char, as an ASCII 
mnemonic (SP, SOH, ETf{, etc.), as quoted character 
(, .', '_ " etc.), or as a logical key defmed in 
smkeys . h. The default is ' , , the space key. If you 

. defme a value other than the space bar, please see 
ER_S P _WIND below. 

Use or Discard Key in sm_err_reset 

All error messages must be acknowledged by 
ER_ACK_KEY, which is discarded. Any other keys 
struck between the time of the message display and the 
pressing of the acknowledgment key are also discarded. 
By default, if the user does not press ER_ACK_KEY, 
JAM displays an error window. See ER_SP _WIND. (D) 

Any keypress acknowledges an error message. The 
type--ahead buffer is flushed when the message is dis
played, and the acknowledging keypress is saved for 
data--entry. Since any keypress clears the error message, 
the "Please press the space bar" is not used. If you set this 
as the default, you can still force the user to acknowledge 
selective messages by putting %Md at the beginning of 
the message text See the Message File chapter for more 
information. 

Remind User to Acknowledge Message. 
If ER_KEYUSE= ER_NO_USE, and the user presses 
another key when ER_ACK_KEY is expected, a window 
appears. The default message is "Please hit the space bar 
after reading this message" from the message fIle entries 
SM_P 1 and SM_P2 . If you are using this option and a key 
other than the space bar for message acknowledgement, 
modify the message fIle entry SM_SPl. (D) 

If ER_KEYUSE= ER_NO_USE, and the user presses 
another key when ER_ACK_KEY is expected, the termi
nal beeps (by calling sm_be 1). A "visual" bell may be 
used, if the video fIle fIle has a BELL entry. 

Set Border Style of Error Windows. 
No border. 

JAM Release 5.03 20 Nov 92 Page 47 



Configuration Guide 

0-9 

EW_BORDATT 

display attributes 

EW_DISPATI' 

display attributes 

4.6.4 

A number between 0 and 9 indicates a style. Default is O. 

Set Border Attributes of Error Windows. 

Default is HILIGHT REVERSE BLUE. See Section 
4.6.1 for a list of the keywords. 

Set Text Attributes in Error Windows. 

Default is WH ITE. See Section 4.6.1 for a list of the key
words. 

Shifting, Scrolling, and Zooming Setups 
If you are altering these defaults at runtime, call snLopt ion before calling the win
dow. 

ZM_SC_OPTIONS 

ZM_NOSCROLL 
ZM_SCROLL 

ZM_SH_OPTIONS 

ZM_NOSHIFT 

Page 48 

Set Zoom Scroll Options. 

No scroll expansion on arrays. 
Scroll the current array and display as many occurrences 
as possible. 
Scroll all parallel or synchronized arrays. Display as 
many occurrences as possible. (D) 

Scroll and shift in one step. 

Set Zoom Shift Options. 

No shift expansion. Fields will shift, but no horizontal 
zooming will take place. 
Shifting arrays will have as many oo-screen elements as 
the previous form, which is the original form if 
ZM_SC_OPTIONS = ZM_NOSCROLL is used. Other
wise, ZM_SCREEN will display as many items as pos
sible. All synchronized arrays are shifted together. (D) 

Show one element in the shift window, but permit scrol
ling with the arrow keys. If ZM_SCROLL is also selected, 
the shift window may be zoomed again to show all ele
ments.1f the array is synchronized, only the current array 
zooms. 
Show one element in the shift window. There is no way to 
see more occurrences. 

JAM Release 5.03 20 Nov 92 

1 
1 



IND_OPTIONS 

IND_NONE 

IND_SHIFT 

IND_SCROLL 

IND_BOTH (D) 

SB_OPTIONS 

SB_NONE 

SB_BARS 

SB_CORNERS 

IND_PLACEMENT 

IND_FULL 

IND_FLDENTRY 

IND_FLDLEFT 

IND_FLDCENTER 

IND_FLDRIGHT 

ZW_BORDSTYLE 

NOBORDER 
0-9 

ZW_BORDATT 

display attributes 

4.6.5 

Chapter 4: System Environment and Setup Fules 

Set ShiftlScrolllndicator Options. 

No indicators. 

Shift indicators only. 

Scroll indicators only. 

Shift and scroll indicators. 

Set Scroll Options for Virtual Windows. 

No scroll bars or corner arrows. 

Show scroll bars. (D) 

Show corner arrows. 

Set Position of Shift and Scroll Indicators. 

Full width of field. (D) 

Left or right corner, according to the field's justification. 

Left comer of field. 

Center of field. 

Right comer of field 

Set Border Style for Zoom Windows. 

No border. 

A number between 0 and 9 indicates a style. Default is I. 

Set Border Attributes For Zoom Windows. 

Default is RED HILIGHT. See Section 4.6.1 for a list of 
the keywords. 

Setups for JAM Windows 
These variables control the display of the JAM "Go to:" and "Enter system command:" 
windows, if the screens are memory-resident By default, JAM system screens are ac
cessed from libraries on disk. To make these screens memory-resident, you must 
modify jrnain. c and jxrnain. c. See tbe Programmer's Guide for more information. 

JW_BORDSTYLE 

NOBORDER 

0-9 

Set Border Display of JAM Windows. 

No border. 

A number between 0 and 9 indicates a style. Default is O. 

JAM Release 5.03 20 Nov 92 Page 49 



Configuration Guide 

JW_BORDATT 

display attributes 

JW_DISPATT 

display attributes 

JW_FLDATT 

display attributes 

4.6.6 

Set Border Attributes of JAM Windows. 

Default is HILIGHT REVERSE BLUE. See Section 
4.6.1 for a list of the keywords. 

Set Text Attributes of JAM Windows. 

Default is CYAN. See Section 4.6.1 for a list of the key
words. 

Set Field Attributes for JAM Windows. 

Default is YELLOW HILIGHT UNDERLN. See Section 
4.6.1 for a list of the keywords. 

Setups for File Names and Extensions 
The following variables control default me extensions. In Release 4, the defaults for 
me extensions were set with the variable SMUSEEXT. This variable is supported for 
backwards, compatibility. 

(D) indicates the default option. The form in the smvars me is variable = option. 
There is a sample statement for each of these variables at the end of the chapter. 

FCASE Set Case Sensitivity for File Name Searches. 

CASE_INSENS JAM ignores case when searching for a me named in a 
control string. 

CAS E_S ENS Filename searches are case sensitive. (D) 

SMFEXTENSION Specify Screen File Extension. 

extension Screen file extension is used by the JAM run-time sys
tem and various utilities. The default is system-depen
dent; it may be j am or none. If an extension is given, 
J AM will append (or prefix) it to any screen name that 
does not already contain an extension. Use F _EXTSEP 
to specify a character which will separate a filename and 
the extension. Use F _EXTOPT to specify the placement 

F _EXTREC Recognize Screen and Utility 110 File 
Extensions. 

FE_IGNORE Ignore extensions. (D) 

FE_RECOGNI ZE Recognize extensions. 

Page 50 JAM Release 5.03 20 Nov 92 

'1 
I 
I 
1 
1 



F_EXTOPT 

F_EXTSEP 

character 

4.6.7 

Chapter 4: System Environment and Setup Fules 

Placement of Screen and Utility 110 File 
Extensions. 

Put the extension before the ftlename. 

Put the extension after the filename. (D) 

Specify Screen and Utility 110 File Extension 
Separator. 

There are no keywords-the value must be specified ex
plicitly. A separator character may be given as a mnnber 
(in decimal, hex, or octal) which represents an ASCII 
char, as an ASCII mnemonic (SOH, ETX, etc.), or as 
quoted character (, . I, I _ I , etc.). 

Setups for Group Attributes 
These variables control the attributes of the cursor and selected items in groups that do 
not use the checkbox edit 

GA_CURATT 

display attributes 

GA_CURMASK 

display attributes 

GA_SELATT 

display attributes 

GA_SELMASK 

display attributes 

Set Group Cursor Attributes 

Assign the desired attributes for the occurrence under the 
cursor. These attributes are added to those already as
signed to the occurrence. This defaults to BLINK. 

Mask Group Cursor Attributes 

Mask any attributes that should not be added to the cursor 
attributes. If you are assigning a color as the cursor attrib
ute, add NORMAL_ATTR to GA_CURMASK. Attributes of 
the occurrence will be used if they are not masked out. 

Set Selected Group Occurrence Attributes 

Assign the desired attributes for a selected group occur
rence. These attributes are added to those already as
signed to the occurrence. This defaults to REVERSE. 

Mask Selected Group Occurrence Attributes 

Mask any attributes that should not be added to the attrib
utes for the selected group occurrence. If you are assign
ing a color to GA_SELATT, add NORMAL_ATTR to 

JAM Release 5.03 20 Nov 92 Page 51 



Configuration Guide 

4.6.8 

GA_SELMASK. Attributes of the occurrence will be used 
if they are not masked out 

Miscellaneous Setups 
These may also be set at runtime with sin_opt ion. 

DA_CENTBREAK 
two digit number 

ENTEXT_OPTION 
LDB_FIRST 

Page 52 

Set Default Century for 2 Digit Dates 
Use this option to specify the breaking year between the 
twentieth and twenty-fust cenruries when JAM formats 
two-digit years to four digit years. By default, JAM as
sumes that all two digit years are in the twentieth century, 
This option allows you to specify that all two digit years 
less than the number specified should be in the twenty
rust century. For example, if you specify 45, then all two 
digit years between 0 0 and 44 will indicate 2 0 0 0 -
2 0 44, and all two digit years between 4 5 and 9 9 will 
indicate 1945 -1999. 

Set Delayed-write Options. 
Turns on delayed-write. Output from library functions is 
not sent immediately to the display, but is used to update 
the image in memory. When it is necessary to update the 
display (e.g., when the keyboard is opened), output is 
sent to the display one line at a time, and a check is made 
for keyboard input between each line. If the user presses 
a key before the update is completed, the key is pro
cessed before the remaining lines are displayed. This op
tion makes JAM more responsive, especially at low 
baud rates. You may force the display of a delayed-write 
with the library function sm_flush. (0) 
Turns off delayed-write. The display will not be flushed 
until the keyboard is opened. JAM will not check for in
put while writing to the display. This option may be use
ful when debugging an application. If you use this op
tion, you may need to add the entry BUF S I Z to the video 
file. 

Set Screen Entry/Exit Processing Option. 
LDB is examined fIrst for the value of a variable. Default 
on screen entry functions. 

JAM Release 5.03 20 Nov 92 



EXPHIDE_OPTION 

OFF_EXPHIDE 

display attributes 

4.7 

Chapter 4: System Environment and Setup Fules 

Screen is examined flrst for the value of a variable. De
fault on screen exit functions. 

Set Screen Expose/Hide Option. 

Process screen entry or exit functions only when screen 
is explicitly opened or closed. This option is the default 
for backwards compatibility. (D) 

Process screen functions when screen is explicitly 
opened or closed, when screen is exposed by closing an 
overlying window, or when screen is hidden by opening 
an overlying window. This option is recommended for 
new applications. 

Set the Display Attributes of Soft Key Num
bers 

These are the attributes for the numbers that appear to the 
left of each key in a keyset. For a list of valid display at
tributes, see section 4.6.1 To tum off number display, set 
SK_NUMATT = BLANK. 

BLOCK MODE OPTIONS 
The following control options for block mode. They may be set at runtime with 
sIn_option. Use snLoption (variable, NOCHANGE) at runtime to determine 
the current value of a block mode option. 

BLKjIENUS 

BLK_BLKMENU 

Set Menu Behavior in Block Mode. 

Menu field is unprotected, so that a fleld may be entered 
by tabbing. User selects a field by moving the cursor and 
pressing XMIT. For submenus, if cursor is moved outside 
the submenu window and XMIT is pressed, the main 
menu choice closest the cursor is selected. 
JAM switches to character mode when processing a 
menu, and switches back when menu is finished. Do not 
use this option if switching will cause the screen to clear. 
JAM creates fields to the left of each menu selection, 
space permitting. A selection is made by typing the fIrSt 
non-bIank character of a menu selection in one of these 

JAM Release 5.03 20 Nov 92 Page 53 



Configuration Guide 

BLK_GROUPS 

BLK_BLKGROUP 

BLK_CHARERR 

4.8 

fields and pressing XMIT. If no data key is entered in a 
field, the cursor position selects the current field when 
XMIT is pressed, in either the submenu or the main 
menu. Selection by letter in a submenu applies only to 
the submenu. 

Set Group Behavior in Block Mode. 
Group fields are unprotected, so that a field may be en
tered by tabbing. User selects a field by moving the cur
sor and pressing XMIT. 

J AM creates fields to the left of each group selection, 
space permitting. Typing any blank character in the field 
next to an occurrence selects the occurrence. If no char
acter is typed in the field, pressing XMIT selects the oc
currence where the cursor is positioned. 

Set Options for Error and Query Messages in 
Block Mode. 
sm_err_reset works in this mode. Messages are ac
knowledged with XMIT, rather than the ER_ACK_KEY. 
With sm_query _msg, XMIT is "yes" and EXIT is 
"no". 
JAM switches the terminal into interactive mode before 
displaying an error or query message, and switches back 
to block mode on completion. 
J AM remains in block mode for error messages, and 
creates a one-character field for query _msg. The field 
defaults to the value of message entry SM_YES ("y" by 
default). The user may change this to "n" (i.e., value of 
SM_NO). XMIT is used to select an answer, EXIT is 
equivalent to "no", regardless of the field's contents. 

SAMPLE SETUP FILE 
The following sample fIle illustrates the syntax for setting all of the variables discussed 
above. 

SMKEY = (vt100 I x100) /usr/jam/config/vtlOOkeys.bin 
SMLPRINT = print %s 
SMMSGS = /usr/config/msgfile.bin 
SMPATH = /usr/app/formsl/usr/me/testforms 
SMSETUP = hpsetup.bin 

Page 54 JAM Release 5.03 20 Nov 92 



Chapter 4: System Environment and Setup Fules 

SMVIDEO = (vt100 I xlOO)/usr/jam/config/vt100vid.bin 
SMDICNAME = /usr/app/dictionary.dat 
SMFLIBS = /usr/app/genlib 
SMFLIBS = /usr/me/mylib 
SMINICTRL= PF2 = Atoggle_mode 
SMINICTRL = PF3 = &popwin(3,28) 
SMINICTRL = XMIT = Acommit all 
SMININAMES = tables.ini; config.ini 

IN_BLOCK = OK_NOBLOCK 
IN_WRAP = OK_WRAP 
IN_RESET = OK_NORESET 
IN_ENDCHAR = OK_ENDWRITE 
IN_VALID = OK_VALID 
IN_VARROW = OK_FREE 
IN_HARROW = OK_TAB 
IN_MNUSTRING = OK_STRING 
IN_MNUFOLD = OK_LOWER 
IN_SEARCH = OK_ONSCREEN 
IN_SUBMENU = OK_LEAVEOPEN 

ER_ACK_KEY = PF12 
ER_KEYUSE = ER_NO_USE 
ER_SP_WIND = ER_YES_SPWIND 
EW_BORDSTYLE = 4 
EW_BORDATT = REVERSE, GREEN 
EW_DISPATT = YELLOW 
EW_FLDATT = CYAN 

EMSGATT = RED; RED, REVERSE 
QUIETATT = CYAN, HILIGHT, BLINK 
STEXTATT = WHITE REVERSE 
QMSGATT = CYAN REVERSE 
SMSGBKATT = RED 
SMSGPOS = 25 

ZM_SH_OPTIONS = ZM_lTEM 
ZM_SC_OPTIONS = ZM_SCROLL 
IND_OPTIONS = IND_BOTH 
IND_PLACEMENT = IND_FLDRIGHT 
SB_OPTIONS = SB_CORNERS 
ZW_BORDSTYLE = 8 
ZW_BORDATT = MAGENTA 

JW_BORDSTYLE = 4 
JW_BORDATT = HILIGHT REVERSE BLUE 
JW_DISPATT = YELLOW 
JW_FLDATT = WHITE HILIGHT UNDERLN 

SMFEXTENSION = jam 
F_EXTREC = FE_RECOGNIZE 
F _EXTOPT = FE_BACK 
F_EXTSEP = , , 

JAM Release 5.03 20 Nov 92 Page 55 



Configuration Guide 

OW_OPTIONS = OW_OFF 
ENTEXT_OPTION = LOB_FIRST 
EXPHIOE_OPTION = ON_EXPHIDE 
FCASE = CASE_SENS 

Page 56 JAM Release 5.03 20 Nov 92 

.. , 
I 
I 
I 



ChapterS 

Video File 

5.1 

INTRODUCTION 

~::[E:::::::::::::::::::::::::::< :~: · . · . · . · . 
:: .. : .. :.:.:: ... :.:.: .. :.: .. : .. ,: 

J AM is designed to nm on many displays with widely differing characteristics. These 
characteristics greatly affect JAM's display of screens and messages. For example, 
some displays are 80 columns wide, while others have 132 columns. Similarly, the con
trol sequences used to position the cursor and highlight data on the display are often 
different from model to model. JAM obtains display characteristics from a video flle. 

5.1.1 

How to Use this Chapter 
This chapter has two purposes. The fltSt is to explain the entries in the JAM video fIle 
and the concepts used in interpreting them. Although you may never need to modify or 
construct a video fue, you may wish to know what it does. The second purpose is to 
provide instructions for modifying existing video fues or constructing new ones to han
dle new terminal characteristics. 

The easiest way to create a video fue is to use one of the many supplied with JAM. You 
can modify it, if you can determine that your terminal is similar. This is very often pos
sible because so many terminals emulate others. If your system has a terminfo or term
cap database, you can use the term2vid utility to make a functional video flle from 
that information. Finally, if you must start from scratch, you should start with the mini
mal subset defmed in this guide, and add entries one at a time. 

JAM Release 5.03 20 Nov 92 Page 57 



Configuration Guide 

5.1.2 

Why Video Files Exist 
Differences among terminal characteristics do not affect programs that are line ori
ented. They merely use the screen as a typewriter. Full-screen editors, like emacs or vi, 
use the screen non-sequentially; they need terminal-specific ways to move the cursor, 
clear the screen, insert lines, etc. For this purpose the termcap database, and its close 
relative term info, were developed. Although closely associated with UNIX, termcap 
and terminfo are also used on other operating systems. They list the idiosyncrasies of 
many types of terminals. 

Text editors use visual attributes sparingly, if at all. Thus termcap contains minimal in
fonnation about handling them. Usually there are entries to start and end "stand-out" 
and sometimes entries to start and end "underline." Notably missing are entries ex
plaining how to combine attributes (i.e., reverse video and blinking simultaneously). 
terminfo can combine attributes; in practice, unfortunately, the appropriate entries are 
usually missing. 

JAM makes extensive use of attributes in all combinations, and supports color. Rather 
than extending term cap with additional codes, which might conflict with other exten
sions, JYACC decided to use an independent file to describe the terminal specific in
fonnation. Furthermore, some machines, notably the PC, do not have terminfo capabili
ty. 

termcap uses a limited set of commands; notably missing are conditionals. terminfo 
uses an extensive set of commands, but the resulting sequences are excessively verbose 
(103 characters for the ANSI attribute setting sequence without color). Therefore, 
JYACC developed a set of commands that extend both term cap and terminfo. Both syn
taxes are supported with only minor exceptions. All the commands needed in the video 
fIle can be written using terminfo syntax; many can be written using the simpler term
cap syntax and a few can benefit by using the extended commands. 

A summary of the commands used to process parameters is described in this guide; de
tails and examples follow. Refer to those sections if you have trouble understanding the 
examples elsewhere in the manual. 

5.1.3 

Text File Format 
The video fIle is a text fIle that can be created using any text editor. It consists of many 
instructions, one per line. Each line begins with a keyword, and then has an equal sign 
(=). On the right of the equal sign is variable data depending on the keyword. The data 

Page 58 JAM Release 5.03 20 Nov 92 

., 



Chapter 5: Video File 

may be a number, a list of characters, a sequence of characters, or a list of further 
instructions. 

Comments can be entered into the file by typing a hash # as the flfSt cbaracter of the 
line; that line will be ignored by vid2bin. All the video files distributed by JYACC 
are documented with comments. 

It is essential that the instruction formats listed in this guide be followed closely. For 
efficiency, no error checking is done at runtime. The vid2bin utility checks for errors 
like missing, misspelled, and superfluous keywords, but not for duplicated or conflict
ing entries. 

5.1.4 

Minimal Set of Capabilities 
The only required entries in the video file are for positioning the cursor (CUp) and eras
ing the display (ED). 

In the absence of other entries, JAM will assume a 24-line by 80-c0lumn screen. The 
24th line will be used for status text and error messages, and the remaining 23 will be 
available for screens. It will assume that no attributes are supported by the terminal. 
Since non-display is supported by the software, that attribute will be available. The un
derline attribute is simulated by underscores placed wherever blanks appear in an un
derlined field. Clearing a line will be done by writing spaces. Borders will be available, 
and will consist of printable characters only. 

Although JAM will function with those two entries, it will have limited features. The 
most glaring shortcoming will be the lack of visual attributes. Speed may also be a 
problem, since the sole purpose of many entries in the video file is to decrease the num
ber of characters transmitted to the terminal. 

5.1.5 

A Sample Video File 
The following video file is for a basic ANSI terminal, like a DEC VT100. 

# Display size (these are actually the default I values) 
LINES = 24 
COLMS = 80 

# Erase whole screen and single line 
ED = ESC [ 2 J 
EL = ESC [ 0 K 

JAM Release 5.03 20 Nov 92 Page 59 



Configuration Guide 

# position cursor 
CUP = ESC [ % i %d i %d H 

# Standard ANSI attributes, four available 
LATCHATT = REVERSE = 7 UNDERLN = 4 BLINK = 5 HILIGHT = 1 
SGR = ESC [ 0 %u %5(%t ; %c %; %) m 

This fIle contains the basic capabilities, plus control sequences to erase a line and to 
apply the reverse video, underlined, blinking, and highlighted visual attributes. The en
tries for CUP and SGR are more complicated because they require additional parame
ters at run-time. The percent commands they contain are explained later. 

5.1.6 

An MS-DOS Video File 
By default, JAM displays data on the console by directly accessing the PC's video 
RAM. On machines that are not 100% IBM-compatible, it will use BIOS calls instead. 
Use the entry INIT = BIOS for these machines. Under no circumstances does JAM 
use DOS calls or the ANS I . SYS driver. Video files for both monochrome and color 
displays are distributed with JAM. 

Because JAM contains special code for the PC display, most of the entries that contain 
control sequences are irrelevant, and are given a value of PC in the distributed video 
fIles. You should leave these entries alone, since their presence is required but their val
ues are irrelevant Entries that do not contain control sequences, such as LINES, 
GRAPH, and BORDER, can be changed as usual. A sample PC video fue follows. 

LINES = 25 
COLMS = 80 

# INIT and RESET can change the cursor style if desired 
j INIT = C topscan, bottomscan [, flag] 
i RESET = C topscan, bottomscan [, flag] 
# where topscan is top scan line (0 - 7), bottom scan is 
8 the bottom scan line (0 - 7) and flag is 0 for fast 
# blinking, 1 for no cursor, 2 for fast blinking (again) 
# and 3 for slow blinking 

i other flags are available in the INIT sequence: 
I BIOS means use BIOS (ROM) calls for display rather than 
# writing directly to video memory 
# XKEY means use services OxlO and Oxll for keyboard 
# access (INIT 10) rather than 0 and 1. This allows use 
# of F11 and F12 on those systems that support it. 
8 GRAYKEYS means distinguish between gray and white cursor keys. 
# MULTISHIFT permits combination shifts like Ctrl-Alt and Shift-Alt. 
, WINDOWS allows JAM to move invisible cursors in DOS windows 
# running under Windows. 
# RETRACE means wait for retraces before writing to the 

Page 60 JAM Release 5.03 20 Nov 92 

-1 
I 



Chapter 5: Video File 

# video buffer. This slows writing but reduces snow on 
# CGAs. 
II 
# the default for init is: 
II IN IT = C 0,7,2 
II if there is no RESET sequence, the cursor is restored 
# to its style before the formaker routine was entered 

II most sequences are handled by assembler functions, 
# these should be set to ·PC· to function correctly 

# erase display and erase to end of line 
ED = PCEL = PC 

II cursor on and cursor off 
CON = PC 
COF = PC 

# support insert mode cursor style 
INSON = C 6,7,0 
INS OFF = C 0,7,0 

# absolute and relative cursor positioning 
CUP = PC 
CUD = PC 
CUD = PC 
CUB = PC 
CUF = PC 

# color should be specified as shown, attributes simply 
It listed 
COLOR = BLUE =1 GREEN = 2 RED = 4 BACKGRND 
LATCHATT = HILIGHT BLINK 
SGR = PC 

II erase window 
EW = PC 

ij save and restore cursor position and attributes 
SCP = PCRCP = PC 

j repeat character 
REPT = PC 

I PC graphics characters are used for borders and shift 
ij arrows 

# 
I 
I 

BORDER = 
Oxda 
Oxc9 
OxdS 
Oxd6 

SP 
Oxc4 

SP SP SP 
Oxbf 
Oxbb 
Oxb8 
Oxb7 

Oxcd 
Oxcd 
Oxc4 

SP SP 
Oxb3 
Oxba 
Oxb3 
Oxba 

, 
,-

SP SP 
Oxb3 
Oxba 
Oxb3 
Oxba 

JAM Refease 5.03 20 Nov 92 

\ 
OxcO 
Oxc8 
Oxd4 
Oxd3 

, 
_I 

Oxe4 
Oxcd 
Oxed 
Oxc4 

Oxd9 \ 
Oxbc \ 
Oxbe \ 
Oxbd \ 

Page 61 



Configuration Guide 

Oxdc Oxdc Oxdc Oxdd Oxde Oxdf Oxdf Oxdf \ 
\ 

OxbO OxbO OxbO OxbO OxbO OxbO OxbO OxbO \ 
Oxb2 Oxb2 Oxb2 Oxb2 Oxb2 Oxb2 Oxb2 Oxb2 \ 
Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd Oxbd 

# 
II 1- -1- -I 

BOX = SP SP SP SP SP \ 
Oxc2 Oxc3 Oxc5 Oxb4 Oxcl \ 
Oxcb Oxcc Oxce Oxb9 Oxca \ 
Oxdl Oxc6 Oxd8 OxbS Oxcf \ 
Oxd2 Oxc7 Oxd7 Oxb6 OxdO \ 
Oxbl Oxbl Oxbl Oxbl Oxbl \ 
Oxf9 Oxf9 Oxf9 Oxf9 Oxf9 \ 
OxbO OxbO OxbO OxbO OxbO \ 
Oxb2 Oxb2 Oxb2 Oxb2 Oxb2 \ 
Oxdb Oxdb Oxdb Oxdb Oxdb 

II A A 

II <- -> <-> 1 
II v v 

ARROWS = Oxlb Oxla Oxld Ox1S Oxl9 Ox12 

I update the cursor position display every .10 seconds 
CURPOS = 1 

II all PC graphics are available 
GRTYPE = PC 

Here the INIT entry specifies the cursor style. See Section 5.4.1 for more information. 

5.2 

VIDEO FILE FORMAT 
All white space (spaces and tabs) is skipped, except where noted below. A logical line 
may be continued to the next physical line by ending the fIrSt line with a backslash. Do 
not leave a space between the backslash and carriage return. To enter a backslash as the 
last character of the line, use two backslashes (without spaces). Thus 

text \ 
text \\ 

means a continuation line 
ends with a backslash 

text \ \ \ bas a backslash and a continuation. 

A double quote • starts a string. The quote itself is skipped. Text between it and the next 
double quote (or the end of the line) is taken literally, including spaces. To include a 
double quote in a quoted string, use backslash quote \. with no space between. For 
example, 

Page 62 JAM Release 5.03 20 Nov 92 

1 



Chapter 5: Video File 

Us t ty tabs n has an embedded space 

stty tabs does not 

The percent sign is a control character. To enter a literal percent sign, you must double 
it (i.e., %%). 

There are 3 ways to put non-printing characters, like control characters, in the video 
file: 

• Any character at all can be entered as Ox followed by two hexadeci
mal digits. For example, Ox41 can be used for A, or OxOl for con
trol-A, etc. This method is particularly useful for entering codes in the 
range Ox80 to Oxff. 

• Control characters in the range OxO 1 to Oxlf can be represented by 
a caret" followed by a letter or symbol. Either "A or "a can represent 
SOH (OxO 1) . The symbols are "[ for ESC; "\ for FS; "] for GS; 
"" for RS; and "_for us. 

• More control characters can be represented by two- or tbree-character 
ASCn mnemonics. This method is particularly useful for entering 
control sequences to the terminal, since the manuals often list such se
quences using mnemonics. Here is a list 

JAM Release 5.03 20 Nov 92 Page 63 



Configuration Guide 

Mnemonic Hex Mnemonic Hex Mnemonic . Hex Mnemonic Hex 

NUL OxOO DLE OxlO DCS Ox90 

SOH OxOl DCl Oxll PUI Ox91 

STX Ox02 DC2 Ox12 PU2 Ox92 

ETX Ox03 DC3 Ox13 STS Ox93 

EaT Ox04 DC4 Ox14 IND Ox84 CCH Ox94 

ENQ OxOS NAK OxlS NEL Ox8S MW Ox9S 

ACK Ox06 SYN Ox16 SSA Ox86 SPA Ox96 

BEL Ox07 ETB Ox17 ESA Ox87 EPA Ox97 

BS Ox08 CAN Ox18 HTS Ox88 

HT Ox09 EM Ox19 HTJ Ox89 

NL OxOa SUB Oxla VTS Ox8a 

VT OxOb ESC Oxlb PLD Ox8b CSI Ox9b 

FF OxOc FS OxIc PLU Ox8c ST Ox9c 

CR OxOd GS Oxld RI Ox8d OCS Ox9d 

SO OxOe RS Oxle SS2 Ox8e PM Oxge 

SI OxOf US Oxlf SS3 Ox8f APC Ox9f 

u SP IOx20 I DEL IOx7f I 
The rightmost two columns are extended ASCII control codes, which can be trans
mitted only if the communication line and terminal use eight data bits. If this is not 
possible, the 8-bit code may be replaced by two 7-bit codes. The ftrst code is ESC 
(Oxlb), the second Ox40 less than the desired 8~bit control character. For example, 
CS I ( Ox9b) would be replaced by ESC OxSb, or ESC [. If a video fIle contains 
extended ASCII control codes, JAM will assume they can be used; it will not transmit 
the two-character sequence automatically. 

Note: PRIME computers, and some others, internally toggle the high bit of a character; 
ESC on a PRIME is Ox9b and CSI is Oxlb, not vice versa. The numbers given in this 
document are always standard ASCII. 

Page 64 JAM Release 5.03 20 Nov 92 

1 
I 

I 

i 



Chapter 5: Video File 

5.2.1 

Keyword Summary 
All the video fIle entry keywords are listed here, arranged by function. Subsequent sec
tions explain each one in detail. 

Basic Capabilities (page 77) 

LINES Nmnber of lines on screen 

COLMS Nmnber of columns on screen 

INIT Initialization sequence 

RESET Undo initialization sequence 

REPT Repeat following character sequence 

REPMAX Maximum number of repeated characters 

BOTTOMRT Last position of screen may be written without scrolling the display 

BUFS I Z Nmnber of characters to accumulate ~fore flushing 

KBD_DELAY Tuning interval for keyboard input 

Erasure Commands (page 79) 

ED 

EL 

EW 

Erase entire display 

Erase to end of current line 

Erase window 

Cursor Position (page 80) 

CUP 

CUU 

CUD 

CUF 

CUB 

CMFLGS 

Absolute cursor position 

Cursor up 

Cursor down 

Cursor forward 

Cursor backward 

Allowed cursor-motion shortcuts 

Cursor Appearance (page 81) 

CON Turn cursor on 

JAM Release 5.03 20 Nov 92 Page 65 



Configuration Guide 

COF 

SCP 

RCP 

INSON 

INSOFF 

Tum cursor off 

Save cursor position and attribute 

Restore cursor position and attribute 

Insert-mode cursor 

Overstrike-mode cursor 

Display Attributes. (page 82) 

SGR 

ASGR 

LATCHATT 

AREAATT 

ARGR 

SPXATT 

COLOR 

Set graphics rendition Oatcb) 

Set grapbics rendition (area) 

List of available latch attributes 

List of available area attributes 

Remove area attribute 

List of attributes that do not affect space 

List of colors 

Message Line (page 90) 

OMSG 

CMSG 

MSGATT 

Open message line 

Close message line 

Message line attributes 

Soft Key Labels (page 91) 

KPAR 

KSET 

KSON 

KSOFF 

Softkeylabeld~ption 

Load soft key labels 

Tum keyset labels on 

Tum keyset labels off 

Graphics (page 93) 

MODE 0 

MODEl 

MODE2 

MODE3 

Page 66 

Normal character set sequence 

Locking shift to alternate character set 1 

Locking shift to alternate character set 2 

Locking shift to alternate character set 3 

JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

MODE4 

MODES 

MODE6 

GRAPH 

GRTYPE 

N on-locking shift to alternate character set 1 

Non-locking shift to alternate character set 2 

Non-locking shift to alternate character set 3 

Graphics character equivalents 

Shortcut for defming graphics characters 

Borders and Line Drawing (page 95) 

BORDER 

BRDATT 

BOX 

Characters that make up the 10 border styles 

Available border attributes 

Characters that make up the styles for box and line drawing 

Indicators (page 98 ) 

ARROWS 

BELL 

CBSEL 

CBDSEL 

Indicator characters for shifting and scrolling 

"Visible bell" alarm sequence 

Selection character for groups with box edits 

Deselection character for groups with box edits 

Drivers (page 99 ) 

MOUSEDRlVER Name of mouse driver 

BLKDRVR Name of block mode driver 

Miscellaneous (page 99) 

CURPOS 

COMPRESS 

5.3 

Display the current cursor position on the status line 

Output data compression for Jterm 

PARAMETERIZED CHARACTER 
SEQUENCES 
Certain control sequences cannot be completely specified in advance. An example is 
the cursor position sequence, which requires the line and column number before mov-. 
ing. The commands using these sequences must be passed extra parameters. 

JAM Release 5.03 20 Nov 92 Page 67 



Configuration Guide 

The number in parentheses is the number of parameters for each keyword. 

Keyword Action Parameters 

REPT repeat sequence (2) character 
number of times to repeat 

EW erase window (5) start line 
start column 
number of lines 
number of columns 
background color 

CUP cursor position (2) line and column (relative to 
0) 

CUU cursor up (1) line increment 

CUD cursor down (1) line increment 

CUF cursor forward (1) column increment 

CUB cursor backward (1) column increment 

SGR set latch graphics rendition (12) see Section 5.4.5 

ASGR set area graphics rendition (12) see Section 5.4.5 

5.3.1 

Summary of Percent Commands 
Parameters are encoded in sequences by percent commands, sequences starting with 
the % symbol. This is superficially similar to the way the C library fimction pr in t f 
handles parameters. Some percent commands cause data to be output; others are used 
for control purposes. Every parameter that is to be output requires a percent command. 
JAM uses a stack mechanism as does terminfo; it is described in the next section. Per
cent commands are summarized in the list that follows. Examples and more complete 
descriptions are in subsequent sections. 

Percent signs must be used with care, since all sequences go through the same proces
sing, even those that do not use runtime arguments. In particular, to enter a percent sign 
as a literal, you must use %%. 

In the lists below, commands are tagged to indicate their source. The tags are the fol
lowing: 

Page 68 JAM Release 5.03 20 Nov 92 

"I 
! 



(C) 
(I) 
(E) 

Output Commands 

termcap 
terminfo 
JYACC extended command 

%% Output a percent sign (C and I) 

% • Output a character (C) 

%c Output a character (I) 

%d Output a decimal CC and I) 

%#d Output a #-digit decimal, blank fIlled CD 

Chapter 5: Video File 

% 0 #d Output a #-digit decimal, zero filled, like the termcap % 2 which is not 
supported (I) 

%+ Add and output a character CC) 

%#2 Output#Cdecimal number) binary zeros (E) 

%#w Wait (sleep) # seconds (E) 

%s Issue a system command (E) 

Stack Manipulation and Arithmetic Commands 
%p# Push parameter # (1 - 11 allowed) CD 

%' c' Push the character constant c CD 

% (#) Push the integer constant # 0) 

%+ Add (I) 

%- Subtract (I) 

%* Multiply en 
%/ Divide (I) 

%m Modulus (I) 

%1 Bitwise OR CI) 

%" Bitwise exclusive OR (I) 

%& Bitwise AND (I) 

%= Logical EQUAL TO (I) 

%> Logical GREATER THAN en 
%< Logical LESS THAN (I) 

JAM Release 5.03 20 Nov 92 Page 69 



Configuration Guide 

% ! 

%-

Logical NOT (I) 

One's complement en 

Parameter Sequencing and Changing Commands 
%#U 

%#b 

%i 

%r 

Discard # parameters (E) 

Back up # parameters (E) 

Increment the next two parameters (C and I) 

Reverse the next two parameters (C) 

Control Flow Commands 
% ? expr % t then-psrt % e e/se-psrt %; 

Conditionally execute one of two command sequences (I) 

expr %t then-part %e e/se-part %; 

%#( 

%l( 

%) 

%) 

Same effect as previous (E) 

Repeat the sequence # times (E) 

Select operations from a list (E) 

Terminfo Commands Not Supported 
%P, %g 

$<#:> 

5.3.2 

Letter variables 

Padding (use %#2 instead) 

Automatic Parameter Sequencing 
In processing a keyword, a stack is used which is initially empty (and can hold up to 
four items); the parameters are kept in a separate list Parameters are generally pushed 
on the stack as needed. The parameters are ordered and a pointer initially points to the 
ftrst one. The stack is four levels deep; anything pushed off the end is lost There are 
commands that push a parameter or constant onto the stack, but no explicit pop com
mands. Output commands transmit the value on top of the stack, then remove it Arith
metic and logical operations take one or two operands from the top of the stack, and 
replace them with one result; thus they perform an implicit pop. 

Arithmetic and logical operations all use postfix notation. FlfSt the operands are 
pushed, then the operation takes place. Thus %pl %p2 %p3 %+ %* leaves x * (y 

+ z) on the stack, where x, y, and z are parameters I, 2 and 3. This mechanism is iden
tical to that used by termin/o, so its commands can be used freely. 

Page 70 JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

The simpler termcap commands do not use a stack mechanism. To support them, JAM 
uses an automatic parameter sequencing scheme. A current Index into the parameter list 
is maintained. Whenever a parameter is needed on the stack, the current parameter is 
pushed and the index is incremented. In particular, if an output command is encoun
tered and there is nothing on the stack to output, an automatic push is performed using 
the current index. The commands %d %d output two decimals; the sequence %pl %d 
%p2 %d does the same thing. 

The effect of this scheme is that term cap style commands are automatically translated 
into terminfo style. Most of the examples in this docmnent give both styles. Although 
it is possible to use automatic sequencing and explicit parameter pushes in the same 
sequence, this practice is strongly discouraged. Explicit pushes of constants with auto
matic parameter sequencing, however, is a useful combination, as will be seen. 

5.3.3 

Stack Manipulation and Arithmetic 
Commands 
Commands are available to push parameters and constants. Only four levels of stack are 
supported, and anything pushed off the end is discarded without warning. 

%p2 Push the second parameter 

%p 11 Push parameter 11 

%'x' 

%{12} 

%{O} 

%'0' 

Push the character x 

Push the number 12 

Push binary 0 

Push ASCII 0 

Various arithmetic and logical operations are supported. They require one or two oper
ands on the stack. If necessary an automatic push will be generate~ using the next pa
rameter. 

% ' @' % I % I % I %c OR 3 parameters with @, then output result 

% ' @' % I % I % I %c Bitwise OR 3 parameters with @, then output result 

%' @' %pl % I %p2 % I %p3 % I %c same as above 

The automatic parameter sequencing mechanism works well in the above example. 
Since bitwise OR requires two parameters and there is only one on the stack, a push is 
performed. Note that no push is required to process % c since an entry already exists on 
the stack. Thus only three parameters are consumed and the result of the bitwise OR is 
output. 

JAM Release 5.03 20 Nov 92 Page 71 



Configuration Guide 

%'5P' %+ %c 

%pl %'5P' %+ %c 

Output the parameter added to the value of a space. 
See the next section for an alternate. 

Same as above 

The example above fIrst pushes the fIrst parameter, then pushes a space character 
(Ox20). The %+ command adds these values and puts the answer on the stack. %c then 
pops this value and transmits it to the terminal. 

5.3.4 

Parameter Sequencing Commands 
With automatic sequencing of parameters, it is occasionally necessary to skip a parame
ter. The %u command uses up one parameter, by incrementing the parameter index. The 
%b command backs up, by decrementing the parameter index. Both can be given with 
counts, as %2u. 

%d %b %d 

%pl %d %pl %d 

%p2 %d %pl %d 

%u %d %2b %d 

5.3.5 

Output the same parameter twice 

Same as above 

Output in reverse order 

Same as above 

Output Commands 
Because the percent sign is a special character, it must be doubled to output a percent 
sign. %c and %. output a character, like printf; the latter is supplied for termcap 
compatibility. %d outputs a decimal. It has variations that allow for specifying the num
ber of digits, and whether blank-fill or zero-fill is to be used. 

%#z outputs the specified number of NUL characters (binary zero). It is usually used for 
padding, to insert a time delay for commands such as erase screen. 

%% 

%d 

%3d 

Output a percent sign 

Output a decimal, any number of digits, no fill 

Output at most 3 digits with blank fill 

% 0 3 d Output at most 3 digits with zero fill 

% 1 00 z Send 100 pad bytes to the terminal 
%5 ( string %) issues a system command; the string following %5 is passed to the 
command interpreter for execution. Since vid2bin strips spaces, this text should usu
ally be enclosed in quotes. 

Page 72 JAM Release 5.03 20 Nov 92 

-'1 



%S('stty tabs'%)] 

%S(stty SP tabs%) 

%S(stty tabs %) 

%S('keyset \'\"%) 

System call: stty tabs 

System call: stty tabs 

Mistaken version of above 

System call: keyset " 

Chapter 5: Video File 

%S ( , keyset ", %) Mistaken version of above. 

%#w waits (sleeps) the specified # of seconds. It is not supported on systems where the 
sleep library routine is unavailable. It is often used as a time delay for INIT and RE
SET sequences. 

%2w Sleep 2 seconds 

Because termcap and terminfo are inconsistent, %+ is implemented in two ways. As de
scribed in the section above, %+ can be used to add two operands on the stack and leave 
the sum on the stack. If the stack has only one "entry, an automatic push is generated. 
However, a special case occurs if the stack is empty-the character following % + is add
ed to the next parameter, the sum is output as a character, and the parameter index is 
incremented. This usage occurs often in termcap cursor positioning sequences. 

%+SP 

%'SP' %+ %c 

%'SP' %pl %+ %c 

5.3.6 

Output parameter added to the value of space 

Same as above 

Same as above 

Parameter Changing Commands 
%i increments the next two parameters. It is used almost exclusively in termcap cursor 
positioning sequences. The parameters passed are line and column, with the upper left 
being (0,0). Many terminals expect the line and column to be relative to (1,1); %i is 
used to increment the parameters. Note that no output is performed, and no parameters 
are consumed. 

%r reverses the next two parameters. It is unnecessary if explicit parameter pushes are 
used; in fact, it should be avoided in that case since the numbering of the parameters 
will be reversed. This command is often used in cursor positioning sequences where the 
terminal requires that column be given first and then the line (the default being the oth
er way arOtmd). 

ESC [ %i %d ; %d H 

FS G %r %c %c 

FS G %p2 %c %pl %c 

Add 1 to each parameter and send out as decimals 

Output column frrst, then line 

Same as above 

JAM Release 5.03 20 Nov 92 Page 73 



Configuration Guide 

5.3.7 

Control Flow Commands 
The general if-then--else clause is %? expr %t then-part%e e/se-part%;. It can be ab
breviated by omitting the if, thus: expr %t then-part %e e/se-part %;. The expression 
expr is any sequence, including the empty sequence. %t pops a value from the stack 
and tests it, executing then-part if it is true (non-zero) and e/se-part otherwise. then
part and e/se-part may be any sequence, including the empty sequence. If e/se-part is 
empty, %e may be omitted as well; but %t is always required, even if then-part is 
empty. 

If %t fInds that the stack is empty, it will generate an automatic push of the next param
eter as usual. % t consumes one parameter; however, the incrementing of the parameter 
index is delayed until after the entire conditional has been executed A conditional al
ways consumes exactly one parameter, regardless of which branch is taken or of the 
content of then-part or e/se-part. If either of those use automatic parameter sequenc
ing, they use a local index. Thus even if they consume, say, two parameters, at the end 
of the conditional the parameter index is reset When the next command is reached, 
only one parameter has been consumed. 

In each of the following examples, one parameter is consumed, even in the last one 
where no parameter is output 

%t ; %c %; 

%pl %t i %pl %c %i 

%? %pl %t 

%? %pl %t 

%pl %c %; 

%c %; 

Output; AND a character if the parameter is non
zero, otherwise skip the parameter. 

Same 

Same 

Same 

% t ; 5 %; Output; AND 5 if the parameter is non-zero. 

In the following two examples, the constant (binary) 1 is pushed, the parameter is 
compared with 1, and the boolean value is left on the stack. If the value is true, nothing 
is done; otherwise the parameter is output as a decimal. 

%7 %{l} %pl %= %t %e %pl %d %; 
%{l} %= %t %e %d %; 

The following sequence exhibits a simple "either-or" condition that is sometimes used 
to toggle an attribute on or off. It outputs 

ESC ( if the parameter is non-zero, and 

ESC ) otherwise: 

ESC %t (%e %; 

Page 74 JAM Release 5.03 20 Nov 92 

"1 
1 
1 



Chapter 5: Video File 

The then-part and e/se-part may themselves contain conditionals, so else-if can be 
implemented. This practice is not recommended as it can produce undecipherable se
quences. Also, because of the way automatic parameter sequencing is done, the results 
might be unexpected. It is provided only for terminfo compatibility. The list command, 
described in the next section, is an alternative. 

The repeat command is used to perform the same action for several parameters. It is 
designed to be used with automatic parameter sequencing, and is almost useless if ex
plicit parameter pushes are used. The count is specified after the percent sign. All the 
commands between %# (and %) are executed # times. 

%3( %d %) 

%pl %d %p2 %d %p3 %d 

%3( %t %d %; %) 
three 

Output 3 decimals 

Same as previous 

Output whichever of the frrst 

parameters are non-zero. 

%pl %t %pl %d %; %p2 %t %d %; %p3 %t %p3 %d %; Same as above 

ESC 0 %9 ( %t ; %c %; %) m Usual ANSI sequence for SGR. 

ESC 0 %? %pl %t ; 7 %; %? %p2 %t ; 2 ••. 
Same as above, assuming that parameter 1 is 7 and parameter 
2 is 2. 

5.3.8 

The List Command 
The list command is needed very rarely, but is available as an alternative to a compli
cated if-tben--else-if construction. It implements a simple "select" or "case" condition
al. The general format is 

%l ( vaJue1: exprl %; vaJUfI2: _xpr2 %; ... %) 

The values are single character constants representing the various cases. The expres
sion is executed if the value matches the top of stack. At most one expression is 
executed, (i.e., each case contains a "break"). If the value is missing, the expression is 
evaluated as a default. For correct operation, the default case must occur last in the list 
Note that the colons do not have a leading percent sign, so no selector may be a colon. 
The %; after the last element of the list is not required 

The parameter on the stack (automatically pushed, if necessary) is popped and tested 
against the various cases. The parameter index is incremented by one after the entire 
list is processed, even if the expressions use parameters. The following examples are a 
bit contrived; see the section on color for other examples. 

JAM Release 5.03 20 Nov 92 Page 75 



Configuration Guide 

% 1 ( 0: % ; 1: ESC% ; : FS %) output nothing if the parameter is ' 0'; ESC if it is '1'; 
FS otherwise. 

%' 0' %= %t %e %' l' %= %t ESC %e FS %; %; same result, using 
"else--if' 

%l( 1:2%; 2:1%; %) 

5.3.9 

Padding 

output' l' if the parameter is '2', '2' if the parameter 
is ' 1'; otherwise do nothing 

Certain terminals (or tty drivers) require extra time to execute instructions. Sometimes 
the terminal manual specifies the delay required for each command, but more often 
than not it is silent on the subject. If random characters appear on the screen, particular
ly characters that are part of command sequences, time delays may be required. 

Delays can be introduced in two ways. %#w will cause a wait (sleep) for the specified 
number of seconds; %#z will output the specified number of zeros. The wait command 
is usually only required in terminal initialization or reset sequences. A hard reset of a 
terminal sometimes requires a sleep of 1 or 2 seconds. The zero command is occasion
ally needed on the erase display or erase line commands. Very rarely, the cursor posi
tioning sequence requires padding. The number of zeros to send range from about 5, for 
very short delays, to several thousand for longer delays. Usually 100 or so is enough for 
any terminal. 

termcap indicates padding by using a number at the beginning of a sequence, which is 
the number of milliseconds of pad required. terminfo uses the syntax $<#>. In either 
case it is easy to convert to the %#2 notation, using the fact that, at 9600 baud, one char
acter takes one millisecond to output 

ESC c %2w Sleep 2 seconds after terminal reset 

ESC [ J % 100 z 100 pad zeros after clear screen 

ESC [ H % 1000 z Long delay of 1000 pad zero 

Page 76 JAM Release 5.03 20 Nov 92 

· J 



Chapter 5: Video File 

5.4 

CONSTRUCTING OR MODIFYING A 
VIDEO FILE, ENTRY BY ENTRY 

5.4.1 

Basic Capabilities 
LINES indicates the number of lines on the display. The default value is 24. In general 
one line will be reserved for starus and error messages so the maximum fOim size will 
usually be one less than the number specified here. (See OMSG, below, for exceptions.) 
COLMS gives the number of columns on the display. The default value is 80. 

LINES = 25 24 lines for the screen, 1 for messages 

COLMS = 132 wide screen 
In some windowing environments (e.g., SUN workstations) the values of LINES and 
COLMS are overridden by the number of lines and columns in the active window. 

INIT is a terminal initialization sequence, output by the library function ini tcrt. 
There is no default; this keyword may be omitted. It is typically used to change the 
mode of the terminal, to map function keys, select attribute styles, etc. Padding is some
times required, either with %#z or %#s. 

RESET is a reset-terminal sequence, output by the library function resetcrt. There 
is no default H given, this keyword should undo the effects of INIT. For many termi
nals a "hard reset" that resets the terminal to the state stored in non-volatile memory is 
appropriate. 

# map 2 function keys, then wait 2 seconds 
INIT = %S( ·/etc/keyset fl ~a P ~m· %) \ 

%S( ·/etc/keyset f2 ~a Q ~m· %) \ 
%2w 

I load alternate character sets 
INIT = ESC)F ESC*I ESC+} 

I hard reset, delay, then set tabs 
RESET = ESC c %lOOOz %S('stty tabs'%) 

On MS-DOS systems only, the INIT and RESET sequences (which are nonnally not 
used) may be given a special value to specify the cursor style. With ASCII terminals, 
escape sequences for setting the cursor style may be included in the INIT and RESET 
strings in the normal fashion. The format is 

INIT = C n1, n2, n3 
RESET = C n1, n2, n3 

JAM Release 5.03 20 Nov 92 Pagan 



Configuration Guide 

The fIrst two numbers, n 1 and n2, specify. the top and bottom scan lines for the cursor 
block; line 0 is at the top. The optional n3 gives the blink rate, as follows: 

1 

2 

3 

o 

no cursor 

fast blink (the default) 

slow blink 

fast blink (Not always valid on non-IBM systems) 

The standard sequences for a blinking block cursor are: 

• For a monochrome monitor: INIT = CO, 13 I 0 

• For a eGA monitor: INIT = CO, 7 I 0 

• For a EGA monitor: INIT = CO" 13 I 2 

If RESET is not specified, JAM saves and restores the original cursor style. 

A scan line is the smallest vertical unit on your display (one pixel wide). 

Several additional keywords may be used with INIT on MS-DOS systems. These are 
shown in the table below. 

Flag DeSCription 

BIOS Specifies that JAM should use BIOS calls to do display output 
rather than writing the video RAM directly. 

WINDOWS Relates to Microsoft Wmdows. Specifies that JAM may move 
the cursor, even if the cursor is invisible. 

XKEY Directs JAM to use a different BIOS interrupt for keyboard in-
put that recognizes the FH and F12 keys on an extended key-
board. 

GRAYKEYS Distinguishes between gray and white cursor positioning keys. 
For example, this option allows you to assign one value to the 
gray up arrow key and another value to the white up arrow key. 

MULTI SHIFT Permits the use of key sequences using the combinations: 
Ctr1-A1t-,Shift-Alt-,andCtrl-Shift-Alt-

REPT is a repeat-character sequence. There is no default, since most terminals do not 
support character repeat If it is available, it should be given since it can substantially 
speed up the clearing of windows, painting of borders, etc. This sequence is passed two 
parameters: the character to be repeated and the number of times to display it The re-

Page 78 JAM Release 5.03 20 Nov 92 

--, 
I 

"1 . , 



Chapter 5: Video File 

peat sequence will be used whenever possible, usually for borders and for clearing areas 
of the screen. If borders do not appear correctly, this sequence may be wrong. A repeat 
sequence is never used to repeat a control character, and will never extend to more than 
one line. 

REPMAX gives the maximum number of characters REPT can repeat To check the 
proper value of REPMAX, ftrst omit it; then in jxform, draw a fteld that extends the 
entire width of the screen, and hit the TRANSMIT key. If the whole fteld changes to the 
underline attribute, REPMAX is not needed. If it fails, experiment by gradually shorten
ing the fteld to determine the largest possible value of REPMAX. 

REPT= %c ESC F %+? Output character, then ESC F and the count with 
Ox3f 

(the ASCn value of'?,) added 

REPMAX= 64 Maximum count for above. Anything over this 
count 

will be split into more sequences 

REPT= %pl %c ESC F %'?' %p2 %+ %c Same as previous 
BOTTOMRT is a simple flag, indicating that the bottom right-hand corner of the display 
may be written to without causing the display to scroll. If this flag is not present, JAM 
will never write to that position. 

BUFSIZ sets the size of the output buffer used by JAM. If it is omitted, JAM calculates 
a reasonable default size. You should include this entry only if special circumstances 
warrant For example, if you make extensive use of a screen--oriented debugger, you 
may want to setBUFS I Z to a large value; that effectively disables the delayed-write 
feature, which may prove troublesome during debugging. 

KBD_DELAY assigns a timing interval to keyboard input Developers who wish to use 
key sequences that are lead-ins of other sequences must assign a timing interval via 
KBD_DELAY to determine when a key sequence has ended. 

KBD_DELAY may be set to a positive integer between 1 and 10, representing an inter
val in tenths of a second. Negative integers or 0 represent an interval of indefinitely 
great length. 

5.4.2 

Screen and Line Erasure 
ED gives the control sequence that erases the display. It is required and must clear all 
available display attributes, including background color. The correct command can be 
found in the terminal manual, or in term cap as "cl". Some terminals require padding 
after this command. 

JAM Release 5.03 20 Nov 92 Page 79 



Configuration Guide 

ED = ESC J Common for ANSI telIDinalS 

ED = CSI J ANSI telIDinalS, 8 bit mode 

ED = ESC H ESC [ J "Home" may be required too 

ED = ESC 2 J Another variation 

ED = ESC 2 J %100z With padding 

ED = "L Videotex terminals 

ED = FF Same as above 

EL gives a sequence that erases characters and attributes from the cursor to the end of 
the line. If it is not given, JAM erases the line by writing blanks. The sequence can be 
found in termcap as ceo Padding may be required. EL =ESC [ K is common for 
ANSI telIDinals; to include padding, use EL = ESC [ 0 K % 1 0 0 z. 

EW gives a sequence that erases a rectangular region on the screen, to a given back
ground color if available. The only known telIDinal where this is available is a PC using 
MS-DOS. Five parameters are passed: start line, start column, mnnber of lines, number 
of columns, and background color. (If color is not available, the last parameter can be 
ignored.) 

5.4.3 

Cursor Position 
CUP, absolute cursor position, is required to run JAM. This sequence appears in term
cap as "em". It takes two parameters: the target line and the target column, in that order 
and relative to O. % i (increment) can be used to convert them to be relative to 1. ANSI 
terminals need the line and column as decimals. Other terminals add a ftxed value to the 
line and column to make them printable characters; %+ is used to implement this. Some 
typical descriptions follow. All are ANSI standard. 

cUP = ESC [ %1 %d;%d H 

CUP = ESC %i %d;%d f 

cuP = ESC %i %pl %d %p2 %d f 

cuP = CSI %1 %d; %d H 

Another common scheme is to output the line and column as characters, after adding 
S P. Examples of coding in the video me follow. 

cuP = FS C %+SP %+SP 

cuP = FS C I'SP' %pl %+ %c %'SP' %p2 %+ %c 

cUP = ESC = %+SP %+SP 

Page 80 JAM Release 5.03 20 Nov 92 

.., 



Chapter 5: Video File 

CUD, CUD, CUF and CUB perform relative cursor movement CUD moves the cursor up 
in the same column; CUD moves it down. CUF moves the cursor forward in the same 
row and CUB moves it back. All take as a parameter the number of lines or columns to 
move. If sequences exist to move the cursor by only one line or one column, do not 
specify them. 

CUU = ESC %d A ANSI cursor up 

CUD = ESC %d B Cursor down 

CUF = ESC % C Cursor forward 

CUB = ESC %d D Cursor back 

CUD = CSI %d A Using 8 bit codes 

CUD = ESC [ %(l) %= %t %e %d %; A Omit the parameter if it is I 

The CMFLGS keyword lists several shortcuts JAM can use for cursor positioning. They 
are as follows: 

CR 

LF 

BS 

Carriage return (OxOd, or "M) moves the cursor to the fIrst column of 
the current line. 

Linefeed (OxOa, or "J) moves the cursor down one line, in the same 
column. 

Backspace (Ox08, or "H) moves the cursor one position to the left, 
without erasing anything. 

AM Automatic margin: the cursor automatically wraps to column I when it 
reaches the right-hand edge of the display. 

Most terminals are capable of the fIrst three. The fourth can frequently be found in 
termcap, as am. It cannot be used on terminals with the :un} glitch (i.e., vt100-style 
delayed auto margin.) 

5.4.4 

Cursor Appearance 
CON turns the cursor on in the style desired. Since an lIDderline cursor is difficult to see 
in an underlined fIeld, we recommend a blinking block cursor. Note that the INIT and 
RESET sequences can be used to switch between the cursor style used in JAM applica
tions and that used on the command line. 

COF turns the cursor off. If possible this sequence and CON should be given. Menus 
(using a block cursor) look better with the regular cursor off. Also JAM often must 
move the cursor around the screen to put text in fields, to scroll arrays, etc. If the cursor 
is off during these operations, the user is not disturbed by its flickering all over the 
screen. 

JAM Release 5.03 20 Nov 92 Page 81 



Configuration Guide 

Many terminals have no ability to turn the cursor on and off. Although JAM attempts 
to minimize cursor movement, some flickering is unavoidable. 

CON and COF can sometimes be found in the terminal manual as "cursor attributes" and 
in termcap as CO and CF. Here are some examples. 

CON = ESC Cursor on for Videotex terminal 

COF = ESC Cursor off for Videotex 

CON = ESC [>51 Cursor on for some ANSI terminals 

COF = ESC [>5h Cursor off for some ANSI terminals 

CON = ESC [?25h Another possibility for ANSI terminals 

COF = ESC [?251 

CON = ESC [ 3 i 0 Z 

COF = ESC [ 3 i 4 z 
The INSON and INSOFF sequences are issued to the terminal when you toggle JAM's 
data entry mode between insert and overstrike, using the INSERT key. They should 
change the cursor style, so that you can easily see whicb mode you are in. On many 
terminals, changing the cursor style also turns it on; in this case, INS OFF should be the 
same as COF, or you can omit it altogether. If the cursor style can be changed without 
turning it on or off, you should give both INSON and INSOFF. INSON and INSOFF 
use the same escape sequence format as INIT and RESET. 

5.4.5 

Display Attributes 
J AM supports highlight, blink, underline and reverse video attributes. IT either high
light or blink is not available, low intensity is supported in its place. One additional 
attribute keyword is available, called "standout," which can be assigned to any other 
desired attribute, e.g. dim or italics, if available. The keywords LATCHATT and 
AREAATT in the video me list the attributes available in each style and associate a 
character with each attribute. 

The set graphics rendition sequences (SGR and ASGR) are each passed twelve parame
ters. The frrst nine are the same as used by termin/o. The parameters, in order, repre-
sent: 

1. standout 
2. underline 
3. reverse video 
4. blink 

Page 82 JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

5. dim (low intensity) 

6. highlight (bold) 

7. blank 

8. protect not used, always 0 

9. alternate character 

10. foreground color (if available) 

11. backgrOlmd color (if available) 

12. background highlight 

If an attribute is desired, the parameter passed is the character associated with the at
tribute, as explained below. If the attribute is not desired, the parameter passed is 
(binary) O. If the video file contains 

LATCHATT = REVERSE = 7 HILIGHT = 1 BLINK = 5 UNDERLN = 4 

and a field is to be highlighted and underlined, the SGR sequence will be passed (0, '4', 
0, 0, 0, , I', 0, 0, 0). The second and sixth parameters represent underline and highlight; 
they are set to the corresponding values from LATCHATT. The rest are zero. To make 
the field reverse video and blinking, SGR would be passed (0, 0, '7', , 5' , 0, 0, 0, 0, 0) . 

If no attributes are specified in the video me, JAM will support just two attributes: 
non-display (done in software anyway) and underline (using the underscore character). 

Attribute Types 
JAM supports three different kinds of attribute handling. The first is called latch attrib
utes, and is the most common today. The position of the cursor is irrelevant when the 
attribute setting sequence is sent Any characters written thereafter take on that attrib
ute. Attributes require no space on the screen. ANSI tenninals use this method. 

The second is called area attributes. The cursor position is very important at the time 
the attribute sequence is sent to the terminal. Indeed, all characters from the cursor 
position to the next attribute (or end of line or end of screen) immediately take on that 
attribute. Attributes do not occupy a screen position (they are "non-embedded" or "no 
space''). In this style, JAM will position the cursor to the end of the area to be changed, 
set the ending attribute, then position the cursor to the beginning of the area and set its 
attribute. 

The third is called on screen attributes. Tbey act like area attributes, but occupy a screen 
position. (They are "embedded" or "spacing".) This style of attribute handling imposes 
the condition on the screen designer that fields and/or display areas cannot be adjacent, 
since a space must be reserved for the attribute. Display of windows may be hampered 
by lack of space for attributes. 

A terminal may have several modes which can be set by the user. It is quite common for 
a terminal to support both area and onscreen attributes. If so, you should select area 

JAM Release 5.03 20 Nov 92 Page 83 



Configuration Guide 

("non-embedded" or "no space") rather than on screen ("embedded" or "spacing''). 
Some terminals support one latch attribute and several area attributes simultaneously. 

If a terminal has only one attribute style available, it is often user selectable. We recom
mend that reverse video be selected, since it is attractive in borders. JAM supports 
non-display in software, so that attribute need not be available. Underlines will be sim
ulated (by writing an underscore character) if that attribute is not available. 

Usually attribute information is available only in the terminal manual. However, some 
clues can be found in the termcap database. The codes "so", "ul" and "bl" specify 
standout (usually reverse video), underline and bold respectively. The codes "se", "ue" 
and "be" give the sequence to end the attributes. The standard ANSI sequences are 

so=\E[7m:se=\E[Om:ul=\E[4m:ue=\E[Om:bl=\E[lm:be=\E[Om 

If you [md something like these you can be quite sure that ANSI latch attributes are 
available. If you find entries ug# 1 : sg# 1 you can be sure that on screen attributes are 
in use. 

Specifying Latch Attributes 
The LATCHATT keyword is followed by a list of attributes equated to their associated 
character. The possible attributes are: 

REVERSE 

STANDOUT 

BLINK 

UNDERLN 

HILIGHT 

DIM 

BLANK 

ACS 

B_HILIGHT 

Reverse (or inverse) video 

User selected standout mode 

Blink or other standout 

Underline 

Highlight (bold) 

Dim Oow intensity) 

Non-display (foreground not shown) 

Alternate character set (line drawing graphics) 

Background bighlight 

The format is LATCHATT = attribute = value attribute = value etc. If the equal 
sign and value are missing, the attribute is given the value (binary) 1. 

Most ANSI terminals use latch attributes, and the codes are fairly standardized. The 
only question is which attributes are supported and how attributes can be combined, if 
at all. Some ANSI terminals support color, either foreground only or foreground and 
background. The sequences for color are far less standard. 

Temrinal manuals often describe the sequence as "set graphics rendition." A common 
description reads: 

Page 84 JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

ESC [p1 p2; ... m 

where pn = 0 for normal 

1 

5 

for bold 

for blink 

Thus ESC [ 0 rn is normal, ESC [ 1 rn is bold, ESC [ 1 ; S rn is bold and 
blinking. Often setting an attribute does not "erase" others, so it is best to reset to nor
mal fIrst, using ESC [ 0 ; 1 rn for bold, ESC [ 0 ; 1 ; Srn for blinking bold, etc. The 
coding in the video fIle is as follows: . 

LATCHATT = HILIGHT = 1 BLINK = 5 UNDERLN = 4 REVERSE = 7 
SGR = ESC [ 0 %9(%t ; %c %; %) m 

The meaning of the above SGR sequence is as follows. The sequence is passed 11 pa
rameters, each ° (if the attribute is not to be set) or the character in the LATCHATT list 
FlfSt, ESC [ 0 is output The %t test, repeated 9 times, causes the zero parameters to 
be skipped. A non-zero parameter causes a semicolon and the parameter to be output 
Finally, the character rn is output If normal attribute is wanted, all parameters will be 0, 
and the output sequence will be ESC [ 0 m. If only underline is wanted, it will be 
ESC [ 0 ; 4 m. If highlighted, blinking, and reverse video are desired, the output 
will be 

ESC [ 0; 7 ; 5 ;1 m. 

Some terminals (or emulators) will not accept the method of combining attributes used 
above. In that case, one sequence followed by the next might work, e.g. ESC [ 1 rn 
ESC [ 7m. Some terminals cannot combine attributes at all. Here are some more 
ANSI and near-ANSI examples: 

LATCHATT= HILIGHT=l BLINK=S UNDERLN=4 REVERSE=7 
"standard" ANSI terminal 

LATCHATT= DIM=2 REVERSE=7 UNDERLN=4 BLINK=S 
ANSI with low intensity but no highlight 

LATCHATT= REVERSE=7 only one attribute avruIable 

SGR = ESC 

SGR = ESC 

o %9(%t ; %c %; %) rn repeat of previous example 

o rn %9(%t ESC [ %c rn %; %) 
attributes cannot be combined 

SGR = %u ESC [ 0 %S(%t %c %; %) rn 
skip parameters that are always ° 

JAM Release 5.03 20 Nov 92 Page 85 



Configuration Guide 

In the next LATCHA TT / SGR example we will use explicit pushes to select the ap
propriate parameter. The second pair is the same as the ftrst, but the attribute is treated 
as a boolean. The frrst uses the optional % 7, the second omits it. 

LATCHATT = DIM = 2SGR = ESC [ m %? %p5 %t ESC [ 2 m %; 

LATCHATT = DIMSGR = ESC [ m %t ESC [ 2 m %; 

The following is suitable for tenninals that support all attributes but cannot combine 
them. It selects one attribute giving preference to REVERSE, UNDERLN, BLINK and 
HILIGHT in that order. It uses a complicated "if-then-elseif-elseif-elseif' structure. 
Automatic parameter sequencing cannot be relied on, so explicit parameter pushes are 
used 

LATCHATT = HILIGHT BLINK UNDERLN REVERSE 
SGR = ESC [ %p3 %t 7 %e %p2 %t 4 %e %p4 %t 5 %e\ 

%p6 %t 1 %i %i %i %i m 

Some terminals use bit-mapped attributes. Terminal manuals are not usually explicit 
on this. Often they use tables like the following: 

n Visual attribute n ViSual attribute 

0 normal 8 tmderline 

1 invisible 9 invisible underline 

2 blink · underline and blink · 
3 invisible blink · invisible underline and blink , 

4 reverse video < reverse and underline 

5 invisible reverse = invisible reverse and underline 

6 reverse and blink > reverse, underline and blink 

7 invisible reverse and blink ? invisible reverse, underline and 
blink 

After poring over the ASCn table for a while, it becomes clear that this is bit-mapped, 
with the four bigh-order bits constant (Ox30) and the four low-order bits varying, like 
this: 

x x x x x x x x 
0 0 1 1 1-invisible 

1 1 1 blink 
1 1 reverse 
1 underline 

Page 86 JAM Release 5.03 20 Nov 92 

"I 



Chapter 5: Video File 

This can be coded in the video me as follows. The attributes are OR-ed with a starting 
value of '0' (Ox30). 

LATCHATT = BLINK = 2 REVERSE = 4 UNDERLN = 8 
SGR = ESC G %'0' %9( %1 %) %c 

The following gives an example for use with a Videotex terminal. All are equivalent 
the bits are OR-ed together with a starting value of Ox40, or @, and the result is output 
as a character. 

LATCHATT= UNDERLN=DLE BLINK=STX REVERSE=EOT HILIGHT=SP 
LATCHATT= UNDERLN= Ap BLINK= AS REVERSE= AD HILIGHT= SP 
LATCHATT= UNDERLN= OxlO SLINK= Ox02 REVERSE= Ox04 \ 

HILIGHT= Ox20 

SGR= FS G %u %'~' %5( %1 %) %c 

LATCHATT= UNDERLN= P BLINK= B REVERSE= D HILIGHT= I 

SGR = FS G %/~' %9( %1 %) %c 

Some terminals that use area attributes will support a single latch attribute. It is often 
called "protected" and is used to indicate protected areas when the terminal is operated 
in block mode. The following example switches between protected and unprotected 
modes in order to use low intensity. (Be aware that a terminal might become very slow 
when using the protect feature.) The SGR sequence depends only on the attribute being 
non-zero, so no value is necessary: 

LATCHATT = DIM 
SGR = ESC %?%t ) %e ( %; 

Specifying Area Attributes 
Area or onscreen attributes are specified like latch attributes. The AREAA TT keyword 
lists the area or onscreen attributes that are available and associates a character with 
each. As for latch attributes, REVERSE, BLINK, STANDOUT, ACS, UNDERLN, HI
LIGHT and DIM are available. In addition, several flags are available to specify how 
the attributes are implemented by the terminal. The flags are: 

ONSCREEN The attribute uses a screen position 

LINEWRAP The attribute wraps from line to line 

SCREENWRAP The attribute wraps from bottom of screen to top 

REWRITE Must rewrite attribute when writing character 

Area and on screen attributes modify all characters from the start attribute to the next 
attribute or to an end, whichever is closer. If tbere is no end, use SCREENWRAP. If the 
end is the end of screen, use L INEWRAP. If end is the end of the line, omit both wrap 
flags. Some terminals allow the user to select the style. For onscreen attributes, screen 

JAM Release 5.03 20 Nov 92 Page 87 



Configuration Guide 

wrap is best and line wrap a good second best; for area attributes the choices are about 
the same. If the attribute takes up a screen position, use the ONSCREEN flag. 

AREAATT = REVERSE = i UNDERLN = 
ASGR = ESC s r %u %5(ESC s %c %) 

BLINK = b DIM =1 

AREAATT= BLINK= 2 DIM= P REVERSE= 4 UNDERLN= 8 \ 
ONSCREEN LINEWRAP 

ASGR = ESC G %u %'0' %5( %1 %) %c 

On some terminals writing a character at the position where an attribute was set can 
remove the attribute. Immediately after placing the attribute the character may be writ
ten with no problems; however, the next time a character is written there, the attribute 
will disappear. In this case, use the REWRITE flag to tell JAM to reset the attribute 
before writing to that position. The following example is for the Televideo 925: 

AREAATT = REVERSE = 4 UNDERLN = 8 BLINK = 2 REWRITE 
ASGR = ESC G %'0' %9( %1 %) %c 

Yet other terminals restrict the number of attributes that are available on a given line. If 
possible, give a "remove attribute" sequence, ARGR. Changing an attribute to nonnal is 
not the same as removing it; a normal attribute will stop the propagation of a previous 
attribute, but a removed attribute will not If the maximum number of attributes is 
small, JAM's performance may be limited. ARGR is desirable because having many 
attributes onscreen can dramatically slow performance, since JAM must keep rewrit
ing them as attributes change. 

If there is a remove attribute sequence, JAM will use it to remove repeated attributes, 
to avoid exceeding the maximum number of attributes on a line. If there is no maxi
mum, the remove attribute sequence can be omitted. Indeed, it often makes the screen 
"wiggle," which is very unpleasant for the viewer. 

AREATT = REVERSE = Q UNDERLN = ' 
ASGR = ESC d %u %'~' %5( %1 %) %c 
ARGR = ESC e 

Attributes that Do Not Affect Space 
A list of attributes which would not change the appearance of a character cell contain
ing a space may be given. For example, 

SPXATT = BOLD DIM BLANK BLINK COLOR 

For efficiency, this is used to reduce the number of cbaracters sent to a screen. It de
faults to COLOR BLANK HILIGHT DIM. It may be turned off entirely by 

SPXATT = 

Color 
JAM supports eight foreground and background colors. The COLOR keyword is used to 
associate a character with each color, just as LATCHATT associates a character with 

Page 88 JAM Release 5.03 20 Nov 92 

'1 
I 
I 



Chapter 5: Video File 

each attribute. The CTYPE entry bas flags that tell JAM that background color is avail
able. Only the three primary colors need be specified in the video file. If the other col
ors are not there, they will be generated according to the following rule: 

BLACK = BLUE & GREEN & RED 

BLUE Must be specified 

GREEN Must be specified 

CYAN = BLUE I GREEN 

RED Must be specified 

MAGENTA = RED I BLUE 

YELLOW = RED GREEN 

WHITE = RED GREEN I BLUE 
The tenth parameter to SGR or ASGR is the character representing the foreground color; 
the eleventh is that representing the background color (it is 0 if backgrOlmd color is not 
available). Many ANSI terminals set foreground color with the sequence ESC [ 3x 
In, where x ranges from 0 for black to 7 for white. Background color is often set with 
ESC [4x In. The order of the colors varies from terminal to terminal. 

On color terminals, REVERSE often means black on white. If background color is 
available, JAM can do better if REVERSE is not specified in the video me. It will use 
the specified color as the background, and either black or white as the foreground. The 
following is often suitable for a color ANSI terminal: 

LATCHATT = HILIGHT = 1 BLINK = 5 
COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND 
SGR = %3u ESC [ 0 %3( %?%t ; %c %; %) ; %3u 3%c 4%c m 

or 

SGR = %3u ESC [ 0 %5( %?%t %c %; %) m ESC [ 3%c;4%c m 

or 

LATCHATT = HILIGHT BLINK 
SGR = ESC [ 0 %?%p4%t ;5 %; %?%p6%t ;1 %; m \ 

ESC [ 3%plO%c; 4%pll%c m 

If the terminal has a unique sequence for each color, a list command works well. In the 
following example, the ANSI attribute sequence (ESC [ 0 i pl i p2 i 

rn) is used and the values for the colors are: 

cyan >1 
magenta 5 
blue 5 > 1 
yellow 4 
green 4 > 1 
red 4 ; 5 
black 4; 5 > 1 

JAM Release 5.03 20 Nov 92 Page 89 



Configuration Guide 

LATCHATT = REVERSE = 7 HILIGHT = 2 

COLOR = CYAN = 0 MAGENTA = 1 BLUE = 2 YELLOW =3 \ 
GREEN = 4 RED = 5 BLACK = 6 WHITE = 7 

SGR = ESC [ 0 %p3%t;7%; %p6%t;2%; \ 
%l( 0:;>1%; 1:;5%; 2:;5;>1%; 3:;4%; \ 
4:;4;>1%; 5:;4;5%; 6:;4;5;>1 %) m 

Some terminals use ESC [ 2 ; x ; Y In to set color and other attributes. Here x is 
the foreground color and y is the background color, both numbers range from 0 to 7. If 
highlight is desired in the foreground, 8 should be added to x. If blink is desired, 8 
should be added to y. The following video entries satisfy these requirements: 

LATCHATT = HILIGHT = 8 BLINK = 8 
COLOR = RED = 4 GREEN = 2 BLUE = 1 BACKGRND 
SGR = ESC [ 2 ; %p10 %p6 %+ %d %p11 %p4 %+ %d m 

5.4.6 

Message Line 
J AM usually steals a line from the screen to display status text and error messages. 
Thus a 25-line screen (as specified in the LINES keyword) will have 24 lines for the 
form itself, and one for messages. This use of a normal screen line for messages is the 
default. Some terminals have a special message line that cannot be addressed by normal 
cursor positioning. In that case, the OMSG sequence is used to "open" the message line, 
and CMSG to close it All text between these sequences appears on the message line. No 
assumption is made about clearing the line; JAM always writes blanks to the end of the 
line. 

OMSG = ESC f 
CMSG = CR ESC g 

If the OMSG line keyword is present, JAM uses all the lines specified in the LINES 
keyword for forms. 

Terminals that use a separate message line may use different attributes on the status line 
than on the screen itself. JAM provides some support for this circumstance; for very 
complicated status lines, the programmer must write a special routine and install it with 
the statfnc call. (See the Programmer's Guide for details.) The keyword MSGATT 

lists the attributes available on the message line. This keyword takes a list of flags: 

REVERSE 

BLINK 

UNDERLN 

HILIGHT 

Page 90 

Reverse video available 

Blink available 

Underline available 

Highlight (bold) available 

JAM Release 5.03 20 Nov 92 



DIM 

STANDOUT 

ACS 

LATCHATT 

AREAATT 

NONE 

Dim Oow intensity) available 

User defined standout mode 

Alternate character set 

All latch attributes can be used 

All area attributes can be used 

No attributes on message line 

ONSCREEN Area attributes take a screen position 

Chapter 5: Video File 

The attribute for the message line must have been specified as either a latch or area 
attribute, and the sequence to set it must be given in the SGR or ASGR keyword. For 
example, if REVERSE is listed in MSGATT and REVERSE is a latch attribute, then SGR 
is used to set it Attributes that appear in MSGATT and don't appear in either LATCH
ATT or AREAATT are ignored. 

J AM must determine the correct count of the length of the line. Thus it is important to 
know whether area attributes are on screen or not It is not uncommon for area attributes 
to be non--embedded on the screen but embedded on the staws line. The keyword ONS
CREEN may be included in MSGATT to inform JAM of this condition. 

LATCHATT = DIM 
AREAATI' = REVERSE UNDERLN BLINK 
MSGATI' = REVERSE UNDERLN BLINK ONSCREEN 
MSGATI' = AREAATI' ONSCREEN 

The two MSGATT entries are equivalent They show a case where only area attributes 
are available on the message line and they take a screen position. The area attributes in 
the normal screen area do not. 

5.4.7 

Soft Key Labels 
If you are using soft keys in an application, you must have a RPAR entry in the video 
file to display the soft key labels.5 

Certain terminals set aside areas on the screen, typically two lines high and several 
characters wide, into which descriptive labels for the terminal's function keys may be 
written. If your terminal does not provide this hardware support, JAM can simulate soft 
keys. 

The KPAR entry gives the number and width of the function key labels, and has the 
form 

5. The source jrnain. c and jxrnain. c must be modified to use soft keys. See the Programmer's Guide 
for directiom. See the Author's Gukk for information on creating and using keyseU. If you write your own 
routines for handling soft keys, then you do not need to alter the main routine, but you will need a KP AR entry. 

JAM Release 5.03 20 Nov 92 Page 91 



Configuration Guide 

KPAR = NUMBER = numberoflabels LENGTH = wldthofareB. 

It is passed the following parameters: 

• NUMBER = Specify the number of labels in a keyset row. Re
quired. 

• LENGTH= 

• ATTRIBUTE 

• SIMULATE 

• lLINE 

Specify the length of each label. Required. If NOM

BER * (LENGTH + 1) is greater than the number of 
columns in the screen, not all the labels will be dis
played. 

Indicates that labels may utilize the display attrib
utes of the terminal. Optional. 

On terminals which do not provide hardware sup
port for soft keys, include SIMULATE in the KPAR 
entry. This steals two lines from the screen and sim
ulates soft keys. 

This parameter is used with SIMULATE. Soft keys 
are simulated, but only one terminal line is used 
instead of two. Optional. 

If your terminal provides hardware support for soft keys, use the KSET entry to specify 
the character sequence for writing text into a label area. If keysets are simul~ this 
entry is ignored. KSET is passed the following parameters: 

• The number of the label (a number between one and the value given 
NUMBER in the KPAR entry) 

• Pointer to the frrst label line. Points to a null-terminated string of 
length of LENGTH. 

• Pointer to the second label line. Points to a null-terminated string of 
length of LENGTH. 

• Attribute parameters. There may be up to 12 attribute parameters. 

See your terminal's documentation for the specific sequence. 

Here is an example of the entries for the HP-2392A, a terminal which provides hard
ware support for soft keys: 

KPAR = NUMBER = 8 LENGTH = 8 
KSET = ESC & f %d k 16 dOL %sESC & j B 

Here is an example for a PC (no hardware support): 

KPAR = NUMBER = 8 LENGTH = 8 SIMULATE ATTRIBUTE 

Page 92 JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

5.4.8 

Graphics and International Character Support 
J AM has support for eight-bit ASCII codes as well as any graphics that the terminal 
can support in text mode. Bit-mapped graphics are not supported. Just as the key 
translation tables give a mapping from character sequences to internal numbers, the 
GRAPH table in the video fIle maps internal numbers to output sequences. The only 
character value that may not be sent is O. 

Some terminals have a special "compose" key, active in eight-bit mode. Generally, you 
would press the compose key followed by one or two more keys, generating a character 
in the range OxaO to Oxff. JAM can process such characters as normal display char
acters, with no special treatment in the video fIle. 

Other terminals have special keys that produce sequences representing special charac
ters. The modkey utility can be used to map such sequences to single values in the range 
OxaO to Oxfe. (See the Programmer's Guide for a way to use values outside that 
range.)The video file would then specify how these values are output to the terminal. 

Often, to display graphics characters, a terminal must be told to "shift" to an alternate 
character set (in reality, to address a different character ROM). The video me's GRAPH 

table tells which alternate set to use for each graphics character, and how to shift to it. 
Whenever JAM is required to display a character, it looks in the GRAPH table for that 
character. If it is not there, the character is sent to the terminal unchanged. The follow
ing section describes what happens if it is in the table. 

Graphics Characters 
J AM supports up to three alternate character sets. The sequences that switch among 
character sets are listed below. Modes 0 through 3 are locking shifts. All characters fol
lowing will be shif~ until a different shift sequence is sent Modes 4 through 6 are 
non-locking or single shifts, which apply only to the next character. You may need to 
use the INIT entry to load the character sets you want for access by the mode changes. 

MODEO switch to standard character set 

MODEl 

MODE2 

MODE3 

MODE4 

MODES 

MODE6 

alternate set 1 

alternate set 2 

alternate set 3 

JAM Release 5.03 20 Nov 92 Page 93 



Configuration Guide 

Different modes can be used to support foreign characters, currency symbols, graphics, 
etc. JAM makes no assumption as to whether the mode changing sequences latch to the 
alternate character set or not. To output a character in alternate set 2, JAM fIrst outputs 
the sequence defIned by MODE2, then a character, and fInally the sequence defmed by 
MODEO (which may be empty, if the others are all non-locking). Here are three exam
ples; the second one is ANSI standard 

MODEO = SI 
MODEl = SO 
MODE2 = ESC n 
MODE3 = ESC 0 

MODEO = ESC 10 m 
MODEl = ESC 11 m 
MODE2 = ESC 12 m 
MODE3 = ESC 13 m 

MODEO = 
MODEl = SSl 
MODE2 = SS2 

Any of the MODEn strings may also contain a list of attributes. When a character in that 
mode is displayed, that attribute will be added to whatever attribute is already in effect 
On some terminals, like the HP, only an attribute is required. For example, 

MODE4 = ACS 

which would force all mode 4 characters to be displayed using the alternate character 
set 

Any character in the range OxOl to Oxff can be mapped to an alternate character set 
by use of the keyword GRAPH. The value of GRAPH is a list of equations. The left side 
of each equation is the character to be mapped; the right side is the number of the char
acter set (0, 1, 2, 3), followed by the character to be output Any. character not so 
mapped is output as itself. For example, suppose that Ox90 =1 d appears in the 
GRAPH list. Frrst the sequence listed for MODEl will be sent, then the letter d, and then 
the sequence listed for MODEO. 

In the following example, Ox8l is output as SO / SI, Oxb2 as SO 2 SI, and Ox82 
as ESC 0 a S I. LF, BEL and CR are output as a space, and all other characters are 
output without change. This output processing applies to all data coming from JAM. 
No translation is made for direct calls to printf, putchar, etc. Thus \n and \r will 
still work: correctly in printf, and putchar (BEL) still rings the terminal bell. 

MODEO = SI 

MODEl = SO 

MODE2 = ESC n 

MODE3 = ESC 0 

Page 94 JAM Release 5.03 20 Nov 92 

"1 



Chapter 5: Video File 

GRAPH = Ox81 = 1 I Oxb2 = 1 2 Ox82 = 3 a LF = 0 SP\ 
BEL = 0 SP CR = 0 SP 

For efficiency, we suggest that you use single shifts to obtain accented letters, currency 
symbols, and other characters that appear mixed in with unshifted characters. Graphics 
characters, especially for borders, are good candidates for a locking shift. 

It is possible, though not recommended, to map the usual display characters to alter
nates. For example, GRAPH = Y = 0 z will cause the y key to display as z. Graphics 
characters are non-portable across different displays, unless care is taken to ensure that 
the same characters are used on the left-hand side for similar graphics, and only for a 
common subset of the different graphics available. 

The GRTYPE keyword provides a convenient shortcut for certain common graphics 
sets, each denoted by another keyword. The fonnat is GRTYPE = . type An entry in the 
GRAPH table is made for each character in the indicated range, with mode O. If the 
mode is not 0, you must construct the GRAPH table by hand. The GRTYPE keywords 
are: 

ALL 

EXTENDED 

PC 

CONTROL 

Cl 

OxaO through Oxfe 

same as ALL. 

OxOl through Oxlf and Ox80 through Oxff 

. OxO 1 through Oxl f, and Ox7 f; same as CONTROL 

Ox80 through Ox9f, plus Oxff 

The GRTYPE keywords may be combined. 

5.4.9 

Borders and Line Drawing 
The characters constituting the border and line drawing styles may be specified in the 
video fIle. 

Borders 
Ten different border styles may be selected when a screen is designed. They are num
bered 0 to 9, with style 0 being the default (and the one all JAM internal fonns use). It 
is usually reverse video spaces, but is replaced by Is if reverse video is not available. 
Border styles may be specified in the video file. Otherwise, the following defaults are 
used: 

JAM Release 5.03 20 Nov 92 Page 95 



Configuration Guide 

o. 
IIIII 
I I 

IIIII 

2. 
+++++ 

+ + 
+++++ 

4. 
%%%%% 
% % 
%%%%% 

6. 
***** 

* * 
***** 

8. 
IIIII 
I I 
IIIII 

1 

3. 
===== 

===== 
5. 

7. 
\\\\\ 
\ \ 
\\\\\ 

9. 
##### 

# # 
##### 

The keyword BORDER specifies alternate borders. If fewer tban 10 are given, the de-
fault borders are used to complete tbe set The data for BORDER is a list of 8 characters 
per border, in tbe order: upper left corner, top, upper right corner, left side, right side, 
lower left corner, bottom, lower right corner. The default border set is: 

BORDER = SP SP SP SP SP SP SP SP \ 
SP SP I I I I \ 
+ + + + + + + + \ 
SP = SP I I SP = SP \ 
% % % % % % % % \ 

\ 
* * * * * * * * \ 
\ \ \ \ \ \ \ \ \ 
/ / / / / / / / \ 
j It It It It It j 1I 

Another example, using the PC graphics character set 
BORDER = SP SP SP SP SP SP SP SP \ 

Oxda Oxe4 OxbE Oxb3 Oxb3 OxeO Oxe4 Oxd9 \ 
Oxe9 Oxed Oxbb Oxba Oxba OxeS Oxed Oxbe \ 
OxdS Oxed Oxb8 Oxb3 Oxb3 Oxd4 Oxed Oxbe \ 
Oxd6 Oxe4 Oxb7 Oxba Oxba Oxd3 Oxe4 Oxbd \ 

Page 96 JAM Release 5.03 20 Nov 92 



Oxdc 

OxbO 
Oxb2 
Oxbd 

Oxdc 

OxbO 
Oxb2 
Oxbd 

Oxdc 

OxbO 
Oxb2 
Oxbd 

Oxdd 

OxbO 
Oxb2 
Oxbd 

Oxde 
\ 

OxbO 
Oxb2 
Oxbd 

Oxdf 

OxbO 
Oxb2 
Oxbd 

Oxdf 

OxbO 
Oxb2 
Oxbd 

Chapter 5: Video File 

Oxdf \ 

OxbO \ 
Oxb2 \ 
Oxbd 

In the same way as for MODEn, attributes may be specified for each set of border char
acters. For example, 

BORDER = SP SP •.• SP REVERSE \ 
A •• , + ACS \ 

If there is a GRAPH entry in the video fIle, you can use the graphics character set of the 
terminal for borders. Choose some numbers to represent the various border parts. The 
GRAPH option can be used to map these numbers to a graphics character set The num
bers chosen are arbitrary, except that they should not conflict with ordinary display 
characters. Even if the extended 8 bit character set is used, there are unused values in 
the ranges OxOl to Oxlf and Ox80to Ox9f. 

The keyword BRDATI' can be used to limit the attributes available in the border. Nor
mally HILIGHT (or DIM) and REVERSE are used; however, if the tenninal uses ons
creen attributes or can hold only a few attributes per line, it may be better to prohibit 
attributes in borders. This is accomplished by BRDATT = NONE. 

The flags used in MSGATT can also be used with BRDATT; however, the only attributes 
available are HILIGHT, DIM, and REVERSE. 

Line Drawing 
Ten different sets of line draw characters may be specified. These are used by the Line 
Graphics Style Screen in Authoring. The characters are specified with the BOX key
word, similar to BORDER. BOX is a list of either five or thirteen characters per set. If 
only five characters are specified the remaining eight are taken from the corresponding 
BORDER set 

Although the format in the video fue is similar, JAM uses BOX and BORDER different
ly. BORDER is portable across different platforms because JAM saves a border as its 
style number in the screen file. JAM saves line drawing as display data. For developers 
creating portable applications, we recommend that you avoid assigning graphic charac
ters to the BOX keyword. Instead, use characters which are displayable on all the tenni
naIs. 

JAM Release 5.03 20 Nov 92 Page 97 



Configuration Guide 

5.4.10 

Indicators 

Shifting and Scrolling 
Shift/Scroll indicators (ARROWS keyword) are used to indicate the presence of off
screen data in shifting/scrolling fields. The default characters for this purpose are <, >, 
and X for shifting; A, v, and X for scrolling. (The character X is used when two shifting! 
scrolling fields are next to each other; it represents a combination of both < and >.) 

These indicators can be changed to any characters desired. 

ARROWS = .. 

GRAPH = Ox1b = 0 Ox1b 
ARROWS = Ox1b Ox1a Ox1d 

ARROWS = < > X A V X 

MODEO = SI 
MODEl = SO 

Ox1a = 0 Ox1a Ox1d = 0 Ox1d 

GRAPH = Ox80 = 1a Ox81 = 1x Ox82 = 1& 
ARROWS = Ox80 Ox81 Ox82 

If the screen background color is white, yellow or cyan then the shift/scroll indicators 
are black. For all other screen background colors the indicators are white. Indicator col
ors cannot be changed by the developer. 

Bell 
The BELL sequen~ if present, will be transmitted by the library function be 1 to give 
a visible alarm. N~y, that routine rings the tenninal's bell. Such a sequence can 
sometimes be found in the termcap file under vb. 

Selection Box for Groups 
If there are no entries for CBSEL and CBDSEL in the video me, the internal defaults are 
X for CBSEL and a blank for CBDSEL. If a radio button or a checklist has a box edit, 
these characters are used to indicate which fields are selected and which are not You 
may add these entries to the video me to override the defaults. For example, 

CBSEL = Y 
CBDSEL = n 

As a result, JAM will put a y in the box of a selected occurrence. Pressing NL will 
deselect the occurrence, and JAM will put an n in the box. 

Page 98 JAM Release 5.03 20 Nov 92 



Chapter 5: Video File 

5.4.11 

Drivers 

Mouse 
If you are using a mouse in a JAM application, you must specify the driver in the video 
file. At this time, mouse support is available for PC users. The following should be add
ed to the PC video me, 

MOUSEDRIVER= PC 

Block Mode 
If an application program calls sm_blkinit before installing a block mode.driver 
with sm_install, JAM will look for a BLKDRVR entry in the video fIle. This entry 
gives the name of a default driver. 

BLKDRVR = 3270 

Please see the chapter on block mode in the Programmer's Guide for information on 
using block mode and writing block mode drivers. 

5.4.12 

Miscellaneous 

Display Cursor Position on the Status Line 
Use this keyword to display the current cursor position on the status line if desired. 
When possible, JAM uses non-blocking keyboard reads. If no key is obtained within a 
specified time, the cursor position display is updated. This allows fast typists to type at 
full speed; when the typist pauses, the cursor position display is updated. The keyword 
CURPOS specifies the time-out delay, in tenths of a second. If the keyword is omitted, 
or is 0, there will be no cursor position display. Many terminals display the cursor posi
tion themselves. 

The delay depends on the baud rate and the terminal itself. It should be chosen so that 
typing is not slowed down. If the terminal has its own display, CURPOS should be 
omitted. If there is no non-blocking read, a non-zero value of CURPOS enables the dis
play and zero disables it 

CURPOS = 1 update display every .1 second (use on fast systems) 

JAM Release 5.03 20 Nov 92 Page 99 



Configuration Guide 

CURPOS = 3 every .3 second (reasonable for most) 

CURPOS = 7 at low baud rates 

CURPOS = 0 no display, same as omitting keyword 

Compression 
The entry 

COMPRESS = JTERM 

implements data compression for Jterm users. 

Page 100 JAM Release 5.03 20 Nov 92 



INDEX 

# 

Symbols 

key translation fIle comments, 6 
video fIle comments, 59 

%, video fIle parameter sequences, 68 

%A, display attributes in messages, 19 

%B, bell for error messages, 21 

%K, key labels in messages, 5, 21 

%Md, acknowledgment for error messages, 
22 

%Mu, acknowlegment for error messages, 
22 

%N, carriage returns for error messages, 21 

% W, PO{HlP window for error messages, 22 

Arrow keys 
hexadecimal values, 7 
horizontal options, 42 
vertical options, 43 
wrapping options, 44 

ARROWS, 67, 98 

ASCII 
character set, 10,64 
extended control codes, 64 

ASGR, 66,68,87-88,89,91 

B 

BACK, hexadecimal value, 7 

A 
Backward compatibility, setup variables, 33 

Acknowledgement key. See ER_ACK_KEY 

Alternate character sets, 66-67,93-95 

ANSI terminal 
latch attributes, 84 
sample video file, 59-60 
setting color, 89 

APPI-24, hexadecimal values, 9 

Areaattribu~,83,87-88 

See also AREAATf 

AREAATI, 66, 82,87-88,91 

ARGR, 66, 88 

Arithmetic commands, video file, 69-70, 
71-72 

BELL, 67, 98 

BIOS flag, 78 

BKSP, hexadecimal value, 7 

BLK_ERRORS, 54 

BLK_GROUPS, 54 

BLK_MENUS, 53 

BLKDRVR, 67, 99 

Block mode 
driver, video ftle entry, 67, 99 
setup options, 53 

BORDER, 67, 96-97 

JAM Release 5.03 20 Nov 92 Page 101 



Configuration Guide 

Border 
JAM system windows, 49 
message windows, 47 
styles, 95 
video ftle entries, 67, 95-97 
zoom windows, 49 

BOTTOMRT, 65, 79 

BOX, 67,97 

BRDATT,67 

BUFSIZ, 65, 79 

c 
Case sensitivity, ftle names, 50 

CBDSEL, 67, 98 

CBSEL, 67, 98 

Century break. 52 

Character set 
alternate, 93-95 
graphics, 66-67, 93-95 

CLR, hexadecimal value, 7 

CMFLGS, 65, 81 

CMSG, 66,90 

COF, 66, 81-82 

COLMS, 65,77 

COLOR, 66, 88--90 

Compose key, 12,93 

COMPRESS, 67, 100 

CON, 65, 81-82 

Configuration 
converting flles to binary, 2 
directory, 1 

Configuration variables 
block mode, 53-54 
consolidating, 36 
default century, 52 
delayed write, 52 
display attributes, 41-42 
file names, 50-51 
for user input, 42-45 
group attributes, 51-52 
JAM system screens, 49-50 
message display, 45-48 
release 4 vs. release 5, 33-35 
scroll,48-49 
setup files, 38,39-41 
shift, 48-49 
soft keys, 53 
zoom, 48-49 

Control codes, ASCII, 63--64 

Control string 
binding to function key, 40 
case sensitivity for file name searches, 50 

CUB, 65, 68, 81 

CUD, 65, 68, 81 

CUF, 65, 68, 81 

CUP, 65,68,80 

CURPOS, 67,99-100 

Currency formats, 29-30 
customizing, 30 
defaults, 29 
field decimal symbols, 31 
syntax in message file, 30 

Cursor 
appearance, 42 

video ftle entries, 65~6, 81--82 
display current position, video flle entry, 

67,99-100 
group, attributes, 51 
keys, mnemonics and values, 7 
movement under Microsoft Wmdows, 78 
position, video flle entries, 65, 80-81 

CUU, 65, 68, 81 

Page 102 JAM Release 5.03 20 Nov 92 



D 
DA_CENTBREAK, 52 

DARR. See Arrow keys 

Data compression, enabling, 67, 100 

Data dictionary, pathname, 40 

Date/time format 
century break year, 52 
cwtomizing, 22-29 
defaults, 23-25, 27-28 
internationalization, 27-28 
literal format for @date calculations, 29 
tokens, 25-26 

Decimal symbols, 31 
field decimal, 31 
local decimal, 31 
system decimal, 31 

Delayed write, 52 

DELE, hexadecimal value, 7 

DELL, hexadecimal value, 8 

Display attributes 
ANSI terminals, 84 
area, 87-88 
colors, 88-90 
keywords, 41 
latch, 84-87 
message line, dedicated, 90-91 
messagelstatw text, 19-21,45-46 
video fIle entries, 66, 82-90 

Display term.inal. See Terminal 

Drivers, video fIle entries, 99 

OW_OPTIONS, 34, 52 

E 
ED, 65,79-80 

EL, 65, 80 

EMOH, hexadecimal value, 8 

EMSGATT, 34, 46 

ENTEXT_OPTION, 52 

ER_ACK_KEY, 8,22,34,47 

ER_KEYUSE, 34, 47 

ER_SP _WIND, 34, 47 

Erase display command, 79 

Erase line command, 80 

Erase window command, 80 

Error window. See Message 

EW, 65,68, 80 

EW _BORDATT, 34, 48 

EW _BORDSTYLE, 34, 47 

EW _DISPAIT, 34, 48 

EXIT, hexadecimal value, 7 

EXPHIDE_OPTION,53 

Extended keyboard, 12 
video fIle entry, 78 

F 
F _EXTOPT, 35,51 

F_EXTREC, 35, 50 

F _EXTSEP, 35, 51 

Fll and F12 keys, video fIle entry, 78 

FCASE, 34, 50 

FERA, hexadecimal value, 7 

FHLP, hexadecimal value, 7 

Field 

Index 

ClU"fency. See Currency formats 
date/time format. See Date/time format 
no auto tab. See No auto tab, field edit 
status text, display attributes, 46 
validation. See Validation 

Field decimal symbol, 31 

JAM Release 5.03 20 Nov 92 Page 103 



Configuration Guide 

File names 
case-sensitivity. 50 
extensions. 50 
setup options. 50-51 

Flow control commands. video ftle. 70. 
74-76 

FM. message tag prefiX. 16 

Function key. mnemonics and values. 9 

G 
GA_CURATT.51 

GA_CURMASK.51 

GA_SELATI.51 

GA_SELMASK.51 

GRAPH, 67. 93. 94 

Graphics characters, video me entries, 
66-67. 93-95 

GRAYKEYS flag. 12. 78 

Group 
block mode options, 54 
configuration variables, 51-52 
cursor attributes. 51 
occurrence attributes. 51 
selectionldeselection characters, 67, 98 

GRTYPE, 67. 95 

H 
HELP, hexadecimal value, 7 

HOME. hexadecimal value. 7 

I 
IN_BLOCK, 35,42 

IN_ENDCHAR, 35. 43 

- I 

IN_HARROW. 35. 42 

IN_MNUFOLD. 35. 45 

IN_MNUSTRING. 35. 44 

IN_RESET. 35. 44 

IN_SEARCH. 45 

IN_SUBMENU. 45 

IN_VALID. 35. 44 

IN_VARROW.35.43 

IN_WRAP. 35. 44 

IND_OPTIONS. 35.49 

IND_PLACEMENT. 35. 49 

INfr. 12,65.77-78.81 

initcrt. 37. 77 

Initialization. JAM, 37 

INS. hexadecimal value. 7 

INSL. hexadecimal value, 8 

INSOFF. 66. 82 

IN SON • 66. 82 

Internationalization 
8 bit characters. 12-13.93 
currency formats. 29 
date/time formats. 27. 28 
decimal symbols, 31 
messages. 31 

J 
JM. message tag prefix, 16 

JPL, choosing an editor. 39 

Jterm, enabling data compression. 67, 100 

JW _BORDATI. 34. 50 

JW _BORDSTYLE. 34. 49 

JW _DISPATT. 34. 50 

JW_FLDATT. 34.50 

JX. message tag prefix. 16 

Page 104 JAM Release 5.03 20 Nov 92 

1 
I 

I 



K 
KBD_DELAY, 65, 79 

Key 
label in message text, 21 

See also Key tops 
logical, 3, 5 

name, 6-9 
value, 6 

mapping. See Key translation· file 
mnemonics, 6-9 

cursor control keys, 7 
function keys, 9 

PC extended keyboard, 12 
translatiOIi. See Key translation ftle 

Key fUe. See Key translation fUe 

Key translation fUe, 3-13 
converting to binary, 11 
environment variable, 36 
modifying, 11-13 
pathname, 39 
purpose, 1, 3 
syntax, 5 
using alternate ftles, 13 

key2bin, 2, 11 

Keyboard 
extended, 12 

video ftle entry, 78 
input, timing interval, 65, 79 
logical, mnemonics and values, 6-9 

Keyset, 4 
See also Soft key 
configuration variables 

KPAR, 66, 91-92 
KSET, 66, 92 
KSOFF,66 
KSON,66 

number attributes, 53 

Key tops, 5 
message/status text, 19,21 

KPAR, 66, 91-92 

KSET, 66,92 

KSOFF,66 

KSON,66 

L 
LARR. See Arrow keys 

Latch attributes, 83, 84-87 
See also LATCHATT 

LATCHATT. 66, 82. 84-87, 91 

LOB 
initialization, 41 
screen functions and, 52 

Library routines 
sm_input, options, 41-53 
sm_msgread, 17 
sm_option, 35,41,42-45 

Line drawing 
characters, 97 
video ftle entries, 67, 95, 97 

LINES, 65,77 

Local Data Block. See LOB 

Local decimal symbol, 31 

LOCAL PRINT. See LP; SMLPRINT 

Logical keyboard, 4 

Index 

See also Key translation ftle; Key, logical; 
Keyboard 

mnemonics and values, 6-9 

LP, hexadecimal value, 7 

LSHF, hexadec~a1 value. 7 

M 
Menu 

block mode options, 53-54 
selection, options, 44-45 

JAM Release 5.03 20 Nov 92 Page 105 



Configuration Guide 

Message 
configuration variables, 45-48 
dedicated message line, video fIle entries, 

66,90-91 
display 

background status, 45 
border, 47-48 
display attributes, 45 
screen position, 45 
text attributes, 48 

error message, 22 

Message fUe, 2, 15-31 
adding new entries, 18-19 
converting to binary, 17 
currency formats, 29-30 
date/time formats, 22-29 
decimal symbols, 31 
display attributes, 19-21 
environment variable, 36 
JAM system messages, 16 
key labels, 19 
modifying entries, 17-18 
pathname, 39 
syntax, 16-17 
text, 17 
using alternate mes, 31 

Microsoft Wmdows, cursor movement, 78 

MODE0-6, 66, 93-95 

modkey, 3,5, 11 

MOUS, hexadecimal value, 8 

Mouse, driver, video me entry, 67, 99 

MOUSEDRNER, 67,99 

MS-OOS 
INIT keywords, 78 
sample video flle, 60-62 

msg2bin,2, 15, 17 

MSGATI, 66, 90-91 

msgflle, 15 

msgflle.bin, 15 

MTGL, hexadecimal value, 8 

" 

MULTISHIFf flag, 12, 78 

N 
NL, hexadecimal value,' 7 

No auto tab, field edit, last character options, 
43 

o 
Occurrence, group, attributes, 51 

OMSG, 66,90 

Onscreen attributes, 83, 87-88 

Output commands, video fI..le, 69, 72-73 

p 
Padding. See Tuning interval, command 

execution 

Parameters 
in video fI..le entries, 67-76 
manipulation in video file entries, 70 
sequencing, 70-71, 72, 73 

Path, 40 

Percent commands, video fI..le parameter se
quences, 68-70 

PFl-24, hexadecimal values, 9 

Pop-up window, displaying messages, 22 

Q 

QMSGATI, 34, 46 

Query message. See Status line 

QUIETATI, 34, 46 

R 
RARR. See Arrow keys 

Page 106 JAM Release 5.03 20 Nov 92 



RCP, 66 

REFR, hexadecimal value, 8 

REPMAX, 65, 79 

REPT, 65, 68, 78 

RESET, 65, 81 

resetcrt, 77 

RSHF, hexadecimal value, 7 

s 
SB_OPTIONS, 35, 49 

SCP, 66 

Screen 
border styles, 95 
JAM system, setup options, 49-50 
library, 40 

Screen function 
execution options, 53 
data access, LDB vs. fields, 52 

Scrolling array 
indicators 

placement, 49 
video fIle entries, 67, 98 

setup options, 48-49 

Set graphics rendition. See ASGR; SGR 

Setup fIle 
sample, 54-56 
specifying, 38,40 
syntax, 38 

Setup variables. See Configuration variables 

SFI'I-24, hexadecimal values, 9 

SFfN, hexadecimal value, 8 

SFI'P, hexadecimal value, 8 

SFI'S, hexadecimal value, 8 

SGR, 66, 68, 84-87,89,91 

Shifting field 
indicators 

placement, 49 
video fIle entries, 67, 98 

setup options, 48 

SK_NUMATI, 53 

Index 

Sleep command. See Tmring interval, com
mand execution 

SM, message tag prefix, 16 

SM_CALC_DATE, message fLle entry, 29 

SMCHEMSGATI, 34 

SMCHFORMATTS, 34 

SMCHQMSGATI,34 

SMCHSTEXTATT,34 

SMCHUMSGATT,34 

SMDICNAME, 34, 40 

SMDWOPTIONS, 34 

SMEDITOR, 39 

SMEROPTIONS, 34 

smerror.h, 15, 16 

SMFCASE,34 

SMFEXTENSION, 34, 50 

SMFLIBS, 34, 40 

SMINDSET,35 

S~C11UL,35,4O 

SMININAMES,35,41 

SMKEY, 11, 36, 39 

smkeys.h, 3, 4, 5 

SMLPRINT,39 

SMMPSTRING, 35 

SMMSGS, 15, 31, 36, 37, 39 

SMOKOPTIONS, 35 

SMPATH,4O 

SMSETUP, 37,38,40 

JAM Release 5.03 20 Nov 92 Page 107 



Configuration Guide 

SMSGBKATT,45 

SMSGPOS, 45 

SMTERM, 13, 36, 37 

SMUSEEXT, 35, 50 

S~AJRS,2,36,37,38 

smvars ftle, 2, 13 
See also S~AJRS 

SMVIDEO, 36, 40 

SMZMOPTIONS, 35 

Soft key, 4 
See also Keyset 
number attributes, 53 
video ftle entries, 66,91-92 

SPFI-24, hexadecimal values, 9 

SPGD, hexadecimal value, 7 

SPGU, hexadecimal value, 7 

SPXATf, 66, 88 

Stack manipulation commands, video ftle, 
69-70, 71-72 

statfnc,90 

Status line 
See also Message 
acknowledgment key. See ER_ACK_KEY 
block mode options, 54 
configuration variables, 4~8 
display attributes, 45-48 

border, 47 
display current cursor position, video file 

entry, 67,99-100 
field status text, display attributes, 46 
force user to acknowledge message, 22, 

47 
message, position, 45 
message text not visible, 46 
terminals with dedicated inessage line, 

90-91 

STEDCTAJrf,34,46 

System decimal symbol, 31 

T 
TAB, hexadecimal value, 7 

TERM, 36, 37 

term2vid, 57 

termcap,57,58,76,84 

Terminal 
ANSI. See ANSI terminal 
bell 

in status line and error messages, 21 
visible, 21, 67, 98 

characteristics. See Video ftle 
configuring JAM for, 1 
default screen size, 59 
initialize, 65, 77-78 
mnemonic, 36 
reset, 65, 77 
timing interval, 65, 76, 79 

UrrnUnfo, 57,58, 70, 76 

Tune formal See Date/time format 

Tuning interval 
command execution, 76 
keyboard input, 65, 79 

u 
UARR. See Arrow keys 

UT, message tag prefix, 16 

v 
Validation, setup options, 44 

var2bin, 2, 36, 38 

Variables 
configuration. See Configuration variables 
setup. See Configuration variables 

vid2bin, 2, 59 

Video attributes. See Display attributes 

Page 108 JAM Release 5.03 20 Nov 92 

, 
I 
I 



Video flie, 57-100 
arithmetic commands, 69-70,71-72 
block mode driver entry, 67, 99 
borders, 67, 95-97 
color entries, 88-90 
creating, 57 
cursor appearance entries, 65-66, 81-82 
cursor position entries, 65, 80-81 
display attributes entries, 66, 82-90 
display cursor position on status line, 67, 

99-100 
environment variable, 36 
erasure commands, 65, 79..:..80 
flow control commands, 70, 74-76 
format, 58-59 
graphics entries, 66-fJ7, 93-95 
group selection indicators, 67, 98 
international character support, 93-95 
Jterm data compression, enabling, 67, 100 
keyboard input, timing interval, 65, 79 
keyword summary, 65-67 
line drawing entries, 67,95,97 
message line entries, 66, 90-91 
mouse driver entry, 67,99 
MS-OOS entries, 78 
outputcommands,69,72-73 
parameter manipulation commands, 

70-71,72,73 
parameterized character sequences, 67-76 
pathname, 40 
purpose, 1,58 
sample 

ANSI terminal, 59-60 
MS-OOS, 60-62 

screen size entries, 65, 77 
scrolling and shifting indicators, 67, 98 

Index 

Video fIle (continued) 
soft key entries, 66,91-92 
stack manipulation commands, 69-70, 

71-72 
syntax, 62-67 
terminal initialization and reset, 65, 77-78 
timing interval, 4,65, 76, 79 
visible bell, 67, 98 

VWPT, hexadecimal value, 8 

w 
Wait command. See TlDling interval, com

mand execution 

WINOOWS flag, 78 

x 
XKEY flag, 12, 78 

XMIT, hexadecimal value, 7 

z 
ZM_SC_OPTIONS, 35, 48 

ZM_SH_OPTIONS, 35, 48 

ZOOM 
hexadecimal value, 8 
setup options, 48-49 

ZW _BORDATI', 49 

ZW _BORDSTYLE, 49 

JAM Release 5.03 20 Nov 92 Page 109 



Utilities 
Guide 



TABLE OF CONTENTS 

Chapter 1 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Features and Options Common Among Utilities .... . . . . . . . . . . . . . . . . . 3 

1.1.1 Getting Help ........................................ 4 
1.1.2 Input and Output Files ................................ 4 
1.1.3 File names and Extensions ............................. 5 
1.1.4 Configuring File Extensions and Rules ................... 6 
1.1.5 Ordering of Options and Other Arguments. . . . . . . . . . . . . . . . . 8 

Chapter 2 
Utility Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.1 Conventions Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.2 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
bin2c convert binary JAM flIes to ASCII C . . . . . . . . . . . . . . . . . . . . . . . . 11 
bin2hex convert binary flIes to and from hex ASCII, for transport ... . . . . . 13 
dd2asc convert a data dictionary to ASCII and binary formats .......... 14 

Creating an ASCn File from a Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Creating a Data Dictionary from an ASCII File . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Entry 'Types ................................................ 17 
Default Field .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Records ................................. . . . . . . . . . . . 18 
Stand-Alone Comments ............................... 18 

attribute Keywords .......................................... 18 
Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Field Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Group Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

dd2struct convert data dictionary records to programming language 

dd3to5 
dd4to5 
ddmerge 
ddsort 

data structures .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
convert Release 3 data dictionaries to Release 5 format ......... 29 
convert Release 4 data dictionaries to Release 5 format ......... 30 
combine binary data dictionaries ........................... 32 
sort data dictionary entries by name .. . . . . . . . . . . . . . . . . . . . . . . . 33 

JAM Release 5.03 20 Nov 92 Pagei 



JAM Utilities Guide 

f2asc convert screens between binary and editable ASCII format ...... 34 

f2dd 
f2struct 
f3to5 
f4to5 

Editing or Creating a screen ............................ 35 
Entry Types ................................................ 35 

Screen Cbaracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Default Field Symbols ................................ 35 
Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
Stand-Alone Comments ......... . . . . . . . . . . . . . . . . . . . . . . 36 
Attribute Keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Screen Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Field Attributes ............................................. 37 

Groups ............................................ . 
create or update a data dictionary from screen files ............ . 
create program data strucrures from screens .................. . 
convert Release 3 screens to Release 5 format ................ . 
convert Release 4 screens to Release 5 format ................ . 

formlib application librarian .................................... . 

42 
44 
46 
49 
50 
52 
54 
57 
59 
61 
63 
65 
67 
67 
68 
68 
70 

jamcbeck update screens to match entries in a data dictionary ............ . 
jammap list relations among JAM screens .......................... . 
jpl2bin compile a JPL text file into a binary ftle ..................... . 
key2bin convert key translation ftles to binary format ................. . 
Istdd list the contents of a data dictionary ........................ . 
Istform list selected portions of screens ........................... . 
modkey key translation file editor ................................ . 

Key Translation ............................................ . 
Executing the Utility ........................................ . 
Control Keys and Data Keys .................................. . 
Welcome Screen ........................................... . 
Main Menu ................................................ 71 
Exiting the Utility ........................................... 72 
Help Screen .•...•••.....•....•..•........••............. . • . 73 
Defining Cursor Control and Editing Keys . . . . . . . . . . . . . . . . . . . . . . . . 75 

Assigning a Key to a Function .......................... 75 
Assigning a Sequence of Keys to a Function ............... 76 

Defining Function Keys ...................................... 77 
Defining Shifted Function Keys ................................ 78 
Defining Application Function Keys ............................ 79 
Defming Soft Keys .......................................... 80 
Defining Miscellaneous Keys .................................. 81 

Pageii JAM Release 5.03 20 Nov 92 

1 
I 

., 



Table of Contents 

Entering the Logical Value ................................... . 
Logical Value Display and Entry Modes ......................... . 
Returning to the Main Menu .................................. . 
Test Keyboard Translation File ................................ . 

msg2bin convert message mes to binary ............................ . 
term2vid create a video me from a terminfo or termcap entry. . .......... . 
txt2form converts text files to JAM screens ......................... . 
var2bin 
vid2bin 

convert files of setup variables to binary .................... . 
convert video files to binary .............................. . 

Index ................................................ . 

82 
82 
83 
84 
86 
88 
89 
90 
92 

95 

JAM Release 5.03 20 Nov 92 Page iii 



~}lEl:::::::::::::::::::::::::::< ::~: · . · . · . 
. :: .. : .. :.:.: .... : .... :.:.::.: .. :: 

Chapter 1 

Introduction 

The util directory contains all the JAM executables, including jxform. The utilities 
fall into several categories: 

Screen and Application Management: The jxform utility supplies the 
Screen, Keyset, and Data Dictionary Editors. This utility is fully documented in the JAM 
Author's Guide. The other utilities listed here supplement the capabilities of the Screen 
Editor. 

• f2asc 

• formlib 

• jp12bin 

• jxform 

creates an ASCn description of a JAM screen, which may be modified, and 
converted back to a binary screen me. Useful for storing screens under code 
control. (Detailed reference on p.34) 

creates and maintains libraries for screens and JPL procedures. (p. 52) 

converts JPL mes to binary; eliminates run-time compilation of JPL me and 
permits JPL files to be added to libraries and memory resident lists. (p. 59) 

invokes the authoring utility. (see JAM Author's Guide) 

• txt2form 
creates JAM screen from any ASCII text file. (p. 89) 

Data Dictionary Management: Using these utilities is an easy way to edit data 
dictionary fues and to edit screen files based on data dictionary entries. 

• dd2asc 
converts data dictionary from binary to ASCII format; the ASCII fIle may 

JAM Release 5.03 20 Nov 92 Page 1 



JAM Utilities Guide 

• ddmerge 

• ddsort 

• f2dd 

be edited and con verted back to a binary data dictionary file. (Detailed refer
ence on p. 14) 

combines separate data dictionaries into one data dictionary. (p. 32) 

sorts data dictionary entries alphabetically. (p. 33) 

creates or updates data dictionary from JAM screens. (p. 44) 

• jarncheck 
compares data dictionary entries with screen fields and groups; pemtits de-
veloper to change fields and groups to match data dictionary entries. (p. 54) 

Programming: JAM provides utilities to convert binary JAM files into program
ming language files. By default, "c" is the supported language. 

• bin2c 
converts any JAM binary file to C source code. (Detailed reference on p. 11) 

• dd2struct 
creates data structures from data dictionary entries. (p. 26) 

• f2struct 
creates data structures from fields and groups. (p. 46) 

Documentation: These utilities produce readable ASCn listing which may simplify 
the documentation and testing of your screens, data dictionaries, and JAM applications. 
The reports created with these utilities cannot be converted back to binary JAM meso 

• jarrunap 

·lstdd 

·lstforrn 

produces reports which show the relations among screens in a JAM applica
tion. (Detailed reference on p. 57) 

creates ASCn listing of a data dictionary. (p. 63) 

creates ASCII listing of a screen fIle. (p. 65) 

Configuration: JAM depends on several binary fIles to tell it how to run on a partic
ular computer or terminal. ASCII and binary versions of these flles-lcey translation me, 
video fIle, message file, and setup file-are usually stored in the config directory. The 
uti 1 directory supplies the programs for converting the ASCII configuration ftles to 
their binary form. These utilities are 

• key2bin 
converts ASCn key me to binary. (Detailed reference on p. 61) 

Page 2 JAM Release 5.03 20 Nov 92 

I , 
I 
I 

J 



Chapter 1: Introduction 

• msg2bin 
converts ASCII message file to binary. (p. 86) 

• var2bin 
converts ASCII smvars and setup files to binary. (p. 90) 

·vid2bin 
converts ASCII video file to binary. (p. 92) 

In addition there are utilities to help you create key and video files. They are: 

·modkey 
invokes editor for creating, modifying, and testing key translation meso (p. 
67) 

• term2vid 
creates simple video me for UNIX systems from termcap or term info en
tries. (p. 88) 

Upgrading: For users who are updating from earlier releases, utilities are provided 
for converting screen and data dictionary files to JAMS formats. 

• dd3 toS, dd4 to5 
upgrades release 3 and 4 data dictionaries to release 5. (Detailed reference 
on pp. 29, 30) 

• f3toS, f4toS 
upgrades release 3 and 4 screens to release 5. (p. 49,50) 

Transporting: When transferring mes between systems, this utility may be used to 
convert binary mes and store them in a single hexadecimal ASCII me. 

• bin2hex 

1.1 

converts binary mes to hexadecimal ASCn and vice versa. (Detailed refer
ence on p. 13) 

FEATURES AND OPTIONS COMMON 
AMONG UTILITIES 
The following section describes command-line options and file-handling procedures 
shared by most or all of the J AM configuration utilities. When a utility deviates from this 
standard, as a few do, the section describing that utility will make it clear. 

JAM Release 5.03 20 Nov 92 Page 3 



JAM Utilities Guide 

1.1.1 

Getting Help 
Command-line options are identified by a leading hyphen. Some systems also support a 
/ to begin command-line options. Except for modkey, you can obtain a usage swnmary 
by entering the name of the utility followed by -h. For example: 

formlib -h 

A brief description of the utility's arguments and command options will be displayed. As 
for rnodkey, once you invoke the utility, you will be presented with a list of options, in
cluding help. 

Some command line errors, such as missing or improper use of flags, or missing file argu
ments, will cause a display of the utility's help banner and a brief description of the error. 

The help banners use the following symbols: 

The pipe symbol separates options that may not be used together. 

{ } One option must be chosen from the list enclosed in curly braces. The op
tions are separated by pipe symbols. You must use exactly one option from 
this list to execute the utility. 

[ ] These options are supplementary. If there are no pipe symbols inside the 
square brackets, you may use any combination of these options, or use none 
of them. If the options are separated by pipes, you may use one or none of 
the options from this list 

< > These brackets indicate that a file name is a required argument 

[< >] These brackets indicate that zero or one file name ~ay be used an argument 

Ellipsis indicate that additional input files are permitted as arguments. 

The help banner descriptions are brief. You should see this document for a more complete 
description of options, arguments, and defaults for each of the utilities. 

1.1.2 

Input and Output Files 
With a few exceptions, utilities accept multiple input files. If your operating system sup
ports this feature, multiple input files may use a wildcard specification (e.g., * . j am for 
all files with the . j am extension). Some utilities combine information from the inputs to 
create a listing; others perform some transformation on each input individually. The utili
ties usually will not allow you to overwrite an input me with an identically named output 

Page 4 JAM Release 5.03 20 Nov 92 

• --'1 
, 



Chapter 1: Introduction 

file. Most utilities will also refuse to overwrite an existing output fIle; you may force the 
overwrite with the - f option. 

Utilities that generate one output file for each input will, by default, give output files the 
same name as the corresponding input, but with a different extension. Each utility has its 
own default extension; in addition, each one supports a -e option that enables you to 
specify the output file extension. For example: 

f4toS -e new mytop.mnu myscreen.win 

converts the Release 4 screens my top . rnnu and myscreen. w into Release 5 format, 
and puts the new screens in my top . new and myscreen. new. The form -e- makes 
the output fIle extension null, although not all of the utilities support this option. 

Utilities that generate multiple output flIes, also support an -() option, which directs the 
output to one named file. For example: 

lstform -omylist *.frm 

lists all the screens in the current directory, and places the listing in a file named my l
ist. You may use a blank space between -() and the fIle name. For example, 

f2struct -0 screenrecs.h screenl.jam screen2.jam 

generates C data structures for screenl and screen2, and places them both in 
screenrecs . h. Without the -0 option, it would have created two output files, 
screenl.h and screen2. h. 

Another form of this option, -0-, sends the program's output to the standard output file 
rathertban toa disk flIe. msg2bin anddd3toS support-o, butnot-o-. Any otherutil
ity that supports -0 will support -0-. 

If you use both the -e and the -0 options, only the -0 will be used, and -e will be ig
nored. 

By default, if an input me name contains a path component, a utility will strip it off in 
generating the output file name; this usually means that output files will be placed in your 
default directory. You may supply a -p option to have the path left on, that is, to create 
the output me in the same directory as the input. We strongly discourage the use of-p 
where it will overwrite input files. In particular, -p should not be used with the conver
sion upgrade utilities (Le., dd4t05, f4to5, etc.). 

1.1.3 

File names and Extensions 
JAM runs on many operating systems, each with different rules for fIle names. You 
should follow the rules of your operating system when creating and specifying file 

JAM Release 5.03 20 Nov 92 PageS 



JAM Utilities Guide 

names. Any utility that accepts a file name as an argument will also accept a pathname 
(the full name of the path from the root through the tree of directories to a particular me). 
Again, follow the rules of your system for specifying pathnames and use the system's 
path separator character. J AM will use a pathname as you supply it, without any alter
ations. 

J AM, like many other software systems, uses extensions to identify the contents of a me. 
We bave tried to make our conventions flexible: extensions are not required, but are sup
plied by default, and the default can always be overridden. There are three distinct opera
tions involving file extensions: 

1. Finding and modifying files. In JAM, several setup variables control 
the use and format of extensions. If the setup file configures JAM to 
recognize extensions, then j xforrn, the JAM run-time system, and 
several of the utilities assume that screen files have a common exten
sion, which is specified by the setup variable SMFEXTENSION. They 
will add that extension to any file name that does not already contain 
one before attempting to open it. If the setup file configures JAM to 
ignore extensions, this rule does not apply. 

2. Creating new files. Many utilities transform files of one type to another 
(i.e., ASCII text to binary). These utilities must name the output file 
differently from the input fIle. They do this by appending or replacing 
the input file's extension. If the input file has no extension, the utility's 
extension is automatically appended If the input me bas an extension, 
the extension may be replaced or appended, depending upon the oper
ating system. In DOS, extensions are replaced; in UNIX, extensions 
are appended. 

3. Crealing data structures. The utilities f2struct, dd2struct, and 
bin2c create data structures from screen flIes. They name the struc
tures by removing the path and extension from the input file name. 

1.1.4 

Configuring File Extensions and Rules 
There are three parameters that control how JAM uses me extensions. The default for 
each of these depends on your operating system. 

• A flag telling whether JAM should recognize and replace extensions, or 
ignore them. This activity is controlled by the setup variable F _EX
TREe. 

Page 6 JAM Release 5.03 20 Nov 92 

"1 
I 



Chapter 1: Introduction 

• Another flag telling whether the extension should go at the beginning or 
the end of the fIle name. The default is the end of the file name. The 
controlling setup variable is F _EXTO PT. 

• The character that separates the extension from the name (zero means 
no separator). The setup variable is F _EXTSEP. 

Note: In previous releases, JAM used one setup variable, SMUSEEXT, to control the use 
of file extensions. This variable is supported for backwards compatibility. 

You may alter any of these defaults by cbanging the setup variables (see Setups for De
fault File Extensions, in the Setup File Chapter in the JAM Configuration GUide). 

The table below contains a list of the default extensions used by utility programs: 

Utility Extension 

bin2e NONE 

bin2hex NONE 

dd2asc dic 

dd2struct h (for C language users) 

dd4to5 NO CHANGE 

ddmerge die 

ddsort NONE 

f2asc NONE 

f2dd die 

f2struct h (for C language users) 

f4to5 NO CHANGE 

forrn1ib NONE 

jarncheck prv (backup) 

jammap map 

jp12bin bin 

jxforrn NONE 

key2bin bin 

1stdd 1st 

JAM Release 5.03 20 Nov 92 Page 7 



JAM Utilities Guide 

Utility Extension 

1st form 1st 

modkey keys 

msg2bin bin 

terrn2vid vid 

txt2forrn NONE 

var2bin bin 

vid2bin bin 

1.1.5 

Ordering of Options and Other Arguments 
Most utilities take as arguments an output me, a list of input files, and some options. Op
tions may be supplied separately (each with its own hyphen), or together (all following a 
single hyphen); the two commands 

1st form -ftl myscreen 
1st form -f -t -i myscreen 

are equivalent. Option letters may be either upper- or lower-case. On certain systems 
such as VMS and MS-DOS, where the prevalent "switch character" is / rather than - , 
both are supported 

Options may be placed anywhere after the utility name-that is, before, between, or after 
me name arguments. For consistency, however, our synopses and examples, list the op
tions immediately after the utility name. 

The ordering of arguments for input and output me names depends on the particular util
ity. Some use the format 

output-flle Input-flle. .. 

but those that perform tmidirectional conversions between binary and ASCn formats are 
a notable exception. They always use the format 

asciI-file binary-file ... 

and use the command options to determine which me is the output fue, and which are the 
input The help banners and this manual specify the ordering of file arguments for each 
utility. 

Page 8 JAM Release 5.03 20 Nov 92 

--1 
1 

.J 



Chapter 2 

Utility Reference Manual 
This chapter contains a detailed explanation of each utility. The utilities are arranged 
alphabetically. A listing of the utilites grouped by type, with brief explanations, appears 
starting on page 1 of the introduction to this guide. An alpbabetical index to the refer
ence pages appears in a table on page 10. 

2.1 

CONVENTIONS USED 
Each section contains the following information: 

• The name and description of the utility. 

• A synopsis of its usage, that is, what you type on the command line to 
run it 

literal This font is used for words you will type verbatim. In 
particular, we use this font for all examples. In addition, 
when we name a utility, its option letters, or any JAM 
library function, we use this font to distinguish it from 
the rest of the text 

bold We use bold italics to show where screen, me, and other 
variable names sbould appear. You should replace these 
with the appropriate names. 

[-xl Like the help banners, we use square brackets to indicate 
the optional command flags, and to indicate where a file 
name is optional. If you use an optional flag, or specify 
an optional fue name, do not type the brackets. 

JAM Release 5.03 20 Nov 92 Page 9 



JAM Utilities Guide 

2.2 

x ... 
Ellipsis indicates that the element may be repeated one 
or more times. 

• A complete description of the utility's inputs, outputs, and processing. 

• The error messages associated with the utility, and suggestions for cor
recting the errors. 

REFERENCE 
This section contains a detailed explanation of each utility. The table below serves as an 
index key to the reference section. 

Utility Page Utility Page 

bin2c 11 formlib 52 

bin2hex 13 jarncheck 54 

dd2asc 14 jammap 57 

dd2struct 26 jp12bin 59 

dd3toS 29 key2bin 61 

dd4to5 30 lstdd 63 

ddmerge 32 lstforrn 65 

ddsort 33 rnodkey 67 

f2asc 34 rnsg2bin 86 

f2dd 44 term2vid 88 

f2struct 46 txt2form 89 

f3to5 49 var2bin 90 

f4to5 50 vid2bin 92 

Page 10 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

bin2c 
convert binary JAM files to ASCII C 

SYNOPSIS 
bin 2 c [- [ 1 v I asciI-file blnary-nIe . .. 

OPTIONS 
- f Overwrite an existing output file. 

-1 Convert file names sent to output to lower case. 

-v Generate list of files processed. 

DESCRIPTION 

This program converts binary ftles created with other JAM utilities into character ar
rays in ASCII C. ascii-file is usually a new file name. (To overwrite an existing ftle, 
you must use the - f option.) 

When the utility creates the ASCn c me, it will generate an array for each of the binary 
input files. An array in the file has the form 

cha r blfJllry-nIe [1 = { contents of fllB }; 

where binary-file is the name of the binary file, with its path and extension stripped off. 
If you use the -1 option, binary-file will be in lower case. 

Files created with bin2c arrays may be compil~ linked with your application, and 
added to the memory-resident form list (See the JAM Programmer's Guide for more 
information on memory-resident lists.) The following ftles may be made memory-res
ident 

• key translation ftles (key2bin) 

• setup variable fIles (var2bin) 

• video configuration fIles (vid2bin) 

• message files (rnsg2bin) 

• JPL files (jp12bin) 

• screen fIles (jxforrn) 

There is no utility to convert Bscii-file back to its original binary form after using 
bin2c. JAM provides other utilities that permit two-way conversions between binary 
and ASCII formats. For screens, these utilities are bin2hex and f2asc. 

JAM Release 5.03 20 Nov 92 Page 11 



JAM Utilities Guide 

Note: On VAXNMS, invoke this utility with the command B2C. 

ERRORS 

Insufficient memory available. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: Try to increase the amount of available memory. 

File *%s" already exists; use '-f' to overwrite. 
Cause: You have specified an output file that already exists. 
Corrective action: Use the -f flag to overwrite the file, or use another name. 

*%s·: Permission denied. 
Cause: An input me was not readable, or an output me was not writeable. 
Corrective action: Check the permissions of the file in question. 

Page 12 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

bin2hex 
convert binary files to and from hex ASCII, for transport 

SYNOPSIS 
bin2hex -c [-flv] sscll-flle binary-llis . .. 
bin2hex -x [-fly] IIscll-flls 

OPTIONS 
-c Create an ASCII fIle from one or more binary file: 

-x Extract all binary files contained in an ASCII source; selective extraction 
is not supported. 

- f Overwrite an existing fIle. 

-1 Convert fIle names sent to output to lower case. 

-v Generate list of files processed. 

DESCRIPTION 

The bin2hex utility translates binary files of any description to and from a hexadeci
mal ASCII representation. It is useful for transmitting flIes between computers. 

Either the -c or the -x switch is required; the others are optional. 

With -c, sseii-lile is the output file. All of the binary input mes will be converted to 
hexadecimal ASCII and added to sseii-file. Extensions are not stripped off. If you use 
-1, the binary me names in aseii-file will be in lower case. 

With -x, ascii-flle is the input file. The utility will extract each binary-file in ascii
file, and put each file in the current directory. If you use -1, the binary fIle names will 
be in lower case. Selective extraction of binary fIles from sseii-file is not supported. 
Only one argument is supported with the -x option; any additional arguments are ig
nored. 

Note: On V AXlVMS, invoke this utility with the command B2 HEX. 

ERRORS 
%s already exists 
%s already exists, it is skipped 
Cause: The command you have issued would overwrite an existing output fIle. 
Corrective action: If you are sure you want to destroy the old file, reissue the command 
with the - f option. 

JAM Release 5.03 20 Nov 92 Page 13 



JAM Utilities Guide 

dd2asc 
convert a data dictionary to ASCII and binary formats 

SYNOPSIS 
dd2asc -a (-f] IIscll-nle I binary-nI8] 
dd2 as c - b (- E] sscll-flle [blnsty-fl/e] 

OPTIONS 

-a Creates an ASCII listing of a data dictionary file. 

- b Creates a data dictionary me from an ASCII listing. 

- f OvelWrites an existing output file. 

DESCRIPTION 

Data dictionary files created with j xforrn are binary files. With the -a option, you can 
convert a data dictionary file to a readable listing of the data dictionary. You may 
modify this listing, according to certain rules, and use the utility with the - b option to 
convert the listing back to a binary file which JAM can use. With the -b option, you 
may also create a new data dictionary. 

Either -a or - b must be used. If blnary-file is not named, the utility defaults to da
ta. die (or the data dictionary initialized with the library function srn_dienarne or 
with the setup file variable SMDICNAME). 

I CREATING AN ASCII FILE FROM A DATA 
DICTIONARY 
Running dd2ase with the -a option creates a complete, readable listing of the con
tents of your data dictionary. 

Here is an example.· Assume that the data dictionary that you have created with 
j xform is called data. die and contains the following: 

• Built-in default values designating a simple (non-array) field with a 
length of 10, no character edits, a scope of 2, and display attributes of 
underlined, highlighted and white. 

• fldl, a shifting and scrolling vertical array with the following attrib
utes: length = 8, elements = 3, distance = 2, maxshifting length = 20, 

Page 14 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

increment = 1, scrolling items = 10, page size = 3, and both the circu
lar and isolate options. A help screen is attached to i~ named 
he Ip3 . j am. It has a status line text and is a shifting and scrolling 
array. In addition, it has a comment attached to its entry in the data 
dictionary. 

• fId2, with a length of 15, a scope of 3, and display attributes of re
verse video, underlined, highlighted and blue. The character edit is 
numeric. The field edits are right-justified and data-required. It has a 
currency format CURRENCY (CURRENCY is one of the default 
mnemonics in the message fIle. If it has not been changed in the mes
sage file, it corresponds to the message entry SM_ODEF _CURR = 
" . 22 I 1 $ ".) This field also bas a data type of double, with a preci
sion of2. 

• f I d3, with a length of 10, a scope of 5, and display attributes of high
lighted and white. It has a time format of HR : MIN2 AMPM, based on 
a 12-hour clock, and gets the time from the operating system. It is also 
protected from everything except clearing. (HR, MIN2, and AMPM are 
default mnemonics from the message fIle). 

• fId4, with a length of 2 and a regular expression, [A-Z] [0-9], as 
a character edit 

• f Id5, with a length of 3 and a character edit of digits only. You have 
specified acceptable data entry ranges of 100--500 and 800-999. 

• f Id6, a vertical array with these attributes: length = 10 and elements 
=3. 

• A comment in the data dictionary, which is not attached to either a 
field or a record. 

• A group, named grpl, with a checklist and box edit The box attrib
utes are: white, underline, and offset=2. The occurrences of fId6 are 
members of the group. 

• A record, with the name ou t stand a data dictionary commen~ and 
consisting of 3 fields: name, with a data type of char string; teln~ 
with a data type of omit from struct; and amoun t, with a data type of 
float and a precision of 2. 

To create an ASCII listing in a new fIle called ase, use this command: 

dd2ase -a ase data.die 

Here is a listing of the output fIle ase: 

JAM Release 5.03 20 Nov 92 Page 15 



JAM Utilities Guide 

D: 
SCOPE=2 UNFILTERED LENGTH=lO ARRAY-SIZE=l 
WHITE UNDERLINE HILIGHT 

F:fldl this is a comment 
SCOPE=2 UNFILTERED LENGTH=8 ARRAY-SIZE=3 VERT-DISTANCE=2 
MAX-LENGTH=20 SHIFT-INCR=l MAX-OCCUR=lO PAGE-SIZE=3 CIRCULAR 

ISOLATE 
WHITE UNDERLINE HILIGHT 
TEXT='hey this is status' 
HELP-SCRN=help3.jam 

F: fld2 
SCOPE=3 UNFILTERED LENGTH=15 ARRAY-SIZE=l 
WHITE HILIGHT 

F: fld3 
SCOPE=5 UNFILTERED LENGTH=lO ARRAY-SIZE=l 
WHITE HILIGHT 
24-HOUR SYST-DATETIME=HR:MIN2 AMPM 

F: fld4 
SCOPE=2 CHAR-MASK LENGTH=2 ARRAY-SIZE=l 
WHITE UNDERLINE HILIGHT 
REG-EXP (CHAR)=[A-Z] [0-9] 

F: fld5 
SCOPE=2 DIGITS-ONLY LENGTH=3 ARRAY-SIZE=l 
WHITE UNDERLINE HILIGHT 
RANGEl (FROM) =100 
RANGEl (TO) =500 
RANGE2(FROM)=800 
RANGE2(TO)=999 

F: fld6 
SCOPE=2 UNFILTERED LENGTH=10 ARRAY-SIZE=3 
WHITE UNDERLINE HILIGHT 

# This comment is not attached to any entry in the dictionary. 

G:grpl 
SCOPE=2 CHECKLIST 
MEMBERS=3 
BOX(WHITE UNDERLINE HILIGHT) OFFSET=2 

R:outst 
FIELDS= name, telnum(OMIT), amount(FLOAT:2) 

You can also create or modify a text fIle and use the -b option to turn the fIle into a data 
dictionary. To do that, you will need the rules explained in the next section. 

Page 16 JAM Release 5.03 20 Nov 92 

". 



Chapter 2: Utility Reference Manual 

I CREATING A DATA DICTIONARY FROM 
AN ASCII FILE 
There are five types of entries in the ASCII file, corresponding to the kinds of infonna
tion in a data dictionary. They are 

1. default field attributes 

2. fields 

3. groups 

4. records 

5. stand-alone comments. 

The first line of each entry in the ASCII file identifies the entry as one of these types. 
Leading blank spaces are not permitted on an entry's first line. (Therefore, D:, F:, G:, 
R:, or # always begins a line at column 1). All other blank space is ignored. You may 
use blank lines to separate entries. Lines may be continued by using the backs lash '\'. 

II ENTRY TYPES 
Each type of entry for the data dictionary is discussed in the sections below. 

Default Field 
A default field entry, begins with: 

0: 

No other text is permitted on this line. Below this line, list the edits of the default field 
using the keywords for field attributes. (The next section lists these attributes.) 

If an ASCII fIle contains an entry for a default field, this entry must be first 

The following field and group entries may be listed in any order. The comments in these 
entries are optional. 

Fields 
A field entry (other than the default) begins with 

F: tleldn.me [comment] 

fieldnsme is the name of the field and comment is any optional comment text you want 
attached to the data dictionary entry. This line is followed by a list of the field's attrib-

JAM Release 5.03 20 Nov 92 Page 17 



JAM Utilities Guide 

utes. There are keywords for all the field attributes and we describe them in a later 
section. 

Groups 
Each group entry begins with 

G : groupname [comment] 

groupname is the name of the group and comment is any optional comment text you 
want attached to the data dictionary entry. The group attributes follow. The keywords 
for group attributes are explained in a later section. 

Records 
Every record entry begins with 

R: rscordname [comment] 
FIELDS= neldname [( data-type) ] , ... 

recordname is the name of the record and comment is optional. FIELDS= is required 
on the next line. It should be followed by the names of the fields in recordname. Use 
a comma to separate the field names. You may specify a data type for fieldname by 
enclosing a data type keyword in parentheses and placing it after the field name. 

Stand-Alone Comments 
Comments which are not attached to other entries begin with 

II comment 

II ATTRIBUTE KEYWORDS 
There are two types of keywords for attributes: flags and values. A flag keyword stands 
by itself and needs no other information, like the HILIGHT display attribute. It may 
appear on the same line as other primary keywords. A value keyword must be accompa
nied by more information; it is followed by an equal sign (=), then more keywords or 
strings. Value keywords must appear alone on a line, accompanied only by the informa
tion attached to them. 

dd2asc usually reads only the first few characters of each keyword, so you can trun
cate keywords if you wish. However, the utility itself always generates the full names, 
and we recommend that you do so as well, for better docmnentation. 

The following is a list of all keywords, presented in the order in which you would en
counter the attributes in the Screen Editor. For explanations of each field attribute, refer 
to the Author's Guide. 

Page 18 JAM Release 5.03 20 Nov 92 

.~ 

-, 
I 

i 
I 

.J 

I 
I 



Chapter 2: Utility Reference Manual 

Note: There are often two or three keywords for the same attribute. For example, the 
field edit for right-justified may be indicated by any of the following keywords: 

RIGHT-JUSTIFIED 
RT-JUST 
RTJUST 

In this text, we list the default keywords and syntax used by JAM. For a complete list
ing of all the keywords, see the UT_2A entries in the message ftIe. 

Scope 
This is a value keyword, but it may appear on the same line as other keywords. It must 
be followed by a number between 0 and 9. Entries with a scope of 0 are constants and 
cannot be changed at runtime. 

SCOPE= Integer 

Field Keywords 
The following keywords specify all the field attributes available in the Screen Editor. 

Display Attributes 

All of these are flag keywords. 

BLACK 
BLUE 
GREEN 
CYAN 
RED 
MAGENTA 
YELLOW 
WHITE 

NON-DISPLAY 
REVERSE 
BLINKING 
UNDERLINE 
HILIGHT 
DIM 
STANDOUT 
ALTERNATE 

Character Edits 

All of these are flag keywords except for REG-EXP ( CHAR) • 

JAM Release 5.03 20 Nov 92 Page 19 



JAM Utilities Guide 

UNFILTERED, ALL 
DIGITS-ONLY 
YES-NO 
LETTERS-ONLY 
NUMERIC 
ALPHANUMERIC 

CHAR-MASK 
REG-EXP ( CHAR) = expression 

Note: Choose CHAR-MASK if you have a regular expression. The value keyword REG
EXP ( CHAR) = expression must follow, on a separate line. 

Field Edits 

Flag and value keywords: 

RIGHT-JUSTIFIED 
REQUIRED 

RETURN-ENTRY 
RETCODE= Integer 

PROTECTED 

PROTECTED FROM DATA-ENTRY \ 
TABBING-INTO CLEARING VALIDATION 

MENU-FIELD 
SUBMENU = menu-screen-name 
RETCODE= integer 

CLR-INPUT 
UPPER-CASE 
LOWER-CASE 
MUST-FILL 
NO-AUTOTAB 
REG-EXP(FIELD)=~umr~p~ron 

NULLFLD=SM_ YESstrlng 
NULLFLD=SM_NO~ng 

If you choose RETURN-ENTRY or MENU-FIELD, you may include the value keyword 
RETCODE = Integer-value on a separate line. Menu fields may also have a SUBMENU 
value keyword. 

Page 20 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

If the field is protected from everything, use PROTECTED alone. If it is only partially 
protected, use PROTECTED FROM followed by any or all of the four values listed. 

With NULLFLD, use the value of SM_YES (e.g., y) to fill an empty field with string. 
For example, if SM_YES is "y" in the message file, then 

NULLFLD=y? 

will fill the empty field with question marks. If SM_NO is "n", then 

NULLFLD=nunknown 

will put the string "unknown" in the empty field. The string will not be repeated. 

Field Attachments 

All of these are value keywords. 

NEXTFLD (NORMAL) = next-field-designation 
NEXTFLD (ALTERNATE) = a/temate-next-field-designation 

PREVFLD ( NORMAL) = previous-field-designation 
PREVFLD (ALTERNATE) = a/temate-previous-field 

HELPSCR= he/p--screen-name 
AUTO-HELP= automatic-help-screen-name 

ITEM_SELECT= itenrselection-screen-name 
AUTO- ITEM= automatic-item-selection-screen-name 

TBL-LOOKUP= screen-name 

TEXT= field-6tatus-string 

MEMO 1 = string 
MEM02= string 

MEMO 9 = string 

Miscellaneous Edits 

All of these are value keywords. 

Field Functions: 

ENTRY - FUNC = function-name 
VAL-FUNC= functlon-name 
EXIT-FUNC= functlon-name 

JAM Release 5.03 20 Nov 92 Page 21 



JAM Utilities Guide 

If any of these functions are JPL procedures, precede function-name with j pI (i.e., 
j p 1 function-name). 

Datefrune: 

l2-HOUR SYST-DATETIME= date-time-format 
24-HOUR SYST-DATETIME= date-time-format 
l2-HOUR USER-DATETIME= date-tlme-forrnat 
24-HOUR USER-DATETIME= date-tlme-format 

date-tlme-format is specified using the date/time mnemonics from the message file. 

MATH= expression 
MA'rH= expression; expression; expression; ... CKDIGIT= modulus 
MIN-DIGITS= count 

RANGEl (FROM) = value 
RANGEl (TO) = value 

RANGE9 (FROM) = value 
RANGE9 (TO) = value 

J PL-TEXT=jp/-program-line 

Currency: 

Any or all of the following flag or value keywords may follow CURR-FORMAT= 

LOCAL-FORMAT-NO= Integer (between 1 and 10) 
DEC-SYMBOL= c 
MIN-DEC-PLACES= Integer 
MAX-DEC-PLACES= integer 
THOU-SEP-SYMBOL= c 
CURR-SYMBOL= ccccc 
CUR-LEFT 
CUR-RIGHT 
CURR-MIDDLE 
ROUND-UP 
ROUND-DOWN 

ROUND-ADJUST 
FILL-CHAR= c 
RIGHT-JUST 
LEFT-JUST 
CLEAR-IF-ZERO 
APPLY-IF-EMPTY 

c represents a single character. CURR-SYMBOL will accept up to 5 characters. 

Page 22 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

Note: Ten currency mnemonics are defined in message entries FM_OMN_CURRDEF to 
FM_9MN_CURRDEF, and their ten corresponding token formats are defmed in message 
entries SM_ODEF _CURR to SM_9DEF _CURRo dd2asc does not recognize the mes
sage me mnemonics or formats as flag or value keywords. Instead, a message file cur
rency format is specified by the value keyword LOCAL_FORMAT_NO= and an integer 
between one and ten. For compatibility with previous releases, the 2asc utilities num
ber the currency formats between 1 and 10, rather than 0 and 9 like the message tags. 
Therefore, LOCAL-FORMAT-NO= 1 refers to mnemonic assigned to 
FM_OMN_CURRDEF (CURRENCY by default) and the token format assigned to 
SM_ODEF_CURR (n .22, 1$" by default). LOCAL-FORMAT-NO= 10 refers to the 
mnemonic assigned to FM_9MN_CURRDEF (DEFAULT9 by default) and the token for
mat assigned to SM_9DEF_CURR (M. 09" by default). If you assign LOCAL-FOR
MAT-NO an integer outside the range of 1 to 10, it will be ignored and no currency for
mat will be made to the field. 

Size 

Most of these are value keywords, but all may appear on the same line as other key
words. 

LENGTH= onscreen-iength 
ARRAY -S I ZE= number-of-onscree~lements 
VERT-DISTANCE= offs~ 

HORIZ-DISTANCE= offsm 
WORD-WRAP 
ALT-SCROLL-FUNC= function-name 
MAX - LENGTH = shlfting-length 
SHIFT-INCR= count 
MAX - ITEM= number-of-occurrences 
PAGE-SIZE= number 
CIRCULAR 
ISOLATE 

Data Type 

One value keywo~ FTYPE=, which may take on anyone of the following values: 

OMIT 
CHAR-STR 
INT 
UNSIGNED 
SIGNED 
SHORT 
LONG 

JAM Release 5.03 20 Nov 92 Page 23 



JAM Utilities Guide 

FLOAT: integer 
DOUBLE: integer 
ZONED: integer 
PACKED: integer 1 

If you choose FLOAT, DOUBLE, ZONED, or PACKED, you may follow it with an option-
al colon and integer, designating the precision. For example, the following specifies a 
floating point number with three decimal places: 

FTYPE=FLOAT:3 

In addition, you may indicate SIGNED or UNSIGNED willi the types ZONED and 
PACKED. For example, the following specifies a zoned number with two decimal 
places and unsigned edit 

FTYPE=ZONED:2, UNSIGNED 

Group Keywords 
RADIO-BUTTON 
CHECKLIST 
MEMBERS = integer 
BOX ( display attributes) 
OFFSET=integer 
BOUNCE-BAR 
AUTO-TAB 
FTYPE=data type 

Display attributes for a box are enclosed in parentheses. See the list of display attributes 
under Field Keywords. A group may also have a data type edit See the list of data types 
under Field Keywords. 

ERRORS 
Ascn fIle syntax errors do not stop the creation of a data dictionary. The errors and 
anything following them on the same line are skipped. However, all valid entries pre
ceding them on the same line, and all entries on lines without errors, are incorporated 
into the data dictionary. 

Can't read %s. 
Cause: An input fue was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the fue in ques
tion. 

Can't open %s. 
Cause: An output file could not be created, due to lack of permisSion or perhaps disk 
space. 
Corrective action: Correct the fIle system problem and retry the operation. 

Page 24 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

%s is not a valid data dictionary. 
Cause: The binary me you have named in the data dictionary parameter does appear to 
be not have the correct format (as determined by a special code placed at the beginning 
of the file). 
Corrective action: Check the file with the Data Dictionary Editor. 

Error writing %s. 
Cause: The utility incurred an 110 error while processing the file named in the mes
sage. 
Corrective action: Retry the operation. 

%s already exists. 
Cause: You have specified an existing output fIle. 
Corrective action: Use the -f option to overwrite the fIle, or use a different name. 

Bad data in %s. 
Cause: A binary input file is corrupt 
Corrective action: Make sure the fIle is of the correct type. 

There are also numerous messages regarding syntax errors in an ASCII input fIle, 
which are intended to be self-explanatory. 

JAM Release 5.03 20 Nov 92 Page 25 



JAM Utilities Guide 

dd2struct 
convert data dictionary records to programming language 
data structures 

SYNOPSIS 
dd2struct [-flpv) [-0 file) [-g lang) dictionary [rscord-name .•. 1 
dd2struct [-flpv) [-e ext) [-g lang) dictionary [record-name ... ) 

OPTIONS 
- f Overwrites an existing output file. 

-1 Converts structure names to lower case. 

-p Creates the output flles in the same directory as the data dictionary. 

-v Lists all structures written. 

-0 Places all the structures in a single output file, whose name is supplied with 
the option. -0- (without outflle) prints the output to the display. 

-e Creates individual structures this extension. The default extension is "h". 
If -0 is entered, -e will be ignored. 

-g Creates the structures in the programming language whose name follows 
the option letter. C is the default. CB creates C structures with blank-fIlled 
string. 

DESCRIPTION 

This utility reads in a data dictionary, and creates programming language data struc
tures corresponding to some or all of the records dermed in that data dictionary. You 
may use the output of this utility to declare a structure and to derme variables in your 
application program. In addition, several JAM library functions read from and write to 
data structures. If you are using sm_rrecord or sm_wrecord, you can use this util
ity to create the required data structure from data dictionary records. 

By default, this utility creates C language structures with null-terminated strings. If you 
need blank-filled rather than null-teIminated strings, use the -g option with language 
CB. The utility will then create C data structures with blank-filled strings. 

A data dictionary name must be specified. JAM will not supply a default for dictio
nary. 

If there are no record-name arguments, all records in the dictionary will be used; 
otherwise, only the selected records will be used. If the data dictionary contains no re-

Page 26 JAM Release 5.03 20 Nov 92 

'1 
I 
1 

I 



.Chapter 2: Utility Reference Manual 

cords, JAM displays an error message saying there are no records to convert and 
dd2struct generates no output. If a record contains a field which is not in the data 
dictionary, JAM displays an error message omits the field from the structure. 

If output is generated, the files will each contain one structure corresponding to a record 
in the data dictionary. A fIle is named after a record and has the extension h or the ex
tension specified by the option -e. The -0 option may be used to save all the structures 
in a single output file. 

The format in an output me. is the following: 
struct recorci-name { 

type field-name; 
type fle/d-name; 

type field-name; 
} ; 

The structure tag is the name of the record. Unless the type omi t is specified, or the 
field or group is not in the data dictionary, a field or group in a record record-name is 
a member of the structure record-name. The data type of a structure member is derived 
according to the following rules: 

1. If any type edit except for char is specified for a field or group in the 
Record Window of the Data Dictionary Editor, this data type is used 
in the structure. The record field type may be different that the data 
dictionary field type. This allows a field to be processed as different 
types. A non-char type overrides a data dictionary type when a 
structure is generated. 

2. If no type was specified in the Record Wmdow, but the data dictio
nary element has a data type edit, this type is used. Please note that 
some character edits automatically change the data type edit In par
ticular, a field with a "digits-only" character edit has the default type 
uns igned into A field with a "numeric" character edit, has the 
default type double. 

3. A group has the default type unsigned into 

4. All other fields are of type char. 

If a field has multiple occurrences, the corresponding structure member will be de
clared as an array. 

By default, only "e" data types are supported in j xform. They are the following: 

jxform data type C data type 

omit 

char string char 

JAM Release 5.03 20 Nov 92 Page 27 



JAM Utilities Guide 

jxforrn data type C data type 

int int 

unsigned int unsigned int 

short int short 

long int long 

float float 

double double 

zoned dec. char 

packed dec. char 

ERRORS 
Language %s undefined. 
Cause: The language you have given with the -g option has not been defined in the 
utility's tables. 
Corrective action: Check the spelling of the option. 

%s already exists. 
Cause: You have specified an existing output me. 
Corrective action: Use-the - f option to overwrite the file, or use a different name. 

%s has an invalid file format. 
Cause: An input ftle is not of the expected type. 
Corrective action: Check the spelling and type of the offending me. 

'%s' has no data to convert. 
Cause: An input ftle is empty, or does not have the names you specifted. 
Corrective action: Check the names. 

Not enough memory to process '%s'. 
Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: In non-virtual memory environments, try to increase the amount of 
available physical memory. 

Page 28 JAM Release 5.03 20 Nov 92 

'1 
I , 

I 
..i 



Chapter 2: Utility Reference Manual 

dd3to5 
convert Release 3 data dictionaries to Release 5 format 

SYNOPSIS 
dd3t05 [-fpx) [-e ext) dlctJo1Jllry .. . 
dd3t05 [-fpx) [-0 nle) dlctJo1Jllry .. . 

OPTIONS 

- f Overwrites an existing fIle of the same name. Usually not recommended. 

-p Creates the output file in the same directory as the input fIle. Usually not 
recommended. 

-x Deletes extension from Release 3 data dictionaries. 

-e Appends ext to the output file. 

-0 Writes output to the named fIle. Only one dictionary argument is pennitted 
with this option. -0 overrides -e and -x. 

DESCRIPTION 

This utility is provided to developers upgrading from JAM Release 3. 

dd3toS reads in Release 3 data dictionaries, converts them to Release 5 format, and 
writes them out according to the option given. 

We strongly discourage overwriting an original Release 3 data dictionary. Rather, run 
the utility from another directory and specify the full pathname to the dictionary. You 
might also run the utility with the -0 option. For example, 

dd3t05 -0 data5.die data.die 

would create dataS. die as a release 5 data dictionary without overwriting the origi
nal. 

ERRORS 

Please see dd4 toS. 

JAM Release 5.03 20 Nov 92 Page 29 



JAM Utilities Guide 

dd4to5 
convert Release 4 data dictionaries to Release 5 format 

SYNOPSIS 
dd4toS [-fpJ [-e ext] dictionary ... 

OPTIONS 

- f Overwrite an existing file of the same name. Usually not recommended. 

-p Create the output file in the same directory as the input fIle. Usually not 
recommended. 

-e Appends ext to the output file name. 

DESCRIPTION 

This utility reads in JAM Release 4 data dictionaries, converts them to Release S for
mat, and writes them out with the same names. 

We strongly discourage overwriting an original Release 4 data dictionary. Rather, run 
the utility from another directory and specify the full pathname to the dictionary. You 
might also nm the utility with the -e option. For example, 

dd4toS -e new data.die 

would create data. dic . new as a release S data dictionary without overwriting the 
original. 

ERRORS 

At least one data dictionary name is required. 
Cause: Utility does not default to SMDICNAME. 
Corrective action: Specify a dictionary name. 

File dictionary already exists. Use '-f' to overwrite. 
Cause: The specified dictionary file (including the extension you are appending to re
lease S files) already exists in the directory from which you are running dd4to5. 
Corrective action: Run the utility from another directory, or run the utility specifying 
a different extension, or run the utility using the - f option. 

dictionary is not a Release 4 data dictionary. 
Cause: The specified dictionary me is not a Release 4 dictionary. 
Corrective action: If the me is a Release 3 dictionary, use the dd3 to5 utility. dd3toS 
uses the same options as dd4toS. 

Page 30 JAM Release 5.03 20 Nov 92 



· Chapter 2: Utility Reference Manual 

dictionary is a release 5 file. 
Cause: The specified dictionary was already converted to release 5, or was originally 
created with release 5. 
Corrective action: Utility does not need to be run. 

JAM Release 5.03 20 Nov 92 Page 31 



JAM Utilities Guide ~ .. , . 

ddmerge 
combine binary data dictionaries 

SYNOPSIS 
ddmerge [- f 1 destination dictionary ... 

OPTIONS 

- f Overwrites existing file destination. 

DESCRIPTION 

This utility combines two or more binary data dictionaries into one. Use it, to build a 
data dictionary from simpler components in a modular fashion. 

The utility reads the frrst dictionary into memory. As it processes each subsequent dic
tionary, ddmerge adds new entries to the file in memory. A new entry has a unique 
field, group, or record name. If an entry is an exact duplicate of one already added, 
ddmerge ignores the new entry. (Comment text is not compared.) If an entry has the 
same name but different edits or contents, ddmerge displays a message describing 
the difference; it does not save the variant entry. Mter processing the last entry, 
ddmerge writes out the new binary data dictionary to destination. You may use the 
utility j amcheck to update screens with the entries in destination. 

Since the merging is done in memory, the maximum size allowed for destination is 
machine-dependent 

You may change the name of the default data dictionary via the environment variable 
SMDICNAME. See the Configuration Guide for details. 

ERRORS 

See f2dd. 

Page 32 JAM Release 5.03 20 Nov 92 



· Chapter 2: Utility Reference Manual 

ddsort 
sort data dictionary entries by name 

SYNOPSIS 
dds 0 r t [- f 1 output-file dlctlonary 

OPTIONS 

- f Overwrites existing dictionary file. 

DESCRIPTION 

This utility alpbabetically sorts the elements of a data dictionary. Elements include re
cords, fields, and groups. Fields within records are not sorted. 

ERRORS 

One destination and one source Hie name required. 
Cause: Either output-file or dictionary was not specified. 
Corrective action: Name both arguments. 

Format Error in dictionary. 
Cause: Either source file is not a data dictionary or the file is corrupted. 
Corrective action: Check that dictionary is a valid data dictionary. 

JAM Release 5.03 20 Nov 92 Page 33 



JAM Utilities Guide 

f2asc 
convert screens between binary and editable ASCII 
format 

SYNOPSIS 
E2ase -a [-eEl ascll-f118screen ... 
t2ase -b [-f 1 asciI-file 

OPTIONS 

-a Create ASCII listing of one or more screens. 

-b Create or extract all binary screens from an ASCII listing. Note that this 
option does not accept an output file name. 

-c Do not generate comment lines (-a option only). 

- f Overwrite an existing ftle. 

DESCRIPTION 

jxform creates binary screen ftles. You may use f2asc with -a to create an ASCII 
listing of a screen's contents and edits (much like dd2asc), modify the fue, and con
vert it back to a binary screen file using f2asc with -b. 

With f2asc, either the -a or -b option must be used. With -a, you must specify the 
name of at least one screen, (or use wildcard characters). With -b, screen names are 
ignored. The - b option automatically extracts all screen files from ascii-file. 

The utility is provided for the following purposes. 

• You can document in English the contents of a screen (field and group 
names, edits, etc ... ) 

• You can create an ASCII listing of a screen and use a text editor for 
global searching and replacing. When your edits are complete you can 
convert the listing to a binary screen ftle. 

• You can use source code control systems (i.e., sees or RCS in UNIX) 
to manage your screens. 

The text files generated by f2asc are a complete description of the contents of the 
screen. The text is self- explanatory. However if you wish to edit the file or create one 
from scratch, you will need to understand the mnemonics used in the file and the rules 
for organizing them. 

Page 34 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

• screen characteristics 

• default field attributes 

• fields 

• groups 

• comments. 

III ENTRY TYPES 
The first line of each entry in the ASCn file identifies the entry as one of these types. 
Leading blank spaces are not permitted on an entry's frrst line. (Therefore, S:, D:, F:, 
G :, or # always begins a line at column 1). All other blank space is ignored. You may 
use blank lines to separate entries. 

Screen Characteristics 
A screen entry begins with 

S : screenl1llmB 

screen name is the name of the screen. This is the frrst entry for every screen in sseiif· 
lie. 

Default Field Symbols 
A default field entry begins with 

D:SYMBOL=~~~ 

Below this line, is a list of the edits of the default field using the keywords for field 
attributes. (The next section lists these attributes.) 

If an ASCII me contains entries for default fields, these entries precede the entries for 
fields, groups, and records. A screen may contain up to nine different default field sym
bols. 

Fields 
A field entry (other than the default) begins with 

JAM Release 5.03 20 Nov 92 Page 35 



JAM Utilities Guide 

F: fleldname 

fieldname is the name of the field. This line is followed by a list of the field's attributes. 
There are keywords for field attributes, which are described in a later section. 

Groups 
Each group entry begins with 

G : groupname 

groupname is the name of the group. The group attributes follow. The keywords for 
group attributes are explained in a later section. 

Stand-Alone Comments 
Comment lines begin with 

II comment 

When f2asc -a is used, JAM gives each field's number in a comment line. If the 
field is an array, it lists the field number of each element in the array. You can use the 
-c option turn this feature off. 

I ~e~ ~~~B ~~~e~~~a~?u: na~ and .mue~ A flag keyworo 
stands by itself and needs no other information, like the HILIGHT display attribute. It 
may appear on the same line as other primary keywords. A value keyword must be ac
companied by more information; it is followed by an equal sign (=), then more key
words or strings. Value keywords must appear alone on a line, accoinpanied only by the 
information attached to them. 

f2asc usually reads only the first few characters of each keyword, so you can truncate 
keywords if you wish. However, the utility itself always generates the full names, and 
we recommend that you do so as well, for better documentation. 

The following is a list of all keywords, presented in the order in which you would en
counter the attributes in j x form. For explanations of each attribute, refer to the Au
t1w,~ Guide. 

Note: There are often two or three keywords for the same attribute. For example, the 
field edit for right-justified may be indicated by any of the following keywords: 

RIGHT-JUSTIFIED 
RT-JUST 
RTJUST 

Page 36 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

In this text we list the default keywords and syntax used by JAM. For a complete listing 
of all the keywords, see the UT_2A entries in the message me. 

II SCREEN ATTRIBUTES 
These are flag and value keywords: 

LINES=integer 
COLUMNS = integer 
BACKGROUND= (attributes) 
BORDER= ( attributes) 
STYLEinteger 
DEFAULT-ATT= (attributes) 
KEYSET= filename 
DIS PLAY ( row, column) (attributes) (length) = text or graphics 
MENU-MODE 

attributes are enclosed in parentheses. See the list of attribute keywords below. For dis
play text, you must indicate in parentheses integers for the beginning row and column 
of the text 

.. FIELD ATTRIBUTES 
The following keywords specify all the field attributes in j xform. 

Display Attributes 

All of these are flag keywords. 

BLACK 
BLUE 
GREEN 
CYAN 
RED 
MAGENTA 
YELLOW 
WHITE 

NON-DISPLAY 
REVERSE 
BLINKING 
UNDERLINE 
HILIGHT 

JAM Release 5.03 20 Nov 92 Page3? 



JAM Utilities Guide 

DIM 
STANDOUT 
ALTERNATE 

Character Edits 

All of these are flag keywords. 

UNFILTERED 
DIGITS-ONLY 
YES-NO 
LETTERS-ONLY, ALPHABETIC 
NUMERIC 
ALPHANUMERIC 

CHAR-MASK 
REG-EXP ( CHAR) = expression 

Note: Choose CHAR-MASK if you have a regular expression. The value keyword REG
EXP (CHAR) = expression must follow, on a separate line. 

Field Edits 

Flag and value keywords: 

RIGHT-JUSTIFIED 
REQUIRED 
RETURN-ENTRY 
RETCODE= Integer 

PROTECTED 

PROTECTED FROM DATA-ENTRY \ 
TABBING-INTO CLEARING VALIDATION 

MENU-FIELD 
SUBMENU = menu-screen-nsme 
RETCODE= integer 

CLR-INPUT 
UPPER-CASE 
LOWER-CASE 
MUST-FILL 
NO-AUTOTAB 
REG-EXP{FIELD}=~u~r~~ron 

Page 38 JAM Release 5.03 20 Nov 92 

~ 
I 



Chapter 2: Utility Reference Manual 

NULLFLD= SM_ YES string 
NULLFLD= SM_NO string 

If you choose RETURN-ENTRY or MENU-FIELD, you may include the value keyword 
RETCODE = integer on a separate line. Menu fields may also have a SUBMENU value 
keyword. 

If the field is protected from everything, use PROTECfED alone. If it is only partially 
protected, use PROTECTED FROM followed by any or all of the four values listed. 

With NULLFLD, use the value of SM_YES (e.g., y) to fill an empty field with string. 
For example, 

NULLFLD=y "* 

to fill an empty field with asterisks, or 

NULLFLD=n unknown 

to put the string "unknown" in an empty field. 

Field Attachments 

All of these are value keywords. 

NEXTFLD (NORMAL) = next-field-designation 
NEXTFLD (ALTERNATE) = altemate-next-field-d~ignation 

PREVFLD (NORMAL) = previous-field-designation 
PREVFLD (ALTERNATE) = altemate-previous-field 

HELP-SCRN = help-screen-name 
AUTO-HELP= automatic-help-screen-name 
ITEM_SELECT= item-selection-screen-name 
AUTO- ITEM= sutoinatk-item-selection-screen-name 

TBL-LOOKUP= screen-nsme 

TEXT = field-status-string 

MEMO 1 = string 
MEM02 = string 

MEM09= string 

Miscellaneous Edits 

All of these are value keywords. 

JAM Release 5.03 20 Nov 92 Page 39 



JAM Utilities Guide 

Field Functions: 

ENTRY - FUNC = function-name 
VAL-FUNC= function-name 
EXIT-FUNC= function-name 

If any of these functions are JPL procedures, precede function-name with jpl (i.e., 
jpl function-name). 

DaterHme: 

12-HOUR SYST-DATETIME= date-time-format 
24-HOUR SYST-DATETIME= date-time-format 
12-HOUR USER-DATETIME= date-time-lormat 
24-HOUR USER-DATETIME= date-time-format 

MATH= expression 
MATH= expression; expression; expression; ... 

CKDIGIT= sum 
MIN-DIGITS= count 

RANGE 1 (FROM) = value 
RANGE 1 (TO) = value 

RANGE 9 (FROM) = value 
RANGE 9 (TO) = value 
JPL-TEXT=/pl-program-iine 

Currency format 

CURR-FORMAT= 

Any or all of the following flag or value keywords may follow CURR-FORMAT= 

LOCAL-FORMAT-NO= Integer (between 1 and 10) 
DEC-SYMBOL= c 
MIN-DEC-PLACES= Integer 
MAX-DEC-PLACES= integer 
THOU-SEP-SYMBOL= c 
CURR-SYMBOL= ccccc 
CUR-LEFT 
CUR-RIGHT 
CURR-MIDDLE 
ROUND-UP 
ROUND-DOWN 
ROUND-ADJUST 

Page 40 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

FILL-CHAR= c 
RIGHT-JUST 
LEFT-JUST 
CLEAR-IF-ZERO 

APPLY-IF-EMPTY 

c indicates a single character. CURR-SYMBOL will accept up to 5 characters. 

Note: Ten currency mnemonics are defined in message entries FM_OIvll'CCURRDEF to 
FM_9MN_CURRDEF, and their ten corresponding token formats are defmed in message 
entries SM_ODEF _CURR to SM_9DEF _CURR. f2asc does not recognize the message 
file mnemonics or formats as flag or value keywords. Instead, a message file currency 
format is specified by the value keyword LOCAL_FORMAT_NO= and an integer be
tween one and ten. For compatibility with previous releases, the 2asc utilities number 
the currency formats between 1 and 10, rather than ° and 9 like the message tags. 
Therefore, LOCAL-FORMAT-NO= 1 refers to mnemonic assigned to 
FM_OMN_CURRDEF (CURRENCY by default) and the token format assigned to 
SM_ODEF_CURR (" .22, 1$" by default). LOCAL-FORMAT-NO= 10 refers to the 
mnemonic assigned to FM_9MN_CURRDEF (DEFAULT9 by default) and the token for
mat assigned to SM_9DEF_CURR (n. 09- by default). If you assign LOCAL-FOR

MAT-NO an integer outside the range of 1 to 10, it will be ignored and no currency for
mat will be made to the field. 

Size 

Most of these are value keywords, but all may appear on the same line as other key
words. 

LENGTH= onscreen-Iength 
ARRAY-SIZE= number-of-onscreen-elements 
VERT-DISTANCE= offset 
HORIZ-DISTANCE= offset 
WORD-WRAP 
ALT-SCROLL-FUNC= function-narne 
MAX - LENGTH = shifting-length 
SHIFT-INCR= count 
MAX - ITEM= number-of-occurrences 
PAGE-SIZE= number 
CIRCULAR 
ISOLATE 

Position 

All of these are value keywords. They describe a fields position on the screen. 

JAM Release 5.03 20 Nov 92 Page 41 



JAM Utilities Guide 

LINE= integer 
COLUMN= Integer 

Data Type 

One value keyword, FTYPE, which may take on anyone of the following values: 

OMIT 
CHAR-STR 
INT 
UNSIGNED 
SIGNED 
SHORT 
LONG 
FLOAT: precision 
DOUBLE: precision 
ZONED: precision 
PACKED: precision 

If you choose FLOAT, DOUBLE, ZONED, or PACKED, you may follow it with an option
al colon and number, designating the precision. For example, the following specifies a 
floating point with three decimal places: 

FTYPE=FLOAT:3 

In addition, you may indicate SIGNED or UNSIGNED with types ZONED and PACKED. 
For example, the following specifies a zoned number with two decimal places and an 
unsigned edit. 

FTYPE=ZONED:2, UNSIGNED 

Groups 
RADIO-BUTTON 
CHECKLIST 
BOX (attribute) 
OFFSET= integer 
BOUNCE-BAR 
AUTO-TAB 
FTYPE= type 
OCCUR number= string 
SELECTED-OCCUR= Integer 

Display attributes for a box edit are enclosed in parentheses. 

ERRORS 
ASCII file syntax errors do not stop the creation of a screen ftle. The errors and any
thing following them on the same line are skipped. However, all valid entries preceding 

Page 42 JAM Release 5.03 20 Nov 92 

-, 



Chapter 2: Utility Reference Manual 

them on the same line, and all entries on lines without errors, are incorporated into the 
screen me. 

Can't read %s. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the me in ques
tion. 

Can't open %s. 
Cause: An output me could not be created, due to lack of permission or perhaps disk 
space. 
Corrective action: Correct the me system problem and retry the operation. 

Error writing %s. 
Cause: The utility incurred an 110 error while processing the file named in the mes
sage. 
Corrective action: Retry the operation. 

%s already exists. 
Cause: You have specified an existing output me. 
Corrective action: Use the -f option to overwrite the me, or use a different name. 

Bad data in %s. 
Cause: A binary input file is corrupt 
Corrective action: Make sure the me is of the correct type. 

There are also numerous messages regarding syntax errors in an ASCn input me, 
which are intended to be self~xplanatory. 

JAM Release 5.03 20 Nov 92 Page 43 



JAM Utilities Guide 

f2dd 
create or update a data dictionary from screen files 

SYNOPSIS 
f2dd [-vI dIctIonary screen __ _ 

OPTIONS 
-v Generate list of screens processed. 

-1 Convert screen names sent to data dictionary to lowercase. This utility 
creates a data dictionary record for each screen. Use this option to force all 
screen record names to lowercase. This option does not affect the case of 
the individual field or group names within the record. 

DESCRIPTION 
If a new data dictionary· is being created, the utility: 

• Creates a record for each named screen and enters the record in the 
data dictionary. Each record contains the names of all fields and 
groups on the screen except for screen name fields; 

• Enters every field which appears on the specified screen into the data 
dictionary, along with the field's characteristics. 

• Enters every group which appears on the specified screen into the data 
dictionary, along with each group's attributes. 

If a data dictionary is being uiXJated, the utility: 

• Creates records for any of the specified screens, if the records are not 
already in the data dictionary; 

• Adds entries for fields and groups not already in the data dictionary; 

• Lists all differences between the information in the data dictionary 
and the specified screens; 

• Lists all fields and groups in the specified screens which have the 
same name but different field characteristics. 

ERRORS 
Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Page 44 JAM Release 5.03 20 Nov 92 

-1 



Chapter 2: Utility Reference Manual 

Too many entries for data dictionary. 
·Too many data dictionary entries. 
Too many entries for LDB. 
Cause: The output fIle has reached the maximum possible size. 
Corrective action: Specify fewer inputs, or remove unnecessary fields from them. 

Can't read form %s. 
Bad data in form %s. 
%s is not a form. 
Cause: An input file was missing, unreadable, or not the right kind. 
Corrective action: Check the spelling, presence, and permissions of the fIle in ques
tion. 

Form %s has no fields. 
Form %s has no named fields. 
Cause: Warning only. The screen will make no contribution to the output. 
Corrective action: None. 

Can't create record W%SW -- same name as data dictionary 
Field. 
Can't add field W%SW in %s -- same name as data dictionary 
Record. 
Cause: A screen or field has a name that conflicts with something already in the data 
dictionary. 
Corrective action: Rename one of the items. 

Record W%s' in %s differs from data dictionary record. 
Field W%s' in %s differs from data dictionary field. 
Field '%S6 in %s has different edits from data dictionary 
field. 
Cause: Warning only. A screen or screen field differs from a similarly named item al
ready in the data dictionary. The latter will be retained. 
Corrective action: Rename one of the items. 

Can't write %9. 
Can't write destination file. 
Cause: An output me could not be created, due to lack of permission or perhaps disk 
space. 
Corrective action: Correct the me system problem and retry the operation. 

JAM Release 5.03 20 Nov 92 Page 45 



JAM Utilities Guide 

f2struct 
create program data structures from screens 

SYNOPSIS 
f2 struct [- f lpv J [-0 oumls] [-g lang] SCrHn .•. 

f2struct [-flpv] [-e sxt] [-g lang] scf'fHIn .•• 

OPTIONS 

- f Overwrites an existing output file. 

-1 Converts structure names to lower case. 

-p Creates each output me in the same directory as the corresponding input 
file. 

-v Lists all structures written. 

-0 Causes all output to be placed in ouffile. -{)-- (without oufflle sends output 
to the screen instead of a file. 

-e Appends the extension to all output fIles. If -0 is also used, -e is ignored. 
"h" is the default extension when "C" language is used. 

-g Creates the structures in the named programming language. The default is 
"C". Use CB for blank- filled strings. 

DESCRIPTION 

This program creates program source files containing data structuredefmitions match
ing the input files. If you use the -0 option, ouffile will contain a structure for each 
named screen. If -0 is not used, f2struct will create a file for each screen; each file 
will contain one structure. 

By default, this utility creates C language structures with null-tenninated strings. If you 
need blank-filled rather than null-terminated strings, use the -g option with language 
CB. This utility will then create C data structures with blank-filled strings. 

The format in the output me is the following: 

struct ~~~ { 
type flsld-nllms ; 
type group-nsms; 

} ; 

Page 46 JAM Release 5.03 20 Nov 92 

-, 
I 

1 



Chapter 2: Utility Reference Manual 

The structure tag is the name of the screen file with its extension stripped off. Unless a 
field has the data type omi t, every field on the screen is a member of the structure. 
Please note that array fields created with the group option from the "Create Special Ob
jects" menu have a default type of omi t. If a field has no name, then fldm is used, 
where m is the field number. Every group on the screen is member of the structure. 
Checklists are declared as arrays. 

The data types for the structure members are derived according to the following rules: 

1. If a field has a data type edit, its type is used. 

2. If a field has no data type edit but has a "digits-only" character edit, 
its type is unsigned into A field with no data type, but a "numer
ic" character edit, has type double. 

3. A group has the default type unsigned into Another type may be 
assigned by using the "Group Attributes" window. 

4. All other fields are of type char. 

If a field has multiple occurrences, the corresponding structure member will be de
clared as an array. 

j xforrn supports C data types. In addition, it provides zoned decimal and packed deci
mal for developers using the JAM Cobol Language Interface. See the table below. 

jxforID data type C data type 

omit 

char string char 

int int 

unsigned int unsigned int 

short int short 

long int long 

float float 

double double 

zoned dec. char 

packed dec. char 

If om it is chosen as a data type, the field or group will be ignored by f 2 s t ru ct. 

JAM Release 5.03 20 Nov 92 Page 47 



JAM Utilities Guide 

ERRORS 

Language %s undefined. 
Cause: The language you have given with the -g option has not been defined in the 
utility's tables. 
Corrective action: Check the spelling of the option. 

%s already exists. 
Cause: You have specified an existing output fIle. 
Corrective action: Use the - f option to overwrite the me, or use a different name. 

%s has an invalid file format. 
Cause: An input fue is not of the expected type. 
Corrective action: Check the spelling and type of the offending file. 

'%s' has no data to convert. 
Cause: An input file is empty, or does not have the names you specified. 
Corrective action: Check the names. 

Not enough memory to process '%s'. 
Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

At least one screen name is required. 
Cause: You have not given any screen mes as input 
Corrective action: Supply one or more screen me names. 

Page 48 JAM Release 5.03 20 Nov 92 

1 
I 
I 
l 



Chapter 2: Utility Reference Manual 

f3to5 
convert Release 3 screens to Release 5 format 

SYNOPSIS 
f3toS [-adjlulJ [-fpvxJ [-e extJ SCfSen ••• 

OPTIONS 

-a Do not convert j am-pf1 field to AUTO JAM control string. 

-d Do not remove jam_d_df1t and jam_f_df1t fields. 

- J Do not convert JAM control fields to control strings. 

-1 Interpret Release 3 HIGHILOW intensity as LOW (default is HIGH). 

-u Convert all unprotected fields to menu fields (for item selection). 

-1 Do not convert jam_first to screen entry function. 

- f Overwrite existing ftles with the same name. Usually not recommended. 

-p Create each output me in the same directory as the corresponding input 
ftIe. This option is not recommended. 

-v Print the name of each screen as it is processed. 

-x Delete extension form Release 3 files. 

-e Appends ext to the names of all output files. 

DESCRIPTION 

This utility is provided to developers upgrading from JAM Release 3. 

f3toS converts one or more Release 3 screens to Release 5 format. It gives each new 
screen the same name as the old one, unless you use the option -e. If you do not wish 
to use this option, we recommended that you run this utility in a directory other than the 
one storing the original Release 3 screens. 

ERRORS 

Please see f4toS. 

JAM Release 5.03 20 Nov 92 Page 49 



JAM Utilities Guide 

f4to5 
convert Release 4 screens to Release 5 format 

SYNOPSIS 
f4toS [-fpv] [-e ext] screen ... 

OPTIONS 
- f Overwrites existing fIles with the same name. Usually not recommended. 

-p Creates each output fIle in the same directory as the corresponding input 
file. This option is not recommended. 

-v . Prints the name of each screen as it is processed. 

-e Appends ext to the names of all output flIes. 

DESCRIPTION 
f 4 toS converts one or more Release 4 screens to Release 5 format. It gives each new 
screen the same name as the old one, unless you use the option -e. If you do not wish 
to use this option, we recommended that you run this utility in a directory other than the 
one storing the original Release 4 screens. 

f 4 toS will convert date, time, and currency fields to Release 5 formats. Release 4 
screens with these formats must be converted for these fields to work properly. All other 
screens can be included in Release 5 applications without conversion by this utility. 
You can, of course, run the utility on all Release 4 screens if it is more convenient than 
isolating those that contain date, time, or currency fields. 

ERRORS 
At least one screen name is required. 
Cause: You failed to provide the name of a screen to be converted. 
Corrective action: Re-type the command, followed by the name of at least one Release 
4 screen. 

File screen already exists. Use '-f' to overwrite. 
Cause: The specified screen file (including the extension you are appending to release 
5 ftles) already exists in the directory from which you are running f4toS. 
Corrective action: Run the utility from another directory, or run the utility specifying 
a different extension, or run the utility using the - f option. 

sc~nis not a release 4 screen. 
Cause:The specified screen me is not a release 4 screen. 
Corrective action: If the ftle is a release 3 screen, use the f3 to5 utility. 

Page 50 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

screen is a release 5 screen. 
Cause: The specified screen was already converted to release 5, or was originally 
created with release 5. 
Corrective action: None needed. 

JAM Release 5.03 20 Nov 92 Page 51 



," 
J'< 

JAM Utilities Guide 

formlib 
application librarian 

SYNOPSIS 
formlib -c [-flY] Ilbntry [fll •... ] 
formlib -d [-1 v] library fllB . .• 
formlib -r [-1 v] library fils . . . 
formlib -t [-1] library [file ... ] 
formlib -x [-flv] IIbntry [pathItIl8 ... ] 

OPTIONS 

-c Creates a new library and puts all named fIles in the library. H no files are 
named, all files in the current directory will be put in the library. 

-d Deletes the named fIles from the library. 

-r Adds or replaces the named fIles in library. 

-t Lists the current contents of library. 

-x Extracts one or more files from library and places them in the specified di-
rectory, or in the current directory if no directory is specified H no files are 
named, everything in library will be extracted. 

- f OveIWrites an existing library or file with the same name. 

-1 Uses lowercase. 

-v Prints the name of each file as it is being processed. 

DESCRIPTION 

form1ib creates libraries where you may store screens and binary IPL files. (ASCn 
IPL files are converted to binary with the utility jpI2bin.) You may actually store 
any type of fIle in a library, but JAM will retrieve only screen and binary JPL files from 
a library at runtime. With forml ib you can store many screens in a single me and not 
clutter a directory with individual screen and IPL mes. 

Exactly one of the options -c, -d, -r, -t, or -x, and a library name must be specified 
to execute form1ib. 

When specifying file, you may use any of the wildcard or pattern matching symbols 
supported by your operating system. For example on MS-DOS, the command 

form1ib -c screen1ib *.jam 

Page 52 JAM Release 5.03 20 Nov 92 

""I 
I 
I 
I 



...... Chapter 2: Utility Reference Manual 

will put all files with the extension j am in the library screenlib. 

The option -1 is useful for developers whose operating systems distinguish between 
upper and lower case ftle names. If -c or -r is used with -1 all the specifted mes add
ed to the library will have lowercase names. For example on a UNIX system, 

formlib -cl newlib * 

puts every me which is in the current directory into the library newlib. All the mes in 
the library are named in lowercase. Therefore if MAIN. JAM is a me in the current di
rectory, the library me is named main. jam. 

When -1 is used with -d, -t, or -x, JAM will convert me names to lower case when 
looking for them in the library. For example, 

formlib -xl lib SCRN2 

tries to extract scrn2 from lib. If it fmds the screen, it will create the output file 
SCRN2. 

ERRORS 

Library '%s' already exists; use '-f' to overwrite. 
Cause: You have specified an existing output me. 
Corrective action: Use the -f option to overwrite the me, or use a different name. 

Cannot open '%s'. 
Cause: An input ftle was missing or unreadable. 
Corrective action: Check the spelling, presence, and permiSSions of the me in ques
tion. 

Unable to allocate memory. 
Insufficient memory available. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

File '%s' is not a library. 
Cause: The named me is not a form library (incorrect magic number). 
Corrective action: Check the spelling and existence of your library. 

'%s' not in library. 
No forms in library. 
Cause: A screen you have named is not in the library. 
Corrective action: List the library to see what's in it, then retry the operation. 

Temporary file '%s' not removed. 
Cause: The intermediate output file was not removed, probably because of an error 
renaming it to the real output file. 
Corrective action: Check the permissions and condition of the fdes, then retry the op
eration. 

JAM Release 5.03 20 Nov 92 Page 53 



JAM Utilities Guide 

jamcheck 
update screens to match entries in a data dictionary 

SYNOPSIS 
jamcheck [-cix] [-fp] [-e ext] [-v] dlctlonllry screen ... 
jamcheck [-m] [-cix] [-fp] [-e ext] [-v] dictionary screen ... 
jamcheck [-abdglqrstz] [-cix] [-fp] [-e ext] [-v] dictionary screen ... 

OPTIONS 

For matching: 

-m Matches on everything. 

-a Matches on field display attributes. 

- b Matches on all group attributes. 

-d Matches on field character edits.* 

-g Matches on field miscellaneous edits. 

-1 Matches on field fonnatting edits, such as date, time, and currency for-
mat.* 

-q Matches on field protection. 

-r Matches on field functions (entry, validation, and exit). 

- s Matches on field length and number of occurrences. * 
-t Matches on field status text 

- z Matches on field help and item selection edits. 

• Defaults if no matching options are Specified. 

For Changing Fields and Groups to Match Data Dictionary: 

-c 

-i 

-x 

Page 54 

Changes field characteristics and group attributes to the values in the data 
dictionary. according to the specified or default matching options. Old 
screens will be saved with an extension prv or ext specified with -e. 

Requests confrrmation before making changing to a screen field. Changes 
made according to the specified or the default matching options. 

Extends on screen length and/or array size of field. By default, a screen field 
is made larger by making it shifting or scrolling. 

JAM Release 5.03 20 Nov 92 

. I 

I 
I 
• 



Chapter 2: Utility Reference Manual 

For Screen Backups: 

-e Appends ext rather than prv as the extension to backup screen fIles. 

- f Overwrites existing screen bad.'Up files. 

-p Places the backup screens in the same directory as the originals, rather than 
the current directory. 

Other: 

-v Lists screen names as they are processed. 

DESCRIPTION 

This utility reads a data dictionary into memory, compares it with one or more screens. 
It compares screen fields against data dictionary entries with the same names. Com
mand options control which of the many field or group characteristics are checked. If 
no options are given, the utility checks field character edits, field format commands, 
and field size, as though the options were -d 1 s. 

This utility can also change the screen fields to bring them into conformity with the data 
dictionary. It will change field characteristics according to the specified matching op
tions, or the default options if none were specified. JAM saves the old screens with the 
extension prv, or ext if -e is used. 

If you tell j amcheck to expand fields onscreen with -x and the screen cannot accom
modate a larger field, the field will be made shifting or scrolling; fields will always be 
extended, offscreen if necessary. Fields can always be made smaller. 

Screens without named fields are listed, but otherwise ignored. Screen and field names 
without corresponding data dictionary entries are also ignored. 

ERRORS 

Unable to allocate memory. 
Cause: The utility could not allocate enougb memory for its needs. 
Corrective action: None. 

Can't read %s. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the fIle in ques
tion. 

%s is not a valid data dictionary. 
Bad data in %s. 
Cause: An input file was of the wrong kind, or bas been corrupted. 
Corrective action: Check the type of the indicated me. 

JAM Release 5.03 20 Nov 92 Page 55 



JAM Utilities Guide 

File %s already exists; use '-f' to overwrite. 
Cause: You have specified an existing output me. 
Corrective action: Use the -f option to overwrite the file, or use a different name. 

Field "%sn in %s has same name as data dictionary Record. 
Cause: Warning only. The indicated field will not be compared. 
Corrective action: None. 

There are also many infonnational messages, which are meant to be self-explanatory. 

Page 66 JAM Release 5.03 20 Nov 92 

- "1 

1 
I , 

, 



Chapter 2: Utility Reference Manual 

• Jammap 
list relations among JAM screens 

SYNOPSIS 
jammap [-clmrsw) [-pv) [-e ext] topscreen 
jammap [-clmrsw) [-pv) [-0 file) topscl'88n 

OPTIONS 

-c The Control String Function Report provides an alpbabetic listing of func
tions which are called from JAM control strings attached to logical keys 
(in the Control String Window, not in menu fields). Control string functions 
begin with a caret 

-1 The Linkage Report shows the contents of every JAM control field for 
each screen in topscreen's directory. The screens are listed in alphabetical 
order. This top-level screen as well as forms and windows referenced by 
display-form or display-window control strings are included in this report. 
Control strings that reference a screen not in the list will be flagged. 

-In The Links Missing Report lists the names of screens that are referenced by 
control links, but are not found in the current directory. 

-r This report lists all the screens checked. 

-5 The System Call Report lists programs and commands included in JAM 
control strings beginning with an exclamation point 

, '. 

-w The List of Parameter Windows contains names of all the parameter win-
dows included in JAM control strings via the percent sign ("%") option. 

-p Places backup fIles in the same directory as the original screen files. 

-v Lists input screens and processing steps to the terminal as they occur. 

-e Gives the map file the extension that follows the option letter. If -0 is used, 
-e will be ignored. 

-0 Places the output listing in the me whose name follows the option letter. 
-0- (without mapff/e) displays the listing on the terminal. 

DESCRIPTION 

j amrnap reports on the status of the screens in a JAM directory and the relationships 
among them. You must give specify the name of the top-level screen. It scans the direc-

JAM Release 5.03 20 Nov 92 Page 57 



JAM Utilities Guide 

tory containing topscreen and creates reports according to the specified options. By 
default, the reports are placed in a me with the name of the top-level screen and an 
extension of .map, or ext if -e is used. 

j arnmap produces a report with 6 sections. You can select which sections you want 
printed by specifying the one or more of the options above. If you specify none of these 
options, j anunap will print all 6 sections. 

ERRORS 

Exactly 1 form name is required. 
Cause: The argument to this utility is the top-level screen of a JAM application; you 
have supplied extra parameters. 
Corrective action: Retry the command, without the excess. 

Unable to allocate memory. 
Insufficient memory for lists, form 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Can't find top level form 
Cause: The input me was missing or unreadable. 
Corrective action: Check the spelling, presence, and permisSions of the me in ques
tion. 

Page 58 JAM Release 5.03 20 Nov 92 

"I 
I 
1 



Chapter 2: Utility Reference Manual 

jpl2bin 
compile a JPL text file into a binary file 

SYNOPSIS 
jp12bin [-pv] [-e ext] JPL-flIs ... 

OPTIONS 

-p Places output files in the same directory as input files. 

-v Generates a list of files processed. 

-e Appends ext as extension to output me names (default is bin). 

DESCRIPTION 

JPL modules created with the Screen Editor in a JPL procedure window are compiled 
when the module is saved (by pressing XMIT in the JPL procedure window). JPL mod
ules stored in ASCII text flIes are compiled at runtime, each time the module is called. 
You can use jp12bin to eliminate runtime compilation of JPL files. This utility com
piles a JPL text file and saves it to a binary me. The binary me may be called directly. 

If you want to add JPL mes to libraries or memory resident lists, you must fust convert 
the flIe with jp12bin. JPL routines in binary mes may be placed in libraries by them
selves or in libraries with related screen meso 

The compilation process performs syntax checking on command words, converts JPL 
command words into tokens, partitions the me into procedures. Please refer to the JPL 
Guide for a more detailed discussion of the JPL compilation process. 

ERROR CONDIDONS 

%s: No such file or directory. 
Cause: The input file could not be found. 
Corrective action: Check the spelling and presence of the file or the full patbname of 
the input me. 

Unrecognized verb. 
Cause: Line in the JPL me does not begin with a valid JPL command. 
Corrective action: Check the spelling of the command word in question. 

USAGE: FOR varname = Value WHILE ( expression ) STEP [+-] 
value 
Cause: A for statement in the JPL fIle is incorrect 

JAM Release 5.03 20 Nov 92 Page 59 



JAM Utilities Guide 

Corrective action: Check that the statement contains the three command words for, 
while, and step. 

Verb needs arguments. 
Cause: JPL command requires at least one argument. 
Corrective action: See reference section in JPL Guide for information on the command 
in question. 

Page 60 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

key2bin 
convert key translation files to binary format 

SYNOPSIS 
key2bin [-pvJ [-e ext] keyflle ... 

OPTIONS 

-p Places the binary flies in the same directories as the input flies. 

-v Lists the name of each input file as it is processed. 

-e Appends ext to the output file name. The default extension is bin. 

DESCRIPTION 
The key2bin utility converts key translation files into a binary fonnat for use by ap
plications using the JAM library. The key translation files themselves may be gener
ated by JYACC modkey, which is documented elsewhere in this chapter, or created with 
a text editor according to the rules described in the chapter on key files in the JAM 
Configuration Guide. 

keyfiJe is the name of an ASCII key translation file. By convention it is an abbreviation 
of the terminal's name, plus a tag identifying it as a key translation file; for instance, the 
key translation file for the vt100 is called vt100keys. The utility first tries to open its 
input me with the exact name you put on the command line; if that fails, it appends 
keys to the name and tries again. The output flIe will be given the name of the success
fully opened input file, with a default extension of bin. 

To make a key translation file memory-resident, rust run the binary file produced by 
this utility through the bin2c utility to produce a program source me; then compile 
that flIe and link it with your program. 

ERRORS 

File '%s' not found 
Neither '%5' nor '%s' found. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the me in ques
tion. 

Unknown mnemonic in line: '%s' 
Cause: The line printed in the message does not begin with a logical key mnemonic. 
Corrective action: Refer to smkeys.h for a list of mnemonics, and correct the input 

JAM Release 5.03 20 Nov 92 Page 61 



JAM Utilities Guide 

No key definitions in file '%s' 
Cause: Warning only. The input fIle was empty or contained only comments. 
Corrective action: None. 

Malloc error 
Cause: The utility could not allocate enougb memory for its needs. 
Corrective action: None. 

Cannot create '%s' 
Error writing '%s' 
Cause: An output file could not be created, due to lack of permission or perhaps disk 
space. 
Corrective action: Correct the fIle system problem and retry the operation. 

Page 62 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

Istdd 
list the contents of a data dictionary 

SYNOPSIS 
lstdd [-cdglr] [-p] [-e Bxt] [dlctionBry] 
1 s tdd [-cdg 1 r ] [ -p ] [-0 file] [ dictionary] 

OPTIONS 
-e Lists comments. 

-d Lists default field characteristics for new entries. 

-g Lists attributes for all groups. 

-1 Lists field characteristics for all entries. 

-r Lists the fields belonging to data dictionary records. 

-p Places the listing in the same directory as the input file. 

-e Append ext to the output file name. The default is 1st. If -0 is used, -e 
is ignored. 

-0 Places the output in the file whose name follows the option letter. The de
fault is the name of the data dictionary with the extension 1st. -0-- (with
out file) displays the output to the terminal. 

DESCRIPTION 
This utility reads a data dictionary, by default data. die, and creates a buman-read
able listing of the contents. By default, all information in the dictionary is listed, but 
you may use one or more options to make a selective listing. 

An output file created with 1 s tdd cannot be converted to a binary data dictionary. Use 
dd2ase for this purpose. 

ERRORS 
Error opening input file. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the me in ques
tion. 

Error opening output file. 
Cause: An output me could not be created, due to lack of permission or perhaps disk 

JAM Release 5.03 20 Nov 92 Page 63 



JAM Utilities Guide 

space. 
Corrective action: Correct the me system problem and retry the operation. 

Unable to allocate memory. 
Can't allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Error reading data dictionary file. 
Error writing list file. 
Cause: The utility incurred an 110 error while processing the file named in the mes
sage. 
Corrective action: Retry the operation. 

Invalid file format or incorrect version. 
%s is not a valid data dictionary. 
Bad data in %s. 
Cause: An input file has the wrong magic number or is corrupt 
Corrective action: Make sure all the input ftles are data dictionaries. If you have Re
lease 3 data dictionaries, you may need to run dd2r4 to update them. 

Page 64 JAM Release 5.03 20 Nov 92 

°1 
I 
i 
I 



Chapter 2: Utility Reference Manual 

Istform 
list selected portions of screens 

SYNOPSIS 
lstform [-abdgijmnpstvx] [-k num] [-e en] screen .. . 
1st form [-abdgijmnpstvx] [-k num] [-0 nle] screen .. . 

lstform [-abdgijmnpstvx] [-w] [-e en] ~n .. . 
1st form [-abdgijmnpstvx] [-w] [-0 nle] IICreen .. . 

OPTIONS 

-a Lists default field characteristics for the screen. 

- b Excludes line numbers. 

-d Lists display data. 

-e Outputs a file for each named screen. 

-g Lists all group edits. 

- i Lists initial field data, including offscreen data. 

-j Lists JAM control strings. 

- k Permits lines of an arbitrary length, num. If num = 0, columns are wrapped 
and not truncated. If num is 20 or greater, the utility truncates columns fol
lowing column num. For values of num greater than 0 but less than 20, the 
utility defaults to the value 20. 

-m Lists data relevant to the screen as a whole: border, screen entry fimction, 
etc. 

-n Includes a snapshot of the screen showing underscores in place of fields. 

-p Places output files in the same directory as the corresponding inputs. 

-9 Includes a snapshot of screen showing display data and initial onscreen 
contents of fields. 

-t Lists all field edits. 

-v Prints the name of each screen on the terminal as it is processed. 

-x Excludes form feeds and page numbers. 

- k Does not truncate columns. Permits lines of an arbitrary length, num. 

JAM Release 5.03 20 Nov 92 Page 65 



JAM Utilities Guide 

-w Wraps columns over 76 or 77, rather than truncating. 

-e 

-0 

Generates one output me, appending ext to the me name. The default ex
tension is 1st. If the option -0 is used, -e is ignored. 

Sends the output to a single me whose name follows the option letter. -0-

(without file) sends output to screen. 

DESCRIPTION 

This program lists all or some edits of one or more screen files. By default, all the data 
about each field in each screen is included. Using command options, however, you can 
direct that only some of the display be generated. 

By default, screen snapshots are truncated at 80 cohonns. Unless the -b option is used, 
the default snapshot shows 76 columns of the screen, and saves 4 colwnns for line num
bers. Use - b to exclude line numbers, or use -w to wrap columns, or use - k to specify 
the number of columns to be shown. 

ERRORS 
Error opening input file. 
Cause: An input file was missiog or unreadable. 

._, 
j 

Corrective action: Check the spelling, presence, and permissions of the me in ques- . j 
tion. 

Error opening output file. 
Cause: An output file could not be created, due to lack of permission or perhaps disk 
space.· 
Corrective action: Correct the me system problem and retry the operation. 

Unable to allocate memory. 
Can't allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Error reading form file . 
. Error writing list file. 
Cause: The utility incurred an 110 error while processing the me named in the mes
sage. 
Corrective action: Retry the operation. 

Page 66 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

modkey 
key translation file editor 

SYNOPSIS 
modkey [ keytl/e 1 

DESCRIPTION 

The modkey utility provides a convenient mechanism for specifying how keys on a 
particular keyboard should operate in the JAM environment It provides for defining 
the function, editing, and cursor control keys used by JAM, as well as soft keys and 
keys that produce foreign or graphics characters. Finally, modkey can store label text 
corresponding to your keys, for use in prompts and help messages. 

The output of modkey is a text file called the key translation fIle. After being converted 
into a binary table by the key2bin utility, it is used to translate pbysical characters 
generated by the keyboard into logical values used by the JAM library. By dealing with 
logical keys, programs can work transparently with a multitude of keyboards. 

Refer to the Author's Guide for a table explaining the functions of the cursor Control 
and editing keys. The format oCthe key translation me generated by modkey is ex
plained in the chapter on key files in the JAM Configuration Guide. 

I ~e~~~~N~~~ ~~O~ight-bit chMaCreffl in ilie rnnge 0 00 255 (hex 
FF). It defines characters in the ranges hex 20 to hex 7E and hex AO to hex FE as data 
characters, and the rest as control characters. Control characters have mnemonic 
names; the character hex IB, for instance, is usually called ESC or escape. See the 
chapter on key fIles in the JAM Configuration Guide for a listing. Note that certain 
computers, such as PRIME, "flip" the high bit of ASCn characters; on such computers, 
ESC would be hex 9B and the letter A would be hex Cl. In this document, standard 
ASCn values will be used. 

When you press a key, the keyboard generates either a single ASCII data character, or 
a sequence of characters beginning with an ASCn control code. JAM converts these 
characters into logical keys before processing them. Logical keys are numbers between 
zero and 65535. Logical values between I and hex FF represent displayable data; val
ues between hex 100 and hex IFF are cursor control and editing keys; values greater 

JAM Release 5.03 20 Nov 92 Page 67 



JAM Utilities Guide 

than hex IFF are function keys. Zero is never used. For a list of logical values, see the 
key file chapter in the JAM Configuration Guide. 

Data characters received from the keyboard are not translated. Sequences beginning 
with a control character are translated to a logical value, representing a data character 
or function key, according to the following algorithm. 

When a control character is received, we search the key translation table for a sequence 
beginning with that character. If there is one, we read additional characters until a 
match with an entire sequence in the table is found, and return the logical value from 
the table. If the initial character is in the table but the whole sequence is not, the whole 
is discarded, on the assumption that it represents a function key that is missing from the 
table. Finally, if a control character does not begin any sequence in the table, it is re
turned unchanged; this is useful for machines such as mM PC's that use control codes 
for displayable characters. The Programmer's Guide contains a detailed discussion of 
key translation. 

I ~~:~~O~~~ ~ ~n~i~n~e~ ~~~d lin~ optionruly followed by 
the name of the key translation me you want to create, examine, or change. If you are 
editing or examining an existing me, you should run modkey in the me's directory 
(usually the config directory). If you supply a key translation me name, the main 
menu (Figure 2) appears at once. If you do not give a me name, the welcome screen 
(Figure 1) appears, and you may enter one there. 

I ~~~::~U~d ~~~e:e~~co~~~~g,~~~~on keys, m= 
keys do not operate in the utility. Instead, displayable data keys are used for these pur
poses. For example, the TAB key is usually used to move the cursor from one field to 
the next. But since TAB is one of the keys being defmed with this utility, it cannot first 
be recognized; the data key t is used instead. 

Using data keys for control purposes poses no problem since, in this utility, data keys 
may not begin a control sequence. This will become clearer when the screens in subse
quent sections are described The control functions that are supported in the modkey 
utility and the keys that are used to provide them are given in the following table: 

Page 68 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

Control Function Key 

TRANSMIT + 

EXIT -

HELP ? 

REDRAW SCREEN ! 

BACKSPACE < 

BACKTAB b 

FIELD ERASE d 

ENTER KEYTOP k 

TAB t 

ERASE ALL UNPROTECTED z 

The k key, or ENTER KEYTOP, causes a small window to appear under the cursor in 
which you may enter the label found on the key in question on your keyboard. This 
label will be stored in the key translation me; it can be accessed by library functions 
and in status line messages, and is very useful in help messages telling an operator 
which key to press. It operates in aU the screens below the main menu that are actually 
used for defIning keys. 

JAM Release 5.03 20 Nov 92 Page 69 



JAM Utilities Guide 

a fIle name, the welcome screen 

Using this utility you can edit a previously created KEY TRANSLATION file 
or create a new one. 

Enter the name of the file you would like to create or modify in the field 
belClJl and then press the "+" key. File names should be in the fonn "tttkeys" 
where ttt is a mnemonic for the type of tenninal you are using. For example 
"vt100keys" might be used for a vt100 terminal. 

To exit the MODKEY utility without proceeding further, press the "-" key. 

File Name: :11------- ( Enter '<' to BACKSPACE 
Enter "+" to ENTER 
Enter ~-" to EXIT ) 

Note: Control keys are not active in this utility. Instead, data keys are 
used for control purposes. 

Rgure 1: rnodkey Welcome Screen 

Here you specify the key translation file to be created or modified, by entering it in the 
field labeled File Name. If you make a mistake, backspace over it using the < key. 
When finished, complete the screen by pressing the + key. 

Key translation me names should begin with a mnemonic for the type of terminal you 
are using, and end with key s. For example vt 1 0 0 key s might be used for a vt 1 0 0 
terminal. This convention, while not mandatory, helps avoid confusion with video ftles 
and with other key translation ftles. All files distributed by JYACC adhere to it 

If the file already exists, it is read into memory and may be modified; otherwise, you 
start from scratch. All modifications are made in memory, and ftle updates are per
formed only at the conclusion of the program and at your explicit request 

To exit the rnodkey utility while the welcome screen is displayed, press the "-" key 
(EXIT). 

Page 70 JAM Release 5.03 20 Nov 92 



· '" Chapter 2: Utility Reference Manual 

I :~~me::o~~ Figure 2 is displayed uJlOn entry to the utility. and whenever 
you return from a lower-level screen. 

JYACC MODKEY UTILITY MAIN MENU 

o. Exit 
1. Help 
2. Define Cursor Control And Editing Keys 
3. Define Function Keys 
4. Define Shifted Function Keys 
5. Define Application Function Keys 
6. Define Softkeys 
7. Define Miscellaneous Keys 
8. Test Key Translation File 

Enter the desired option (0-8): _ 

Figure 2: rnodkey Main Menu Screen 

You select an option by typing the corresponding number. For example, to test the key 
translation file, press "8". If you make an invalid selection, an error message will ap
pear, acknowledge it by pressing the space bar. 

The functions on the main menu are described in subsequent sections. 

JAM Release 5.03 20 Nov 92 Page 71 



JAM Utilities Guide 

I ~~~~Old~e~ p~~ ~ ili~~~~~:iS caures ilie e~t ~reen Wlgme 3) to be 
invoked. This screen initially contains a single field into which you enter s, e, or -. 

JYACC MODKEY UTILITY EXIT SCREEN 

Enter: 'S' to save data in a file 
'E' to exit the utility without saving data 
'-' to return to the main menu 

Rgure 3: rnodkey Exit Screen 

To save the key translation ftle on disk, enter S or s. When this is done, the file name 
entered in the Welcome Screen appears; you may change it if you wish, and press + to 
write it to disk. To exit the utility without saving the file, enter e. If you press -, the 
main menu will reappear, and you may make additional cbanges to the key translation 
fIle. 

Page 72 JAM Release 5.03 20 Nov 92 

1 



Chapter 2: Utility Reference Manual 

I ~e~;~r:~~::~red from me mrun menu by pressing "\"; it appe= ill 
Figure 4. 

here are two types of keys on your keyboard--Data keys and Control keys. Data 
ey~ will genvrate a ~ingle printabl~ character when pressed. Control key;; 
ill generate a sequence of one or more characters, the first of which is non
rintable. 

n SUbsequent SCr9inS, you will be asked to d~ignate the control kiys that 
hould be used for various functions. For example, one control kiy will be 
esignated as EXIT, another as PF1. To assign a key to B function, the key 
ust be pressed twice in succession. Try this in the field below. 

:.. r.Eo:. -: •• ;'.. 11' I.: .;.: 

....... 1-=====------
U;;i the "+" or "_" keys to md t to the rna i n IlEIOU 

hen done correctly, the characters generated by the key ~ill be shown in 
he KEY STROKE field. As each key is typed, its characters are shown in the 
HARACTERS GENERATED field. 

f you get out of sync. press the space bar repeatedly until a message appears. 

Figure 4: rnodkey Help Screen 

In addition to displaying useful information, this screen may be used to test out the 
kinds of keystroke entry that will be required on subsequent screens in this utility. 

There are two types of keys: those that generate a single ASCII character, and those that 
generate a sequence of characters. When a sequence is genera~ the first character is 
always an ASCII control character. To see the characters generated by a particular key, 
type that key twice while the help screen is displayed. (Different keys generate different 
numbers of characters; when you press the key twice, the program can sense the pat
tern.) 

When the key is pressed the first time, the characters produced will be shown following 
CHARACTERS GENERATED. When the key is pressed the second time and recog
nized, the sequence representing the key will appear following KEY STROKE. 

It is sometimes desirable to designate a sequence of keystrokes to serve a particular 
purpose. For example, on a system with a small number of function keys, one may 
choose to implement the function keys FI through F9 with the sequence control-F 
n where n is a single digit This sequence of keystrokes can be interpreted by JAM as 
a single key. 

To demonstrate this, type control-F 1 into the help screen, by pressing the F key 
while holding the CTRL key down, releasing both, and then pressing the 1 key. The 

JAM Release 5.03 20 Nov 92 Page 73 



JAM Utilities Guide 

sequence ACK 1 will appear following CHARACTERS GENERATED. Repeating the 
sequence will duplicate the ACK 1 after CHARACTERS GENERATED column, and 
also display ACK 1 following KEY STROKE. 

If a printable ASCII character is pressed twice in a sequence, rnodkey immediately 
displays it in the KEYSTROKE column. If a non-printable character is pressed and then 
a second, different character is pressed, rnodkey will assume that a sequence is being 
tried and will continue displaying these characters in the CHARACTERS GENERATED 
field. However, if the sequence gets to be longer than six characters without starting to 
repeat, rnodkey will display Sequence too long. You must acknowledge this 
message by pressing the space bar. If you realize you have made a mistake in entering 
a key or key sequence and do not wish to duplicate it, press any key repeatedly until you 
see Sequence too long. After acknowledging the message, you can start over. 

Note: While the help screen allows you enter a printable ASCII character as the first 
keypress, the other screens in rnodkey do not. In addition, the help screen may allow 
certain keystrokes to generate characters that are not permitted in other modkey 
screens, such as SP when the space bar is pressed. 

To exit from the help screen and return to the main menu, press the "-" key (EXfD as 
the frrst character in a sequence. 

Page 74 JAM Release 5.03 20 Nov 92 

-, 
I 
I 

I 

. , 
, , .. 



Chapter 2: Utility Reference Manual 

I DEFINING CURSOR CONTROL AND 
EDITING KEYS 
This function allows the operator to specify the keys that should be used for the various 
cursor control and editing operations. When "2" is selected from the main menu, the 
screen shown in Figure 5 appears. This screen bas a field for each of the cursor control 
and editing functions supported by JAM. Each function has a logical value defmed in 
the file smkeys . h. The purpose of this screen is to allow the operator to specify a se
quence of characters for each function key. 

EXIT 1------ LEFT ARRCN _____ _ 
TRANSMIT _______ _ RIGHT ARRIN _____ _ 
HELP _____ _ UP ARRO'9' ______ _ 
FORN HElP ______ _ . DeNN ARReN _____ _ 
LOCAL PRINT _____ _ CHAR DELETE _____ _ 
NE'W LINE _____ _ INSERT MODE _____ _ 
TAB ______ _ FIELD ERASE _____ _ 
BACK TAB _____ _ ERASE ALL ______ _ 
H!Jo1E _____ _ INSERT LINE ______ _ 
BACK SPACE ______ _ DELETE LINE _____ _ 
LAST FIELD __________ _ ZO(}4 _____ _ 
SCROLL UP ______ _ REFRESH _____ _ 
SCROLL DCNN _____ _ SHIFT LEFT _____ _ 
SOFTKEY SET ______ _ SHIFT RIGHT _____ _ 
VIE't'PORT _______ _ MENU TOGGLE ______ _ 

Each key or sequence of keys must be pressed twice in succession. 

Special keys: + ENTER 
- EXIT 
? HELP 

t TAB 
b BACKTAB 

REDRAIt' SCREEN 

d DELETE ENTRY 
z ERASE ALL 
k SET KEYTOPS 

Rgure 5: modkey Cursor Control and Editing Screen 

II ASSIGNING A KEY TO A FUNCTION 
To designate a key for a particular cursor control or editing function, position the cursor 
after that function's name and press the key twice. For example, to designate a key as 
the EXIT key, press it twice in succession while the cursor is in the EXIT field. When 
modkey recognizes the second keystroke, the sequence of characters generated by the 
key will be displayed, and the cursor will move to the next field. 

It is not permissible to define a printable ASCII character as a cursor control or editing 
key. This means that the sequence of characters generated by the key must start with an 
ASCII control character. If this is not the case, an error will be displayed. An error will 
also be displayed if the sequence of characters matches a sequence assigned to another 
function. 

JAM Release 5.03 20 Nov 92 Page 75 



JAM Utilities Guide 

When a field is left empty, its corresponding function will not operate in programs us
ing the keyboard translation me being defmed. If your program has no use for a particu
lar key (such as EMoH-last field on the screen), you may leave that entry blank on this 
screen. However, certain keys are required for the proper operation of j xforrn, and 
should be specified if you are creating a table for use with it A list of the required keys 
is given in the key file chapter in the Configuration Guide. 

Situations may arise in which you do not press the same key twice in succession. This 
will be evident because rnodkey will not display the characters that were generated To 
recover, press the space bar repeatedly until the message Sequence too long ap
pears. Then, after acknowledging the message with the space bar, you may enter the 
correct keystrokes. 

To define a key label or key top for any key on this screen, press k with the cursor at the 
beginning of the key sequence. A small, borderless window will appear, bearing the 
word KEYTO P : . In the following field, you should type whatever appears on top of the 
key on your keyboard, using the < key to rub out mistakes. When done, press + to save 
the label, or - to discard it We recommend the use of key labels. These labels can be 
retrieved at run-time in user messages with %K and with JAM library routines. In addi
tion, if someone wishes to examine your key translation me using rnodkey, they can 
use the key top label rather than the codes to learn a mapping. 

II ASSIGNING A SEQUENCE OF KEYS TO A 
FUNCTION 
It is sometimes desirable to designate a sequence of keystrokes to serve a particular 
purpose. For example, on a keyboard with few function keys, one might implement the 
function keys PFl through PF9 with the sequences control-Fl through con
trol-F9. 

One assigns a sequence of keystrokes to a function in much the same way as one assigns 
individual keys. The sequence is entered once in its entirety and is then repeated. Upon 
successful completion, the characters generated on behalf of the sequence are dis
played. If you do not press the same key sequence twice, rnodkey will not display the 
generated characters. To recover, press the space bar repeatedly until the message Se
quence too long appears. At this point, you may enter the correct keystrokes. 

Page 76 JAM Release 5.03 20 Nov 92 

j 
; 



Chapter 2: Utility Reference Manual 

I ~i~~C~~ ~~: ili~O~:~:~y~e ~y~::OUld be usoo ~ me function 
keys (PFI - PF24). When "3" is selected from the main menu, the screen of Figure 6 
appears. 

PFI I- - - - - - PF13 - - - - - -
PF2 - - - - - - PF14 - - - - - -
PF3 - - -- - -- -- PF1S --- -- --- - -- --
PF4 - - - - - - PF16 - - - - - -
PF5 - - - - - - PF17 - - - - - -
PF6 - - - - - - PflB - - - - - -
PF7 - - - - - - PF19 - - - - - -
PFB - - - - - - PF20 - - - - - -
PF9 - - - - - - PF21 - - - - - -
PFIO - - - - - - Pf22 -- -- - - -- --
PFll - - - - - - PF23 - - - - - -
PF12 - - - - - - PF24 - - - - - -

Each key or sequence of keys must be pressed twice in succession 

Special keys: + ENTER 
- EXIT 
? HELP 

t TAB 
b BACKTAB 
I REDRA'W SCREEN 

Figure 6: modkey Function Key Screen 

d DELETE ENTRY 
z ERASE ALL 
k SET KMOPS 

This function works exactly like its counterpart for defming the cursor control and edit
ing keys described on page 75. You designate a key or key sequence as a function key 
by pressing it twice, with the cursor in the field to which the sequence applies. For ex
ample, to defme con tro1-F as the PF2 key, position the cursor to the PF2 field using 
t and b, and type con t ro 1-F twice in succession. 

To save the changes made in this screen and return to the main menu, press the + key. 
To return to the main menu without saving changes, use the "-" key. 

To define a key label or key top for any key on this screen, press k with the cursor at the 
beginning of the key sequence. A small, borderless window will appear, bearing the 
word KEYTO P : . In the following field, you should type whatever appears on top of the 
key on your key~ using the < key to rub out mistakes. When done, press + to save 
the label, or - to discard it 

Note: If you wish to use Fll and F12 on a PC, you must add the XKEY flag to the 
video fIle. 

JAM Release 5.03 20 Nov 92 Page 77 



JAM Utilities Guide 

I ~i~::ti~ I:~ ili~O~~~: ~P~U:~k~~~~~:e ~~~~ shlfred 
function keys (SPFI - SPF24). When 4 is selected from the main menu, the screen de
picted in Figure 7 appears. 

) 'a. IX r'1UlJI\b"-'::;rllr-r:u :JI-:U.irAI,r I-U:'"C;llUII K!:Y IJC,:-~m;IIJ;1 :::I.'r.:!:I:f! 

SPFl I- - - - - - SPF13 - - - - - -
SPF2 - - - - - - SPF14 - - - - - -
SPF3 - - - - - - SPF15 - - - - - -
SPF4 - - - - - - SPF16 - - - - - -
SPF5 - - - - - - SPF17 - - - - - -
SPF6 - - - - - - SPF18 - - - - - -
SPF7 - - -- - - - SPF19 - - - - - -
SPFB - - - - - - SPF20 - - - - - -
SPF9 -- -- -- --- -- -- SPF21 - - - -- - -
SPFI0 - - - - - - SPF22 - - - - - -
SPFll - - - - - - SPF23 - - - - - -
SPF12 - -- --- - -- - SPF24 -- - -- --- -- -

Each key or sequence of keys must be pressed twice In succession 

Special keys: + ENTER 
EXIT 

? HELP 

t TAB 
b BACKTAB 

REDRA't' SCREEN 

d DELETE ENTRY 
z ERASE ALL 
k SET KEYTOPS 

Rgure 7: rnodkey Shifted Function Key Screen 

This function works exactly like its counterpart for defining the keys described on page 
75. You designate a key (or key sequence) as a shifted function key by pressing it twice 
with the cursor in the field to which the sequence applies. For example, to defme the 
sequence of keys control-B 2 as the shifted PF2 key, position the cursor to the SPF2 
field, using t and b, and type control-B 2 twice. 

To save changes made in this screen and return to the main menu, press the + key as the 
first character in a sequence. To return to the main menu without saving the changes, 
use the "-" key. 

To define a key label or key top for any key on this screen, press k with the cursor at the 
beginning of the key sequence. A small, borderless window will appear, bearing the 
word KEYTO P : . In the following field, you should type whatever appears on top of the 
key on your keyboard, using the < key to rub out mistakes. When done, press + to save 
the label, or - to discard it 

Page 78 JAM Release 5.03 20 Nov 92 

.. , 



Chapter 2: Utility Reference Manual 

I DEFINING APPLICATION FUNCTION 
KEYS 
This function allows the operator to specify the keys that should be used as the applica
tion function keys (APPl - APP24). These logical keys are often used internally in 
programs without being assigned to the physical keyboard. When "5" is selected from 
the main menu, the screen of Figure 8 appears. 

APPl I- - - - - -- APPl3 - - - - - -APP2 - - - - - - APP14 - - - - - -
APP3 - - - - - - APP15 - - - - - -
APP4 - - - - - - APP16 - - - - - -APP5 - - - - - - APP17 - - - - - -APP6 - - - - - - APPl8 - - - - - -APP7 - - - - - - APP19 - - - - - -APP8 - - - - - - APP20 - - - - - -
APP9 - - - - - - APP21 - - - - - -
APPI0 - - - - - - APP22 - - - - - -
APPll - - - - - - APP23 - - - - - -APP12 - - - - - - APP24 - - - - - -

Each key or sequence of keys must be pressed twice in succession 

Special keys: + ENTER 
- EXIT 
'? HELP 

t TAB 
b BACKTAB 

REDRAW SCREEN 

d DELETE ENTRY 
z ERASE ALL 
k SET KEYTIFS 

Figure 8: modkey Application Function Key Screen 

This function works exactly like its counterpart for defining the keys described on page 
75. 

To define a key label or keytop for any key on this screen, press k with the cursor at the 
beginning of the key sequence. A small, borderless window will appear, bearing the 
word KEYTOP : . In the following field. you should type whatever appears on top of the 
key on your keyboard. using the < key to rub out mistakes. When done, press + to save 
the label, or - to discard it 

JAM Release 5.03 20 Nov 92 Page 79 



JAM Utilities Guide 

SFTl I- - - - - - SFT13 - - - - - -
SFT2 - - - - - - SFT14 - - - - - -
SFT3 - - - - - - SFT15 - - - - - -
SFT4 - - - - - - SFT16 - - - - - -
SFT5 - - - - - - SFTl? - - - - - -
SFT6 - - - - - - SFT1B - - - - - -
SFT? - - - - - - SFT19 - - - - - -
SFT8 - - - - - - SFT211 - - - - - -
SFT9 - - - - - - SFT21 - - - - - -
SFT10 - - - - - - SFT22 - - - - - -
SFTll - - - - - - SFT23 - - - - - -
SFT12 - - - - - - SFT24 - - - - - -

Each key or Qequence of kgyQ must be pressed twics in succession 

Special keys: + ENTER 
- EXIT 
? HELP 

t TAB 
b BACKTAB 

REDRA't' SCREEN 

Figure 9: modkey Soft Key Screen 

d DELETE ENTRY 
z ERASE ALL 
k SET KEYTOPS 

If your terminal SUpports soft keys, they may be defined on this screen. If you do not 
have hardware support for soft keys, you may defme specific keystroke sequences as 
your soft keys. 

This function works exactly like its counterpart for defining the keys described on page 
75. 

At run-time the logical key SFfS is used to toggle If no soft keys are defmed on this 
screen, the defaults are the PF keys. 

Page 80 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

I ~~i~:~e~~y~ ~:::~:~~~~=~ ~r~~~Ogi~ keys. 
When "7" is selected from the main menu, the screen of Figure 10 appears. 

I we 
1------

L .'. II::'L .•. :.~ _:: M 

LOGICAl.. VALUE DISPLAY MOOE IS:loIt£IoII1HC 

Spec i a 1 kS)/5: + ENTER 
- E><IT 
t TAB 
b BACKTAB 

? HELP 
I REDRAW SCREEN 
d DELm EHTRV 
z ERASE ALL 

v TAB TO VAlUE FIELD 
k SET KEVTIFS 
< BACKSPACE IN VALUE FIELD 
c CHANGE MOOE 

Rgure 10: rnodkey Miscellaneous Key Screen 

This function works in a similar manner to its COtmterpart for defming the cursor con
trol and editing keys described on page 75. However, on this screen you must defme the 
logical values as well as the sequences that produce them. (On all other screens, the 
logical value was implicitly determined by the field with which the sequence was 
associated.) 

The miscellaneous key defmition saeen has two columns for each key being defmed, 
labeled KEY STROKE and LOGICAL VALUE. You enter a key or key sequence into 
these fields twice in succession, and rnodkey displays the generated characters; then 
the cursor moves to the LOGICAL VALUE column for that key. Here, you must enter 
the logical value to be returned when JAM recognizes the sequence of characters you 
have just entered. You may get to the logical value field directly by pressing v in the 
corresponding KEY STROKE field. The existing logical value is erased from the field 
when you press v. 

You may define up to 240 miscellaneous keys. Use n to move to the next page of mis
cellaneous keys, and p to move to the previous page. 

JAM Release 5.03 20 Nov 92 Page 81 



JAM Utilities Guide 

I :~:.:u~ ~~n:b~~O~OU~~b?!:~!:~: ~~ ~~ inOO iliffi field. 
This is unlike most other fields, where data characters are not allowed or are given spe
cial meaning (such as 'b" representing BACKTAB). When entering logical values, 
three keys are allowed in addition to the data keys necessary to enter the value: 

• The + key (TRANSMm signifies that the logical value just typed is 
correct and should be used. When it is pressed, modkey will fIrst 
check the logical value for errors. If no errors are detected, the cursor 
will tab to the next KEY STROKE field; otherwise, an error message 
will appear. 

• The - key (EXIT) means that the logical value just typed is incorrect 
and should be ignored. The cursor will go back to KEY STROKE fIeld 
associated with the logical value, and the logical value is reset to its 
previous value. If the logical value fIeld was previously empty, it and 
the KEY STROKE fIeld are both cleared. 

• The < key (BACKSPACE) backs up the cursor one position at a time, 
so that corrections to the logical value can be made. It erases previous
ly entered data as it moves. 

I LOGICAL VALUE DISPLAY AND ENTRY 
MODES 
Logical values are displayed, and may be entered, in any of four modes. The mode af
fects how a logical value is displayed on the screen after you save the defInition. Log
ical values may be entered as decimal, octal, mnemonic, or hexadecimal regardless of 
the display mode. The current mode is displayed on the screen following the label 
LOGICAL VALUE DISPLAY MODE. It may be changed by typing c as the first char
acter of a sequence while the cursor is in any of the KEY STROKE fIelds on the screen. 
When the miscellaneous keys screen is first invoked, the mode is hexadecimal. It cycles 
through all four modes when you press the c key. The four modes are: 

• decimal 

• octal 

Page 82 

In decimal mode, you enter logical values as decimal numbers. If the log
ical value is zero, an error will be displayed. 

In octal mode, you enter logical values as octal numbers (base 8). If the log
ical value is zero, an error will be displayed. Octal numbers are entered 
with a leading o. 

JAM Release 5.03 20 Nov 92 

-. 
I 



Chapter 2: Utility Reference Manual 

- hexadecimal 

-mnemonic 

In hexadecimal mode, you enter logical values as hexadecimal (base 16) 
numbers. If the logical value is zero, an error will be displayed. Hexadeci
mal values are entered with a leading Ox. 

In mnemonic mode, you enter the mnemonic associated with any of the 
logical values stored in the inc 1 ude file srnkeys. h. For example, if 
EXIT is entered into the LOGICAL VALUE field, the logical value of the 
EXIT key, hex 103, will be used. If an incorrect mnemonic is entered, an 
error will be displayed. For a list of valid mnemonics, press ? key while the 
cursor is in a logical value field. 

Entering the logical value as a mnemonic is preferable, as you are less likely to mistake 
the value you want. Using the numeric modes, it is possible to defme logical key values 
other than those present in srnkeys . h, but this should be done cautiously. You should 
avoid the range 100 hex through IFF hex, which is reserved for future use by JYACC. 
Also, for portability's sake, the values should be small enough to fit in a tW<H>yte inte
ger, i.e., less than 65536 (10000 hex). 

To define' a key label or key top for any key on this screen, press k with the cursor at the 
beginning of the key sequence. A small, borderless window will appear, bearing the 
word KEYTO P : • In the following field, you should type whatever appears on top of the 
key on your keyboard, using the < key to rubout mistakes. When done, press + to save 
the label, or - to discard it 

I ~:~~~~~:~T~:~~~~I~jn~~.:ilie+keyasilie 
frrst character in a sequence while the cursor is in a KEY STROKE field. To discard the 
changes and return to the main menu, use the - key. 

JAM Release 5.03 20 Nov 92 Page 83 



JAM Utilities Guide 

I !~f~~On~:~~~~~t~u~~~~~~ti~~~~n ~'~~:ecred 
from the main menu, the screen of Figure 11 is displayed. This screen has two fields 
labeled KEY STROKE and LOGICAL VALUE. You enter a keystroke (or sequence of 
keystrokes) that has been defmed in another screen, and modkey will display the logical 
value of that key. The key or keys need only be pressed once, since the table is being 
tested for how it will behave when used in a real application. 

This screen is used to test out the Key Translation file being defined. 

To ~o this, press any key in the field bel~. The characters generated by the 
key will be displayed along with its logical value. 

H FM " .. ",",;: .. ~:... :.".: -.~ -1------
LOGICAL VALUE DISPlAY NODE IS: ~NEMONIC 

If a llIultipla key sequence has been defined, the entire sequence must be entered 
for the logical \lalue to be displayed. Once the sequence is started, the CIr80r 
will be turned off until it is completed. 

If you get out of sync. press the space bar repeatedly until a lIes5ago appears. 

Spec 1a I Keys: + ENTER 
- EXIT 
c CHANGE MODE 

Rgure 11: modkey Test Screen 

If a key sequence forms only part of a previously specified sequence, modkey will wait 
for another key until a sequence is matched, or until it determines that no match is pos
sible. In the latter case, the message Key not def ined will appear. 

The logical value can be displayed in any of the four modes (decimal, octal, hexadeci
mal, or mnemonic). To change modes, press c as the flfSt character in a sequence. Help 
text can.be obtained by pressing? To exit the screen and return to the main menu, use 

ERRORS 
Invalid entry. 
Cause: You have typed a key that is not on the menu. 
Corrective action: Check the instructions on the screen and try again. 

Key sequence is too long. 
Cause: You have typed more than six keys without repeating any. 

Page 84 JAM Release 5.03 20 Nov 92 



•.. ' ~ 

Chapter 2: Utility Reference Manual 

Co"ective action: Key sequences for translation may be at most six characters long. 
Choose a shorter sequence. 

Invalid first character. 
Cause: A multi-key sequence must begin with a control character. 
Co"ective action: Begin again, using a control character. 

Invalid mnemonic - press space for list 
Cause: In the miscellaneous keys screen, you have typed a character string for logical 
value that is not a logical key mnemonic. 
Co"ective action: Peruse the list, then correct the input 

Invalid number - enter <decimal>, O<octal> or Ox<hex> 
Cause: In the miscellaneous keys screen, you have typed a malformed numeric key 
code. 
Co"ective action: Correct the number, or use a mnemonic. 

Cannot create output file. 
Cause: An output file could not be created, due to lack of permission or perhaps disk 
space. 
Co"ective action: Correct the file system problem and retry the operation. 

Key sequence does not repeat. 
Cause: You have typed a key sequence that failed to repeat a string of six characters or 
less. 
Corrective action: Retry the sequence, or use a shorter one. 

Cannot accept NUL as a key. 
Cause: The ASCn NUL character (binary 0) cannot be used in a key translation se
quence, because it is used internally to mark the end of a sequence. 
Corrective action: Use another key. 

Key previously defined as %s 
Cause: You have typed a key sequence that has already been assigned to another key. 
Corrective action: Use a different key or sequence, or reassign the other. 

WARNINGS 

Key overlaps with %s 
Cause: You have defmed a sequence that is a substring of a previously defIned se
quence. 
Action: You may defIne a sequence that is a substring of another sequence, but be sure 
that you have a timing interval set in the video fue with the entry KED_DELAY. 

JAM Release 5.03 20 Nov 92 Page 85 



JAM Utilities Guide 

msg2bin 
convert message files to binary 

SYNOPSIS 
msg2bin [-pv] [-e ext] ~nle . . . 
msg2bin [-pv] [-0 nle] mesnge-nle .. . 

OPTIONS 
-p Places each output file in the same directory as the corresponding input file. 

-v Prints the name of each message file as it is processed. 

-e Gives the output files the extension that follows the option letter, rather 
than the default bin. If -0 is used, -e is ignored. 

-0 Places all the output in a single me, whose name follows the option letter. 

DESCRIPTION 
The rnsg2bin utility converts ASCII message files to a binary format for use by JAM 
library routines. 

The input[s] to this utility are text files containing named messages, either distributed 
by JYACC for use with the JAM library or defined by application programmers. For 
information about the format of ASCII message mes, see the chapter on message mes 
in the JAM Configuration Guide. 

The message me and msg2bin utility provide three different services to application 
designers. FIrst, the error messages displayed by JAM library functions may be trans
lated from English to another language or altered to suit the taste of the application de
signer. Second, error messages for use by application routines may be collected in a 
message me and retrieved with the rnsg_get library function; this provides a central
ized location for application messages and saves space. Finally, the standard library 
messages (and user messages) may be made memory-resident, to simplify and speed up 
the initialization procedure (at some added cost in memory). The bin2c utility con
verts the output of this utility to a source me suitable for inclusion in the application 
program. 

Be aware that there is a maximum size to a message file that can be run through 
msg2bin. The sum over all messages of the message length + 2 must not exceed 
65,529. If your message fIle is too long, separate it into two or more sections. 

ERRORS 
File '%s' not found. 
Cause: An input me was missing or unreadable. 

Page 86 JAM Release 5.03 20 Nov 92 



Chapter 2: Utility Reference Manual 

Corrective action: Check the spelling, presence, and permissions of the fIle in ques
tion. 

Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Bad tag in line: %s 
Cause: The input file contained a system message tag unknown to the utility. 
Corrective action: Refer to smerror . h for a list of tags, and correct the input. 

Missing '=' in line: %s 
Cause: The line in the message had no equal sign following the tag. 
Corrective action: Correct the input and re-run the utility. 

JAM Release 5.03 20 Nov 92 PageS7 



JAM Utilities Guide 

term2vid 
create a video file from a terminfo or termcap entry. 

SYNOPSIS 

term2vid [-f 1 termilJlll-mnemonlc 

OPTIONS 

- f OveIWrites existing file with the same name. 

DESCRIPTION 

This utility is only distributed on UNIX systems. 

terrn2vid creates a rudimentary Screen Manager video file from information in the 
tenninfo or termcap database. The video file produced by terrn2vid is limited by the 
description found in term info or. tenncap. You should test the video file which 
terrn2vid produces and expand it as necessary to include features not listed in ter
minfo and termcap. The documentation for your terminal should provide the necessary 
information. terminal-mnemonic is the name of the tenninal type, the value of the sys
tem environment variable TERM, which is used by the C library flll1ction tgetent to 
access that database. The output file will be named after the mnemonic. 

ERRORS 

No cursor position (ern, cup) for %s 
Cause: An absolute cursor positioning sequence is required for JAM to work, and the 
termcap or terminfo entry you are using does not contain one. 
Corrective action: Construct the video [tie by hand, or update the entry and retry. 

cannot find entry for %s 
Cause: The terminal mnemonic you have given is not in the termcap or tenninfo data
base. 
Corrective action: Check the spelling of the mnemonic. 

File %8 already exists; use '-f' to overwrite. 
Cause: You have specified an existing output me. 
Corrective action: Use the -f option to overwrite the me, or use a different name. 

Page 88 JAM Release 5.03 20 Nov 92 

. ~ 
I 
! 
I 
I 



Chapter 2: Utility Reference Manual 

txt2form 
converts text files to JAM screens 

SYNOPSIS 
txt2 form [-fvJ textflle screen [rows columns] 

OPTIONS 

- f Overwrites an existing output fIle. 

-v Prints the name of each screen as it is being processed. 

DESCRlPTION 

This program converts textfile to a JAM screen, named screen. It creates display data 
sections from the input text It preserves blank space, and expands tabs to eight4:harac
ter stops; other control characters are just copied to the output Text that extends beyond 
the designated maximum output height or width is discarded; if the last two parameters 
are missing, the defaults are taken from the video ftle. The maximum value for rows 
and columns is 254. 

txt 2 form puts no borders, fields, or display attributes in the output screen. However, 
underscores (or other, user-designated field defmition characters) in the input are co
pied to the screen fIle; if you subsequently bring the screen up in j xform and compile 
it, those characters will be converted to fields. 

ERRORS 

Warning: lines greater than %d will be truncated 
Warning: columns greater than %d will be truncated 
Cause: Your input text fIle has data that reacbes beyond the limits you have given (de
fault 23 lines by 80 columns) for the screen. 
Corrective action: Shrink. the input, or enlarge the screen. 

Unable to create output file. 
Cause: An output fIle could not be created, due to lack of permission or perhaps disk 
space. 
Corrective action: Correct the fIle system problem and retry the operation. 

JAM Release 5.03 20 Nov 92 Page 89 



JAM Utilities Guide 

var2bin 
convert files of setup variables to binary 

SYNOPSIS 
var2bin [-pvJ [-e ext] setupllle ... 

OPTIONS 
-p Puts output file in same directory as input file. 

-v Prints the name of each setup ftle as it is converted. 

-e Appends ext to the name of each output file. The default is bin. 

DESCRIPTION 
This utility converts files of setup variables (i.e., SMVARS and SMSETUP) to binary 
format for use with JAM library routines. See the chapter on setup ftles in the JAM 
Configuration Guide for a full description of how to prepare the ASCII file. 

ERRORS 
Error opening %s. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the file in ques
tion. 

Missing I = I • 

Cause: The input line indicated did not contain an equal sign after the setup variable 
name. 
Corrective action: Insert the equal sign and run var2bin again. 

%s is an invalid name. 
Cause: The indicated line did not begin with a setup variable name. 
Corrective action: Refer to the Configuration Guide for a list of variable names, cor
reet the input, and re-run the utility. 

%s may not be qualified by terminal type. 
Cause: You have attached a terminal type list to a variable which does not support one. 

Corrective action: Remove the list You can achieve the desired effect by creating dif
ferent setup files, and attaching a terminal list to the SMSETUP variable. 

Unable to set given values. 
%s conflicts with a previous parameter. 
%s is an invalid parameter. 

Page 90 JAM Release 5.03 20 Nov 92 

'I 
I 



Chapter 2: Utility Reference Manual 

Cause: A keyword in the input is misspelled or misplaced, or conflicts with an earlier 
keyword. 
Corrective action: Check the keywords listed in the manual, correct the input, and run 
the utility again. 

Error reading smvars or setup file. 
Cause: The utility incurred an I/O error while processing the file named in the mes
sage. 
Corrective action: Retry the operation. 

Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

At least one file name is required. 
Cause: You have failed to give an input file name. 
Corrective action: Retype the command, supplying the file name. 

Entry size %d is too large. 
String size %d is too large. 
Cause: The indicated right-hand side is too long. 
Corrective action: Reduce the size of the entry. 

JAM Release 5.03 20 Nov 92 Page 91 



JAM Utilities Guide 

vid2bin 
convert video files to binary 

SYNOPSIS 
vid2bin [-pv) [-e art) vldso-f1ls 

OPTIONS 

-p Puts output fIle in same directory as input file. 

-v Prints the name of each setup fIle as it is converted. 

-e Appends ext to the name of each output me. The default is bin. 

DESCRIPTION 

The vid2bin utility converts an ASCn video fIle to binary format for use by applica
tions with the JAM library routines. The video fIles themselves must be created with a 
text editor, according to the rules listed in the video manual. 

video-file is an ASCII video fIle. Customarily, it is an abbreviation for the name of the 
terminal for which the ASCn video me has been constructed followed by the suffix 
vid, for example sunvid for a terminal, or col vid for a color monitor. When 
searching for the me, vid2bin first tries the mnemonic, then the mnemonic followed 
by vid. The output file is named after the input me, with the extension bin or the 
extension ext specified with -e. 

In errors are encountered during the conversion, JAM will display up to 10 error mes
sages. No output file will be created. 

To make a video file memory-resident, run the bin2c utility on the output of 
vid2bin, compile the resulting program source me, link it with your application, and 
call the library routine vini t. For information about the format of the ASCn video 
me, refer to the video manual and the Programmer's Guide. 

ERRORS 

Neither %s nor %s found. 
Cause: An input me was missing or unreadable. 
Corrective action: Check the spelling, presence, and permissions of the file in ques
tion. 

A cursor positioning sequence is required. 
An erase display sequence is required. 

Page 92 JAM Release 5.03 20 Nov 92 

1 
I 
I 



Chapter 2: Utility Reference Manual 

Cause: These two entries are required in all video fIles. 
Corrective action: Determine what your terminal uses to perform these two operations, 
and enter them in the video me; then nm the utility again. 

Unable to allocate memory. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: None. 

Error writing to file '%s'. 
Cause: The utility incurred an I/O error while processing the file named in the mes
sage. 
Corrective action: Retry the operation. 

Invalid entry: '%s'. 
Entry missing '=': '%s'. 
Cause: The input line in the message does not begin with a video keyword and an equal 
sign. 
Corrective action: Correct the input and re-run the utility. You may have forgotten to 
place a backslash at the end of a line that continues onto the next one. 

Invalid attribute list: '%s'. 
Invalid color specification: '%s'. 
Invalid graphics character specification (%5) :'%8'. 
Invalid border information (%8):'%S'. 
Invalid graphics type: '%s'. 
Invalid label parameter: '%5'.%5 
Invalid cursor flags specification: '%s'. 
Cause: You have misspelled or misplaced keywords in the input line in the message. 
Corrective action: Correct the input, referring to the Configuration Guide, and run 
vid2bin again. 

JAM Release 5.03 20 Nov 92 Page 93 



INDEX 

.",4 

[],4 

{}, 4 

1,4 

Symbols 

A 
Argument processing, utilities, 8 

B 
bin2c, 11-12 

bin2hex,13 

c 
C language, data structures. See Data struc

tures 

Case sensitivity, -I option 
bin2c, 11 
bin2hex,13 
f2dd,44 
f2struct, 46 
formlib,52 

Command line options, utilities, 3-8 

Compiling, lPL, jpl2bin, 59-60 

Configuration 
converting key translation files, key2bin, 

61-62 
converting message fIles, msg2bin, 86-87 

Configuration (continued) 
converting setup variables, var2bin, 

90-91 
converting video files 

term.2vid, 88 
vid2bin, 92-94 

defming keys, modkey, 67-85 
key translation fIles, modkey, 67-85 
utilities, 2 

Conversion utilities 
binary fIles to C, bin2e, 11-12 
binary to/from hex ASCII, bin2hex, 13 
data dictionary to C, dd2struct, 26--28 
data dictionary to/from ASCII, dd2asc, 

14-25 
lPL, jp12bin, 59 
key translation fIles, key2bin, 61-62 
message fIles, msg2bin, 86-87 
screens from text files, txt2form, 89 
screens to/from ASCII, f2asc, 34-43 
setup variables, var2bin, 90-91 
upgrading 

dd3to5,29 
dd4to5, 30-31 
f3t05,49 
f4t05, 50-51 

video fIles, vid2bin, 92-94 

D 
Data dictionary 

ASCII, dd2asc, 14 
combining, ddmerge, 32 
convert from ASCII, dd2asc, 17-24 
convert to ASCII, dd2asc, 14-16 
convert to data structures, dd2struct, 26 
create/update from screens, f2dd, 44-45 
report, lstdd, 63-64 
screen update from data dictionary, 

jamcheck, 54-56 

JAM Release 5.03 20 Nov 92 Page 95 



JAM Utilities Guide 

Data dictionary (continued) E 
sorting, ddsort, 33 
upgrading Extensions, 7 

dd3to5,29 See also File names, extensions " 

1 

dd4to5,30-31 
, 

utilities, 1 
F dd2asc, 14-25 

dd2s truct , 26-28 
F_EXTOP,7 dd3to5,29 

dd4to5,30-31 F_EXTREC,6 
ddmerge,32 F_EXTSEP,7 
ddsort, 33 

f2asc, 34-43 
f2dd,44-45 
jamcheck, 54-56 f2dd,44-45 

lstdd, 63--64 f2struct,46-48 

Data structures, 6 f3to5,49 
create from binary files, bin2c, 11-12 f4to5, 50-51 
create from data dictionary, dd2struct, 

File, transporting, 13 26-28 
create from screens, f2struct, 46-48 File extensions, 7 

Data types, 27 File names 
extensions, 4-5 

dd2asc, 14-25 rules for, 5 
convert from ASCII, 17-24 

formlib, 52-53 convert to ASCII, 14-16 
display attributes, 18-24 
entry types, 17-18 I 

dd2struct, 26-28 
Input flles, 4-5 

dd3to5,29 

dd4to5,30-31 J 
ddmerge,32 

jamcheck, 54-56 
ddsort, 33 

jammap,57-58 
Display attributes, keywords JPL 

dd2asc, 18-24 compilation, jp12bin, 5~ 
f2asc, 36-42 utilities, jp12bin, 59-60 

Documentation utilities, 2 jp12bin, 59-60 
data dictionary, lstdd, 63--64 
libraries, formlib, 52 

K screen relationships, jammap, 57-58 
screens 

f2asc,34-43 Key translation. See modkey 

lstform, 65-66 key2bin,61-62 

Page 96 JAM Release 5.03 20 Nov 92 



~., ., 

L 

Library, create/update, formlib, 52-53 

Listings. See Documentation utilities 

Istdd,63-M 

lstform, 65-66 

M 

Memory, resident 
bin2c, 11-12 
form list, 11 
JPL,59 
key translation ftle, 61 
message ftle, 86 
video ftle, 92 

Message flle 
converting to binary, msg2bin, 86-87 
utilities, msg2bin, 86-87 

modkey, 67-85 
defming keys, 75-82 

application function keys, 79 
cursor keys, 75-76 
editing keys, 75-76 
function keys, 77 
miscellaneous keys, 81 
shifted function keys, 78 
soft keys, 80 

entering logical value, 82 
executing, 68 
exiting, 72 
help, 73-74 
key translation, 67-68 
logical value display modes, 82-83 
special keys, 68-69 
testing key file, 84 

msg2bin, 86-87 

... ~ ... .: 

o 
Options, 3-8 

order, utilities, 8 

Output files, 4-5 

p 
Path names, 6 

Programming utilities, 2 

Index 

binary to ASCII C, bin2c, 11-12 
binary to/from hex ASCII, bin2hex, 13 
data dictionary, dd2struct, 26-28 
screens, f2struct, 4~ 

R 
Reports. See Documentation utilities 

s 
Screen 

ASCII, f2asc, 34-43 
convert text to screens, txt2form, 89 
convert toIfrom ASCII, f2asc, 34-43 
create data structures, f2struct, ~ 
create/update data dictionary, f2dd, 44-45 
creation, f2asc, 35-36 
display, display attributes, 3&42 
editing, f2asc, 35-36 
library, create/update, 52-53 
relationships, jammap, 57-58 
report 

f2asc,34 
jarnmap, 57 
lstfonn, 65-66 

update from data dictionary, jamcbeck. 
54-56 

upgrading 
f3to5,49 
f4to5, 50-51 

JAM Release 5.03 20 Nov 92 Page 97 



JAM Utilities Guide 

Screen (continued) 
utilities, 1 

f2asc,34-43 
f2dd,44-45 
f2struct, 46--48 
f3to5,49 
f4to5, 50-51 
formlib, 52-53 
jamcheck, 54-56 
jammap, 57-58 
Istform, 65-66 
txt2form, 89 

Setup variables, converting to binary, 
var2bin,90-91 

SMFEXTENSION, 6 

SMSETUP, 9a--91 

SMVARS, 90-91 

T 

term2vid, 88 

Transportation utilities, 3 
converting to/from hex ASCII, bin2hex, 

13 

txt2form, 89 

u 
Upgrade 

data dictionary 
dd3to5,29 
dd4to5,30-31 

screens 
f3to5,49 
f4to5, 50-51 

utilities, 3 

Utilities 
See also Utilities indexed by name 
argument order, 8 
ftle name extensions, 4-5 
help, on-line, 4 
input files, 4-5 
introduction, 1-8 
option order, 8 
output files, 4-5 

v 
var2bin, 90-91 

vid2bin, 92-94 

Video fIle 
converting to binary, vid2bin, 92-94 
creating, term2vid, 88 
utilities 

term2vid,88 
vid2bin, 92-94 

Page 98 JAM Release 5.03 20 Nov 92 



Glossary 



Glossary 

The following terms are used throughout this manual in describing JAM. Some famil
iarity with them will help you learn JAM faster. 

active screen 

alternative scrolling 

application executable 

application mode 

array 

attached functions 

attributes 

authoring 

authoring executable 

The screen at the top of the window stack. This is the screen 
that the user may interact with. If there is a cursor, it will ap
pear on this screen. 

See custom scroUing. 

The executable version of an application that is given to the 
user. It does not allow access to the JAM Data Dictionary, 
Screen, or Keyset Editors. 

The start-up mode in an authoring session. In this mode, the 
developer may test a complete application, including indi
vidual screens and inter-screen links. Any of the editing 
modes may also be entered from application mode. Applica
tion mode may be customized to enable testing of applica
tion-specific, third generation language (e.g. C) code. (Con
trast with TESI'mode of the Screen Editor where screens can 
be tested, but inter-screen links cannot) 

A field comprising one or more occurrences. Each occur
rence may contain data. The on-screen portion of an array 
contains one or more field elements, where each field ele
ment is identified by a field number that is unique on the 
screen. An array may contain more occurrences than it has 
on-screen elements. In that case it is called a scroUing array. 

This term is no longer used as of JAM release 5. See field 
functions, group functions, and screen functions. 

The description of how a particular section of the screen will 
look, in terms of color, brightness, underline, blinking etc. 
Eachfield or display text area has a set of attributes. These 
are also called display attributes. 

The act of using the j xf orm utility to create a J AM applica
tion. 

An executable version of an application that provides access 
to JAM's Data Dictionary, Keyset, and Screen Editors, as 
well as to developer-written hook functions. It is created by 

JAM Release 5.03 20 Nov 92 Page 1 



Glossary 

linking these hook functions to the authoring libraries to 
create a new j xforrn authoring tool. An authoring execut
able can be useful to test the functionality of an entire ap
plication while allowing instant access to the Screen, Data 
Dictionary, and Keyset Editors. 

authoring environment The tools used to create and test JAM screens and links, the 
authoring environment includes application mode, the 
Screen Editor, Data Dictionary Editor, and optionally, the 
Keyset Editor. (Contrast witb runtime environment.) 

authoring tool 

block mode terminal 

caret function 

character edit 

checklist 

control field 

control string 

control function 

cursor 

custom scroUing 

Page 2 

See j xforrn. 

A terminal that collects user input and transmits a set of new 
or changed data to the host computer in a block, as opposed 
to a terminal that transmits eacb keystroke separately. 

Term no longer used as of JAM release 5. See control/unc
tion. 

A restriction placed by the developer on the type of characters 
(digits, numerics, letters, and so on) that may be entered in a 
field. These are enforced by JAM on the user's data entry in 
the field. 

A group of fields, zero or more of which may be selected by 
the user. 

See menu control freld. 

Control strings can be thought of as the links that hold a JAM 
application together. A control string defines the action to 
take place when function key and menu selection events oc
CUf. Possible actions include: displaying a form or window, 
calling a developer-written function, or executing a system 
command. 

A developer-defined function that is called via a control 
string. These were formerly known as caretfunctions and in
voked functions prior to JAM release 5. 

A marker on the display that indicates where any text that is 
typed will appear. It is usually a blinking reverse video block 
or a blinking underline character. 

An alternative to JAM's default (memory-based) mecha
nism for storing off-screen array occurrences. Also calledal
ternative scrolling or disk-based scrolling. 

JAM Release 5.03 20 Nov 92 



data dictionary 

Glossary 

A repository of information about fields and groups. The data 
dictionary serves two major functions: (1) during the author
ing process it provides a means of propagating field attributes 
from screen to screen, (2) when an application is run, the data 
dictionary (often abbreviated DD) is used to create the Local 
DaJaBlock. 

Data Dictionary Editor A tool used to create and modify the data dictionary. It is part 
of the authoring environment. 

developer One who builds JAM applications. 

disk-based scrolling See custom scroUing. 

display The physical screen of a terminal or monitor. (Contrast with 
a JAM screen, which is a software object) 

display text Those portions of a J AM screen that typically are not altered 
by the user or the program at runtime. Display text consists 
of text and grapbical characters that are not infields and that 
are not part of the screen border. 

DRAW mode One of four editing modes in the Screen Editor, DRAW mode 
supports entry of display text, creation of fields, and entry of 
initial data into fields. (Contrast with line-drawing mode, 
TEST mode, and select mode.) 

element An on-screen field in an array. (Contrast with occllrrence.) 

embedded punctuation Punctuation characters embedded (as initial data) in a digits 
only, alpha, or alphanumeric field The positions occupied by 
the embedded punctuation are skipped during data entry, 
thereby providing a mechanism for easily entering structured 
data such as telephone numbers. 

event An event is simply something that has happened. Most events 
are associated with a user interacting with an input device by 
pressing a function key or making a menu selection. Events 
often determine the flow of an application. 

executive See JAM Executive. 

field A part of a screen typically populated at runtime. This in
cludes areas in which the user enters data or makes a menu 
selection, or the program displays variable output Each field 
on a screen is uniquely identified by a field number. A field 
may also have a name. It ~ have a name if it is to be en
tered in the data dictionary. (Contrast with display text.) 

JAM Release 5.03 20 Nov 92 Page 3 



Glossary 

field attachments 

field edits 

field function 

field number 

field validation 

form 

form stack 

formaker 

Page 4 

Field name, next field specification, previous field specifica
tion, item selection screen, table lookup screen, status text, 
memo text, and validation function are all field attachments. 
Help screens, entry functions and exit functions may also be 
attached to fields. 

Restrictions placed on user data that can be entered into a 
fu!ld. Field edits will either (1) change the user's input to 
match the field edit (for example, right justify text or capital
ize lower case entries), or (2) reject the user's entry entirely 
when the field is validated (as with check-digit and range 
checking field edits). 

A function associated with field events (ie. - field entry, val
idation, and exit). 

A unique number automatically assigned to a JAM screen 
field based on its position on the screen. Fields are numbered 
from left to right beginning at the top line of the screen and 
ending at the bottom line. Thus, the left-most field on the top 
line of the screen would have field number 1, and the right
most field in the bottom line would have the highest field 
number on the screen. 

The action of checking that the contents of a field meet the 
criteria described in the field's validation function, as well as 
in thefield's edits. Field validation generally occurs when a 
field is exited with a tab, or when the TRANSMIT key is 
pressed. 

One of the two ways a developer may select to display a JAM 
screen within an application. When displayed as a form, a 
screen replaces the current form and closes all open windows. 
Only one form may be open at a time. (Contrast with a screen 
displayed as a window, which preserves any existing forms or 
windows.) 

An ordered list of the names of screens that have been dis
played as forms in the application. The form stack is main
tained by the JAM Executive. When a screen is displayed as 
a form, it is added to the ~p of the form stack. When a fOlID 
is closed, it is popped from the fonn stack and the previously 
displayed form is opened. 

A term no longer used as of JAM release 5. See Screen Man
ager and Screen Editor. 

JAM Release 5.03 20 Nov 92 



function key 

function list 

group 

group functions 

help screen 

hook functions 

infmite loop 

invoked function 

JAM Executive 

JPLmodule 

JPL procedure 

jxform 

Glossary 

A key with a function other than data entry. Function keys are 
normally associated with control strings that specify such ac
tions as form and window display. JAM function keys are de
fmed as logical keys, and the developer decides which physi
cal key to map each function to. This feature enables JAM 
applications to be terminal independent 

A list that maps function names to function memory address
es. A function list is needed if certain developer-written, 
compiled code (hook functions) will be used within the ap
plication. 

One or more fields that are part of a radio button or checklist 
Groups have characteristics such as entry/exit/validation 
functions and tabbing order. 

Functions associated with group events (group entry, exit and 
validation). 

An informational screen that may be attached to a JAM 
screen or field. A help screen is displayed when the HELP 
or SCREENHELP key is pressed. 

Developer-written functions that are linked into an applica
tion. They may be called by JAM during field, group, or 
screen entry/exit/validation, when a function key is pressed, 
when a menu item is selected, or at various other times. 

See loop. 

Term no longer used as of JAM release 5. See controlfunc
lion. 

The portion of JAM that manages the order of screen presen
tation. The JAM Executive performs this task by processing 
all control strings, and then directing the Screen Manager to 
display the appropriate screen in the manner specified. The 
JAM Executive processes control strings in response to the 
Screen Manager's reports of function key and menu field 
selection events. Developers may also write custom execu
tives. 

A collection of one or more ]PL procedures that are stored 
together. 

A subroutine written in the JPL programming language. 

The program that contains application mode, and the Screen, 
Data Dictionary, and Keyset Editors. It is also generally the 

JAM Release 5.03 20 Nov 92 PageS 



Glossary 

key translation table 

keyset 

operating system command entered to start an authoring ses
sion. jxform is also referred to as the authoring tool. 

A file that contains the mapping between JAM logical keys 
and the physical keys on a terminal. You may construct or 
change the key translation table with a text editor, or via the 
rnodkey utility. 

A mapping between a terminal's soft keys and their logical 
value. A keyset may contain several rows of soft key defmi
tions. Each defmition consists of a soft key label, an optional 
display attribute, and a logical value for the soft key. 

Keyset Editor The tool used to create and modify keysets. It is an optional 
part of the authoring environment. 

LDB See local data block. 

line-drawing mode One of four editing modes in the Screen Editor. Line-draw
ing mode allows the developer to draw lines and boxes using 
the cursor as a pen. Line-drawing mode can be entered from 
the Screen Editor. (Contrast with DRAW mode, TESI'mode and 
select mode). 

local data block A repository of data dictionary entries and values that is auto
matically created at run-time. The local data block transmits 
those values to fields or groups on screens that share the name 
of fields or groups in the data dictionary. 

logical key A device independent mnemonic for a pre-defined JAM 
function. These logical functions have names such as 
TRANSMIT, EXIT, and MENU TOGGLE. Logical keys are 
mapped to physical keys via the keyboard translation table. 

loop See infinite loop. 

menu The set of fields on a screen that have the menu edit. A user 
selects an item from a menu field to tell the JAM application 
what action to perform next 

menu control field The field directly to the right of a menu field It contains a 
control string to be executed when the menu item is selected. 
Menu control fields are usually oon-display fields. 

message file A configuration fIle that maps message text to message iden
tifiers. All JAM messages are stored in the message me to en
able customization (e.g. - for international use). Develop
ers may use the message fIle for application messages as well. 

Page 6 JAM Release 5.03 20 Nov 92 



Glossary 

The message file also contains global date, time, and curren
cy fOIDlats. 

occurrence A component of an array. The number of occurrences may 
be larger than the number of on-screen elements. Thus an oc
currence may be on- or off-screen. (Contrast with element). 

parallel array A term no longer used as of JAM release 5. See synchronized 
array. 

radio buttons A group of fields, only one of which may be chosen at a time 
(like the buttons on a a car radio). Making a selection auto
matically de-selects the previous selection. 

runtime environment The environment in which a user runs a JAM application. 
This environment acts like the authoring environment, but 
it does not contain the Screen, Data Dictionary, and Keyset 
Editors. 

scope A number between 0 and 9 that is associated with a data dic
tionary entry. A scope of zero prevents an entry from being 
included in the local data block at runtime. Entries with the 
same scope in the local data block can be erased and re-ini
tialized as a group. 

screen A term used to refer generally t%rms and windows. 

screen binary The representation of a screen that is created by the Screen 
Editor. The Screen Editor stores the screen binary into a file 
(typically called screennsme.j am). The screen binary con
tains all of the infonnation the Screen Manager needs at run
time to display the screen and to manage user interaction with 
the screen. The screen binary also contains the control strings 
that the executive uses to determine the order of screen pre
sentation. 

Screen Editor The Screen Editor supports the creation and testing of indi
vidual JAM screens. It is called from within the authoring 
environment. 

screen function A function associated with a screen event (entry or exit). A 
screen entry function is called when a screen is initially dis
played or when it is subsequently activated (exposed). A 
screen exit function is called when a screen is closed or deac
tivated (hidden). 

Screen Manager The JAM library functions that manage the display of indi
vidual screens, and user interactions with those screens. The 

JAM Release 5.03 20 Nov 92 Page? 



Glossary 

scrolling array 

select mode 

setup file 

shifting field 

sibling windows 

soft key 

stacked windows 

Pages 

Screen Manager handles events associated with a single 
screen, such as field entry, field exi~ group entry, group exit, 
screen entry, screen exit, and menu field selection events. 
The Screen Manager does not handle the order in which 
screens are displayed or the action of any control strings. 
Instead it notifies the JAM executive of such activities. 

An array that has more occurrences than it has on-screen ele
ments. Thus an array may contain a list of data longer than 
the available screen space. The user can scroll the array to 
bring off-screen OCClDTences on to the screen. 

Select mode may be entered from DRAW mode or TEST mode 
in the Screen Editor. In select mode, the developer may se
lect a block of display text and fields that can then be posi
tioned or edited as a single object 

At nmtime, JAM may use setup fLIes to learn about an ap
plication's configuration. The environment variables placed 
in these files tell JAM how the application should look, how 
the hardware is configured, and where important system fLIes 
are located. Configuration ftles can be used to establish 
installation-wide configuration infonnation and applica
tion-specific configuration infonnation. 

A field that may contain more data than fits in the horizontal 
area apportioned to it on the screen. Using the arrow keys, 
the user can shift the data in the field horizontally. 

Windows that are at the same level as each other. Siblings can 
be opened and activated without closing the calling window. 
In some windowing environments, these are called non-mod
al windows. The viewport key allows the user to select 
among (activate) any open sibling windows. (Contrast with 
stacked windows). 

A logical key whose action can change during the course of 
an application, depending on the context in which it is called. 
JAM uses a keyset to determine the action that a particular 
soft key will take. The keyset also contains screen labels that 
inform the user of the action of the soft key. Soft keys can be 
simulated on terminals that do not provide hardware support 
for them. 

Windows that appear on the display in a layered fashion. 
Once a stacked window has been opened, it must be closed 

JAM Release 5.03 20 Nov 92 



status line 

status text 

synchronized arrays 

system dateltime 

TEST mode 

user 

validation 

video (fIe 

viewport 

virtual screen 

Glossary 

before the user can access any underlying screens. In some 
windowing environments, these are called modal windows. 
(Contrast with sibling windows.) 

The line of the terminal display--usually the bottom line
that may be reserved for displaying error and status messages. 

A text string that appears on the terminal's status line at run
time, whenever the cursor enters a particular field. The status 
text is attached to the field. 

Two or more scrolling arrays on a screen whose data scroll 
together. Synchronized arrays need not be adjacent to each 
other on the screen, but they m.u.st contain the same number 
of total occurrences and on-screen elements. 

The current date and time stored in the computer. JAM date! 
time fields can be automatically initialized to the system 
date/time. 

One of four editing modes in the Screen Editor, lEST mode 
permits the developer to test individual screens during a 
screen editing sessioo. Since JAM control strings are not op
erational in lEST mode, only functions and edits relating to a 
single screen may be tested here. (Contrast with application 
mode where control flow can be tested, and with line drawing 
mode, select mode, and DRAW mode.) 

The end-user of a J AM application. (Contrast with develop
er) 

The process of checking user data entry against thefield edits 
imposed by the developer. Validation generally occurs when 
a field is exited via the TAB key. Validation generally oc
curs for all fields on a screen when the XMIT key is struck. 

A file that tells JAM how to use the capabilities of a specific 
terminal. JAM includes a set of video files for many different 
terminals. Optionally, the developer may defme a custom 
video fIle using the instructions in the JAM Configuration 
Guide. 

The mechanism through which the user views all or part of 
a virtual screen. Each JAM screen has its own viewport. The 
viewport key allows the user to move, resize, and scroll the 
viewport. 

An entire screen, including the visible and non-visible por
tions of it in a viewport. Unless discussing screens in the con-

JAM Release 5.03 20 Nov 92 Page 9 



Glossary 

window 

window stack 

word wrap 

working pen 

zoom 

Page 10 

text of viewports, the simpler term screen is generally used 
instead. Vutual screens may be as large as 254 rows by 254 
columns. 

One of the two ways that JAM can display a screen in an ap
plication. Unlike a screen displayed as ajorm, a screen dis
played as a window overlays but preserves any screens be
neath it The open window becomes the active screen and the 
image hidden by the open window is saved, to be restored and 
become active again when the open window is closed. Win
dows may be stacked or sibling. (Contrast with ajorm). 

A list that is kept internally by JAM that allows it to remem
ber the order in which windows were opened or rearranged 
with the viewport key. When a window is closed, it is popped 
off the window stack, and the previous window is re-dis
played. 

An optional attribute that may be given to an array which 
causes the occurrences in the array to be treated like lines of 
text JAM will not split lines in the middle of words. When 
characters are deleted from an occurrence, JAM automati
cally fIlls the line with words from the next occurrence in the 
array. When characters are inserted, JAM will wrap any text 
which is too lengthy for the current occurrence to the next oc
currence in the array. 

In the Screen Editor, the developer may specify a working 
pen to describe the display attributes to be used for anything 
that is added to the screen. To add display text or fields with 
different attributes, simply change the attributes of the work
ing pen. 

Any fIeld that shifts or scrolls may be viewed and edited in 
full using the ZOOM key. A pop-up window will appear that 
contains the entire on-screen and off-screen contents of the 
field, to the extent permitted by the physical display. 

JAM Release 5.03 20 Nov 92 



Upgrade Guide 



JAM Upgrade Guide 
Release 4 to Release 5 

Introduction 
You should probably skim through the Release 5 manual before upgrading to let you get 
an idea of some of the new featmes that we've added, and where to look to fmd information 
from the manual. By following the step by step instructions in this document you will be 
up and running quickly and easily. 

Step by Step Instructions 
1. Back up your Release 4 Application. 

2. ImtaII JAM Release S. 

Go to a different location on your disk than where you keep Release 4. We do not rec
ommend removing Release 4 until Release 5 is running your application successfully. 

Follow the step by step Installation notes that came with the Release 5 media 

3. Update your environmenL 

Your operating system will have to know where you have just installed the JAM 5 
libraries and executables. JAM will have to know where you have put your message 
and other configuration files. 

4. Convert Screens from Release 4 to Release 5 Format. 

You can easily convert Release 4 screens to Release 5 by running the f 4 toS utility. 
Check the Utilities Guide for useful information on how to use this utility. For exam
ple. to upgrade your existing Release 4 screens named screenl. j am and 
s c r een2 . j am, create a Release 5 application directory, then go to that directory and 
issue the following command: 

f4toS -v re14dir/screenl.jam re14dir/screen2.jam 

Depending on your operating system, you may need to use a different method of refer
encing the screens in the Release 4 directory. The -v flag will cause the computer, 
upon successful completion, to list screenl . j am and screen2 . jam. 

NOTE: Your new Release 5 screens will be almost identical except that your DATEJ 
TIME fields and CURRENCY FORMAT edits will be in Release 5 format. The con-

JAM Release 5.03 20 Nov 92 Page 1 



JAM Upgrade Guide 

version utility will convert the formats from Release 4 to Release 5. For example, the 
mnemonic used for a 4 digit year was YYYY. The conversion utility will convert 
YYYY to the Release 5 format, YR4. Note that if your application accessed the Re
lease 4 mnemonics with sm_edi t-ptr, then you may need to cbange application 
code. 

To upgrade memory resident screens, first get the disk resident screens that you 
created the memory resident screens from Originally. Use f4to5 to convert them 
from Release 4 to 5. Then create memory resident screens from the upgraded disk resi
dent screens. 

S. Convert your data dictionary from Release 4 to Release 5 formal 

Your data dictionary fIles must be updated with the dd4 to5 utility. Cbeck the Utili
ties Guide for useful information on how to use this utility. 

One method of updating your existing Release 4 data dictionary is to go to your Re
lease 5 application directory and then issue the following command (assuming that 
the name of the dictionary is da ta . d i c): 

dd4to5 -f re14dir/data.dic 

Depending on your operating system, you may need to use a different method of refer
encing the data dictionary in the Release 4 directory. 

6. Eliminate Use of Release 3 Library Routines 

Routines that were supported in Release 4 for compatibility with Release 3 are no 
longer supported. All usage of Release 3 routines must be updated to use Release 5 
routines. 

JAM 3 
jrn_ch_forrn_atts 
Idb_e_get 
Idb_e-put 
Idb_get 
Idb_init 
Idb_l_clear 
Idb_l_reset 
1 db_me rge 
Idb-put 
Idb_stat 
Idb_store 
Idb_t_reset 
Idb_t_clear 
snLdoesshift 
srn_g_itern 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

JAMS 
srn_option 
srn_i_fptr 
sm_i-putfield 
srn_n_fptr 
srn_ldb_init 
srn_lclear 
srn_lreset 
sllLallget 
sm_n-putfield 
srn_n_length; sllLn_rnax_occur 
srn_lstore 
srn_lreset 
sm_lclear 
srn_t_shift 
srn_o_gofield 

Page 2 JAM Release 5.03 20 Nov 92 

,., , 



Upgrading from Release 4 to Release 5 

sm_hasscroll 
sm_inoff 
sm_inon 
sm_n_g_item 
sm_n_nurn_items 
sm_n_read_item 
sm_n_w_item 

=> 
=> 
=> 
=> 
=> 
=> 
=> 

sm_t_scroll 
sm_ind_set 
sm_ind_set 
sm_i_gofield 
sm_n_nurn_occurs 
sm_i_fptr 
sm_i-putfield 

sm_nurn_items => sm_nurn_occurs 
sm_read_item => sm_o_fptr 
sm_w_item => sm_o-putfield 

7. Eliminate References To Global Variables 

If you were a little more adventurous than most and used some of the J AM internals 
that you found in the include files, then read the following paragraph. If 
sm_do_not_display orsm_f Idptrs seem familiar to you, then you are in this 
category. 

You should now take the opportunity to remove those unsupported globals from your 
code. They may still work, but it is a good idea to use the new SUPPORTED functions 
that we have added. These functions are sm_iset, sm-pset, sm_inquire, 
sm-pinquire, and sm_bi tops (sIn_bi tops was also documented in release 
4). Check the JAM Programmer's Guide for the descriptions of these functions. 

8. Update your binary configuration files. 

Go to the Configuration directory. If you had made any changes in these files in Re
lease 4, you will have to duplicate the changes in the Release 5 versions of these files. 
In particular, note that 

• KSET in the video file takes different arguments. If you modified 
KSET, see "video file" in the Configuration Guide for further informa
tion. 

• Status line defmitions are no longer allowed in the video me. All status 
line definitions are now in the message file. 

Be especially careful when modifying your message me. Copy your user messages 
into the message file. If you changed any JAM messages make sure that you are 
changing the same messages in Release 5. Some message mnemonics have been add
ed, deleted and, in a few cases, subtly changed their meaning. 

Run the following utilities on your new Release 5 text configuration flIes. 

key2bin Updates key files 
msg2bin Updates message me 
var2bin Updates SMVARS and SMSETUP files 
vid2bin Updates video files 

JAM Release 5.03 20 Nov 92 Page 3 



JAM Upgrade Guide 

See the Utilities Guide for information on how run these utilities. REMINDER: Set 
the environment variable SMVARS to point to the me (usually srnvars . bin) that 
you ran through var2bin. 

Note that the following JAM 4 var2bin mnemonics are included for backward 
com patabili ty. 

SMCHEMSGATI' 
SMCHFORMATI'S 
SMCHQMSGATI' 
SMCHSTEXTATI' 
SMCHUMSGATI' 
SMDWOPTIONS 
SMEROPTIONS 
SMFCASE 
SMFEXTENSION 
SMINDSET 
SMMPOPTIONS 
SMMPSTRING 
SMOKOPTIONS 
SMUSEEXT 
SMZMOPTIONS 

9. Check your JPL procedures. 

, &' and 'I' cannot be used as logical operators. They are now bitwise operators. This 
should not cause a problem in most cases. 

Colon syntax is not supported for specifying occurrences. . 

10. Compile your JAM appHcation. 

See your installation notes for the locations and names of JAM libraries. 

11. Don't PANIC. 

If nothing seems to work, check you environment variables, and make sure your oper
ating system is using the latest libraries and utilities. 

Make sure you converted your latest version of your application. If it didn't work in 
Release 4, then it probably won't work in Release 5. 

If j xf orm and other utilities print out a number enclosed in angle brackets, such as 
<4-687>, then check your message ftle; JAM can't fwd or read it 

Make sure that you are using utilities the way they wode in Release 5 not the way you 
remember them from Release 4. 

Check the manual for the proper usage of utilities. You may have missed the descrip
tion of a flag that you needed or reversed the order of some parameters. In addition, 
the examples may be helpful. 

Check the sample applications that come with JAM. 

Page 4 JAM Release 5.03 20 Nov 92 



Upgrading from Release 4 to Release 5 

For Your Information 
Once you've upgraded your application from release 4 t05, you'll wantto be aware of the 
following information .. 

Parameter windows are obsolete with the advent of colon preprocessing. They are not 
supported in release 5.02 unless you add the following lines to the application's main rou
tine (jmain or jxmain). 

extern int sm-param_windowsi 

sm-param_windows = 1i 

Colon preprocessor variables should be used in place of parameter windows to ensure 
compatability with future releases. The removal of prarmeter windows enables control 
strings that contain a percent character (%), as in a percent escape. 

The content of sml int . h has been moved to smproto. h. 

smsetup. h now contains various setup parameters that may be altered within the 
SMVARS and SMSETUP files or at runtime with sm_option. See setup file in the 
Configuration Guide and sm_option in the Programmers Guide. 

The contents of smde f s . h have been divided into the following files: 

.smmach . h platform specifications 

.sminstfn. h function list 

.snunouse. h mouse support 

.sma t t r ib . h display attributes 

.smumisc. h argument defmitions for miscellaneous flDlctions 

.smsetup.h ~pvmUIDI~ 
• smva 1 ids. h validation bits 
.smedi ts. h special edits 
.smproto. h function list 

The source code of jxmain. c and jrnain. c has been altered. You no longer need to 
comment-out code that initializ~ JAM subsystems not applicable to your application. 
Instead, a list of macros in j xmain. c and jmain. c govern the inclusion of optional 
code. They come set to 0 for not included. To enable a subsystem, simply set the appro
priate macro to 1. 

Screens whose bottoms were cut off, because they are too big for the terminal they are 
running on, they will now be displayed through a viewport with scroll bars across the 
bottom to indicate off-screen data. 

The logical key RETURN behaves differently within menus. In release 4 RETURN 
moved the cursor to the frrst menu field on the next line. In release 5 RETURN, like 
XMIT (transmit), selects the current menu field. 

JAM Release 5.03 20 Nov 92 Page 5 



JAM Upgrade Guide 

The following functions are supported in Release 5 only for compatibility with Re
lease 4. The Release 5 functions should be used to ensure compatibility with future re
leases. 

JAM4 
sm_ch_emsgatt 
sm_ch_form_atts 
sm_ch_qrnsgatt 

=> 
=> 
=> 

sm_ch_stextatt => 
sm_choice => 
sm_cl_everyfield=> 
sm_dw_options => 
sm_er_options => 
sm_fcase 
sm_fextension 
sm_inbusiness 
sm_menu-proc 
sm_mp_options 
sm_mp_string 
sm_ok_options 
sm_openkeybd 
sm-plcall 
sm_sdate 
sm...:....stime 
sm_smsetup 
sm_unsetup 
sllL.zm_options 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

These functions are new to Release 5: 

JAMS 
sm_option 
sm_option 
sm_option 
sm_option 
sm_input 
sm_unprot 
sm_option 
sm_option 
sm_option 
sm-pset 
sm_inquire 
sm_input 
sm_option 
sm_option 
sm_option 
sm_input 
sm_jplcall 
sm_sdtime 
sm_sdtime 
sm_option 
sm_option 
sm_option 

.sm_bkrect Set background color of rectangle . 
• sm_c_keyset Close akeyset 
.sm_d_keyset Display a memory-resident keyset 
.sm_deselect Deselect a checklist occurrence . 
• sm_f i_open Find a file and open it in binary read only mode . 
• sm_fi-path Return the path nameofafile . 
• sm_f inquire Obtain information about a field. 
.sm_ftog Convert a field nwnber and occurrence into a group name and 

·sm_ftype 
·SllL.getjctrl 
·sm_gp_inquire 
·sm_gtof 

Page 6 

index. 
Get the data type and precision of a field. 
Get control string associated with a key. 
Obtain information about a group. 
Convert a group name and index into a field number and occur-
renee. 

JAM Release 5.03 20 Nov 92 

., 
I 

I 

I 
J 



·sm_gval 
·sm_input 

·sm_inquire 
·sm_is_no 
·sm_iset 
·sm_isselected 

·sm_issv 
• sm_jplload 
·sm_jplpublic 
·sm_jplunload 
·sm_keyset 
·sm_keyoption 
·sm_kscscope 
·sm_ksinq 
·ks_label 
·sm_ksoff 
·sm_kson 
·sm_mnutogl 

·sm-pinquire 
·sm-pset 

Upgrading from Release 4 to Release 5 

Force group validation. 
Open the keyboard for data entry and menu selection. Replaces 
version 4 sIn_choice, SIn_menu-proc, and SIn_open
keybd. 
Obtain value of a global integer variable. 
Test field for no. 
Cbange value of integer global variable. 
Determine whether a radio button or checklist occurrence has 
been selected. 
Determine if a screen in the saved list . 
Execute the JPL load verb. 
Execute the JPL public verb. 
Execute the JPL unload verb. 
Open a keyset 
Set key option. 
Query current keyset scope. 
Inquire about key set infonnation. 
Set a soft key label and attribute. 
Turn off key labels. 
Tum on key labels. 
Switch between menu mode and data-entry mode on a dual
purpose screen. 
Obtain field name given field nmnber. sm_nu 11 Test if field is 
null 
Seta screen manager option. Replaces the following version 4.0 
functions: 
sm_ch_emsgatt 
sm_ch_form_ats 
sIILch_qrnsgatt 
sm_ch_urnsgatt 
sm_dw_options 
sm_er_options 
sm_fcase 
sm_fextension 
sm_ind_set 
sm_mp_options 
sm_mp_string 
SIlLok_options 
sm_stextatt 
sm_zm_options 
Obtain value of a global string. 
Modify value of a global string. 

JAM Release 5.03 20 Nov 92 Page 7 



JAM Upgrade Guide 

.sm_sdtime Get formatted system date and time . 
• sIn_select Select a checklist or radio button occurrence . 
• sIn_shrink_to_f i tRemove trailing empty array elements and shrink screen . 
• sm_s ibl ing Derme the current window as being or not being a sibling win-

dow . 
• sIn_skinq Obtain soft key information by position . 
• sIn_skmark Mark or unmark a softkey label by position . 
• sm_skset Set characteristics of a soft key by position . 
• sIn_skvinq Obtain soft key information by value . 
• sm_skvrnark Mark a soft key by value . 
• sIn_skvset Set characteristics of a soft key by value . 
• sm_sopt ion Set a string option . 
• SIn submenu_closeClose the current submenu . 
• SIn_svscreen Register a list of screens on the save list 
.sm_udt ime Format user-supplied date and time . 
• sIn_unsvscreen Remove screens from the save list 
.sm_viewport Modify viewport size and offset 
.sm_wcoun t Obtain number of currently displayed windows . 
• sm_wins i z e Allow end-user to interactively move and resize a window . 
• sm_wrota t e Rotate the display of sibling windows . 

. J" ...... 

Page 6 JAM Release 5.03 20 Nov 92 

.., 
I 
i 



· Master Index 



Symbols 
., in regular expressions: Author's 141, 143 

... : Utilities 4 

I: Overview 30 
. invoke a program: Author's 124, 130 

1, wildcard character: Author's 106 

:, colon preprocessing: Author's 121-123 

[]: Utilities 4 
in regular expressions: Author's 143 

{ begin a statement block: JPL 89 

{}: Utilities 4 
null statement: JPL 90 

} end a statement block: JPL 89 

&: Overview 30, 35 
open a stacked window: Author's 124, 

125 

&&: Overview 31,35 

# 

% 

open a sibling window: Author's 124, 126 

comment in JPL statement JPL 88 
field number: Author's 50,63 
key translation fIle comments: Configu

ration 6 
video fIle comments: Configuration 59 

floating point formatter. Author's 63 
video fIle parameter sequences: Configu

ration 68 

%A, display attributes in messages: Au
thor's 56-57; Configuration 19 

%B, bell for error messages: Author's 57; 
Configuration 21 

%K, key labels in messages: Author's 57; 
Configuration 5, 21 

%Md, acknowledgment for error messages: 
Configuration 22 

Master Index 

%Mu, acknowlegment for error messages: 
Configuration 22 

%N, carriage returns for error messages: 
Configuration 21 

%t, floating point formatter: Author's 63 

%W, pop-up window for error messages: 
Configuration 22 

@, select mode indicator: Author's 76 

@date: JPL 41,68 
calculations with dates: Author's 64 

@sum: JPL68 
sum of array occurrences: Author's 64 

-, in regular expressions: Author's 143 

• 
box select Author's 77 
in regular expressions: Author's 142, 143 
wildcard character: Author's 107 

1\: Overview 30 
in regular expressions: Author's 141, 143 
in search strings: Author's 106 
invoke a C function: Author's 124, 126 

I\jpl: Overview 30 
invoke a JPL routine: Author's 124, 129 

I: Utilities 4 

\ 
colon preprocessing in hook strings: Au

thor's 122 
in regular expressions: Author's -141, 143 

A 
ABORT: Programmer's 282 

Acknowledgement key. See ER_ACK_KEY 

Alphanumeric, character edit Author's 39 

Alternate character sets: Configuration 
66-67,93-95 

Alternative scrolling. See Scrolling array, 
alternative scroll driver 

JAM Release 5.03 20 Nov 92 Page 1 



Master Index 

Ampersand. See & symbol 

ANSI terminal 
latch attributes: Configuration 84 
sample video file: Configuration 59-60 
setting color: Configuration 89 

APP1-24: Overview 19; Author's 9 
control string: Author's 82, 124 
hexadecimal values: Configuration 9 

Application: Overview 9-12 
abort: Programmer's 202, 282 
block mode: Programmer's 138 
code: Overview 5, 13; Programmer's 2 

See also Hook function 
components: Overview 9-12 
configuration: Overview 8 
creation: Overview 14 
customization: Programmer's 1 
data: Overview 6, 39; Author's 26; Pro

. grammer's 104-105 
access: Overview 39 
changing: Programmer's 283-284, 

358-359 
inquiring: Programmer's 273-275, 

353-355 
library routines: Programmer's 

174-175 
propagating: Overview 7, 14, 36; Au

thor's 135-136; Programmer's 
181,327 

debugging: Progranuner's 101 
development: Overview 3,6,7, 13-15, 

23-29,45--47; Programmer's 7, 
7&-82 

See also Hook function 
efficiency: Programmer's 119-124 
example: Overview 19-29,33-34; Pro

grammer's 3 
executable. See Application executable 
flow: Overview 5-6,6, 11, 12, 17-42,32, 

41; Programmer's 2 
initialization: Programmer's 3, 166, 

270-271 
key translation table: Programmer's 96 

input/output See Input/output 
localization: Programmer's 104-115 

Application (continued) 
memory. See Memory 
messages. See Status line 
portability: Overview 18,44; Program-

mer's 117-118 
program: Overview 12 
prototype: Overview 5, 13, 46 
reset: Programmer's 371 
screen stack ru1es: . Overview 37, 39 
size: Programmer's 122-124 
start: Overview 29 
suspend: Programmer's 323, 375 
termination: Overview 36 
testing: Overview 13, 15; Author's 15, 

17,23 

Application executable: Overview 8, 10, 12, 
. 13,40,41; Glossary 1; Programmer's 

2-6 

Application mode: Author's 15, 16-17; 
Glossary 1 

defined: Author's 16 
function keys: Author's 17 
status line: Author's 16 

Area attributes: Configuration 83, 87-88 
See also AREAATT 

AREAATf: Configuration 66, 82, 87-88, 
91 

ARGR: Configuration 66, 88 

Argument processing: Author's 121 
utilities: Utilities 8 

Arithmetic commands, video me: Configu
ration 69-70, 71-72 

Array: Overview 14; Glossary 1 
See also Field 
attributes: Programmer's 178-180 
base field: Author's 70; Programmer's 

187 
circular: Author's 72 
clear: Programmer's 209 
copy: Programmer's 212 
element Author's 27, 70; Glossary 3 

field number: Programmer's 240-241 
number: Programmer's 238,396 
removing: Programmer's 394 
sm_e variants: Programmer's 168,227 

Page 2 JAM Release 5.03 20 Nov 92 



Array (continued) 
example: Overview 27 
horizontal: Author's 71 
library routines 

data access: Programmer's 168-169 
display attributes: Pro g ranuner 's 170 

next field: Author's 50-53, 146 
number of elements: Author's 75 
occurrence. See Occurrence 
offset: Author's 71, 75 
parallel: Author's 70, 95-96 

See also Scrolling array, synchronize 
previous field: Author's 50-53 
scrolling. See Scrolling array 
size: Author's 27, 70, 71, 75; Program

mer's 238, 396 
sm_shrink_to_fit: Programmer's 394 

sum of occwrences: JPL 68 
synchronized. See Scrolling array, syn

chronize 
word wrap: Author's 71; Programmer's 

265,362 

Arrow keys: Author's 9,10,11 
Data Dictionary Editor. Author's 101 
field exit: Author's 12 
groups: AUlhor's 14 
hexadecimal values: Configuration 7 
horizontal options: Configuration 42 
line drawing: Author's 98 
menu: Author's 12, 138 
Screen Editor: Author's 23 
submenus: Author's 47 
vertical options: Configuralion 43 
wrapping options: Configuration 44 

ARROWS: Configuration 67, 98 

ASCII 
character set: Author's 4; Configuration 

10,64 
data dictionary format Author's 99 
extended control codes: Configuration 64 
non-ASCII display: Progranuner's 104 
screen format: Author's 19 

ASGR: Configuration 66, 68,87-88,89,91 

·', . 

• ..r' • ~ Master Index 

Assignment in JPL 
cat JPL54 
math: JPL 68 

ASYNC_FUNC. See Asynchronous function 

Asynchronous function: Programmer's 
50-52 

arguments: Programmer's 51 
ASYNC_FUNC: Programmer's 14 
cursor position display: Programmer's 

200 
example: Programmer's 51-52 
invocation: Programmer's 50 
return codes: Programmer's 51 
testing keyboard: Programmer's 302-303 

atch: JPL 49; Programmer's 20 

Attached function. See Field, Screen, or 
Group function 

Attachments: Author's 36, 48-58 

Attributes. See Display attributes 

Authoring: Overview 13-15; Glossary 1 
defmed: Author's 1 
environment Overview 7; Author's 

15-17; Glossary 2 
executable. See Authoring executable 
jx library: Programmer's 7 
routines: Overview 8 
tool. See jxform 

Authoring executable: Glossary 1; Pro-
grammer's 7 

Authoring tool. See jxform 

AUTO control string: Author's 82, 83 

Auto tab: Author's 46, 87, 94 

AVAIL_F11NC. See Record function 

B 
BACK: Author's 9 

Data Dictionary Editor. Author's 101 
groups: Author's 14 
hexadecimal value: Configuration 7 

JAM Release 5.03 20 Nov 92 Page 3 



Master Index 

BACK (continued) 
library routines: Programmer's 185-186 
menu: AUlhor's 12, 138 
previous field: AUlhor's 50 

BACKSPACE. See BKSP 

BACKTAB. See BACK 

Backward compatibility 
data dictionaries: Upgrade Guide 2 
JPL: Upgrade Guide 4 
parameter windows: Upgrade Guide 5 
Release 3 library routines: Upgrade 

Guide 2 
Release 4 library routines: Upgrade 

Guide 6 
screens: Upgrade Guide 1,5 
setup options: Upgrade Guide 4 
setup variables: Con figural ion 33 
smdefs.h: Upgrade Guide 5 
smlint.h: Upgrade Guide 5 
upgrading from Release 4: Upgrade 

Guide 1 
video files: Upgrade Guide 3 

Base field: Author's 70 

BELL: Configuralion 67, 98 

Bell, status line text: AUlhor's 57 

bin2c: AUlhor's 117; Utilities 11-12; Pro-
grammer's 119, 120, 121 

bin2hex: Utilities 13 

BIOS flag: Configuration 78 

Bitwise operators: JPL 42, 42 

BKSP: AUlhor's 9 
hexadecimal value: Configuration 7 
in menu: Author's 12, 138 
Screen Editor: Author's 24 

BLK_ERRORS: Configuralion 54 

BLK_GROUPS: Configuration 54 

BLK_MENUS: Configuration 53 

BLKDRVR: Configuration 67, 99 

BLKDRVR_FUNC. See Block mode 

Block mode: Programmer's 131-164 

attributes 
lock: Programmer's 145 

logical: Programmer's 147, 149, 151 
protected: Programmer's 150 
unlock: Programmer's 146 

BLK_BLOCK: Programmer's 143 

BLK_CHAR: Programmer's 144 
BLK_CPR: Programmer's 162 

BLK_D_END: Programmer's 161 
BLK_D_PROT: Progranuner's 160 
BLK_D_START: Programmer's 157 

BLK_D_UNPROT: Programmer's 159 
BLK_INIT: Programmer's 141 

BLK_K_CLOSE: Programmer's 155 

BLK_K_GETCHAR: Programmer's 153 

BLK_K_OPEN: Programmer's 152 

BLK_LA_END: Programmer's 151 
BLK_LA_PROT: Programmer's 150 
BLK_LA_START: Programmer's 147 

BLK_LA_UNPROT: Programmer's 149 
BLK_LOCK: Programmer's 145 
BLK_RESET: Programmer's 142 

BLK_UNLOCK: Programmer's 146 
BLKDRVR_FUNC: Programmer's 15 
cursor position: Programmer's 162 
data transmission 

initialize: Programmer's 157 

protected field: Programmer's 160 
terminate: Programmer's 161 
unprotected field: Programmer's 159 

delayed write: Programmer's 163 
driver: Programmer's 137-164 

cursor positioning: Programmer's 163 

installing: Programmer's 137-138 
output to terminal: Programmer's 163 
request types: Programmer's 140, 

140-162 
support routines: Programmer's 163 
video fLle entry: Configuration 67, 99 
writing: Programmer's 138-139 

enabling: Programmer's 8 

Page 4 JAM Release 5.03 20 Nov 92 



Block mode (continued) 
global variables 

sm_amask: Programmer's 163 
sm_attrib: Programmer's 163 
sm_exattr: Programmer's 163 
sm_lmask: Programmer's 163 
sm_screen: Programmer's 163 
sm_tcolm: Programmer's 163 
sm_term: Programmer's 163 
sm_tIine: Programmer's 163 

initializing: Progranuner's 132-133, 141, 
195 

installation: Programmer's 194 
interactive mode vs.: Programmer's 

133-137 
JAM behavior 

character validation: Programmer's 
134 

currency fields: Programmer's 
135-136 

field entry function: Programmer's 135 
field validation: Programmer's 135 
groups: Programmer's 137-164 
insert mode: Programmer's 136 
menus: Programmer's 133-134 
messages: Programmer's 136 
non~isplay fields: Programmer's 137 
right justified fields: Programmer's 

135 
screen validation: Programmer's 135 
screens: Programmer's 133 
scrolling arrays: Programmer's 136 
shifting fields: Progrt:muner's 136 
status text: Progranuner's 135 
zoom: Programmer's 137 

keyboard 
close (lock): Programmer's 155 
get characters: Programmer's 153 
open: Programmer's 152 

library routines: Programmer's 132, 176 
limitations: Programmer's 132 
operating system calls: Progranuner's 

137 
overview: Programmer's 131-132 
reset: Programmer's 142, 196 
Screen editor and: Programmer's 132 

Master Index 

Block mode (continued) 
selecting: Programmer's 132-133 
setup options: Configuration 53 
sm_blkdrvr: Progranuner's 194 
sm_blkinit: Programmer's 195 
sm_blkreset: Programmer's 196 
smblock.h: Programmer's 138 
switch to block mode: Programmer's 143 
switch to character mode: Programmer's 

144 
terminal: Glossary 2 
utilities: Programmer's 132 

BORDER: Configuration 67, 96-97 

Border: Author's 29-30 
attributes. See Display attributes 
creation: Author's 29 
deletion: Author's 29 
JAM system windows: Configuration 49 
message windows: Configuration 47 
styles: Author's 29; Configuration 95 
video file entries: Conjiguralion 67, 

95-97 
zoom windows: Configuralion 49 

BOTTOMRT: Configuration 65, 79 

Bounce bar: Author's 12, 86, 94, 137 

BOX: Configuration 67, 97 

Box select: Author's 77 

BRDATT: Configuration 67 

break: JPL 51 

BUFSIZ: Configuration 65,79 

Built-in control functions: Author's 127; 
JPL 96; Programmer's 85-93 

jm_exit Author's 83, 127; Programmer's 
86 

jm...,goform: Author's 127; Programmer's 
88 

jm...,gotop: Author's 127; Progranuner's 
87 

jm_keys: Author's 127; Programmer's 
89 

jm_mnutogl: Author's 127; Program
mer's 90 

jm_system: Author's 127; Programmer's 
91 

JAM Release 5.03 20 Nov 92 PageS 



Master Index 

Built-in control function (continued) 
jm_winsize: Programmer's 92 
jpl: Programmer's 93 

c 
C function, control string: Author's 124, 

126-129 

C language: Programmer's 1 
accessing JPL from: Programmer's 

389-444 
data structures. See Data structures 

Call, JPL procedures: JPL 14-16, 63 

call: JPL 52; Progranuner's 32,69,82 

Caret See 1\ symbol 

Caret function. See Control function 

Case, data entry fields: Author's 45 

Case sensitivity 
-I option 

bin2c: Utilities 11 
bin2hex: Utilities 13 
f2dd: Utilities 44 
f2struct: Utilities 46 
formlib:· Utilities 52 

file names; Configuration 50 

cat: JPL54 

CBDSEL: Configuration 67, 98 

CBSEL: Configuration 67, 98 

Century break: Configuration 52 

Character data, 8-bit Programmer's 
104-105 

Character edit See Field, character edit 

Character set 
alternate: Configuration 93-95 
graphics: Author's 96-97; Configuration 

66-fJ7, 93-95 

Check digit function: Author's 58, 62; Pro-
grammer's 54-55 

arguments: Progranuners 54 
CKDIGIT_FUNC: Programmer's 15 
default: Programmer's 206 
field parameters: Programmers 229 
invocation: Programmer's 54 
return codes: Programmer's 55 

Checklist: Glossary 2 
See also Group 

Circular scrolling array: Author's 72 

CKDIGIT_FUNC. See Check digit function 

CLEAR ALL. See CLR 

Clear on input, field edit: Author's 44 

Clipboard: Authors 76, 78-80, 136 
control menu: Author's 79 
copy from screen: Author's 79 
display content: Author's 79 
file: Author's 79 
name: Author's 79 
paste to screen: Author's 79 
purge: Author's 80 
retrieve from fIle: Author's 80 
store to fIle: Author's 80 

CLR: Author's 9 
date/time initialization: Author's 61 
hexadecimal value: Configuration 7 
library routines: Programmer's 208 
protection from: Author's 42; Program-

mer's 356-357 
scrolling array: Author's 147 

CMFLGS: Configuration 65,81 

CMSG: Configuration 66, 90 

Cobol: Programmer's I, 11 

COF: Configuration 66, 81~2 

CaLMs: Configuration 65, 77 

Colon preprocessing: Author's 34,59, 
121-123; JPL 29-34 

efficiency: JPL 100 
substring specifier: JPL 31-32 

COLOR: Configuration 66, 88-90 

Page 6 JAM Release 5.03 20 Nov 92 

.1 



Color 
See also Display attributes 
display attribute: Author's 25 
screen background: Author's 30 

Command line options, utilities: Utilities 
3-8 

Comments, JPL: JPL 88 

Compiling: Programmer's 3, 7 
See also the Installation Guide 
JPL, jp12bin: Utilities 59-60 

Compose key: Configuralion 12,93 

COMPRESS: Configuration 67, 100 

CON: ConfigUralion 65, 81-82 

Concatenate: JPL 54 

Configuration: Overview 8, 18,29,41 
converting ftles to binary: Configuration 

2 
converting key translation files, key2bin: 

Utilities 61~2 
converting message ftles, msg2bin: Utili

ties 86-87 
converting setup variables, var2bin: Utili

ties 90-91 
converting video ftles 

term2vid: Utilities 88 
vid2bin: Utilities 92-94 

data dictionary: AutJwr's 99 
defIning keys, modkey: Utilities 67-85 
directory: Configuration 1 
key translation files: AUlJwr:r 4 

modkey: Utilities 67-85 
LOB initialization: Author:r 109 
memory-resident Programmer s 

120-121 
utilities: Utilities 2 

Configuration variables 
block mode: Configuration 53-54 
consolidating: Configuration 36 
default century: Configuration 52 
delayed write: Configuration 52 
display attributes: Configuration 41-42 
file names: Configuration 50-51 

Master Index 

Configuration variables (continued) 
for user input Configuration 42-45 
group attributes: Configuration 51-52 
JAM system screens: Configuration 

49-50 
message display: Configuration 45-48 
release 4 vs. release 5: Configuration 

33-35 
scroll: Configuration 48-49 
setup files: Configuration 38, 39-41 
shift: Configuration 48-49 
soft keys: Configuration 53 
zoom: Configuration 48-49 

Control codes, ASCII: Configuration 63-64 

Control field. See Menu, control fIeld 

Control function: Glossary 2; Program-
mer's 32-43 

arguments: Progranuner's 33 
CONTROL_FUNC: Programmer's 14 
example: Programmer's 33-43 
invocation: Programmer s 32 
prototyped: Programmer's 69 
return codes: Programmer's 33 

Control string: OVe1view 11; Author's 
82-83, 124-130; Glossary 2 

access: Programmer's 256 
binding to function key: Configuration 

40 
C function: AutJwr's 124, 126-129 
call: JPL 52 
case sensitivity for ftle nanle searches: 

Configuration 50 
colon preprocessing: Authors 122-123 
creation: Overview 14 
example: Overview 24, 25 
form: Overview 31; Author's 124-125 
function key: Authors 124 
hook function: Overview 14, 30; Au-

thor's 124, 126--129 
interpretation: Overview 14 
JAM Executive search: Overview 30 
JPL: Overview 30; Author's 124, 129; 

JPL 18 
lead characters: Overview 32; Author's 

124 

JAM Release 5.03 20 Nov 92 Page 7 



Master Index 

Control string (continued) 
menu: Author's 47, 124 
operating system command: Overview 

30; Author's 124, 130 
screen: Overview 30, 31; Author's 124 
set Progranuner's 361 
sibling window: Overview 31; Author's 

124, 126 
stacked window: Overview 30; Author's 

124, 125-126 
target list Author's 128-130 
window: Overview 30, 31, 35; Author's 

124, 125-126 

CONTROL_FUNC. See Control function 

Conversion utilities 
binary ftles to C, bin2c: Utilities 11-12 
binary to/from hex ASCII, bin2hex: Utili

ties 13 
data dictionary to C, dd2struct: Utilities 

26-28 
data dictionary to/from ASCII, dd2asc: 

Utilities 14-25 
IPL, jpl2bin: Utilities 59 
key translation files, key2bin: Utilities 

61-62 . 

message ftles, msg2bin: Utilities 86-87 
screens from text ftles, txt2form: Utilities 

89 
screens to/from ASCII, f2asc: Utilities 

34-43 
setup variables, var2bin: Utilities ~91 
upgrading 

dd3to5: Utilities 29 
dd4to5: Utilities 30-31 
f3to5: Utilities 49 
f4to5: Utilities 50-51 

video files, vid2bin: Utilities 92-94 

CUB: Configuration 65, 68, 81 

CUD: Configuration 65,68, 81 

CUF: Configuration 65, 68, 81 

CUP: Configuration 65, 68,80 

CURPOS: Configuration 67, 99-100 

Currency formats: Author's 44,58, 64-68, 
151; Configuration 29-30; Program
mer's 229 

block mode: Programmer's 135-136 
configuration: Author's 67 
customizing: Configuration 30 
defaults: Configuration 29 
field decimal symbols: Configuration 31 
internationalization: Programmer's 

109-110, 110 
precision: Author's 74 
sm_amtjormat Programmer's 182 
sm_strip_amt-ptr: Programmer's 408 
strip: Programmer's 408 
syntax in message ftle: Configuration 30 

Cursor: Glossary 2 
appearance: Configuration 42 

video ftle entries: Configuration 
65-66,81-82 

bounce bar: Author's 12 
display current position, video file entry: 

Configuration 67,99-100 
group, attributes: Configuration 51; Pro

grammer's 307 
keys, mnemonics and values: Configura-

tion 7 
library routines: Programmer's 172 
location: Programmer's 220,253,393 
menu: Author's 12 
move 

sm_backtab: Programmer's 185-186 
sID--8ofield: Programmer's 260-261 
sID_boIDe: Programmer's 267 
SID_last Programmer's 319 
sID_nl: Programmer's 343 
sID_ofCgofield: Programmer's 349 
sm_tab: Programmer's 416 

movement under Microsoft Wmdows: 
Configuration 78 

off: Programmer's 198 
on: Programmer's 199 
position, video ftle entries: Configuration 

65,80-81 
position display: Programmer's 200 

Page 8 JAM Release 5.03 20 Nov 92 

. --., 
I 
1 

1 

., 
I 
\ 



Cursor (continued) 
reposi tioning 

after check digit function: Program
mer's 55 

after field validation: Programmer's 22 
after group validation: Programmer's 

47 
from screen function: Programmer's 

28 

Custom executive. See Executive, custom 

Custom scrolling. See Scrolling array, alter
native scrolling method 

Cut and paste operations. See Clipboard 

CUU: Configuration 65, 68, 81 

D 
DA_CENTBREAK.: Configuration 52 

DARR. See Arrow keys 

Data. See Application, data; Field, data; 
Screen, data 

Data compression, enabling: Configuration 
67, 100 

Data dictionary: Overview 6, 10,11; Glos-
sary 3 

See also LDB 
ASCn, dd2asc: Author's 99; Utilities 14 
combining, ddnierge: Utilities 32 
compare field to: Author's 89 
configuration: Author's 99 
convert from ASCn, dd2asc: Overview 9, 

15; Utilities 17-24 
convert to ASCn, dd2asc: Overview 9, 

15; Utilities 14-16 
convert to data structures, dd2struct Uti

lities 26 
create field from: Author's 89 
create LOB entry from: Author's 99, 

135-136 
create/update from screens, f2dd: Utililies 

44-45 
creation: Overview 11, 15; Author's 100 

Master Index 

Data dictionary (continued) 
defmed: Overview 11; Author's 99 
entry 

characteristics: Author's 103, 106 
comment: Author's 101 
create from field: Author's 91-92 
creation: Author's 91, 95, 102-103 
default: Author's 92, 108-109 
deletion: Author's 106 
editing: Author's 105 
field type: Author's 101 
group type: Author's 101, 103-104 
name: Author's 100 
record type: Author's 101 
scope: AUlhor's 92, 100, 104, 108; 

Glossary 7 
search: Author's 106-107 
type: AUlhor's 101 

example: Overview 28, 28 
external integration: Overview 15 
field names: Author's 50 
file: Overview 11, 39; Author's 99 

name: Programmer's 354 
LOB creation: Programmers 83 
library routines: Programmer's 171, 174 
name: Progranuners 219 
pathname: Configuration 40 
rebuild index: Author's 92 
record: Authors 101, 104-105 

creation: Author's 104 
data type: ,Authors 105 
dermed: Author's 104 
name: Author's 105 
read: Programmer's 430--431 
write: Progranuner's 3TI-378 

report, lstdd: Utilities 63-64 
save: Author's 101 
screen update from data dictionary, 

jamcbeck: Utilities 54-56 
search: Author's 89-91 
search for group: Author's 95 
sorting, ddsort: Utilities 33 
upgrading 

dd3to5: Utilities 29 
dd4to5: Utilities 30-31 

JAM Release 5.03 20 Nov 92 Page 9 



Master Index 

Data dictionary (continued) 
utilities: Utilities 1 

dd2asc: Author's 99~ Utilities 14-25 
dd2struct: Author's 74; Utilities 26-28 
dd3to5: Utilities 29 
dd4to5: Utilities 30-31 
ddmerge: Utilities 32 
ddsort: Utilities 33 
f2dd: Utilities 44-45 
jamcheck: Utilities 54-56 
lstdd: Utilities 63-64 

Data Dictionary Editor: Overview 6, 7, 11, 
15~ Author's 15,99-110; Glossary 3 

exit Author's 101-102 
go to line: Author's 107 
purpose: Author's 99 
re-initialize LDB: Author's 101 
rebuild index: Author's 101 
save data dictionary: Author's 101 
start: Author's 17, 100-101 

Data entry: Author's 12,46; Programmer's 
272 

data entry mode: Author's 12,33 
jmftDutogl: Programmer's 90 
sm.....mnutogl: Programmer's 331 

help: Author's 132-133 
menu mode: Author's 12, 33, 136 

jm_mnutogl: Programmer's 90 
sm_mnutogl: Programmer's 331 

protection from: Programmer's 356-357 

Data entry mode. See Data entry, data entry 
mode 

Data required, field edit Author's 41, 147 

Data structures: Author's 72-74; Utilities 6 
create from binary fIles, bin2c: Utilities 

11-12 
create from data dictionary, dd2struct 

Utililies 26-28 
create from screens, f2struct Utilities 

46-48 
library routines: Programmer's 174 

read: Programmer's 366-370,377-378 
write: Programmer's 430-431, 

434-443 

Data types: Utilities 27; JPL 35; Program
mer's 229,249-250 

precision: Author's 74 

datadic: Author's 99 

Date, calculations with: Author's 64 

Date/time format: Author's 58,60-62,151; 
Programmer's 229 

century break year: Configuration 52 
customizing: Configuration 22-29 
date/time mnemonics: Programmer's 106 
defaults: Configuration 23-25,27-28 
format user date/time: Programmer's 418 
internationalization: Configuration 

27-28; Programmer's 105-108 
literal format for @date calculations: 

Configuration 29 
retrieve system date/time: Programmer's 

385-387 
standardization: Author's 62 
system date/time: Author's 60 
tokens: Configuration 25-26 

OBi: Overview 1,7, 15; Author's 1, 54 

dbms: JPL56 

dd2asc: Overview 9, 15; Author's 99; Utili-
ties 14-25 

convert from ASCII: Utililies 17-24 
convert to ASCII: Utilities 14-16 
display attributes: Utililies 18-24 
entry types: Utililies 17-18 

dd2struct Author's 74~ Utililies 26-28 

dd3to5: Utilities 29 

dd4to5: Utilities 30-31 

ddmerge: Utililies 32 

ddsort: Utililies 33 

Debugging: Programmer's 101 

Decimal symbols: Configuration 31 
field decimal: Configuration 31 
local decimal: Configuration 31 
system decimal: Configuration 31 

Declaring hook functions. See Hook func
tion, declaration 

Page 10 JAM Release 5.03 20 Nov 92 



Delayed write: Configuration 52; Program
mer's 99 

flush: JPL 61; Programmer's 242 

DELE: Autlwr's 9 
hexadecimal value: Configuration 7 
protection from: Author's 42 
Screen Editor: Author's 24 

DELETE CHAR. See DELE 

DELETE LINE. See DELL 

DELL: Author's 9; Programmer's 225 
hexadecimal value: Configuration 8 
Keyset Editor: Author's 116 
protection from: Author's 42 
Screen Editor: Author's 24 
scrolling array: Author's 147 

Developer. Glossary 3 

DFLT_FIELD_FUNC. See Field function, 
default 

DFLT_GROUP _FUNC. See Group function, 
default 

DFLT_SCREEN_FUNC. See Screen func
tion, default 

DFLT_SCROLL_FUNC. See Scrolling 
array, alternative scroll driver 

Digits only, character edit Author's 38 

Disk-based scrolling. See Scrolling array, 
alternative scroll driver 

Display: Glossary 3 
See also Terminal 

Display area: Author's 24 
copy: Author's 80 
creation: Author's 26 
dermed: Author's 24 
editing: Author's 24 
move: Author's 80 

Display attributes: Author's 24-39,25 
ANSI tennina1s: Configuration 84 
area: Configuration 87-88 

Display attributes (continued) 
border: Autlwr's 29 

Master Index 

change: Programmer's 178-180 
colors: Author's 25; Configuration 

88-90 
field: Author's 36,37, 76; Programmer's 

203-205,238 
inquire: Programmer's 275 
keyset labels: Author's 115 
keywords: Configuration 41 

dd2asc: Utilities 18-24 
f2asc: Utilities 3~2 

latch: Configuration 84-87 
line drawing: Author's 98 
message line, dedicated: Configuration 

90-91 
message/status text: Author's 56-57; 

Configuration 19-21,45-46; Pro
grammer's 213-215 

mnemonics: Programmer's 178 
pen: Author's 26 
portability: Programmer's 117 
rectangle: Programmer's 192-193 
scope: Author's 26 
screen background color: Author's 30 
select set Author's 77 
simulation: Author's 25 
video file entries: Configuration 66, 

82-90 

Display data: Overview 14; Autlwr's 
23-26; Glossary 3 

attributes: Author's 24 
See also Display attributes 

character graphics: Author's 96-97 
copy: Author's 78 
creation: Autlwr's 24 
dermed: Author's 23 
delete: Author's 78 
editing: Author's 24 
line graphics: Author's 97-98 
move: Author's 78 

Display terminal. See Tenninal 

Display text. See Display data 

JAM Release 5.03 20 Nov 92 Page 11 



Master Index 

Documentation utilities: Utilities 2 
data dictionary, lstdd: Utilities 63-64 
libraries, formlib: Utilities 52 
screen relationships, jammap: Utilities 

57-58 
screens 

f2asc: Utilities 34-43 
lstform: Utilities 65-66 

DOWN ARROW. See Arrow keys 

Draw field symbol: Author's 26, 31, 31 
creation: Author's 31 
default field characteristic: Author's 31 
template: Author's 31 

Draw mode: Author's 21,23 
See also Screen Editor, draw mode 

Drivers, video file entries: Configuration 99 

OW_OPTIONS: Configuration 34, 52 

E 
ED: Configuration 65, 79-80 

Edit. See Field, field edit 

EL: Configuration 65, 80 

Element 'See Array, element 

else: JPL57 
See also if 

else if: JPL 58 
See also if 

Embedded punctuation: Author's 39-40 
See also Field, digits only 

EMOH: Author's 9 
hexadecimal value: Configuration 8 
library routines: Programmer's 319 

EMSGA'IT: Configuration 34, 46 

ENTEXT_OPTION: Configuration 52 

Entry function 
field. See Field function 
group. See Group, entry function 
screen. See Screen function 

Environment: Overview 8, 29 

ER_ACK_KEY: Configuration 8, 22, 34, 47 

ER_KEYUSE: Configuration 34, 47 

ER_SP _WIND: Configuration 34, 47 

Erase display command: Configuration 79 

Erase line command: Configuration 80 

Erase window command: Configuration 80 

Error handling: Programmer's 6 

Error message. See Message file; Stabls line 

Error window. See Message; Message win-
dow 

Event Glossary 3 

EW: Configuration 65, 68, 80 

EW _BORDATI: Configuration 34, 48 

EW _BORDSTYLE: Configuration 34, 47 

EW _DISPA'IT: Configuration 34, 48 

Exclamation point. See I symbol 

Executable. See Application or Authoring 
Executable 

Executive 
See also JAM Executive 
custom: Overview 5; Programmer's 3-6 

example: Programmer's 3 
sm_at_cur variants: Programmer's 

426-428 
sm_close_window: Programmer's 

210-211 
sm_form variants: Programmer s 

243-244 
sm_initcrt Programmers 270-271 
sm_input: Programmer's272 
sm_resetcrt: Programmers 371 
slIl...window variants: Programmers 

426-428 
JAM. See JAM Executive 

Page 12 JAM Release 5.03 20 Nov 92 



EXIT: Overview 19; Author's 9 
control string: Author's 82 
default processing: Overview 34-39 
disable: Author's 83 
exit canceling changes: Author's 28 
exit Data Dictionary Editor. Author's 101 
exitjxform: Author's 16 
exit Screen Editor. Author's 21 
exit select mode: Author's 76 
hexadecimal value: Configuration 7 
simulate: Author's 83 

Exit function 
field. See Field function 
group. See Group, exit function 
screen. See Screen function 

EXPffiDE_OPTION: Configuration 53 

Expressions: JPL 43-44 
See also Regular expression 

Extended keyboard: Configuration 12 
video fIle entry: Configuration 78 

Extensions: Utilities 7 
See also File names, extensions 

F 
F _EXTOP: Utilities 7 

F _EXTOPT: Configuration 35, 51 

F _EXTREC: Configuration 35, 50; Utili
ties 6 

F _EXTSEP: Configuration 35, 51; Utilities 
7 

Fll and F12 keys, video file entry: Configu
ration 78 

f2asc: Overview 9; Author's 19; Utilities 
34-43 

f2dd: Utilities 44-45 

f2struct: Author's 72; Utilities 46-48 

f3to5: Utilities 49 

f4t05: Utilities 50-51 

FCASE: Configuration 34, 50 

FERA: Author's 9 

Master Index 

date/time initialization: Author's 61 
field punctuation: Author's 40 
hexadecimal value: Configuration 7 
null field: Author's 45 
protection from: Author's 42 
right justified fields: Author's 41 
Screen Editor: Author's 24 
scrolling array: Author's 147 

FHLP: Author's 9, 33 
hexadecimal value: Configuration 7 
Screen Editor: Author's 23 

Field: Author's 26-28; Glossary 3 
absolute referencing: Author's 50 
access: Author's 26 
add to data dictionary: Author's 91-92 
add to group: Author's 92-95 
alphanumeric: Author's 39 
array. See Array; Scrolling array 
attachments: Author's 28,48-58; Glos-

sary4 
attributes: Author's 27,36,37, 76 

See also Display attributes 
character edit: Author's 12, 36, 37-40, 

42, 75; Glossary 2 
characteristics: Overview 11, 14; Au

thor's 27-28, 35-74,36,91,92; 
Programmer's 189-191,228-230, 
238-239 

default Author's 31 
internationalization: Programmer's 

111-112 
check digit: Author's 58, 62-64 
clear: Programmer's 208 
clear on input: Author's 44 
compare to data dictionary: Author's 89 
consistency: Overview 9, 15; Author's 

99,104 
copy: Author's 28, 49, 78,80 

See also Clipboard; Select mode 
create from data dictionary: Author's 89 
creation: Overview 14; Author's 23, 

26-27 

JAM Release 5.03 20 Nov 92 Page 13 



· Master Index 

Field (continued) 
currency. See Currency formats 
data 

length: Programmer's 221 
read: Programmer's 216,247. 

254-255,265.277,280,281,325, 
408 

write: Programmer's 182,226,287, 
328,360,362 

data entry: Author's 12 
data required: Author's 41,46,56, 147 
data type: Author's 37, 72-74; Program-

mer's 229,249-250 
date/time format See Date/time format 
delete: AUlhor's 78 

undo: Author's 78 
described: Overview 11; AUlhor's 26 
digits only: AUlhor's 38,41 

See also Embedded punctuation 
embedded punctuation: Glossary 3 

display attributes: AUlhor's 37; Program-
mer's 203-205, 238 

draw symbols. See Draw field symbol 
edit See Field, field edit 
entry function. See Field function 
example: Overview 24, 24 
exit function. See Field function 
field edit AUlhor's 12,36,40-48, 76, 

151; Glossary 4 
floating point value 

read: Programmer's 216 
write: Programmer's 226 

function. See Field function 
help screen: Author's 49,53-54 
hook function: Overview 11, 14 
identification: Author's 27-32, 50 
initial data: Author's 27, 78, 135 
integer value 

read: Programmer's 277 
write: Programmer's 287 

item selection. See Item selection 
lPL: Author's 58,69, 151 
LOB entry:· Author's 135-136 
length: Author's 27, 70, 75; Program

mer's 221,238,324 

Field (continued) 
library routines 

data access: Programmer's 168-169 
display attributes: Programmer's 170 

long integer value 
read: Programmer's 325 
write: Programmer's 328 

lower case: Author's 45 
math: Author's 151; Programmer's 201 

See also Math 
MDT bit. See Validation 
memo text Author's 49,57-58; Pro-

grammer's 80, 230 
menu field. See Menu, field 
miscellaneous edit Author's 58-69 
move: Author's 28, 78, 80 

See also Select mode 
must fill: Author's 46 
name: Overview 39; Autlwr's 27,48, 

49-50,75,88-89; Programmer's 
228,341 

sm_e variants: Programmer's 168,227 
sm_i variants: Programmer's 168, 268 
sm_n variants: Programmer's 168,340 

next field: Author's 48,50-53, 146; Pro
grammer's 228 

no auto tab: Author's 46 
See also No auto tab, field edit 

non-display, block mode: Programmer's 
137 

null: Autlwr's 44-45; Programmer's 229, 
345 

number: Author's 27, 49,50,63; Glossa
ry 4; Programmer's 240,253 

sm_o variants: Programmer's 168,347 
numeric: Author's 39, 41 
position: Programmer's 238 
precision: Programmer's 249-250 
previous field: Author's 49, 50-53; Pro-

grammer's 228 
protection: Author's 41-43 

See also Protection 
punctuation: Author's 39-40 
range: Author's 58,68; Programmer's 

229 
internationalization: Programmer's 

113-114 

Page 14 JAM Release 5.03 20 Nov 92 

., 
I 

I 



Field (continued) 
reference 

field to group: Programmer's 248 
group to field: Programmer's 263 

regular expression. See Regular expres-
SIon 

relative referencing: Author's 50 
remove from group: Author's 92-95 
return code: Author's 4344, 47 
return entry: Author's 4344; Program

mer's 229 
right justified: Author's 12,40-41,44 

block mode: Programmer's 135 
screen name: Author's 88 
scrolling. See Scrolling array 
select Author's 77 
shifting. See Shifting field 
size: Author's 27-32,37,69-72,71,75 
stahls line. See Status line 
status text Author's 49, 56--57; Pro

grammer's 228 
display attributes: Configuration 46 

summary: Author's 74-76 
tabbing order: Author's 49,50-53 
table lookup: Author's 49, 56 
time format See Date/time format 
unfIltered: Author's 38 
upper case: Author's 45 
validation: Glossary 4 

See also Validation 
VALIDED bit See Validation 
when filled by LOB: Programmer's 84 

Field decimal symbol: Configuration 31 

Field edit See Field, field edit 

FIELD ERASE. See FERA 

Field function: Author's 58, 59-60, 151; 
Glossary 4; Programmer's 19-26 

arguments: Programmer's 20-22 
atch: JPL49 
block mode: Programmer's 135 
default Programmer's 19, 20 

OFLT_FIELO_FUNC: Programmer's 
14 

example: Programmer's 24 

Master Index 

Field function (continued) 
FIELD_FUNC: Programmer's 13 
invocation: Programmer's 19-20 
JPL: JPL 19-20 
list, example: Programmer's 22-24 
name: Programmer's 228 
pro to typed: Prog rammer's 69 
return codes: Programmer's 22 

Field module: JPL 8 

FIELD_FUNC. See Field function 

File 
frnd: Programmer's 237 
open: Programmer's 236 
transporting: Utilities 13 

File extensions: Utilities 7 

File module: JPL 9 

File names 
case-sensitivity: Configuration 50 
extensions: Configuration 50; Utilities 

4-5 
rules for: Utilities 5 
setup options: Configuration 50-51 

Floating point: Author's 63 

Flow control commands, video file: Config-
uration 70, 74-76 

flush: JPL 61 

FM, message tag prefix: Configuration 16 

foc_data (struct): Programmer's 17 
example: Programmer's 17, 18,67 

for: JPL59 
See also while 

Fonn: Overview 11,31; Glossary 4 
See also Screen 
close: Overview 34, 37 
control string: Author's 124-125 
display: Overview 37; Author's 124-125; 

Programmer's 81-82, 88, 243-244, 
290-291 

name: Author's 124 
stack. See Form stack 
top: Programmer's 87 

JAM Release 5.03 20 Nov 92 Page 15 



Master Index 

Form stack: Overview 35-37, 41; Author's 
124; Glossary 4 

described: Overview 36 
evolution: Overview 36 
example: Overview 36-39, 38 
library routines: Progranuner's 167 

Formaker. See Screen Editor; Screen Manag
er 

formlib: Utilities 52-53; JPL 98 

Fortran: Programmer's 1, 11 

funclist.c. See Source code, funclistc 

Function. See Built-in control functions; 
Control function; Hook function; Li
brary routines 

Function key: Overview 5, 19; Glossary 5; 
Programmer's 256 

See also APP 1-24; Key; Key tops; 
PFI-24;SPFI-24 

application: Author's 17 
application mode: Author's 17 
control string: Overview 11, 24; Author's 

124 
example: Overview 25 
mnemonics and values: Configuration 9 
returned by Screen Manager (sm_input): 

Overview 30 

Function list: Glossary 5 
See also Hook function, list 

G 
GA_CURATT: Configuration 51 

GA_CURMASK: Configuration 51 

GA_SELATI: Configuration 51 

GA_SELMASK: Configuration 51 

Global data See Application, data 

GRAPH: Configuration 67, 93, 94; Pro-
grammer's 95,99-100 

Graphics characters: Author's 96-97; Pro
grammer's 99-100 

video file entries: Configuration 66-67, 
93-95 

GRAY KEYS flag: Configuration 12, 78 

Group: Glossary 5 
add fields: AUlhor's 92-95 
attributes: Author's 92-95 
auto tab: Author's 87, 94 
block mode: Progranuner's 137-164 
block mode options: Configuration 54 
bounce bar: A Ulhor 's 86, 94 
characteristic: Programmer's 262 
check boxes: AUlhor's 93 
checkbox, attribute: Programmer's 229 
checklist AUlhor's 85, 86, 92 
clipboard operations: Author's 80 
configuration variables: Configuration 

51-52 
create data dictionary entry: Author's 95 
create from data dictionary: Author's 95 
creation: Author's 85-88, 92-95 
cursor attributes: Configuration 51 
cursor control: Programmer's 307 
data dictionary entry: AUlhor's 101, 

103-104 
data type: Author's 95 
deselect: Programmer's 218 
entry function: AUlhor's 94 
example: Author's 13-14,87 
exit function: Author s 94 
field copy: Author's 78 
function. See Group function 
JPL access: JPL 27-28 
keyboard entry: Authors 13-14 
LDB entry: Authors 135-136 
library routines: Programmers 171 
name: Author's 86,88-89,93 
next field: Author's 53 
next group: Author s 94 
occurrence attributes: Configuration 51 
previous field: Author's 53 
previous group: Authors 94 
protection: AUlhor's 43 
radio button: Author's 85, 86, 92 

Page 16 JAM Release 5.03 20 Nov 92 

1 
I 



~oup (continued) 
reference 

field to group: Programmer's 248 
group to field: Programmer's 263 

remove fields: AU/hor's 92-95 
selection: Author's 13-14, 85, 151; Pro

grammer's 285, 388 
selection text Author's 13 
selectionldeselection characters: Configu-

ration 67, 98 
shortcut: Author's 85-88 
type: AU/hor's 86, 93 
validation: Author's 94, 151, 152; Pro

gramme r 's 264 

~oup function: Glossary 5; Programmer's 
46-50 

arguments: Programmer's 47 
default Programmer's 46,47 

DFLT_GROUP_FUNC: Programmer's 
14 

example: Programmer's 47-50 
GROUP_FUNC: Programmer's 14 
invocation: Programmer's 46-47 
lPL: JPL20 
proto typed: Programmer's 69 
return codes: Programmer's 47 

GROUP _FUNC. See Group function 

GRTYPE: Configuration 67,95 

H 
HELP: Author's 9, 33, 53 

hexadecimal value: Configuration 7 
item selection: Author s 54 
regular expression: Aulhor's 48 
Screen Editor: Author's 23 

Help: Authors 23, 130-134; Glossary 5 
advanced: Author's 133 
automatic: Author's 53 
creation: Author s 33, 130 
data entry: AU/hor's 132-133 
display window: Programmer's 266 
field-level: Author's 49,53-54 

Master Index 

Help (continued) 
menu: Author's 131-132 
screen name: Progranuner's 228 
screen-level: AU/hor's 33 

HOME: Author's 9 
hexadecimal value: Configuration 7 
library routines: Programmer's 267 

Hook function: Overview 4,5,10, 11, 12, 
32,41; Author's 59; Glossary 5; Pro
grammer's 11-82 

See also Individual hook function types 
by name 

address: Programmer's 17 
arguments: Programmer's 13 

asynchronous function: Programmer's 
51 

check digit function: Programmer's 54 
control function: Programmer's 33 
field function: Programmer's 20 
group function: Programmer's 47 
initialization and reset functions: Pro-

grammer's 56 
insert toggle function: Programmer's 

53 
key change function: Programmer's 43 
record/playback functions: Program-

mer's 59 
screen function: Programmer's 27 
status line function: Programmer's 62 
video processing function: Program-

mer's 64 
call: Overview 32 
control string: Overview 14, 30; Author's 

126-129 
data access: Overview 7 
declaration: Programmer's 16-18, 67-68 
development: Programmer's 19-66 
example: Overview 27; Programmer's 

11-12 
field: Overview 11, 14 
group: Author's 94 
identifier: Programmer's 17 
individual: Programmer's 13 
installation: Overview 13; Programmer's 

5,13-19,224,276 
installation parameter: Programmer's 17 

JAM Release 5.03 20 Nov 92 Page 17 



Master Index 

Hook function (continued) 
JPL: JPL 96 
language: Programmer's 17 
list: Programme r 's 13 
name: Programmer's 17 
recursion: Programmer's 82 
return codes: Programmer's 13 

asynchronous function: Programmer's 
51 

check digit function: Programmer's 55 
control function: Programmer's 33 
field function: Programmer's 22 
group function: Programmer's 47 
initialization and reset functions: Pro-

grammer's 56 
insert toggle function: Programmer's 

53 
key change function: Programmer's 43 
record/playback function: Program-

mer's 59 
screen function: Programmer's 28 
status line function: Programmer's 62 
video processing function: Program-

mer's 66 
screen: Overview 11, 14 
types (overview): Programmer's 13-15 

Hook string: AuJhor's 59 
argument processing: Author's 121-123 
format: Author's 59 

I 
mM PC, logical keyboard template: Au

thor's 7 

if: JPL 62 
See also else; else if 

IN_BLOCK: Configuration 35, 42 

IN_ENDCHAR: Configuration 35, 43 

INJiARROW: Configuration 35, 42 

IN...,MNUFOLD: Configuration 35, 45 

IN-..MNl]STRING: Configuration 35, 44 

IN_RESET: Configuration 35, 44 

IN_SEARCH: Configuration 45 

IN_SUBMENU: Configuration 45 

IN_VALID: Configuration 35, 44 

IN_VARROW: Configuration 35, 43 

IN_WRAP: Configuration 35, 44 

INO_OPTIONS: Configuration 35, 49 

INO_PLACEMENT: Configuration 35, 49 

IN IT: Configuration 12, 65, 77-78, 81 

initcrt: Configuration 37, 77 

Ini tialization 
See also LDB, initialization 
application: Programmer's 270-271 
JAM: Configuration 37; Programmer's 5 
LOB: AuJhor's 109-110 
modifying JAM source: Programmer's 7 
Screen Manager: Programmer's 5 

Initialization function: Programmer's 55-58 
arguments: Programmer's 56 
example: Programmer's 56-58 
invocation: Programmer's 55 
return codes: Programmer's 56 
sm_initcrt: Programmer's 270-271 
~_FUNC: Programmer's 15 

Input files: Utilities 4-5 

Input/output Overview 4, 5, 17-19,18 
flush: Programmer's 242 
library routines: Programmer's 167-168 
sm...,getkey: Programmer's 257-259 
user: Programmer's 272 

INS: Author's 10 
hexadecimal value: Configuration 7 
Sa-een Editor: Author's 24 

INSCRSR_FUNC. See Insert toggle func-
tion 

INSERT CHAR. See INS 

INSERT LINE. See INSL 

Insert mode 
block mode: Programmer's 136 
right justified fields: Author's 41 

Page 18 JAM Release 5.03 20 Nov 92 



Insert toggle function: Programmer's 52-54 
arguments: Programmer's 53 
example: Programmer's 53-54 
INSCRSR_FUNC: Programmer's 14 
invocation: Programmer's 53 
return codes: Programmer's 53 

INSL: Autlwr's 10 
hexadecimal value: Configuration 8 
Keyset Editor: Author's 116 
protection from: Author's 42 
Screen Editor: Author's 24 
scrolling array: Author's 147 

INS OFF: Configuration 66, 82 

INSON: Configuration 66, 82 

Interactive mode. See Block mode 

Internationalization: Overview 8; Program
mer's 103-115 

8 bit characters: Configuration 12-13, 
93; Programmer's 104-105 

character filters: Programmer's 111-112 
currency formats: Configuration 29; 

Programmer's 109-110,110 
date/time fonnats: Configuration 27, 28; 

Programmer's 10~108 
mnemonics: Programmer's 106, 108 

decimal symbols: Configurolion 31; Pro
grammer's 111 

documentation utilities: Programmer's 
113 

library routines: Programmer's 114 
menu processing: Programmer's 113 
messages: Configuration 31; Program-

mer's 104-115 
product screens: Programmer's 112 
range checks: Programmer's 113-114 
screens: Programmer's 113 
status and error messages: Programmer s 

112 
utility messages: Programmer's 115 

Interrupt handler: Programmer's 56,202 

Invoked function. See Control function 

Master Index 

Item selection: Author's 49, 54-56 
automatic: Author's 54 
data propagation: Author's 54 
keyboard entry: Author's 13 
menu field edit Author's 55 
screen name: Programmer's 228 

J 
JAM 

architecture: Overview 3-7, 32, 40, 41 
behavior: Programmer's 350-351, 407 
components: Overview 3-12 
configuration: Overview 18 
customization: Programmer's 1 
defmed: Overview 1, 3 
examples: Overview 3 
Executive.SeeJ~ Executive 
initialization: Programmer's 5 
library: Overview 7-8, 12 
library routines 

global behavior: Programmer's 
174-175 

global data: Programmer's 174-175 
m~rying: Programmer's7 
product components: Overview 7-9; 

Programmer's 2 
product screens: Overview 8 
Source Code: Overview 8 

JAM Executive: Overview 4-5, 6, 12, 41; 
Glossary 5; Programmer's 2-3 

authoring executable: Programmers 7 
compared to custom executive: Overview 

45-46 
defmed: Overview 4 
fonn stack. See Fonn stack 
initialization: Programmer's 3 
jm_library: Programmer s 3, 7 
library routines: Programmer's 176 
routines: Overview 8 

See also Library routines 
screen close: Programmer's 288-289 
screen control: Overview 35-37 
screen display: Programmer's 81 

fonn: Programmer's 290-291 
window: Programmer's 297-298 

JAM Release 5.03 20 Nov 92 Page 19 



Master Index 

JAM Executive (continued) 
Screen Manager interaction: Overview 

5-6, 29-34, 32; Author s 43 
start: Overview 30; Programmers 296 

JAMlDBi 
dbms: JPL56 
sql: JPL 83 

JAMlPi 
graphics: Overview 1 
Motif: Overview 1 
VTmdows: Overview 1 

jam_name: Authors 88 

jamcheck: Overview 9, 15; Author's 99; 
Utilities 54-56 

jammap: Utilities 57-58 
internationalization: Programmer's 113 

JM, message tag prefIX: Configuration 16 

jm_ control functions. See Built-in control 
functions 

jmain.c. See Source code, main routines 

JPL: Overview 7, 41 
See also "jpl; Module; Procedure, JPL 
atch verb: Programmer's 20 
C access: Overview 7 
call verb: Programmer's 32, 69, 82 
calling C routines from: Programmer's 

82 
accessing JPL variables: Programmer's 

389 
calling control functions from: Program

mer's 32 
calling hook functions from: Program

mer's 20 
choosing an editor: Configuration 39 
commands: JPL 45-90 

summary: JPL 46-48 
compared to compiled code: Program

mer's 122-124 
compilation: JPL 7,97-99 

jp12bin: Utilities 59-60 
compiled: Overview 12 
constants: JPL 36-38 

JPL (continued) 
control string: Author's 129 
conversion: JPL 7 
custom executive and: Programmer's 3 
database access: Overview 7 
editor: Programmer's 407 
entry point: J PL 7 
execute procedure from hook function: 

Programmers 292 
field level: Author's 58, 69; Program-

mer's 229 
file operations: Author's 33 
jpl built-in function: Programmer s 93 
library routines: Programmer's 292-296 
load: JPL 10, 66; Programmer's 293 
memory-resident Programmer's 121, 

245-246 
module: Overview 10,12; Glossary 5 

See also Module 
named procedure: JPL 7 
procedure. See Procedure, JPL 
procedures window: JPL 12 

field module: Author's 32, 58, 69; JPL 
8 

screen module: JPL 8-9 
pUblic: JPL 9-10, 78; Programmer's 294 
routines: Overview 8 
screen level: Author's 32,34 
stubbing out: Programmer's 124 
text file: JPL 12 
unload: JPL 85; Programmer's 295 
unnamed procedure: JPL 7 
utilities, jp12bin: Utilities 59-60 
variable access from C routines: Pro-

grammer's 389 

jpl: JPL63 

jp12bin: Utilities 59-60; JPL 98; Program
mer's 124 

Jterm: Overview 1 
enabling data compression: Configura-

tion 67, 100; Programmer's 8 

Justification, data entry: Author's 40-41 

JW _BORDATI: Configuration 34, 50 

JW _BORDSTYLE: Configuration 34, 49 

Page 20 JAM Release 5.03 20 Nov 92 

1 , 



JW _DISPATT: Configuration 34,50 

JW _FLDATI: Configuration 34, 50 

lX, message tag prefIx: Configuration 16 

jx_. See Authoring, jx library 

jxfonn: Overview 7, 10, 13; Author's 
15-17; Glossary 5 

See also Authoring 
application mode. See Application mode 
exit AuJhor's 16 
key set: AuJhor:r 116 
modification: Programmer's 7 
start: Author's 15-16,20 

jxmain.c. See Source code, main routines 

K 
KBD_DELAY: Configuration 65, 79; Pro

grammer's 96 

Key: Author's 3-15 
See also Input/output; Keys indexed by 

name 
arrow. See Arrow keys 
behavior: Author's 8-11 
disabling: Programmer's 30&-308 
function: Programmer's 256, 361 
input Programmer's 95-97,257-259, 

419 
simulated: Programmer's 89, 419 
testing: Programmer:r 302-303 

label in message text: Configuration 21 
See also Keytops 

logical: Overview 19; Author's 4-5; 
Configuration 3, 5; Glossary 6; 
Programmer's 95,257-259 

as a return code: Author's 44, 47 
message/status text Author's 57 
name: Configuration 6-9; Program-

mer's 305 
value: Configuration 6; Programmer's 

299-300 
mapping. See Key translation file 

Master Index 

Key (continued) 
mnemonics: Configuration 6-9 

cursor control keys: Configuration 7 
function keys: Configuration 9 

PC extended keyboard: Configuration 12 
routing: Programmers 97,306-308 
soft See Soft key 
translation: Overview 17, 18,41; Au

thors 3-12, 116; Programmer's 95, 
96 

See also Key translation fJle 
initialization: Programmer's 304 
internationalization: Programmers 105 
portability: Pro g rammer s 117 
sm_key_option: Programmers 307 
sm...,putjctrl: Programmer's 361 

Key change function: Programmer's 43-46 
arguments: Programmer's 43 
example: Programmers 44-46, 47-50 
invocation: Programmer's 43 
KEYCHG_FUNC: Programmer's 14 
return codes: Programmer's 43 

Key fJle. See Key translation file 

Key translation. See modkey 

Key translation me: Author's 3-4, 116; 
Configuration 3-13; Glossary 6 

converting to binary: Configuration 11 
environment variable: Configuration 36 
modifying: Configuration 11-13 
pathname: Configuration 39 
purpose: Configuration 1,3 
syntax: Configuration 5 
using alternate files: Configuration 13 

key2bin: Author's 116; Configuration 2, 
11; Utilities 61-62 

Keyboard: Author's 3-15; Programmer's 
95-97 

See also Key 
data entry. See Data entry 
extended: Configuration 12 

video fJle entry: Configuration 78 
group entry: Author's 13-14 
input 

simulated: Programmer's 89,419 
timing interval: Configuration 65, 79 

JAM Release 5.03 20 Nov 92 Page 21 



Master Index 

Keyboard (continued) 
item selection entry: Author's 13 
logical: Author's ~5, 6 

IBM PC: Author's 7 
mnemonics and values: Configuration 

6-9 
menu entry: Author's 12-13 
open for input Programmer s 272 
portability: Programmers 117 
scrolling array entry: Author's 144-149 
template: Authors 4-5,6 

IBM PC: Author s 7 

KEYCHG_FUNC. See Key change function 

Keyset Author's 35, 112-116; Configura-
tion 4; Glossary 6 

See also Soft key 
application-level: Author s 117 
close: Programmer's 197 
configuration variables 

KPAR: Authors 118; Configuration 
66,91-92 

KSET: Author's 118; Configuration 
66,92 

KSOFF: Configuration 66 
KSON: Configuralion 66 

default Author s 117 
display attributes: Authors 115 
editor. See Keyset Editor 
global configuration: Author's 115 
labels on/off: Programmer's 314, 315 
library routines: Programmer's 175, 

309-316 
memory-resident Programmers 121, 

245-246,309 
enabling: Programmer's 8 

number attributes: ConfigUralion 53 
open: Programmer's 309-310 
override-level: Author's 117 
portability: Author's 117,119-120 
query: Programmer's 312 
scope: Programmers 197,311 
screen--level: Author's 35, 117 
selection: Author's 117 
stack: Author s 117 

.,: 

Keyset (continued) 
system-level: -Author s 117 
video file support Author's 117-118 

Keyset Editor: Overview 7; Author's 
111-120; Glossary 6 

copy row: Authors 116 
delete row: Author's 115 
delete soft key: Author's 116 
display attributes: Author s 115 
exit: Authors 113 
insert row: Authors 115 
insert soft key: Authors 116 
move row: Author's 115 
repeat Author's 116 
start Authors 17, 113 

Keytops: Author's 4; ConfigUralion 5 
message/status text: Author's 56-57; 

Configuration 19,21 
portability: Programmer's 118 

KPAR: Authors 118; Configuralion 66, 
91-92 

KSET: Author's 118-120; Configuralion 
66,92 

KSOFF: ConfigUralion 66 

KSON: Configuration 66 

L 
Language. See Programming language or 

Internationalization 

LARR. See Arrow keys 

LAST FIELD. See EMOH 

Latch attributes: ConfigUralion 83, 84-87 
See also LATCHATI 

LATCHATI: Configuralion 66, 82, 84-87, 
91 

LOB: Overview 6-7,39-40,41; Author's 
135-136; Glossary 6; Programmer s 
83-84 

See also Data dictionary 
access: Author's 135; Programmers 84 

Page 22 JAM Release 5.03 20 Nov 92 

1 
1 



LOB (continued) 
behavior: Programmers 84,217 
clear: Author's 104~ Programmer's 320 
configuration: Author's 109 
creation: Author's 99; Programmer's 83 
custom executive and: Programmer's 3 
data 

read: Programmer's 430-431 
write: Programmers 377-378 

data propagation: Overview 36, 39; Pro~ 
grammer's 83-84, 181,327 

defmed: Overview 6; Author's 135 
disable access: Programmer's 217 
entry: Overview 39 

characteristics: Author's 135 
constant Author's 104 
defmed: Author's 135 
group type: Author's 135-136 
scope: Author's 104 
size: Author's 135 

example: Overview 40 
field names: Author's 49-50 
hash table: Programmer's 321 
initialization: Overview 29,40; Author's 

16, 101, 109-110, 135; CO~gura~ 
tion 41; Programmer's 83, 322 

example: Author's 109-110 
me names: Programmer's 269 
hash table: Programmer's 321 

item selection population: Author's 54 
jm library: Programmer's 3 
library routines: Programmer's 171,174 
messages and: Programmer's 84 
rebuild index: Author's 92, 101 
record access: Author's 104 
reset Author's 104; Programmer's 326 
routines: Overview 8 
scope: Programmer's 320, 326 
screen functions and: COnfiguration 52; 

Programmer's 84 

LEFr ARROW. See Arrow keys 

LEFr SHIFT. See LSHF 

length: JPL 65 

Letters only, character edit Author's 38-39 

Master Index 

Library 
close: Programmer's 316 
create/update, formlib: Utilities 52-53 
display form from: Programmer's 

243-244 
display keyset from: Progranvner's 

309-310 
display window from: Programmer's 

426-428 
installing JPL modules: JPL 98 
library module: JPL 10 
open: Programmer's 317-318 

Library functions. See Library routines 

Library routines: Programmer's 165-176, 
177-444 

array attribute access: Programmer's 170 
array data access: Programmer's 

168-169 
behavior. Programmer's 174-175 
block mode: Programmer's 176 
cursor control: Programmer's 172 
data dictionary access: Programmer's 

171, 174 
data structures: Programmer's 174 
field attribute access: Programmer's 170 
field data access: Programmer's 168-169 
global data: Programmer's 174-175 
group access: Programmer's 171 
initialization: Programmer's 166 
JAM Executive control: Programmer's 

176 
JPL: JPL 21, 91,94-95 
keysets: Programmer's 175 
LOB access: Overview 40; Program-

mer's 171, 174 
mass storage: Programmer's 174 
message display: Programmer's 172-173 
pro to typed: Programmer's 68 
Release 3: Upgrade Guide 2 
Release 4: Upgrade Guide 6 
Release 5, new: Upgrade Guide 6 
reset Programmer's 166 
screen control: Programmer's 167, 174 
scrolling: Programmer's 173 
shifting: Programmer's 173 
sm_lprotect Progranuner's 356-357 

JAM Release 5.03 20 Nov 92 Page 23 



'. Master Index 

Library routines (continued) 
sm_lunprotect: Programmer's 356-357 
sm_allget: Programmer's 181 
sID_amtjormat Programmer's 182 
sID_aprotect Programmer's 356-357 
sm_ascroll: Programmer's 183-184 
sm_aunprotect: Programmer's 356-357 
sID_backtab: Programmer's 185-186 
sID_base_fldno: Programmer's 187 
sID_bel: Programmer's 188 
sID_bitop: Author's 150; Programmer's 

189-191 
sin_bkrect Programmer's 192-193 
sm_blkdrvr: Programmer's 194 
sID_blkinit Programmer's 132, 138, 195 
sm_blkreset Programmer's 138, 196 
sm_c_keyset: Programmer's 197 
sID_c_off: Programmer's 198 
sm_c_on: Programmer's 199 
sID_c_vis: Programmer's 101, 200 
sID_calc: Programmer's 201 
SID_cancel: Programmer's 202 
SID_ch~attr: Programmer's 203-205 
sID3kdigit Programmer's 206 
sm_cl_all_mdts: Programmer's 207 
sm31_unprot Programmer's 208 
SID_clear_array: Programmer's 209 
sm_close_window: Overview 35; Pro-

grammer's 6, 210-211 
sID_COpy array: Programmer's 212 
sID_d_aCcur: Programmer's 426-428 
sm_djorm: Programmer's 119, 243-244 
sm_d_keyset: Programmer's 309-310 
sm_d_ms~line: Author's 56; Program-

mer's 100, 213-215 
sID_d_window: Programmer's 426-428 
sm_dblval: Programmer's 216 

internationalization: Programmer's 114 
sm_dd_able: Programmer's 217 
sm_deselect Author's 151; Program

mer's 218 
sm_dicname: Author's 99; Programmer's 

219 
sm_disp_off: Programmer's 220 
sm_dlength: Programmer's 221 
sm_do_region: Programmer's 222-223 

Library routines (continued) 
sm_do_uinstalls: Programmer's 5,16, 

224 
sID_dtofield: Programmer's 226 

internationalization: Programmer's 114 
sm_e variants: Programmer's 227 
sm3_fldno: Programmer's 240-241 
SID3dit...ptr: Author's 57; Programmer's 

228-230 
sm_emsg: Programmer's 100,231-233 
sID_err_reset Programmer's 6,100, 

234-235 
sm_fi_open: Programmer's 236 
sID_fi-path: Programmer's 237 
sID_fmquire: Programmer's 238-239 
sm_flush: Programmer's 99, 163,242 
sm_formlist Programmer's 120, 121, 

245-246 
sm_fptr: Programmer's 247 
SID_ftog: Programmer's 248 
SIDjtype: Author's 73; Programmer's 

249-250 
sm_fval: Author's 151; Programmer's 

251-252 
SID~etcurno: Programmer's 253 
sm~etfield: Author's 45; Programmer's 

254-255 
sm~eljctrl: Programmer's 256 
sm~etkey: Author's 3; Programmer's 

96,257 
sm...,gofield: Programmer's 260-261 
SID~p_inqUire: Programmer's 262 
sm...,gval: Author's 152 
sm...,gwrap: Programmer's 265 
sm_hlp_by_name: Programmer's 266 
sm_home: Programmer's 267 
sm_i_ ... : Programmer's 268 
sm_i_achg: Programmer's 178-180 
sm_i_doccur: Programmer's 225 
SID_i_fldno: Programmer's 240-241 
sID_i...,gtof: Programmer's 263 
sID_ininames: Programmer's 269 
sID_initcrt: Programmer's 5, 270-271 
SID_inPUt: Overview 30, 32; Program-

mer's 6, 97, 272 
options: Configuration 41-53 
return value: Overview 32 

Page 24 JAM Release 5.03 20 Nov 92 



Library routines (continued) 
sID_inqUire: Programmer's 273-275 
SID_inStall: Author's 126; Programmer's 

18-19,132,276 
SID_intva1: Programmer's 277 
sID_ioccur: Programmer's 278-279 
sID_is_no: Programmer's 280 
sID_is_null: Author's 45 
sID_isJes: Programmer's 281 

internationalization: Programmer's 114 
sID_isabort: Programmer's 282 
sID_iset: Programmer's 122,283-284 
sID_isselected: Programmer's 285 
sID_issv: Programmer's 286 
sID_itofield: Programmer's 287 
sIDjclose: Overview 36; Programmer's 

81,288-289 
sIDjform: Overview 36; Programmer's 

81,290-291 
sIDjplcall: Programmer's 292 
sIDjplload: Programmer's 293 
smjplpublic: Programmer's 294 
sIDjplunload: Programmer's 295 
SIDjresetcrt Programmer's 371 
sIDjtop: Overview 29; Author's 109; 

Programmer's 296 
sIDjwindow: Overview 36; Program-

mer's 81, 297-298 
SIDjxresetcrt Programmer's 371 
sID_key_integer: Programmer's 299-300 
sID_keychg: Author's 3 
sID_keyfilter: Programmer's 301 
s~keyhit Programmer's 302-303 
SID_keyinit: Programmer's 121,304 
s~eylabel: Programmer's 305 
sID_keyoption: Author's 151; Program-

mer's 97,306-308 
s~kscscope: Programmer's 311 
sID_ksinq: Programmer's 312 
sID_kslabel: Programmer's 313 
sID_ksoff: Programmer's 314 
s~kson: Programmer's 315 
sID_CaCcur: Programmer's 426-428 
sID_Cclose: Programmer's 316 
sID_Ijorm: Programmer's 243-244 
sID_Ckeyset: Programmer's 309-310 

Master Index 

Library routines (continued) 
SID_Copen: Programmer's 317-318 
SID_I_window: Programmer's 42~28 
SID_last Programmer's 319 
sID_lclear: Author's 104; Programmer's 

320 
sID_Idb_hash: Progrommer's321 
sID_Idb_init: Author's 109; Program

mer's 83. 322 
SID_leave: Overview 30; Programmer's 

137.323 
SID_length: Programmer's 324 
sID_Ingval: Programmer's 325 
SID_lreset Author's 104; Programmer's 

326 
SDl_Istore: Programmer's 327 
SID_Ito field: Progr~r's 328 
SID_ID_flush: Programmer's 329 
SID_IDax_OCCW-: Programmer's 330 
SID_IDax_OCCW-S: Author's 70 
SID_msg: Programmer's 100,332 
SID_ms~et Programmer's 333 
SID_msgfrnd: Programmer's 334 
SID_msgread: Configuration 17; Pro-

grammer's 121.335-337 
SID_IDWindow: Programmer's 84. 

338-339 
SID_n variants: Programmer's 340 
SID_n_fldno: Programmer's 240-241 
SID_n...,getfield: Overview 40 
sID_n...,gva1: Programmer's 264 
SID_n-putfield: Overview 40 
SID_name: Programmer's 341 
sID_next_sync: Programmer's 342 
sID_nl: Programmer's 343 
sID_novalbit Programmer's 344 
SID_null: Programmer's 345 
SID_num_occw-s: Author's 70; Program-

mer's 346 
SID_O variants: Programmer's 347 
SID_o_achg: Programmer's 178-180 
SID_o_doccw-: Programmer's 225 
SID_o_fldno: Programmer's 240--241 
SID_OCCUf_no: Programmer's 348 
SDl_off...,gofield: Programmer's 349 

JAM Release 5.03 20 Nov 92 Page 25 



Master Index 

Library routines (continued) 
sm_option: Author's 12. 13, 14, 60, 138, 

151; Configuration 35,41,42-45; 
Progranuner's 84, 350-351 

sm_osbift: Programmer's 352 
sm...,pinquire: Programmer's 353-355 
sm...,pIotect Programmer's 356-357 
sm...,pset: Programmer's 35~359 
sm...,putfield: Programmer's 360 
sm...,putjctrl: Programmer's 361· 
sm...,pwrap: Programmer's 362 
sm_query_msg: Programmer's 100, 363 

internationalization: Programmer's 114 
sm_qui_msg: Programmer's 100, 364 
sm_quiet_err: Programmer's 100, 365 
sm_I_aCcur: Programmer's 6, 426-428 
sm_I_form: Overview 30, 35; Program-

mer's 6, 243-244 
sm_ckeyset Programmer's 309-310 
smJ_window: Overview 31, 35; Pro

grammer's 119,426-428 
sm_Id...,part: Programmer's 366-367 
smJdstruct: Author's 72; Programmer's 

368-369 
sID_Iescreen: Programmer's 122, 370 
smJesetcrt: Programmer's 6, 371 
smJesize: Programmer's 372-373 
sm_restare_data: Programmer's 374 
smJeturn: Overview 30; Programmer's 

137,375 
sm_rmformlist: Programmer's 376 
smJreCord: Programmer's 377-378 
smJs_data: Programmer's 379 
sm_rscroll: Programmer's 380 
sm_s_val: Author's 151, 152; Program-

mer's 381-382 
sm_save_data: Programmer's 383 
sm_scJDax: Programmer's 384 
sID_sdtime: Programmer's 385-387 
sm_select: Author's 151; Programmer's 

388 
sID_seCinjpl: Programmer's 389 
sm_setbkstat: Programmer's 101, 

390-391 
sm_setstatus: Programmer's 100, 392 

Library routines (continued) 
sID_sh_off: Programmer's 393 
sm_shrink_ta_fit AutJwr's 55, 139; Pro

grammer's 394 
sm_sibling: Overview 31; Author's 126; 

Programmer's 395 
sm_size_oearray: Programmer's 396 
sm_skinq: Programmer's 397-398 
sID_skmark: Programmer's 399 
sID_skset Programmer's 400-401 
sID_skvinq: Programmer's 402-403 
sm_skvmark: Programmer's 404 
sID_skvset Programmer's 405-406 
sm_soption: Programmer's 407 
sID_strip_amt_ptr: Programmer's 408 
sID_submenu_close: Programmer's 409 
sID_sv_data: Programmer's 410 
sID_sv_free: Programmer's 411 
sm_svscreen: Author's 55,56; Program-

mer's 412-413 
SDl_t_scroll: Programmer's 414 
sm_t_shift Programmer's 415 
sm_tab: Programmer's 416 
sm_tst_alCmdts: Programmer's 417 
sID_udtime: Programmer's 418 
sm_ungetkey: Programmer's 419 
sm_unprotect: Programmer's 356-357 
sm_unsvscreen: Programmer's 420 
sID_viewport: Programmer's 421 
sm_vinit Programmer's 121 
sm_wcount: Programmer's 423 
sm_wdeselect Programmer's 424-425 
SID_Win size: Programmer's 429 
sm_wrecord: Programmer's 430-431 
sm_wrotate: Programmer's 432-433 
SDl_wrt-part: Programmer's 434-437 
sm_wrtstruct: Author's 73; Program-

mer's 438-442 
sm_wselect: Programmer's 443-444 
soft keys: Programmer's 175 
terminal input/output Programmer's 

167-168 
validation: Programmer's 174 
viewport control: Programmer's 167 

Page 26 JAM Release 5.03 20 Nov 92 



License: Overview 8; Programmer's 2, 7 

Line drawing: Author's 97-98; Gwssary 6 
characters: Configuration 97 
status line: Author's 98 
video flle entries: Configuration 67, 95, 

97 

LINES: Configuration 65, 77 

Linking 
See also the Installation Guide 
check digit function and: Programmer's 

54 
hook functions: Programmer's 12 
linked libraries: Programmer's 3, 7 

Listings. See Documentation utilities 

load: JPL 10, 15,66 

Local Data Block. See LDB 

Local decimal symbol: Configuration 31 

LOCAL PRINT. See LP; SMLPRINT 

Logical key. See Key, logical 

Logical keyboard: Author's 3; Configura
tion 4 

See also Key; Key translation file; Key, 
logical; Keyboard 

mnemonics and values: Conjiguralion 
6-9 

template: Author's 6, 7 

Loop 
break: JPL 51 
if: JPL62 
indexed: JPL59 

Lower case, field edit Author's 45 

LP: Author's 10 
hexadecimal value: Configuration 7 

LSHF: Author's 10 
hexadecimal value: Configuration 7 

lstdd: Utilities 63-64 
internationalization: Programmer's 113 

lstform.: Utilities 65-66 
internationalization: Programmer's 113 

Master Index 

M 
Mapping, keyboard. See Key, translation 

Math: Author's 58,62-64; Programmer's 
201 

@date: Author's 64 
@sum: Author's 64 
currency precision: Author s 74 
data type precision: Author's 74 
expression: Author's 63 
field: Programmer's 229 
multiple calculations: Authors 63 
special functions: AUlhor's 64 

math: JPL 68 

MDT bit See Validation 

Memo text. See Field, memo text 

Memory 
allocation: Programmer's 270-271 
deallocation: Programmers 371 
LDB allocation of: Programmer's 83 
library routines, mass storage: Program-

mers 174 
optimization: Programmer's 8-9, 121, 

122 
resident 

bin2c: Utilities 11-12 
configuration: Programmer's 1~121 
form list Utilities 11; Programmer's 

119, 245-246, 376 
JPL: Utilities 59; JPL 11, 98; Pro-

grammers121 
key file: Programmer's 304 
key translation file: Utilities 61 
key set Programmer's 8, 121,309 
message file: Utilities 86; Program-

mer's 121 
screens: Programmer's 8, 119-120, 

245-246,376 
video flle: Utilities 92; Programmers 

422 
screens saved in: Programmer's 412-413, 

420 

JAM Release 5.03 20 Nov 92 PageZ7 



Master Index 

Menu: Overview 5; Author's 136-139; 
Glossary 6 

block mode: Programmer's 133-134 
block mode options: Configuration 

53-54 
control field: Author's 84, 136; Glossary 

6 
control string: Overview 11; Author's 

124,138 
creation: Author's 84 
data entry mode: Author's 33 

jm_mnutogl: Programmer's 90 
sm_mnutogl: Programmer's 331 

dynamic: Author's 139 
example: Overview 24, 24 
field: Author's 46-47,55, 136 
help: Author's 131 
keyboard entry: Author's 12-13 
menu mode: Author's 12, 136 

jm_mnutogl: Programmer s 90 
sm_mnutogl: Programmu's 331 

pulldown: Autlwr's 47 
return code: Author's 47 
return value: Programmer's 229 
Screen Manager interaction (sm_input): 

Overview 30 
selection: Author's 12, 138, 151 

options: Configuration 44-45 
selection field: Author's 84, 136 
shortcut: Author's 84-85 
submenu: Authors 46-47,85; Program

mer's 409 
block mode: Progranuner's 134 
name: Programmer's 228 

testing: Autlwr's 137 
validation: Author's 151 

MENU TOGGLE. See MTGL 

Message: Programmer's 172-173,231-236, 
332-340,363-366,390-393 

See also Message fIle; Status Line 
bell: Autlwr's 57; Programmers 188 
configuration variables: Cotrfigurotion 

45-48 
dedicated message line, video fIle entries: 

Configuration 66, 90-91 

Message (continued) 
display . 

alternating status: Programmer's 392 
background status: Configuration 45; 

Programmer's 390-391 
border: Configuration 47-48 
default message: Programmer's 

213-215 
display attributes: Configuration 45 
error message: Programmer's 

231-233,234-235,364,365 
merge: Programmer's 332 
query message: Programmer's 363 
screen position: Configuration 45 
text attributes: Configuration 48 
window: Programmer's 33&-339 

error message: Configuration 22 
flush: Programmer's 329 
library routines: Programmer's 172-173 
retrieval: Programmer's 333,334 
window, LDB behavior: Programmer's 

84 

Message file: Configuration 2, 15-31; 
Glossary 6 

adding new entries: Configuration 1&-19 
converting to binary: Configuration 17 

msg2bin: Utilities 86-87 
currency formats: Configuration 29-30 
date/time formats: Configuration 22-29 
decimal symbols: Configuration 31 
disk-based: Programmer's 121 
display attributes: Configuration 19-21 
environment variable: Configuration 36 
initialization: Programmer's 335-337 
internationalization: Programmer's 

104-115 
currency formats: Programmer's 

109-110 
date/time formats: Programmer's 

105-108 
JAM system messages: Configuration 16 
key labels: Configuration 19 
modifying entries: Configuration 17-18 
pathname: Configuration 39 
retrieval: Programmer's 333, 334 
syntax: Configuration 16-17 

Page 28 JAM Release 5.03 20 Nov 92 



Message file (continued) 
text: Configuration 17 
using alternate files: Configuration 31 
utilities, msg2bin: Utilities 86-87 

Microsoft Windows, cursor movement: 
Configuration 78 

Miscellaneous edits, field: Autlwr's 36, 
58-69 

Mode. See Application mode; Data entry, 
data entry mode; Line drawing; Menu, 
menu mode; Screen Editor, draw mode; 
Screen Editor, test mode; Select mode 

MODE0-6: Configuration 66, 93-95 

MODEx: Programmer's 95, 99-100 

Modified data tag. See Validation, MDT bit 

modkey: Author's 3, 4, 116; ConfiguraJion 
3, 5, 11; Utilities 67-85 

defming keys: Utilities 75-82 
application function keys: Utilities 79 
cursor keys: Utilities 75-76 
editing keys: Utilities 75-76 
function keys: Utilities 77 
miscellaneous keys: Utilities 81 
shifted function keys: Utilities 78 
soft keys: Utilities 80 

entering logical value: Utilities 82 
executing: Utilities 68 
exiting: Utilities 72 
help: Utilities 73-74 
key translation: Utilities 67-68 
logical value display modes: Utilities 

82-83 
special keys: Utilities 68-69 
testing key fIle: Utililies 84 

Module: JPL 8-11 
See also JPL 
creating: JPL 11-12 
field module: JPL 8 
ftle module: JPL 9 
library module: JPL 10 
load: JPL 10, 15, 66 

unload: JPL 85 

Master Index 

Module (continued) 
memory-resident module: JPL 11 
pUblic: JPL 9, 15, 78 

unload: JPL 85 
screen module: JPL 8 
summary of modules: JPL 16 

MORE. See SFTN 

MOUS, hexadecimal value: Configuration 8 

Mouse 
driver, video file entry: Configuration 67, 

99 
menu toggle: Autlwr's 12, 136 

MOUSEDRIVER: Configuration 67,99 

MS-DOS 
!NIT keywords: Configuration 78 
sample video file: Configuration 60-62 

msg: JPL 70 

msg2bin: Configuration 2, 15, 17; Utilities 
86-87 

MSGATT: Configuration 66,90-91 

msgftle: Configuration 15 

msgftle.bin: Configuration 15 

MTGL: Author's 10, 12,33, 136 
hexadecimal value: Configuration 8 

MULTISHIFf flag: Configuration 12, 78 

Must fill, field edit: Author's 46 

N 
next: JPL 73 

See also for; while 

Next field. See Field, next field 

NEXT ROW. See SFTN 

NL: Author's 10 
adding data dictionary entries: Autlwr's 

103 
allocate array occurrence: Author's 145 
Data Dictionary Editor: Author's 101 

JAM Release 5.03 20 Nov 92 Page 29 



Master Index 

NL (continued) 
group selection: Author s 14, 85 
hexadecimal value: Configuration 7 
library routines: Programmer's 343 
menu selection: Author's 12, 138 
Screen Editor: Author's 23 

No auto tab, field edit Author's 46 
last character options: Configuration 43 

Null field: Programmer's 229 
field edit: Author's 44-45 

Numeric, character edit Authors 39 

o 
Occurrence: Author's 27, 144-149; Glossa

ry7 
allocated: Author's 61, 144-148; Pro-

grammer's 346 
data required: Author's 147 
defmed: Author's 70 
delete: Programmer's 225 
display attributes: Programmer's 

178-180 
field number: Programmer's 2~241 
group: Programmer's 262 

See also Group 
attributes: Configuration 51 

insert Programmer's 278-279 
number. Author's 49, 72; Programmer's 

346,348 
maximum: Author's 71,76; Program-

mer's 330, 384 
scroll to: Programmer's 183-184 
sm_i_varian ts: Programmer's 268 
sm_o variants: Programmer's 347 

OMSG: Configuration 66, 90 

Onscreen attributes: Configuration 83, 
87-88 

Operating system 
block mode: Programmers 137 

Operating system (continued) 
command: Author s 130 

control string: Overview 30 
jm_system: Progranuner's 91 
jPL: JPL 82, 84 

escape: Programmers 323 

Operators, jPL: JPL 38-43 
bitwise: JPL 42-43 
date and time: JPL 41 
substring specifier: JPL ~1 
summary of operators: JPL 38 

Options: Utilities 3-8 
order, utilities: Utilities 8 

Output commands, video file: Configura
tion 69, 72-73 

Output files: Utilities 4-5 

p 
Padding. See Timing interval, command 

execution 

Parallel array. See Array, parallel; Scrolling 
array, synchronize 

Parameter window: Upgrade Guide 5 

Parameters 
in video file entries: Configuration 67-76 
manipUlation in video ftle entries: Con

figuration 70 
sequencing: Configuration 70-71,72,73 

parms: JPL 74 

Paste. See Clipboard 

Path: Configuration 40; Progranuner's 407 

Path names: Utilities 6 

PC, keyboard template: Author's 7 

Pen 
display attributes: Author's 26 
line drawing: Author s 98 

Percent commands, video file parameter se
quences: Configuration 68-70 

Page 30 JAM Release 5.03 20 Nov 92 

j 



Performance considerations, JPL: JPL 
97-100 

PFI-24: Overview 19; Autlwr's 10 
control string: Author's 82, 124 
data dictionary comparison: Author's 91 
Data Dictionary Editor: Autlwr's 102 
default key set: Author's 117 
group attribute selection: Author's 94-95 
hexadecimal values: Configuration 9 
Keyset Editor: Author's 115 
line drawing: Author's 98 
Screen Editor: Author's 22 
select mode: Author's 76 
viewport Autlwr's 158 

Pick list See Item selection 

PUl: Programmer's 1,11 

PLAY _FUNC. See Playback function 

Playback function: Progranuner's 58-62 
arguments: Programmer's 59 
AVAIL_FUNC: Progranuner's 15 
example: Programmer's 59-62 
ftlter: Progranuner's 301 
invocation: Programmer's 58 
PLAY _FUNC: Programmer's 15 
return codes: Programmer's 59 

Pop-up window, displaying messages: Con
figuration 22 

Portability: Overview 18; Programmer's 
117-118 

keyset: Author's 117, 119-120 
smmach.h: Progranuner's 118 
tennm~: Progranuner's99 

Precision: Programmer's 249-250 

PREVIOUS ROW. See SFTP 

Print Programmer's 407 
See also LP 

proc: JPL 76 

Procedure, JPL: JPL 13, 18 
See also JPL 
calling: JPL 14-16 

Master Index 

calling frem application code: JPL 21 
calling from control string: JPL 18 
calling from field function: JPL 19-20 
calling from group function: JPL 20 
calling from JPL module: JPL 18-19 
calling from screen function: JPL 21 
exit: JPL 80 
named procedure: JPL 7 
proc statement: JPL 76 
unnamed procedure: JPL 7 

Programming language: Overview 4, 11; 
Programmer's 1, 11, 17 

lPL: Overview 7 

Programming utilities: Utilities 2 
binary to ASCII C, bin2c: Author's 117; 

Utilities 11-12 
binary to/from hex ASCII, bin2hex: Utili· 

ties 13 
data dictionary, dd2struct: Autlwr's 74; 

Utilities 26-28 
screens, f2struct: Author's 72; Utilities 

46-48 

Protection: Author's 41-43 
See also Field 
clearing: Autlwr's 42 
data entry: Author's 42 
derived fields: Author's 42 
example: Author's 43 
menu field: Author's 136 
scrolling field: Author's 42 
shifting field: Author's 42 
tabbing into: Author's 42 
validation: Author's 42 

PROTO_FUNC. See Pro to typed function 

Prototype. See Application, prototype 

Pro to typed function: JPL 92-94; Program-
mer's 66-81 

arguments: Author's 59 
compare to memo text Author's 58 
declaration: Programmer's 67-68 
example: Progranuner's 7~78 

JAM Release 5.03 20 Nov 92 Page 31 



Master Index 

Prototyped function (continued) 
executing with call: JPL 52 
installation: Programmer's 68,276 
in vocation: Programmer's 69 
JAM library functions: Programmer's 68 
limitations: Programmer's 78--81 
PROTO_FUNC: Programmer's 14 
valid prototypes: Programmer's 68 

public: JPL 9-10, 15, 16,78 

Pulldown menu: Author's 47 

Punctuation, embedded: Author's 39-40 
See also Field, digits only 

Q 
QMSGATT: Configuration 34, 46 

Query message. See Status line 

QUIETAlT: Configuration 34, 46 

R 
Radio button: Glossary 7 

See also Group 

Range check: Author's 58, 68-69 
See also Field, range 

RARR. See Arrow keys 

RCP: Configuration 66 

Record. See Data dictionary, record 

Record function: Programmer's 58-62 
arguments: Programmer's 59 
AVAIL_FUNC: Programmer's 15 
example: Programmer's 59--62 
filter: Programmer s 301 
invocation: Programmer's 58 
RECORD_FUNC: Programmer's 15 
return codes: Programmer's 59 

RECORD_FUNC. See Record function 

Recursion 
See aLso Recursion 
in hook functions: Programmer's 82 

REFR: Author's 10 
hexadecimal value: Configuration 8 

Regular expression: Author's 39, 140-143~ 
Programmers 112,229 

character edit: Author's 39--42 
field edit: Author's 47--48 
help: Author's 48 

Relative positioning: Author's 155 

REPMAX: Configuration 65, 79 

Reports. See Documentation utilities 

ReportWriter: Ove",iew 1 

REPT: Configuration 65,68, 78 

RESCREEN. See REFR 

RESET: Configuration 65, 81 

Reset function: Programmers 55-58 
arguments: Programmer's 56 
example: Programmer's 56--58 
invocation: Programmer's 55 
return codes: Programmer's 56 
sm_cancel: Programmers 202 
sm_resetcrt: Programmer's 371 
U~ESET_FUNC: Programmer's 15 

Reset terminal: Programmer's 6, 202, 
371-444 

resetcrt: Configuration 77 

RETURN. See NL 

return: JPL 80 

Return code, menu: Author's 47 

Return entry, field edit: Author s 43--44 

retvar: JPL 81 

Reverse video, display attribute: Authors 
26 

RIGHT ARROW. See Arrow keys 

Right justified field. See Field, right justified 

Page 32 JAM Release 5.03 20 Nov 92 



RIGHT SHIFT. See RSHF 

Routing. See Key, routing 

RSHF: Author's 10 
hexadecimal value: Configuration 7 

Runtime environment: Glossary 7 
See also Application executable 

s 
SB_OPTIONS: Configuralion 35, 49 

Scope: JPL 24-25, 25 
See also Data dictionary; Data dictionary, 

entry, scope; Keyset; Keyset, scope 
data dictionary entry: Author's 92, 

100--101, 104, 108 
of display attributes: Autlwr's 26 

SCP: Configuration 66 

Screen: Overview 10, 10-11; Glossary 7 
See also Form; Viewport; Window 
activate: Overview 39 
active: Glossary 1 
ASCn, f2asc: Author's 19; Utilities 

34-43 
AUTO control string: Autlwr's 82, 83 
block mode: Programmer's 133 
border. See Border 
border styles: ConfigUralion 95 
characteristics: Overview 14; Author's 

28,28-35 
close: Overview 34; Programmer's 86, 

87,88,210-211,288-289 
color: Author's 30; Progranuner's 

192-193 
compile: Author's 27 
control strings: Author's 82-83 
convert text to screens, txt2form: Utilities 

89 
convert toIfrom ASCn, f2asc: Overview 

9; Utilities 34-43 
create data structures, f2struct Utilities 

46-48 

Master Index 

Screen (continued) 
create/update data dictionary, f2dd: Utili

ties 44-45 
creation: OveTView 10; Author's 21 

f2asc: Utilities 35-36 
data 

read: Programmer's 383,410, 
430-431,434-437,438-442 

write: Progranuner's 366-367, 
368-369,374,377-378,379 

data propagation: Programmer's 181,327 
date/time initialization: Autlwr's 61 
described: Overview 10 
development Overview 13-14 
display: Overview 5, 11,32 

display attributes: Utilities 36-42 
editing: Author's 21 

f2asc: Utilities 35-36 
entry function. See Screen function 
example: Overview 23-28, 24 
exit function. See Screen function 
expose: Overview 35, 37 
file extension: Programmer's 407 
function. See Screen function 
help screen: Author's 33-34 
hook function: Overview 11,14 
internationalization. See Internationaliza-

tion 
JAM system, setup options: Configura-

tion 49-50 
JPL: OveTView 12; Author's 32-33 
keyset: A~hor's 35 
library: Configuration 40 

close: Programmer's 316 
create/update: Utilities 52-53 
display: Programmer's 243-244, 

426-428 
open: Programmer's 317-318 

library routines: Programmer's 167, 174 
memory-resident Programmer's 

119-120,245-246,376 
enabling: Programmer's 8 

mode: Author's 33 
name: Author's 15,20,20; Program

mer's 354 
name field: Author's 88 
open: OveTView 39 

JAM Release 5.03 20 Nov 92 Page 33 



Master Index 

Screen (continued) 
order: Overview 5, 6 
population from LDB: Programmer's 84 
position: Author s 53-54 
relationships, jamrnap: Utilities 57-58 
rename: Author's 21 
report 

f2asc: Utilities 34 
jammap: Utilities 57 
Istform: Utilities 65-66 

restore: Programmer's 366-367, 
368-369,374,379 

rewrite: Programmer's 222-223 
save: Author's 21 
saved in memory: Programmer's 286, 

. 412-413,420 
search: Programmer's 119 
size: Authors 29; Programmer's 274 
stacks: Overview 34-39 

See also Form stack or Wmdow stack 
store: Programmer's 383,410,434-437, 

438-442 
free buffer. Programmer's 411 

template: Author's 20,20,21,31 
testing: Author's 19,23 
top: AUlhor's 15; Programmer's 87 
update from data dictionary, jamcheck: 

Utilities 54-56 
upgrading 

f3t05: Utilities 49 
f4t05: Utilities 5~51 

utilities: Utilities 1 
f2asc: Author's 19; Utilities 34-43 
f2dd: Utilities 44-45 
f2struct: Author's 72; Utilities 46-48 
f3to5: Utilities 49 
f4t05: Utilities 5~51 
formlib: Utilities 52-53 
jamcheck: Author's 99; Utilities 54-56 
jammap: Utilities 57-58 
Istform: Utilities 65-66 
txt2form: Utilities 89 

validation: Author's 151 
See also Validation 

virtual: Author's 29, 152 

."t!." •• 

Screen binary: Overview 4, 11; Glossary 7 

Screen Editor: Overview 4,7, 10, 13-14; 
Author's 15, 19-98; Glossary 7 

clipboard. See Clipboard 
colors: Author's 25 
compile screen: Author's 27 
control strings: Author s 82-83 
data dictionary access: Overview 14, 15; 

Author's 89-91 
display attributes: Author's 25 
draw mode: Author's 21, 23; Glossary 3 
editing: Author's 80 
exit Author's 21, 21, 22 
field characteristics: A Ulhor 's 35 
field summary: Author's 74-76 
function keys: Author's 22-23 
group creation: Author's 85-88 
help: Author's 23 
menu creation: Author's 84-85 
more key: AUlhor's 81-82 
rename screen: AUlhor's 21 
repeat operation: Author's 8~1 
save screen: AUlhor's 21 
screen characteristics: Author's 28--35 
screen testing: AUlhor's 23 
select mode: Author's 76-80 

See also Select mode 
shortcuts: Author's 83-88 
start Author's 17, 2~22 
status line: Author's 21 
switch screens: Author's 21 
test mode: Author's 23 

Screen function: Glossary 7; Programmer's 
26-32 

arguments: Programmer's 27 
data access, LDB vs. fields: Configura

tion 52 
default: Programmer's 26-27 

DFLT_SCREEN_FUNC: Program
mer's 14 

example: Programmer's 28-32 
displaying a screen during: Program-

mer's 81 
entry function: Author's 34-35, 54 
execution options: Configuration 53 
exit function: Author's 34 

Page 34 JAM Release 5.03 20 Nov 92 



Screen function (continued) 
invocation: Programmer's 27 
lPL: JPL21 
LDB search order: Programmer's 84 
prototyped: Programmer's 69 
return codes: Programmer's 28 
SCREEN_FUNC: Programmer's 14 

SCREEN HELP. See FHLP 

Screen Manager: Overview 4,6,41; Glos-
sary 7 

behavior: Programmer's 350-351, 407 
defmed: Overview 4 
initialization: Programmer's 5 
lAM Executive interaction: Overview 

5-6, 19,29-34,32; Author's 43 
routines: Overview 8, 12, 30-31 

See also Library routines 
saeen control: Overview 11, 34-35 
sm_library: Programmer's 3, 7 
window stack. See Wmdow stack 

Screen module: JPL 8 

SCREEN_FUNC. See Screen function 

SCROLL DOWN. See SPGU 

SCROLL UP. See SPGD 

SCROLL_FUNC. See Scrolling array, alter
native scroll driver 

Scrolling array: Overview 14; Author's 
144-149; Glossary 8 

alternative saoll driver: Author's 72; 
Glossary 1; Programmer's 125-130 

DFLT_SCROLL_FUNC: Program-
mer's 15 

enabling: Programmer's 8,125 
function name: Programmer's 229 
sample: Programmer's 126 
SCROLL_FUNC: Programmer's 15 

attributes: Programmer's 178-180 
base field: Author's 70 
block mode: Programmer's 136 
circular: Author's 72 
data required: Author's 147 

Scrolling array (continued) 
defined: Author's 70 
indicators 

Master Index 

placement Configuration 49 
video ftle entries: Configuration 67, 98 

inquiring: Programmer's 238 
isolate: Author's 72 
library routines: Programmer's 173 
next field: Author's 146 
occurrence. See Occurrence 
page size: Author's 72 
scroll: Programmer's 183-184, 380 
setup options: Configuration 48-49 
size: Author's 70, 144; Programmer's 

384 
synchronize: Author's 70,95-96, 

148-149 
fmd next Programmer's 342 

test for scrolling: Programmer's 414 

Select mode: Author's 76-80; Glossary 8 
box select Author's 77 
clipboard. See Clipboard 
de-select field: Author's 77 
exit Author's 76 
operations on select sets: Author's 77-78 
re-select Author's 77 
repeat operation: Author's 78 
select field: Author's 77 
select set 

copy: Author's 78 
creation: Author's 77 
defmed: Author's 76 
delete: Author's 78 
display attributes: Author's 77 
move: Author's 78 
operations: Author's 77-78 
undelete: Author's 78 

start Author's 76 
status line: Author's 76, 76 

Select set 
See also Select mode, select set 
mark:: Author's n 
undelete: Author's 78 

Set graphics rendition. See ASGR; SGR 

JAM Release 5.03 20 Nov 92 Page 35 



Master Index 

Setup file: Glossary 8 
sample: Configuration 54-56 
specifying: Configuralion 38, 40 
syntax: Configuration 38 

Setup variables 
See also Configuration variables 
converting to binary, var2bin: Utilities 

90-91 

SFTI-24: Author's 10 
default keyset: Author s 117 
defmition: Authors 116 
hexadecimal values: Configuration 9 

. soft key navigation: Author's 114, 119 

SFTN: Author's 10, 114, 119, 120 
hexadecimal value: Configuration 8 

SFTP: Authors 11,114 
hexadecimal value: Configuration 8 

SFTS: Authors 11,116 
hexadecimal value: Configuration 8 

SGR: Configuralion 66, 68, 84-87, 89,91 

shell,lPL: JPL 82 

Shifting field: Glossary 8 
block mode: Programmers 136 
cursor location: Programmers 393 
defmed: Authors 70 
increment: Author s 72 
indicators 

placement Configuration 49 
video ftle entries: Configuration 67, 98 

inquiring: Programmers 238 
library routines: Programmer's 173 
maximum length: Author's 27, 70, 72, 75 
menu control field: Author's 137 
setup options: Configuralion 48 
shift Programmers 352 
size: Authors 70 
test for shifting: Programmers 415 

Sibling window: Overview 31; Glossary 8 
See also Wmdow 
control string: Author's 126 

Sibling window (continued) 
display: Author's 126 
selection: Author's 158 

SK_NUMATf: Configuration 53 

Sleep command. See Timing inteIVal, com
mand execution 

SM, message tag prefix: Configuration 16 

sm_ routines. See Library routines 

SM_CALC_DATE, message ftle entry: 
Configuralion 29 

SM_NO: Programmer's 280 

SM_ YES: Programmers 281 

SMCHEMSGATI: Configuration 34 

SMCHFORMATIS: Configuration 34 

SMCHQMSGATI: Configuration 34 

SMCHSTEXTATI: Configuration 34 

SMCHUMSGATI: Configuration 34 

smdefs.h: Upgrade Guide 5 

SMDICNAME: Author s 99; Configuration 
34,40 

SMDWOPTIONS: Configuration 34 

SMEDITOR: Configuration 39; Program
mer's 407 

SMEROPTIONS: Configuration 34 

smerror.h: Configuration 15, 16 

SMFCASE: Configuration 34 

S MFEXTENS ION: Authors 88; Configu
ration 34, 50; Utilities 6; Program
mer's 407 

SMFLIBS: Configuration 34, 40 

SMINDSET: Configuration 35 

SMINICI'RL: Configuration 35, 40 

SMININAMES: Configuration 35, 41 

SMKEY: Configuration 11, 36, 39 

smkeys.h: Configuration 3, 4, 5 

Page 36 JAM Release 5.03 20 Nov 92 



SMLPRINT: Configuration 39; Program-
mer's 407 

smmach.h: Programmer's 118 

SMMPSTRING: Configuration 35 

SMMSGS: Configuration 15,31,36,37,39 

SMOKOPTIONS: Configuration 35 

SMPATH: Configuration 40; Programmer's 
407 

SMSETUP: Configuration 37, 38, 40; Uti-
lilies 90-91 . 

SMSGBKATI: Configuration 45 

SMSGPOS: Configuration 45 

SMTERM: Configuration 13, 36, 37 

SMUSEEXT: Configuration 35, 50 

SMV ARS: Configuration 2, 36, 37, 38; Uti
lilies 90-91 

smvars me: Configuration 2, 13 
See also SMV ARS 

SMVIDEO: Configuration 36, 40 

SMZMOPTIONS: Configuration 35 

Soft key: Author's 35, 111-112; Configura
tion 4; Glossary 8 

See also Keyset 
characteristics: Programmer's 397-398, 

400-401, 402-403, 405-406 
dermed: Author's 111 
enabling: Author's 118; Programmer's 8 
hardware support Author's 112, 118 
inquiring: Programmer's 397-398, 

402-403 
key translation. See Key translation file 
label: Author's 111, 114-115 
labels on/off: Programmer's 314, 315 
library routines: Programmer's 175, 

397-407 
mark:: Programmer's 399, 404 
non-JAM: Programmer's 313 
number attributes: Configuration 53 
row: Author's 111, 114 

Master Index 

Soft key (continued) 
simulated: Author's 112, 119 
value: Author's 114 
video file entries: Configuration 66, 

91-92 

SOFTKEY SELECT. See SFTS 

Source code 
control: Author's 20 
funclistc: Programmer's 5, 16 

declaring prototyped functions: Pro
granuner's 67 

sm_do_uinsta11s: Programmer's 16 
main routines: Overview 8, 12, 29 

jmain.c: Programmer's 3, 166 
jxmain.c: Programmer's 7, 166 
modifying: Programmer's 7-9 

platform-dependent Programmer's 118 
stub functions: Programmer's 122-124 

SPFI-24: Author's 11 
control string: Author's 82, 124 
default 

application mode: Author s 17 
runtime: Author's 17 

hexadecimal values: Configuration 9 
Screen Editor: Author's 22,81-82 
SPFl: Programmers 87 
SPF2: Programmer's 91 
SPF3: Programmer's 88 

SPGD: Author's 11 
hexadecimal value: Configuration 7 

SPGU: Author's 11 
hexadecimal value: Configuration 7 

SPXATr: Configuration 66, 88 

sql: JPL83 

Stack. See Form stack; Wmdow stack 

Stack manipulation commands, video flle: 
Configuration 69-70, 71-72 

Stacked window: Overview 31; Glossary 8 
See also Wmdow 
control string: Authors 125-126 
display: Author's 125-126 

STAT_FUNC. See Status line function 

JAM Release 5.03 20 Nov 92 Page 37 



Master Index 

Statements, IPL: JPL 45-90 
begin and end: JPL 89 
null: JPL 90 

statfnc: Configuration 90 

Status line: Glossary 9 
See also Message 
acknowledgment key. See ER_ACK_KEY 
application mode: Authors 16 
bell: Autlwrs 57; Programmers 188 
block mode options: Configuration 54 
configuration variables: Configuration 

45-48 
cursor position display: Programmers 

200 
display attributes: Autlwrs 56-57; Con

figuration 45-48 
border: Configuration 47 

display current cursor position, video file 
entry: Configuration 67,99-100 

field status text Author's 49, 56-57; 
Programmers 228 

display attributes: Configuration 46 
flush: Programmer's 329 
force user to acknowledge message: Con-

figuration 22,47 
inquiring: Programmers 354 
key tops code: Author's 56-57 
library routines: Programmer's 172-173 
line drawing: Authors 98 
message: Programmer's 172 

alternating background: Programmers 
392 

background status: Programmers 
390-391 

block mode: Programmers 136 
default message: Programmers 

213-215 
~or message: Programmer's 

231-233,234-235,364,365 
merge: Programmers 332 
position: Configuration 45 
query message: Programmer's 363 

message priority: Programmer's 100 
message text not visible: Configuration 

46 

Status line (continued) 
Screen Editor: Authors 21 
select mode: Authors76 
terminal: Programmers 1(~x)-101 

portability: Programmers 117 
terminals with dedicated message line: 

Configuration 90-91 

Status line function: Programmers 62-64 
arguments: Programmers 62 
cursor position display: Programmer s 

200 
example: Programmers 63 
invocation: Programmer s 62 
return codes: Programmer's 62 
STAT_FUNC: Programmer's 15 

Status text Glossary 9 

STEXTATT: Configuration 34,46 

String, length: JPL 65 

Stub functions: Programmers 122-124 

Sub-system: Programmers 8 

Submenu: Authors 47 

Substring specifier: JPL 31-32,40-41 

Synchronized array. See Scrolling array, syn-
chronize 

System. See Operating system 

system: JPL 84 

System dateltime: Autlwrs 60; Glossary 9 

System decimal symbol: Configuration 31 

T 
TAB: Autlwrs 11 

Data Dictionary Editor: Autlwrs 101 
draw mode: Author s 24 
field validation: Author's 12, 60, 151 
groups: Authors 14 
hexadecimal value: Configuration 7 
library routines: Programmers 185-186, 

416 

Page 38 JAM Release 5.03 20 Nov 92 



TAB (continued) 
menu: Author's 12, 138 
next field: Author's 50 
protection from: Programmer's 35~357 
Screen Editor: Author's 23 

Tabbing order: Author's 49,50-53,146 

Table lookup: Author's 49,56 

Table lookup screen, name: Programmer's 
228 

Target list Author's 128-130; Program-
mer's 85,93 

Template. See Screen, template 

TERM: Configuration 36, 37 

tenn2vid: Configuration 57; UtiUlies 88 

termcap: ConjigUralion 57, 58, 76, 84 

Terminal 
ANSI. See ANSI terminal 
bell: Author's 57; Programmer's 188 

in stabJs line and error messages: Con
figuralion 21 

visible: Configuration 21, 67, 98 
characteristics: Overview 30 

See also Video file 
configuring JAM for: Conjiguration 1 
default saeen size: ConjigJUalion 59 
graphics character display: Programmer's 

99-100 
identifier: Programmer's 3S3 
initialize: ConjiguraJion 65, n-78; Pro-

grammer's 270-271 
library routines: Programmer's 167-168 
mnemonic: ConjiguratWn36 
output Programmer's 99-101, 122, 

222-223,242 
portability: Overview 18,43,44; Au

thor's 117,119-120; Programmer's 
99,117-118 

refresh: Programmer's 370 
reset: Conjiguration 65, 77; Program

~r's 6, 202, 371 
resize: Programmer's 372-373 
size: Programmer's 273 

Master Index 

Terminal (continued) 
status line: Programmer's 100-101 
timing interval: Configuration 65, 76, 79 

terminfo: Configuration 57, 58, 70, 76 

Test mode: Author's 23 
See also Screen Editor, test mode 

Text file, IPL, fIle module: JPL 9 

Tune format See Date/time format 

Tuning interval 
command execution: Configuralion 76 
keyboard input Configura/ion 65,79 

Top screen: Author's 15; Programmer's 87 

TRANSMIT. See XMIT 

Transportation utilities: Utilities 3 
converting to/from hex ASCn, bin2hex: 

Utilities 13 

txt2form: Utilities 89 

u 
UARR. See Arrow keys 

UINIT _FUNC. See Initialization function 

Unflltered, character edit: Author's 38 

unload: JPL 85 

UP ARROW. See Arrow keys 

Upgrade 
data dictionary 

dd3t0.5: UtiJities 29 
dd4toS: UtiJities 30-31 

screens 
f3t05: Utilities 49 
f4OO5: Utilities 50-51 

utilities: Utililies 3 

Upper case, field edit: Author's 45 

URESET_FUNC. See Reset function 

User: Glossary 9 

UT, message tag prefix: Configuration 16 

JAIl Release 5.03 20 Nov 92 Page 39 



Master Index 

Utilities: Overview 8-9 
See also Utilities indexed by name 
argument order: Utilities 8 
file name extensions: Utilities 4-5 
help, on-line: Utilities 4 
input flIes: Utilities 4-5 
introduction: Utilities 1-8 
option order: . Utilities 8 
output fLIes: Utilities 4-5 

v 
Validation: Author's 12, 150-152; Glossary 

9 
automatic help: Author's 53 
bits 

inquiring: Programmer's 275 
manipulating: Programmer's 189-191 

character, block mode: Programmer's 
134-135 

check digit: Author's 151; Programmer's 
206 

example: Programmer's 80-81 
field: Author's 58, 151; Programmer's 

251 
block mode: Programmer's 135 
function name: Programmer's 228 

field edit: Author's 40-48, 151 
field function invocation: Author's 

59-60; Programmer's 19 
field lPL procedure: Author's 58,69 
group: Author's 94, 151-152; Program

mer's 264 
group function invocation: Programmer's 

46 
invalidate field: Programmer's 344 
library routines: Programmer's 174 
MDT bit Author's 150; Programmer's 

47, 189 
clearing: Programmer's 207 
prototyped functions: Programmer's 

79 
testing: Programmer's 417 

protection from: Author's 42; Program
mer's 356-357 

Validation (continued) 
regular expression: Programmer's 229 
screen: Author's 151; Programmer's 

381-382 
block mode: Programmer's 135 

setup options: Configuration 44 
table lookup: Author's 56 
VALIDED bit: Author's 150; Program

mer's 47, 189 
manipulating: Programmer's 344 
prototyped functions: Programmer's 

79 

VALIDED bit See Validation 

var2bin: Configuration 2, 36, 38; Utilities 
90-91 

Variables 
configuration. See Configuration variables 
global: Upgrade Guide 3 
lPL: JPL 23-28 

defmition: JPL 23 
initialization: JPL 99 
parms: JPL 74 
retvar. JPL 81 
scope and lifetime: JPL 24-25, 25 
vars: JPL 86 

setup. See Configuration variables 

vars: JPL86 

vid2bin: Configuration 2, 59; Utilities 
92-94 

Video attributes. See Display attributes 

Video file: Author's 117-118; Configura
tion 57-100; Glossary 9; Program
mer's 95,99 

arithmetic commands: Configuration 
69-70, 71-72 

backward compatibility: Upgrade Guide 
3 

block mode driver entry: Configuration 
67,99 

borders: Configuration 67, 95-97 
color entries: Configuration 88-90 
converting to binary, vid2bin: Utilities 

92-94 
creating: Configuration 57 

term2vid: Utilities 88 

Page 40 JAM Release 5.03 20 Nov 92 

., 
I 
I 



Video fLle (continued) 
cursor appearance entries: Configuration 

65-66,81-82 
cursor position entries: Configuration 65, 

80-81 
display attributes entries: Configuration 

66,82-90 
display cursor position on status line: 

Configuration 67,99-100 
environment variable: Configuration 36 
erasure commands: Configuration 65, 

79-80 
flow control commands: Configuration 

70, 74-76 
format Configuration 58-59 
graphics entries: Configuration 66--67, 

93-95 
group selection indicators: Configuration 

67,98 
international character support: Configu

ralion 93-95 
J term data compression, enabling: Con

figuration 67, 100 
keyboard input, timing interval: Configu

ralion 65, 79 
keyword summary: Configuration 65-67 

line drawing entries: Configuration 67, 
95,97 

memory-resident Programmer's 422 
message line entries: Configuration 66, 

90-91 
mouse driver entry: Configuration 67, 99 
MS-DOS entries: Configuration 78 
output commands: Configuration 69, 

72-73 
parameter manipulation commands: Con

figuration 70-71, 72, 73 
parameterized character sequences: Con-

figuration 67-76 
pathname: Configuration 40 
purpose: Configuration 1,58 
sample 

ANSI terminal: Configuration 59-60 
MS-DOS: Configuration 60-62 

screen size entries: Configuration 65, 77 

Master Index 

Video fIle (continued) 
scrolling and shifting indicators: Configu

ration 67, 98 
soft key entries: Configuration 66, 91-92 
stack manipulation commands: Configu

ration 69-70, 71-72 
syntax: Configuration 62-67 
terminal initialization and reset: Configu

ration 65, 77-78 
timing interval: Configuration 4, 65, 76, 

79 
utilities 

term2vid: Utilities 88 
vid2bin: Utilities 92-94 

visible bell: Configuration 67, 98 

Video mapping: Overview 17, 18,41,43 
character sets: Programmer's 99-100 
file: Programmer's 95, 99 
initialization: Programmer's 422 
internationalization: Programmer's 105 
optimization: Programmers 122 

Video processing function: Programmer's 
64-67 

arguments: Programmers 64-66, 65 
invocation: Programmer's 64 
return codes: Programmer's 66 
VPROC_RJNC: Programmers 15 

VIEWPORT. See VWPT 

Viewport Author's 29, 152-158; Glossary 
9; Programmer's 274, 421, 429 

See also Screen 
library routines: Programmer's 167 
move: Author's 153 
positioning: Author's 53-54, 154-157 
relative positioning: Author's 155 
resize: Author's 153 
scrolling: Author's 153 
size: Author's 29 

Viewport key, application mode: Author's 
17 

Virtual screen: Author's 29, 152; Glossary 
9 

See also Screen, virtual 

VPROC_FUNC. See Video processing func
tion 

JAM Release 5.03 20 Nov 92 Page 41 



Master Index 

VWPT: Author's 11, 34, 126, 153, 158; 
Programmer's 92, 429 

hexadecimal value: Configuration 8 

w 
Wait command. See Tuning interval, com

mand execution 

while: JPL 87 
See also for; next 

Wmdow: Overview 11; Glossary 10 
See also Screen 
close: Overview 34, 37; Author's 124; 

Programmer's 210-211 
control string: Author's 125-126 
count Programmer's 423 
display: Overview 34, 37; Author's 

125-126; Programmer's 81-82, 
297-298,426-428 

help: Programmer's 266 
message: Programmer's 338-339 

message window: Programmer's 84, 
338-339 

open by AUTO control string: Aurhor's 
83 

selection: Programmer's 424-425, 
443-444 

sibling: Programmer's 395, 432, 443 
stack. See Wmdow stack 

Wmdow stack: Overview 34-35 37 41· , , , 
Glossary 10 

described: Overview 35 
evolution: Overview 35 
example: Overview 37-39, 38 
library routines: Programmer's 167 
overflow: Overview 35 

WINDOWS flag: Configuralion 78 

Word wrap: Author's 71; Glossary 10 
See also Array, word wrap 

Working pen: Glossary 10 

x 
XKEY flag: Configuration 12, 78 

XMIT: Overview 19; Author's 11 
adding data dictionary entries: Author's 

103 
begin group selection: Author's 95 
character graphics selection: Author's 96 
compile screen: Author's 27 
control string: Author's 82 
create field from data dictionary: Au-

thor's 90 
create field in Screen Editor: Autlwr's 23 
field validation: Author's 12 
group validation: Author's 152 
hexadecimal value: Configuration 7 
item selection: Author's 54 
menu selection: Author's 12, 138 
Screen Editor accept change: Author's 28 
screen validation: Author's 12,60,151 
select fields for group: Author's 95 
select line draw style: Author's 98 
synchronize arrays: Author's 96 

y 

Yes/no field, character edit: Author's 38 

z 
ZM_SC_OPTIONS: Configuration 35, 48 

ZM_SH_OPTIONS: Configuration 35, 48 

ZOOM: Author's 11; Glossary 10 
composing control strings: Author's 83 
hexadecimal value: Configuration 8 
memo text fields: Autlwr's 57 
setup options: Configuration 48-49 

ZW _BORDATT: Configuration 49 

ZW _BORDSTYLE: Configuration 49 

Page 42 JAM Release 5.03 20 Nov 92 



Addendum 

for Updates to 
JAM Release 5.03 

Volume 1 
for Stratus 

Part Number R330--01A 

August 3,1992 



Addendum for Updates to JAM 5.03 

Note of Explanation 
This addendum describes new features in release 5.03 of JAM. This addendum is for 
Volume 1 of the documentation set. There is a separate addendum for Volume 2. Descrip
tions of the features are broken into sections based on the parts of the manual that they 
affecL 

Configuration Guide 
Page 33: read. me File in VOS Distirbutions 

The documentation refers to the read. me file. This file does not exist on VOS distribu
tions. Refer to your installation notes instead. 

Page 39: VOS Pathnames 

Under VOS, the pathnarnes specified for variables like SMKEY and SMMSGS should be 
a standard VOS pathname followed by a >, as in: >directory _name> 

Page 39: Choosing an Editor in JPL 

A new setup variable has been added that allows the developer to select an editor to use 
when entering text into a JPL module in the screen editor. The variable is called 
SMEDITOR, and may be set in the setup or smvars file as follows: 

SMEDITOR= vi 

To invoke the editor from a JPL module, press the PF5 function key. To set the variable 
at runtime, use the library routine sm_soption with the argument SO_EDITOR. 

Page 96: Color of Shift/Scroll Indicators 

Shift/Scroll indicators are white, unless the screen background color is yellow, white or 
cyan, in which case the indicators are black. Formerly, the indicators were always white. 

JAM Release 5.03 Addendum 3 August 92 Page 1 



VOLUME II 

• IPLGuide 

• Programmer's Guide 



JPL Guide 

'~ 
~ ., 
'i 

I , , 

I 

i 
I 

I 

I 

"I -\ 
~ . 

I 

-1 
l 



TABLE OF CONTENTS 

Chapter 1 
Introduction ...........•............................ 1 

1.1 Conventions Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 About This Document ......................................... 2 

Chapter 2 
Quick Sta.rt ••• . . . • • • . • • • • • • • . • • • . • • • • . • . • • • • • • • . • . • . 3 

Chapter 3 
JPL Modules and Procedures . • . . . . . • . . . . . . • . . • . . . . . . . . 7 

3.1 JPL Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

3.2 

3.3 

3.4 
3.5 

3.1.1 FieldModules....................................... 8 
3.1.2 Screen Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
3.1.3 File Mooules ........................................ 9 
3.1.4 Public Moouies .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
3.1.5 Load Modules ....................................... 10 
3.1.6 Library Modules ..................................... 10 
3.1.7 Memory-ResidentMooules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Crea.ti.ng Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 
3.2.1 JPL Procedures Windows ............................. . 
3.2.2 JPL Text FIles ...................................... . 

JPL Procedm-es • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
3.3.1 SblIctw-e of PI-ocedures •••••••••••••••••••••••••••••••• 

Calling JPL Procedures and Modules ............................ . 
SUJIlIIlaI'Y' of JPL Modules ..................................... . 

3.5.1 Calling JPL Routines from a Control String ............... . 
3.5.2 Calling JPL Routines from a JPL Module ................ . 
3.5.3 Calling JPL Routines from a Field Function .............. . 
3.5.4 Calling JPL Routines from a Group Function ............. . 
3.5.5 Calling JPL Routines from a Screen Function ............. . 
3.5.6 Calling JPL Routines from Application Code ............. . 

11 
12 
12 
13 
13 
14 
16 
18 
18 
19 
20 
21 
21 

JAM Release 5.03 20 Nov 92 Pagei 



JPL GUide 

Chapter 4 
JJl?~ ~IlJriIl))I~s ••••.•••.••••.•••••••.• . • . • . • . • • • • • • • •• ~~ 

4.1 Definition of JPL Variables ..................................... 23 
4.2 Scope and Lifetime of Vanables ................................. 24 
4.3 Referencing Variables by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
4.4 Referencing Variables by Field Number ........................... 26 
4.5 Referencing Group Vanables ............. . . . . . . . . . . . . . . . . . . . . . . . 27 

Chapter 5 
The Colon l?reprocessor ...••....•.•••••......••...•.. 29 

5.1 Referencing Variables for Colon Expansion ........................ 30 
5.1.1 References with Substring Specifiers. . . . . . . . . .. . . . . . . . . . . 31 
5.1.2 Colon-Expanded Arguments in Invocation Statements .. . . . . . 32 
5.1.3 References in Parentheses. . . .. . . . .. . . . .. . . . .. . . .. . . . .. . 33 

5.2 Forcing Re-Expansion .................................... . . . . . 34 

Chapter 6 
Data Types, Operators, and Expressions .••••.••••••.•••• 35 

6.1 Data. Ty.J)es .........•........................................ 35 
, 

\ 

6.2 Constants .................................................. . 36 
6.2.1 Integer Constants .................................... . 36 
6.2.2 Numeric ConstarJts .................................. . 36 
6.2.3 Date ConstarJts ..................................... . 36 
6.2.4 String Constants .................................... . 36 

Quoted string constants ............................... . 37 
Unquoted string constants ............................. . 37 

6.3 Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
6.3.1 Substring Specifier .................................. . 40 
6.3.2 @dateand @sumOperators .......................... .. 41 
6.3.3 Bitwise Operators ................................... . 42 

6.4 Expressions ................................................. . 43 
String Expressions .......................................... . 44 
Numeric EX,Pressions ...•....•.......•.................•...... 44 
Bitwise Expressions ......................................... . 44 
Logical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Page II JAM Release 5.03 20 Nov 92 



Table of Contents 

Chapter 7 

7.1 
7.2 

Statements and JPL Commands ••......•••.•..•••.••.• 4S 
Summary of JPL Comm8I1ds ................................... . 
Reference .................................................. . 

atch 
break 
call 
cat 
dbms 
else 
else if 
for 
flush 
if 
jpl 
length 
load 
math 
msg 
next 
parms 
proc 
public 
return 
retvar 
shell 
sql 

execute a field function ............................... . 
exit prematurely from a loop ........................... . 
execute a control string or prototyped function ............ . 
concatenate and assign strings ......................... . 
execute a JAMlDBi directive .......................... . 
execute commands if preceding 'if' or 'else if' fails ........ . 
execute commands if preceding 'if' or 'else if' fails ........ . 
execute an indexed loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
flush buffered output to the display ..................... . 
conditionally execute statements ....................... . 
execute a JPL routine ................................ . 
count number of characters and make assignment .......... . 
read a JPL module into memory ....................... . 
do numeric calculations and make an assignment .......... . 
display a message to the end-user ...................... . 
skip to the next iteration of a loop ...................•... 

declare parameters in a called JPL procedure .............. . 
mark the beginning of a JPL procedure .................. . 
read JPL modules into memory ........................ . 
exit from a JPL proced.ure ........................... .. 
establish a variable to hold a return value ................ . 
execute a system call & wait for user acknowledgement .... . 
submit a native dialect sql statement to the DBMS ......... . 

system execute a system call .............................•... 
unload free the memory holding load and public modules ......... . 
vars defme JPL variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
while repeatedly execute a block while a condition is true ........ . 
# begin a comment statement ............................ . 
{ } mark beginning and end of statement block ............... . 
( ) null statement •...••..•..................•.•......... 

46 
48 
49 
51 
52 
54 
56 
57 
58 
59 
61 
62 
63 
65 
66 
68 
70 
73 
74 
76 
78 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

JAM Release 5.03 20 Nov 92 Page iii 



JPLGUJde 

ChapterS 
Using Library Functions and Application Code • • . . . • . . • .• 91 

8.1 Function List ................................................ 91 
8.1.1 PI-ototypes. . . . • . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Hexadecimal, Octal and Binary Arguments in Prototyped Functions 

8.2 

8.3 
8.4 

94 
Library Functions •. . • • . • . . . • . • • . . • • • . . . . . . . . • . . . • . . • • . • . • . . . • • 

8.2.1 Acessing Key Mnemonics ............................ . 
HOOK FlJN'CTIONS ......................................... . 
Built-in Functions 

94 
95 
96 
96 

Chapter 9 
Performance Considerations ••••..•••••••••••.••.••••• 97 

9.1 JPL Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.1.1 
9.1.2 
9.1.3 

Using jpl2bin .•.••.••••.........•..•.........•.•..... 
Adding JPL to a Library .............................. . 
Making JPL Memory-resident ......................... . 

9.2 More Efficient Sta:tements ....................•................. 

Index 

Page iv 

9.2.1 
9.2.2 
9.2.3 

I ··aliz . DID auons ••.•••.••••••••••••.••••.•••.•••.•.•..•• 
Loops ............................................. . 
Colon Usage ....................................... . 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

JAM Release 5.03 20 Nov 92 

97 
98 
98 
98 
99 
99 
99 

100 

101 



Chapter 1 

Introduction 

Chapter 1: Introduction 

JPL is the JYACC Procedural Language. Since it is an interpreted language, it helps you 
rapidly develop JAM® applications. With JPL you can write and execute functions 
without leaving the authoring session. Unless you call application code or library func
tions with JPL, you do not need to compile your JAM application to test these proce
dures. 

You might write a JPL routine, for example, which displays a message to the end-user 
based on his entry in a data field. You might write a procedure which creates a string 
expression from the contents of data entry fields and displays the expression on other 
screens. Screen, field, group, and control string functions may all be written in JPL. In 
these functions you can perform numeric calculations, test conditions, use loops, and 
call other JPL routines. As mentioned, you may also call application code and library 
functions in a compiled JAM application. 

JAM provides utilities to improve the performance time of JPL procedures. For exam
ple, you can eliminate runtime JPL compilation by storing procedures in binary files. 
To protect the end-user from accidentally changing procedures, you may store binary 
files in a library. Chapter 9 - Performance Considerations, explains how to use the 
JAM utilities to make these improvements. 

While programming experience will help you use JPL, it is not a prerequisite. We as
sume, however, that you are familiar with the JAM Screen Editor. 

1.1 

CONVENTIONS USED 
To make this guide easier to use, we use the following conventions. Familiarity with 
them will help you understand and use the material more quickly. 

JAM Release 5.03 20 Nov 92 Page 1 



JPLGuide 

• Ii teral We use this font for words which you will type verbatim. In particular, we 
use this font for all our examples. In addition, when we name a JPL com
mand, JAM utility, or JAM library function we use this font to distinguish 
it from the standard text. 

• italics 

• x ... 

1.2 

We use bold italics to show where screen, file, and variable names should 
appear. You should replace these with the appropriate names in your ap
plications. 

In this notation, the brackets indicate that x is an optional element. The 
brackets should not be typed. 

Ellipses indicate that the element x may be repeated one or more times. 

ABOUT THIS DOCUMENT 
• The next chapter is a "quick stan" to JPL. We guide you through the 

creation of a JPL procedure in a sample application. 

• In Chapter 3 we explain the tasks of writing, storing, and calling JPL 
procedures. 

• In Chapter 4 we describe JPL variables, and in Chapter 5 we explain 
the related topic, colon expansion. 

• In Chapter 6 we cover data types, operators, and expressions, and give 
examples on each of these topics. 

• In Chapter 7 we define the JPL statement, and include a reference sec
tion on each of the JPL commands. 

• In Chapter 8 we show how to call application code and JAM library 
functions from JPL procedures. 

• In Chapter 9 we offer you methods to enhance the performance of your 
statements and procedures. 

Page 2 JAM Release 5.03 20 Nov 92 



Chapter 2 

Quick Start 
In this chapter we use a sample IPL module to introduce you to IPL. Our goal is to help 
you understand the major concepts and terms before we give a more detailed technical 
discussion. Our sample module produces a person's full name from the flfSt name, 
middle initial (if present), and last name. It is used on the screen pictured in Figure 1. 
This screen has four fields - firstname, middleinitial, lastname, and 
fullname. 

Name Entry Screen 

First Name: 
Middle Initial: 
Last Name: 

Full Name: 

Figure 1: Sample screen for JPL examples. 

JAM Release 5.03 20 Nov 92 Page 3 



JPL GUide 

Name Entry Screen 

First Name: Ima 
Middle Initial: G 
Last Name: Coder --------
Full Name: 

Figure 2: Sample screen for JPL examples, with data entered. 

Every field bas a JPL procedure window, an option under miscellaneous field edits. We 
entered our JPL module in the procedure window associated with the lastname field. 
JAM will execute the procedure during the field's validation process. The field JPL 
window is not the only place where we may enter a module. It is a sensible choice, how
ever, for a module we would not wish to execute from other fields. 

The JPL module follows: 

if middlein1tial != -. 

else 

cat fullname firstname - - \ 
middleinitial -. - lastname 

cat fullname firstname - - lastname 
jpl special 
return 
II 

proc special 
II Here's a special feature. 
if fullname == -George Bush-
{ 

cat fullname -Mr. - fullname 
msg d_msg ·Welcome Mr. President!-

} 
return 

The above JPL module consists of 17 lines. Each line in a JPL module contains only 
one statement. When a statement needs to be continued to one or more additional lines, 
a back:slash (\) is used at the end of each line that is continued. The second statement, 
the cat statement, is continued to the next line. Our module bas 16 statements. They 
form two JPL procedures. The main (fIrSt) procedure in a field module is always un
named. 

Page 4 JAM Release 5.03 20 Nov 92 

'\ , 

I 



Chapter 2· QUick Start 

To help you better understand the example module, consider these hmts: 

• Each statement begins with a JPL command. 

• The if statement tests a conditIon. If the condition is true, JAM 
executes the next statement. If it IS false, JAM ignores the next state
ment. 

In a logical expression we use special symbols, or operators. In JPL, 
! = is the logical operator for "not equal." Therefore, the first state
ment says "If the middle initial field is not empty, execute the next 
statement." 

• The cat (concatenate) command is a type of assignment statement. 
Here it concatenates five arguments and assigns the value to the field 
fullname. The arguments are three variable names (firstname, 
middleinitial, and lastname) and two quoted string constants 
(" "and". "). 

After JAM executes the flfSt cat statement, the field fullname 
contains the contents of the field firstname, a single blank space 
(from the constant II "), the contents ofmiddleini tial, a period 
and a single blank space (from the constant ". "), and the contents of 
lastname. 

• An else statement may follow an if statement. If the condition in 
the if statement is true, JAM ignores both the else statement and 
the statement following it If the condition is false JAM executes the 
statement after the else statement. 

• The command jpl calls another JPL procedure. Here it calls the pro
cedure named special. 

• A proc statement names and begins a procedure. 

• A comment statement begins with the comment (#) command. We 
used comment statements to place blank lines between our two proce
dures, and to describe the procedure special. As of version 5.1, 
leading blanks are permitted on the left side of the comment symbol. 

• {and} are used to group statements into blocks. In the flfSt proce
dure, we executed only one statement, one of the cat statements, af
ter the if statement. In the procedure special, we want to execute 
two statements when the condition is true. Therefore, we block those 
statements. 

• The msg command displays a message on the status line. 

JAM Release 5.03 20 Nov 92 PageS 



JPL GUide 

Page 6 

• A return statement returns control to the calling procedure, or to the 
JAM Executive. In the procedure special, it returns control to the 
flfSt procedure. In the fust procedure, the return statement returns 
control to the JAM Executive which called this module during field 
validaUon. 

JAM Release 5.03 20 Nov 92 

\ 



Chapter 3 

JPL Modules and Procedures 
A module contains one or more JPL procedures. In this chapter we describe the seven 
different types of modules, the structure of an individual JPL procedure, and the rules 
for calling procedures and modules. At the end of this chapter, we provide a table which 
summarizes this information. 

Before any statement in a module is executed, JAM will ensure that the module has 
been compiled and converted. These steps are dermed as the following: 

• Compilation A process that performs syntax. checking on command words, replaces 
command words with tokens, and partitions a module into procedures. 

• Conversion A process that builds internal data structures from compiled JPL module. 

A module contains one or more procedures. Procedures may be named or unnamed. 

• named JPL procedures are named using the JPL command word proc. A module 
may contain any number of named procedures. A named procedure may 
always be called by itself or by other procedures in the same module. Some 
named procedures may also be called from outside their modules. 

• unnamed Only one unnamed procedure is pelIDitted in a module. If a procedure is 
unnamed, it must be the fIrSt procedure in the module. Some unnamed 
functions are called and executed automatically by JAM. Others are 
executed when the module name is called. 

The type of module you use determines the scope of its procedures. 

• entry point If a module has an entry point, it contains at least one procedure which may 
be called explicitly from outside the module. Urmamed and named proce
dures are entry points to modules. An unnamed procedure is called by its 
module's name, and a named procedure is called by its procedure name. 

These definitions are important to your understanding of the material in this chapter. 

JAM Release 5.03 20 Nov 92 Page 7 



JPL GUide 

3.1 

JPL MODULES 
We discuss each of the module types in the followmg sections. If you are learning JPL 
for the frrst time, you should read the sections on field, screen, and me modules, and 
skip the remaining module types for now. When you are more familiar with JPL, read 
the sections on public, load, library, and memory-resident modules. 

3.1.1 

Field Modules 
Every field on a screen bas a JPL procedure window, an option under miscellaneous 
field edits. JAM saves and compiles a JPL module entered here when you XMIT from 
the JPL procedures window. JAM converts the module when it is called during the 
field's validation. 

The first procedure in a field module must be unnamed. JAM automatically executes 
the fll'St procedure in this module during field validation, after executing any validation 
function. You may also have named procedures in this module, but these procedures 
can be executed only if called by another procedure in the module. 

There are no entry points to this module. Therefore, you can never directly call any 
field module's procedures from outside the module. 

Since the module is stored with the field, copying the field to (or from) a clipboard or 
the data dictionary also copies the JPL module. 

This module is useful for a function designed for a particular field, and for a function 
that you want executed whenever the user tabs out of the field. 

3.1.2 

Screen Modules 
A JAM screen has a JPL procedures window, an option in the screen edits window. 
JAM compiles and saves all the procedures in this module when you XMIT from the 
JPL procedure window. The module is saved with the binary screen me. 

When the screen is opened, JAM converts the module, and executes the frrst unnamed 
procedure, if any. This procedure receives as parameters the name of the screen and the 
K_ENTRY bit. The procedure is executed only when the screen is fllSt displayed. The 
fllSt unnamed procedure is not executed when the screen is exposed by virtue of another 
window being closed. 

Page 8 JAM Release 5.03 20 Nov 92 



Chapter 3. JPL Modules and Procedures 

Whtle the screen IS active (i.e., displayed on top), every named procedure in this mod
ule IS a possible entry point 

The screen module is useful if several fields on the same screen use the same function. 
In addition, every screen entry and exit function, field, group, and control stnng func
uon, needed for this screen may be stored and called from this window. 

You can test screen module procedures in application mode but not 10 test mode. 

3.1.3 

File Modules 
You may create a JPL file module with any text editor. This module is created and 
stored outside an application's binary screen meso 

You may also create a file module with the "fiIe access" option in a JPL procedure win
dow. Choosing "write" copies the contents of the window to a me which you name. 

An ASCII me module is compiled each time It is called. Runtime compilation may be 
eliminated by using the JAM utility jpl2bin to compile a file module and save it in 
a binary file. If memory is tight in your application, you may wish to compile your file 
modules with jpl2bin, and then stub out the runtime JPL compiler. Both ASCII and 
binary me modules are converted when called. 

A me JPL module has one entry point - its unnamed fust procedure. You must use the 
name of the me to call this procedure. A file module is accessible if it is in the current 
directory or in a directory specified by the library function sm_ini tcrt or by 
SMPATH. Scope of JPL modules is discussed fully in section 3.4 on page 14, Calling 
JPL Procedure and Modules. 

The wider scope of ftIe modules makes them a useful alternative to screen and field 
modules, but there are some disadvantages. Modules stored in mes are processed more 
slowly because JAM does not automatically compile the module when you exit and 
save the file. Unless you use the utility jpl2bin, JAM must compile the module ev
ery time it is called. Since ftIe modules are stored outside the JAM executable, they are 
also more difficult to protect from loss or accidental editing by the end-user. The next 
four modules are possible solutions to these problems. 

3.1.4 

Public Modules 
JPL has two commands which affect how a file module is used. pub 1 i c is one of these 
JPL commands. When a public statement is used in a module, it has one or more 

JAM Release 5.03 20 Nov 92 Page 9 



JPL GUide 

module names as arguments. When it is executed at runtime, It performs the following 
steps: 1) reads the named JPL module, 2) compiles it, if necessary, 3) converts it, and 
4) executes the first procedure if it is unnamed. While the module is public, every 
named procedure in the pubhc module is a possIble entry point to the module. 

A pubhc module combines the features of a screen module and a me module. As in a 
screen module, every named procedure is a possible entry point to the module, but like 
a file module, a public module is not limited to anyone screen. Instead, the procedures 
in a public module are available throughout the application. 

A public module is removed from memory by using the JPL command unload. 

You may name any ASCII or binary JPL me module as an argument in a publ ic state
ment. Further below we discuss two other module types -library and memory-resi
dent modules. These may also be made public. 

3.1.5 

Load Modules 
load is another JPL command which affects how a module is used. It has one or more 
module names as arguments. When a load statement is executed at runtime, it per
forms these three steps: 1) reads a JPL module, 2) compiles it if necessary, and 3) con-
verts it A load module remains in memory until you release the memory with an un - '\ 
load statement. Until then, every call to the module executes it without any additional 
compilation or conversion. 

A load module has one entry point - its flfSt unnamed procedure. You must use the 
name of the module to call this procedure. 

You may create load modules from any ASCII or binary JPL file module, or a library 
module (see below). A load module has the same name as its source module (the file or 
library module named in the load statement). 

3.1.6 

Library Modules 
JAM provides a utility, formlib, for creating application libraries. In addition to 
screens, you can also store JPL modules in a library. Use a text editor to create the file 
module, compile it with the JAM utility jpl2bin, and add it to the library with the 
utility formlib. (See section 9.1.2 on page 98, and also the Utilities Guide, for a de
tailed explanation.) Conversion occurs each time you call the module. 

A library must be opened before you can use any of the screens or modules stored in it. 
Libraries are usually opened in an application's jmain module with the library func
tion sm_l_open. 

Page 10 JAM Release 5.03 20 Nov 92 



Chapter 3: JPL Modules and Procedures 

A library module has one entry point - Its fIrst unnamed procedure. You must use the 
name of the lIbrary module to call this procedure. 

Using IIbranes reduces both I/O tune, and the number of flIes required for distribution. 
Libraries are inconvenient If you need to edit procedures, since you must edit the mod
ule, recompile it jp12bin, and remstall the module to the library with formlib. 

See the JAM Programmer's Guide for more information on using libranes. 

3.1.7 

Memory-Resident Modules 
You can install JPL modules in an application's memory-resident list. Use a text editor 
to create the me, compile the module with the utility j p12bin, convert the binary file 
to a C language character array with bin2c, and then install it with the library function 
sm_formlist. You must recompile your application after creating or editing a 
memory-resident list. See section 9.1.3 on page 98, and the also JAM Programmer's 
Guide for more information. 

Since the module must be compiled with jp12bin before you install it in the 
memory-resident list, no compilation is needed when you call the module. Conversion 
occurs, however, each time you call the module. 

A memory-resident module bas one entry point - its fust unnamed procedure. You 
must use the name of the memory- resident module to call this procedure. 

Making a JPL module memory--resident reduces I/O time and makes it a part of the 
J AM executable. The module is held in memory during the life of the application. 

Once you make a JPL module memory-resident, it is more difficult to edit. If you make 
changes to a memory-resident module, you must edit an ASCII version of the module, 
recompile the module with the utilities jp12bin and bin2c, and then recompile the 
application program. 

3.2 

CREATING MODULES 
Modules are created using the Screen Editor or a text editor. We discuss the characteris
tics of these editors below. 

JAM Release 5.03 20 Nov 92 Page 11 



JPL GUide 

3.2.1 

JPL Procedures Windows 

Field and screen JPL modules are edIted WIth jxforrn, inside JPL procedure windows. 
A JPL procedure window is an editing screen with some special features whIch are 
available on every JPL procedure wmdow. 

A JPL procedure window is actually a scrollable and shiftable array, pennitting 500 
lines of code, each up to 125 characters long. Text is entered directly from the key
board. Lines may be inserted with the logical key INSL, and deleted with DELL. (On 
a PC, for example, we often map these keys to Alt-I and Alt-D.) Use the modkey utility 
if you do not know the key mapping on your teoninal. The JPL procedure windows also 
feature a "me access" option. When you open a JPL procedure window for editing, 
pressing PF2 displays a me access window, where you may select the read or write op
tion and where you may enter a file name. The "read" option reads text from a file and 
inserts it in the JPL procedure window at the line before the cursor. The read option 
does not copy tabs to the JPL window; instead, it replaces them with spaces. The 
"write" option writes the text in the current JPL window to a file. In the text file, it 
terminates each line from the JPL window with a new-line character. 

You may enter any number of named procedures in a procedure window. 

Pressing XMIT lDside a JPL procedures window saves and compiles the JPL module, 
and closes the JPL procedure window. If a command word is misspelled, JAM will stop 
compilation and display an error message. Every statement must begin with a valid JPL 
command word, or JAM will not save the module. Messages for other errors, such as 
undefmed variables or division by zero, are dtsplayed at run-time. 

3.2.2 

JPL Text Files 
The other JPL modules are created with a text editor. JAM will display error messages 
for misspelled commands words when it compiles the module. An ASCn me module is 
compiled at runtime, a binary me when jpl2bin is used, a load module when load 
is executed, and a public module when public is executed. Except for load and public 
modules, conversion of JPL text files occurs at runtime. 

Text files should be named according to the rules of your operating system. JAM does 
not append any extension to ASCII JPL meso The default extension for binary JPL ftles 
is bin. 

Page 12 JAM Release 5.03 20 Nov 92 

'. 

'. 



Chapter 3: JPL Modules and Procedures 

3.3 

JPL PROCEDURES 

3.3.1 

Structure of Procedures 
A JPL procedure has one or more JPL statements. Unless a procedure is the frrst one in 
the module, it must be named. A named procedure begins with a proc statement. 

vars and parms statements define variables in JPL procedures. Those in a named 
procedure are local to the procedure, while those in an unnamed procedure are global to 
all procedures in the module. Consider the following example. 

vars global 
cat global '0' 
vars another_global 
cat another_global '1' 
vars this_is_also_global 

proc first_screen-proc 
vars local 

A procedure ends at the bottom of a module, or at the statement before the next proc 
statement, whichever comes fIrst A procedure returns to its caller when its end is 
reached. The following example JPL module contains two procedures, one unnamed 
and the other named warning: 

# This procedure is unnamed. 
1f cost > 100 

jpl warning 
# The next procedure is named. 
proc warning 
msg emsg -The cost is very great.-

Statement execution within a procedure begins with the frrst statement of the proce
dure, and continues sequentially until the end of the procedure is reached, or until a 
return statement is executed. If a JPL procedure encounters an error during execu
tion, it aborts and returns -1. The order of statement execution may be altered by the 
if, for, while, else, break or next statements. The first four of these statements 
may be followed by the blocking statements, { and }, to conditionally execute a block 
of statements. For example: 

if cost > 1000 
{ 

math exceptions = exceptions + 1 
msg emsg -The cost is very great.-

JAM Release 5.03 20 Nov 92 P~ge 13 



JPL GUide 

3.4 

CALLING JPL PROCEDURES AND 
MODULES 
Any module may begin with a unnamed procedure. JAM will automatically execute 
this unnamed procedure: 

• in a field module when the field is validated. 

• in a screen module when the screen is opened. 

• in a module when It is put in memory by a pub 1 i c statement. 

A procedure in a module may call any named procedure in the same module. A proce
dure is called by its procedure name, using a j pI statement. 

The following procedures are entry points to a module and may be executed by an ex
plicit call (jpl, sm_jplcall, Ajpl, etc.): 

• a named procedure in the screen module of the active screen (the 
screen currently displayed); call it by its procedure name. 

• a named procedure in any public module; call it by its procedure 
name. 

• the flfSt procedure (which must be unnamed) in any load module, 
memory-resident module, library module, or fIle module; call it by its 
module name. 

When you call a JPL function, there is no way to indicate whether you are using a pro
cedure name or a module name. Therefore, JAM looks for the named routine by fIrSt 
examining the names of all available procedures, and then the names of all available 
modules. Below is a list of the order in which JAM examines the names of procedures 
and modules. If JAM finds the routine it stops the search and executes the routine. If it 
is unable to find the routine it will display an error message. 

1. a named procedure in the same module (if a module is being 
executed). 

2. a named procedure in the screen module of the screen now displayed. 

3. a named procedure in a public module. 

4. a load module. 

S. a memory-resident module. 

6. a library module in an open library. 

Page 14 JAM Release 5.03 20 Nov 92 



Chapter 3: JPL Modules and Procedures 

7. a file module in the current directory. 

8. a me module in a directory specified by the library function 
initcrt (). 

9. a me module in a directory specified by SMPATH. 

For example, you might call a JPL routine with the statement 
JPl totals 

Once JAM finds a routine named totals, the search stops. If totals is a procedure, 
JPL will execute the procedure. If totals is a module, JPL will execute the fIrst pro
cedure in the module, if the procedure is unnamed. If JAM is unable to find any proce
dure or module named "totals" it will display an error message. 

Note that a load module has scope which is higher than any module which may be 
loaded. Since a load module has the same name as the module named in the load state
ment, JAM will never execute a memory-resident, library, or me module when a load 
module with the same name is currently in memory. If you unload the module, and 
then call it, JAM will not find the module in memory. Therefore, it will search the 
memory-resident list, the open libraries, and the default directories until it finds the 
module. Similarly, a memory-resident or library module always has the same name, 
but a higher scope, than the file module used to create the library or memory-resident 
entry. 

When a publ ic statement is executed, JPL puts a copy of the module in memory but 
pemits only procedure names as entry points to the public module. If to
tal_charges is the following file module, 

vars total 

proc tax_total 
parms amount state 
vars tax 
if state ..• 

math total = amount * tax 

proc ship_handling 
parms amount 1tems weight 
vars charge 

math total = amount + charge 

proc rus~fee 

math total = amount + charge 

and you use these two statements, 
public total_charges 
jpl total_charges 

JAM Release 5.03 20 Nov 92 

o 

Page 15 



JPLGUIde 

JAlVI will execute the statement vars total twice. 

When JAM executes the public statement, it compiles, converts, and puts the mod
ule in memory, and then executes the module's fIrst, unnamed procedure. When it tries 
to execute the jpl statement, however, it will not fmd a procedure named to
tal_charges m memory. (The procedure names 10 memory are tax_total, 
ship_handling, and rush_fee.) Therefore, it will continue searching until it 
fmds the fIle, which it compiles and converts, and then it executes the fIrst, unnamed 
procedure. In short, since the module name is not an entry point to a public module, the 
public module will not prevent you from executing the copy on disk or in a library or in 
the memory-resident list. This is signifIcant if you are using variables global to a mod
ule. In this example, total is global to all the procedures in its module, but a change 
made to total in the public module does not affect total in the me module. 

Keep in mind this scoping order when you are naming procedures and modules. In par
ticular, if you are using different types of modules, check that screen and public proce
dure names do not contlict with the names of any me, library, or memory-resident 
modules that you wish to call. 

3.5 

SUMMARY OF JPL MODULES 
Module Type Module Location Entrypoints Compilation Conver-

sion 

fIeld JPL procedure win· None; fIrSt pro- When saved When 
dow associated cedure called by (by pressing called by 

(first proce- with a field. Stored JAM during XMITinJPL JAMdur-
dure must be in the screen field validation. window). ing field 
unnamed) binary. validation. 

screen JPL procedure All named pro· When saved When 
window associated cedures while (by pressing screen is 

(screen mod- with a screen. screen is active; XMITfrom opened. 
ules cannnot Stored in the use proc names. JPL window). 
be tested in screen binary. (If rust proce-
the screen dure is unnamed, 
editor) JAM calls it 

when screen is 
opened.) 

Page 16 JAM Release 5.03 20 Nov 92 

.... 
\ 



Chapter 3: JPL Modules and Procedures 

Module Type Module Location Entrypoints Compilation Conver-
sion 

file File. A file is First, unnamed With When 
created with a text procedure; use jpl2bin, or called. 
editor. It may be file name. when called. 
compiled and 
saved to a binary 
file with the utility 
jp12bin. 

memory- Memberofa First, unnamed Must be com- When 
resident memory- resident procedure; use piled With called. 

form list. Stored name of memory jpl2bin be-
with the JAM list entry. fore it is added 
executable. to the 

memory- resi-
dent list. 

library Member of a li- First, unnamed Must be com- When 
brary. Stored in a procedure; use piled with called. 
library. name of library jpl2bin be-

entry. fore it is added 
to the library. 

load FIle, memory-resi- FIrst, unnamed With When 
dent member, or procedure; use jpl2bin, or load is 
library member. name of load when the executed. 
The file or mem- module. load state-
ber is named in a mentis 
load statement. It executed. 
is held in memory 
mtil unloaded. 

JAM Release 5.03 20 Nov 92 Page 17 



JPL GUide 

Module Type Module Location Entrypoints Compilation Conver-
sion 

public File, memory-res i- All named pro- With When 
dent member, or cedures; use jpl2bin or public is 
library member. proc names. (If when the executed. 
The file or mem- first procedure is public state-
ber is named in a unnamed JAM ment is 
public state- calls it when executed. 
ment. It is held in public is 
memory until un- executed.) 
loaded. 

3.5.1 

Calling JPL Routines from a Control String 
You may call a JPL procedure or module with a control string. In the control string win
dow of the Screen Editor, enter a caret, the command jpl, the name of the JPL proce
dure or module, and any arguments. You may also use a target list. 

A j P 1 functlon-name {arg} ••• 
A ( target /1st) j p 1 functlon-name {arg) ..• 

Do not put blank spaces after the caret 

JAM expects a control string function to rebJm an integer. JAM compares the returned 
value against the target list If it does not fmd a match, it ignores the value. See the 
Author's Guide for directions on creating a target list. 

Since control strings are used to define flow control within an application, you might 
write a JPL procedure that evaluates the actions of the end-user, and returns an integer 
that will determine the next form or window to be displayed. 

Remember that control strings are not executed in test mode. Use application mode to 
test any JPL procedures called by a control string. 

3.5.2 

Calling JPL Routines from a JPL Module 
JPL procedures may call other JPL procedures or modules, according to the scoping 
rules defined on page 14. The syntax is 

j p 1 functlon-name {arg} ... 

Page 18 JAM Release 5.03 20 Nov 92 



Chapter 3: JPL Modules and Procedures 

In the list of arguments, you may pass the values of variables local to the calling proce
dure to variables defined in function-name. You may also pass field or LOB entries as 
arguments. A parms statement will receive the values of the arguments being passed. 

p roc tunctlon-name 
parms arg ••• 

JAM will update LOB entries or current screen occurrences that are given new values 
inside a procedure. To get the value of an integer returned by a procedure, use a ret
var statement in the calling procedure. 

vars v 
retvar v 
jpl test :name 
8 v 1S either 0 or 1, according to the 
8 value returned by procedure -test" 
ifv 
8 normal-process 
{ 

} 
else 
8 process_Johnson 
{ 
} 

return 

proc test 
parms n 
if n == 'Johnson' 

return 0 
else 

return 1 

The retvar variable may also be a field or LOB entry. 

When you are using the same JPL procedure more than once, it is convenient to write 
one procedure, and pass the values when you call the procedure. This way, a procedure 
does not have to be "hard-coded" for every field or screen that uses the procedure. 

3.5.3 

Calling JPL Routines from a Field Function 
JAM provides the ability to attach four functions to every field - an entry function, a 
validation function, a JPL field module, and an exit function. Any or all of these func
tions may invoke JPL functions. 

To use a JPL function as a field entry, validation, or exit function, enter the command 
jpl and the function name in the miscellaneous, field functions window. 

JAM Release 5.03 20 Nov 92 Page 19 



JPl GUide 

j p I function-name 

JAM automatically passes four arguments to the procedure you are calling. These argu
ments are, 

f1eld-number, neld-contents, occu"ence-number, flags. 

A parms statement is required in the called procedure if it is to access the parameters. 

For example, m the attached function window, you might call a JPL function to perform 
a field exit functIon. If the call is, 

JPI fl~xt 

the procedure fld_xt might begin, 

proc fld_xt 
parms num val occ fIg 
if val = 'MR' 

cat sex '~1' 

else 
cat sex 'F' 

return 

The parameter num receives the number of the field calling the exit function. val re
ceives the contents of the field. occ receives the current occurrence number, which is 
1 if the field is not an array. The parameter fIg receives bit values. Unless you are 
using the same function for field entry and exit, you will probably ignore the flag argu
ment You do not need to defme trailing parameters you will not use. For example, you 
may use this parms statement: 

parms number contents occurrence 

While you do not explicitly call a field JPL module by name (it is unnamed), JAM 
executes the module during field validation processing. The module receives the same 
arguments from the field as do the other field functions. A parms statement in the 
module should establish parameters like those used in the examples above. 

The JAM Programmer's Guide contains a detailed explanation of field arguments. If 
you choose to use the same JPL procedure as a field entry and exit function, you will 
need to use the flags argument Since this is a bit value, see section 6.3.3 on page 42 
about JPL bitwise operators, or see the Programmer's Guide. 

3.5.4 

Calling JPL Routines from a Group Function 
A group entry or exit function may call JPL procedures, with the verb j pl. It passes 
two arguments by default, 

Page 20 JAM Release 5.03 20 Nov 92 

- ~, 



Chapter 3: JPL Modules and Procedures 

group-name flag. 

You might, for example, write a JPL procedure to tum on and off the menu toggle upon 
entenng and eXIUllg a field group. 

As in field arguments, flag is a bit value. You will need to use bit operators (see section 
6.3.3 on page 42) to use thiS argument. 

3.5.5 

Calling JPL Routines from a Screen Function 
Screen entry and exit functions may call JPL procedures as well. A JPL screen entry 
function might, for example, concatenate LDB elements to place a title on a screen. 

The calling syntax is 

j pl functlon-name 

It passes the arguments, 

screen-name flag. 

If parameters are declared in the procedure with a parms statement, the flfSt parameter 
variable receives screen-name, if it is available. The names of memory-resident 
screens, for example, are not available; a null string is passed instead. The calling state
ment ignores any values returned from the procedure. 

3.5.6 

Calling JPL Routines from Application Code 
JPL procedures may also be called from application code using a library function. In C 
for example, the library function 

sm_j plea 11 (. functlofHUlme (aTg} ••• ·) 

executes a JPL procedure. 

The reference section of the JAM Programmer ~ Guide explains all of the JAM library 
functions for your application language. 

JAM Release 5.03 20 Nov 92 Page 21 



Chapter 4 

JPL Variables 

Variables hold values. This chapter discusses how JPL variables are defmed and refer
enced. This chapter will also help you better understand Chapter 5, "The Colon Prepro
cessor," and Chapter 6, "Data Types, Operators, and Expressions." 

401 

DEFINITION OF JPL VARIABLES 
There are three kinds of variables available to you when you are using JPLo The flfSt is 
screen variables - fields and groups. The second is local data block (LOB) entries. The 
third is JPL variables defmed with vars and parms statements inside a module. The 
names of JPL variables are constructed with the same rules that apply to field and LDB 
names. We recommend using any combination of 1 to 31 letters, digits, and under
scores, that does not start with a digit The rules also permit the use of two special char
acters, the dollar sign ($) and period (0), and you may use these when necessary. 

When a variable is "defined" storage is allocated. A JPL variable must be defmed by a 
vars or parms statement before the variable is used. In some instances, you may also 
need to "declare" how a variable will be used. For example, after defining a variable 
you may declare the variable as a return variable with a retvar statement The defini
tion statement tells JPL how much space to allocate for the variable while the declara
tion tells JPL what to store in the variable (i.e., the integer value returned by a function). 
Below we discuss the two commands. vars is a defmition command, and parms is 
both a definition and declaration command. 

A vars statement defines one or more JPL variables. The value of a newly defined 
vanable is the null string (''''). In a vars statement you may also define a variable's 
number of occurrences (array size) and/or its occurrence size (number of characters). 

JAM Release 5.03 20 Nov 92 Page 23 



JPL GUide 

The default number of occurrences is the mimmum (one occurrence). The default oc
currence size is the maxmum vanable size, 255 bytes. JPL allocates space for the size 
you specify, plus an additional byte for the temunating null. 

When you use a j p 1 statement to call a procedure, you may need to pass values to the 
procedure. A parameter in the procedure receives the value passed from a jpl state
ment A parrns statement will defme a variable if it does not already exist, declare the 
variable as a parameter, and assign it the value of an associated argument. If the vari
able is an array, however, then you must derme its number of occurrences and its size 
before declaring it in a parrns statement. 

Some example vars and parrns definitions follow. The number of occurrences is in 
sq uare brackets. The occurrence size is in parentheses. 

vars acctno 
vars fullname[lOO] (30) 
vars age[lOO] (3) 
vars qty cost extension 
vars list [25] 
parms querytype(3) 

In the next example, the vars statement defines city as an array with three occur
rences. The parrns statement declares the three occurrences of city as three parame
ters. Since x has not been defmed, it dermes x as a single occurrence with size 2, and 
then declares x as a parameter. 

vars city[3] 
parms city[l] city[2] city[3] x(2) 

In all cases, a statement cannot reference a JPL variable until JPL executes the vari
able's definition statement, either parrns or vars. JPL variables may be defined as 
either global to the procedures in a JPL module, or local to one JPL procedure. vars or 
parrns statements before a module's first proc statement define variables global to all 
the procedures in the module. Defmition statements in a named procedure derme vari
ables local to the procedure. 

4.2 

SCOPE AND LIFETIME OF VARIABLES 
In this section we discuss a variable's scope and lifetime. Scope describes the part of the 
application over which the variable is defmed. Therefore, scope describes when and 
where you may reference the variable. Lifetime describes the length of time that the 
variable exists. When you assign a value to a variable it keeps this value until you as
sign it another, or until its lifetime ends. When its lifetime ends, JAM re-allocates the 
variable's memory. 

Page 24 JAM Release 5.03 20 Nov 92 

\ 



" 

Chapter 4' JPl Vanables 

The scope of a variable defined within a named JPL procedure is local to that proce
dure. That is, it may only be referenced by JPL statements that are part of that proce
dure. The lifetime of such a variable is the time in which that procedure is in a state of 
execution. 

The scope of a variable defmed in the unnamed procedure at the top of a module is 
global to the JPL module. It may be referenced by any JPL statements that are part of 
the module, but not by JPL statements in other modules. The lifetime of such a variable 
is the same as the lifetime of the JPL module. 

The scope and lifetime of variables defined in JPL is summarized below: 

Definition Location Scope Lifetime 
Within JPL Module 

within JPL procedure JPL procedure execution of JPL procedure. 

within a module, but JPLmodule field, me, load, memory-resident, 
prior to any JPL library modules: execution of module. 
proc statement 

screen module: until screen is closed. 

public module: until module is 
unloaded. 

Global module variables in field, me, load, memory-resident, and library modules are 
defined each time the module is executed. Mter JPL executes the module and returns 
control to the JAM Executive, the memory for the global variables is re-allocated. 

Global module variables in a screen module are defmed when the screen is opened. 
JAM re-allocates the memory of these variables when the screen is closed. 

Global module variables in a public module are defined when the publ ic statement is 
executed. The memory for these variables is re-allocated when the module is unloaded 
(named in a unload statement). 

Field and group variables are local to the screen. JPL statements may reference any 
field or group name while the screen is active (displayed on top). The lifetime of these 
variables is the length of time the screen is on the window stack. 

LOB entries are accessible throughout the lifetime of the application. 

JAM Release 5.03 20 Nov 92 Page 25 



JPL Guide 

4.3 

REFERENCING VARIABLES BY NAME 
Different vanables may share the same name. When you reference a variable by name, 
such as in cat fullname "John Doe", you need to know which instance of 
f u Ilname is being referenced. It could be a local JPL variable defmed within the pro
cedure, It could be a global JPL variable in the module, it could be a screen field or 
group, or it could be a LDB entry. 

The JPL processor determines the referenced variable by searching the followmg 
places, in order, until the named variable is found: 

1. the procedure that contains the reference. Note that the variable will 
be found here only if the defming vars or parms statement has al
ready been executed. 

2. the module that contains the reference. 

3. the fields or groups on the screen. 

4. the local data block entries. 

References to variables may include a specification of an occurrence number in brack-

~, 

ets, following the variable name itself. Spaces are permitted between the variable name '\ 
and the left bracket. For example, if customer is an array with five occurrences, then 
customer (3), refers to the third occurrence of the array. 

4.4 

REFERENCING VARIABLES BY FIELD 
NUMBER 
References by field number are specifically treated as references to fields on the screen. 
For example, #5 refers to the fifth field on the active screen. From field functions writ
ten in JPL you may also make a reference relative to the current field (the field on 
which the cursor is positioned). For example, 

# + 1 refers to the field following the current field. 

# -1 refers to the previous field. 

# + 0 refers to the current field. 

Be careful when using field numbers, since field numbers may change when the screen 
is edited. In general, relative references by field number are safer than absolute refer-

Page 26 JAM Release 5.03 20 Nov 92 



Chapter 4. JPL Vanables 

ences by field number. In particular, #+0 (or #-0) IS always a safe and efficlentmetbod 
of referencmg the current field. 

Relative field numbers are supported only for field functIOns. They do not work in 
screen or control stnng funcuons written in JPL. Prototype the library function 
sm_getcurno If you need to know the cursor position in a JPL screen or control 
string function. 

4.5 

REFERENCING GROUP VARIABLES 
The two kinds of groups in JAM are radio buttons and checklists. One occurrence may 
be selected from a radio button, while zero or more may be selected from a checklist. 
Each group has a name, which may be referenced to determine an end-user's selec
tions. 

A radio button name has one occurrence, and a checklist name has an occurrence for 
each occurrence in the checklist. The radio button name is set to the group occurrence 
number of the user's selection. In the example below, day is a radio button with 7 oc
currences. 

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY 

If the end-user selects THURSDAY, then day equals 4. While the screen is active, you 
may use day as a variable in a JPL procedure. If all the occurrences in the radio button 
belong to an array named day_array, then the variable day_array [day] equals 
THURSDAY. 

The first occurrence of a checklist vanable is set to the group occurrence number of a 
selection, or set to null if none are selected. The second occurrence is set to the number 
of another selection, or null if the end- user did not make a second selection, and so on. 
The group occurrence numbers of the selections are stored sequentially (although not 
necessarily in any particular order) in occurrences of the checklist variable. Consider 
the following example. s ta t e is the name of an array with three occurrences. 

MAINE VERMONT NEW HAMPSHIRE 

s_list is a group with three occurrences - the three occurrences of state. Since 
s_1 is t is a checklist, the end-user may choose zero or more selections. If he selects 
VERMONT and NEW HAMPSHIRE, then s_1ist [1] = 2, s_1ist [2] = 3, and 
s_list[3] =0. 

You can use a loop to count the number selections or display the selections. For exam
ple, 

JAM Release 5.03 20 Nov 92 Page 27 



JPL GUide 

V81'S max occur count i 
catmaxoccur'3' 
cat count '0' 
for i =1 while i <= maxoccur step I 
( 

) 

if s_list[i] == " 
break 

else 
math count = count + 1 

msg emsg "User made :count selections." 

Page 28 JAM Release 5.03 20 Nov 92 



ChapterS 

The C%n Preprocessor 

Colon expansion provides great programming flexibility, since the JPL programmer is 
not restricted to using variables only where variables are nonnally permitted in JPL 
statements. We use the term "preprocessor" to emphasize that colon expansion is an 
independent process which JAM perfOIUlS before executing each JPL statement. After 
a module has been compiled and converted, but before a statement is executed, the 
colon preprocessor scans the statement and replaces each colon variable with its current 
value. A colon variable name begins with a colon and ends with a blank or another char
acter that cannot be expanded. After making the substitution, the colon preprocessor 
then hands the statement over to the JPL statement processor for execution. 

For example, suppose that the value of acctno is 91956. The execution of the state
ment 

msg emsg -I cannot find :acctno.-

would result in the display of the message "r cannot find 91956. ", even 
though the syntax of the msg statement does not pennit variables inside of the message 
string itself. In contrast, 

msg emsg -I cannot find acctno.-

would result in the display of the message "r cannot find acctno." 

You may also use colon expansion where variables or procedure or module names are 
permitted. In fact, any statement that permits a variable as an argument also permits a 
colon-expanded variable. For example, 

cat fruit 'a' 
cat a 'apple' 
msg emsg :fruit 

would display apple (rather than a) on the status line. 

JAM Release 5.03 20 Nov 92 Page 29 



JPL GUide 

5.1 

REFERENCING VARIABLES FOR 
COLON EXPANSION 
A variable will be recognized by the colon preprocessor only if it is immediately pre
ceded by a colon (:). To avoid having a colon expanded, you may either precede the 
colon with another colon (: :), precede the colon With a backs lash (\ :), or follow the 
colon with a space (: ). 

In the frrst two cases, the colon preprocessor discards the frrst colon and the backslash. 
In the third case, the colon and following space are preserved. Once a variable is recog
nized by the colon preprocessor, the rules in Chapter 4 for determining the proper refer
ence of the variable (e.g. local procedure variable, global module variable, screen field 
or group, LOB entry) apply. The Chapter 4 rules for detennining the value of the vari
able also apply, except in the case of an array reference with no specified occurrence 
number. In that case, the colon expansion concatenates all the non-blank array occur
rences, separating each pair of occurrences with a blank space (see example below). 

Determining the referenced occurrence of a colon-expanded variable can be tricky. 
Consider the following example: 

vars xyz[3] alpha[3] 
vars v w 
vars xl x2 x3 x4 xS 

cat alpha[l] "bits" 
cat alpha[2] "centuri" 
cat alpha[3] "rays" 
cat xyz[l] "alpha" 
cat xyz[2] "beta" 
cat xyz[3] "gamma" 
cat v "alpha" 
cat w ·xyz· 

cat xl xyz[3] 
* Now xl = gamma 
cat x2 :xyz[l] [3] 
* Now x2 = alpha[3] = rays 
cat x3 :V (3] 
* Now x3 = alpha [3] = rays 
cat x4 ":xyz" 
* Now x4 = ":xyz[l] :xyz[2] :xyz[3]" = 
* "alpha beta gamma" 
cat xS :v[3] 
* Now a JPL error occurs because v[3] does not exist. 

Page 30 JAM Release 5.03 20 Nov 92 

, 
" 



Chapter 5' The Colon Preprocessor 

Normal variable substitution replaces xyz [3] with the value of the third occurrence of 
xyz. When the cat is executed, the value of xl is gamma. 

The fIrst substitution by the colon preprocessor occurs in the statement cat x2 
: xyz [1] [3]. The colon preprocessor replaces : xyz [1] [3] with alpha [3] . 
When the cat is executed, the value of x2 becomes rays. 

In the next statement the colon preprocessor replaces v with alpha. x3 then equals the 
third occurrence of alpha, which is rays. The space between the variable name v 
and the index brackets is significant. The space prevents the colon preprocessor from 
trying to expand the third occurrence of v. 

In the next statement the colon preprocessor concatenates all the non-blank occur
rences of xyz, separating the occurrences with single blank spaces. If : xyz was not 
enclosed in quotes, JAM would display an error message because beta and gamma 
are not variables. In the last statement the colon preprocessor tries to replace : v [ 3 ] 
with the third occurrence of v. Since v has only one occurrence, JAM displays an error 
message. 

5.1.1 

References with Substring Specifiers 
Substring specifiers may also be used with colon expansion. If there is a substring spec
ifier immediately after a variable name, the colon preprocessor will extract the speci
fied characters from the value of the variable. If there is a blank between the variable 
name and the specifier, the colon preprocessor ignores the specifier, and JPL interprets 
the specifier when it executes the statement. 

vars abc xyz xy m1 m2 
cat xy "New Zealand" 
cat xyz "Belgium-
cat abc "xyz" 
cat ml :abc(1,2) 
cat m2 :abc (1,2) 

When the procedure is executed, the value ofml is ''New Zealand," and the value of 
m2 is "Be." 

When the colon preprocessor examines 

cat m1 :abc(1,2) 

it replaces : abc ( 1, 2) with xy and returns control to the JPL statement processor. 
The JPL statement processor replaces xy with its value, "New Zealand," and assigns 
the value to ml. (If xy were not a variable, JAM would display an error message). 

When the colon preprocessor examines 

JAM Release 5.03 20 Nov 92 Page 31 



JPLGUIde 

cat m2 :abc (1,2) 

It replaces : abc with xyz. Since there is a blank space after the variable, it returns 
control to the JPL statement processor. The JPL statement processor replaces xyz with 
its value, "Belgium," extracts the substring Be, and assigns "Be" to m2. 

5.1.2 

Colon-Expanded Arguments in Invocation 
Statements 
Some JPL commands do not recognize variable arguments. They are the invocation 
commands (atch, call, jpl, system), the JAMlDBi commands (dbms, 
sql), and the commands load and pUblic. They will use variable names as string 
constants unless you colon--expand the variables. For example, 

proc money 
vars t1 t2 
cat tl ·n~ckels· 
cat t2 "dimes· 
jpl display tl t2 

proc display 
parms pl p2 
msg emsg pl .. .. p2 

The jpl statement would pass tl and t2 as string constants to display. The msg 
statement would put 

tl t2 

on the status line, because variable substitution is performed in msg statements, but not 
in invocation statements. (Colon expanding pI and p2 would cause an error message 
because tl and t2 are local to money.) To pass the contents of tl and t2, use this 
statement 

jpl display :tl :t2 

Then the msg statement would put 

nickels dimes 

on the status line. 

If the value of colon expanded variable is a string with one or more embedded spaces, 
the spaces in the string will be tteated as delimiters between the arguments. For exam
ple, 

Page 32 JAM Release 5.03 20 Nov 92 



vars str 
cat str "a b c· 
jpl display :str 

proc display 
parms x y z 
msg emsg x y z 

Colon preprocessing on the jpl statement produces, 

jpl display abc 

ChapterS: The Colon Preprocessor 

When the jpl statement is executed it passes three arguments, a, b and c, to the func
tion display. The msg statement would put 

abc 

on the status line. 

To pass the contents of s t r as a single argument, use these statements: 

jpl display -:str· 

proc display 
parms x 
msg emsg x 

Then the msg statement would put 

abc 

on the status line. 

5.1.3 

References in Parentheses 
Parentheses may be used when referencing variables for colon expansion. JAM pro
vides this feature to make writing correct references easier, and to pemlit proper expan
sion of variables that are followed by characters. The parentheses are placed around the 
variable name (or field number). In this example, 

vars ref alpha[3] 
cat alpha[l] -bits
cat alpha[2] ·centuri
cat alpha[3] -rays· 
cat ref -alpha-
cat x4 :(ref) [3] 
• Now x4 = rays 

the colon preprocessor replaces :(ref) with alpha, and JPL replaces alpha [3] 
with rays and assigns this string to x4. 

JAM Release 5.03 20 Nov 92 Page 33 



JPL GUIde 

5.2 

FORCING RE-EXPANSION 
Normally, the colon--expanded text is not revisited by the colon preprocessor, even if it 
contains another colon- reference to a JPL variable. For example, the following code 
results in the display of the message "Thank George it 's: day" 

vars day 
cat day nFridayn 
vars period 
cat per~od "\:dayn 
msg emsg -Thank George it's :period-

To display the message "Thank George it I S Fr iday" , you could use the colon 
re--expansion operator, * (asterisk). You'd get your wish if the msg statement was re
placed with: 

msg emsg "Thank George it's :*periodn 

The colon expansion preprocessor actually works from right to left. Normally, it 
doesn't try to re--expand expanded text. When the re--expansion operator is encoun
tered, the colon preprocessor re-starts the expansion at the right-most character of the 
expanded text Normal processing resumes at that time. Therefore, it is permissible to 
nest the use of colon re--expansion (althougb it is difficult to imagine needing this!). 

Page 34 JAM Release 5.03 20 Nov 92 



Chapter 6 

Data Types, Operators, and 
Expressions 
Data types describe how JPL uses the values of variables and constants. Operators spec
ify what is done, or how the variables and constants are manipulated. Expressions com
bine variables and constants to produce new values. An understanding of these topics 
will provide the foundations for writing JPL procedures. 

6.1 

DATA TVPES 
The data type of a variable or expression in JPL is not determined by declaration. 
Instead, type is determined by context, that is, by value and usage. JPL stores all values 
as character strings, and performs conversions when necessary. There are four data 
types: 

• string A string is zero or more characters. A string requires no conversion. (There 
is no defined limit on string length in JPL.) 

• integer A sequence of digits that does not contain a decimal point It may begin 
with a plus or minus sign. Conversion is to integer. 

• numeric A numeric begins with a digit, a plus or minus sign, or a decimal point. Nu
merics are converted to floating point 

• logical A string, integer, or numeric may be evaluated as a logical, that is, as true 
or false. A string is a logical true if it begins with the value of message entry 
S~YES (often "y" or "Y"). It is false if it begins with any other character. 
A numeric or integer is a logical false if it is zero, and a logical true for all 
other numbers. 

JAM Release 5.03 20 Nov 92 Page 35 



JPLGulde 

6.2 

CONSTANTS 
There are several lands of constants in JPL. We describe them ID the subsections below. 

6.2.1 

Integer Constants 
A integer constant consists of an optional plus or minus sign followed by a sequence of 
digits. JPL supports only decimal integers. Binary, octal or hexadecimal integers are 
not available (except as arguments to prototyped functions, see page 94). 

6.2.2 

Numeric Constants 
A numeric constant consists of an optional plus or minus, followed by an integer part, 
a decimal point, and a fraction part. The integer and fraction parts are sequences of dig
its. 

Since JPL performs data type conversions when necessary, you may represent a numer
ic constant with only the integer part. 

6.2.3 

Date Constants 
A date constant is a literal date enclosed in parentheses. To be recognized, it must use 
the date format specified in the message file entry SM_CALC_DATE. The default in the 
message file is %m/%d/%4y, which is MON/DATE/YR4 in mnemonics. The @date 
operator converts a date constant to a numeric by counting the number of days between 
the date constant and January 1, 1753 (the standard for date calculations). 

6.2.4 

String Constants 
A string constant in most programming languages is a sequence of zero or more charac
ters surrounded by quote symbols. JPL, however, distinguishes between two types of 
string constants, quoted and unquoted. 

Page 36 JAM Release 5.03 20 Nov 92 



Chapter 6. Data Types, Operators and Expressions 

Quoted string constants 
A quoted constant contains zero or more characters. At runtime, JPL stnps off the quote 
characters. 

Both single and double quote symbols are permitted, but you must use the same symbol 
to open and close a string constant: 

"55 Baker St." 
, (212) 555-1212' 

A quoted constant with no characters is a null string. 
II" 

, , 

To combine strings and variable values in a quoted constant, you must use the colon 
preprocessor. 

"The amount is :tot.," 

A quoted constant that uses any special characters - colon, quote symbols, or back
slash - must precede the special character with a backslash. 

To use a colon as a character in a string expression (rather than as the colon preproces
sor symbol), immediately precede the colon with a backslash or another colon, or put a 
blank space after the colon. 

"\:" 
"Do the following: l)Type value; 2)Press EXIT." 

You should also use the backslash if you wish to embed quote symbols in a constant. 
The other option is to use one symbol in the expression, and the other to enclose the 
constant 

"The message for :date is \":message\"" 
'The message for :date is ":message'" 

Quoted constants are widely used in JPL, especially in cat, msg, and invocation state
ments. 

Unquoted string constants 
An unquoted string constant contains one or more non-blank, non-quote characters. 
When JPL evaluates the arguments of an invocation statement (call, jpl, system), 
a JAMIDBi statement (dbms, sql), a public statement, or a load statement, it 
passes an unquoted constant as a literal. Therefore, JPL never performs any variable 
substitution when it executes these eight statements. In fact, the only way to pass the 
value of a variable (rather than the variable's name) is to use the colon preprocessor in 
these statements: 

JAM Release 5.03 20 Nov 92 Page 37 



JPL GUide 

Jpl sales 7 today :total 

sales is the name of a JPL procedure. 7 and today are unquoted string constants. 
: total represents a variable which the colon preprocessor will evaluate. 

WhIle unquoted constants contain any combinatJon of letters and dIgIts, their data type 
is always stnng. JPL wIll convert the constant's data type in the lIlvoked function or 
procedure if it is necessary, and accordmg to context. 

6.3 

OPERATORS 
JPL supports all the operators available in the 'math window' in the Screen EdItor, as 
well three integer bitwise operators. The table below summarizes each operator, its op
erands, and the data type of the value after the operation. Associativity is left to rigbt, 
except for exponentiation where it is right to left 

Type Operator Operation Precedence Result 

string () substring specifier 1 string 

numeric @surn array sum 1 numeric 

@date date calculation 1 numeric 

"- exponentiation 3 numeric 

/ division 5 numeric 

* multiplication 5 numeric 

+ addition 6 numeric 

- subtraction 6 numeric 

Page 38 JAM Release 5.03 20 Nov 92 



Chapter 6: Data Types, Operators and Expressions 

Type Operator Operation Precedence Result 

relational > greater than 7 logical 

>= greater than or equal to 7 logical 

< less than 7 logical 

<= less than or equal to 7 logical 

-- equal to 8 logical 

!= not equal to 8 logical 

bitwise or - one's complement 4 integer 
integer 

& bitwIse and 9 integer 

I bitwise or 11 integer 

logical ! not 4 logical 

&& conjunction (and) 10 logical 

I I disjunction (or) 12 logical 

assignment = equals I3 numeric 

The use of operators will cause JPL to convert values to their appropriate types. There 
is no type conversion when the substring specIfier is used. When the numeric operators 
are used, JPL must be able to convert the operands to numerics. When the bitwise oper
ators are used, JPL must be able to convert the operands to integers; if the operands are 
numeric, JPL will truncate them to integer values. When the operators are relational, 
JPL must be able to convert the operands to one data type. When the operators are log
ical, JPL converts the operands to logical. The chart below describes the conversion of 
operands for relational and logical operators. 

JAM Release 5.03 20 Nov 92 Page 39 



JPL Guide 

String Numeric Integer Logical 

String string error error logical l 

Numeric error numeric numeric IOglCal2 

Integer error numeric integer logical2 

Logical logicall logical2 logical2 logical 

1. a stnng is a logical true Jf It begins With the value of SM.. YES . 

2. a numeric or integer is a logical true if it is nOD-zero. 

Below we discuss the operators that need further explanation, for example the substring 
specifier, @date and @SUIn. In case you have not used programming languages like C, 
we also discuss the bitwise operators. In JPL, they are particularly useful if you are us
ing flags or masks. You should also see the Programmer's Guide for more information. 

6.3.1 

Substring Specifier 
A substring specifier allows you to reference a part of any string. It may follow any 
variable name in the statemen~ and it specifies the beginning and the length of the sub
string. The syntax is 

variable (m, n) 

where 

• variable is the name of a JPL variable, field, or LDB entry 

• m is an integer expression whose value will be the beginning position 
of the substring, counting from 1 

• n is an integer expression whose value will be the length of the sub-
string. 

A value for m is required If n is not given, JPL assumes the end of the string as the 
default. m and n are integer values, and may be represented by integer constants or vari
ables. m and n may be any value between 1 and the variable size (255 by default). If you 
reference a part of the variable beyond the last byte, those characters will not be avail
able. 

Substring specifiers are often used in string assignment statements like cat and in 
statements using logical expressions. 

Page 40 JAM Release 5.03 20 Nov 92 

, , , 

; 



Chapter 6. Data Types, Operators and Expressions 

• For example, to extract a country code from an international phone 
number, 

if 1nt-phone(1,3) == "039" 
cat country "Italy" 

• To find the first blank in a string, 

for i = 1 while string(i, 1) 1= U " step 1 
{ } 

• To append a zip code extension, 

cat zip(6) "-" extension 

6.3.2 

@date and @sum Operators 
The numeric operators @date and @sum are also available in the 'math and checkdi
git' window under field edits, in the Screen Editor. Smce we explain them fully in the 
Author's Guide, we explain them only briefly here. 

When using @date I the operand must be a field with a date format, or a literal date 
enclosed in parentheses, in the format specified in the message file entry 
SM_CALC_DATE (%m/%d/%4y or MON/DATE/YR4 by default). The @date opera
tor will allow you to compare dates and perform arithmetic on dates. 

• For example, if fieldl and field2 have date edits, the statement, 

math field2 = @date(fieldl) + 30 

will set the date in field2 to 30 days past the date in fieldl. 

• If days is a variable, and today is a field containing the current date, 
the statement, 

math days = @date(12/25/1990) - @date(today) 

sets days to the number of days until Christmas. 

The @sum operator calculates the sum of all the non-blank occurrences in an array. 

• For example, if quantities is an array and total is a field, the 
statement, 

math total = @sum(quantit1es) 

will put the sum of all occurrences of the array quantities in the 
field total. 

JAM Release 5.03 20 Nov 92 Page 41 



JPLGulde 

6.3.3 

Bitwise Operators 

To accommodate bit manipulattons, JPL provides three bitwise operators - bitwise 
AND (&), bitwise OR (I), and one's complement (-). A simple and useful application 
of a bitwise operator might use bitwise AND on a field's flag argument. All the flags are 
defined as hexadecimal values in the include files. We summarize them below. Since 
JPL does not recognize hexadecimals, we included their converted value in the last col
umn. 

Field Flags Defined in the includefile: hex int 

VALIDED smvalids Ox20 32 

MDT smvalids Ox40 64 

K_ENTRY sminstfn OxOO80 128 

K_EXIT sminstfn OxOOIO 16 

K_EXPOSE sminstfn OxOIOO 256 

K_KEYS sminstfn OxOOO7 7 

K_NORMAL 0 0 
K_BACKTAB 1 1 
K_ARROW 2 2 
K_SVAL 3 3 
K_USER 4 4 
K_OTHER 5 5 

Screen Flags Defined in the includefile: hex int 

K_ENTRY sminstfn OxOO80 128 

K_EXIT sminstfn OxOOIO 16 

K_EXPOSE sminstfn OxOIOO 256 

Page 42 JAM Release 5.03 20 Nov 92 



.Chapter 6 Data Types, Operators and Expressions 

Group Flags Defined in the includefile: hex int 

K_ENTRY sminstfn OxOO80 128 

K_EXIT sm~nstfn OxOO10 16 

K_KEYS sminstfn OxOOO7 7 
(see Field Flags) 

For example, if you are using the same function for field entry and exit, you might write 
a module like this: 

vars ENTRY EXIT 
cat ENTRY "128" 
cat EXIT "16" 

proc field_func 
parms number data occ flags 
~f flags & ENTRY 

jpl do-process 
else lf flags & EXIT 

Jpl do_exit-process 
return 

K_KEYS indicates why a function was called. See the following: 
vars KEYS 
vars NORMAL BACKTAB ARROW 
cat KEYS 117" 
cat NORMAL "0 11 

cat BACKTAB "1" 
cat ARROW "2 11 

proc field_func2 
parms num dat occ flg 
if (flg & KEYS) == NORMAL 

return 
else if (flg & KEYS) == ARROW 

msg emsg "Please use the tab key to move between fields." 
return 

6.4 

EXPRESSIONS 
An expression produces a new value by combining constants, variables, and operators. 
IPL evaluates an expression as one of the four data types, based on context. In all state
ments, JAM's colon preprocessor evaluates colon-expanded variables. In all expres
sions, IPL's statement processor replaces variable names with values. 

JAM Release 5.03 20 Nov 92 Page 43 



JPL Guide 

String Expressions 
A string expression combines one or more quoted stnng constants or values of string 
variables. The substring specifier is the only string operator. 

'Montreal' 
:dlstrlct 
"Processed :i items" 
"Total cost 1S " total " for :x items" 
phone (1, 3) 

Numeric Expressions 
A numeric expression combines variables and numeric constants with one or more of 
the numeric operators. You may use parentheses to control the flow of operations. 

y + z 
@sum(quantlties) 
x~y + y * (z A 3/4 + 1) - x/2 
86 

Bitwise Expressions 
A bitwise expression uses variables or constants which have the data type integer, and 
any of the bitwise operators. 

flag1 & flag2 
x I mask 

Logical Expressions 
A logical expression uses the logical and relational operators to evaluate variables, nu
meric constants, integer constants, string expressions, numeric expressions, or integer 
expressions. The one restriction is the operands have the same type, or that they can be 
converted to the same type. For example, if you wish to compare a variable (or expres
sion) with a numeric literal, JPL must be able to evaluate the value of the variable or 
expression as a numeric. If it cannot it will display an error message. 

y 
x != 7 
(total * (1 + tax)) <= max_value 
flag> -flag 

Page 44 JAM Release 5.03 20 Nov 92 



Chapter 7 

Statements and JPL 
Commands 

A statement consists of a command followed by zero or more arguments. In JPL, only 
one statement is permitted per line, but a statement may be continued to subsequent 
lines with a backs lash (\). There is no maximum size for a JPL statement. 

Braces mark the beginning and end of a block. Each brace must have its own line. The 
one exception is the null statement. In a null statement, both braces are permitted on the 
same line. A line beginning with a pound sign (#) is treated as a comment, and is ig
nored by the compiler. The proc command marks the beginning of a named JPL pro
cedure. 

Sample Statement Descript ion 

math total = subtotal * (1 + tax) assignment statement 

cat title \ statement continued 
first_name \ with backslashes 

" " \ 
last_name 

# calculate the total comment statement 

proc title proc statement 

for i = 1 while str(i,l) 1= " " step 1 
{ } null statement 

JAM Release 5.03 20 Nov 92 Page 45 



JPLGUIde 

Sample Statement Description 

vars k 
msg query / 
"00 you want to do a widget?" k 
while k 
{ open block statement 

jpl do_widget 
msg query / 
"00 you want to do another widget?" k 

} close block statement 

7.1 

SUMMARY OF JPL COMMANDS 
Below is a summary of the JPL commands. If you are new to JPL, use this summary to 
get started Begin with the assignment and defmition commands; then move on to the 
commands for using loops, text, and procedure structures. Unless you are using applica
tion code, you can skip all the call commands except for jpl. When you are comfort
able writing procedures, review the miscellaneous commands and the additional call 
commands. 

definition and declaration: 
vars 

parms 

retvar 

define a JPL variable in a procedure 

define a JPL variable if it does not exist; declare variable 
as a parameter 

declare a variable to hold a return value 

assignments: 

loops: 

cat 

length 

math 

do string manipulation and assign value 

COWlt number of characters in a string and assign value 

do numeric calculations and assign value 

break exit prematurely from a loop 

else execute statements(s) if the preceding 'if' or 'else 
if' fails 

Page 46 JAM Release 5.03 20 Nov 92 

, 

, 
" 



Chapter 7: Statements and JPL Commands 

else if conditionally execute statement(s) if the preceding' if' 
or 'else if' fails 

for execute an indexed loop 

if conditionally execute statement(s) 

next skip to next iteration of loop 

whi Ie repeatedly execute statement(s) while a condition is true 

text display: 

flush flush buffered output to the display 

display a message to the end-user msg 

procedure structure: 

calls: 

proc begin a named JPL procedure 

{ } null statement 

{ begin statement block 

} end statement block 

atch execute a function attached to a field 

call execute a control string or prototyped function 

j pI execute a JPL function 

she 11 execute a system call and wait for user acknowledge
ment 

sys tem execute a system call 

miscellaneous: 

return exit from a JPL routine 

load read a JPL module into memory (module name is vis
ible) 

public read a JPL module into memory (procedure names are 
visible) 

unload release memory used to bold load or public modules 

* begin a comment 

JAM Release 5.03 20 Nov 92 Page 47 



JPLGuide 

JAMlDBi only: 

dbms execute a JAMlDBi directive 

sql submit a native dialect sql statement to the DBMS 

You must begin every JPL statement with one of these commands. If you do not, JAM 
displays an error message for the unrecognized command. JPL created in the screen 
binary will display the message, if necessary, when you press XMIT to save the JPL 
procedures window. 

7.2 

REFERENCE 
The following sections describe the commands in detail. Each description uses this 
structure: 

• The command name. 

• Usage synopsis, where 

{x} indicates an optional element, X, the brackets should not 
be typed. 

x... indicates the element may be repeated one or more 
times. 

Ii teral indicates a words to be typed verbatim; includes exam
ples and literal entries. 

italics indicates screen names, flle names, and variables; re
place them with the appropriate values for your applica
tion. 

• A full description of the command, with an explanation of its parame
ters, outputs, and actions. 

• One or more examples of JPL statements or procedures demonstrating 
how the command is used. 

The commands are listed in alphabetical order. 

Page 48 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

atch 
execute a field function 

SYNOPSIS 
at ch functIon larg} 

DESCRIPTION 

This command executes a field ftmction, which is a function attached to a field, via the 
function lists. It is a useful way of calling a function that requires information about the 
field being validated. It has one optional argument, argo Once colon expansion is per
formed, arg is equivalent to text actually typed into a field. JAM will not strip quotes 
from this text, and it will preserve any blanks embedded in the text If JAM is proces
sing a field entry, validation, or exit function, the function called with the atch state
ment receives the following arguments: 

• number field number 

• contents arg, if given; else the contents of the field 

• occurrence occurrence number 

• flags K_USER (invoked by user program; VALIDED and MDT bits both 0). See 
the Programmer's Guide for more information about these flags, and see 
section 6.3.3 on page 42, Bitwise Operators, for information about using 
these flags in JPL. 

If the atch statement is not called in a field function, it passes the arguments of the 
current field (the field the cursor is in) to the called function. If no fields are present, the 
field number and occurrence number will be zero and the contents will be arg, if given, 
or else the null string. 

If you have declared a return variable with the retvar command, the attached func
tion's return value is stored there. 

EXAMPLE 
I Display negative occurrences in red. 
parms num dat occ flag 
if dat < 0 

atch printred 
else 

return 
int pr intred (); 

JAM Release 5.03 20 Nov 92 Page 49 



JPLGuide 

printred must be installed in the function list (e.g., funclist. c). For example, 

/* list of field functions 
struct fnc_data ffuncs[] = 
{ 

{RprintredR
, printred, 0, 0, 0, O} 

} ; 

int fcount = sizeof (ffuncs) / sizeof (struct fnc_data); 

int 
printred (field_num, field_data, occurrence, val_mdt) 

int field_num; 
char *field_data; 
int occurrence, val_mdt; 

{ 

} 

int att; 
att = RED I BLINK; 
sm_o_achg (field_num, occurrence, att); 
return; 

Page 50 JAM Release 5.03 20 Nov 92 

*/ 



Chapter 7: Statements and JPL Commands 

break 
exit prematurely from a loop 

: ... : :. .. ...-.. .... ..... .... .. .. 

SYNOPSIS 
break {Integerconstant} 

DESCRIPTION 

... ... -.-: .. 

The break command terminates execution of one or more enclosing while or for 
loops, and resumes execution at the command immediately following the last aborted 
loop. 

integer constant equals the number of loops to break:. If you do not specify it, JPL uses 
I as the default If integer constant is greater than the number of existing loops, the 
program breaks out of all loops. 

EXAMPLE 
D Concatenate address and execute function for 100 entries. 
D If cities[i] is empty stop executing the loop. 
D 
vars i address total 
for i = 1 while i <= 100 step 1 
{ 

} 

if clties[i] == •• 
break 

cat address clties[i]· • states[i]· • zips[i] 
call do-process :address 

math total = 1 - 1 
msg emsg "Done! • :total • addresses processed. R 

SEE ALSO 

for, next, while 

JAM Release 5.03 20 Nov 92 Page 51 



JPL GUide 

call 
execute a control string or prototyped function 
.. : .. .................. -- . ... : .. 

SYNOPSIS - unprototyped functions 
ca 11 function (teJd) 

SYNOPSIS - prototyped functions 
ca 11 function (arg ••• ) 

DESCRIPTION 

.... '": 

This command executes a built-in JAM function, or a function installed in the function 
list. You may install both library functions and your own application code functIons in 
the function list, either in the list of control string functions or in the list of prototyped 
functions. 

The use of prototypes affects how a call statement passes arguments to a function. 
The installation of functions and the use of prototypes is discussed in detail in Chapter 
8, Calling Library Functions and Application Code. 

If the function is not prototyped, the called function receives a character string begin
ning with the function name followed by any text However, if the function is proto
typed, JAM parses the string following the function name into space-separated argu
ments. Note that hex, binary or octal numbers may be passed to prototyped functions 
(see page 94). Single or double quotation marks must be used if arg has embedded 
blanks. 

text and arg are colon expanded before call is executed. 

If you have declared a return variable with the retvar command, JPL stores the func
tion's return value in the variable. If you pass the names of variables to a prototyped 
function, you may use library functions to change the contents of the variable. For ex
ample, if you pass a field name to a prototyped function, the function can change the 
field's contents by using sm-putfield. See the JAM Programmer's Guide for de
tails. 

EXAMPLE 
* Call a control string function to move the cursor * to the first field on the screen. 
call home 

* Call a control string function to clear the array ·stocks". 

Page 52 JAM Release 5.03 20 Nov 92 

--" 



Chapter 7: Statements and JPL Commands 

i Call a prototyped functlon to unprotect the field "accnum". 
vars ans 
msg query "Do you wish to change the account number?" ans 
if ans 

call unprotect accnum 
return 

i Call a prototyped function to scroll to the specifled 
i occurrence in the array "names". 
parms nl3mber 
call sm~scroll names :number 

i Call a proto typed library routine to change the value 
i of a cursor key, using another prototyped library routlne 
i to access the values of key menmonics. 

vars ret oldkey newkey 
retvar ret 
call sm_key_integer "NL" 
cat oldkey ret 
call sm_key_integer "TAB" 
cat newkey ret 
call sm_keyoption :oldkey 2 :newkey 

To call library functions from JPL, install the name of the function in a function list. (If 
you wish to call your own C functions, you must also compile and link the function 
according to the directions in the JAM Programmer's Guide.) Below are sample func
tion lists for the examples above. JPL calls the quoted function name. 

/* 11St of control string functlons 
struct fnc_dat cfuncsl) = 
{ 

{"home", sm_home, 0, 0, 0, O} 
{"sm_n_clear_array", sm_n_clear_array, 0, 0, 0, O} 

/* list of prototyped functions 
struct fnc_dat pfuncs[] = 
{ 

} ; 

("unprotect(s)", sm_n_unprotect, 0, 0, 0, O} 
("sm_scroll(i,i)", sm_ascroll, 0, 0, 0, O} 

JAM Release 5.03 20 Nov 92 Page 53 



JPLGuide 

cat 
concatenate and assign strings 

.. -.. 

SYNOPSIS 
ca t variable (string expression ... ) 
ca t variable (substrlng-specfnsr) (string expression ... )} 

DESCRIPTION 

The ca t command concatenates one or more string expressions, and copies them into 
variable. string expression is any string value (quoted constant or variable value). You 
may specify a character position where concatenation will begin or end (or both) by 
placing the values in parentheses after variable. If you wish to append to the contents of 
variable, include the name of variable in the list of expressions. If you do not give any 
arguments, the command clears the contents of variable (or the part of variable de
scribed by substring specifier). You may also use substring specifiers on any string 
expression which is a variable or a colon~xpanded variable. 

A substring specifier allows you to reference a part of any string. It may follow any " 
variable name in the statement, and it specifies the beginning and the length of the sub-
string. The syntax is 

variable (m, n) 

where 

• variable is the name of a JPL variable, field, or LOB entry 

• m is an integer value which is the beginning position of the substring, count-
ing from 1 

• n is an integer value which is the length of the substring. 

A value for m is required. If n is not specified, JPL assumes the end of the string as the 
default. m and n are integer values, and may be represented by integer values between 
1 and the variable's size (255 maximum). JPL will ignore any substring specifications 
beyond a variable's last byte. 

EXAMPLE 
ft This is faster than math i = 1 
cat i "1" 

ft This combines some field data with constants. 
n Note that cat does not place blanks between items. 

Page 54 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

cat sons_name first - - last ., Jr.· 

i Th~s is equivalent to the example above. 
cat sons_name ·:first :last, Jr.-

i This tacks on a hyphen and a 4-digit extension to zip. 
cat zip(6,S) __ n zip_extension 

i This appends the extension by us~ng zip as a source. 
cat zip zip n_n zip_extension 

i This clears a field. 
cat zip 

JAM Release 5.03 20 Nov 92 Page 55 



JPLGuide 

dbms 
execute a JAM/OBi directive 

.. .... .. .. ~ ... .::.:.: :.:::.: : .... :::.:: :: ::: : ..... .. --- -

SYNOPSIS 
dbms dbmstmt 

DESCRIPTION 

The dbms command is only available with JAMlDBi. 

The dbmstmt is executed by JAMlDBi after colon expansion and syntax cbecking. 
dbmstmts are typically directives that have no sql representation (ie., fetch next 10 
rows), or directives that are not standardized across dialects of sql (ie., commit transac
tion). 

EXAMPLE 
# Fetch next set of rows 
dbms continue 

# Commit transaction 
dbms commit 

SEE ALSO 

sql, JAMIDBi Manual for your database. 

Page 56 JAM Release 5.03 20 Nov 92 

\ 



Chapter 7: Statements and JPL Commands 

else 
execute commands if preceding 'if' or 'else if' fails 

.. .. ...... ...... ... ~ ~ .. .. 
A~ .. :.:........................ .... :....... .. ........... . 

. . ... .. '" ................ .. 

SYNOPSIS 
else 
single statement or block 

DESCRIPTION 

This command is valid only after an if or an else if. statement or block is 
executed only when the condition in the preceding if or else if statement is false. 
An e 1 s e matches the last unmatched if in the same block. 

EXAMPLE 
D Beware of misplaced braces and ambiguous uelses . u 
D Examples 1 and 2 give the same results, but 3 does not. 
D 
D Example 1 
if x == 1 
if y == 2 

cat fld3 'yes' 
else 

cat fld4 'no' 

II Example 2 
If x == 1 
{ 

if y == 2 
cat fld3 'yes' 

else 
cat fld4 'no' 

} 

# Example 3 
if x == 1 
{ 

if Y == 2 
cat fld3 'yes' 

} 

else 
cat fld4 'no' 

SEE ALSO 
{ } (block), if, else if 

JAM Release 5.03 20 Nov 92 Page 57 



JPL GUide 

else if 
execute commands if preceding 'if' or 'else if' fails 

SYNOPSIS 
else if logIcal expressIon 
sIngle statement or block 

DESCRIPTION 

. .. .. . ... -. 

This command is valid only after an if or another else if statement statement or 
block is executed only when both of these conditions are satisfied: 

• the preceding if or else if statement failed, and 

• the value of logical expression is true. 

An else if matches the last unmatched if (or else if) in the same block. 

Several conditions can be chained with e 1 s e if commands. 

EXAMPLE 
«Determine a person's sex, based on hlS or her personal tltle. 
lf tltle == 'MR' 

cat sex 'Male' 
else if title == 'MS' 

cat sex 'Female' 
else lf title == 'MRS' 

cat sex 'Female' 
else if title == 'MISS' 

cat sex 'Female' 
else 
{ 

cat sex 'Unknown' 
msg err_reset 'Please supply a title.' 

} 

SEE ALSO 

{ } (block), if, else 

Page 58 JAM Release 5.03 20 Nov 92 



Chapter 7 Statements and JPL Commands 

for 
execute an indexed loop 

SYNOPSIS 
for variable = numerlc-expresslon \ 

while loglcal-expresslon step arg 
single statement or block 

DESCRIPTION 

This command provides an indexed loop. It has three clauses - the mitial step, the loop 
condition, and the index step. These clauses control the repeated execution of the loop's 
statement or block. 

The sequence of the command is as follows: 

l. Initialize the index variable to the value of numeric expression. 

2. Evaluate argo 

3. Evaluate logical expression. 

• If false, stop execution of loop. 

• If true, 

a. execute statement or block 

b. increment index variable (variable + arg) 

c. return to step 3 (Evaluate logical expression). 

variable is an index variable. JPL increments it for each iteration of the loop. Its value 
is often used to keep a count or to process sequential array occurrences. 

When the value of logical expression is false, JPL stops executing the loop. In the sim
plest case, it usually compares the index variable to some value that equals the maxi
mum number of times that JPL executes the loop. It may use other values to determine 
the end of the loop. For example, you might use the index variable to evaluate array 
occurrences, but use the value of an occurrence, like a null string, to the end the loop. 
You may also test several conditions by using the logical "and" (&&) and "or" (I I) op
erators. 

arg is a constant or a variable. It has a positive or negatIve numeric value. Each time 
JPL executes the loop, it increments the mdex variable with the value of argo JPL eval
uates arg only once, before the rust evaluation of logical expression. Therefore, if arg 

JAM Release 5.03 20 Nov 92 Page 59 



JPLGulde 

is assigned another value while the loop is executing, the new value will not affect the 
step process. 

EXAMPLE 
# Change each element of an array to its absolute value. 
vars i 
for 1 = 1 while 1 <= 10 step 1 
{ 

if amounts [1] == un 

cat amounts[i] ·0· 
else lf amoun~s[i] < 0 

math amounts[i] = -amounts[i] 

SEE ALSO 

{ } (block), whi Ie 

Page 60 JAM Release 5.03 20 Nov 92 



Chapter 7. Statements and JPL Commands 

flush 
flush buffered output to the display 

..... '" .. 

SYNOPSIS 
flush 

DESCRIPTION 

This command calls the library function sm_flush. 

Since JAM uses a delayed-write feature, JAM does not immediately display output 
from cat and msg statements. Instead, it uses the output to update the screen image in 
memory. When the keyboard is opened (or the flush routine is called), JAM updates 
the display from this image. 

You can use flush to force JAM to update immediately the phYSical display from the 
image in memory. Since JAM will update the display when it is waiung for keyboard 
input, use flush when JAM is not waiting for keyboard input The flush command 
is useful when your procedure requires timed output or non-interactive display, for 
instance updating a bme field. 

EXAMPLE 
D If this procedure is called as a screen entry function, 
D it will print the banner one character at a time in field 1 
D when the screen is opened. 
proc welcome 
vars w i 
cat w --------Sam's DIscount Rentals------- n 

for i = 1 while w(i,l) != II. step 1 
{ 

} 

ca t #l ( i) w ( i, 1 ) 
flush 
JPl delay 

proc delay 
D Lengthen the Interval between flushes. 
vars i 
for i =1 while i < 5 step 1 
{ } 

JAM Release 5.03 20 Nov 92 Page 61 



JPL GUide 

if 
conditionally execute statements 

.. '".'" .. .. .. .. ... .... ..... 

SYNOPSIS 
i f logical expression 
single statement or block 

DESCRIPTION 

...... .. . . . ....... ~ .'" ... 

This command provides for the conditional execution of other JPL commands. If log
ical expression is true, the following statement or block is executed. statement or 
block may be followed by an else if or an else statement. 

EXAMPLE 
# Supply a default value for an empty field 
if amount == --

cat amount WN/A n 

# Test a numeric value 
vars x 
math x = #5 - #4 
# if x is non-zero, assign a value to recfld 
ifx 

cat recfld scrfld 

It Test a string 
vars more 
msg query 'Would you like to see another?' more 
if more 

return 0 
else 

return 1 

SEE ALSO 

{ } (block), else,' else if 

Page 62 JAM Release 5.03 20 Nov 92 

' . . . 

I 



Chapter 7: Statements and JPL Commands 

jpl 
execute a JPL routine 
.. .. ........ . ....... .,.... . .. : ........ . '".'" .. 

SYNOPSIS 
J pI function {arg ... } 

DESCRIPTION 

This command calls a JPL procedure. A jpl statement passes the value of its argu
ments to parameters in function. 

In the statement, function may be either a procedure name, a module name, or the value 
of a colon expanded variable. JAM searches for function in the following places, in the 
following order: 

1. proc names in the same JPL module 

2. proc names in the active screen module 

3. proc names put in memory by a publ ic statement 

4. module names put in memory by a load statement 

5. module names in the memory-resident list 

6. module names in the open form library 

7. module names in the current directory 

8. module names in the directories listed in ini tcrt () and the 
SMPATH setup variable Please refer to section 3.4 on page 14, Calling 
JPL Procedures and Modules, for more detailed information. 

arg is an unquoted string constant, a quoted string constant, or the value of a colon-ex
panded variable. After colon expansion, the arguments are parsed into space-separated 
strings and passed to a parms statement in the called procedure, function. A quoted 
string constant is passed as a single argument with the quotes stripped off. If the value 
of colon expanded variable is string with one or more embedded spaces, the spaces in 
the string will be treated as delimiters between arguments. The total number of argu
ments, after colon expansion, should not be greater than twenty. If you try to pass more 
than twenty, the trailing arguments are ignored. They are not passed to the parms state
ment in function, even if you have declared parameters for them. JAM will display an 
error message for a parms statement that declares more parameters than were actually 
passed. 

JAM Release 5.03 20 Nov 92 Page 63 



JPLGuide 

EXAMPLE 
* Loop through a set of synchronized arrays, calling a JPL * routine to assemble an address from each Rline,· and a 
I C subroutine to store the result in a file. 
vars i r 
retvar r 
for i=l while i <= 10 step 1 
{ * The values of some the arguments being colon expanded may 
I contain embedded blanks. If such an argument is not 
I quoted, it will be separated into multiple arguments. 

* jpl getaddr whole ·:name[ij" -:street[ij" \ 
• :city[ij* :state[ij :zip[iJ 

if r > 0 
call store whole 

} 

proc getaddr 
I Note the use of colon expansion for the first parameter. * If this is not used, then only the local parameter receives 
• the value of the cat statement, and no assignment will be 
I made to ·whole w • 

I 
parms result_name name street city state zip 
cat :result_name 
if name == w. I I street == •• I I city == •• I I state -- _. 

return 
cat :result_name name " I street " I I 

city " I state I I zip 
return 1 

SEE ALSO 

load, parms, public, return, retvar, unload 

Page 64 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

length 
count number of characters and make assignment 
:~: : jo..~~.. "" ... : ....... :: .. ":: ':" .. :. ":,,-- ~.:;"':"' • ......: .:':::' • .- ,,:"':.";.: .. " .":.~ •• ~ ....... •• ..c: . . ~ .... ~ ..... :"" .... .. .. : .... : .. :: "" ....... ::.. ..:": .... ,," .. : i-

SYNOPSIS 
1 ength variable strlng-expresslon ••. 

DESCRIPTION 

This command counts the number of characters in one or more string expressions, and 
assigns the value to variable. string expression is a quoted string constant or the value 
of a variable (or a colon-expanded variable). You may use a substring specifier on any 
string-expression that is a variable. 

length counts all characters and embedded blanks in string expression. Leading 
blanks in right-justified fields, and trailing blanks in left-justified fields are ignored. In 
quoted string constants, leading blanks are counted, but trailing blanks are ignored. 

EXAMPLE 
I Count the total number of characters in a customer's 
I first and last name. 
vars In 
length In first last 

I Count number of characters beyond the lOOth byte. 
vars c 
length c address (lOO) 

JAM Release 5.03 20 Nov 92 Page 65 



JPLGUIde 

load 
read a JPL module into memory 

...... : .. 

SYNOPSIS 
load module ••• 

DESCRIPTION 

This command reads one or more JPL modules into memory. module is either a file 
module, library module, or memory-resident module, or the value of a colon expanded 
variable representing one of these modules. Unless module bas been compiled with 
jp12bin, JAM will compile module when it executes the load statement In either 
case, the execution of a load statement always converts the module (that is, converts 
it to the internal data structure). 

Later calls to the module will not require any additional compilation or conversion. To 
execute a load module, call it with the statement 

JPl module 

A load module has one entry point - its f1l'St, unnamed procedure. JAM begins execu
tion at the top of the module, executing the f1l'St procedure, which must be unnamed. 
While the module may contain one or more named procedures, these procedures are 
accessible only to jpl calls within the load module. Since load makes only the mod
ule name visible, a load module may contain procedure names that could otherwise 
conflict with the names of other JPL modules or procedures. If you wish to use the 
named procedures as entry points to the module you sbould use the public command 
instead. 

JAM will not load a module twice (or load two modules with the same name). If mod
ule is already in memory, any subsequent load statements will be ignored. You can 
release the memory used to bold a load module by using the un load command. 

EXAMPLE 
# Load three modules into memory for future use. 
load validname defaultname blank 
# 
for i = 1 whIle i < 11 step 1 

jpl validname name[ij 
II 
II Note: If validname had not been loaded, each call to the module 
II would requIre reading the file off the disk, compiling it and 
II converting it. The load statement avoids this repetitious processing 

Page 66 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

SEE ALSO 

jpl, public, unload 

JAM Release 5.03 20 Nov 92 Page 67 



JPL GUide 

math 
do numeric calculations and make an assignment 
.. . : .::: "" .... : .. : :: .. : : .: .... :.. ....... ;-: : .... " ",,": .. : ... . .. .... .. .. 

SYNOPSIS 
rna th {% format} variable = numeric expressIon 

DESCRIPTION 

The math command evaluates a numeric expression and assigns its value to variable. 

Numeric operators and expressions are discussed in Chapter 6. The opemtors are 

+ 

* 
/ 

@date 

add 

subtract 

multiply 

divide 

exponentiation 

date value 

@sum sum array 

By defaul~ JPL rounds the value of numeric expression to two decimal places. You 
may alter this with a format specifier to declare the total character length of destination 
and the number of decimal places. The syntax of format is: 

m.n 

where m and n are integer values (constants or variables). The value of m is the total 
number of characters, including digits, decimal place, and sign. If m is not given, m is 
assumed to be the size of the variable (maximum 255 bytes). The value of n is the num
ber of digits after the decimal place. 

You may also prevent JPL from rounding the value. Placing a %t before format tells 
JPL to truncate, rather than round, to the specified number of decimal places. If vari
able is a field or LDB entry, you may have already dermed its floating point precision 
as a field edit. You may derme a different precision in a math statement to override a 
field edit precision. 

Multiple equations are permitted in the same statement Use a semi- colon to separate 
assignments in the same statement For example, 

math i = i + 1; j = j + 2; k = k + iAj 

Page 68 JAM Release 5.03 20 Nov 92 

"", 



.' 

Chapter 7: Statements and JPL Commands 

EXAMPLE 
II Calculate cost 
math %9.4 total = @sum(checks) 

II Compute the cost of an item 
vars cost 
math cost = (prlce * (l-discount)) * (1 + tax_rate) 

II Compare values with different format specifiers 
vars n 
math n = 10 / 6 
II Now n equals 1.67 

math %6.4 n = 10 / 6 
II Now n equals 1.6667 

math %t6.4 n = 10 / 6 
II Now n equals 1.6666 

math %.0 n = 10 / 6 
II Now n equals 2 

math %t.O n = 10 / 6 
II Now n equals 1 

SEE ALSO 

cat 

JAM Release 5.03 20 Nov 92 Page 69 



JPL GUide 

msg 
display a message to the end-user 

SYNOPSIS 
msg query string {I} {variable} 
msg mode strlng~xpresslon ... 

where mode ~s one of the following: 

ernsg 

err_reset 

qui_rnsg 

quiet 

setbkstat 

DESCRIPTION 
This command displays string-expression on the status line or in a pop-up window, in 
one of several modes. The modes correspond to a number of JAM library routines. 
string-expression is a quoted string constant or a variable (or colon-expanded vari
able). A rnsg query statement requires one and only one string as argument A rnsg 
mode statement permits one or more string-expressions. They are explained briefly 
below. See the Programmer's Guide for more details . 

• que ry With this form of msg, you may display a question (string) to an end-user, 
and use his answer to determine how processing continues. JPL sets the op
tional variable to true or false by comparing the user's response to the mes
sage entries SM_YES and SM_NO. If the response is the value of SM_YES, 
variable is true; if it is the value of SM_NO, variable is false. Putting an ex
clamation point before variable reverses the logic (variable is true if the 
user enters SM_NO's value). If you do not specify a variable for variable, 
JPL continues executing the procedure if the user enters the value of 
SM_YES, and exits immediately for the value of SM_NO. This may also be 
reversed with a single exclamation point after string. The return value for 
both responses is zero. 

• d_rnsg This mode displays one or more string-expressions on the status line and 
leaves it there, until cleared or replaced by another message. Text displayed 
using d_msg is buffered, and it will be displayed until you clear it (rnsg 
d_rnsg ",,). It also may be temporarily replaced by arnsg command with 

Page 70 JAM Release 5.03 20 Nov 92 



eemsg 

Chapter 7: Statements and JPL Commands 

another mode (except setbkstat). You can force JAM to update a 
d_msg message by using the flush command. 

This mode displays string-expression as an error message; it is displayed 
until the end-user acknowledges it with a keystroke. The hbrary routine 
sm_opt l.on, controls message acknowledgement. The message does not 
force on the cursor. 

e err_reset This works like emsg, but It forces the cursor to be turned on at its cur
rent position . 

• qui_msg This message displays string-expression as an error message until it is 
acknowledged. string-expression will be preceded by the SM_ERROR 
string from the message file, which is normally ERROR:. Cursor is not 
forced to be turned on. 

• qu i et Like qu i_msg, but this message forces the cursor to be turned on at its cur
rent position. 

e setbkstat This installs string-expression as the background status line. It will be 
displayed when no other message is active. 

JAM provides several percent escapes for controlling the content and presentation of 
messages, and for specifying error message acknowledgment They are: 

e%Mu 

Change display attributes of message text. 

Display key label for logical key. 

Beep the terminal. 

Use a carriage return at this position in the error message text, and display 
the message in a pop-up window. 

Display the error message in a pop-up window, rather than on the status 
line. 

Specify that user must press message-acknowledgment key to clear error 
message. 

Permit any keypress to serve as both error acknowledgment and data entry. 

Percent escapes must be enclosed in quote characters in a IPL statement. See the JAM 
Configuration Guide, section 3.5 "Embedding Attributes and Key Names in Messages" 
for a complete description of each percent escape. In particular, %A has a table of hexa
decimal values for setting display attributes and %K must be followed by a logical key 
mnemonic or hex value. 

JAM Release 5.03 20 Nov 92 Page 71 



JPLGulde 

EXAMPLE 
# Indicate that the entry to the field state is invalid. 
msg err_reset' :state is not a u.s. state' 

# Indicate that the current entry is being processed. 
# Note that d_msg overrides delayed write and immediately 
# flushes text to the screen. 
msg d_msg 'Processing :name' 
# Ask whether the user wants to quit the current screen. 
vars quit 
msg query 'Are you ready to quit?' quit 
~f quit 

return 0 

vars fieldl message 
cat fieldl -message" 
cat message -Quick brown fox· 

# This will display 'message' on the status line. 
msg emsg fieldl 
# 
#Th~s will also display 'message'. 
msg emsg ":fieldl" 
# 
#This will display 'fieldl'. 
msg emsg "fieldl" 
# 
#This will d~splay 'Quick brown fox'. 
msg emsg :fieldl 

# These messages use percent escapes. 
# Print message in red. 
msg emsg "%A004Stop now." 

msg emsg "The menu toggle is %KMTGL" 
msg query "Do you wish to continue? %B" 
msg emsg "Enter value.%NPress XMIT." 
msg qui_msg "%WInvalid password." 
msg err_reset "%MdPlease enter a positive value." 

Page 72 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

next 
skip to the next iteration of a loop 
.:::...... .... ..:: .:. : ...... : .. :; : : ... : .. : .... "" ; ;"~:".: .... ::: .. : .. :~.. ":..... .. ........ .. "" ; .. : ... : .. ",,; :: ..... : .... 

SYNOPSIS 
next 

DESCRIPTION 

This command is valid only within the body of a for or whi Ie loop. It causes the 
current iteration of the loop to end, and the next iteration to begin. When a next state
ment is executed, all the statements between the next statement and the end of the 
loop are skipped. Control returns to the step, which increments the loop's index. Nor
mal loop processing continues - test the condition, and execute the body of the loop if 
the condition is true. The next command applies only to the innermost enclosing loop. 

next resembles the continue statement in C. 

EXAMPLE 
# Process all the engineers in a list of people. 
vars k 
for k = 1 while job[k] 1= .- step 1 
{ 

if job[k] 1= -engineer-
next 

#process mailing label for engineers ... 
} 

SEE ALSO 

break, for, while 

JAM Release 5.03 20 Nov 92 Page 73 



JPL Guide 

parms 
declare parameters in a called JPL procedure 

SYNOPSIS 
pa rms variable 

pa rms variable ( size In bytes) 

\-a r s variable [number of occurrences] {( size In bytes) } ... 

parms variable [occurrence number] 

DESCRIPTION 

This command declares one or more parameters in a JPL procedure. Each argument 
which is passed by a jpl statement must have a parameter variable in the called func
tion, if the function is to use those arguments. 

Variables must be defined before they are used. When a variable is defined, storage is 
allocated for it. Sometimes it necessary to declare how a variable will be used. If a vari
able is to used as a parameter variable or a return variable it must be declared. 

A parms statement declares one or more variables as parameters. If any of the vari
ables has not been previously defmed, this statement will also allocate storage for the 
variable. If you change the size of an existing variable, this statement will redefme the 
variable. If you are using array occurrences as parameters, first define the array with a 
vars statement, then use variable with an occurrence number as a parameter. For ex
ample, 

vars x[3](lO) 
parms x[l] x[2] x[3] 

After making the definition and/or declaration, JAM assigns the value of the associated 
argument to the parameter. One to twenty parameters may be declared in a single 
parms statement. Use a blank space to separate two or more variables on the same line. 

If you declare more parameters than were actually passed, JAM will display an error 
message. (A j pI statement will pass up to twenty arguments.) If you declare fewer, the 
undeclared parameters will be inaccessible. 

You may create global parameters for all procedures in the module by including the 
parms statements in the wnamed procedure at the top of the module. It is an error to 
declare parameters in the first, unnamed procedure of a screen or public module. Re
member that JAM automatically passes arguments to field, group, and screen func
tions. (See section 3.4 on page 14, Calling JPL Procedures). Other global parameters 

Page 74 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

receive their values from the arguments named in the j p 1 statement that called the 
module. 

EXAMPLE 
Jpl calculate :subtotal :state 

proc calculate 
parms amt st 
It 
if st == 'CA' 

cat tax '0.0725' 
else if st == 'NY' 

cat tax '0.085' 
else 

cat tax '0.00' 
math total = arnt * (1 + tax) 

SEE ALSO 

vars, public 

JAM Release 5.03 20 Nov 92 Page 75 



JPLGulde 

proc 
mark the beginning of a JPL procedure 

SYNOPSIS 
proc procedure 

DESCRIPTION 

If your JPL module contains more than one procedure, you must begin the second and 
all subsequent procedures with a proc statement These named procedures are 
executed when called by the statement jpl procedure. 

procedure is a character stnng which should uniquely identify the JPL function. It may 
be any length and contain any keyboard character except a blank: space. When naming 
procedures in screen and public modules, be sure that the procedure names do not con
flict with one another or with the names of load, memory-resident, library, or file mod
ules that you are calling. 

A module's ftrst function is usually not named. When you call a file, load, memory-res
ident, or library module, JAM executes all the statements before the module's fust 
proc statement If you are calling any of these modules, the frrst procedure must be 
unnamed, or JAM will never execute the module. In fteld, screen, and public modules, 
the frrst unnamed procedure in the module is an auto function - that is, a function 
JAM executes without an explicit call. A field module's auto function is executed 
when JAM validates the fteld. If you name the frrst function, the module will not be 
executed. A screen module's auto function is executed when JAM opens the screen. If 
you name the function, the module has no auto function or global variables. The func
tion, however, may be called with a jpl statement while the screen is displayed on the 
top-level. A public module's auto function is executed when JAM executes the pub-
1 i c statement. If the frrst procedure is named, the module has no auto function or glob
al variables, but the procedure may be called with a jpl statement while the module is 
in memory. 

All variables deftned with vars (or parms) statements in a unnamed frrst procedure 
are global to the module. Variables defmed within a procedure are local to the proce
dure. A procedure may return values by making assignments to global variables or by 
using a return statement. Since a proc statement marks the end of one procedure, 
and the beginning of another, JPL procedures cannot be nested. proc statements are 
particularly useful in the screen module and in public modules. A screen module's pro
cedures are available when the screen is active (displayed on the top-level). A public 
module's procedures are available until you unload the module. 

Page 76 JAM Release 5.03 20 Nov 92 



EXAMPLE 
# This procedure is unnamed, 
# and it begins the module. 
vars x y 
cat x '100' 
cat y '500' 
# 
# This is the first named procedure. 
proc sum 
vars total 
math total = x + y 
msg emsg 'Total = :total' 

SEE ALSO 

jpl 

Chapter 7: Statements and JPL Commands 

JAM Release 5.03 20 Nov 92 Page 77 



JPLGUIde 

public 
read JPL modules into memory 

SYNOPSIS 
public module •.• 

DESCRIPTION 
This command reads the procedures contained in one or more JPL modules, compiles 
them if necessary, converts them to the internal data structure, and puts them in 
memory. It also executes the fIrst procedure if it IS unnamed. All procedures beginning 
with a proc statement are available throughout an application, or until you release the 
memory by listing module in an un load statement. module is either a file module, 
library module, memory-resident module or the value of a colon-expanded variable. 

A public statement in an application makes all the proc names in a file visible for 
calling. Until you unload the module, every named procedure in the module is a pos
sible entry point to the module. The name of the module, however, is an entry point to 
the file, memory-resident, or library module, not the public module. Calling module 
with the statement "jpl module" executes modu/~ unless module contains a proce
dure with the same name. 

JPL will not make a module public more than once. If module is already public, subse
quent public statements will be ignored. 

EXAMPLE 
# THIS IS A PROCEDURE IN A FILE MODULE NAMED 'ROUTINES' 
proc quit 
vars ans 
msg query -Are you ready to quit?- ans 
if ans 

return 1 
else 

return 0 

proc end 
msg emsg 'Thank you. Have a nice day.' 

B THIS IS A PROCEDURE AT THE TOP OF A SCREEN MODULE. 
vars codel code2 
cat codel '00090' 
cat code2 '77654' 
public routines 

These functions might be called by a control string on the screen. For example, XM:IT 
might have the following control string: 

XMIT A (O=&nextscreeni l=Ajpl end)jpl quit 

Page 78 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

SEE ALSO 
jpl, proc, load 

JAM Release 5.03 20 Nov 92 Page 79 



JPL GUide 

return 
exit from a JPL procedure 
••• -.: '": :.: ...... : : •• :..... -: ..... : ...... ~ ••• : _ .... ~.: .. :~~.::.- .::::::"': .. ,/' •• -: ~ •• : :-... " ~.: ... JO.o ....... : :- .. :. '-,,- : .... '":: ........ : .. ~ 

SYNOPSIS 
return {arg} 

DESCRIPTION 

This command causes a JPL procedure to exit Control is returned to the procedure that 
called it, if any, or to the JAM runtime system. 

arg is an integer value represented by an integer constant or variable. JPL returns the 
value to the calling procedure. If you do not supply 8rg, it returns the value O. 

Reaching the end of a JPL procedure or file causes an automatic return. Use the re
turn statement to exit before the end of a procedure, or to return a value other than 
zero. Return values are used in procedures executed as field functions, and in control 
string functions with target lists, and in JPL procedures with declared retvars. 

EXAMPLE 
# Call procedure checknum to evaluate value of a field called 
# num. Based on its value return an integer that will 
# determine the next procedure to be called. 
# 
retvar r 
jpl checknum 
if r == 1 

jpl lownum-process 
else if r == 2 

jpl midnum-process 
else 

jpl hinum-process 

proc checknum 
if num < a 

return 1 
else if num < 500 

return 2 
else 

return 3 

SEE ALSO 

retvar 

Page 80 JAM Release 5.03 20 Nov 92 

" 



Chapter 7' Statements and JPL Commands 

retvar 
establish a variable to hold a return value 

SYNOPSIS 
rer.var variable 

DESCRIPTION 
retvar declares a return variable. variable must be defmed before it can be declared 
as a return variable. Fields and LDB entries are valid variables. JPL variables are also 
valid, after they are defined by a vars or parms statement. 

A procedure or function is called with one of the invocation statements (atch, call, 
j pI, or system). If you declare a retvar variable before calling the function or pro
cedure, the value returned by the function or procedure will be assigned to variable. For 
JAMJDBI users this also applies to sql and dbms statements. Once you declare it, 
variable serves as a return variable for the lifetime of the procedure or load module, or 
until it is redefined. Every invocation statement in the procedure or load module may 
use the same the return variable. If variable is omitted, JPL clears the value of the pre
vious retvar variable, and the variable no longer serve as a return variable for the rest 
of the procedure. ! i~: I) • n_~ 

EXAMPLE 
D Call procedure checknum to evaluate value of a field called 
D num. Based on its value return an integer that will 
D determine the next procedure to be called. 
retvar r 
Jpl checknum 
if r == 1 

jpl lownum-process 
else if r == 2 

jpl midnum-process 
else 

jpl hinum-process 

proc checknum 
if num < 0 

return 1 
else if num < 500 

return 2 
else 

return 3 

SEE ALSO 
atch, call, dbms, jpl, return, sql, system 

JAM Release 5.03 20 Nov 92 Page 81 



JPLGUIde 

shell 
execute a system call & wait for user acknowledgement 
.. :'" : -.... : .... :' ••• ~ '!- ...... :-..... ; •• : ..... '":.. ... :.. : ••••••• : .. :. '". '" .... : •• '" ... ~.:... .. :.. : .. : ...... - : ..... -. :. •••• .. .... -... :.. .... ... ~ ••• :-; .. :-. ••••• :: •••• :.. .. 

SYNOPSIS 
shell {command{arg •.. }} 

DESCRIPTION 

command is the name of the command to be executed by the operating system. arg is 
an unquoted string constant, quoted string constant, or colon-expanded variable. When 
executed, the screen is cleared, and any program output displayed. A "Please hit space 
bar" message is displayed when the command finishes execution. When the message is 
acknowledged, the JAM screen is refreshed and screen processing resumes. 

If you have established a return value variable with the retvar command, the exit 
status of the program will be available there. 

The JPL command system performs the same functions, but does not display the ac
knowledgement message. 

EXAMPLE 
# On a UNIX system, check a directory list~ng. 
shell Is -1 
#open a hIe ... 

SEE ALSO 

retvar, system 

Page 82 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

sql 
submit a native dialect sql statement to the DBMS 
: .: .. ::: .... : .. :. :.: ::",,:.: ::.: .:- ... :. :. ,,": : ....... .. .. "" ..... ": ... ~. ..: :: ••• : ...... oI' •• ~ ... ;... .. : ... ":. .. ~ .~ ~ .: ••••• :: ~ .I' 

SYNOPSIS 
sql sqlstmt 

DESCRIPTION 

The sql command is only available for JAMlDBi users. 

The sqlstmt is executed by the DBMS, after colon expansion. JAM performs no other 
translation of sqlstmt. J AMlDBi does not perform syntax checks on this argument 

EXAMPLE 
# Retrieve all of Acme's pest removal products that cost less 
# than -prlcey· dollars. 
sql select description, partnum, cost from prodtbl \ 

where supplier = -Acme- \ 
and type = -roadrunner- and cost < :pricey 

SEE ALSO 

dbms, JAMlDBi manual for your database. 

JAM Release 5.03 20 Nov 92 Page 83 



JPLGUIde 

system 
execute a system call 
. :::. .:: .. : "::"" : .. - : : : ,,-:" ... ":- : ". ....... or .......... .r ••••• ........... .. ....... :. ~: .. : ... ::" ... :.:- -: ....... : ... ~.:-: .: .. :.;. : :.:.: .. :" ". ": .:" ~ .. 

SYNOPSIS 
system program (arg ••• ) 

DESCRIPTION 

program is the name of the program to be executed by the operating system. arg is an 
unquoted stnng constant, quoted string constant, or colon--expanded variable. When 
executed, the screen is cleared, and any program output displayed. When it exits, the 
JAM screen is refreshed and screen processing resumes. 

If you have established a return value variable with the retvar command, the exit 
status of the program will be available there. 

If wish to have a delay before returning to JAM, for example if the user needs to ex
amine the program output before it is cleared, use the she 11 command instead. 

EXAMPLE 
# On a UNIX system, check whether a file exists. 
vars status 
retvar status 
system test -f :filename 
if !status 

return 
#process the file ... 

SEE ALSO 

retvar,shell 

Page 84 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

unload 
free the memory holding load and public modules 
.. : ..... : .... .. .. .: .......... : ..... ..:: : : ... :: .. : .... : .. :: ....... :... . ... :. .. .. .. .. : .. :-:... :-... 

SYNOPSIS 
unload module ..• 

DESCRIPTION 

This command releases the memory used to hold one or more JPL modules listed as 
arguments in a previous load or publ ic statement. If you call module after unload
ing it, JAM will read it in from disk (or the memory-resident list, or open library). If 
you call any procedures from module after unloading, JAM will display an error mes
sage. 

A module should not be unloaded while it is being executed. 

EXAMPLE 
* LOAD A FILE, CALL IT IN A LOOP, * AND UNLOAD IT AFTER EXITING THE LOOP 
load validname 
for i = 1 while i < 11 step 1 

jpl validname name[i] 
unload validname 

* THIS PROCEDURE MIGHT BE CALLED BY A SCREEN EXIT FUNCTION 
proc screen_exit 
unload fld_routines validname cales 

SEE ALSO 

jpl, load, public 

JAM Release 5.03 20 Nov 92 Page 85 



JPLGUIde 

vars 
define JPL variables 

.. .. .. .. 
•• .. .... :./11' •••• .... . -. . .......... - .. .. 

SYNOPSIS 
va r s varlable-name •.. 
var s varlable-name [number of occurrences 1 (size) 
va rs varlable-name [number of occurrences 1 
"ars varlable-name (size) ..• 

DESCRIPTION 

: .... : ....... - .. -.. : . . ............ - .. : .... . 

This command creates one or more JPL variables. Variables defined within a procedure 
are local to the procedure. Variables defined outside any procedures in a JPL module 
are available to all procedures in the same module. JPL executes the global vars state
ments in screen and public modules when the module is activated (by opening the 
screen or executing apublic statement). 

Variable names are any combination of letters, digits, and underscores that does not be
gin with a digit. The special characters dollar sign and period are also permitted in vari
able names created with vars or parms statements. The maximum length of a vari
able name is 31 characters. Names which are longer than 31 characters will be 
truncated. Use a blank space to separate two or more variable names in the statement 

To defme a variable as an array, place its number of occurrences in square brackets after 
its name. To specify the size of each occurrence, indicate, in parentheses, its number of 
characters and place it after any occurrence declaration. H the size is not declared, JPL 
will use the maximum variable size of 255 characters. 

The value of a newly declared variable is the null string (" "). 

EXAMPLE 
vars name(50) flag(l) 
vars address[3] (50) abbrevs[lO] 
vars i(5) 

SEE ALSO 

parms 

Page 86 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

while 
repeatedly execute a block while a condition is true 
: .. ":: .. : " .. :.:: ... : ........... .. .... ".. ........ .. 

SYNOPSIS 
whil e logical expression 
single statement 0 r block 

DESCRIPTION 

.. .. ............. ,," ...... . .. ...... : .. "." : .. " .. : : . . .. ................. .. 

The while statement repeatedly executes a single statement or block as long as the 
value of logical expression is true. JPL evaluates logical expression before each itera
tion of the loop. 

EXAMPLE 
vars k 
msg query MOO you want to do a widget?- k 
while k 
{ 

} 

jpl do_widget 
msg query \ 

'Do you want to do another widget?' k 

SEE ALSO 

{ } (block), break, for, next 

JAM Release 5.03 20 Nov 92 PageS7 



JPL GUide 

# 
begin a comment statement 
.. " ........ ....... • .... : .:.:"'. ~.: ••• :.:. .O' .. : ••• : : .. "' •••• :.:.. .... .. .... .. ""'. .. ~ .. . . .. -. ...................... -. ... . : .. : .. : .. : .. : ... -

SYNOPSIS 
itsn 

DESCRIPTION 

A pound sign begins a comment statement. The JPL compiler ignores all lines begin
ning with the comment symbol. Any number of leading and trailing blanks are per
mitted with this symbol. A comment statement may not be continued with a backslash; 
each comment line must begin with a pound sign. 

JPL also supports the comment symbol used in previous JAM releases, the colon (:). 
We recommend the use of #, however, since others reading your procedures may find 
the colon difficult to see, or confuse it with colon expansion. Use of the pound sign 
prevents these problems, and it is consistent with the comment notation in JAM files, 
like the video file. 

Comments cannot be embedded in JPL statements. JAM uses an embedded pound sign 
as a reference to a field number, and it uses an embedded colon as the colon expansion 
character. 

EXAMPLE 
I comment 
I comment 

Page 88 JAM Release 5.03 20 Nov 92 



Chapter 7: Statements and JPL Commands 

{ 
} 

mark beginning and end of statement block 
...... :" ..... ,,'" : ........ : ........ .. ::.: :.:-: .~ .. :: ~ : : -:;..:. ..... :.:::.:.... ~ : : ::.::: ":,,::.:::"::::.. .. : ,," ..... ~ .. "":::-: -.. :- ... ~ ,," -:"".: .. .. ... ... .. ............ .. .. ......... .... 

SYNOPSIS 
{ 
statement . .. 
} 

DESCRIPTION 

Curly braces mark the beginning and end of statement blocks. Neither can be on the 
same line as another JPL command. Therefore, each brace is on its own line, with a left 
brace marking the beginning of the block, and a right brace marking the end. (One ex
ception is the null statement.) 

Blocks may be nested. A right brace matches the closest previous left brace. 

EXAMPLE 
* This loop executes 2 jpl procedures 10 times. When the loop * ends, JPL displays the message -Done·-

* for i = 1 while i <= 10 step 1 
{ 

} 

jpl get_value :part[l] 
jpl do_routine :part[i] 

msg emsg -Done!-

JAM Release 5.03 20 Nov 92 Page 89 



JPL GUide 

{ } 
null statement 

SYNOPSIS 
{ } 

DESCRIPTION 

.. ... ..... : ........ : ...... : ............ . ... ... .... "'-. ... . .. :: .. :: .::---:'\0 .. ....: ...... :. : . 

A left and right brace on the same line indicate a null statement. You migbt, for exam
ple, use the efficient for statement to keep a count while testing a condition, but not 
need to execute any other statements. In sucb a case, you could use a null statement 
after the for statement. 

EXAMPLE 
D This procedure finds the posltion of the first blank in a 
D string. Using the index variable, i, as a substring 
D specifier, it examines each character in str's value. Once 
D it finds a blank, the loop ends and i equals the position of 
D the blank character. 
D 
for i = 1 while str(i, 1) != • • step 1 

{ } 

Page 90 JAM Release 5.03 20 Nov 92 



Chapter 8 

Using Library Functions and 
Application Code 
JPL provides access to the JAM library functions and to your own application code. 
This feature greatly increases JPL's capabilities. You may develop sophisticated final 
applications, writing little or no application code. This chapter briefly describes how to 
make these library and application functions available to JPL procedures. Our exam
ples use C syntax. If you are using another programming language, see the JAM Pro
grammer's Guide for specific information. 

8.1 

FUNCTION LIST 
If you wish to call JAM library functions, standard C functions, or your own C func
tions from a JPL procedure you must install the functions in a function list JAM has 
five function lists. In JPL you may call functions from three of these-the field, control 
string, and prototyped function lists. Use an at ch statement to execute a field function, 
or a call statement to execute a control string or prototyped function. The syntax of 
the function list is, 

/* list of field (entry/exit/validation) functions 
struct fnc_data ffuncs[] = 
{ 

{ Nfdummy', fdummy, 0, 0, 0, ° } 
} ; 
int fcount = sizeof (ffuncs) / sizeof (struct fnc_data); 

/* list of JAM control functions 
struct fnc_data cfuncs[] = 

JAM Release 5.03 20 Nov 92 

*/ 

*/ 

Page 91 



JPL GUide 

{ 
{ "cdummy", cdummy, 0, 0, 0, 0 } 

} i 

int ccount = slzeof (cfuncs) / sizeof (struct fnc_data) i 

/* list of prototyped functions 
struct fnc_data pfuncs[] = 

*/ 

{ 
{ Rpdummyn, pdummy, 0, 0, 0, 0 } 

} i 

int pcount = sizeof (pfuncs) / sizeof (struct fnc_data)i 

Using pfuncs as an example, the structure is defined: 

8.1.1 

"pdummy" The name used to call the function from your applica
tion; may be the same as the address of the function. 

In addition to the function name, you may also list a pro
totype. The valid prototypes are discussed below. If you 
use any other prototype, JAM will display an error mes
sage for the faulty prototype. 

pdummy address of the function (the name used to call the ftmc
tion from application code). 

o , 0 , 0 , 0 language: 0 indicates C 
intncuse: installation parameter 
appCuse: parameter for your use 
reserved: must be 0 

Prototypes 
You may prototype, that is, specify the data types of a function's arguments. The proto
type is enclosed in parentheses. It immediately follows the function name, and is inside 
the quotation marks. JAM permits the void prototype or one of the 21 integer and string 
prototypes. The prototypes include the most likely, and the most useful combination of 
arguments that can be managed by JAM. Only these prototypes are permitted. They 
are: 

() 

Page 92 

This is the "void" prototype. Use it when you want to 
install in the prototyped list a function which has no ar
guments. 

JAM Release 5.03 20 Nov 92 

\ 

\ 



Chapter 8 USing Library Functions and Application Code 

( i ) 
(5 ) 

( ~ , i) 
(5, i) 
(i, 5) 
(5, 5) 

(i, i, i) 
(5, i, i) 
(i, 5, i) 
(5, 5, i) 
( i , i, 5) 
(5, i, 5) 
(i, 5, 5) 
(5, 5, s) 

(i, i, i, i) 
(s, i, i, i) 
(S, 5, i, i) 
(S, 5, S, i) 
(S, 5, S, 5) 

(i, i, i, i, i) 

(i, i, i, i, 1., i) 

In addition to i and s, str and int are also permitted. We recommend that you use 
the abbreviations, however, to save space. 

You may prototype any function in the function list Keep in mind, however, that when 
JAM executes a call to a field function, it automatically passes four arguments (field 
number, contents, occurrence, flags) to the field function. If you prototype arguments in 
a field function, the customary arguments will not be passed, although they may be ob
tained via the library routine sm_inquire. Refer to the JAM Programmer's Guide. 

Control string functions are called with a caret JAM strips off the caret and passes the 
entire character string (the function name and any following text) as a single argument. 
If you have prototyped the function, JAM parses the string into space-separated argu
ments. To pass an argument which contains blank spaces, enclose the argument in 
quotes. 

While you may give a prototype to any function in the function list, installing the func
tion in the prototyped list has a distinct advantage - you may call a function installed 
in pfuncs from anywhere in your application. Depending on where the call is made, 

JAM Release 5.03 20 Nov 92 Page 93 



JPLGUIde 

JAl\tI fust searches the appropriate structure (sfuncs, gfuncs, ffuncs, or 
cfuncs) for the functlon. If it does not fmd the function, it searches pfuncs. You 
may also install an unprototyped functlon in pfuncs, and therefore take advantage of 
the increased scope without overriding default arguments. 

A sample pfuncs with lDstalled functions might appear as follows: 
struct fnc_data pfuncs[] = 
{ 

} ; 

("n-putf1eld(s,s)", sm_n-putfield, 0, 0, 0, O}, 
{"getcurno", sm_getcurno, 0, 0, 0, O} 

The last function has no prototype. If a function in pfuncs has no prototype, JAM 
treats the function like a control string function. When JAM executes it, JAM passes it 
a copy of the string that invoked the function. This only works on the prototyped (and 
control) function list. If a function has the void prototype, (), then JAM does not pass 
any arguments to the function. 

The Programmer's Guide explains installing functions in the function list with 
sm_install. 

Hexadecimal, Octal and Binary Arguments in 
Prototyped Functions 
Nonnally, hexadecimal, octal and binary nmnbers cannot be used in JPL. But when a 
JPL procedure calls a proto typed function that takes an integer argument, a string to 
integer conversion takes place. This conversion permits the use of hexadecimal, octal, 
or binary values as arguments. The format for these values is as follows: 

Base Format 

Binary Obnnnn 

Octal Onnnn 

Hexadecimal Oxnnnn 

For example, a prototyped function can be called from JPL with the syntax: 
call sm_keyoption OxlOa 2 Oxl09 

8.2 

LIBRARY FUNCTIONS 
The Programmer's Guide describes the JAM library functions. JAM provides routines 
for initialization, screen display, data entry, keyboard entry, cursor control, data access, 

Page 94 JAM Release 5.03 20 Nov 92 



Chapter 8' USing Library Functions and Application Code 

mass storage and retrieval, and message display, as well as routines to change the op
eration of other functions. 

For example, to call the library function sm_clear_array, add the following to the 
list of prototyped functions, and recompile the function list: 

In the Programmer's Guide, the synopsis for the function sm_clear_array lists one 
argument, field_number, with the type into To pass the name of the array, use the 
function sm_n_clear_array, with a string prototype. 

In a JPL procedure, you could clear an array named total with this statement 

If you choose, you may call a function by a name other than the one used in the C pro
gram to reference the function (the function address). For example, with the installation 
of 

you would call the library function with the following statement, 
call clr_array total. 

Arguments to a prototyped function may be enclosed in parentheses. For example, 

is equivalent to 

8.2.1 

Acessing Key Mnemonics 
Values defined in C header files are not accessible from JPL, but several JAM library 
routines require these values as arguments. The library routine sm_key _integer re
turns the integer value of a key mnemonic defmed in smkeys . h. Rather than looking 
a value up manually, you can prototype sm_key _integer and call it from IPL to 
access key values. An example appears below. 

vars ret key! key2 
retvar ret 
call sm_key_integer -NL· 
cat key! ret 
call sm_key_integer -TAB
cat key2 ret 
call sm_keyoption :keyl 2 :key2 

JAM Release 5.03 20 Nov 92 Page 95 



JPLGUIde 

8.3 

HOOK FUNCTIONS 
Applicanon code may also be called from JPL procedures. Your code must be compiled 
and linked accordmg to the directions in the Programmer's Guide. The name of the 
function should then be installed with the utility sm_install, as It is for library func
tions. The program is called with the call verb and the name defmed in the hst of 
prototyped or control string functions. Again, the prototype should correspond to the 
arguments of the function. 

8.4 

BUILT-IN FUNCTIONS 
The JAM built-in functions described in the Programmer's Guide may be called from 
IPL. For example, to simulate a keyboard entry of the string "JYACC", call the function 
jm_keys. No installation is necessary. 

call jm_keys JYACC 

Some built-in functions, such as jm_exit or jm_90form, are control flow func
tions, and you should avoid using them in some JPL procedures. In particular, we 
strongly discourage the use of jm_exit in screen and field JPL modules. The execu
tion of this function often destroys data structures needed to complete the JPL proce
dure, and may cause the program to crash. The use of a target list with a control sUing 
function is the safest and most recommended way to alter control flow in an applica
tion. 

Page 96 JAM Release 5.03 20 Nov 92 



Chapter 9 

Performance Considerations 
This chapter provides some performance considerations for JPL. We discuss methods 
for reducing or eliminating runtime JPL compilation. In addition, we give some sugges
tions for writing more efficient statements. 

9.1 

JPL COMPILATION 
The text you enter in a fIle with a text editor, or in a JPL procedure window with the 
Screen Editor, creates the ASCn version of your JPL module. Before using the module, 
J AM must compile and convert it. 

The compilation changes JPL keywords to tokens, partitions the module into proce
dures, and performs elementary syntax checks. During the syntax check, JAM will dis
play error messages for invalid command words, or missing arguments. Since JAM 
performs colon preprocessing at runtime, a module is never fully compiled until it is 
executed. Compilation occurs automatically when you save a field or screen module 
(by hitting XMIT). You may use a separate utility, jp12bin, to compile file modules. 
JAM, of course, processes a JPL module more efficiently if it is pnH:ompiled. You 
must compile a module with this utility before placing it in a library or memory- resi
dent list 

To accommodate screens created with previous versions of JAM, JAM does not as
sume that a JPL module is compiled. When it initializes the module, JAM will auto
matically invoke the compiler for an uncompiled module. Because of differences in 
binary and text fIles on some platforms, JAM opens an uncompiled JPL file module 
twice - the fust time in binary mode, the second time in text mode. JAM does not save 
the compiled version of a JPL fIle module. All subsequent calls to the module will re
quire recompilation. 

JAM Release 5.03 20 Nov 92 Page 97 



JPLGulde 

From the compiled module, JAM constructs internal data structures. We call this step 
"conversion." This is a fairly simple task in the initialIzation process, but it does require 
one memory allocation per JPL statement. 
The load command (or the library function sIn_jplload) compiles a module - if 
necessary, converts its, and keeps it in memory for later use. The public command (or 
the library function SIn_j plpubl ic) Similarly comptles, if necessary, and converts a 
module, and holds it in memory. public, however, makes every named procedure an 
entry point to the module. A load module has only one entry point, the frrst, unnamed 
procedure which is called by the module name. Therefore, all calls to a load module use 
the module name, and all calls to a public module use procedure names. See the refer
ence section for more information. 

9.1.1 

Using jp12bin 
The utility jp12bin converts the ASCII version of a JPL file to a binary one. The 
name of the binary ftle will be the same as the file module with a . bin extension. The 
utility is used at the system level with this command, 

jp12bin {-pv} {-ee1ltenslon} filename ... 

where 
filename is the name of a JPL me module. 

-p puts the binary me in the same directory as filename. 

-v lists the name of each file as it is processed. 

-e appends extension rather than bin to the binary file 
name. 

See the JAM Utilities Guide for a complete description. 

9.1.2 

Adding JPL to a Library 
Once you convert a file with jp12bin, you can add it to a library with the utility 
formlib. formlib is explained in the Utilities Guide. 

9.1.3 

Making JPL Memory-resident 
To make a JPL module memory-resident, compile the me module with the utility 
j p12bin. Convert the binary version to source language with the appropriate utility 

Page 98 JAM Release 5.03 20 Nov 92 

. , 



Chapter 9: Performance Considerations 

- bin2c, for example. Add the names to the memory-resident list with sm_for
mll.st. Link the JPL me with the application executable and recompile the execut
able. See the JAlVI Programmer's Guide for an explanation of sm_formlist. 

9.2 

MORE EFFICIENT STATEMENTS 
You may make performance improvements in JPL by writing more efficient statements. 

9.2.1 

In itializations 
You may minimize character and numeric conversions in initialization statements. The 
cat command is more efficient than the math command. 

For example, 

cat counter '1' 

rather than 

math counter = 1 

9.2.2 

Loops 
Similarly, the increment in a for loop is more efficient than a math increment in a 
while loop. 

for i = 1 while i < 10 step 1 
{ 

} 

while i < 10 
{ 

math i = i + 1 
} 

JAM Release 5.03 20 Nov 92 Page 99 



JPLGulde 

9.2.3 

Colon Usage 
Your use of colons in JPL procedures also affects performance. Before the JPL inter
preter executes a JPL statement, the entire module is compiled and converted. Then, 
statement by statement, the colon preprocessor replaces colon-expanded variables with 
values, and passes the statement to the JPL mterpreter which evaluates expressions and/ 
or arguments and executes the statement The colon preprocessor works by scanning a 
statement from nght to left, looking for colons. When it encounters a colon, it cbecks 
for a left parenthesis before the colon. If there is none, it accumulates characters from 
left to right after the colon, stopping once it reaches a blank space or a character that 
cannot be expanded (like a quote character). This is the variable whicb the preprocessor 
will replace with its value. If there is a left parenthesis immediately before the colon, 
the preprocessor stops accumulating characters when it reaches a right parenthesis. If 
there is an occurrence number and/or substring specifier immediately after the variable 
name (no blank space or parentheses) the colon preprocessor will replace the specified 
occurrence and/or substring. 

There are three ways to prevent colon expansion in JPL. Precedmg a colon by another 
colon or by a backslasb (\) prevents colon expansion. The other way is to place a space 
after the colon. 

msg emsg "::tax· 
msg emsg "\:tax· 
msg emsg -: tax· 

The last example is the most efficient way of preventing colon expansion, since JAM 
will not need to copy the argument to a buffer to remove the : or the \. 

The messages will appear like this 

: tax 

:tax 

: tax 

You can use parentheses to simplify writing references that use colon expansion. 
msg emsg : (city) [iJ 

Eliminating unnecessary parentheses reduces processing. 

Page 100 JAM Release 5.03 20 Nov 92 



Symbols 
{ begin a statement block, 89 

{ }, null statement, 90 

} end a statement block, 89 

#, comment in JPL statement, 88 

@date, 41, 68 

@sum,68 

A 
Array, sum of occurrences, 68 

Assignment in JPL 
cat, 54 
math,68 

atch,49 

B 
Bitwise operators, 42, 42 

break,51 

BuIlt-in control functions, 96 

c 
Call, JPL procedures, 14-16,63 

call, 52 

cat, 54 

Colon preprocessing, 29-34 
efficiency, 100 
substring specifier, 31-32 

INDEX 
Comments, JPL, 88 

Concatenate, 54 

Control stnng 
call,52 
JPL,18 

D 
Data types, 35 

dbms, 56 

Delayed wnte, flush, 61 

E 
else, 57 

See also If 

else If, 58 
See also If 

Expressions, 43-44 

F 
Field function 

atch,49 
JPL,19-20 

Field module, 8 

Flle module, 9 

flush,61 

for, 59 
See also whlle 

formlib,98 

G 
Group, JPL access, 27-28 

JAM Release 5.03 20 Nov 92 Page 101 



JPLGuide 

Group functIon, JPL, 20 

H 
Hook function, JPL, 96 

I 
if,62 

See also else; else if 

J 
JAMlDBi 

dbms, 56 
sqt,83 

JPL 
See also Module; Procedure, JPL 
commands, 45-90 

summary, 46-48 
compilation, 7, 97-99 
constants, 36-38 
conversion, 7 
entry point, 7 
load, 10,66 
module. See Module 
named procedure, 7 
procedures window, 12 

field module, 8 
screen module, 8-9 

public, 9-10, 78 
text file, 12 
unload,85 
unnamed procedure, 7 

jpl,63 

jp12bin,98 

length,65 

Library 

L 

installing JPL modules, 98 
hbrary module, 10 

Library routines, JPL, 21, 91, 94-95 

load, 10, 15, 66 

Loop 
break,51 
if,62 
indexed,59 

M 
math,68 

Memory, resident, JPL, 11, 98 

Module, 8-11 
See alsoJPL 
creating, 11-12 
field module, 8 
flle module, 9 
library module, 10 
load, 10, 15, 66 

unload,85 
memory-l'esident module, 11 
public,9,15,78 

unload,85 
screen module, 8 
summary of modules, 16 

msg,70 

N 
next, 73 

See also for; while 

o 
Operating system, command, JPL, 82, 84 

Page 102 JAM Release 5.03 20 Nov 92 



Operators, jPL, 38-43 
bitwise, 42-43 
date and twe, 41 
substring specIfier, 40-41 
summary of operators, 38 

p 
panns, 74 

Performance considerations, jPL, 97-100 

proc, 76 

Procedure, JPL, 13, 18 
See also JPL 
calling, 14-16 
calling from application code, 21 
calling from control string, 18 
calhng from field function, 19-20 
calling from group function, 20 
calling from JPL module, 18-19 
calling from screen function, 21 
exit, 80 
named procedure, 7 
proc statement, 76 
unnamed procedme, 7 

Prototyped function, 92-94 
executing with call, 52 

public, 9-10, 15, 16, 78 

return, 80 

retvar,81 

R 

s 
Scope, 24-25, 25 

Screen functIOn, jPL, 21 

Screen module, 8 

shell, JPL, 82 

sql,83 

Statements, JPL, 45-90 
begin and end, 89 
null,90 

String,length,65 

Substrmg specifier, 31-32, 40-41 

system, 84 

T 
Text file, JPL, flle module, 9 

u 
unload,85 

v 
Variables, JPL, 23-28 

defmition, 23 
initiahzation, 99 
parms,74 
retvar, 81 
scope and lifetime, 24-25, 25 
vars, 86 

vars, 86 

w 
while, 87 

See also for; next 

JAM Release 5.03 20 Nov 92 

Index 

Page 103 



Programmer's 
Guide 

© 1992 JYACC, Inc. 



TABLE OF CONTENTS 

Chapter 1 
Introduction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 

1.1 Application Executable ........................................ 2 
1.1.1 Applications Using the JAM Executive ................... 2 
1.1.2 Applications Using a Custom Executive .................. 3 

1.2 Authoring Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.3 Modifying Provided Source Code, jmain.c and jxmain.c 7 

Chapter 2 
Hook Functions ..................................... 11 

2.1 Preparation and Installation ..........................•.......... 13 
2.1.1 Types of Hook Functions .............................. 13 
2.1.2 Provided Source Code - funclislc ...................... 16 
2.1.3 Preparing Functions for Installation ...................... 16 
2.1.4 Installing Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.2 Writing Hook Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
2.2.1 Field Functions ...................................... 19 

Field Function Invocation . . . . . . • . . . . . . . . . • . . . . . . . . . . . . . 19 
Field Function Arguments ............................. 20 
Field Function Return Codes ........•.................. 22 
Example Field Function List . . . . • . . • . . . . . . . . . . . . . . . . . . • . 22 
Example Default Field Function . . . . . . . . . . . . . . . . . . . . . . . • . 24 

2.2.2 SaeeD Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Saeen Function Invocation ......•..•.................• 27 
Saeen Function Arguments ......•..................... 27 
Screen Function Return Codes .....•...........•........ 28 
Example Default Saeen Function .•..................... 28 

2.2.3 Conttol Functions .................................... 32 
Conttol Function Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Conttol Function Arguments ........•................•. 33 
Conttol Function Return Codes ......................... 33 
Example Control Function List . . . • . . . . . . . . . . . . . . . . . . . . . . 33 
Advanced Control Function Example . . . . . . . • . . . . . . . . . . . . . 35 

JAM Release 5.03 20 Nov 92 Pagei 



JAM Programmer's Guide 

Pageii 

2.2.4 Key Change Functions ................................ 43 
Key Change Function Invocation ............... . . . . . . . . . 43 
Key Change Function Arguments . . . . . . . . . . . . . . . . . . . . . . . . 43 
Key Change Function Return Codes. . . . . . . . . . . . . . . . . . . . . . 43 
Example Key Change Function ......................... 43 

2.2.5 Group Functions ..................................... 46 
Group Function Invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Group Function Arguments ............................ 47 
Group Function Return Codes .......................... 47 
Example Default Group Function. . . . . . . . . . . . . . . . . . . . . . . . 47 

2.2.6 Asynchronous Functions .. .. .. . .. .. . . . .. .. . .. . .. . . . .. .. 50 
Asynchronous Function Invocation ...................... 50 
Asynchronous Function Arguments ...................... 51 
Asynchronous Function Return Codes ... . . . . . . . . . . . . . . . . . 51 
Example Asynchronous Function . . . . . . . . . . . . . . . . . . . . . . . . 51 

2.2.7 Insert Toggle Functions.. . . . .. . .. .. .. . .. .. . .. . . .. . . .. .. 52 
Insert Toggle Function Invocation ....................... 53 
Insert Toggle Function Arguments ....................... 53 
Insert Toggle Function Return Codes ............ . . . . . . . . . 53 
Example Insert Toggle Function . . .. . . . . .. .. .. .. .. .. . . .. . 53 

2.2.8 Check Digit Functions ................................ 54 
Check Digit FWlction Invocation ........................ 54 
Check Digit Function Arguments .... .. . .. .. .. .. . .. . . .. . . 54 
Check Digit Function Return Codes . . . . . . . . . . . . . . . . . . . . . . 55 

2.2.9 Initialization and Reset Functions. . . . . . . . . • . . . . . . . . . . . . . . 55 
Initialization and Reset Function Invocation •.............. 55 
Initialization and Reset Function Arguments ............... 56 
Initialization and Reset Function Return Codes ............. 56 
Example Initialization and Reset Functions ................ 56 

2.2.10 Recording and Playing Back Keystrokes .................. 58 
RecordlPlayback Function Invocation .................... 58 
RecordlPlayback Function Arguments ... . . . . . . . . . . . . . . . . . 59 
RecordIPlayback Function Retmn Codes . . . . . . . . . . . . . . . . . . 59 
Example RecordIPlayback System ... . . . . . . . . . . . . . . . . . . . . 59 

2.2.11 Status Line FWlctions ................................. 62 
Status Line Function Invocation . . . . . . . . . . . . . . . . . . . . . . . . . 62 
Status Line Function Arguments. . . . . . . . . . . . . . . . . . . . . . . . . 62 
Status Line Function Return Codes ...................... 62 
Example Status Line Function .......................... 63 

JAM Release 5.03 20 Nov 92 



Table of Contents 

2.3 

2.4 

2.2.12 Video Processing Functions ........................... . 
Video Processing Function Invocation ................... . 
Video Processing Function Arguments ................... . 
Video Processing Function Return Codes ................. . 
Other Hook Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Prototyped Functions ......................................... . 
2.3.1 Preparing Prototyped Functions for Installation ............ . 
2.3.2 Installing Prototyped Functions ........................ . 
2.3.3 Prototyped Function Invocation ........................ . 
2.3.4 PROTO_FUNC List Example ......................... . 

Coding Strategy, Rules and Pitfalls .............................. . 
2.4.1 Prototyped Function Limitations ....................... . 

2.4.2 
2.4.3 
2.4.4 

Accessing the Standard Arguments to Prototyped Field and 
Group Functions ..................................... . 
Accessing the Standard Arguments to Prototyped Screen and 

Control Flmctions .................................... . 
Passing Information to a Non-Prototyped Function ......... . 
Displaying Screens ................................. .. 
Recursion ......................................... . 
Calling C Routines from JPL 

Chapter 3 

64 
64 
64 
66 
66 
66 
67 
68 
69 
70 
78 
78 

78 

79 
80 
81 
82 
82 

Local Data. Block .................................... 83 
3 .1 LD B Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 How JAM uses the LDB ...................................... . 
3.3 LD B Access ................................................ . 

Chapter 4 

83 
83 
84 

Built-in Control Functions ............................ 85 
jm_exit 
jm~otop 
jm~oform 
jm_keys 
jm_DlDutogl 
jm_system 
jm_winsize 
jpl 

ChapterS 

end processing and leave the current screen .................. . 
return. to application's top-level form ....................... . 
prompt for and display an arbitrary form .................... . 
simulate keyboard input ........... . . . . . . . . . . . . . . . . . . . . . .. 
switch between menu and data entry mode on dual-purpose screen 
prompt for and execute an operating system command ......... . 
allow end-user to interactively move and resize a window ...... . 
invoke a JPL procedure ................................. . 

86 
87 
88 
89 
90 
91 
92 
93 

Keyboard Input ..................................... 95 
5.1 
5.2 
5.3 

Logica1. Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 
Key Tran.slation ............................................ .. 
Key Routing ............................................... .. 

95 
96 
97 

JAM Release 5.03 20 Nov 92 Page iii 



JAM Programmer's GUide 

Chapter 6 
Terminal Output Processing ..... . . . • . . . . . . . . . . . • . . . . .. 99 

6.1 Graphics Characters and Alternate Character Sets . . . . . . . . . . . . . . . . . . . . 99 
6.2 The Status Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 

Chapter 7 
Writing International (8 bit) Applications •.•••••..•.•..• 103 

7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103 
7.1.1 General Overview ................... . . . . . . . . . . . . . . . .. 103 

7.2 Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 ()4. 
7.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 ()4. 
7.2.2 8 Bit Character Data. . ... .. .. .. . .. . . . .. . . ... . ... . . .. .. 1()4. 
7.2.3 Date and Ttme Fields ................................. 105 
7.2.4 Currency Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 
7.2.5 DecimalSymbols .................................... 111 
7.2.6 Character Filters ..................................... 111 
7.2.7 Status and Error Messages ............................. 112 
7.2.8 Screens in the Utilities ................................ 112 
7.2.9 Screens in Application Programs ........................ 113 
7.2.10 Menu Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 
7.2.11 lstform, lstdd, and jammap ............................. 113 
7.2.12 Range Checks ....................................... 113 
7.2.13 Calculations Using @SUM and @DATE . . . . . . . . . . . . . . . . .. 114 
7.2.14 sm_dblval and sm_dtofield ............................. 114 
7.2.15 sm_is_yes and sm_query_msg .......................... 114 
7.2.16 Batch Utilities .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115 

Chapter 8 
Writing Portable Applications • • • • • • • • • • • • • • • • • • • • • • • • • 117 

8.1 Terminal Dependencies ........................................ 117 
8.2 Items in smma.cb.h .•.....................•.........•.......... 118 

Chapter 9 
Writing Efficient Applications . . . . . . . . . . . . . . . . . . . . . . . . . 119 

9.1 Memory-resident Screens ...................................... 119 
9.2 Memory-resident COnfiguration Files ............................. 120 
9.3 Memory-Resident Keysets . . .. . . . .. . ..... . ... .. .. . . ... .. .. . . . ... 121 
9.4 Message FIle Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121 

Pageiv JAM Release 5.03 20 Nov 92 



Table of Contents 

9.5 Memory-Resident JPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
9.6 JPL vs. Complied Languages. .. . . . .. . . . .. . . . . . . . .. . . . .. . . .. . . ... 122 
9.7 Avoiding Unnecessary Screen Output ............................. 122 
9.8 Stub Functions ............................................... 122 

Chapter 10 
Alternative Scrolling .....••....••.•...•••.......••.•• 125 

10.1 Using Alternative Scrolling ..................................... 125 
10.2 Writing A Scroll Driver ........................................ 126 

Chapter 11 
Block Mode . • . . . . . . . • . . . • • . . . . . • • . . • • • • . • • • • . . . . . • •• 131 

11.1 Using Block Mode ............................................ 131 
11.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 
11.1.2 Authoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
11.1.3 Selecting Block Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
11.1.4 Differences Between Block Mode And Interactive Mode ..... 133 

Screens ............................................ 133 
Menus ............................................. 133 
Cbara.cter Validation .................................. 134 
Field Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
Saeen Validation .•....•....•....•....••••.......•••. 135 
Right Justified Fields ................................. 135 
Field Entry Function, Automatic Help, Status Text, etc. ...... 135 
Currency Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135 
Shifting Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 136 
Scrolling Fields . • . . . . . . . . . . . • . . . . . . • . . . . . . . . . . . . . . . . . 136 
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
Insert Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
Non-Display Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
System Calls ........................................ 137 
Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Help and Item Selection ............................... 137 
Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

11.2 Writing A Block Mode Driver ................... . . . . . . . . . . . . . . . . 137 
11.2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
11.2.2 Application Program Support. . . . . . . . . . . . . . . . . . . . . . . . . . . 138 
11.2.3 Block Terminal Driver ................................ 138 

JAM Release 5.03 20 Nov 92 Page v 



JAM Programmer's GUide 

11.2.4 Dnver Request Types ................................. 140 
11.2.5 Driver Support Routines.. . . ... .. .. . . . .. .. . .. . . . . . . . ... 163 

Chapter 12 
Library Function Overview •.••.•..•..•............... 165 

12.1 InitiahzauonlReset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 166 
12.2 Screen and Viewport Control .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167 
12.3 Display Terminal I/O .......................................... 167 
12.4 Field/Array Data Access ....................................... 168 
12.5 Field/Array Attribute Access.. . . . .. . . .. .. . .. . . . .. .. . .. . . .. . . . ... 170 
12.6 Group Access .....•.......................................... 171 
12.7 Local Data Block Access. . . .. .. . .. . . .. . . . .. . . . .. . . . .. . . .. . . .. .. 171 
12.8 Cursor Control ............................................... 172 
12.9 Message Display. .. . . .. . . . .. . . .. .. . .. . . . .. . . .. . .. . .. . . .. . . .. .. 172 
12.10 Scrolling and Shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 
12.11 Mass Storage and Retrieval ..................................... 174 
12.12 Validation ................................................... 174 
12.13 GlobalDataandChanginglAM'sBehavior ........................ 174 
12.14 Soft Keys and Keysets ......................................... 175 
12.15 lAMExecutiveControl ........................................ 176 
12.16 Block Mode Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 
12.17 Miscell8Ileous................................................ 176 

Chapter 13 
Function Reference • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

achg change the display attribute of an occurrence within a scrolling 

allget 
amcformat 
ascroll 
backtab 
base_fldno 
bel 
bitop 
bkrect 
blkdrvr 
blkinit 
blkreset 
c_keyset 

Page VI 

army ................................................ . 
load screen from the LDB ......•.......................... 
write data to a field, applying currency editing ............... . 
scroll to a given occurrence .............................. . 
backtab to the start of the last unprotected field . . . . . . . . . . . . . . . . 
get the field number of the ftrSt element of an army ........... . 
beep! ................................................ . 
manipulate validation and data editing bits .................. . 
set background color of rectangle .......................... . 
install block mode driver ................................ . 
initialize (and tum on) block mode terminal ................. . 
reset (and tum oft) block mode terminal .................... . 
close a keyset ............................•............. 

JAM Release 5.03 20 Nov 92 

177 

178 
181 
182 
183 
185 
187 
188 
189 
192 
194 
195 
196 
197 



Table of Contents 

c_off 
c_on 
c_vis 
calc 
cancel 
chg...attr 
ckdigit 
cl_all_mdts 

turn the cursor off ...................................... . 
turn the cursor on ...................................... . 
turn cursor position display on or off ....................... . 
execute a math edit style expression ........................ . 
reset the display and exit ................................. . 
change the display attribute of a field ....................... . 
validate check digit ..................................... . 
clear all MDT bits ...................................... . 

cCunprot clear all unprotected fields ............................... . 
clear_array clear all data in an array ................................. . 
close_ windowclose current window ................................... . 
copyarray copy the contents of one array to another .................... . 
d_msg...line display a message on the status lme ........................ . 
dblval get the value of a field as a real number ..................... . 
dd_able tum LDB write-through on or off ......................... . 
deselect deselect a checklist occurrence ............................ . 
dicname 
disp_off 
dlength 
do_region 
do_uinstalls 
doccor 
dtofield 
e_ 
ediCptr 
emsg 

err_reset 
fi_open 
fi_path 
finquire 
fldno 
flush 
form 
formlist 
fptr 
ftog 
ftype 
tval 

set data dictionary name ..................... . . . . . . . . . . . . . 
get displacement of cursor from start of field ................. . 
get the length of a field's contents ......................... . 
rewrite part or all of a screen line . . .. . . . . . . . .. . . . .. . . . . . . . . . 
install an application's hook functions ...................... . 
delete ()Ccurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
write a real number to a field ............................. . 
variants that take a field name and element number ............ . 
get special edit string ................................... . 
display an error message and reset the status line without turning on 
me cursor ........................................... . . 

display an error message and reset the status line ............. . 
find a file and open it in binary read only mode ............... . 
return the full path name of a file .......................... . 
obtain information about a field .....•...................... 
get the field number of an array element or occurrence ......... . 
flush delayed writes to the display ......................... . 
display a screen as a form ................................ . 
update list of memory-resident files ........................ . 
get the content of a field ................................. . 
convert field references to group references .................. . 
get the data type and precision of a field .................... . 
force field validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

198 
199 
200 
201 
202 
203 
206 
207 
208 
209 
210 
212 
213 
216 
217 
218 
219 
220 
221 
222 
224 
225 
226 
227 
228 

231 
234 
236 
237 
238 
240 
242 
243 
245 
247 
248 
249 
251 

JAM Release 5.03 20 Nov 92 Page VII 



JAM Programmer's GUide 

getcurno get current field number ................................. . 253 
254 
256 
257 
260 
262 
263 
264 
265 
266 
267 
268 
269 
270 
272 
273 
276 
277 
278 
280 
281 
282 
283 

getfield copy the contents of a field ............................... . 
getjctrl get control string associated with a key ..................... . 
getkey get logical value of the key hit ............................ . 
gofield move the cursor into a field .............................. . 
gp_inquire obtain information about a group .......................... . 
gtof convert a group name and index mto a field number and occurrence 
gval force group valtdauon ................................... . 
gwrap get the contents of a wordwrap array ....................... . 
hlp_by _name display help window .................................... . 
home home the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
i_ 
ininames 
initcrt 
input 
inquire 
install 
intval 
ioccur 
is_no 
is_yes 
isabort 
iset 
isselected 

issv 
itofield 
jclose 
jform 
jplca11 
jpUoad 
jplpublic 
jplunload 
jtop 
jwindow 
key_integer 
keyfilter 
keyhit 
keyinit 

Page viii 

variants that take a field name and occurrence number ......... . 
record names of initial data files for local data block ........... . 
initialize the display and JAM data structures ................ . 
open the keyboard for data entry and menu selection .......... . 
obtain value of a global integer variable ..................... . 
install application functions .............................. . 
get the integer value of a field ............................ . 
insert blank occurrences into an array ...................... . 
test field for no ........................................ . 
test field for yes ........................................ . 
test and set the abort control flag .......................... . 
change value of global integer variable ..................... . 
determine whether a radio button or checklist occurrence has been 
select:ed ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 285 
determine if a screen is in the saved list ..... . . . . . . . . . . . . . . . .. 286 
write an integer value to a field ............................ 287 
close current window or form under JAM Executive control ..... 288 
display a screen as a form under JAM control ................. 290 
execute a JPL jpl procedure ............................... 292 
execute the JPL load command ............................ 293 
execute the JPL public command ... . . . . . . . . . . . . . . . . . . . . . . .. 294 
execute the JPL unload command .......................... 295 
start the JAM Executive .................................. 296 
display a window at a given position under JAM control ........ 297 
get the integer value of a logical key mnemonic ............... 299 
control keystroke record/playback flltering ................... 301 
test whether a key has been typed ahead ..................... 302 
initiaIize key translation table . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 304 

JAM Release 5.03 20 Nov 92 



keylabel 
keyoption 
keyset 
kscscope 
ksinq 
kslabel 
ksoff 
kson 
Cclose 
Copen 
last 
Iclear 
Idb_hasb 
ldb_init 
leave 
length 
lngval 
lreset 
Istore 
ltofield 
m_flush 
max_occur 
mnutogl 

msg 
mswet 
msgfmd 
msgread 
mwindow 
n_ 
name 
nexcsync 
nl 
novalbit 
null 

Table of Contents 

get the printable name of a logical key . . . . . . . . . . . . . . . . . . . . . .. 305 
set cursor control key options . . . . . . . . . . . . . . . . . . . . . . . . • . . . .. 306 
open a key set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 309 
query current keyset scope ............................... . 
inquire about keyset information .......................... . 
set a soft key label and attribute ..... . . . . . . . . . . . . . . . . . . . . . . . 
turn off soft key labels .................................. . 
turn on soft key labels .......•..•......................... 
close a library ......................................... . 
open a library ......................................... . 
position the cursor in the last field ......................... . 
erase LOB entries of one scope ........................... . 
use basb index for the LOB .............................. . 
initialize (or reinitialize) the local data block ...........•...... 
prepare to leave a JAM application temporarily ............... . 
get the maximum length of a field ........................ •. 
get the long integer value of a field •...•.................... 
reinitialize LOB entries of one scope .....•.................. 
copy everything from screen to LDB ....................... . 
place a long integer in a field ........•................... .. 
flush the status line ....•....•...••......•.•............ .. 
get the maximum number of occurrences ..•..•..•............ 
switch between menu mode and data entry mode on a dual-purpose 
saeen ••.••••••..•.•••.••••••••••.••••••••••••••....•• 
display a message at a given column on the status line .....••.•• 
find a message given its number ...••.•.••...•........••••.. 
fmd a message given its number ••.••••.••.•..•...•.•......• 
read. message tile into mem.ory . . • . . . . . . . . . • . . . . . . . . . . . . . • . • 
display a status message in a window • . . . • • • • • • • • • . • . . • . . . . .• 
variants that take a field name only •......•..•.............• 
obtain field name given field number . . . . . . . • . . . . . . . . • . . • . . .. 
fmd next synchronized array •••••••••••••••••••••••••••• •• 
position cursor to the flfSt unprotected field beyond the current line 
forcibly invalidate a field ••......•........................ 
test if field is null •.•...•••.........••..•..•.......... ... 

311 
312 
313 
314 
315 
316 
317 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 

nWILoccurs fmd the highest numbered occurrence containing data ......... . 

331 
332 
333 
334 
335 
338 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 

0_ variants that take a field number & occurrence number ......... . 
get the current occurrence number ..•...•...••.............. 
move the cursor into a field, offset from the left •.••.....•...•. 

JAM Release 5.03 20 Nov 92 Page ix 



JAM Programmer's GUide 

option 
oshift 
pinquire 
protect 
pset 
putfield 
putjctrl 
pwrap 
query_msg 
qui_msg 

quiecerr 

rd_part 
rdstruct 
rescreen 
resetcrt 
resize 
restore_data 
return 
rmformlist 
rrecord 
rs_data 
rscroll 
s_val 
save_data 
sc_max 

set a Screen Manager option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 350 
shift a field by a given amount .......... . . . . . . . . . . . . . . . . . .. 352 
obtain value of a global string ............................. 353 
protect atl array ......................................... 356 
Modify value of global strings ............................. 358 
put a string into a field ................................... 360 
associate a control string with a key. . . . . . . . . . . . . . . . . . . . . . ... 361 
put text to a wordwrap field ............................... 362 
display a question, and return a yes or no answer .............. 363 
display a message preceded by a constant tag, and reset the status 
line .................................................. 3M 
display error message preceded by a constant tag, and reset the status 
line .................................................. 365 
read part of a data structure to the current screen . . . . . . . . . . . . . .. 366 
read data from a structure to the screen ...................... 368 
refresh the data displayed on the screen .......... . . . . . . . . . . .. 370 
reset the terminal to operating system default state ............. 371 
notify JAM of a change in the display size. . . . . . . . . . . . . . . . . . .. 372 
restore previously saved data to the screen. . . . . . . . . . . . . . . . . . .. 374 
prepare for return to JAM application ....................... 375 
empty the memory-resident form list. . . . . . . . . . . . . . . . . . . . . . .. 376 
read data from a structure to a data dictionary record ........... 377 
restore saved data to some of the screen. . . . . . . . . . . . . . . . . . . . .. 379 
scroll all arr-ay ..••••.••..•.........••.....•..•.•.......• 380 
validate tb.e CUlTent screen ................................ 381 
save scree.n conte.nts ••.••................................ 383 
alter the maximum number of occurrences allowed in a scrollable 
arm.y ...••••..••••.••...••..•.••..•...•.•..•••.•.....• 384 

sdtime get formatted system date and time ......................... 385 
select select a checklist or radio button occurrence .................. 388 
seCinjpl allow C routines to access JPL variables & subroutines ......... 389 
setbkstat set background text for status line .......................... 390 
setstatus turn alternating background status message on or off ........... 392 
sh_off determine the cursor location relative to the start of a shifting field 393 
shrink_to_fit remove trailing empty array elements and shrink screen ......... 394 
sibling define the current window as a sibling or not a sibling .......... 395 
size_oCarray get the number of elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 396 
skinq obtain soft key information by position ...................... 397 
skmark mark or unmark a soft key label by position .................. 399 

Page x JAM Release 5.03 20 Nov 92 

'\ 



Table of Contents 

skset set characteristics of a soft key by position .................. . 400 
402 
404 
405 
407 
408 
409 
410 
411 

skvinq obtain soft key information by value ....................... . 
skvmark mark a soft key by value ................................. . 
skvset set characteristics of a soft key by value ..................... . 
soption set a string option ...................................... . 
strip_amcptr strip amount editing characters from a string ................ . 
submenu_close close the current submenu .............................. . 
sv _data save partial screen contents ............................... . 
sv_free 
svscreen 
cscroU 
Cshift 
tab 
tsCalCmdts 
udtime 
ungetkey 
unsvscreen 
viewport 
vinit 
wcount 
wdeselect 
window 
win size 
wrecord 
wrotate 
wrt-PUt 
wrtstruct 
wselect 

free a sa.ve--d.ata. buffer .................................. . 
register a list of screens on the save list ...................... 412 
test whether an array can scroll . . . . .. . . .. . . . . . . . . .. . . . . . . . .. 414 
test whether field can shift ................................ 415 
move the cursor to the next unprotected field ................. 416 
find first modified occurrence ............................. 417 
format user-supplied date and time ......................... 418 
push back a translated key on the input ...................... 419 
remove screens from the save list . . . . . . . . . . . . . . . . . . . . . . . . . .. 420 
modify viewport size and offset ............................ 421 
initialize video translation tables ........................... 422 
obtain number of currently open windows . . . . . . . . . . . . . . . . . . .. 423 
restore the formerly active window ......................... 424 
display a window at a given position ........................ 426 
allow end-user to interactively move and resize window ........ 429 
write data from a data dictionary record to a structure . . . . . . . . . .. 430 
rotate the display of sibling windows . . . . . . . . . . . . . . . . . . . . . . .. 432 
write part of the screen to a structure ........................ 434 
write data from the screen to a structure. .. .. . .. . . . .. . . .. . . ... 438 
activate a window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 443 

Chapter 14 
Libral")" Function Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 445 

Ind~" ................................................. ,,!;~ 

JAM Release 5.03 20 Nov 92 Page xi 



Chapter 1 

Introduction 

This document is intended for JAM Programmers. We discuss tbe development and 
creation of executable JAM progrdlIlS incorporating the Screen Manager, developer
written hook functions, and the JAM Executive. We will bnefly touch on how custom 
executives may be written. Finally, there is a comprehensive reference of JAM library 
functions. 

Discussions on the creation of JAM screens, data dictionaries, and keysets are found in 
theAuthor~ Guide. JPL is fully documented in the JPL Guide. 

This document assumes that the reader has previously read the JAM Development 
Overview and the Author~ Guide. The Development Overview is particularly impor
tant as tbe major architectural components of JAM are explained there in detail. 

JAM is written in C, and the C programming interface and libraries are distributed with 
every license. For most of this document, we will discuss JAM programming from the 
perspective of a C programmer. Those who wish to program in other languages (e.g. 
Fortran, Cobol, pun may obtain additional language interfaces on some platfOlUls. 

You will need to program in C (or some other supported third-generation language) to 
accomplish the following tasks: 

• To customize JAM to your environment or application by modifying 
the main program provided in source form with the product 

• To write hook functions that do application-specific and back-end 
processing during the execution of the application. 

• To take full control of the application by writing an application-spe-

JAM Release 5.03 20 Nov 92 Page 1 



JAM Programmer's GUide 

cific executive!. 

• To create executable JAM Programs. 

As dlscussed m detail in the Development Overview, JAM Applications consist of 
screens, a data dictionary, hook functions, and an executable program. The creation of 
screens and data dictionaries is discussed in the Author's Guide. JPL programming is 
discussed in the JPL Guide. In this chapter, we discuss how to create a JAM program. 
Compilation and linking are specific to platforms and operating systems and are dls
cussed in the Installation Guide. 

Two different versions of an applicatlon can be created with JAM. The Application 
Executable is the program delivered to the end-user to control the run time application. 
The JAM Authoring Executable is used to create application components and test the 
application during development. Only the JAM AuthOring Executable will grant user 
access to the Screen Editor, the Data Dictionary Editor, and the Keyset Editor. The 
JAM Authoring Executable can only be used for the testing of applications that use the 
JAM Executive. 

The JAM product is distributed with a plain version of the JAM Authoring Executable; 
one without any application-specific hook functions or data structures linked in. It is 
called jxform. Its use is detailed in the Author's Guide. New versions of the Author
ing Executable with application-specific hook functions linked in may be created, but 
JAM licenses specifically forbid their distribution as runtime applications. 

1.1 

APPLICATION EXECUTABLE 
Application Executable programs fall into two categories: those that use the JAM 
Executive to manage the flow of control from screen to screen, and those that use an 
application-specific executive. We discuss both of these approacbes in the sections that 
follow. 

1.1.1 

Applications Using the JAM Executive 
In applications that use the JAM Executive, most of the control flow is encapsulated in 
the screens. The m~ority of the C programming task is to write hook functions (see 

1. It is strongly recommended that the JAM Executive be used 10 aU but the most unusual of circumstances. 
A comparisoo of the JAM Executive with your own executive is preseoted 10 the Development Overview. 

Page 2 JAM Release 5.03 20 Nov 92 



Chapter 1: Introducbon 

Chapter 2) that are called by the Screen Manager or by the JAM Executive when cer
tain events occur. 

Applications that use the JAM Executive wIll need to be linked with the Screen Man
ager library sm, the JAM Executive library jm, and, in general, the standard math li
brary on your system. 

JYACC provides the main routine source code for applications that use the JAM 
Executive in a fIle called jmain. c. This routine performs various necessary initializa
tions before calling the function that starts up the JAM Executive. You may want to 
modify this code to change JAM's default behavior, see section 1.3 below. 

1.1.2 

Applications Using a Custom Executive 
In rare cases, a developer may choose to write a custom executive, one that is specific 
to a particular application. In custom executives, no library functions specific to the 
JAM Executive should be used. The JAM Executive functions may only be used in 
applications using the JAM Executive - they are listed in section 12.15 on page 176. 

Applications that do not use the JAM Executive should be linked with the Screen Man
ager library sm and, in general, the standard math library. If the LOB is needed, the 
JAM Executive library jm should also be linked in, but it is important the application 
not call any JAM Executive routines. 

The main routine for a very Simple application using a custom executive is shown be
low2• The application brings up a screen called mainform and allows a user to search 
an underlying database or update a record in that database. The user might also bring up 
a detail window named mywindow from which a report could be printed. Stnking 
EXIT while mywindow is displayed will close it Striking EXIT while mainform is 
displayed will terminate the application. 

/* INCLUDE FILES */ 
#include ·smdefs.h· 
#include ·smkeys.h· 

/* FORWARD DECLARATIONS */ 
void show_my_window ( ) 

/* EXTERNAL DECLARATIONS */ 
extern void do_my_update ( ) 
extern int do_my_search ( ) ; 
extern void do_my-print ( ) ; 

2. Note that JPL is available to apphcatJons that do not use the JAM Execubve. Note also that hook func
tions may be Installed and used in applications that do not use the JAM Executive. These applIcations, howev
er, will not be able to use control strings. 

JAM Release 5.03 20 Nov 92 Page 3 



JAM Programmer's Guide 

/* MAIN DECLARATION */ 
int 
main ( argc, argv 
int argc ; 
char **argv 
{ 

Page 4 

/* Key pressed by user */ 

/* INITIALIZE THE SCREEN MANAGER */ 
sm_initcrt ( •• ) 

/* INSTALL HOOK FUNCTIONS */ 
sm_do_uinstalls ( ) ; 

/* DISPLAY APPLICATION MAIN FORM */ 
if ( sm_r_form ( -mainform- ) ) 
{ 

else 
{ 

/* DISPLAY ERROR MESSAGE */ 
sm_err_reset ( -Unable to display Main Form- ) 

/* LET USER INTERACT WITH SCREEN */ 
while ( ( the_key = sm_input ( IN_AUTO ) ) 

!= EXIT) 
{ 

} 

switch ( the_key 
{ 

case XMIT: 
do_my_update 
sm_cl_unprot 
break 

case PF1: 
show_my_window ( ) 
break 

case PF4: 
if 
{ 

} 

} 

break; 

/* RESET THE TERMINAL */ 

JAM Release 5.03 20 Nov 92 



Chapter 1: Introducbon 

} 

sm_resetcrt ( ) 

1* EXIT PROGRAM *1 
return ( 0 ) ; 

void 
show_my_window ( ) 
{ 

} 

1* Key pressed by user *1 

1* DISPLAY THE WINDOW *1 
if ( sm_r_at_cur ( "mywindow· ) ) 
{ 

else 
{ 

} 

return 

1* DISPLAY ERROR MESSAGE *1 
sm_err_reset ( ·Unable to display My W1ndow" ) 

1* LET USER INTERACT WITH SCREEN *1 
while ( ( the_key = sm_input ( IN_AUTO ) ) 

!= EXIT) 

} 

switch ( the_key ) 
{ 
case XMIT: 

} 

do_my....print ( ) 
break ; 

1* CLOSE THE WINDOW *1 
sm_close_window ( ) 

Screen Manager Initialization 

.. 

Mter all the header files and declarations at the top of the source module, the Screen 
Manager and the terminal are frrst initialized with a call to sm_initcrt. Since an 
empty string is passed as the argument, the search path for screens is expected to be 
found in the environment. 

Install Hook Functions 

The function sm_do_uinstalls is defined in funclist. c, provided as source 
with JAM. It is used to install Screen Manager hook functions, described below in 
Chapter 2. 

JAM Release 5.03 20 Nov 92 PageS 



JAM Programmer's GUide 

Display the Main Form 

After initializatIon is complete in the main routine, the screen mainform is opened as 
a form with a call to sm_r_form. If an error occurs, the program will terminate. 

Display My Window 

In the function show_my _window, mywindow is displayed at the cursor position 
with a call to sm_r_at_cur. 

Handle Errors 

Error messages when screen display fails are placed on the status line with the call to 
sm_err_reset. This routine takes a single string argument, and places that string on 
the status line. The user is forced to acknowledge the error by striking the space bar3• 

Activate Screen 

Both mainforrn and mywindow are activated within a loop. The loop terminates if 
the user strikes the EXIT key, which causes the routine sm_inpu t to return with the 
return code EXIT defined in smkeys . h. The actual data entry, cursor movement, help 
processing, character edit masking, and validation are handled within sm_input, so 
the programmer need not be concerned with them. Whenever the user strikes TRANS~ 
MIT, EXIT, or some other function key, sm_inpu t returns control to the calling pro
gram. In the main routine when mainform is displayed, the keys lRANSMIT, PFI 
and PF4 cause some processing to occur. In the routine show_my _window when my
window is displayed, only the TRANSMIT key will cause some processing to occur. In 
any other case, the while loop will continue and sm_input will be called again. 

Close a Window 

During the run of any application, there is always a form displayed. When a new form 
is displayed, all existing screens are implicitly closed. Windows, however, need to be 
explicitly closed if the application is to retreat to an underlying screen. For this reason, 
the show_my _window routine closes the window when it returns to the main program 
with a call to sm_close_window. 

Reset the Terminal 

Before the application terminates, it calls sm_resetcrt to reset terminal characteris
tics to a state expected by the operating system. 

3. ~e developer may change the way messages are acknowledged WIth the library routine 8m_option 
or via the setup file. 

Page 6 JAM Release 5.03 20 Nov 92 



Chapter 1: Introduction 

1.2 

AUTHORING EXECUTABLE 
The Authoring Executable must use the JAM Executive, and may have developer
written hook functions linked in. The main routine for the Authoring Executable is pro
vided in source fonn in a me called jxmain. c. You may want to modify that file to 
change the default behavior of the authoring tool j xform, see section 1.3 below. It IS 

strongly suggested that JAM developers read and understand this code, as it is instruc
tive and may help with an understanding of the product. 

Authoring executables must be linked with the JAM Authoring Library jx, the JAM 
Executive library jrn, the Screen Manager library sm, and, in general, the standard 
math library. Since these executables are linked with the JAM Authoring Library jx, 
they may not be re-sold or distributed on machines for which there is no software li
cense from JYACC. This restriction applies only to Authoring Executables, which are 
intended for 'application development only. 

1.3 

MODIFYING PROVIDED SOURCE CODE, 
JMAIN. c AND JXMAIN. C 
The source files jrnain. c and jxmain. c are very similar. They may be modified by 
developers who wish to change the default behavior of JAM. jmain. c is modified to 
change the way the application executable behaves, and jxmain. c is modified to 
change the way the authoring executable behaves. 

Neither of the two main files should be used for the installation of hook functions. Hook 
functions are declared and installed in the me funclist . c as discussed below in sec
tion 2.1.2. 

For the following discussion, it may be useful to obtain a listing of the source mes from 
your system, namely jmain. c and jxmain. c. 

Both provided main source flIes have four functions defined in them. The function 
main is defined globally and is the entry point to the entire application program. main 
calls the statically defined functions initialize, start_up, and clean_up. 
Code necessary to your application may be inserted into the main routine. Any code 
inserted before initialize will be executed before any JAM function has been 
executed. Code inserted after initialize but before start_up will be executed 
after JAM has allocated internal data structures and set the teJDlinal characteristics, but 

JAM Release 5.03 20 Nov 92 Page 7 



JAM Programmer's GUide 

before there are any screens and before there is a local data block. Code inserted after 
start_up but before clean_up will be executed after JAM has exited the last 
screen, but before memory structures are de-allocated and the temunal is reset. Code 
called after clean_up will be executed after all JAM functions have been executed. 
If a finer granularity is needed, the functions initl.alize, start_up, and 
clean_up can themselves be edited. ThIs should only be undertaken by developers 
with a very fum understanding of the product. 

After the defmition of the main function, there are a number of JAM sub-system mac
ro definitions. They are all set to 0 by default. To tum on a sub-system, set the corre
sponding macro to 1. The sub-systems available are listed and described below: 

• SOFTKEYS 
The JAM user interface supports soft keys. If this sub-system is enabled, 
J AM will use the soft key interface, displaying them on termmals that sup
port them in hardware and simulabng them on terminals that do not. For 
more information on soft keys, please see the Author's Guide. The use of 
soft keys will increase the application's memory requirements. 

• ALT_SCROLLING 
If the application installs and uses one or more custom scroll driver as de
scribed in Chapter 10, this sub-system must be enabled. This will increase 
the application's memory requirements, unless the custom scroll drives 
saves memory that would otherwise be used for arrays by JAM. 

• MEMORY_SCREENS 
If this sub-system is installed, any screens displayed by the JAM library 
itself will be linked into the application as data and maintained in memory. 
If this is not installed, the screens will be accessed in screen libraries on 
disk. Installing this sub-system will increase the application's memory re
quirements, but will speed up execution. 

• MEMORY_KEYSETS 
If this sub-system is installed, the keysets used by the JAM library itself 
in providing a soft key interface will be linked into the application as data 
and maintained in memory. It only makes sense to install this sub-system 
if the SOFTKEYS sub-system is installed. Installing this sub-system will 
increase the application's memory requirements, but will speed up execu
tion. 

• BLOCK_MODE 
If the application installs and uses a block mode terminal driver as de
scribed in Chapter 11, this sub-system must be installed. It will increase 
the application's memory requirements. 

• JTERM_COMPRESSION 
Installing this sub-system will increase the communication efficiency and 

Page 8 JAM Release 5.03 20 Nov 92 



Chapter 1: Introduction 

execution speed for applications when they are accessed by the terminal 
emulator Jterm. It will increase the application's memory requirements. 

JAM Release 5.03 20 Nov 92 Page 9 



Chapter 2 

Hook Functions 
The primary coding task facing JAM programmers is writing hook functions. These 
functions, which are called by the JAM Executive and by the Screen Manager when 
certain well-defined events occur, are written in c4• 

Hook functions can be used for many purposes. The following example shows a default 
field function that places the name, occurrence number, and field number of the current 
field on the status line whenever the field is entered. The arguments are those that are 
passed, by default, to a hook function designated as a field function. (please note that 
this same function is discussed in depth later in section 2.2.1 on page 19.) 

/* Include Files */ 
.include ·smdefs.h· 

int 
dfield ( f_number, 
int f_number ; 
char *f_data ; 
int f_occurrence 
int context ; 
{ 

/* Screen Manager Header File */ 

f_data, f_occurrence, context 
/* Field Number */ 
/* Field Data */ 
/* Array Index */ 
/* Context Bits */ 

char *f_name ; /* Field Name */ 
char stat_line [ 128 ] ; /* Status line string */ 

/* If called on field exit, clear the status line. */ 
if ( context & K_EXIT ) 
( 

•• WHITE ) 
} 

/* If called on entry, format and display status line */ 
else if ( context & K_ENTRY ) 

4. HookfunctioDS may also be written in other third-generation programming languages for which JYACC 
supports a language interface. In particular. Fortran. Cobol and PUl are available for JAM on some platforms. 

JAM Release 5.03 20 Nov 92 Page 11 



JAM Programmer's GUide 

} 

{ 

} 

/* Obtain the field name */ 
/* Format the status line */ 
if ( * ( f_name = sm_name ( f_number ) ) ) 

else 

sprintf ( stat_l1ne, ·Current F1eld: R 

"%S[%l] ( *%i[%11 )., 
f_name, f_occurrence, 
f_number, f_occurrence 

sprintf ( stat_line, 
·Current Field: *%i[%i1", 
f_number, f_occurrence ) ; 

/* Display the status line */ 
sm_setbkstat ( stat_line, BLUE I HILIGHT ) 

/* Return code of zero means that everything is fine. */ 
return ( 0 ) ; 

This function is installed with the following code normally added to the provided 
source code in funclist. c. Since it is installed as a DFLT_FIELD_FUNC, it is 
executed every time any field is entered, exited, or validated. 

extern int dfield ( ) ; 
struct fnc_data dfield_struct = { 0, dfield, 0, 0, 0, 0 } 

void 
sm_do_uinstalls ( ) 
{ 

} 

In this chapter, we discuss how hook functions are written and installed They must also 
be compiled and linked into the JAM Application (or Authoring) Executable: see the 
Installation Guide for details of that. We also discuss what JAM events have hooks ac
cessible to developers and what arguments are passed to hook functions from any given 

Page 12 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

hook. Finally, we discuss in detru.l the various types of hook functions, showing exam
ples of how they might be written, installed, and used. 

2.1 

PREPARATION AND INSTALLATION 
Hook functions, once properly installed, are called at certain well-defined JAM 
events. These events are outlined below in section 2.1.1 and discussed in detail later in 
the chapter. 

There are many events that have hooks accessible to developers. JAM passes different 
arguments to the various hook functions, and interprets the return codes differently for 
each one. It is important that hook functions process the arguments that are passed cor
rectly, and that they return meaningful codes based on the events to which they are at
tached.S 

Some hook functions are installed individually, and are called at runtime by JAM when 
a certain event type occurs. Other hook functions, namely those attached to control 
strings, screen entry/exit, group entry/exit/validation, or field entry/exit/validation are 
installed in tables known as function lists. Since such functions are referred to with a 
string in screen binaries, the JAM Application Executable uses the function list to re
solve those strings to actual function pointers at runtime. Most hook functions are 
called by the Screen Manager. However, the hook functions invoked with control 
strings are called by the JAM Executive, and are therefore accessible to applications 
using a custom executive only through JPL. 

2.1.1 

Types of Hook Functions 
There are twenty-two installable hook function types, six of which are for the function 
lists and sixteen of which are for individual functions. They are briefly outlined below, 
and discussed in detail later in the document: 

• FIELD_FUNe 
This is a function list The functions on this list may be designated in the 
Screen Editor to be called by the Screen Manager as field entry. exit or val
idation functions for specific fields. The JPL atch verb may also be used 
to access these functions. 

S. For certain types of hooks. you can specify the arguments that are passed to specIfic functions. See sec
tion 2.3 on page 66 on prototyped functions. 

JAM Release 5.03 20 Nov 92 Page 13 



JAM Programmer's GUide 

• GROUP _FUNC 
This is a function list. The functions on this list may be designated in the 
Screen Editor to be called by the Screen Manager as group entry, exit or 
val1dation functions for specific groups (Radio Buttons and Checklists). 

• SCREEN_FUNC 
This is a function list. The functions in this list may be designated in the 
Screen Editor to be called by the Screen Manager as screen entry or exit 
functions on particular screens. 

• CONTROL_FUNC 
This is a function list These functions may be entered and invoked from 
control strings. They are often associated with functton keys and menus in 
the Screen Editor or with the sm....,put j ctr I library call. The IPL call 
verb can invoke the functions in this list 

• PROTO_FUNC 
This is a function list for proto typed functions. Field, screen, group, and 
control functions may all be placed on this list together if they are proto
typed. The prototyping of function list functions is discussed in section 2.3. 

·DFLT_FIELD_FUNC 
This is an individual function. Once installed, it is called on entry, exit and 
validation for all fields. 

• DFLT_GROUP _FUNC 
Similar to the DFLT_FIELD_FUNC, this individual function is called on 
entry, exit, and validation for all groups. 

• DFLT_SCREEN_FUNC 
Individual function called on entry and exit for all screens. 

• ASYNC_FUNC 
Individual function called asynchronously when JAM is waiting for key
board input. Often used to poll external systems for mail delivery or the 
availability of data over a communications line. 

• KEYCHG_FUNC 
Individual function called whenever JAM reads a key from the keyboard. 
This allows for the application to intercept and process (and possibly trans
late) keystrokes at the logical key level. 

• INSCRSR_FUNC 

Page 14 

Individual function called by JAM whenever the keyboard entry mode 
toggles between insert and overstrike mode. This allows an application to 
update the display, if desired, to provide an indication of the new mode. 
Often used if there is no ability to change cursor styles between insert and 
overstrike modes. 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

• CKDIGIT_FUNC 
Individual function called by JAM for check digit validation of numeric 
fields. Only necessary if the default check-digit algorithm provided with 
JAM is not sufficient. 

• UINIT_FUNC 
Individual function called just before the Screen Manager and the physical 
display are initialized at the start of the application. 

• URESET_FUNC 
Individual function called just after the Screen Manager and the physical 
display are closed and reset at the end of the application, even if the applica
tion aborts ungracefully. 

• RECORD_FUNC 
Individual function used to record keystrokes so they can be played back 
for tutorials or for regression testing. 

• PLAY_FUNC 
Individual function used to playback recorded keys. 

• AVAIL_FUNC 
Individual function used in advanced record/playback algorithms. 

·STAT_FUNC 
Individual function used to intercept JAM status line processing and alter 
or replace it. 

• VPROC_FUNC 
Individual function used to intercept JAM video processing and to alter or 
replace it. 

• SCROLL_FUNC 
Function list of alternate field scrolling methods discussed in section 10.1. 
The flntctions on this list may be designated in the Screen Editor to be 
called by the Screen Manager as the alternative scroll driver for specific 
fields. 

• DFLT_SCROLL_FUNC 
This is an individual function. Once installed, it is called as the scroll driver 
for all fields that do not have SCROLL_FUNC functions specified in the 
Screen Binary. 

• BLKDRVR_FUNC 
This is an individual function that acts as a block mode terminal driver. This 
is discussed in section 11.1.3. 

JAM Release 5.03 20 Nov 92 Page 15 



JAM Programmer's Guide 

2.1.2 

Provided Source Code - funclist. c 

The me funclist. c is provided in source form with JAM. There is detaJIed docu
mentation in that me about function installation. Many users will find it expedient to 
directly edit that file, inserting declarations, definitions and code for hook function 
installation. 

The provided funclist. c is broken into five sections and has copious comments. 
The first section contains the necessary header files supporting function installation. 

In the second section of funclist. c, a number of functions are declared. The func
tion sm_do_uinstalls () is declared globally. This is the function called from the 
main routines in jmain. c and jxmain. c, and it is defined toward the end of fun
clist. c. A number of static declarations, for example, dummy hook functions, 
comes next. Those dummy functions are defmed at the end of funclist. c. Develop
ers should add defmitions for their own hook functions at this point 

In the third section of funclist . c, a number of data structures supporting installa
tion of the dummy hook function lists are defined. These definitions may be augmented 
with or replaced by the developer's own data structures and function list elements. 

In the fourth section of funclist. c, the function SIILdo_uinstalls () is de
fmed. This function is called, generally by the main routine, to install all the necessary 
hooks. Note the calls to the library function sm_install. These calls install the 
dummy function lists. Developers should add their own installation calls at this point. 

In the fifth section of funclist. c, the dummy hook functions are defined. Develop
ers may place their own hook functions here, or they may be external to funclist. c 
and found in separate source files. 

2.1.3 

Preparing Functions for Installation 
Once hook functions are written, they must be included in some JAM data structures 
prior to installation. Many users will find it expedient to add definitions and declara
tions used to prepare functions for installatIon in the provided source file fun -
clist. c. Individual book functions are stored in a structure of type fnc_data in 
preparation for installation. Function lists are stored in arrays of fnc_data structures. 
The fnc_data structure is shown and described below: 

Page 16 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

struct fnc_data 
{ 

char *fnc_name i 

int ( *fnc_addr ) ( 
char language i 

char 1ntrn_use ; 
char appl_use 
char reserved i 

- fnc_name 

/* Functlon Name */ 
/* Function Address */ 
/* Function language */ 
/* Installat10n Parameter */ 
/* Byte for Developer */ 
/* Reserved by JYACC */ 

A character string naming the hook function. It need only be named here 
if it is a function in a function lis~ since J AM needs to resolve the text string 
name of a function attached to a screen, group, field, or control string to a 
function address. If the function is not in a function list, this pointer should 
beO. 

- fnc_addr 
The address of the routine, namely the C identifier used for the function in 
your source code. 

-language 
Code for the language the function is written in. Refer to the header file 
smidenty . h. Use 0 for C. 

- intrn_use 
Installation parameter. 

-appl_use 
Reserved for application use. 

- reserved 
Reserved for future releases. Set this to O. 

Functions to be individually installed (i.e. not in functions lists) are also placed into a 
structure of type fnc_data. To create a fnc_data structure identified as 
my_keychg_struct with an individual function identified as my_func, use the 
following defmition, generally placing it in the file funclist. c: 

#include ·smdefs.hR 

extern int my_keychg_struct ( ) ; 
struct fnc_data my_keychg_struct = { 0, my_func, 0, 0, 0, 0 }i 

Function lists are implemented as arrays of fnc_data structures. To create a function 
list called my_field_list, with the functions my_funcl, my_func2, and 

JAM Release 5.03 20 Nov 92 Page 17 



JAM Programmer's GUide 

my _func3, use the following definition, generally placing it in func 1 i st. c 6: 

#include ·smdefs.h" 
extern int my_func! ( ), my_func2 ( ), my_func3 ( ) ; 
struct fnc_data my_fiel~list[l = { 

} ; 

{ "do_entry·, my_Eunc!, 0, 0, 0, 0 }, 
{ "do_validation", my_func2, 0, 0, 0, 0 }, 
{ ·do_ex~t", my_Eunc3, 0, 0, 0, 0 }, 
{ "Eld_exit", my_Eunc3, 0, 0, 0, 0 } 

int my_Eield_size = sizeof ( my_f~el~llst ) / 
sizeof ( struct fnc_data ) ; 

The integer my _f i e Id_s i z e is defined and initialized because the address of an inte
ger with the number of functions in a function list must be passed to the installation 
routine when the function list is installed. 

2.1.4 

Installing Functions 
Hook functions are installed with the library routine sm_install. Most developers 
will find it expedient to add their installation code to the function sm_do_uins
ta 11 s provided in source form in the me func 1 is t . c. In some cases, developers 
may want to call sm_install from other points in their applications. 

As is documented formally in the Programmer's Reference, sm_install is passed 
three arguments. The fust argument is the type of function or function list to be 
installed. The second argument is the address of the fnc_data structure or array of 
structw-es to install, and the fmal argmnent is a pointer to an integer. The third argument 
should be set to (int *) 0 when an individual function is installed. When a function 
list is installed, the third argument is the address of an integer with the number of entries 
in the list. 

To install the function my _func as the application key change function, after the dec
larations and definitions shown above in section 2.1.3, add the following call to 
sm_do_uinstalls: 

sm_install ( KEYCHG_FUNC, &my_keychg_struct, (int *)0 ) ; 

To install the functions my_funcl, my_func2, and my_func3 into the application 
field function list after the declarations and defmitions shown above in section 2.1.3, 
add the following call to sm_do_uinstalls: 

6. Note that in this example, either the string "do_exi t" or the string" f ld_exi t", when appropnately 
des.agnated as afield function in the Screen Editor, wiII cause the function my _func3 to be executed at run
time. Possible uses for this technique of giving the same function different names include mapping functions 
yet to be written to a stub routine, and using the same function to perform slightly different tasks (with the name 
as an implied parameter). 

Page 18 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

sm_~nstall ( FIELD_FUNC, my_field_list, &my_field_s~ze ) ; 

Note that the final argument to sm_install is the address of an integer. This is so 
that, in the case of function lists, the sIZe of the new list can be returned to the calling 
application. 

For informauon on linking a function into JAM and creating new executables, see the 
Installation Guide. 

2.2 

WRITING HOOK FUNCTIONS 
Arguments passed to hook functions and return values received from hook functions 
vary from hook to hook. In this section, we discuss the various JAM hooks in detail. 

2.2.1 

Field Functions 
The ·Screen Manager calls field functions, if specified and installed, on field entry, field 
exit, and field validation. Calls to field entry and field exit functions are guaranteed to 
be paired for any given field. 

A single default field function may be installed. It will be invoked on entry, exit, and 
validation for every field. Field functions specified as entry, exit, or validation func
tions for a given field via the Screen Editor must be installed into the field or prototype 
function list. The default field function is installed separately from the list, and need not 
appear in the list. JPL procedures may also be directly specified as field functions in the 
Screen Editor by preceding their name with the string "jpl ", for example jpl 
fie Idfunc. Such JPL procedures should not be in the function list 

The default field function is installed as DFLT_FIELD_FUNC. Field functions to be 
added to the field function list are installed as FIELD_FUNC. 

Field Function Invocation 
Field functions are called for field entry whenever the cursor enters a field, including 
when the field containing the cursor is activated by virtue of an overlying window be
ing closed. Field functions are called for field exit whenever the cursor leaves a field, 
including when the field is exited because a window is popped up over the existing 
screen. Field functions are called for validation whenever the field is validated. This 
occurs at the following times: 

JAM Release 5.03 20 Nov 92 Page 19 



JAM Programmer's GUide 

• As part of field vabdation, when you exit the field or scroll to the next 
occurrence by mling It or by hItting TAB or RETURN key. The 
BACKTAB and arrow keys do not normally cause validation. Field 
functions are called for validation only after the field's contents pass 
all other validattons for the field. 

• As part of screen validation when the XMIT key is struck. 

• When the application code calls library routines for field validation. 

Field functions on the FIELD_FUNC function list may also be invoked from JPL with 
the atch verb. 

For fields that are members of menus, radio buttons, or checklists, the validation func
tion is not called as part of validation. The validation function for such fields is called 
instead when that field is selected. For checklist fields, the field validation function is 
also called when the field is deselected. 

Field functions specified for field entry via the Screen Editor are invoked after any 
installed default field function. Field functions specified for field exit or validation via 
the Screen Editor are called before any installed default field function. 

Field Function Arguments 
All field functions receive four arguments: 

1. The field number as an integer. 

2. A pointer to a null telDlinated character string containing a copy of 
the field's contents. 

3. The occurrence number of the data as an integer. 

4. An integer bitmask containing contextual information about the val
idation state of the field and the circumstances under which the func
tion was called. 

The contextual information in the last parameter includes the following bit masks 7: 

·VALIDED 

• MDT 

If this is set (i.e. if (param4 & VAL IDEO ) ), the field has passed all 
its validations and has not been modified since . 

If this is set (i.e. if (param4 & MDT) ), the field data has been 

7. The example field function below contains a procedure called bitmask that is useful for checking 
whether a particular flag (bit location in a binary value) IS set. Source code for this procedure can also be found 
in the sample application provided with JAM. 

Page 20 JAM Release 5.03 20 Nov 92 



• K_ENTRY 

Chapter 2. Hook Functions 

changed either from the keyboard or from the application code since the 
current screen was opened8. JAM never clears this bIt. The application 
code may clear it directly WIth the sm_bi top library routine . 

If set (Le. if (pararn4 & K_ENTRY) ), the field function was called 
on field entry. 

If set (I.e. if (param4 & K_EXIT) ), the field function was called on 
field exit9• 

eK_EXPOSE 
If set (i.e. if (param4 & K_EXPOSE) ), the field function was called 
because a window overlying the screen on which the field resides was 
opened or closed 10. 

Mask for the bits indicating which keystroke or event caused the field to 
be entered, exited, or validated. The intersection of this mask and the fourth 
parameter to the field function should be tested for equality against one of 
the six remaining values below: 

eK_NORMAL 
If set (i.e. if (( param4 & K_KEYS) == K_NORMAL) ), a "nor
mal" key caused the cursor to enter or exit the field in question. For field 
entry, "normal" keys are NL, TAB, HOME, and EMOH. For field exit, only 
TAB and NL are considered "normal". 

eK_BACKTAB 

eK_ARROW 

If set (i.e. if ((param4 & K_KEYS) == K_BACKTAB) ), the 
BACKTAB key caused the cursor to enter or exit the field in question. 

If set (Le. if ((param4 & K_KEYS) == K_ARROW) ), an arrow 
key caused the cursor to enter or exit the field in question. 

If set (i.e. if (( param4 & K_KEYS) == K_SVAL) ), the field is 
being validated as part of screen validation. 

8. Note that when the screen is being opened, when the screen entry function modIfies data in a field the 
MDT bit IS not set. However, when the screen is exposed by VJrtue of an overlwd window bemg closed, modifl
cauon of field data 10 the screen entry function causes the MDT bit to be set. 

9. Note that if neither K_ENTRY nor K_EXIT are set, the field is bemg valJdated. 

10. Tlus means thallf both K_ENTRY and K_EXPOSE are set, the field is bemg exposed. If K_EXIT and 
K_EXPOSE are set, the field is bemg rudden. 

JAM Release 5.03 20 Nov 92 Page 21 



JAM Programmer's GUide 

If set (i.e. if ((param4 & K_KEYS) == K_USER) ), the field is 
being validated directly from the application with the sIn_fval hbrary 
routine. 

If set (i.e. if ( (param4 & K_KEYS) == K_OTHER) ), some key 
other than backtab, arrow or those mentioned as "normal" caused the cur
sor to enter or exit the field in question. 

Field functions are called for validation regardless of whether the field was previously 
validated. They may test the VALIDED and MDT bits to avoid redundant processing. 

Field Function Return Codes 
Field functions called on entry or exit should return 0 if they do not reposition the cur
sor. Field functions called for validation should return 0 if the field contents pass the 
validation criteria. A non-zero return code in a validation function should indicate that 
the field does not pass validation. 

If the returned value from a field function is 1, the cursor is not repositioned to the field 
in question. Any other non-zero return value causes the cursor to be repositioned to the 
field. This repositioning is useful when an entire screen is undergoing validation, since 
the field that fails validation may not be the field where the cursor lies. It 

Example Field Function List 
The following field functions, intended to be installed in a list and consequently acces
sible to field function designations in screens, do field initialization and validation 
based on external criteria: 

1* 
* TWo field functions for inclusion on the field function list 
* are defined here. The first one, fentry(), initial1zes the 
* value in a field provided that it has not been changed since 
* the screen was opened. The second one, fval1d(), validates 
* the contents of a field. The functions that retrieve the 
* initialization data and lookup the validation data are 
* externally defined and will clearly be application specific. 
* 
* The field function list is def1ned and declared as follows: 
* 
* 
* extern int fvalid ( ) ; 

11. In many cases, it is better for the field validation function llselfto reposition the aJl'sor before displaying 
an error message. otherwise the error message might be misleading. 

Page 22 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

'* extern int fentry ( ) i 

'* 
'* struct fnc_data ffuncs [] = 
* { 

'* { "fentry· , fentry, 0, 0, 0, 0 }, 

'* { "fvalid" , fvalid, 0, 0, 0, 0 } 

'* } ; 
'* 
'* int fcount = sizeof ( ffuncs ) I 
'* sizeof ( struct fnc_data ) i 

'* 
'* The fleld function list is then augmented wlth the following 
'* call: 
'* 
* sm_install ( FIELD_FUNe, ffuncs, &fcount ) 
'* 
*1 

1'* Include Files *1 
#include ·smdefs.h" 1'* Screen Manager Header Flle '*1 

1'* Externally defined functions *1 
extern char '*do_my_initialize ( ) ; 

extern int my_lookup ( ) i 

1'* Get data for field 
initialization '*1 

1'* Lookup data for field 
validation *1 

int 
fentry ( f_number, 
int f_number ; 
char '*f_data ; 
int f_occurrence 
int f_context ; 
{ 

f_data, f_occurrence, f_context 
1'* Field Number '*1 
1* Field Data *1 
1* Array Index '*1 
1* Context bits *1 

1* Initialize if the field has not been modified 
since the screen was opened. *1 

if ( ! ( f_context & MDT ) ) 
{ 

} 

return ( 0 ) 
} 

int 
fvalid ( f_number, 
int f_number ; 
char *f_data ; 
int f_occurrence 
int f_context ; 
{ 

f_data, f_occurrence, f_context 
/* Field Number */ 
/* Field Contents */ 
/* Occurrence number for field *1 
/* Context bitmask */ 

char msg_buf[ 80 ] /* Message line buffer *1 

JAM Release 5.03 20 Nov 92 Page 23 



JAM Programmer's Guide 

} 

/* If the f~eld ~s already valid, merely return. */ 
if ( f_context & VALIDED ) 

return ( 0 ) ; 

/* If the field is invalid based on external 
lookup, return error. */ 

if my_lookup ( f_data ) ) 
{ 

} 

/* Error, so reposition field. */ 
sm_gofield ( f_number ) 

sprintf ( msg_buf, -Invalid data %s.", f_data 
sm_err_reset ( msg_buf ) ; 

/* Return code of 1 indicates validation fail */ 
return ( 1 ) ; 

return ( 0 ) 

Example Default Field Function 
The following field function, intended to be installed as the default field function for 
tbe entire application, maintains a status line of field identification information: 

/* 
* This function is intended to be installed as the default field 
* function in a JAM application. It is called on the entry, 
* exit, and validation for all fields 
* 
* The following declarations/definitions would commonly be 
* included in the main function source module or in the source 
* file funclist.c: 
* 
* extern int dfield ( ) ; 
* struct fnc_data dfield_struct = 
* { 0, dfield, 0, 0, 0, 0 } ; 
* 
* This function is installed with the following line of code, 
* often found in the main function or in the function 
* sm_do_uinstalls() in the file funclist.c: 
* 
* 
* 
* 

DFLT_FIELD_FUNC, &dfiel~struct, 
(int *) 0 ) ; 

* The function causes entry into a field to place identifying 
* information for that field on the status line. When fields 
* that are members of groups (radio buttons or checklists) 
* are selected, a message will be displayed on the status line 
* about that event. 

Page 24 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

* 
* Identifying information on fields will be the name, if it 
* exists, the number, and the occurrence number. Selection 
* events in groups will show the text of the selected field, 
* the group name, and the group occurrence. 
*/ 

/* Include Files */ 
linclude ·smdefs.h· 

int 

/* Screen Manager Header File */ 

dfield ( f_number, 
int f_number ; 
char *f_data ; 

f_data, f_occurrence, context 
/* Field Number */ 

int f_occurrence 
int context ; 
{ 

char *f_name 
char *g_name 
char *slct ; 
int g_occurrence 
char stat_line [ 

/* Field Data */ 
/* Array Index */ 
/* Context Bits */ 

/* Field Name */ 
/* Group Name */ 
/* selected or deselected 
/* Group Number */ 

128 /* Status l1ne string * / 

*/ 

/* If called on field exit, clear the status line. */ 
if ( context & K_EXIT ) 
{ 

} 
•• , WHITE } 

/* If called on entry, format and display status line */ 
else if ( context & K_ENTRY ) 
{ 

} 

/* 

/* Obtain the field name */ 
f_name = s~name ( f_number 

/* Format the status line */ 
if ( f_name && *f_name) 

else 

sprintf ( stat_line, ·Current Field: • 
·%s[%i] ( #%i[%i] )., 
f~ame, f_occurrence, 
f_number, f_occurrence 

sprintf ( stat_line, 
·Current Field: #%i[%i]-, 
f_number, f_occurrence ) ; 

/* Display the status line */ 
s~setbkstat ( stat_line, BLUE I HILIGHT ) 

JAM Release 5.03 20 Nov 92 Page 25 



JAM Programmer's Guide 

} 

2.2.2 

* If we get here, it is neither entry nor exit so it must 
* be validatlon. In this case, see if the field is the 
* member of a group. If it is, the validation function 
* was called because the field was selected, or in the 
* case of checklists, deselected. Note that 
* menu selection events will not be flagged, because 
* menus are not groups. 
*/ 
else if g_name = sm_o_ftog ( f_number, 

f_occurrence, 
&g_occurrenee ) ) 

/* Determine if selected or deselected */ 
if ( sm_isseleeted ( g_name, g_oceurrenee ) ) 

slct = ·selected· ; 
else 

slct = -deselected· ; 

/* Format and print status line message */ 
sprintf ( stat_line, -\-%s\· %s, group %s[%d]·, 

f_data, slet, g_name, g_oceurrence ) 

sm_setbkstat stat_line, BLUE I HILIGHT ) ; 

/* Return code of zero means that everything is fine. */ 
return ( 0 ) ; 

Screen Functions 
The Screen Manager calls screen functions, if specified and installed, on entry and exit 
of screens. Calls to screen entry and screen exit functions are guaranteed to be paired 
for each screen. 

A single default screen function may be installed. It will be invoked on entry and exit 
for every screen. Screen functions specified as entry or exit functions for a screen via 
the Screen Editor must be installed into the screen or prototype function list The de
fault screen function is installed separately from the list, and need not appear in the list 
JPL procedures may also be directly specified as screen functions in the Screen Editor 
by preceding their name with the string "jpl to, for example jpl screenfunc. 
Those procedures should not be in the ftmction list. 

The default screen function is installed as DFLT_SCREEN_FUNC. Screen functions to 
be placed on the screen function list are installed as SCREEN_FUNC. 

Because of the way LDB processing and form stack handling is done, it is neither rec
ommended nor supported to call any form or window display library routines from 

Page 26 JAM Release 5.03 20 Nov 92 

\ 

, , 



Chapter 2: Hook Functions 

screen entry or exit functions. If it is necessary to display windows at screen entry, the 
library routme sm_ungetkey can be invoked, passmg as the argument a function key 
with a control string that brings up a window. 

Screen Function Invocation 
Screen functions are called for screen entry whenever a screen is opened. Screen func
tions are called for screen exit whenever a screen is closed. Optionally, screen functions 
may also be called for entry when a screen is exposed by virtue of a window overlaying 
it being closed or deselected, and called for exit when a window is popped up or se
lected over the screen in question.12 This is not the default behavior because it would 
introduce incompatibilities with earlier releases of JAM. 

If you are not concerned with compatibility with earlier releases, it is strongly sug
gested that you enable the calling of screen functions when screens are exposed or hid
den. This may be done either by setting the EXPHIDE_OPTION to ON_EXPHIDE in 
the setup fIle (refer to the Configuration Guide) or making the following library func
tion call near the beginning of your application: 

SID_option (EXPHIDE_OPTION, ON_EXPHIDE) 

Screen functions specified for screen entry via the Screen Editor are invoked after any 
installed default screen function. Screen functions specified for screen exit via the 
Screen Editor are called before any installed default screen function. 

Screen Function Arguments 
All screen functions receive two arguments: 

1. A pointer to the null terminated character string containing the screen 
name. 

2. An integer bitmask containing contextual information about the cir
cumstances under which the function was called. 

The contextual information in the second parameter includes the following bit masks: 

-K_ENTRY 
If this is set (i.e. if (param2 & K_ENTRY) ), the function was called 
on screen entry. 

If this is set (i.e. if (param2 & K_EXIT) ), the function was called 
on screen exit 

12. Not that exposeJhide procesSlDg is not performed when error windows are opened or closed 

JAM Release 5.03 20 Nov 92 Page 27 



JAM Programmer's Guide 

eK_EXPOSE 
If this is set (i.e. if (pararn2 & K_EXPOSE) ), the function was 
called because the screen was selected or deselected, or because a window 
was popped over the screen or a window that used to be overlaid on the 
screen was closed 13 • 

Mask for the bits indicating which event caused the screen to be exited. The 
intersection of this mask and the second parameter to the screen function 
should be tested for equality against one of the two remaining values be
low: 

eK_NORMAL 
If set (i.e. if «param2 & K_KEYS) == K_NORMAL) ), a "nor
mal" call to sm_close_window caused the screen to close. 

Ifset(Le.if «param2 & K_KEYS) == K_OTHER) ),thescreen 
is being closed because another form is being displayed or because 
sm_resetcrt is called. 

Screen Function Return Codes 
Screen functions should return 0 if they do not reposition the cursor. or change the 
screen. If a screen function does move the cursor, it should have a non-zero return val
ue, which prevents sm_inpu t from repositioning the cursor again. 

Example Default Screen Function 
The following screen function, intended to be installed as the default screen function 
for the entire application, maintains information about how long screens are open, and 
the aggregate amount of time they are active. Note the use of the P _USER pointer, a 
general purpose pointer you can manipulate that JAM will associate with an open 
screen. 

/* 
* This function is designed to keep track of the length of time 
* that the user has spent with a screen open and active. It 
* is intended to be installed as the default screen function 
* for an application. Note that in the example, the times 
* are shown on the status line, but they could be logged to 
* a file for time management analysis. 

13. H both K_ENTRY and K_EXPOSE are set, the screen is being uncovered and activated by virtue of an 
overlaid Window being closed. Hbolh K_EXIT and K_EXPOSE are set, the screen is being covered and deacti
vated by virtue of a window being popped up over it. 

Page 28 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

* 
* The following declarations/deflnitions would typically be 
* found in the main function source module or in the source 
* file funclist.c: 
* 
* extern int dscreen ( ) ; 
* struct fnc_data dscreen_struct = 
* { 0, dscreen, 0, 0, 0, ° } ; 
* 
* The following line of code, typically found in the main 
* function or in the function sm_do_uinstalls(), installs 
* this function as the default screen function: 
* 
* 
* 

DFLT_SCREEN_FUNC, &dscreen_struct, 
(int *) ° ) ; 

* 
* For this function to operate correctly, the Screen Manager 
* option to call hook functions on EXPOSE and HIDE must also 
* be in place. That is set, generally in the main function, 
* with the following call: 
* 
* sm_option ( EXPH IDE_OPTION , ON_EXPHIDE ) ; 
* 
* To store aggregate times, this function utilizes the JAM 5.0 
* feature that allows a user to associate a pointer with a 
* screen. 
* 
* The time() call used in this function is ANSI C. 
* On UNIX platforms it returns the number of seconds elapsed 
* since January 1, 1970, GMT. 
*/ 

/* Include Files */ 
linclude ·smdefs.h· 
linclude ·smglobs.h
linclude <time.h> 

/* Screen Manager Header File */ 
/* Screen Manager Globals */ 
/* ANSI time(, Header File */ 

/* Data structure to hold aggregate times by screen */ 
struct my_info 
{ 

} i 

int 

time_t opentime i 

time_t acttime i/* Time 
double usedtime i 

double totaltime i 

/* Time screen was opened */ 
screen was activated */ 
/* Aggregate time active */ 
/* Aggregate time open */ 

dscreen ( name, context ) 
char *name i /* Screen Name */ 
int context i /* Context for function call */ 
{ 

/* Time buf pointer */ 

JAM Release 5.03 20 Nov 92 Page 29 



JAM Programmer's Guide 

Page 30 

char *action_verb = 
" inspecting" ; 
time_t current_time 
int do_free = 0 ; 

/* Text of context */ 

/* Flag, set to free 
memory */ 

char msg_buf[ 128 /* Message buffer */ 

/* 
* We make assumptions here: screens that are not named 
* are unimportant and should not have logging done. 
* This will exclude dynamically created message 
* wlndows. 
*/ 
if ( ( ! name ) I I 
( 

I *name ) ) 

return ( 0 

/* Get the current time. ( ANSI Standard call ) */ 
current_time = time ( (time_t *)0 ) ; 

/* Get the pointer to time structure 
associated with this screen */ 

my_info-Ptr = (struct my_info *)sm-pinquire 

/* Figure out which context we are called in. */ 
if context & K_ENTRY ) 
{ 

if context & K_EXPOSE 
{ 

} 
else 
{ 

/* 
* Screen exposed (activated) when 
* overlying window was closed. 
* Set context string verb and 
* add to the aggregate open time. 
*/ 
action_verb = "activating" 
my_info-ptr->totaltime = 

my_info-ptr->totaltime + 
difftime ( current_time, 

my_info-ptr->opentime 

/* Screen opened. */ 
action_verb = "opening" 

/* Allocate memory for time structure */ 
my_info-ptr = 

(struct my_info *) 
malloc ( sizeof ( 

JAM Release 5.03 20 Nov 92 

I 



else 
{ 

} 

} 

struct my_lnfo 
if ( ! my_info-Ptr 
{ 

Chapter 2: Hook Functions 

sm err reset ( UNo memory" ) 
sm_cancel ( 0 ) ; 

} 

/* Associate the buffer wlth screen */ 
sm-pset ( P_USER, (char *)my_info-ptr ) 

/* Set initial time values */ 
my_info-ptr->opentime = current_time 
my_info-ptr->usedtlme = 0 i 

my_info-ptr->totaltime = 0 ; 

/* Set initial value of aggregate active time */ 
my_info-ptr->acttime = current_time ; 

if context & K_EXPOSE ) 
{ 

else 
{ 

/* Screen overlaid with window. */ 
action_verb = "deactivating- i 

/* Screen closed. */ 
action_verb = ·closing" ; 

/* Set flag to free the time structure */ 
do_free = 1 

/* Calculate new aggregates. */ 
my_info-ptr->usedtime = 

my_info-ptr->usedtime + 
difftime ( current_time, 
my_info-ptr->acttime ) ; 

my_info-ptr->totaltime = 
my_info-ptr->totaltime + 
difftime ( current_time, 
my_info-ptr->opentime ) ; 

/* Format the message. */ 
sprintf ( msg_buf, "Now %s screen %s." 

• Seconds active: %.If.-
• Seconds open: %.If.·, 

action_verb, name, 
my_info-ptr->usedtime, 

JAM Release 5.03 20 Nov 92 Page 31 



JAM Programmer's GUide 

2.2.3 

my_info-ptr->totaltime ) ; 

/* If time structure memory should be freed, free it. */ 
lf ( do_free ) 
{ 

free ( my_info-ptr ) ; 

/* Output the message. Could be to log file, 
here it is to stat llne */ 

sm_err_reset ( msg_buf ) ; 

return ( 0 ) 

Control Functions 
Control functions are called by the JAM Executive in the processing of control strings 
and by JPL routines that call C functions. The JAM Executive calls control functions, 
if specified and installed, when control strings that start with a caret ("') are executed. 
JPL procedures may also execute control functions by using the call verb. 

There is no default control function. Control functions must be installed in a function 
list. JPL procedures may be directly specified as control functions by preceding the 
name of the procedure in a control string with the string "jpl ". JPL procedures speci
fied in control strings in this manner need not be placed in the function list. 

A number of control functions of general use are built in to JAM and pre-installed in 
the control function list. These built-ins can be used by any JAM application. They are 
listed in Chapter 4. 

Control functions to be placed on the control function list are installed as CON
TROL_FUNC. 

Control Function Invocation 
Control functions are called by the JAM Executive when a control string starting with 
a caret is processed. S ucb control strings are often attached, via the Screen Editor, to 
function keys or to menu selections in control fields. In addition, the JPL verb call 
can be used to invoke functions installed on the control function list14• 

14. The IPL call verb does not execute control strings. It does look for functions to call on the control func
tion IisL 

Page 32 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

Control Function Arguments 
Control funcuons receive a single argument, namely a pointer to a copy of the control 
string that invoked them without the leading caret It is only the rust word on the con
trol string that Identifies the function, the rest of the string may contain arbitrary data 
that can be parsed and used as arguments. 

Control Function Return Codes 
Control functions may return any integer. The return value from a control function may 
be used for conditional control branching in target lists (see the Author's Guide). If the 
function returns a function key that is not a value in the target list, JAM executes the 
control string associated with the key. 

Example Control Function List 
The following example shows two closely related functions that would be appropriate 
for inclusion on a control function listl5. 

/* 
* Two functlons intended as installed CONTROL_FUNe functions 
* follow below. The function mark_Iow() wlil cause all fields on 
* the current screen which have numeric values less than zero to 
* be marked with an attribute change. The function mark_high() 
* will cause all fields on the current screen which have numeric 
* values higher than 1000 to be marked. 
* 
* The functions are installed so they can be called from JAM 
* control strings. The following definltions and declarations to 
* support the installatlon are generally found in the maln 
* function source module or in the source flle funcllst.C: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

extern int mark_low ( ) ; 
extern int mark_hlgh ( ) ; 
struct fnc_data mark_funcs[] = { 

} ; 

{ "mark_low·, mark_low, 0, 0, 0, 0 }, 
{ "mark_high", mark_hlgh, 0, 0, 0, 0 } 

int mark_count = sizeof ( mark_funcs ) / 
sizeof ( struct fnc_data ) ; 

* The installation of this function list is completed with the 
* following line of code, typically found in the main function 
* or in the function sm_do_uinstalls() found in funcllst.C: 
* 

15. The same functionality shown here is shown in a better example in the secbon on prototyped functions. 
See section 2.3. 

JAM Release 5.03 20 Nov 92 Page 33 



JAM Programmer's Guide 

* 
* Note that both mark_Iow() and mark_high() call the static 
* function mark_flds() which actually does the work. This may 
* seem like unnecessary indirection, but it means that the 
* control strings used are very simple, as shown here: 
* 
* "mark_low 
* "mark_high 
* 
* As an alternative, you could prototype a single function. 
*/ 

/* Include Files */ 
linclude ·smdefs.h
linclude ·smglobs.h" 

/* Screen Manager Header File */ 
/* Screen Manager Globals */ 

/* Macro Definitions ... */ 
/* Attributes used to mark fields */ 
Idefine MARK_ATTR REVERSE I HILIGHT I BLINK 
Idefine MARK_GT 1 /* Indicates -Greater Than- */ 
Idefine MARK_LT -1 /* Indicates ·Less Than • */ 

static int mark_flds ); 

int 
mark_low ( control_string ) 
char *control_string i /* Control string text passed by JAM */ 
{ 

} 

int 

/* Mark all fields less than zero */ 
return ( mark_flds ( 0, MARK_LT ) ) i 

mark_high ( control_string ) 
char *control_string i/* Control string text passed by JAM */ 
{ 

} 

/* Mark all fields greater than one thousand */ 
return ( mark-flds ( 1000, MARK_GT ) ) ; 

static int 
mark_flds ( bound, operator ) 
int bound; /* Boundary on fields to mark */ 
int operator; /* Operator, MARK_GT or MARK_LT */ 
{ 

Page 34 

int fld_num ; 
int num_of_flds 

/* Field Number */ 
/* Number of Fields */ 

/* Determine number of fields */ 
num_of_flds = smLinquire ( SC_NFLDS 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

} 

/* cycle through all the fields on the screen */ 
for ( fld_num = 1 ; fld_num <= num_of_flds fld_num++ 
{ 

} 

/* Depending on the operator ... */ 
switch ( operator ) 
{ 

/* MarK fields that are 
greater than the 
g~ven bound. */ 

~f ( sm_dblval ( fld_num 
> ( double ) bound ) 

} 

breaK; 

sm_chg_attr ( fld_num, 
MARK_ATTR ) ; 

case MARK_LT: 

} 

/* MarK fields that are less 
than the g~ven bound */ 

if ( sm_dblval ( fld_num ) 
< ( double ) bound ) 

{ 

} 

breaK; 

sm_chg_attr ( fld_num, 
MARK_ATTR ) ; 

return ( 0 

Advanced Control Function Example 
The following example shows how a number of entries in a control function list might 
map to the same function which uses the identifying string as an implied fIrst argument. 
Significant argument processing is done in this example: 

/* 
* The following function will create a report about the 
* state of the current field, screen, window stack, or display. 
* The report can be appended to a file, passed as an argument 
* to an operating system command, piped to an operat~ng system 
* command, or displayed in a JAM message window. 
* 
* Th~s function is intended to be installed in a function list 
* for JAM control functions, namely the CONTROL_FUNC list. When 
* a control string calling this function is invoked, the entire 

JAM Release 5.03 20 Nov 92 Page 35 



JAM Programmer's GUide 

* control string is passed as an argument to this function. The 
* name with which the function is invoked is an implied argument, 
* and specifies which report should be generated: field, screen, 
* window stack, or dlsplay. The remainder of the control string 
* specifles what * should be done with the report output. This 
* could be one of the following four categorles: 
* 
* 1. If there is nothing on the control string following 
* the name, the report is printed in a pop-up JAM 
* message window. For example, the following 
* control string will generate a report about the 
* current field and display the report in a pop-up 
* message window: 
* "'rep_field 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ... 

* 
* 
... 

* 
* ... 

* ... 

* 
* 
* 

2. If the arguments start with an exclamation pOlnt (!), 
the rest of the control string is taken to be an 
operating system command. In this case, a 
temporary file with the report will be created, 
and the file name will be appended to the 
operating system command. However, if the 
operating system command has a tilde (-) in it, 
the tilde will be replaced with the name of the 
file before the command is lnvoked. In any event 
the file is deleted after the command is invoked. 
Two example control strings that would cause a 
screen report to be printed on a UNIX system are 
shown below: 

"'rep_screen !lp -c -s 
"'rep_screen !lp -c - > /dev/null 2>&1 

3. If the arguments start with a vertical bar (I), the 
rest of the control string is taken to be an 
operating system command. In this case, however, 
the report will be created as the standard input 
of the specified command. Many operating systems 
call this piping. The example shown here will 
cause a window stack report to piped through the 
UNIX command tail and printed, so that only 20 
lines of output will be printed: 

"'rep_wstack Itail -20 I lp -c -s 

4. If the arguments do not start with a vertical bar or 
with an exclamation point, the assumption is that 
it is a file that is named. The file will be 
created if it does not exist, or appended to if 
it does exist. The following example will append 
a display terminal report to the file report.fil: 

"'rep_term report.fil 

* This function installation is preceded with the following 
* definitlons and declarations, commonly found either in 

Page 36 JAM Release 5.03 20 Nov 92 



Chapter 2' Hook Functions 

* funcl1st.C or 1n the main source module: 
* 
* extern int report ( ) ; 

* struct fnc_data report_funcs [ I = { 

* { "rep_field" , report, 0, 0, 0, 
* { " rep_screen" , report, 0, 0, 0, 
* { "rep_wstack" , report, 0, 0, 0, 
* { II rep_term" , report, 0, 0, 0, 0 
* } ; 
* 1nt report_count = slzeof ( report_ funcs 
* sizeof ( struct fnc_data 
* 

0 }, 

0 }, 

0 }, 
} 

/ 

* Notice that the funct10n 11st 1S constructed with four function 
* entries with different names all of which refer to the same 
* function pointer. Since, in the case of CONTROL_FUNC 
* functions, the entire control string is passed to the called 
* function in a string, the name with which the function was 
* invoked can (and in this case does) serve as an implied 
* argument. 
* 
* The actual installation of the function is done with the 
* following library routine call, generally found either in 
* the main routine or in sm_do_uinstalls(), defined in 
* funclist.c: 
* 
* slTLinstall 
* 
* 
*/ 

/* Include Files */ 
#include "smdefs.h" 
#include "smglobs.h" 

int 
report ( report_type 
char *report_type ; 

{ 

CONTROL_FUNC, report_funcs, 
&report_count ) ; 

/* Screen Manager Header File */ 
/* Screen Manager Globals */ 

/* Text of invoking control 
string -- later 
truncated to the 
name of the desired 
report */ 

char *report_out ; /* Report output designation */ 
char *fn = NULL ; /* Name of output file */ 
char *ptr, *ptr1 ; /* Character pointers */ 
char msg_buf[ 128 ] /* Message buffer */ 
FILE *fp ; /* File pointer for output */ 
int size ; /* Size of output file */ 
int cur_no /* Current field number */ 
int select /* Current window stack index */ 

/* Set the report output designator to the control string 

JAM Release 5.03 20 Nov 92 Page 37 



JAM Programmer's GUide 

Page 38 

arguments */ 
for report_out = report_type 

*report_out && ( ! isspace 
report_out++ 1 

UNSIGN(*report_outl ) ) 

/* If control string has arguments .... */ 
1f ( *report_out ) 
{ 

/* Truncate the report type w1th a terminator */ 
*report_out = '\0'; 

/* Gobble up unnecessary white space */ 
for ( report_out++ ; 

*report_out && 
( isspace ( *report_out ) 1 
report_out++ 1 ; 

/* Based on what output type we designated: */ 
switch ( *report_out 1 
{ 
case '!' 

/* os command. Open temp file */ 
fn = tempnam ( NULL, "rprt" ) 
fp = fopen ( fn, "w" ) ; 
break 

case ' I' : 

default 

} 

/* Pipe. Open the pipe */ 
fp = popen ( report_out + 1, 

"w· 1 ; 
break 

/* Other. Open the file */ 
fp = fopen ( report_out, "a+" 
break ; 

/* If we could not open the file, show error */ 
if ( ! fp 1 
{ 

} 

sprintf ( msg_buf, 
·Cannot open stream for %s.", 
report_out 1 ; 

sm_err_reset ( msg_buf 1 ; 
return ( -1 1 ; 

/* If no report output specified, open temp file for 
storing message window stuff. */ 

else 

JAM Release 5.03 20 Nov 92 



fn = tempnam ( NULL, "rprt" 
fp = fopen ( fn, "W+" I ; 
report_out = "" 

Chapter 2: Hook Functions 

/* Now, based on the report_type, which is the name 
with which the function was 1nvoked, create 
the reports. Note that all newlines are 
preceded with spaces, this is so that in the 
case of the message w1ndows we can replace 
all space-newlines w1th %N, the newline 
indicator for JAM windows. */ 

if strcmp ( report_type, "rep_field" ) ) 
{ 

} 

/* Output a field report */ 
fprintf ( fp, " \n \nField Report: \n" 

/* Field Identifier and contents */ 
fprintf ( fp, "\tFIELD: %d (%s[%d]1 = %s \n", 

cur_no = sm_getcurno ( I, 
sm_name ( cur_no I, 
sm_occur_no ( I, 
sm_fptr ( cur_no I I 

/* Field sizes */ 
fprintf ( fp, "\tLENGTH: onscreen: %d " 

"Max: %d \n", 
size = sm_finquire ( cur_no, FD_LENG I, 
sm_finquire ( cur_no, FD_SHLENG ) 
+ size I ; 

fprintf ( fp, "\t# OCCURRENCES: onscreen: %d " 
"Max: %d \n", 
sm_finquire ( cur_no, FD_ASIZE I, 
sm_max_occur ( cur_no I I ; 

else if ( ! strcmp ( report_type, " rep_screen" ) I 
{ 

/* Output screen report */ 
fprintf ( fp, " \n \nScreen Report: \n" I 

/* Screen Name */ 
fprintf ( fp, "\tSCREEN: %s \n", 

sm-pinquire ( SP_NAME ) ) ; 

/* How much of screen lS v1sible */ 
fprintf ( fp, "\t%% VISIBLE IN VIEWPORT: %d \n", 

100 * 
( sm_inquire ( SC_VNLINE ) * 
s~inquire ( SC_VNCOLM ) ) / 
( sm_inquire ( SC_NCOLM ) * 

JAM Release 5.03 20 Nov 92 Page 39 



JAM Programmer's GUide 

Page 40 

else if ( I strcmp ( report_type, urep_wstack n I I 
{ 

} 

1* Output Wlndow stack report *1 
fprlntf ( fp, n \n \nWindow Stack Report: \n" I 

1* CYcle through all the wlndows. *1 
for ( select = 0 

} 

sm_wselect ( select ) == select ; 
select++ ) 

1* Wlndow number ... *1 
fprlntf ( fp, " \n\tWindow %d: \n", 

select ) ; 

1* Screen name *1 
fprintf ( fp, "\t\tscreen: %s \nU, 

sm-pinquire ( SP_NAME ) ) 

1* Number of fields and groups */ 
fprlntf ( fp, n\t\t# of Fields: %d " 

n# of Groups: %d \n", 
sm_inquire ( SC_NFLDS ), 
sm_inquire ( SC_NGRPS ) ) 

sm_wdeselect ( ) ; 

else If ( I strcmp ( report_type, "rep_term" ) ) 
{ 

1* Output display terminal report */ 
fprintf ( fp, n \n \nTerminal Report: \nn ) 

1* Terminal Type */ 
fprintf ( fp, "\tTERM TYPE: %s \n", 

sm-pinquire ( P_TERM ) ) ; 

1* Display mode */ 
If ( sm_inqulre ( I_NODISP ) ) 

fprintf ( fp, "\tDISPLAY OFF \nn ) ; 
else 

fprintf fp, n\tDISPLAY ON \n" ) ; 

1* Input mode *1 
if ( sm_inquire ( I_INSMODE ) ) 

fprintf ( fp, "\tINSERT MODE \n" ) 
else 

fprintf fp, "\tTYPEOVER MODE \nn 

1* Block mode *1 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

} 
else 
{ 

if ( sm_inquire 
fprintf 

I_BLKFLGS I I 
fp, R\tBLOCK MODE \n R I 

1* Physical display Slze *1 
fprintf ( fp, N\tDISPLAY SIZE: %d x %d \nN , 

sm_inquire ( I_MXLINES I, 
sm_inqulre ( I_MXCOLMS I I 

1* Unrecognized report type *1 
sprintf ( msg_buf, -Illegal report type %SR, 

report_type I ; 
sm_err_reset ( msg_buf I ; 
fprintf ( fp, R%S \n \nR , msg_buf 
return ( -3 I ; 

1* Once again, based on the type output ... *1 
switch ( *report_out I 
{ 
case 'I' 

1* It was a pipe, so close it. *1 
pclose ( fp ) ; 
s~err_reset ( ·Pipe successful· I 
break 

case '!' : 
1* It was an O/S command. Close file ... *1 
fclose ( fp ) i 

1* Gobble up the exclamation point *1 
report_out++i 

1* Look for tildes *1 
if ( ptr = strchr ( report_out, '-' I ) 
{ 

} 

else 
{ 

} 

1* Found the tilde. Substitute the 
file name for it. */ 

*ptr = '\0' i 
sprintf ( msg_buf, -%s%s%s·, 

report_out, fn, ptr+l I i 

1* No tilde. Append file name to 
O/S command. */ 

sprintf ( msg_buf, ·'s %s·, 
report_out, fn ) i 

/* Do the command. */ 

JAM Release 5.03 20 Nov 92 Page 41 



JAM Programmer's GUide 

Page 42 

system ( msg_buf ) ; 

/* Delete temp file and free its name. */ 
remove ( fn ) ; 
free ( fn ) ; 
sm_err_reset ( ·Command Invoked" ) 
break i 

case '\0': 
/* Message window. Get size of file ... */ 
size = ftell ( fp ) ; 

/* Allocate memory for it. */ 
ptr = malloc ( size + 1 ) ; 

/* Rewind the file */ 
fseek ( fp, SEEK_SET, 0 ) i 

/* Read it into the malloced buffer. */ 
fread ( ptr, sizeof ( char I, size, fp ) 

/* Close and delete file, free file name */ 
fclose ( fp ) 
remove ( fn ) 
free ( fn ) 

/* null terminate memory buffer of report */ 
ptr[size] = '\0'; 

/* Replace all space-newlines with %N */ 
for ( ptrl = ptr ; 

{ 

} 

ptr1 = strchr ( ptrl, '\n' ) i 

ptrl++ ) 

ptrl[-l]='%'i 
ptr1[O]='N' ; 

/* Pop up the message window -- flushed with 
call to err_reset */ 

s~mwindow ( ptr, -1, -1 ) ; 
s~err_reset ( -Report Done .. Hit Space to • 

-continue- I 

/* Close message window */ 
sm_close_window ( I i 

/* Free up the malloced buffer. */ 
free ( ptr ) ; 
break ; 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

} 

2.2.4 

default 
/* File appended, just close it. */ 
fclose ( fp ) ; 
sm_err_reset ( "F~le appended" ) 
break ; 

return ( 0 ) ; 

Key Change Functions 
The key change function is called by the Screen Manager as keys are read from the 
keyboard from within the library routine sm_getkey, which is called in the input pro
cessing for all keys by JAM. Only one individual keychange function may be installed 
at a time. 

Keys placed on the queue with the library routine sm_ungetkey or with the built-in 
control function "jm-keys are not processed by the installed key change function. 

The key change flDlction is installed as KEYCHG_FUNC. 

Key Change Function Invocation 
The key change function is called exactly once for every key read in from the keyboard 
or supplied by the playback hook function described in section 2.2.10. 

Key Change Function Arguments 
The key change flDlction is passed a single integer argument, namely the JAM logical 
key that was read from the keyboard or received from the playback hook function. 

Key Change Function Return Codes 
The key change function returns the key to be substituted for the one passed as an argu
ment. Any key returned to sm_getkey will be returned by sm_getkey to its caller. 
However, if the key change function returns 0, sm_getkey will get the next key from 
the keyboard16• 

Example Key Change Function 
The following key change function intercepts times when the user enters an exclama
tion point or strikes the EXIT key. Another example key change function is shown as 
part of the group flDlction example on page 47. 

16. See the bbrary routine sm_keyopt ion for a different method of changIng the function of a logical key. 

JAM Release 5.03 20 Nov 92 Page 43 



JAM Programmer's Guide 

1* 
* Th1S funct10n, installed as an applicat10n keychange function, 
* w1ll cause sm_getkey to intercept two keys, the exclamation 
* p01nt and the logical EXIT key. When the user types an 
* exclamation pOlnt, this funct10n w1ll ask if an operating 
* system shell is wanted. If so, a shell 1S provided. 
* If the user types EXIT, the function ensures that the user 
* really wants to EXIT before returning the EXIT back to 
* sm_getkey. 
* 
* Note that if the user does escape to the shell, or if the user 
* does not want to EXIT, this function gobbles up the keystroke. 
* If the user does not want the shell, or really does want to 
* EXIT, the keystroke is passed back to sm_getkey. 
* 
* Note also the preprocessor directives about whether or not the 
* JAM executive is in use. If the JAM Executive 1S in use, we do 
* not bother querying about the EXIT if there are control strings 
* associated with EXIT. In addition, we can use the standard JAM 
* operating system escape. 
* 
* This funct10n is installed by includ1ng the following 
* definitions and declarations, generally in the ma1n function 
* source file or in the source file funclist.c: 
* 
* extern int keychg ( ) ; 
* struct fnc_data keychg_struct = 
* { 0 , keychg, 0 , 0 , 0 , 0 } ; 

* 
* and with the following line of code, generally near the top of 
* the main function or in the funclist.c function 
* sm_do_uinstalls(): 
* 
* 
* 
*1 

1* Include Files *1 
Binclude ·smdefs.hw 
Binclude ·smkeys.h· 

KEYCHG_FUNC, &keychg_struct, (int *) 0 ) 

1* Screen Manager Header File *1 
1* Screen Manager Logical Keys *1 

Bdefine EXIT CONFIRM wAre you sure you want to EXIT? (yin)" 
Bdefine SHELL_CONFIRM -Are you sure you want to go to OS? (yin)· 

int 
keychg ( the_key ) 
int the_key; 1* Key read from keyboard by s~getkey *1 
{ 

Page 44 

static int recursive 1* Flag ensuring no recursion. *1 

1* First ensure that we are not called recurslvely *1 
if ( recursive ) return ( the_key ) ; 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

/* Set recursive flag */ 
recursive++ 

/* Based on the key read from the keyboard ..... */ 
switch ( the_key 
{ 
case EXIT: 

/* 
* If the read key is an EXIT, then make 
* sure that there are no control 
* strings associated with EXIT and 
* confirm that the user really wants to 
* EXIT. If the user does not want to, 
* set the key to zero. 
* 
* The JAM_EXECUTIVE macro is not defined 
* in any JAM header file. It is used 
* here to distinguish between applications 
* that use the JAM Executive and those that. 
* don't. 
*/ 
if( 

Difdef JAM_EXECUTIVE 

Dendif 

sm_getjctrl 
sm_getjctrl 

EXIT, 0 
EXIT, 1 

&& 
&& 

sm_query_msg ( EXIT_CONFIRM 
-- 'n' ) ) 

{ 

} 
break 

case 'I': 
/* 
* If the read key is an exclamation 
* point, confirm that the user really 
* wants to escape to the shell. 
* If so, escape to the shell and gobble 
* up the key. If not, merely pass the 
* key on back. 
*/ 
if ( sm_query~sg ( SHELL_CONFIRM ) 

-- 'y' ) 
{ 

/* SHELL UNDER UNIX */ 
system ( ·sh -i· ) ; 

sllLreturn ( ) ; 

JAM Release 5.03 20 Nov 92 Page 45 



JAM Programmer's GUide 

} 

2.2.5 

} 
break 

/* Clear the recursion flag. */ 
recurSlve = 0 ; 

/* Pass the key back up. (If it is changed to zero, 
we gobbled It.) */ 

return ( the_key ) ; 

Group Functions 
The Screen Manager calls group functions, if specified and installed, on entry, exi~ and 
validation of radio buttons and checklists. Calls to group entry and group exit functions 
are guaranteed to be paired for each group. 

A single default group function may be installed. It will be invoked on entry, exit, and 
validation for every group. Group functions specified as entry, exit, or validation func
tions for a given group in the Screen Editor must be installed into the group or prototype 
function list The default group function is installed separately from the list, and need 
not appear in the list. JPL procedures may also be directly specified as group fimctions 
in the Screen Editor by preceding their name with the string "jpl ", for example jpl 
groupfunc. Those procedures should not be in the function list. 

The default group function is installed as DFLT_GROUP _FUNC. Group functions to be 
placed on the group function list are installed as GROUP _FUNC. 

Please note that field validation functions for fields that are members of groups or me
nus are called at selection and, in the case of checklists, deselection as discussed above 
in section 2.2.1 on page 19. 

Group Function Invocation 
Group functions are called for group entry whenever the cursor enters a group, includ
ing the times when the group containing the cursor is activated by virtue of an overlying 
window being closed. Group functions are called for group exit whenever the cursor 
leaves a group, including the times when the group is left because a window is popped 
up over the existing screen. Group functions are called for validation whenever the 
group is validated. This occurs at any of the following times: 

Page 46 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

• As part of group validation, when you exit the group by hitting TAB or 
making a selection from an autotab group. The BACKTAB and arrow 
keys do not normally cause validation. 

• As part of screen validation when the XMIT key is struck. 

• When the application code calls library routines for group validation. 

Group functions specified for group entry via the Screen Editor are invoked after any 
installed default group function. Group functions specified for group exit or validation 
via the Screen Editor are called before any installed default group function. 

Group Function Arguments 
All group functions receive two arguments: 

1. A pointer to the null terminated character string containing the group 
name. 

2. An integer bitmask containing contextual information about the val
idation state of the group and the circumstances under which the 
function was called. 

The bits that make up the bitmask for group functions are identical to those that are 
passed in the fourth argument to field functions, and are outlined in section 2.2.1 on 
page 20. 

Group functions are called for validation regardless of whether the group was previous
ly validated. They may test the VALIDED and MDT bits to avoid redundant processing. 

Group Function Return Codes 
Group functions called on entry or exit should return O. Group functions called for val
idation should return 0 if the group selections pass the validation criteria. Any non-zero 
return code should indicate that the group does not pass validation. If the returned value 
is 1, the cursor is not repositioned to the offending group. Any other non-zero return 
value causes the cursor to be repositioned to the group that failed the validation. 

Example Default Group Function 
The following group function, intended to be installed as the default group function for 
the entire application, installs a keychange function while the cursor is in groups that 
use check boxes: 

/* 
* TWo functions are defined in this module. The first, dgroup(), 
* is intended to be installed as a default group function, to be 
* called when any group is entered, exited, or validated if a 
* specific function is not spec1fied for the group. The second, 

JAM Release 5.03 20 Nov 92 Page 47 



JAM Programmer's Guide 

* keychg(), is a keychange function to be installed on group 
* entry and de-installed on group exit by dgroup(). 

* Note that pre-existing keychange functions are properly stacked 
* by dgroup(). keychg() also chains existing keychange functions 
* along, but it is assumed that they are written in c. 
* pre-exlsting keychange functions in some other supported 
* third generation language may not be properly chained by this 
* function. 
* 
* These functions enable selection of group fields by pressing 
* the ·X· key. They are designed for groups that have checkboxes, 
* since it sometimes makes more sense to use the ·x· key for 
* selection than the NL key. 
* 
* The function would be installed by placing the following 
* definitions and declarations in the main function source module 
* or in the source file funclist.c: 
* 
* extern int dgroup ( ) ; 
* struct fnc_data dgroup_struct = 
* { 0, dgroup, 0, 0, 0, 0 } ; 
* 
* and the following line of code in the main function itself, or 
* in the function sm_do_uinstalls() in the file funclist.c: 
* 
* 
* 
* 
*/ 

DFLT_GROUP_FUNC, &dgroup_struct, 
(int *) 0 ) ; 

/* Include Files */ 
.include ·smdefs.h· 
.include ·smkeys.hR 

/* Screen Manager Header File */ 
/* Screen Manager Logical Keys */ 

static int keychg ( ) ; 
static struct fnc_data o_keychg ; 
static struct fnc_data *fnc-ptr 
static struct fnc_data keychg_struct 

= { 0, keychg, 0, 0, 0, 

int 

/* Old keychg */ 
/* Hook Pointer */ 
/* New keychg */ 
o }; 

dgroup ( name, context 
char *name ; 
int context ; 

/* Group Name */ 
/* Context bits */ 

{ 

Page 48 

/* If the group does not have check boxes, 
we don't want this. */ 

if ( ! sm_n_edit-ptr ( name, CKBOX ) ) 
return ( 0 ) ; 

/* If called on group entry .... */ 

JAM Release 5.03 20 Nov 92 



Chapter 2' Hook Functions 

if context & K_ENTRY 
{ 

} 

/* Install the new keychange funct~on */ 
Enc-ptr = sm_~nstall ( KEYCHG_FUNC, 

&keychg_strucc:, 
(~nt *) 0 ) ; 

/* IE there was an old one, store ~t away. */ 
~E ( Enc-ptr ) 
{ 

else 
{ 

memcpy ( (char *)&o_keychg, 
(char *) Enc-ptr, 
s~zeoE ( struct Enc_data ) ) 

memset ( (char *)&o_keychg, 0, 
sizeoE ( struct Enc_data ) 

/* IE called on group exit ...... */ 
else ~f ( context & K_EXIT ) 
{ 

/* IE there was an old keychange function */ 
~f ( fnc-ptr ) 
{ 

} 
else 
{ 

/* Re-~nstall it. */ 
sm_install ( KEYCHG_FUNC, &o_keychg, 

(int *) 0 ) ; 

/* Get rid of the current one anyway. */ 
sm_~nstall ( KEYCHG_FUNC, NULL, 

(int *) 0 ) ; 
} 

} 

return ( 0 ) 
} 

static int 
keychg ( key 
int key 
{ 

/* If there was an old keychange funct~on ..... */ 
if ( o_keychg.fnc_addr ) 
{ 

/* Chain the old keychange funct~on. */ 
key = ( o_keychg. fnc_addr ) ( key ) ; 

JAM Release 5.03 20 Nov 92 Page 49 



JAM Programmer's Guide 

} 

2.2.6 

/* 

/* WARNING: This is not completely general, S1nce 
old keychange functIons not wr1tten 1n C 
may not be called properly. */ 

* Now do the new keychange. Bas1cally, we want to select 
* group members by typIng HXH, move the cursor to the 
* next group member immediately after selection, and have 
* the NL key move to the next selection. 
*/ 
switch ( key 
{ 

case 'x' 
case 'X' 

key = NL 
break 

case NL : 

} 

key = ' , 
break 

return ( key ) ; 

Asynchronous Functions 
The installed asynchronous function is called periodically by the Screen Manager while 
the keyboard input routine waits for user input. It can be used to poll or othelWise ma
nipulate communications resources, or to update the display on the screen. Only one 
asynchronous function may be installed at a time. 

The asynchronous function is installed individually as ASYNC_FUNC. 

Asynchronous Function Invocation 
The asynchronous function is called from the very lowest level of JAM keyboard input 
When the asynchronous function is installed, the device driver clock on the terminal 
input device is set to time out on its character read operation, and if a character is not 
read in that time interval the asynchronous function is invoked before another character 
read operation is attempted. The time out interval is specified at installation in the 
intrn_use field of the fnc_data structure. That time interval is measured in tenths 
of seconds. The maximum interval is 2SS (2S.5 seconds). 

Page 50 JAM Release 5.03 20 Nov 92 

i 



Chapter 2: Hook Functions 

Asynchronous Function Arguments 
The asynchronous functton is passed no arguments. 

Asynchronous Function Return Codes 
The asynchronous functton should generally return O. If it returns -I, it will not be 
called again until at least one additional character has been read from the keyboard. The 
asynchronous function may return a key, which will be returned to sm_getkey and on 
to the application. If that key is a JAM logical key, no further translation will be done. 
If the asynchronous function returns a data character, JAM will interpret it as a physical 
keyboard stroke. 

Example Asynchronous Function 
The following example shows an asynchronous function that maintains a display of the 
current time on the status line. It should be installed to be called once per second. 

/* 
* Th1s function, when run from a JAM application, will output the 
* current time at the end of the status line. 
* 
* It can be installed with the following declarations and 
* definitions, generally found in the main function source file 
* or in the file funclist.c: 
* 
* 
* 
* 
* 

extern int async ( ) 
struct fnc_data async_struct = 

{ 0, async, 0, 10, 0, 0 } ; 

* and the following line of program code, possibly 1n the main 
* function, or in the function sm_do_uinstalls() in the f1le 
* funclist.c: 
* 
* 
* 

sm_install ( ASYNC_FUNC, &async_struct, (1nt *)0 ) ; 

* For the asynchronous function, the fourth element in the 
* fnc_data structure is the measure in tenths of seconds between 
* calls. In the example above, the asynchronous function is 
* called once every second that the keyboard 1S idle while being 
* read. 
* 
* Note that this function assumes that the cursor position 
* display is not be1ng used. 
*/ 

/* Include Files */ 
#include ·smdefs.hn /* Screen Manager Header File */ 

JAM Release 5.03 20 Nov 92 Page 51 



JAM Programmer's GUide 

#~nclude <time.h> /* Needed for t~me() calls */ 

/* Buffer Sizes */ 
#def~ne STAT_LINE_LEN 80 
#deflne TIME_LEN 8 

~nt 

async 
( 

2.2.7 

struct tm *tm_struct ; 
char tm_buf! TIME_LEN + 1 1 
time_t tm_t 

/* 

/* System time */ 
/* Time as string */ 
/* Result of time() */ 

* F~rst get the current t~me. Note that time() ~s an 
* ANSI standard function whose return is implementation 
* dependent. 
* 
* The localtime() call ~s part of the standard C library. 
*/ 
tm_t = time ( (time_t *)0 ) ; 
tm_struct = localtime ( &tm_t ) i 

/* Format a character str~ng with the current time */ 
sprintf ( tm_buf, -%02d:%02d:%02d·, tm_struct->tm_hour, 

tm_struct->tm_min, tm_struct->tm_sec ) ; 

/* Place that character string at end of status line. */ 
sm_msg ( STAT_LINE_LEN - TIME_LEN - 1, 

TIME_LEN, tm_buf) ; 

/* 
* Returning 0 means that this function will continue 
* to be called every second. 
*/ 
return ( 0 ) ; 

Insert Toggle Functions 
The Screen Manager calls the Insert Toggle Function when switching between insert 
and overstrike mode for data entry. Generally this hook function is used to update some 
aspect of the display informing the user of the current mode. 

The insert toggle function is installed individually as INSCRSR_FUNC. JAM automat
ically installs an insert toggle function that changes the cursor style when the mode is 
changed. If an application installs its own insert toggle function, the JAM function will 
be deinstalled, and the new insert toggle function may want to call the function directly. 

Page 52 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

Insert Toggle Function Invocation 
The function is invoked by JAM whenever the data entry mode shifts from insert to 
overstrike mode or from overstrike to insert mode. Most often, this occurs when the 
end-user strikes the INSERT key. 

Insert Toggle Function Arguments 
One integer argument is passed to the insert toggle function. It specifies the mode. If its 
value is 1, JAM is entering insert mode. If it is 0, JAM is entering overstrike mode. 

Insert Toggle Function Return Codes 
The insert toggle function should return O. 

Example Insert Toggle Function 
The following example shows a function that displays the current mode at the end of the 
status line: 

/* 
* This function is designed to be installed as the INSCRSR_FUNC 
* hook function, called whenever JAM moves from insert to 
* overstrike mode or vice versa. It places the letters INS 
* on the status line in insert mode, and OVR on the 
* status line for overstrike mode. 
* 
* The following declarations/definitions are generally found in 
* the main function source file or the source file funclist.c 
* to support the installation of this function: 
* 
* 
* 
* 
* 

extern int inscrsr ( ) ; 
struct fnc_data inscrsr_struct = 

{ 0, inscrsr, 0, 0, 0, 0 } ; 

* The following lines of code would typically be included in the 
* main function or in the funclist.c function sm_do_uinstalls() 
* to install this function: 
* 
* 
* 
* 

INSCRSR_FUNC, &insrcrsr_struct, 
(int *)0 ) 

* This routine assumes that cursor position display is not in 
* use. You may also need a STAT_FUNC function for this, as JAM 
* will overwrite the status line with messages, thus destroying 
* the INS/OVR message. 
* 

JAM Release 5.03 20 Nov 92 Page 63 



JAM Programmer's GUide 

* Note that we do not wrlte in the last column of the status 
* line, Slnce JAM will not permit the writing to the last 
* position of a screen if it would cause automatic hardware 
* scrolilng. 
*/ 

/* Include FlIes */ 
ttlnclude "smdefs.h" /* Screen Manager Header Flle */ 

/* Buffer Sizes */ 
ttdefine STAT_LINE_LEN 80 

lnt 
inscrsr ( entering_insert_mode 
int entering_insert_mode ; /* Non-zero if about to enter 

{ 

} 

2.2.8 

if ( entering_insert_mode ) 

insert mode, zero 
if about to enter 
overstrike mode. */ 

sm_msg ( STAT_LINE_LEN - 4, 3, "INS· 
else 

sm_msg STAT_LINE_LEN - 4, 3, "OVR" 
return ( 0 ) ; 

Check Digit Functions 
The Screen Manager calls the check digit function for any field that is marked for check 
digit in the Screen Editor. It may be used to implement any desired check-digit algo
rithm. If there is no check digit function installed in the application, JAM uses the de
fault library function sm_ckdigit which is distributed in source form with JAM. If 
the default algorithm is not satisfactory and your linker permits overriding library func
tions, you may merely modify the provided source and link it to your application with
out installing it. If your linker does not permit the overriding of library functions, you 
will need to install a new check digit function with SIn_install. 

The check digit function is installed individually as CKDIGIT_FUNC. 

Check Digit Function Invocation 
The check digit function is called by JAM during validation of fields marked for check 
digit 

Check Digit Function Arguments 
The check digit function is passed the following arguments: 

Page 54 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

1. The integer number of the field undergoing validation. 

2. A character pointer to a buffer containing the field contents in a null-
terminated string. 

3. The integer occurrence number for the data undergoing validation. 

4. The integer modulus as specified in the Screen Editor. 

5. The integer minimum number of digits as specified in the Screen Edi
tor. 

Check Digit Function Return Codes 
The check digit function should return 0 if the field passes the check digit validation. If 
a non-zero value is returned, the cursor is positioned to the offending field and the field 
is not marked as validated. It is assumed that the check digit function display its own 
error messages. 

Please see the provided source code for sm_ckdigi t as an example. 

2.2.9 

Initialization and Reset Functions 
The initialization and reset functions are called by the Screen Manager on display setup 
and display reset respectively. The initialization function can be used to set the terminal 
type and the reset function can be used to handle any cleanup that the application needs 
to do whether it is terminated gracefully or nol 

Initialization and reset functions are installed individually as UINIT_FUNC and URE
SET_FUNC respectively. 

Initialization and Reset Function Invocation 
The initiaHzation function is called from the library routine sm_initcrt. When it is 
called, JAM has not yet allocated its required memory structures, and the pbysical dis
play cbaracteristics are still untouched by JAM. In general, it is suggested that hook 
functions be installed after initialization with sm_ini tcrt, but clearly this is an ex
ception. The initialization function must be installed before sm_initcrt is called. 
Consequently, the installation code for this one hook function may not be placed in the 
funclist. c routine sm_do_uinstalls. 

The reset function is called from the library routine sm_resetcrt after JAM has re
leased its memory and reset the physical display characteristics. Since the JAM abort 

JAM Release 5.03 20 Nov 92 Page 55 



JAM Programmer's Guide 

routine sm_cancel calls srn_resetcrt before the application terminates, the reset 
function is generally called at application exit whether the exit is graceful or not17 • 

Initialization and Reset Function Arguments 
The imtiahzation functton is passed a single argument, namely a pointer to a 30 byte 
character buffer into which it may place the null-terminated string mnemonic identify
ing the tenninal type in use. This is primarily of use on operating systems without an 
environment. This function can be used to obtain the terminal type in some system-spe
cific way. 

The reset function is passed no arguments. 

Initialization and Reset Function Return Codes 
Both the initialization and reset hook functions should return O. 

Example Initialization and Reset Functions 
The following code shows an example of initialization and reset functions. Note that 
most of the initialization need not be done in the initialization hook. It could be done 
before sm_ini tcrt is called. 

/* 
* The two functions below, uinit() and ureset(), are intended to 
* be installed as the initialization and reset functions 
* respectively. uinit() is used to initialize the global 
* variable start_time. Then uinit() asks the user to enter a 
* terminal type, and passes the string back to sm_initcrt() for 
* processing. Finally, uinit() establishes error handling that 
* will cause the application to terminate gracefully on a 
* number of software signals. 

* ureset() calculates the elapsed time that the user has been in 
* the application and prints it to the terminal. 

* These functions are properly installed w1th the following 
* definitions and declarations, generally found in the main 
* function source module or in the source file funclist.c: 

* extern int uinit ( ) ; 
* extern int ureset ( ) ; 
* struct fnc_data uinit_struct = 

17. Interrupt handlers may need to be set by the developer to JDsure that sm_cance lIS called at all the nec
essary hardware and software interrupt signals. It is suggested that this setup be done either In the fun
clist . c routine sm_do_uinstalls. or in the function installed as an initialization function. 

Page 56 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Funcbons 

* { 0, uinl t, 0, 0, 0, 0 } ; 
* struct fnc_data ureset_struct = 
* { 0, ureset, 0, 0, 0, 0 } ; 
* 
* and the following llnes of code, usually found near the 
* beginning of the maln function. 
* 
* 
* 
* 

sm_lnstall 
sm_lnstall 

UINIT_FUNC, &ulnit_struct, (lnt *)0 ) 
URESET_FUNC, &ureset_struct, (int *)0 

* Note that the function installed as UINIT_FUNC is called from 
* s~initcrt() or variant, and must be installed before it is 
* run. The function installed as URESET_FUNC is called from 
* sm_resetcrt(), and is consequently called even if the 
* applicatlon terminates abnormally, provided the correct 
* signal handling is ln place. 
* 
* Note also that ssignal() is ANSI C. The signals SIGINT, 
* SIGABRT, and SIGTERM are all part of ANSI C and the POS1X 

* standard, and are meaningful on most but not all platforms. 
* 
*/ 

/* Include Files */ 
linclude ·smdefs.hR 

linclude <signal.h> 
/* Screen Manager Header File */ 
/* software signals */ 

/* Application start time */ 

int 
uinit ( term ) 
char * term ; /* 30-byte buffer with terminal type */ 
{ 

} 

char * ptr 

/* Determine current time as starting time. */ 
start_time = time ( (time_t*)O ) ; 

/* Get terminal type from user. (If nothing entered, 
system will use the environment.) */ 

printf ( ·Please enter terminal type: R ) ; 

if ( ! fgets ( term, 29 stdin)) * term = '\0' 
term[ 29 ] = '\0' 
if ( ptr = strchr ( term, '\n' ) ) * ptr = '\0' ; 

/* Establish necessary signal handling. */ 
ssignal ( SIGINT , sm_cancel ) ; 
ssignal (SIGABRT sm_cancel) 
ssignal ( SIGTERM , sm_cancel ) ; 
return ( 0 ) ; 

JAM Release 5.03 20 Nov 92 Page 57 



JAM Programmer's Guide 

lnt 
ureset ( ) 
{ 

2.2.10 

int hours , mlnutes , seconds ; 

/* Determine elapsed time Slnce start of application 
and calculate hours, minutes, and seconds 
elapsed. */ 

seconds = (lnt)difftime ( tlme ( (time_t *)0 ), 
start_time ) ; 

minutes = seconds / 60 
second~ %= 60 ; 
hours = mlnutes / 60 ; 
mlnutes %= 60 ; 

/* Print out time report. */ 
printf ( RApplication active for %d hours, %d minutes, " 

R%d seconds.\nR, hours, mlnutes, seconds) 

return ( 0 ) ; 

Recording and Playing Back Keystrokes 
The Screen Manager provides hooks for recording and playing back keystrokes. This 
facility could be used to implement simple macro capabilities, or to perform regression 
testing on a JAM application. The developer should ensure that the record and play
back functions are not in use simultaneously. 

Record and playback functions are installed individually as RECORD_FUNC and 
PLAY_FUNC respectively. 

Record/Playback Function Invocation 
The record function is called from sm_getkey when it has a translated key value in 
hand that it is about to return to the application. The playback function is called from 
sm_getkey, when installed, in place of a read from the keyboard18• For accurate re
gression testing, the playback function may need to pause and flush the output to simu
late a realistic rate of typing, and may need to call the asynchronous function, if there 
is one. 

18. Since characters are recorded after processing by the key change function but played back before key 
change translation. some key change functions may interfere with the accurate playback of recorded key
strokes. See the desaiption of sm_getkey in the Programmer's Reference Manual for more informatioD. 

Page 58 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

Record/Playback Function Arguments 
The record function is passed a single integer, which is the JAM logical key to record. 
Generally that key is recorded in some fashion for a possible playback at a later date. 
The playback function receives no arguments. 

Record/Playback Function Return Codes 
The record function should return O. The playback function should return the logical 
key that was recorded at an earlier time. 

Example Record/Playback System 
The following example shows how record and playback might work together in a JAM 
regression test: 

/. 
• The two functions below, record() and play(), are designed to 
• implement a simple mechanism for recordlng and later playing 
• back keystrokes in a JAM application. The keystrokes are 
• recorded to and played back from a file. The interval in 
• seconds between keystrokes is also saved so that the playback 
• function can pause to simulate real user behavior. 
• 
• The following declarations/definitions to support installation 
• of this record/playback system are shown below. They would 
• typically be found in the main function source file or in 
• the source file funclist.c: 
• 
• extern int record ( ) 

• extern int play ( ) ; 

• struct fnc_data record_struct = 
• ( 0, record, 0, 0, 0, 0 ) 
• struct fnc_data play_struct = 
• ( 0, play, 0, 0, 0, 0 ) 
• 
• The following lines might be included in the main function to 
• allow for conditional record and playback, assuming that the 
• first parameter passed to the program was an optional 
• indicator for record or playback: 
• 
* 
• 
• 
* 
• 
* 

if 
( 

argc > 1 ) 

switch ( argv[ 1 ] [ 0 ] ) 
{ 

case 'r' 
case 'R' 

• 
• 

RECORD_FUNC, &record_struct, 
(int *)0 ) ; 

JAM Release 5.03 20 Nov 92 Page 59 



JAM Programmer's Guide 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

break 

case 'p' : 
case 'P' : 

sm_install 

break ; 

PLAY_FUNC, &play_struct, 
(int *) 0 ) ; 

* Note that it would be good if the main function initialized the 
* variable r_time rather than counting on this record/playback 
* system to do it. As it stands, the interval before the very 
* first key that the user types will not be accurately recorded, 
* and hence not accurately played back. 
* 
*/ 

/* Include Files */ 
Binclude ·smdefs.hR 
static int intbuf[2] 

/* Screen Manager Header Files */ 
/* Buffer for read/write of 

keystroke data */ 
static FILE *fp ; 
static time_t r_time 
static time_t c_time 

/* File pointer for keystroke file */ 
/* Time first character was gotten */ 
/* Current time; 

static char key_file [ 
= Rrecplay.key· 

interval=difftime ( c_time, r_time ) */ 
/* Name of keystroke file */ 

int 
record ( key 
int key /* Key to be recorded */ 
{ 

Page 60 

/* If the file has not been opened, open it and 
initialize r_time */ 

if ( ! fp ) 
{ 

} 

/* Set the initial time. */ 
r_time = time ( (time_t *)0 

/* Open file * / 
fp = fopen ( key_file, ·w· ) ; 

/* Turn on record/playback system */ 
s~keyfilter ( 1 ) ; 

/* Get the current time */ 
c_time = time ( (time_t *)0 

/* Store the key to record in the data buffer */ 
intbuf[ 0 ] = key; 

JAM Release 5.03 20 Nov 92 



} 

int 
play 
{ 

Chapter 2: Hook Functions 

/* Store the tlme interval ln the data buffer */ 
lntbuf[ 1 1 = floor ( difftime ( c_tlme , r_time ) 

+ 0.5 ) ; 

/* Now write the data buffer to the keystroke file */ 
if ( ( I fp ) II 

( fwrite ( (char *) lntbuf , sizeof ( int ), 
2 I fp ) ! = 2 ) ) 

/* Write failed. Close everythlng down .... */ 
fclose ( fp ) 
fp = NULL ; 
intbuf[ 0 ) = 0 
sm_keyfilter ( 0 ) 
sm_err_reset ( NRecording Terminated ... • ) 

return ( 0 ) 

/* If the file has not been opened, open,it and 
initialize r_time */ 

if ( ! fp ) 
{ 

} 

/* Now 

if ( ( 

( 

2, 
{ 

} 

r time = time ( (time_t *)0 
fp = fopen (key_file Wr
sm_keyfilter ( 1 ) ; 

read the keystroke file, one keystroke into 
the data buffer */ 

! fp ) II 
fread ( (char *) intbuf, sizeof ( int ) , 
fp ) != 2 ) ) 

/* Read failed. Close everything down .... */ 
fclose ( fp ) 
fp = NULL ; 
intbuf[ 0 ] = 0 
s~keyfilter ( 0 ) 
sm_err_reset ( WPlayback Terminated .... • ) 
return ( 0 ) 

/* Get the current time */ 
c_time = time ( (time_t *)0 ) ; 

/* Decrement interval from data buffer by measured 

JAM Release 5.03 20 Nov 92 Page 61 



JAM Programmer's GUide 

2.2.11 

interval */ 
lntbuf[ 1 1 -= floor ( dlfftime ( c_time, r_time 

+ 0.5 ) ; 

/* Sleep some more if we should. */ 
if ( intbuf[ 1 1 > 0 ) 
{ 

sm_flush ( ) ; 
sleep ( intbuf [ 1 1 ) ; 

} 

/* Return the key to sm_getkey for processing */ 
return ( intbuf [ 0 1 ) ; 

Status Line Functions 
The status line function is called by the Screen Manager whenever the status line is 
about to be flushed, or physically written to the terminal device. It is intended for use on 
terminals that require unusual status line processing, beyond the scope of the generic 
code, but other uses are possible. 

The status line fooction is installed individually as STAT_FUNC. 

Status Line Function Invocation 
The status line function is called when the status line is about to be physically written 
to the terminal display. Because of delayed write, this mayor may not be at the time 
when the functions that specify message line text are actually called. 

Status Line Function Arguments 
The status line function receives no arguments. It can access copies of the text and at
tributes about to be flushed to the status line using the following library routine calls19: 

stat_text = sm-pinquire(SP_STATLINE); 
stat_attr = sm-pinquire(SP_STATATTR); 

Status Line Function Return Codes 
If the status line function returns 0, JAM continues its usual processing and actually 
writes out the status line. If the function returns any other value, JAM assumes that the 
physical write of the status line was handled in the hook function. 

19. Note that sm-pinquire, in the case ofthe status text and status attribute globals, returns a pointer to 
a temporary copy of the arrays. These should be copied to a save location before belDg used. 

Page 62 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

Example Status Line Function 
The following example shows the basic framework of how a status line function should 
probably be written: 

1* 
* Th~s funct~on is intended to be installed as a status line hook 
* function. It is called whenever the loglcal status l~ne ~s 
* about to be flushed to the physical display, and ensures that 
* the status line is always printed highlighted and in uppercase. 
* 
* The following declarations and definitions, generally found in 
* funclist.c or in the main routine source module prepare this 
* routine for installation: 
* 
* extern int stat ( ) 
* struct fnc_data stat_struct = 
* { 0, stat, 0, 0, 0, 0 } 
* 
* The following line of code, generally found in the funclist.c 
* function sm_do_uinstalls() or in the main routine itself, ~s 

* used to install the status line function: 
* 
* sm_install ( STAT_FUNC, &stat_struct, (int *)0 ) 
* 
*1 

1* Include Files *1 
#include ·smdefs.h
#include ·smglobs.h-

1* Screen Manager Header File *1 
1* Screen Manager Globals */ 

int 
stat 
{ 

int n_columns ; 1* Width of physical display *1 
char * stat_text 1* Status line text *1 
unsigned short * stat_attr i/* Status line attributes *1 
int i 1* Loop counter */ 
int c i 1* upper case stat text char *1 

1* Determine width of display */ 
n_columns = s~inquire ( I_MXCOLMS 

1* Allocate memory for local buffers *1 
stat_text = malloc ( n_columns + 1 ) 
stat_attr = (short *)calloc ( n_colurnns, 

sizeof ( short ) ) i 

1* Copy status text and attributes into buffers */ 
strcpy ( stat_text , sm-pinquire ( SP_STATLINE ) ) 
memcpy ( ( char * ) stat_attr 

s~inquire ( SP_STATATTR ) , 
I 

JAM Release 5.03 20 Nov 92 Page 63 



JAM Programmer's GUide 

2.2.12 

n_columns * s~zeof ( short ) ) ; 

/* Loop through every character on the status llne */ 
for ( 1 = 0 ; 1 < n_columns ; i++ ) 
{ 

/* Set character to upper case */ 
/* Note UNSIGN is deflned ln smmachs.h to 

remove sign extension */ 
c = stat_text [il; 
if ( islower (UNSIGN(c)) ) 

c = toupper ( UNSIGN(stat_text[ 1 ]) ) 

stat_text [ 1 ] = c ; 

/* Add hilight attribute */ 
stat_attr[ i ] 1= HILIGHT : 

/* copy local buffer back into JAM internal buffers */ 
sm-pset ( SP_STATLINE , stat_text ) ; 
sm-pset ( SP_STATATTR , ( char * ) stat_attr ) ; 

/* Free memory */ 
free ( stat_text ) 
free ( stat_attr ) 

return ( 0 ) ; 

Video Processing Functions 
The Screen Manager calls the developer-installed video processing function to allow 
for special handling of various video sequences by the application. This is a specialized 
hook required only when the JAM video me is unable to provide support for a particu
lar type of terminal. Video processing functions should rwl call JAM library functions. 
The video processing function is called immediately before data is displayed on a JAM 
screen and should, therefore, perform only low-level processing. 
The video processing function is installed individually as VPROC_FUNC. 

Video Processing Function Invocation 
The video processing function is called by JAM's output routine just before a video 
output operation is about to begin. 

Video Processing Function Arguments 
The video processing function receives two arguments. The frrst is an integer video pro
cessing code defined in the header me smvideo. h and outlined in the table below. 

Page 64 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Funcbons 

The second is a pointer to an array of integers with parameters for the video processing 
code. The number of parameters passed depends on the operation as shown in the table 
below. For video processmg codes that require no arguments, a NULL pointer is passed. 

Code Operation Description #of 
params 

V_ARGR remove area attribute 

V_ASGR set area graphics rendition 11 

V_BELL visible alarm sequence 

V_CMSG close message line 

V_COF tum cursor off 

V_CON tum cursor on 

V_CUB cursor back Oeft) I 

V_CUD cursor down I 

V_CUF cursor forward (right) I 

V_CUP set cursor position (absolute) 2 

V_CUU cursor up I 

V_ED erase entire display 

V_EL erase to end of line 

V_EW erase window to background 5 

V_INIT initialization string 

V_INSON set insert cursor style 

V_INSOFF set overstrike cursor style 
. 

V_KSET write to soft key label 2 

V_MODE 4 single character graphics mode (also V_MODES, 6) 

JAM Release 5.03 20 Nov 92 Page 65 



JAM Programmer's Guide 

Code Operation Description #of 
params 

V_MODE 0 set graphics mode (also V_MODEl, 2,3) 

V_OMSG open message line 

V_RESET reset string 

V_RCP restore cursor position 

V_REPT repeatchar,actersequence 2 

v_scp save cursor position 

V_SGR set latch graphics rendition 11 

Video Processing Function Return Codes 

When the video processing function returns 0, JAM continues with normal processing. 
If it returns any other value, JAM assumes that the operation has been handled in the 
hook function. This allows the developer to implement only necessary operations. 

Other Hook Functions 

The Screen Manager provides additional hooks to handle alternative scrolling methods 
and block mode terminals. Those functions are best viewed as drivers, and each is de
scribed in its own chapter later in this document. Alternative scrolling is described in 
Chapter 10 Block mode is described in Chapter 11. 

2.3 

PROTOTYPED FUNCTIONS 
As mentioned previously, hook function installation falls into two categories, individu
al installation and list installation. For those functions that are installed individually, 
only one of any given type can be "in use" by the application at a time, and they are 
called at well--defmed Screen Manager events. However, the functions that are installed 
on function lists co-exist There are four function lists we have discussed above, the 

Page 66 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

FIELD_FUNC list, the GROUP_FUNC list, the SCREEN_FUNC list and the CON
TROL_FUNC list20,21. Any of those lists may have any number of functions installed 
simultaneously. 

When a screen has a screen entry or exit function specified in the Screen Editor, that 
function is searched for on the SCREEN_FUNC list and generally passed two argu
ments: the name of the screen and the calling context bit mask. When a group has a 
group entry, exit, or validation function specified in the Screen Editor, that function is 
searched for on the GROUP _FUNC list and passed two arguments. Field entry, exit, and 
validation functions specified in the Screen Editor are searched for on the 
FIELD_FUNC list and passed four arguments, and the functions specified in control 
strings are searched for on the CONTROL_FUNC list and passed a single argument The 
JPL call verb also searches the CONTROL_FUNC. 

The arguments passed by default to a function on a list of a particular type are generally 
sufficient for the processing that is needed. However, there may be a need to customize 
the arguments passed to a function on a function list Arguments passed to function list 
hook functions can be specified by prototyping the function in the function name. 

2.3.1 

Preparing Prototyped Functions for 
Installation 
Functions are prototyped by appending a list of argument types to the function name m 
the fnc_data data structure used for function installation. The list of argument types 
is enclosed in parentheses: only character strings (abbreviated as "s") and integers (ab
breviated as "i") are supported The following example shows the definition of a 
fnc_data structure with fourprototyped functions: 

struct fnc_data func_list[] = { 

} ; 

{ ·myfunc()·, myfunc, 0, 0, 0, 0 }, 
{ -addinto(s,s,s)·, addinto, 0, 0, 0, 0 }, 
{ ·sm_n-putfield(s,s)·, sm_n-putfield, 0, 0, 0, 0 }, 
{ ·sm_lreset(i)·, sm_lreset, 0, 0, 0, 0 } 

int func_list_count = sizeof ( func_llst ) / 
sizeof ( struct fnc_data ) ; 

20. It is attical to understand that the default field, screeD, aDd group functioDs, installed as 
DFLT_F IELD_FUNC, DFLT_SCREEN_FUNC, and DFLT_GROUP _FUNC respectively, are Dot on the func
tion bsts. These default functions are installed individually. 

21. There is a fifth bst, SCROLL_FUNC, wluch is described in Chapter 10 on Alternative ScrollIng Methods. 

JAM Release 5.03 20 Nov 92 Page 67 



JAM Programmer's GUide 

In this case, myfunc is prototyped to take no arguments, addinto to take three string 
arguments, sm_n...,putfield to take two string arguments, and sm_lreset to take 
a single integer argument. Of course, when the functions are actually written, they must 
be defined to take the same number of arguments that is specified in the prototype. No-. 
tice, however, in the example above that the last two functions are in the JAM library, 
prototyped according to their specification in the reference manual. No code needs to 
be written to use them directly as hook functions. They need only to be prototyped and 
installed. 

Functions may be listed on the PROTO_FUNC list with no prototype. In that case, JAM 
assumes that the function is written to take a single string argument When the function 
is invoked, JAM passes a copy of the entire invoking string as an argument In this way, 
screen, field, and group functions can be made to accept variable arguments in the way 
that control functions normally do. 

J AM supports arbitrary combinations of strings and integers as function prototypes 
from zero to three arguments. Some combinations are supported for four, five, and six 
arguments, but not all. The list of all valid prototypes follows. It was chosen in such a 
way that most JAM library functions could be prototyped, if desired: 

() 

(i) (s) 

(i, i) (s,i) 

(i,i,i) (s,i,i) 
(s,s,s) (i,s,s) 

(i,i,i,i) (s, i, i, i) 
(s,s,s,s) 

(i,i,i,i,i) 

(i,i,i,i,i,i) 

2.3.2 

(i,s) 

(i,s,i) 
(s,i,s) 

(s,s,i,i) 

(s,s) 

(i,i,s) 
(s,s,i) 

(s,s,s,i) 

Installing Prototyped Functions 
Prototyped functions may be installed on any of the function lists. However, since pro
totyped functions are explicitly passed arguments that match the prototype, the same 
prototyped function can be used by screen, group, field and control hook invocations. 

Page 68 JAM Release 5.03 20 Nov 92 



Chapter 2' Hook Functions 

To allow screen, group, field, and control hooks to sbare prototyped functions, there is 
a general purpose function list called PROTO_FUNC. It is recommended that all proto
typed functions in use be installed on the PROTO_FUNC hst so that they can be shared 
by all of the JAM function hst hooks. 

When the Screen Manager detects at runtime, for example, that a screen entry function 
was specified for the screen being opened, it first searches the SCREEN_FUNC list and 
then the PROTO_FUNC list for that function. Similarly for groups, the GROUP _FUNC 
list is searched before the PROTO_FUNC list. Field functions and control functions are 
searched for in the same way, frrst in their own function lists and then in the general
purpose PROTO_FUNC list. 

2.3.3 

Prototyped Function Invocation 
As menboned above, individually installed functions cannot be prototyped Only func
tions appearing on function lists can be prototyped. These functions are invoked at the 
following times: 

1. On screen, group, or field entry or exit, when a function is specified 
for that purpose in the Screen Editor. 

2. On group or field validation, when a function is specified for that pur
pose in the Screen Editor. 

3. When a control string starting with a caret (") is executed 

4. When the JPL call verb is used. 

In every case, the hook function is invoked with a line of text called a hook string, one 
that is often specified in the Screen Editor. 

The flfSt word of the hook string is used to search the function list for the event type and 
then the PROTO_FUNC list to find the flBlction to call. The subsequent words are colon 
pre-processed and converted into character strings or integers based on the prototype 
specified if the matched function is a prototyped function22• Please see the relevant sec
tions of the Author's Guide for more discussion of the hook processing. 

It is recommended that all prototyped functions be installed on the PROTO_FUNC list 

22. If the matched function is not prototyped. and is not on the prototype function list, the arguments to be 
passed are fixed as described in the sections above. If the function is not prototyped. but is found on the proto
typed function list, the entire invoking hook string is passed a single stnng argument. 

JAM Release 5.03 20 Nov 92 Page 69 



JAM Programmer's GUide 

2.3.4 

PROTO_FUNC List Example 
In the example that follows, we show how two of the functions shown as examples ear
lier in this document can be written and installed as prototyped functions. Both func
tions would be accessible for screen, field, group, and control hooks. 

1* 
* The following functions are intended as prototyped functions to 
* be placed on the PROTO_FUNe function list. From that list, 
* they will be accesslble as control functions, screen functions, 
* group functions, or from JPL code wlth the ·call" verb. 
* 
* The first function, mark_flds(), takes two integer arguments. 
* If the first is less than the second, all fields on the screen 
* that have numeric values between the two arguments are 
* temporarily highlighted. If the first argument is greater than 
* the second, all fields on the screen that have numeric values 
* that are not between the two fields are highlighted. The 
* following string would highlight all values on the screen 
* between zero and 500: 
* mark_flds 0 500 
* The following string would highlight all values on the screen 
* that are greater than 1000 or less than -300: 
* mark_flds 1000 -300 
* 
* The second function, report(), takes two string arguments. The 
* first argument is the report type, and should read -field-, 
* ·screen·, ·wstack· or "term". The second argument is the 
* report output designation. If it is empty, the requested 
* report is shown in a message window. For example, the 
* following string would cause a field report to be popped up 
* in a message window: 
* report field 
* If the second argument starts with an exclamation point (!), 
* the remainder is interpreted as an operating system command. 
* The report is created in a temporary file, and the name of the 
* file is passed as an argument to the operating system command. 
* If a tilde (-) is found in the command, the name of the 
* temporary file is substituted for the tilde, otherwise the name 
* is just appended at the end. The following two strings would 
* each cause a screen report to be prlnted on a UNIX system: 
* report screen -!lp -c -s· 
* report screen -!date I cat - - I lp -s· 
* If the second argument starts with a vertical bar (I), the 
* remainder is also interpreted as an operating system command. 
* In this case, however, the report is piped into the standard 
* input of that command. The following string would print out 
* the last twenty lines of a window stack report on a UNIX 
* system: 
* report wstack ·1 tail I Ip -s· 

Page 70 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

* F1nally, if the second argument is a valid file name, the 
* report is appended to the named f1le. The following str1ng 
* would cause a display terminal report to be appended to the 
* file report.fil: 
* report term report.fil 
* 
* The following declarations and definitions support the 
* installation of these functions. They are generally found 
* either in the main routine source file or in the file 
* funclist.c: 
* 
* extern int mark_flds ( ) ; 
* extern int report ( ) ; 
* struct fnc_data proto_list[] = { 
* ( -mark_flds(i,i)-, mark_flds, 0, 0, 0, ° }, 
* ( -report(s,s)·, report, 0, 0, 0, ° } 

} ; * 
* 
* 

int proto_count = sizeof ( proto_list ) / 
sizeof ( struct fnc_data ) 

* 
* The following library call will install these functions. It 
* is generally made either in the main function or in the 
* function sm_do_uinstalls() found in the source module 
* funclist.c: 
* 
* 
*/ 

/* Include Files */ 
#include ·smdefs.h· 
#include ·smglobs.h· 

/* Screen Manager Header File */ 
/* Screen Manager Globals */ 

/* Functions in this module */ 
int rnark_flds ( ) 
int report ( ) i 

/* Macro Definitions ... */ 
/* Attributes used to mark fields */ 
#define MARK_ATTR REVERSE I HILIGHT I BLINK 

int 
rnark_flds ( bound!, bound2 ) 
int bound! /* First Boundary on fields to mark */ 
int bound2 i /* Second Boundary on fields to mark */ 
{ 

int fl~num i 

char *fl~data i/* 
double fld_val i/* 
int nurn_of_flds 
int *old_attrib i 

/* Field Number */ 
Field Data */ 
Field Value */ 

/* Number of Fields */ 
/* Array of old attributes */ 

/* Determine number of fields */ 

JAM Release 5.03 20 Nov 92 Page 71 



JAM Programmer's Guide 

Page 72 

/* Allocate memory for attribute array */ 
old_attrib = (int *lcalloc ( num_of_flds, 

sizeof ( int I I 

/* Cycle through all the fields on che screen */ 
for ( fld_num = 1 ; fld_num <= num_of_flds ; fl~num++ 
{ 

} 

/* Store away old attributes */ 
old_attrib[fld_num-ll = 

sm_f1nquire ( fld_num, FD_ATTR I ; 

/* Make sure it is a field with numbers */ 
fld_data = sm_str1p_amt-ptr fld_num, NULL 
if ( ! *fld_data I continue ; 

/* Create a double from it */ 
fld_val = sm_dblval( fld_num I 

/* See 1f fld_val is in bounds */ 
if boundl <= bound2 I 
{ 

} 

else 
{ 

} 

/* Mark fields between bounds. */ 
if ( ( fld_val >= ( double lboundl I && 

( fld_val <= ( double Ibound2 I ) 
{ 

} 

sm_chg_attr ( fld_num, 
MARK_ATTR ) i 

/* Mark fields outside bounds. */ 
if ( ( fld_val >= ( double )boundl ) I I 

( fld_val <= ( double )bound2 ) ) 
{ 

} 

sm_chg_attr ( fld_num, 
MARK_ATTR ) ; 

/* Wait for acknowledgement */ 
sm_err_reset ( -Hit <space> to continue-) ; 

/* Cycle again through all the fields on the screen */ 
for fld_num = 1 ; fld_num <= num_of_flds fl~num++ 

{ 
/* Reset field attributes */ 
sm_chg_attr ( fld_num, 

ol~attrib[ fl~num - 1 1 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

1* Release memory *1 
free ( (char *lold_attrlb 

return ( 0 I 
} 

int 
report ( report_type, report_out I 
char *report_type ; 1* Type of report: field, screen, 

wstack, or term. *1 
char *report_out 1* Output deslgnatlon. *1 
{ 

char *fn = NULL 1* Name of output file *1 
char *ptr, *ptr1 ; 1* Character pointers *1 
char msg_buf[ 128 ] 1* Message buffer *1 
FILE *fp ; 1* File pointer for output *1 
int size ; /* Size of output file */ 
int cur_no 1* Current field number *1 
lnt select 1* Current window stack lndex 

1* If an output designation was made ... *1 
if ( report_out && *report_out I 
{ 

1* Based on what output type we designated: *1 
switch ( *report_out I 
{ 

case'! ' 
1* OS command. Open temp file *1 
fn = tempnam ( NULL, Rrprtn I 
fp = fopen ( fn, ·wR I ; 
break 

case ' I' : 

default 

} 

1* Pipe. Open the pipe *1 
fp = popen ( report_out + 1, ·w· I ; 
break 

1* Other. Open the file *1 
fp = fopen ( report_out, Ra+ n 

break ; 

*1 

/* If we could not open the file, show error *1 
if ( ! fp I 
{ 

sprintf ( msg_buf, 
·Cannot open stream for %s.·, 
report_out I ; 

JAM Release 5.03 20 Nov 92 Page 73 



JAM Programmer's GUide 

Page 74 

sm_err_reset ( msg_buf 
return ( -1 I ; 

/* If no report output specified, open temp file for 
storlng message window stuff. */ 

else 
{ 

) 

fn = tempnam ( NULL, Mrprt H 

fp = fopen ( fn, ·W+H I ; 
report_out = --

fprintf ( fp, R \n \nREPORT TYPE: %s \n H
, report_type 

/* Now, based on the report_type, which is the name 
with which the function was invoked, create 
the reports. Note that all newlines are 
preceded with spaces, this is so that in the 
case of the message windows we can replace 
all space-newlines with %N, the newline 
indicator for JAM windows. */ 

switch ( *report_type I 
{ 
case ' F' : 
case ' f' : 

/* Output a field report */ 
fprintf ( fp, - \nFleld Report: \n N 

/* Field Identifier and contents */ 
cur_no = sm_getcurno ( I; 
fprintf ( fp, -\tFIELD: %d (%s[%dll = %s \n-, 

cur_no, 
sm_name ( cur no I, 
sm_occur_no ( I, 
sm_fptr ( cur_no I I 

/* Field sizes */ 
size = sm_finquire ( cur_no, FD_LENG I ; 
fprintf ( fp, -\tLENGTH: onscreen: %d -

-Max: %d \n-, 
size, s~finquire ( cur_no, 
FD_SHLENG I 
+ size I ; 

fprintf ( fp, -\t# OCCURRENCES: onscreen: %d • 
-Max: %d \n-, 
sm_finquire ( cur_no, FD_ASIZE I, 
sm_max_occur ( cur_no I I ; 

break; 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Funcbons 

case'S' : 
case's' : 

/* Output screen report */ 
fpr~ntf ( fp, R \n \nScreen Report: \n" ) 

/* Screen Name */ 
fprintf ( fp, "\tSCREEN: %s \n", 

s~inquire ( SP_NAME ) ) ; 

/* How much of screen is visible */ 
fprintf ( fp, "\t%% VISIBLE IN VIEWPORT: %d \n", 

100 * 
( sm_inquire ( SC_VNLINE ) * 
s~inquire ( SC_VNCOLM ) ) / 
( sm_inquire ( SC_NCOLM ) * 
s~inquire ( SC_NLINE ) ) ) ; 

break 

case 'w': 
case 'W': 

/* Output Window stack report */ 
fprintf ( fp, " \n \nwindow Stack Report: \n" ) 

/* Cycle through all the windows. */ 
for ( select = 0 

{ 

} 

sm_wselect ( select ) == select ; 
select++ ) 

/* Window number ... */ 
fprintf ( fp, " \n\tWindow %d: \n", 

select ) ; 

/* Screen name */ 
fprintf ( fp, "\t\tScreen: %s \n", 

sm...,pinquire ( SP_NAME ) ) 

/* Number of fields and groups */ 
fprintf ( fp, "\t\t# of Fields: %d • 

"# of Groups: %d \n", 
sm_inquire ( SC_NFLDS ), 
sm_inquire ( SC_NGRPS ) ) 

sm_wdeselect ( ) ; 

break 

case 'T': 
case ' t' : 

JAM Release 5.03 20 Nov 92 Page 75 



JAM Programmer's Guide 

Page 76 

default: 

} 

1* Output display termlnal report *1 
fprintf ( fp, " \n \nTermlnal Report: \n" ) 

1* Terminal Type *1 
fprlntf ( fp, "\tTERM TYPE: %s \n", 

sm-Plnqulre ( P_TERM ) ) ; 

1* Dlsplay mode *1 
If ( sm_lnquire ( I_NODISP ) ) 

fprintf ( fp, "\tDISPLAY OFF \n" ) ; 
else 

fprintf fp, "\tDISPLAY ON \n" ) ; 

1* Input mode *1 
if ( sm_inquire ( I_INSMODE ) ) 

fprintf ( fp, ·\tINSERT MODE \n" ) 
else 

fprintf fp, "\tTYPEOVER MODE \n" 

1* Block mode *1 
if ( sm_inquire ( I_BLKFLGS ) ) 

fprintf ( fp, "\tBLOCK MODE \n" ) 

1* Physical display size *1 
fprintf ( fp, "\tDISPLAY SIZE: %d x %d \n", 

sm_inquire ( I_MXLINES ), 
sm_inqulre ( I_MXCOLMS ) ) 

break; 

1* unrecognized report type *1 
fprintf ( fp, "\tIllegal Report Type \n \n" ) 
return ( -3 ) ; 

1* Once again, based on the type output ... *1 
switch ( *report_out ) 
{ 

case 'I' 
1* It was a pipe, so close it. *1 
pc lose ( fp ) i 

srn_err_reset ( ·Pipe successful" ) 
break i 

case '!' : 
1* It was an O/S command. Close file ... *1 
fclose ( fp ) i 

1* Gobble up the exclamation point *1 
report_out++i 

JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

/* Look for tildes */ 
if ( ptr = strchr ( report_out, '-' ) ) 
{ 

else 
{ 

) 

/* Found the tilde. Substitute the 
file name for it. */ 

*ptr = ' \0' ; 
sprintf ( msg_buf, ·%s%s%s·, 

report_out, fn, ptr+l ) ; 

/* No tilde. Append file name to 
O/S command. */ 

sprintf ( msg_buf, 6%S %s·, 
report_out, fn ) ; 

/* Do the command. */ 
system ( msg_buf ) 

/* Delete temp file and free its name. */ 
remove ( fn ) ; 
free ( fn ) ; 
sm_err_reset ( ·Command Invoked- ) 
break 

case '\0': 
/* Message window. Get size of file ... */ 
size = ftell ( fp ) ; 

/* Allocate memory for it. */ 
ptr = malloc ( size + 1 ) ; 

/* Rewind the file */ 
fseek ( fp, SEEK_SET, 0 ) ; 

/* Read it into the malloced buffer. */ 
fread ( ptr, sizeof ( char ), size, fp ) 

/* Close and delete file, free file name */ 
fclose ( fp ) ; 
remove ( fn ) 
free ( fn ) 

/* null terminate memory buffer of report */ 
ptr[size] = '\0'; 

/* Replace all space-newlines with %N */ 
for ( ptrl = ptr ; 

{ 

ptrl = strchr ( ptrl, '\n' ) ; 
ptrl++ ) 

JAM Release 5.03 20 Nov 92 Page 77 



JAM Programmer's Guide 

} 

2.4 

default 

} 

} 

ptr1[-l]='%'i 
ptr1[O]='N'i 

/* Pop up the message window -- flushed with 
call to err_reset */ 

sm_mwindow ( ptr, -1, -1 ) i 

sm_err_reset ( "Report Done .. Hit Space to " 
"continue" ) i 

/* Close message window */ 
sm_close_window ( ) i 

/* Free up the malloced buffer. */ 
free ( ptr ) i 

break ; 

/* File appended, just close it. */ 
fclose ( fp ) ; 
sm_err_reset ( "File appended" ) 
break ; 

return ( 0 ) i 

CODING STRATEGY, RULES AND 
PITFALLS 

2.4.1 

Prototyped Function Limitations 
If a screen, field, group or control ftmction is prototyped, it is not passed the standard 
arguments described in the previous sections. Certain of these arguments may be ob
tained by other methods as described below. 

Accessing the Standard Arguments to Prototyped 
Field and Group Functions 
Non-prototyped group or field functions are passed identifying information for tbe 
group or field in question. If you require access to the standard arguments that are 

Page 78 JAM Release 5.03 20 Nov 92 



Chapter 2: Hook Functions 

passed to field or group functions, but your function is prototyped, you may get some 
these values via the library routine sm_inquire. The following global variables are 
supported: 

Mnemonic Meaning 

SC_AFLDNO Number of the field calling a prototyped field fWlction. 
Corresponds to the fust standard argument to a field function. 

SC_AFLDOCC Occurrence number of the field calling a prototyped field 
function. Corresponds to the third standard argument to a field 
function. 

SC_AFLDMDT Bit mask containing contextual information about the validation 
state of the field and the circumstances under which a prototyped 
field function was called. Corresponds to fourth standard argu-
ment to a field function. 

SC_AGRPMDT Bit mask containing information about the validation state of the 
group and the circumstances under which a prototyped group 
function was called. Corresponds to the second standard 
argument passed to a non-prototyped group function. 

The second standard argument to a field function, namely a pointer to a copy of the 
field's contents, may be obtained from sm_getfield or sm_o_getfield. 

The flCSt standard argument to a group function, a pointer to the group name, may be 
obtained by sm_getcurno and sm_ftog at group entry and exit. Access to the group 
name at group validation is not supported. since the group may be undergoing valida
tion as part of screen validation. 

Accessing the Standard Arguments to Prototyped 
Screen and Control Functions 
Access to the standard arguments to a screen function, namely the screen name and an 
integer containing bit flags that specify the context of the call, is not supported if the 
function is prototyped. Screen functions for which this information is required cannot 
take advantage of function prototyping. 

The standard argument to a control function, namely a pointer to a copy of the control 
string that invoked it, is available only if the function appears on the control or proto
typed function list without a prototype. If the function has a prototype, then this in
formation will not be available. 

JAM Release 5.03 20 Nov 92 Page 79 



JAM Programmer's Guide 

Passing Information to a Non-Prototyped Function 
In a field validation function, if you wish to associate information with a specific field 
but you are not proto typing the function, and therefore cannot pass arguments to it, the 
memo text edits may be useful. The example below takes advantage of this feature: 

/* 
* ThlS function is intended to be installed as a non-proto typed 
* field validation function in a JAM application, either on the 
* FIELD_FUNC list or as the DFLT_FIELD_FUNC. 
* 
* The function valldates fields according to a list of values 
* that are found in the first memo text edit. Possible values 
* in the memo text edit are separated by spaces. 
* 
*/ 

/* Include Files */ 
linclude ·smdefs.h n /* Screen Manager Header File */ 

int 
memoval ( f_number, 
int f_number ; 

f_data, f_occurrence, context 
/* Field Number */ 

char *f_data ; /* Field Data */ 
int f_occurrence 
int context ; 

/* Array Index */ 
/* Context Bits */ 

{ 

Page 80 

char *memo_text 
char *token....ptr 
char stat_liner 128 

/* Memo text string */ 
/* Token */ 
/* Status line string */ 

/* If called on field entry or exit, or if already 
validated, or if empty, just exit right off. */ 

if ( ( context & K_EXIT ) I I 
( context & K_ENTRY ) II 
( context & VALIDED ) I I 
( *f_data)) 

return ( 0 ) 

/* Get the first memo text edit string. */ 
if ( ! ( memo_text = sm_edit....ptr ( f_number, MEM01 ) ) ) 
{ 

) 

/* There is no memo text edit string. */ 
return ( 0 ) ; 

/* Duplicate the string. (Note: pass over the two length 
bytes returned by sm_edit....ptr) */ 

if ( ! ( memo_text = strdup ( memo_text + 2 ) ) ) 
{ 

JAM Release 5.03 20 Nov 92 



} 

2.4.2 

/* Memory allocation error. */ 
return ( a ) ; 

Chapter 2: Hook Functions 

/* Cycle down the memo text string grabblng tokens. 
If we have a match, break out of loop. */ 

for ( token...ptr = strtok ( memo_text, n n ) 

token...ptr && strcmp ( token...ptr, f_data ) ; 
token...ptr = strtok ( NULL, • n ) ) ; 

/* Free up memory. */ 
free ( memo_text ) ; 

/* If we found matching token, validate OK. */ 
if ( token...ptr ) 

return ( a ) ; 

/* Error condition. Create error strlng. */ 
sprintf ( stat_line, "Invalid value %s in field. • 

·Valid values are: %s.-, f_data, 
sm_edit...ptr ( f_number, MEMO! ) + 2 ) ; 

/* Return and reset cursor. */ 
return ( 2 ) ; 

Displaying Screens 
There are a number of library functions provided for the display of screens as forms or 
windows. In general, the following rules and guidelines should be followed in choosing 
between them and deciding when they can be used: 

• The display of screens as forms or windows from within screen func
tions at screen entry or screen exit is neither recommended nor sup
ported. 

• The routines sm_j form, sm_jwindow, and sm_jclose are pro
vided specifically for the display and destruction of screens in applica
tions that use the JAM Executive. Applications not using the JAM 
Executive should not use these routines. They are recommended over 
the other screen display routines in applications that do use the JAM 
Executive. 

• The form display routine sm_j form manipulates the form stack ap
propriately. The use of any other form display routines in applications 

JAM Release 5.03 20 Nov 92 Page 81 



JAM Programmer's Guide 

that use the JAM Executive will exhibit unexpected behavior, as the 
form stack will not be synchronized with the application flow. 

2.4.3 

Recursion 
The developer should be careful, when using hook functions, to avoid the recursion that 
comes from nested hook function calls. Such recursion is not easy to detect in the 
source code itself: some understanding of the product mechanism is required. 

For example, care should be taken when writing record, playback, or key change func
tions that read from the keyboard, or status line functions that themselves cause the sta
tus line to be flushed. A default screen entry function that in and of itself opens new 
screens could be a problem. 

2.4.4 

Calling C Routines from JPL 
The JPL call verb may be used to call JAM library functions, standard C functions, 
and developer-written hook functions. Each function to be called in this way must be 
installed in either the SCREEN_FUNC, CONTROL_FUNC, or PROTO_FUNC function 
list. 

Refer to the man page for the IPL ca 11 verb as well as Chapter 8 of the JPL Guide for 
more information on calling C routines from IPL. 

Page 82 JAM Release 5.03 20 Nov 92 



Chapter 3 

Local Data Block 
The Local Data Block, or LOB, is a region of memory for the storage of JAM field data 
that is generally shared between screens. It is discussed in the JAM Development Over
view and in the Author's Guide. 

3.1 

LOB CREATION 
The LDB is created with the library routine call sm_ldb_init. This routine searches 
for a data dictionary file created from the authoring tool with the Data Dictionary Edi
tor. For more information about the data dictionary and the Data Dictionary Editor, see 
the Author's Guide. 

If the data dictionary ftle is found, it is read and a single LDB entry is created in 
memory for every data dictionary entry that has a non-zero scope. Note that only the 
name of the LDB entry is placed in memory, storage for the field data that is stored with 
the entry is not allocated until the entry is used. 

After it is created, the LDB is initialized from ASCII text ftles. These ftles, described in 
the Author's Guide, contain pairs of LDB names and values. The LDB entries named 
are filled with the values that follow them in the mes. 

3.2 

HOW JAM USES THE LOB 
JAM uses the LOB for the storage and propagation of field data from screen to screen 
in the application. Every time a screen is opened, or exposed by the closing of a window 

JAM Release 5.03 20 Nov 92 Page 83 



JAM Programmer's GUide 

that covers it, every field on the screen named identically to an LDB entry is ftlled with 
the value of the LDB entry. This occurs after the screen entry function is called. 

Correspondingly, every time a screen is closed, or hidden when a window pops up over 
it, every LDB entry that is named identically to a field on the screen is filled WIth the 
value of the screen field. This occurs before the screen exit function is called. 

When a screen is populated from the LDB at screen entry time, there is a subtle differ
ence between a new screen being opened and a screen being exposed when a covering 
window is closed. When a screen is newly opened, only empty fields with correspond
ing LDB entries will be populated from the LDB. When a screen is exposed, all fields 
that have corresponding LDB entries will be populated. 

For efficiency's sake, no LDB merge occurs when an error window is opened or closed, 
since these windows don't allow any data entry. Error windows are those opened with 
the library routine sm_mwindow, or one of the message functions using the %W pop-up 
window specifier. 

3.3 

LOB ACCESS 
Data in the LDB can be accessed with the library routines sm_n_getfield, 
sm_n-putfield, sm_i_getfield, sm_i-putfield, and related functions that 
access data by field name. These routines access the data on the current screen if the 
field that is named exists on the current screen. If the field does not exist on the current 
screen, these routines access the LDB. 

During screen entry and exit processing only, the search order is reversed. During the 
screen entry and exit ftmctions, these access routines first search the LDB and then 
search the screen. This is because the LDB is merged to the screen after the screen entry 
function, and the screen is stored to the LDB before the screen exit function. If the 
search order were not reversed the data accessed would be invalid23• 

23. This could, in a very small number of cases, introduce some incompatibililles WIth applications that were 
written with earlier releases of JAM. If such compatibility problems arise, use the library function SM_OP
TION setting the option ENTEXT_OPTION to FORMFIRST. 

Page 84 JAM Release 5.03 20 Nov 92 



Chapter 4 

Built-in Control Functions 

This section describes control functions supplied with JAM. Note that the synopsis is 
for a JAM control string, not a programming language source statement. The return 
value of a control function can be used in a target list; see the Author's Guide for in
formation on control strings and target lists. 

You may use these functions in control strings and in JPL call statements. 

JAM Release 5.03 20 Nov 92 Page 85 



JAM Programmer's GUIde 

jm_exit 
end processing and leave the current screen 
.... ,,":":.. .: .. : .. : .. ~: :-.. : ...... : .:: ... ~ .. :.:..::..... . ... :.: .... ,,": ....... :: : .. : .. .:::.:.. .. :" ............ : .... ": .. "': .. : .: :.: .. ::: : .. "" :" .. :.. : "" "" .... ..:: .. ~.~ .. : .... : : .. :::" 

SYNOPSIS 

DESCRIPTION 

Clears the current form or window and returns to the previous one. If the current form 
is the application's top-level form, JAM will prompt and exit to the operating system. 

The effect is the same as the default action of the run-time system's EXIT key. 

EXAMPLE 

The following control string invokes a function named process. If it returns 0, anoth
er function is invoked to reinitialize the screen; but if it returns -I, the screen is exited. 
See jm_gotop for another example. 

A(-l=Ajm_exiti O=Areinit)process 

The example below shows how a form or a window can be replaced by another form or 
a window: 

Page 86 JAM Release 5.03 20 Nov 92 



Chapter 4: BUilt-in Control Functions 

jm_90top 
retu rn to application's top-level form 
: .".A ~ •• ~ -: .. :": .:.:-.: •••• ~~.:.:.. •• ~. ) .: •• r.::. s: --:.1;..:- ~ :.... •• ~~ ..... : .... ::..- ~:.: ... ::: •• ~ ..... : ~ : .::.:.: .... ~.: j::. : :" .:: .. ::.. .. .<:,.. .. ~ ".~ ~ "" : .... : ...... ;:. ;;: .. ": 

SYNOPSIS 

DESCRIPTION 

Returns to the application's top-level screen, ordinarily the flfSt screen to appear when 
the application was run. All forms on the form stack and windows on the window stack 
are discarded. 

The result is the same as the default action of the run-time system's SPFI key. 

EXAMPLE 

The following menu makes use of both jrn_exit and jrn_gotop. 

+-------------------------------------------------+ 
Query customer database __ 
Update customer database_ 
Free-form query ___ _ 
Return to previous menu __ 
Return to main menu, __ _ 

custquery. jam __ 
custupdate. jam_ 
!sql ____ _ 
"'jm_exit, __ _ 
"'jm_gotop __ _ 

+-------------------------------------------------+ 

JAM Release 5.03 20 Nov 92 Page 87 



JAM Programmer's Guide 

jm_90form 
prompt for and display an arbitrary form 
"" ":; ".~ ::-: •••• : •• :.~~.~ •• :. JI. .:: .. :.... ",,:: .. : .... : •• :.... ~: ".: .. "" : ..... : ..... : ... :' .. :..~ ": •••• : "" •• ~ .. :.. •• : •• : "" .. : ... :::. ,,".... ::. .. .. : ....... :; ..... : ": : : ...... 

SYNOPSIS 

DESCRIPTION 

This function pops up a window in which you may enter the name of a form; it will then 
close all open windows and attempt to display the form, as if that form's name had ap
peared in a control string. It is useful for providing a shortcut around a menu system for 
experienced users. 

The result is the same as the default action of the run-time system's SPF3 key. 

EXAMPLE 

The following line, if placed in your setup file, will make the PFIO key act like SPF3 
normally does: 

SMINICTRL= PF10=Ajrn_goforrn 

Page 88 JAM Release 5.03 20 Nov 92 



Chapter 4: Built-in Control Functions 

jm_keys 
simulate keyboard input 
........ :.. ..: ~ : ... " ~ .. : ...... : " .. : ::.... .~ ... : ... :.: .. : .... :. :..:..:..~ ~ ,,"; .. :.. :....... : .... ;.: .... .:....~.: .... :~ ... : ..... .;' -; ;.;. ~ ..... :....:.. .:....:...: .. ::" .. ... : -: -: ": .. ....... . .-

SYNOPSIS 

"j m_keys keyname-or-fltrlng {keyna~r-fltrlng ••• J 

DESCRIPTION 

Queues characters and function keys that appear after the function name for input to the 
run-time system, using sm_ungetkey. The run-time system then behaves as though 
you had typed the keys. 

Function keys should be written using the logical key mnemonics listed in smkeys • h. 
Data characters should be enclosed between apostrophes ' , , backquotes I I , or double 
quotes "". This function passes its arguments to sm_ungetkey in reverse order, so 
you supply them in the natural order. 

j ItLkeys will process a maximum of 20 keys. This limit includes function keys plus 
characters contained in strings. 

EXAMPLE 

Enter the name of your favorite bar, followed by a tab and the name of its owner: 

"jm_keys 'Steinway Brauha!!' TAB 

"jm_keys -James O'Shaughnessy· 

Return to the preceding menu and choose the second option: 

"jm_keys EXIT HOME TAB XMIT 

JAM Release 5.03 20 Nov 92 Page 89 



JAM Programmer's Guide 

jm_mnutogl 
switch between menu and data entry mode on a dual
purpose screen 
~~ .. -:":::t ":..~" .. :" .: ,," :: .. ",:-" ": ........... ~ :::-~:"·Y .. ": ..::-:=--: :"':.: ... ~ -= --: .~ .. ~. :"::".,:.: .. .r : ) ....... : "=---:: ......... : ..... .. ........ ":: ........... ~ ..... ~.". -: :":." : ...... ~:.... .: -. "::- : 

SYNOPSIS 

DESCRIPTION 

JAM SuppOrts the use of a single screen for both menu selection and data entry; one 
popular example is a data entry screen with a ''menu bar". The screen must, however, 
be either one or the other at any given moment. This function switches the run-time 
system's treabIlent of the screen to the other mode. This function performs the same 
function as the MTGL logical key. 

An optional argument may be specified which will force the screen into a particular 
mode, regardless of its current state. To specify menu mode, use the argument 'M' (or 
'm'). To specify open-keyboard (data entry) mode, use the argument '0' (or '0'). 

Page 90 JAM Release 5.03 20 Nov 92 



Chapter 4: BUilt-in Control Functions 

jm_system 
prompt for and execute an operating system command 
~.::v..:.. ..... :.: ..... : .......... : : ::.... .. :;::::...~ ~:"".:.."~: .. ~. : .... ~ .. So.:~. ~.::.:." ........ : .. : ........ ~ .. ::~ : ..... "": .. ~~. -:..:.::.: .... ::.t. ~. : ... ::....::.. ... " : .. -: .......... ":: : . .. 

,," "" ....... 

SYNOPSIS 

DESCRIPTION 

This function pops up a small window, in which you may enter an operating system 
command. When you press 1RANSMIT, it closes the window and executes the com
mand. While the command is executing, your terminal is returned to the operating sys
tem's default VO mode. 

The run-time system's SPF2 key invokes this function by default. 

EXAMPLE 
The following line, when placed in your setup file, will cause the PFIO key to act as 
SPF2 normally does: 

SMINICTRL= PF10 = Ajm_system 

JAM Release 5.03 20 Nov 92 Page 91 



JAM Programmer's Guide 

• •• 
Jrn_WlnSIZe 
allow end-user to interactively move and resize a win
dow 
".. .... .. .. ""::: .. ,, ..... ::",,: "" ::: : .. :" ~ :: .... "; ............. : ....... : ":-C: ~:: "": •• ~ .... ~ : ~:. .. .:: ~:: -: .. ---:".. :-.:. '!: "" .... ":~:. : .":,,: '! "" -: ........ : ~ ............ : ::"" --:"" 

SYNOPSIS 

DESCRIPTION 

Calling jm_winsize has the same effect as if the end-user had just hit the VWPI' 
(viewport) logical key. The viewport status line appears and the user can move, resize 
and change the offset of the screen as well as move to any sibling windows. When the 
end-user presses XM:IT the previous status line is restored. 

In order for the end-user to able to move from one window to another, the windows 
must be siblings. Windows may be specified as siblings by specifying && in a JAM 
control string. See the sections on "Viewports and Positioning" and ''Control Strings" 
in the Author's Guide for further information. This function parallels the library routine 
sm_wins i ze. 

Page 92 JAM Release 5.03 20 Nov 92 



Chapter 4: Built-In Control Functions 

jpl 
invoke a JPL procedure 
: .. ::": :.. •• ~:. .. ....... :.:" :: .::.: ... :. ::." .: •• : : ..... :. .. :.. •••• :.:..,,=:" •• :.: ...... ~: : .... :.:: .:: ::~ .: ...... : .... ;. .. :"" .: ....... : -: ... ",:.. A):."V :....:.... •• :~. ?::..~ ....... :....~ 

SYNOPSIS 

A j p 1 procedure [ argument ••• J 

DESCRIPTION 

This function invokes a procedure written in the JYACC Procedural Language. proce
dure should be the name of a JPL procedure or module; anything following that will be 
passed to the procedure as arguments. See the JPL Guide for the rules used by the JPL 
interpreter to determine which JPL procedure is executed. The value returned by your 
procedure will be returned by j pI for use in a target list 

This function is similar to the JPL j pI command. Colon expansion is done on the argu
ments. 

EXAMPLE 

The control string below invokes a JPL function to concatenate two strings and store the 
result in target. 

Ajpl concat target -king- -kong-

JAM Release 5.03 20 Nov 92 Page 93 



ChapterS 

Keyboard Input 

Keystrokes are processed in three steps. First, the sequence of characters generated by 
one key is identified. Next the sequence is translated to an internal value, or logical 
character. Finally, the internal value is either acted upon or returned to the application 
("key routing"). All three steps are table--driven. Hooks are provided at several points 
for application processing; they are described in the chapter "Writing and Installing 
Hook Functions". 

5.1 

LOGICAL KEYS 
JAM processes characters internally as logical values, which frequently (but not al
ways) correspond to the physical ASen codes used by terminal keyboards and displays. 
Specific physical keys or sequences of physical keys are mapped to logical values by 
the key translation table, and logical characters are mapped to video output by the 

MODE and GRAPH commands in the video me. For most keys, such as the normal dis
playable characters, no explicit mapping is necessary. Certain ranges of logical charac
ters are interpreted specially by JAM; they are 

• Ox01OO to OxO 1 f f: operations such as tab, scrolling, cursor mo-
tion 

• Ox6101 to Ox7 801: function keys PFI - PF24 

• Ox4101 to Ox5801: shifted function keys SPFl- SPF24 

• Ox6102 to Ox7802: application keys APPl- APP24 

JAM Release 5.03 20 Nov 92 Page 95 



JAM Programmer's GUide 

5.2 

KEY TRANSLATION 
The frrst two steps together are controlled by the key translatIon table, which is loaded 
dunng initialization. The name of the table is found in the environment (see the Config
uration Guide for details). The table itself is denved from an ASCII file which can be 
modified by any editor; a screen-oriented utilIty, modkey, is also supplied for creating 
and modifying key translation tables (see the Utilities GUide). 

The algorithm described below assumes the default case, where you have not specified 
a timing interval with the KBD_DELAY entry in the video file. 

J AM assumes that the frrst character of any multi-character key sequence to be trans
lated to a single logical key IS a control character in the ASCII chart (OxOO to Oxlf, 
Ox7f, Ox80 to Ox9f, or OxfO. All characters not in this range are assumed to be display
able characters and are not translated. 

Upon receipt of a control character, the keyboard input function sm_getkey searches 
the translation table. If no match is found on the frrst character, the key is accepted 
without translation. If a full match is found on the frrst character, an exact match has 
been found, and sm_getkey returns the value indicated in the table. The search con
tinues through subsequent characters until either 

1. an exact match on n characters is found and the n+ 1 'th character in 
the table is 0, or n is 6. In this case the value in the table is returned. 

2. an exact match is found on n-l characters but not on n. In this case 
sm_getkey attempts to flush the sequence of characters returned 
by the key. 

This last step is of some importance: if the operator presses a function key that is not in 
the table, the Screen Manager must know "where the key ends". The algorithm used is 
as follows. The table is searched for all entries that match the flfSt n-l characters and 
are of the same type in the n'th character, where the types are digit, control character, 
letter, and punctuation. The smallest of the total lengths of these entries is assumed to 
be the length of the sequence produced by the key. (If no entry matches by type at the 
n'th character, the shortest sequence that matches on n-l characters is used.) This 
method allows sm_getkey to distinguish, for example, between the sequences ESC 
o x, ESC [ A, and ESC [ 1 0 -. 

If you do have a KBD_DELAY entry in the video file, you may specify key sequences in 
the key translation file that are substrings of other sequences. For example, the se
quences Esc and Esc [ C could both have logical values, even though one is a sub
string of the other. In this case, JAM waits up to the specified timing interval between 
processing characters to detennine if a character is a single keystroke or belongs to a 
combination sequence. Refer to the Configuration Guide for details. 

Page 96 JAM Release 5 03 20 Nov 92 



Chapter 5: Keyboard Input 

5.3 

KEY ROUTING 
The main routine for keyboard processing is sIn_input. This routine calls 
sIn_getkey to obtain the translated value of the key. It then decides what to do based 
on the following rules. 

If the value is greater than Oxlff, sIn_input returns to the caller with this value as the 
return code. 

If the value is between OxO I and Ox I ff, the key is ftrst translated via the key translation 
table. This table is changed with the library routine sIn_keyopt ion. Then processing 
is determined by a routing table. Use sIn_keyopt ion to get and set the routing in
formation for a particular key. The routing value consists of two bits, examined inde
pendently, so four different actions are possible: 

I. If neither bit is set, the key is ignored. 

2. If the EXECUTE bit is set and the value is in the range OxOI to Oxff, 
it is written to the screen (as interpreted by the GRAPH entry in the 
video ftle, if one exists). If the value is in the range OxIOO to Oxlff, 
the appropriate action (tab, fteld erase, etc.) is taken. 

3. If the RETURN bit is set, sm_input returns the logical value to the 
caller; otherwise, sm_getkey is called for another value. 

4. If both bits are set, the key is executed and then returned. 

The default settings are ignore for ASCD and extended ASCn control characters (OxOl 
- Oxlf, Ox7f, Ox80 - Ox9f, Oxft), and EXECU'IE only for all others. The default setting 
for displayable characters is EXECU1E. All other ASCD and extended ASCD charac
ters are ignored. The application function keys (PFI-24, SPFI-24, APPl-24, and 
ABORn are not handled through the routing table. Their routing is always RETURN, 
and cannot be altered. All other function keys (EXIT, SPGU etc ... ) are initially set to 
EXECUTE. 

Applications can change key actions on the fly by using sm_keyopt i on. For exam
ple, to disable the backtab key the application program would execute 

sffi_keyoption(BACK, KEY_ROUTING, KEY_IGNORE) 

To make the fteld erase key retnm to the application program, use 
sffi_keyoption(FERA, KEY_ROUTING, RETURN) 

Key mnemonics can be found in the rtle smkeys . h. 

JAM Release 5.03 20 Nov 92 Page 97 



Chapter 6 

Terminal Output Processing 
JAM uses a sophisticated delayed-write output scheme, to minimize unnecessary and 
redundant output to the display. No output at all is done until the display must be up
dated, either because keyboard input is being solicited or the library function 
sm_f lush has been called. Instead, the run-time system does screen updates in 
memory, and keeps track of the display positions thus "dirtied". Flushing begins when 
the keyboard is opened; but if you type a character while flushing is incomplete, the 
run-time system will process it before sending any more output to the display. This 
makes it possible to type ahead on slow lines. You may force the display to be updated 
by calling sm_flush. 

JAM takes pains to avoid code specific to particular displays or terminals. To achieve 
this it defines a set of logical screen operations (such as "position the cursor''), and 
stores the character sequences for performing these operations on each type of display 
in a rlle specific to the display. Logical display operations and the coding of sequences 
are detailed in the video file section of the JAM Configuration Guide; the following 
sections describe additional ways in which applications may use the information en
coded in the video file. 

6.1 

GRAPHICS CHARACTERS AND 
ALTERNATE CHARACTER SETS 
Many terminals support the display of graphics or special characters through alternate 
character sets. Control sequences switch the terminal among the various sets, and char
acters in the standard ASCII range are displayed differently in different sets. JAM sup
ports alternate character sets via the MODEx and GRAPH commands in the video file. 

JAM Release 5.03 20 Nov 92 Page 99 



JAM Programmer's Guide 

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a particular 
character set. MODEO must be the normal character set The GRAPH command maps 
logical characters to the mode and physical character necessary to display them. It con
sists of a number of entrIes whose form is 

loglcal value = mode physical-character 

When JAM needs to output logical value it will fIrSt transmit the sequence that 
switches to mode, then transmit physical-character. It keeps track of the cur
rent mode, to aVOId redundant mode switches when a string of characters in one mode 
(such as a graphics border) is being written. MODE4 through MODE6 switch the mode 
for a single character only. 

6.2 

THE STATUS LINE 
JAM reserves one line on the display for error and other status messages. Many termi
nals have a special status line (not addressable with normal cursor positioning); if such 
is not the case, JAM will use the bottom line of the display for messages. There are 
several sorts of messages that use the status line; they appear below in priority order. 

I. Transient messages issued by sm_err_reset or a related function 

2. Ready/wait status 

3. Messages installed with sm_d_msg_line or sm_msg 

4. Field status text 

5. Background stablS text 

There are several routines that display a message on the status line, wait for acknowl
edgement from the operator, and then reset the stams line to its previous state: 
sm_query _msg, sm_err_reset, sm_emsg, sm_quiet_err, and 
sm_qui_msg. sm_query_msg waits for a yes/no response, which it returns to the 
calling program; the others wait for you to acknowledge the message. These messages 
have highest precedence. 

sm_setstatus provides an alternating pair of background messages, which have 
next highest precedence. Whenever the keyboard is open for input the status line dis
plays Ready; it displays Wai t when your program is processing and the keyboard is 
not open. The strings may be altered by changing the SM_READY and SM_WAIT entries 
in the message rlle. 

If you call sm_d_msg_l ine, the display attribute and message text you pass remain 
on the status line until erased by another call or overridden by a message of higher pre
cedence. 

Page 100 JAM Release 5.03 20 Nov 92 



Chapter 6: Termmal Output Processing 

When the status line has no higher priority text, the Screen Manager checks the current 
field for text to be displayed on the status line. If the cursor is not in a field, or if it is in 
a field with no status text, JAM looks for background status text, the lowest priority. 
Background status text can be set by calling sm_setbkstat, passing it the message 
text and display attribute. 

In addition to messages, the rightmost part of the status line can display the cursor's 
current screen position, as, for example, C 2, 18. This display is controlled by calls to 
sm_c_vis. 

During debugging, calls to sm_err_reset or sm_quiet_err can be used to pro
vide status information to the programmer without disturbing the main screen display. 
Keep in mind that these calls will work properly only after screen handling has been 
initialized by a call to sm_ini tcrt. sm_err_reset and sm_quiet_err can be 
called with a message text that is defined locally, as in: 

sm_err_reset("ZIP CODE INVALID FOR THIS STATE.")i 

However, the JAM library functions use a set of messages defmed in an internal mes
sage table. This table is accessed by the function sm_msg_get, using a set of defmes 
in the header file smerror . h. For example: 

s~quiet_err (sm_msg_get (SM_MALLOC))i 

The message table is initialized from the message file identified by the environment 
variable SMMSGS. Application messages can also be placed in the message file. See the 
section on message files in the Configuration Guide. 

JAM Release 5.03 20 Nov 92 Page 101 



Chapter 7 

Writing International (8 bit) 
Applications 

7.1 

INTRODUCTION 
This chapter describes how to use the 8 bit internationalization capabilities that have 
been incorporated into JAM Release S. 

From the point of view of someone who has used JAM without these features, a few 
differences will be apparent immediately. Other, more subtle, differences will emerge 
as the package is used in building language-independent applications. Finally, many of 
the changes were made so that the development utilities could be localized for use in 
other countries. These will largely go unnoticed by people using the package in Eng
lish. 

7.1.1 

General Overview 
JAM's support for 8 bit international character sets allows JAM and applications 
created with with it to be "localized" for use in non-English-speaking countries. This 
means that an application can be made to look like it originated in the country in which 
it is being used. All prompts and messages can appear in the appropriate language, and 
customs for formatting dates, currency fields and the like can be observed. Notwith
standing this, many of the features that are only visible to programmers continue to be 
in English since many programmers are used to working in English. 

JAM Release 5.03 20 Nov 92 Page 103 



JAM Programmer's GUide 

The capabilities described here are limited to languages in which characters can be rep-' 
resented in 8 bits of information and those that use a left-to-right entry order. This 
ebmmates the complexities associated with many far- and middle-eastem languages. 

7.2 

LOCALIZATION 
J AM and JAM applications can be localized by taking the following steps: 

• Use the Screen Editor to translate all screens in the application. 

• Translate and recompile the message me. 

• Translate the documentation. 

7.2.1 

Background 
JAM was Originally developed with some internationalization issues in mind. It has 
always used 8 bit character data, without appropriating a bit for internal use. So one of 
the major demands of the international market was already satisfied. 

Date and time formats have always been completely specified by the screen creator. 
The wide variety of formats available in Release 4 could satisfy most requirements. In 
Release 5, additional capabilities were added to make it easier to convert screens from 
one language to another. Currency fOlmats were the least international of the features in 
the Release 4 product. Release 5 makes these completely language independent. 

Each of the sections below discusses some aspect of internationalization. 

7.2.2 

8 Bit Character Data 
As pointed out in the introduction, JAM supports 8 bit character data. Video files spe
cific to the terminal can give special instructions, if necessary, as to how to display in
ternational characters. This is needed if the terminal requires shifting to a different 
character set to display non-ASCII characters. Most terminals used in the international 
market do not need to shift character sets. 

The video fIle can also be used to translate between two different standards for interna
tional characters. Thus screens can be created with one standard and displayed using a 
different one. 

Page 104 JAM Release 5.03 20 Nov 92 

\ 
I 



Chapter 7: Wntlng Intematlonal Applications 

The use of 8 bIt characters for international symbols does not necessarily preclude the 
use of graphics for borders, etc. Any unused entries in a character set (e.g. OxOl - Oxlf, 
or Ox80 - Ox90 can be mapped to hne graphics symbols. 

JAM rarely, if ever, interprets characters present in screens or entered from the key
board. Internally it merely manipulates numbers. Any meaning as an alphabetic charac
ter, graphics symbol, or whatever, is generally irrelevant to JAM. The cursor control 
keys (arrows, tab, etc.), function keys, and soft keys are all assigned logical values that 
are outside the range OxOO to Oxff, and thus cannot conflict with lDternational charac
ters. 

Keyboards that support international character sets will usually produce a single (8 bit) 
byte (perhaps with the high bit set) for each character. However there are some termi
nals that generate a sequence to represent an international character. If so, modkey (or 
a text editor) can be used to map the byte sequences into a logical value, just as the 
video me is used to map the logical value to the sequence required by the display termi
nal. 

If you have questions about how to display non-English characters or to receive them 
from the keyboard, consult Chapter 5 on keyboard input and Chapter 6 on terminal out
put (video processing). 

7.2.3 

Date and Time Fields 
Date and time fields have been completely revamped in Release 5. They have been 
combined to enable one field to have both date and time information. This, and the fact 
that more flexibility was added to date and time formatting, required changes to the 
date and time mnemonics. For example, in Release 4, the mnemonic mIn was used for a 
2-digit month in date fields as well as the specifier for minutes in time fields. Clearly, 
this cannot serve both purposes when the fields are combined. 

In Release 5, the mnemonics for specifying date and time formats are stored in the mes
sage file so they may be changed. In addition, they are stored in a "tokenized" form 
internally which provides two major benefits. First, the need to parse the formats at run
time is eliminated, thus speeding up processing and reducing memory requirements. 
Second, screen designers in different countries editing the same screen will all see date 
and time specifications in formats they are used to. For example, if an English screen 
designer created a date field with the format mon/ day /year, it might show up on a 
French system as mois/jour/annee. 

The problem of interchanging the month and day is dealt with later. 

The table below shows the default message me entries for date and time mnemonics: 

JAM Release 5.03 20 Nov 92 Page 105 



JAM Programmer's Guide 

Msg# Dateflime Tokenized Description 
Mnemonic Mnemonic Format 

FM_YR4 YR4 %4y 4 digit year 

FM_YR2 YR2 %2y 2 dtgit year 

FM_MON MON %m month number 

FM_MON2 MON2 %Om month number, zero fill 

FM_DATE DATE %d date (day of month) 

FM_DATE DATE 2 %Od date, zero fill 

FM_HOUR HR %h hour 

FM_HOUR HR2 %Oh hour, zero fill 

FM_MIN MIN %M minute 

FM_MIN2 MIN2 %OM minute, zero ftll 

FM_SEC SEC %s seconds 

FM_SEC2 SEC2 %Os seconds, zero fill 

FM_YRDA YDAY %+d day of the year 

FM_AMPM AMPM %p amlpm 

FM_DAYA DAYA %3d abbreviated day name 

FM_DAYL DAYL %*d long day name 

FM_MONA MONA %3m abbrev. month name 

FM_MONL MONL %*m long month name 

Thus, a date field specified as mm/ dd/yyyy in Release 4 would be 
MON2/DATE2/YR4 in Release 5. The f4toS conversion program will convert the 
format to %m/%d/%4y internally so it will automatically show up correctly when the 
screen is edited. The mnemonics were chosen to correspond to ANSI standards. You 
can change them to suit your own needs by simply changing the message file and run
ning msg2bin. To change the mnemonic for a 4 digit year from YR4 to YYYY, for ex
ample, change the message file line 

Page 106 JAM Release 5.03 20 Nov 92 



to 

FM_YR4 = YYYY 

and run msg2bin. 

Chapter 7: Wnting Intematlonal Applications 

If all development is done in one language, the fact that different mnemonics for date 
and time formats can be used for different languages is unimportant. What is important, 
however, is the ability to modify an application to operate in a different language. The 
goal is that only the text of the screens and the message file should need to be changed. 

Consider a screen with a date field of the form DAYA MONA DATE, YR4. If executed 
on a system with an English message file it might appear as 

Mon Apr 4, 1989 

whereas on a French system it would be 

Lun Avr 4, 1989 

This happens without changing the date format. All that has changed are the names and 
abbreviations of the months and days which are also stored in the message file so it is 
a simple matter to convert them. 

Now consider a date field which in English should show up in mml dd/yyyy form but 
should appear in French as dd-mm-yyyy. In this case, the date format itself would 
have to be modified. For this reason, 10 additional formats are supplied for the design
er's use. For instance, in the message file the designer can specify a new date mnemon
ic called REGULAR DATE. In the English message file this can be equated to mml ddl 
yyyy and in the French message file to dd-mm-yyyy. Thus, if the date format is 
specified as REGULAR DATE, only the message fIle, not the screen, needs to be 
changed to convert the date field to French. 

For this capability, both the mnemonics and what they represent are specified in the 
message file. The actual formats are stored in the message fIle in tokenized form so that 
there is no need for a parser. 

The following table shows the default message file entries for these extra date mne
monics: 

JAM Release 5.03 20 Nov 92 Page 107 



JAM Programmer's GUide 

MsgNumber Date/I'ime Tokenlzed Corresponding Default 
Mnemonic Mnemonic Form Msgfile Entry 

FM_OMN_DEF_DT DEFAULT %Of SM_ODEF_DTIME %rn/%d/%2y 
%h:%OM 

FM_IMN_DEF_DT DEFAULT %If SM_IDEF_DTIME %rn/%d/%2y 
DATE 

FM_2MN_DEF_DT DEFAULT %2f SM_2DEF_DTIME %h:%OM 
TIME 

FM_3MN_DEF_DT DEFAULT3 %3f SM_3DEF_DTIME %rn/%d/%2y 
%h:%OM 

FM_4MN_DEF_DT DEFAULT4 %4f SM_4DEF_DTIME %rn/%d/%2y 
%h: %OM 

FM_5MN_DEF_DT DEFAULTS %Sf SM_SDEF_DTIME %rn/%d/%2y 
%h: %OM 

FM_6MN_DEF_DT DEFAULT 6 %6f SM_6DEF_DTIME %rn/%d/%2y 
%h: %OM 

FM_7MN_DEF_DT DEFAULT7 %7f SM_7DEF_DTIME %rn/%d/%2y 
%h:%OM 

FM_8MN_DEF_DT DEFAULT8 %8f SM_8DEF_DTlME %rn/%d/%2y 
%h: %OM 

FM_9MN_DEF_DT DEFAULT9 %9f SM_9DEF_DTlME %rn/%d/%2y 
%h:%OM 

Thus, if the screen designer specifies a date field with the format DEFAULT DATE, it 
would show up in rnrn/ dd/yy form. If the line 

in the message fIle were changed to 

the date would show up in dd-rnrn-yy form. To change the mnemonic for this date for
mat to REGULAR DATE, the message FM_IMN_DEF _DT should be modified. 

Page 108 JAM Release 5.03 20 Nov 92 



Chapter 7: Wnbng Intemational Applications 

7.2.4 

Currency Fields 
Like date and time fields, currency fields have been modified in Release 5. Since it is 
not uncommon in Europe to be dealing with several currencies simultaneously, release 
5 does not force anyone system on the screen creator. Thus, the formatting capabilities 
were enhanced to support any convention the screen creator might desire. As with date 
and time formats, a "default" format is supplied that causes the actual format to be tak
en from the message me. For currency fields however, this optIon is supplied only for 
the parts of the format that may vary from one currency to another. 

The new release allows the following items to be specified for currency fields: 

• the decimal symbol (usually dot or comma) 

• minimum number of decimal places 

• maximum number of decimal places 

• thousands separator (usually dot or comma; b = blank) 

• currency symbol to be used (up to 5 characters) 

• placement of currency symbol (left, right or at decimal pt) 

• default currency from the message fIle (to replace the above entries) 

• rounding (round-up, round-down, round-adjust) 

• fill character 

• justification 

• clear if zero 

• apply if empty 

There is a slight problem in specifying currency symbols when using the Screen Editor. 
Since the currency symbol is entered into a regular field, it is not possible to enter trail
ing spaces (they are always stripped ofO. Thus, to specify a leading currency symbol 
separated from the data by a space (FF 123. 456 , 78) you must use the message fIle. 
For this reason, the dot ( . ) may be used to signify a space when entered into the curren
cy field. A dot in the message fIle for this purpose will appear as a dot 

The default currency formats are strings of the form rrnxtpccccc where: 

• r = decimal symbol (usually comma or dot) 

• m = minimum number of decimal places 

• x = maximum number of decimal places 

JAM Release 5.03 20 Nov 92 Page 109 



JAM Programmer's GUide 

et 

.p 

• ccccc 

= thousands separator (usually comma or dot; b = blank) 

= placement of currency symbol (I, r or m) 

= up to 5 characters for the currency symbol 

Thus, if the screen designer specifies a currency field with the format CURRENCY, it 
would show up in $999,999.99 form..lfthe line 

SM_ODEF_CURR = ".22,1$" 

in the message fIle were changed to 

SM_ODEF_CURR = ",22.1FF" 

the field would show up as FF 999. 99 , 99. To change the mnemonic for this curren
cy field, the message FM_OMN_CURRDEF should be modified. The following table 
shows the default message file entries for the currency mnemonics: 

Msg Number Mnemonic Currency Corresponding Default 
Mnemonic Msgfile Entry 

FM_OMN_CURRDEF CURRENCY SM_ODEF_CURR .22,1$ 

FM_1MN_CURRDEF NUMERIC SM_1DEF_CURR .09, 

FM_2MN_CURRDEF PLAIN SM_2DEF_CURR .09 

FM_3MN_CURRDEF DEFAULT3 SM_3DEF_CURR .09 

FM_4MN_CURRDEF DEFAULT4 SM_4DEF_CURR .09 

FM_SMN_CURRDEF DEFAULTS SM_SDEF_CURR .09 

FM_6MN_CURRDEF DEFAULT 6 SM_6DEF_CURR .09 

FM_7MN_CURRDEF DEFAULT7 SM_7DEF_CURR .09 

FM_8MN_CURRDEF DEFAULTS SM_8DEF_CURR .09 

FM_9MN_CURRDEF DEFAULT9 SM_9DEF_CURR .09 

Page 110 JAM Release 5.03 20 Nov 92 



Chapter 7: Wntlng International Applications 

7.2.5 

Decimal Symbols 
J AM accommodates 3 decimal symbols which are used in different circumstances: 

• System Decimal Symbol 

• Local Decimal Symbol 

• Field Decimal Symbol 

The System Decimal Symbol is the one that C library routines like atof and 
sprintf use. The Local Decimal Symbol is the one that is used when local customs 
are followed (dot in English; comma in French). The Field Decimal Symbol is the one 
specified for a given field if that field is not observing local conventions. 

The System and Local Decimal Symbols are obtained from the operating system if the 
operating system supports such things (see the JAM Installation Guide for your operat
ing system). The Local Decimal Symbol may be specified in the message file (message 
SM_DEC lMAL), in which case it overrides the operating system decimal symbol. Dot is 
the system decimal if no symbol is specified in the message file and if the operating 
system does not supply one. 

The sections below describe the circumstances under whIch each of the different sym
bols is used. 

7.2.6 

Character Filters 
The one time that JAM requires some knowledge of the meaning of the data is while 
enforcing the character filters on a field The filters currently supported are digits only, 
numeric, alphabetic, alphanumeric, yes/no, and regular expression. 

To validate the data, JAM uses the standard C macros: isdigit, isalpha, etc. 
JAM assumes that the operating system supplies these macros in a form suitable for 
international use. In the absence of such operating system support, care should be taken 
when using these capabilities. 

Special code is used to process numeric fields since C does not provide an "isnumeric" 
macro. If the field has a currency edit, JAM uses the Field Decimal Symbol to validate 
the numeric entry. If the field has no currency edit or the currency edit has no decimal 
symbol specified, JAM uses the Local Decimal Symbol. 

Yes/no fields have always been internationalized in that the yes and no characters (y 
and n in English) are specified in the message file. Although some vendors supply in-

JAM Release 5.03 20 Nov 92 Page 111 



JAM Programmer's GUide 

fonnation about these characters, the proposed ANSI standard does not address the is
sue. Therefore, for reasons of portability, JAM continues to use the message f:tIe for this 
data. 

Upper and lower case fields will also bebave properly provided that toupperand re
lated functions are language dependent. The present code assumes that the return from 
toupper is appropriate for an upper case field. Therefore a lower case letter can ap
pear in sucb a field if there is no upper case equivalent for that letter. (The German 
"double s" has no upper case equivalent.) 

In processing regular expressions, JAM uses the ASCII collating sequence for ranges 
of characters. Therefore, the expression 

[a-z]* 

will match only the English lower case letters. The European character a, for example, 
is not matched by this expression. 

7.2.7 

Status and Error Messages 
All messages produced by JAM are stored in the message file so they may be easily 
localized. Each message is a complete phrase or sentence. Message components are 
never pieced together because doing so would make it difficult to translate to a lan
guage that has a sentence structure different from English. 

7.2.8 

Screens in the Utilities 
These screens were memory resident in Release 4. For international customers they 
must be modifiable. 

A linkable jxform is provided, and the library containing the source for the screens is 
made available. A developer may translate the screens and reiiilk the utilities. Similarly 
modkey is developer-linkable, and the source for its screens is provided. In this way 
the screens remain memory resident and no compromise of speed need be made. 

Unfortunately this solution is not ideal if several users on the same machine wish to use 
different languages. To support this, the screens may be kept on disk. The current mech
anism of SMPATH allows run-time selection of the set of screens to be used. 

Page 112 JAM Release 5.03 20 Nov 92 



Chapter 7: Writing Intemational Applications 

7.2.9 

Screens in Application Programs 
The same approach discussed in the section on screens in the utilities can be used for 
screens in application programs. Thus different language screens can be kept in sepa
rate directories and the user can specify which is to be used at run-time. 

7.2.10 

Menu Processing 
sm_input returns the first character of the selected entry. This, of course, is not lan
guage independent. JAM utilities have been modified to use the current field number 
rather than the return value. Because it cannot be assumed that all entries will have 
unique frrst letters, the string option is specified. 

Application programs intended for an international marlc:et should not rely on the initial 
character of the menu selection. The field number containing the cursor is a better way 
of determining which selection the operator has made. However the field numbers may 
change if the screen is redesigned. Note that this is not a problem when the JAM 
Executive is used, since the JAM Executive uses relative field numbers to determine 
the control string to execute when a menu field is selected. 

A new edit was instituted in JAM 4 that specifies the return code from a return 
entry (or menu) field. The screen creator specifies the return code (an integer) when 
designing the screen. If this edit exists, sm_input uses that value as the return code to 
the calling program. If this edit does not exist, the usual return code is used 

7.2.11 

lstform,lstdd,andjarnmap 
These utilities list data about the screen in English. Since they are often used for docu
mentation it is important that the text be translatable to other languages. Thus the textu
al material, headings, etc., have been moved to the message fIJ.e. 

7.2.12 

Range Checks 
Range checks for numeric data are presently correctly handled since they use the C li
brary routine atef (assuming that the "strip" routine works properly). 
Alphabetic data presents special problems. One of the major issues for internationaliza
tion is the collating sequence of a language. For dictionary or telephone book proces-

JAM Release 5.03 20 Nov 92 Page 113 



· ... ,.. ~ 

JAM Programmer's GUide 

sing the problem is particularly troublesome. For example, upper and lower case letters 
compare equal. Also, in a telephone book, St. and Saint compare equal, hyphens are 
ignored, etc. In some languages even less demanding apphcations pose severe prob
lems. For example, ligatures compare equally to pairs of letters. The placement of vow
els with diacritical marks varies widely even among countries using the same language. 

The proposed ANSI standard specifies a routine, strcoll, that can be used to expand 
the word into a format suitable for comparison by strcmp. These routines assume that 
the data supplied is a word in the local language. They wlll give unexpected results on 
non-language data. 

JAM is not designed to process languages in a way that requires such niceties. It does 
sort names of fields and other objects, but that is done only to speed look-up. As long 
as the sort routine and the search routine use the same algorithm, things will work. 
In JAM, range checks are often given on non-language data. For example a menu 
selection might have a range of a to d. In certain languages an umlaut would fall into 
that range if a language specific comparison was made. This effect would complicate 
screen design. Different screens would be needed for different countries, even If they 
used the same language. 
For these reasons no changes have been made to the Release 4 method of range check
ing. strcmp and memcmp continue to be used. These compare the internal values of 
the characters, without regard to their meanings in the local language. 

7.2.13 

Calculations Using @SUM and @DATE 
These keywords have been retained even though they are language specific. Computa
tions with dates assume the Gregorian calendar. No provision is made for other calen
dars. 

7.2.14 

sm_dblval and sm_dtofield 
These routines use the C library routines atof and sprintf therefore correctly inter
pret the System Decimal Symbol (radix character). 

7.2.15 

sm_is-yes and sm_query_msg 
These routines use the characters in the message ftle for y and n and thus are already 
internationalized. They use toupper to recognize the upper case variations. 

Page 114 JAM Release 5.03 20 Nov 92 



Chapter 7: Wribng Intemational Applications 

7.2.16 

Batch Utilities 
All the utility messages, including usage messages are in the message file. 

The mnemonics for logical keys (XMIT, EXIT, etc.) are not translated to other lan
guages, nor are the mnemonics used in the video file, so the internal processing of the 
utilities need not be modified. 

JAM Release 5.03 20 Nov 92 Page 115 



ChapterB 

Writing Portable Applications 
The following section describes features of hardware and operating system software 
that can cause JAM to behave in a non-uniform fashion. An application designer wish
ing to create programs that run across a variety of systems needs to be aware of these 
factors. 

8.1 

TERMINAL DEPENDENCIES 
JAM can run on display terminals of any size. On terminals without a separately ad
dressable status lint; JAM will steal the bottom line of the display (often the 24th) for 
a status line, and status messages will overlay whatever is on that line. A good lowest 
common denominator for screen sizes is 23 lines by 80 columns, including the border 
(21 if two-line soft key labels will be used). 

Different tenninals support different sets of attributes. JAM makes sensible compro
mises based on the attributes available; but programs that rely extensively on attribute 
manipulation to highlight data may be confusing to users of terminals with an insuffi
cient number of attributes. Colors will not show up on monochrome terminals, e.g.
use of graphics character sets is particularly terminal dependent 

Attribute handling can also affect the spacing of fields and text. In particular, anyone 
designing screens to run on terminals with on screen attributes must remember to leave 
space between fields, highlighted text, and reverse video borders for the attributes. 
Some terminals with area attributes also limit the number of attribute changes per
mitted per line (or per screen). 

The key translation table mechanism supports the assignment of any key or key se
quence to a particular logical character. However, the number and labelling of function 

JAM Release 5.03 20 Nov 92 Page 117 



JAM Programmer's GUide 

keys on particular keyboards can constrain the application desIgner who makes heavy 
use of function keys for program control. The standard VT100, for instance, has only 
four function keys. For simple choices among alternatives, menus are probably better 
than switching on function keys. 

Using function key labels, or key tops, instead of hard--coded key names is also impor
tant to making an application run smoothly on a variety of terminals. Field status text 
and other status line messages can have key tops inserted automatically, usmg the %K 
escape. No such translation is done for strings written to fields; in such cases, you may 
want to place the strings in a message file, since the setup file can specify terminal-de
pendent message meso 

8.2 

ITEMS IN smmach. h 
The header me smmach . h, which is supplied with the JAM library, contains informa
tion that library routines need to deal with certain machine, operating system, and com
piler dependencies. These include: 

• The presence of certain C header mes and library functions. 

• Byte ordering in integers and support for the unsigned character type. 

• Path name and command line argument separator characters. 

• Pointer alignment and structure padding. 

The header ftIe is thorougbly commented, and application designers are encouraged to 
make use of the information there. 

Page 118 JAM Release 5.03 20 Nov 92 



Chapter 9 

Writing Efficient Applications 

9.1 

MEMORY-RESIDENT SCREENS 
Memory-resident screens are much quicker to display than disk-resident screens, since 
no disk access is necessary to obtain the screen data. However, the screens must fust be 
converted to source language modules with bin2c or a related utility (see the Utilities 
Guide), then compiled and linked with the application program. 

sm_d_form and related library functions can be used to display memory-resident 
screens; each takes as one of its parameters the address of the global array containing 
the screen data, which will generally have the same name as the ftle the original screen 
was originally stored in. 

A more flexible way of achieving the same object is to use a memory-resident screen 
list Bear in mind that the JAM Screen Editor can only operate on disk files, so that 
altering memory-resident screens during program development requires a tedious 
cycle of test - edit - reinsert with bin2c - recompile. The JAM library maintains an 
internal list of memory~esident screens that sm_r_window and related functions ex
amine. Any screen found in the list will be displayed from memory, while screens not 
in the list will be sought on disk. This means that the application can be coded to use 
one set of calls, the r-version, and screens can be configured as disk- or memory-resi
dent simply by altering the list 

The screen list is a pointer to an array of structures: 

struct form_list 
{ 

char *form_namei 
char *form-ptri 

} *sm_memformsi 

JAM Release 5.03 20 Nov 92 Page 119 



JAM Programmer's GUide 

To initialize it, an application would use code like the following: 

#lnclude Rsmdefs.hR 
extern char mainform[], popupl[]; 
extern char popup2[], helpwin[); 

struct form_list mrforms[) = 
{ 

} ; 

Rmalnform.jamR,mainform, 
Rpopupl.]am", popupl, 
"popup2.jam", popup2, 
"helpwln.jamR, helpwin, 
u. (char *)0 

sm_formlist(mrforms)i 

Note the last entry in the screen list: an empty string for the name and a null pointer for 
the screen data. This marks the end of the list, and is required. The call to sm_for
mlist adds the screens in your list to JAM's internal list 

Using memory-resident screens (and configuration flies, see the next section) is, of 
course, a space-time tradeoff: increased memory usage for better speed. 

JAM will append the extension found in the setup variable SMFEXTENS I ON to screen 
names (e.g. in control fields) that do not already contain an extension; you must take 
this into account when creating the screen list. JAM may also convert the name to up
percase before searching the screen list; this is governed by the SMFCASE variable. 

9.2 

MEMORY-RESIDENT CONFIGURATION 
FILES 
Any or all of the three configuration flies required by JAM can be made memory resi
dent. First a C source file must be created from the binary version of the file, using the 
bin2c utility; see the Utilities Guide. The source files created are not readily decipher
able. The following fragment makes all three files memory-resident: 

/* Memory-resident message, key, and 
* video files */ 

extern char key_filer]; 
extern char video_filer]; 
extern char msg_file[); 

/* ... more declarations ... */ 

Page 120 JAM Release 5.03 20 Nov 92 



Chapter 9: Wnting Efficient Applications 

sm_keyinit (key_file) i 

sm_vinit (vldeo_file) i 

sm_msgread (-SM·, SM_MSGS, MSG_MEMORYIMSG_INIT, msg_file)i 
sm_lnltcrt (·")i 

/* ... possibly initialize function and 
* form lists */ 

/* ... application code */ 

If a file is made memory-resident, the corresponding environment vanable or SMVARS 
entry can be dispensed with. 

9.3 

MEMORY-RESIDENT KEYSETS 
Keysets may be made memory-resident by converting them to source language struc
tures via bin2 c or related utilities, installing them via sm_forml is t, and compiling 
and linking them into your executable. 

9.4 

MESSAGE FILE OPTIONS 
If you need to conserve memory and have a large number of messages in message fdes, 
you can make use of the MSG_DSK option to sm_msgread. This option avoids load
ing the message fdes into memory; instead, they are left open, and the messages are 
fetched from disk when needed. Bear in mind that this uses up additional ftle descrip
tors, and that buffering the open ftIe consumes a certain amount of system memory; you 
will gain little unless your message ftIes are quite large. 

9.5 

MEMORY-RESIDENT JPL 
JPL "load", "public" and "memory-resident" modules may be made memory-resident. 
First, compile the module with jp12bin and convert the binary to a source language 
character array with bin2c or a related utility. Then, add the modules to the memory
resident list via sm_forml is t and compile and link the source with your application. 
Load and public modules may alternatively exist as fdes or in libraries. Refer to section 
3.1 in the JPL Guide for an explanation of the various JPL modules. Making a JPL 
module memory-resident reduces 110 time and makes it part of the JAM executable. 
This can prevent accidental loss or editing of your JPL code by the end user. 

JAM Release 5.03 20 Nov 92 Page 121 



JAM Programmer's GUide 

9.6 

JPL VS. COMPILED LANGUAGES 
JPL code execution goes through an extra layer of interpretatton that compiled code, 
such as C, does not In most cases, the total run time is too small to matter, but if a JPL 
function is long or loops many times and a delay is noted, it may pay to rewrite it in C. 

See also Chapter 9 of the JPL Guide for hints on improving the performance of your 
JPL. 

9.7 

AVOIDING UNNECESSARY SCREEN 
OUTPUT 
Several of the entries in the JAM video file are not logically necessary, but are there 
solely to decrease the number of characters transmitted to paint a given screen. This can 
have a great impact on the response time of applications, especially on time-shared 
systems with low data rates; but it is noticeable even at 9600 baud. To take an example: 
JAM can do all its cursor positioning using the CUP (absolute cursor position) com
mand. However, it will use the relative cursor position commands (CUU, CUD, CUF, 
CUB) if they are defined; they always require fewer characters to do the same job. Sim
ilarly, if the terminal is capable of saving and restoring the cursor position itself (SCP, 
RCP), JAM will use those sequences instead of the more verbose CUP. 

The global variable I_NODISP may also be used to decrease screen output While this 
variable is set to 0 (via sm_iset), calls into the JAM library will cause the internal 
screen image to be updated, but nothing will be written to the actual display; the display 
can be brought up to date by resetting I_NODISP to 1 and calling sm_rescreen. 
With the implementation of delayed write this sort of trick is rarely necessary. 

9.8 

STUB FUNCTIONS 
Certain Screen Manager facilities can be omitted from an application if they are not 
used, by derming certain literals in the application. This can result in substantial 
memory savings; however, it requires that the Screen Manager libraries not be pre
linked or pre-bound, i.e. is not supported on all systems. The following facilities may 
be stubbed out: 

Page 122 JAM Release 5.03 20 Nov 92 



Chapter 9: Writing Efficient Applications 

Subsystem #define 

the math package NOCALC 

scrolling functions NOSCROLL 

time and date functions NOTlMEDATE 

help screens NOHELP 

shifting fields NOSHIFT 

range checking functions NO RANGE 

word wrap NOWRAP 

field zoom expansion NOZOOM 

regular expressions NOREGEXP 

form libraries NOFORMLIB 

JYACC procedural language NOJPL 

Runtime JPL compiler (see note) NOJPLCOMP 

readlwrite data structure NOSTRUCT 

save/restore screen data NOSRD 

local print NOLPR 

area attributes NOAREA 

window selection NOWSEL 

key top translation NOLKEYLAB 

shiftlscroll indicators NO INDICATORS 

user window resizing NOWINSIZE 

mouse handling routines NOMOUSE 

save screen to memory NOSVSCREEN 

JAM Release 5.03 20 Nov 92 Page 123 



JAM Programmer's GUide 

To omit anyone or combination of the above, frrst #define the appropriate macro in 
your application, then #include the stubs me. This must only be done once, prefer
ably in the application's main routine source me. For example, if the application is not 
going to use scrolling fields, the scrolling functions could be omitted, and the applica
tIon source might look like the following: 

#define NOSCROLL 
#include "smdefs.h" 
linclude "smstubs.c· 

main () 
{ 

/* ... the application code ... */ 
} 

The effect of defining the macro and including smstubs.c is to declare stub routines in 
the application; this causes the linker not to add the real routines from the Screen Man
ager library to the application. The bulk of the savings will be in code space. The stub
bing technique does not work on systems where the library is itself a linked entity, such 
as a shareable library. 

If range, math, and JPL support are all stubbed out, you can also omit linking the C 
math library (-1m flag on UNIX systems, math library on MS-DOS systems). 

If the runtime JPL compiler is stubbed out, fIle, load, and public modules may still be 
used, but they must be compiled with jp12bin. 

Page 124 JAM Release 5.03 20 Nov 92 



Chapter 10 

Alternative Scrolling 

By default, the storage of scrolling arrays is handled internally by JAM, which stores 
them in its own memory buffers. It is also possible for this data to be stored by the ap
plication, external to JAM: in memory, on disk, or wherever desired. In this case, the 
application must install a scrolling driver which will be called by JAM with an inter
face defined by JAM; this replaces JAM's default scroll driver. The driver will be 
called to initialize the array, get and put occurrences, etc. 

An alternative scroll driver can reduce application memory usage when used to control 
the scrolling of large arrays. Scroll drivers can be freely mixed on a screen. Each driver 
can be specified to manage any number of arrays and any number of drivers can be used 
at once. 

10.1 

USING ALTERNATIVE SCROLLING 
The general procedure for using alternative scrolling in an application is as follows: 

1. Write a scroll driver according to the specifications to be described 
later. 

2. Install the scroll driver. See the chapter "Writing and Installing Hook 
Functions" for general information on installation. Note that scroll 
drivers are installed in a function list as SCROLL_FUNC. A default 
driver may be installed individually as DFLT_SCROLL_FUNC. In 
addition, sm_alsc_ini t must be called prior to use of a scroll 
driver. The easiest way to do this is to define the macro 
ALT_SCROLLING to be 1 inside of jmain. c and/or jxmain. c. 

JAM Release 5.03 20 Nov 92 Page 125 



JAM Programmer's GUIde 

3. For each field which is to use the scroll driver, enter the name of the 
driver (as specified in the installation procedure in the previous step) 
as the field's Alternative scrolling method, via the 
Screen EdItor. The Alternative scrolling method is en
tered in the field size screen of the Screen Editor. 

A sample driver that uses disk-based scrolling, sm_fb_sc, is provided with JAM. It 
is distributed in source form in the ftIe fbscr. c, and in object form in the Screen 
Manager library. It must be installed to be used. 

Another sample driver, sm_ldb_sc, is provided only in object form in the JAM 
Executive library. It uses the local data block to store occurrences. It is useful only 
when a scrolling array is both on a screen and in the LOB. Normally, JAM allocates 
buffers to hold both the screen occurrences and the LOB occurrences. sm_ldb_sc en
ables JAM to avoid allocating additional buffers to hold the screen occurrences. 
sm_ldb_sc is not distributed in source form, since it makes use ofintemal JAM func
tions to perform its task. 

10.2 

WRITING A SCROLL DRIVER 
When a screen with a scrolling array is displayed, the scroll driver will be called so that 
JAM can ftll the on screen portion of the array with data, if any. If the user or program 
scrolls new data onscreen, the driver will be called to retrieve it H data is changed and 
then scrolled offscreen or offscreen data is changed directly, the driver is sent the new 
data so it can keep the array up to date. Finally, when the screen is made inactive, JAM 
updates the LOB from the driver, as necessary. 

The driver routine must be written according to the following specifications. 

JAM calls the driver, never vice versa. It is passed a pointer to a struct 
alt_scroll (defined in smaltsc.h, which should be included) whose elements 
are: 

struct alt_scroll 
{ 

} ; 

VOIDPTR as_scid; 
char *as_buffer; 
int as_type; 
int as_occur; 
int as_number; 
int as_size; 
int as_retval; 

/* Application supplied field handle */ 
/* Buffer Containing Information */ 
/* Type of function requested */ 
/* Meaning varies accord~ng to as_type */ 

/* Meaning varies according to as_type */ 
/* Maximum size of an occurrence */ 

/* Return value */ 

The possible values of as_type as follows: 

Page 126 JAM Release 5.03 20 Nov 92 



Chapter 10: Alternative Scrolling 

AS_INIT _FUNC Imtialize a scrolling field 
AS_CLEAR_FUNC Delete all occurrences 
AS_GDATA_FUNC Get field data of an occurrence (from the driver) 
AS_PDATA_FUNC Put (update) an occurrence (to the driver) 
AS_INSRT _FUNC Insert blank lines 
AS_DLT_FUNC Delete a range of lines 
AS_NMUSD_FUNC Return number of largest non-blank occurrence 
AS_GTSPC_FUNC Change number of allocated occurrences 
AS_RLS_FUNC Release (de-initialize) a scrolling field 

Of these function types, only AS_INIT_FUNC and AS_GDATA_FUNC need be sup
ported by the driver. If AS_PDATA_FUNC is not supported, the field should be pro
tected from modification (clearing and data entry). The driver should return 0 if a func
tion is supported,-l if not 

For any given field, the driver is frrst called with AS_INIT_FUNC and last with 
AS_RLS_FUNC. Any number of calls with the other function types may intervene. In 
AS_INIT_FUNC only, the field is identified by name and number. Thereafter it IS iden
tified by a pointer to an area set up by the driver. 

JAM sets the structure member as_scid to 0 when it calls AS_INIT_FUNC. 
AS_INIT_FUNC should set as_sc id to a field identifier value, usually a pointer to a 
field structure. The other functions (AS_CLEAR_FUNC, etc.) must use as_scid to 
access the field since they do not have access to the field name or number. 

The structure member as_size always contains the maximum shifting length of the 
field. 

The meanings of the other members of struct alt_scroll vary according to the 
function type and are described below. 

When as_type is AS_INITyUNC: 

• as_number contains the field number of the scrolling field. 

• as_bu f fer contains a pointer to the name of the field or NULL if it 
does not have one 

• as_occur contains the maximum number of occurrences for that 
scrolling field. 

• as_retval should be set to 0 indicating success or-l indicating that 
alternative scrolling methods are not available for this field for some 
reason. If the access function returns a value less than zero or 
as_retval is set to a non-zero value the Screen Manager will at
tempt to use the standard scrolling method. 

When as_type is AS_CLEAR_FUNC: 

JAM Release 5.03 20 Nov 92 Page 127 



JAM Programmer's GUide 

• as_number, as_buffer and as_occur are not currently mean
mgful. 

• as_retval should be set to O. 

When as_type is AS_GDATA_FUNC: 

• as_occur is the occurrence number to be retrieved 

• as_buffer contains a pointer to where the data should be placed; 
data must be in the format described below AS_PDATA_FUNC. 

• as_number is not currently meaningful. 

• as_retval should be set to 0 indicating a successful retrieval, or 
non-zero indicating failure. 

When as_type is AS_PDATA_FUNC: 

• as_occur is the number of the occurrence being sent to the driver. 

• as_buffer contains a pointer to the data being sent; this includes 
field data as well as other information. The pointer will no longer be 
valid after the driver returns. 

• as_number is not currently meaningful. 

• as_retval should be set to 0 indicating success or non-zero failure. 

NOTE: The format of as_buffer for AS_GDATA_FUNC and AS_PDATA_FUNC: 
as_buffer contains binary data of length given by as_size. (It may contain null 
bytes and it will not be null terminated) Generally the driver will store the data without 
examining or changing it If it must be examined the access function sm_atrans must 
first be called. This will convert it to and from an application readable structure. It 
works as follows: 

int s~astrans(struct alt_scroll *, struct altsc_trans *, int 
get_or-put ) ; 

struct altsc_trans 
{ 

} ; 

unsigned short at_attr; /* Scrolling attributes (0 if none) */ 
char at_vall; /* Currently only MDT and VALIDED are used */ 
char at_buffer[2S6]; /* Field data string */ 

If "gecocput" is AT_GET, converts from a1Cscroll.as_buffer to alCtrans struc
ture; if AT_PUT, converts in the reverse direction. 

When as_type is AS_INSRT_FUNC: 

• as_number contains the number of blank occurrences to be inserted. 

Page 128 JAM Release 5.03 20 Nov 92 



Chapter 10: Altematlve Scrolling 

• as_occur is the number of the occurrence before which the occur
rences should be inserted. 

• as_buffer is not currently meaningful. 

• as_retval should be set to 0 indicating that the records were suc
cessfully inserted. If no records were successfully inserted, as_ret
val should be set to a negative number. If less than the requested 
number were inserted, as_retval should be set to that number. 

When as_type is AS_DLT_FUNC: 

• as_occur is the number of the flfSt occurrence to be deleted. 

• as_number contains the number of occurrences to be deleted. 

• as_bu f fer is not currently meaningful. 

• as_retval should be set to 0 to indicate that all the records re
quested were successfully deleted. If no records could be deleted, 
as_retval should be set to a negative number. If less than the re
quested number were deleted, as_retval should be set to that num
ber. 

When as_type is AS_NMUSD_FUNC: 

• as_number contains the largest occurrence for which the 
Screen Manager has instructed the access method to allocate space, 
and thus the largest which could possibly be non-blank. 

• as_buffer and as_occur are not currently meaningful. 

• as_ret val should be set to the number of the largest non blank oc
currence, 0 if all occurrences are blank, and less than zero if the num
ber could not be determined. 

When as_type is AS_GTSPC_FUNC: 

• as_occur contains the total number of occurrences for which space 
should be allocated; most systems will simplify this by allocating the 
maximum necessary space in AS_INIT_FUNC (the value of the struc
ture member as_occur in AS_INIT_FUNC). 

• as_number is not meaningful. 

• as_buffer contains the data with which to initialize the new occur
rences. 

• as_retval should contain the number of occurrences for which 
space was actually allocated. 

JAM Release 5.03 20 Nov 92 Page 129 



JAM Programmer's GUide 

NOTE: The number of occUlTences in this function is the total, not the additional. 

When as_type is AS_RLS_FUNC: 

• as_retval, as_number, as_buffer, and as_occur are not 
cUlTently meaningful. 

Page 130 JAM Release 5.03 20 Nov 92 



Chapter 11 

Block Mode 
This chapter describes how to use JAM's block mode capabilities from an end user's 
point of view, and how to develop a block mode driver for JAM from a developer's 
point of view. 

11.1 

USING BLOCK MODE 

11.1.1 

General Overview 
The purpose of the block mode interface is to allow JAM to be used with terminals, like 
the HP2392A and mM 3270's, that operate in block mode. Such terminals, which are 
hereinafter referred to as block mode telDlinals, operate differently than their interac
tive or character mode counterparts in that they do not interact with the computer on 
every keystroke. Instead, a formatted screen is sent to the terminal and processed by the 
terminalloca11y. When a function key is pressed, data are transmitted to the computer 
and are available to the program which sent the formatted screen. 

Block mode terminals typically have capabilities for defining protected and unpro
tected fields and sometimes allow a minimal set of character validations such as re
stricting a field to only allow digits. They do not provide JAM-like capabilities such as 
shifting, scrolling and provisions for post-field validation. It should therefore seem ob
vious that an application will behave slightly differently on a block mode terminal than 
on an interactive one. The goal of the block mode interface, however, is to minimize 
these differences and, to the greatest extent possible, allow applications to be created 

JAM Release 5.03 20 Nov 92 Page 131 



JAM Programmer's GUide 

that can operate 10 either mode without the need for the programmer to consider the 
differences. This is in keeping with the JAM philosophy of creating terminal-indepen
dent applications. 

11.1.2 

Authoring 
Certain JAM utilities, like modkey, the Screen &htor, and the Data Dictionary Editor 
only work in interactive mode. Thus, they can only be used with interactive terminals 
or those that can be switched programmatically between block and interactive mode. 

j xf orm is the JAM authoring utility. It allows the user to navigate through the screens 
in an application and to invoke the Screen and Data Dictionary Editors when appropri
ate. When used with block mode-only terminals, jxform does not permit entry into 
the aforementioned utilities. When used with hybrid terminals (i.e. those that can 
switch between block and interactive mode programmatically), jxform forces inter
active mode before entering the utilities. 

11.1.3 

Selecting Block Mode 
JAM operates with three types of terminals: interactive-only, block mode-only, and 
hybrid. Block mode can be used with either of the latter two. 

By default, JAM operates in interactive mode regardless of the terminal type. To oper
ate in block mode requires a block terminal driver to be linked with the system. (Block 
terminal drivers are described in detail later.) This alone, however, will not initiate 
block mode; two additional things must be done. 

First there must be a call to sm_blkini t. This is generally done in the "main" routine 
of the application, j rna in. c. If this call is absent, the application will be run in interac
tive mode. Also the additional code to support block mode will not be linked with the 
program. Thus programs not desiring block mode support are not penalized. 

Second the correct block mode driver must be selected. This can be done in one of two 
ways. 

If the application program author knows the correct driver he/she can install it by call
ing sm_install. This should be done before calling sm_blkinit. Typically the 
program will install a "bard-coded" driver, but it could instead key off of SMTERM, or 
some other environment variable, to fmd the correct one. In this case the application 
will run in block mode, independent of the end user's preference. 

Page 132 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

The second method for selecting the dnver leaves the job to the end user. If sm_blki
ni t is called without previously installing a driver, the entry BLKDRIVER in the vid
eo me is exammed. If It is absent, sm_blkinit fails and the application remains in 
interactive mode. If it is present the name given there is used to find the correct driver. 
This is done by a table lookup in a source routme (blkdrvr. c) that must be linked 
with the application. Naturally all possible choices of the driver must also be linked 
with the program. In this case the end user can override the application programers de
sire to use block mode. 

The design allows for three scenarios: the programmer can prohibit block mode (no 
call to sm_blkinit), the programmer can force block mode (sm_install fol
lowed by sm_bIkini t), or the programmer can pennit block mode but allow the end 
user final say (sm_bIkinit only). 

Note that the application never calls sm_blkdrvr. The source code to that routine is 
given to customers to enable them to extend the capabilities of the second method. 

11.1.4 

Differences Between Block Mode And 
Interactive Mode 
Although every attempt has been made to preserve the look and feel of applications 
operating in block mode, the following differences between block mode and interactive 
mode should be noted. 

Screens 
Screens work much as they do in interactive mode. The only noticable difference is that 
the cursor is not restricted to the active window as this is not possible in block mode. In 
keeping with the concepts of interactive mode, however, only the fields on the active 
window are unprotected. 

Menus 
In interactive mode, menus utilize a "bounce bar" to track the cursor. The bounce bar 
moves when cursor-positioning keys are pressed and when ASCII data are typed. Since 
block mode terminals do not return these keys, another approach must be taken. We 
supply two options: 

In option 1, menu fields in block mode are unprotected, making it easy for an operator 
to tab to them. To make a selection, the operator positions to the appropriate field and 

JAM Release 5.03 20 Nov 92 Page 133 



JAM Programmer's GUide 

presses XMIT. Thus, selection is sllIlilar to interactive mode except there is no bounce 
bar and there is no provision for selecting by typmg the frrst N characters of the menu 
choice. 

If the operator inadvertently types over a menu field there are no adverse consequences 
as JAM will "remember" the contents and restore it at an appropriate time. 

This approach works well since the same screens can be used for block and interactive 
mode operation. However, for those who do not wish to allow the operator to type over 
menu choice fields, option 2 may be chosen. With option 2, JAM creates an unpro
tected field to the left of each menu choice so the menu fields themselves can remain 
protected. The operator can tab to these new fields to make a selection, or type the frrst 
character of a menu field and press XMIT. The new fields to the left of the menu 
choices are created as long as there is room on the screen even if it means they would 
be placed 1D a border or a separate window. If there is no room on the screen because the 
menu field starts in position 1 or 2, the system reverts to option 1. 

The above works well for traditional menus, but two-level (pull- down) menus pose a 
different problem in that the ONLY way to move horizontally in interactive mode is via 
the arrows (since TAB moves between the entries of the sUb-menu). Thus, in block 
mode the following happens. When a pull-down menu is active, JAM unprotects all 
main menu fields except the one with which the pull-down is associated. Thus, the op
erator can either make a selection from the pull-down or tab to another main menu 
choice and press XMIT causing its sub-menu to be activated. 

The two options for processing menus described above work equally well for pull
down menus. 

Character Val idatian 
The block mode interface takes advantage of the terminal's capabilities for character 
validation. However, for situations in which the specified validations go beyond what 
the terminal can handle, JAM will validate the character data during Screen Validation. 
The result will be something like this: 

The operator enters alphabetic data in a digi~nly field. When the XMIT key is 
pressed, all fields are validated in the normal fashion, left-to-right, top-to-bottom. 
Thus, the cursor will be positioned to the errant field and a message displayed. 

Since programs do not rely on data being correct unless and unttl Screen Validation 
completes without error, this should pose no problem. The only consideration is that 
invalid character data can get into the screen buffer and LOB if the operator enters in
correct characters and then presses something like EXIT (this cannot happen in interac
tive mode because the invalid characters would not be allowed in the fust place. 

The only reason for mentioning this has to do with how punctuation characters in dig
i~nly fields are handled. Let's say that a digi~nly field got ftlled with slash C:'f') 

Page 134 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

characters and thiS, in turn, got transferred to the screen buffer and hence to the LOB. 
On a subsequent attempt to enter data into the field, an attempt to merge the slashes 
with the entered data would be made. But since the field has ALL slasb characters, 
there would be no room for the digits. 

Thus, to eliminate the possibility of "punctuation character creep", when reading data 
from a digits-only field, JAM frrst strips out all punctuation characters from the field 
and then merges in the punctuation characters from the screen buffer. 

Field Validation 
Clearly, fields are not validated when TAB and RETURN are pressed as in interactive 
mode. Thus, like character validations, field validations will be deferred until Screen 
Validation. ThiS should not be a problem since, even in interactive mode, the operator 
can usually bypass field validation by using the arrow keys to move from field to field. 
Therefore, programs should not rely on the data until Screen Validation passes without 
error in either mode. 

One type of field validation is worth noting. Consider a field with an attached function 
which does a database lookup and displays information in another field. In interactive 
mode, this would usually be executed when the field is completed, so the user would 
see the result. Since this is not really a validation, deferring it until Screen Validation 
would not help because the data would never be seen by the operator. Therefore, if this 
type of feature is contemplated in a block mode environment, the database lookup 
should be attached to a function key rather than as an attached function. 

Screen Validation 
Screen validation works the same in interactive and block mode. The cursor will be 
positioned to the frrst field in error and a message will be displayed to the operator. 

Right Justified Fields 
Unless the block mode terminal supports this feature directly, the CUlSor will always be 
positioned to the left side of right justified fields when the cursor enters them. 

Field Entry Function, Automatic Help, Status Text, 
etc. 
These are disabled in block mode since JAM does not know when fields are entered. 

Currency Fields 
Currency edits are usually applied to fields as they are exited. In block mode, since this 
is not possible, currency formatting is done during screen validation. Care should be 

JAM Release 5.03 20 Nov 92 Page 135 



JAM Programmer's GUide 

taken with right Jusufied currency formats since subsequent entry may be difficult for 
the reasons cited above in the section on right justified fields. 

Shifting Fields 
Normally fields shIft when the left or right arrows are pressed with the cursor at the start 
or end of a shifting field or, in the case of unprotected fields, when the operator types off 
the edge of the field. Since arrows and data entry keys are not returned in block mode, 
thIs is not possible. To utilize shifting fields in block mode, use the logical keys: Shift 
Left and Shift Right. These shift the field by the shifting increment and work equally 
well in block and interactive mode. 

An alternauve is to use the Zoom feature if all shifting fields are limited to the width of 
the screen. 

Scrolling Fields 
This is similar to the situation with shifting fields. In block mode, one can define func
tion keys as PAGE UP and PAGE DOWN, or use the Zoom feature. 

Messages 
Error messages are nonnally acknowledged by pressing the space bar, although the spe
cific key used can vary depending on the setting of error message options. Also, options 
govern whether the key should be used as the next keystroke or discarded after the mes
sage is acknowledged. In block mode, ANY key that gets transmitted from the terminal 
will suffice to acknowledge messages, regardless of what key is defined for that pur
pose. Using or discarding the acknowledgement key apply equally to block mode and 
interacti ve mode. 

With query messages, JAM normally expects a Y or N response. In block mode, JAM 
will create a field on the status line into which the Y or N response can be entered. This 
entry must be followed by the XM:IT key for it to be accepted. On terminals that have 
a separate stauts line it is not possible to create such a field. In these cases, XMlT will 
be treated as a positive response; EXIT will be treated as a negative response. 

Insert Mode 
Insert mode will operate in whatever way the block mode terminal supports. However, 
since JAM never knows if insert mode is set or not in block mode, it will, for terminals 
in which this is a problem, reset insert mode before transmitting data to the terminal. 
This is so the new data will not be INSER1ED into the terminal buffer, causing all other 
data to move around. 

Page 136 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

Non-Display Fields 
If the block mode terminal supports this feature, it will be used. 

System Calls 
These operate as in interactive mode. However, before passing control to the OS, JAM 
sets the terminal to the mode (block or interactive) expected by the OS, and resets it 
upon return from the system call. The JAM routines sm_leave and sm_return do 
the same. 

Zoom 
With the exception of the limitations expressed in the sections on shifting and scrolling, 
Zoom works as in interactive mode. 

Help and Item Selection 
With the exception of the limitations expressed in the sections on shifting, scrolling, 
field entry and menu processing, these functions work as in interactive mode. 

Groups 
Radio buttons and check lists behave similar to menus as described above. 

11.2 

WRITING A BLOCK MODE DRIVER 

11.2.1 

Installation 
There are two parts to the installation process. These were discussed in greater detail 
above. 

FtrSt a block terminal driver must be installed. This driver performs the low level com
munication between JAM and the terminal. 

Next the application program must initiate block mode by making the appropriate sub
routine call. The application program can also switch to interactive mode by means of 

JAM Release 5.03 20 Nov 92 Page 137 



JAM Programmer's Guide 

a call. The assumption IS that the default is interactive mode, thus a call to set block 
mode is needed even if that is the normal mode of the operating system. The application 
program can also set some operating parameters by means of a subroutine call. 

We discuss these steps in reverse order: application program support, and block mode 
terminal driver. 

11.2.2 

Application Program Support 
JAM programs assume that the terminal is in interactive mode. Explicit calls are need
ed to switch from interactive to block and vice versa. To tum on block mode, the pro
gram should call sm_blkinit. To tum off block mode (and tum on interactive mode) 
the program calls sm_blkreset. The Screen Editor and the key mapping utility 
(modkey) also require interactive mode. The authoring utility (jxform) can be made 
to work in block mode, switching to interactive mode when the Screen Editor is in
voked. This can be done by inserting the appropriate calls in jxmain. c (provided) 
and relinking jxform. 

The routine sm_option can be used to set some user-preference items. 

11.2.3 

Block Terminal Driver 
There is a single entry point to the block mode terminal driver. A request code is passed 
by JAM to specify the action required of the driver. 

The request codes are listed in smblock. h. They can be organized into groups. There 
are request codes for initialization and resetting the terminal. Next there are requests for 
locking and unlocking visual (e.g. underlined) and logical (e.g. protected) attributes. 
The driver will generally implement these by sending simple sequences to the terminal. 

The next requests are used for setting the logical attributes on the various fields. This 
action is highly terminal specific, and is the most complicated chore of the driver. 

Next come the requests for opening and closing the keyboard, and retrieving characters 
from it. Here the driver may process the special handshaking required by the terminal. 
In addition the driver may have to determine (and save) the position of the cursor on the 
terminal, as this information often comes as part of the data stream from the terminal 
when a key it hit. 

The next set of requests are used to obtain data from the terminal. Parsing the data 
stream is terminal specific, however it is usually quite simple. 

Page 138 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

Finally JAM asks the dnver for a cursor position report. 

The driver is installed by calling sm_install. The driver can be written in any com
puter language supported by that installation of JAM. The discussion below assumes 
that the driver is written in C. The definition of struct fnc_data is in smdefs. h: 

struct fnc_data blkdrvr_fnc = 
{ 

(char *)0, blkdriver, 0, 0, 0, 0 
} ; 
int numentries = 1; 

sm_install (BLKDRVR_FUNC, blkdrvr, &numentr~es); 

The driver is called with one parameter. It is the address of an instance of struct 
blk_data_block (defined in smblock. h). Other computer language implementa
tions may have different parameters. This structure is static in block. c; the same ad
dress will be passed on every call. The driver is free to use this information if it desires. 
(It could save the address on the initialization call and then ignore the parameter on 
other calls.) 

The structure is defmed below. 

struct blk_data_block 
{ 

int type; /* type of request to driver */ 
int value; /* general purpose int value */ 
int line; /* line or number of lines*/ 
int colm; /* colm or number of colms*/ 
struct field_data *data;/* field info for set log att */ 
char *buf; /* work buffer, or return val */ 

} ; 

The interpretation of the return code of the driver is specific to the request being made. 
The "usual" return code is O. ''Type'' specifes the type of request, for example initialize 
or reset. "Value" is a general purpose value passed to the driver or, on rare occasions, 
returned from the driver. 

"Line" and "colm" are also used for different purposes. On some calls they are set to the 
screen size. On others they represent the start line and column of a screen area. "Data" 
is only used for setting logical attributes on a field. 

The last member, buf, is set to a static work buffer of 256 bytes. This buffer may be used 
by the driver for any purpose. On some calls the value in this member is returned by the 
driver. The data can either be put into the buffer passed, or a new pointer can be loaded 
into this member. (Thus this member is reloaded with the address of the work buffer 
before every call.) 

JAM Release 5.03 20 Nov 92 Page 139 



JAM Programmer's GUide 

11.2.4 

Driver Request Types 

The individual request types are listed here and detailed on individual manual pages 
below. . 

Request Type Description Page 

BLK_INIT initialization call and set block mode 141 

BLK_RESET reset 142 

BLK_BLOCK set block without initialization 143 

BLK_CHAR set character mode independent of os mode 144 

BLK_LOCK lock visual and logical attributes 145 

BLK_UNLOCK unlock visual and logical attributes 146 

BLK_LA_START start of log attribute calls 147 

BLK_LA_UNPROT set logical attribute 149 

BLK_LA_PROT set protected attribute 150 

BLK_LA_END end of logical attribute calls 151 

BLK_K_OPEN open keyboard for data entry 152 

BLK_K_GETCHAR get a character from the keyboard 153 

BLK_K_CLOSE close keyboard (lock it) 155 

BLK_D_START start getting data from terminal 157 

BLK_D_UNPROT unprotected field 159 

BLK_D_PROT protected field 160 

BLK_D_END end of getting data from telUlinal 161 

BLK_CPR report the cursor position to JAM 162 

Page 140 JAM Release 5.03 20 Nov 92 



:.. .. ............. ~ ... '" 

BLK_INIT 

... ........... . .. . ......... -... .. .. 

initialize terminal for block mode 
... : "'- .... -.. - " .... -.: .. -......... : .. 

SYNOPSIS 

ret code = blkdriver (blk_datal; 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_INIT 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

Chapter 11: Block Mode 

.. . .. ............ .. 

This call is made to do initialization and put the terminal into block mode. If the termi
nal cannot be changed, -1 should be returned. 

The terminal should be put into block mode, data transmission protocols should be es
tablished, and the editing keys made local. If possible, the keyboard should be locked. 
JAM will call the driver to unlock the visual and logical attributes, thus that task need 
not be done by the present routine. 

RETURNS 

o if the terminal can be put into block mode. 
-1 if the terminal cannot be put into block mode. 

JAM Release 5.03 20 Nov 92 Page 141 



JAM Programmer's GUide 

.. .. .. .. .. ...... .. ........... .. 
... .. • .,. •••••••• : .......... )0. •••••••• )0 ...... . 

BlK_RESET 
reset terminal to operating system mode 

: .. -. '" .. : '":- :- .. '" ..... '". .. 

SYNOPSIS 

retcode = blkdriver (blk_data); 
int re'tcode; 
struct blk_data_block *blk_datai 

blk_data->type = BLK_RESET 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

: .-

.. 

.. ........... .. .. '": .. 

This call is made to put the terminal out of block mode and into the mode desired by the 
operating system. If the terminal cannot be cbanged, the driver returns -I. 

If the terminal is to be put into interactive mode, the editing keys should be made 
"transmit". JAM will call the driver to unlock the visual and logical attributes, but will 
not make any call to unlock the keyboard. 

RETURNS 
o if the terminal can be put into interactive mode. 
-1 if the terminal cannot be put into interactive mode. 

Page 142 JAM Release 5.03 20 Nov 92 



~ . ~ 
.. .. " Oo."' •• .. : :.: ..... : .... "'. ::.:-:- .. ::: -::" .. "' .. :.: -.. ~ ..... 

BlK_BlOCK 
. .. ....... .. . - ... . 

Chapter 11: Block Mode 

.. .. ....... 

set terminal to block mode without initialization 
: ."': .... .. 

SYNOPSIS 

retcode = blkdriver (blk_datal; 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_BLOCK 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

.... : .. :: .. 

This call is similar to BLK_INIT except it is only used to put the terminal back into 
block mode after it has been switched to charncter mode during menu_proc or errocre
set. If the terminal cannot be changed, -1 should be returned. 

The terminal should be put into block mode, data transmission protocols should be es
tablished, and the editing keys made local. H possible, the keyboard should be locked. 
J AM will call the driver to unlock the visual and logical attributes, thus that task need 
not be done by the present routine. 

RETURNS 

o if the terminal can be put into block mode. 
-1 if the terminal cannot be put into block mode. 

JAM Release 5.03 20 Nov 92 Page 143 



JAM Programmer's GUide 

.. .... :. ": ... '"" ....... . .. " ... " .......... ... 

BlK_CHAR 
set terminal to character mode 

-. . " ...... : ": .. . . . ..... 

SYNOPSIS 

retcode = blkdriver (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_CHAR 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This call is made to put the terminal into character mode temporarily to handle interac
tive menu_proc or error_reset If the terminal cannot be changed, the driver returns -1. 

The terminal should be put into interactive mode. The editing keys should be made 
"transmit". 

RETURNS 
o if the terminal can be put into interactive mode. 
-1 if the terminal cannot be put into interactive mode. 

Page 144 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

-;.~ ..... ...:::~:: .. :- :" .. ": :~: ..... ~.: ": v::::.. .:.: .... ~.. ::.:" ~ : : :". :" :::~ .. " :::~:: ~ ~~." .. ~ ......... -:..:::::-.::.."......::1.::. :: :.:::: .. : .. :.::~ ..:-;."'::~ ::-.. 

BlK_lOCK 
lock visual and logical attributes 
........ :".. . ... -: " .. :- .. .. .... ": -: :.-: .. : ~.. ~ .. h: ".. .. .. 

SYNOPSIS 

retcode = blkdriver (blk_data)i 
int retcodei 
struct blk_data_block *blk_datai 

blk_data->type = BLK_LOCK 
blk_data->value = ? 

.. : ..... :.~ '! ...... : .. : .. :- ... " ::.. ..: 

blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This call is made to lock the current visual and logical attributes to the screen position. 
It is called immediately before opening the keyboard. 

Often the terminal manual calls locking "asserting the logical attributes" or setting 
"format mode". All settings should be made so the operator can only enter data into 
unprotected fields. On some terminals, "erasure" mode should be set so display charac
ters cannot be erased 

RETURNS 

the return code is ignored. 

JAM Release 5.03 20 Nov 92 Page 145 



JAM Programmer's GUide 

::.:.. :: .. ~ .. ~. ":. ; "::" "" ~ .. ::-: .. ; :::"":--"':::. : ::::: t .~. ~ . .::: -: :c ... :r .. :. :~~.: .. ~ -:: .. :.. ;..~::s..: .:::" ::: .... : ~ .. :"" " .. :-:. -:.:; :: : .-' 

BlK_UNlOCK 
unlock visual and logical attributes 
:t: .:~ .:.." .. " :: ...... "':". 00; .. : ..... :. : ..... : .. : : ."" :: ..... ". :.... :. .... ": .. :",,): ": ..... : : .. ,," .,.:-" .: .. " .... :.: ... : ":": ... ,::""" :: "" .... " ": ••• "" ...... .:':"" ••• '!.: 

SYNOPSIS 

retcode = blkdriver (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_UNLOCK 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This call is made to unlock the cUlTent visual and logical attributes to the screen posi
tion. It is called before clearing the screen or window, when bringing up a form or win
dow, and before sending any text or attributes to the terminal. 

The logical attributes should not be asserted, format mode turned off, erasure mode 
should be turned off. All settings should be such that any text or attributes on the screen 
may be changed by JAM. 

RETURNS 
the return code is ignored. 

Page 146 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

.. ...... ~ .. .. .... .. ........ ... .. .. .... ........ . ....... . 
A ......... . 

BLK_LA_START 
start of logical attribute calls 

-... : .. : : -. :- .. .. .......... ~... ... ""." 

SYNOPSIS 
retcode = blkdriver (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_LA_START 
blk_data->value = 0 if no unprotected f~elds, 1 otherwise 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 
This call is made before setting logical attributes (e.g. protect or numeric). At the time 
of this call, the screen is already set up with the correct visual attributes. 

This is the "initialization" call. The return code specifies how subsequent calls should 
be made. The mnemonics in smblock. h are listed below: 

BLK_BACKWARD 
BLK_DISPLAY 
BLK_ATT_CHANGE 
BLK_LINE 

The default (0) is that there be 1 call for each unprotected field. The order is from left 
to righ~ top to bottom (field number order). If this option is chosen, the driver should 
protect the entire screen on the initialization call. Then, on each subsequent call a single 
field will be made unprotected. 

For terminals that cannot protect the entire screen, a sub- seqent call will have to be 
made for each protected and unprotected area on the screen. For such terminals, the 
driver does nothing on initialization but returns BLK_DISPLAY. 

Normally a display area is the area between two fields. However some terminal drivers 
may need finer division. If the BLK_ATI_CHANGE bit is set, a display area is defined 
to be the largest area of a single (visual) attribute. If the BLK_LINE bit is se~ no dis
play area will extend across more than one line. 

Some terminals are more efficient if the order is reversed (last field first). This is speci
fied by the low bi~ mnemonic BLK_BACKWARD. 

Some terminals defme one visual attribute for protected areas (e.g. dim), all others for 
unprotected areas. In this case, the initialization should do nothing. It should request 

JAM Release 5.03 20 Nov 92 Page 147 



JAM Programmer's Guide 

BLK_DISPLAY I BLK_AIT_CHANGE. It must then change the visual attributes to 
match the protection requirements. 

RETURNS 
-1 if the driver cannot set any logical attributes. 
the kind of requests the driver needs to set logical attributes (see above). 

Page 148 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

3::~.~:"':::.;::::--ve .. :::":.c .. : .. : .... ~. "': ... ::: : ...... : .. -:--::.:..:.::.,:.:" ...: .. ::.: ..... : : .. "--:" ".:"': .. : .. -: .. ::~: --=-:.~:;.: ... ::.. . ... :. :.::.~::::.~ ":' : .. "" : ...... : ~.~ :~. --:.~ 

BLK_LA_UNPROT 
set logical attribute on unprotected fields 
" .. : .. ~.r'y.~.!: .• "~.<": ..... -?.:-:. -: .(:.~ .. "; .";:...--: .-:"" .. :. ."-: : .... :- :"-:" .:"" ::-: ....... : ... :.':.... -:,,:: .. : ... <-.":: .... : ..... ~ 

SYNOPSIS 

retcode = blkdriver (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_LA_UNPROT 
blk_data->value = length of field 
blk_data->line = start line of field 
blk_data->colm = start column of field 
blk_data->data = field_data structure pointer 
blk_data->buf = work_buffer 

DESCRIPTION 

This call is made to set the logical attributes of an ooprotected field. The "data" mem
ber of the structure contains a pointer to the field_data structure for that field. Thus all 
the information about the field is available to the driver. Whatever logical attributes 
supported by the terminal can be set 

RETURNS 

the return code is ignored. 

JAM Release 5.03 20 Nov 92 Page 149 



JAM Programmer's Guide 

.: :..:.... :: .. ":"":':::C ... ·:: .... oC ~:.:;.. :"::- :.:" .~:::-: ... :~ ... :.::..::.~:::.: : .. :.... -:-:~.;.: :::: .. :::: ... :: :.::: --: .. " .. " "=:. :. :::": ... ~ •••. :.":"" ":,," --: ....... : •• ..::.t .. :.: .. ": .. :~ ... :--~ 

BlK_LA_PROT 
set protected attribute 

.. ::.: .1'::.:":." .:." : •• ~ ... : .. :: ":"" ... :::. ... ,!"" .1''''' ... ,," .-:: •• ": .... 

SYNOPSIS 

retcode = blkdriver (blk_data)i 
int retcodei 

": .. : ,," 

struct blk_data_block *blk_datai 

blk_data->type = BLK_LA_PROT 
blk_data->value = length of area 
blk_data->line = start line of area 
blk_data->colm = start column of area 

: : .... : ... ::,," .. : .......... "'! ":-:",,:" .. :: .: ... ", 

blk_data->data = 0 if display area, else fiel~data struct pointer 
blk_data->buf = work_buffer 

DESCRIPTION 

The call is made only if requested in the BLJLLA_START return code. The member 
"data" of the structure is 0 if this call represents a display area, or is the field_data struc
ture pointer for a protected field. 

The area in question can span lines (unless BLK_LINE was set on the initialization 
call). It need not have a constant atttibute (unless BLK_AIT_CHANGE was set) At
ttibute (visual) information can be obtained from sm_attrib. 

RETURNS 
the return code is ignored. 

Page 150 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

:t::.::: . .::.....:.:~::- .. "< .. x..::.. "": ::..:-:::.: •. :-::-::::x-:~.:....:*:...:.:.:::::-::::.r. .. ~:...:... ... ':".:." ....... ::: .. :.:" :~ ~ .. " ::: ::.:." .. :' ".: ... ::: .:"": .:::::...-:- :: :::" : ~ ::r.. : .. :.~.::: 

BlK_LA_END 
end of logical attribute calls 
j.. :;.,,-::-: .. ~ "" ":.."...,.: .; ~ ::.~ t .. :. .'$~ z .. Yt(":' '! :":' ::: : .. ~ ": ":. ..:.~ .. "" : .... ""........ ::... ": ,,":." : ,," "" ...... "" ... :.. ,," : ... :. .. .::" : .. "" .... 

SYNOPSIS 

retcode = blkdriver (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_LA_END 
blk_data->value = ? 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This is the t.elDlinanon call. Most drivers will do nothing. The call is present to allow a 
"clean-up", for example to free memory no longer needed. 

This call will not be made if BLK_LA_START returns -1. 

RETURNS 

the return code is ignored. 

JAM Release 5.03 20 Nov 92 Page 151 



JAM Programmer's GUide 

: : ...... : ..... :: ... ~ ... :.~ .:.~ ... :.:..:.:.:.: ~:.:....:.: .~:.::." ....... : .. : .:::. "". ": .~.: .~:.( ::-:;.:," .. :-:: .. : .~.: .. : .... ~.:--)..: :::;:: .... :.: ::.::::.:. .:~ .. "".: :.: . .;.-:: 

BLK_K_OPEN 
open keyboard for operator input 

.. .. : :::" .. .. : .. : 0( ~:. .. .'": .. :=.~ ":.) .. '"" ~: .... : .. " ....... :. ": ":.." ..... " .. "::,'" .:: ... "" .... "" ...... :. . ..: .. ,," .. 

SYNOPSIS 

retcode = blkdriver (blk_data); 
~nt retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_K_OPEN 
blk_data->value = ? 
blk_data->line =? 
blk_data->colm =? 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This is the initialization call. The driver should open the keyboard and allow operator 
entry. This call will normally not wait until a response is available. It's duty is to simply 
allow the response. 

RETURNS 
the return code is ignored. 

Page 152 JAM Release 5.03 20 Nov 92 



............ .. ... ..... .. 

BLK_K_GETCHAR 
get characters from the keyboard 

SYNOPSIS 

retcode = blkdrlver (blk_data)i 
int retcodei 
struct blk_data_block *blk_datai 

blk _data->type = BLK _K_GETCHAR 
blk_data->value = ? 
blk_data->line = ? 
blk_data->colm = ., 
blk data->data = ? -
blk_data->buf = work_buffer 

DESCRIPTION 

Chapter 11' Block Mode 

This request is made to obtain a character(s) from the keyboard. Normally, a block
mode terminal will transmit data when a function key or a "send" key is pressed. In the 
former case, this routine will send back the characters generated on behalf of the key
stroke; in the latter case, the routine will generally send back an indication that the 
XMIT key was pressed. 

This driver entry point should block waiting for a response from the terminal. When the 
response comes, it is up to the driver to perform any handshaking required. If necessary, 
the driver may ask the terminal for a cursor position report. The response obtained 
should not contain any handshaking characters, nor any block termination character. 
Thus the response should be the same as if the terminal were in interactive mode. 

The driver returns the character(s) in the member "buf'. Multiple characters may be 
returned, "ret.code" should be set to the number of characters returned. Upon receipt of 
the blk_data structure, "buf' is set to a work space of 256 bytes. The driver may simply 
put the characters into this buffer. However, if desired, a different buffer may be used 
and the address passed back in this structure member. The sequence of keys in buf need 
not be null-terminated. 

This entry point may be called multiple times. For example, the FI key may be desig
nated as a "shift" or lead-in key. Thus FI by itself is not a logical key. In this case the 
dri ver will be called and return F I. The driver will be called again to obtain the next 
key. 

If the driver wishes to return a logical key rather than the raw characters, it should set 
the "value" member of the structure to the logical key value and return O. 

JAM Release 5.03 20 Nov 92 Page 153 



JAM Programmer's GUide 

For example, if the user presses the key that sends data to the computer (SEND or EN
TER or the like), the driver will likely save the flI'St character for later use in the blkdata 
entry point, and send a XMIT back. Thus "value" would be set to XMIT and retcode to 
O. 

If, for some reason, the driver wishes to send nothing back it should set value to 0 and 
retornO. 

RETURNS 
retcode is the count of keys buffered in "bur'. 
if retcode is 0, a logical key value (e.g. XMIT) should be returned in "value". 

Page 154 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

"" .... : '". : 
• .roO.. .... •• : ........... : .. : .roO .. .... 

BLK_K_CLOSE 
close keyboard (lock it) 

.. . ...... 
• "'.. •• ..:' : •• .=. ...... : .:.:.....:.: : .. ./'.: : .... :.::...: ........ :. 

SYNOPSIS 

retcode = blkdriver (blk_data)i 
int retcodei 
struct blk_data_block *blk_datai 

blk_data->type = BLK_K_CLOSE 
blk_data->value = see below 
blk_data->line =? 
blk_data->colm =? 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

" "" ............... : :: : .. " " " .. ........ 

Mter getkey has sucessfully translated the keystrokes into a logical value, the driver is 
called again with request BLK_K_CLOSE and value set to the translated logical value. 

The driver can perform further translation if required by replacing value by the new 
logical key. (This duplicates the function of the keychange hook.) 

This entry point should close the keyboard for operator entry. 

Consider the case where the terminal participates in handshaking. 

In the flfSt call (BLK_K_OPEN), the keyboard is opened. 

In the next call (BLK_K_GETCHAR), the "enable" handshake is sent to the terminal. 
The driver then waits for a response from the tenninal. When it (the terminal's request 
to send) is received, the driver asks the terminal for a cursor position report and saves 
the answer. It then homes the cursor (in case the user hit the "send" key) and sends the 
"clear to send" handshake. Now the terminal responds. 

If the flfSt character is ESC, this is a function key and the driver buffers the keys in the 
work buffer until the block terminator is found. This terminator is discarded. 

If the fast character is not ESC, the user hit the send data key. This character is saved 
for the getdata entry point and the value XMIT is returned to JAM. 

In the final call (BLK_K_CLOSE), the driver simply closes the keyboard. 

Consider the case in which the terminal does not use handshaking. 

The flfSt call (BLK_~OPEN) simply opens the keyboard. 

JAM Release 5.03 20 Nov 92 Page 155 



JAM Programmer's GUide 

The next call (BLK_K_GETCHAR) waits for a response. That response will always 
start with a cursor position report which the dnver parses and saves. If the next key is 
ESC, the enure sequence up to the block tenninatoris returned to JAM. If the key IS not 
ESC, it is saved and XMIT is returned to JAM. 

In the fmal call (BLK_K_CLOSE), the driver closes the keyboard. 

RETURNS 
the return code is ignored. 

Page 156 JAM Release 5.03 20 Nov 92 



BLK_D_START 
start getting data from terminal 

,"... . .... '":: .. .'" ...... . ...... 

SYNOPSIS 

retcode = blkdriver (blk_data)i 
inc retcodei 
struct blk_data_block *blk_datai 

blk_daca->type = BLK_D_START 

Chapter 11: Block Mode 

: ... .. . 

.... . ......... .. ... .. .... ..... ..... .. '". 

blk_data->value = 1 if there are unprotected fields, 0 otherwise 
blk_data->line = number of lines on screen 
blk_data->colm = number of columns on screen 
blk_data->data =? 
blk_data->buf = work_buffer 

DESCRIPTION 

This call functions Similarly to the set logical attributes call. Its purpose is to update the 
logical screen buffer with the data entered by the keyboard operator. 

This call is always made immediately after the BLK_K_CLOSE, and at no other time. 

This is the inittalization call. "Value" is set to tell whether or not there are unprotected 
fields on the form. Typically the driver will use this information to decide whether or 
not to poll the terminal for data. Indeed, if there are no fields, the driver will probably 
return -1 to JAM. In this case no further calls to the BLK_D_ series will be made. 

The return code specifies how subsequent calls should be made. Mnemonics are in 
smblock.h. 

The default (0) is that there be 1 call for each unprotected field. The order is from left 
to right, top to bottom (field number order). The low bit, BLK_BACKWARD can be 
used to reverse this order. 

Some terminals send data for protected fields as well as unprotected fields. If the bit 
BLK_DISPLAY is set, calls will be generated for display areas as well as unprotected 
and unprotected fields. 

Normally a display area is the area between two fields. However some terminal drivers 
may need finer division. If the BLK_ATI_CHANGE bit is set, a display area is defined 
to be the largest area of a single (visual) attribute. If the BLK_LINE bit is set, no dis
play area will extend across more than one line. 

If necessary, the driver should request that the terminal send data. (If value is 0 this step 
may be unnecessary.) 

JAM Release 5.03 20 Nov 92 Page 157 



JAM Programmer's Guide 

RETURNS 
-1 if the driver need not return any data (for example if the form has no unprotected 
fields). 

the kind of requests the driver needs to return data to JAM (see above). 

Page 158 JAM Release 5.03 20 Nov 92 



.: .. : ".: .. " ",," .... :: ::'~.".::: •• .I'. :.....:: ::-::.: •• ::: .... :" •• ~. .~ .~ • ..-: : •• •• :h .::. "::- :.~.: .~ : .. .. ...... 

BLK_D_UNPROT 
get data from an unprotected field 

.. J': • .. " : .. " .. :." " .. : .:::...: :! ",,::. ":-:": ..... .. :" .. 

SYNOPSIS 

retcode = blkdriver (blk_data)i 
int retcodei 
struct blk_data_block *blk_datai 

blk_data->type = BLK_D_UNPTROT 
blk_data->value = length of field/data 
blk_data->line = start line of field 
blk_data->colm = start column of fleld 
blk_data->data = field_data structure pointer 
blk_data->buf = work-puffer 

DESCRIPTION 

Chapter 11: Block Mode 

.. ."" .... .. 
"" .......... .. 

The data for the field should be placed in "buf', either in the work buffer supplied or in 
a driver supplied buffer. "Value" should be set to the length of the data in that buffer. 
Normally this is the same as the length of the field (thus "value" need not be changed). 
Some terminals do not send trailing blanks. The driver could either reset "value" to the 
corret amount or could pad the data in "buf'. 

If the terminal reports that the field has not been modified, "value" should be set to O. 
This signifies to JAM that the current value of the field should not be changed. 

RETURNS 
the return code is ignored. 

JAM Release 5.03 20 Nov 92 Page 159 



JAM Programmer's GUide 

" .... : ... " .:.: .~.::x :..: :.:~ .:. ..: ... ~: ~ .. :::..~: ::" .: ...... ~":.. ..... ;. "':.:- .. ": .. ": :~: .. :... :.: ::: .::": .. - .. :" ......... "" .. :.":: ..... :: .. ,," ~ ..... : ": ... :,,".: ::.. ~ .. : .... : 

BLK_D_PROT 
get data from a protected area 
-:-- ...... : -:: "..: •• ~ ":. ,.: .... ",," '! : •• : •••••••• :'" "".~" •• :..:"-.. .... : •• :. : : ....;.- ......... : .. " .. :.." :": .. "..",,- ::: : •• : .. " .... .. 

SYNOPSIS 

retcode = blkdriver (blk_datal i 

int retcodei 
struct blk_data_block *blk_datai 

blk_data->type = BLK_D_PROT 
blk_data->value = length of area 
blk_data->line = start line of area 
blk_data->colm = start column of area 
blk_data->data = 0 for display areas, 
blk_data->buf = work_buffer 

DESCRIYfION 

else field_data struct pointer 

This ca.ll allows the driver to pass over data coming from the terminal that represents a 
protected area. No data is ttansfered to JAM. 

RETURNS 
the return code is ignored. 

Page 160 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

:~ ..... : ... : :::: ::::: .: . ..:..:-: : .. ":" ... :. .:: ... :.: .. :.. ::.. :" ~ .... ",,:. .... " .. :: -:: ... ; .. ': .. "" ... "" ~ ... :.... . .. :.... .. .. .. .... ~ ........... : ... ,," ...... : ... 

BLK_D_END 
end of getting data from terminal 

... ",," .. .. ~ ,," ".: .,," 

SYNOPSIS 

retcode = blkdata (blk_data); 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_D_END 
blk_data->value = ? 
blk_data->line =? 
blk_data->colm =? 
blk_data->data =? 

blk_data->buf = work_buffer 

DESCRIPTION 

This is the termination call. Most drivers will do nothing. The call is present to allow a 
"clean-up", for example to free memory no longer needed. "Line" and "column" are 
set to the screen size. 

Sometimes the driver will have to read (and discard) a final block terminator. 

If BLK_D_START returned -I, this call will not be made. 

RETURNS 

the return code is ignored. 

JAM Release 5.03 20 Nov 92 Page 161 



JAM Programmer's GUide 

... ~ ::...... .. -: .... ::.... .. :.. . ..... -: :: .. :.. .". .... :..... .. :.: .... :. : :~: ... '":.: ... ~ ... :-.......... .... ..: .. : 

BlK_CPR 
report cursor position to JAM 

...... : ~ .. .." 

SYNOPSIS 

retcode = blkdata (blk_datal; 
int retcode; 
struct blk_data_block *blk_data; 

blk_data->type = BLK_CPR 
blk_data->value = ? 
blk_data->line = cursor line returned to JAM 
blk_data->colm = cursor column returned to JAM 
blk_data->data = ? 
blk_data->buf = work_buffer 

DESCRIPTION 

.. .. ..... .. 

. : 

This driver routine must determine and return to JAM the current cursor position. This 
is often the value saved much earlier in the process. However it could be obtained by 
polling the terminal. 

The current line and column should be returned to JAM in the members "line" and 
"colm" of the structure. 

Since JAM depends highly on knowing the cursor position the driver must support this 
entry point 

RETURNS 
the return code is ignored. 

Page 162 JAM Release 5.03 20 Nov 92 



Chapter 11: Block Mode 

11.2.5 

Driver Support Routines 
Most driver routines are called from within the "get character" routine of JAM. Thus 
the driver often should not use "high level" JAM functions. Guidelmes for specific 
entry points are listed below. 

For output to the terminal, the driver should use sm-puchr (single character - like 
putchar) or sm-pustr (string -like fputs). 

To ensure that all delayed write buffers are written to the screen, sm_f lush may be 
called. This is done by JAM before calling LA_START. If any of the LA_ routines alter 
the physical display (e.g. sm_chg_attr was called), LA_END should call 
sm_flush. 

To position the cursor the routine sm_tcursor (line, colm) should be used. If the cur
sor is positioned in any other way JAM will not be aware of it In this case the global 
integers sm_tline and sm_tcolm should be either set correctly or set to -1 (to indi
cate that cursor position is unknown). 

Similarly attributes should be changed by calling sm_chg_attr or sm_do_re
gion. If any visual attributes are changed by the dnver, sm_flush should be called 
(usually in BLK_LA_END) to force out the "delayed write". 

The display data can be found in sm_screen, attributes in sm_attrib. Note that 
these are the "logical" values. They have been sent to the terminal just before 
BLK_LA_START. 

On area attribute terminals there is an additional buffer, sm_exattr. This buffer is a 
character array paralleling the screen. The declaration is in smblock. h: 

char NEAR * NEAR * NEAR sm_exattr; 

It is arranged so that it may be accessed as if it were a 2 dimensional array (sm_ex
at tr [ line] [colm]). The high bit is set if that position contains an area attribute. 
The next highest bit is used for terminals that enforce a limit on the number of attributes 
on a given line. 

The low 4 bits are available for use by the driver. Typically the driver will set these to 
indicate that a start field or end field attribute exists at the given position. 

sm_exa t t r is cleared by clear window and clear to end of line. 

For attributes two globals exist: sm_Imask and sm_amask. They contain a bit mask 
for those attributes that are supported by the terminal. 

BLK_INIT and BLK_RESET are called on the "application" level. All JAM routines 
are available. The global buffer sm_term contains the environment entry SMTERM 

JAM Release 5.03 20 Nov 92 Page 163 



JAM Programmer's Guide 

or TERM, and may be used to set up conditional code in the driver, based on terminal 
type. 

BLK_LOCK and BLK_UNLOCK are called while bringing up a form or window and 
before any writing to the screen. It is not safe to assume that JAM global variables are 
correctly set at this point. Only sm-puchr, sm-pustr and sm_tcursor should be 
used. 

BLK_LA_??? are called just before opening the keyboard. All JAM routines that do 
not open a window or form or open the keyboard are available. 

BLK_K_??? are called to open the keyboard. All JAM routines that do not open a win
dow or form, or open the keyboard are available. If any change is made to the display 
or attributes, sm_flush should be called. 

BLK_D_??? are called after opening the keyboard. All JAM routines that do not open 
a window or form, or open the keyboard are available. 

BLK_CPR is called last in sequence. 

Page 164 JAM Release 5.03 20 Nov 92 



Chapter 12 

Library Function Overview 
In this chapter, we summarize the JAM library functions and list them in categories. 
All JAM library function names begin with the prefIX sm_. However, in the Function 
Reference Chapter and in this chapter, the functions are listed without prefIX for clarity. 

In addition to stripping off the prefIX in the listings that follow, groups of closely related 
variant functions are listed under a single root name. The functions sm_r_f0 rm, 
sm_d_form, and sm_l_form, for example, are all grouped under the heading form. 
In a few cases, functions may be listed under a name that is not a portion of the the 
function name but is suggestive of the utility of the flIDction. For example, the function 
sm_r _a t_cur, which displays a window at the cursor position, is listed under the root 
name window, along with sm_r_window (which displays a window at a fixed loca
tion) and a number of other window display routines. The calling syntax of each func
tion is found in the SYNOPSIS section of the function listing in the Function Reference 
Chapter. 

Most JAM library routines fall into one of the following categories: 

• InitializationlReset 

• Screen and Viewport Conttol 

• Keyboard and Display I/O 

• Field! Array Data Access 

• Field! Array Characteristic Access 

• Group Access 

• Local Data Block Access 

• Cursor Conttol 

• Message Display 

JAM Release 5.03 20 Nov 92 Page 165 



JAM Programmer's Guide 

• Scrolling and Shifting 

• Mass Storage and Retrieval 

• Validation 

• Global Data and Changing JAM's Behavior 

• Soft Keys and Keysets 

• JAM Executive Control 

• Block Mode Control 

• Miscellaneous 

The following sections summarize the functions that fall into these categories. Some 
listings are found in more than one category. 

12.1 

INITIALIZATION/RESET 
The following library functions are called in order to initialize or reset certain aspects 
of the JAM runtime environment Those that are necessary for the proper operation of 
JAM are called from within the supplied main routine source modules jmain. c and 
jxmain.c. 

cancel 

dicname 

do_uinstalls 

ininames 

initcrt 

keyinit 

ldb_init 

leave 

msgr.ead 

reset crt 

return 

vinit 

Page 166 

reset the display and exit 

set data dictionary name 

install an application's hook functions 

record names of initial data files for local data block 

initialize the display and JAM data structures 

initialize key translation table 

initialize (or reinitialize) the local data block 

prepare to leave a JAM application temporarily 

read message fIle into memory 

reset the terminal to operating system default state 

prepare for return to JAM application 

initialize video translation tables 

JAM Release 5.03 20 Nov 92 



Chapter 12: Library Function Overview 

12.2 

SCREEN AND VIEWPORT CONTROL 
The following routines are used to control viewports, the display of screens, and the 
form and window stacks. 

close_window 

form 

hlp_by_name 

issv 

jclose 

jform 

jwindow 

mwindow 

shrink_to_fit 

sibling 

submenu_close 

svscreen 

unsvscreen 

viewport 

wcount 

wdeselect 

window 

winsize 

wselect 

wrotate 

12.3 

close current window 
display a screen as a form 
display help window 
determine if a screen in the saved list 
close current window or form under JAM Executive control 
display a screen as a form under JAM control 
display a window at a given position under JAM control 
display a status message in a window 
remove trailing empty array elements and shrink screen 
defme the current window as being or not being a sibling win
dow 
close the current submenu 
register a list of screens on the save list 
remove screens from the save list 
modify viewport size and offset 
obtain number of currently open windows 
restore the formerly active window 
display a window at a given position 
allow end-user to interactively move and resize a window 
activate a window 
rotate the display of sibling windows 

DISPLAY TERMINAL I/O 
The following routines provide the interface to JAM terminal 110. 

bel beep! 
bkrect set background color of rectangle 

JAM Release 5.03 20 Nov 92 Page 167 



JAM Programmer's Guide 

do_region 

flush 

getkey 

input 

keyfilter 

keyhit 

keylabel 

keyoption 

m_flush 

rescreen 

resize 

ungetkey 

12.4 

rewrite part or all of a screen line 

flush delayed writes to the display 

get logical value of the key hit 

open the keyboard for data entry and menu selection 

control keystroke record/playback ftltering 

test whether a key has been typed ahead 

get the printable name of a logical key 

set cursor control key options 

flush the message line 

refresh the data displayed on the screen 

dynamically change the size of the display 

push back a translated key on the input 

FIELD/ARRAY DATA ACCESS 
The following routines access the data in fields and arrays. Most routines in this section 
have a number of variants that perform the same task but reference the field to be ac
cessed differently. In these cases, the calling syntax of the major variant is listed under 
the SYNOPSIS section of the listing in the Function Reference Chapter. All other varia
nts are listed under the VARIANTS section. There are also listings for each prefIX that 
explain how they work (for example there is a reference listing for i.J. 

Most field access routines have five variants, although some have fewer. The five pos
sible variants are shown in the table below: 

Variants of Functions That Access Fields 

Prefix Example Description 

sm_ sm_intval(fieldnum); Access a field via field number. 

sm_n_ sm_n_~ntval(fieldname); Access a field (or an entire 
array) via field name. Access 
the LDB if there is no field on 
the screen. 

Page 168 JAM Release 5.03 20 Nov 92 



Chapter 12: Library Function Overview 

Prefix Example Description 

sm_l_ sm_i_intval{fieldname, Access an occurrence via field 
occurrence) i name and occurrence number. 

Access the LDB if there is no 
field on the screen. 

sm_o_ sm_o_lntval{fieldnum, Access an occurrence via field 
occurrence) i number and occurrence number. 

sm_e_ sm_e_intval{fieldname, Access an element via field 

amt_format 

calc 

cl_unprot 

clear_array 

dblval 

dlength 

doccur 

dtofield 

fptr 

getfield 

gwrap 

intval 

ioccur 

is_no 

is-yes 

itofield 

Ingval 

ltofield 

null 

putfield 

pwrap 

strip_amt-ptr 

element) i name and element number. 

write data to a field, applying currency editing 

execute a math edit style expression 

clear all unprotected fields 

clear all data in an array 

get the value of a field as a real number 

get the length of a field's contents 

delete occurrences 

write a real number to a field 

get the content of a field 

copy the contents of a field 

get the contents of a wordwrap array 

get the integer value of a field 

insert blank occurrences into an array 

test field for no 

test field for yes 

write an integer value to a field 

get the long integer value of a field 

place a long integer in a field 

test if field is null 

put a string into a field 

put text to a wordwrap field 

strip amount editing characters from a string 

JAM Release 5.03 20 Nov 92 Page 169 



JAM Programmer's GUide 

12.5 

FIELD/ARRAY ATTRIBUTE ACCESS 
The following routines access informauon about fields and arrays. Like the routines in 
the previous section on field and array data access, each of these routines generally 
have five distinct variants. See the discussion in the introduction to the previous section 
for more information on variants of JAM library functions that access fields. 

base_fldno get the field number of the first element of an array 

bitop 

dlength 

edit-ptr 

finquire 

fldno 

ftog 

ftype 

gtof 

manipulate validation and data editing bits 

change the display attribute of a field 

clear all MDT bits 

get the length of a field's contents 
get special edit string 
obtain information about a field 

get the field number of an array element or occurrence 

convert field references to group references 
get the data type and precision of a field 
convert a group name and index into a field number and oc-
currence 

length get the maximum length of a field 
max_occur get the maximum number of occurrences 
name obtain field name given field number 
num_occurs find the highest numbered occurrence containing data 
protect protect an array 

sc_max alter the maximum number of items allowed in a scrollable 
array 

size_of_array get the number of elements 

tst_all_mdts find frrstmodified occurrence in the screen 

Page 170 JAM Release 5.03 20 Nov 92 



Chapter 12: LIbrary FunctIon OvervIew 

12.6 

GROUP ACCESS 
The following routines access groups, that is, radio buttons and check hsts. Groups are 
made up of fields that have attributes and data in them, but groups in and of themselves 
are implemented as phantom fields which take up no screen real estate. The value of a 
group indicates the set of selected consituent fields, although it is not recommended 
that that value ever be accessed or modified directly with any of the field access rou
tines discussed in the preceding sections. 

The routines that follow are those that are recommended for accessing groups: 

deselect 

ftog 

gp_inquire 

gtof 

isselected 

select 

12.7 

deselect a checklist occurrence 
convert field references to group references 
obtain information about a group 
convert a group name and index into a field number and oc
currence 
determine whether a radio button or checklist occurrence has 
been selected 

select a checklist or radio button occurrence 

LOCAL DATA BLOCK ACCESS 
The following routines access the Local Oata Block, or LOB. Note that any of the field 
data access routines that reference fields by name or name and occurrence number (eg 
sm_n and sm_i_ variants) will access the LDB if the named field does not exist on the 
active screen. 

allget 

dicname 

dd_able 

ininames 

lclear 

Idb_init 

lreset 

lstore 

load screen from the LOB 
set data dictionary name 
tum LDB write-through on or off 
record names of initial data mes for local data block 
erase LOB entries of one scope 
initialize (or reinitialize) the local data block 
reinitialize LDB entries of one scope 

copy everything from screen to LOB 

JAM Release 5.03 20 Nov 92 Page 171 



JAM Programmer's GUide 

12.8 

CURSOR CONTROL 
The followmg rouUDes control the positIOning and display of the cursor on the active 
screen. 

ascroll 

backtab 

c_off 

c_on 

c_vis 

disp_off 

getcurno 

gofield 

home 

last 

nl 

occur_no 

off_gofield 

rscroll 

sh_off 

tab 

12.9 

scroll to a given occurrence 

backtab to the start of the last unprotected field 
tum the cursor off 
tum the cursor on 

tum cursor position display on or off 

get displacement of cursor from start of field 
get current field number 

move the cursor into a field 
home the cursor 

position the cursor in the last field 
position cursor to the first unprotected field beyond the current 
line 

get the current occurrence number 
move the cursor into a field, offset from the left 
scroll an array 

determine the cursor location relative to the start of a shifting 
field 
move the cursor to the next unprotected field 

MESSAGE DISPLAY 
The following routines are intended for the access and display of runtime application 
messages. 

Page 172 

display a message on the status line 
display an error message and reset the message line, without 
turning on the cursor 

display an error message and reset the status line 

JAM Release 5.03 20 Nov 92 



m_flush 

msg 

msg_get 

msgfind 

msgread 

mwindow 

query_msg 

qui_msg 

setbkstat 

setstatus 

12.10 

Chapter 12: Library Funcbon Overview 

flush the message line 
display a message at a given column on the status line 
find a message given its number 
find a message given its number 
read message file into memory 
display a status message in a window 
display a question, and return a yes or no answer 
display a message preceded by a constant tag, and reset the 
message line 
display error message preceded by a constant tag, and reset the 
status line 
set background text for status line 
tum alternating background status message on or off 

SCROLLING AND SHIFTING 
The following routines provide access to shifting and scrolling fields and arrays. 

achg 

ascroll 

doc cur 

ioccur 

max_occur 

num_occurs 

oshift 

rscroll 

t_scroll 

t_shift 

tst_all_mdts 

change the display attribute of an occurrence within a scrolling 
array 
scroll to a given occurrence 
delete occurrences 
insert blank occurrences into an array 
get the maximum number of occurrences 
find the highest numbered occurrence containing data 

shift a field by a given amount 
scroll an array 
alter the maximum number of items allowed in a scrollable 
array 
determine the cursor location relative to the start of a shifting 
field 
test whether an array can scroll 
test whether field can shift 
find flfSt modified occurrence 

JAM Release 5.03 20 Nov 92 Page 173 



JAM Programmer's GUide 

12.11 

MASS STORAGE AND RETRIEVAL 
The following routtnes move data to or from sets of fields in the screen or LDB. 

rd-part 

rdstruct 

restore_data 

rrecord 

rs_data 

save_data 

sv_data 

sv_free 

wrecord 

wrt-part 

wrtstruct 

12.12 

read part of a data structure to the current screen 
read data from a structure to the screen 
restore previously saved data to the screen 
read data from a structure to a data dictionary record 
restore saved data to some of the screen 
save screen contents 
save partial screen contents 
free a save-data buffer 
write data from a data dictionary record to a structure 
write part of the screen to a structure 
write data from the screen to a structure 

VALIDATION 
The following routines provide an application interface to the field and group valida
tion processes. 

bitop 

ckdigit 

fval 

gval 

novalbit 

s_val 

12.13 

manipulate validation and data editing bits 
validate check digit 
force field validation 
force group validation 
forcibly invalidate a field 
validate the current screen 

GLOBAL DATA AND CHANGING JAM'S 
BEHAVIOR 
The following routines grant access to global data and provide a way to manipulate cer
tain aspects of JAM and Screen Manager behavior. 

Page 174 JAM Release 5.03 20 Nov 92 



dd_able 

finquire 

gp_inquire 

inquire 

install 

isabort 

iset 

keyfilter 

keyoption 

msgread 

option 

pinquire 

pset 

resize 

soption 

12.14 

Chapter 12: Library Function Overview 

turn LDB write-through on or off 
obtain information about a field 
obtain information about a group 
obtain value of a global integer variable 
install application functions 
test and set the abort control flag 
change value of global integer variable 
control keystroke record/playback ftltering 
set cursor control key options 
read message file into memory 
set a Screen Manager option 
obtain value of a global string 
modify value of global strings 
dynamically change the size of the display 
set a string option 

SOFT KEYS AND KEYSETS 
The following routines provide an application interface to JAM's soft key support. 

c_keyset close a key set 
keyset openakeyset 

query current keyset scope 
inquire about key set information 

kscscope 

ksinq 

kslabel 

ksoff 

kson 

skinq 

skmark 

skset 

skvinq 

skvmark 

skvset 

set a soft key label and attribute (sm_skset is preferred) 
turn off key labels 

turn on key labels 
obtain soft key information by position 
mark or unmark a softkey label by position 
set characteristics of a soft key by position 
obtain soft key information by value 
mark a soft key by value 
set characteristics of a soft key by value 

JAM Release 5.03 20 Nov 92 Page 175 



JAM Programmer's Guide 

12.15 

JAM EXECUTIVE CONTROL 
The following routines, available only to applications using the JAM Executive, pro
vide JAM Executive services. 

getjctrl 

jclose 

jform 

jtop 

jwindow 

putjctrl 

12.16 

get control string associated with a key 
close current window or form under JAM Executive control 
display a screen as a form under JAM control 
start the JAM Executive 
display a window at a given position under JAM control 
associate a control string with a key 

BLOCK MODE CONTROL 
The following routines are used in applications requiring block mode support. 

blkdrvr install block mode driver 
blkinit initialize (and tum on) block mode terminal 
blkreset reset (and turn oft) block mode terminal 

12.17 

MISCELLANEOUS 
fi_open 

fi-path 

formlist 

jplcall 

jplload 

jplpublic 

jplunload 

I_close 

I_open 

rmformlist 

sdtime 

udtime 

Page 176 

find a file and open it in binary read only mode 
return the full path name of a fde 
update list of memory-resident fdes 
execute a JPL procedure 
execute the JPL load command 
execute the JPL public command 
execute the JPL unload command 
close a library 
open a library 
empty the memory-resident form list 
get formatted system date and time 
format user-supplied date and time 

JAM Release 5.03 20 Nov 92 



Chapter 13 

Function Reference 

All JAM function names begin with the prefIX sm_. In the Function Reference Chapter 
functions are listed without the prefix and, in a few cases, under a name that is not a 
portion of the function name - but that is suggestive of the utility of the function. For 
example, the function sm_r_at_cur, which displays a window at a specified posi
tion, is found under the listing name window, along with the function sm_r_window. 
In these cases, the calling syntax of each function is listed under the SYNOPSIS section 
of the listing. 

For each entry, you will find several sections: 

• A synopsis similar to a C function declaration, giving the types of the 
arguments and return value. 

• A description of the function's arguments, prerequisites, results, and 
side-effects. 

• The function's return values, if any, and their meanings. 

• A list of variants. 

• A list of functions that perform related tasks. 

• An example illustrating the function's use. 

A routine that calls JAM functions should include the file smde f s . h. If another file 
should be included, then it is referenced in the synopsis section. 

To view functions by category, refer to the Library Function Overview (Chapter 12) To 
view a complete list of functions alphabetically by the actual function name (including 
the sm_ prefIX), see the Library Function Index (Chapter 14). 

JAM Release 5.03 20 Nov 92 Page 177 



JAM Programmer's GUIde 

achg 
change the display attribute of an occu rrence within a 
scrolling array 
~.:.-: •• : ~: ••• : ... :: •••• :::: ....... "" :-"::~: : .. "" •••• ::.-:: : :::.. -: .-.::: ": .:":.. .:;;' -: .. : -:" .. ~: : : •• : :",,: •• : ..... ~..: ~ ... :':. ":" "t,,::.. .:"-:",,: :~.:::.. ... 

SYNOPSIS 
int sm_o_achg(field_number, occurrence, d~splay_attr~bute) 
int field_number; 
int occurrence; 
int display_attribute; 

DESCRIPTION 
NOTE: This function has only two variants, sm_o_achg and sm_i_achg. There is 
!lQ sm_achg. 

This function changes the display attribute of an occurrence within a scrollable array. If 
the occurrence is onscreen, the attribute with which the occurrence is currently dis
played is changed as well. When the occurrence is scrolled to another position within 
the array the new attribute moves with the occurrence. Use sm_chg_attr if you want 
all of the occurrences within the array to scroll through an attribute so that their appear
ance is detemined by their onscreen positions. 

Possible values for the argument display_attribute are defined in the header file 
smattrib. h, as shown in the table below: 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

Page 178 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Attrzbute Mnemonic Hex Code Attrzbule Mnemonic Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B_WHITE 0700 

Foreground colors may be used alone or with one or more highlights, a background col
or, and a background highlight If you do not specify a highlight or a background color, 
the attribute defaults to white against a black background. Omitting the foreground 
mnemonic causes the attribute to default to black. 

If display_attribute is zero, the occurrence's display attribute IS removed, leav
ing it with the field display attribute. Then, if that occurrence is onscreen, it is displayed 
with the attribute attached to its field. 

This function does not work on an array that is not scrollable. Use sm_chg_attr to 
change the display attribute of an individual field. 

RETURNS 
-1 if the field isn't found or isn't scrollable, or if occurrence IS invalid. 0 otherwise. 

VARIANTS 

RELATED FUNCTIONS 

EXAMPLE 
/* Highlight the data occurrence under the cursor 1n a 
* scrolling array, so that the highlight will move 
* with the occurrence rather than staying on the field. */ 

#include ·smdefs.hn 

highhght () 

JAM Release 5.03 20 Nov 92 Page 179 



JAM Programmer's GUide 

{ 

int field_number; 
int occurrence 
field_number = sm_getcurno (); 
occurrence = sm_occur_no(); 
s~o_achg (field_number, occurrence, RED I REVERSE); 
return 0; 

Page 180 JAM Release 5.00 20 Nov 92 



Chapter 13: Function Reference 

allget 
load screen from the LOB 

SYNOPSIS 
void sm_allget(respect_flag) 
int respect_flag; 

DESCRIPTION 
This function copies data from the local data block to fields on the current screen with 
matching names. 

If respect_flag is nonzero, this function does not write to fields that already con
tain data, or that have their MDT bits set If the flag is zero, all fields are initialized. 
When this function is called by the JAM run-time system, or by your screen entry func
tion, it does not set MDT bits for the fields it initializes. 

This function is called automatically by the JAM screen-display logic, unless LDB 
processing has been turned off using sm_dd_able. Application code should not nor
mally need to call it 

RELATED FUNCTIONS 
sm_dd_able(flag); 
sm_lstore(); 

EXAMPLE 
linclude ·smdefs.h· 
linclude ·srnkeys.h-

/* If you open a window using sm_r_window, you want 
* named fields initialized from the LDB, and LDB 
* processing is off, you will need to call sm_allget 
* explicitly. You could use this, e.g., to make the 
* LDB read-only during a certain transaction. */ 
sm_d~able (0); 

if (sm_r_window (·popup·, 5, 24) == 0) 
( 

} 

sm_allget (0); 
while (s~input (IN_DATA) != EXIT) 
( 

) 
sm_close_window (); 

JAM Release 5.03 20 Nov 92 Page 181 



JAM Programmer's Guide 

amt format 
write data to a field, applying currency editing 

.. ;..:.;.: :.:.: .. ":"". :.... .. ,,!: ......... : ... :"".c...)..:" .:::.;~.~ ...... ..:.:.: <. :.:.....: ... :..... .. ::;.... ... :.:. ... ~ .. ~:.. : :.. ~ ••. : ............ :. : • ...:-.. ~ ... :-= .... ;.:.:..:... -::....2;. ..... : of' 

SYNOPSIS 
int sm_amt_format(field_number, buffer) 
int field_number; 
char *buffer; 

DESCRIPTION 
If the specified field bas a currency edit, it is applied to the data in buffer. If the re
sulting string is too long for the field, the excess cbaracters are truncated. Then 
sm-putfield is called to write the edited string to the specified field. 

If the field bas no currency edit, sm-pu t fie 1 d is called with the unedited string. 

RETURNS 
-1 if the field is not found or the occmrence is out of range; 
-2 if the edited string does not fit in the field; 
o otherwise. 

VARIANTS 
sm_e_amt_format(fiel~name, element, buffer); 
sm_i_amt_format(field_name, occurrence, buffer); 
sm_n_amt_format(field_name, buffer); 
sm_o_amt_format(field_number, occurrence, buffer); 

RELATED FUNCTIONS 
s~dtofield(field_number, value, format); 
s~strip_amt-ptr(fiel~nurnber, inbuf, ); 

EXAMPLE 
linclude ·smdefs.h-

/* Write a list of real numbers, stored as character strings, to the 
screen. The first and last fields in the list are tagged with 
special names.*/ 

int fld, first, last; 
extern char *values[]; /* defined elsewhere */ 

last = sm_n_fldno (-last-); 
first = s~n_fldno (-first-); 
for (fld = first; fld <= last; ++fld) 
{ 

s~amt_format (fld, values[fld - first]); 
} 

Page 182 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

ascroll 
scroll to a given occurrence 
~~ ... ~. ;: ,," :.;: ... : "::::" ... :. ~ ~ :: .:.: ":.c:"'::: .. :":.~.-= ~ ",,: ";" :::.:~:.: .. ": .~ .. :... .. ::~: ::::.." .~: .::...... :. : .. C:: ::~ .... ".. :"::::: ... "" ••• ~ ... .'"" .... . .. .. .... -: 

SYNOPSIS 
int srn_ascroll(field_nurnber, occurrence) 
int field_number; 
int occurrence; 

DESCRIPTION 

This function scrolls the designated field so that the indicated occurrence appears 
there. Synchronized arrays scroll along with the target array. 

The field need not be the fIrst element of a scrolling array. You can use this function, for 
instance, to place the nineteenth occurrence in the third on screen element of a five-ele
ment scrolling array. 

If the requested occurrence cannot be placed in the specified field because it is one of 
the fIrSt or last occurrences in a non-circular array, then sm_ascroll scrolls the oc
currence onto the screen and returns the occurrence number of the occurrence that is 
actually in the specified field. 1\vo examples illustrate how this works: 

If field number 7 is the third element of a non-circular scrolling array and occur
rence is 1, a call to sm_ascroll places occurrence one in the flISt element of the 
array and returns 3, the number of the occurrence actually in field 7. 

If field number 7 is the flISt element of a three element non--circular scrolling array and 
occurrence 20 is the last occurrence in the array, sm_ascroll scroUs occurrence 
20 onto the screen and returns 18, the number of the occurence in field 7. 

RETURNS 

-1 if field or occurrence specification is invalid, 
occurrence number of the occurrence in the field if the requested occurrence was 

brought onscreen but not into the requested field. 
o otherwise. 

VARIANTS 

RELATED FUNCTIONS 
srn_rscroll(field_nurnber, re~scroll); 
sm_t_scroll(field_nurnber); 

JAM Release 5.03 20 Nov 92 Page 183 



JAM Programmer's GUide 

EXAMPLE 
*include ·smdefs.h· 
*lnclude ·smkeys.h· 

/* Scroll the ·records· array (and those synchonized with*/ 
* it) to the line indicated in another fleld on the screen */ 

*define GOTO_LINE PF4 

if (s~input (IN_DATA) == GOTO_LINE) 
{ 

} 

Page 184 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

backtab 
backtab to the start of the last unprotected field 
•••••• : ............ e .......... . 

SYNOPSIS 
void sm_backtab(); 

DESCRIPTION 
When the cursor is in a field unprotected from tabbing into, but not in the first enterable 
position, it is moved to the first enterable position of that field. However, if the cursor 
is in a field with a previous-field edit and one of the fields specified by the edit is un
protected from tabbing, the cursor is moved to the first enterable position of that field. 
Otherwise, the cursor is moved to the first enterable position of the tab-unprotected 
field with the next lowest field number. If the cursor is in the first position of the fIrSt 
unprotected field on the screen, or before the first unprotected field on the screen, it 
wraps backward into the last unprotected field. When there are no unprotected fields, 
the cursor doesn't move. 

If the destination field is shiftable, it is reset according to its justification. The fust en
terable position depends on the justification of the field and, in fields with embedded 
punctuation, on the presence of punctuation. 

This function doesn't immediately trigger field entry, exit, or validation processing. 
Such processing occurs based on the cursor position when control returns to sm_in
put. 

This function is called when the JAM logical key BACK is struck. 

RELATED FUNCTIONS 
sm_home(); 
sm_Iast(); 
sm_nl(); 
sm_tab ( ) i 

EXAMPLE 
#include ·smdefs.h H 

#include ·smkeys.h H 

/* Back the cursor up if the user strikes a key 
* indicat1ng s/he has made a particular mistake. 
*/ 

int key; 

do 
key = sm_input (IN_DATAl; 
if (key == PFSI 

JAM Release 5.03 20 Nov 92 Page 185 



JAM Programmer's Guide 

} 

sm_quiet_err (·OK, start overH)i 
sm_backtab ()i 

} while (key != EXIT && key != XMIT)i 

Page 186 JAM Release 5.03 20 Nov 92 

, 
\ 

,I 



Chapter 13: Function Reference 

base fldno -
get the field number of the first element of an array 

SYNOPSIS 
int sm_base_fldno(field_number) 
int fleld_numberi 

DESCRIPTION 

... .. .. .. ........ 

A base field number is the field number of the fIrSt element of an array. Use 
sm_base_fldno to obtain the base field number of an array. 

RETURNS 

The field number of the base element of the array containing the specified field, or 
o if the field number is out of range. 

JAM Release 5.03 20 Nov 92 Page 187 



JAM Programmer's GUide 

bel 
beep! 

. . ............. .. .. ..... .... 

SYNOPSIS 

...... : ... : ........ 

void sm_bel(); 

DESCRIPTION 

. ... ;..: ...... ~ .. : ... : .. : :. : ::. .: .... : .:.: .: ...... : .... .:..:... : ....... : .. -...... : -.: .. ::.;. .. :.::: ...... " .. 

Causes the terminal to beep, ordinarily by transmitting the ASCII BEL code to it. If 
there is a BELL entry in the video me, sm_be 1 transmits that instead, usually causing 
the terminal to flash instead of beeping. 

Even if there is no BELL entry, use this function instead of sending a BEL, because cer
tain displays use BEL as a graphics character. 

Including a % B at the beginning of a message displayed on the status line causes this 
function to be called. 

EXAMPLE 
Dinclude ·smdefs.hR 

/* Beep if cost is too high. */ 
if (sm_n_dblval(RcostR) > 1000.00 

slTLbel(); 

Page 188 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

bitop 
manipulate validation and data editing bits 
: .... .. .... .... .. 

SYNOPSIS 

#include UsmbItops.h" 

int sm_bitop(field_number, actIon, bit) 
int field_number; 
Int actIon; 
int bIt; 

DESCRIPTION 

You can use this function to inspect and modify validation and data editing bits of 
screen fields, without reference to internal data structures. The first parameter identi
fies the field to be operated upon. 

action may include a test and one manipulation from the following table of 
mnemonics, which are defined in smbi tops. h: 

Mnemonic Meaning 

BIT_CLR Tum bit off 

BIT_SET Tum bit on 

BIT_TOOL Flip state of bit 

BIT_TST Report state of bit 

The third parameter is a bit identifier, drawn from the following table: 

Character edits 

N_ALL N_DIGIT N_YES_NO N_ALPHA N_NUMERIC 

N_ALPHNUM N_FCMASK 

JAM Release 5.03 20 Nov 92 Page 189 



JAM Programmer's GUide 

Field edtts 

N_RTJUST N_REQD N_VALIDED N_MDT N_CLRINP 

N_MENU N_UPPER N_LOWER N_RETENTRY N_FILLED 

N_NOTAB N_WRAP N_ADDLEDS N_EPROTECT N_TPROTECT 

N_CPROTECT N_VPROTECT N_ALLPROTECT N_SELECTED 

The character edits are not, strictly speaking, bits; you cannot toggle them, but the other 
functions work as you would expect. N_ALLPROTECT is a special value meaning all 
four protect bits at once. 

N_ VALIDED and N_MDT are the only bit operations that can apply to individual off
screen and on screen occurrences. The protection operations can apply to an array as a 
whole, including offscreen occurrences (see sm_aprotect). All other bit operations 
are attached to fixed on screen positions. 

The variant sm_n_bi top can take a group name as an argument. The function then 
affects the group bits. 

This function bas two additional variants, sm_a_bi top and sm_t_bi top, which 
perform the requested bit operation on all elements of an array. Their synopsis appear 
below. If you include BIT_TST, these variants return 1 only if bi t is set for every ele
ment of the array. The variants sm_i_bi top and sm_o-pi top are restricted to 
N_ VALIDED and N_MDT. 

action may include both a test and a manipulation. If the manipulation is successful 
and the test is true, the function returns 1. If the manipulation is successful and the test 
is false, the function returns O. If the manipulation is unsuccessful, the function returns 
a negative value, regardless of the outcome of the test. 

RETURNS 
-1 if the field or occurrence was not found; 
-2 if the action or bi t mnemonic is not one of those listed in the table; 
-3 if the request was not valid (e.g. - an attempt to set the right justified edit on a word 

wrapped field); 
1 if a BIT_TST was performed and the result is true; 
o otherwise 

VARIANTS 

Page 190 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sm_e_bitop(array_name, element, action, bit); 
sm_i_bitop(array_name, occurrence, action, bit); 
sm_n_bItop(narne, actIon, bit); 
sm_o_bitop(field_number, occurrence, action, bit); 
srn_t_bitop(array_nurnber, action, bIt); 

EXAMPLE 
linclude ·smbitops.h-

/* Check whether a field is validated. If not, place the 
* cursor there. */ 

if (! sm_n_hitop (·operation-, BIT_TST, N_VALIDEDII 
{ 

} 

/* Make the array -quantities· required. */ 

JAM Release 5.03 20 Nov 92 Page 191 



JAM Programmer's GUide 

bkrect 
set background color of rectangle 

.. .. ........ .. .. .. ................. . 

SYNOPSIS 

.. .... .. ..... '" ....... 
.. ... ... .. ..... ... .. .. ........... .. .... .. .. -" ~ .. :.":. :" .. :: ..... : :'". ::. .... : .... : :--: ":.:.: : .:~ .. -: r: .:: 

int sm_bkrect{start_line, start_column, num_of_lines, 
number_of_columns, background_colors) 

int start_lIne; 
int start_column; 
int num_of_lines; 
int number_of_columns; 
int background_colors; 

DESCRIPTION 

This function changes the background color of a rectangular area of the current screen. 
Any fields or elements that begin within the rectangular area will have their back
ground attributes changed to the specified attribute. This means that if there are any 
fields or elements that are not entirely contained within the rectangular area, a ragged 
edge results. Display text that falls with in the rectangular area will have its background 
attribute set 

The arguments start_line and start_column use a zero-based start line and 
column. Therefore they can have any value from 0 through one less than the number of 
lines (or coluinns) on the screen. 

The background color must be one of the mnemonics defined in smattrib.h 
(B_BLACK, B_BLUE, etc.). You can highlight the background color by oring the 
background color attribute with B_Hll..IGHT. 

RETURNS 

-1 if the starting line or column was invalid. 
1 if the starting line and column were valid, but the rectangle had to be truncated to fit 
o if no error. 

EXAMPLE 
/* -mondrian- Draw some colored squares on the display*/ 
int colors[] = 
{ 

B_RED, 
B_BLUE, 
B_WHITE, 
B_CYAN 

Page 192 JAM Release 5.03 20 Nov 92 



Chapter 13' Function Reference 

} i 

int 
mondrian( ) 
{ 

1nt 1i for (i=Oii<sizeof(colors)/slzeof(lnt)ii++) 
{ 

sm_bkrect( (1/2) * 10, (i & 1) * 40, 10, 40, colors[l])i 

} 
return(O)i 

JAM Release 5.03 20 Nov 92 Page 193 



JAM Programmer's GUide 

blkdrvr 
install block mode driver 
::" .. ':" .. :.":".'! : ::. ..:.... ..:. .~: :" ::... :" .... .. :... .. ... ~ -:" .......... :..:.:- : .. 

SYNOPSIS 
int sm_blkdrvr(); 

DESCRIPTION 

.... .. ........ ".. .. ,," .. ..... .... ....... .. .. ...... ,," 

This routine installs the correct driver for the driver name in the video fIle. It is pro
vided in source code form so that the list of "known" drivers can be extended. Refer to 
the source code for the list of drivers known (if any) by JAM under your operating sys
tem. 

This routine is called only if sm_bIkinit has been called and no block mode driver 
has been previously installed. In that case the entry BLKDRVR in the video file is 
checked for the name of a "known" driver. 

For an application program to use block mode there must be a call to sm_bIkini t. In 
addition either a block mode driver must be installed before that call (thereby forcing 
block mode) or the video file must specify a driver that has been linked in (thereby leav
ing the final decision to the terminal operator). 

If block mode is not desired, sm_bIkinit should not be called. In that case, 
block.o, this routine, and the two drivers are not linked into the executable. 

To add new "known" drivers, simply add them to the list above. 

RETURNS 

o if the driver can be installed. 
-I ifnot. 

RELATED FUNCTIONS 

sm_blkinit(); 
sm_blkreset(); 

Page 194 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

blkinit 
initialize (and turn on) block mode terminal 
.. ~: ..c. ;'" ~ : " .. " ................. '" -.-.. .. .. .." 

.. .. .......... ..... .. .. ..... .......... .. • .oJ'.. ........ .... .. 

SYNOPSIS 
int sm_blkinit(); 
int return_value; 

DESCRIPTION 

This routine must be called by the application program to initiate block mode terminal 
action. A block mode terminal driver must have been previously installed by 
sm_install. 

This routine checks that a block mode terminal driver is installed. If a driver is found, 
it is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored. If the terminal cannot be put into block mode 
it will still work (possibly better) in interactive mode. 

If the driver signifies that all is OK, the global variable sm_blkcontrol is set to 
point to the local block terminal control handler. All Screen Manager calls for block 
mode support are made through this control routine. 

On the fmt call to the present routine the driver is called with BLK_INIT to perform 
any required initialization. 

On subsequent calls BLK_BLOCK is called instead of BLK_INIT. 

RETURNS 

return value from driver if one exists. 
-1 otbelWise. 

RELATED FUNCTIONS 
sm_blkdrvr () ; 
sm_blkreset(); 

JAM Release 5.03 20 Nov 92 Page 195 



JAM Programmer's GUide 

blkreset 
reset (and turn off) block mode terminal 
. '". : ...... .. . . .. . ........ 

SYNOPSIS 
int sID_blkreset(}; 
int return_value; 

DESCRIPTION 

.. .. : ~ .. : .. '" ........ : .. . , . 
: .:-.. '" .. - ............. : .... -... . ....... . : ... "'. -. 

This routine must be called by the application program to reset block mode terminal 
action. A block mode terminal driver must have been previously installed by 
sm_install. 

This routine checks that a block mode terminal driver is installed If a driver is found, 
it is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored as the terminal is often already in interactive 
mode. The exception is on those systems that are normally block mode. Many JAM 
programs rely on the fact that the terminal can be put into interactive mode. 

Note that the driver is called with BLK_CHAR, not with BLK_RESET. The only time 
the driver is called for a full reset is when JAM is about to go to the operating system 
- either exiting or performing a "shell escape". 

RETURNS 

return value from driver if one exists. 
-1 otherwise. 

RELATED FUNCTIONS 

sID_blkdrvr(}i 
sID_blkinit(}; 

Page 196 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

c_keyset 
close a keyset 
.. " ......... .:;.::~ :..:.-: .: •• : .... ;. .. ...:-..:<:':" ...... .:.....c .. : ~ • ..: • .:...c.:. -:":: ... ~ ). .. : ......... $. .::..&.. ;: ..... :::. ..:: .. ;.: ... :. .:..:::.::.. : ........ : .......... : -- .:: " .... : .:.:: ..... x;........;.: .... ~:. ,. 

SYNOPSIS 

#include "smsoftk.h" 

int sm_c_keyset(scope) 
int scope; 

DESCRIPTION 

This function closes the keyset of the given scope. It frees all memory associated with 
the keyset and marks that scope as free. If the keyset was currently displayed, the .keyset 
labels are changed to reflect the new keyset 

See the keyset chapter of the Author's Guide for a detailed explanation of keyset 
scopes. 

Scope Mnemonic from Description 
smsoftk.h 

KS_APPLIC Application scope. 

KS_FORM Form or window scope. 

KS_SYSTEM jxform system key sets. 

Use sm_d_keyset and sm_r_keyset to open keysets. 

RETURNS 

o if there is no error 
-2 if there is no keyset currently at that scope 
-3 if the scope is out of range 

RELATED FUNCTIONS 
sm_r_keyset(name, scope); 
sffiLd_keyset(address, scope); 

JAM Release 5.03 20 Nov 92 Page 197 



JAM Programmers Guide 

c off 
turn the cursor off 
~$. •• ::'':':''':' ;'.~.".,:: .: ... "" .. ::~:.~::.::-...;: •• :... •• ~ .. ~~ ~ .... -: .. ::;:.:....;..-::..~::.:.: :. : •• :.: •• :.. .: ••• :-::: ... : ....... ": " •• ..: ... $.: ... ; .. :.. •• : .... :. :.... .. .... .. .. .. .......... ....... . 

SYNOPSIS 

DESCRIPTION 

This function notifies JAM that the normal cursor setting is off. The normal setting is 
in effect except: 

• When a block cursor is in use, as during menu processing, the cursor 
is off. 

• While Screen Manager functions are writing to the display the cursor 
is off. 

• Within certain error message display functions the cursor is on. 

If the display cannot tum its cursor on and off (CON and COF entries are not defined in 
the video ftle), this function has no effect 

Use sm_c_on to tum the cursor on. 

RELATED FUNCTIONS 

EXAMPLE 
sm_err_reset( 

-Verify that the cursor is turned ON-)i 
sm_c_off ( ) i 
sm_emsg(-Verify that the cursor is turned OFF-Ii 
sm_c_on() i 

sm_emsg(·Verify that the cursor is turned ON-)i 

Page 198 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

c on 
turn the cursor on 
:.::"~ .. :~ •• ~.:?,,=:.~.: .:.:.:.: ~ ... ;t: ::.....,.,.:~: .. " .... :::.;..::::..: .; "" ':: ... :. ~.".::"" .. :.:;c" .. ..::: : .),," .. : ...... ~ .~. ":.;:- N ....... ~: ~;. ..... : ~": : .. ~::. ...... ::.. •• : ... :; ..... ~ ..... : : .. 

SYNOPSIS 

DESCRIPTION 

This function notifies JAM that the normal cursor setting is on. The normal setting is in 
effect except: 

• When a block cursor is in use, as during menu processing, the cursor 
is off. 

• While Saeen Manager functions are writing to the display the cursor 
is off. 

• Within certain error message display functions the cursor is on. 

If the display cannot tum its cursor on and off (CON and COF entries are not dermed in 
the video file), this function has no effect. 

Use sm_c_off to tum the cursor off. 

RELATED FUNCTIONS 

EXAMPLE 
sm_err_reset( 

-Verify that the cursor is turned ON·)i 
SIlLC_off()i 
sm_emsg(-Verify that the cursor is turned OFF-Ii 
sm_c_on()i 
sllLemsg{-Verify that the cursor is turned ON-)i 

JAM Release 5.03 20 Nov 92 Page 199 



JAM Programmer's Guide 

• 
C VIS 
turn cursor position,display on or off 

.A .: ,,: .. .... :"" ....... : ... : .... :.:. : ........ -: :....... .:::. "A" .:~: .... ::. :.~ ...... :: ... .. ••• ; ....... : :.::-.. : ~ •• : : ............ : .. ~ ........ : .. ":.. • .... ~ 

SYNOPSIS 
void sm_c_vis(display) 
int display; 

DESCRIPTION 

Assigning a non-zero value to display displays subsequent status line messages with 
the cursor's position display. This includes background status messages. Messages that 
would overlap the cursor position display are truncated. 

Setting display to zero causes subsequent status line messages to be displayed with
out the cursor's position display. 

This function has no effect if the CURPOS entry in the video file is not dermed In that 
case the cursor position display never appears. 

JAM uses an asynchronous function and a status line function to perform the cursor 
position display. If the application has previously installed either of those, this function 
overrides it 

EXAMPLE 
linclude "smdefs.hR 
linclude Rsmkeys.hR 

/* Toggle the cursor position display on or off when 
* the PF10 key is struck. The first time the key is 
* struck, it will go on. */ 

stat~c int cpos_on = 0; 

switch (sm_input(IN_DATA)) 
{ 

case PF10: 
sm_c_vis (cpos_on A= 1); 

} 

Page 200 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

calc 
execute a math edit style expression 
~.. :.... . . .. : . . .... .... .. ... .. .... .. .......... '" ........... . 

SYNOPSIS 
int sm_calc(field_number, occurrence, expreSSIon) 
lnt fIeld_number; 
lnt occurrence; 
char *expresslon; 

DESCRIPTION 

Use sm_calc to execute a math edit style expression. With this function you can per
form mathematical operations that use the contents of one or more fields and then insert 
the result into a field. 

The third parameter express ion is a math edIt style expression. See the JAM Au
thor's Guide for a complete description on how to create the expression. 

The frrst two parameters, field_number and occurrence identify the field and 
occurrence with which the calculation is associated. Normally you do not need to use 
them and should set them both to O. 

If you want to use relative references to fields in your expression, use the arguments 
field_number and occurrence to specify the field to which they should be rela
tive. 

If in the event of a math error you want the cursor to move a specific field, specify that 
field with field_number. In addition, if the desired field is an occurrence within an 
army, specifying the occurrence causes the referenced array to scroll to that occur
rence. 

RETURNS 
-1 if a math error occurred. 
o otherwise. 

EXAMPLE 
/* Compute payment due date. */ 

sm_calc (0, 0, ·paymentduedate = @date(shipdate) + 30·); 

JAM Release 5.03 20 Nov 92 Page 201 



JAM Programmer's GUide 

cancel 
reset the display and exit 

.... : ... : : ..... :: ... : :..... ..... .. . .-

SYNOPSIS 
VOId sm_cancel(dumrny_arg)j 
int dumrny_argj 

DESCRIPTION 

This function is installed by sIn_ini tcrt to be executed if a keyboard interrupt oc
curs. It calls SIn_reset crt to restore the display to the operating system's default 
state, and exits to the operating system. 

If your operating system supports it, you can also install this function to handle condi
tions that normally cause a program to abort. If a program aborts without calling 
sIn_resetcrt, you may find your terminal in an odd state; sIn_cancel can prevent 
that 

The parameter dummy _arg is a dummy argument It should have the value zero. The 
dummy argument allows SIn_cance 1 to be used as a signal handler for the C function 
signal. 

EXAMPLE 

/* the following program segment could be found in 
* some error routines */ 

linclude ·smdefs.h· 
if (error) 
{ 

} 

sm_quiet_err( 
-fatal error -- can't continue!\n-); 

sm_cancel(O); 

/* The following code can be used on a UNIX system to 
* install sm-cancel() as a signal handler. */ 

linclude ·smdefs.h· 
linclude <signal.h> 

signal (SIGTERM, sm-cancel); 

Page 202 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

ch9_attr 
change the display attribute of a field 

",-" -:- "" ........ : ..... ",'" .. :: ... . .. .. " "'.: 

SYNOPSIS 

int sm_chg_attr(field_number, display_attribute) 
int field_number; 
lnt dlsplay_attributei 

DESCRIPTION 

Use this function to change the display attribute of an individual field or an element 
within an array. To change an occurrence attribute so that the attribute moves with the 
occurrence use sm_o_achg. 

If the field is part of a scrolling array, then each occurrence may also have a display 
attribute that overrides the field display attribute when the OCCWTence arrives onto the 
screen. 

Possible values for display_attribute aredefmed in smattrib.h, as shown in 
the table below: 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

JAM Release 5.03 20 Nov 92 Page 203 



JAM Programmer's GUide 

Attribute Mnemonic Hex Code Attribute Mnemonzc Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B_WHITE 0700 

Foreground colors may be used alone or ored with one or more highlights, a back
ground mnemonic, and a background highbght If you do not specify a highlight or a 
background mnemonic, the attribute defaults to white against a black background. 
Omitting the foreground mnemonic causes the attribute to default to black. 

NOTE: The variant sm_o_chg_attr does not take the usual arguments. The second 
argument is an element rather than an occurrence. 

RETURNS 

-1 if the field is not found 
o otherwise. 

VARIANTS 

sm_e_chg_attr(field_name, element, display_attribute); 
sm_n_chg_attr(field_name, display_attribute); 
sm_o_chg_attr(field_number, element, display_attribute); 

RELATED FUNCTIONS 

sm_o_achg(field_number, occurrence, display_attribute); 

EXAMPLE 
#include ·smdefs.h· 
!*Given an array of at least four elements with a base*! 
!*field number of three, this function*! 
!*changes the display attributes of the first four elements.*! 

change_elements() 

Page 204 JAM Release 5.03 20 Nov 92 



int element; 
for (element = 1; element <= 4; element++) 
{ 

Chapter 13: Function Reference 

sm_o_chg_attr (3, element, RED I BLINK); 

return (0); 

JAM Release 5.03 20 Nov 92 Page 205 



JAM Programmer's Guide 

ckdigit 
validate check digit 
.. ": ..... ~...:.:.: .:.:: ...... :.-.: .. ..c. ~ .. ~~ .. ::.: ...... ~.:.. .. .. .:... ... -= .. .. . .... :.: .. : .. :.:. : ............. : .. 

SYNOPSIS 
int srn_ckdigit(field_number, field_data, occurrence, modulus, 

mInimum_digi ts) 
Int field_number; 
char *field_data; 
int occurrence; 
int modulus; 
int minimum_dIgits; 

DESCRIPTION 

This function is called by field validation. It verifies that field_data contains the 
required minimum number of digits terminated by the proper check digit If not, it posts 
an error message before returning. It can also be used to check any character string or 
field. If field_data is null, the string to check is obtained from the field_num
ber and occurrence and an error message is displayed if the string is bad. If 
field_number is zero, no message is posted, but the function's return code indicates 
whether the string passed its check. 

A fuller description of sm_ckdigit is included with the source code, which is distrib
uted with JAM. 

Note that this function can be replaced by a user-installed check digit function which 
field validation will call instead. See the chapter on installing functions. 

RETURNS 

o If the field contents are available and valid. 
-1 If the field contents do not contain the minimum number of digits or the proper 

check digit 
-2 If field_data is a null pointer and the field or occurrence cannot be found. 

Page 206 JAM Release 5.03 20 Nov 92 



Chapter 13: FunctIon Reference 

cl all mdts -
clear all MDT bits 
: ....: ........ ') •••• : :-... :"S:: •• ~ •• : •• : .. : .. ~,:, :'; :" 

SYNOPSIS 

DESCRIPTION 

, , ...... ........ .. ..... .... .. ..... .. .. : ............ .. 

Clears the MDT (modified data tag) of every occurrence, both on screen and off, for 
every field on the current screen. 

JAM sets the MDT bit of an occurrence to indicate that it has been modified, either by 
keyboard entry or by a call to a function like sm-pu t fie Id, since the screen was first 
displayed (Le., after the screen entry function returns). 

RELATED FUNCTIONS 

EXAMPLE 
linclude ·smdefs.h n 

/* Clear MDT for all fields on the screen. Then write */ 
* data to the last field, and check that its MDT is */ 
* the first one set. */ 

int occurrence; 
int numflds; 

sm_cl_all_mdts(); 
numflds = sm_inquire (SC_NFLDS); 
sm-putfield (numflds, -Hello·); 
if (s~tst_all_mdts (&occurrence) != numflds) 

sm_err_reset ( 
·Something is rotten in the state of Denmark.-); 

JAM Release 5.03 20 Nov 92 Page 207 



JAM Programmer's GUide 

cl_unprot 
clear all unprotected fields 
•• :: ........ : .. :-...:. ~ :::: •• :".;: y. .:::. : ::.; ~ . ~ .. .. .. ... .. ... ~ : .... " .. ,,:" .. : .. ::: :"" :;, ... : .. .. .. :.:. :: ,,": .. 

SYNOPSIS 

DESCRIPTION 

Erases onscreen and off screen data from all fields that are not protected from clearing 
(CPROTECf). Date and time fields that take system values are re-initialized. Fields 
with the null edit are reset to their null indicator values. 

This function is normally bound to the CLEAR ALL key. 

RELATED FUNCTIONS 

sm_aprotect(field_nurnber, mask); 

EXAMPLE 
/* The following code clears all unprotected fields 

* and puts the cursor into the first one. */ 

s/1Lcl_unprot (); 
sm_home (); 

Page 208 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

clear_array 
clear all data in an array 
.. :" .. ~.... :::".... : .. ::''' .. ~~ '! ": .~.... ~: : : ~ : : ~ : : : ..,. ....: of : --:" .... "". ": :":".. : .... .. ....... 

SYNOPSIS 

int sm_lclear_array(field_number) 
int field_number; 

DESCRIPTION 

Both functions clear all data from the anay containing the field specified by field_num
ber. The value returned by sm_num_occurs is changed to zero. The array is cleared 
even if it is protected from clearing (CPROTECn. 

sm_clear_array also clears arrays synchronized with the specified array, except 
for synchronized arrays that are protected from clearing. 

sm_lclear_array only clears the specified array. 

RETURNS 

-1 if the field does not exist; 
o otherwise. 

VARIANTS 
sm_n_clear_array(field_name)j 
sm_n_lclear_array(field_name); 

RELATED FUNCTIONS 
sm_aprotect(field_number, mask); 
sm-protect(field_number)j 

EXAMPLE 
/* Clear the entire array of -names· and arrays 

* synchronized with ·names·. */ 
sm-n_clear_arrayCRnames·); 

/* Clear the ·totals· column of a screen, 
* without clearing arrays synchronized with -totals·, */ 

sm_n_lclear_arraYC-totals R ); 

JAM Release 5.03 20 Nov 92 Page 209 



JAM Programmer's GUide 

close window -
close current window 

...... :'" .. .IV ........ J'....... .. .... .. .... .. -: ......... ~ .............. .. ": :"" :'":"" :""":: : ":"" ~ : ,"::~ ~ "i- : : ). 

SYNOPSIS 

DESCRIPTION 

sm_close_window is used to close a window opened by sm_r_window (or vari
ant), sm_r_at_cur (or variant), or sm_mwindow. 

The currently open window is erased, and the screen is restored to the state before the 
window was opened. All data from the window being closed is lost unless LDB proces
sing is active, in which case named fields are copied to the LDB using sm_lstore. 
Since windows are stacked, the effect of closing a window is to return to the previous 
window. The cursor reappears at the position it had before the window was opened. 

When using the JAM Executive, use sm_jclose to close a form. sm_jclose calls 
sm_j form to pop the form stack and open the new top form on the stack. In the case 
of a window, sm_j close calls sm_close_window to close the window. 

RETURNS 

-1 if there is no window open, (i.e. if the currently displayed screen is a form 
or if no screen is displayed). 

o otherwise. 

RELATED FUNCTIONS 

sm_r_window(screen_name, start_line, start_column}; 
sffl-wselect(window_number}i 

EXAMPLE , 
linclude ·smdefs.h· 
linclude ·smkeys.h-

/* In a validation function, if the field contains a */ 
/* special value, open up a window to prompt for a */ 
/* second value and save it in another field. */ 

int validate (field, data, occur, bits) 
char *data; 
int field, occur, bits; 
{ 

Page 210 JAM Release 5.03 20 Nov 92 



} 

char buf[256]; 

if (bits & VALIDED) 
return 0; 

if (strcmp(data, -other-) == 0) 
{ 

} 

s~r_at_cur (-getsecval-); 
if (sm_input (IN_DATA) != EXIT) 

sm_getfield (buf, 1); 
else 

buf[O] = 0; 
sm_close_window (); 
sm_n-putfield (·secval-, buf); 

return 0; 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 211 



JAM Programmer's Guide 

copyarray 
copy the contents of one array to another 
:" ::.. :... :... ..";. ":.: : ,,:-- : •• : .. " ::.. •• ::. .. : : .... "::" ....... ·"l"· :::". : ......... : :" .::"~ .... ;.:... ":-..,,~. : :: .... :"::".:- ==" .~ ... ":~: ":" .::".: " .... ": ~~ : ...:-: :: 

SYNOPSIS 
int sm_copyarray(destination_fld, source_fld) 
int destination_fld; 
int source_fld; 

DESCRIPTION 

This routine copies the contents of the array containing source_fld into the anay 
containing destination_fld. source_fld and destination_fld are field 
numbers. They may be the field number of any of element in the respective array. 

The developer is responsible for insuring that the arrays are compatible. Data in source 
array occurrences that are too long for the destination array are truncated without warn
ing. Data in source array occurrences that are shorter than the destination array's field 
length are blank filled (with respect for justification). 

If the source anay has more occurrences than the destination array, the data in the extra 
occurrences are discarded. If the source array bas fewer occurrences than the destina
tion array, trailing occurrences in the destination array are cleared of data (but not de
allocated). 

copy array sets the MDT bit and clears the VALIDED bit for each destination anay 
occurrence, indicating that the occurrence bas been modified and requires validation. 

The variant, sm_n_copyarray, searcbes the LDB for either array if the named field 
is not found on the screen. However, if the destination LDB item bas a scope of 1, 
meaning that it is a constant, then it is not altered and the function returns -1. 

RETURNS 

-1 if either field is not found or if the destination array in the LDB bas a scope of 1. 
o otherwise. 

VARIANTS 
sm_n_copyarray(destination_name, source_name); 

RELATED FUNCTIONS 
sm_clear_array(field_number); 
sm_getfield(buffer, field_number); 
sID-putfield(field_number, data); 

Page 212 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

d_mS9_line 
display a message on the status line 

SYNOPSIS 
void sm_d_msg_line(message, display_attribute) 
char *message; 
int display_attribute; 

DESCRIPTION 

The message in message is displayed on the status line, with an initial display attrib
ute of display_attribute. If the cursor position display is turned on (see 
sm_c_vis), the end of the status line contains the cursor's current row and column. 
Messages displayed with sm_dJ[lsg_l ine override both backgrotmd and field status 
text. 

Messages posted with sm_dJ[lsg_l ine are displayed until the status line is cleared 
by sllLd_msg_l ine. They persist from screen to saeen until cleared. Clearing is ac
complished by passing sm_d_msg_line an empty sUing for message and a 0 for 
display_attribute (See the example). Once cleared, any currently overidden 
message resumes. The function sm_d_msg_line is itself overridden by 
sllLerr_reset and related functions, or by the ready/wait message enabled by 
sm_setstatus. 

Possible values for display_attribute aredefmed in smattrib.h, as shown in 
the table below: 

JAM Release 5.03 20 Nov 92 Page 213 



JAM Programmer's GUide 

Aurzbute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B WHITE 0700 

Foreground colors may be used alone or ored with one or more highlights, a back
ground mnemonic, and a background highlight If you do not specify a highlight or a 
background mnemonic, the attribute defaults to white against a black background. 
Omitting the foreground mnemonic causes the attribute to default to black. 

Several percent escapes provide control over the content and presentation of status mes
sages. The character following the percent sign must be in upper-case. Note that, if a 
message containing percent escapes is displayed before sm_ini tcrt is called, the per
cent escapes show up in the message. 

If a string of the form %Annnn appears anywhere in the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be applied to the remainder of the message. 

Page 214 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

The table gives the numeric values of the logical display attributes you need to construct 
embedded attributes. If you want a digit to appear immediately after the attribute change, 
pad the attribute to 4 digits with leading zeros. If the following character is not a legal 
hex digit, then leading zeros are unnecessary. 

If a string of the form %Kkeyname appears anywhere in the message, keyname is inter
preted as a logical key mnemonic, and the whole expression is replaced with the key label 
string dermed for that key in the key translation file. If there is no label, the %K is stripped 
out and the mnemonic remains. Key mnemonics are defined in smkeys. h; it is of 
course the name, not the number, that you want here. The mnemonic must be in upper
case. 

If the message begins with a %B, JAM beeps the terminal (using sm_bel) before issuing 
the message. 

RELATED FUNCTIONS 

sm_err_reset(message); 
sm~sg(column, disp_length, text); 
sm_mwindow(text, line, column); 

EXAMPLE 
/* The following prompt uses labels for the EXIT and 

* return keys, and underlines crucial words. */ 

sm_~sg_line (·Press %KEXIT to %A0027abort%A7, • 
·or %KNL to %A0027continue%A7.·); 

/* To clear the status line, use: */ 

JAM Release 5.03 20 Nov 92 Page 215 



JAM Programmer's GUide 

dblval 
get the value of a field as a real number 

SYNOPSIS 
double sm_dblval(fleld_number); 
int field_number; 

DESCRIPTION 

This function returns the contents of field_number as a real number. It calls 
sm_strip_amtJ>tr to remove superfluous amount editing characters before con
verting the data. 

RETURNS 

The real value of the field is returned. 
If the field is not found, the function rettD'ns o. 
VARIANTS 

sm_e_dblval(field_name, element); 
sm_i_dblval(field_name, occurrence); 
sm_n_dblval{field_name); 
sm_o_dblval(field_number, occurrence); 

RELATED FUNCTIONS 

sffi_dtofield{field_number, value, format); 
sffi_strip_amt-ptr{field_number, inbuf, ); 

EXAMPLE 
linclude ·smdefs.h· 

/* Retrieve the value of a starting parameter. */ 

double paraml; 

Page 216 JAM Release 5.03 20 Nov 92 



dd able -
turn LOB write-through on or off 

SYNOPSIS 
void sm_dd_able(flag) 
int flag; 

DESCRIPTION 

Chapter 13: Function Reference 

During normal JAM processing, named fields in the screen and local data block are 
kept in sync. When a screen is displayed (and after the screen entry function com
pletes), values are copied in from the LDB; when control passes from the screen (before 
the screen entry function is executed), values are copied back to the LDB. Normally, 
when application code reads or writes a value to or from a named fieldlLDB entry JAM 
treats the name as a field name unless no such field exists, in which case JAM treats the 
name as an LDB entry name. During screen entry and exit processing, this logic is re
versed in order to preserve the illusion that screen and LDB entries that share the same 
name also share the same data. 

sm_dd_able turns this feature olIif flag is "0" and on if it is "I". The feature is on 
by default. When it is off, the LDB is never accessed. 

EXAMPLE 
/* Turn LOB write-through off. */ 

slTLd<t-able (0); 

JAM Release 5.03 20 Nov 92 Page 217 



JAM Programmer's Guide 

deselect 
deselect a checklist occu rrence 
:.":::~.:: .t;::...~ ..... :.. ,,: .. ";." .. : :-r . .:::.. t :~.:=:~:':.. .. ~ :. ... ; .. .:..:: .... : .... ::::.-:.::...:::" .. ::. ; "" .. ..:...:: .:...::..v.. ",,::-:--.:.. -:.:; : .. :" ....... : .. ~ ..... ~:: :-: -: .. ".:: ....... ~ ~ 

SYNOPSIS 
int sm_deselect(group_name, group_occurrence) 
char *group_narne; 
int group_occurrence; 

DESCRIPTION 

This function allows you to deselect a specific occurrence within a checldist. The group 
name and occurrence number is used to reference the desired selection. See the Au
thor's Guide for a more detailed discussion of groups. 

Use sm_select to select a group occurrence and sm_isselected to check wheth
er or not a particular group occurrence is currently selected. 

NOTE: You can not deselect a radio button occurrence. Using sm_se lect on a radio 
button occurrence automatically deselects the current selection. 

RETURNS 

-1 arguments do not reference a checldist occurrence. 
o occurrence not previously selected 
1 occurrence previously selected. 

RELATED FUNCTIONS 
srn_isselected(group_narne, group_occurrence); 
srn_select(group_narne, group_occurrence); 

Page 218 JAM Release 5.03 20 Nov 92 



dicname 
set data dictionary name 

SYNOPSIS 
int srn_dicnarne(dic_narne) 
char *dic_narnei 

DESCRIPTION 

Chapter 13: Function Reference 

This function names the application's data diction3IY, which is data.die by default It 
must be called before JAM initialization, in particular before sm_ldb_ini t is called 
to initialize the local data block from the data dictionary. The argument die_name is 
a character string giving the file name; JAM searches for it in all the directories in the 
SMPATH variable. 

You can achieve the same effect by defining the SMDICNAME variable in your setup file 
equal to the data dictionary name. See the section on setup flies in the Configuration 
Guide. 

Use the function sm-pinquire to fmd the name of the data dictionary in use. 

RETURNS 

-1 if it fails to allocate memory to store the name, 
o otherwise. 

RELATED FUNCTIONS 

srn-pinquire(which); 

EXAMPLE 
linclude ·smdefs.h· 

/* Set the name of the application's data 
* dictionary to /usr/app/cornmon.dic .*/ 

JAM Release 5.03 20 Nov 92 Page 219 



JAM Programmer's Guide 

disp_off 
get displacement of cursor from start of field 

SYNOPSIS 

DESCRIPTION 

Returns the difference between the fust column of the current field and the current cur
sor location. This function ignores off screen data; use sm_sh_off to obtain the total 
cursor offset of a shiftable field. 

RETURNS 

The difference between cursor position and start of field, or 
-1 if the cursor is not in a field. 

RELATED FUNCTIONS 

sID_getcurno()j 
sID_sh_off()j 

Page 220 JAM Release 5.03 20 Nov 92 

\ 



Chapter 13: Function Reference 

dlength 
get the length of a field's contents 

SYNOPSIS 
int sm_dlength(field_number) 
int field_number; 

DESCRIPTION 

Returns the length of data stored in fie ld_number. The length does not include lead
ing blanks in right justified fields, or trailing blanks in left-justified fields (which are 
also ignored by sm_getfield). It does include data that have been shifted offscreen. 

RETURNS 

Length of field contents, or 
-1 if the field is not found. 

VARIANTS 
sm_e_dlength(field_name, element); 
sm_i_dlength(field_name, occurrence)i 
sm-n_dlength(field_name)i 
sm_o_dlength(field_number, occurrence); 

RELATED FUNCTIONS 

EXAMPLE 
#include -smdefs.h-

/* Save the contents of the -rank- field in a buffer 
* of the proper size. */ 

char *save_rank; 

if ((save_rank = malloc (sffl-n_dlength (-rank-) + 1)) -- 0) 
{ 

report_error (-malloe error.-); 
} 

else 
{ 

} 

JAM Release 5.03 20 Nov 92 Page 221 



JAM Programmer's GUide 

do_region 
rewrite part or all of a screen line 

.. " : .. .. : .. . . .. ...... : '". '" ..... 

SYNOPSIS 
void sm_do_regicn(line, column, length, display_attribute, text) 
int line; 
int column; 
int length; 
int display_attribute; 
char *text; 

DESCRIPTION 

The screen region defined by line, column, and length is rewritten. Line and 
co 1 umn are counted from zero, with (0, 0) the upper left-hand corner of the screen. 

If text is zero, the screen region is redrawn with whatever display_attribute 
has been assigned. If text is shorter than length, it is padded out with blanks. In 
either case, the display attribute of the whole area is changed to display_attrib
ute. 

Possible values for display_attribute are defined in smattrib.h, as shown in 
the table below: 

Anribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

Page 222 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B WHITE 0700 

Foreground colors may be used alone or ored with one or more highlights, a back
ground mnemonic, and a backgrOlmd highlight If you do not specify a highlight or a 
background mnemonic, the attribute defaults to white against a black background. 
Omitting the foreground mnemonic causes the attribute to default to black. 

The fifth argument, if passed as zero, must be cast, as in: 

sm_do_region (line, col, length, attrib, (char *)0); 

EXAMPLE 
.include ·srndefs.h· 
.include ·srnvideo.h-

/* Place a centered text string in a part of the 
* screen where there is (hopefully) no field. 
* The line number is made zero-relative. */ 

void centerstring (text, line) 
char *text; 
int line; 
{ 

} 

int offset, length = strlen (text); 

offset = (*sffiLvideo[V_COLMS] - length) / 2; 
if (offset < 0) 

return; 
sm_do_region (line - 1, offset, length, 

REVERSE I WHITE, text); 

JAM Release 5.03 20 Nov 92 Page 223 



JAM Programmer's Guide 

do uinstalls -
install an application's hook functions 

:.: :~:- : ..... :....: •• : .. : ....... : -• .:..:: :.~:..:" .. .:: .:.: ::. ..... : •• ": -: .... ..... -"" :::..... .. ..... : A" : .... :. .:":." •• .: .. ~..:"::: ;" ....... X -"A: ::. -: •• " .... : 

SYNOPSIS 

DESCRIPTION 

Hook functions are installed with the library routine sm_install. Most developers 
find it expedient to add their installation code to the function sm_do_uinstalls 
provided in source form in the fIle funclist. c. In some cases, developers may want 
to calI sm_install from other points in their applications. 

sm_do_uinstalls () is generally called by the main routine. The provided source 
code calIs the library function sm_install to install dummy function lists. Develop
ers should replace these dummy calls with their own installation calls. 

Note that the installation code for the initialization hook function may not be placed in 
sm_do_uinstalls. The initialization function is called from the library routine 
sm_ini tcrt. When it is called, JAM has not yet allocated its required memory sttuc
tures, and the physical display characteristics are still untouched by JAM. In general, 
it is suggested that hook functions be installed after initialization with sm_ini tcrt 
(it is required in some cases), but clearly this is an exception. The initialization function 
must be installed before sm_initcrt is called. Since sm_do_uinstalls is called 
after sm_ini tcrt, the installation code for the initialization hook function must be 
called outside of sm_do_uinstalls. 

RELATED FUNCTIONS 
srn_install(usage, what_funes, howmanY)i 

Page 224 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

doccur 
delete occu rrences 
..... :.. :.: .. ::" ~ ... ;: ... :. .. .... :..... . .. ~.:.:.. .. .. "'...... : .. :. ". : ::. .. .. : .. .... .:.:.. .. '" ... 

SYNOPSIS 
Int sm_o_doccur(field_number, occurrence, count) 
int field_number; 
int occurrence; 
int count; 

DESCRIPTION 

.. ... . .. .. .... .... .. .... 

NOTE: This function only exists in the 0_ and i_ variations. There is NO sm_doc
cur since this function only applies to arrays. 

This function deletes the data in count occurrences beginning with the specified oc
currence. If the array is scrollable, then it deallocates count occurrences. The data 
in occurrences following the last deleted OCClDTence are moved up in the array so that 
there are no gaps. Fewer than count occurrences are deleted if the number of remain
ing allocated occurrences, starting with the referenced occurrence, is less than count. 

If count is negative, occtDTences are inserted instead, subject to limitations explained 
at sm_ioccur. The function sm_ioccur is normally used to add blank occurrences. 

If occurrence is zero, the occurrence used is that of field_number. If occur
rence is nonzero, however, it is taken relative to the first field of the array in which 
field_number occurs. 

Any clearing-unprotected synchronized arrays have the same operations performed on 
them as the referenced array. 

This function is normally bound to the DELETE LINE key. 

RETURNS 

-1 if the field or occurrence number was out of range; 
-3 if insufficient memory was available; 
otherwise, the number of occurrences actually deleted (zero or more). 

VARIANTS 

sm_i_doccur(field_name, occurrence, count); 

JAM Release 5.03 20 Nov 92 Page 225 



JAM Programmer's GUide 

dtofield 
write a real number to a field 

SYNOPSIS 
Int sm_dtofleld(fleld_number, value, format) 
Int fIeld_number; 
double value; 
chdr * format; 

DESCRIPTION 
The real number value is converted to human-readable fonn, accordmg to format, 
and moved into field_number via a call to sm_amt_format. If the format 
string is empty, the number of decimal places is taken from a data type edit, if one ex
ISts; failmg that, from a currency edit, if one exists; or faihng that, defaults to 2. 

The number of decimal places may be forced to be an arbitrary number n, via roundmg, 
by using the fonnat string %. nf". The format string %t . nf" may be used to truncate 
instead of to round. 

RETURNS 
-1 if the field is not found. 
-2 if the destination field bas a currency edit but the fonnatted output is too wide for it 
o otherwise. 

VARIANTS 
sm_e_dtofield(field_name, element, value, format); 
sm_i_dtofield(field_name, occurrence, value, format); 
sm_n_dtofleld(field_name, value, format); 
sm_o_dtofleld(field_number, occurrence, value, format); 

RELATED FUNCTIONS 
sm_amt_format(field_number, buffer); 
sffi_dblval(field_number); 

EXAMPLE 
/* Place the value of pi on the screen, using the 

* formatting attached to the field. */ 

sm_n_dtofleld ("pi", 3.14159, (char *)0); 

/* Do lt agaln, using only three decimal places. 

Page 226 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

e -
variants that take a field name and element number 
~.A:::;'" ::..~ ... : ....c).::::.;.~ ... :~.~ :.: ::':. ".:":: Y":-:" .:;".: :: •• ".: •• :''':' .~ •• :~.:..: ;." :~ •• ~ "": .... ;'==:;c: :..... .. :. ...... ~ ...... ": .:: ::.:~. ":: ... :: .. : ::.: .. ...c.:: 

SYNOPSIS 
sm_e_ ... (field_name, element, ... ) 
char *field_narne; 
int element; 

DESCRIPTION 

The e_ variant functions access one element of an array by field name and element 
number. For a description of any particular function, look under the related function 
without e_ in its name. For example, sm_e_amt_format is described under 
sm_amt_format. 

Despite the fact that they take a field name as argmnent, these functions do not search 
the LDB for names not found in the screen because an element number is ambiguous 
when referring to the LDB. 

JAM Release 5.03 20 Nov 92 Page 227 



JAM Programmer's GUide 

edit_ptr 
get special edit string 

SYNOPSIS 
char *sm_edit-ptr(field_number, edit_type) 
Int field_number; 
int edit_type; 

DESCRIPTION 

This function searches the special edits area of a field or group for an edit of type 
edi t_type. The edi t_type should be one of the following values, which are de
fined in srnedi ts . h: 

Ed" type Contents of edit string 

NAMED Field name 

CPROG Name of field validation function 

FE_CPROG Name of field entry function 

FX_CPROG Name of field exit function 

HELPSCR Name of help screen 

HARDHLP Name of automatic belp screen 

HARDITM Name of automatic item selection screen 

ITEMSCR Name of item selection screen 

SUBMENU Name of pull-down menu screen 

TABLOOK Name of screen for table-lookup validation 

NEXTFLD Next field (contains both primary and alternate fields) 

PREVFLD Previous field (contains both prunary and alternate fields) 

TEXT Status line prompt 

Page 228 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Edit type Contents of edIt string 

MEM01 ••• Nine arbitrary user-supplied text strings 

MEMO 9 

JPLTEXT Attached JPL code 

CALC Math expression executed at field exit 

CKDIGIT Flag and parameters for check digit 

FTYPE Data type for inclusion in structure 

RETCODE Return value for menu or return entry field 

CMASK Regular expression for field validation 

CCMASK Regular expression for character validation 

CKBOX Offset and attribute of checkbox in a group 

ALTSC_CPROG Name of alternate scrolling function 

SDATETlME Date/time field with user format, initialized with system values. 

UDATETlME Date/time field with user format, initialized by the user. 

CURRED Currency field format, see smedi t s . h for details. 

NULLFIELD Null field representation. 

RANGEL Low bound on range; up to 9 permitted 

RANGEH High bound on range; up to 9 permitted 

EDT_BITS Normally for internal use (see smedi t s . h for more informa-
tion.) 

The string returned by sIlLedi t....,ptr contains: 

• The total length of the string (including the two overhead bytes and 
any terminators) in its fIrSt byte. 

• The ediCtype code in its second byte. 

JAM Release 5.03 20 Nov 92 Page 229 



JAM Programmer's GUide 

• The body of the edit in the subsequent bytes. Refer to the source listing 
for the file smedi ts . h for specific informauon on how to interpret 
each individual edit. 

If the field has no edit of type edi t_type, this funcuon returns a null pointer. If a 
field has multiple edits of one type, such as RANGEH or RANGEL, then each addition
al edIt is added onto the end of the string following the same pattern as the rust one. For 
example, the rust byte would contain the length of the string up to the end of the body 
of the edit of RANGEH. Adding one to this number would give you the byte that con
tains the length of the string containing information on RANGEL and so forth. 

This function is especially useful for retrieving user-defined information contained in 
MEMO edits. 

In the case of groups, the edits PREVFLD, NEXTFLD, CPROG, FE_CPROG, and 
FE_CPROG may be used to obtain group information. For the CKBOX edit type, use the 
sm_n_edi t-ptr variant with the group name instead of the field name. 

Further information on using the sm_edit-ptr routine can be found in the file 
smedi ts. h, nonnally found in the "include" directory. 

RETURNS 

A pointer to the rust (length) byte of the special edit of the field. 
o if the field or edit is not found. 

VARIANTS 

EXAMPLE 
linclude ·smdefs.h* 
I~nclude ·smedits.h· 

/* Retrieve the contents of the first MEMO edit */ 
* of a field named -cost- */ 

char *memol; 

if ((memol = sm_n_edit-Ptr (-cost-, MEMOl)) -- 0) 
{ 

} 

/* move past the length byte to the body of the edit */ 
else 
{ 

memol = memol +2; 
} 

Page 230 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

emsg 
display an error message and reset the status line with
out turning on the cursor 

.. :- •••• ~ .:.- ".:.:.":: :.:.. •• :...:: ................ ".: ... j.. • ........ .r. :.. .. 

SYNOPSIS 
VOId srn_ernsg(rnessage) 
char *rnessagej 

DESCRIPTION 

.. .. ~ " .... ;: : .. : ...... " .... : .. ". -:.: ... : : .. :'". 

This function displays message on the status line, if it fits, or in a window if it is too 
long. If the cursor position display has been turned on (see sm_c_ vis), the end of the 
status line contains the cursor's current row and column. If the message text would 
overlap that area of the status line, it is displayed in a window instead. The message 
remains visible until the operator presses a key. The function's exact behavior in dis
missing the message is subject to the error message options; see sm_opt ion. 

sm_emsg is identical to sm_err_reset, except that it does not attempt to tum the 
cursor on before displaying the message. It is similar to sm_qui_msg, which inserts a 
constant string (normally "ERROR:") before the message. 

Several percent escapes provide control over the content and presentation of status mes
sages. The character following the percent sign must be in upper--case. Note that, if a 
message containing percent escapes is displayed before sm_ini tcrt is called, the per
cent escapes show up in the message. 

If a string of the form %Annnn appears anywhere in the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be applied to the remainder of the message. 
The table gives the numeric values of the logical display attributes you need to construct 
embedded attributes. If you want a digit to appear immediately after the attribute change, 
pad the attribute to 4 digits with leading zeros. If the following character is not a legal 
hex digit, then leading zeros are unnecessary. 

If a string of the form %Kkeyname appears anywhere in the message, keyname is inter
preted as a logical key mnemonic, and the whole expression is replaced with the key label 
string dermed for that key in the key translation file. If there is no label, the %K is stripped 
out and the mnemonic remains. Key mnemonics are defined in smkeys. h; it is of 
course the name, not the number, that you want here. The mnemonic must be in upper
case. 

If the message begins with a %B, JAM beeps the terminal (using sm_bel) before issuing 
the message. 

JAM Release 5.03 20 Nov 92 Page 231 



JAM Programmer's GUide 

If %N appears anywbere in the message, the latter is presented in a pop-up window rather 
than on the status line, and all occurrences of %N are replaced by new lines. 

If the message begins with %W, it is presented in a pop-up window lDstead of on the status 
line. The window appears near the bottom center of the screen, unless it would obscure 
the current field by so doing; in that case, it appears near the top. 

If the message begins with %Mu or %Md, JAM ignores the default error message acknowl
edgement flag and processes (for %Mu) or discards (for %Md) the next character typed. 

Possible hex values for display attribute are defined in smattrib. h, as shown in the 
table below: 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (alternate character set) 2000 

Page 232 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B WHITE 0700 

Foreground colors may be used alone or ored with one or more highlights, a back
ground mnemonic, and a backgrOlmd highlight If you do not specify a highlight or a 
background mnemonic, the attribute defaults to white against a black background. 
Omitting the foreground mnemonic causes the attribute to default to black. 

RELATED FUNCTIONS 

srn_err_reset(rnessage)j 
srn_qui_rnsg(rnessage)j 
srn_quiet_err(rnessage)j 

EXAMPLE 
linclude -smdefs.h-

sm_emsg(-%MdProcessing complete. Press • 
-'A0017any%A7 key to continue. W

); 

JAM Release 5.03 20 Nov 92 Page 233 



JAM Programmer's GUide 

err reset 
display an error message and reset the status line 

SYNOPSIS 
void sm_err_reset(message) 
char *messagej 

DESCRIPTION 

The message is displayed on the status line until acknowledged it by pressing a key. 
If message is too long to fit on the status line, it is displayed in a window instead. If 
the cursor position display bas been turned on (see sm_c_vis), the end of the status 
line contains the cursor's current row and column. If the message text would overlap 
that area of the status line, it is displayed in a window instead. The exact bebavior of 
error message acknowledgement is governed by sm_opt ion. The initial message at
tribute is set by sm_opt ion, and defaults to blinking. 

This function turns the cursor on before displaying the message, and forces off the glob
al flag sm_do_not_display. It is similar to sm_emsg, wbich does not tum on the 
cursor, and to sm_quiet_err, whicb inserts a constant string (normally "ERROR:") 
before the message. 

Several percent escapes provide control over the content and presentation of status 
messages. See sm_emsg for details. 

RELATED FUNCTIONS 
sm_emsg(message)j 
sm_qui_msg(message)j 
sm_quiet_err(message)j 

EXAMPLE 
linclude ·smdefs.h-

/* Let somebody know that his name isn't in the database. */ 

int validate (field, name, occur, bits) 
char *name; 
{ 

char buf[128]; 

if (getrec (name) == 0) 
{ 

sprintf (buf, ·%%B%s is not in the\ 

Page 234 JAM Release 5.03 20 Nov 92 



} 

} 

database.-, name); 
sm_err_reset (buf); 
return -1; 

return 0; 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 235 



JAM Programmer's Guide 

fi_open 
find a file and open it in binary read only mode 

SYNOPSIS 
FILE *srn_fi_open(file_narne) 
char *file_narnei 

DESCRIPTION 

Use this function to open a m.e in binary read only mode. The me may be a screen flle 
or any other kind of ftle. 

The file name is flfSt sought in the current directory. If that fails, the path given to 
sm_ini tcrt is checked. Finally the path defmed by SMPATH is searched. 

If the full path name of a file is longer than 80 characters, then the file is skipped. 

RETURNS 
o if the file cannot be found in any path. 
Else, the file pointer to the open ftle slream. 

RELATED FUNCTIONS 

Page 236 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

fi_path 
retu rn the fu II path name of a file 
.~:.:...:. :...t.: .. : .. ": •• ; : ... ; . ...c ~ •• :.: .... :::.: •• "". ...... .~ ::...:.. .. ::: : " .. ": :....... ....... ",,: •• :... "" .... ::.: .... : :. :;. .~:.. ", •. ,," .. .. ....... ...... .. 

SYNOPSIS 
char *sm_fi-path(file_name) 
char *flle_namei 

DESCRIPTION 
Use this function to find the full path name of a file. The file may be a screen or any 
other type of file. A pointer to a static buffer containing the file's full path name is re
turned. 

The file name is fll'St sought in the current directory. If that fails, the path given to 
sm_ini tcrt is checked Finally the path defmed by SMPATH is searched. 

If the file is found, the full path name is returned to the caller. Since the static buffer 
used to hold the full path name is shared by several functions, it should be used or co
pied quickly. 

RETURNS 
o if the ftle cannot be found in any path. 
Else, a pointer to a static buffer containing the path. 

RELATED FUNCTIONS 

JAM Release 5.03 20 Nov 92 Page 237 



JAM Programmer's GUide 

finquire 
obtain information about a field 

.. .. .. .. .. 
.... .. . ......... .. ... - .... .. .. .. ........ -..... " ........ .. 

SYNOPSIS 

#include Usmglobs.hU 

int sm_finquire(field_number, WhlCh) 
int field_number; 
int which; 

DESCRIPTION 

Use this function to obtain various information about a field. The variable which is a 
mnemonic that specifies the particular piece of information desired. 

Mnemonics for which are dermed in the file smglobs . h. The following values are 
available: 

Mnemonic Meaning 

FD_LlNE Line that field is on (zero based). 

FD_COLM Column of field's first position (zero based). 

FD_ATTR Field attributes (see smat trib. h). 

FD_LENG Onscreen field length. 

FD_ASIZE Onscreen array size (1 if scalar). 

FD_ELT Onscreen element number. 

FD_SHLENG Shiftable length. 

FD_SHINCR Shift increment. 

FD_SHOFS Current shift offset (number of positions field bas been shifted; 
o if shifted to left edge). 

FD_SCINCR Scrolling increment (for Next/Prev page keys). 

FD SCFLAG Scrolling array circular? (TIF). 

Page 238 JAM Release 5.03 20 Nov 92 



Chapter 13' Function Reference 

Mnemonic Meaning 

FD_SCATTR Scrolling occurrence display attributes set with sm_i_achg; 
zero if on screen element attributes are to be used. For 
sm_i_finquire and sm_o_finquire variants only. 

FD FELT First on screen occurrence of scrolling array (1 if scrolled to top). 

RETURNS 
The value of whi ch if found. 
-1 if the field is not found or whi ch is out of range. 
o otherwise. 

VARIANTS 
srn_e_finquire(field_narne, element, which); 
srn_i_finquire(field_name, occurrence, which); 
srn_n_finquire(field_name, which); 
srn_o_finquire(field_nurnber, occurrence, which); 

RELATED FUNCTIONS 
srn_gp_inquire(group_name, which); 
srn_inquire(which); 
srn_iset(which, newval); 
srn-pinquire(which); 
srn-pset(which, newval); 

EXAMPLE 
#include <smglobs.h> 

void 
toggle-plink(fiel~number) 
int field_number; 
( 

) 

int attr; 
attr = sm_finquire(field_number,FD_ATTR); 
attr A= BLINK; 
sm_chg_attr(fiel~number,attr); 

JAM Release 5.03 20 Nov 92 Page 239 



JAM Programmer's GUide 

fldno 
get the field number of an array element or occu rrence 
.. ..- .. .. .. ...... .... ..... .. .. .. 

SYNOPSIS 
int sm_n_fldno(fleld_name) 
char * field_name; 

DESCRIPTION 

.: .. ... '" .... ....... '" .. : .... 

NOTE: This function only exists in the e_, i_, n_, and 0_ variations. There is NO 
sm_fldno since this function determines the field number given other information. 

The e_ variant returns the field number of an array element specified by f ielc:Lname 
and element. If element is zero, then sm_e_fldno returns the field number of the 
named field, or the base element of the named array. 

The i_ and 0_ variants return the number of the field containing the specified occur
rence if the occurrence is onscreen, or 0 if the occurrence is offscreen. 

The n_ variant returns the field number of a field specified by name, or the base field 
number of an array specified by name. 

RETURNS 

o if the name is not found, if the element number exceeds 1 and the named field 
is not an array, or if the occurrence is offscreen. 

Otherwise, returns an integer between 1 and the maximum number of fields on the 
current screen that represents the field number. 

VARIANTS 

sm_e_fldno(field_narne, element); 
sm_i_fldno(field_name, occurrence); 
sm_o_fldno(field_nurnber, occurrence); 

EXAMPLE 
#include ·smdefs.h· 

/* Example #1 */ 

/* Retrieve the field numbers of the first three */ 
/* elements of the -horses· array. */ 

int winnum, placenum, shownumi 

Page 240 JAM Release 5.03 20 Nov 92 



winnum = sm_e_fldno ('horses', 1); 
placenum = sm_e_fldno ('horses', 2); 
shownum = sm_e_fldno ('horses', 3); 

/* Example #2 */ 

Chapter 13: Function Reference 

/* Write a list of real numbers, stored as character strings, 
to the screen. The first and last fields in the list are tagged 
with special names.*/ 

int fld, first, last; 
extern char *values[]; /* defined elsewhere */ 

last = sm_n_fldno ('last·); 
first = sm_n_fldno ('first'); 
for (fld = first; fld <= last; ++fld) 
{ 

sm_amt_format (fld, values[fld - first]); 
} 

JAM Release 5.03 20 Nov 92 Page 241 



JAM Programmer's GUide 

flush 
flush delayed writes to the display 

: -=.~ .:..: .. :~: : .... : :":"" .. ..:. ..... : ":..: ::: ~ .. " .. ":: ... .. .. : .. :" ": .. : .. " ::" .. :::.. . ... 

SYNOPSIS 
void srn_flush()j 

DESCRIPTION 

This function performs delayed writes and flushes all buffered output to the display. It 
is called automatically via sm_inpu t whenever the keyboard is opened and there are 
no keystrokes available, i. e. typed ahead. 

Calling this routine indiscriminately can significantly slow execution. As it is called 
whenever the keyboard is opened, the display is always guaranteed to be in sync before 
data entry occurs; however, if you want timed output or other non-interactive display, 
use of this routine is necessary. 

RELATED FUNCTIONS 
sm_flush()j 
srn_rescreen()j 

EXAMPLE 
linclude ·smdefs.h-

/* Update a system time field once per second, 
* until a key is pressed. */ 

while (!sm_keyhit (10)) 
{ 

} 

s~n-putfield (-time_now·, ._); 
s~flush (); 

/* ••• process the key */ 

Page 242 JAM Release 5.03 20 Nov 92 



Chapter 13. Function Reference 

form 
display a screen as a form 
oI'''"C..-:- .~-=:::-~ ~ .~ :::~ "-:- ~. ":": .... :-::... ;, :.::::: '!" -:: -: .. :: • .:~-:-:.: ::. ...a...: .... : ... :..: :: .. : : :"":.. : .. .1'." ..... .... .. .. .. . ......... .. .... : .................. .. 

SYNOPSIS 
int sm_r_form(screen_name) 
char * screen_name ; 

int sm_~form(screen_address) 
char *screen_addressi 

int sm_l_form(lib_desc, screen_name) 
int lib_desci 
char * screen_name ; 

DESCRIPTION 

This set of f1Dlctions is primarily intended to be used by developers who are writing 
their own executive. These functions do not update the form stack, so it is generally not 
a good idea to use them with the JAM Executive. To open a form while under the con
trol of the JAM Executive, use a JAM control string or sm_j form. 

These functions display the named screen as a base form. Bringing up a screen as a 
form with sIlLd_form, sm_l_form, sm_r_form causes the previously displayed 
form and windows to be discarded, and their memory freed. The new screen is dis
played with its upper left-hand corner at the upper left of the display (position (0, 0». 

If an error occurs a retwn of -lor -2 means that the previously displayed form is still 
displayed and may be used. Other negative return codes indicate that the display is un
defined. The caller should display another form before using Screen Manager func
tions. 

When you use sIlLr_form the named screen is sought fust in the memory-resident 
screen list, and if found there is displayed using sm_~form. It is next sought in all the 
open screen libraries, and if found is displayed using sm_l_f orm. Next it is sought on 
disk in the current directory; then 1Dlder the path supplied to sm_initcrt; then in all 
the paths in the setup variable SMPATH. If any path exceeds 80 characters, it is skipped. 
If the entire search fails, this function displays an error message and returns. 

You may save processing time by using sm_d_form to display screens that are 
memory-resident Use bin2c to convert screens from disk files, which you can 
modify using jxform, to program data structures you can compile into your applica
tion. A memory-resident screen is never altered at run-time, and may therefore be 
made shareable on systems that provide for sharing read-only data. sm_r_form can 

JAM Release 5.03 20 Nov 92 Page 243 



JAM Programmer's GUide 

also display memory-resident screens, if they are properly installed using sm_f or
ml is t. Memory-resident screens are particularly useful in applications that have a 
limited number of screens, or in environments that have a slow disk (e.g. MS-DOS). 
screen_address is the address of the screen in memory. 

You may also save processing time by using sm_l_form to display screens that are in 
a library. A library is a single me containing many screens (and/or JPL modules and 
keysets). You can assemble one from individual screen flIes using the utility formlib. 
Libraries provide a convenient way of distributing a large number of screens with an 
application, and can improve efficiency by cutting down on the number of paths 
searched. 
The lIbrary descriptor, Iib_desc, is an integer returned by sm_l_open, which you 
must call before trying to read any screens from a library. Note that sm_r_form also 
searches any open libraries. 
To display a window use sm_r_at_cur, sm_r_window, or one of their variants. 

RETURNS 
o if no error occurred 
-1 if the screen file's format is incorrect; previous form still displayed and available 
-2 if the screen cannot be found or the maximum allowable number of files is 

already open; previous form still displayed and available 
-4 if, after the screen bas been cleared, the screen cannot be successfully 

displayed because of a read error; 
-S if, after the screen was cleared, the system ran out of memory; 

RELATED FUNCTIONS 
sm_r_window(screen_name, start_line, start_column); 
sm_r_at_cur(screen_name); 

EXAMPLE 
#include ·smdefs.h
#include <setjrnp.h> 

/* If an abort condition exists, read in a special 
* form to handle that condition, discard~ng all 
* open windows. */ 

if (sm_isabort (ABT_OFF) > 0) 
{ 

} 

sm_r_forrn (-badstuff-); 
if (sm_query_rnsg (-Do you want to continue?-) -- 'y') 

longjmp (re_init); 
else sm_cancel (); 

Page 244 JAM Release 5.03 20 Nov 92 



formlist 
update list of memory-resident files 

SYNOPSIS 
Int sm_formlist(ptr_to_form_llst) 
struct forrnlist *ptr_to_forrn_listi 

DESCRIPTION 

Chapter 13 Function Reference 

This function adds JPL modules, keysets, and screens to the memory resident fonn list. 
Each member of the list is a slructure giving the name of the JPL module, screen, or 
keysel, as a character string, and its address in memory. This function is commonly 
called from main. It can be called any number of times from an application program to 
augment to the memory resident list. 

The library functions sm_r_form, sm_r_wl.ndow, sm_r_at_cur, and 
sm_r_keyset all take a screen or keyset Ilame as a parameter and search for it in the 
memory-resident list before attempting to read the screen or keyset from disk. The j p 1 
command (see the JPL Guide) and the function sm_j plcall search the memory resi
dent form list when looking for a JPL procedure to execute. 

Since no count is given with the list, care must be taken to end the list with a null entry. 

To make a JPL module, key set, or screen memory resident, you can use the bin2c 
utility to create a static C slructure initialized with the binary content of the object You 
must then compile and link the slructure with the application executable. Alternatively, 
you can read the object into memory after opening it with the function sm_f i_open. 

RETURNS 

-1 if insufficient memory is available for the new list; 
o otherwise. 

RELATED FUNCTIONS 

srn_rrnforrnlist () i 

EXAMPLE 
8include ·smdefs.h R 

/* Following code adds 2 screens to the memory-resident form list. */ 

struct form_list new_list[] = 

JAM Release 5.03 20 Nov 92 Page 245 



JAM Programmers Guide 

{ 

} ; 

{ "new_form!" , 
{ "new_form2" , 
{O, O} 

Page 246 

new_form!} , 
new_form2} , 

JAM Release 5.03 20 Nov 92 



fptr 
get the content of a field 

.... " .. " •• : ....... .:'A" ........ .:..... .... • ... ~ •• - -.-: •• : •• : ...... ..c ...... ....c. : .......... :': ........ : '". .. .. ..: 

SYNOPSIS 
char *sm_fptr(field_number) 
int fleld_number; 

DESCRIPTION 

Chapter 13. Function Reference 

This routine returns the contents of the field specified by field_number. Leading 
blanks in right-justified fields and trailing blanks in left-justified fields are stripped. 

This function shares with several others a pool of buffers where it stores returned data. 
The value returned by any of them should therefore be processed quickly or copied. 
sm_g e t fie 1 d is not subject to this restriction. 

RETURNS 
The field contents, or 
o if the field cannot be found. 

VARIANTS 
sm_e_fptr(field_name, element); 
sm_i_fptr(field_name, occurrence); 
sm_n_fptr(field_name); 
sm_o_fptr(field_number, occurrence}; 

RELATED FUNCTIONS 
sm_getfield(buffer, field_number); 
sm-putfield(field_number, data); 

EXAMPLE 
linclude ·smdefs.h· 

/* This function reports the contents of a field. */ 

void report (fieldname) 
char *fieldname; 
{ 

} 

char buf[256], *stuf; 
If ((stuf = sm_n_fptr (fieldname) == 0) 

return; 

sprintf (buf, -Field '%s' contalns '%s'·, 
fieldname, stuf); 

sm_emsg (buf); 

JAM Release 5.03 20 Nov 92 Page 247 



JAM Programmer's GUide 

ftog 
convert field references to group references 
..: .... :. : ..... ~ .. ~.:. "" •••• : : ........ : .~. : ",," .......... )0. .... :.~:.. .:" ~ .. :.-. •• :. • •• : .. " :.. • ••• : ..... :.... .:.:.::.:" ; .. ".: ••• : .... : :- ... : .:: .. :. :: ~ : ••• 

SYNOPSIS 
char *sm_ftog(field_number, group_occurrence) 
int field_number; 
int *group_occurrence; 

DESCRIPTION 

This function converts field references to group references. Use sm_i_gtof to con
vert them back. 

This function ret1B1lS the name of the group containing the referenced field and inserts 
its group occurrence number into the address of occurrence. 

WARNING: This function returns a pointer to internal data. It remains valid only for 
the duration of the current screen. Do not change the pointer. While the results are un
predictable, it is safe to say they tend towards the dramatic. 

RETURNS 

A pointer to the group name if found and indirectly througb group_occurrence the 
group occurrence number. 

o otherwise and group_occurrence is uncbanged. 

VARIANTS 

sm_e_ftog(field_name, element, group_occurrence); 
sm_i_ftog(field_name, occurrence, group_occurrence); 
sm_n_ftog(field_name, group_occurrence); 
sm_o_ftog(field_number, occurrence, group_occurrence); 

RELATED FUNCTIONS 

sm_i_gtof(group_name, group_occurrence, occurrence); 

Page 248 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

ftype 
get the data type and precision of a field 
:. ::.: ... : "A •• : ..... ~.. .. "": -:- :'":. : : : • ...: ... : .. " .. :: ••• ..:.-:.: .. JIo: ... := .. ...::.:. : ... : ..... ..:.::: •• ~::.: :: """ ::... :" ••• :":.;.: ....... ::: .... :.:... .~ .. ": .. : .:.:~ •• :" 

SYNOPSIS 
int sm_ftype(field_number, precision-ptr) 
int field_number; 
int *precision-ptr; 

DESCRIPTION 
This function analyzes the edits of a field or LDB entry, and returns data type informa
tion. First the "type" (FTYPE) edit is checked, then the "currency" edit, the "date/time" 
edit, and finally the "character" edit 

Note that this differs from the functionality of sm_rdstruct, sm_wrtstruct, 
sm_rrecord, and sm_wrecord. These functions only test the type and character 
edits. They use the currency edit only to determine the precision of a numeric field that 
has no type edit 

This function returns an integer containing the data type code, plus any applicable 
flags. To determine the data type code, and (bitwise) the returned value with the mask 
DT_DTYPE. The data type codes and flags are detailed in the tables below. 

Data Type Code Meaning 

FT_INT Type edit is into 

FT_UNSIGNED 1)rpe edit is unsigned int; or no type edit and character edit is 
digit. 

FT_SHORT Type edit is short into 

FT_LONG Type edit is long mt. 

FT_FLOAT Type editisfloat. 

FT_DOUBLE 1)rpe edit is double; or no type edit and character edit is 
numeric. 

FT_ZONED Type edit is zoned dec. 

FT_PACKED Type edit is packed dec. 

DT_CURRENCY Currency edit 

JAM Release 5.03 20 Nov 92 Page 249 



JAM Programmer's Guide 

Data Type Code Meanmg 

DT_DATETlME Date/time edit 

DT_YESNO Character edit is yes/no. 

FT_CHAR No other major type is valid; could mean that type edit is char-
acter or character edit is unfiltered, letters only, alphanumeric, 
or regular expression. 

Flag Meaning 

DF_NULL Null edit 

DF_REQUIRED Data required edit (not applicable to LOB) 

DF_WRAP Word wrap edit 

DF_OMIT Type edit is omit 

Note that FT_OMIT is not listed as one of the data types. A field that bas the type edit 
omit returns the data type determined by any of the other edits, as well as a flag indicat
ing that it has the omit type edit 

The function puts the precision of float, double and currency values in the prec i
son-ptr argument If the precision-ptr is 0, then the precision is notreturoed. 

RETURNS 
major data type code plus any applicable flags (see tables above). 
o if field is not found 

VARIANTS 

EXAMPLE 
linclude ·smedits.h-

if «sm_n_ftype(-value-, (int*)O) & DT_DTYPE) == FT_DOUBLEl 
( 

/* must be a double */ 
} 

Page 250 JAM Release 5.03 20 Nov 92 



tval 
force field validation 

SYNOPSIS 
int sm_fval(field_number) 
int fiel~numberi 

DESCRIPTION 

............... .. . "' ..... .. . : ...... 

Chapter 13: Function Reference 

: "': .. ;, "' ...... 

This function performs all validations on the indicated field or occurrence, and returns 
the result. If the field is protected against validation, the checks are not performed and 
the function returns 0; see sm_aprotect. Validations are done in the order hsted be
low. Some are skipped if the field is empty, or if its VALIDED bit is already set (imply
ing that it has already passed validation). 

Validation Skip if valid Skip if empty 

required y n 

mustfJlI y y 

regular expression y y 

range y y 

check-digit y y 

date or time y y 

table lookup y y 

currency format y n* 

math expresssion n n 

field validation n n 

JPL function n n 

* The currency format edit contains a skip--if-empty flag; see the Author's Guide. 

If you need to force a skip-if-empty validation, make the field required. A field with 
embedded puncruation must contain at least one non-blank non-punctuation cbaracter 
in order to be considered non-empty; otherwise any non blank cbaracter makes the 
field non-empty. 

JAM Release 5.03 20 Nov 92 Page 251 



JAM Programmer's Guide 

Math expressions, JPL functions and field validation functions are never skipped, since 
they can alter fields other than the one being validated. 

Field validation is performed automatically within sm_inpu t when the cursor exits a 
field via the TAB or NL logical keys. All fields on a screen are validated when XMIT is 
pressed (see sm_s_val). Application programs need call this function only to force 
validation of other fields. 

RETURNS 

-2 if the field or occurrence specification is invalid; 
-1 if the field fails any validation; 
o otherwise. 

VARIANTS 
sm_e_fval(array_name, element); 
sm_i_fval(field_name, occurrence); 
sm_n_fval(field_name); 
sm_o_fval(field_number, occurrence); 

RELATED FUNCTIONS 
sm_n_gval(group_name); 
sm_s_val () ; 

EXAMPLE 
#include ·smdefs.h· 

/* Make sure that the previous field has been 
* validated before checking the current one. 
*/ 

validate (fieldnum, data, occurrence, bits) 
int fieldnum, occurrence, bits; 
char *data; 
{ 

if (sm_fval (fieldnum - 1)) 
{ 

} 

/* Place cursor in the previous field 
* and indicate error */ 

sm_gofield (fieldnum - 1); 
return 1; 

Page 252 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

getcurno 
get current field number 
: .... :~: :-. ..... ::...: . .:::~: : A.:. ": .:..:: ...... :.. ....... : .... ~." ":-: :.~ ~.:.... :-.: .-.; :.: ": :~.::." .. :.:: ... ; :)" .. : ; .......... :.....: :-..... ........ : .. :: .. ";.; :":" :.. 

SYNOPSIS 
int sm_getcurno()i 

DESCRIPTION 
This function returns the number of the field in which the cursor is currently positioned. 
The field number ranges from 1 to the total number of fields in the screen. 

RETURNS 
Number of the current field, or 
o if the cursor is not within a field. 

RELATED FUNCTIONS 

EXAMPLE 
.include ·smdefs.hw 

/* imagine that the screen contains an 8 by 8 array 
* of fields, like a checkerboard. The following code 
* gets the number of the current field and returns 
* the corresponding row and column. */ 

void get_location (row, column) 
int *row, *colurnn; 
{ 

} 

int fieldnum; 

if ((fieldnum = sm_getcurno ()) -- 0) 
*row = *column = -1; 

else 
{ 

} 

*row = (fieldnum - 1) / 8 + 1; 
*column = (fieldnum - 1) % 8 + 1; 

JAM Release 5.03 20 Nov 92 Page 253 



JAM Programmer's GUide 

getfield 
copy the contents of a field 

SYNOPSIS 
Int sm_getfield(buffer, fIeld_number) 
char buffer[]; 
int fIeld_number; 

DESCRIPTION 

. . . . . . 

This functIon copies the data found in field_number to buffer. Leading blanks in 
right-justified fields and trailing blanks in left-justified fields are not copied. The vari
ants that reference a field by name attempt to get data from the corresponding LDB 
entry if there is no such field on the screen (except that the order is reversed during 
screen entry/exit processing). 

Responsibility for providing a buffer large enough for the field's contents rests with the 
calling program. This should be at least one greater than the maximum length of the 
field, taking shifting into account 

In variants that take name as an argument, either the name of a field or a group may be 
used. In the case of groups, sm_isselected is preferred to sm_getfield for de
termining whether or not a group occurrence is selected. If sm_n_get f ie Id is called 
on a radio button, the value in buffer is the occurrence number of the selected item. 
If sm_i_getfield is called on a checklist, the value in the fust occurrence of the 
array is the number of the fust selected item in the group, the value in the second occur
rence is the number of the next selected item in the group and so on. If a checklist has, 
for example, three items selected, the fourth array occurrence will contain a null string. 

Note that the order of arguments to this function is different from that to the related 
function sm-putfield. 

RETURNS 

The total length of the field's contents, or 
-1 if the field cannot be found. 

VARIANTS 
sm_e_getfield(buffer, name, element); 
sm_i_getfield(buffer, name, occurrence); 
sm_n_getfield(buffer, name); 
sm_o_getfield(buffer, field_number, occurrence); 

Page 254 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

RELATED FUNCTIONS 
sm_fptr(field_number)i 
sm_isselected(group_name, group_occurrence); 
sm-putfield(field_number, data); 

EXAMPLE 
linclude -smdefs.h-

/* Save the contents of the -rank- field in a buffer 
* of the proper size. */ 

int size; 
char * save_rank; 

size = sm_~dlength (-rank-); 
if «save_rank = malloe (size + 1» -- 0) 

report_error (-malloe error.-); 

JAM Release 5.03 20 Nov 92 Page 255 



JAM Programmer's GUide 

getjctrl 
get control string associated with a key 

: .. ~:...... : :: ... ; ::".... .. .. ~ .. :.~ : :""": : .... " .. :":.. .." .. ~ ....... ": .. ,, : .. :":: .. -:" ~ : .......... : "" "" "" : "" .: 

SYNOPSIS 
#include "smkeys.h" 

char *sm_getjctrl(key, default) 
int key; 
int default; 

DESCRIPTION 
Each JAM screen contains a table of control strings associated with function keys. 
JAM also maintains a default table of keys and control strings, which take effect when 
the current screen has no control string for a function key you press. This table enables 
you to derme system-wide actions for keys. It is initialized from SMINICTRL setup 
variables. See the section on setup in the Configuration Guide for further information. 
This function searches one of the tables for key, a logical key mnemonic found in 
smkeys. h, and returns a the associated control string. If default is zero, the table 
for the current screen is searched; otherwise, the system-wide table is searched. 

RETURNS 
A pointer to the control string 
o if none is found 

RELATED FUNCTIONS 
sm-putjctrl(key, control_string, default); 

EXAMPLE 
#include ·smdefs.h· 
/* Find control string, if any, that is currently 

associated with a particular key. Look first 
for a screen-specific control string. */ 

char * 
find_control (key) 
int key; 
{ 

} 

char *ptr; 
if ( l(ptr = sm_getjctrl (key, 0) ) ) 
{ 

ptr = sm_getjctrl (key, 1); 
} 
return ptr; 

Page 256 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

getkey 
get logical value of the key hit 
'" .. A :.: •• :.:: ......... '" •• '" .: ..... '" .......... : .. :::'" .. .. : -. .. ... .. ...... .. .. .... .. .. . ....... -.'": ..... -~ :.. .. .... : .. .. .. .. .- ..... . . ...... .. .. -

SYNOPSIS 
#include "smkeys.h" 

int sm_getkey () ; 

DESCRIPTION 
This function gets and interprets keyboard input and returns the logical value to the 
calling program. Normal characters are returned unchanged. Logical keys are inter
preted according to a key translation file for the particular terminal you are using. See 
the Keyboard Input section in this guide, the Key Translation section in the Configura
tion Guide, and the modkey section in the Utilities Guide. sm_getkey is normally 
not needed for application programming, since it is called by sm_input. 

Logical keys include 1RANSMIT, EXIT, HELP, LOCAL PRINT, arrows, data modifi
cation keys like INSERT and DELETE CHAR, user function keys PFI through PF24, 
shifted function keys SPFI through SPF24, and others. Defined values for all are in 
smkeys .h. A few logical keys, such as LOCAL PRINT and RESCREEN, are pro
cessed locally in sm_getkey and not returned to the caller. 

There is another function called sm_ungetkey, which pushes logical key values back 
on the input stream for retrieval by sm_getkey. Since all JAM input routines call 
sm_getkey, you can use it to generate any input sequence automatically. When you 
use it, calls to sm_getkey do not cause the display to be flushed, as they do when keys 
are read from the keyboard. 

There are a number of user-installed functions that may be called by sm_getkey. For 
further information see the section on installing functions in the Programmer's Guide. 

Finally, there is a mechanism for detecting an externally established abort condition, 
essentially a flag, which causes JAM input functions to return to their callers immedi
ately. The present function checks for that condition on each itemtion, and returns the 
ABORT key ifitis true. See sm_isabort. 

Application programmers should be aware that JAM control strings are not executed 
within this function, but at a higher level within the JAM run-time system (i.e., func
tions that call sm_getkey. If you call this function, do not expect function key control 
strings to work. 

The multiplicity of calls to user functions in sm_getkey makes it a little difficult to 
see how they interact, which take precedence, and so forth. In an effort to clarify the 

JAM Release 5.03 20 Nov 92 Page 257 



JAM Programmer's GUide 

process, we present an outline of SIn_get key. The process of key translation is deltb
erately omitted, for the sake of clarity; that algorithm is presented separately, in the 
keyboard translation section of the Programmer's Guide. 

***Step 1 

• If an abort condition exists, return the ABORT key. 

• If there is a key pushed back by ungetkey, return that. 

• If playback is active and a key is available, take it directly to Step 2; 
otherwise read and translate input from the keyboard. When the key
board is read, then the asynchronous function (if one is installed) is 
called during periods of keyboard inactivity. 

*** Step 2 

• Pass the key to the keychange function. If that function says to discard 
the key, go back to Step 1; otherwise if an abort condition exists, re
turn the ABORT key. 

• If recording is active, pass the key to the recording function. 

*** Step 3 

• If the routing table says the key is to be processed locally, do so. 

• If the routing table says to return the key, return it; otherwise, go back 
to Step 1. 

• If the key is a soft key, return its logical value. 

RETURNS 

The standard ASCn value of a displayable key; a value greater than 255 (FF hex) 
for a key sequence in the key translation file. 

RELATED FUNCTIONS 

sm_keyfilter(flag)i 
sm_ungetkey(key); 

EXAMPLE 
#include ·smdefs.h· 
#include ·smkeys.h· 

/* Alternate version of sm_query_msg. This version 
* makes up its mind right away. */ 

int query (text) 
char *text; 

Page 258 JAM Release 5.03 20 Nov 92 



} 

int key; 

sm_d_msg_line (text, REVERSE); 
for (;;) 
{ 

} 

switch (key = sm_getkey ()) 
{ 

case XMIT: 
case 'y': 
case 'Y': 

sm_d_msg_line (--, WHITE-); 
return 1; 

default: 
sm_emsg (-%Mu So it's 'no'N); 
sm_d_msg_line ( •• , WHITE); 
return 0; 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 259 



JAM Programmer's Guide 

gofield 
move the cu rsor into a field 

..... : .:.... : ... : ... " ..... ~.:.. ".. .... .. .. :: : •• " ;: -:":"" : <. .. ... :".. : .. -: "::.::.c... .. ::.... .. ..... ......:; :-.. .. : .... ::. ~: ::.. . ... :: .: .. : .. : ::....::: ... : .. 

SYNOPSIS 
int sm_90field(field_number) 
lnt field_number; 

DESCRIPTION 

Positions the cursor to the fIrst enterable position of field_number. If the field is 
shiftable, it is reset 

In a right-justified field, the cursor is placed in the rightmost position and in a left-jus
tified field, in the leftmost In either case, if the field has embedded punctuation, the 
cursor goes to the nearest position not occupied by a punctuation character. Use 
sm_off_gofield to place the cursor in position other than that of the fIrSt character 
ofa field. 

When called to poSition the cursor in a scrollable array, sm_o_gofield and 
sm_i_gofield return an error if the occurrence number passed exceeds by more 
than 1 the number of allocated occurrences in the specified array. If the desired occur
rence is off screen, it is scrolled on-screen. 

This function doesn't immediately bigger field entry, exit, or validation processing. 
Such processing occurs based on the cursor position when control returns to sm_in
put. 

If you use gofield to specify the next field in a field validation function, when a user 
presses TAB to validate the current field, JAM executes the gofield in the validation 
function, and then TABs to the next field. In order to prevent this extra TAB, the valida
tion function must return non-zero. When non-zero is returned by a validation func
tion, the validation bit is not set You must use sm_bitop to set the bit in this case. 

RETURNS 

-1 if the field is not found 
o otherwise. 

VARIANTS 

sm-e_gofield(field_name, element); 
sm-i_gofield(field_name, occurrence); 
sm-n_gofield(field_name); 

Page 260 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sm_o_gofield(field_number, occurrence); 

RELATED FUNCTIONS 

EXAMPLE 
#include -smdefs.h-

/* If the combination of this field and the previous 
* one is invalid, go back to the previous for data 
* entry. */ 

int validate (field, data, occur, bits) 
int field, occur, bits; 
char *data; 
{ 

} 

if (bits & VALIDED) 
return 0; 

if (!lookup (data, s~fptr (field - 1))) 
{ 

} 

sm_novalbit (field - 1); 
sm_gofield (field - 1); 
sm_quiet_err (-Lookup failed -\ 
please re-enter both items.-); 
return 1; 

return 0; 

JAM Release 5.03 20 Nov 92 Page 261 



JAM Programmer's Guide 

• • gp_lnqulre 
obtain information about a group 
".... -::" -: ": .. : : ........ ::.. ..: ... :.:.. .. " .. :...: ......... t.;· : .......... : .... : ... : -: ... :" ~ : ... ~ .. "" ...... : .. ~ ~: .. :;.J!:" ...... ::~...: ... :" :. ": .. ..:.:::; ..... :: .... ~ •• :.: ":;'.::" 

SYNOPSIS 

#include "smglobs.h" 

int sm_gp_inquire(group_name, which) 
char *group_name; 
int which; 

DESCRIPTION 

Use this function to obtain various information about group. The variable which is a 
mnemonic that specifies the particular piece of information desired. 

Mnemonics for which are defined in the file smglobs . h. They are: 

Mnemonic Meaning 

GP_NOCCS Number of occurrences in the group (sum of number of occurrences 
of all fields/arrays in group) 

GP_FLAGS Flags 

RETURNS 
The value of which, if found, or 
-1 otherwise. 

p'age 262 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

gtof 
convert a group name and index into a field number and 
occurrence 
: .. : :.~ : ........... :-.:" ":---:." .~:.: -.... : ..... :.... -::- .. : .- ...... 

SYNOPSIS 
int sm_i_gtof(group_name, group_occurrence, occurrence) 
char *group_name; 
int group_occurrence; 
int *occurrence; 

DESCRIPTION 

. ..... 

NOTE: This function only exists in the i_ variation. There is no sm_gtof since 
groups cannot be referenced by number. 

Use this function to convert a group name and group_occurrence into a field number 
and occurrence. The variable group_name is the name of the group and group_oc
currence is the specific field within the group. 

The function returns the field number of the referenced field and inserts the occurrence 
number into the memory location addressed by occurrence. 

Using this fimction allows you to use other JAM library routines to manipulate group 
fields by converting group references into field references. For instance, if you wanted 
to access text from a specific field within a group you would need to use sm_i_gtof 
to get the field and occurrence number before you could use the function sm_o_get
fie 1 d to retrieve the text. 

RETURNS 

The field number if found. 
o otherwise. 

RELATED FUNCTIONS 

sm_ftog(field_number, group_occurrence); 

JAM Release 5.03 20 Nov 92 Page 263 



JAM Programmer's GUide 

gval 
force group validation 

.. • ....... :.. : :.~. • .... : ...... : ... : .:: :.:.. •• : •• "".: :" "".. (.:.. .... ~ .. : ..... ~. .: •• --: ••• ~ .. "::~ : .:..: ...... ...r' .... "" ":. :: .... :" .:.: :.: .: •• :.:." .5 : .. :~ 

SYNOPSIS 
int srn_n_gval(group_narne) 
char *group_narne; 

DESCRIPTION 

NOTE: This function only exists in the sm_n_9va1 variation. There is no sm_9val 
since groups cannot be referenced by number. 

Use this function to force the execution of a group's validation function. Use 
sm_s_ val to validate all fields and groups on the screen. 

RETURNS 

-I if the group fails any validation. 
-2 if the group name is invalid 
o otherwise. 

RELATED FUNCTIONS 

srn_fval(field_number); 
srn_s_val(); 

Page 264 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

gwrap 
get the contents of a wordwrap array 

SYNOPSIS 
int sm_gwrap(buffer, field_number, buffer_length} 
char *buffer; 
int field_number; 
int buffer_length; 

DESCRIPTION 

This function copies the contents of the array specified by field_number, one oc
currence at a time, into buffer, up to the size specified by buffer_length. A 
space is inserted before every non-empty occurrence, except the fIrSt. 

The variant sm_o_gwrap copies the contents of the array, beginning with the speci
fied occurrence. 

RETURNS 

The length of transferrable data. If this is greater than buffer_length, then the data 
was truncated 

-1 if the field number is invalid or buffer_length is S o. 
VARIANTS 

sm_o_gwrap(buffer, field_number, occurrence, buffer_length}; 

RELATED FUNCTIONS 

smLPwrap(field_number, text}; 

JAM Release 5.03 20 Nov 92 Page 265 



JAM Programmer's Guide 

hlp_by _name 
display help window 
.... ~ .......... .. .~ :- : .. :.:--: : ~.:: .... : -::: ... ": ... ~.:~ .. ::. .. :., ...... :.. .... ::: ... : .... : .. :".: .. : .... :": ~ .... : 

SYNOPSIS 
int sffi_hlp_by_name(help_screen) 
char *help_screeni 

DESCRIPTION 

............ .. .. .. ..... .. :. 

The named screen is displayed and processed as a normal help screen, including input 
processing for the current field (if any). 

Refer to the Author's Guide for instructions on how to create various kinds of help 
screens and for details of the behaviour of help screens. 

RETURNS 
-1 if screen is not found or other error; 
1 if data copied from help screen to underlying field; 
o otherwise. 

EXAMPLE 
linclude ·smdefs.h
linclude ·smedits.h-
1* If user tabs out of empty field, find the field's 

* help screen and execute it. Implemented as a 
* validation function. *1 

nonempty (field, data, occur, bits) 
int field, occur, bits; 
char *data; 
{ 

} 

char *helpscreen; 

if (*data == 0) 
{ 

} 

if «helpscreen = sm_edit-ptr ( 
field, HELP» ! = 0 I I 
(helpscreen = sm_edit-Ptr ( 

field, HARDHELP» != 0) 
sm_hlp_by_name (helpscreen + 2); 

return 0; 

Page 266 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

home 
home the cursor 
.. ~ •• :c .. :":" .:"" ~:A:::~~: ::..: : . ..: . .<-;,..:-.~.:::: :::..:: :::::.:.:-..i:" :-: ~ ": ... ": .. :.. ... : .: .. ;.. .... :.:.: ; •. :"" .. ,,;. or ••• : ~ .:."... .... " ... ::-

•• .r ...................................... . 

SYNOPSIS 
int sm_home()i 

DESCRIPTION 
This function moves the cursor to the fIrSt enterable position of the fIrSt tab-unpro
tected field on the screen. If the screen has no tab-unprotected fields, the cursor is 
moved to the fIrSt line and column of the topmost screen. However, if you are using the 
JAM Executive, the cursor may not be visible if there are no tab-unprotected fields. 

The cursor is put into a tab-protected field if it occupies the first line and column of the 
screen and there are no tab-unprotected fields. 

This ftmction doesn't immediately trigger field entry, exit, or validation processing. 
Processing is based on the cursor position when control returns to sm_input. 

When the JAM logical key HOME is hit, sm_home is called. 

RETURNS 
The number of the field in which the cursor is left, or 
o if the form has no unprotected fields and the home position is not in a protected field. 

RELATED FUNCTIONS 
sm_backtab()i 
sm_gofield(field_number)i 
sm_last(); 
sm_nl(); 
sm_tab () ; 

EXAMPLE 
linclude ·smdefs.h· 

/* Suppose that at some point the data entry process 
* has gotten fouled up beyond all repair. The 
* following code fragment could be used to start 
* it over. */ 

/* .•. */ 
sm_cl_unprot (); 
sm_home (); 
sm_err_reset (·'MuI'm confused' Let's start over.W); 
/* ... */ 

JAM Release 5.03 20 Nov 92 Page 267 



JAM Programmer's Guide 

• 
I 
variants that take a field name and occurrence number 
.... -:"",,: :".: ... :" •• ~:-:...:~~::.::::.::. ~ ... :::.::: • .:.." ":-.---::::.: •• '::"'~J: •• ~.:::;"" ••• ;'. :"" .:.r.~: ... .:.. .. ..... ~ :.-: ..... :.. :; .. ;: :". : .. :.-.... -: .. --= ...... : ............ ": ·:.A.- --:: 

SYNOPSIS 
sm_i_ ... (field_name, occurrence, ... ) 
char *field_name; 
int occurrence; 

DESCRIPTION 

The i_ variants each refer to data by field name and occurrence number. An occur
rence is a slot within an array in which data may be stored. Occurrences may be either 
on or off-screen. Since JAM treats an individual field as an array with one field, even 
a single non-scrolling field is considered to have one occurrence. The JAM library 
contains routines that allow you to manipulate individual occurrences during run-time. 

If occurrence is zero, the reference is always to the current contents of the named 
field, or to the current contents of the base field of the named array. 

For the description of a particular function, look under the related function without i_ 
in its name. For example, sm_i_amt_format is described under sm_amt_format. 

If the named field is not part of the screen currently being displayed, these fooctions 
attempt to retrieve or change its value in the local data block. 

Page26B JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

• • Inlnames 
record names of initial data files for local data block 

: •••••••• : •• " ....... ; .""oI't/'." •••••••• )0" ••• : .... : ........ : .::.. ~ 

SYNOPSIS 
lnt srn_ininarnes(narne_list) 
char *name_list; 

DESCRIPTION 

:.'" "",, .. :... .,::..... -=. " .. : ... : .. ::.. ..: : : . . ................... 

Use this routine to set up a list of initialization files for local data block entries. The file 
names in the single string name_l i s t should be separated by commas, semicolons or 
blanks. There may be up to ten file names. You may achieve the same effect by defining 
the SMININAMES variable in your setup file to the list of names. See setup files in the 
Configuration Guide and the Data Dictionary chapter of the Author ~ Guide for details. 

The files contain pairs of names and values, which are used to initialize local data block 
entries by sm_ldb_init. This function is called during JAM initialization, so 
sIILininames should be called before then. White space in the initialization files is 
ignored, but we suggest a format like the following: 

'emperor' 'Julius Caesar' 
'lieutenant' 'Mark Antony' 
'assassin[l]' 'Brutus' 
'assassin[2]' 'Cassius' 

Entries of all scopes may be freely mixed within all files. We recommend, however, 
that entries be grouped in files by scope if you are planning to use sm_lreset. Use 
sm_lreset to clear all entries of a given scope before reinitializing them from a 
single fIle. 

RETURNS 

-5 if insufficient memory is available to store the names; 
o otherwise. 

RELATED FUNCTIONS 
srn_ldb_init(); 
srn_lreset(file_name, scope); 

EXAMPLE 
/* Set up four initialization files. */ 

s~ininames (·scopel.ini, scope2.ini,· 
·scope3.ini, scope4.ini'); 

JAM Release 5.03 20 Nov 92 Page 269 



JAM Programmer's GUide 

initcrt 
initialize the display and JAM data structures 

.. ~ ~.: .:: " .. "" 
~ ........... ,," ".. .......... ~ .. " .. .. .. .. .. .. .. .. .. 

SYNOPSIS 
int srn_inltcrt(path) 
char *pathi 

void sm_jlnitcrt(path) 
char *pathi 

VOId sm_jxinltcrt(path) 
char *pathi 

DESCRIPTION 

. 

The function sm_ini tcrt is intended for use only with a user-written executive. It is 
called automatically by the JAM Executive. 

sm_initcrt must be called at the beginning of screen handling, that is, before any 
screens are displayed or the keyboard opened for input to a JAM screen. Functions that 
set options, such as sm_option, and those that install functions or configuration files 
such as sm_install or sm_vinit, are the only kind that may be called before 
sm_ini tcrt. 

The argument path is a directory to be searched for screen flies by sm_r_window 
and variants. First the file is sought in the current directory; if it is not there, it is sought 
in the path supplied to this function. If it is not there either, the paths specified in the 
environment variable SMPATH (if any) are tried. The path argument must be supplied. 
If all forms are in the current directory, or if (as JYACC suggests) all the relevant paths 
are specified in SMPATH, an empty stting may be passed. Mter setting up the search 
path, sm_ini tcrt performs several initializations: 

1. It calls a user-defined initialization routine. 

2. It determines the terminal type, if possible by examining the environ
ment (TERM or SMTERM), otherwise by asking the user. 

3. It executes the setup files defined by the environment variables 
SMVARS and SMSETUP, and reads in the binary configuration files 
(message, key, and video) specific to the terminal. 

4. It allocates memory for a number of data structures shared among 
JAM library functions. 

Page 270 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

5. If supported by the operating system, keyboard interrupts are trapped 
to a routine that clears the display and exits. 

6. It initializes the operating system display and keyboard channels, and 
clears the display. 

The functions sm_jinitcrt and sm_jxinitcrt are called by jmain.c and 
jxmain. c respectively for applications that use the JAM Executive. They, in turn, 
call sm_ini tcrt. 

RETURNS 

On an error, sm_ini tcrt prints a descriptive message and terminates; 
o if the function executes successfully. 

RELATED FUNCTIONS 

sm_resetcrt()j 
sm_jresetcrt()j 
sm_jxresetcrt()j 

EXAMPLE 
/* To initialize the Screen Manager without supplying 
* a path for screens: */ 

sm_initcrt (--)i 

JAM Release 5.03 20 Nov 92 Page 271 



JAM Programmer's GUide 

input 
open the keyboard for data entry and menu selection 

.... '".:: ..... : : .. '": .. 

SYNOPSIS 
int sm_lnput(initlal_mode) 
int initIal_mode; 

DESCRIPTION 

.. .. -. :- : ...... .. . ",'" 

. ....... . .. '" .... . 

This routine is only used if you are writing your own executive. Use sm_input to 
open the keyboard for either data entry or menu selection. 

You specify which mode you wish to be in with the argument initial_mode. Pos
sible choices are defined in smumi s c . h. They are: 

• IN_AUTO JAM checks whether you specified the screen to begin menu mode or data 
entry mode (See Author's Guide). 

• IN_DATA Start in data entry mode. 

• IN_MENUStart in menu mode. 

In most cases you will want to use IN_AUTO mode. Use IN_DATA or IN_MENU if 
you wish to override the setting that you specified via the Screen Editor. 

This routine calls sIlLgetkey to get and interpret keyboard entry. While in data entry 
mode ASCII data is entered into fields on the screen, subject to any restrictions or edits 
that were defmed for the fields. The routine returns to the calling program when it en
counters a logical key, when a "return entry" field is filled or tabbed from, or a key with 
the return bit set in the routing table. 

If the logical value returned by sm_getkey is 1RANSMIT, EXIT, HELP, or a cursor 
position key, the processing is detemlined by a routing table. The routing options are set 
with sm_keyopt ion. See sm_keyopt ion for more information. 

This function replaces version 4.0 sm_choice, sm_menu-proc, and 
sm_openkeybd. These functions only exist in your version 5.0 library for backward 
compatibility. We strongly suggest that you do not use them in the future. 

RETURNS 

The key hit by the end-user that terminated the call to sm_inpu t, or the fIrSt character 
of the selected menu item. 

Page 272 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

• • Inquire 
obtain value of a global integer variable 
......... .. ... . ............. .. ,. . 

SYNOPSIS 
#include "smglobs.h" 

lnt sm_inqulre(whlch) 
int which; 

DESCRIPTION 
This function is used to obtain the current integer value of a global variable. The de
sired variable is specified by which. If the value of which is a true/false (the flag is 
on or oft) value then sm_inquire returns 1 for true and 0 for false. If you wish to 
modify a global integer value use sm_iset. The permissible values for which are 
defined in smglobs. h. The following values are available: 

Mnemonic Meaning 

I_NODISP In non-display mode? (TIF). Initially FALSE, setting TRUE 
causes no further cbanges to the actual display, although JAM's 
internal screen image is kept up to date. Error messages will 
display. This was release 4's sm_do_not_display flag. 

I_NOMSG Error message display disabled? (TIF) 

I_INSMODE In insert mode? (TIF). 

I_NOWSEL LDB merge off for sm_wselect? (TIF) Normally false. True 
can be useful for a quick sm_wselect/sm_wdeselect pair. 

I_INXFORM In JAM screen editor? (TIP) Field validation routines are 
generally still called when in editor; they can check this flag to 
disable certain features. 

I_MXLlNES Number of lines available for use by JAM on the hardware 
display. 

I_MXCOLMS Number of columns available for use by JAM on the hardware 
display. 

I_NLlNES Maximum number of lines available on the current screen, not 
includmg the status line. 

JAM Release 5.03 20 Nov 92 Page 273 



JAM Programmer's GUide 

Mnemonic Meaning 

I_NCOLMS Maximum number of columns available on the current screen, 
not including the status line. 

I_INHELP Help level of current screen, or 0 if not in help. 

I_BSNESS Screen manager is in control of display? (TIF). (Replaces the 
release 4 inbusiness function). 

I_BLKFLGS Block mode is turned on? (TIF) 

SC_VFLINE FIrSt screen line of viewport (O-based). 

SC_VFCOLM First screen column of viewport (O-based). 

SC_VNLINE Number of lines in viewport. 

SC_VNCOLM Number of columns in viewport. 

SC_VOLlNE Line offset of viewport. 

SC_VOCOLM Column offset of viewport. 

SC_NLlNE Number of lines in screen. 

SC_NCOLM Number of columns in screen. 

SC_CLlNE Current line number in screen (zero-based). 

SC_CCOLM Current column number in screen (zero-based). 

SC_NFLDS Number of fields on screen. 

SC_NGRPS Number of groups on screen. 

SC_AFLDNO Number of the field calling a prototyped field function. 
Corresponds to the flfSt of the four standard arguments passed 
to a non-prototyped field function. 

SC_AFLDOCC Occurrence number of the field calling a prototyped field 
function. Corresponds to the third standard argument passed to 
a non-prototyped field function. The second standard argument, 
may be obtained from sm getfield or sm 0 getfield. 

Page 274 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Mnemonic Meaning 

SC_AFLDMDT Bit mask con taming contextual informauon about the validation 
state of the field and the circumstances under which a 
prototyped field function was called. Corresponds to the fourth 
standard argument passed to a non-prototyped field function. 

SC_AGRPMDT Bit mask containing information about the validation state of 
the group and the circumstances under which a prototyped 
group function was called. Corresponds to the second of the two 
standard arguments passed to a non-prototyped group function. 
The first standard argument, a pOlDter to the group name, may 
be obtained by sm_getcurno and sm_ftog at group entry 
and exit Access to the group name at group validation is not 
supported. 

SC_BKATTR Background attributes of screen. 

SC_BDCHAR Border character of screen. 

SC BDATTR Border attributes of screen. 

RETURNS 
If the argument corresponds to an integer global variable, the current value of that vari
able is retmned. 

1 true, flag is set to on. 
o false, flag is set to off. 

-1 otherwise. 

RELATED FUNCTIONS 
sm_finquire(field_number, which); 
sm_gp_inquire(group_name, which); 
sm_iset(which, newval); 
sm-pinquire(which); 
sm-pset(which, newval); 

EXAMPLE 
if (sm_inquire(I_BSNESS)) 

sm_err_reset(-Problem 82!-); 
else 

fprintf(stderr,·Problem 82!\n·); 

JAM Release 5.03 20 Nov 92 Page 275 



JAM Programmer's GUide 

install 
install application functions 

.. .. .... .. 
".t' .. ...... : •• - .. -..: .,f' 

.... .... .... .. .. -"' .. -'" .... .... .. .. •... .- .o.. : ............. : .. : .. -"':- .... .. ............. :: ;. : .. :.....:: .... --:: : .. -. 

SYNOPSIS 
struet fnc_data *sm_lnstall(usage, what_funes, howmany) 
int usage; 
struct fnc_data what_funcs[]; 
int *howmany; 

DESCRIPTION 
This function installs an application routine to be called from JAM library functions, 
enabling JAM to pass control to your code in the proper type of function context The 
use of this function, along with many examples, is fully documented in the Writing and 
Installing Hook Functions chapter of the Programmer's Guide. 

As of release 5, JAM supports function prototyping, which permits JAM library func
tions to be called directly from within control strings and from within JPL. 
sm_install is used to prototype and install these functions. See the Prototyped 
Functions section of the Writing and Installing Hook Functions chapter of the Program
mer's Guide. 

RETURNS 
For single functions: returns the address of a buffer containing (temporarily) a copy of 
the old function data structure(s), or zefo if no function was previously installed. 

For lists of functions: returns a pointer to the updated list and also places the number of 
entries in the new list in the integer addressed by howmany. 

EXAMPLE 
linclude ·smdefs.h· 
linclude "smkeys.h· 
/* Install two field functions, defined elsewhere. */ 

extern int field!(), field2(); 

static struct fnc_data field[] = { 

} ; 

{ "fieldP, field!, 0, 0, 0, 0 }, 
{ "field2·, field2, 0, 0, 0, 0 } 

int count; 

count = sizeof(field) / sizeof(struct fnc_data); 
sm_install (FIELD_FUNC, field, &count); 

Page 276 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

intval 
get the integer value of a field 
~--: •• :.:::::: : :.:" .:.:-.~" .:.:.~..... :.:" ..... "" ... ~ ..... :.. :.. •• :: ..... -:... : ::: :. .::.... "': -..: •• ",,:, • .:- ..... :~ ~ i"": ;.::: .. ;. ": : ::.: ... :"~. :"",::: :..::.. •• :: ~ 

SYNOPSIS 
~nt sm_intval(field_number) 
int field_number; 

DESCRIPTION 

This function returns the integer value of the data contained in the field specified by 
field_number. Any punctuation characters in the field, except a leading plus or mi
nus sign, are ignored. 

If the field is not found the function returns zero. Since a zero could also mean that the 
contents of the field is a zero, some other method should be used to check for the exis
tence of a field 

RETURNS 

The integer value of the specified field. 
o if the field is not found. 

VARIANTS 

sm_e_intval(field_nam~, element); 
sm_i_intval(field_name, occurrence); 
sm_n_intval(field_name); 
sm_o_intval(field_number, occurrence); 

RELATED FUNCTIONS 
sm_itofield(field_number, value); 

EXAMPLE 
/* Retrieve the integer value of the 

* ·sequence· field. */ 

int sequence; 

JAM Release 5.03 20 Nov 92 Page2n 



JAM Programmer's GUide 

• loccur 
insert blank occurrences into an array 
:..~.:-: .. A.. . .......... " "·.::A :. :": :::" "" ...... ~:: : ...... :..... :" ~ ": .~. ~ .. :: .. :.: ~ .: ........... " "" .: .. : ..... ~ :: .. :.:: .-.... : :.:.. ".. ::" .. :. 

SYNOPSIS 
lnt sm_o_ioccur(field_number, occurrence, count) 
int fleld_number; 
int occurrence; 
int count; 

DESCRIPTION 

NOTE: This function only exists in the i_ and 0_ variations. There is no sm_ioc
cur, since this function applies only to arrays. 

Inserts count blank. occurrences before the specified occurrence, moving that occur
rence and all following occurrences down. If inserting that many would move an occur
rence past the end of its array, fewer are inserted If the array is scrollable, then this 
function may allocate up to count new occurrences. This function never increases the 
maximum number of occurrences an array can contain; sm_sc_max does that If 
coun t is negative, occurrences are deleted instead, subject to limitations described in 
the page for sm_doccur. In addition, this function never inserts more blank occur
rences than the number of blank occurrences following the last non-blank occurrence 
(that is, it won't push data off the end of an array). 

If occurrence is zero, the occurrence used is that of field_number. If occur
rence is nonzero, however, it is taken relative to the first field of the array in which 
fie ld_number occurs. 

Any clearing-unprotected synchronized arrays have the same operations performed on 
them as the referenced array. Synchronized arrays that are protected from clearing re
main constant. Therefore, a protected array may be used to number a list of data stored 
in a non-protected synchronized array as it grows and shrinks. 

This function is normally bound to the INSERT LINE key. 

RETURNS 

-1 if the field or occurrence number is out of range. 
-3 if insufficient memory is available. 

otherwise, the number of occurrences actually inserted (zero or more). 

VARIANTS 
sm_i_ioccur(field_name, occurrence, count); 

Page 278 JAM Release 5.03 20 Nov 92 



EXAMPLE 
linclude ·smdefs.h· 
/* Insert five blank lines at the beginning of 

an array named ·amounts·. */ 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 279 



JAM Programmer's Guide 

• 
IS no 
test field for no 
.... :~. : .. :.: •••••• : ••• .1' •• .... : ": ••• ::".:: ",. '" ..... :. 

.... ...... . .. 
•••• A ........................ . 

SYNOPSIS 
int sm_is_no(field_number} 
int field_number; 

DESCRIPTION 

: ...... :.: .. : .... " .,: ... ~ ,,'":. ":' : .. : ..... : ":';":'''" ~ . .. ............... 

The frrst character of the field contents specified by fie Id_number is compared with 
the first letter of the SM_NO entry in the message file, ignoring case. H they match this 
function returns a 1 for true. If they do not match for any reason, the function returns a 
o for failure. There is no way to tell if the failure is due to a Y in the field or because of 
some other problem. If you wish to check for a Y response use sm_is-yes. 

This function is ordinarily used with one-letter fields possessing the yes/no character 
edit In this case, the only characters allowed in the field are y, n, or space (which 
means n). Unlike other functions, sm_is_no does not ignore leading blanks. 

RETURNS 

1 if the field's first character matches the fIrSt character of the SM_NO entry in the 
message file. 

o otherwise. 

VARIANTS 

sm_e_is_no(field_name, element}; 
sm_i_is_no(field_name, occurrence}; 
sm_n_is_no(field_name}; 
sm_o_is_no(field_number, occurrence); 

RELATED FUNCTIONS 

Page 280 JAM Release 5.03 20 Nov 92 



• Is_yes 
test field for yes 

SYNOPSIS 
int sm_is-yes(field_number) 
int field_numberi 

DESCRIPTION 

Chapter 13: Function Reference 

The fll'St cbaracter of the field contents specified by field_number is compared with 
the flfSt letter of the SM_YES entry in the message file, ignoring case. If they match this 
function returns a 1 for true. If they do not match for any reason, the function returns a 
o for failure. There is no way to tell if the failure is due to an N in the field or because 
of some other problem. If you wish to check for an N response use sm_i s_no. 

This function is ordinarily used with one-letter fields possessing the yeslno character 
edit. In this case, the only characters allowed in the field are y, n, or space (which 
means n). Unlike other functions, sm_is-yes does not ignore leading blanks. 

RETURNS 

1 if the field's fll'St character matches the fll'St character of the S~YES entry in the 
message file. 

o otherwise. 

VARIANTS 

sm_e_is-yes(field_name, element)i 
sm_i_is-yes(field_name, occurrence)i 
s~n_is-yes(field_name)i 

sm_o_is-yes(field_number,occurrence)i 

RELATED FUNCTIONS 

JAM Release 5.03 20 Nov 92 Page 281 



JAM Programmer's GUide 

isabort 
test and set the abort control flag 

:==.. .. : .: ~ :: •• : ... :" .. ".:: .. =:-" ... ~; •• "" .... ": .:" ",,:. " ......... :.. .. .. .. 

SYNOPSIS 
int sm_isabort(flag) 
lnt flag; 

DESCRIPTION 

:" ",," .... .... .. .. .. : ... .. ........ "" .... .. .... .. ",," ... 

Use sm_isabort to set the abort flag to the value of flag, and return the old value. 
flag must be one of the following as defined in smwnisc. h: 

Flag Meaning 

ABT_ON set abort flag 

ABT_OFF clear abort flag 

ABT_DISABLE turn abort reporting off 

ABT NOCHANGE do not alter the flag 

Abort reporting is intended to provide a quick way out of processing in the JAM li
brary, which may involve nested calls to sm_input. The triggering event is the detec
tion of an abort condition by sm_getkey, either an ABORT keystroke or a call to this 
function with ABT_ON (such as from an asynchronous function). 

This function enables application code to verify the existence of an abort condition by 
testing the flag, as well as to establish one. 

RETURNS 
The previous value of the abort flag. 

EXAMPLE 
linclude ·smdefs.h-

/* Establish an abort condition */ 

/* Verify that an abort condltion exists, without 
* altering it. */ 

Page 282 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

iset 
change value of global integer variable 
•••• :- ... : ::-: :::. .. .:,. •• ,!-.. :.:-:.. ;: -s.":.- :: .-;.:. :-.. : -:).. -c : :. ::. :: ....... .. .. ..... .. ...... '" : ...... " .. -.- .... :: : .. 

SYNOPSIS 

#include "smglobs.h" 

int sm_iset(which, newval) 
int which; 
int newval; 

DESCRIPTION 
JAM has a number of global parameters and settings. This function is used to modify 
the current value of global integers. The variable to change is specified by which. The 
new value is specified by newval. If you wish to get the value of a global integer use 
sm_inquire. 

The permissible values for the argument which are defined in the header file 
smglobs . h. The following mnemonics are available: 

Mnemonic Quantity Meaning 

I_INSMODE 0 Enter overtype mode. 

I Enter insert mode. 

I_NOWSEL 0 LDB merge is on for sm_wselect. 

I LDB merge is off for sm_wselect. 
Normally set to O. I is useful for a quick 
sm_wselect/sm_wdeselect pair, 
for exanmple to update a realtime 
clock. 

I_NODISP 0 Enable updating of display. 

I Disable updating of display, except for 
error messages. 

I_NOMSG 0 Display error messages. 

I Don't display error messages. 

JAM Release 5.03 20 Nov 92 Page 283 



JAM Programmer's GUide 

If you wish to have a process run in the background, you can set both CNODISP and 
I_NOMSG to 1. 

RETURNS 

If whi ch is one of the permissible values, the former value of the appropriate variable 
is returned. 

1 True, the flag was set to on. 
o False, the flag was set to off. 
-1 otherwise. 

RELATED FUNCTIONS 

sm_finquire(field_nurnber, which); 
sm_gp_inquire(group_name, which); 
sm_inquire(which); 
sm-pinquire(which); 
srn-pset(which, newval)i 

EXAMPLE 
void 
insert_mode (on_offl 
int OIL-off; 
{ 

} 

Page 284 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

isselected 
determine whether a radio button or checklist occurrence 
has been selected 

SYNOPSIS 
int sm_isselected(group_name, group_occurrence) 
char *group_name; 
int group_occurrence; 

DESCRIPTION 

.................................. 
.. .. - • .1' ..... :.. .. ..... 

This function lets you check to see whether or not a specific occurrence within a check 
list or radio button bas been selected. The selection is referenced by the group name and 
occurrence number. If the occurrence is selected, sm_isselected returns a 1. A 0 is 
returned if the occurrence is not selected. See the Author ~ Guide for a more detailed 
discussion of groups. 

Radio button and checklist occurrences are selected by using sm_select. Using 
sllLselect on a radio button OCClDTence causes the current selection to be deselected. 
Checklist occurrences are deselected with sm_deselect. 

RETURNS 

-I arguments do not reference a checklist or radio button occurrence. 
o not selected. 
1 selected 

RELATED FUNCTIONS 

sm-deselect(group_name, group_occurrence); 
sm_getfield(buffer, field_number); 
sm_intval(field_number}; 
sm_select(group_name, group_occurrence}; 

JAM Release 5.03 20 Nov 92 Page 285 



JAM Programmer's Guide 

• 
ISSV 
determine if a screen is in the saved list 

.. :.." .... .. .... ..... . .................................... '" .- .. 

SYNOPSIS 
int sm_lssv(screen_name) 
char *screen_namei 

DESCRIPTION 

... . ....... : .. '": '". 

JAM maintains a list of screens that are saved in memory. This function searches the 
save list for a single screen and returns 1 if the screen is found (See sm_svscreen). 

This function is generally called by applications at screen entry to avoid re-acquiring 
data (via a database query) for previously saved screens. To accomplish this, frrst use 
sm_svscreen to add the screen to the save list upon screen exit Next, use sm_issv 
to cbeck the save list upon screen entry. If the screen is on the save list, you know that 
it has been previously displayed. 

RETURNS 

1 if the screen is in the saved list 
o otherwise. 

RELATED FUNCTIONS 

srn_svscreen(screen_list, count)i 

EXAMPLE 
/* Perform database query only once */ 
/* on the screen ·results·. */ 

if (!sm_issv(·results·)) 
{ 

} 

/* do query ... */ 
sm_svscreen (screen_list, 1); 

Page 286 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

itofield 
write an integer value to a field 
: ... : .... :!. .... r:...;:: .... : . .: ."::-=.J':t~~:.~:--: .:«". ~.;.: .. ;.:.:..:.::;. ;'~ .... ":: .... ..:.::..:~::.:.c ... ~.:"..:... .. .:: .,,":';' .. ~:.: ....... : .. :.:::.. ........... ": ": 

SYNOPSIS 
int sm_itofield(field_number, value) 
int field_number; 
int value; 

DESCRIPTION 

The integer passed to sm_i to fie Id is converted to characters and placed in the spe
cified field. A number longer than the field is truncated, on the left or right, according 
to the field's justification, without warning. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 
sm_e_itofield(field_name, element, value); 
sm_i_itofield(field_name, occurrence, value); 
sm_n_itofield(field_name, value); 
sm_o_itofield(field_number, occurrence, value); 

RELATED FUNCTIONS 

EXAMPLE 
/* Find the length of the data in field number 12 */ 

JAM Release 5.03 20 Nov 92 Page 287 



JAM Programmer's GUide 

jclose 
close current window or form under JAM Executive con
trol 

.. :-.:~ ....... : :: .. -.. .. ...... ~ ......... : ... ~ : :'". : '". -:-.: .. ::- : " ... : .: ...... : .: '":.": : .. ~: ...... : .. '" :.o;; 

SYNOPSIS 
int SIYLj close () j 

DESCRIPTION 

The active screen is closed, and the display is restored to the state before the screen was 
opened. sm_j close should only be used when the JAM Executive is in use. 

In the case of closing a form, sm_j c lose pops the form stack and calls sm_j form to 
display the screen on the top of the fOim stack. 

In the case of closing a window, sm_j close calls sm_close_window. The effect of 
closing a window is to return to the previous window on the window stack. The cursor 
reappears at the same position it had before the window was opened. 

RETURNS 

-1 if there is no window open, i.e. if the currently displayed screen is a form 
(or if there is no screen displayed). 

o otherwise. 

RELATED FUNCTIONS 
sm_close_window()j 
sm_jfor.m(screen_name)i 
sm_jwindow(screen_name)j 

EXAMPLE 
linclude ·smdefs.h W 

/* This is an example of a control function attached to 
* the XMIT key. It validates login and password 
* information. If the login and password are 
* incorrect, the program proceeds to close three of 
* the four ·security· windows used for getting a 
* user's login and password information, and the 
* user may again attempt to enter the information. 
* If the password passes, the welcome screen is 
* displayed, and the user may proceed. 

Page 288 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

int complete_login(jptr)i 
char "'jptri 
( 

} 

char pass[lO]; 
sm_n_getfield(pass, -password-Ii 
/"'call routine to validate password"'/ 
if(!check-password(pass)) 
( 

} 

/"'close current password window"'/ 
sm_jclose(); 
/"'close 3rd underlying login window"'/ 
sm_jclose(); 
/"'close 2nd underlying login window*/ 
sm_jclose(); 
/"'in bottom window*/ 
sm_emsg(-Please reenter login and password-I; 

else 
( 

} 

sm_~msg_Iine(-Welcome to Security Systems,\ 
Inc.-); 
/"'open welcome screen"'/ 
sm_jform(-Welcome-); 

return (0); 

JAM Release 5.03 20 Nov 92 Page 289 



JAM Programmer's Guide 

jform 
display a screen as a form under JAM control 
.:: : .~: .. .. ".. ...... ". -.:.:. : ... :.:: :.. :... ":.: .. : .... : ... ~.:: ::-::" :.... -.. :'" : :::.- ... ~. : : :.:. : :"" ::: .. ~ ".: ... :- ::-- •• '!.:.: .. : 

SYNOPSIS 
int sm_jform(screen_name) 
char *screen_namei 

DESCRIPTION 
This function displays a form under JAM control. It must be used with the JAM Execu
tive. If you are not using the JAM Executive, use sm_r_form or one of its variants to 
display a form. If you wisb to display a window under JAM control, use sm_jwindow. 

This function displays the named screen as a form. You may close the form with 
sm_jclose, or leave the task to the JAM Executive (e.g., wben the user presses the 
EXIT key). Bringing up a screen as a fom causes the previously displayed form and 
windows to be discarded, and their memory freed. Tbe new form is placed on top of the 
JAM form stack. 

The difference between sm_j form and sm_r_form, other than the function argu
ments, is that only sm_j form manipulates the form stack. Since sm_j form calls 
sm_r_form, refer to sm_r_form for information on other details, sucb as bow the 
screen to be displayed is found. 

The cbaracter string screen_name uses the same format as that of a JAM control 
string that displays a form. In addition to the screen's name, you may optionally specify 
the position of the form on the pbysical display, the size of the viewport, and whicb 
portion of the form should be positioned in the viewport's top-left comer. See the Au
thoring Reference in the Author~ Guide for details of viewport positioning. Tbe follow
ing are all legal strings: 

sm_jfor.m(-form-); 

Display form's flfSt row and column at the top--Ieft comer of the physical display. 
sm_jfor.m(-(20,lO)form-); 

Display form's fust row and column at the 20th row and 10th column of the physical 
display. 

sm_jfor.m(U(20,lO,15,B)form-}; 

Display the flfSt row and column of the form at the 20th row and 10th column of the 
pbysical display in viewport that is 15 rows by 8 columns. 

A fOlm may be larger than the viewport. If the viewport does not fit on the screen where 
indicated, JAM attempts to place it entirely on the display at a different location. If you 

Page 290 JAM Release 5.03 20 Nov 92 



.1',' 

Chapter 13: Function Reference 

specify a viewport that is larger than the physical display, the viewport will be the size 
of the physical display. If you wish to change the viewport size after the window is dis
played, use sm_viewport. 

RETURNS 
o if no error OCCUlTed. 

-1 if the screen me's format is incorrect. 
-2 if the screen cannot be found. 
-4 if, after the display has been cleared, the screen cannot be successfully displayed 

because of a read error. 
-5 if, after the display was cleared, the system ran out of memory. 

RELATED FUNCTIONS 
srn_r_form(screen_narne)j 
srn_jwindow(screen_narne)j 

EXAMPLE 
#include ·smdefs.h-
/* This could be a control function attached to the 

* XMIT key. Here we have completed entering data 
* on the second of several security screens. If 
* the user entered ·bypass· into the login, he 
* bypasses the other security screens, and the 
* -welcome- screen is displayed. If the user 
* login is incorrect, the current window is 
* closed, and the user is back at the initial 
* screen (below). Otherwise, the next security 
* window is displayed. */ 

int getloginCjptr) 
char *jptr; 
( 

} 

char password[lO); 
sm_n_getfieldCpassword, ·password-); 
/* check if -bypass- has been entered into login */ 
if CstrcmpCpassword,-bypass-)) 

sm_jform(-welcome-); 
/* check if login is valid */ 

else if Ccheck-passwordCpassword)) 
( 

} 

/*close current (2nd) login window */ 
sllLjcloseC); 
sm_emsgC-Please reenter login-I; 

else 
sm_jwindowC-login3-); 

return CO); 

JAM Release 5.03 20 Nov 92 Page 291 



JAM Programmer's GUide 

jplcall 
execute a JPL jpl procedure 

SYNOPSIS 
int sm_jplcall(jplcall_text) 
char *jplcall_text; 

DESCRIPTION 

This function executes a JPL procedure precisely as if the following JPL statement 
were executed from within a JPL procedure: 

jpl jplcall_text 

For example, if the value of jplcall_text were: 

verifysal :name 50000 

then 

and 

jpl verifysal :name 50000 

would be equivalent See the JPL Guide for further information on the JPL jpl com
mand. 

RETURNS 
-1 if the procedure could not be loaded. 
Otherwise, the value returned by the JPL procedure. 

Page 292 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

jplload 
execute the JPL load command 
.:: ~ :-: .: .. : .... : .. :.:: .... :. : ... :"" ... :~:.: ... :::... ., ...... ..::.;. .: .. : .... ~: .:.. :. :.". .. :.:.:: ... :: .... ::":.:. :,.:" .:.:...~. :":..... ~ .. : .. ~..... :: .:.:.:: .. : : ..... 

SYNOPSIS 
int sm_jplload(module_name_list) 
char *module_name_listi 

DESCRIPTION 

This function is the C interface to the JPL load command. Use this command to load 
one or more modules into memory. 

The character string module_name_l ist may be one or more module names. Sepa
rate module names with a space. 

Calling sm_jplload bas precisely the same effect as using the JPL load command. 
See the JPL Guide for further information on the JPL load command. 

Use sm_jplunload to remove a module from memory. 

RETURNS 

-1 if there is an error. 
o othelWise. 

RELATED FUNCTIONS 

sm_jplpublic(module_name_list)i 
sm_jplunload(module_name)i 

EXAMPLE 
void 
load_modules () 
{ 

if (sm_jplload(·select.jpl insert.jpl delete.jpl-» 
sm_err_reset(-Unable to load modules into memory-I; 

} 

JAM Release 5.03 20 Nov 92 Page 293 



JAM Programmer's GUide 

jplpublic 
execute the JPL public command 
A .: .. : .... .. ..: ... :..~ ....... :: •• ~: ... ~. : ...... .:::::. :.: .. ~ : : .... :::......:....:: .... : .. -= : ... ~ .. ~ .. : : .. : -= .. :. :.: .... : ;.., ..... ",,:" ":.'::-.: .. : ... :.;' ;. ~ ..... 

SYNOPSIS 
int sm_jplpublic(module_name_list) 
char *module_name_list; 

DESCRIPTION 

This function is the C interface to the JPL public command. Use this command to 
load one or more modules into memory. 

The character string module_name may be one or more module names. Separate 
module names with a space. 

Calling sm_jplpublic has precisely the same effect as using theJPL public com
mand. See the JPL Guide for further information on the JPL public command. 

Use sm_j pI unload to remove a module from memory. 

RETURNS 
-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 
sm_jplload(module_name_list); 
sm_jplunload(module_name); 

Page 294 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

jplunload 
execute the JPL unload command 
.: ~ -=:. : h ••• :-:.0.. ;." : ...... '$. ..... : •• : •• .:...<~ ... ::.~ ..... : ~~.~« . ..: :.".:" . ..c.NA .:. 

SYNOPSIS 
int sm_jplunload(module_name) 
char *module_namei 

DESCRIPTION 

~ ,,".. .. .. ............ :",,: ..... ~ .... .. .. .. 
: ... : .. "'" 

This function is the C interface to the JPL unload command. Use this command to 
remove one or more modules from memory. Modules are read into memory by using 
either sm_jplpublic or sm_jplload or via the corresponding JPL commands. 

Calling sm_jplunload has precisely the same effect as using the JPL unload com
mand. See the JPL Guide for further information on the JPL unload command. 

The character string module_name may be one or more module names. Separate 
module names with a space. 

RETURNS 

-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

sIDLjplload(module_name_list)i 
sm_jplpublic(module_name_list)i 

EXAMPLE 
void 
unload_modules ( ) 
{ 

if (sm_jplunload(-select.jpl insert.jpl delete.jpl·» 
sm_err_reset(·Unable to unload modules from memory·); 

} 

JAM Release 5.03 20 Nov 92 Page 295 



JAM Programmer's GUide 

jtop 
start the JAM Executive 
::: .. ,," .:::"" :.",;: ~ .. : .. ::.: : .... ~.: .~ ... :.... ... : .::" .. : ...... . i.. : .... ::: "" ": .. : 

SYNOPSIS 
int sm_jtop(screen_name) 
char *screen_name; 

DESCRIPTION 

..... :.: ....... :: .. :.: ..... : .. :.::.. :;.:" .. " ... ; .. x·~. : . .... "" .. .... .... 

All applications using the JAM Executive must include a call to sm_j top. This func
tion starts the JAM Executive. The argument screen_name is the name of the frrst 
screen that your application displays. It is displayed as a form. Once sm_j top is called 
the JAM Executive is in control until the user exits the application. 

The JAM Executive makes calls to various JAM functions that handle all of the tasks 
needed to control the flow of an application such as opening the keyboard for input, 
opening and closing forms and windows, and processing all control strings. 

If you do not use sm_j top you will have to write your own procedures to control the 
flow of your application. See the JAM Development Overview for a more detailed dis
cussion of the JAM Executive. 

RETURNS 
o Always. 

Page 296 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

jwindow 
display a window at a given position under JAM control 
... :~~". : ~ " .. "-: .:::':':h:: ~."":." ::: .. ~ -: :... .. : ......... ": ... .. :.~ " ... ~:: •• ::-.. ".~ -:::"..:::.::::. -:: :" ": : :::"":-:.;;. :~:-:: :.. : .. ~ .. : .. ~ : ...... : ;., A".. : .:. :-: ::" 

SYNOPSIS 
int srn_jwindow(screen_narne) 
char *screen_narne; 

DESCRIPTION 

This function displays a window under JAM control. It must be used with the JAM 
Executive. If you are not using the JAM Executive, use sm_r_window or one of its 
variants to display a window. To display a form under JAM control, use sm_j form. 

This function displays the named screen as a window, by calling sm_r_window. You 
may close the window with a call to sm_j close, or leave the task to the JAM Execu
tive (e.g., when the user presses the EXIT key). 

Since sm_jwindow calls sm_r_window, refer to sm_r_window for information on 
how the screen to be displayed is found. 

The character string screen_name uses a format similar to that of a JAM control 
string that displays a window. Use a single ampersand to specify a stacked window and 
a double ampersand to specify a sibling window. If the ampersand is omitted, then the 
screen is opened as a stacked window. In addition to the screen's name, you may op
tionally specify the position of the window on the physical display, the size of the view
port, as well as which portion of the window should be positioned in the viewport's top
left comer. The positioning and sizing syntax is identical to that of sm_j form. See 
sm_j form for examples of acceptable strings. 

RETURNS 

o if no error occurred during display of the screen 
-I if the screen file's format is incorrect 
-2 if the form cannot be found 
-3 if the system ran out of memory but the previous screen was restored 

RELATED FUNCTIONS 

srn_jclose(); 
srn_jform(screen_narne); 
srn_r_window(screen_narne, start_line, start_column); 

JAM Release 5.03 20 Nov 92 Page 297 



JAM Programmer's Guide 

EXAMPLE 
#include ·smdefs.h· 

/* Th1s could be a control function attached to the 
* XMIT key. Here we have completed entering data 
* on the second of several security screens. If 
* the user entered "bypass· into the login, he 
* bypasses the other security screens, and the 
* ·welcome· screen is displayed. If the user 
* login is incorrect, the current window is 
* closed, and the user is back at the initial 
* screen (below). Otherwise, the next secur1ty 
* window is displayed. */ 

int getlogin(jptr) 
char *jptri 
{ 

) 

char password[lO]i 
sm_n_getfield(password, ·password·)i 
/* check if ·bypass· has been entered into 

* login */ 
if (strcmp(password,·bypass·)) 

sm_jform(-welcome-)i 
/* check if login is valid */ 

else if (check-password(password)) 
{ 

} 

/*close current (2nd) login window */ 
sm_jclose()i 
sm_emsg(-Please reenter login-Ii 

else 
sm_jwindow(-login3-)i 

return (O)i 

Page 298 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

key _integer 
get the integer value of a logical key mnemonic 
.. " ·s;:: .: ... ~~. ~:::.t".:.:::1:::;" .. =t- ~::'::' •• <:::: .. :.~: .. ~:: ~.:.:-: -:-=::::.:::: .... ::.: : ": ............ :: "jo .. ,,--:"':: .. : "": ": : .. :::: ..... "': .. "" ...... ,,": •• " 

SYNOPSIS 

#include Hsmkeys.h" 

int sm_key_integer (key) 
char *keYi 

DESCRIPTION 

This function returns the integer value of a JAM logical key mnemonic. The value is 
obtained from the file smkeys . h. This function is useful in cases where a function 
requires the integer value of a key, but cannot access the include files, as in a prototyped 
function called from JPL. The following table lists the logical key mnemonics: 

Logical Key Mnemonics 

EXIT XMIT HELP FHLP BKSP TAB 

HOME DELE INS LP FERA CLR 

LSHF RSHF LARR RARR DARR UARR 

INSL DELL ZOOM SFTS MTGL VWPT 

PF1-PF24 SPF1-SPF24 APP1-APP24 

RETURNS 

the integer value of the logical key mnemonic. 
o if the mnemonic is not fOWld. 

RELATED FUNCTIONS 
sm_keylabel(keY)i 

EXAMPLE 

NL BACK 

SPGU SPGD 

REFR EMOH 

MOUS 

SFT1-SFT24 

The following example is from JPL. It sets the newline key to act as the tab key. The 
functions sm_key _integer and sm_keyoption must be prototyped in order to be 
called from a JPL procedure. 

JAM Release 5.03 20 Nov 92 Page 299 



JAM Programmer's Guide 

vars ret x y 
retvar ret 

call sm_key_integer -NL n 

cat x ret 

call sm_key_integer "TAB" 
cat y ret 

call sm_keyoption :x 2 :y 
return 

Page 300 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

keyfilter 
control keystrqke record/playback filtering 
X':::...:.::".:...~ .;::-. ". '! : ~ ;::, ... ~ .v::. -= : .. =: :: •• .::: .... ::.:: AA: .~ .... ~:.: .... -::::-. ..:: .. :.::....x -:.: .- ... :.. .. ; .: .-::: .: ..... "" ~ .. ::: ..... :-c .. -: .. ".::.: ... :. ::"".:=::.:. : 

SYNOPSIS 
int sm_keyfilter(flag) 
int flag; 

DESCRIPTION 
This function turns the keystroke record/playback mechanism of sm_getkey on 
(flag = 1) or off (flag = 0). If no key recording or playback function has been 
installed, turning the mechanism on has no effect. 

It returns a flag indicating whether recording was previously on or off. 

RETURNS 
The previous value of the fdter flag. 

RELATED FUNCTIONS 

EXAMPLE 
/* Disable key recording and playback. */ 

sffi_keyfilter (0); 

JAM Release 5.03 20 Nov 92 Page 301 



JAM Programmer's Guide 

keyhit 
test whether a key has been typed ahead 
.:~. .. ........ :" .... " .. : :.~ ; .. :~.::: .:" .: . ..: .: .. ",,:; .. ";".: .. :"~. ::::~.::::. ": ;".... : .... ::-=.:... ~ : ...... "". :"" : : : ,," .... : .... ,," ::" .. " 

SYNOPSIS 
int sm_keyhit(lnterval) 
int interval; 

DESCRIPTION 

This function checks whether a key has already been hit; if so, it returns 1 immediately. 
If no~ it waits for the indicated interval and checks again. The key (if any is struck) is 
not read in, and is available to the usual keyboard input routines. 

interval is in tenths of seconds; the exact length of the wait depends on the granular
ity of the system clock, and is hardware- and operating-system dependent JAM uses 
this function to decide when to call the user-supplied asynchronous function. 

If the operating system does not support reads with timeou~ this function ignores the 
interval and only returns 1 if a key has been typed ahead 

RETURNS 

o if no key is available, 
non-O otherwise. 

RELATED FUNCTIONS 

EXAMPLE 
#include ·smdefs.h
#include ·smkeys.h-

/* The following code adds one asterisk per second to 
* a danger bar, until somebody presses EXIT. */ 

static char *danger_bar = -***********************-; 
int kj 

sm_d_msg_line (-You have 25 seconds to find the\ 
EXIT key.-, WHITE); 
/* Clear the danger bar area 
sm_do_region (5, 10, 25, WHITE, ._)j */ 

for (k = 1; k <= 25; ++k) 

Page 302 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

{ 
sm_flush (); 

} ~f (sm_keyhit (10)) 
{ 

} 

if (sm_getkey () -- EXIT) 
break; 

if (k <= 25) 
sm_~msg_Iine (-'BCongratulations! you win!-); 

else 
sm_err_reset (-Sorry, you lose.-); 

JAM Release 5.03 20 Nov 92 Page 303 



JAM Programmer's GUide 

keyinit 
initialize key translation table 
: .. : .. " ......... ~ . .::: :A .. ~ .. : :": : .:.::".: ....... :. .. ....... . ... : ...... ::: .. :.. ..... :" .. ~. .:. :,... ;. .... ,.. .. .... ~ .. : : .... :" ... : .::: ..... ::-. ::.. :.. :...:... .. .. 

SYNOPSIS 
int sm_keyinit(key_address) 
char *key_address; 

DESCRIPTION 

This routine is called by sm_ini tcrt as part of the initia1ization process, but it can 
also be called by an application program (either before or after sItL.ini tcrt) to 
install a memory-resident key translation file. 

To install a memory-resident key translation file, key_address must contain the ad
dress of a key translation table created using the key2bin and bin2 c utilities. 

RETURNS 

o if the key ftle is successfully installed. 
Program exit if the key ftle is invalid 

VARIANTS 

Page 304 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

keylabel 
get the printable name of a logical key 
.. : .~ .. ....... -."': .. : .. .'" ............ '" .-. :- .. '" .... :-"'.: ..... : .. '".'" : .. :: ............ : .. .......... '" .. .-

SYNOPSIS 
#include Nsmkeys.hN 

char * sm_keyl abel (key) 
int key; 

DESCRIPTION 
Returns the label dermed for key in the key translation file; the label is usually what is 
printed on the key on the physical keyboard. If there is no such label, returns the name 
of the logical key from the following table. Here is a list of key mnemonics: 

Logical Key Mnemonics 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS LP FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR EMOH 

INSL DELL ZOOM SFTS MTGL VWPT MOUS 

PFI-PF24 SPFl-SPF24 APPI-APP24 SFT1-SFT24 

If the key code is invalid (not one defined in smkeys. h), this function returns an 
empty siring. 

RETURNS 
A string naming the key, or an empty string if it has no name. 

EXAMPLE 
.include ·smkeys.hw 

1* Put the name of the TRANSMIT key into a field 
* for help purposes. *1 

char buf[80]; 

spr1ntf (buf, ·Press %s to commit the transaction.", 
sm_keylabel (XMIT)); 

sm_n-putfield (-help·, buf)i 

JAM Release 5.03 20 Nov 92 Page 305 



JAM Programmer's GUide 

keyoption 
set cursor control key options 
-:'". '": ......... :: .::::.:. '" .... : :-:: ::" :.. : . ...:: .... : :~.:.-: .. '".: .'".:-.: '".: : .~ .... : .<. .... - .... '":.'" .. 

SYNOPSIS 

#include "smkeys.h" 

int sm_keyoption(key, mode, newval) 
lnt key; 
int mode; 
int newval; 

DESCRIPTION 

:.o::: . .ox ... : ............ 

Use sm_keyoption to alter at run4ime the bebavior of sm_input when a particu
lar key is pressed. The default values for key options are built in to JAM. This function 
only works with cursor control keys. Cursor control keys include all JAM logical keys, 
except for PF, SPF, and APP keys. See "Key File" in the Configuration Guide. 

There are three different possible values for mode: KEY_ROUTING, KEY_GROUP, and 
KEY_XLATE. The mnemonics that they use are dermed in smkeys. h. All of these 
modes draw on the following values for key. 

Logical Key Mnemonics 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS* LP* FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR* EMOH 

INSL DELL ZOOM SFTS* MTGL VWPT MOUS 

• KEY_ROUTING 

Allows access to the EXECUlE and RETURN bits of the routing table. This mode is 
generally used to disable a key or to control explictly what action is taken when a key 
is hit. The following mnemonics may be assigned to newval: 

1. KEY_IGNORE Disables key. JAM does nothing wben key is 
struck. 

Page 306 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

2. EXECUTE The action normally associated with key is executed. 
May be ored with RETURN. 

3. RETURN No action is performed, but the function returns to the call
er in your code. Used to gain direct control of key's action. May be 
ored with EXECUTE. 

-KEY_GROUP 

Allows access to the group action bits. Use this function to control the action of the 
cursor when it is within a group. The following values may be assigned to newval: 

1. VF _GROUP Obey group semantics. Hitting key causes the cursor to 
move to the next field within the group in the indicated direction. If 
this mnemonic is ored with VF _CHANGE the cursor exits the group in 
the indicated direction. 

2. VF _CHANGE This value has no effect, unless it is ored with 
VF _GROUP. In this case the cursor exits the group in the indicated 
direction. 

3. 0 ASSigning zero to newval causes key to treat a field within a 
group as if it were not part of a group. 

4. VF _OFFSCREEN Offscreen data scrolls onscreen from the direction 
indicated. 

5. VF _NO PROT key moves cursor into a field protected from tabbing. 

-KEY_XLATE 

Allows access to the cursor table. Use this routine to assign key the action performed 
by newval. key may be any of the cursor control keys listed in the table above. 
newval may be any key-logical, function, application, ASCII, etc. 

*Note that INS, REFR, SFTS, and LP may not be used with KEY_XLATE. 

RETURNS 
-1 if some parameter is out of range. 
the old value otherwise. 

EXAMPLE 
/*newline_is_xmit: Map the new line key (return or enter on most 

keyboards) to XMIT -or- reset it back to NL. 
Invoke from a control string as: 
~newline_is_xmit X To make NL act as XMIT 
~newline_is_xmit N To make NL act as NL */ 

int 
newline_is_xmit(cs_data) 

JAM Release 5.03 20 Noy 92 Page 307 



JAM Programmer's Guide 

char *cs_datai 
{ 

} 

while (*cs_data && *cs_data != ' ') 
cs_data++i while (*cs_data -- , ') 
cs_data++i if (*cs_data == 'X') 

sm_keyoption(NL,KEY_XLATE,XMIT)i 
} 
else 
{ 

sm_keyoption(NL,KEY_XLATE,NL)i 
} 
return(O)i 

Page 308 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

keyset 
open a keyset 
~: .. ~~.:...:::...:. .. ~ .. ~..::-::-: ~-:::--:;;,~.: : :.: .. " .::: .. : : .. ; ",," :: .... ~ ": ~ .. " ;:"........ :--: ... ": :.. ·~v:".:. "" .. " .... : .. :" A" .. :" .. :"" :~ -: .. :" : ....... : .:": 

SYNOPSIS 

#include "smsoftk.h" 

int sm_r_keyset(name, scope) 
char *namei 
int scope; 

int sm_d_keyset(address, scope) 
char *address; 
int scope; 

lnt sm_l_keyset(lib_desc, name, scope); 
int lib_desci 
char *name; 
int scope; 

DESCRIPTION 

Use sm_d_keyset, sm_r_keyset, and sm_l_keyset to display a keyset The 
parameter name is the name of the keyset. s cope must be one of the mnemonics listed 
in smsoftk. h. Application programs normally use scope KS_APPLIC. Values for 
scope are dermed in smsoftk.h. For a more detailed explanation of scope see the 
Keyset Editor chapter of the Author's Guide. 

If there is currently a keyset of the specified scope the name of that keyset is compared 
with the name passed. If they are the same the present routine returns immediately. This 
means that if you want to "refresh" a keyset with a new copy from disk, you must fIrSt 
close the key set with a call to sm_c_keyset. 

If the call is not successful then the current keyset remains displayed and an error mes
sage is posted to the end-user, except where noted otherwise. 

The most commonly used variant is sm_r_keyset. You do not need to know where 
the keyset resides because sm_r_keyset searches for you. It looks flfSt in the 
memory resident form list, next in any open libraries, then on disk in the directory spe
cified by the arglDllent to sm_initcrt, and finally in the directories specified by 
SMPATH. Keyset files may be mixed freely with screen rues in the screen list and in 
libraries. 

JAM Release 5.03 20 Nov 92 Page 309 



JAM Programmer's GUide 

You may save processing time by using sm_d_keyset to display a memory-resident 
keyset address is a pointer to the keyset in memory. Use the utility bin2c to create 
program data structures, from disk-based keysets, that you can compile into your ap
pbcatlon. 

You may also save processing time by using sm_l_keyset to display keysets that are 
in a library. A library is a single file containing many keysets (and/or JPL modules and 
screens). You can assemble one from individual keyset flIes using the utility formlib. 
Libraries provide a convenient way of distributing a large number of screens with an 
application, and can improve efficiency by cutting down on the number of paths 
searched. 

The library descriptor, Iib_desc, is an integer returned by sm_l_open, which you 
must call before trying to read any keysets from a library. Note that sm_r_keyset 
also searches any open libraries. 

To close a key set use sm_c_keyset. 

RETURNS 
o If no error occurred during display of the keyset. 
-1 If the format incorrect (not a keyset). 
-2 if the keyset cannot be found. No message is posted to the end-user. 
-3 If the terminal doesn't support soft keys (or scope out of range). 
4 If there is a read error. 
-5 If there is a malloc failure. 

EXAMPLE 
#include <smsoftk.h> 

extern char new_keys[]i 

void 
load_applic_keys() 
{ 

} 

if (s~~keyset(new_keys,KS_APPLIC)) 

{ 
sm_emsg(-Could not load memory resident soft keys.-)i 

} 

#include <smsoftk.h> 

void 
zap_application_soft_keys() 
{ 

sm_c_keyset(KS_APPLIC)i 
} 

Page 310 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

kscscope 
query current keyset scope 

SYNOPSIS 

#include "smsoftk.hu 

int s~kscscope(}; 

DESCRIPTION 

This routine relUrns the scope of the current keyset or -1 if no keyset is currently ac
tive. 

This function can be used to determine whether or not the application-level keyset (as 
opposed to the screen-level or override-level keyset) is cwrently displayed. 

Values for scope are defined in smsoftk. h. 

RETURNS 

Current scope, or 
-1 if not found. 

RELATED FUNCTIONS 
sm_ksinq(scope, number_keys, number_rows, current_row, 

maximum_len, keyset_name}; 
s~skvinq(scope, value, occurrence, attribute, labell, label2}; 

JAM Release 5.03 20 Nov 92 Page 311 



JAM Programmer's Guide 

ksinq . 
inquire about keyset information 

".. -:" .. :: :":- .. :: .. : : ... :. -: .~... : ,,": :.:.: :. "" .~ ... ":... .. : ",,:: .; :.: .. ~: .:.. ::-:. x: ...... : :.. .... . ... : ...... :" ::: 

SYNOPSIS 

#lnclude "smsoftk.h" 

int sm_ksinq(scope, number_keys, number_rows, current_row, 
maximum_len, keyset_name) 

int scope; 
int *number_keys; 
int *number_rows; 
int *current_row; 
in t maximum_l en; 
char *keyset_name; 

DESCRIPTION 

Use this routine to obtain the name, number of rows, number of items within a row, and 
current row of a keyset currently in memory. You supply the keyset's scope and five 
addresses to hold the information returned by sm_skinq. scope must be one of the 
mnemonics defined in smso f tk . h. 

The function places the number of rows in the keyset in number_row, the number of 
soft keys per row in number_keys, and the current row number in current_row. 
The name of the keyset is placed in the pre-allocated buffer keyset_name. The size 
of keyset_name is specified by maximum_len. If the name of the keyset in longer 
then keyset_name, then sm_ks inq fills the buffer to the end without adding a null 
character, otherwise a null character is added to the end of the string. The null pointer 
may be used for any or all of the parameters about which you do not desire information. 

RETURNS 

o if information is returned. 
-I if there is no active keyset for the given scope. 
-2 for an invalid scope. 

RELATED FUNCTIONS 

SIILkscscope(); 
sm_skinq(scope, row, softkey, value, display_attribute, labell, 

labe12); 
sm_skvinq(scope, value, occurrence, attribute, labell, labe12)i 

Page 312 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

kslabel 
set a soft key label and attribute 
:.;.~ :...c .. :" .. :':::.: .::"" .... :: or •• ::: ... : •• ~ •• :-: ... : ... x::":: .: ... ~. :'~.::.~..c :":.., ~ :: .... ::;~: .... J . .:.....::.$.;.~ ~." :.~::. t :-:-.. ~ :.:;<.::::.: .. ~:: . .:: .. :" ::.. :.~::. ~. :" ... :-:" 

SYNOPSIS 
int sm_kslabel(softkey, labell, labe12, attribute)i 
int softkeYi 
char *labelli 
char *labe12i 
int attribute; 

DESCRIPTION 

This routine is used to set the label on a soft key. Usually sm_skset is a more useful, 
but this function is provided for developers who wish to display soft key labels outside 
of JAM control. It is also provided so that programs written before JAM provided sup
port for soft keys may take advantage of simulated soft keys. You need not enable soft 
key support (in j rna in. c) to use this fWlction. 

The fIrSt parameter is the soft key number. It must be between one and the number spe
cified in the video fIle entry KPAR. 

The variables labell and labe12 are for the fIrSt and second lines of the soft key 
label, respectively. The label text is limited to the length specified in the video flle. H 
you do not wish to cbange one of the labels, assign it the null pointer. 

The attribute is only used if the video flle specifies that it is available. Typically, 
this is true only for terminals using simulated labels. attribute is specified by using 
mnemonics listed in smattrib.h Hyou do not wish to cbange attribute, assign 
it the value: NORMAL_ATTR. 

NOTE: This routine actually performs output Use sm_skset if you wish to gain the 
benefits of delayed-write. 

RETURNS 

o if the label was successfully set 
-1 the softkey parameter is invalid 

RELATED FUNCTIONS 

sm_skset(scope, row, softkey, value, attribute, labell, labe12)i 

JAM Release 5.03 20 Nov 92 Page 313 



JAM Programmer's GUide 

ksoff 
tu rn off soft key labels 
.. :- ....:: ::-:. : .. :.: ....... :" :: :.:-: .... : t: " .. :-::.:.. .. :: : .... ,,":. :)-...... :: .. :.. ;" .~ .... ::.:; .::. ;.'" .... : .. : .. : ...... ...: ....... : ~ .. : ...... .. ......................... '"" ...... 

SYNOPSIS 
void srn_ksoff()i 

DESCRIPTION 

When a keyset is opened with any of the library routines, the labels are automatically 
displayed. If you do not wish to display the labels at any point within your application, 
use sm_ksoff to tum the display off. 

If you wish to turn them the label display back on, use sm_kson. 

RELATED FUNCTIONS 

Page 314 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

kson 
tu rn on soft key labels 

SYNOPSIS 
void sm_kson(); 

DESCRIPTION 
Normally, keyset labels are displayed when a keyset is called up. The only way the dis
play can be turned off is with the library routine, SllLksoff. Use this routine to tum 
the label display back OD. 

RELATED FUNCTIONS 
sIILksoff(); 

JAM Release 5.03 20 Nov 92 Page 315 



JAM Programmer's Guide 

I close 
close a library 

SYNOPSIS 
int sm_l_close(lib_desc) 
int lib_desc; 

DESCRIPTION 

Closes the library indicated by lib_dese and frees all associated memory. The li
brary descriptor is a number returned by a previous call to sm_l_open. 

RETURNS 

-1 if the library file could not be closed. 
-2 if the library was not open. 
o if the library was closed successfully. 

RELATED FUNCTIONS 

sm_l_at_cur(lib_desc, screen_name); 
sm_l_form(lib_desc, screen_name); 
sm_l_open(lib_name); 
sm_l_window(lib_desc, screen_name, start_line, start_column); 

EXAMPLE 
/* Bring up a window from a library. */ 

int Id; 

if ((ld = sm_l_open (·myforms·)) < 0) 
s",-cancel ()i 

Page 316 JAM Release 5.03 20 Nov 92 



I_open 
open a library 

... -.- ~ .... " ............... J' •• 
o ~ ~ 

SYNOPSIS 
int sm_l_open(lib_name) 
char *lib_namej 

DESCRIPTION 

Chapter 13: Function Reference 

-;,_ .. -:.'" .. '". :.... . . ...... .. 
o 0 

: .- • .oJ''' .... "I."" .. " .. .... .. 

You must use sm_I_open to open a library before you use a JPL module, a key set, or 
a screen that is stored in the library. Use the utility formlib to create a libraIy. (See 
the JAM Utilites Guide). 

This routine allocates space in which to store information about the library, leaves the 
library ftle open, and returns a descriptor identifying the library. The descriptor may 
subsequently be used by sm_l_window and related functions, to display screens 
stored in the library. The library can also be referenced implicitly by sm_r_window, 
sm_r_keyset, and sm_jpIcall, as well as related functions, which search all 
open libraries. 

The library file is sought in all the directories identified by SMPATH and the parameter 
to sm_initcrt. If you define the SMFLIBS variable in your setup file as a list of 
library names sm_l_open is automatically called for those libraries. The sm_r_ rou
tines then search in the specified libraries. 

Several libraries may be kept open at once. This may cause problems on systems with 
severe limits on memory or simultaneously open files. 

RETURNS 

-1 if the library cannot be opened or read. 
-2 if too many libraries are already open. 
-3 if the named file is not a library. 
-4 if insufficient memory is available. 
Otherwise, a non-negative integer that identifies the library file. 

RELATED FUNCTIONS 
sm_jplcall(jplcall_text)j 
sm_jplload(module_name_list)j 
sm_jplpublic(module_name_list)j 
sm_l_at_cur(lib_desc, screen_name)j 
sm_l_close(lib_desc)j 

JAM Release 5.03 20 Nov 92 Page 317 



JAM Programmer's Guide 

sm_l_for.m(lib_desc, screen_name}; 
sm_l_window(lib_desc, screen_name, start_line, start_column}; 
sm_r_at_cur(screen_name}; 
sm_r_for.m(screen_name}; 
sm_r_keyset(name, scope}; 
sm_r_window(screen_name, start_line, start_column}; 

EXAMPLE 
/* Prompt for the name of a library until a 

* valid one is found. Assume the memory-resident 
* screen contains one field for enterlng the library 
* name, with suitable instructions. */ 

int ld; 
extern char libquery[]; 

if (sm_d_form (libquery) < 0) 
sm_cancel (); 

sm_d_msg_Iine (-Please enter the name of\ 
your llbrary.-); 

do { 
sm_input (IN_DATA); 

} while ((ld = sm_l_open (sm_fptr (1») < 0); 

Page 318 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

last 
position the cursor in the last field 
: :~ :~ -::...::. ~ .. :'::.. :....:: ;:s ~::-: .. ::~:'::.": :": ~ : .:...:.:-: .... ":": .:.. :--: .. ~ ...... :. ".: :.:. ~ ::: .. ::-:: : ... ~ .. ~:: ... ::-= ... ~~:. y ..... .. .... "' ... . 

SYNOPSIS 
void sm_last()j 

DESCRIPTION 

Use this function to place the cursor at the rust enterable position of the last tab-unpro
tee ted field of the current screen. If the last field unprotected from tabbing is rightjusti
fied, the cursor is placed in the rightmost position of the field. By the same token, if the 
last unprotected field is left justified, the cursor is placed in the leftmost pOSition of the 
field. 

Unlike sm_home, sm_las t does not reposition the cursor if the screen has no unpro
tected fields. 

This function doesn't immediately trigger field entry, exit, or validation processing. 
Such processing occurs based on the cursor position when control returns to sm_in
put. 

This function is called when the JAM logical key EMOH is struck. 

RELATED FUNCTIONS 
sm_backtab()j 
sm_home(); 
sm_nl(); 
sm_tab () ; 

EXAMPLE 
linclude ·smdefs.h· 
linclude ·smkeys.h-

/* Assume the last field must be entered for. 
* confirmation. This code puts the cursor there, 
* after the TRANSMIT key is pressed. */ 

while (sm_input (IN_DATA) != XMIT) 
, 

sm_unprotect (sm_inquire(I_NUMFLDS)); 
sm_last (); 
sm_input (IN_DATA); 
if (sm_is-yes (smgetcurno ()) 

/* And so forth ... */ 

JAM Release 5.03 20 Nov 92 Page 319 



JAM Programmer's GUide 

Iclear 
erase LDB entries of one scope 
...... :.:-: : .... :.." :.. ~.: .~:. : .... : .. :: :..:.. .... "':'" .::::".:. :::.::.... ..:. .. : .... ....... ": . .:: :.. ~ : .. : .. " .......... :. ::.. ..: ... "" .... : .. -:-:: :: '::: .. 

SYNOPSIS 
int sm_lclear(scope) 
int scope; 

DESCRIPTION 

This function erases the values stored in the local data block for all names having a 
scope of the argument scope. Legal values for scope are between 1 and 9. Constant 
variables having scope 1 can be erased. 

Refer to the LOB chapter of the Programmer's Guide for a discussion of the scope of 
LDB entries. 

RETURNS 

-1 if scope is invalid. 
o otherwise. 

RELATED FUNCTIONS 
sm_lreset(file_narne, scope); 

EXAMPLE 
/* Clear out LOB entries of scope 6, which has been 

* assigned to customer information. */ 
#define CUSTOMER_SCOPE 6 

sm_lclear (CUSTOMER_SCOPE); 

Page 320 JAM Release 5.03 20 Nov 92 

"'1 
I 
I 



Chapter 13: Function Reference 

Idb hash 
use hash index for the LOB 
: .;. : ....... :.~:".: .. : .... :. ::.:: .. :" .. :~ .. s :... .. :. ... : ... :~:.... :" :"" .r·.: ;:. :".J' .. ~ -.<"" .: ":-. .. "-: .; •• ,,~. :: .... : •• : ..... -= .~.:: :.:.::: .. : .. : :.:. N.:: ;.:: .:. :::::... ~ ... 

SYNOPSIS 
void sm_ldb_hash(); 

DESCRIPTION 

This routine specifies that a hash table should be used to search the local data block. 
You must call Idb_hash before JAM initialization, in particular, before you call 
sm_ldb_ini t to initialize the Local Data Block. 

Use of a hash table slightly improves the performance of routines which access the 
LOB, at the expense of the memory required for the table. This performance improve
ment includes the LOB merge which is performed the rust time a screen with named 
fields is displayed. The degree of improved performance depends upon the distribution 
of the names in the LOB, and is greater for LOBs with more entries. 

RELATED FUNCTIONS 
sm_ldb_init(); 

EXAMPLE 
linclude ·smdefs.h-

/* create a local data block with a hash index */ 

sm_ldb_hash ( ) ; 
sm_ldb_init(); 

JAM Release 5.03 20 Nov 92 Page 321 



JAM Programmer's GUide 

Idb init 
initialize (or reinitialize) the local data block 
.... :.: •• :' .. :- : ... : ......... : ......... ..: .. : :;:~.;..: •. :- .J'..~ -:: ::::.:..: -: ). .:. .• :.: x.~: -:: ..:::. ... " .... :~.: . ...: .: .. ~ .. ;.. : : .. ":-... ~ .:-.:- .:-: ....... :..::.:. :.::-:..=: .-:: 

SYNOPSIS 

DESCRIYfION 

This function creates an empty index of named data items by reading the data dictio
nary, then loads values into them from initialization flies. Data Dictionary entries with 
a scope of 0 are not loaded into the LOB. There is no LDB prior to the flfSt execution 
of this function. 

Selected parts of the LOB, namely those assigned a certain scope, can be reinitialized 
using sm_lclear or sm_lreset. 

This function is called explicitly in jmain. c and jxmain. c. Other functions that 
affect its behavior, such as sm_dicname and sm_ininames, should be called fIrSt. 

RELATED FUNCTIONS 
sm_dicname(dic_name); 
sm_ininames(name_list); 
sm_lreset(file_name, scope); 

EXAMPLE 
/* After a catastrophic application failure, 
* reboot the index. */ 
if (bacLdata ()) 
( 

) 

Page 322 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

leave 
prepare to leave a JAM application temporarily 
.:",,: : :: ... : .. ";. .. -::" .... : .. ;. J" ~..:; •• ::.:"::. :" .. ; .. : .. : : .... :- .. : .... ": ".. : ... -: ".... ..:.... .. : .. : •• ,," :: .. :.~ : : 

SYNOPSIS 
void sm_leave(); 

DESCRIPTION 

At times it may be necessary to leave a JAM application temporarily. For example you 
may need to escape to the command interpreter or to execute some graphics functions. 
In such a case, the terminal and its operating system channel need to be restored to their 
normal states. 

This function should be called before leaving. It clears the physical screen (but not the 
internal screen image); resets the operating system channel; and resets the terminal (us
ing the RESET sequence found in the video file). 

RELATED FUNCTIONS 

sm_return () ; 

EXAMPLE 
linclude ·smdefs.h-

/* Escape to the UNIX shell for a directory listing */ 

sm_leave (); 
system (-Is -1-); 
sm_return () i 

sm_c_off ()i 
sm_d_msg_line (-Hit any key to continue-, 

BLINK I WHITE) i 
sm_getkey (); 
sm_~msg_line ( •• , WHITE); 
sl1Lrescreen ()i 

JAM Release 5.03 20 Nov 92 Page 323 



JAM Programmer's Guide 

length 
get the maximum length of a field 
.. ..••. .. ':";' :: ..... " ~ ..• ~:.. .. ::"" :.... ..~ ... :.... :.c "" ... ...... .. ",," .... ..................... " : "",, .... "" 

SYNOPSIS 
int sm_length(field_number) 
int field_number; 

DESCRIPTION 

:: ..... ...: .. : : .... : : ...... ": ... :;:: ....... : ......... : ... :. 

This function returns the maximum length of the field specified by field_number. 
If the field is shiftable, its maximum shifting length is returned. This length is as de
fmed in the JAM Screen Editor, and bas no relation to the current contents of the field. 
Use sm_dlength to get the length of the contents. 

RETURNS 

Length of the field. 
o if the field is not found. 

VARIANTS 

RELATED FUNCTIONS 

sm_dlength(fiel~number)i 

EXAMPLE 
/* compute the number of blanks left in a 
* right-justified field (number 6), and fill them 
* with asterisks. */ 

int blanks, ki 
char buf[2561i 

blanks = sm_length (6) - sm_dlength (6); 
for (k = 0; k < blanks; ++k) 

buf[k] = '*'; 
sm_getfield (buf + blanks, 6); 
sm-putfield (6, buf); 

Page 324 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Ingval 
get the long integer value of a field 
.::..":..<:"> :..:::.:.. .. ~ .. " .. ;.::r.- ~.: :.. .. ~ f:..~:: ... :":~"" ; ::..:: .. :.: .... ::::.. . .: .. : :." ::::., .. 

SYNOPSIS 
long sm_lngval(field_number) 
int field_number; 

DESCRIPTION 

...I' :",," .:: .... :.~: ... "" : ..... : ;. : .. ~ .. v·.··· ...... : : ... 
.. " .......... of' ...... ... 

This function returns the contents of field_number, converted to a long integer. All 
non-{figit characters are ignored, except for a leading plus or minus sign. 

RETURNS 

The long value of the field. 
o if the field is not found. 

VARIANTS 

sm_e_lngval(field_name, element); 
sm_i_l ngva 1 (field_name, occurrence); 
sm_n_lngval(field_name); 
sm_o_lngval(field_number, occurrence); 

RELATED FUNCTIONS 

sm_intval(field_number); 
sm_ltofield(field_number, value); 

EXAMPLE 
linclude ·smdefs.h-

/* Retrieve the number of fish in one particular sea 
* (a big number) from the screen. */ 

Idefine MEDITERRANEAN 4 
long fish; 

JAM Release 5.03 20 Nov 92 Page 325 



JAM Programmer's GUide 

I reset 
reinitialize LOB entries of one scope 

.. '"... . .. .... ...... .... . ..... 

SYNOPSIS 
int sm_lreset(file_name, scope) 
char *file_name; 
~nt scope; 

DESCRIPTION 
This function sets local data block entries to values read from file_name. The 
scope must be between 1 and 9. References in the file to LDB entries not belonging 
to scope are ignored. All variables belonging to scope are cleared before reinitializ
ing. This means that sm_lreset erases variables that are not in the file. 

The me may be in the current directory, or in any of the directories listed in the 
SMPATH environment variable. It contains pairs of names with values, each enclosed in 
quotes. While all whites space outside the quotes is ignored, we recommend for read
ability that the file have one name-value pair per line. If an entry bas multiple occur
rences, it may be subscripted in the file. Here are a few sample pairs: 

-husband- -Ronald Reagan
·wife[l]- -Jane Wyman· 
·wife[2]- -Nancy Davis-

If you plan to use this function, we recommend that you group your variables in sepa
rate files by scope. You can use sm_ininames to list a number of files for initializa
tion. 

RETURNS 
-1 if me not found or scope out of range. 
o otherwise. 

RELATED FUNCTIONS 
sm_lclear(scope); 

EXAMPLE 
/* Reinitialize LOB entries of scope 6, which has been 

* assigned to customer informat10n. */ 

#define CUSTOMER_SCOPE 6 
#define CUSTOMER_IN IT ·customers.ini-

sm_lreset (CUSTOMER_INIT, CUSTOMER_SCOPE); 

Page 326 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Istore 
copy everything from screen to LOB 

SYNOPSIS 
int sm_lstore(); 

DESCRIPTION 

This function copies data from the screen to local data bJock entries with matching 
names. 

The JAM Executive automatically calls sm_lstore when bringing up a new screen 
or before closing a window. This function need not be called by application code except 
under special circumstances. 

RETURNS 

-3 if sufficient memory is not available. 
o otherwise. 

RELATED FUNCTIONS 

sffl-allget(respect_flag); 

JAM Release 5.03 20 Nov 92 Page 327 



JAM Programmer's GUide 

Itofield 
place a long integer in a field 
",,: : ": •• " :.. .. •• :... ...... ::...... '! .::.:...: .. ~ .:" .:...; ... ~ ~ •• ..: ... :.. ",,: ... :. ..... "" • ..c:- .:.~." ........ : ... : •••• :.:.: ........ :..-: ~.:. ".. ~ .. ~.. .. ": •• -=...:. ~ ~ -:: :. ": 

SYNOPSIS 
int sm_ltofield(field_number, value) 
int field_number; 
long value; 

DESCRIPTION 

The long integer passed to this routine is converted to buman-readable form and placed 
in fie Id_numbe r. If the number is longer than the field, it is truncated without warn
ing, on the right or left depending on the field's justification. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 

sm_e_ltofield(field_name, element, value); 
sm_i_ltofield(field_name, occurrence, value); 
sm_n_ltofield(field_name, value); 
sffl-o_ltofield(field_number, occurrence, value); 

RELATED FUNCTIONS 

sm_itofield(field_number, value); 
sm_lngval(field_number); 

EXAMPLE 
#include ·smdefs.h· 

/* Set the number of fish in the sea to a 
* smallish number. */ 

#define MEDITERRANEAN 4 

Page 328 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

m flush -
flush the status line 

SYNOPSIS 

DESCRIPTION 
Tbis function forces updates to the status tine to be written to the display. This is useful 
if you want to display the status of an operation with sm_d_msg_l ine, without flusb
ing the entire display as sIILf 1 ush does. 

RELATED FUNCTIONS 

EXAMPLE 
linclude ·smdefs.h· 

/* Process a big pile of records, providing 
* status as we go. */ 

char buf [80] ; 
int k; 

k = 0; 
do { 

sprintf (buf, ·Processing record %d-, k + 1); 
sm_d_msg_line (buf, REVERSE I WHITE); 
sm_lILflush (); 

} while (process (records[k++]) >= 0); 

JAM Release 5.03 20 Nov 92 Page 329 



JAM Programmer's GUide 

max occur 
get the maximum number of occurrences 

: :.... : .. ::: ..... ) .:.:: ... : .. : :....; .: : 

SYNOPSIS 
Int sm_max_occur < field_number) 
Int field_number; 

DESCRIPTION 

.. .." .. : -.: ...... : ...... . - ....... . .................. . ........ . ........... -.- .. 

This function returns the maximum number of occurrences that the array can hold as 
defined in the JAM Screen Editor or by sm_sc_max. If you wish to fmd out the high
est occurrence number of an array that actually contains data, use sm_num_occurs. 

RETURNS 

o if the field designation is invalid. 
1 for a non-scrollable single field. 
The number of elements in a non-scrollable array. 
The maximum number of occurrences in a scrollable array. 

VARIANTS 

RELATED FUNCTIONS 

EXAMPLE 
Binclude Rsmdefs.hR 

/* Find the number of occurrences in an array of 
* whole numbers, say numbers of children, and 
* allocate some memory to hold them. */ 

int *children, howmanYi 

if ((howmany = sm_n_max_occur (RchildrenR» > 0) 
children = (int *)calloc(howmany, sizeof(int»i 

Page 330 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

mnutogl 
switch between menu mode and data entry mode on a 
dual-purpose screen 
:"": ":" .... : .. :":: --::". ~: ....... : .~ .. -::. : -:" -: .. ~ --:" :: ..... "-,,....... ..... .. ...... .. ... .... .. .. "".... .." 

SYNOPSIS 
int sm_mnutogl(screen_mode) 
int screen-mode; 

DESCRIPTION 

.. .. ... .. .. : .... .. ........ ... . .. 

J AM SuppOrts the use of a single screen as both a menu and a data entry screen, but the 
screen must be in one or the other "mode" at any given moment This function can be 
used to change the mode of the screen and to test which mode the screen is in currently. 
The mode argument may have one of four values as defmed in smumisc . h: 

Value Meaning 

IN_AUTO No action (generally used just to test the return value). 

IN_DATA Change the screen to data entry mode. 

IN_MENU Change the screen to menu mode. 

IN_TOGL Toggle the screen from one mode to the other (akin to the MTGL 
logical key). 

This function is similar to the built-in control function jm_mnutogl. 

RETURNS 

Mode that the screen was in before the function was called (IN_DATA or IN_MENU.) 
-1 if the mode specification is invalid. 

JAM Release 5.03 20 Nov 92 Page 331 



JAM Programmer's Guide 

msg 
display a message at a given column on the status line 
".:... .. .. : ••• : .. ": .Nt" ::::....:.:...: •• ~.: :-•• ~: ..... ::.. .:::"" ...:.. • ..: :: "" ::~:.. ..~ ••• ~.:~ ~.: .... : : :..:.c:.:.~::-:~: ... ::;.:..:... l.~::...:: ..... : . ..:..~ :~.;:.:.c-.. : ." .. ;':·l.-: ... :~: 

SYNOPSIS 
void sm_msg(column, disp_length, text) 
int column; 
int disp_lengthi 
char *text; 

DESCRIPTION 

The message is merged with the current contents of the status line, and displayed begin
ning at column. disp_length gives the number of characters to display. 

On terminals with on screen attributes, the column position may need to be adjusted to 
allow for attributes embedded in the status line. Refer to sm_dJllsg_l ine for an ex
planation of how to embed attributes and function key names in a status line message. 

This function is called by the function that updates the cursor position display (see 
sm_c_vis). 

RELATED FUNCTIONS 

EXAMPLE 
linclude ·smdefs.h-

/* This code displays a message, then chops out 
* part of it. */ 

char *textO = - -; 
char *text1 = -Message is displayed on the status -

-line at col 1.-; 

sm_msg(l, strlen(textl), textl); 
s~msg(l2, strlen(textO), textO); 

Page 332 JAM Release 5,03 20 Nov 92 



Chapter 13: Function Reference 

mS9_get 
find a message given its number 
.... ::: .. " .. ..": ..... .. ... ,:.: : .. :.. ... :.... .. .... . .. : .. :: :.~.~ .. :........ .." .. : .. :.~ ...... ~ .: .... : :.~.:=>:- .'" ....... -................... .. : ..... : . .............. - ..... .. 

SYNOPSIS 

#include "smerror.h" 

char *sm_msg-get(number) 
int number; 

DESCRIPTION 
The messages used by JAM library routines are stored in binary message flIes, which 
are created from text files using the JAM utility, msg2bin. Use sm_msgread to load 
message files for use by this function. 

This function takes the number of the message desired and returns the message, or a 
less informative string if the message number cannot be matched. 

Messages are divided into classes based on their numbers, with up to 4096 messages per 
class. The message class is the message number divided by 4096, and the message off
set within the class is the message number modulo 4096. Predefined JAM message 
numbers and classes are defined in smerror . h. 

RETURNS 

The desired message, if found 
otherwise, the message class and number, as a string 

RELATED FUNCTIONS 
sm_msgfind(number); 
sm_msgread(code, class, mode, arg)i 

EXAMPLE 
~include "smdefs.h" 
linclude ·smerror.h" 

/* Assume that an anxious programmer has just 
* typed in the question, "Will my boss like 
* my new program?· This code fragment answers 
* the question. */ 

sm~-putfield ("answer·, rand() & 1 ? 
sm_msg_get (SM_YES) : 
sm_msg_get (SM_NO))i 

JAM Release 5.03 20 Nov 92 Page 333 



JAM Programmer's Guide 

msgfind 
find a message given its number 

.......... .toO'" ............. '"... ............... .. ...... . .. ............. .. :" .: ........................ -. ............... .. 

SYNOPSIS 

#include "smerror.h" 

char *sm_msgfind(number) 
int numberi 

DESCRIPTION 

.. : .. .. .-. ...... .. 

This function takes the number of a Screen Manager message, and returns the message 
string. It is identical to sm_msg_get, except that it returns zero if the message number 
is not found. 

Screen Manager message numbers are defmed in smerror . h. 

RETURNS 

The message 
o if the message number is out of range 

RELATED FUNCTIONS 
sm_msg_get(number)i 
sm_msgread(code, class, mode, arg)i 

EXAMPLE 
#include -smdefs.h
#include ·smerror.h-

/* print out message #4 */ 

sprintf (buf, -The message reads: %s\n-, sm_msgfind 
(SM_BADKEY)); 

sm_quiet_err (buf); 

Page 334 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

msgread 
read message file into memory 

.. -.-.. : : .... : . .. . ..... .. .: 

SYNOPSIS 

#include Usmerror.hU 

Int sm_msgread(code, class, mode, arg) 
char *code; 
Int class; 
Int mode; 
char *arg; 

DESCRIPTION 

Reads a single set of messages from a binary message file into memory, after which 
they can be accessed using sm_msg_get and sm_msgf indo The code argument se
lects a single message class from a file that may contain several classes: 

Code Class Message Type 

SM SM_MSGS Screen Manager 

FM FM_MSGS Screen Editor 

JM JM_MSGS JAM run-time 

JX JX_MSGS Data Dictionary & Control Strings 

UT UT_MSGS Utilities 

(blank) Undesignated user 

class identifies a class of messages. Classes 0-7 are reserved for user messages, and 
several classes are reserved to JAM; see smerror. h. As messages with the preflX 
code are read from the file, they are assigned numbers sequentiaIIy beginning at 4096 
times class. 

mode is a mnemonic composed from the following list. The fIrSt five indicate where to 
get the message file; at least one of these must be supplied. The latter four modify the 
basic action. 

JAM Release 5.03 20 Nov 92 Page 335 



JAM Programmer's GUide 

Mnemonic Action 

MSG_DELETE Delete the message class and recover its memory. 

MSG_DEFAULT Use the default file defined by the setup variable 
SMMSGS. 

MSG_FILENAME Use the file named by argo 

MSG_ENVIRON Use the file named in an environment variable named by 
argo 

MSG_MEMORY Use a memory-resident file whose address is given by argo 

MSG_NOREPLACE Modifier: do not overwrite previously installed messages. 

MSG_DSK Modifier: leave file open, do not read into memory 

MSG_INIT Modifier: do not use screen manager error reporting. 

MSG_QUIET Modifier: do not report errors. 

You can or MSG_NOREPLACE with any mode except MSG_DELETE, to prevent 
overwriting messages read previously. Error messages are displayed on the status line, 
if the screen has been initialized by sm_in iter t; otherwise, they go to the standard 
error output. You can or MSG_INIT with the mode to force error messages to standard 
error. Combining the mode with MSG_QVIET suppresses error reporting altogether. 

If you or MSG_DSK with the mode, the messages are not read into memory. Instead the 
me is left open, and sm_msg_get and sm_msgf ind fetch them from disk when re
quested. If your message file is large, this can save substantial memory; but you should 
remember to account for operating system me buffers in your calculations. 

arg contains the environment variable name for MSG_ENVIRON; the ftle name for 
MSG_FILENAME; or the address of the memory-resident ftle for MSG_MEMORY. It 
may be passed as zero for other modes. 

RETURNS 
o if the operation completed successfully. 
1 if the message class was already in memory and the mode included 

MSG_NOREPLACE. 
2 if the mode was MSG_DELETE and the message file was not in memory. 
-1 if the mode was MSG_ENVIRON and the environment variable was undefmed. 
-2 if the mode was MSG_ENVIRON or MSG_FILENAME and the message file could 

not be read from disk; other negative values if the message file was bad or 
insufficient memory was available. 

Page 336 JAM Release 5 03 20 Nov 92 



Chapter 13: Function Reference 

RELATED FUNCTIONS 

sm_msg_get(number)i 
sm_msgfind(number)i 

EXAMPLE 
.include -smdefs.h
.include -smerror.h-

/* This code fragment duplicates the Release 3 
* routine s~msginit(). */ 

sm_msginit (msg_file) 
char * msg_file; 
{ 

} 

int mode = (msg_file ? MSG MEMORY MSG_DEFAULT I 
MSG_NOREPLACE) I MSG_INIT; 

if 

{ 

} 

( sm_msgread (-SM-, 
msg_file) < 0 II 
sm_msgread (-JM·, 

msg_f He) < 0 II 
s~msgread (·FM·, 
msg_file) < 0 II 
s~msgread (-JX-, 
msg_file) < 0) 

sm_resetcrt(); 
exit (RET_FATAL); 

SM_MSGS, mode, 

JM_MSGS, mode, 

F~MSGS, mode, 

JX_MSGS, mode, 

s~msgread «char *)0, 0, mode & -MSG_INIT 
MSG_QUIET, msg_file); 

return (0); 

JAM Release 5.03 20 Nov 92 Page 337 



JAM Programmer's Guide 

mwindow 
display a status message in a window 

.. . .-. ............. .... .. : ..... : : ... ::: :.: : .:" ~ .. .. : :: ......... : : .. : ... :-.. ~ ......... : : 

SYNOPSIS 
int sm_mwindow(text, line, column) 
char *text; 
int line; 
int column; 

DESCRIPTION 

: : : "" ,,": :" : ......... :::. : .... 

This function displays text in a pop-up window, whose upper left-hand comer ap
pears at line and column. The line and column are counted from o. If line is 1, the 
top of the window appears on the second line of the display. The window itself is 
constructed on the fly by the run-time system. No data entry is possible in it, nor is data 
entry possible in underlying screens as long as it is displayed. 

Due to the delayed write feature in JAM, you should call sm_flush to cause the 
screen to be updated and the message to be displayed, unless you call sm_inpu t di
rectly after the call to sm_mwindow. sm_close_window may be used to close a 
window called with sm_mwindow. 

All the percent escapes for status messages, except %M and % W, are effective. Refer 
to sm_emsg for a list and full deSCription. If either line or column is negative, the 
window is displayed according to the rules given for sm_r_at_cur. 

RETURNS 

-1 if there was a malloc failure. 
1 if the text had to be truncated to fit in a window. 
o otherwise. 

RELATED FUNCTIONS 

EXAMPLE 
/* By judicious use of %N's, it is possible to get 
* your messages centered on the screen when you 
* call sm_mwindow(). 
*/ 

void poem () 

Page 338 JAM Release 5.03 20 Nov 92 

, 



Chapter 13: Function Reference 

sm_mwindow (-The world is too much with us.\ 
Late and soon,%N\ 

Getting and spending, we lay waste our powers.%N\ 
Little we see in Nature that is ours;%N\ 
We have given our hearts away, a sordld boon!%N%N\ 
The sea that bares her bosom to the Moon,%N\ 
The winds that will be raging at all hours,%N\ 
And are up-gathered now like sleeping flowers,%N\ 
For this, for everything, we are out of tune;%N\ 
It moves us not. Great God! I'd rather be%N\ 
A pagan, suckled in a creed outworn;%N\ 
So might I, standing on this pleasant lea,%N\ 
Have glimpses that would make me less forlorn:%N\ 
Catch sight of Proteus rising from the sea,%N\ 
Or hear old Triton blow his wreathed horn.-, 

6, 16); 

JAM Release 5.03 20 Nov 92 Page 339 



JAM Programmer's Guide 

n 
variants that take a field name only 
" .. :-: ;. " .. :.:. . .:.. :, .. ~ .:::..: . ....:. ~ x:.:i ..... : .. :-.. .. :. =-< ..... : .. .:...: • .::: •• ::-.............. ):.:.~ ~ : •••• ~ •• j::- ...:. ": ; ::.::..:.. ........ :.c. .. , •• t .:" .. ":: .......... ),,~" .. :. ...... ~ .:::. 

SYNOPSIS 
sm_n_ ... (field_name, ... ) 
char *field-pame; 

DESCRIPTION 

The n_ functions access a field by means of the field/group name. For a complete de
scription of individual functions, look under the related function without n_ in its 
name. For example, sm_n_amt_format is described under sm_amt_format. If 
the named field/group is not on the screen, these functions attempt to access a similarly 
named entry in the local data block. 

Page 340 JAM Release 5.03 20 Nov 92 

" I 



Chapter 13: Function Reference 

name 
obtain field name given field number 
~ .. ..:...::..- ~ -:v:-::::.. :.) ...= ... .< .. x..-::." .:..:~ : . ....:. ~: ... ~.:':::.~." :,," .. : :...::.. : : :::.. 

SYNOPSIS 
char *sm_name(fiel~number) 
int field_number; 

DESCRIPTION 

.. ~ ........ "." 
••• J'. "" ...... "" .:::~ :" ,," ... : .... :.... .. .: ...... "" ... -.. : .. 

Given a field number, sm_name returns a pointer to a buffer that contains the field 
name referenced by field_number. This routine shares with several others a pool of 
buffers where it stores returned data. The value returned by any of these routines should 
therefore be processed promptly or copied. 

RETURNS 

Pointer to the name of the field referenced, if found. 
Else a pointer to a null string. 

JAM Release 5.03 20 Nov 92 Page 341 



JAM Programmer's Guide 

next_sync 
find next synchronized array 

SYNOPSIS 
int sm_next_sync(field_number) 
int field_number; 

DESCRIPTION 

.. . 

.. y ......... 
....... -.. ) .... .. .. . ......................... . 

Given a field number, this function finds the next array synchronized with the given 
field, and returns the field number of the corresponding element in that array. The next 
synchronized array is dermed as the one to the right. If field_number is in the righ
most synchronized array, the function returns the corresponding element in the leftmost 
synchronized array (ie- it wraps around the screen). 

RETURNS 
The field number of the next synchronized array if there is one. 
Otherwise, the field number the fooction was passed. 

Page 342 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

nl 
position cursor to the first unprotected field beyond the 
cu rrent line 
•• .;:--: ."'...: : ...... ;:'.~ •. ::' .. " ... "" .:" ... ::-- .... " .. : ~ -:- :: ....... : ..... : ....... : ... : "'.. .. ;.:-- .... :"::.: .. =---:" :"":: -: "" ~ ;:: ::" : : ::. : -.N .. "-::: -" : :v .... "" ...... : :-s. ...... 

SYNOPSIS 

DESCRIPTION 
This function moves the cursor to the next OCClDTence of an array, scrolling if necessary. 
Unlike the down-arrow, it allocates an empty scrolling occurrence if there are no more 
allocated occurrences below but the maximum bas not yet been exceeded. 

If the current field is not scrolling, the cursor is positioned to the first unprotected field, 
if any, following the current line of the fOIm. If there are no unprotected fields beyond 
the current field, the cursor is positioned to the flfSt unprotected field of the screen. 

If the screen has no unprotected fields at all, the cursor is positioned to the first column 
of the line following the current line. If the cursor is on the last line of the fOIm, it goes 
to the top left-hand comer of the screen. 

This fwction doesn't immediately trigger field entry, exit, or validation processing. 
Such processing occurs based on the cursor pOSition when control returns to 8m_in
put. 

This function is ordinarily bound to the RETURN key. 

RELATED FUNCTIONS 
sm_backtab(); 
sm_home(); 
sm_last(); 
sIILtab ( ) ; 

EXAMPLE 
.include ·smdefs.h· 
.include ·smkeys.h-
/* Scuttle down a scrolling array until we come 

* to a nonblank item, or run out of array. */ 
char buf[256]; 

while (s~t_scroll (s~fldnumber + 1) && 
s~getfield (buf, sm_fldnumber + 1) == 0) 

{ 

} 

JAM Release 5.03 20 Nov 92 Page 343 



JAM Programmer's GUide 

novalbit 
forcibly invalidate a field 

.: .. : ... -: .. " : ~ .'". : .. .. .. ..... 

SYNOPSIS 
lnt sm_novalblt(field_number) 
int field_number; 

DESCRIPTION 

.. .. -.! .... '". '". : .~ :J''' .... -: '":-:. .' 

Resets the VALIDED bit of the specified field, so that the field is again subject to val
idation when it is next exited, or when the screen is validated as a whole. 

JAM sets a field's VALIDED bit automatically when the field passes all its validations. 
The bit is initially clear, and is cleared whenever the field is altered by keyboard input 
or by a library function such as sm-putfield. 

RETURNS 
-1 if the field is not found. 
o otherwise. 

VARIANTS 
sm_e_novalbit(field_name, element); 
sm_i_novalbit(field_name, occurrence); 
sm_n_novalhit(field_name); 
sm_o_novalbit(field_number, occurrence); 

RELATED FUNCTIONS 
sm_fval(field_number); 
sm_s_val(); 

EXAMPLE 
linclude -smdefs.h-

/* Here is a validation function for a -last_name
* field. When it is changed, it marks the 
* -first_name- field, which depends on it, 
* invalid. * / 

int validate (field, data, occur, bits) 
char *data; 
{ 

lf (bits & VALIDED) /* Not really changed */ 
return 0; 

sm_n_novalbit (-first_name#); 
return 0; 

Page 344 JAM Release 5.03 20 Nov 92 



null 
test if field is null 

SYNOPSIS 
int sID_null(field_number) 
int field_number; 

DESCRIPTION 

Chapter 13: Function Reference 

Use sm_null to test a field to see whether it has both the null edit and contains the null 
character string that has been assigned to that field. See null edits in the Author's Guide. 

RETURNS 

1 H the field has the null edit and contains the appropriate null character string. 
-1 if the field does not exist 
o otherwise. 

VARIANTS 
sm_e_null(field_name, element); 
sm_i_null(field_name, occurrence); 
sm_n_null(field_name); 
sm_o_null(field_number, occurrence); 

JAM Release 5.03 20 Nov 92 Page 345 



JAM Programmer's GUide 

num_occurs 
find the highest numbered occurrence containing data 
: .. : ....... ~ ...... :.:.::::. ... ..:.: ...... .:. • .: "" :-:.~~. :...:: .• : .. :.:-: :: : .• : .: .... : .. :.: ...... ::: .. ::: -::).:.J''''' "".: .:" .. : •.•... : .1' ••••• :::::~ •• :.J\o. :.: ..... :" .. " •..• 

SYNOPSIS 
int sm_num_occurs(field_number) 
int field_number; 

DESCRIPTION 

This function returns the highest occurrence number of the array specified by 
fie Id_nwnber that actually contains data. The field number may be that of any field 
with the array. 

Most of the time the highest numbered occurrence containing data is the same as the 
number of occurrences actually containing data. However, it is possible to have blank 
occurrences preceding occurrences containing data. 

This count is different from the maximum capacity of an array, which you can retrieve 
with sm_max_occur. 

RETURNS 

The highest numbered occurrence containing data. 
o if there is no data in the field. 
-1 if the field is not found 

VARIANTS 

EXAMPLE 
#include ·smdefs.h· 

/* Compute the number of unused items in this 
* scrollable fi~ld. */ 

int maximum, used, unused; 

maximum = sm_n_max_occur C-hatpins-); 
used = sm_n_nurn_occurs C-hatpins·); 
unused = maximum - used; 

Page 346 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

o 
variants that take a field number & occurrence number 

SYNOPSIS 
sm_o_ ... (field_number, occurrence, ... ) 
int field_number; 
int occurrence; 

DESCRIPTION 

The 0_ functions refer to data by field number and occurrence number. An occurrence 
is a slot within an array of fields in which data may be stored. Occurrences may be ei
ther on or off-screen. Since JAM treats an individual field as an array with one field, 
even a single non-scrolling field is considered to have one occurrence. The JAM li
brary contains routines that allow you to manipulate individual occurrences during run
time. 

If occurrence is zero, the reference is always to the current contents of the specified 
field, or if the field is an array, to the current contents of the base field of the array. 

For the desaiption of a particular function, look under the related function without 0_ 

in its name. For example, sm_o_arnt_format is desaibed under sm_amt_format. 

JAM Release 5.03 20 Nov 92 Page 347 



JAM Programmer's Guide 

occur no -
get the current occurrence number 
",,::-.: of'. ~ .... : :: •• ~ .... :;....: i· .. ..:::....:.e;:;E;..:::: .:.1'.:" .::::::;....,..:.: ••• :;::::..s:.:.v..~-:.,.;:' :5...:....:. ~.:C .. :.~ ~:: ... ~ :.::~ ::~:':"' .. : .. :.:-.::.... ...... : .... :.: .. : -:.: ........ :: :~.;:. 

SYNOPSIS 

DESCRIYfION 

This function returns the occurrence number of the field beneath the cursor. If the field 
is an element of a non-scrollable array, the occurrence number is the same as the field's 
element number. Likewise, the occurrence number of a single non-scrolling field is 1. 

RETURNS 

o if the cursor is not in a field. 
Otherwise, the occurrence number. 

RELATED FUNCTIONS 

sm_getcurno()i 

EXAMPLE 
linclude ·smdefs.h· 

/* Find the occurrence number of the field under the*/ 
/* cursor, and scroll down to the next higher*/ 
/* multiple of 5. */ 

int thisn; 

thisn = s~occur_no (); 
sm_rscroll (sm_getcurno (), 5 - (thisn % 5»; 

Page 348 JAM Release 5.03 20 Nov 92 

I 
I 



Chapter 13: Function Reference 

off_90field 
move the cursor into a field, offset from the left 

SYNOPSIS 
int sm_off_gofield(field_number, offset) 
int field_number; 
int offset; 

DESCRIPTION 
This function moves the cursor into field_number, at position offset within the 
field's contents, regardless of the field's justification. The field's contents are shifted if 
necessary to bring the appropriate piece onscreen. 

If offset is larger than the field length (or the maximum length if the field is shift
able), the cursor is placed in the rightmost position. 

RETURNS 
-1 if the field is not found. 
o otherwise. 

VARIANTS 
sm_e_off_gofield(field_name, element, offset); 
sm_i_off_gofield(field_name, occurrence, offset); 
sm_n_off_gofield(field_name, offset); 
sm_o_off_gofield(field_number, occurrence, offset); 

RELATED FUNCTIONS 
sm_disp_off(); 
sffl-gofield(field_number); 
sm_sh_off(); 

EXAMPLE 
'include ·smdefs.h· 
'include <ctype.h> 
/* Place cursor over the first embedded blank in the ·names· field. */ 

char buf[256], *p; 
int length; 

length = sm_n_getfield (buf, ·names·); 
for (p = buf; P <buf + length; ++p) 
{ 

) 

if (isspace (*p)) 
break; 

sm_n_off_gofield (·names·, p - buf); 

JAM Release 5.03 20 Nov 92 Page 349 



JAM Programmer's Guide 

option 
set a Screen Manager option 
:.; .. ~ ~::: ...... : .:::~ •• ::.-: • .:.:.::.:~:~ .: • ...: ,,: •• :::.: .. :;.: ~.: h..:. .:: ... : .... ;...::.jo .:. "= •• :~ ••• ::" .. :"''' .. : ... : •• "";.::.. ":.-....:::..s:~-:.. -:: ....... .:::. ~": .~:-... :. ..... '" ~:.:.'" :::.;.::. .. ~.: 

SYNOPSIS 
int sm_option(option, newval) 
int optioni 
int newvali 

DESCRIPTION 

Use sm_option to alter during run-time the default Screen Manager options defined 
in smsetup. h. Possible options include, error window attributes, delayed write op
tions, cursor display and zoom options. See the "Setup File" section in the Configura
tion Guide for a list of options and possible values. Use sm_keyopt ion to alter the 
behavior of cursor control keys. 

If you wish to simply inquire as to an option's current value, use the value NOCHANGE 
(defined in smsetup . h) for newval. 

This function replaces the following version 4.0 functions: sm_ch_emsgatt, 
sm_ch_form_atts, sm_ch_qrnsgatt, sm_ch_umsgatt, sm_dw_options, 
sm_er_options, sm_fcase, sItLfextension, sm_ind_set, SInJnp_Op
tions, sm_mp_string, s~ok_options, sm_stextatt, and sm_zm_op
tions. They are included in your version 5.0 library only for backward compatibility. 
We strongly recommend that you do not use them in the future. 

RETURNS 

The old value for the specified option. 
-1 if the option is out of range. 

RELATED FUNCTIONS 

sID_keyoption(key, mode, newval)i 

EXAMPLE 
/* Put ~pulldown_leave in a control string to leave submenus open. */ 
/* or Apulldown_close to make them close. */ 

Page 350 JAM Release 5.03 20 Nov 92 

., 



/* Leave submenu open when choice is made. */ 
int 
pulldown_leave(ignore~data) 

char * ignored_data; 
{ 

} 

sm_option(IN_SUBMENU,OK_LEAVEOPEN); 
return(O); 

/* Close submenu when choice is made. */ 
int 
pulldo~close(ignore~data) 
char * ignore~data; 
{ 

} 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 351 



JAM Programmer's Guide 

oshift 
shift a field by a given amount 

SYNOPSIS 
int sm_oshift(field_number, offset) 
int field_number; 
int offset; 

DESCRIPTION 

This function shifts the contents of field_number by offset positions. If offset 
is negative, the contents are shifted right (data past the left-hand edge of the field be
come visible); otherwise, the contents are shifted left Shifting indicators, if displayed, 
are adjusted accordingly. 

The field may be shifted by fewer than offset positions if the maximum shifting 
width is reached with less shifting. 

RETURNS 

The number of positions actually shifted. 
o if the field is not found or is not shifting. 

VARIANTS 

sffl-n_oshift(field_name, offset); 

EXAMPLE 
'include -smdefs.h-

/* Shift the Republicans gently toward the left, 
* and the Democrats toward the right. 
* For extra credit, speculate on which shift 
* is positive. */ 

s~n_oshift (-REP-, 1); 
s~n_oshift (-DEM-, -1); 

Page 352 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

• • plnqulre 
obtain value of a global string 
:.~~: ~. ~~.:- .. :...: .... :::.. :" 

SYNOPSIS 

........... ............ : : : .. :: ... : ... :. ;.. A :~. :: .. "" :::.: .... "'.y : :: .. ",,: .. :" ",,:~ .::..:.; .. ":" ::.. •• :: •• :: .... ~ .•. : :~ ... :. ,,--::.--:-:": ",,-;. 

#include "smglobs.h" 

char *sm-pinquire(which) 
int which; 

DESCRIPTION 
This function is used to obtain the current value of a global pointer variable. The 
mnemonics for which are defmed in smglobs .h. If you wish to modify a global 
string use sm-pset. 

Pointer values for which are defined in smglobs. h. They are: 

Mnemonic Meaning 

P_YES The Y character for YESINO field. This is returned as a three 
character string. The flfSt character is the lowercase yes value, 
the second character is the uppercase yes value, and the third 
character is the null terminator. 

P_NO The N character for YESINO field. This is returned as a three 
character string. The flfSt character is the lowercase no value, 
the second character is the uppercase no value, and the third 
character is the null terminator. 

P_DEClMAL This is returned as a three character string. The flfSt character 
is the user's decimal point marker, the second character is the 
operating system's decimal point marker, and the third 
character is the null terminator. 

P_FLDPTRS Pointer to an array of field structures. The implementation of 
these structures is very release dependent. 

P_TERM Returns the name JAM uses as the terminal identifier or the 
null string if not found. 

P_SPMASK Pointer to a memory-resident, full-size form containing all 
blanks. 

JAM Release 5.03 20 Nov 92 Page 353 



JAM Programmer's GUide 

Mnemonic Meaning 

P_USER Pomter to developer-specified region of memory. This pointer 
is not set by JAM; it IS set and mamtained, if desired, by the 
application. 

SP_NAME Name of the active screen. 

SP_STATLlNE Text of current status line. 

SP_STATATTR Attributes of current status line (pointer to array of unsigned 
short integers). 

P_DICNAME Name of data dictionary me. 

v_ Any of the "V _" mnemonics defmed in smvideo. h may be 
passed to obtain various video related information. 

In general, the objects pointed to by the pointers returned by sm-pinquire have lim
ited duration and should be used or copied quickly (except for P _USER, which is main
tained by the application). The P _ pointers point to the actual objects within JAM. The 
SP _ pointers point to copies of the objects. Since the characteristics of these objects are 
implementation dependent, they may change in future releases of JAM. In no case (ex
cept P _USER) should the objects be modified directly through the pointers returned by 
sm-pinquire. Use sm-pset to modify selected objects). 

RETURNS 

If the argument corresponds to a global pointer variable, the value of that variable is 
returned. 

o otherwise. 

RELATED FUNCTIONS 

srn_finquire(field_nurnber, which); 
srn_gp_inquire(group_narne, which); 
srn_iset(which, newval); 
srn--pset(which, newval); 

EXAMPLE 
/* Get next key from user. Return -1 for 'n', 1 for 'y', and 0 */ 
/* if we don't know. 'n' and 'Y' corne from the message file, and */ 
/* so can be changed to reflect the local language. */ 
int 
get-yes_no ( ) 
{ 

Page 354 JAM Release 5.03 20 Nov 92 

., 
, 
I 



} 

unsigned key; 
char *yesi 
char *noi 
key = sm_getkeY()i 
yes = sm-pinquire(P_YES)i 
no = sm-pinquire(P~O)i 
if (key == yes[O] II key == yes[l]) 

return(l)i 
if (key = = no [ 0 ] I I key = = no [ 1] ) 

return(-l)i 
return(O)i 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 355 



JAM Programmer's GUide 

protect 
protect an array 
.. " .... ::.. .. ...... :~ :",,:"" ~ : .. v:" :: .. 

SYNOPSIS 

~ .... .. .. ... .. .. .... .. .. " .. :. .... :.. :. .. : :: :. "" .. : ..... :. :.. .. : . .-: :.: 

lnt sm_aprotect(fleld_number, mask) 
int sm_aunprotect(field_number, mask) 
int sm-protect(field_number) 
int sm_unprotect(field_number) 
int sm_lprotect(field_number, mask) 
int sm_lunprotect(field_number, mask) 

int field_number; 
int mask; 

DESCRIPTION 

. .... -. .... .. . ........ . 

There are four types of protection associated with fields and arrays, any combination of 
which may be assigned: data entry, tabbing into, clearing, and validation. sm-pro
teet and sm_unproteet always set and clear all four types of protection. The re
maining protection functions set and clear any combination of protection, as specified 
by mask. The mnemonics for mask are defined in smflags . hsmval ids .h and are 
listed below. Combinations may be specified by oring mnemonics together. 

Mnemonic for mask Meaning 

EPROTECf protect from data entry 

TPROTECf protect from tabbing into and from entering via any 
other key 

CPROTECT protect from clearing 

VPROTECT protect from validation 

ALLPROTECT protect from all of the above 

Protection is associated with an individual field (i.e. an element), and with an array as 
a whole. Therefore, all off screen array occurrences always share the same level of 
protection, while the onscreen occurrences have the levels of protection (possibly all 
different) associated with their host fields (i.e. elements). Since protection is associated 
with individual fields, and not with individual occurrences, deleting an occurrence with 
sm_doeeur does not scroll up the protection with the occurrences. 

Page 356 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sm~rotect, sm_unprotect, sm_lprotect, and sm_lunprotect set and 
clear protection for individual fields. sm_aprotect and sm_aunprotect set and 
clear protection for all of the fields of an array, and for the array as a whole (the 
field_number may specify any field in the array). For example, amprotecting an 
array with sm_aunprotect undoes protection done by sm_lprotect. A subse
quent call to sm_lprotect re-protects the specified field of the array, but never af
fects the off screen occurrences of the array. 

Caution: It is generally safer to protect and unprotect arrays with sm_aprotect and 
sm_aunprotect, rather than with the field-oriented protection functions. 

RETURNS 
-1 if the field does not exist; 
o otherwise. 

VARIANTS 
sm_n-protect(field_name); 
sm_e-protect(field_name, element); 
sm_n_unprotect(field_name); 
sm_e_unprotect(field_name, element); 
sm_n_lprotect(field_name, mask); 
sm_e_lprotect(field_name, element, mask); 
sm_n_lunprotect(field_name, mask); 
sm_e_lunprotect(field_name, element, mask); 
sm_n_aprotect(field_name, mask); 
sm_n_aunprotect(field_name, mask); 

EXAMPLE 
linclude ·smdefs.h· 

/* Postpone calculations by protecting the subtotals 
column from validation. This will prevent execution 
of its math edit. */ 

sm_n_aprotect(·subtotals·, VPROTECT); 

/* Protect the partnurn array from data entry and clearing, 
* while still allowing the cursor to enter it. This 
* allows the user to scroll through partnurn and select the 
* desired partnum. */ 

sm_n_aprotect(·partnurn·, EPROTECT I CPROTECT); 

JAM Release 5.03 20 Nov 92 Page 357 



JAM Programmer's Guide 

pset 
Modify value of global strings 

.. .. .. .. A .. '".'" .............. .. .... ...... : .. . .. 
• '" ....... " : •••••• :...... .... ~.... .'"'O ........ .. : ........ - .......................... . .. .. .. ....... V 

SYNOPSIS 

#include "smglobs.h" 

char *sm-pset(which, newval) 
int which; 
char *newval; 

DESCRIPTION 

This function is used to modify the contents of a global string. The string you wish to 
change is specified by which. The value that you wish to change the variable to is spe
cified by newval. If you wish only to get the value of a global string use sm-pin
quire. 

The following values for which, defined in smglobs . h, are available: 

Mnemonic Meaning 

P_YES The Y character for YESINO field. This is specified by a three 
character string. The flfSt character is the lowercase yes value, 
the second character is the uppercase yes value, and the third 
character is the null terminator. 

P_NO The N character for YESINO field. This is specified by a three 
character string. The first character is the lowercase no value, 
the second character is the uppercase no value, and the third 
character is the null terminator. 

P_DEClMAL This is specified by a three character string. The first character 
is the user's decimal point marker, the second character is the 
operating system's decimal point marker, and the third 
character is the null terminator. 

P_USER Pointer to developer-specified region of memory. This pointer 
is not set by JAM; it is set and maintained, if desired, by the 
application. 

SP_NAME Name of the active screen. 

Page 358 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Mnemonic Meaning 

SP_STATLINE Text of current status line. 

SP_STATATTR Attributes of current status line (pointer to array of unsigned 
short integers). 

v_ Any of the "V _" mnemonics defined in smvideo . h may be 
specified to change video related information. 

RETURNS 
If which is one of the above, the old contents of the corresponding array are copied 
into 

a buffer, and a pointer to that buffer is returned. 
o otherwise. 

RELATED FUNCTIONS 
sm_iset(which, newval}; 
sm-pinquire(which); 

EXAMPLE 
/* Set things for -german-: Ja == yes, */ 
/* Nein == no, and ',' is decimal point. */ 

void 
set_german ( ) 
( 

} 

smLPset(P_YES,-jJ-) ; 
sm-pset(p_NO,-nN-); 
sm-pset(P_DEClMAL,-, .-); 
sm_err_reset(-Jetzt spreche ich Deutsch!-); 

JAM Release 5.03 20 Nov 92 Page 359 



JAM Programmer's GUide 

putfield 
put a string into a field 
.. ~.. .... : .. " .... .: ~~ .. : ..... .. .. : .. ":. : : .... ",,::~ .:: .... : :. ".:. .. ... ~:....: .... :.: ::~:. .. :: .. :: .. ~ ... :" ... :.:.~::~ .. ,," :.:: : .... : .. : .~.: .-: :.~":: ;.. .. ... :~: -: 

SYNOPSIS 
int sm-putfield(fleld_number, data) 
int field_number; 
char *data; 

DESCRIPTION 
The string data is moved into the field specified by field_number. Strings that are 
too long are truncated without warning, while strings shorter than the destination field 
are blank filled (to the left if the field is right justified, otherwise to the right). If da ta 
is a null string, then the field is cleared. This causes date and time fields that take sys
tem values to be refreshed. 
This function sets the field's MDT bit to indicate that it has been modified, and clears 
its V ALIDED bit to indicate that the field must be revalidated upon exit. sm_n-pu t
field and sm_i-putfield store data in the LOB if the named field is not present 
in the screen. However, if the LOB item has a scope of 1 (constant), its contents are 
unaltered and the function returns -1. 
In variants that take name as an argument, name can be either the name of a field or a 
group. In the case of a group, the functions sm_select and sm_deselect should 
be used to cbange the group's value. 
Notice that the order of arguments to this function is different from that of arguments to 
the related function sm_get fie ld. 

RETURNS 
-1 if the field is not found; 0 otherwise. 

VARIANTS 
sm_e-putfield(name, element, data); 
sm_i-putfield(name, occurrence, data); 
sm_n-putfield(name, data); 
sm_o-putfield(field_nurnber, occurrence, data); 

RELATED FUNCTIONS 
sm_deselect(group_name, group_occurrence); 
sm_getfield(buffer, field_number); 
sm_select(group_name, group_occurrence); 

EXAMPLE 
.include ·smdefs.h' 

sm-putfield (1, 'This string has 29 characters'); 

Page 360 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

putjctrl 
associate a control string with a key 
.: ::.).~ .. ~: : A ~. ~ .:.:...... .: :.: .. ~ ...... " .. "" :: :".: .. " .. :". "" .~ ... ::-"" .::: ... ~: :-: ....... :: ....... : .. ~: .. -: : ::: :: :~:-. :".~: .... ....: ".:::' :: :"" :". ~:: 

SYNOPSIS 
#include Hsrnkeys.h" 

int srn-putjctrl(key, control_string, scope) 
int key; 
char *control_string; 
int scope; 

DESCRIPTION 
Each JAM screen contains a table of control strings associated with function keys, the 
PF, SPF, and APP keys. JAM also maintains a default table of keys and control strings, 
which take effect when the current screen has no control string for a function key you 
press. This table enables you to defme system-wide actions for keys. It is initialized 
from the SMINICTRL setup variables. See the section on setup in the Configuration 
Guide for further information. 
Tbis function associates control_string with key in one of the tables, replacing 
the control string previously associated with key (if there was one). If scope is zero, 
the control string is installed in the current screen, and disappears when you exit the 
screen; otherwise, it goes into the system-wide default table. If control_string is 
empty, the existing control string, if any, is deleted. If both screen and default control 
strings exist for a given key, deleting the control string for the screen puts the default 
control string into effect. 
If you install a default control string for a key that is defined in the current screen, the 
definition in the screen is used. Note also that JAM does not search the form or window 
stack for function key defmitions; only the current screen and the default table are con
sulted. Mnemonics for key are in smkeys . h. The syntax for control strings is defined 
in the Author's Guide. 

RETURNS 
-5 if insufficient memory is available; 0 otherwise. 

EXAMPLE 
#include ·srnkeys.h-

/* These 3 calls duplicate the defaults for the JAM run-time system.*/ 
sm-putjctrl (SPF1, • Ajm_gotop·, 1); 
sm-putjctrl (SPF2, .Ajrn_systern·, 1); 
sm-putjctrl (SPF3, .Ajm_goform·, 1); 

JAM Release 5.03 20 Nov 92 Page 361 



JAM Programmer's Guide 

pwrap 
put text to a wordwrap field 
.. ..::. :. ..... ..... . ..... ~ : .. ::...:-: ... ~: : .: .... :~~.:~ ~. :" ~.:~ .. :.:. : ".:: :: :" .. ::.: :...: 

SYNOPSIS 
int sm-pwrap(field_number, text) 
int fiel~number; 
char *text; 

DESCRIPTION 

.. .. ........ .. .... .. ... : .......... :..... .. .. .. .. " .... ,,".; .... : ... . 

This function copies text to a wordwrap field specified by field_number. Wraps 
occur at the end of words. The last character of every line is a space. If a word is longer 
than one less than the length of the field, the word is broken one character short of the 
end of the field, a space is appended, and the remainder of the word wraps to the next 
line. 

The variant sm_o...,pwrap copies the text into an array beginning at the specified oc
currence. 

Warning: If you attempt to copy data that is too large for the wordwrap field to hold, 
sm...,pwrap truncates the excess text 

RETURNS 

-1 if the field number is invalid. 
-2 if the text was truncated because it was too long for the field. 
o otherwise. 

VARIANTS 

sm_o-pwrap(field_number, occurrence, text); 

RELATED FUNCTIONS 

sm_gwrap(buffer, field_number, buffer_length); 
, 

Page 362 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

query_msg 
display a question, and return a yes or no answer 
: :: ".;~ '::".:::: ;":-=::.: ~ ::.x~ ~ .. " ..::: .. :.:;. ~:.~ ... :.;.:":.::::::: .. : ... ;: .. : .: .. ~ .. :... :":. :.: :.:": .. ::: ,;.:: .. ..c .. ;:": .:.. .. ":)., ..; ~ ... :: . ..:. ... "". . ...... . 

-: : .... <. 

SYNOPSIS 
int sm_query_rnsg(message) 
char *messagei 

DESCRIPTION 

The roes sage is displayed on the starus line, until you type a yes or a no key. A yes key 
is the flfSt letter of the SM_YES entry in the message file (or the XMIT key), and a no 
key is the flfSt letter of the SM_NO entry (or the EXIT key); case is ignored. At that 
point, this function returns the lower case letter as defmed in the message file to its call
er. 

All keys other than yes and no keys are ignored. 

Several percent escapes provide control over the content and presentation of status 
messages. See sro_emsg for details. 

RETURNS 

Lower~ ASCII 'y' or 'n', according to the response. 

RELATED FUNCTIONS 

sm_d_msg_line(message, display_attribute)i 
sm_is_no(field_nurnber)i 
sm_is-yes(field-purnber)i 

EXAMPLE 

*include ·smdefs.h· 

/* Ask a couple of straightforward questions. Be careful 
* of the dangling else, which has ruined many 
* relationships. */ 

if (s~query_msg(·Are you single?-) == 'y') 
if (sm_query_msg(-Will you go out with me?-) -- 'y') 

if (sm_query_msg( 
-Do you like Clint Eastwood movies?M) 
== 'n') 

JAM Release 5.03 20 Nov 92 Page 363 



JAM Programmer's Guide 

• qUI_msg 
display a message preceded by a constant tag, and reset 
the status line 
J'." ",,:: ..... =- : "" .. ; ":-: ".. :- ,," : .":" .~ ": ~ ..... ~ ::: -: .: .... :.. :-," .... ":.. : --: .. ~ ... -: :.. .~:: -: :"": ": .": .. "=:".. -: ~ : ~ ; .. ":-: 

SYNOPSIS 
void s~qui_msg(message) 
char *messagei 

DESCRIPTION 

This function prepends a tag (normally "ERROR:") to message, and displays the 
whole on the status line (or in a window if it is too long). The tag may be altered by 
changing the SM_ERROR entry in the message file. The message remains visible until 
the operator presses a key. Refer to the description of setup in the Configuration Guide 
for an exact description of error message acknowledgement. If the message is longer 
than the status line, it is displayed in a window instead. If the cursor position display has 
been turned on (see sm_c_vis), the end of the status line contains the cursor's current 
row and column. If the message text would overlap that area of the status line, it is dis
played in a window instead. 

This function is identical to sm_quiet_err, except that it does not turn the cursor 08. 

It is similar to sm_emsg, which does not prepend a tag. 

Several percent escapes provide control over the content and presentation of status 
messages. See sm_emsg for details. 

RELATED FUNCTIONS 

sm_emsg(message)i 
sm_err_reset(message); 
sm_option(option, newval)i 
sm_quiet_err(message); 

EXAMPLE 
linclude ·smdefs.h-

sffl-qui_msg (-Be %A17veewwwwy%A7 quiet. -
-I'm hunting wabbits.-)i 

Page 364 JAM Release 5.03 20 Nov 92 

.~ 



Chapter 13: Function Reference 

quiet_err 
display error message preceded by a constant tag, and 
reset the status line 

SYNOPSIS 
void sm_quiet_err(message) 
char *messagej 

DESCRIPTION 

This function prepends a tag (normally "ERROR'') to message, turns the cursor on, 
and displays the whole message on the status line (or in a window if it is too long). This 
function is identical to sm_quiJl\sg, except that it turns the cursor on. It is similar to 
sm_err_reset, which does not prepend a tag. Refer to sm_emsg for an explanation 
of how to change display attributes and insert function key names within a message. 

RELATED FUNCTIONS 

sm-emsg(message)j 
sm_err_reset(message)j 
sm_option(option, newval)j 
sm-qui~sg(message)i 

EXAMPLE 
/* Display an error message that is surely long 

* enough to be put into a window. */ 

char *buf; 

if ((buf = malloc (8192» == 0) 
{ 

} 

s~quiet_err (*sorry, guy, I'm %A0017all%A7 out * 
*of memory. Here's 500 bucks, why don't you just * 
*run down to the corner dealer and pick me up • 
*me up a meg? * ) ; 
sm_cancel (); 

JAM Release 5.03 20 Nov 92 Page 365 



JAM Programmer's Guide 

rd_part 
read part of a data structure to the current screen 

:-:-.:: ... :.:"'''":. .. .. :. ;. .... : .... : ..... ::.:: .... ~.: ~: : ... :.:... : ..... ::.. :: •• ::.~ :.: •• :::::: .": •• : .. :::: ... __ : .oJ' .;.,,": ::..: •• ::.:: .. :" ::" :: :.- .:; ;..:.... :.:... • ....... :.: 

SYNOPSIS 
void srn_rd-part(screen_struct, first_field, last_field, 

language) 
char *screen_struct; 
int first_field; 
int last_field; 
int language; 

DESCRIPTION 

This function copies data from a structure to all fields between first_field and 
last_field within the current screen, converting individual members as appropri
ate. An array and its scrolling occurrences are copied only if the first element falls be
tween first_field and last_field. This routine is commonly used with 
sm_wrt-part, which writes part of the screen to a structure. If you wish to read in
formation into the entire screen, use sm_rdstruct. To read information into a data 
dictionary record, use sm_rrecord. Use sm-putfield to write a string to an indi
vidual field. 

The structure declaration can be automatically generated from a saeen file with the 
utility f2struct. Each member of the structure is a field of the type specifed in the 
Screen Editor. If you specify the type omi t, data is not written into the field. See "Data 
Type" in the Author's Guide and f2struct in the Utilities Guide for further informa
tion. 

Once created, the declaration may be treated exactly like any other structure declara
tion. You can ignore the items that represent fields which do not fall within the bounds 
of the specifed fields. However, the structure definition must contain all of the fields on 
the screen. The argument screen_struct is the address of a variable of the type of 
structure generated by f2struct. 

The arguments that represent the range of fields to be copied, first_field and 
last_field are passed as field numbers. 

The argument language stands for the programming language in which the structure 
is defined. It controls the conversion of string and numeric data. 

The following values for language are defmed in smumisc. h: 

Page 366 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-ftlled strings. Used for compactness and compat-
ibility with other languages. 

The structure may be initialized with sm_wrt-part or with data from elsewhere. 
Structure members within the specified range which will not be initialized prior to call
ing sm_rd....,part must be zeroed-out or you risk crashing your application when gar
bage is read into the screen. 

Remember, you must update the structure declaration whenever you alter the screen 
from which it was generated. 

RELATED FUNCTIONS 
sm-putfield(field_number, data); 
sm_rd_struct(screen_struct, byte_count, language); 
sm_rrecord(structure-ptr, record_name, byte_count, language); 
sm_wrt-part(screen_struct, first_field, last_field, language); 

EXAMPLE 
Refer to sm_wrt-part for a rather lengthy example. 

JAM Release 5.03 20 Nov 92 Page 367 



JAM Programmer's Guide 

rdstruct 
read data from a structure to the screen 

SYNOPSIS 
void sffi_rdstruct{screen_struct, byte_count, language) 
char *screen_struct; 
int *byte_count; 
int language; 

DESCRIPTION 
This function copies data from a structure to the current screen, converting individual 
members as appropriate. It is commonly used with sm_wrtstruct, which writes data 
from fields on the current screen to a structure. If you wish to read information into a 
group of consecutively numbered fields, use sm_rd-part. To read information from 
a data dictionary record, use sm_rrecord. Use sItLPutfield to write a string to an 
individual field. 

The structure declaration can be automatically generated from a screen fIle with the 
utility f2struct. Each member of the structure is a field of the type specifed in the 
Screen Editor. If you specify the type omi t, data is not written into the field. See "Data 
Type" in theAuthor~ Guide and f2struct in the Utilities Guide for further informa
tion. 

Once created, the declaration may be treated exactly like any other structure declara
tion. The argument screen_struct is the address of a variable of the type of struc
ture generated by f2struct. 

The argument byte_count is the address of an integer variable. sm_rdstruct 
stores in byte_count the number of bytes copied from the structure. 

The argument language stands for the programming language in which the structure 
is defmed. It controls the conversion of string and numeric data. This must be consistent 
with how the structure was created with f2struct. 

The following values for language are defmed in smumisc . h: 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-fIlled strings. Used for compactness and compat-
ibility with other languages. 

Page 368 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

The structure may be initialized with sm_wrtstruct or with data from elsewhere. 
Members within the structure that will not be initialized prior to calling 
sm_rdstruct must be zeroed-out or you risk crashing your application when gar
bage is read into the screen. 

Remember, you must update the structure declaration whenever you alter the screen 
from which it was generated. 

RELATED FUNCTIONS 
sm-putfield(field_number, data); 
sm_rd-part(screen_struct, first_field, last_field, language); 
sm_rrecord(structure-ptr, recor~name, byte_count, language); 
s~wrtstruct(screen_struct, byte_count, language); 

EXAMPLE 
Please refer to sm_wrtstruct for an extended example. 

JAM Release 5.03 20 Nov 92 Page 369 



JAM Programmer's GUide 

rescreen 
refresh the data displayed on the screen 
:.":'" :": .:. : ,,":: .. : .. ;: ~ .• : :.<: ,," •• :" "" •• ~ ... : •. :. ::: ". .: .. :" .: ..... :. ::... .. .. ,: .. : •.. : .....• " : : :: ."" ....... " 

SYNOPSIS 
void sID_rescreen(); 

DESCRIPTION 

This function repaints the entire display from JAM's internal screen and attribute buff
ers. Anything written to the screen by means other than JAM library functions are 
erased. This function is normally bound to the RESCREEN key and executed automati
cally within sm_getkey. 

You may need to use this function after doing screen I/O with the flag 
sm_do_not_display turned on, or after escaping from an JAM application to 
another program (see sm_leave). If all you want is to force writes to the display, use 
sm_flush. 

RELATED FUNCTIONS 
sm_flush () ; 
sm_return () ; 

EXAMPLE 
/* Mess the screen up good and proper, then restore 

* it with a call to s~rescreen. */ 

for (i=1; i<30; i++) 
{ 

printf('************************************'); 
printf('***********************************\n'); 

} 

sm_rescreen(); 
sm_err_reset('Verify that the screen has been' 

'restored.'); 

Page 370 JAM Release 5.03 20 Nov 92 

-, 



Chapter 13' Function Reference 

resetcrt 
reset the terminal to operating system default state 
•• : .~ .•• ~.. 1.·.::.. .... : . ..::.. .. : ...... : ~...::.: ..... : .~ .. :-: ...:::~ .: .... ::., •• ... .• ~:.:. :.. .. .... ::. : :" .. :.. ... ~: (.~ ...... : ":" "" :.... :..... : ............ :" •. : 

SYNOPSIS 
void sm_resetcrt()i 
void sm_jresetcrt()i 
void sm_jxresetcrt()i 

DESCRIPTION 

The function sm_resetcrt is generally used only when you are writing your own 
Executive. It resets terminal characteristics to the operating system's normal state. Be 
sure to call sm_resetcrt be called when leaving the Screen Manager environment 
(before program exit). 

All the memory associated with the display and open screens is freed. However, the 
buffers holding the message file, key translation flle, etc. are not released. A subsequeot 
call to sm_ini tcrt will find them in place. Then sm_resetcrt clears the screen 
and turns on the cursor, transmits the RESET sequence defined in the video file, and 
resets the operating system channel. 

The JAM Executive calls sItLresetcrt via sm_jresetcrt (or via sm_jxre
setcrt in the case of an authoring executable) automatically as part of its exit proces
sing. It should not be called by application programs except in case of abnormal ter
mination. 

RELATED FUNCTIONS 

sm_cancel()i 
sm_leave ( ) i 

EXAMPLE 
/* If an effort to read the first form results in 

* failure, clean up the screen and leave. */ 

if (sm_r_form ('first') < 0) 
{ 

} 

sm_resetcrt (); 
exit (1); 

JAM Release 5.03 20 Nov 92 Page 371 



JAM Programmer's GUide 

• resize 
notify JAM of a change in the display size 
.. .. .. : ..: ..........~.::.. .:- ........ :- J' '" ....... : ... J' .-:.. .. ••• : J' "'. -. :- .. " .. -: .......... '". '" ::- ~ ~ ".01"-.. : .. :.... .. ~ .. ~ .. :-: .: '". -: ...... ~ ...... 

SYNOPSIS 
int sm_resize(rows, columns) 
int rows; 
lnt columns; 

DESCRIPTION 
This function enables you to change the size of the display used by JAM from the de
fault defined by the LINES and COLMS entries in the video file. It makes it possible to 
use a single video me in a windowing environment. Applications can be run in different 
sized windows with each application setting its display size at run time. It can also be 
used for switching between normal and compressed modes (e.g. 80 and 132 columns on 
VT100-compatible terminals). 
If the specified rectangle is larger than the physical display, the results are unpredict
able. You may specify at most 255 rows or columns. 

RETURNS 
-I if a parameter was less than 0 or greater than 255. 
o if successful. 
Program exit on memory allocation failure. 

EXAMPLE 
linclude Rsmdefs.hR 
linclude ·smkeys.hR 
linclude ·smglobs.h· 
Idefine WIDTH_TOGGLE PF9 

/* Somewhat irregular code to switch a VT-100 
* between 80- and 132-column mode by pressing PF9. */ 

switch (s~input (IN_DATA)) 
( 

case WIDTH_TOGGLE: 
if (sm_inquire(I_MXCOLMS) == 80) 
( 

printf (R\033[?3h·); 
sm_resize (sm_inquire(I_MXLINES), 132); 

} 
else 

Page 372 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

{ 
printf (-\033[?31-); 
sm_resize (sm_inquire(I_MXLINES), 80); 

} 
break; 

} 

JAM Release 5.03 20 Nov 92 Page 373 



JAM Programmer's GUide 

restore_data 
restore previously saved data to the screen 

SYNOPSIS 
int srn_restore_data(buffer) 
char *bufferi 

DESCRIPTION 

This function restores all data items, both on screen and offscreen, to the current screen 
from an area initialized by sIILsave_data. buffer is the address of the area. Pass
ing an address not returned by sIILsave_data, or attempting to restore to a screen 
other than the one saved, can produce unpredictable results. 

Data items are stored in the save-data buffer as null-terminated character sUings. The 
contents of a scrollable array is preceded by 2 bytes giving the total number of items 
saved (high order byte fU'St); each item is preceded by two bytes of display attribute, 
and followed by a null. There is an additional null following all the scrolling data. 

RETURNS 
-1 if an error occurred, usually memory allocation failure. 
o otherwise. 

Page 374 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

return 
prepare for return to JAM application 

SYNOPSIS 
void sm_return(); 

DESCRIPTION 

This routine should be called upon returning to a JAM application after a temporary 
exit. 

It sets up the operating system channel and initializes the display using the SETUP 
string from the video m,e. It does not restore the screen to the state it was in before 
sm_leave was called. Use sm_rescreen to accomplish that, if desired. 

RELATED FUNCTIONS 

sIlLleave ( ) ; 
sm_resetcrt(); 

EXAMPLE 
linclude -smdefs.h-

/* Escape to the UNIX shell for a directory listing */ 

sm_leave (); 
system (-Is -1-); 
sJtLreturn (); 
sm_c_off (); 
sJtLd_msg_line (-Hit any key to continue-, 

BLINK I WHITE); 
sm_getkey (); 
sm_d_msg_line (--, WHITE); 
sJtLrescreen (); 

JAM Release 5.03 20 Nov 92 Page 375 



JAM Programmer's Guide 

rmformlist 
empty the memory-resident form list 

SYNOPSIS 
void sm_rmformlist(); 

DESCRIPTION 

This function erases the memory-resident form list established by sm_formlist, and 
releases the memory used to hold it. It does not release any of the memory-resident JPL 
modules, key sets, or screens themselves. Calling this function prevents sm_r_win
dow, sm_r_keyset, sm_jplcall, and related functions from finding memory-res
ident objects. 

RELATED FUNCTIONS 

EXAMPLE 
/* Hide all the memory-resident screens, perhaps 

* because the disk versions have been modified. */ 

sm_rmformlist (); 

Page 376 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

rrecord 
read data from a structure to a data dictionary record 

.. : ... ": .. ..... .. ..... : ~." ~... ......... ..... "" .... -: .. :. .... .. .:; .. " :-: : .. :"...... ,,".. ..: :.. .. ... ~." : ... : ..... : .. :" .":-:.. :.~ 

SYNOPSIS 

void sm_rrecord(structure-ptr, record_name, byte_count, 
language) 

char *structure-ptri 
char *record_namei 
int *byte_counti 
int language; 

DESCRIPTION 

This function reads data from a C structure into fields on the current screen that are part 
of a common data dictionary record. If a field is not on the current screen then the data 
is written to the LOB. This routine is commonly used with sm_wrecord, which writes 
data from a data dictionary record to a C structure. If you wish to read data into all of 
the fields within the current screen, use sm_rdstruct. To copy data to a group of 
consecutively numbered fields, use sm_rd-part. Use sm-putfield to write a 
string to an individual field. 

To automatically generate a file containing a structure declaration for each data dictio
nary record, use the dd2struct utility. Each structure member is a field within a data 
dictionary record that is of the type specified in the Screen Editor. Data is written into 
the field on screen even if the omit type is specified. See "Data Type" in the Author's 
Guide and dd2 s t ruct in the Utilities Guide for further information. 

Once created, the declarations may be treated exactly like any other structure declara
tions. The argument struct-ptr is the address of a variable of one of the structure 
types generated by dd2struct. The argument record_name is the name of the data 
dictionary record from which the structure was created. 

The argument byte_count is a pointer to an integer. Upon return from SllLrre
cord, the value contained in the integer is the number of bytes or characters read from 
the structure. The value is 0 if an error occurred. 

The argument language stands for the programming language in which the structure 
is defined. it controls the conversion of string and numeric data. 

The following values for language are defined in smumisc. h: 

JAM Release 5.03 20 Nov 92 Page3n 



JAM Programmer's Guide 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-fIlled strings. Used for compactness and compat-
ibility with other languages. 

The structure may be initialized with sm_wrecord or with data from elsewhere. 
Members within the sbUcture that will not be initialized prior to calling sm_rrecord 
must be zeroed-out or you risk crashing your application when garbage is read into the 
screen or the LDB. 

Remember, you must update the structure declamtion whenever you alter the data dic
tionary from which it was generated. 

RELATED FUNCTIONS 

sm-putfield(field_number, data); 
sm_rd-part(screen_struct, first_field, last_field, language); 
sm_rd_struct(screen_struct, byte_count, language); 
sm_wrecord(structure-ptr, record_name, byte_count, language); 

Page 378 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

rs data -
restore saved data to some of the screen 
:.... ::.. ..... :...: •. u.r:.c <..2'. ;.:~:.),.'$. ... :A ... '! : )" ••• :: • ....: .. ~ ... : .... ": ••• ;:.~ -=...:.:...:" ;, : ..... ~ .. ~: ... ;." ...... : ...::. .. ~ .. :-:.:. '::"~.: ... : .. ;-: .. .;:.:.~.: •. " ." ::.:: ....... 

SYNOPSIS 
void sm_rs_dataCfirst_field, last_field, buffer) 
int first_field; 
int last_field; 
char *buffer; 

DESCRIPTION 

All data items, both onscreen and offscreen, are restored to the fields between 
first_field and last_field from an area initialized by sm_sv_data.1be ad
dress of the area is in buffer. 

See sm_sv_data to create a buffer for subsequent retrieval by this function. If the 
range of fields passed to this function does not match that passed to sm_sv _data, or 
bu f fer is not a value returned by that function, grievous errors will probably occur. 

The format of the data area is explained briefly under sm_restore_data. 

RETURNS 

-1 if an error occurred, usually memory allocation failure. 
o otherwise. 

RELATED FUNCTIONS 

dAM Release 5.03 20 Nov 92 Page 379 



JAM Programmer's GUide 

rscroll 
scroll an array 

.. .:': ........ :. .. :.: .... :. ................. -;, ~ ... :. ..... ": ... : ......... :..:. :."" ........ :: :.:-: ........... : ...... ..:c: .. : .... : -.: . .::- -:.;. -: . .::.:: ... : ........... -.:.:-: 

SYNOPSIS 
int sm_rscroll(field_number, re~scroll) 
int field_number; 
int re~scroll; 

DESCRIPTION 

This function scrolls an array along with any synchronized arrays by req"..scroll 
occurrences. If req"..scroll is positive, the array scrolls down (towards the bottom of 
the data); otherwise, it scrolls up. 

The function returns the acbJal amount scrolled. This could be the amount requested, or 
a smaller value if the requested amount would bring the array past its beginning or end. 
If 0 is returned it means that the array was at its beginning or end, or an error occurred. 
Negative numbers indicate scrolling up occurred. 

RETURNS 

The acbJaI amount scrolled Positive numbers indicate downward scrolling while 
negative numbers mean upward scrolling. 

o if no scrolling or error. 

VARIANTS 
sm_n_rscroll(fiel~name, re~scroll); 

RELATED FUNCTIONS 
sm_ascroll(field_number, occurrence); 
sm_t_scrollCfield_number); 

EXAMPLE 
linclude ·smdefs.h-

/* Find the number of the scrolling item under 
* the cursor and scroll down to the next 
* higher multiple of S. */ 

int thisn; 

thisn = sm_occur_no (); 
sm_rscroll (sm_getcurno (), 5 - (thisn % 5»; 

Page 380 JAM Release 5.03 20 Nov 92 



s val 
validate the current screen 
.. ::.::.. ,,"::." .... ":. "" .... " ... ~. : :". ::" ... -: .. .. ..: ........... of' 

.... "" .. '10 .. """ .. 

SYNOPSIS 

DESCRIPTION 

...... .. .. ". ". .. 

Chapter 13: Function Reference 

::-: .. : ...... ::" :""": •• : .... :. :.:"" .. : "".: .. :~ .... v ••• ".of': • 

This function validates each field and occurrence, whether on or off screen, that is not 
protected from validation (VPROTECn. It is called automatically from sm_input 
when the TRANSMIT key is hit while in data entry mode. sm_s_val also validates 
groups. 

When the first element of a scrolling array is encountered, earlier off screen occurrences 
are validated fltSt When the last element of a scrolling array is encountered, later off
screen occurrences are validated immediately after that element 

If synchronized arrays exist, the following occurs. When an offscreen occurrence is val
idated, the corresponding occurrences from synchronized arrays are validated as well. 
Synchronized array are validated in order according to their base field number. The off
screen occurrences preceding the synchronized arrays are validated before the fltSt ons
creen occurrence of the fltSt (lowest base field number) of the synchronized arrays. 
Similarly, the off screen occurrences following the arrays are validated immediately af
ter the last onscreen occurrence of the last (highest base field number) array. 

Validation Skip ifvalid Skip if empty 

required y n 

must fill y y 

regular expression y y 

range y y 

cbeck-digit y y 

date or time y y 

table lookup y y 

currency format y n* 

JAM Release 5.03 20 Nov 92 Page 381 



JAM Programmer's GUide 

ValidatIOn Skip if valid Skip If empty 

math expresssion n n 

field validation n n 

JPL function n n 

* The currency format edit contains a skip-lf-empty flag; see the Author~ Guide. 

If you need to force a skip-if-empty validation, make the field required. A field with 
embedded punctuation must contain at least one non-blank non-punctuation character 
in order to be considered non-empty; otherwise any non blank character makes the 
field non-empty. 

If an occurrence fails validation, the cursor is positioned to it and an error message dis
played. If the occurrence is offscreen, the array is scrolled to bring it onscreen. This 
routine returns at the flfSt error; any fields past that error are not validated. 

RETURNS 
-1 if any field fails validation. 
o otherwise. 

RELATED FUNCTIONS 
sm_fval(field_numberl; 

EXAMPLE 
linclude ·smdefs.h· 
linclude ·smkeys.h· 

/* Treat the SPFl key as transmit, for a change. */ 

int key; 

sm_d_msg_line (WPress %KSPFl when done. n , 

WHITE I REVERSE); 

while ((key = sm_input (IN_DATA» 1= EXIT) 
{ 

} 

if (key == SPF1) 
{ 

} 

sm_err_reset ("Please correct the • 
.m~stake(s) .W); 

else 
break; 

Page 382 JAM Release 5.03 20 Nov 92 

", 
1 

'. 



Chapter 13: Function Reference 

save data -
save screen contents 
.-:......: ........ »..~ .. :-loE:t:t:.~: of' :-:::-:.:: .... : ::: .;:.c:.....:.; ..... ~:; : of' .:: • ..:: .. :: ..... : .... ~ : .. : •• ..:...c:.: .:.~.~ .:. ::" ~ •• ~ ... :. : •• ": .. : •• :. .::. -:-.. " ... : No.:.. .. ~. : 

SYNOPSIS 

DESCRIPTION 

The current screen's data is saved for external access or subsequent retrieval, and the 
address of the save area returned. Radio button and checklist selections are not saved. 

To restore the saved data, use srn_restore_data. Refer to srn_restore_data 
function for a brief explanation of the save format. Use srn_sv _f ree to discard a save 
area. 

You can get the size of the data with the following line of code: 

length = «unsigned int *)buffer) [-l)i 

RETURNS 

o if insufficient memory was available, 
otherwise the address of a memory area containing the screen's data. 

RELATED FUNCTIONS 

sm_restore_data{buffer)i 
sm_sv_free(buffer) 

JAM Release 5.03 20 Nov 92 Page 383 



JAM Programmer's GUide 

sc max 
alter the maximum number of occurrences allowed in a 
scrollable array 
: .. ": ~: .. : "; .. : ,," ." .. : .. ':: ....... ":"Y·:- .: .... ": ....... ",," .. " . .... : .. .. ... ...... ..":: 

SYNOPSIS 
int sm_s c_ma x (fleld_number, new_max) 
int field_number; 
int new_max; 

DESCRIPTION 

": .... :"" .. v -. : ... : .... " :-: )". '":" : .. :'"'": 

This function changes the maximum number of occurrences allowed in field_num
ber, and in all synchronized arrays. The original maximum is set when the screen is 
created. If the desired new maximum is less than the highest numbered occurrence that 
contains data, the new maximum is set to the number of that occurrence (i.e., the value 
returned by sm_num_occurs). The maximum can decrease only to a value between 
the highest numbered occurrence containing data and the previous maximum. It can 
never be less than the number of elements in the array. 

RETURNS 
The actual new maximum (see above). 
o if the desired maximum is invalid, or if the array is not scrollable. 

VARIANTS 
sm_n_sc_max(field_name, new_max); 

RELATED FUNCTIONS 
sm_rnax_occur(field_nurnber); 
sm_num_occurs(field_number); 

EXAMPLE 
*include ·smdefs.h
*define SCROLLNUM 7 

/* When the number of occurrences entered in an array */ 
/* exceeds ten less than the maximum, increase */ 
/* the maximum by 100. */ 

int maxnow; 

maxnow = sm_max_occurs (SCROLLNUM); 
if (maxnow - sm_num_occurs (SCROLLNUM) < 10) 

sm_sc_max (SCROLLNUM, maxnow + 100); 

Page 384 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sdtime 
get formatted system date and time 

.. " "" ...... 
.. .. .. •• : ........ A ••• • •••• : .. : .. : .. -.~. ::...: :........ .. '" .... ::: ." : ....... : : .. : .. ~. ,," .: ... 

SYNOPSIS 

char *sm_sdtime(format) 
char * format; 

DESCRIPTION 

This function gets the current date and/or time from the operating system and returns it 
in the form specified by format. 

format is a string beginning with y or n followed by any combination of date/time 
tokens and literal text y indicates a 12-hour clock; n (or any other character) indicates 
a 24-hour clock. This character must be given, even if the format does not include time 
tokens. The tokens are described in the table below. These tokens are case-sensitive. 

Unit Description Token 

Year 4 digit (e.g., 1990) %4y 

2 digit (e.g., 90) %2y 

Month lor 2 digit (1-12) %m 

2 digit (01 - 12) tOm 

full name (e.g., January) %*m 

3 character name (e.g., Jan) %3m 

Day lor 2 digit (1- 31) %d 

2 digit (01- 31) %Od 

Day of the Week full name (e.g. Sunday) %*d 

3 character name (e.g., Sun) %3d 

Day of the Year digit (1 - 365) %+d 

JAM Release 5.03 20 Nov 92 Page 385 



JAM Programmer's GUide 

Unit DescriptIOn Token 

Hour 1 or 2 digit (1 - 12 or I - 24) %h 

2 digit (01 -12 or 01 -24) %Oh 

Minute 1 or 2 digit (1 - 59) %M 

2 digit (0 I - 59) %OM 

Second 1 or 2 digit (1 - 59) %s 

2 digit (01 - 59) %Os 

AM or PM for use with a 12-bour clock %p 

Literal Percent use % as a literal character %% 

Ten Default Formats SM_ODEF_DTlME %Of 

(from the message file; SM_1DEF_DTlME %If 
refer to the Configuration 
Guide for details.) 

... o 0 0 

SM_9DEF_DTlME %09f 

At runtime, JAM strips off the flfSt character of format. If the chamcter is y, it uses 
a 12-bour clock; else it uses the default 24-hour clock. Next it examines the rest of 
format, replacing any tokens with the appropriate values. All other characters are 
used literally. Therefore, be sure to put a y or an n (or perhaps a blank:) at the beginning 
of format. If you do not, JAM strips off the first token's percent sign and it treats the 
rest of the token as literal text. 

You may also retrieve a date/time format from a field using sm_edi t-ptr. 

The text for day and month names, AM and PM, as well as the tokens for the ten default 
formats, are all stored in the message file. These entries may be modified. See the Con
figuration Guide for details. 

This function uses a static buffer which it shares with other date and time formatting 
functions. The buffer is 256 bytes long. There is no checking for overflow. You should 
process the returned string, or copy it to a local variable, before making additional func
tion calls. 

Note: This function replaces Release 4'8 sm_sdate and sm_st ime function. 

Page 386 JAM Release 5.03 20 Nov 92 



Chapter 13. Function Reference 

RETURNS 

A pOlDter to the current date/time in the specified format. 
Empty if format is invalid. 

RELATED FUNCTIONS 
sm_calc{field_number, occurrence, expression); 
sm_udtime{time, format) 

EXAMPLE 
#1nclude ·smdefs.h· 
/* Put the current date MONTH-DAY-YEAR in the field "t1me n

• */ 
char *format; 
format = nn%m-%Od-%2y"; 
sm_n-putfield (ntime·, sm_sdtime (format}); 

JAM Release 5.03 20 Nov 92 Page 387 



JAM Programmer's Guide 

select 
select a checklist or radio button occurrence 
": : : .... : : .. ~ ::.~.:: .. i".~:: .; : .. ::.. . ..c:.:~ .. : :: :".. .. :: ":~.: ~ .. : ,,":...::: ~jo.:. :~:,,: .;. .:.: ;." ,,:" .... :.: ": :. .. : ~:...... ..:": ":.: ;: ",,:.::" .. ;.. .. ::-: 

SYNOPSIS 
int sm_select(group_name, group_occurrence) 
char *group_namei 
int group_occurrencei 

DESCRIPTION 

This function allows you to select a specific occurrence within a checklist or radio but
ton. The group name and occurrence number are used to reference the desired selection. 

Use sm_deselect to deselect a checklist occurrence. 

Selecting a radio button occurrence automatically causes the currently selected radio 
button to be deselected, because exactly one occurrence in a radio button group must be 
selected at all times. See the Author ~ Guide for a more detailed discussion of groups. 

Use sm_isselected to check whether or not a particular radio button or checklist 
occurrence is currently selected. 

RETURNS 

-1 arguments do not reference a checklist or mdio button occurrence. 
o occurrence not previously selected 
I occurrence previously selected. 

RELATED FUNCTIONS 

sm_deselect(group_name, group_occurrence); 
sm_isselected(group_name, group_occurrence)i 

Page 388 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

set_injpl 
allow C routines to access JPL variables & subroutines 
~ ).. •. ~ ~ ... ::::.:~ ~.~ : .. :: :.: : .. "v:.. .. ...... : •. :.).. -. .. " :.. ...... ;.. :: .::- :..".::: ::.::~ .:.. ~: ....... : :: • ..:...: ... : .::':: .. :" .... • .. :" -=: : .•• : 

SYNOPSIS 
int sm_set_injpl(mode) 
int mode; 

DESCRIPTION 
This function provides a C routine access to JPL variables and subroutines, which is 
particularly useful with JAMlDBi, as it allows dbi_dbms and dbi_sql statements 
to access JPL variables. 

Normally a C routine that is called from JPL, via the JPL call statement, does not 
have access to either the "automatic" variables of the caller (the JPL proc) or the "stat
ic" variables in the module of the caller. If this routine is called with a mode that is 
non-zero, the C fooction will have access to both JPL "automatic" and "static" vari
ables. It will also have access to any proc's in the current (the caller's) JPL module. 
Thus it is as if the C function is embedded bodily within the JPL procedure. 

The mode remains in effect ootil the calling JPL procedure is returned to, or 
sm_set_inj pI is called again with a mode of zero. This means that all subroutines 
of the C routine will also have access to the current JPL module's variables and proce
dures. Of course, if the C routine calls a JPL proc (e.g. via sm_jplcall), the new 
JPL proc will not have access to variables in the JPL proc that called the C routine. 

NOTE: This function should be used with care. For example, since sm_j window is 
a C subroutine, it too will have access to the current module's JPL variables and 
procs. In addition any screen entry, exit or validation functions will also have access 
to these variables and procedures. This can cause some unintended consequences when, 
for example, a JPL routine opens a screen, and the new screen's entry function calls a 
JPL proc. The JPL processor will look fIrst in the original screen's JPL module (the 
current module) for the procedure, before it looks in the new screen's JPL module. If it 
finds a procedure of the same name in the current module it will execute that procedure 
instead of the procedure in the new screen's JPL. The safest way to use this routine is to 
set mode to a non-zero value when you require access, and then reset it promptly. 

Note also that JPL variables are accessible only indirectly by sm_calc and colon-ex
pansion (and by JAMlDBi functions such as dbi_dbms and dbi_sql), but not by 
putfield, getfield, and the like. 

RETURNS 
The previous value of mode 

JAM Release 5.03 20 Nov 92 Page 389 



JAM Programmer's GUide 

setbkstat 
set background text for status line --I 

...:. ;" .",-: .. :" .... .. :"': .: .,::x::. "::.: " .. :!: .... : .... : .. ~ :" : .: ..... : " .. :: ~ .. :" -::: : ..... :".. : ""::" .. ": ,," .:: : ~: ...:":. :: ~ ... ~.. : .: ... ~:.:.: 

SYNOPSIS 

void sm_setbkstat(message, dlsplay_attribute) 
char *message; 
int display_attribute; 

DESCRIPTION 

The message is saved, to be shown on the status line whenever there is no higher 
priority message to be displayed. The highest priority messages are those passed to 
sm_d_msg_line, sm_err_reset, sm_quiet_err, or sm_query_msg; the 
next highest are those attached to a field by means of the status text option (see the 
JAM Author's Guide). BackgcolBld status text has lowest priority. 

Possible values for the display_attribute argument are defmed in the header file 
sma t t r ib . h, as shown in the table below: 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

Page 390 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Attribute Mnemonic Hex Code Attribute Mnemonic Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B_WHITE 0700 

Foreground colors may be used alone or ored with one or more highlights, a back
ground mnemonic, and a backgroood highlight If you do not specify a highlight or a 
background mnemonic, the attribute defaults to white against a black background. 
Omitting the foreground mnemonic causes the attribute to default to black. 

sm_setstatus sets the background slarus to an alternating ready/wait flag; you 
should turn that feature off before calling this routine. 

Refer to sm_d_ms9_1 ine for an explanation of how to embed attribute changes and 
function key names into your message. 

RELATED FUNCTIONS 
sm_d_msg_line(message, display_attribute); 
sm_setstatus(mode); 

JAM Release 5.03 20 Nov 92 Page 391 



JAM Programmer's Guide 

setstatus 
turn alternating background status message on or off 
~: .... ~ .. ~ ............ ;; ::.. ~ -:- : .. " '" .. V"";" ~ -:: ":: ........... :: :". ~ .... :: ;~: ... " .: ..... :: .... ~ .... :::,,;-:---:-.~ --=:-v .. ,.;: ," "" .. ": .... ""..:. ":::~.. ::-;.--;".: ...... ::"--:". 

SYNOPSIS 
void sm_setstatus(mode) 
int mode; 

DESCRIPTION 
If mode is non-zero, alternating status flags are turned on. Mter this call, one message 
(nOimaily Ready) is displayed on the status line while JAM is waiting for input, and 
another (normally Wai t) when it is not. Ifmode is zero, the messages are turned off. 

The status flags are replaced temporarily by messages passed to sm_err_reset or a 
related routine. They overwrite messages posted with sm_d_msg_l ine or 
sm_setbkstat. 

The alternating messages are stored in the message file as SM_READY and SM_WAIT, 
and can be changed there. Attribute changes and function key names can be embedded 
in the messages; refer to sm_d_msg_l ine for instructions. 

RELATED FUNCTIONS 
sm_setbkstat(rnessage, display_attribute); 

EXAMPLE 
linclude ·smdefs.h· 
linclude ·smerror.h-
Idefine PAUSE (sm_flush (), sleep (3» 
char buf(100); 

/* Tell people what you're gonna tell 'em. */ 
sprintf (buf, ·You will soon see %s alternating • 

·with %s below.·, 
sffiLffisg_get (SM_READY), sm_msg_get (SM_WAIT»; 

sm_do_region (3, 0, 80, WHITE, buf); 

/* Now tell 'em. */ 
sm_setstatus (1); 
PAUSE; /* Shows WAIT */ 
sm_input (IN_DATA); /* Shows READY */ 

/* Finally, tell 'em what you told 'em. */ 
spr~ntf (buf, ·That was %s alternating with %s • 

·on the status line.·, 
sm_msg_get (SM_READY), sm_msg_get (SM_WAIT»; 

sm_err_reset (buf); 

Page 392 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sh off -
determine the cursor location relative to the start of a 
shifting field 
:":":"~ :::"" :;:.::,. ......... ~ ,,"-:::, .. ".c::" .~ ..: .......... :".. : -:"":." ~ ... : .. : "" .. ; .. : : .. "'"C.......... .." '! :"" ",,:. -::-:: .. ,,": .:-: '!" ",,:.:r ":"" .. " .... : .. :"::,,: :'" : ...... . 

SYNOPSIS 

DESCRIPTION 

Returns the difference between the start of data in a shiftable field and the current cur
sor location. If the current field is not shiftable, it returns the difference between the 
leftmost column of the field and the current cursor location, like sm_disp_off. 

RETURNS 

The difference between the current cursor position and the start of shiftable data in 
the current field. 

-1 if the cursor is not in a field. 

RELATED FUNCTIONS 

EXAMPLE 
Dinclude -smdefs.h-

/* Fancy test to see whether the current field is shifted 
* to the left. */ 

if (sm_sh_off () != sm_disp_off ()) 
sm_err_reset (-Ha! You shifted!-); 

JAM Release 5.03 20 Nov 92 Page 393 



JAM Programmer's Guide 

shrink to fit -
remove trailing empty array elements and shrink screen 
'::".".: •• " ; ..... : ..... : :)" :.::- :,.. ::.:: .:...:~: .. ;.: .. :t.:-"" :: v ~;.. ~ ... ~.:.. •• .I' •••••• :" .:. :.:: .. AV. .. ...:. :.......... .: .. ": "': • ..:. ~ ........ :. .. ",,":... .. .I' :.:"" :.: 

SYNOPSIS 

DESCRIPTION 

Use this routine to dynamically downsize the current screen when you don't know how 
many elements of an array are going to be populated with data at run time. This routine 
removes the trailing elements in all arrays on a screen and then shrinks the screen to a 
size just large enough to accommodate the displayed data. If there is no data in the 
array, then the entire array is removed. Only the currently displayed copy of the screen 
in memory is altered. 

The algorithm used in this function is designed to minimize screen size, but it never 
removes the fmt or last line of a screen. Therefore, in some cases, such as a 5 line 
screen containing a 5 element array in which 4 elements are populated, 
sm_shrink_to_fit does not shrink the array, since doing so would not shrink the 
screen. 

This routine only downsizes the array and screen. It does Dot enlarge an array or screen 
that is too small to hold the information, so be sure to create, within the Screen Editor, 
an array and screen that can hold the largest amount of data that you plan on inserting. 

EXAMPLE 
/* Put Ashrink in the auto control */ 
/* to have window shrink to fit before */ 
/* user gets a chance to see it! */ 

int 
shrink (ignore~data) 
char * ignored_data; 
( 

} 

sm_shrink_to_fit(); 
return (0); 

Page 394 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

sibling 
define the current window as a sibling or not a sibling 

'" ..... : ......... -................ -....... :.: ......... -.- .. .. .. .. 

SYNOPSIS 
VOId sm_sibling(should_it_be) 
int should_it_bei 

DESCRIPTION 

- -:---:- .. "": .... 

Users may switch between the active window and all siblings of that window while they 
are in viewport mode. Sibling windows must be next to each other on the window stack. 
When a window is defmed as a sibling, then it and the window immediately beneath it 
on the window stack are considered to be siblings of one another. The user enters view
port mode when either the VWPT (viewport) logical key is pressed or when the applica
tion program makes a call to sm_wins i ze. 

Use this function to defme whether or not the current window is defined as sibling. To 
change the current sibling status of a window assign should_i t_be to: 

o 
I 

No, it is not a sibling window. 
Yes, it is a sibling window. 

To understand how sibling windows work, imagine you have a stack of three windows: 
window_top, window_middle, and window_bot tom. To make window_top 
and windowJlliddle siblings of each other, define window_top as a sibling win
dow. They are now considered siblings of each other. You can then add a third sibling 
to the pair, by defining window_middle as a sibling window. This results in win
dow_middle and window_bottom becoming siblings of one another and conse
quently, window_top and window_bot tom are also siblings of each other. There is 
no limit to the number of siblings window you may chain together in this fashion, as 
long as the windows are adjacent to each other on the stack. 

If you wish to bring a different window to the top of the stack, use sm_wselect. To 
get the number of windows currently in the window stack use sm_wcount. 

The base form can be a sibling of the windows adjacent to it 

RELATED FUNCTIONS 
sm_wcount()i 
sm_winsize()i 
sm_wrotate(step)i 
sm_wselect(wlndow_number)i 

JAM Release 5.03 20 Nov 92 Page 395 



JAM Programmer's Guide 

size _of_array 
get the number of elements 
~ ~:: .. : : :.:....... .. ......... :::. :... N: : .... ": .;...:.:: ::........::... .... ...: .. ~ .... ....c .. "-: ..... :...v .:-:"::" .:":..~ ............ ";, .?' ...... ; j .. :.... :",,: "" ... : .. :": ..... ":-." ::,,~ ~ .... ~...c:" •• ~ 

SYNOPSIS 
int sm_size_of_array(field_number) 
int field_number; 

DESCRIPTION 

This function rebJrns the number of elements in the array containing fie 1 d_number. 
Elements are the onscreen portion of an array. An array always bas at least one element 

RETURNS 

o if the field designation is invalid 
1 if the field is not an array. 
The number of elements in the array otherwise. 

VARIANTS 

RELATED FUNCTIONS 

EXAMPLE 
.define THEFIELD 6 

/* Compute the number of pages of data in a 
* scrolling array, where a page is one 
* onscreen-array-full. */ 

int pages, elements; 

elements = s~size_of_array (THEFIELD); 
pages = (sm_num_occurs (THEFIELD) + elements - 1) 

/ elements; 

Page 396 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

skinq 
obtain soft key information by position 
.... -"'_ .. -. "'- -.- .............. -. -. ." .. . - -: ... -.. - .. - ..... :-.... ... .. .. .. ....... ..- ........... . :- .. .- .... 

SYNOPSIS 

iinclude nsmsoftk.h" 

iinclude nsmkeys.h" 

int sm_skinq(scope, row, softkey, value, display_attribute, 
labell, labe12) 

int scopei 
int rOWi 
int softkeYi 
int *valuei 
int *display_attributei 
char *labelli 
char *labe12i 

DESCRIPTION 

Use this routine to obtain the value, attributes, and label of a soft key contained in a 
keyset currently in memory, given a soft key's position within a keyset 

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its 
position within that row. Use scope to reference a particular keyset Mnemonics for 
scope are dermed in smsoftk. h. For a more detailed explanation of scope see the 
Keyset chapter of the Programmer's Guide. 

The logical value of the specified soft key is placed in value. This will be a number 
that corresponds to a mnemonic defined in smkeys . h. A value of 0 means the key is 
inactive. 

The attributes (color, blinking etc ... ) of the label are placed in display _attrib
ute. The attribute should be one of the mnemonics listed in smattrib. h. 

The first and second row labels are placed in labell and labe12 respectively. You 
should pre-allocate at least nine elements for labell and labe12 buffers (eight for 
the label characters and one for the null character). 

If you do not desire information about one or more of these parameters you may assign 
the parameters the null pointer. 

If you want general information about a keyset, see sm_ks inq. If you want the scope 
of the current keyset, use sm_ksc scope. 

JAM Release 5.03 20 Nov 92 Page 397 



JAM Programmer's Guide 

WARNING: This routine cannot be used when the keyset contains a greater number of 
keys per row than the terminal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you cannot reliably 
reference a particular soft key by its row and position. Instead, use sm_skvinq. 

RETURNS 

o if information bas been returned. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 

sm_kscscope()j 
sm_ksinq(scope, number_keys, number_rows, current_row, 

maximum_len, keyset_name)j 
sm_skvinq(scope, value, occurrence, attribute, labell, labeI2); 

Page 398 JAM Release 5.03 20 Nov 92 



Chapter 13. Function Reference 

skmark 
mark or unmark a soft key label by position 
•• : .. ; ........ "": ",,: ::: :'" v." ,," .. ...:: :: "" : : ::: ":: .: ".: ~ ..... :: :":'" .:::" : ."" : "".:.: ",,: ,,:::." ": .. :".. : "": :".. ...... :" .... .: 

SYNOPSIS 
#include "smsoftk.h" 

int sm_skmark(scope, row, softkey, mark} 
int scope; 
int row; 
int softkey; 
int mark; 

DESCRIPTION 
Use this routine to mark or unmark a soft key label in an open keyset. The mark is made 
in the last position of the fllSt label. 

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its 
position within that row. Use scope to reference a particular keyset Possible values 
for scope are defined in smsoftk. h. The argument row is the row number in which 
the desired softkey resides. Rows are counted from top to bottom, beginning with 1. 
The argument softkey is the position number within row of the desired soft key. 
Positions are numbered left to right, beginning with 1. 

The argument mark may be any single ASCII character. An asterisk (*) is the most 
commonly used mark. To unmark the key use the space character (' ') for mark. 

The marking or unmarking of a soft key is often done to indicate a selection on a func
tion key that toggles between two options. 

WARNING: This routine cannot be used when the keyset contains a greater number of 
keys per row than the terminal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you cannot reliably 
reference a particular soft key by its row and position. Instead, use sm_s kvmar k. 

RETURNS 
o if the marking was successful. 

-1 if there is no keyset of the specified scope. 
-2 if the scope is out of range. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 
sm_skvmark(scope, value, occurrence, mark}; 

JAM Release 5.03 20 Nov 92 Page 399 



JAM Programmer's GUide 

skset 
set characteristics of a soft key by position 
.: ."' .. : :":: '" : .... :.: ::.~:.::.:::.. -:: .. :... :-:::: .. : .~ ........ ~::":"":~ :~.". '" ....... ::::.~ ::: .. :: .. :'::J:;.: :: .. ::: .. : ... ::..-:... ...... h..:: :.:::-:.:.::. ;. ":.. :":" : : ...:. -::.: .. ~:::::. 

SYNOPSIS 

#include "smsoftk.h" 

#include "smkeys.h" 

#include "smkeys.h" 

int sm_skset(scope, row, softkey, value, attribute, labell, 
labe12) 

int scope; 
int row; 
int softkey; 
int value; 
int attribute; 
char *labell; 
char *labe12i 

DESCRIPTION 

This routine can be used to modify a soft key's scope, value, attribute, or label of any 
currently open keysets. You may modify one or more of these specifications with each 
call of sIILskset. 

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its 
position within that row. Use scope to reference a particular keysel Possible values 
for scope are dermed in smsoftk. h. The argument row is the row number in which 
the desired softkey resides. Rows are counted from top to bottom, beginning with 1. 
The argument softkey is the position number within row of the desired soft key. 
Positions are numbered left to right, beginning with 1. 

The value refers to the logical key name to be assigned to the soft key. Available 
mnemonics are defined in smkeys . h. If you do not want to change the logical name, 
assign -1 to value. 

The attribute (color, blinking, etc.) is specified by using mnemonics listed in 
smat trib. h. If you do not want to change attribute, assign it o. (Note: If you set 
both the background and foreground to black, sm_skset sets the foreground to white, 
provided that the terminal supports background color.) 

Page 400 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

The variables labell and labe12 are the fust and second lines of the labels respec
tively. If you do not wish to change one of the labels, assign it the null pointer. 

WARNING: This routine cannot be used when the keyset contains a greater number of 
keys per row than the terminal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you cannot reliably 
reference a particular soft key by its row and position. Instead, use sm_skvset. 

RETURNS 
o if no error has occurred. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 
sffi_skvset(scope, value, occurrence, newval, attribute, labell, 

label2)i 

JAM Release 5.03 20 Nov 92 Page 401 



JAM Programmer's GUide 

skvinq 
obtain soft key information by value 

SYNOPSIS 

#include ·smsoftk.h" 

#include ·smkeys.h" 

int sm_skvinq(scope, value, occurrence, attribute, labell, 
labe12) 

int scope; 
int value; 
int occurrence; 
int *attribute; 
char *labell; 
char *labe12; 

DESCRIPTION 

Use this routine to obtain the label text and attributes of a soft key contained in a keyset 
cmrently in memory, given the soft key's value. It can be used when the terminal has a 
different number of keys than the keyset was designed for. 

The soft key is referenced by the keyset it belongs to, its value, and its occurrence with
in the keyset. Use scope to reference a particular keyset. Possible values for scope 
are defined in smsoftk. h. The value of the soft key is one of the mnemonics de
rmed in smkeys . h. The argument occurrence specifies which occurrence of a key 
with the specified value is desired (in case of duplicates). 

The attributes (color, blinking etc ... ) of the label are placed in attribute. The val
ue of the attributes correspond to a mnemonic, or some combination of ored mnemon
ics listed in smattrib. h. 

The rust and second row labels are placed in labell and label2 respectively. You 
should pre-allocate at least nine elements for labell and labe12 buffers (eight for 
the label characters and one for the null character). 

If you do not desire information about one or more of these parameters you may assign 
the parameters the null pointer. 

For general information about a keyset, see sm_ks inq. If you want the scope of the 
current keyset, use sm_kscscope. 

Page 402 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

RETURNS 
o if information has been returned. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 
sm_skinq(scope, row, softkey, value, display_attribute, labell, 

label2)i 

JAM Release 5.03 20 Nov 92 Page 403 



JAM Programmers Guide 

skvmark 
mark a soft key by value 
.. :---.:.:: ... :-'.::.~ ..... ...: :. ::::.::. :.. . ...:.: ... :: ...... :: ::" ....... : .... ::.~ :.:.";." :$.: .. ;....:. :... :::.:. : ....... :.:: -:.=:-. ~:.: .. ~ ... ~ .. ~ ":"::. ".: .. :: ... : -:: ..... :.: .:'v.::-: .. ~;:- .~. ~: • .:: :. .: 

SYNOPSIS 

#include "smsoftk.h" 

#include "smkeys.h" 

int sm_skvmark(scope, value, occurrence, mark) 
int scope; 
int value; 
int occurrence; 
int mark; 

DESCRIPTION 

Use this routine to mark or unmark a soft key label in an open keyset. The mark is made 
in the last position of the fIrSt label. 

The soft key is referenced by the keyset it belongs to, its value and its occurrence within 
the keyset. Use scope to reference a particular keyset. Possible values for scope are 
defined in smsof t k . h. The val ue of the soft key is one of the mnemonics defmed in 
smkeys .h. The argument occurrence is the nth time that value appears in the 
keyset. IT you wish to mark all occurrences of val ue assign 0 to occurrence. 

The argument mark may be any single ASCn character. An asterisks (*) is the most 
commonly used mark. To unmark the key use the space character (' ') for mark. 

The marking or unmarking of a soft key is often done to indicate a selection on a fimc
tion key that toggles between two options. 

RETURNS 

o if the mark was successful. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 

sm_skmark(scope, row, softkey, mark); 

Page 404 JAM Release 5.03 20 Nov 92 



Chapter 13' Function Reference 

skvset 
set characteristics of a soft key by value 
: ... : .... : :: .. ,,": .. ~ ... : ... , .. : ...... : .. ~ ": .. "" : :. ...... : ::"" .. ~ :.:::.1':. :":. : .. ::":":":";.. ~ :: ...... ".:.:... .: .. ~: .. : .. :" .. :",,::: ..... ~ ... 

SYNOPSIS 
#include "smsoftk.h" 

#include "smkeys.h" 

int sm_skvset(scope, value, occurrence, newval, attribute, 
labell, labe12) 

int scope; 
~nt value; 
int occurrence; 
int newvali 
int attribute; 
char *labell; 
char *labe12i 

DESCRIPTION 
This routine can be used to modify the scope, value, attribute, or label of a soft key 
within a currently open keyset. You may modify one or more of these specifications 
with each call of sm_skset. 

The soft key is referenced by the keyset it belongs to, its value and its occurrence within 
the keyset. Use scope to reference a particular keyset. Possible values for scope are 
defined in smsof t k . h. The val ue of the soft key is one of the mnemonics defined in 
smkeys .h. The argument occurrence is the nth time that value appears in the 
keyset. If you wish to change all occurrences of value assign 0 to occurrence. 

The value of newvalue refers to the logical key name to be assigned to the soft key. 
Available mnemonics are defmed in smkeys . h. If you do want to change the logical 
name, assign -1 to value. 

The attribute (color, blinking, etc.) is specified by using mnemonics listed in 
smattrib.h. If you do not want to change attribute, assign it o. (Note: If you set 
both the background and foreground to black, sm_skset sets the foreground to white, 
provided that the terminal supports background color.) 
The variables labe 11 and labe 12 are the fIrSt and second lines of the labels respec
tively. If you do not wish to change one of the labels, assign it the null pointer. 

RETURNS 
o if no error occurred 
-1 if there is no active keyset for the given scope 

JAM Release S.03 20 Nov 92 Page40S 



JAM Programmer's Guide 

-2 for an invalid scope 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 
sffi_skset(scope, row, softkey, value, attrIbute, labell, label2)i 

'\ 

Page 406 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

soption 
set a string option 
: .. " : .. ~ .. ;.; ::.1'.. ::. :.' ............ : .h';':;'v.~::.:.:;":.. ... . .,.: .: ......... :.... " .. -":." .: .... "" ......... : .... :: ........ : ;. ......... ::: ....... ,: ....... : .. 

SYNOPSIS 
char *sm_soption(option, newval) 
int option; 
char *newval; 

DESCRIPTION 

Use sm_soption to alter during run-time the default string options defmed in smse
tup. h. The following table lists the valid mnemonics for option: 

Mnemonic Description 

SO_EDITOR Editor to use in JPL windows. 

SO_FEXTENSION Screen ftle extension. 

SO_LPRINT Operating system print command. 

SO_PATH Searcb path for screens and JPL procedures. 

These variables are fully documented in the JAM Configuration Guide, under "System 
Environment and Setup Files." 

RETURNS 

The old value for the specified option. 
o if the option is invalid or a malloc error occurred. 

RELATED FUNCTIONS 
sm_option(option, newval); 

EXAMPLE 
char *defauIt_Ipi 
defauIt_Ip = sm_soption (SMLPRINT, IIp -dny %S·)i 

JAM Release 5.03 20 Nov 92 Page 407 



JAM Programmer's Guide 

strip_amt_ptr 
strip amount editing characters from a string 
....... .. .. .." ::. .. ... :: ...... ;..~"~ .... ~: ... ~;: i ::...:.- : ...... ~ .. ~ ..... ~ :~ .. ::: .. ::. ......... ;,.... ... " .. "" ... ::.. ... ~ ..... : .. ";.. . .. t- ........ :" ~.":. :: .. :"" ": ..... : .":" .. : ... : .:. .. ....... 

SYNOPSIS 
char *sm_strip_amt-ptr{field_nurnber, inbuf) 
int field_number; 
char *inbuf; 

DESCRIPTION 

Strips all non-digit characters from the string, except for an optional leading minus sign 
and decimal point If inbuf is nonzero, field_number is ignored and the passed 
string is processed in place. 

If inbuf is zero, the contents of field_number are used. 

This function shares with several others a pool of buffers where it stores returned data. 
The value returned by any of them should therefore be processed quickly or copied. The 
shared pool is only used if inbuf is zero. 

RETURNS 
A pointer to a buffer containing the stripped text, 
or 0 if inbuf is 0 and the field number is invalid. 

RELATED FUNCTIONS 

sm_amt_format(field_number, buffer}; 
sm_dblval(field_number} ; 

EXAMPLE 
#include -smdefs.h-

char *strip_text; 
in amount; 

str2p_text = s~strip_amt-Ptr (0, -Sl,234-); 
amount = atoi(strip_text)i 

Page 408 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

submenu close 
close the cu rrent submenu 
:.. .... : ... " .. ;..-':;' : .. ~ ;" :: . .,,: .:".:.... ... : .... :. :: .. :::.: "':: ..... : .... .:.: ":.:: "" : .... ;:.. .. : ... : :: .. )"" :.:~ .. ": .. : .:.. ... ~:: .... : -: ... : ............ ~~: ..... ::: "" . .:.. ":,," ..... ::. 

SYNOPSIS 

DESCRIPTION 

Submenus are ordinarily closed before sm_input returns. It may, however, be told to 
leave them open by using the OK_LEAVEOPEN option, either in the setup fIle or via 
sm_opt ion. See the Configuration Guide for details. Regardless of how this option is 
set, submenus are automatically closed whenever the underlying window is closed with 
sm_c los e_window. 

This function, then, is needed only when all of the following conditions are true. 

1. OK_LEAVEOPEN is in use. 

2. The submenu is no longer needed. 

3. Access is needed to the underlying window. 

RETURNS 

-1 if there is no submenu currently open. 
o otherwise. 

RELATED FUNCTIONS 

JAM Release 5.03 20 Nov 92 Page 409 



JAM Programmers Guide 

sv data -
save partial screen contents 

SYNOPSIS 
char *sm_sv_data(first_field, last_field) 
int first_field; 
int last_field; 

DESCRIPTION 

The current screen's data, from all fields numbered from first_field to 
last_field, is saved for external access or subsequent retrieval, and the address of 
the save area returned. Use sIlLrs_da ta to restore it 

See sIlLsave_data for the save format. 

RETURNS 

The address of an area containing the saved data. 
o if the current screen bas no fields, or sufficient free memory is not available. 

RELATED FUNCTIONS 

sm_rs_data(first_field, last_field, buffer) 
sm_save_data(); 
sm_sv_free(buffer) 

Page 410 JAM Release 5.03 20 Nov 92 



sv free -
free a save-data buffer 

SYNOPSIS 
void sm_sv_free(buffer) 
char *buffer; 

DESCRIPTION 

Chapter 13: Function Reference 

Tbe save area at buffer, which must have been created by sm_save_data or 
sm_sv_data, is released and is no longer accessible. 

sm_save_data and related functions record the addresses of save areas, and after ten 
have been accumulated the oldest is released automatically; calls to this function are 
therefore not strictly necessary. 

RELATED FUNCTIONS 
sm_save_data(); 
sm_sv_data(first_field, last_field) 

JAM Release 5.03 20 Nov 92 Page 411 



JAM Programmer's GUide 

svscreen 
register a list of screens on the save list 

SYNOPSIS 

............. ... : .. ..: •• :-:........ : .. : .... '":'" .~ •• :.J' • ....... 

int sm_svscreen(screen_list, count) 
char *screen_list[]; 
int count; 

DESCRIPTION 

.. .... : '": ... -:- ....... 

JAM maintains a list of screens that are saved in memory. The number of screens to be 
added is given by count. You may add screens to the list anywhere within your code, 
however the screen is not actually placed in memory until it is closed for the fIrSt time. 
This means that the time saving factor only comes into play in subsequent openings of 
the screen. Any data entered into a screen is not saved until the screen is closed. 

Screens are removed from the list with sm_unsvscreen. You can check to see if a 
screen is on the save list with sm_issv. Checking the list prior to calling 
sm_svscreen, however, is not crucial as any attempt to add a screen that is already 
on the list has no effect. 

This routine saves processing time at the expense of memory. It is best suited for use 
with screens that both require large amounts of data to be read in from elsewhere (data
bases, other files, etc.) and do not allow the user to enter data. For instance, if you have 
a help screen that needs to be populated by a data base and is going to be called up more 
then once, you can re-display the screen much more quickly by saving the screen in 
memory. 

RETURNS 

o if no error occurred. 
1 if registration failed (out of memory). 

RELATED FUNCTIONS 
sm_issv(screen_name); 
sm_unsvscreen(screen_list, count); 

EXAMPLE 
/* sm_issv */ 
/* sm_svscreen */ 
/* sm_unsvscreen */ 
char *screens[] = 
{ 

Page 412 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

} i 

·start. jam" , 
" demo . jam" , 
"help.jam" 

int num_screens = sizeof(screens) / sizeof(char *); 

void 
save_screens ( ) 
{ 

} 

/* Put 'screens' onto the save list. */ 
s~svscreen(screens, num_screens)i 

void 
release_screens() 
{ 

} 

/* Remove 'screens' from the save list. */ 
return(s~unsvscreen(screens, num_screens))i 

void 
release_screen (name) 
char *name; 
{ 

} 

char *temp[l]i 
if (s~issv(name)) 
{ 

} 

temp[O] = name; 
s~unsvscreen(temp,l)i 

JAM Release 5.03 20 Nov 92 Page 413 



JAM Programmer's Guide 

t scroll 
test whether an array can scroll 
.:.:: ~.: ........ ' ... M ...... - .... :.: ...... '". ~:. ~ ... : ..... ::: ... :: ....... :. : •• : ..... ::. ...... :: ••• .. .. .. .. : .. 

SYNOPSIS 
int sm_t_scroll(field_number) 
int field_number; 

DESCRIPTION 
This function returns 1 if the array in question is scrollable, and 0 if not. The argument 
field_number may be any field within the array. 

RETURNS 
1 if the array is scrolling. 
o if it is not scrolling or if no such fie ld_numbe r. 

RELATED FUNCTIONS 

Page 414 JAM Release 5.03 20 Nov 92 



t shift -
test whether field can shift 

SYNOPSIS 
int sm_t_shift(field_number) 
int field_number; 

DESCRIPTION 

Chapter 13: Function Reference 

This function returns 1 if tbe field in question is shiftable, and 0 if not or if there is no 
such field. 

RETURNS 
1 if field is shifting. 
o if not shifting or field_number is invalid. 

RELATED FUNCTIONS 

EXAMPLE 
.include 'smdefs.h' 

/* TUrn on shifting indicators if the screen 
* contains any fields. */ 

int f; 

for (f = s~inquire(SC~FLCS); f>O; f--) 
{ 

if (s~t_shift ( f) ) 
{ 

sm_in~set (INC_SHIFT) ; 
s~rescreen (); 
break; 

} 
} 

JAM Release 5.03 20 Nov 92 Page 415 



JAM Programmer's Guide 

tab 
move the cursor to the next unprotected field 
'" .:. ": .... " '" :... ;:: .: • .:: ... ~ :"" .... :: :"":,,,: ": ...... :". "' ...... "': A"". ~ .. .: •• :" .. "" ••• : ..... : ;:.: :" .. .. :: ...... ::.:: .. .: •• :;:. •• ".: •• .: .... ".. 

SYNOPSIS 

DESCRIPTION 

If the cursor is in a field with a next-field edit and one of the fields specified by the edit 
is unprotected from tabbing, the cursor is moved to the first enterable position of that 
field. Otherwise, the cursor is advanced to the flfSt enterable position of the next tab 
unprotected field on the screen. 

This function doesn't immediately trigger field entry, exit, or validation processing. 
Such processing occurs based on the cursor position when control returns to sm_in
put. 

RELATED FUNCTIONS 
sm_backtab () ; 
sm_home(); 
sm_last(); 
sm_nl(); 

EXAMPLE 
linclude ·smkeys.hR 

/* This moves the cursor to the next field. */ 
sm_tab (); 

Page 416 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

tst all mdts - -
find first modified occurrence 
.:.. "" ......... ••• N' .. : ..... :. : ::.. ::..::.: ..... : .: •• ::. .. : ::.A:.:~. ~ .... ".. .. "".;)0 ~ •• ~.:..:"": •• : .... : ... :.. •• ::-,," .. ~:." .: .. : ... : .'::..: .. ",,:... ~ :""::,, 

SYNOPSIS 
int sm_tst_all_mdts(occurrence) 
int *occurrence; 

DESCRIPTION 
This function tests the MDT bits of all on-screen and off-screen occurrences of all 
fields on the current screen, and returns the base field and occurrence numbers of the 
fust occurrence with its MDT set, if there is one. The MDT bit indicates that an occur
rence has been modified, either from the keyboard or by the application program, since 
the screen was displayed (or since its MDT was last cleared by sm_bi top). 

This function returns zero if no occurrences have been modified. If one has been modi
fied, it returns the base field number, and stores the occurrence number in the variable 
addressed by occurrence. 

RETURNS 
o if no MDT bit is set anywhere on the screen 
The number of the fust field on the current screen for which some occurrence has its 

MDT bit seL In this case, the number of the fust occurrence with MDT set is returned 
in the location referenced by occurrence. 

RELATED FUNCTIONS 
sm_bitop(field_number, action, bit); 
sm_cl_all~dts(); 

EXAMPLE 
linclude -smdefs.h-

/* Clear MDT for all fields on the screen. Then write data to the */ 
last field, and check that its MDT is the first one set. */ 

int occurrence; 
int numflds; 

sm_cl_all_mdts(); 
numflds = sm_inquire (I_NUMFLDS); 
sm-putfield (numflds, -Hello·); 
if (sm_tst_all_mdts (&occurrence) != sm_inquire(SC_NFLDS) 

sm_err_reset ( 
·Something is rotten in the state of Denmark.-); 

JAM Release 5.03 20 Nov 92 Page 417 



JAM Programmer's GUide 

udtime 
format user-supplied date and time 

SYNOPSIS 

.. ~ .. ~ . '. 

char *sm_udtime(tlme, format) 
struct tm *timei 
char *formati 

DESCRIPTION 

...... -: .... 

This function formats a user-supplied date and/or time according to the specified for
mat. format is created by using dateltime tokens or by using sm_edit-ptr. See 
sm_sd time for details. 

This function uses a static buffer which it shares with other date and time formatting 
functions. The buffer is 256 bytes long. There is no checking for overflow. You should 
process the returned string, or copy it to a local variable, before making additional func
tion calls. 

JAM uses the C header file time. h to derme struct tm. 

RETURNS 

A pointer to the user date/time in the specified format. 
Empty if format is invalid 

RELATED FUNCTIONS 

sm_sdtime(format)i 

EXAMPLE 

/* Put the date 135 days from now Into the field -maturity· */ 
linclude smdefs.h 
time_t tim; 
struct tm *matdate; 
char '*ptr; 

/* calculate local time in seconds '*/ 
tim = time «time_t)O) + 135L * 24 * 60 '* 60; 
matdate = localtime (&tim); 
ptr = sm_udtime (matdate, • 'Of R

); 

sm_~utfield (RmaturityR, ptr); 

Page 418 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

ungetkey 
push back a translated key on the input 
: ".:: . .:.. ~ ~.: .. : ": .. :f .:-":.": :: .:..:: i~~.~ ... " .... : :~.E . . :.:::.,J ...... ::E "::".:: .. :: ... ".:. v .. ::"':: :- ....... : .. "" ... ) .. : ""S :::....... .:.: :: :. -: .:. .. : ,," 

.... • "t' .. 

SYNOPSIS 

#include ·smkeys.h" 

int sm_ungetkey(key) 
int key; 

DESCRIPTION 
This function saves the translated key given by key so that it will be retrieved by the 
next call to sm_getkey. Multiple calls are permitted The key values are pushed onto 
a stack (LIFO). 

When sm_getkey reads a key from the keyboard, it flushes the display flfSt, so that 
the operator sees a fully updated display before typing anything. Such is not the case for 
keys pushed back by sm_ungetkey; since the input is coming from the program, it is 
responsible for updating the display itself. 

RETURNS 
The value of its argument, or 
-1 if memory for the stack is lDlavailable. 

RELATED FUNCTIONS 

EXAMPLE 
linclude -smkeys.h-

/* Force tab to next field */ 
sm....ungetkey (TAB); 

JAM Release 5.03 20 Nov 92 Page 419 



JAM Programmer's Guide 

unsvscreen 
remove screens from the save list 
.".. : ...... : .• ~.:.. : .. .:. ": .• : ..... :.: : -: .. <:-:.1'.; : .... "' .. .. ... ". .... " .. :. :.:: ...... " .. " •... :.: ......... :. :..~ .. : " .. : .... : .:": .. 

SYNOPSIS 
void sm_unsvscreen(screen_llst, count) 
char *screen_list[]; 
int count; 

DESCRIPTION 

JAM maintains a list of screens that are saved in memory. This function is used to re
move screens from the save list The argument coun t specifies the number of screens 
to be removed from the save list. See sm_svscreen. 

This function can be used at any point within your code. It is not necessary for the 
screen to be open at the time of the call. Any memory allocated to hold the screen is 
freed at the time of the call unless the screen is open. The memory associated with an 
open screen is de-allocated when that screen is closed. If a screen is not on the save list, 
a call to sm_unsvscreen has no effect. 

RELATED FUNCTIONS 

sm_lssv(screen_name); 
sm_svscreen(screen_list, count); 

Page 420 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

viewport 
modify viewport size and offset 

SYNOPSIS 

void sm_viewport(position_row, position_col, size_row, size_col, 
offset_row, offset_col) 

int position_rowi 
int position_coli 
int size_rowi 
int size_coli 
int offset_rowi 
int offset_coli 

DESCRIPTION 

This function dynamically sizes the current screen's viewport. A viewport has a maxi
mum size of the screen or physical display - whichever is smaller. Use size_row and 
size_column to specify the number of rows and columns, respectively. 

You can position the viewport anywhere on the physical display. To do this, think of 
your physical display as a grid made up of rows and columns that are one character 
apart. The top left comer of your screen monitor is at position row 0, column 0. Now 
use the arguments position_row and position_col to specify the coordinates 
of the viewport. 

You may also specify which row and column of the screen should initially appear at top 
left comer of the viewport. Again Starting at row 0, column 0, count from the top left 
of the screen to get the coordinates for offset_row and offset_col. 

This function performs range checks on all parameters and suitably modifies them if 
necessary. In particular, be aware that a non-positive value of size_row and 
size_co 1 sets the viewport to the maximum size in that dimension. 

EXAMPLE 
/* Make current viewport take the full screen */ 
void 
zoom_screen ( ) 
( 

sm_viewport(O,O, -1,-1, 0,0); 
} 

JAM Release 5.03 20 Nov 92 Page 421 



JAM Programmer's GUide 

vinit 
initialize video translation tables 

SYNOPSIS 
int sm_vinit(video_address) 
char *video_addressi 

DESCRIPTION 

This routine is called by sIlLini tcrt as part of the initialization process. It can also 
be called directly by an application program. video_address contains the address 
of a memory resident video fde. Such a file must be created by the vid2bin and 
bin2c utilities, then compiled into the application. 

RETURNS 

o if initialization is successful. 
program exit if video fde is invalid or if video_addres s is zero and SMVIDEO is 

undefmed 

Note: The variant SIlLn_ vini t has no return value. 

VARIANTS 

EXAMPLE 
/* Install a memory-resident video file */ 

extern char special_vid[]; 

Page 422 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

wcount 
obtain number of currently open windows 

SYNOPSIS 
int sm_wcount(}; 

DESCRIPTION 

This function returns the number of windows currently open. The number is equivalent 
to the number of windows in the window stack. 

To select the screen beneath the current window use: 

s~wselect(s~wcount()-l); 

This routine is useful when you are bringing another window to the top of the window 
stack (making the window active) with sm_wselect. 

RETURNS 

The number of windows. 
o if the base form is the only open screen. 
-1 if there is no current screen. 

RELATED FUNCTIONS 

s~wselect(window_number}; 

JAM Release 5.03 20 Nov 92 Page 423 



JAM Programmer's Guide 

wdeselect 
restore the formerly active window 
: :.:. .. f. ::.. :s.-.~".~...:. .~ .. : .. ~ .. " ...... :... .... " .: .~ :~ ..... .:..~ .:. ... :. ~ .... ":." "; .r. .. .: : ... :.... :.~ ...... : .. :;':' :.~ :' .. :.:.~:::-.. .... ~ .. : ::. ,,: .. " :..: .. : ::..:.::: -:c .: :.:."":.-:. ' 

SYNOPSIS 
int sm_wdeselect(); 

DESCRIPTION 

This function restores a window to its original position in the window stack, after it has 
been moved to the top by a call to sm_wselect. Information necessary to perform 
this task is saved during each call to sm_wselect, but is not stacked. Therefore a call 
to this routine must follow a call to sm_wselect if it is to properly restore the window 
to its original position. Note that sm_wdeselect does not have to be called if the 
window ordering on the stack is acceptable. 

RETURNS 

-1 if there is no window to restore. 
o otherwise. 

RELATED FUNCTIONS 

sm_sihling(should_it_be); 
sm_wcount ( ) ; 
sm_wselect(window_number); 

EXAMPLE 
/* A typical use of the window selection routines is 

* to update information to a window that may (or 
* may not) be covered. For example, suppose that 
* the current time should be maintained on the 
* underlying form. Assume that a field named 
* ·curtime· exists on that form. The following 
* code fragments can be used to maintain that 
* field independent of the number of windows 
* currently open above the form. 
*/ 

linclude ·smdefs.h-

updatetime ( ) 
{ 

/* quietly select the bottom form */ 
sm_wselect (O)i 

Page 424 JAM Release 5.03 20 Nov 92 



Chapter 13: FunctIon Reference 

} 

/* update system time dlsplay */ 
sm_n-putfield (·curtime N

, N"); 
/* restore visible window */ 
sm_wdeselect (); 
return (0); 

/* In initialization code: install "updatetime n 

to be called every second. */ 

static struct fnc_data afunc = { 0, updatetlme, 
0, 10, 0, 0 }; 

sm_install (ASYNC_FUNC, &afunc, (int *)0); 

JAM Release 5.03 20 Nov 92 Page 425 



JAM Programmer's GUIde 

window 
display a window at a given position 
.... '". : .... .. .. .. .... 

SYNOPSIS 
int sm_r_window(screen_name, start_lIne, start_column) 
char *screen_name; 
int start_line; 
int start_column; 

int sm_r_at_cur(screen_name) 
char *screen_name; 

int sm_d_window(screen_address, start_line, start_column) 
char *screen_address; 
int start_line; 
int start_column; 

Int sm_d_at_cur(screen_address); 
char *screen_address; 

int sm_l_window(lib_desc, screen_name, start_line, 
start_column) ; 

int lib_desc; 
char *screen_name; 
int start_line; 
int start_column; 

int sm_l_at_cur(lib_desc, screen_name); 
int lib_desc; 
char *screen_name; 

DESCRIPTION 

This set of functions is primarily intended to be used by developers who are writing 
their own executive. To open a window while under the control of the JAM Executive, 
use a JAM control stting or sm_jwindow. 

Use sm_d_window, sm_l_window, or sIILr_window to display screen_ncune 
with its upper left-hand comer at the specified line and column. The line and column 

Page 426 JAM Release 5,03 20 Nov 92 

" 



Chapter 13' Function Reference 

are counted from zero. If start_line is 1, the window is displayed starting at the 
second line of the screen. 

Use sm_d_at_cur, srn_l_at_cur, and sm_r_at_cur to display a wmdow at the 
current cursor position, offset by one line to avoid hiding that line's current display. 

Whatever part of the display the new window does not occupy remains visible. Howev
er, only the topmost (active) window and its fields are accessible to keyboard entry and 
library routines. JAM does not allow the cursor outside the topmost window. If you 
wish to shuffle windows use sm_wselect. 

If the window does not fit on the display at the location you request, JAM adjusts its 
starting position. If the window would hang below the screen and you have placed its 
upper left-band comer in the top half of tbe display, the window is simply moved up. If 
your starting position is in the bottom balf of the screen, the lower left hand comer of 
the window is placed there. Similar adjusunents are made in the borizontal direction. 

When you use sm_r_window the named screen is sought first in the memory-resident 
screen list, and if found there is displayed using sm_d_window. It is next sought in all 
the open libraries, and if found is displayed using sm_l_window. Next it is sought on 
disk in the current directory; then under tbe path supplied to sm_ini tcrt; then in all 
the patbs in the settJp variable SMPATH. If any path exceeds 80 characters, it is skipped. 
If the entire search fails, this function displays an error message and returns. 

You may save processing time by using sm_d_window and sm_d_at_cur to dis
play screens that are memory-resident Use bin2c to convert screens from disk flIes, 
which you can modify using jxforrn, to program data structures you can compile into 
your application. A memory-resident screen is never altered at run-time, and may 
therefore be made shareable on systems that provide for sharing read-only data. 
sm_r_window and sm_r_at_cur can also display memory-resident screens, if 
they are properly installed using sm_formlist. Memory-resident screens are partic
ularly useful in applications that have a limited number of screens, or in environments 
that have a slow disk (e.g. MS-DOS). screen_address is the address of the screen 
in memory. 

You may also save processing time by using sm_l_window and sm_l_at_cur to 
display screens that are in a library. A library is a single me containing many screens 
(and/or JPL modules and keysets). You can assemble one from individual screen files 
using the utility formlib. Libraries provide a convenient way of distributing a large 
number of screens with an application, and can improve efficiency by cutting down on 
the number of paths searched. 

The library descriptor, I ib_desc, is an integer returned by sm_l_open, which you 
must call before trying to read any screens from a library. Note that sm_r_window 
and sm_r_at_cur also search any open libraries. 

JAM Release 5.03 20 Nov 92 Page 427 



JAM Programmer's Guide 

If you want to display a form use sm_r_form or one of its variants. Use 
sm_close_window to close the window. 

RETURNS 

o if no error occurred during display of the screen; 
-1 if the screen file's format is incorrect; 
-2 if the screen cannot be found; 
-3 if the system ran out of memory but the previous screen was restored; 
-5 if, after the screen was cleared, the system ran out of memory. 
-6 if the library is corrupted. 

RELATED FUNCTIONS 

sm_close_window()j 
sm_r_for.m(screen_name); 
sm_jwindow(screen_name)j 

EXAMPLE 
/* Bring up a window from a library. */ 

int ld; 

if ((ld = sm_l_open (-myforms·)) < 0) 
sm_cancel (); 

Page 428 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

• • wlnslze 
allow end-user to interactively move and resize window 
.:. : .. ; .... :.~ ...... : ..... ,,"":.: ~ :: .. : .. :" ........ ,," ... : .... "",,:.... .. .. ....... .. . -. .. " -./' ................... ,,". .... .. ...... .. : ... 

SYNOPSIS 
lnt sm_winsize()i 

DESCRIPTION 

Calling sm_winsize has the same effect as if the end-user had just hit the VWPT 
(viewport) logical key. The viewport status line appears and the user can move, resize 
and change the offset of the screen as well as move to any sibling windows. When the 
end-user hits XMIT (transmit) the previous status line is restored. If you wish to resize 
the viewport yourself, use sm_viewport. 

In order for the end-user to able to move from one window to another, the windows 
must be siblings. Windows are defined as siblings of one another either with sm_s ib
ling or by calling upa window as a sibling with a JAM control string. See the sections 
on "Viewports and Positioning" and "Control Strings" in the Author's Guide for further 
information. 

RETURNS 

-1 if call fails. 
o otherwise. 

RELATED FUNCTIONS 
sm_sibling(should_it_be); 
sm_viewport(position_row, position_col, size_row, size_col, 

offset_row, offset_col); 

JAM Release 5.03 20 Nov 92 Page 429 



JAM Programmer's GUide 

wrecord 
write data from a data dictionary record to a structure 
...... :".:- "" :::: .. :. : 

SYNOPSIS 

....... .. : ............ . ~ 

void sm_wrecord(structure-ptr, record_name, byte_count, 
language) 

char *structure-ptri 
char *record_namei 
int *byte_counti 
int language; 

DESCRIPTION 

This function writes data from fields within the current screen that are part of a com
mon data dictionary record to a C structure. If a field is not on the current screen, then 
the data is read from the LOB. This routine is commonly used with sm_rrecord, 
which reads data from a structure to a data dictionary record. If you wish to write data 
only from the current screen, use sm_wrtstruct. To write data from a group of con
secutively numbered fields, use sm_wrt.....Part. Use sm_getfield to write in
formation from an individual field to a string. 

To automatically generate a file containing a structure declaration for each data dictio
nary record, use the dd2struct utility. Each structure member is a field within a data 
dictionary record that is of the type specified in the Screen Editor. See "Data Type" in 
the Author's Guide and dd2struct in the Utilities Guide for further information. 

Once created, the declarations may be treated exactly like any other structure declara
tions. The argument struct-ptr is the address of a variable of one of the structure 
types generated by dd2struct. The argument record_name is the name of the data 
dictionary record, from which the structure was created. 

The argument byte_count is a pointer to an integer. Upon return from sm_wre
cord, the value contained in the integer is the number of bytes or characters written to 
the structure. It is 0 if an error occurred. 

The argument language stands for the programming language in which the structure 
is defined. It controls the conversion of string and numeric data. 

The following values for language are dermed in smumisc . h: 

Page 430 JAM Release 5.03 20 Nov 92 

~ 

I 



Chapter 13: Function Reference 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-fllied strings. Used for compactness and compat-
ibility with other languages. 

RELATED FUNCTIONS 
sm-putfield(field_number, data); 
sm_rrecord(structure-ptr, record_name, byte_count, language); 

JAM Release 5.03 20 Nov 92 Page 431 



JAM Programmer's GUide 

wrotate 
rotate the display of sibling windows 
.. ..... ..... : ............. : .. -: 

SYNOPSIS 
int sm_wrotate{step) 
int step; 

DESCRIPTION 

.. .. ..... ............... .. ".'" .... :: .. : ...... :. -:-.:: ,:......... . .. :'". '":., 

If two or more sibling windows are on the top of the display, this function may be used 
to rotate the sequence of the sibling windows. 

step is a positive or negative integer equalling the number of screen rotations. If 
step is positive, the routine takes the topmost sibling window and makes it the last 
sibling window for each instance of step. If step is negative, the routine takes the 
last sibling window and makes it first. If step is zero, no rotations are performed. See 
the figures below. 

Figure 1: Screens a, b.and c are all siblings.Screen main is not a sibling. 

Figure 2: Executing sm_wrotate ( 1) rotates the top sibling to the bottom 
of the sibling stack. It rotates screen c behind the other two sibling windows, 
leaving screen b on top. Screen main is not affected. 

Page 432 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

.. :: . .:A.* ... ¥i>~ • 
" .. : .... ~~~ .. .. .. .: 

. . 
.. : ": : : .. :- .. 

---.....;,......,. 
.. :-- : .. 

,,:. .: : 1--......... 
c 

: -:." :"' ... 

Figure 3: Executing sm_wrotate ( -1) rotates the last sibling window to 
the top, putting screen c on top. The display is the same as Figure 1. 

Figure 4: Executing sm_wrotate (2) rotates the first two sibling windows 
off the the top. First it rotates screen c to the back, then screen h, leaving 
screen a on top. 

RETURNS 

One less than the number of sibling windows on top of the window stack. 
o if there are no sibling windows 

RELATED FUNCTIONS 

JAM Release 5.03 20 Nov 92 Page 433 



JAM Programmer's GUide 

wrt_part 
write part of the screen to a structure 
": ::... ,,"..... .. .A •• ..: :-. ::" ... :~. ': :: • .::- : :" .:::.c" :-.. -:-- .. ",:. -:".":- ":- .. ~ ",,:..... -.::. :. ": .:.::-"::-- ~ "::... -: :.~jo ......... : .... y .... : : : .. ,,:.. .. .. " 

SYNOPSIS 

void sm_wrt-part(screen_struct, first_field, last_field, 
language) 

char *screen_struct; 
int first_field; 
int last_field; 
int language; 

DESCRIPTION 

This function writes the contents of all fields between first_field and 
last_field to a data structure in memory. An array and its scrolling occurrences are 
copied only if the first element falls between first_field and last_field. 
Group selections are not copied. This routine is commonly used with sm_rd...,part, 
which reads part of a structure into the current screen. If you wish to write the contents 
of all of the fields within the screen use sm_wrtstruct. To write information from a 
data dictionary record, use sm_wrecord. Use sm_getfield to write information 
from an individual field to a string. 

The structure declaration can be automatically generated from a screen file with the 
utility f2struct. Each member of the structure is a field of the type specified in the 
Screen Editor. See "Data Type" in the Author's Guide and f2struct in the Utilities 
Guide for further information. 

Once created, the declaration may be treated exactly like any other structure declara
tion. You can ignore the members that represent fields that do not fall within the bounds 
of the specified fields. However, the structure definition must contain all of the fields 
on screen. The argument screen_struct is the address of a variable of the type of 
structure generated by f2struct. 

The arguments that represent the range of fields to be copied, first_field and 
last_field are passed as field numbers. 

The argument language stands for the programming language in which the structure 
is defined. It controls the conversion of string and numeric data. 

The following values for language are defmed in smumisc. h: 

Page 434 JAM Release 5.03 20 Nov 92 

-, 



Chapter 13: Function Reference 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-fllled strings. Used for compactness and compat-
ibility with other languages. 

Remember, you must update the structure declaration whenever you alter the screen 
from which it was generated. 

RELATED FUNCTIONS 
sm-putfield(field_number, data); 
sm_rd-part(screen_struct, first_field, last_field, language); 
sm_wrtstruct(screen_struct, byte_count, language); 

EXAMPLE 
The code example below uses the same screen as the sm_wrt_struct 
example; 

refer to that example for the screen's picture and listing.Here is a 
header file produced by f2struct from the screen: 

struct strex 
{ 

char date[9]; 
char name[26]; 
char address [3] [76]; 
char telephone[14]; 

} ; 

Finally, here is a program that processes the screen using sm_rd-part 
and sm_wrtpart. 

#include ·smdefs.h
#include ·smkeys.h
#include ·strex.h-

Idefine C_LANG 0 

int main (); 
void punt (); 

char *program_name; 

main largc, argv) 

JAM Release 5.03 20 Nov 92 Page 435 



JAM Programmer's Guide 

char *argv[]; 
{ 

struct strex example; 
lnt key; 
char ebuf[80]; 

/* Initialize all structure members to nulls. 
* This is important because we are going to 
* do an sm_rd-part first. */ 

example.date[O] = 0; 
example.name[O] = 0; 
example.address[O] [0] = 0; 
example.address[l] [0] = 0; 
example.address[2] [0] = 0; 
example. telephone [0] = 0; 

/* Copy command line arguments, if any, into 
* the structure. */ 

switch (argc) 
{ 

case 6: 
default: 
/* Ignore extras */ 

strcpy (example. telephone, argv[5]); 
case 5: 

strcpy (example.address[2], argv[4]); 
case 4: 

strcpy (example.address[lj, argv[3]); 
case 3: 

strcpy (example.address[O], argv[2]); 
case 2: 

) 

strcpy (example.name, argv[l]); 
program_name = argv[O]; 
break; 

/* Initialize the screen and copy the structure 
* to it excluding the date field. */ 

sllLinitcrt (--); 
if (sllLr_form (-strex-) < 0) 

punt (-Cannot read form.-); 
sllLr~art (&example, 2, sllLinquire(I_NUMFLDS), C_LANG); 
SIlL~utfield (-date-, --); 

/* Open the keyboard to accept new data to the 
* form, and copy it to the structure when done. 
* Break out when user hits EXIT key. */ 

sm_d_msg_Iine (-Enter data; press %KEXIT • 
-to quit.-, 
WHITE I HILIGHT); 

do { 
key = sm_input (IN_DATA); 
sm_wrt-part (&example, 2, sm_inquire(I_NUMFLDS), 

Page 436 JAM Release 5.03 20 Nov 92 



} 

C_LANG) ; 

sprintf (ebuf, -Acknowledged: byte • 
-count = %d.-, count); 

sm_err_reset (ebuf); 
} while (key != EXIT); 

/* Clear the screen and display the final 
* structure contents. */ 

sm_resetcrt (); 
printf (-%s\n-, example.name); 
for (count = 0; count < 3: ++count) 
{ 

} 

if (example.address[count] (0) 
printf (-%s\n-, example. 
address[count]); 

printf (-%s\n-, example.telephone); 

exit (0); 

void 
punt (message) 
char *message; 
{ 

} 

sm_resetcrt (); 
fprintf (stderr, -%s: %s\n-, program_name, 

message); 
exit (1); 

JAM Release 5.03 20 Nov 92 

Chapter 13: Function Reference 

Page 437 



JAM Programmer's GUide 

wrtstruct 
write data from the screen to a structure 

.. " ........ ~. .. ......... .. .. ..... .. .. 

SYNOPSIS 
void sm_wrtstruct(screen_struct, byte_count, language) 
char *screen_structi 
int *byte_counti 
int language; 

DESCRIPTION 
This function writes the contents of all of the fields within the current screen to a C 
structure. It does not copy group selections. This routine is commonly used with 
sm_rds t ruct which reads data from a structure to all of the fields within the current 
screen. If you wish to write the contents of a group of consecutively numbered fields 
into a structure use sm_wrt...,part. To write information from a data dictionary re
cord, use sm_wrecord. Use sm_getfield to write the contents of an individual 
field into a string. 

The structure declaration can be automatically generated from a screen me with the 
utility f2struct. Each member of the structure is a field of the type specified in the 
Screen Editor. See "Data Type" in the Author's Guide and f2struct in the Utilities 
Guide for further information. 

Once created, the declaration may be treated exactly like any other structure declara
tion. The argument screen_struct is the address of a variable of the type of struc
ture generated by f2 s truct. If you specify the type omi t, data is not written into the 
field. 

The argument byte_count is the address of an integer variable. sm_wrtstruct 
stores there the number of bytes copied to the structure. 

The argument language stands for the programming language in which the structure 
is defined. It controls the conversion of string and numeric data. 

The following values for language are defmed in smumisc . h: 

Language Meaning 

S_C_NULL C with null-terminated strings. This is the most common 
choice. 

S_C_BLNK C with blank-ftlled strings. Used for compactness and compat-
ibility with other languages. 

Page 438 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

Remember, you must update the structure declaration whenever you alter the screen 
from which it was generated. 

RELATED FUNCTIONS 
sm-putfield(fleld_number, data); 
sm_rd_struct(screen_struct, byte_count, language); 
sID_wrt-part(screen_struct, fIrst_field, last_fIeld, language); 

EXAMPLE 
/* 
The code example below uses this screen, whose picture and listing 
follow. 

+-----------------------------------------+ 

Name: 
Address: 

Telephone: (_)_-__ 

+-----------------------------------------+ 

FORM ' strex' 

FIELD DATA: 

Field number 
Field name 
Display attribute 
Field edits 

1 (line 2, column 32, length = 8) 
date 
UNDERLINE HIGHLIGHT WHITE 
PROTECTED FROM: DATA-ENTRY; TABBING-INTO; 

CLEARING; VALIDATION; 
Date field data SYSTEM DATE/TIME; 24 HOUR FORMAT = MON2.DATE2.YR2 

Field number 
Field name 
Display attribute 

Field number 
Field name 

2 (line 3, column 15, length = 25) 
name 
UNDERLINE HIGHLIGHT WHITE 

3 (line 4, column 15, length = 25) 
address 

Vertical array : 3 elements; distance between elements = 1 
Array field numbers: 3 4 5 
Shifting values maximum length = 75; increment = 1 
Display attribute : UNDERLINE HIGHLIGHT WHITE 

JAM Release 5.03 20 Nov 92 Page 439 



JAM Programmer's Guide 

Field number : 6 (llne 7, column IS, length = 13) 
Fleld name telephone 
Dlsplay attribute UNDERLINE HIGHLIGHT WHITE 
Character edits DIGITS-ONLY 
Data type 
Initial data: 
item 1 

: CHAR STRING 

Here is a header file produced by f2struct from the screen above. 
*1 

struct strex 
{ 

char date[9]; 
char name[26]; 
char address[3] [76]; 
char telephone[14]; 

} ; 

/* 
Finally, here is a program that processes the screen using sm_rdstruct 
and 
sm_wrtstruct. 
*/ 

linclude ·smdefs.h
linclude ·smkeys.h
linclude ·strex.h· 

int main (); 
void punt (); 
char *program_name; 

main (argc, argYl 
char *argv[]; 
{ 

struct strex example; 
int count, 

key; 
char ebuf[80]; 

/* Initialize all structure members to nulls. 
* This is important because we are going to 
* do an sm_rdstructfirst. */ 

example.date[O] = 0; 
example.name[O] = 0; 
example. address [0] [0] = 0; 
example.address[l] [0] = 0; 

Page 440 JAM Release 5.03 20 Nov 92 



Chapter 13: Function Reference 

example.address[2] [0] = 0; 
example. telephone [0] = 0; 

/* Copy command line arguments, if any, 
* into the structure. */ 

switch (argc) 
{ 
case 6: 
default: 
/* Ignore extras */ 

strcpy (example. telephone, argv[5]); 
case 5: 

strcpy (example.address[2] , argv[4]); 
case 4: 

strcpy (example.address[l], argv[3]); 
case 3: 

strcpy (example.address[O] , argv[2]); 
case 2: 

} 

strcpy (example.name, argv[l]); 
program_name = argv[O]; 
break; 

/* Initialize the screen and copy the 
* structure to it. */ 

sm_initcrt (--); 
if (sm_r_form (-strex-) < 0) 

punt (-Cannot read form.-); 
s~rdstruct (&example, & count , C_LANG); 
sm_n-putfield (-date-, --); 

/* Open the keyboard to accept new data to 
* the form, and copy it to the structure 
* when done. Break out when user hits 
* EXIT key. */ 

sm_d_msg_line (-Enter data; press %KEXIT\ 
to quit.-, WHITE I HILIGHT); 
do { 

key = sm_input (IN_DATA); 
s~wrtstruct (&example, &count, C_LANG); 
sprintf (ebuf, -Acknowledged: byte -

-count = %d.-, count); 
sm_err_reset (ebuf); 

} while (key != EXIT); 

/* Clear the screen and display the 
* final structure contents. */ 

sm_resetcrt (); 
printf (-%ld\n-, example.date); 
printf (-'s\n-, example.name); 
for (count = 0; count < 3; ++count) 
{ 

JAM Release 5.03 20 Nov 92 Page 441 



JAM Programmer's GUide 

} 

~f (example.address[count] [0]) 
printf (-%s\n-, example.address 

[count]): 

printf (R%s\n-, example.telephone): 

exit (0): 

void 
punt (message) 
char *message: 
{ 

} 

sm_resetcrt (): 
fprintf (stderr, -%s: %s\n-, program_name, 

message) : 
exit (1): 

Page 442 JAM Release 5.03 20 Nov 92 



wselect 
activate a window 
.: .'": '".":":.. .:..:.-.: ::---:- .... ~ :.:.. : .... :. : ...... : ; .. " .:" '".:: .. ,. :-... 

SYNOPSIS 
int sm_wselect(window_number) 
int window_number; 

DESCRIPTION 

Chapter 13: Function Reference 

.. :: ..... :: ............ -: .. of .. 

Although JAM allows you to display multiple windows at one time, only one window 
may be active. Windows may overlap each other, or may be tiled (no overlap). The win
dow at the top of the window stack is the active window, and the only window accessi
ble to library routines and keyboard entry. Use sm_wselect to bring a window to the 
active position on top of the window stack. If any of the referenced window is hidden 
by an overlying window, it is brought to the forefront of the display. In either case, the 
cursor is placed within the window. JAM restores the cursor to its position when the 
screen was most recently de-activated. 

The window to be activated is referenced by its number in the window stack. Windows 
are numbered sequentially, starting from the bottom of the stack. The form underlying 
all the windows (the base form) is window 0, the fmt window displayed is 1 and so 
forth. Since a screen's number depends on its position on the window stack, calling 
sm_wse lect alters a window's number as well as it position on the stack. 

Alternatively, windows may be referenced by their screen name with the variant 
sm_n_wse lect. If you use this routine, you do not have to worry about keeping track 
of the non-active window's position on the stack. However, sm_n_wselect does not 
find windows displayed with sm_d_window or related functions, because they do not 
record the screen name. 

sm_wselect selects sibling windows as a group. If anyone of a set of sibling win
dows is activated by this function, then all of the siblings are brought to the top of the 
window stack. The selected window will be the active window at the top of this set. 
Otherwise, the sequence within the set of siblings does not change. 

Here are two possible uses for window selection. One use is to select a hidden screen, 
update it (using sm-putfield) and then deselect it (using sm_wdeselect). The 
portion of the hidden screen that is visible is updated with the new data. Because of 
delayed write the update will not be done until the next keyboard input is sought. 
Another use is to select a hidden screen and open the keyboard In this case, the selected 
screen becomes visible, and may hide part or all of the screen that was previously ac
tive. In this way you can implement multi-page forms, or switch among several win-

JAM Release 5.03 20 Nov 92 Page 443 



JAM Programmer's GUide 

dows that tile the screen (do not overlap). If you want the user to be able to select 
among screens, defme them as siblings. 

RETURNS 

The number of the window that was made active (either the number passed, or the 
maximum if that was out of range). 

-1 if the window was not found or the window was not open. 

VARIANTS 

RELATED FUNCTIONS 
sm_sibling(should_it_be)j 
sm_wcount()j 
sm_wdeselect()j 

EXAMPLE 
/* A typical use of the window selection routines is 
* to update information to a window that may (or 
* may not) be covered. For example, suppose that 
* the current time should be maintained on the 
* underlying form. Assume that a field named 
* ·curtime· exists on that form. The following 
* code fragments can be used to maintain that 
* field independent of the number of windows 
* currently open above the form. 
*/ 

Dinclude ·smdefs.h· 

updatetime ( ) 
{ 

} 

/* quietly select the bottom form */ 
sl1Lwselect (0); 
/* update system time display */ 
sl1Ln-putfield (·curtime-, ._); 
/* restore visible window */ 
sm_wdeselect (); 
return (0); 

/* In initialization code: install ·updatetimeW 

to be called every second. */ 

static struct fnc_data afunc = { 0, updatetime, 
0, 10, 0, 0 }; 

sm_install (ASYNC_FUNC, &afune, (int *)0); 

Page 444 JAM Release 5.03 20 Nov 92 



Chapter 14 

Library Function Index 
This chapter lists all JAM library functions, sorted by name. Function names appear on 
the left, and the section of the Function Reference Chapter in which the function is de
scribed appears on the right. 
sm_lclear_array ( field_number); 000000000000000000000000000000000000 clear_array 
sm_lprotect ( field_number, mask); 00000 0 0 0 000000 00000 000000 00000000000000 protect 
sm_lunprotect ( field_number, mask); 00000000000 0000000000000000000000000 protect 
sllLa_bitop (array_name, action, bit); 000000000000000000000000000000000000 bitop 
sm_allget (respect_flag); 000000000000000000000000000000000000000000000000 0 allget 
sm_amt_format ( field_number, buf fer); 000000000000000000000000000000 amt_format 
sm_aprotect ( field_number, mask); 000000000000000000000000000000000000000 protect 
sm_ascroll ( field_number, occurrence); 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 ascroll 
sm_aunprotect (field_number, mask); 000000000000000000000000000000000000 protect 
sm_backtab ( ); 0 0 0 00 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 backtab 
sm_base_fldno (field_number); 000000000000000000000000000000000000000 base_fldno 
sm_bel ( ); 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 00 0 0 000 0 0 00 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 bel 
sm_bi top ( field_number, action, bit); 000000000 000000000000000000000000000 bitop 

sm_bkrect(start_line, start_column, num_of_lines, 
number_of_columns, backgroun~colors); 0000000000000000000 bkrect 

sm_b lkdrvr ( ); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 blkdrvr 
sllLblkini t ( ); 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 00 0 0 00 0 0 000 0 0 00 0 0 000 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 blkinit 
sm_blkreset ( ); 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 00 0 0 000 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 blkreset 
sm_c_keyset ( scope); 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 c_keyset 
sm_c_of f ( ); 00000000000000 00000000000000 0000000 0000000000000000000000000000000 c_off 
sm_c_on ( ); 00 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 00 0 0 0 00 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c_on 
sm_c_vis (display); 0000000000000000000000000000000000000000000000000000 0 0000 c_vis 
sm_calc (field_number, occurrence, expression); 0000000000000000000000000 calc 
sm_cancel (arg); 0 00 0 0 0 0 0 0 0 00 0 0 00 0 0 0 00 0 0 00 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 cancel 
sm_chg_attr (field_number, display_attribute); 00000000000000000000 0 ch~Lattr 

sm_ckdigit(field_number, field_data, occurrence, modulus, 
minimum_dig its); 000000000000 000000000000 0000000000000000000 0 ckdigit 

JAM Release 5.03 20 Nov 92 Page 445 



JAM Programmer's GUide 

sm_cl_all_mdts ( ); ........................... 0 •• 0 •••••• 0 ••• 0 ••••••• 000 cl_allJllClts 
sm_cl_unprot ( ); . 0 o. 0 0000.0. 0" 0 0 0 " ••••• 0 o •• 0 0 • 00.0 ••• 0 0000 •• 0 • 0 0 0 • 0 • 0 0 cl_unprot 
sm_clear_array (field_number); . 00 •• 0 0 0 0 00 •••• 00 •• o. 0 0 000000000. o. 0 0 clear_array 
sm_close_window(); .......... 0. 0" 0 0 ••• 0 0 •••• 0 00 •• 00 ••• 0 000 •• 0 0 0 •••• close_window 
s/lLcopyarray (destination_fld, source_fld); ....... 0. o. 0 0.0. 0" 0 0 •• 0 copyarray 
sm_d_at_cur (screen_address); . 0 • 0 0 0 • 0 0 •• 0 0 •••••• o •• 0 •••••••••••• 0 ••••• 0 •• window 
sm_d_form (screen_address); ........................ 0 • • • • •• •• • ••• • • • •• • • • • • •• form 
sm_d_keyset (address, scope); ......................................... "0 keyaet 
sm_d_msg_line(message, display_attnbute); ....................... CLmsg_line 
sm_d_window(screen_address, start_line, start_column); ...... 0 •••••• window 
sm_dblval (field_number); ...... 0 •••••••••••••• 0 •••••••••• 0 •••••••••• 0.0 ••• dblval 
sm_dd_able ( flag); ......................................................... ~able 
sm_deselect (group_name, group_occurrence); ...... 0 .. 0............... deselect 
sm_d~cname (dic_name); ....... 0 •••••••••••••••••••••••••••••••••••••••••••• dicname 
sm_disp_off (); .......................................................... disp_off 
sm_dlength ( field_number); ............................................. " dlength 
sm_do_region(line, column, length, display_attribute, text); .. do_region 
sm_do_uinstalls (); ........................ 0 •••••••••••••• 0 ••••••••• do_uinstalls 
sm_dtof~eld( field_number, value, format); ............. 0............ dtofield 
sm_e_ ... (field_name, element, ... ); . 0 ••••••••••••••••••••••••••••••• 0 ••••••• e_ 
sm_e_lprotect ( field_name, element, mask); ........ 0 •• 0 •••••••••• 0' •• o. protect 
sm_e_lunprotect ( field_name, element, mask); ................ o •••• 0 •• " protect 
sm_e_amt_format (field_name, element, buffer); ....... 0 ••••••••••• amt_format 
sm_e_bitop(array_name, element, action, b~t); ......................... bitop 
sm_e_chg_attr(field_name, element, display_attribute); .......... chg_attr 
sm_e_dbl val ( field_name, element); ..........•........ , . 000 ••••••••••••• 0 dblval 
sm_e_dlength (f ield_name, element); 0 ••••••••••••••••••••••••••••••••• " dlength 
sllLe_dtofield(field_name, element, value, format); ............... dtofield 
sllLe_finquire( field.Jlame, element, which); ............ o. 0 •••••••••• finquire 
sm_e_fldno ( field_name, element); ...................... 0 •••••••••••••• " •• fldno 
sm_e_fptr ( field_name, element); ........................................... fptr 
sm_e_ftog (field_name, element, group_occurrence); ..................... ftog 
sllLe_fval ( array_name, element); ........... 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• fval 
sllLe_getfield(buffer, name, element); ............................... getfield 
sllLe_gofield( field_name, element); ....... 0 •••••••••••••••••••••••••••• gofield 
sm_e_intval ( fielcLname, element); .0 •••••••••••••••••••••••••••••••••••• intval 
sm_e_is_no(field_name, element); .................. 0 •••••••••••••••••••••• ia_no 
sllLe_is....Yes (fielcLname, element); ...................................... is...,ye8 
sllLe_itofield( field_name, element, value); ......................... itofield 
sm_e_Ingval ( field.Jlame, element); .................. 0 • 0 0 00, •••••••• 0 • 0 •• l:ngval 
sllLe_Itofield( field_name, element, value); ......................... ltofield 
s/lLe_novalbit (field_name, element); ................................. novalbit 
s/lLe_null ( field_name, element); ........................................... null 
sm_e_off_gofield( fielcLname, element, offset); ................. off-'1ofield 
sm_e.J)rotect (field_name, element); ................... 0 •••••••••••• 0 ••• protect 

Page 446 JAM Release 5.03 20 Nov 92 

., 



Chapter 14: Ubrary Function Index 

sm_e......putfield(name, element, data); ................................. putfield 
sm_e_unprotect (field_name, element); .................................. protect 

sm_edit......ptr (field_number, edit_type); ............................... edit....ptr 
sm_emsg (message); ............................................................ emag 
sm_err_reset (message); ................................................ err_reset 

sm_f i_open ( file_name); ................................................... fi_opeu 

sm_fi"""path( file_name); ................................................... fi""path 
sm_finquire( field_number, Wh1Ch); ................................... fiuquire 
sm_ flush ( ); .................................................................. flush 

sm_formlist (ptr_to_form_list); ....................................... formlist 
sm_fptr ( field_number): ...................................................... fptr 
sm_ftog ( field_number, group_occurrence); ................................ ftog 

sm_ftype (field_number, precision......ptr); ................ '" ........... '" ftype 

sm_fval ( field_number); ...................................................... fval 
sm_getcurno ( ); ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. getcuruo 
sm_getfield(buffer, field_number); .................................. getfield 
sm_getjctrl(key, default); ............................................ getjctrl 

sm_getkey ( ); ................................................................ getkey 
sm_gofield( field_number); ............................................... gofield 
sm_gp_inquire (group_name, which); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. gp_iuquire 
sm_gwrap(buffer, field_number, buffer_length); ........................ gwrap 

sm_hlp_by _name (help_screen); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. hlp~.J1CUIl8 
sm_home ( ); ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. home 
sm_i_ ... (f ield_name, occurrence, ... ); ..................................... i_ 
sJTLi_achg (field_name, occurrence, display_attribute); ................. achg 
sJTLi_amt_format (field_name, occurrence, buffer); ................ amt_format 
sJTLi_bitop(array_name, occurrence, action, bit); ...................... bitop 
sm_i_dbl val (field_name, occurrence); ................................... dblval 
sJTLi_dlength ( field_name, occurrence); ................................. dleugth 

sJTLi_doccur ( field_name, occurrence, count); ........................... doccur 
sJTLi_dtofield( field_name, occurrence, value, format): ............ dtofield 
sm_i_finquire(fielcLname, occurrence, which); ..................... fiuquire 
sm_i_fldno ( field_name, occurrence); ................................... " f lduo 
sm_i_fptr ( field_name, occurrence); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. fptr 
sm_i_ftog (field.Jlame, occurrence, group_occurrence); .................. ftoq 
sm_i_fva 1 ( field_name, occurrence); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. fval 

sm_i_getfield(buffer, name, occurrence); ........................... getfield 
sm_i_gofield( field_name, occurrence); ................................. gofield 
sm_i_gtof (group_name, group_occurrence, occurrence); .................. gtof 
sJTLi_intval ( field_name, occurrence); ................................... intval 
sJTLi_ioccur(fielcLname, occurrence, count); ........................... ioccur 
sJTLi_is_no(fielcLname, occurrence); ..................................... isJlO 
sm_i_is""yes (field_name, occurrence); ................................... is''''yes 
sm_i_itofield( fielcLname, occurrence, value); ..................... itofield 
sm_i_lngval (field_name, occurrence); ................................... l:ngval 

JAM Release 5.03 20 Nov 92 Page 447 



JAM Programmer's Guide 

sm_i_Itofield( field_name, occurrence, value); ..................... ltofield 
sm_i_novalbit (field_name, occurrence); ............................. novalbit 
sm_i_null ( fie ld_name, occurrence); .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. null 
sm_i_off_gofield(field_name, occurrence, offset); ............. off~ofield 
sm_i-putfield(name, occurrence, data); ............................. putfield 
sm_ininames (name_l ist); . . . . . . . . .. . . . . . . .. . . . .. . . .. . . . .. . . .. . . .. . .. .. .. ininames 
sm_initcrt (path); ......................................................... initcrt 
sm_input ( ini t ia I_mode); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. input 
sm_inquire(which); ....................................................... inquire 
sm_install (usage, what_funcs, howmany); .............................. install 
sm_intval ( field_number); ................................................. intval 
sm_is_no ( field_number); . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . .. .. is_no 
sm_is3es (f~eld_number); ................................................. is''''yes 
sm_~ sabort ( flag); ......................................................... isabort 
sm_iset(wh~ch, newval); .................................................... iset 
sm_isselected(group_name, group_occurrence); .................... isselected 
sm_~ssv (screen_name); ....................................................... issv 
sm_itofield( field_number, value); ................................... itofield 
sm_j close ( ); ................................................................ j close 
sm_j form (screen_name); ..................................•.................. j form 
sm_j initcrt (path); .............•......................................... initcrt 
sm_jplcall (jplcall_text); ................•...........................•.. jplcall 
sm_jplload (module_name_list); .......................................... jplload 
sm_jplpublic (module_name_list); ..................................... jplpuhlic 
sm_j plunload (module_name); ....................... . . . . . . . . . . . . . . . . . . .. jplunload 
sm_j resetcrt ( ); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. resetcrt 
sm_j top ( screen_name); ..........................•............................ j top 
sm_j window ( screen_name); ................................................ jwiDdow 
sm_Jx~nitcrt (path); ...........•...........•.............................. initcrt 
sm_j xresetcrt ( ); ........................................................ resetcrt 
sm_key f i Iter ( flag); . . . . . • . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .. keyf ilter 
sm_keyhi t (interval); ...........................................•.......... keyhit 
sm_keyinit (key_address); ..........•............•........................ keyinit 
sm_key _integer (key); ............................................... key_integer 
sm_key labe I ( key); ....................................................... keylabel 
sm_keyoption (key, mode, newval); .................................... keyoption 
sm_kscscope ( ); . .. . . . . . . . .• . . .. . . . . . . . . . . . .. . . . .. . . .. . . . .. . . .. . . .. . . . .. .. kscscope 
sm_ksinq(scope, number_keys, number_rows, current_row, 

maximum_len, keyset_name); ................................. ksinq 
sm_kslabel(softkey, labell, label2, attribute); ..................... kslabel 
sm_kso f f ( ); .................................................................. ksoff 
sm_kson ( ); ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. kson 
sm_l_at_cur (lib_desc, screen_name); .................................... window 
sm_l_close (lib_desc); .................................................... I_close 
sm_l_form( lib_desc, screen_name); ........................................ form 

Page 448 JAM Release 5.03 20 Nov 92 

'1 
1 



Chapter 14: Library Function Index 

sm_l_open ( lib_name); ...................................................... l_open 
sm_l_window(lib_desc, screen_name, start_line, start_column); ..... window 
sm_last ( ); .................................................................... last 
sIYt-lc lear ( scope I; .......................................................... lclear 
sm_ldb_hash ( ); ......................................................... , ldh_hash 
sm_ldb_ini t ( ); ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ldh_init 
sm_leave ( ); .................................................................. leave 
sm_length ( field_number); " ............................................... length 
sm_lngval ( field_number); ............................................. , ... lngval 
sm_lreset (file_name, scope); ............................................ lreset 
sm_lstore ( ); ................................................................ latore 
sm_ltofield( field_number, value); ................................... ltofield 
sm_m_f lush ( ); .................. " ........................................... flush 
sm_max_occur (field_number); .......................................... max_occur 
sm_mnutog 1 ( screen_mode); ................................................ mnutogl 
sllLmsg (column, disp_length, text); ........................................ mag 
sm_msg_get (number); ...................................................... mag~et 
sllLmsgf ind (number); ...................................................... magf ind 
sllLmsgread(code, class, mode, arg); ................................... magread 
sllLmwindow(text, line, column); ........................................ mwindow 
sm_n_ ... ( f ield.-name, ... ); .................................................... D,..... 

sllLn_lclear_array ( f ielcLname); .............................•...... clear_array 
sm_n_lprotect ( field_name, mask); ....................................... protect 
sm_n_lunprotect (field_name, mask); .................................... protect 
sm_n_amt_format (field_name, buffer); .............................. amt_format 
sm_n_aprotect (field_name, mask); .............•......•.................. protect 
sm_n_ascroll (field_name, occurrence); ................................. as croll 
sm_n_aunprotect (field_name, mask); ................•..•....•........... protect 
sm_n_bitop(name, action, bit); ........................................... bitop 
sIYt-n_chg_attr (field_name, display_attribute); ..................... chg_attr 
sm_n_clear_array( field_name); ........................................... clear_ 
sIYt-ll.-dblval (field_name); ............................•.................... dblval 
sm_n_dlength ( field_name); .•............................................. dlength 
sm_ll.-dtofield (field_name, value, format); .......................... dtofield 
sllLn_edit-ptr (field_name, edit_type); ............................... edit...,l)tr 
sllLn_finquire (fielcLname, which); ......................•............ finquire 
sm_n_f Idno ( field_name); .....•...... , .. . . . .. .. . . . . . .. . . . . . . . . . . . . . . . .. . . . .. fldno 
sllLn_fptr ( field_name); ..............•......................•................ fptr 
sllLn_ftog ( fielcLname, group_occurrence); ............•....•.............. ftog 
sIYt-n_ftype ( f ielcLnumber, prec is ionJ)tr): ............................... ftype 
sm_n_fval ( field_name); ...................................................... fval 
sm_n_getfield(buffer, name); ......................................... getfield 
sm_n_gofield( field_name); ............................................... gofield 
sm_n_gval (group_name); ...................................................... gval 
sm_n_intval ( field_name); ................................................. intval 

JAM Release 5.03 20 Nov 92 Page 449 



JAM Programmer's GUide 

sm_n_is_no ( field_name); ..... , .............. , .............................. is_DO 
sm_n_i s""yes ( fie ld_name); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. is''yes 
sm_n_itofield( field_name, value); ................................... itofield 
sm_n_keyinit (key_file); ................................................. keyiDit 
sm_n_length ( f iel~name); ........... '" ............ , .............. '" ..... length 
sm_n_lngval ( f iel~name); ................................................. lngval 
sm_n_ltofieldlfield_name, value); ................................... ltofield 
sm_n_max_occur ( field_name); .......................................... 1UaZ.-0ccur 
sm_n_novalbit (field_name); ............................................ Dovalbit 
sm_n_null (field_name); ...................................................... Dull 
sm_n_nurTLoccurs (field_name); ....................................... DUDLoccurs 
sm_n_off_gofield(fiel~name, offset); ...•........................ off-5lofield 
sm_n_oshift ( f ield.-n,ame, of f set); ........................................ oshift 
sm_n-protect ( f iel~name); ......................................... " .... protect 
sm_n-putfield(name, data); .......................•.................... putfield 
sm_n_rscroll (fiel~name, reCLscroll); ................................. rscroll 
sm_n_sc_max ( field_name, new_max); ................................... '" sc.JB&Z 
sm_n_size_of_array(field_name); ................................ size_of_array 
sm_n_unprotect (field_name); .......................................•..... protect 
srTLn_vinit (video_file); ................................................... viDit 
sm_n_wselect (window_name); ..........•......................•............ waelect 
sm_name ( field_number); ..........•....•.........................••........... Dama 

sm_nl ( ); ....•....•...•.............•.•.•......•.••............••.......•..•...... D1 
sm_novalbit (fiel~number); .................•......................•.•. llOValbit 
sm_null ( field_number); ......................................•...........•... Dull 
srTLnum_occurs ( field_number); .........•. , ......................... " Dum....oc:curs 
sm_o_ ... ( f iel~number , occurrence, •.. ); ....•........••.....••............. 0_ 

sm_o_achg(fiel~number, occurrence, display_attribute); .............. achg 
sm_o_amt_format (field_number, occurrence, buffer); ............. amt_foZ1llAt 
sm_o_bitop(field_number, occurrence, action, bit); ................... bitep 
sm_o_chg_attr(field_number, element, display_attribute); ......•. chg_attr 
sm_o_dbl val (f ielcLnumber, occurrence); ......................... " ...•. cJhlval 
sm_o_dlength ( field_number, occurrence); .............................. dlength 
sm_o_doccur ( field_number, occurrence, count); ........................ doccur 
sm_o_dtofield(field_number, occurrence, value, format); ......... dtofield 
sm_o_finquire (field_number, occurrence, which); •.................. fiDquire 
sm_o_fldno (fiel~number, occurrence); ................................... fldDo 
srTLo_fptr ( fieldJlumber, occurrence); ..................................... fptr 
sm_o_ftog ( field_number, occurrence, group_occurrence); . . . . • . .. . . . . . .• ftog 
sm_o_fval ( field_number, occurrence); ..................................... fval 
sm_o_getfield(buffer, fiel~number, occurrence); .................. getfield 
sm_o_go field ( fiel~number, occurrence); ................ , ............. gofiald 
sm_o_gwrap(buffer, field_number, occurrence, buffer_length); ....... gwr~ 
sm_o_~ntval ( field_number, occurrence); ..............•.......... " ..... iD~val 
sm_o_ioccur ( field_number, occurrence, count); ........................ ioccur 

Page 450 JAM Release 5.03 20 Nov 92 

1 



Chapter 14: library Function Index 

sm_o_is_no (field_number, occurrence); ................................... is_no 
sm_o_lsJes (field_number, occurrence); ................................ is...,Yes 
sm_o_itofield( field_number, occurrence, value); ................... itofield 
sm_o_lngval (field_number, occurrence); ................................ lngval 
sm_o_ltofield( field_number, occurrence, value); ................... ltofield 
sm_o_novalbi t ( field_number, occurrence); ........................... novalbit 

sm_o_null ( field_number, occurrence); ..................................... null 
sm_o_off_gofield(field_number, occurrence, offset); ........... off~ofield 
sm_o.....putfield( field_number, occurrence, data); .................... putfield 

sm_o""'pwrap ( field_number, occurrence, text); ............................ pwrap 
sm_occur_no ( ); ............................................................ occurno 
sm_o ff_go field ( field_number, offset); ............................ off-SJofield 
sm_option (option, newval); ............................................... option 

sm_oshift ( field_number, of fset); ........................................ oshift 
sm""'pinquire (which); .................................................... pinquire 
sm.....protect ( field_number); ............................................... protect 
sm""'pset (which, newval); .................................................... pset 
sm...put field ( fielcLnumber, data); ..................................... putfield 
sm...,putj ctr 1 (key, control_string, default); ......................... putj ctrl 
sm.....pwrap ( field_number, text); ............................................ pwrap 
sm_query _msg (mes sage); ....•........................................... query ~g 
sm_qui_msg (message); .....•............................................... qui_mag 
sm_quiet_err (message); ................................................ quiet_err 
sm_r_at_cur (screen_name); ................................................ window 
sm_r_form (screen_name); .. . . .•• . . . . . .. . . . . . . . . .. . . .. . . . .. . . .. . . .. . . . .. . . . . .. form 
sm_r_keyset (name, scope); •............................................•.. keyset 
sm_r_window( screen_name, start_line, start_column); ................. window 
sm_rd...part(screen_struct, first_field, last_field, language); .... r~art 
sm_rd_struct(screen_struct, byte_count, language); ....•......... r~struct 
sm_rescreen ( ); ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. rescreen 
sln..-resetcrt ( ); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. resetcrt 
Sln..-res ize (rows, columns); ................................................ resize 
sm_restore_data (buf fer); .......................................... restore_data 

sm_re turn ( ); ................•............................................... return 
sm_rmformlist ( ); ...................................................... rmformlist 
sm_rrecord(structure...ptr, record_name, byte_count, language); .... rrecord 

sm_rs_data (first_field, last_field, buffer); ........................ rs_data 
sm_rscroll ( field_number, reCLscroll); ................................. rscroll 
sm_s_val ( ); .................................................................. s_val 
sm_save_data ( ); ........................................................ save_data 
sm_sc_max( field_number, new_max); ...................................... sc_max 
sm_sdt ime ( forma t); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. sdtime 
sln..-select (group_name, group_occurrence); .............................. select 
sm_set_injpl (mode); .................................................. set_injpl 
sm_setbkstat (message, display_attribute); ......................... setbkstat 

JAM Release 5.03 20 Nov 92 Page 451 



JAM Programmer's Guide 

sm_setstatus (mode); ................................................... setstatus 

sm_sh_off (); ................................................................ sh_off 
sm_shrink_to_fit (); .............................................. shrink_to_fit 

sm_s ibl ing ( should_i t_be); ............................................... sibling 
sm_size_of_array( field_number); ................................ size_of_array 
sm_skinq(scope, row, softkey, value, display_attribute, 

labell, labeI2); .............................................. skinq 
sm_skmark(scope, row, softkey, mark); .................................. ebark 
sm_skset(scope, row, softkey, value, attribute, labell, labeI2); .. skeet 
sm_skvinq(scope, value, occurrence, attribute, labell, labe12); ... ekvinq 
sm_skvmark( scope, value, occurrence, mark); ........................... sbark 
sm_skvset(scope, value, occurrence, newval, attribute, labell, 

labeI2); ....................................................... skvset 
sm_soptlon (option, newval); ............................................. soption 
sm_str ip_amt...,ptr ( field_number, inbuf); ..................... ,. strip_aJIlt...,ptr 
sm_submenu_close ( ); .......................... " . ..... . .... .. . .... submenu_close 
sm_sv_data (first_field, last_field); .................................. sv_data 
sm_sv_free (buf fer); .......................... '" ......................... sv_free 

SID_svscreen (screen_list, count); ................................ Bvscreen 

sm_t_bitop(array_number, action, bit); ................................ bitop 
sm_t_scroll ( f iel~number); ............................................ t_Bcroll 
sm_t_shift ( field_number); ...... 0.000 •• 00.00000.000000.000.000 ••• 00 •• 00000 tshift 
sm_tab ( ); 0 0 0 0 • 0 000 0 0 0 0 • 0 0 00 0 0 0 0 • 0 000 0 0 00 • 000 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 •• 0 0 0 • 0 • 0 •• 0 0 0 0 00 00 tab 

sm_tst_all_mdts (occurrence); 0 • 0 0 0 0 0000 ••• 0 0 • 000000. 0 0 00 ••• 0000.0. tBt_allJDdts 
sm_udtime(time, format); 00000.0 o. 0 0 00 0 0 0 00.0 o. 0 0 o. 0 0 0.00000 •• 00000 •• 0.000 udtime 

sm_ungetkey (key); 0 0 0 •••• 0 •• 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 •••• 0 0 0 0 •• 0 0 •• 0 • 0 0 0 0 • 0 0 • 0 0 0 0 0 ungetkey 
sm_unprotect ( field_number); .. 0 0 00 0 0 00 • 0 0 0 • 0 0 0 0 •• 0 • 0 0 0 •• 0 0 00 0 • 00 • 0 000 0 0 • 0 protect 
sm_unsvscreen ( screen_l i s t , count); ... 0 • 0 • 0 • 0 • 0 0 0 •• 0 0 0 •••• 0 0 •• 0 • • •• unsv8creen 
sm_viewport(position_row, position_col, size_row, size_col, 

offset_row, offset_col); .. 0.0.0 •••••••• 0 •••••••••• 0 ••••• 0 viewport 
sm_vinit (video_address); o •••• o •• 0' •• 0.000 ••••• 0.0 •• 0 0" •••••••••• 0.' ••• 0 0 0 vinit 
sm_wcount ( ); .. 0 • 0 •••• 0 ••• 0 •• 0 0 •• 0 • 0 0 • 0 0 0 •• 0 ••• 0 0 • 0 0 • 0 •• 0 •••••• 0 •••••••• 0 0 • o. wcount 
sm_ wde s e I ec t ( ); 0 0 0 •••••••••• 0 •••••••••••• 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • •• weselect 
sm_winsize ( ); ............................................................. winsize 
sffl-wrecord(structure...,ptr, recor~ame, byte_count, language); .... WTecord 
sm_wrotate (step); ......................................................... wrotate 
sffl-wrt...,part(screen_struct, first_field, last_field, language); . wrt-part 
sm_wrtstruct (screen_struct, byte_count, language); .............. WTtBtruct 

sm_wselect (window_number); .............................................. wselect 

Page 452 JAM Release 5.03 20 Nov 92 



INDEX 
A 

ABORT,282 

Alternative scrolling. See Scrolling array, 
alternative scroll driver 

Application 
abort, 202, 282 
block mode, 138 
code, 2 

See also Hook function 
customization, 1 
data, 104-105 

cbanging, 283-284,358-359 
inquaing,273-275,353-355 
bbrary routines, 174-175 
propagating, 181,327 

debugging, 101 
development, 7, 78-82 

See also Hook function 
efficiency, 119-124 
example, 3 
executable. See Application executable 
flow, 2 
initialization, 3. 166, 270-271 

key translation table, 96 
localization, 104-115 
memory. See Memory 
messages. See Status line 
portability, 117-118 
reset, 371 
size, 122-124 
suspend. 323, 375 

Application executable, 2-6 

Array 
attributes, 178-180 
base field. 187 
clear, 209 
copy,212 

Array (continued) 
element 

field number, 240-241 
number, 238, 396 
removing, 394 
sm_e vanants, 168, 227 

library routines 
data access, 168-169 
display attributes, 170 

occurrence. See Occurrence 
scrolling. See Scrolling array 
size, 238, 396 

sm_sbrink_to_fit. 394 
word wrap, 265, 362 

ASCn, non-ASCII display, 104 

ASYNC_FUNC. See Asynchronous function 

Asynchronousfunction,50-52 
arguments, 51 
ASYNC_FUNC, 14 
cursor position display, 200 
example, 51-52 
invocation, 50 
return codes, 51 
testing keyboard, 302-303 

atcb,20 

Attributes. See Display attributes 

Authoring 
executable. See Authoring executable 
jx library, 7 
tool. See jxform 

Authoring executable, 7 

AVAIL_FUNC. See Record function 

B 
BACK, library routines, 185-186 

bin2c, 119, 120, 121 

JAM Release 5.03 20 Nov 92 Page 453 



JAM Programmer's GUide 

BLKDRVR_FUNC. See Block mode 

Block mode, 131-164 
attributes 

lock,145 
logical, 147, 149, 151 
protected, 150 
unlock, 146 

BLK_BLOCK, 143 
BLK_CHAR, 144 
BLK_CPR, 162 
BLK_D_END, 161 
BLK_D_PROT, 160 
BLK_D_START, 157 
BLK_D_UNPROT, 159 
BLK_INIT, 141 
BLK_K_CLOSE, 155 
BLK_K_GETCHAR,153 
BLK_K_OPEN. 152 
BLK_LA_END.151 
BLK_LA_PROT, 150 
BLK_LA_START, 147 
BLK_LA_UNPROT. 149 
BLK_LOCK. 145 
BLK_RESET. 142 
BLK_UNLOCK,I46 
BLKDRVR_FUNC, 15 
cursor position. 162 
data transmission 

initialize. 157 
protected field. 160 
terminate, 161 
unprotected field, 159 

delayed write. 163 
driver. 137-164 

cursor positioning, 163 
installing. 137-138 
output to terminal. 163 
request types, 140. 140-162 
support routines, 163 
writing, 138-139 

enabling. 8 
. global variables 

sm_amask, 163 
sm_attrib, 163 

Block mode, global variables (contlDued) 
sm_exattr, 163 
sm_lmask, 163 
sm_screen, 163 
sm_tcolm. 163 
sm_term. 163 
sm_tline, 163 

initializlDg. 132-133, 141. 195 
installation, 194 
interactive mode vs., 133-137 
JAM behavior 

character validatIon, 134 
currency fields, 135-136 
field entry function, 135 
field validation. 135 
groups, 137-164 
insert mode, 136 
menus, 133-134 
messages, 136 
non-display fields. 137 
right justified fields, 135 
screen valIdation, 135 
screens. 133 
scrolling arrays, 136 
shifting fields, 136 
status text, 135 
zoom, 137 

keyboard 
close (lock), 155 
get characters, 153 
open, 152 

library routines, 132, 176 
limitations, 132 
operating system calls, 137 
overview, 131-132 
reset, 142, 196 
Screen editor and, 132 
selecting, 132-133 
sm_blkdrvr, 194 
SDl_blkinit, 195 
sm_blkreset, 196 
smblock.h, 138 
switch to block mode, 143 
SWitch to character mode, 144 
utilities, 132 

Page 454 JAM Release 5.03 20 Nov 92 



Built-in control functions, 85-93 
jm_exit,86 
Jm..,goform. 88 
jm..,gotop, 87 
jm_keys,89 
jm_mnutogl, 90 
jm_system, 91 
Jm_ winsize. 92 
jpl,93 

c 
C language, 1 

accessing JPL from, 389-444 

call,32,69.82 

Caret function. See Control function 

Character data, 8-bit, 104-105 

Check: digit function, 54-55 
arguments, 54 
CKDIGIT_FUNC, 15 
default, 206 
freld parameters, 229 
invocation. 54 
retmn codes, 55 

Checklist. See Group 

CKDIGIT_FUNC. See Check digit function 

CLR 
library routines, 208 
protection from, 356-357 

Cobol, 1, 11 

Color. See Display attributes 

Compiling, 3, 7 
See also the Installation Guide 

Configuration, memory-resident, 120-121 

Controlfunction,32-43 
arguments, 33 
CONTROL_FUNC, 14 
example, 33-43 

Control function (continued) 
mvocation, 32 
proto typed , 69 
return codes, 33 

Control string 
access, 256 
set, 361 

Index 

CONTROL_FUNC. See Control function 

CUlTency formats, 229 
block mode, 135-136 
internationahzation, 109-110,110 
sm_amCformat, 182 
sm_strip_amCptr. 408 
strip, 408 

Cursor 
gnoup, attribuoos, 307 
library routines, 172 
location, 220, 253. 393 
move 

sm_backtab, 185-186 
sm-,ofreld,260-261 
sm_home, 267 
sm_last, 319 
sm_nl.343 
sm_off-,ofield. 349 
sm_tab,416 

off,198 
on, 199 
position display. 200 
repositioning 

after check digit function, 55 
after field validation, 22 
after group validation. 47 
from screen function, 28 

Custom executive. See Executive. custom 

D 
Data. See Application. data; Field, data; 

Screen. data 

JAM Release 5.03 20 Nov 92 Page 455 



JAM Programmer's GUide 

Data dictIOnary 
See also LOB 
file, name, 354 
LDB creation, 83 
hbrary routines, 171, 174 
name, 219 
record 

read, 430-431 
wnte, 377-378 

Data entry, 272 
data entry mode 

Jm_mnutogl, 90 
sm_mnutogl,331 

menu mode 
jm_mnutogl, 90 
sm_mnutogl,331 

protection from, 356-357 

Data entry mode. See Data entry, data entry 
mode 

Data structures, library routines, 174 
read,366-370, 377-378 
~te,430-431,434-443 

Data types, 229, 249-250 

Date/time format, 229 
date/time mnemonics, 106 
format user date/time, 418 
internationalization, 105-108 
retrieve system date/tune, 385-387 

Debugging, 101 

Declaring hook functions. See Hook func
tion, declaration 

Delayed write, 99 
flush,242 

DELL,225 

DFLT_FIELD_FUNC. See Field funcbon, 
default 

DFLT_GROUP _FUNC. See Group function, 
default 

DFLT_SCREEN_FUNC See Screen func
tion, default 

DFLT_SCROLL_FUNC. See Scrollmg 
array, alternative scroll dnver 

Disk-based scrolling. See Scrollmg array, 
alternative scroll dnver 

Display. See Terminal 

Display attributes 
change, 178-180 
field, 203-205, 238 
mquire, 275 
message/status text, 213-215 
mnemonics, 178 
portability, 117 
rectangle, 192-193 

E 
EMOH, hbrary routines, 319 

Error handling, 6 

Error message. See Message fIle; Status line 

Error window. See Message window 

Executable. See ApplIcation or Authoring 
Executable 

Executive 
custom, 3-6 

example, 3 
sm_at_cur vanants, 426-428 
sm_close_window, 210-211 
slD.-form variants, 243-244 
slD.-initcrt, 270-271 
SID.-input, 272 
slD.-resetcrt, 371 
slD.-window variants, 426-428 

JAM. See JAM Executive 

Page 456 JAM Release 5.03 20 Nov 92 



F 
Field 

characteristics, 189-191, 228-230, 
238-239 

intematlonahzation, 111-112 
clear, 208 
currency. See Currency formats 
data 

length,221 
read,216,247,254-255, 265,277,280, 

281,325,408 
wnte, 182,226,287,328,360,362 

data type, 229, 249-250 
date/tune format. See Date/time format 
display attnbutes, 203-205, 238 
floating point value 

read,216 
wnte, 226 

functlon. See Field functlon 
integer value 

read,277 
write, 287 

length, 221, 238, 324 
library routines 

data access, 168-169 
display attnbutes, 170 

long integer value 
read,325 
write, 328 

math,201 
MDT bit. See Validation 
memo text, 80, 230 
name, 228,341 

sm_e variants, 168,227 
sm_i vanants, 168,268 
sm_n variants, 168,340 

next field, 228 
non-display, block mode, 137 
null,229,345 
number, 240, 253 

sm_o variants, 168,347 
position, 238 
precision, 249-250 
previous field, 228 

Field (continued) 
range, 229 

mternatlOnahzatlOn, 113-114 
reference 

field to group, 248 
group to field, 263 

return entry, 229 
nght justlfied, block mode, 135 
shlfung. See Slnfting field 
status text, 228 
vahdation. See Vahdation 
VALIDED bit. See Vahdatlon 
when filled by LOB, 84 

Field functlon, 19-26 
arguments, 20-22 
block mode, 135 
default, 19,20 

DFLT_FIELD_FUNC, 14 
example, 24 

FIELD_FUNC, 13 
invocation, 19-20 
list, example, 22-24 
name, 228 
prototyped, 69 
return codes, 22 

FIELD_FUNC. See Field function 

File 
find, 237 
open, 236 

foc_data (struct), 17 
example, 17, 18, 67 

Form 
See also Screen 

Index 

display, 81-82, 88,243-244,290-291 
top, 87 

Form stack, hbrary routines, 167 

Fortran, I, 11 

funclistc. See Source code, funchst.c 

Func~on. See Hook function; Library rou-
tines 

Functlon key, 256 

Functlon hst. See Hook function, list 

JAM Release 5.03 20 Nov 92 Page 457 



JAM Programmer's Guide 

G 
Global data. See Application, data 

GRAPH, 95, 99-100 

Graphics characters, 99-100 

Group 
block mode, 137-164 
characteristic, 262 
checkbox, attnbute, 229 
cursor control, 307 
deselect, 218 
hbrary routlDes, 171 
reference 

field to group, 248 
group to field, 263 

selectlon, 285,388 
validation, 264 

Group function, 46-50 
arguments, 47 
default, 46, 47 

DFLT_GROUP _FUNC, 14 
example, 47-50 

GROUP _FUNC, 14 
invocation, 46-47 
prototyped, 69 
return codes, 47 

GROUP _FUNC. See Group function 

H 
Help 

display window, 266 
screen name, 228 

HOME, library routines, 267 

Hook function, 11-82 
See also Individual hook function types 

by name 
address, 17 
arguments, 13 

asynchronous function, 51 
check digit function, 54 

Hook funchon (contlnued) 
control functIOn, 33 
field functlon, 20 
group functIOn, 47 
inibahzahon and reset functions, 56 
lOsert toggle funcbon, 53 
key change function, 43 
record/playback functions, 59 
screen function, 27 
status lme function, 62 
Video prOcesSlDg function, 64 

declaratlon, 16-18,67-68 
development, 19-66 
example, 11-12 
identifier, 17 
indiVidual, 13 
installatlon,5,13-19,224,276 
installation parameter, 17 
language, 17 
list, 13 
name, 17 
recursion, 82 
return codes, 13 

asynchronous function, 51 
check digit function, 55 
control function, 33 
field function, 22 
group function, 47 
initialization and reset functtons, 56 
insert toggle functlon, 53 
key change function, 43 
record/playback function, 59 
screen function, 28 
status lme function, 62 
video processing functlon, 66 

types (overview), 13-15 

I 
InitializatIon 

application, 270-271 
JAM,5 
modifying JAM source, 7 
Screen Manager, 5 

Page 458 JAM Release 5.03 20 Nov 92 



Imtlalizatlon function, 55-58 
arguments, 56 
example, 56-58 
invocatlon, 55 
return codes, 56 
sm_inltcrt, 270-271 
UINIT_FUNC,15 

Input/output 
flush,242 
library routines, 167-168 
sm...,getkey, 257-259 
user, 272 

INSCRSR_FUNC. See Insert toggle func
tIon 

Insert mode, block mode, 136 

Insert toggle function, 52-54 
arguments, 53 
example, 53-54 
INSCRSR_FUNC, 14 
invocation, 53 
return codes, 53 

Interactive mode. See Block mode 

Internationalization, 103-115 
8 bit characters, 104-105 
character filters, 111-112 
Cl.DTency formats, 109-110, 110 
date/time formats, 105-108 

mnemonics, 106, 108 
decimal symbols, 111 
documentation utilities, 113 
library routines, 114 
menu processing, 113 
messages, 104-115 
product screens, 112 
range checks, 113-114 
screens, 113 
status and error messages, 112 
utility messages, 115 

IntelTUpt handler, 56, 202 

Item selection, screen name, 228 

J 
JAM 

behavior, 350-351, 407 
custolDlzatlon, 1 
Executive. See JAM Executlve 
initialization, 5 
hbrary routines 

global behavior, 174-175 
global data, 174-175 

modifying, 7 
product components, 2 

J AM ExecutIve, 2-3 
authoring executable, 7 
initiahzation, 3 
jm_Iibrary, 3, 7 
hbrary routines, 176 
screen close, 288-289 
screen display, 81 

form, 290-291 
wlDdow, 297-298 

start, 296 

Jammap, mtemationahzation, 113 

Index 

jm_ control functions. See Built-in control 
functions 

jmain.c. See Source code, main routines 

JPL 
atch verb, 20 
call verb, 32, 69, 82 
calling C routines from, 82 

accessing JPL variables, 389 
calling control functions from, 32 
calling hook functions from, 20 
compared to compiled code, 122-124 
custom executive and, 3 
editor, 407 
execute procedure from hook function, 

292 
field level, 229 
jpl buIlt-in function, 93 
hbrary routines, 292-296 
load,293 
memory-resident, 121, 245-246 
public, 294 

JAM Release 5.03 20 Nov 92 Page 459 



JAM Programmer's GUIde 

JPL (contmued) 
stubbmg out, 124 
unload,295 
variable access from C routines, 389 

Jpl2blD, 124 

Jterm, enablmg data compressIOn, 8 

JX_. See Authoring, jx hbrary 

Jxform, modificatlon, 7 

Jxmam.c. See Source code, main routines 

K 
KBD_DELAY, 96 

Key 
dISabling, 306-308 
function, 256, 361 
input, 95-97, 257-259, 419 

simulated, 89,419 
testmg, 302-303 

logical, 95, 257-259 
name, 305 
value, 299-300 

routing, 97,306-308 
soft. See Soft key 
translatlon, 95, 96 

initialization, 304 
internatIonalization, 105 
portability, 117 
sm_key _option, 307 
sm-putjctrl, 361 

Key change function, 43-46 
arguments, 43 
example, 44-46, 47-50 
mvocatlon, 43 
KEYCHG_FUNC, 14 
return codes, 43 

Keyboard, 95-97 
mput, simulated, 89, 419 
open for input, 272 
portability, 117 

KEYCHG_FUNC. See Key change function 

Keyset 
See also Soft key 
close, 197 
labels on/off, 314,315 
library routines, 175,309-316 
memory-resident, 121,245-246,309 

enabhng,8 
open,309-310 
query,312 
scope, 197,311 

Keytops, portablbty, 118 

L 
Language. See Programmmg language or 

InternatIonalization 

LDB,83-84 
See also Data dictIonary 
access,84 
behavior, 84, 217 
clear, 320 
creatIon, 83 
custom executive and, 3 
data 

read, 430-431 
wnte, 377-378 

data propagation, 83-84, 181,327 
disable access, 217 
hash table, 321 
initialization, 83,322 

fIle names, 269 
hash table, 321 

jm library, 3 
library routines, 171, 174 
messages and, 84 
reset, 326 
scope, 320, 326 
screen functions and, 84 

Library 
close, 316 
display form. from, 243-244 
dIsplay keyset from, 309-310 
dIsplay window from, 426-428 
open, 317-318 

Page 460 JAM Release 5.03 20 Nov 92 



Library routines. 165-176. 177-444 
array attnbute access. 170 
array data access. 168-169 
behavior. 174-175 
block mode. 176 
cursor control. 172 
data dictionary access. 171. 174 
data structures. 174 
field attribute access, 170 
field data access. 168-169 
global data, 174-175 
group access. 171 
initialization. 166 
JAM Executive control, 176 
keysets. 175 
LOB access. 171. 174 
mass storage, 174 
message display, 172-173 
prototyped.68 
reset, 166 
screen control, 167, 174 
scrolling. 173 
shifting. 173 
sm.Jprotect, 356-357 
sIILlunprotect, 356-357 
sIILallget. 181 
sm_amCfonnat.182 
SIILaprotect, 356-357 
sm_ascroU, 183-184 
sm_aunprotect, 356-357 
sIILbacktab, 185-186 
sm..base_fldno. 187 
sm_bel,188 
sm..bitop, 189-191 
sm..bkrect. 192-193 
sm..blkdrvr,194 
sm_bUanit, 132. 138, 195 
sm..blkreset, 138, 196 
sm..c_keyset.197 
sm_c_off.198 
SIILc_on. 199 
sm..c_vis. 101,200 
sIILca1c, 201 
sm_cancel,202 
sm_chLattr, 203-205 
sm_ckdigit. 206 

Library routlDes (contlDued) 
sm_cCall_mdts. 207 
sm_cl_unprot.208 
sm_cleacarray.209 
sm_close_wlDdow. 6. 210-211 
sm_copyarray. 212 
sm_d_accur. 426-428 
sm_djorm. 119. 243-244 
sm_d_keyset.309-31O 
sm_d_msg..line. 100. 213-215 
sm_d_wmdow.426-428 
sm_dblval. 216 

mternatlonalization. 114 
sm_dd_able.217 
sm_deselect. 218 
sm_dicname, 219 
sm_dlsp_off. 220 
sm_dlength. 221 
sm_do_region, 222-223 
sm_do_uinstalls. 5. 16.224 
sm_dtofield. 226 

internationalization. 114 
sm_e variants. 227 
sm_e_fldno,240-241 
sm_edicptr.228-230 
sm_emsg.100.231-233 
sm_err_reset, 6, 100, 234-235 
sm_fi_open. 236 
sm_fi-path, 237 
sm_fmquire, 238-239 
sm_flush,99. 163. 242 
sm_formhst. 120. 121.245-246 
sm3ptr.247 
sm_ftog. 248 
smjtype. 249-250 
sm_fval. 251-252 
sDl-8etcurno. 253 
sm~etfield. 254-255 
sm~eljctrl. 256 
sm~etkey. 96.257 
sm~ofield. 260-261 
sm~p_mquire. 262 
sm~wrap. 265 
sm_hlp_by_name.266 
sm_home. 267 
sm_i_ ...• 268 

JAM Release 5.03 20 Nov 92 

Index 

Page 461 



JAM Programmer's GUide 

Library routlDes (continued) 
sm_l_acbg, 178-180 
sm_i_doccur.225 
sm_i_fldno.240-241 
sm_i~tof. 263 
sm_ininames. 269 
sm_initcrt. 5. 270-271 
sm_input, 6.97.272 
sm_lDquire. 273-275 
sm_install. 18-19. 132. 276 
sm_intval. 277 
sm_ioccur. 278-279 
sm_is_no. 280 
sm_isJes. 281 

internatlonabzation. 114 
sm_isabort. 282 
sm_iset, 122. 283-284 
sm_isselected,285 
sm_issv. 286 
sm_itofield. 287 
smjclose. 81, 288-289 
smjform. 81. 290-291 
smjplcall, 292 
smjplload,293 
smjplpublic.294 
smjplunload. 295 
smjresetcrt, 371 
smjtop, 296 
smjwindow, 81, 297-298 
smjxresetcrt, 371 
SDLkey_integer, 299-300 
sm_keyfllter, 301 
sm_keybit, 302-303 
sm_keyinit, 121,304 
SDLkeylabel. 305 
SDLkeyoption,97,306-308 
SDLkscscope, 311 
SDLksinq, 312 
sm_kslabel,313 
sm_ksoff,314 
SDLkson, 315 
sm_l_aCcur.426-428 
sm_I_close, 316 
SDLCform, 243-244 
sm_l_keyset. 309-310 
sm_Copen, 317-318 

Library routines (continued) 
sm_l_wmdow. 42~28 
sm_Iast. 319 
sm_lclear. 320 
sm_ldb_basb. 321 
sm_Idb_init. 83. 322 
sm_Ieave. 137,323 
sm_Iength, 324 
sm_lngval,325 
sm_lreset.326 
sm_lstore.327 
sm_ltofield, 328 
s~m_flusb. 329 
sm_max_occur. 330 
sm_msg. 100. 332 
sm_msuet. 333 
sm_msgfind. 334 
sm_msgread, 121,335-337 
sm_mwindow, 84, 338-339 
sm_n variants, 340 
sm_n_fldno.240-241 
sDl.-n-ival. 264 
sm_name.341 
sm_nexCsync. 342 
sm_nl.343 
sm_novalbit. 344 
s~null, 345 
sm_nwn_occW"S, 346 
sm_o variants, 347 
sm_o_acbg.178-180 
sm_o_doceur,225 
s~o_fldno.240-241 
sm_occur_no.348 
sm_ofCgofield. 349 
sm_option.84.350-351 
sm_oshift. 352 
sm...,pinquire. 353-355 
sm...,protect. 356-357 
sm...,pset, 358-359 
sm...,putfield. 360 
sm...,pu~etrl. 361 
sm...,pwrap. 362 
sm_query_msg. 100,363 

internationalization. 114 
sm_quLmsg. 100,364 
sm_quiecelT, 100, 365 

Page 462 JAM Release 5.03 20 Nov 92 

" , 



Library routines (contmued) 
sm_caCcur, 6, 426-428 
sm_cform, 6, 243-244 
sm_ckeyset, 309-310 
sm_cwindow, 119,426-428 
sm_rd-part,366-367 
sm_rdstruct, 368-369 
sm_rescreen, 122,370 
sm_resetcrt, 6, 371 
sm_resize, 372-373 
sm_restore_data, 374 
sm_return, 137,375 
sm_rmformlist, 376 
sm_rrecord,377-378 
sm_rs_data, 379 
sm_rscroll,380 
sm_s_val, 381-382 
sm_save_data, 383 
sm_sc_max, 384 
sm_sdtime, 385-387 
sm_select, 388 
sm_seCinjpl,389 
sm_setbkstat, 101,390-391 
sm_setstatus, 100,392 
sm_sh_off, 393 
sm_shrinlcto_fit, 394 
sm_sibling, 395 
sm_size_oCarray, 396 
sm_skinq, 397-398 
sDLskmark, 399 
sm_skset, 400-401 
sm_skvinq, 402-403 
sm_skvmark, 404 
sm_skvset, 405-406 
sDLsoption, 407 
sm_strip_amt-ptr,408 
sm_submenu_close, 409 
sm_sv_data, 410 
sm_sv_free,411 
sm_svscreen, 412-413 
sm_Cscroll, 414 
sm_Cshift, 415 
sm_tab,416 
sm_tsCalCmdts, 417 
sm_udtime, 418 

Library rouUnes (conunued) 
sm_ungetkey, 419 
sm_unprotect, 356-357 
sm_unsvscreen, 420 
sm_ viewport, 421 
sm_ Vinlt, 121 
sm_wcount,423 
sm_wdeselect, 424-425 
sm_wlDslze, 429 
sm_wrecord, 430-431 
sm_wrotate, 432-433 
sm_wrCpart, 434-437 
sm_wrtstruct, 438-442 
sm_wselect, 443-444 
soft keys, 175 
teIlDlnal input/output, 167-168 
validation, 174 
viewport control, 167 

License, 2, 7 

Linking 
See also the Installation Guide 
check digit function and, 54 
hook functions, 12 
linked libraries, 3, 7 

Local Data Block. See LOB 

Logical key. See Key, logical 

Istdd, mternationalizabon, 113 

Istform, internationalization, 113 

M 
Math,201 

field,229 

MDT bit. See Validation 

Memo text. See Field, memo text 

Memory 
allocation, 270-271 
deallocation, 371 
LOB allocation of, 83 
hbrary routines, mass storage, 174 
optimization, 8-9, 121, 122 

Index 

JAM Release 5.03 20 Nov 92 Page 463 



JAM Programmer's Guide 

Memory (contInued) 
resident 

configuration, 120-121 
form hst, 119,245-246,376 
JPL,121 
key me, 304 
keyset, 8, 121, 309 
message me, 121 
screens,8,119-120,245-246,376 
video me, 422 

screens saved in, 412-413, 420 

Menu 
block mode, 133-134 
data entry mode 

jm_mnutogl, 90 
sm_DlDutogl, 331 

menu mode 
jmJIlnutogl, 90 
sm_DlDutogl, 331 

return value, 229 
submenu, 409 

block mode, 134 
name, 228 

Message, 172-173,231-236,332-340, 
363-366,390-393 

See also Message me; Status Line 
bell, 188 
display 

alternating status, 392 
background status, 390-391 
default message, 213-215 
error message, 231-233,234-235,364, 

365 
merge, 332 
query message, 363 
window, 338-339 

flush,329 
library routines, 172-173 
retrieval, 333, 334 
wmdow, LDB behavior, 84 

Message me 
disk-based, 121 
mitializatIon, 335-337 
mtemationahzation, 104-115 

currency formats, 109-110 
date/tune formats, 105-108 

retrieval, 333, 334 

Mode. See Data entry, data entry mode; 
Menu, menu mode 

MODEx, 95, 99-100 

N 
NL, library routines, 343 

Null field, 229 

o 
Occurrence 

allocated, 346 
delete, 225 
display attributes, 178-180 
field number, 240-241 
group, 262 

See also Group 
insert, 278-279 
number, 346, 348 

maximum, 330,384 
scroll to, 183-184 
sm_i_ variants, 268 
sm_o variants, 347 

Operating system 
block mode, 137 
command,jm_system,91 
escape, 323 

p 
Path,407 

PUl, 1, 11 

Page 464 JAM Release 5.03 20 Nov 92 



PLAY _FUNC. See Playback functIon 

Playback functlon, 58-62 
arguments, 59 
AVAIL_FUNC, 15 
example, 59-62 
fllter,301 
invocatlon,58 
PLAY_FUNC, 15 
return codes, 59 

Portability, 117-118 
smmach.h, 118 
terminal, 99 

Precision, 249-250 

Prmt,407 

Programming language, 1, 11, 17 

Protection. See Field 

PROTO_FUNC. See Prototyped functlOn 

Prototyped function, 66-81 
declaration, 67-68 
example, 70-78 
installatIon, 68, 276 
invocatIon, 69 
JAM library functions, 68 
li.mJtations, 78-81 
PROTO_FUNC, 14 
valid prototypes, 68 

R 
Radio button. See Group 

Range check. See Field, range 

Record function, 58-62 
arguments, 59 
AVAIL_FUNC,15 
example, 59-62 
ruter, 301 
mvocation, 58 
RECORD_FUNC, 15 
return codes, 59 

Index 

RECORD_FUNC See Record functIon 

RecurSIOn, in hook functIOns, 82 

Regular expreSSIOn, 112, 229 

Reset functIon, 55-58 
arguments, 56 
example, 56-58 
mvocatlon,55 
return codes, 56 
sm_cancel, 202 
sm_resetcrt, 371 
URESET_FUNC,15 

Reset terminal, 6,202,371-444 

Routmg. See Key, routing 

s 
Scope. See Data dictIonary; Keyset 

Screen 
See also Form; Window 
block mode, 133 
close, 86, 87,88,210-211, 288-289 
color, 192-193 
data 

read, 383,410, 430-431, 434-437, 
438-442 

write, 366-367, 368-369,374, 
377-378,379 

data propagatIon, 181,327 
entry function. See Screen function 
exit function. See Screen function 
file extenslOn, 407 
functIon. See Screen functIon 
internationalizatIon. See Internationaliza-

tIon 
hbrary 

close, 316 
display, 243-244, 426-428 
open, 317-318 

library routInes, 167, 174 
memory-resident, 119-120,245-246,376 

enabling, 8 
name, 354 
populatIon from LOB, 84 

JAM Release 5.03 20 Nov 92 Page 465 



JAM Programmer's Guide 

Screen (contmued) 
resrore,366-367,368-369,374,379 
rewnte, 222-223 
saved in memory, 286,412-413,420 
search,119 
Size, 274 
store, 383,410,434-437,438-442 

free buffer, 411 
top, 87 
valIdation. See Validation 

Screen function, 26-32 
arguments, 27 
default, 26-27 

OFLT_SCREEN_FUNC, 14 
example, 28-32 

dispJaYlDg a screen during, 81 
invocation, 27 
LOB search order, 84 
prorotyped, 69 
return codes, 28 
SCREEN_FUNC, 14 

Screen Manager 
behavior, 350-351,407 
initialization, 5 
sm_ hbrary, 3, 7 

SCREEN_FUNC. See Screen function 

SCROLL_FUNC. See Scrollmg array, alter
native scroll driver 

Scrolling array 
alternative scroll driver, 125-130 

OFLT_SCROLL_FUNC, 15 
enabling,8,125 
function name, 229 
sample, 126 
SCROLL_FUNC, 15 

attributes, 178-180 
block mode, 136 
mquiring,238 
library routines, 173 
occurrence. See Occurrence 
scroll, 183-184, 380 
Size, 384 

Scrolling array (contlDued) 
synchroDlze, fmd next, 342 
test for scrollmg, 414 

Shifting field 
block mode, 136 
cursor location, 393 
mquinng, 238 
lIbrary routlDC!., 173 
shift,352 
test for shiftmg, 415 

Sibling window. See Wmdow 

sm_ routines. See Library routines 

SM_NO,280 

SM_YES,281 

SMEOITOR,407 

SMFEXTENSION, 407 

SMLPRINT,407 

smmach.b, U8 

SMPATH, 407 

Soft key 
See also Keyset 
characteristics, 397-398, 4()().4()1, 

402-403, 405-406 
enablmg,8 
inquiring, 397-398,402-403 
labels on/off, 314, 315 
hbraryroutines, 175,397-407 
mark, 399, 404 
non-JAM, 313 

Source code 
funclistc,5, 16 

declaring prototyped functions, 67 
sm_do_uinstal1s,16 

main routines 
jmain.c, 3, 166 
jxmain.c, 7,166 
modifying, 7-9 

platform-dependent, 118 
stub functions, 122-124 

Page 466 JAM Release 5.03 20 Nov 92 



SPFI-24 
SPFl,87 
SPF2,91 
SPF3,88 

Stacked wmdow. See Wmdow 

STAT_FONC. See Status lme functIOn 

Status hne 
bell, 188 
cursor positIon display, 200 
field status text, 228 
flush,329 
mquirmg, 354 
hbrary routines, 172-173 
message, 172 

alternating background, 392 
background status, 390-391 
block mode, 136 
default message, 213-215 
error message, 231-233, 234-235, 364, 

365 
merge, 332 
query message, 363 

message priority, 100 
terminal, 100-101 

portability, 117 

Status hne function, 62-64 
arguments, 62 
cursor position display, 200 
example, 63 
invocation, 62 
return codes, 62 
STAT_PONC, 15 

Stub functions. 122-124 

SUHystem, 8 

System. See Operabng system 

T 
TAB 

library routmes, 185-186,416 
protection from, 356-357 

Table lookup screen, name, 228 

Target llst, 85, 93 

Termmal 
bell, 188 
graphICS character dIsplay, 99-100 
IdentIfier, 353 
mltJahze, 270-271 
hbrary routmes, 167-168 
output,99-101,122,222-223,242 
portability, 99, 117-118 
refresh, 370 
reset, 6, 202, 371 
resize, 372-373 
size, 273 
status lme, 100-101 

Top screen, 87 

u 

Index 

UINIT_FUNC. See Inittahzation functIon 

URESET_FONC. See Reset function 

v 
Vahdation 

bits 
inquiring, 275 
maDlpulating, 189-191 

character, block mode, 134-135 
check digit, 206 
example, 80-81 
field,251 

block mode, 135 
function name, 228 

field functIon invocation, 19 
group, 264 
group functIon invocabon, 46 
mvalidate field, 344 
library routines, 174 
MDT bit, 47,189 

clearmg, 207 
prototyped functions, 79 
testing, 417 

JAM Release 5.03 20 Nov 92 Page 467 



JAM Programmer's Guide 

Vahdabon(oonbnued) 
protection from, 356-357 
regular expression, 229 
screen, 381-382 

block mode, 135 
VALIDED bit, 47, 189 

maDlpulating,344 
prototyped functions, 79 

V ALIDED bit. See Validation 

Video me, 95, 99 
memory-resident, 422 

Video mapping 
character sets, 99-100 
file, 95, 99 
initializabon, 422 
in~ationalization, 105 
optimization, 122 

Video processing function, 64-67 
arguments, 64-66, 65 
invocation, 64 
return codes, 66 
VPROC_FUNC, 15 

Viewport, 274, 421,429 
hbrary routines, 167 

VPROC_FUNC. See Video processing func
tion 

VWPT, 92,429 

w 
Wmdow 

See also Screen 
close, 210-211 
count, 423 
display, 81-82, 297-298,426-428 

help, 266 
message, 338-339 

message window, 84, 338-339 
selection, 424-425,443-444 
sibling, 395, 432, 443 

Wmdow stack, library routines, 167 

Page 468 JAM Release 5.03 20 Nov 92 



Addendum 

for Updates to 
JAM Release 5.03 

Volume 2 
for Stratus 

Part Number R331-OlA 

August 3, 1992 



Addendum for Updates to JAM 5.03 

Note of Explanation 
This addendum describes new features in release 5.03 of JAM. This addendum is for 
Volume 2 of the documentation set. There is a separate addendum for Volume 1. 

Descriptions of the features are broken into sections based on the partS of the manual that 
they affect. In addition, several insertion pages (or A-pages) are included for new library 
routines in JAM 5.03. These pages should be inserted into your JAM Programmer's 
Guide at the appropriate location. For example, page A-I95 should be inserted before 
page 195. 

Note that the page numbers refer to the August I, 1991 printing of the JAM manual. If 
you are working with an older manual. insert these pages as appropriate. keeping in mind 
that the library routines are in alphabetical order. 

JPL Guide 
Page 13: Return Value from JPL Procedure After an Error 

If an error occurs during execution of a JPL procedure (for instance. a math error). the 
procedure aborts and returns -1. This behavior was no previously documented. 

Page 90: Prototyped Functions Called from JPL 

Normally. hexadecimal. octal and binary numbers cannot be used in JPL. But when a JPL 
procedure calls a prototyped function that takes an integer argument. a string to integer 
conversion takes place. This conversion permits the use of hexadecimal, octal, or binary 
values as arguments to prototyped functions. 

Programmer's Guide 
Page 170: New Behavior and Return Codes for sm_ascroll 

The library routine sm_ascroll takes as arguments a field number and an occurrence. 
It scrolls an array such that the requested occurrence is in the specified field. If the re
quested occurrence cannot be placed in the specified field because it is one of the first or 
last occurrences in a non-t;ircular array, then sm _as c roll scrolls the occurrence onto 
the screen and returns the occurrence number of the occurrence that is actually in the spe
cified field. 

Page 254: Inquiring Help Level via sm_inquire 

The global variable I_INHELP now contains the level of help that the user is in. instead 
of just a true/false value. There may be up to five levels of help. Use sm_inquire to 

JAM Release 5.03 Addendum 3 August 92 Page 1 



Addendum for Updates to JAM 5.03 

query the value of this variable. A return of zero indicates that the user is not in help, a 
return of 1 through 5 indicates which help level the user is in. 

Page 285: sm_keyoption 

Certain keys can not be translated via the KEY_XLATE argument to sm_keyoption. 
These are: INS, REFR, SFfS, LP, and ABORT. They may, however, be disabled via the 
KEY_ROUT ING argument, or intercepted via a keychange function 

Page 339: Percent Escapes in sm _query _ msg 

Percent escapes are now supported for controlling the attributes of query messages. The 
sequences are the same as those for sm_emsg, and detailed on page 214. Note that %Mu 
and %Md are not supported. Query messages from JPL can also now use percent escapes. 

Page 391: MDT bits and Scrolling Arrays 

When lines are inserted or deleted from scrolling arrays via INSL or DELL, the MDT bits 
for all occurrences after the insertion or deletion are no longer sel In a database applica
tion, this prevents the need for unnecessary processing to write potentially large amounts 
data that have not changed. For large arrays, it can save a significant amount of proces
sing time. 

Page 2 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Programmer's Guide 

copyarray 
copy the contents of one array to another 
~8msliiii8111ii8iSl!!S8S!!:il!iJ~miJSI8SSJSaiiJiammiSSS;SSlimimsJJlSilJSimS[l3JiiiSiiai:ai!iiliSli~iSit!%Sii~ 

SYNOPSIS 
int sm_copyarray(destination_fld, source_fld) 
int destination_fld; 
int source_fld; 

DESCRIPTION 

This routine copies the contents of the array containing source_fld into the array 
containing destination_fId. source_fId and destination_fId are field 
numbers. They may be the field number of any of element in the respective array. 

The developer is responsible for insuring that the arrays are compatible. Data in source 
array occurrences that are too long for the destination array are truncated without warn
ing. Data in source array occurrences that are shorter than the destination array's field 
length are blank filled (with respect for justification). 

If the source array has more occurrences than the destination array, the data in the extra 
occurrences are discarded. If the source array has fewer occurrences than the destina
tion array, trailing occurrences in the destination array are cleared of data (but not de
allocated). 

copyarray sets the MDT bit and clears the VALIDEO bit for each destination array 
occurrence, indicating that the occurrence has been modified and requires validation. 

The variant, sm_n_copyarray, searches the LOB for either array if the named field 
is not found on the screen. However, if the destination LOB item has a scope of 1, 
meaning that it is a constant, then it is not altered and the function returns-I. 

RETURNS 
-1 if either field is not found or if the destination array in the LOB has a scope of I. 
o otherwise. 

VARIANTS 
sm_n_copyarray(destination_name, source_name); 

RELATED FUNCTIONS 
sm_clear_array(field_number); 
sm_getfield(buffer, field_number); 
sm-putfield(field_number, data); 

JAM Release 5.03 Addendum 3 August 92 PageA-l93 



Addendum - Replacement Page for Programmer's Guide 

key_integer 
get the integer value of a logical key mnemonic 

SYNOPSIS 
tinclude "smkeys,h" 

int sm_key_integer (key) 
char *keYi 

DESCRIPTION 

This function returns the integer value of a JAM logical key mnemonic, The value is 
obtained from the file smkeys. h. This function is useful in cases where a function 
requires the integer value of a key, but cannot access the include files, as in a prototyped 
function called from JPL. The following table lists the logical key mnemonics: 

Logical Key Mnemonics 

EXIT XMIT HELl? FHLI? BKSI? TAB 

HOME DELE INS LI? FERA CLR 

LSHF RSHF LARR RARR DARR UARR 

INSL DELL ZOOM SFTS MTGL VWI?T 

I?Fl-I?F24 SI?Fl-SI?F24 A1?1?1-A1?1?24 

RETURNS 

the integer value of the logical key mnemonic. 
o if the mnemonic is not found. 

RELATED FUNCTIONS 
sm_keylabel (key) i 

EXAMPLE 

NL BACK 

SI?GU SI?GD 

REFR EMOH 

MOUS 

SFT1-SFT24 

The following example is from JPL. It sets the newline key to act as the tab key, The 
functions s~key_integer and sm_keyoption must be prototyped in ordeno be 
called from a JPL procedure. 

JAM Release 5.03 Addendum 3 August 92 PageA-283 



Addendum - Replacement Page for Programmer's Guide 

vars ret x y 
retvar ret 

call sm_key_integer "NL" 
cat x ret 

call sm_key_integer "TAB" 
cat y ret 

call sm_keyoption :x 2 :y 
return 

PageA-284 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Programmer's Guide 

Idb hash 
use hash index for the LOB 

SYNOPSIS 
void s~ldb_hash(); 

DESCRIPTION 
This routine specifies that a hash table should be used to search the local data block. 
You must call Idb_hash before JAM initialization, in particular, before you call 
sm Idb ini t to initialize the Local Oata Block. - -
Use of a hash table slightly improves the performance of routines which access the 
LOB, at the expense of the memory required for the table. This performance improve
ment includes the LOB merge which is performed the first time a screen with named 
fields is displayed. The degree of improved performance depends upon the distribution 
of the names in the LOB, and is greater for LOBs with more entries. 

RELATED FUNCTIONS 
sm_ldb_init () ; 

EXAMPLE 
#include "smdefs.h" 

/* create a local data block with a hash index */ 

sm ldb hash!); 
sm:=ldb:=init () ; 

JAM Release 5.03 Addendum 3 August 92 PageA-299 



Addendum - Replacement Page for Programmer's Guide 

next_sync 
find next synchronized array 

SYNOPSIS 
int sm_next_sync(field_number) 
int field_number; 

DESCRIPTION 
Given a field number, this function finds the next array synchronized with the given 
field, and returns the field number of the corresponding element in that array. The next 
synchronized array is defined as the one to the right. If field_number is in the righ
most synchronized array, the function returns the corresponding element in the leftmost 
synchronized array (ie- it wraps around the screen). 

RETURNS 
The field number of the corresponding element in the next synchronized array if there 

is one. 
Otherwise, the field number the function was passed. 

JAM Release 5.03 Addendum 3 August 92 PageA-319 



Addendum - Replacement Page for Programmer's Guide 

set_injpl 
allow C routines to access JPL variables & subroutines 

SYNOPSIS 
int sm_set_injplCmode) 
int mode; 

DESCRIPTION 

sm set injpl allows JAM internal routines to access JPL variables, including 
module and procedure locals, as if they were fields. This is most useful for the 
JAM/DBi statements dbi_sql and dbi_dbms, as well as the JAM library routine 
sm calc. 

However, smyutfield, sm_getfield, or any other user function is not affected 
by the function call, and there is no means for user code to access JPL variables. 

Normally a C routine that is called from JPL, via the JPL call statement, does not 
have access to either the "automatic" variables of the caller (the JPL proc) or the "stat
ic" variables in the module of the caller. If this routine is called with a mode that is 
non-zero, the C function will have access to both JPL "automatic" and "static" vari
ables. It will also have access to any proc's in the current (the caller's) JPL module. 
Thus it is as if the C function is embedded bodily within the JPL procedure. 

The mode remains in effect until the calling JPL procedure is returned to, or 
sm set injpl is called again with a mode of zero. This means that all subroutines 
of die C routine will also have access to the current JPL module's variables and proce
dures. Of course, if the C routine calls a JPL proc (e.g. via sm jplcall), the new 
JPL proc will not have access to variables in the JPL proc that Called the C routine. 

NOTE: This function should be used with care. For example, since sm jwindow is 
a C subroutine, it too will have access to the current module's JPL variables and 
procs. In addition any screen entry, exit or validation functions will also have access 
to these variables and procedures. This can cause some unintended consequences when, 
for example, a JPL routine opens a screen, and the new screen's entry function calls a 
JPL proc. The JPL processor will look frrst in the original screen's JPL module (the 
current module) for the procedure, before it looks in the new screen's JPL module. If it 
finds a procedure of the same name in the current module it will execute that procedure 
instead of the procedure in the new screen's JPL. The safest way to use this routine is to 
set mode to a non-zero value when you require access, but then reset it immediately 
thereafter. 

JAM Release 5.03 Addendum 3 August 92 PageA~67 



Addendum - Replacement Page for Programmer's Guide 

RETURNS 
The previous value of mode. 

PageA-368 JAM Release 5.03 Addendum 3 August 92 



JAM Release 5.04 
Upgrade Guide 



TABLE OF CONTENTS 

Chapter 1 
Menu Bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.1 Menu Bar System. .. . ... . .. . . . .. . . . . . .. . . ... .. . . . .. . . . ... ... ... . . 3 
1.2 Menu Scripts ................................................... 5 

1.2.1 Menu Nrune ........................................... 6 
1.2.2 Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2.3 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2.4 Text Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1.2.5 Separator Types ........................................ 10 
1.2.6 Global Menu Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
1.2.7 Coounents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

1.3 Srunple Menu Script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
1.4 Converting and Storing Menu Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
1.5 Attaching Menu Bars to an Application .............................. 15 
1.6 Managing Menu Bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
1.7 Setting Menu Display and Bebavior ................................. 16 
1.8 Enabling Menu Bar Support ....................................... 18 

1.8.1 Modifying the Key File .................................. 18 
1.8.2 Modifying the Video File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
1.8.3 Rebuilding the Executable ................................ 20 

1.9 Testing Menu Bars ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
1.10 Using Menu Bars and PuUdowns ... . . . . .. . .. .. .. . . . .. . . . .. .... .. ... 21 
1.11 Menu Bars and Soft Keys ........................................ 22 

Chapter 2 
Menu Bar Reference ................................. 23 

2.1 Menu Bar Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
2.2 Menu Bar Routines .............................................. 26 

c_menu ......................... ........................... 27 
d_menu ................................................... 29 
mncrinit .................................................. 31 
mn_forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
mnadd ................................................... 33 
mncbange ................................................. 35 
mndelete .................................................. 37 

... 



JAM 5.04 Upgrade Guide 

mngel 
mninsert ................................................. . 
mnitems ................................................. . 

Chapter 3 
Menu Bar Utilities 

39 
41 
43 
45 
48 

51 
menu2bin ................................................. 52 
kset2nmu. ................................................. 54 

Chapter 4 
Display Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 

4.1 Specifying Emphasis Style ........................................ 57 
4.2 Setting Gray Attributes ........................................... 58 

Chapter 5 
Remote Scrolli ng .................................... S9 

Index ................................................. 61 

ii JAM Release 5.04 May 1993 

,... 



This addendum describes several new features available in JAM 5.04: 

• Menu bars are now available for character-mode applications, including JAM's au
thoring tools. You can use menu bars developed for graphics environments in char
acter-mode applications, and vice-versa. 

• Drop shadows and graying out underlying windows emphasize the active window's 
appearance. 

• The setup variable SCR_KEY_OPT is now available for general usage. You can use 
this variable to enable or disable "remote" scrolling of scrolling arrays. 

This addendum contains five chapters: 

1- Menu Bars shows how to defme menu bars and attach them to your application. 
It also shows how to manage menu bars at runtime. 

2 - Menu Bar Reference shows how JAM defines menu bar data and describes the 
menu bar routines that you can use in your applications. 

3 - Me,," Bar Utilities describes utilities that JAM provides to create and install 
menu bars. 

4 - Window Display EmpJzasis shows how to give drop shadows to windows and gray 
out their contents. 

5 - Remote Scrolling shows how to enable scrolling for arrays when the cursor is 
located outside an arrayed field. 

Page 1 

I" 



1 Menu Bars 
A menu bar is a horizontal menu at the top of the screen that has one or more items. 
Each item c~m invoke a pulldown menu-that is, a vertical menu that appears directly 
below its parent item. Pull down menu items can themselves invoke submenus. You can 
nest pulldown menus and their submenus multiple levels deep. 

You define menu bars and their puUdowns in ASCII scripts. The script describes the 
content of the menu bar, the action associated with e<'lch item on the menu bar, and its 
initial status. When you fmish defining the menu, you convert the menu script to binary 
fonnat through the utility menu2bin. 

After you define a menu bar, you attach it to your application through either JAM's 
screen editor or JAM library routines. When you attach a menu, you specify whether it 
is available to the entire program, to other menus, or only to a specific screen or con
text. 

J AM also provides library routines that let you change the content and selection of 
menu bars at runtime. These are described in Chapter 2 of this addendum. 

1.1 

MENU BAR SYSTEM 
JAM's menu bar subsystem manages the display and behavior of menu bars and their 
puUdowns. In graphical environments such as Windows and Motif, menu bars use the 
environments windowing system. In character-mode applications, JAM uses its own re
sources to display the menus. 

If you have menu bars enabled, JAM initializes the menu bar subsystem at startup. It 
then reads, or loads, menu bars as they are called by the application, either through their 
associated screens, or through explicit calls to sm_mn_r_menu or sm_mn_d_menu. 

When JAM loads a menu bar, it examines its scope value to decide whether to display 
it, and when. A menu bar gets its scope value when you attach it to the application. For 
example, this statement 

sm_r_menu (warning, KS_OVERRIDE); 

specifies to load the menu warning at a scope of KS_OVERRIDE. 

JAM menu bars can have one of these five scopes: 

• KS_FORM associates a menu bar with a screen. This menu bar is displayed with the 
screen, and with sibling and child windows that lack their own menu bars. JAM can 

Page 3 

I" 



JAM 5.04 Upgrade Guide 

load only one screen-level menu bar at a time. Thus, if two screens with their own 
menu bars open in succession, JAM unloads the first screen's menu bar before it 
loads the second. 

You cml attach a menu bar to a screen through the screen's keyset field, found on 
the Screen Characteristics screen. When JAM displays the screen, it automatically 
loads its menu bar at KS_FORM scope. Alternatively, you Cffil load a screen-level 
menu bar through a call to sm_r_menu or sm_d_menu in the screen's entry proce
dure. 

• KS_APPLIC associates a menu bar with the application. Application menu bars are 
accessible to the application ruld to screens that lack their own menu bar. You load 
ml application-level menu bar through a call to sm_r _menu or sm_d_menu in the ap
plication's main routine (jmain. cor jxrnain. c), in the area reserved for code to 
execute before the first screen appears. 

• KS_OVERRIDE specifies a menu bar that is independent of any stage of program 
execution. An override menu has precedence over ffily other menu bars that are 
loaded at the same time. 

You can load ffild unload override menus at ffily stage of program execution. While 
multiple override menus can be loaded simultaneously, only one override menu 
can be active at a time. The active override menu is the most recently loaded one. 

JAM reads all override menus into a save stack, where the program can access 
them in last-in/flfSt-out order. The save stack can hold up to 10 override menus. 
JAM sometimes uses the save stack for its own override menus. Consequently, 
JAM might temporarily push its own override menus on top of user-defmed menus 
loaded earlier. 

• KS_MEMRES specilles a menu bar script that is memory-resident and available to 
other menus at runtime. JAM Cffil maintain as many of these scripts as your system's 
resources allow. You typically load rbese scripts at startup, in the application's main 
routine. 

A memory-resident menu bar is available to other menu bars only as ffil external 
menu-that is, a menu that is defmed outside the menu that references it. You 
should install at this scope ffily menu that is used repetitively by more than one 
menu. 

• KS_SYSTEM specifies the menu bar that JAM uses in its authoring environment 
The system menu is loaded by default at startup in the application's main routine, 
jmain. cor jxrnain. c. Users can then toggle between display of the system menu 
ffild the application-level or screen-level menu through the SFTS key or the Switch 
Scope menu item. When JAM switches to the system menu, it closes any screen-lev
el or application-level menu bars that might be loaded, and vice-versa. 

Page 4 JAM Release 5.04 May 1993 

.... 



Chapter 1: Menu Bars 

Although multiple menus CIDl be loaded simultaneously, only one menu coo be dis
played at a time. One exception applies: Motif allows simultaneous display of the ap
plication-level IDld screen-level menus. 

Within each of the following groups, JAM can simultaneously load menus of these 
types: 

For example, an application can have one or more override menu bars loaded along 
with one system-level menu. Or, the application CIDl have one screen-level ood one ap
plication-level menu bar loaded along with several override menu bars. Note that menu 
bars of KS_SYSTEM scope are loaded to the exclusion of KS_FORM IDld KS_APPLIC 
menu bars, ood vice-versa. 

The previous groups of menu scopes also show their order of precedence. JAM uses this 
order to determine which of the loaded menus to display. Thus, if 00 override menu ood 
a screen menu are loaded, JAM displays the override menu. When the override menu 
closes, JAM displays the screen menu. 

If a window without a screen-level menu bar opens, the previously active menu bar re
mains displayed. This can be the screen-level menu bar from the previous screen, or the 
application-level menu bar if no screen-level menu bar is loaded. 

Motif and OPEN LOOK treat menu bars of different scopes as follows: 

• Menu bars can appear on individual screens or on the base screen, depending on their 
scope IDld the value of the formMenus resource. If formMenus is true, the applica
tion-level menu bar appears on the base screen while the screen-level menu bar ap
pears local to the screen. Therefore, both coo be active at the same time. If a screen 
without a screen-level menu bar opens, then no menu bar appears local to the screen. 
Screen-level ood override-level menu bars can appear either local to the screen or 
011 the base screen. 

• Application-level and system-level menu bars are restricted to the base screen. 

1.2 

However, users cm always access them as pop up menus by pressing the third mouse 
button. 

MENU SCRIPTS 
When you create a menu bar, you fIrst define it in an ASCII script. You then convert the 
script to binary with the menu2bin utility. A menu script specifies a menu bar ood its 

JAM Release 5.04 May 1993 Page 5 



JAM 5.04 Upgrade Guide 

puUdowns. The fIrst menu that you specify in a script defines the the top level menu, or 
menu bar; subsequent menu defInitions defme pulldown menus and their submenus. 
You cml can nest multiple menus any number of levels deep. 

You defIne a menu with this syntax: 

menunama[ separator [typa]] [display-option] ... 
i 

"label" action [ display-option] ... 

Each menu defmition begins with a unique identifier, menunama. The contents of the 
menu consist of menu items and separators, enclosed by curly braces (). Except for 
title items, you can specify items and separators in any order. 

Alternatively, a menu script can reference an external menu-that is, a menu that is 
defIned outside the current script. JAM searches for ml external menu among currently 
open menus, then among those menus loaded at the scope KS_MEMRES. You specify an 
external menu as follows: 

menuname externa 1 

The external keyword lets you build menu bars in a modular fashion and helps ensure 
consistency across different menu bars. For example, you can write a script for a puU
down that is repeatedly used by different menu bars. The menu bar scripts can then ref
erence the pulldown as an external menu. 

Menu scripts can also include lines of couunented text. PrefIX each comment line with 
a pound sign i. 

The menu bar compiler ignores all white space characters-spaces, tabs, and line re
turns--except when they separate key words. You can use white space to improve the 
menu definition's legibility. 

The following sections describe individual components of a menu defInition. 

1.2.1 

Menu Name 
A menu defInition begins with a unique identifIer. Each identifier can take one or more 
display option arguments which JAM applies uniformly to the entire menu. For more 
infonnation about display options, see ''Text Options" on page 9, and "Separator 
Types" on page 10. 

Page 6 JAM Release 5.04 May 1993 

.. 



Chapter 1: Menu Bars 

1.2.2 

Label 
Labels specify the displayed text of menu items. Each label is enclosed in double quote 
marks {" ,,}. The menu bar compiler accepts labels with up to 255 characters. Tbe la
bel can include backslasb escape characters-for example, \ n and \ t-to specify new
lines, tabs, and quotes. JAM uses these formats only if the environment supports them; 
otherwise, their actual display is terminal-dependent. 

To specify a keyboard mnemonic for a menu item, place an ampersand (&) in front of 
the desired character. Users can select the menu item from the keyboard by typing this 
character. J AM sets off the mnemonic character according to the display emphasis style 
that you choose-for example, by underlining or highlighting it. For example, given 
the following pulldown menu defmition: 

FormMenu 
( 

"&New" 
"&Open" 
"&Close" 
"&Save" 
"Save &As" 

key PFl 
control 
key PF3 
key PF3 
key PF4 

""jm_filebox file lusr/home * File" 
inacti ve 

J AM might display the menu like this: 

New 
.Qpen 
~lose 
S.ave 
Save As 

For more information on setting off the display of mnemonic characters in character
mode applications, see "Setting Menu Display and Behavior" on page 16. 

1.2.3 

Action 
The action that you assign to a menu item specifies its behavior. You can use one of the 
following keywords: 

JAM Release 5.04 May 1993 Page 7 



JAM 5.04 Upgrade Guide 

conti'ol control-string Associates the JAM control string control-string with this 
menu item. 

edi t Specifies that this menu item invokes the edit pulldown. The 
edit pulldown typically contains these items: cut, copy, 
Paste, Delete, Select All. Character-mode applications 
ignore this action. 

key keystroke Specifies to return keystroke when users select this item. 

menu menuname 

Selection of this menu item is equivalent to pressing the key. 
The value of keystroke can be a JAM logical key. You can 
also specify a hex, binary or octal number through one of 
these leading characters: 

Ox hex 
Ob binary 
o octal 

Specifies that this menu item invokes the submenu menu
name. 

separator [type] Inserts a separator of the specified type between menu items. 
If you omit the type, JAM draws a single-line separator. See 
"Separator Types" later in this chapter for information on 
different separator display options. 

Page 8 JAM Release 5.04 May 1993 

I" 



title 

windows 

1.2.4 

Text Options 

Chapter 1: Menu Bars 

Specifies that label is the title of this menu. The title must be 
the fIrst entry in the menu. PilWindows applications ignore 
the title keyword. 

Specifies that this menu item invokes the Windows menu. 
This menu lists the names of the open screens. When you se
lect a screen from this menu, JAM brings it to the top of the 
display. If the selected screen is a sibling of the screen at the 
top of the window stack, it becomes the top JAM window. 

In Windows, the Win-dows menu also cont.:'lins these items: 
Cascade, Tile and Arrange Icons. These let you arrange 
screens and icons within the frame. 

In Motif and OPEN LOOK, the Windows menu cont.:'lins a 
raise all option that raises all JAM screens to the top of 
the display, and layers them according to the window stack. 

In character-based applications, the Windows menu lists 
only sibling windOWS, with the last-opened window listed 
flfst. 

You can tell JAM how you want menu items to appear. The following display options 
are available: 

grayed/greyed 

help 

inactive 

indicator 

Mutes, or grays out, the menu item text and prevents users 
from selecting it. 

Makes a menu item the rightmost item on a menu bar. You 
can specify this display option for only one menu item, and 
only if it appears on a menu bar-tbat is, the script's first, or 
main, menu defmition. If this item is not the last-specified 
item in the menu definition, JAM rearranges the menu item 
order so that it appears last. 

Inactivates the menu item. When users click on this item, 
nothing happens. 

Indents all menu items to the right and reserves the indented 
space for the indicator symbol. 

JAM Release 5.04 May 1993 Page 9 



JAM 5.04 Upgrade Guide 

showkey 

Turns on the indicator symbol for this item. The indicator
typically an X or check mark v-indicates the srate of a menu 
item that serves as a toggle switch. 

To change the mark character for character mode applica
tions. assign a new value to MARK CHAR in the video file. 

Use this option only if you have also specified the display op
tion indicator. 

If the menu item's action is key. shows the key top label from 
the key fIle to the right of the item's text. If the key file has 
no key top, then the key mnemonic is shown. 

Some options are valid only for certain actions. The following table shows which dis
play options are valid for each action: 

Display Options 

Action grayed help inactive indicator indicator_on showkey 

control • • • • • 
edit • • • 
key • • • • • • 
menu • • • 
title • 
windows • • • 

1.2.5 

Separator Types 
JAM offers several ways to separate menu items. An unqualified separator action in
serts a single or blank line, depending on your system, between the previous and next 
menu items. You can specify one of the foUowing separator types: 
dou bl e Inserts a double line. 

double_dashed 

etchedin 

Page 10 

Inserts a double-dashed line. 

In Motif, draws a single line that appears to be etched into the 
menu. In character-based applications. draws a dotted line. 

JAM Release 5.04 May 1993 

I" 



etchedout 

menulJreak 

noline 

single 

Chapter 1: Menu Bars 

In Motif, draws a single line that appe<'lfS to protrude from the 
menu. In cbaracter-b<'lSed applications, draws underscores. 

Starts a new line in a borizontal menu, or a new column in 
a vertical menu. 

Inserts extra space between the menu items. 

Draws a single line. 

Draws a single d.1Sbed line. 

In cbaracter-based applications, single and double can use cbaracters defined in the 
video file. If no defmition exists in the video file, JAM uses its own default values: _, 
=,1 and II. 

You must enter separator types in lower C<'lSe. 

Some separator options are valid only within certain environments. If you specify a 
separator that your environment does not recognize, JAM uses a blank line (nol ine) . 
Tbe following table sbows wbicb separator types are valid for eacb environment. 

Environment 

Separator type Cbaracter Motif OPEN LOOK Windows 

double • • 
double_dashed • • 
etchedin • • 
etchedout • • 
menubreak • 
noline • • 
single • • • • 
single_dashed • • 

JAM Release 5.04 May 1993 Page 11 

... 



JAM 5.04 Upgrade Guide 

1.2.6 

Global Menu Settings 
Set the separator type and other display options for the entire menu by specifying them 
after the menu name. For example, if you specify global options nol i ne and shmvkey, 
all separators in the menu default to nol ine and all keys in the menu have showkey. 

If you specify a global separator type, you cm) override it for individual separators in 
the menu. 

1.2.7 

Comments 
You c~Ul insert one or more comment lines anywhere in the script. Each comment line 
must begin with the pound sign II. 

1.3 

SAMPLE MENU SCRIPT 
This section contains a sample menu script. The figure after it shows how this menu 
appears in Motif. 

# The first menu definition specifies the menu bar items 

Main 
{ 

FormMenu 
{ 

Page 12 

"Edit" edit 
"Form" menu FormMenu 
"Text" menu TextMenu 
"Help" menu HelpMenu help 
"&Quit" key OxlO3 

"Form" title. 
"&New" key PFI 
"&Open" control 
"&Close" key PF3 
"&Save" key PF3 
"Save &As" key PF4 

''''jm_filebox file /usr/home * File" 
inactive 

JAM Release 5.04 May 1993 

I" 



separator etchedin 
"O&ther" menu OtherMenu 

OtherMenu grayed showkey 
{ 

TextMenu 
{ 

"Other" title 
"Other&l" key PFl 
"Other&2" key PF2 
"E&xit" KEY EXIT 

"&Cut" 
"C&Opy" 
"&Paste" 

"&Undo" 

KEY PFl 
key PF2 
Key PF3 
sEpArAtOR double menubreak 
Key SPFl 

Chapter 1: Menu Bars 

II An external menu is one that is defined elsewhere, either 
# in an open menu or at the scope KS_MEMRES. 

HelpMenu external 

This script produces the following output in Motif: 

JAM Rele'i!~ 5.04 May 1993 Page 13 

I" 



JAM 5.04 Upgrade Guide 

edit cut 

edit_copy 

edit""paste 

edit delete 

edit selebt New 

.Qpen 

Close 

Save 

Save As 

~ 
Cut 

C~y 

Paste 

Undo 

Other ~ Other 

~creenHelp 

field Help 

Menu bar and pulldown menus produced by the sample menu script. 

1.4 

CONVERTING AND STORING MENU 
BARS 
After you write a menu script, use the menu2bin utility to convert the script me to 
binary format. You can store the binary me to a disk file or to a library. This done, you 
can attc'lcb the converted me to an application, as described later. 

You can also store menu bar data in memory. To do this, convert the binary me to a C 
structure with the bin2c utility, then register it to JAM with sm_formlist. Wben you 
store a menu bar's data in memory, JAM compiles it with the application. You can then 
read these mes with sm_d_menu. 

Page 14 JAM Release 5.04 May 1993 

I" 



Chapter 1: Menu Bars 

For infonnation on menu2bin, see "Menu Bar Utilities" later in this addendum. For 
information on bin2c and registration of C structures, see the JAM Programmer's 
Guide. 

1.5 . 

ATTACHING MENU BARS TO AN 
APPLICATION 
An application that uses menu bars must call each menu bar at the appropriate execu
tion stage. Through JAM's screen editor, you can attach a menu bar to a screen by sim
ply entering the menu name in the Screen Attributes keyset field. At runtime, JAM 
loads the menu bar wben the screen opens either as a fonn or as a window, or when it 
becomes the topmost window. JAM unloads the menu bar when the screen closes or is 
superseded by a window with its own menu bar. 

Alternatively, you can explicitly load and unload menu bars througb calls to one of 
these routines: 

Reads menu bar data from memory, a library or disk. 

Reads menu bar data from memory. Call this routine only for 
menu bar scripts that are compiled with the application, as 
described on page 14, "Converting and Storing Menu Bars." 

Unloads menu bar data and frees the memory associated with 
it. If the menu bar is still displayed, JAM removes it at the 
next screen write. 

Both sm_r_menu and sm_d_menu require you to supply a scope value. Menu bars that 
you attach to a screen through JAM's screen editor automatically get a scope of 
KS_FORM. 

If you attach a menu bar to a screen through JAM routines, you load and unload it in the 
screen's entry and exit functions, respectively. Override menus (KS_OVERRIDE) can 
be read at any stage of program execution. Menu bars of all other scopes-KS_AP
PLIC, KS_SYSlEM, mId KS_l\-1EMRES-are typically read in the program's main 
routine. 

JAM Release 5.04 May 1993 Page 15 

r 



JAM 5.04 Upgrade Guide 

1.6 

MANAGING MENU BARS 
JAM provides library routines to manipulate menu bars and their pulldowns at runtime. 
For example, you can use sm_mnchange to grayout or activate items according to 
chmlges in the screen's context. These library routines are summarized in the following 
table. See detailed descriptions of each routine in Chapter 2, "Menu Bar Reference." 

Runtime routine Description 

sm_mnadd* Adds an item to the end of a menu. 

srn_mnchange* Alters a menu item (for example, grays out an item). 

sm_mndelete Deletes a menu item. 

srn_mnget* Gets menu item information. 

sm_mninsert* Inserts a new menu item. 

srn_mni terns Gets the number of items on amenu. 

sm_mnnew Creates a menu by name. 

* . Cannot be prototyped because the routme uses an external data structure. 

Because changes to a shared menu bar are passed on to all other screens that use it after
ward, be sure that menu bar changes for one screen are correct for all later screens. If 
you want to omit a menu bar for a specific screen, create a dummy menu bar for it 

You can also refresh the menu to its original state by closing it with sm_c_menu, then 
reopening it with sm_d_menu or sm_l"_menu. 

You must prototype any menu bar functions that you call directly from control strings 
and JPL procedures. The Programmer's Guide shows how to prototype and install func
tions. See also JPL Guide for more information on how JPL uses prototyped functions. 

1.7 

SETTING MENU DISPLAY AND 
BEHAVIOR 
You can control the way menu bars appear and behave in character-based applications 
by setting various options. You can set these options through sm_option or by editing 
SMSETUP or SMVARS. 

Page 16 JAM Release 5.04 May 1993 

r 



Chapler 1: Menu Bars 

You can specify differem display attributes for menu items and their keyboard mne
monic characters so that users can easily distinguish between available and unavailable 
items. Unavailable items typically appear to be grayed out. 

JAM uses the following algorithm for graying menu items and keyboard mnemonic 
characters: 

l. The original display attributes are AND'd with the set of display attributes that you 
specify to retr:1.in. 

2. The remaining attributes are OR'd with the attributes that you specify for graying. 

3. The result of steps I and 2 is exclusive-OR'd with a mask of switch attributes. 

You can set different display attributes for a menu item string and its keyboard mne
monic character. If you specify display attributes only for the menu item string, the 
mnemonic character inherits its attributes. 

The following tables show the variables that control display attributes and their default 
values. 

Table 1. Graying attributes. 

Variable Description Default Attributes 

Display attributes that are kept for All attributes 
grayed items. 

Display attributes that are set for grayed None 
items. 

Display attributes that are toggled when HILIGHT 

graying is turned on and off. 

Table 2. Keyboard mnemonic character emphasis anributes. 

Variable Description Default Attributes 

Display attributes that are kept for a All Attributes 
keyboard mnemonic character 

Display attributes that are turned on for None 
a keyboard mnemonic character. 

Display attributes that are switched for a HILIGHT I WHITE 
keyboard mnemonic character. 

The following table describes options for controlling user interaction and setting menu 
styles: 

JAM Release 5.04 May 1993 Page 17 

r 



JAM 5.04 Upgrade Guide 

Table 3. Settings/or menu styles and user interaction. 

Variable 

MB_BORDATT 

MB_DISPATT 

MB_FLDATT 

2.8 

Description Default Attributes 

Border style to use in menus (0-9). 1 
NOBORDER specifies no border. 

Menu border attributes. B_WHITE I BLACK 

Display text attributes. B_WHITE I BLACK 

Menu field attributes B_WHITE I BLACK 

Distance between two buttons in a 2 
horizontal windows-style menu. 

Number of top lines reserved for a 1 
menu bar. 

Determines whether the System item OK_SYSTEM 

(==) appears on the menu bar or not. 
Two options are available: 
OK_SYSTEM specifies to display Sys
tem. 
NO_SYSTEM speCifies to omit System. 

ENABLING MENU BAR SUPPORT 
An application that uses menu bars must be enabled to handle them: 

• Create a key file or modify an existing one that dermes the keys used to access menu 
items. 

• Optionally, edit your video file and change the default settings for the menu marker 
character MARKCHAR and submenu indicator SUBMNSTRING. 

• Recompile j rna in. c and, optionally, j xma in. c, and rebuild the executable. 

2.8.1 

Modifying the Key File 
You can give users keyboard access to menu items by defining two new types of keys 
in your key file: 

Page 18 JAM Release 5.04 May 1993 

,. 



Chapter 1: Menu Bars 

• MNBR lets users access the menu bar. If you are enabling system menu bars, you Clm 

also defme ALSYS. This gives users keyboard access to the System menu, repre
sented by two equals signs ==. 

• ALT keys give users direct access to menu bar items from the screen. 

You perform both tasks by modifying an existing key file. You can do this directly, or 
use JAM's MODKEY utility. Start MODKEY and edit the desired key file. Select Define 
Cursor Control and Editing Keys. JAM displays this screen: 

The bottom of the screen contains two entries, MENU BAR and SYSTEM MENU. Define 
the desired key sequences for MENU BAR and, optionally, SYSTEM MENU-for example, 
ALT-X lUld ALT-=. The key sequence for SYSTEM MENU is optional because users can 
access it indirectly through the MENU BAR key. 

After you define the key sequences, exit the screen and return to the menu. Select De
fine Alt Keys. MODKEY displays mis screen: 

JAM Release 5.04 May 1993 Page 19 

I'" 



JAM 5.04 Upgrade Guide 

You can now define key sequences that give direct access to menu bar items. For exam
ple, you might specify ALT-F to access the menu item File. 

After you define ALT keys, save the defmitions to a file. Then convert this file to binary 
format with key2bin. If the key file is new, add it to the SMVARS me. 

2.8.2 

Modifying the Video File 
You can edit the video file as follows: 

• Change the value of MARKCHAR, which specifies the character used to check menu 
items. For example, under MS-DOS and JTERM. the following statement specifies 
the square root symbol (...J) as the mark character: 

MARKCHAR .; OxPB 

• Change the value of SUBMNSTRING. which defines the string that menus use to indi
cate that a menu item invokes a submenu. 

After you edit the video me. convert it to binary format with vid2bin. 

2.8.3 

Rebuilding the Executable 
After you modify your key and video files. you can build an executable that uses menu 
bars: 

Page 20 JAM Release 5.04 May 1993 

r 



Chapter 1: Menu Bars 

1. Recompilejmain.c with MENUS defined to 1. IfYOli want JAM's authoring environ
ment to include menu bars, recompile j xf arm. c with the same change. Edit the 
section that specifies optional subsystems to include this statement: 

#define MENUS 1 

This tells JAM to initialize the menu bar subsystem at startup. 

Alternatively, add a defmition on the compile command line. On UNIX systems, 
be sure that CFLAGS is set to this value: 

-DMENUS=l 

For example: 

CFLAGS = -IS (HPATH) -0 -Aa -DSM_SCCSID -DS (MACHINE_NAME) \ 
-DMENUS=l 

2. Relink with the new 5.04 libraries. 

1.9 

TESTING MENU BARS 
You can test menu bars in application mode of JAM if the following conditions are true: 

• The SFfS key is defined in the key translation file. This key lets you toggle between 
the menu bars in your application and JAM's own menu bar. 

• If you are testing character-mode applications, you must edit j xma in. c to enable 
menu bars, and rebuild jxform. Section 1.8.3 shows how to do this. 

1.10 

USING MENU BARS AND PULLDOWNS 
You can use either the mouse or the keyboard to access menu bars and their pulldowns. 

Use the mouse with menus as follows: 

1. Click on the menu bar. If you click on a menu item, its pulldown menu appears. If 
the menu item has no pulldown menu, JAM executes the action associated with the 
menu item. If you click outside a menu item, JAM selects the menu bar's first item, 
but does not open its pulldown menu. 

2. Exit the menu bar by clicking on the previously active screen. 

JAM Release 5.04 May 1993 Page 21 

.. 



JAM 5.04 Upgrade Guide 

Access the menu bar from the keyboard through one of keys listed below. Recall that 
you must fIrst define these keys in the key file. 

• MNBR selects the menu bar's fIrst item and leaves its pulldown menu closed. 

• ALSYS selects System (=) ~md opens its menu. 

• ALT-char selects the menu bar item with the keyboard mnemonic char. 

You can exit the menu bar by pressing either MNBR or EXIT. 

When you switch between screens and menus, JAM maintains the following controls 
over your work space: 

• When you activate a menu bar, JAM saves the state of the screen and keeps all sub
menus already open. 

• When you exit a menu bar and return to its screen, JAM closes all of the menu bar's 
pulldowns and submenus. Only the menu bar remains visible. 

• When the menu bar is active, you cannot manipulate any windows-for example, 
move or resize them. 

• If a message requires user action, J AM prevents you from switching to a menu until 
you perform the required action. 

1.11 

MENU BARS AND SOFT KEYS 
Soft keys and menu bars are mutually exclusive, because they share the same program
matic hooks. You must choose one or the other. The selection of soft keys versus menu 
bars is made in the main routine, either jmain.c or jxmain.c, by initializing either 
soft key support or menu bar support 

JAM provides the kset2mnu utility to help you convert keysets to menu bars. This util
ity converts the keyset to an ASCII menu script Because the organization of menu bars 
and keysets can differ greatly, you will probably want to edit kset2mnu's initial output. 
You can then convert the script to binary format and install it as described earlier. 

The kset2mnu utility is described in "Menu Bar Utilities" later in this addendum. 

Page 22 JAM Release 5.04 May 1993 

... 



2 Menu Bar Reference 
This section shows the data structure that JAM uses to modfy or examine menu bar 
data. It also describes the routines that you can use to create, install, change, and dis
play menu bars. These descriptions appear in alphabetical order. 

2.1 

MENU BAR DATA 
JAM's i tem_da ta structure lets you change the display or behavior of menu bar items, 
or to examine a menu item's current state. Some of the runtime routines described in 
this chapter use i tem_da ta as a parameter. This structure has the following definition 
in smmenu . h: 

struct item_data 
{ 

short *type 
char *label 
short accel 
short key 
char *submenu 
short option 

Each of the structure's members is described below. 

short *type 
Specifies this menu item's type through one of the following defmes: 

Constant Value 

MT_SEPARATOR 0 

MT_TITLE I 

MT_KEY 2 

MT_SUBMENU 3 

MT_EDIT 4 

Description 

Inserts a separator of the specified type between menu 
items. 

Uses the item's label as the menu title. 

Specifies to return a keystroke when users select this 
item. 

Invokes a submenu. 

Specifies that this menu item invokes the Edit puUdown 
menu. 

Page 23 

r 



JAM 5.04 Upgrade Guide 

Constant Value Description 

MT_WINDOWS 5 Specifies that this menu item invokes the Windows puJl
down menu. 

MT_CTRLSTRNG 6 Associates a JAM control string with this menu item. 

char "label 

The text of this menu item, ignored if type bas a value of MT_SEPARATOR. Text beyond 
255 characters is truncated. Tbe default value is o. 
short accel 

The offset of the character in label that is used as to select this menu item from the 
keyboard. Tbe default value is -1. 

short key 

The logical key number of the key that is returned on selection of this menu item, valid 
only if type has a value OfMT_KEY. See smkey s . h for a listing of valid key mnemonics. 
The default value is o. 

char *submenu 

If type is MT_SUBMENU, specifies the menu invoked from this menu item. If type is 
MT_CTRLSTRNG, specifies the control string to execute when this item is selected. 

short option 

Display options for this menu item. If the menu item displays the text of label-that 
is, type bas any value except MT_SEPARATOR-you can bitwise OR together the fol
lowing text display options: 

Constant 

Page 24 

Value 

Ox0200 

Ox0800 

OxlOQO 

Ox2000 

Description 

Turns on the indicator symbol for this item. Tbe 
indicator-typically a check mark "'-indicates 
the state of a menu item that serves as a toggle 
switch. 

Indents all menu items to the rigbt and reserves 
the indented space for the indicator symbol. 

Grays out the menu item text and prevents users 
from selecting this item. 

Makes the entry inactive. Wben users click on 
this item, nothing bappens. 

JAM Release 5.04 May 1993 

.. 



Constant Value 

Ox4000 

Ox8000 

Chapter 2: Menu Bar Reference 

Description 

Shows the key top label from the key file to the 
right of the item's text. If the key file has no 
key top, then the key mnemonic is shown 

Makes a menu item the rightmost item on the 
menu bar. Valid only for one item, and only if it 
appears on the menu bar. 

If the menu item has type set to MT_SEPARATOR, you can set one of the foUowillg op
tions: 

Constant 

MO_SINGLE 

MO_DOUBLE 

MO_NOLINE 

MO SINGLE_DASHED 

MO_DOUBLE_DASHED 

MO_ETCHEDIN 

MO_ETCHEDOUT 

MO_MENUBREAK 

Value 

OxOOOO 

OxOOOl 

OxOOO2 

OxOOO3 

OxOO04 

OxOOO5 

OxOOO6 

Ox0400 

Description 

Draws a single line. 

Inserts a double line. 

Inserts extra space between the menu items. 

Inserts a single-dashed line. 

Inserts a double-dashed line. 

Draws a single line that appears to be etched into 
the menu. 

Draws a single line that appears to protrude from 
the menu. 

Starts a new line in a horizontal menu, or a new 
column in a vertical menu. 

JAM Release 5.04 May 1993 Page 25 

r 



JAM 5.04 Upgrade Guide 

2.2 

MENU BAR ROUTINES 
The following routines create, alter, install and display menu bars: 

sm_c_menu Closes a menu bar. 

Displays a menu bar stored in memory. 

Initializes menu bar support. 

Installs menu bars in memory. 

Adds an item to the end of a menu. 

Cb1mges an item. 

Deletes an item. 

Gets information about a menu item. 

Inserts a new item in a menu. 

Gets the number of items in a menu. 

Creates a menu bar. 

Reads and displays a menu bar from memory, a library or 
disk. 

Like other JAM library routines, menu bar routines require the beader file smdefs. h. 
Some routines also require you to include other beader files, as indicated in the descrip
tions that follow. 

You must prototype any menu bar functions that you cnll directly from control strings 
and JPL procedures. JAM's Programmer's Guide sbows bow to prototype and install 
functions. 

The following sections describe menu bar routines in greater detail. The routines are 
listed alpbabetically. 

Page 26 JAM Release 5.04 May 1993 

I'" 



Chapter 2: Menu Bar Reference 

c menu 
close a menu bar 

SYNOPSIS 

#include "smsoftk.h" 

PARAMETERS 

int scope 

Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

DESCRIPTION 

This routine closes the menu bar at the specified scope level and frees all memory allo
cated for it. If the menu bar is displayed, JAM removes it at the next delayed write. 

When a menu bar with a scope of KS_OVERRIDE closes, JAM pops the next menu, if 
any, off the override stack. 

If the closed menu's scope is KS-.MEMRES, JAM closes the last menu bar loaded at that 
scope. 

To refresh a menu bar, close it with c_menu, then reload it with r_menu or d_menu. 

RETURNS 
o Success. 

-2 Menu bar does not exist at this scope. 
-3 Menu bars are unsupported or scope is out of range. 

RELATED FUNCTIONS 

JAM Release 5.04 May 1993 Page 27 

.. 



JAM 5.04 Upgrade Guide 

EXAMPLE 
#include "smdefs.h" 
#include "smsoEtk.h" 

/* Close the current JAM window's menu: */ 

Page 28 JAM Release 5.04 May 1993 

I" 



Chapter 2: Menu Bar Reference 

d menu 
load a menu bar that is stored in memory 

SYNOPSIS 
#include "smsoftk.h" 

int sm_d_menu(char *menu, int scope); 

PARAMETERS 

char *menu 

The address of a menu bar stored in memory. 

int scope 

Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

DESCRIPTION 

This function can load any menu bar that exists as a C data structure. Use the bin2c 
utility to create program data structures from disk-based menus. You can then compile 
these into your application and add them to the memory-resident screen list, as de
scribed in Chapter 9 of the JAM Programmer's Guide. 

If a menu bar is already active at the specified scope, JAM compares its name to the 
value of menu and takes one of the following actions: 

• If the menu names are the same, the routine returns immediately. Note that you can 
use this function to refresh the current menu bar display only if you first close it by 
calling c_menu. 

• If the menu names are different and scope is KS_OVERRIDE, JAM pushes the cur
rently active menu bar into the override stack and makes the newly read menu bar 
the current menu bar. 

• If the menu names are different and scope is KS_MEMRES, JAM loads the menu 
bar along with other memory-resident menus that are loaded and available for use 
as external menus. 

JAM Release 5.04 May 1993 Page 29 

I" 



JAM 5.04 Upgrade Guide 

• If the menu names are different and scope is KS_SYSTEM, KS_APPLIC, or 
KS_FORM, JAM closes the previously loaded menu bar and frees the memory allo
cated for it, then loads the newly read menu bar. If the previous menu bar is dis
played, J AM removes it at the next screen refresh. 

RETURNS 
o Success. 

-I Not a menu bar. 
-3 Menu bars are unsupported or scope is out of range. 
-5 A malloc error occurred. 

If the routine returns with an error, JAM retains the previous menu bar loaded at scope, 
if any. 

For all errors except -3, a message is posted to the operator. 

RELATED FUNCTIONS 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 

extern char customer_menu[li 

/* Display the customer menu as the application-level menu. 
• Customer_menu was created using bin2c. 
*/ 

Page 30 JAM Release 5.04 May 1993 

,. 



Chapter 2: Menu Bar Reference 

mncrinit 
initialize menu bar support 

SYNOPSIS 
void sm_menuinit(}; 

DESCRIPTION 

This routine is typically called automatically when you enable menu bars in your ap
plication. You enable menu bar support by setting MENUS to 1 in the main routine. 

sm_mmc r i nit sets a global variable to point to a control function. All screen manager 
functions that need menu bar support check the variable and, if it is non-zero, call indi
rectly with the request. 

You should call this routine explicitly only if you are writing your own executive rou
tine. You call sm_mncrini t in the main routine before the call to sm_ini tcrt. 

RELATED FUNCTIONS 

JAM Release 5.04 May 1993 Page 31 

I'" 



JAM 5.04 Upgrade Guide 

mn forms 
install menu bars in memory 

SYNOPSIS 
void sm_ron_forms(); 

DESCRIPTION 
This routine is typically called automatically by JAM's executive. You should call this 
routine explicitly only if you write your own executive routine and want to load ·menu 
bars from memory. You must compile these menu bars into the application and add 
them to the memory-resident list, as described in Chapter 9 of the JAM Programmer's 
Guide. You can then load these menu bars by calling either sm_d_menu or sm_cmenu. 

You call sIn_mn_fo nIlS in the application's main routine. If you write your own custom 
executive, you must also call sm_menuini t to initialize menu bar suppon. 

RELATED FUNCTIONS 

Page 32 JAM Release 5.04 May 1993 



mnadd 
add an item to the end of a menu bar 

SYNOPSIS 
#include "smsoftk.h" 
#include "smkeys.h" 
#include "smmach.h" 
#include "smmenu.h" 

Chapter 2: Menu Bar Reference 

int sm_mnadd(int scope, char *menu_name, struct item_data 
*menu_data) ; 

PARAMETERS 
int: scope 

Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 

The name of the menu bar. 

struct item_data *menu_data 

A user-allocated structure that describes the appearance and function of a menu bar 
item. The description of item_data in Section 2.1 shows the values you can assign to 
this structure, and its default values. 

DESCRIPTION 

This routine adds an item at the end of the menu specified by scope and menu_name. 
The item gets the attributes that you supply to the item_data parameter. You assign 
attributes through identifiers that are defined in smmenu . h. 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 

JAM Release 5.04 May 1993 Page 33 

r 



JAM 5.04 Upgrade Guide 

-3 Menu bars are unsupported or seope is out of range. 
-4 menu_name is not found. 
-6 Dam in i tem_da ta is bad. 
-7 A malloc error occurred. 

RELATED FUNCTIONS 
sm_mnehange, sm_mnc1elete, sm_mnget, sm_mninsert, sm_mnitems, 
sm_mnnew 

EXAMPLE 
#include "smdefs.h" 
#inelude "smsoftk.h" 
#inelude "smmaeh.h" 
#inelude "smmenu.h" 
#inelude "smkeys.h" 

struet item_data *data; 
data (struet item_data * ) malloe( sizeof( struet item_data 
) ; 

/* Call sm_d_menu w/ a disk resident menu and KS_FORM. 
* Call sm_mnadd to add a title for submenu. 
*/ 

sm_r_menu ("mymenu. bin", KS_FORM); 
data->type = MT_TITLE; 
data->label = "Submenu"; 
data->aeeel = -1; 
data->key = 0; 
data->submenu = 0; 
data->option = MO_INDICATOR_ON; 
sm_mnadd(KS_FORM, "SubmenuO", data); 
free (data) ; 

Page 34 JAM Release 5.04 May 1993 

.. 



Chapter 2: Menu Bar Reference 

mnchange 
change the text or display attributes of a menu item 

illS 

SYNOPSIS 
~include "smsoftk.h" 
~include "smkeys.h" 
~include "smmach.h" 
~include "smmenu.h" 

_I 

int sm_mnchange(int scope, char "menu_name, int item_no, struct 
item_data *menu_c1ata}; 

PARAMETERS 
int scope 

Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 

The name of the menu bar. 

int item_no 

IIBIl' 

A positive integer that specifies the menu item to change, where the first menu item has 
a value ofO. 

struct item_data *menu_data 

A user-allocated structure that describes the appearance and function of a menu bar 
item. See "Menu Bar Data" on page 23 for more information on this structure and its 
values. 

DESCRIPTION 

Use this function to change a menu item's textual representation or display attributes. 
JAM modifies the contents of the menu item's data structure through the values that 
you supply for parameter data. For example, you can use this routine to grayout or 
check an item. 

JAM Release 5.04 May 1993 Page 35 

r 



JAM 5.04 Upgrade Guide 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 
-3 Menu bars are unsupported or scope is out of nUlge. 
-4 menu_name is not found. 
-6 Data in i tem_da ta is bad. 
-7 A maUoc error occurred. 

RELATED FUNCTIONS 
mnadd, mndelete, mnget, mninsert, mnitems, mnnew 

EXAMPLE 
linclude "smdefs.h" 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 
#include "smkeys.h" 

/ .. menu file stored in memory .. / 
extern char mymenu[); 

struct item_data "data; 
data (struct item_data" ) malloc( sizeof( struct item_data 
) ; 

/. Call sm_r_menu wI a disk resident menu and KS_APPLIC . 
.. Call sm_mnchange to grayout a menu item in the submenu . .. / 

SIlLr_menu ("mymenu. bin", KS_APPLIC); 
data->type = MT_KEY; 
data->label = "Newltem"; 
data->accel = 3; 
data->key = PFl; 
data->submenu = 0; 
data->option = MO_GRAYEDIMO_SHOWKEY; 
sm_mnchange(KS_APPLIC, "SubmenuO" , 0, data); 
free(data) ; 

Page 36 JAM Release 5.04 May 1993 

I'" 



mndelete 
delete a menu bar item 

SYNOPSIS 
~include "smsoftk.h" 
~include "smmach.h" 
#include "smmenu.h" 

Chapter 2: Menu Bar Reference 

int sm_mndelete(int scope, char *menu_name, int item_no); 

PARAMETERS 
int scope 
Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 
The name of the menu bar. 

int item_no 
A positive integer that specifies the menu item to delete, where the first menu item has 
a value ofO. 

DESCRIPTION 
This routine deletes the item specified by item_no, menu_name, and scope from the 
menu bar. The frrst item 011 a menu has an i tern_no value of zero. 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 
-3 Menu bars are unsupported or scope is out of range. 
-4 menu_name is not found. 
-5 i tern_no is not found. 

RELATED FUNCTIONS 

JAM Release 5.04 May 1993 Page 37 

I" 



JAM 5.04 Upgrade Guide 

EXAMPLE 
#lnclude "smdefs.h" 
#include "smsoftk.h" 
#include "smmach.h" 
#lnclude "smmenu.h" 

int count; 

/* 
Delete the last item from the application menu 
called "customer" 

*/ 

if ({count = mnltems{ KS_APPLIC, "customer" II > 0) 
sm_mndelete{ KS_APPLIC, "customer", count ); 

Page 38 JAM Release 5.04 May 1993 



Chapter 2: Menu Bar Reference 

mnget 
get information about a menu bar item 

SYNOPSIS 
~include "smsoftk.h" 
lIinclude "smkeys.h" 
~include "smmach.h" 
~include "smmenu.h" 

int sm_mnget(int scope, char *menu_name, int item_no, struct 
item_data *menu_datal; 

PARAMETERS 
int scope 
Specifies when this menu is available to the application with one of these arguments: 
KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 
The name of the menu bar. 
int item_no 
A positive integer that specifies the menu item to get information on, where the frrst 
menu item has a value of O. 
struct item_data *menu_data 
A user-allocated structure that describes the appearance and function of a menu item. 
See "Menu Bar Data" on page 23 for more information on this structure and its values. 

DESCRIPTION 
This function fills the fields in the i tem_da ta structure with the corresponding data of 
the menu item .. Note that you must create buffers for the label and submenu elements of 
the structure that are large enougb to hold the label and submenu names, as in the exam
ple shown later. The maximum length is 255 characters. 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 

JAM Release 5.04 May 1993 Page 39 

.. 



JAM 5.04 Upgrade Guide 

-3 Menu bars are unsupported or scope is out of range. 
-4 menu_name is not found. 
-5 i tern_no is not found. 

RELATED FUNCTIONS 
mnadd, mnchange, mndelete, mninsert, mnitems, mnnew 

EXAMPLE 
#include "smdefs.h" 
#include "smmach.h" 
#include "smmenu.h" 
#include "smsoftk.h" 

/* menu file stored in memory */ 
extern ehar mymenu[]; 

char bufl[lOO], buf2[lOO]; 

struct item_data *data; 

data = (struet item_data *) malloe( sizeof( struet ite~data ) ); 

data->label = bufl; 
data->submenu buf2; 

/* Call r menu with a disk resident menu. 
* Call mnget to get an override-level menu bar item. 
*/ 

sm_r_menu ("mymenu .bin", KS_OVERRIDE); 
sm_mnget(KS_OVERRIDE, "Main", 0, data ); 
free{data) ; 

Page 40 JAM Release 5.04 May 1993 

r 



mninsert 
insert a new menu item 

SYNOPSIS 
#include "smsoftk.h" 
#include "smkeys.h" 
#include "smmach.h" 
#include "smmenu.h" 

Chapter 2: Menu Bar Reference 

int sm_mninsel-t (int scope, char "menu_name, int item_no, struct 
item_data *menu_data); 

PARAMETERS 
int scope 
Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 
The name of the menu bar. 

int item_no 
A positive integer that specifies the menu item to follow the inserted item, where the 
first menu item has a value of O. 

struct item_data *menu_data 
A user-allocated structure that describes the appearance and behavior of the menu item 
to insert. See "Menu Bar Data" on page 23 for more information on this structure and 
its values. 

DESCRIPTION 
This routine inserts a new menu bar item before the menu item specified by item_no, 
menu_name, and scope, using the data in the menu bar structure item_data. 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 

JAM Release 5.04 May 1993 Page 41 

.. 



JAM 5.04 Upgrade Guide 

-3 Menu bars ~U'e unsupported or scope is out of nmge. 
-4 menu_name is not found. 
-6 Data in i tem_da ta is bad. 
-7 A malloc error occurred. 

RELATED FUNCTIONS 
mnadd, mnchange, mndelete, mnget, mnitems) , mnnew 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 
#include "smkeys.h" 

struct item_data *data; 

data (struct item_data * ) malloc( sizeof( struct item_data 
) ; 

1* Call sm_r_menu wi a disk resident menu and KS_FORM. 
* Call sm_mninsert to insert a submenu. 
*1 

sm_r_menu ("mymenu. bin", KS_FORM); 
data->type = MT_SUBMENU; 
data->label = "NewItem"; 
data->accel = 3; 
data->key = 0; 
data->submenu = "Submenu1"; 
data->option = MO_INDICATOR; 
sm_mninsert(KS_FORM, "Main", 1, data); 
free (data) ; 

Page 42 JAM Release 5.04 May 1993 

,. 



Chapter 2: Menu Bar Reference 

mnitems 
get the number of items on a menu bar 

SYNOPSIS 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_mnitems(int scope, char *menu_name}; 

PARAMETERS 
int scope 

Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 

. The name of the menu bar. 

DESCRIPTION 

This routine returns the number of items on the menu bar specified by menu_name and 
scope. 

RETURNS 

If successful, the function returns the number of items in the menu; otherwise, it returns 
one of these values: 

-2 No menu bar exists at this scope. 
-3 Menu bars are unsupported or scope is out of range. 
-4 menu_name is not found. 

RELATED FUNCTIONS 

sm_mnadd, sm_mnchange, sm_mndelete, sm_mnget, sm_mninsert, 
sm_mnnew 

JAM Release 5.04 May 1993 Page 43 

I" 



JAM 5.04 Upgrade Guide 

EXAMPLE 

iinclude "smdefs.h" 
#inclucle "smmach.h" 

int ret; 

/. Call sm_r_menu w/ a disk resident menu and KS_OVERRIDE. 
* Call sm_mnitems to get the number of items on the menu bar, and 

* place the number in the current field. 
*/ 

sm_r_menu ("mymenu. bin", KS_OVERRIDE); 
ret = mnitems (KS_OVERRIDE, "Main"); 

sm_Il_itofield ( "number", ret ); 

Page 44 JAM Release 5.04 May 1993 

r 



mnnew 
create a menu 

SYNOPSIS 
*include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_mnnew(int scope, char *menu_name); 

PARAMETERS 
int scope 

Chapler 2: Menu Bar Reference 

The scope of the menu bar to create. Supply one of these values: 
KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

char *menu_name 
The name of the menu bar. 

DESCRIPTION 
This routine creates a submenu in the menu bar structure at the specified scope level. 
After you call this routine, specify its contents by calls to sm_mnaddand srn_mninsert. 
After you create the menu and its contents, attach it to an existing menu by creating an 
item that invokes it, through a call to sm_mnadd or sm_mninsert 

RETURNS 
o Success. 

-2 No menu bar exists at this scope. 
-3 Menu bars are unsupported or scope is out of range. 
-4 menu_name is not found. 
-7 A malloc error occurred. 

RELATED FUNCTIONS 
sm_mnadd, sm_mnchange, sm_mndelete, sm_mnget, sm_mninsert, 
sm_mnitems; 

JAM Release 5.04 May 1993 Page 45 



JAM 5.04 Upgrade Guide 

EXAMPLE 
#include "smdefs.h" 
#inelude "smsoftk.h" 
#include "smmaeh.h" 
#include "smmenu.h" 
#include "smkeys.h" 

int ret; 
struct item_data *data; 

data 
) ; 

( struct item_data * ) malloe( sizeof( struct item_data 

/. Call sm_r_menu w/ a disk resident menu and KS_OVERRIDE. 
* Call sm_mnnew to create a new menu bar . 
* Call sm_mnadd to add items to it and finally add this new menu 
* to the menu displayed as a submenu. 
*/ 

sm_r_menu ("main. bin" , KS_OVERRIDE); 
ret = sm_mnnew(KS_OVERRIDE, "NewItem"); 

if ( ret == 0 ) 
{ 

data->type = MT_TITLE; 
data->label = "Submenu"; 
data->aceel = -1; 
data->key = 0; 
data->submenu = 0; 
data->option = MO_INDICATOR_ON; 

sm_mnadd(KS_OVERRIDE, "Newltem", data); 

data->type = MT_SUBMENU; 
data->label = "I"; 
data->accel = 0; 
data->key = 0; 
data->submenu = "Submenul"; 
data->option = MO_INDICATOR; 

sm_mnadd(KS_OVERRIDE, "Newltem", data); 

data->type = MT_SUBMENU; 
data->label "Newltem"; 
data->accel = 3; 

Page 46 JAM Release 5.04 May 1993 

,. 



} 

da ta->key = 0; 
data-~·submenu = "NewItem"; 
data->option = MO_INDICATOR; 

sm_mnadd(KS_OVERRIDE, "Main", data); 

free (data) ; 

JAM Release 5.04 May 1993 

Chapter 2: Menu Bar Reference 

Page 47 

,. 



JAM 5.04 Upgrade Guide 

r menu 
read a menu bar from memory, a library or disk 

SYNOPSIS 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_l"_menu(char *menu_name, int scope); 

PARAMETERS 
char *menu_name 
The name of the menu bar to read. 

int scope 
Specifies when this menu is available to the application with one of these arguments: 

KS_FORM 
KS_APPLIC 
KS_OVERRIDE 
KS_MEMRES 
KS_SYSTEM 

DESCRIPTION 
When you call this routine, JAM first looks for the specified menu bar in the memory
resident screen list, next in any open libraries, and finally on disk in the directories spe
cified by the argument to sm_ini tcrt and by SMPATH. 

If a menu bar is already active at the specified scope, JAM compares its name to the 
value of menu_name and takes one of the following actions: 

• If the menu names are the same, the routine returns immediately. Note that you can 
·use this function to refresh the current menu bar display only if you first close it by 
calling sm_c_menu. 

• If the menu names are different and scope is KS_OVERRIDE, JAM pushes the cur
rently active menu bar into the override stack and makes the newly read menu bar 
the current menu bar. 

• If the menu names are different and scope is KS_MEMRES, JAM loads the menu 
bar along with other memory-resident menus that are loaded and available for use 
as external menus. 

Page 48 JAM Release 5.04 May 1993 

.... 



Chapter 2: Menu Bar Reference 

• If the menu names are different and scope is KS_SYSTEM, KS_APPLIC, or 
KS_FORM, JAM closes the previously loaded menu bar mId frees the memory allo
cated for it, then loads the newly read menu bar. If the previous menu bar is dis
played, JAM removes it at the next screen refresh. 

RETURNS 
o Success. 

-J Not a menu bar. 
-2 No menu bar exists at this scope. 
-3 Menu bars are unsupported or scope is out of range. 
-4 menu_name is not found. 
-5 A malloc error occurred, 

In the case of an error the previously displayed menu bar remains displayed. 

For all errors except -3 a message is posted to the operator. 

RELATED FUNCTIONS 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 
liinclude "smmach.h" 
*include "smmenu.h" 

/* Read in the company menu and display it at the form level. */ 

JAM Release 5.04 May 1993 Page 49 



3 Menu Bar Utilities 

JAM bas two utilities for creating menu bars: 

• menu2bin converts an ASCII menu script into a binary menu file. 

• kset2mnu converts a JAM keyset into an ASCII menu script For detc'liled instruc
tions on creating menu bar scripts, see "Menu Bars" earlier in this addendum. 

The following sections describe these utilities in detail. 

Page 51 

I'" 



JAM 5.04 Upgrade Guide 

menu2bin 
convert ASCII menu scripts to binary format 

SYNOPSIS 
menu2bin [-pvl [-e extl menufile ... 

OPTIONS 
-p Places the binary files in the same directories as the input files. 

-v Lists the name of each input file as it is processed. 

-e Appends ext to the output file name. The default extension is bi n. 

DESCRIPTION 
The menu2bin utility converts ASCII menu scripts into binary format Menu scripts are 
created as text fLIes. Chapter I, "Menu Bars", shows how to write a menu script. 

Menu binary files can be placed in libraries with the formlib utility. Refer to the JAM 
Utilities Guide for more information. 

ERRORS 
Too many menu definitions. Max is 128. 
Only 128 menu definitions may be included in one menu script. 
Too many item definitions. Max is 128. 
Only 128 item specifications may be included in one menu definition. 
Cannot create "s' 
Error writing '%s' 
An output file could not be created, due to lack of permission or perhaps lack of disk 
space. Correct the file system problem and retry the operation. 

Neither '%s' nor '%s' found. 
An input me was missing or unreadable. Check the spelling, presence and permissions 
of the file in question. 

Error in '!1,s' line '%d' error-type 
The syntax of your script on the specified line is incorrect. The value of error-type spec
ifies one of these errors: 
Expected left brace '{' after menu name. 
No right brace '}' found before EOF. 
No menu name specified. 
Expected quoted item label. 
Missing action. 

Page 52 JAM Release 5.04 May 1993 

r 



Chapter 3: Menu Bar Utilities 

Unknown action '%s'. 
Unknown option '%s'. 
No key specified. 
Bad key ''!;s'. 
Bad escape sequence '%s' 
Undefined submenu '%s'. 
More than one option of this type (%s). 
More than one accelerator character assigned. 
Accelerator character at end of string - Ignored. 
Menu '%s' is on menu bar so cannot be used as submenu. 

JAM Release 5.04 May 1993 Page 53 

,. 



JAM 5.04 Upgrade Guide 

kset2mnu 
convert keysets into ASCII menu scripts. 

SYNOPSIS 
kset2mnu [-pv] [-e ext] keyset ... 

OPTIONS 
-p Places the binary files in the same directories as the input flies. 

-v Lists the name of each input file as it is processed. 

-e Appends ext to the output me name. The default extension is mnu. 

DESCRIPTION 
The kset2mnu utility converts keysets into menu scripts and stores it in an ASCII text 
me. The utility converts a keyset according to these rules: 

• The fll"St row in the keyset becomes the menu bar. 

• Subsequent rows become submenus. Submenus are named "Rowx", where x is the 
row number. 

• The sFTxkey (goto row x) becomes an entry for the submenu named Rowx. 

• The SFTN (next row) and sFTP(previousrow)keys become entries for the submenus 
named Row{i+1) or Row{i-1}, where iis the current row. 

Because menu bars and keysets are often organized according to different principles, 
the converted menu bar often requires manual editing. For example, keyset items in the 
fust row typically invoke actions, while menu bar items usually invoke pulldowns 
whose items invoke actions. 

When you finish editing the menu bar script, convert it to binary format with menu2bin 
and attach it to the application. 

ERRORS 
Soft key '%s' designates a nonexistent submenu. 
The keyset contains a S FT n key for a row that does not exist. Remove the offending key 
from the keyset and reconvert it. 

Neither '%s' nor '%s' found. 
An input file was missing or unreadable. Check the spelling, presence, and permissions 
of the input file. 

Page 54 JAM Release 5.04 May 1993 

I" 



Cannot create '%s' 
Error writing '%s' 

Chapter 3: Menu Bar Utilities 

An output file could not be created, due to lack of permission or disk space. Correct the 
file system problem and retry the operation. 

JAM Release 5.04 May 1993 Page 55 



I" 



4 Display Emphasis 

JAM now has two display options that let you emphasize the current, or active, screen: 

• Drop shadows appear to casta shadow from the active screen sbade over underlying 
screens. 

• Graying cbanges the display attributes of all screens except the active one according 
to a predefined algorithm-for example, bigbligbts turn off and colors change to 
monochrome. 

An application c~m use both methods singly or together. 

Drop sbadows and graying cbange only the display attributes of the background 
screens; the actual contents are unaffected. You can specify wbicb display attributes to 
preserve and wbicb new attributes to use for the grayed data. 

To use display empbasis, set JAM as follows: 

• Specify the empbasis style to use-drop sbadows or graying. 

• Specify the display attributes of a grayed object. 

Tbe following sections show bow to perform both tasks. 

4.1 

SPECIFYING EMPHASIS STYLE 
You specify wbicb empbasis style to use by setting the value of the configuration vari
able EMPHASIS. You om set this value in the configuration file as follows: 

EMPHASIS=style 

You CID] also reset the empbasis style at runtime througb the library function sm_op
tion: 

sm_option(EMPHASIS, style); 

Note that after sm_opt i on cbanges the empbasis style, you must call sm_rescreen to 
repaint the display. 

You can specify one of the following values for style: 

• NONE disables display emphasis. 

Page 57 

I" 



JAM 5.04 Upgrade Guide 

• GRA YBKGD grays background screens. Only the active screen retains its original dis
play attributes. 

• DROPSHADOW draws a sbadow at the topmost screen's rigbt and bottom edges. Tbe 
drop sbadow is two colulIUls wide and one line deep. Tbe rigbt sbadow starts one 
space below the screen's top edge, wbile the bottom sbadow starts two columns from 
the screen's left edge. The bottom shadow is indented two spaces from the left edge 
of the screen. The sbadow is formed by graying the underlying text. 

4.2 

SETTING GRAY ATTRIBUTES 
Wbether you use graying or drop sbadows, you must set the display attributes that JAM 
uses for the underlying objects. You set these througb two video fIle varinbles: 

• EMPHASIS_KEEPATT specifies the attributes that a grayed object retains. Tbis vari
able intially bas all attributes enabled except HILIGHT. 

• EMPHASIS_SETATT specifies the attributes that the grayed object acquires. This 
variable intially bas two attributes enabled: REVERSE and DIM. 

You can reset EMPHASIS_KEEPATT and EMPHASIS_SETATT either in the video fIle, or 
througb the runtime function sm-pset. For example, the following statement sets gray
ing with attributes DIM and WHITE: 

sm-pset(V_EMPHASIS_SETATT, "DIM WHITE"); 

After you call sm-pset, call sm_rescreen to update the display. 

See section 4.6 in the JAM Configuration Guide for display attribute names. 

Page 58 JAM Release 5.04 May 1993 

I" 



5 Remote Scrolling 

You can now configure JAM applications to allow or disallow scrolling data inside ru1 
array when the cursor is positioned outside that array. This is particularly useful for 
character-mode applications in which users need to view off-screen data in arrays 
that are tab-protected. 

You enable or disable remote scrolling by assigning one of these values to the setup 
variable SCR_KEY_OPT. 

• SCR_NEAREST, the default, enables remote scroUing. This causes the nearest scrol
lable array to scroU when the user presses a scrolling key. 

• SCR_CURR ENT aUows users to scroll array data only when the cursor is in that array. 
Scrolling keys are inactive when the cursor is outside a scroUable array. 

Page 59 

I'" 



INDEX 
A 

Applicatioo menu bars, 4 

AIray, scroll contents from remote location, 
59 

B 
bin2c utility, 14 

c 
Control string, assign to menu item, 8 

o 
Drop sbadows, 57 

enable, 57 
set attributes, 58 

E 
Edit menu, 8 

EMPHASIS variable, set,. 57 

External menus 
assign scope to, 4 
specify in script, 6 

G 
Global menu bar settings. 16 

Gray menu item, 9 

Graying, 57 
enable, 57 
set attributes, 58 

Indicator symbol 
cbange cbaracter, 20 
reserve space for, 9 
tum on for menu item, 10 

item_data data structure. 23 

K 
Key fue, modify to support menu bars, 18 

Keyset, convert to menu bar, 22, 54 

Keystroke returned by menu item, 8 

Keytop label, sbow for menu item, 10 

KS_APPLIC, 4 

KS_FORM,3 

KS_MEMRES,4 

KS_OVERRIDE, 4 

KS_SYSTEM,4 

kset2mou utility, 22, 54 

L 
Library routines 

sm_c_menu, 15, 27 
sm_d_menu, 15, 29 
sm_menoinit, 31 
sm_mD_forms, 32 
sm_mDadd, 16,33 
sm_mDcbange, 16, 35 

Page 61 

I'" 



JAM 5.04 Upgrade Guide 

Library routines (contiuued) 
smJlllldelete, 16, 37 
smJllllget, 16. 39 
sm_mninsert, 16,41 
sm_mnitems, 16,43 
sm_mnnew, 16,45 
sm_emenu, 15, 48 

M 

Memory-resident menu bars, 4 

Memory-resident menu script, 4 

Menu bar routines 
manage menus at runtime, 16 
prototype, 16 

Menu bars, 3 
access from keyboard, 22 
access with mouse, 21 
associate with application, 4 
associate with screen, 3 
attach to application, 15 
close, 15, 27 
compare to soft keys, 22 
create menu at runtime, 16,45 
data structure, 23 
display precedence, 5 
enable keyboard access to, 18 
enable subsystem, 18 
get number of items, 16, 43 
global display options, 12 
initialize subsystem, 3, 31 
install in memory, 32 
item action, 7 
item text, 7 
keyboard mnemonics, 7 
load,5 
load from memory, 29 
manage, 16 
prototype routines, 16 
reacl, 15 
read from memory, 15,48 

Menu bars (continued) 
scope. 3 
separator types, 10 
set display, 16 
specify external script, 4 
store in memory, 14 
subsystem, 3 
use, 21 

Menu item 
action, 7 
add to menu at runtime, 16, 33 
assign control string to, 8 
change at runtime, 16, 35 
delete at runtime, 16,37 
display options, 9 
get information, 16, 39 
grayout, 9, 17 
inactivate, 9 
insert at runtime, 16,41 
invoke Edit menu, 8 
invoke submenu, 8 
invoke Windows menu, 9 
keyboard mnemonic, 7 
reserve space for indicator symbol, 9 
return keystroke, 8 
right justify on menu bar, 9 
show key top label, 10 
textual representation, 7 
turn on indicator symbol, 10 

Menu script, 5 
comments, 6, 12 
convert to binary format, 14, 52 
example, 12 
label,7 
menu name, 6 
syntax, 6 

Menu separator, 8 

menu2bin utility, 14, 52 

o 
Override menu bars, 4 

save stack, 4 

Page 62 JAM Release 5.04 May 1993 

r 



p 

Pulluown menu, assign title, 9 

R 
Remote scrolling, 59 

s 
Scope valut:s, 3 

KS_APPLIC,4 
KS_FORM,3 
KS_OVERRIDE, 4 
KS_SYSTEM,4 

SCR_KEY _OPT, 59 

SCR_CURRENT, 59 

SCRYEAREST, 59 

Screen menu bars, 3 

Scrolling array, remote scrolling enabled, 59 

Separator, format. 10 

sm_ routines. See Library routines 

Soft keys. compare to menu bars, 22 

Submenu 
attach to menu item. 8 
change indicator symbol, 20 

System menu bars, 4 

v 

Index 

Video file, modify to support menu bars, 20 

w 
Windows 

drop shadow, 57 
gray underlying, 57 

Windows menu, 9 

JAM Release 5.04 May 1993 Page 63 

,. 



JAM/OBi 

Copyright (C) 1989 JY ACC, Inc. 

Please forward comments regarding this document to: 

Technical Publications Manager 
JYACC, Inc. 
116 John Street 
New York, NY 10038 



Oracle is a registered trademark of Oracle Corp. 

Informix is a registered trademark of Informix Software, Inc. 

SQLBase is a registered trademark of Gupta Technologies, Inc. 

xdb is a registered trademark of Software Systems Technologies, 
Inc. 

ShareBase is a registered trademark of ShareBase/Britton Lee, Inc. 

The names of numerous computers, displays, terminals, and 
operating systems are used in this manual only to explain how 
JY ACC software functions with them. Such names are 
trademarks of their respective holders. 



JAM/DBi 

Contents 

1 Introduction ................................. I 
1.1 What is JAM/OBi? ........................... I 
1.2 What Makes Up JAM/OBi? ..................... 2 
1.3 What Is in This Document? ..................... 2 
1.4 What Is the JAM/DBi Development Cycle? ........... 3 
1.4.1 A Development Scenario ...................... 4 

2 Accessing JAM/DBi ............................ 8 
2.1 JPL Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.1.1 JPL DBMS Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.1.2 JPL SQL Calls ............................. 9 
2.2 Embedded C Calls ............................ 9 

3 Initialization .... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 

4 Fetching and Inserting Data ..................... 13 
4.1 Variable Substitution . . . . . . . . . . . . . . . . . . . . . . . .. 13 
4.1.1 Defining Substitution Variables ................ 14 
4.2 Column Mapping and Aliases ......... . . . . . . . . .. 15 
4.3 Fetching ................................. 17 
4.4 Continuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
4.5 Next/Cancel/Flush .......................... 18 
4.5.1 Next ................................... 18 
4.5.2 Cancel.................................. 19 
4.5.3 Flushing ................................ 19 

5 JAM/DBi Environment ........................ 20 
5.1 Determining the Number of Rows a SELECT Will Find .. 20 
5.2 Determining the Number of Returned (Read) Rows. . .. 20 
5.3 Specifying a Start Row ....................... 20 
5.4 Error Processing ............................ 22 
5.5 Warning Processing ............... . . . . . . . . . .. 22 
5.6 Begin/Commit/Rollback....................... 23 



6 JAM/OBi Utilities ........................... 24 

Appendix A Installation Notes ...................... 27 

Appendix B Database-specific Commands .............. 28 



Release 4.0 JAM/OBi 

1 Introduction 

1.1 What is JAM/OBi? 

JAM/OBi provides an easy-to-use, standard, portable interface 
between JAM applications and a variety of popular SQL-based 
databases. 

JAM is a development tool which provides a prototyping, 
development and testing environment for the rapid development 
of software applications. 

SQL (standard Query language) is a tool which provides end users 
with a non-procedural, easy-to-use means of accessing databases. 
SQL assumes little or no programming skills. SQL is also an 
emerging standard. This means that users can move from one 
machine, operating system and/or database to another with little 
or no retraining in database access methods. 

JAM/OBi ties together the cost-effectiveness of JAM application 
development with the power of SQL-based databases. And, if the 
developer so chooses, it can all be done without ever writing a 
line of third-generation, procedural programming code. 

A key feature of JAM/OBi is that it uses the Query language 
syntax (SQL) of the database you are using. Instead of learning a 
new syntax, users continue to use the syntax with which they are 
already familiar. 

JAM/OBi is easy to use, because data retrieval and update are 
accomplished through JAM data dictionary definitions. The user 
is not required to understand the lower level operation of the 
database or JAM. When data are retrieved (using an SQL 
SELECT) they are placed in data dictionary or screen elements 
whose names correspond to the database table column names. If 
column names do not match data dictionary elements, they may 
be "coerced" or mapped using database-supported column 
mapping (or alias mapping if a database does not support column 
mapping.) For updates (SQL INSERT or UPDATE), the user simply 
specifies the names of the data dictionary or screen elements to 
be inserted as host variables. 

[8/16/89] In trod uction 



2 JAM/OBi Release 4.0 

There are many advantages to the JAM/OBi solution: 

it makes linking application screens to databases trivial 
it eliminates the need to know the low level access 
routines of a database system 
it virtually guarantees portability of an application 
across many different hardware and operating system 
platforms 
it provides a standard means of moving applications 
from one database to another with no changes to 
screens and very few (if any) changes to SQL scripts 
it enables a developer to prototype an application with 
real links to a database without ever writing a line of 
code. Later the developer can go back to the same 
application and build in procedural calls to provide 
additional functionality. 

1.2 What Makes Up JAM/OBi? 

The media, file names and contents of your JAM/OBi files are 
dependent on the hardware and operating system for which you 
ordered JAM/OBi. 

Every version of JAM/OBi should have the following files: 

one or more files (usually in binary format) that 
contain the object code of JAM/OBi; 
utilities; 
a makefile for a JAM/OBi version of jxform; 
a makefile for a JAM/OBi version of JAM; 
makefiles for utilities (if necessary). 

The actual file names for your machine and operating system are 
described in Appendix A of this document. 

1.3 What Is in This Document? 

This document describes 

what JAM/OBi is; 
how to use JAM/OBi in building applications that use 
supported databases, 

Introduction [8/16/89] 



Release 4.0 JAM/OBi 

and how to use JAM/OBi in specific hardware and 
operating system environments. 

3 

This document assumes that the reader has a basic knowledge of 
the target computer system, databases, JAM and jxform. Except 
for details related to building a JAM/OBi link, this manual does 
not provide any details about how to use j xform or JAM. 

1.4 What Is the JAM/OBi Development Cycle? 

Before you can do any development, you have to build a copy of 
JAM that includes the links to the database interface. This 
executable is j amdbi. Appendix A describes the procedure you 
should follow. You may also build a version of jxform with 
links to a database. This executable is j xdbi. Some versions of 
jxdbi running under PC-DOS will not have enough memory to 
do development. In such cases, you will have to use jxform 
without OBi linked in and test using j amdbi. 

There are four steps to building a working application with 
JAM/OBi. 

First, you build a JAM screen using jxform or jxdbi. 
This involves defining JAM fields and providing an 
access path between a JAM application and JAM/OBi. 
In building a JAM screen, you have several ways to 
gain access to JAM/OBi. The quickest way is to make 
a screen entry call to JPL. The second way is to 
associate a JAM/OBi function with a keyboard key. 
The third means of access is through attached 
functions. The details of making these calls are 
presented below in a demonstration scenario. 
Second, you should add the fields that you defined in 
your JAM screens to the JAM data dictionary. This 
ensures that the data brought in from the database to 
one screen will be available in all other screens, too. 
Third, you need to create a set of JPL statements that 
are the actual SQL calls to the database. The name of 
the JPL file must be the same as the one specified in 
the JAM screen entry specification or in an associated 
key. We assume that you already have a set of 
database tables with some data to access. 
Fourth, you test your program. 

[8/16/89] Introduction 



4 JAM/OBi Release 4.0 

1.4.1 A Development Scenario 

In the next few pages, we will walk you through a complete 
JAM/OBi development cycle. For our scenario we assume you 
are using the ORACLE ROBMS with the following table: 

MYDATA 

with the following fields: 

NAME ADDRESS CITY STATE. 

To create MYDATA, go into SQLPLUS and enter: 

create table mydata 
(name char (30),\ 
address char (30),\ 
city char (15),\ 
state char(2»; 

You can insert several values into this table with the following 
statements: 

insert into mydata values 
( , John Doe' , \ 
'1312 Geary Blvd' ,\ 
'San Francisco' ,'CA'); 
insert into mydata values 
( , Jane Roe', \ 
'505 West End Ave' ,\ 
'New York' ,'NY'); 
insert into mydata values 
( , Edgar Woe' , \ 
'3712 Rio Grande Blvd' ,\ 
'Albuquerque' ,'NM'); 
insert into mydata values 
('Amy Snow' ,\ 
'1400 Lakeshore Dr' ,\ 
'Chipago' ,'IL'); 

Now exit SQLPLUS and go into jxform (or jxdbi). 

Introduction [8/16/89] 

I~ 



Release 4.0 JAM/OBi 5 

Press <Shift PFS> and go into FORMAKER. 

When prompted for the name of a form. enter MYTEST and press 
<XMIT>. 

Press <PF3> to define a border and background colors. 
Depending on the characteristics of your terminal. assign any 
values you want but leave the size of the form as the default 
size. 

Press <XMIT>. 

Press <SHIFT PF1> to associate a function key with a set of SQL 
instructions. A window will appear with the names of the 
keyboard keys. Move your cursor down to PFI and at the prompt 
for the name of an entry function enter: 

"jpl myjp1.jpl 

Press <XMIT>. 

Move your cursor down two lines and over several columns. 

Now draw in an underscore with 30 characters and. when 
finished. move back one space. Press <XMIT>. 

Press <PF4> to define field attributes. Assign the following 
characteristics: 

Type <A> and enter the field name NAME (upper case for 
ORACLE!). 

Press <XMIT>. 

Type <S> to change the size of the field to an array. 

Tab to number of elements and enter "10" for an array of -10 
occurrences. 

Tab to horizontal and enter <N> (for "No"). 

Press <XMIT> to confirm these field attributes. 

Type <E> (for "Exit") to return to the form window. 

Move the cursor over a few spaces and repeat the same process 
for a field of 30 characters and name it ADDRESS. 

[8/16/89] Introduction 



6 JAM/OBi Release 4.0 

It is important for ORACLE that the field names be entered in 
upper case. (Some databases do not care, and some want the 
entry to be in lower case. These considerations are described in 
Appendix B.) 

Move your cursor to the next-to-the-Iast line on the screen and 
about 20 columns from the left and enter the following text: 

PRESS <Fl> TO EXECUTE SQL STATEMENT 

You should have a screen that looks something like this when 
you press <SHIFT PF3>: 

NAME __________ ADDRESS ________ :ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 
NAME ADDRESS ST 

PRESS <F1> TO EXECUTE SQl STATEMENT 

Press <PF1> to return to the form window. 

Press <EXIT> and type <S> to save your form. When the "form 
saved" message ap,,~ars, type <SPACE?> and <~> to exit. 

Using any text editor, create an ASCII text file called 

'myjp1.jpl' 

and enter the following lines: 

DBMS LOGON usemame password 
SQL SELECT NAME ,ADDRESS , STATE FROM MYDATA 
DBMS LOGOFF 
RETURN 0 

In trod uction [8/16/89] 



Release 4.0 JAM/OBi 7 

username and password are your name and password on your 
ORACLE ROBMS. (We assume you have been granted resources 
to create a table.) 

Exit your editor and type JAMDBI MYTEST. When the screen 
comes up, press <PFl> to execute the JPL/SQL statements. 

If all went well, your screen should look like this: 

John Doe 1312 Geary Blvd CA 
Jane Roe 505 West End Ave NY 
EdgarRoe 3712 Rio Grande BLvd NM 
Amy Snow 1400 Lakeshore Dr IL 

To exit, press <EXIT>. 

[8/16/89] In trod uction 



8 JAM/OBi Release 4.0 

2 Accessing JAM/OBi 
There are two basic ways of accessing JAM/OBi functions: 
through JPL statements and direct C language function calls. 

The advantage of using JPL is that 

it is easier to prototype an application; 
it is easier to see what is going on in a particular 
function; 
it is easier to change a function, 
and you do not have to compile anything in order to 
see your application run. 

The advantage of using C calls is that 

the reading and first parsing of JPL statements are 
eliminated; 
your SQL calls are embedded and cannot be changed 
(or erased!) by end users, 
and your applications are more secure. 

Both of these access methods are described below. 

2.1 JPL Calls 

There are two types of OBi statements in JPL. The JPL DBMS 
statements begin with the keyword DBMS and JPL SQL statements 
begin with the keyword SQL. 

(Note: Under the ShareBase version of JAM/OBi there is an 
additional JPL verb - IDL - which works much like SQL. The 
IDL dependent features are described in Appendix B of the 
JAM/OBi Share Base documentation.) 

2.1.1 JPL DBMS Calls 

DBMS statements are used for either database specific functions 
such as logging on, or for controlling the JAM/OBi environment 
such as setting error levels. Examples of JPL DBMS statements 
are: 

DBMS LOGON DEMO JIM MYPASSWD 

Accessing JAM/OBi [8/16/89] 



Release 4.0 

DBMS COUNT MYCOUNT 
DBMS ERROR 

2.1.2 JPL SQL Calls 

JAM/OBi 9 

SQL statements are used for standard SQL calls such as SELECT, 
INSERT, UPDATE, COUNT, etc. Examples of the use of JPL SQL 
statements are: 

SQL SELECT NAME, ADDRESS, CITY FROM MYDATA 
SQL SELECT NAME FOR UPDATE FROM EMP WHERE\ 

EMPLOY_NUM=678 

2.2 Embedded C Calls 

If desired, DBMS and SQL calls may be hidden and passed 
directly to JAM/DBi. However, the developers who do this must 
be careful to leSl lhe relum codes and handle errors properly. 

There are two functions that can be called, namely, dbi dbms 
and dbi sql (summarized below). The appropriate function call 
corresponds to whether the argument being passed is a DBMS or 
a SQL statement. 

[8/16/89] Accessing JAM/OBi 



10 JAM/OBi Release 4.0 

NAME 

dbi_dbms -parse and execute a DBMS statement 

SYNOPSIS 

int dbi_dbms(dbms_statement) 
char * dbms_statement; 

DESCRIPTION 

Parses, validates and executes a DBMS statement. The DBMS 
statement must be syntactically the same as a JPL DBMS 
statement, but without the JPL verb DBMS at the begin1ling. 

RETURNS 

o if no error 
-1 if an error. 

Accessing JAM/OBi [8/16/89] 



Release 4.0 JAM/OBi 11 

NAME 

dbi_sql -parse and execute a SQL statement 

SYNOPSIS 

int dbi_sql(sql_statement) 
char * sql_statement; 

DESCRIPTION 

Parses, validates and executes a SQL statement. The SQL 
statement must be syntactically the same as a JPL SQL statement, 
but without the JPL verb SQL at the beginning. The statement 
must also be syntactically correct for the database being used. 

NOTE: Because no JPL parsing is done on SQL statements called 
by this function, there is no colon substitution of variables. 

RETURNS 

o if no error 
- J if an error. 

[8/16/89] Accessing JAM/OBi 



12 JAM/OBi Release 4.0 

3 Initialization 

Most databases require a logon procedure or a function call. The 
actual parameters used in the logon depend on the database. See 
Appendix B for details. 

The syntax of the logon command is: 

DBMS LOGON <other arguments> 

If, for example, one were using Gupta Technologies' SQLBase 
and the data dictionary variables DBNAME (for database name), 
USER (for the user name) and PASSWORD (for the user's 
password), the logon command would look like this: 

DBMS LOGON :DBNAME :USER :PASSWORD 

The phrases : DBNAME, : USER and : PASSWORD are variables which 
JAM/OBi will replace with correct values from the JAM data 
dictionary. The process of variable substitution is described 
below. 

The obverse of the logon command is logoff. There are no 
arguments to the logoff command: 

DBMS LOGOFF 

You should always execute a LOGOFF to disconnect properly. 
Otherwise, you may create inconsistencies in your database. 

Initialization [8/16/89] 



Release 4.0 JAM/OBi 13 

4 Fetching and Inserting Data 
JAM/OBi permits you to move data between a JAM application 
and a supported database. JAM/OBi may insert data into, or 
update data from, a JAM screen, a JAM data dictionary and/or a 
supported database. 

All data manipulation in JAM/OBi is done using the JPL verb 
SQL. The SQL verb in turn expects to be passed a SQL data 
manipulation string using column-based instructions such as 
SELECT. INSERT, UPDATE and DELETE, or table- or 
view-based instructions such as CREATE, ALTER or DROP. 

JAM/OBi manipulates all SQL statements dynamically, creating 
temporary data storage space, doing any requisite data 
conversions and, in the case of a SELECT, moving data into a 
JAM screen or the JAM data dictionary. 

JAM/OBi pre-parses your SQL statement and makes any 
necessary variable substitutions. JAM/OBi then passes on to your 
database system the SQL statement you asked JAM/OBi to 
prepare. 

All database errors are trapped and will be displayed (depending 
on the environmental controls set by the developer; see Section 5 
below). Warnings may be ignored, depending on the 
environmental handling set by the application developer. 

IMPORTANT DEPENDENCY: JAM/DBi SQL sylllax is native 
to the database you are using. For example, some databases 
convert column names to lower (upper) case and return data with 
the lower case mapping. Users who define JAM screen or data 
dictionary names in upper (lower) case with such databases will 
not find any data being passed back and forth between JAM and 
the database. 

4.1 Variable Substitution 

A SQL statement such as 

SQL SELECT NAME, ADDRESS FROM EMP 

will always search and return all instances of data with name and 
address in the table EMP. In many cases, however, such a SQL 
statement needs to be qualified. For example: 

[8/16/89] Fetching and Inserting Data 



14 JAM/OBi Release 4.0 

will always search and return all instances of data with name and 
address in the table EMP. In many cases, however, such a SQL 
statement needs to be qualified. For example: 

SQL SELECT NAME, ADDRESS FROM EMP WHERE\ 
NAME-'JOHN' 

In this case, SQL will search for and return all instances of data 
where name is equal to JOHN. 

For most applications, the qualifying value in the WHERE clause 
of a SQL statement is not known until runtime. To handle such 
situations, JAM/OBi allows dynamic variable substitution in SQL 
statements. 

Substitution variables are variables in a SQL statement that are 
replaced with values from the JAM application screen or the data 
dictionary. These correspond to standard SQL host variables. 
However, JAM/OBi provides an extended capability in that 
substitution variables can contain any character string for 
substitution. This means that substitution variables may contain 
whole or partial SQL statements for substitution (see below). 

4.1.1 Defining Substitution Variables 

A substitution variable is identified by a preceding colon (e.g. 
:MYVAR). Colons in the middle of a word (e.g. MY:VAR) will be 
ignored. When a colon is detected, the word following it is used 
to search the field list on the JAM screen and then the JAM data 
dictionary. (A double colon (::) can be used to suppress 
substitution.) 

If the substitution variable name is found, the corresponding 
value is inserted into the SQL statement in place of the 
substitution variable name. 

The substitution variable may be a single element, a complete 
array or an element of one. If an array name is specified without 
reference to a specific array element, all non-blank fields in the 
array are inserted in place of the substitution variable. The 
inserted fields of a complete array are separated by single spaces. 

Examples of using substitution variables follow: 

SQL INSERT INTO EMP VALUES\ 
(':NEWNAME' ,:SALARY,':START_DATE', :EMPLOY_NUM,'HIRE') 

Fetching and Inserting Data [8/16/89] 



Release 4.0 JAM/DBi 

SQL UPDATE EMP SET SALARY=:SALARY_TABLE[4]\ 
WHERE EMPLOY_NUM-:EMPLOY_NUM 

SQL :SQL_STATEMENT 

15 

The first SQL statement adds a new row of data to the database 
table EMP with the JAM string variables : NEWNAME and 
: START DATE, the JAM numeric variables : SALARY and 
: EMPLOY_NUM and a fixed string HIRE. 

The second statement modifies an existing row or rows of data in 
the table EMP. It changes all instances of SALARY in EMP to the 
value of element 4 of a JAM array field called SALARY TABLE. 
In that array, the column EMPLOY_NUM is equal to JAM data field 
EMPLOY NUM. 

The third SQL statement replaces the JAM/OBi SQL variable 
: SQL STATEMENT with whatever is found in the JAM data field 
SQL STATEMENT. In this case, presumably, SQL STATEMENT 
would hold an entire SQL statement. Users may also use nested 
bindings with JPL. See JAM JPL Programmer's Guide for 
instructions. 

Note that SQL statements in JPL are not terminated by a 
semi-colon (;). 

4.2 Column Mapping and Aliases 

When a SELECT statement is executed, JAM/OBi copies returned 
values into JAM screen· or data dictionary fields, if any. For 
JAM/OBi to do this, there must be a one-to-one mapping 
between SQL column names and JAM field names. For example, 
a SQL statement retrieving data from EMPLOY NAME will attempt 
to place the returned data into a JAM field Of exactly the same 
name. (Names are truncated in JAM to 31 characters.) If such a 
field is not found, JAM/OBi will ignore the returned value for 
that column. 

It is because of this mapping that users can invoke a SQL 
statement like the following: 

SQL SELECT * FROM EMP 

[8/16/89] Fetching and Inserting Data 



]6 JAM/OBi Release 4.0 

However, there are times when a one-to-one mapping is not 
possible or it is too constraining. In such cases, many databases 
permit a remapping of names. For example, if the database 
column was named EMP NAME and the JAM field was named 
EMPLOYEE NAME (perhaps because EMP NAME was already used 
for some other purpose), the developer can remap the association 
of database and JAM field names. This is done within the SQL 
statement itself. Using our example where the database column 
name is EMP NAME, the JAM fields EMP NAME and 
EMPLOYEE NAME are defined and the developer does-not want to 
change tile current JAM field value of EMP_NAME, the 
appropriate SQL statement would be: 

SQL SELECT EMP_NAME EMPLOYEE_NAME 
FROM EMP WHERE EMPLOY_NUM=: EMPLOY_NUM 

Note that there is no comma between EMP NAME and 
EMPLOYEE NAME. It is the absence of the comma that-permits the 
parser to map the association of the column name EMP NAME with 
the JAM field name of EMPLOYEE NAME. A comma between the 
two names would have caused a SQL SELECT error if 
EMPLOYEE NAME were not also in the table EMP. 

IMPORTANT DEPENDENCY: There are some databases that DO 
NOT SUPPORT COLUMN REMAPPING. Check in Appendix B 
to determine whether your database supports column remapping. 
If your database does not support remapping, JAM/OBi provides 
an alternative means of accomplishing the same thing using a 
DBMS command called DBMS SELECT_ALIAS. 

SELECT ALIAS is available only in those databases that do 
support - remapping. A SELECT ALIAS must be executed just 
before the SQL SELECT statement to be parsed. SELECT ALIAS 
must be used if allY of the column names in the SQL SELECT 
statements do not directly correspond to the JAM field names 
(e.g., if the DBMS column name is NAME and the JAM field 
name is CLIENT_NAME). An example of SELECT_ALIAS is: 

DBMS SELECT_ALIAS CLIENT_NAME, TEST, ., RESULT 

for the SQL statement: 

SQL SELECT NAME, GRADE, AGE, SCORE FROM XYZ 

Fetching and Inserting Data [8/]6/89] 



Release 4.0 JAM/OBi 17 

The hyphen in the SELECT_ALIAS means that no remapping is 
required for the third column name in the SQL SELECT (i.e., 
AGE). There is a one-to-one correspondence between the number 
of arguments in SELECT_ALIAS and the number of columns 
specified in a SQL SELECT. 

4.3 Fetching 

Most of the information you need to fetch data with SELECT has 
been specified above. However, there are several implementation 
details that are important. 

1. When retrieving multiple rows of data, JAM/OBi will 
determine the maximum number of rows that can be 
retrieved at one time. In the event a JAM field is 
defined as an array in the screen or the data 
dictionary, JAM/OBi will take the minimum number 
of defined occurrences of the field in the screen or 
the data dictionary. While developers are strongly 
discouraged from creating arrays in a form and the 
data dictionary of the same name but different size 
(measured in terms of array element occurrences), 
JAM/OBi will protect the developer by returning the 
lesser of the occurrences. To continue retrieving data, 
see the DBMS CONTINUE command below. 

2. The maximum number of rows of data that JAM/OBi 
will return in a single fetch is based on the smallest 
number of array occurrences of any single data 
element in the fetch. As an example, if you execute 
SQL SELECT NAME, ADDRESS, STATE FROM EMP, and 
NAME and ADDRESS have been defined in a JAM 
application as arrays of 15 occurences each and STATE 
as an array of 10 occurrences, then the maximum 
number of rows returned wiII be 10 at a time. 

3. Some SQL developers may be used to forcing the 
closing of a SQL data storage area (called a SQL 
cursor). In JAM/OBi, you do not have to force the 
closing of a SQL cursor. JAM/OBi will automatically 
open and close cursors. 

4. Because JAM Version 4.0 permits fields to be defined 
on a screen and not necessarily in a data dictionary, 
JAM/OBi uses the following order of precedence 
when searching for a field name and its characteristics: 

[8/16/89] Fetching and Inserting Data 



18 JAM/OBi Release 4.0 

a. Screen variables 
b. Data dictionary variables 

S. If after searching these lists JAM/OBi cannot match a 
field name with a SQL column name, JAM/OBi will 
ignore that SQL column in the subsequent retrieval of 
data. 

6. JAM fields may be defined anywhere. Subsequently, a 
SQL statement may call for the retrieval of data where 
some fields are defined only in the JAM screen, where 
others are defined only in the JAM data dictionary 
and yet others are defined in both places. 

7. Some users of JAM/OBi Version 3.X will find that 
some JAM/ JPL DBMS verbs are no longer supported 
(DIAG in Informix and AUTOCOMMIT in ORACLE). 

4.4 Continuing 

If a SELECT returns more rows than can be placed into a JAM 
field array (wherever it is defined), you can subsequently 
continue to retrieve more data by attaching a DBMS CONTINUE 
statement in a JPL file. 

Moreover, if a user explicitly calls a CONTINUE after SQL has 
indicated there are no more rows to fetch, JAM/OBi will not 
access the database. To control this, the developer should set the 
environment variable ERROR (see Section 5) and constantly check 
the current value of the ERROR variable for a 'no more rows' 
condition. The actual value returned is database dependent. 

Alternatively, users can use the DBMS COUNT function to check 
the number of rows returned by the SQL SELECT and maintain 
their own current count of how many rows are left in the fetch. 
(This is obviously more problematic for databases that permit 
forward and backward retrieval of rows.) 

4.5 Next/Cancel/Flush 

4.5.1 Next 

Some databases support mUltiple commands to be issued in a 
single string. If your database supports this feature, JAM/OBi 
will attempt to process such strings. If, however, a command 
(other than the last command in a sequence) returns data (via 

Fetching and Inserting Data [8/16/89] 



Release 4.0 JAM/OBi 19 

SELECT) and you are required to issue a DBMS CONTINUE, the 
original command will be suspended. To continue processing a 
multicommand string from a suspended state, issue the following: 

DBMS NEXT 

4.5.2 Cancel 

If there are multiple commands in a single string and processing 
has been suspended as described above, the remaining commands 
may be canceled with the following command: 

DBMS CANCEL 

4.5.3 Flushing 

Some database systems using multicommand strings (e.g., Britton 
Lee) require that, when a SELECT has returned mUltiple rows and 
not all rows are fetched by JAM/OBi, the application must 
explicitly flush unread rows before another command is 
processed. Since there are no side effects to flushing, you may 
issue a flush command even if you are not sure whether there 
are any more rows left. The syntax for this command is: 

DBMS FLUSH 

[8/16/89] Fetching and Inserting Data 



20 JAM/OBi Release 4.0 

5 JAM/OBi Environment 
JAM/OBi provides several functions to control processing, error 
trapping and database maintenance. These functions frequently 
use native functions provided by the database system. 

5.1 Determining the Number of Rows a SELECT Will Find 

Since JAM/OBi keeps track of only the rows read but not of 
how many are held in a cursor (some databases do not easily 
provide that information), you can find out how many records 
will be found by a given SQL SELECT by issuing the SELECT 
COUNT command, as explained below. 

First create a variable in the JAM data dictionary to hold the 
return value. Let's assume we have such a variable, called TOTAL. 

SQL SELECT COUNT (EMPLOY_NUM) TOTAL\ 
FROM EMP WERE EMPLOY_NUM > : EMPLOY_NUM 

A subsequent SQL statement that uses the same table and WHERE 
clause will return the same number of rows as the number in 
TOTAL. 

5.2 Determining the Number of Returned (Read) Rows 

When a SQL SELECT is issued, there is no guarantee of how 
many rows of data the database will return. Frequently, it is 
important to know either that no rows were returned or how 
many rows must be processed. 

Note that the DBMS COUNT function does not return the total 
number of rows found by SQL for a specific SELECT. (Use a 
SQL COUNT to do that.) It returns the number of rows read into 
memory from the current SQL cursor. 

To find out how many rows were returned, define either a JAM 
screen field or data dictionary field to hold the row count (e.g. 
MYCOUNT), and issue the following command: 

DBMS COUNT MYCOUNT 

After each SELECT and any subsequent CONTINUE. JAM/OBi will 
place the returned row count into MYCOUNT. 

DBMS COUNT can also be used for SQL DELETE and SQL UPDATE. 

JAM/OBi Environment [8/16/89] 



Release 4.0 JAM/OBi 21 

5.3 Specifying a Start Row 

Some databases do not offer any means to page backwards 
through the database, nor does the current version of JAM/OBi 
provide any direct support for backward paging (or redirected 
start and end). To help you around this problem, JAM/OBi 
provides a means for reading a predetermined number of records 
and discarding them before beginning to read the records that 
you want to see. 

Let's assume that you want to page backwards through the 
database. Just issue the following commands: 

VARS RUNNING COUNT 
CAT RUNNING COUNT "0" 
DBMS START :RUNNING_COUNT 
DBMS COUNT MYCOUNT 
RETURN 0 

Issue a SQL SELECT COUNT command: 
SQL SELECT COUNT (EMPLOY_NUM) TOTAL FROM EMP 

This number can be used to make sure that you do not create a 
starting row value greater than the number of rows that can be 
returned. 

Then issue your SELECT statement: 
SQL SELECT EMPLOY_NAME,EMPLOY_NUM FROM EMP 

After each SELECT or CONTINUE, add the value in MYCOUNT to 
RUNNING_COUNT. 

Let us also assume that you have an array that holds 15 rows of 
data and that the SQL statement has returned the value of 50 
into TOTAL. Furthermore, assume that you have read 3 pages (or 
45 rows of data), of which the first 2 pages are lost. To go back 
one page of data, issue the following JAM/JPL command: 

MATH RUNNING_COUNT=RUNNING_COUNT - 30 
IF RUNNING_COUNT <"0" 
( 

CAT RUNNING COUNT "0" 
) 

DBMS START: RUNNING COUNT 

[8/16/89] JAM/OBi Environment 



22 JAM/OBi Release 4.0 

SQL SELECT EMPLOY_NAME,EMPLOY_NUM FROM EMP 
RETURN 0 

Of course, if rows are added to or deleted from the table by 
other users, the starting point will be only proximate to the top 
of each page as the user pages forwards. 

5.4 Error Processing 

By default, JAM/DBi displays any database errors at the bottom 
of the screen. If you want to control error processing yourself, 
use the DBMS ERROR command to define a field to hold the 
database return code and, optionally, an error message. For 
example, to save the return value of a database status, create a 
field called MYERROR and issue the following: 

DBMS ERROR MYERROR 

If you want to store a return error message from the database, 
you can specify a data dictionary element (and optionally an 
occurrence). For example, if you have an array ERROR MSG with 
20 occurrences and you want to store a database error Tn the 8th 
occurrence, use the following statement: 

DBMS ERROR MYERROR ERROR_MSGS[8] 

To return to the default condition, just issue the following: 
DBMS ERROR 

Users should note that in JAM/DBi Version 4.0 SQL errors will 
not terminate JPL processing. In Version 3.X, on the other hand, 
if error trapping was turned off, SQL errors would stop JPL 
processing. 

Note: The DBMS ERROR function, if active, passes on only those 
errors that are returned by the database. Errors in JPL" syntax 
will report an error and terminate the JPL procedure. Moreover, 
some databases do not return error messages, and in some cases 
users are required to fetch messages from a database file on the 
basis of an error number. 

JAM/OBi Environment [8/16/89] 



Release 4.0 JAM/OBi 23 

5.5 Warning Processing 

By default, JAM/OBi ignores database warnings. To catch and 
process warnings, first create a JAM data dictionary variable (for 
example. MYWARNING) to store the warning message and then 
issue the command: 

DBMS WARN MYWARNING 

You can also use JAM arrays. Note that warning formats vary 
from database to database. See Appendix B for details. You can 
return to the default status by issuing the following: 

DBMS WARN 

5.6 Begin/Commit/Rollback 

If your database supports "before image journaling", you may 
create sets of transactions that may be written to the database at 
once. Such sets provide the opportunity to "rollback" an entire set 
of interrelated transactions if one of the SQL transactions fails. 
The way this procedure works varies from database to database. 
The basic process includes marking the beginning of a 
transaction, executing one or more transactions and then, after 
testing the return codes of these transactions, executing either a 
COMMIT or ROLLBACK. In some databases, there is no need to 
mark the beginning of a transaction since all transactions since 
the last COMMIT or ROLLBACK will be affected by a COMMIT or 
ROLLBACK. 

The syntax for these commands is: 
DBMS BEGIN 
DBMS COMMIT 
DBMS ROLLBACK 

[8/16/89] JAM/OBi Environment 



24 JAM/OBi Release 4.0 

6 JAM/OBi Utilities 
Version 4.0 of JAM/OBi provides two utilities to aid in program 
development. The first utility - f2tbl - creates a database table 
from a binary JAM form. The second utility - tb12f - creates a 
basic JAM form from a database table definition. 

JAM/OBi Utilities [8/16/89] 



Release 4.0 JAM/DBi 

NAME 

f2tbl - form to table utility 

SYNOPSIS 

f2tbl <JAM file name> 

DESCRIPTION 

25 

This utility program will take a user-specified JAM form in 
binary file format, identify JAM fields and data types and create 
a table in the user's database with those fields. 

This version of f2tbl maps a one-to-one correspondence 
between form and table. Future versions will permit a form to 
map to different tables. 

The user is prompted for the name of the table to be created. If 
the database being used requires a database name, user name 
and/or password, the user will also be prompted for that 
information. 

f2tbl will exclude JAM control fields (i.e., those defined with a 
j am_ definition and fields that are not named). 

f2tbl will create a maximum of 50 columns (JAM fields) in a 
table. 

The· only two data types supported are character and integer. All 
other data types will be converted to one of these types. 

[8/16/89] JAM/OBi Utilities 



26 JAM/OBi 

NAME 

tb12f - table to form utility 

SYNOPSIS 

tb12f 

DESCRIPTION 

Release 4.0 

This utility program will take a database table and create a 
binary JAM form with named fields corresponding to the fields 
in the database table. 

This version of tb12f maps a one-to-one correspondence 
between table and form. Future versions will permit multiple 
tables to map to a single form. 

If the database requires a database name, user name and/or 
password, the user is prompted for such information. tb12f will 
prompt the user for a table name. tb12f will then prompt the 
user for a form name. The default is the database table truncated 
(if necessary) to a valid file name length with the extension 
• JAM. 

A maximum of 24 fields will be created. tb12f will inform the 
user of how many fields were created or how many were 
dropped from the specification if the number of columns exceeds 
24. 

The three data types supported are character, integer and float. 
All other data types will be converted to one of these types. Note 
that LONG VARS (variable length) will be created but data will be 
truncated. Future versions of JAM/OBi will support LONG and 
RAW vars. 

Each field will have a maximum on-screen size of 20, but fields 
larger than 20 characters will be made into shifting fields. 

JAM/DBi Utilities [8/16/89] 



New Features in JAM/DBi for ORACLE 

Release 4.8 

fu"%~~~~~tm 

Copyright (C) 1989 JY ACC, Inc. 





JAM/DBi 1 

Contents 

I. Multiple Cursors ........................ 1 
Using Multiple Cursors . . . . . . . . . . . . . . . . . . . . . . .. 2 
Multiple Cursors and SELECT Statements. . . . . . . . . .. 3 
Cursor Management .......................... 4 
Upward Compatibility . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

II. Error Processing ....................... 6 
Error Types ................................ 7 
Signalling End-of-SELECT .............. . . . . . .. 8 
DBMS START and Error Signalling. . . . . . . . . . . . . .. 8 

III. Text Datatype and Word-Wrapped 
Arrays................................. 9 
SELECTing into Word-Wrapped Arrays .. . . . . . . . . .. 9 
Updating from a Word-Wrapped Array . . . . . . . . . . . .. 9 

IV. Customizing Query Result 
Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
DBMS REDIRECT. . . . . . . . . . . . . . . . . . . . . . . . . . 11 
DBMS CATQUERY . . . . . . . . . . . . . . . . . . . . . . . . . 12 
DBMS OCCUR ............................ 13 

V. Miscellaneous .......................... 14 
Suppressing Repeating Values in a Query .......... 14 
Printing a File ............................. 15 
JAM Variables and JPL Variables ............... 15 
NULL Values ............................. 16 

[11/9/90] New Features in JAM/DBi for ORACLE 





JAMIDBi 

In the following, 

cursor name 

sqCstatement 

var 

1 

I. Multiple Cursors 

is an identifier, conslstmg of non-blank 
characters, with maximum same as a JAM 
variable. 

is an SQL statemem, possibly contammg 
variables (syntax is database specific). 

is a JAM variable reference. J[ may have one of 
the following three forms: 

id or id[intJ or id[idJ 

where id is a JAM identifier, and int is an 
integer. The last 2 forms are array element 
references. Throughout this document, "JAM 
variable" will be used to denote any of the 
different kinds of variables supported in JAM, 
i.e., JPL variables, screen fields, and data 
dictionary variables. When the same name is 
defined in more than one place, JPL variables 
have the highest order of precedence, and data 
dictionary definitions the lowest. 

The J AMIDBi statements associated with cursors are: 

DBMS DECLARE cursor _name CURSOR FOR sql_statement 

[11/9/90] New Features in J AMIDBi for ORACLE 



2 JAMIDBi 

DBMS EXECUTE cursor_name [USING var [, var]] 

DBMS CONTINUE [cursor_name] 

DBMS CLOSE CURSOR cursor name 

To use a cursor, the above sequence of statements must be followed. 
Any number of EXECUTEs and CONTINUEs may be issued, perhaps 
with different variable names. A CONTINUE will always try to 
continue the last EXECUTE for that cursor name. A CONTINUE 
without a cursor name tries to continue the last non-cursor SELECT 
statement. 

The JAM variables in a DBMS EXECUTE are the arguments for the 
variables in that cursor's associated SQL statement. The SQL variables 
are replaced by the value of the corresponding JAM variables, as 
determined by the order, going from left to right. Thus the first JAM 
variable corresponds to the first SQL v¢.able, and so on. If there are 
not enough JAM arguments, an error is generated. Any extra arguments 
are ignored. 

When an" index is supplied for a JAM variable used in a" DBMS 
EXECUTE, the corresponding element of that JAM array is used. If the 
array is word-wrapped, the value used is the value of all the elements 
concatenated together, starting from the given index, to the end of the 
array. If no index is supplied and the variable is an array, then the 
default index of "1" is assumed. 

Using Multiple Cursors 

A cursor allows an SQL statement "to be precompiled, before actual 
execution. At compile time (DBMS DECLARE ... CURSOR. .. ) the 

New Features in JAMIDBi for ORACLE [11/9/90] 



JAM/DBi 3 

statement may use variables instead of constants. The values for the 
variables are supplied at the time of execution. For example, in the 
statement: 

DBMS DECLARE nba2 CURSOR FOR \ 
insert into TEAMS (TEAM, CITY) values (::TEAM, ::CITy) 

JPL will replace the double-colon with a single colon, which is the 
required prefix for variables. The insert gets compiled with 2 arguments 
(:TEAM and :CITY) and associated with the cursor nba2. It can be 
executed by simply supplying the JAM variable names which contain 
the values for :TEAM and : CITY. For example: 

DBMS EXECUTE nba2 USING Team, City 

where Team and City may be 2 fields. The insert statement can be 
executed a number of times, using different arguments, without 
redeclarlng it, and thus save the compilation time. 

A cursor name is just an identifier. Any set of non-blank characters are 
allowed in the name. The name may be as long as a JAM variable 
name. 

Multiple Cursors and SELECT Statements 

A SELECT statement may also be associated with a cursor. The 
additional advantage here is that with two SELECTs associated with two 
different cursors, the user can jump back and forth without having to re
issue the queries. For example, the following is a valid sequence of JPL 
statements: 

DBMS DECLARE sel nba CURSOR FOR SELECT * FROM NBATEAMS 

[11/9/90] New Features in JAM/DBi for ORACLE 



4 JAM/DBi 

DBMS DECLARE sel nfl CURSOR FOR SELECT * FROM NFLTEAMS 

DBMS EXECUTE sel nba (fetches 16 rows into form NBA) 

DBMS EXECUTE sel nfl (fetches 16 rows into form NFL) 

DBMS CONTINUE sel nba (fetches next 16 NBA rows) 

DBMS CONTINUE sel nfl (fetches next 16 NFL rows) 

Of course, a SELECT statement may also have variables in its WHERE 
clause, allowing slight modifications of the query with each DBMS 
EXECUTE. For example: 

DBMS DECLARE nbateam CURSOR FOR \ 
SELECT * FROM NBATEAMS WHERE TEAM = ::teamname 
DBMS EXECUTE nbateam USING NAME 
DBMS EXECUTE nbateam USING TNAME 

In the above example, "NAME" . may be a JAM field, and TNAME a 
JPL variable. 

Note that at the time of DECLAREing a SELECT cursor, JAM/DBi 
will map the columns of the target list into JAM fields or variables. 
Therefore, as far as the SELECT destination names are concerned, the 
contexts of the DECLARE and the EXECUTE should be equivalent. A 
safe way to do this would be to make the destinations data dictionary 
variables. Data dictionary items are available in every context, although 
their attributes may be over-ridden by local entities of the same name. 

New Features in J AMIDBi for ORACLE [11/9/90] 



JAM/DBi 5 

Cursor Management 

There may be at most 9 cursors active at any time. This does not 
include the default cursors (see below). A cursor is active if it has been 
connected (DBMS CONNECT) and has not been closed (DBMS 
CLOSE CURSOR). 

A cursor remains associated with a particular SQL statement until it is 
either closed, in which case the cursor name ceases to exist, or it is 
redeclared with another SQL statement. Closing a cursor frees some 
memory, so it may be useful to keep a minimum number of cursors 
active. 

Upward Compatibility 

All non-cursored JAM/DBi commands still behave as they used to. 
Ordinary SQL and DBMS statements may be freely mixed with the 
cursor commands. Non-cursor JAM/DBi commands do not allow 
arguments, and so may be a little quicker to execute. Other non
SELECT-statements or.cursored·statements may be executed between a 
non-cursor SELECT and its CONTINUE. The CONTINUE will still try 
to fetch the next set of rows. For this reason, non-cursor statements 
may be thought of as using two default cursors, one for SELECT 
statements and one for non-SELECT statements. The only difference 
is that arguments are not allowed. 

Transactions 

Within a transaction, any changes to a table will lock all or portions of 
that table. This will prevent any other cursor (i.e., other than the one 
associated with the transaction) from accessing the table. For instance, 

[11/9/90] New Features in JAM/DBi for ORACLE 



6 JAM/DBi 

using just non-cursor commands inside a transaction, a SELECf will not 
be able to retrieve rows from a table being modified in that transaction. 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 7 

II. Error Processing 

There are 3 DBMS statements for handling errors and warnings: 

DBMS ERROR [number_var [message_varll 

DBMS WARN [warn-var] 

where: 

are JAM variable or field identifiers. 
They may be array element identifiers, 
with one of the following form: 

id[int] or idlid] 

where id is a JAM identifier, and int is 
an integer. 

The default action on any error, either JAM/DBi or SQL, is to display 
an error message, followed by the JPL statement that caused the error. 
When the two messages are acknowledged by hitting the space bar, 
JAM/DBi aborts the JPL procedure in which the error occurred. This 
conforms to the old behavior of version 3.16. 

Issuing a DBMS ERROR_CONTINUE will prevent JAMJDBi from 
aborting the JPL procedure on an error. Error messages still get 
displayed as above. 

[11/9/90] New Features in JAM/DBi for ORACLE 



8 JAM/DBi 

Executing a DBMS ERROR with 1 or 2 JAM variable names will cause 
JAM/DBi to store the error number and message (if applicable) in the 
corresponding variables, after which JAM/DBi moves on to the next 
statement. A DBMS ERROR without any following variable names 
causes JAM/DBi to revert to default behavior. 

Note that in the default mode only negative error codes, or those 
signalling actual errors, get displayed. However when error trapping is 
on, all errors and informational codes returned by the database get 
inserted into the appropriate JAM variables. 

All internal (JAM/DBi or JAM) errors are always displayed at the 
bottom of the screen, followed whenever possible by the JPL statement 
during which the error occurred. 

The behavior of DBMS WARN is described in the JAM/DBi 4.0 
documentation. 

Error Types 

There are 3 types of errors that can occur while running JAM/DBi: SQL 
errors, J AM/DBi errors, and internal errors. 

SQL Errors are errors reported by the database system. These usually 
indicate an error in the SQL statement or database access. SQL errors 
are displayed at the bottom of the screen by default. This behavior can 
be modified by the DBMS commands described above. An attempt is 
made to distinguish between actual errors and other informational 
messages. In most databases, errors have negative numeric codes and 
informational messages have positive numbers. Only errors get 
displayed on· the . screen. by the default· error handler. However error 
trapping will trap all errors and messages. 

New Features in J AM/DBi for ORACLE [11/9/90] 



JAM/DBi 9 

JAM/DBi Errors are errors in the JAM/DBi commands that are 
detected by JAM/DBi. An example is an attempt to use an undeclared 
cursor (see Chapter I). These errors always result in the JPL procedure 
being aborted and the error message and offending statement getting 
displayed on the screen. Error trapping will not modify this behavior. 
All such errors should ha~e been caught at application development 
time. 

Internal Errors are errors usually caused by an internal inconsistency in 
JAM/DBi. JAM/DBi handles these the same way it handles JAM/DBi 
errors. 

Signalling End-of-SELECT 

A database error code NO_MORE_ROWS (1403 in ORACLE) is 
signalled whenever an execution of a SELECT or a CONTINUE results 
in no new fetches. This error code will not be flashed at the bottom of 
the screen if default error processing is on. However; it may be trapped 
into a JAM variable (e.g., ERRCODE) using a statement like DBMS 
ERROR ERRCODE. 

When a SELECT is being executed, the destination fields or variables 
are always cleared before performing any fetches. Thus an empty 
SELECT buffer will result in empty destination fields. On a 
CONTINUE however, if there is no data to be fetched, the destination 
fields or variables are not cleared. 

DBMS START and Error Signalling 

An argument greater than 1 in a DBMS START statement causes that 
number of rows of selected data to be. ignored in a query. Any errors 
that internal fetches of those rows may cause are also ignored. This 

[11/9/90] New Features in JAMlDBi for ORACLE 



10 JAM/DBi 

means that if a DBMS START command causes a particular query to 
ignore all its selected rows, then the execution of that query will not 
cause any SQL errors to be signalled. End-of-SELECT messages are 
still available and can be trapped into a JAM variable as usual. 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 11 

!!!!~iC;;iiio;;i~ 

III. Text Datatype and Word-Wrapped 
Arrays 

JAM variables have a length limit of 255 characters. Word-wrapped 
JAM array fields are used to handle data longer than that length. This 
is useful for handling TEXT database data types. JAM arrays that are 
not fields in the current form cannot be word-wrapped. 

SELECTing into Word-Wrapped Arrays 

If a word-wrapped array is one of the destinations for a SELECTed 
column, fetches are done one row at a time, with the word-wrap edit 
invoked on the relevant fields. 

Updating from a Word-Wrapped Array 

There are 2 ways to get the value of a full JAM array (i.e., all the 
elements) as I string into a JAM/DBi SQL statement. Let JA be an 
array: 

SQL Insert into TABLE! (LONGCOL) values (":JA") 

DBMS DECLARE tbll CURSOR FOR \ 
SQL Insert into TABLEl (LONGCOL) values (::JAVAL) 
DBMS EXECUTE tbll USING JA 

The first example uses colon expansion to get the value of the array. 
. The second sequence of commands uses a cursor and SQL .variables. In 

. the second case, JA has to ·be a word-wrapped array. 

[11/9/90] New Features in JAM/DBi for ORACLE 



12 JAM/DBi 

Note that in the first example, the INSERT command is restricted in 
size by the JPL statement length limitations (approx. 2,000 characters). 
Therefore, when storing 'Long' values into a table, the second method 
is recommended. 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 13 

IV. Customizing Query Result Destinations 

The following commands specify where to send the results of a database 
query: 

DBMS REDIRECT cursor name TO file name [TEE] - -
DBMS REDIRECT cursor name 

DBMS CATQUERY cursor_name TO jam Jvar 

DBMS CATQUERY 

DBMS OCCUR [number _1 / current] [MAX number _2] 

DBMS OCCUR 

where: 

cursor· name is the name of a previously declared cursor (see Chapter 
I) 

file_name is the name of a file, including full path if not in current 
directory. There can be no embedded spaces in the file 
name. 

jamJvar 

number 1 
number 2 

[11/9/90] 

is the name of a JAM field or variable that will be 
active during execution of the intended query. 

Integers greater than O. 

New Features in J AM/DBi for ORACLE 



14 JAM/DBi 

These commands allow a query's results to be sent to a file or a JAM 
variable, bypassing any column mapping. They also allow the user to 
specify a start index into the destination array and maximum number of 
rows to fetch. 

In addition, query result column mapping now supports JPL variables 
as well as the other kinds of JAM variables. 

Note: The term "fetch-execution" will be used to denote the execution 
of any of the following JAM/DBi statements. 

SQL SELECT ... 
DBMS EXECUTE .. . 
DBMS CONTINUE .. . 

DBMS REDIRECT 

. J AM/DBi 4.8 includes a rudimentary report mechanism that allows the 
results of a query'to be sent to a file. The command to specify this is 
associated with a cursor: 

DBMS REDIRECT cursor name TO file name [TEE] - -
The optional TEE indicates that the query results should also go to its 
specified or default JAM variables. 

If the query is going only to a file ("file-only mode "), or when the 
CA TQUER Y command is in effect (see below), the column widths used 
are derived from the table width definitions. If the results are also going 
to JAM fields (TEE), then the JAM widths are used. Columns in the 
file are separated by 2 spaces. 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 15 

When the TEE option is being each fetch-execution of the query (using 
DBMS EXECUTE or DBMS CONTINUE) will send only the result 
rows fetched into the JAM variables or fields into the file. Several 
DBMS CONTINUEs may be needed to complete the report. In the file
only mode, just executing the cursor (DBMS EXECUTE) will send all 
the result rows into the named file. 

The file file _name is opened when the REDIRECT command is 
executed, and all subsequent executions of the cursor add to the file. 
Any file of the same name that existed before the REDIRECT command 
is executed is over-written. The named file remains open, and 
associated with the specified cursor, until the cursor is either closed or 
redec1ared, or the cursor is redirected to another fIle, or the following 
command is issued: 

DBMS REDIRECT cursor name 

A number of files may be open at the same time, associated with 
different cursors;"'subject to machine limits. Redirects of a cursor not 
associated with a SELECT statement produce no results. 

DBMS CATQUERY 

Normally, the result columns of a SELECT statement get mapped to 
corresponding JAM variables or fields of the same name. The 
following command allows a full query result row to be fetched into a 
single JAM field or variable, by passing any default or specified 
individual column mappings: 

DBMS CATQUERY cursor_name TOjamJvar 

[11/9/90] New Features in JAM/DBi for ORACLE 



16 JAM/DBi 

After this command is executed all subsequent executions of a SELECT 
statement (DBMS EXECUTE, DBMS CONTINUE, SQL SELECT) will 
send their results to jam Jvar. This mode will remain in effect until the 
following command is executed: 

DBMS CATQUERY cursor_name 

A single fetch-execution will attempt to fill the destination array field 
or variable by returning as many rows as the array dimension. A 
DBMS CONTINUE will fetch the next batch. H the destination field 
is word-wrapped, only 1 row will be fetched per fetch-execution. 
Individual colurrms in the query result are separated by 2 spaces. 

Note that jamJvar must be accessible from the place that the DBMS. 
CATQUERY is issued for it to work, otherwise a warning message is 
flashed on the screen and catquery mode for that cursor is reset. It is 
therefore advisable to put the CATQUERY destination into the data 
dictionary. 

DBMS OCCUR 

When the JAM destination for a query is an array or set of parallel 
. ·arrays, the DBMS OCCUR command may be used to specify a part of 

the array to be used as the query destination. The default start index 
(the destination for the first fetched row of a fetch-execution) is 1. The 
default maximum number ofrows to fetch in a particular fetch-execution 
equals the number of complete rows that the destination can hold (see 
your JAM/DBi manual). These 2 values can be modified by the 
following command: 

DBMS OCCUR [number j / CURRENT] [MAX number _2] 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 17 

The first parameter in the OCCUR command is the start index. This 
may be a number (number _1), which will be the new start index, or 
CURRENT, in which case the start index will be whatever row the 
cursor is on at the time of the fetch-execution. The second parameter 
(MAX number _ 2) specifies the maximum number of rows to fetch. 
Both parameters are optional. However, if both are present, MAX must 
come second. 

The new values of stan index and MAX come into effect as soon as the 
DBMS OCCUR statement is executed. These values affect any 
subsequent fetch executions (including CONTINUE). To reset to 
default mode, use: 

DBMS OCCUR 

[11/9/90] New Features in JAM/DBi for ORACLE 



18 JAM/DBi 

8S~;:::[8B5mlUL;Ja 

V. Miscellaneous 

Suppressing Repeating Values in a Query 

The following DBMS command will cause JAM/DBi to suppress 
repeating values in columns of a query result: 

DBMS SUPREPS int {, int}* 

. The integer arguments represent the column numbers, in any order, by 
position in a SELECT. The first column number is 1. When a * is 
used in a SELECT statement (e.g., SELECT'" FROM ... ) the column 
numbering is according to the SELECT statements output. This order 
usually follows that in the table defmition. Column suppression is an 
ON/OFF command, and takes effect from the next fetch-execution 
(including cursors and CONTINUEs). It may·be combined with any of 
the query destination customizing commands of the previous chapter. 

DBMS SUPREPS 1, 3 

SQL SELECT city, team, venue FROM homesites 
.DBMS ·CONTINUE 

DBMS SUPREPS 

In the above example, the columns for city and venue will have their 
repeating values suppressed, producing an output like the following (if 
the table is already sorted on city as the major key and venue as the 
secondary key): 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 

N.Y.C. 

Boston 

Knicks 
Rangers 
Globetrotters 
Mets 
Celtics 

Garden 

Shea Stadium 
Garden 

19 

E. Ruthfd Nets Byrne Arena 
Devils 
Giants 
Jets 

Giant Stadium 

A SUPREPS command over-rides all previous commands. A DBMS 
SUPREPS without any arguments (as in the last line of the example) 
resets and turns suppression off. 

Any column numbers greater than 0 may be given as arguments. Only 
those numbers relevant to a particular query will be considered. For 
example, DBMS SUPREPS 7, 1, 3 would produce the same result as 
above. If a subsequently issued query had a seventh column, that also 
would have been. suppressed. At most, 25 columns can be targeted by 
a SUPREPS command. 

Printing a File 

The following DBMS command may be used to print a file: 

DBMS PRINT file_name 

where 

[11/9/90] 

is the name of a fIle, including the full path if not in the 
current directory. There can be no embedded spaces in 
the file name. 

New Features in JAM/DBi for ORACLE 



20 JAM/DBi 

The JAM configuration variable SMLPRINT should be set to the 
appropriate print command string (see your JAM Configuration and 
Utilities guide). 

J AM. Variables and JPL Variables 

A JAM variable denotes any of the 3 kinds of variables supported by 
JAM: 

• Local JPL variables; 

• JAM screen fields or arrays; 

• J AM data dictionary variables. 

J AM allows the same name to have 3 different definitions in these 3 
locations. The above sequence also gives the order of precedence in 
which the corresponding definitions take effect, with JPL variable 
definitions superseding the rest. 

JAM/DBi now fully supports variable substitution , from JPL variables 
for all SQL statements. 

NULL Values 

When writing into the database (e.g., INSERT, UPDATE), an empty 
string is interpreted as NULL. In the statement: 

SQL INSERT INTO PLAYOFF (GAME_NBR, CITY, DATE) \ 
VALUES (", ':City', ':Date') 

New Features in JAM/DBi for ORACLE [11/9/90] 



JAM/DBi 21 

a NULL is being inserted into the integer field GAME_NBR. If the 
JAM fields City and Date are empty, those values will also be 
translated to NULL. 

When executing a cursored statement, if any of the argument fields or 
variables are empty, they will be treated as NULLs. . 

[11/9/90] New Features in JAM/DBi for ORACLE 





JAM/DBi B-1 

Appendix B: D a tab a s e - S pee i fie 
Commands for ORACLE 

NOTE: ORACLE converts column names and column alias 
names to upper case. When writing SQL SELECT 
statements, be sure that all JAM screen and data 
dictionary variables used as column destinations 
have UPPER CASE names, regardless of any 
column aliasing. 

DBMS CATQUERY cursor_name [TO jam_var] 

cursor _name is the identifier of an open cursor. 

jam_var is the name of a JAM field or variable which will 
be active when the cursor is executed. 

This command redirects the results of a query to a JAM 
variable, bypassing the normal JAM/DBi column mapping. 
The redirection remains in effect until you close the cursor, 
redeclare it, or execute DBMS CATQUERY cursor_name 
without the TO clause. 

DBMS CLOSE CURSOR cursor name 

cursor_name is the identifier of an open cursor. 

This command closes the specified cursor. 

[11/9/90] JAM/DBi Database Specific Commands for ORACLE 



B-2 JAM/DBi 

DBMS COMMIT 

This command writes all transactions since the previous 
DBMS COMMIT (or DBMS LOGON) to the database. 

DBMS CONTINUE [cursor_name] 

cursor _name is the identifier of an open CUrsOT. 

This command fetches the next n rows of a query result into 
JAM, where n is the smallest number of array occurrences 
involved in the fetch. 

DBMS CONTINUE with no argument continues the most 
recent query not associated with a cursor. DBMS 
CONTINUE cursor_name continues the query specified by 
cursor name. 

DBMS COUNT count var 

count_var is a JAM field or data dictionary variable. 

This command returns the number of rows that were fetched 
into a JAM array and stores the result in count_var. 

DBMS COUNT does !lQ!. necessarily return the same value 
as ORACLE's COUNT function. The standard COUNT 
returns the number of values in a column which satisfy the 
SELECT conditions. DBMS COUNT, however, returns the 
number of rows fetched into JAM. 

JAM/DBi Database-Specific Commands for ORACLE [11/9/90] 



JAM/DBi B-3 

DBMS DECLARE cursor name CURSOR FOR sql stmt - -
cursor name is an identifier for a cursor. It cannot contain - ----blanks and can have the same maximum length as a JAM 
variable. 

sqCstmt is an ORACLE SQL statement, which may contain 
variables. 

This command pre compiles sql_stmt before actual 
execution. The cursor remains open (Le., the compiled 
sq/ stmt remains available) until you execut~ a DBMS 
CLOSE CURSOR command. 

DBMS ERROR [code_var [message_var]] 

[1119/90] 

code_var and message_var are JAM variables or field 
identifiers. They may take any of ·the following forms: 

id 
id[int} 
id[id} 

where id is a JAM identifier and int is an integer. id [inti 
and id[id} are references to array elements. 

This command causes JAM/DBi to store error codes and 
messages in the specified variables or array elements. Error 
trapping remains in effect until you execute the command 
DBMS ERROR with no arguments. 

J AM/DBi Database Specific Commands for ORACLE 



B-4 JAM/DBi 

This command prevents JAM/DBi from aborting a JPL 
procedure when an error is detected. DBMS 
ERROR_CONTINUE remains in effect until you execute a 
DBMS ERROR command. 

DBMS EXECUTE cursor _name [USING var} [, var2 ... n 
cursor _name is the identifier for an open cursor. 

var}, var2 ... varn are JAM variable references. They may 
take any of the following forms: 

id 
idlintJ 
idlid] 

where id is a JAM identifier and int is an integer. id lint] 
and idlidJ are references to array elements. 

This command executes the SQL statement specified in the 
corresponding DBMS DECLARE command. If the SQL 
statement contains variables. JAM/DBi substitutes the 
values of var}, var2, ... varn. 

DBMS LOGOFF 

This command closes an ORACLE session. 

. JAMlDBi Database-Specific Commands for ORACLE [11/9/90) 



JAM/DBi B-5 

DBMS LOGON user _id password I user _id/password 

This command opens an ORACLE session. 

DBMS OCCUR [intI I CURRENT] [MAX int2] 

[11/9/90] 

intl and int2 are integers greater than O. 

When the destination of a query is an array or set of parallel 
arrays, the default destination for the first row of a query 
result is the first row of . the array. The maximum number 
of rows returned by a single fetch is the total number of 
rows in the array. DBMS OCCUR allows you to change 
these defaults. 

DBMS OCCUR intI specifies that intI is the first row of 
the array to be filled. 

DBMS OCCUR CURRENT specifies that the array row 
where JAM's cursor is located is the fIrst row of the array 
to be fIlled. 

DBMS OCCUR MAX int2 specifies that int2 is the 
maximum number of rows to be fetched. 

If you specify both a starting row and a maximum number 
of rows, MAX int2 must be the second clause in the 
command. The destination parameters you specify remain 
in effect until you execute another DBMS OCCUR 
command. Executing DBMS OCCUR with·no arguments 
restores the default destination parameters. 

JAM/DBi Database Specific Commands for ORACLE 



B-6 JAM/DBi 

DBMS PRINT file_name 

file _name is the name of an existing file. You must include 
the full path for files outside the current directory. 

This command will print the contents of the file. You must 
have the SMLPRINT JAM configuration variable set to the 
appropriate command string (see JAM Configuration and 
Utilities Guide) . 

.. .. , DBMS REDIRECT cursor _name [TO file_name [TEE]] 

cursor _name is the identifier of an open CUISor. 

file_name is the name of a file which DBMS REDIRECT 
will open. You must include the full path for files outside 
the current directory. 

This command redirects the results of a query to a me. 
Executing DBMS REDIRECT opens the me. If the file 
already exists, all previous data will be over-written. 

. Subsequent executions of the cursor append query output to 
the file. The redirection remains in effect until you close 
the cursor, redeclare it, or execute the command DBMS 
REDIRECT cursor name without the TO clause. 

DBMS REDIRECT cursor_name TO file_name TEE directs 
the query results to both file_name and other specified or 
default JAM variables. If you do not use the TEE option, 
query results will go only to file_name. 

JAM/DBi Database-Specific Commands for ORACLE [11/9/90] 



JAM/DBi B-7 

DBMS ROLLBACK 

This command flushes all transactions since the last DBMS 
COMMIT or DBMS LOGON without writing them to the 
database. 

DBMS START rowjlumbf!r 

row -"umber is a positive integer. 

This command causes JAM/DBi to read and ignore a 
specified number records (row_number - 1) before fetching 
the remaining query results into JAM. 

DBMS SUPREPS int1 [, int2 ... int25] 

int1, int2, ... int25 are integer references to columns in a 
SELECT statement. Thus, DBMS SUPREPS 1, 3 refers to 
the first and third columns in a subsequent SELECT. 

This command ·suppresses repeating values in the column 
when the data are fetched into a JAM array. Suppression 
of. repeated values remains in effect until you execute a 
DBMS Sl!PREPS with r:t0 arguments. 

DBMS WARN warn_array 

[11/9/90) 

warn_array is the identifier of an 8-element JAM data 
dictionary array. 

JAM/DBi Database Specific Commands for ORACLE 



B-8 JAM/DBi 

This command causes JAM/DBi to place a "W" in each 
element of warn_array that matches a database warning. 
The ORACLE interface defines the elements as follows: 

1 

2 

3 

4 

·5 

6 

7 

8 

Meaning 

There was a warning issued 

One or more fields was truncated on output 

A null value was ignored in a function call 

One or more output fields in a SELECf was not in the 
JAM data dictionary 

UPDATE or DELETE did not have a WHERE clause 

unused 

Implicit rollback (e.g .• a row was locked) 

Row changed between SELECf and fetch of the row 

JAMlDBi Database-Specific Commands for ORACLE [11/9/90] 



:pswq 

New Features in JAMlDBi for SYBASE I SQL Server 
Release 4.8 

. . ..' .". ....... ·':::xt~ .. · ~-: ......... .... .":'-: ... .... .' .... : 

Copyright (C) 1990 JYACC, Inc. 



JAM/DBi 1 

Contents 

I. Multiple Cursors .............................. 1 
Multiple Cursors and SELECT Statements ................ 2 
Cursor Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 
Transactions ..................................... 3 

II. Error Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Error Types ..................................... 5 
End-of-SELECT Signal ............................ 5 
DBMS START and Error Signalling. . . . . . . . . . . . . . . . . . .. 6 

III. Text Datatype and Word-Wrapped 
Arrays ...................................... 7 
SELECfing into Word-Wrapped Arrays ................ 7 
Updating from a Word-Wrapped Array ................. 7 

IV. Customizing Query Result 
Destinations ................................ 8 
DBMS Redirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 
DBMS Catquery .................................. 10 
DBMS Occur .................................... 10 

V. Miscellaneous ................................. 12 
Suppressing Repeating Values in a Query . . . . . . . . . . . . . . .. 12 
Printing a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
JAM Variables and JPL Variables . . . . . . . . . . . . . . . . . . . . .. 14 
NULL Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
Scrolling Through the SELECTed Rows ................ 15 
Selecting BINARY Datatypes ........................ 17 
Browse Mode ................................... 17 
Handling Stored Procedures and Their Results. . . . . . . . . . . .. 18 

[5120190] New Features in JAM/DBi for SYBASE I SQL Server 



JAM/DBi 1 

I. Multiple Cursors 

In the following, 

cursor name is an identifier, consisting of non-blank characters, 
with maximum same as a JAM variable. 

database name is the name of the database that the cursor is logging 
into 

is an SQL statement, possibly containing variables 
(syntax is database specific). 

The JAM/DBi statements associated with cursors are: 

DBMS CONNECT cursor_name TO DATABASE database_name 

This command activates the cursor. It must be issued before any other 
commands which refer to the cursor. 

DBMS DECLARE cursor_name CURSOR FOR sqt statement 

This command defines the cursor. It cannot be issued unless 
cursor _name is active (i.e., DBMS CONNECT cursor_name ... has been 
issued and DBMS CLOSE CURSOR cursor_name has not been issued). 

DBMS EXECUTE cursor name 

[5120/90) 

This command cannot be issued unless cursor_name is active and 
defined (i.e., CONNECT cursor_name and DECLARE cursor_name 
have been issued; CLOSE CURSOR cursor_name has not been issued). 

New Features in JAM/DBi for SYBASE / SQL Server 



2 JAM/DBi 

DBMS CONTINUE [cursor_name] 

This command continues a preceding EXECUTE. It cannot be issued 
for a named cursor unless the cursor_name is active, defined, and has 
been executed. CONTINUE cursor_name can be re-issued any number 
of times, so long as DBMS a..OSE CURSOR cursor_name has not 
been issued. A CONTINUE without a cursor name tries to continue the 
last non-cursor SELECT. 

DBMS CLOSE CURSOR cursor name 

This command inactivates the named cursor. 

Multiple Cursors and SELECT Statements ' 

A SELECT statement may also be associated with a cursor. The additional 
advantage here is that with two SELECTs associated with two different cursors, 
the user can jump back and forth without having to re-issue the queries. For 
example, the follo~ing is a 'valid sequence of JPL statements: 

DBMS DECLARE sel nba CURSOR FOR SELECT * FROM NBATEAMS 

DBMS DECLARE sel nfl CURSOR FOR'SELECT * FROM, •. NFLTEAMS 

DBMS EXECUTE sel nba (fetches 16 rows into form NBA) 

DBMS EXECUTE sel nfl (fetches 16 rows into form NFL) 

DBMS CONTINUE sel nba (fetches next 16 NBA rows) 

DBMS CONTINUE sel nfl (fetches next 16 NFL rows) 

New Features in JAM/DBi for SYBASE I SQL Server [SJ20J90) 



JAM/DBi 3 

Cursor Management 

·There may be at most 9 cursors active at any time. This does not include the 
default cursors (see below). A cursor is active if it has been connected (DBMS 
CONNECl) and has not been closed (DBMS CLOSE CURSOR). A cursor 
remains associated with a particular SQL statement until it is either closed, in 
which case the cursor name ceases to exist, or it is redeclared with another SQL 
statement. Closing a cursor frees some memory, so it may be useful to keep a 
minimum number of cursors active. 

Upward Compatibility 

All non-cursored JAM/DBi commands stiU behave as Ihey used to. Ordinary 
SQL and DBMS statements may be freely mixed with Ihe cursor commands. 
Non-cursor'JAM/DBi commands do not allow arguments, and so may be a little 
quicker to execute. Olher non-SELECT statements or cursored statements may 
be executed between a non-cursor SELECT and its CONTINUE. The 
CONTINUE will still try to fetch the next set of rows. For this reason, non
cursor statements may be thought of as using two default cursors, one for 
SELECT statements and one for non-SELECT statements. The only difference 
is that arguments are not allowed. 

.' 

Transactions 

Within a transaction, any changes to a table will lock all or portions of Ihat table. 
This will prevent any olher cursor (Le., olher Ihan Ihe one associated wilh the 
transaction) from accessing Ihe table. For instance, using just non-cursor 
commands inside a transaction, a SELECT will not be able to retrieve rows from 
a table being modified in that transaction. 

Execution of select and non-select statements wilhout named cursors (i.e., using 
the default cursor) actually activates two indePendent cursors.' Therefore, any 
transaction which includes both select and non-select statements should use 
named cursors. 

[S(20t'JO) New Features in JAM/DBi for SYBASE I SQL Server 



4 JAM/DBi 

II. Error Processing 

There are 2 DBMS statements for handling errors: 

DBMS ERROR [number_var [message_var]] 

where: 

are JAM variable or field identifiers. They 
may be array element identifiers, with one of 
the following form: 

id or id[int} or id[id} 

where id is a JAM' identifier, and inl is an 
integer. 

The default action on any error, either JAM/DBi or SQL, is to display an error 
message, followed by the JP:L statement that caused the error. When the two 
messages. are acknowledged by hitting·the space bar, JAM/DBi aoorts the JPL . 
procedure in which the error occurred. This conforms to the old behavior of 
version 3.16 

Issuing a DBMS ERROR_CONTINUE will prevent JAM/DBi from aborting the 
JPL procedure on an error. Error messages will still be displayed as above. 

Executing a DBMS ERROR with 1 or 2 JAM variable names will cause 
JAM/DBi to store the error number and message (if applicable) in the 
corresponding variables, after which JAM/DBi moves on to the next statement. 
A DBMS· ERROR without any following variable names causes JAM/DBi to 
revert to default behavior. 

New Features in JAM/DBi for SYBASE I SQL Server [5/20/901 

. ',: 



JAM/DBi 5 

Note that in the default mode only negative error codes, or those signalling actual 
errors, are displayed. However when error trapping is on, all errors and 
infonnational codes returned by the database are inserted into the appropriate 
JAM variables. 

All internal (JAM/DBi or JAM) errors are always displayed at the bottom of the 
screen, followed whenever possible by the JPL statement during which the error 
occurred. 

Error Types 

There are 3 types of errors that can occur while running JAM/DBi: SQL errors, 
JAM/DBi errors, and internal errors. 

SQL Errors are errors reported by the database system. These usually indicate 
an error in the SQL statement or database access. SQL errors are displayed at 
the bottom of the screen by defaulL This behavior· can be modified by the 
DBMS commands described above. An attempt is made to distinguish between 

. actual errors and other informational ~essages. In most databases, 'errors have :" 
negative n'umeric codes and informational messages' have positive numbers: . 
Only errors are displayed on the screen by the default error handler.' However 
error trapping will trap all errors and messages. 

JAM/DBi Errors are errors in the JAM/DBi commands that are'detected by 
JAM/DBi. An example is an attempt to use an undeclared cursor (see Chapter 
I). These errors always result in the JPL procedure being aborted and the error 
message and offending' statement being displayed on the screen. Error trapping 
will not modify this behavior. All such errors should have been caught at 
application development time. 

Internal Errors are errors usually caused by an internal inconsistency in 
JAM/DBi. JAM/DBi handles these the same way it handles JAM/DBi errors. 

[5/20/90) New Features in JAM/DBi ror SYBASE / SQL Server 



6 JAM/DBi 

End-of-SELECT Signal 

An end-of-SELECT signal is not displayed if default error processing is on. 
However, if error trapping is on, an error code of 100, severity 0 will be trapped 
in the specified variable. For example: 

DBMS ERROR encode 
cat errcode "0" 
SQL SELECT * from TABLE A 
if (errcode == "0") 

msg emsg "Hit F2 for more rows." 
else if errcode == ''000100:000000'' 

msg emsg "Done" 
else 

msg emsg "Error" 

DBMS START and Error Signalling 

An argument greater than 1 in a DBMS START statement causes one fewer than 
that number of rows of selected data to be ignored in a query. Any errors that 
internal fetches of those rows may cause are also ignored. This means that if a 
DBMS START .command causes a particular query to ignore al~_.its se'ected 
rows, then the execution of that query will not cause any SQt errors to be 
signalled. End-of-SELECT messages are still available and can be trapped into 
a JAM variable as usual. 

New Features in JAM/DBi for SYBASE I SQL Server [5/20/90] 



JAM/DBi 7 

III.· Text Datatype and Word-Wrapped Arrays 

JAM variables have a length limit of 255 characters. Word-wrapped JAM array 
fields are used to handle data longer than that length. This is useful for handling 
TEXT database data types. JAM arrays that are not fields in the current fonn 
will not be treated having word-wrapped edit. 

SELECTing into Word-Wrapped Arrays 

If a word-wrapped array is one of the destinations for a SELECTed column, 
fetches are done one row at a time, with the word-wrap edit invoked on the 
relevant fields. 

Updating from a Word-Wrapped Array 

There are 2 ways to get the value of a full JAM array (i.e., all the elements) as· 
1 string into a JAM/DBi SQL statement. Let JA be an. array: 

SQL Insez::t into TABLEl (LONGCOL) values (":JA") 

SQL Insert into TABLEl (LONGCOL) values (::JA) 

The first example uses colon expansion to get the value of the array. In the 
second case, JA has to be a word-wrapped array. 

Note that in the first example, the INSERT command is restricted in size by the 
JPL statement length limitations (approx. 2,000 characters). Therefore, when 
storing 'Long' values into a table, the second method is recommended. 

[S/20/90] New Features in JAM/DBi for SYBASE I SQL Server 



8 JAM/OBi 

1m JE gms~~_hmm:E~3il¥j::mm : mmm !!m~tii 

IV. Customizing Query Result Destinations 

The following commands specify where to send the resullS of a database query: 

DBMS REDIRECT cursor_name TO file_name [TEE] 

DBMS REDIRECT cursor_name 

DBMS CATQUERY cursor_name TOjamJvar 

DBMS CATQUERY 

DBMS OCCUR [number j I current] [MAX number _ 2] 

DBMS OCCUR 

where: 

cursor name ,is the name of a previously declared cursor (see Chapter I) 

jamJvar 

number 1 
number 2 

is the name of a file, including full path if noUn current 
directory. There can be no embedded spaces in"ilie file name. 

, is the name of a JAM field or variable that will be active 
during execution of the intended query. 

Integers greater than O. 

These commands allow a query's resullS to be sent to a file or a JAM variable, 
bypassing any column mapping. They also allow the user to specify a start 
index into the destination array 'and maximum number of rows to fetch. 

New Features in JAM/DBi for SYBASE / SQL Server [5/20/901 



JAM/DBi 9 

In addition, query result column mapping now supports JPL variables as well as 
the other kinds of JAM variables. 

Note: The term "fetch-execution" will be used to denote the execution of any 
of the following JAM/DBi statements. 

SQL SELECT ... 
DBMS EXECUTE .. . 
DBMS CONTINUE .. . 

DBMS Redirect 

JAM/DBi 4.7 includes a rudimentary report mechanism that allows the results 
of a query to be sent to a fIle. The command to specify this is associated with 
a cursor: 

DBMS REDIRECT cursor_name TO file_name [lEE] 

The optional TEE indicates that the query results should also go to its specified 
or default JAM variables. 

If the query is going only to a file ("file-only mode"), or when the CATQUERY 
command is in effect (see below), the column widths used are derived from the 
table width definitions. If-the results are also going to. JAM fieldS""(lEE), then 
the JAM widths are used. Columns in the file are separated by 2 spaces . 

. ' When the TEE option is present each fetch-execution of the query (using DBMS 
EXECUTE or DBMS CONTINUE) will send only the result rows fetched into 
the JAM variables or fields into the file. Several DBMS CONTINUEs may be 
needed to complete the report. In the file-only mode, just executing the cursor 
(DBMS EXECUTE) will send all the result rows into the named file. 

The me file_name is opened when the REDIRECT command is executed, and 
all subsequent executions of the cursor add 'to the file. Any me of the same 
name that existed before the REDIRECT. command is executed is over-written. 
The named file remains open, and associated with the specified cursor, until the 

[S/20JlJO) New Features in JAM/DBi for SYBASE I SQL Server 



10 JAM/DBi 

cursor is either closed or redeclared, or the cursor is redirected to another file, 
or the following command is issued: 

DBMS REDIRECI' cursor_name 

A number of files may be open at the same time, associated with different 
cursors, subject to machine limits. Redirects of a cursor not associated with a 
SELECT statement produce no results. 

DBMS Catquery 

Normally, the result columns of a SELECT statement get mapped to 
corresponding JAM variables or fields of the same name. The following 
command allows a full query result row to be fetched into a single JAM field 
or variable, by passing any default or specified individual column mappings: 

DBMS CATQUERY cursor_name TO jam.fvar 

After this command is executed all subsequent executions of a S~LECT 
statement (DBMS EXECUTE, DBMS CONTINUE, SQL SELECT) will.send 
their results to jam.fvar. This mode will remain in effect until the following 
command is executed: 

DBMS CATQUERY cursor_name 

A single fetch-execution will attempt to fill the destination array field or variable 
by returning as many rows as the array dimension. A DBMS CONTINUE will 
fetch the next batch. If the destination field is word-wrapped, only 1 row will 
be fetched per fetch-execution. Individual columns in the query result are 
separated by 2 spaces. 

Note that jam .fvar must be accessible from the place that the DBMS 
CATQUERY is issued for it to work, otherwise a warning message is flashed on 
the screen and catquery mode for that cursor is reset. It is therefore advisable 
to put the CA TQUER Y destination into the data dictionary. 

New Features in JAM/DBi for SYBASE I SQL Server (5/20/901 



JAM/DBi 11 

DBMS Occur 

When the JAM destination for a query is an array or set of parallel arrays, the 
DBMS OCCUR command may be used to specify a part of the array to be used 
as the query destination. The default start index (the destination for the fIrst 
fetched row of a fetch-execution) is 1. The default maximum number of rows 
to fetch in a particular fetch-execution equals the number of complete rows that 
the destination can hold (see your JAM/DBi manual). These 2 values can be 
modifIed by the following command: 

DBMS OCCUR [number j I CURREN1] [MAX number _2] 

The frrst parameter in the OCCUR command is the start index. This may be a 
number (number j), which will be the new start index, or CURRENT, in which 
case the start index will be whatever row the cursor is on at the time of the 
fetch-execution. The second parameter (MAX number _2) specifies the maximum 
number of rows to fetch. Both parameters are optional. However, if both are 
present, MAX must come second. 

The new values of start index and MAX come into effect as soon as the DBMS. 
OCCUR statement is executed. These values affect any subsequent fetch 
executions (including CONTINUE). To reset to default mode, use: 

DBMS OCCUR 

[5/201901 New Features in JAM/DBi for SYBASE I SQL Server 



12 JAM/DBi 

• ::" •••• ":':.. ••• •• • ... : •••• •• 'oX' • '. ~*--: ............ ~ .. -:& .. ' .. . . . ... :-: . '~' .... ~ 

V. Miscellaneous 

Suppressing Repeating Values in a Query 

The following DBMS command will cause JAM/DBi to suppress repeating 
values in columns of a query result: 

DBMS SUPREPS int (. int)* 

The integer arguments represent the column numbers. in any order, by position 
in a SELECT. The rust column number is 1. When a * is used in a SELECT 
statement (e.g., SELECT * FROM ... ) the column numbering is according to the 
SELECT statements output. This order usually follows that in the table 
definition. Column suppression is an ON/OFF command, and takes effect from 
the next fetch-execution (including cursors and CONTINUEs). It may be 

'combined with any of the· query destination. customizing' commands of the 
previous chapter. 

DBMS SUPREPS 1, 3 

SQL SELECT city, team, venue FROM homesites 
DBMS CONTINUE 

DBMS SUPREPS 

In the above example, the columns for city and venue will have their 
repeating values suppressed, producing an output like the following (if the table 
is already sorted on city as the major key and venue as the secondary key): 

N.Y.C. 

Boston 

Knicks 
Rangers 
Globetrotters 
Mets 
Celtics 

Garden 

Shea Stadium 
Garden 

New Features in JAM/DBi for SYBASE I SQL Server [S/2019O] 

. '.' 



JAM/DBi 

E. Ruthfd Nets 
Devils 
Giants 
Jets 

13 

Byrne Arena 

Giant Stadium 

A SUPREPS command over-rides all previous commands. A DBMS SUPREPS 
without any arguments (as in the last line of the example) resets and turns 
suppression off. 

Any column numbers greater than 0 may be given as arguments. Only those 
numbers relevant to a particular query will be considered. For example, DBMS 

.. : SUPREPS 7, '1, 3 would produce the same result as above. If a 
subsequently issued query had a seventh column, that also would have been 
suppressed. At most, 25 columns can be targeted by a SUPREPS command. 

Printing a File 

. .The following DBMS command may be used to print a file: 

DBMS PRINT file name 

where 

is the name of a file, including the full path if not in the 
current directory. There can be no embedded spaces in the me 
name. 

The JAM configuration variable SMLPRINT should be set to the appropriate 
print command string (see your JAM Configuration and Utilities guide). 

[5120190) New Features in JAM/DBi for SYBASE I SQL Server 



14 JAM/DBi 

JAM Variables and JPL Variables 

A JAM variable denotes any of the 3 kinds of variables supported by JAM: 

• Local JPL variables; 

• JAM screen fields or arrays; 

• JAM data dictionary variables. 

JAM allows the same name to have 3 different definitions in these 3 locations. 
The above sequence also gives the order of precedence in which the 
corresponding definitions take effect, with JPL variable definitions superceding 
the rest 

JAM/DBi now fully supports variable substitution from JPL variables for all 
SQL statements. 

NULL Values 

When writing into the database (e.g., INSERT, UPDATE), an empty string will 
not· be interpreted as NULL. In order to enter NULL values int!l a table, the 
word NULL must be specified. For instance, 

SQL INSERT INTO PLAYOFF (TEAM, CITY, DATE) \ 
VALUES (NULL, , :City', , :Date') 

a NULL is being inserted into the character field TEAM. If the JAM fields 
City and Date are empty, those values will be translated as empty strings. 

When a return value from a query is NULL, the string 'NULL' will be displayed 
in the corresponding JAM variable. 

New Fearures in JAM/DBi for SYBASE / SQL Server [5120190) 



JAM/DBi 15 

Scrolling Through the SELECTed Rows 

Scrolling is allowed unless a buffer has been setup to store the rows which are 
already fetched. Use the following command to set a buffer before executing the 
query. 

DBMS SET_BUF number of rows to allow in buffer [cursor_name] 

Buffering takes up memory, so set a buffer only when CONTINUE_UP, 
CONTINUE_TOP, or CONTINUE_BOT is desired. Reset the buffer as soon as 
it is no longer necessary. Buffering will be reset by passing integer value zero 

,. as:argument to DBMS SET_BUF. 

The following commands scroll through the selected set of rows: 

DBMS CONTINUE [cursor_name] 

DBMS CONTINUE_UP [cursor_name] 

The first two are equivalent, and try to fetch the next page of rows into JAM's 
current view window (e.g., an on-screen array field). See description of 
SELECT for detennining number of rows comprising a view window. 

CONTINUE_UP will try to fetch the previous page of rows. 

CONTINUE_TOP displays the first page of rows. 

CONTINUE_BOT displays the last page of rows. 

[Sf20/90J New Features in JAM/DBi for SYBASE I SQL Server 



16 JAM/OBi 

The following example shows the sequence of command to be issued: 

DBMS SET_BUF 100 

SQL SELECT city, team, venue FROM homesites 
DBMS CONTINUE_UP 

DBMS SET BUF a 

Normally, there is no overlap between the rows displayed (Le., fetched into the 
JAM destination) before and after the CONTINUE_UP (or 
CONTINUE_DOWN) command is issued. However, when that command 
positions JAM's current view window at the top (bottom) of the select set, the 
frrst (last) row of the set is fetched into the fll'st (last) element of the destination; 
the rest of the rows fill up the rest of the destination. When the number of rows 
in the select set is less than the size of the view window, the elements are filled 
from top down. 

If the buffer set up is not large ·enough to hold all return· rows, ··the top of. the 
buffer will be cleared as newly fetched rows are ·stored. In that case, 
CONTINUE_TOP will not return the first selected rows, but the first row in the 
row buffer. For instance, if the row buffer is of size 100, and 120 rows are 
fetched, then CONTINUE_TOP will starting fetching from row 21 instead of the 
frrst row (which has been cleared). .. 

;' 

The DBMS COUNT ... command can be used to determine the number of rows 
fetched after each CONTINUE_ *. 

If the column repeat suppression mode is on (see DBMS SUPREPS), scrolling 
up or to the top or bottom will always display all the columns of the row in the 
frrst element, suppression always being executed reading from the lOp down. 

New Features in JAM/DBi for SYBASE / SQL Server [S/2019O) 



JAM/DBi 17 

Selecting BINARY Datatypes 

Binary data cannot be retrieved into JAM variables or fields. The JAM/DBi 
library (sybdbi. a) contains a global variable named DBi_image, of type 
DBBINARY*, which will point to the retrieved data (DBBINARY is a Sybase 
DB-Library datatype). This variable may be freed after being processed; if not, 
it will not be freed until the next binary column selection is invoked. Only 1 
row will be retrieved if the select statement involves a column of binary type. 
No matter how many binary fields are selected, only the first binary column will 
be retrieved. 

Browse Mode 
(Browse Mode is not available jor servers running 
SYBASE Ver 3.X) 

JAM/DBi supports the BROWSE MODE of SYBASE DB-Library by supplying 
the following commands: 

DBMS BROWSE select statement 

DBMS UPDATE cursor_name SET coil =""expl [, col2 = exp2 ... J 

'These allow browsing selected rows and updating their values one'row at a time. 
For example, 

DBMS COUNT row 
DBMS BROWSE select fieldl PRODUCT.PRICE from\ 

CLIENT, POSITIONS where PRODUCT.PRICE\ 
= POSITIONS.PRICE. 

while (row> 0) 
{ 

[S(20J'JO) 

DBMS UPDATE PRODUCT set PRICE 
DBMS CONTINUE 

:fieldl + 2 

New Features in JAM/DBi for SYBASE / SQL Server 



18 JAM/DBi 

Handling Stored Procedures and Their Results 

DBMS PROC [cursor name] EXEC\ 
<batch command for stored procedure> 

DBMS CONTINUE [cursor_name] 

DBMS NEXT [cursor_name] 

DBMS CANCEL [cursor_name] 

DBMS FLUSH [cursor_name] 

DBMS RETURN var 
(DBMS RETURN is available only for servers running SYBASE Ver 4.X) 

There may be multiple SQL statements in a stored procedure. All SQL 
statements will work the same way as normal JPL SQL statements. Data 
returned via select statements will be mapped to JAM variables. If the number 
of rows of fetched data is beyond the size of the destination, the stored procedure 
will be suspended until you call either, 

DBMS CONTINUE 
DBMS NEXT 

DBMS CANCEL 

to continue fetching daLa, or 
to flush the pending query and start 
executing the next command, or 
to cancel the stored procedure: 

If, however, there is no need to call DBMS CONTINUE, JAM/DBi will 
immediately continue to execute the next SQL statement in the stored procedure 
without waiting for a DBMS NEXT. A pending stored procedure will 
automatically be cancelled by any DBMS or SQL SLatement (other than DBMS 
CONTINUE, DBMS FLUSH, or DBMS NEXT) that uses the same cursor. 

New Features in JAM/DBi for SYBASE I SQL Server [5/20/90) 



JAM/DBi 19 

There are several ways to execute a stored procedure: 

In the following example, the stored procedure procl will be executed using 
the cursor cursor a: 

DBMS PROC cursor_a EXEC procl 

In the following example, stored procedure proc2 will be executed using 
default cursor and the return status of the proc2 will be trapped in the JAM 
variable status: 

DBMS RETURN status 
DBMS PROC EXEC proc2 

(DBMS REIURN is only available/or servers running SYBASE Ver 4X) 

Return-value parameters are supported only by SYBASE Ver 4.X servers. In the 
following example, the stored procedure proc3 will receive parameters 1,2, and 
50; the return parameter of the stored procedure will· be trapped in the JAM 
variable result: 

DBMS PROC EXEC declare @const int\ 
select @const = 50\ 
exec proc3 1, 2,. @result = @const output 

DBMS NEXT [cursor_name] 

cursor_name is the identifier of an open cursor. If it is null, the default 
cursor will be used. 

This command flushes the select statement pending in the stored 
procedure, and then executes the next SQL statement in the stored 
procedure. 

DBMS CANCEL [cursor_name] 

[SI2Oi90J New Features in JAM/DBi for SYBASE I SQL Server 



20 JAM/DBi 

cursor _name is the identifier of an open cursor. If it is null. the default 
cursor will be used. 

This command cancels a suspended stored procedure. 

DBMS FLUSH [cursor_name] 

cursor_name is the identifier of an open cursor. If it is null. the default 
cursor will be used. 

--_This command flushes any rows pending in the stored procedure or 
SQL SELECT statement associated with the given cursor. It is typically 
used when the last statement in a stored procedure is SELECT. 

NOTE: No return values or return parameters are set until the stored 
procedure terminates. In particular. if any selected rows are pending. 
the return value and parameters will be unavailable. If the number of 
rows fetched by SELECT or DBMS CONTINUE-exactly matches the 
number of elements in the destination variables. the SELECT is 
considered to be pending. since the "no more rows" condition cannot be 
detected until the next fetch. Use DBMS FLUSH (or DBMS NEXT. 
or DBMS CONTINUE) to ensure that no SELECT is pending. 

New Features in JAM/DBi for SYBASE I SQL Server [5/20/90] 



JAM/DBi 21 

Default Cursors 

In JAM/DBi for SYBASE, a user is automatically logged on to the server with 
two cursors (DBPROCESSes) so that a query (a JPL SQL select statement) can 
be interrupted by other non-select JPL SQL statements. There is an option for 
the DBMS LOGON command, -C<num>, which changes this default feature. 
When <num> is 1, only one default cursor will be used when logging on. Using 
-C<num> with any number other than 1 will assume two cursors; calling DBMS 
LOGON without the -C option will do the same. 

If a user is logged on with only one cursor, he may not use certain JAM/DBi 
features: 

• DBMS BROWSE and DBMS UPDATE command will be disabled. 

Whenever a query is interrupted, it will nOl be resumed. 

However, the above features can be implanted. with two named cursors. 

[SI2OI9O) New Features in JAM/DBi for SYBASE I SQL Server 



JAM/DBi B-1 

Appendix B: Database-Specific Commands 
for SYBASE / SQL Server 

Note: This appendix summarizes the database specific commands for the 
BETA release of JAM/DBi version 4.7 for SYBASE I SQL Server. 

DBMS BEGIN [transaction _name [cursor_name]] 

transaction _name is the name assigned to a transaction. 

cursor_name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command marks the starting point of a transaction, and must 
be followed by a DBMS COMMIT or DBMS ROLLBACK. 

DBMS BROWSE query 
(DBMS BROWSE is not available if server is running SYBASE Ver 3X) 

[5120190] 

query is a select statement See the Sybase command reference for 
the correct syntax for select statements. 

This command uses the default cursor to perform a browse mode 
select The browse mode select is similar to an ordinary select 
except that JAM/DBi only fetches 1 row at a time. The DBMS 
UPDATE command may be used to update the current row. DBMS 
CONTINUE will fetch the next row. 

Database Specific Commands SYBASE I SQL Server 



B-2 JAM/DBi 

DBMS CATQUERY cursor_name [TOjam_var] 

cursor _name is the identifier of an open cursor. 

jam_var is the name of a JAM variable. 

This command redirects the results of a query to a JAM variable, 
bypassing the normal JAM/DBi column mapping. The redirection 
remains in effect until you close the cursor, redeclare it. or execute 
DBMS CATQUERY cursor _name without the TO clause. 

DBMS CLOSE CURSOR cursor name 

cursor _name is the identifier of an open cursor. 

This command closes the specified cursor. 

DBMS COMMIT [transaction_name [cursor_name]] 

transaction_name is the name assigned to a transaction. 

cursor _name is the identifier of an open· cursor. If'it is null, 
default cursor will be used. 

This command marks the end point of a b'ansaction. It must be 
used following a DBMS BEGIN. 

Database-Specific Commands for SYBASE / SQL Server [5(20/90] 



JAM/DBi B-3 

DBMS CONNECf cursor_name TO DATABASE database_name 

cursor _name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

database name is the name of the database which the cursor will 
log onto. 

This command create a login (with the login aLtributes used in 
DBMS LOGON) to the server using the specified database. 

DBMS CONTINUE [cursor_name] 

[Sfl0J90] 

cursor _name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command fetches the next page of rows. 

cursor _name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command fetches the last page of rows. 

cursor_name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command fetches the next page of rows. 

Database Specific Commands SYBASE / SQL Server 

- I 



B-4 JAM/DBi 

DBMS CONTINUE_TOP [cursor Jlame] 

cursor _name is the identifier of -an -open cursor. If it is null, 
default cursor will be used. 

This command fetches the first page of rows. 

DBMS CONTINUE_UP [cursor_name] 

cursor_name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command fetches the previous page of rows. 

DBMS COUNT count var 

count_var is a JAM variable. 

This command sets count var to record the number of rows 
fetched. 

DBMS CREATE]ROC [cursor_name] EXEC <command to create stored 
procedure> 

This command creates a stored procedure. 

DBMS CREATE_TRIGGER [cursor_name] EXEC <command to create timT 
for stored procedure> 

This command creates the_trigger for a stored procedure. 

Database-Specific Commands for SYBASE / SQL Server [5120190) 



JAM/DBi B-S 

DBMS DECLARE cursor _name CURSOR FOR sqtstmt 

cursor name is an identifier for a cursor. 

sql_stmt is a Sybase SQL statement. 

This command stores sqtstmt before actual execution. 

DBMS DROP ]ROC [cursor _name] EXEC procedure_name1 [, 
procedure_name 2, ... ] 

This command removes a stored procedure. 

DBMS DROP_TRIGGER trigger _name1 [, trigger yame2, ... ] 

This command removes the trigger for a stored procedure. 

DBMS ERROR [code_var [message_var]] 

[5120/90] 

code _var and message _var are JAM variables. They m~y take any 
of the following forms: 

id 
id[int] 
id[idl 

where id is a JAM identifier and int is an integer. id [intI and 
id[id] are references to array elements. 

This command causes JAM/DBi to store error codes and messages 
in the specified variables or array clements; Error trapping remains 
in effect until you. execute the I·command DBMS ERROR with no 
arguments. 

Database Specific Commands SYBASE I SQL Server 



.... 

B-6 JAM/DBi 

JAM/DBi will assign code_var a code which consists of two 6-
digit fields separated by a colon (i.e., xxxxxx:yyyyyy). The first 
field is either the Database Library error code or the DataServer 
error code. When error trapping is on, all error and infonnational 
(severity=O) messages are trapped into code_var and message_var. 

This command prevents JAM/DBi from aborting a JPL procedure 
when an error is detected. 

DBMS EXECUTE cursor name 

cursor_name is the identifier of an open cursor. 

This command executes the· SQL statement specified. in the 
corresponding DBMS DECLARE command. 

DBMS LOGOFF 

This command exits from Sybase server. 

DBMS LOGON [-ttimeout] [-H hostname] [-U username] 
[-P password] [-I interfaceJ [-S serverJ [-C J or 2J 

-t timeout 

-H hostname 

Number of seconds that DB-Library waits for a 
login response before timing out A timeout 
value of 0 represents an infinite timeout period. 
The default is 60 seconds. 

Allows the user to specify a·host name, changing 
the value in the dynamic system table 
sysprocesses, if logging from a different 

Database-Specific Commands for SYBASE / SQL Server [5/20/90] 

,. , 



JAM/DBi B-7 

[5120}90] 

-u username 

-p password 

-I interface 

-s server 

-c [l or 2J 

computer than usual. If no host name is 
specified, the current computer name is assumed. 

Allows the user to specify a login name. Logins 
are case sensitive. 

Allows the user to specify a password. 
Passwords are case sensitive. 

Allows the user to specify the name and location 
of the interfaces file that is searched as part of 
the process of connecting to SQL Server. The 
named file contains the name and network 
address of every available SQL Server on the 
network. If this option is not used, isql looks 
for a file named interfaces. 

Allows the user fo specify the name of the 
particular SQL SeIVer . with which to 
connect. This is the name that SQL SeIVer 
looks up in the interfaces file. 

Allows the user to specify the number of 
default cursors. The default is 2. 

Note: If a flag is given without a parameter value, the 
value is taken as NULL, or 0 for timeout. 

This command connects the Sybase server. 

Database Specific Commands SYBASE I SQL Server 



B-8 JAM/DBi 

DBMS OCCUR [int] I CURRENT] [MAX int2] 

intl and int2 are integers greater than O. 

DBMS OCCUR int] specifies that intl is the fIrst row of the 
array to be filled. 

DBMS OCCUR CURRENT specifies that the array row where 
JAM's cursor is located is the first row of the array to be 
filled. 

DBMS OCCUR MAX int2 specifies that int2 is the maximum 
number of rows to be fetched. 

DBMS PRINT file_name 

file name is the name of an existing file. 

This command will print the contents of the file. You must 
have ·the SMLPRINT JAM configuration variable set to the 

. appropriate command string (see JAM Configuration and Utilities 
Guide). 

DBMS PROe [cursor _name] EXEC cmd 

cursor _name is the identifier of an open cursor. 

cmd is the batch command which executes a stored procedure. 

This command executes. a stored procedure and does column 
mapping to JAM·if there is a query within the stored procedure. 

Database-Specific Commands for SYBASE I SQL Server [5(20190) 



JAM/DBi B-9 

DBMS REDIRECI' cursor_name [TO file_name [TEE]] 

cursor _name is the identifier of an open cursor. 

file name is the name of a file which DBMS REDIRECT will open. 

This command redirects the results of a query to a file. Executing 
DBMS REDIRECI' opens the file. IT the file already exists, all 
previous data will be over-written. Subsequent executions of the 
cursor append query output to the file. The redirection remains in 
effect until you close the cursor, redeclare it, or execute the 

"command DBMS REDIRECT cursor_name without the TO clause. 

DBMS REDIRECI' cursor_name TO file _name TEE directs the query 
results to both file _name and other specified or default JAM. 
variables. If you do not use the TEE option, query results will go 
only tofile_name. 

DBMS RETURN return status var - -
(DBMS RE1VRN is available only if server is running SYBASE Ver 4X) 

return_status_var is a JAM variable. 

This command set return_status_var as the destination for the 
return status of a stored procedure. 

DBMS ROLLBACK [transaction_name I savepoint _name 

[5120190) 

transaction_name is the name assigned to a transaction. 

save point _name is· the name assigned to the savepoint of a 
transaction. 

Database Specific Commands SYBASE / SQL Server 



B-IO JAM/DBi 

cursor _name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command flushes all transactions since the last DBMS BEGIN 

or savepoint. 

DBMS SAVE savepoint_name [cursor_name] 

savepoint _name is the name assigned to the savepoint of a 
transaction. 

cursor_name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

This command sets a savepoint within a transaction. 

DBMS SET_BUF integer' [cursor_name] 

integer is an integer greater than or equal to O. 

cursor_name is the identifier of an open cursor. If it is null, 
default cursor will be used. 

DBMS SET_BUF with a non-zero number will set the DBBUFFER 
option with the specified number of rows. This option must be set 
for DBMS CONTINUE_UP, DBMS CONTINUE_TOP, and DBMS 

CONTINUE_BOT commands to function. 

DBMS SET_BUF with integer = 0 resets the buffer. 

DBMS START row number 

row_number is a positive integer. 

Database-Specific Commands for SYBASE I SQL Server [5120190] 



JAM/DBi B-ll 

This command causes JAM/DBi to read and ignore a specified 
number of records (row_number - 1) before fetching the remaining 
query results into JAM. 

DBMS SUPREPS intl [, int2 ... int25] 

intl. int2. ... inl25 are integer references to columns in a SELECf 

statement. Thus. DBMS SUPREPS 1, 3 refers to the first and third 
columns in a subsequent SELECf. 

, "This command suppresses repeating values in the column when the 
data are fetched into a JAM array: Suppression of repeated values 
remains in effect until you execute a DBMS SUPREPS with no 
arguments. 

DBMS UPDATE table_name SET colj = expression 1 [, col_2 = 
expression 2 ... ] 

'(DBMS UPDATE is not available if server is running SYBASE Ver 3.X) 

This command is used to update a row in a browsable table under 
browse mode. For this command to be invoked: .' 

• The table must be brow sable (see DB-Library Reference 
Manual); 

You must have previously executed DBMS BROWSE 

DBMS USE database name 

This command changes the current database. 

[5(20190] Database Specific Commands SYBASE I SQL Server 



JAM/DBi 
Release 5 

Copyright (C) 1992 JYACC, Inc. 



Document Structure 
The JAMlDBi Manual is printed in one volume. It is divided into the following sections: 

• JAM/OBi Overview - An overview of the JAMIDBi product and the de
velopment process. This section describes JAMlDBi from the "big pic
ture" viewpoint It describes all the pieces of a sample JAM/OBi applica
tion. 

• Developer's Guide - A guide to using JAM/OBi features. This section is 
divided into four main sections:-accessing a database with JAM/OBi 
structures, sending JAM values to a database, sending database values to 
JAM variables. and using transactions. 

• Reference Guide - Manual pages for the dbms commands, the JAM/OBi 
library functions, and the JAMlDBi utilities. 

• Notes - A description of features and discussion of topics particular to an 
engine. 

• Appendices - These include lists of keywords, error codes, and sugges
tions on using JAM more effectively with a JAM/OBi application. 

• Index 

Terminology 
Terms will be defined when discussed. However. it is necessary to define a few that will be 
used throughout the manual. 

• database 

• vendor 

• engine 

Notation 

A physical database consisting of tables and other data. 

A supplier of a DBMS engine. 

A DBMS product. An engine is identified by a specific ven
dor and version. 

To make this manual easier to use, we use the notation described below. 

• literal 

• SMALL CAPS 

May 92 

We use this font for text that you will type verbatim. In par
ticular, we use this font for all examples. We also use it when 
naming a JAM library function, a JPL command, or a utility. 

It is customary to put SQL keywords in uppercase. We fol
low this convention. In addition, in synopses of dbms com-

JAM/OBi Release 5 



JAMlDBi Document Guide 

• italics 

• [xl 

• x ... 

ii 

mands, we put dbms keywords in uppercase. Please note 
that the use of case is purely stylistic. Case is significant only 
for identifiers-names of fields, columns, tables, variables. 
functions, etc. 

We use bold italics to show where variable or procedure 
names should appear. Text in this font should be replaced 
with a specific, appropriate value in an application. 

Brackets indicate an optional element. The brackets should 
not be typed. 

Ellipses indicate that an element may be repeated one or 
more times. 

JAMlDBi Release 5 



TABLE OF CONTENTS 
I. JAM/DBi Overview ............................... 1 

Chapter 1. 
Introduction ......................................... 1 

Chapter 2. 
What is JAMlDBi? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2.1. Components of JAM/DBi Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
2.2. Components of JAM/DBi .......................................... 5 

2.2.1. JAM/DBi Libraries ........................................ 5 
2.2.2. Source Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2.3. Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2.4. Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.3. Components of a J AM/DBi Application ............................... 6 

Chapter 3. 
JAMlDBi Application Development. • . . • • • • . . • . • . . • • • . • . . 9 

3.1. Creating and Editing Application Screens.................. . ........ ... 9 
3.1.1. Mapping Columns to JAM Variables .......................... 10 

Automatic Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Aliasing ................................................. 10 

3.1.2. Data Validation ........................................... 11 
3.2. Error Handling .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
3.3. Iterative Application Testing ........................................ 12 

Chapter 4. 
JAM/DBi Control Flow ••. • • • • . • • • • • . • • . • • • • • • . • . • • • • . . 13 

4.1. Sample Application - User's View ................................... 14 
4.2. Sample Application - Developer's View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4.2.1. Database Tables emp, ace, and review................. .. ... 17 
4.2.2. Source Module dbiini t . c ................................ 19 
4.2.3. Data Dictionary and Initialization File ......................... 21 
4.2.4. JAM Screens ............................................. 22 

Main Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

May 92 JAM/OBi Release 5 iii 



Employee Screen .......................................... 26 
Salary History Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

4.3. JAM/DBi Control Row SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
4.3.1. Variable Substitution ....................................... 36 
4.3.2. Cursors ..................................... . . . . . . . . . . . . . 36 

Fetching a SELECT Set Incrementally .. , . . . . . . . . . . . . . . . . . . . . . . . . 37 
Using Multiple SELECT Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

4.3.3. Error Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Chapter 5. 
JAM/DBi Philosophy ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

5.1.JAM/DBiFeatures ................................................ 40 
5.1.1. SQL-Based ............................. '" .. . . . ...... . .. . 40 
5.1.2. OS Portability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
5.1.3. Vendor Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
5.1.4. Multi-engine Support. . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . 41 
5.1.5. Multi-connection Support ................................... 42 
5.1.6. Prototyping . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

5.2. JAM/DBi Development Hints ....................................... 44 

II. Developer's Guide ......•...•••....•••..•..••..•. 45 

Chapter 6. 
Introduction to Development •...••....•..••.•..••••••.• 47 

6.1. SQL Variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
6.2. JAM/DBi Commands .............................................. 48 

6.2.1. JPL versus C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

Chapter 7. 
Access and Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

7.1. Initializing One or More Engines .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
7.1.1. Initializing an Engine in dbiini t . c ......................... 52 
7.1.2. Initialization Procedure ..................................... 54 
7.1.3. Setting the Default Engine .. . .... . ..... .. . . ..... .. ....... . .. . 54 

iv JAMlDBi Release 5 May 92 



7.2. Connecting to a Database Server . . . . .. . . . .. . . .. . . . .. . . . .. . . . .. . . .. . . . 55 
7.2.1. Connections to Multiple Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
7.2.2. Multiple Connections to a Single Engine ....................... 56 

7.3. Using Cursors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
7.3.1. Using the Default Cursor. . . .. . .. . . . . . . . . . .. . . . .. . . .. . . . . . . . . 57 
7.3.2. Using a Named Cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Declaring a Cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Executing a Cursor ........................................ 59 
Modifying or Closing a Cursor ............................... 60 

Chapter 8. 
Data Flow from JAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

8.1. Colon Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
8.1.1. Colon-plus Processing. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Step 1. Perform Standard Colon Preprocessing. . . . . . . . . . . . . . . . . . . 64 
Step 2. Determine the Variable's JAM Type . . . . . . . . . . . . . . . . . . . . . 64 
Step 3. Format a Non-null Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

8.1.2. Colon-equal Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 68 
8.1.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

A Field with Default Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
A Variable with a Date-time Edit and a Null Edit. . . . . . . . . . . . . . . . . 70 
A Variable with a Digits Only Character Edit and a C-Type Edit . . . . . 71 

8.2. Using Parameters in a Cursor Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
8.2.1. Parameter Substitution and Formatting. . . . . . . . . . . . . . . . . . . . . . . . . 73 

Examples.... .... . ...... ........... . . ..... ... . .... ...... . 74 

Chapter 9. 
Data Flow from a Database. • • • • • . • • . . . . • . . • . . . • . • • . . . • . 77 

9.1. Data Fetched by SELECT • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 78 
9.1.1. JAM Targets for a SELECT ••••••••••••••••••••••••••••••••••• 78 

Automatic Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
Aliasing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

9.1.2. Number of Rows Fetched ................................... 83 
Scrolling Through a select Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
Controlling the Number of Rows Fetched. . . . . . . . . . . . . . . . . . . . . . . 88 
Choosing a Starting Row in the select Set. . . . .. . . . .. . . . . . . . .. . . . 88 

9.1.3. Format of select Results .................................... 89 

May 92 JAM/OBi Release 5 v 



Character Column 
Date-time Column 
Numeric Column ......................................... . 
Fetching Unique Column Values ............................. . 

9.1.4. Redirecting select Results to Other Targets ..................... . 
9.2. Status and Error Codes ............................................ . 

Chapter 10. 
Hook Functions ...................................... 

89 
89 
89 
90 
92 
93 

95 
10.1.0NENTRYFunction ............................................. 96 

10.1.1. ONENTRY Function Arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
10.1.2. ONENTRY Return Codes .................................. 96 
10.1.3. Example ONENTRY Functions ............................. . 

10.2. ONEXIT function ............................................... . 
97 
98 
98 
98 
98 
99 

10.2.1. ONEXIT Function Arguments .............................. . 
10.2.2. ONEXIT Return Codes ................................... . 
10.2.3. Example ONEXIT Function ................................ . 

10.3. ONERROR Function ............................................ . 
10.3.1. ONERROR Function Arguments ............................ . 100 
10.3.2. ONERROR Return Codes .................................. 101 
10.3.3. Example ONERROR Function 101 

Chapter 11. 
Transactions 103 

11.1. Engine-specific Behavior. .. ...... . ... .... ..... . . .... . .. ....... . . ... 104 
11.2. Error Processing for a Transaction ................................... 105 

m. Reference Guide ..••.••..••••.•....•..••.•...••• 109 

Chapter 12. 
JAM/OBi Reference Overview ••..•..•.•.••••..•..•..... III 

Chapter 13. 
DBMS Global Variables ...•••.•...•..••....••.....••.• 113 

vi JAM/OBi Release 5 May 92 



13.1. Variable Overview ............................................... 113 
13.1.1. Error Data .............................................. 113 
13.1.2. Status Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 

13.2. Variable Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 
@cIrnengerrcode 
@cIrnengerrmsg 
@cIrnengreturn 
@cIrnengwarncode 
@cIrnengwarnmsg 
@cIrnretcode 
@cIrnretmsg 
@cIrnrowcount 
@cIrnserial 

Chapter 14. 

contains an engine-specific error code ...............•.... 115 
contains an engine-specific error message ................. 117 
contains a return code from a stored procedure .........•... 118 
contains an engine-specific warning code. . . . . . . . . . . . . . . • .. 120 
contains an engine-specific warning message. . . . . . . . . . . . . .. 121 
contains an engine-independent error or status code ......... 122 
contains an engine-independent error or status message ...... 124 
contains a count of the number of rows fetched to JAM ...... 125 
contains a serial column value after performing INSERT ..... 127 

DBMS Commands 129 
14.1. DBMS Command Overview ....................................... 129 
14.2. Command Reference...... . .. ..... . . ..... .. ...... ..... . .... . .. ... 131 
ALIAS 

BINARY 

CATQUERY 

CLOSE_ALL_CONNECTIONS 

CLOSE CONNECTION 

CLOSE CURSOR 

CONNECTION 

CONTINUE 

CONTINUE_BOTTOM 

CONTINUE _DONN 

CONTINUE_TOP 

CONTINUE_UP 

DECLARE CONNECTION 

DECLARE CURSOR 

ENGINE 

EXECUTE 

FORl!l\T 

OCCUR 

ONENTRY 

ONBRROR 

May 92 

set aliases for a declared or default SELECT cursor. . . . . . . . .. 133 
defme JAM/DBi variables for fetching binary values ........ 136 
concatenate a full result row to a JAM variable or a file ...... 138 

close all connections on an engine ................•...... 141 

close a declared cOImection . . . . . . . . . . . . . . . . . . . • . . . . . . . . . 142 

close a named or default cursor. . . . . . . . . . . • . . . . . . . . . . . . .. 143 

set or change the default coImection . • . . . . . . . . . . . . . . . . . . .. 145 

fetch the next set of rows associated with a SELECT cursor ... 146 

fetch the last page of rows associated with a SELECT cursor.. 148 

fetch the next set of rows associated with a SELECT cursor ... 149 

fetch the first page of rows associated with a SELECT cursor.. 150 
fetch the previous page of rows associated a SELECT cursor .. 152 

create a named COImection to a server and database. . . . • . . . .. 154 
declare a named cursor for a SQL statement .........•.•... 155 
set or change the default engine ..•..................•... 157 
execute the SQL statement declared for a named cursor ...... 158 

format catquery values .........................•...... 160 
change the behavior of a select cursor that writes to JAM arrays 162 

install an entry function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 164 

set the behavior of the error handler ...................... 166 

JAM/OBi Release 5 vii 



ONEXIT 

START 

STORE 

UNIQUE 

WITH CONNECTION 

WITH CURSOR 

WITH ENGINE 

Chapter 15. 

install an exit handler ................................ . 

specify a starting row in a SELECT set .................. . 

set up a continuation file for a named or default cursor ...... . 

suppress repeating values in selected columns ............. . 

use a named connection for the duration of a statement ...... . 

use a named cursor for the duration of a statement 

use a named engine for the duration of a statement .........• 

168 
170 
171 
174 
175 
177 
179 

JAMlDBi Library Reference. . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 
dm_bin_create_occur 
dm_bin_delete_occur 
dm_bin_get_dlength 
dm_bin_get_occur 
dm_bin_length 
dm_bin_max_occur 
dm_bin_set_dlength 
dm_dbi_init 
dm dbms 
dm_dbms_noexp 
dm_expand 
dm_getdbitext 
dm init 
dm reset 
dm_sql 
dm_sql_noexp 

Chapter 16. 

get or allocate an occurrence in a binary variable ........... . 
delete an occurrence in a binary variable ................. . 
get the length of an occurrence in a binary variable ......... . 
get the data in an occurrence of a binary variable ........... . 
get the maximum length of an occurrence in a binary variable . 
get the maximum number of occurrences in a binary variable .. 
set the length of an occurrence in a binary variable ......... . 
initialize JAM for JAMJDBi ........................... . 
execute a DBMS command directly from C ..•..•.......... 
execute a DBMS command without colon preprocessing .... . 
format a string for an engine ........................... . 
get the text of the last executed dbms or sql command ...... . 
initialize JAM/DBi to access a specific database engine ..... . 
disable support for a named engine ..........•............ 
execute a SQL command directly from C ................. . 
execute a SQL command without colon preprocessing ...... . 

183 
184 
185 
186 
187 
188 
189 
190 
191 
193 
194 
198 
199 
201 
202 
203 

JAM/DBi Utility Reference 205 
f2tbl 
tb12f 

create a database table from a JAM form. . . . . . . . . . . . . . . . .. 206 
create a JAM screen from a database table. . . . . . . . . . . . . . . •. 213 

V. Appendixes ..................................... 239 
AppendixA. 

Keywords ....................................................... A-I 
Appendix B. 

Error and Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. B-1 

viii JAM/OBi Release 5 May 92 



Appendix C. 
Using the JAM Screen Editor ....................................... C-I 

May 92 JAMlDBi Release 5 ix 



JAM/DBi 
Overview 



Overview 

Chapter 1. 

Introduction 

This document is intended for developers who are using JAM/DBi® for the rust time, or 
for those who wish to gain a better understanding of this product. This document is intended 
to provide a conceptual overview of JAM/OBi. It will help you understand and use JAM/ 
OBi. 

JAM/OBi is part of a family of JYACC products. The following table describes the rest of 
the family: 

Product Description 

JAM® JYACC Application Manager 

JAM/OBi Report writer Report Writer for JAMIDBi 

JAM/Pi for Motif Presentation interface for the Motif GUI 

JAM/Pi for Microsoft Windows Presentation interface for Microsoft Windows 

JAM/Pi for Graphics Presentation interface for Graphics 

Jterm® Color Terminal Emulator optimized for JAM 

If you are upgrading from Release 4.8, please read Chapter 21. "Summary of New Fea
tures" and Chapter 22. "Release 4.8 Compatibility." 

May 92 JAM/OBi Release 5 



JAM/DBi Overview 

Chapter 2. 

What is JAM/OBi? 
J AM is a software toolkit that aids developers in prototyping and building applications with 
sophisticated interfaces. JAM provides tools for creating screens that accept and display 
data for end users, and that define the control flow of an application. 

JAM/OBi is a portable interface between JAM applications and relational database sys
tems. It provides facilities for the gamut of data manipulation needs. In particular, a devel
oper may build a JAM/OBi application which permits end users to perform any of the fol
lowing: 

• Retrieve values from database tables for display on screens. Queries may 
be hard-coded, or they be created at runtime according to an end user's 
specifications. 

• Add rows to or delete rows from database tables. 

• Update existing rows. 

• Create or drop database tables. 

• Execute any other function provided by the database's dynamic query in-
terface (e.g., execute a stored procedure, rollback a transaction, etc.). 

The rest of this document assumes that you are familiar with JAM and the concepts dis
cussed in the JAM Overview. In addition, it assumes that you have some database experi
ence. 

2 JAM/DBi Release 5 May 92 



2.1. 

COMPONENTS OF JAM/OBi 
ARCHITECTURE 
There are several layers in the JAM/OBi architecture. 

1. JAM Application - This typically includes the following: 

• Menu screens for control flow in the application; 

• Screens for entering new values to a database; 

• Screens for viewing and updating information in a database; 

• Related hook functions. 

2. JAM/OBi - The interface between a JAM application and a DBMS cli
ent library. The interface has a generic part and one or more specific parts 
called "support routines." A support routine provides access to a particu
lar DBMS product, also called an "engine." 

3. DBMS Client Library - The interface that controls all programmed ac
cess to a database. This is the interface between JAM/OBi and a DBMS. 
The DBMS controls all access to the database. 

4. DBMS Network Services - The network services that connect a user's 
client library with one or more DBMS servers. 

S. DBMS Server. 

See the figure below. 

May 92 JAM/OBi Release 5 

Overview 

3 



JAM/OBi Overview 

:; 
~ ,. 
:~ 

~ 

I 
~ 

~": 

~ 

CLIENT 

r
··"········· ., 

~~ 
~ 
~ 

§ERVER 

Engine 1 

End User 

JAM/OBi 

Figure 1: Components of JAM/OBi Architecture. 

4 JAM/OBi Release 5 

l 
Application 

Engine 2 

May 92 



Overview 

2.2. 

COMPONENTS OF JAM/DBi 
The JAM/OBi product is collection of programs and data files. In the sections below, we 
briefly discuss Lhe main components of the product. For more information, see the README 

file included with the dislribution. 

2.2.1. 

JAM/DBi Libraries 
The JAM/OBi interface is written using tools provided by your database vendor, either em
bedded SQL or a C language API (applications programming interface). A JAM/OBi de
veloper does not need to write any code using embedded SQL or an API, but in order to link 
an application he or she must have access Lhe header files and libraries supplied with these 
tools. The README provided with the JAM/OBi dislribution names and describes the nec
essary products. 

Each JAM/OBi supplies a "common" library and one or more engine-specific libraries. The 
additional engine-specific libraries are provided so that JAM/OBi may support different 
versions of a database, or support different modes, for example on MSDOS, real mode and 
Windows mode. The library names are database-specific, usually in the form libdb. a or 
llibdb.lib with db representing a vendor name. For example, db may be ora for 
ORACLE or syb for SYBASE.The JAM/OBi README file names and describes Lhe li
braries for your database. 

2.2.2. 

Source Code 
The JAM/OBi source code module is dbiini t . c. Customized for a particular engine, it 
specifies header files needed by JAM/OBi, declares the name of the support routine for the 
engine, and sets up some defaults for handling errors and case-sensitivity. 

May 92 JAM/OBi Release 5 5 



JAl\oVDBi Overview 

2.2.3. 

Header Files 
JAM/OBi supplies some header files. The file clmerror. h defines symbolic constants 
and integer codes for JAM/OBi and DBMS errors. The README file provides a complete 
list of the distribution header files. 

2.2.4. 

Makefile 
Once you have edited the makefile to describe the engine version and the pathname to its 
installation, you must run the makefile to create the JAM/OBi executables, jamdbi, 
jxdbi, f2tbl, and tb12f. See the installation notes and instructions in the makefile for 
more information. 

2.3. 

COMPONENTS OF A JAM/OBi 
APPLICATION 
New users are sometimes confused about the differences between JAM applications and 
JAM/OBi applications. They share many similarities, as shown in the table below. 

JAM Application 

JAM Screens 
Data Dictionary 
Hook Functions (JPL and/or C) 

JAM Executable 

JAM/OBi Application 

JAM screens 
Data Dictionary 
Hook Functions (JPL and/or C); Hook functions 
include database function calls 
JAM/OBi Executable 

In a JAM/OBi application, you can log on, query, or update a database. These functions 
cannot be performed in a standard JAM application unless you write your own database 
interface. 

If you are familiar with JAM, you are familiar with the two types of JAM executables-the 
authoring executable and the application executable. (If not, see the introductory chapters of 
the JAM Programmer's Guide.) Similarly, JAM/OBi has two executable versions-the 
authoring executable, sometimes called j xdbi, and the application executable, sometimes 

6 JAM/OBi Release 5 May 92 



Overview 

called jamdbi. The authoring executable links the developer's hook functions with the 
JAM Screen Manager, JAM Executive, and authoring libraries, as well as the JAM/OBi 
interface libraries and the engine's libraries. It is used to create and test an application. The 
application executable, on the other hand, is a runtime program which you may distribute to 
end users. It does not provide access to the JAM Screen, Keyset, or Data Dictionary Editors. 

The tables below list and compare the files which developers must link when creating the 
executables. We describe the JAM/OBi files at the end of the section. 

JAM Authoring Executable 

jxmain.o 
funclist.o 

JAM Authoring Library OX) 
JAM Executive Library OM) 

JAM/OBi Authoring Executable 

jxmain.o 
funclist.o 
dbiinit.o 
JAM Authoring Library OX) 
JAM Executive Library OM) 

JAM Screen Manager Library (SM) JAM Screen Manager Library (SM) 
JAM/OBi Common Interface Library (DM) 
JAM/OBi Engine-specific Interface Library 

(lor more for each DBMS) 
DBMS Client Library (1 or more for each DBMS) 

JAM Application Executable JAM/OBi Application Executable 

jmain.o 
funclist.o 

JAM Executive Library OM) 
JAM Screen Manager Library (SM) 

jmain.o 
funclist.o 
dbiinit.o 
JAM Executive Library OM) 
JAM Screen Manager Library (SM) 
JAM/OBi Common Interface Library (DM) 
JAM/OBi Engine-specific Interface Library 

(lor more for each DBMS) 
DBMS Client Library (1 or more for each DBMS) 

The JAM/OBi Common Interface Library includes the generic routines supported by all 
engines. It is the interface between JAM and all the engine-specific processing for access
ing a database. 

The JAM/OBi Engine-specific Interface Library is also known as the "support routine." An 
application must have a support routine for each engine the application uses. The support 
routine contains all the engine-specific code required by JAM/OBi. The JAM/OBi Com
mon Interface Library caIls an engine's support routine to make the appropriate calls to the 
DBMS Client Libraries. 

May 92 JAM/OBi Release 5 . 7 



JAM/OBi Overview 

The DBMS Client Libraries are supplied by the database vendor. These libraries control all 
programmed access to a DBMS. 

8 JAM/OBi Release 5 May 92 



Overview 

Chapter 3. 

JAM/DBi Application 
Development 
Many of the issues involved in developing a JAM/OBi application overlap those involved 
in developing a JAM application. Here we emphasize issues specific to JAM/OBi applica
tions. If necessary, you should see the companion chapter in the JAM Overview for more 
information on topics like control strings, the Screen Editor, and the Data Dictionary Editor. 

3.1. 

CREATING AND EDITING APPLICATION 
SCREENS 
Generally, a developer starts creating a new application by creating screens. The developer 
may use the JAM/OBi authoring executable, jxdbi, or the JAM authoring executable, 
jxforrn. In environments where memory is limited, such as MS-DOS, jxdbi may be too 
large and the developer usually mustdo all development work with jxform. If an applica
tion screen will be based on a particular table in the database, the developer may use the 
JAM/OBi utility tb12 f. This utility creates a JAM screen with a field for each column in 
the table. JAM assigns field characteristics based on the column's data type. The utility pro
vides a convenient way to develop a maintenance application for a database table, since the 
utility also creates the JPL procedures for adding, deleting, and updating rows in the table. 

May 92 JAM/OBi Release 5 9 



JAM/OBi Overview 

3.1.1. 

Mapping Columns to JAM Variables 
JAM/OBi provides a simple way of moving data back and forth between JAM and a 
DBMS. JAM/OBi transfers a SQL statement from the application to the DBMS. When the 
DBMS returns values, JAM/OBi transfers those values 10 JAM variables. 

A JAM variable is any of the following: 

• a JPL variable created with a vars statement, 

• a screen variable 

• an LDB entry (i.e., a data dictionary entry with a scope of 2 or greater) 

JAM/OBi provides two ways of mapping a database column 10 a JAM variable: automatic 
mapping and aliasing. 

Automatic Mapping 
By default, JAM/OBi automatically maps a column name in a SELECT statement 10 a JAM 
variable with the same name. Suppose the current screen sales. jam contains a large 
scrolling array called i tern_no, and the database table product contains a column also 
called item_no. Then, 

sql SELECT item no FROM product 

or, 

sql SELECT product.item_no FROM product 

would place the values of column i tern no in the array i tern no. Note that a column 
name always maps to an unqualified field-name. -

If an application executes 

sql SELECT * FROM product 

JAM/OBi searches for a JAM variable matching each column in the table product. If it 
finds the variable, it writes the column's values 10 the variable. If it does not, it ignores the 
column. 

Aliasing 
In some circumstances, automatic mapping is undesirable or even impossible. For example, 
an application may use one screen 10 show values from two columns with the same (unqual-

10 JAM/OBi Release 5 May 92 



Overview 

ified) name, or a table may have column names that are not valid JAM variable names. In 
these cases, developers may specify an alias for one or more database columns using the 
command DBMS ALIAS.l 

For example, ifa table contained a column named stock" id, the application could not use 
automatic mapping because a caret is not a valid character in JAM variable names. The 
application must set up an alias for the column. For instance, 

dbms ALIAS "stock"id" stock_id, "company"name" company 
sql SELECT stock"id, company"name, dividend FROM stocks 

JAM/OBi would fetch the values of stock" id to the alias stock id. It would fetch the 
values of company"name to the alias company. (The quotes are used to help JAM/OBi 
parse the column name.) Since no alias was given for the column price, JAM/OBi would 
use automatic mapping for this column. 

In a DBMS ALIAS statement, a comma separates one column-variable pair from another. 

3.1.2. 

Data Validation 
JAM provides extensive character edits and field validation. In JAM/OBi applications, de
velopers use these features to help end users enter and retrieve data easily. Rather than re
placing database rules, these edits supply an additional layer of software between the end 
user and the DBMS. While the tables' rules will ensure the integrity of entered data, a devel
oper can simplify the end users' task-for example, by creating item-selection screens list
ing valid data. In addition to providing a better interface, an application that performs some 
validation at the frontend is also more efficient because it reduces the number of trips to the 
server. 

3.2. 

ERROR HANDLING 
Error handling is an essential component of any database application. In developing a data
base application, there is often a need for two different approaches to error handling. Devel
opers require low level error messages during the development cycle, while end users usual
ly require high level error messages at runtime. 

1. Some engines also support aliasing wilhin a SELECT statement. See Ihe section "Using Ihe Engine's SELECT 

Syntax" on page 82 for more information. 

May 92 JAM/OBi Release 5 11 



JAM/OBi Overview 

J AM/OBi provides several features to assist the developer with these conflicting needs. For 
any database error, the application has access to a JAM/OBi error code and message and an 
engine error code and message. With the use of a single statement in an application, the de
vcloper may alter the way errors are handled and what messages are displayed. It allows the 
developcr to switch easily between running in development mode and prototype mode, and 
to see the error message appropriate to the mode. The use of two error handlers is not limited 
to the development cycle. An application may use one error handler for standard endusers 
and another for the DBA, for instance. 

JAM/OBi provides several global variables that hold current error and status information. 
An application does not need to define its own variables to trap this data. The values are 
accessible from JPL or C. 

3.3. 

ITERATIVE APPLICATION TESTING 
Unless your environment has memory constraints, you may use the JAM/OBi authoring ex
ecutable to switch between editing with the Screen and the Data Dictionary Editors, and 
testing with Application Mode. JAM/OBi is turned off in the Screen Editor (draw and test 
modes) to prevent unintended updates to a database. Without any compilation, you may use 
Application Mode to test control flow and all JPL procedures in the application. If you are 
using C hook functions, you must compile and link before testing them. 

12 JAM/OBi Release 5 May 92 



Overview 

Chapter 4. 

JAM/OBi Control Flow 

This chapter discusses data flow in JAM/OBi applications. To demonstrate the concepts of 
JAM/OBi, it uses a simple example, presenting how the application appears to an end user, 
and how it appears to a developer. This application is based on the one presented in the JAM 
Overview. An engine-specific version is supplied in theJAM/DBi samples directory. 

The application consists of three screens. With the first screen, an end user logs on to the 
database and chooses an area of interest. The next two screens provide access to employee 
rows stored in three tables. In the application, we use JPL procedures to perform the follow
ing: 

• Log on and log orf a database. 

• Query tables, retrieving a single row of values to a JAM screen. 

• Query a table, retrieving multiple rows into scrolling arrays. 

• Update values in a table. 

All the procedures are written in JPL. 

This section is not a summary of the product's features. Instead, it uses a fairly simple exam
ple to demonstrate control flow in a JAM/OBi application. An understanding of the con
cepts discussed here will help you understand the rest of this document. 

Developers interested in creating their own "quick start" application should consider using 
the utility tb12f to build a small application. tb12f is documented in the Reference 
Guide in this document. 

May 92 JAM/OBi Release 5 13 



JAM/OBi Overview 

4.1. 

SAMPLE APPLICATION - USER'S VIEW 
The first screen presented to the end user is mainscrn. jam. 

Enter username , password. Press NL to sign on & enter menu mode. 

Figure 2: Human Resources Application Main Menu mainscrn. 

The user must enter a user name and password. If the user has permission to log on, JAM 
logs on the user and toggles the screen from data entry mode to menu mode. When the user 
chooses an item from the menu, JAM displays the appropriate screen. If the user chooses 
Personnel, JAM displays the screen empscrn shown below. 

14 JAM/OBi Release 5 May 92 



Overview 

PF1:Last Name Search PF2:History PF3:Update PF4:Next PFIO:Main Menu 

Figure 3: Personnel Application Employee Screen empscrn. 

The end user enters data in !.he screen emps c rn. j am to query the database, and to update 
rows. The user queries the database by typing an employee surname in the frrst field and 
pressing PE:l.lfmore than one employee has !.he same last name,the rows will be retrieved 
one at a time. The user may press PF4 to see the next employee row with !.he specified last 
name. If the user presses PFl without supplying a name, !.he application retrieves all em
ployee rows in alphabetical order. 

May 92 JAM/OBi Release 5 15 



JAM/OBi Overview 

PF10: Main Menu 

Figure 4: Personnel Application Salary History Window salhist. 

When JAM displays a row, the user may press the PF2 key to review the employee's salary 
history. 

4.2. 

SAMPLE APPLICATION - DEVELOPER'S 
VIEW 
In this section, we show how the main components of this application appear to a developer. 
In particular, we describe the database tables, JAM screens, and JPL functions constituting 
the application. 

16 JAM/OBi Release 5 May 92 



Overview 

4.2.1. 

Database Tables emp, acc, and review 
Below arc sample SQL statements for the application tables. Please note that some engines 
use different names for column datatypes. The table entries represent seven employees. 

The table emp has eight columns. Each row stores an employee's social security number, 
name, home address, and current grade. 

CREATE TABLE emp ( 
ssn CHAR(ll) 
last CHAR(20), 
first CHAR(12), 
street CHAR(20), 
city CHAR(lS), 
st CHAR(2), 
zip CHAR(S), 
grade CHAR(l)) 

ssn last first 
038-68-6826 Jones Barnabus 
122-98-6541 Aumond Hilary 
122-99-4102 Jones Michael 
139-42-1651 Blake Norman 
154-32-6610 Cory Richard 
310-77-3997 Grundy Janet 
310-32-0084 Jones John P 
Figure 5: Table emp 

NOT NULL, 

street 
321 West 11 St 
11-12 Front St 
5 Maple Drive 
34 Concord Ave 
411 Ann St 
70-2 Poe Ave 
9 Vern Terrace 

city st zip 
Albuquerque NM 87124 
Albuquerque NM 87124 
Albuquerque NM 87124 
Albuquerque NM 87124 
Albuquerque NM 87124 
Albuquerque NM 87124 
Albuquerque NM 87124 

grade 
C 
E 
B 
D 
D 
D 
D 

Table acc has three columns. Each row stores an employee's social security number, cur
rent salary, and a number of tax exemptions. 

CREATE TABLE acc ( 
ssn CHAR(ll) NOT NULL, 
sal NUMERIC(lO.2), 
exmp NUMERIC(l)) 

May 92 JAM/OBi Release 5 17 



JAM/OBi Overview 

ssn 
03~8-6826 
122-98-6541 
122-99-4102 
139-42-1651 
154-32-6610 
310-77-3997 
310-32-0084 

sal 
29500.00 
37800.00 
26000.00 
89500.00 
43100.00 
38000.00 
47500.00 

Figure 6: Table ace 

exmp 
1 
3 
3 
2 
4 
1 
5 

Table review has four columns. Each row stores an employee's social security number, a 
hire date or review date, a new salary if it has changed since the previous review, and a new 
grade ifit has changed since the previous review. Ifnewsal or newgrade is null, the em
ployee was reviewed but there was no change in salary or grade. 

CREATE TABLE review 
ssn CHAR(ll) NOT NULL, 
revdate DATE NOT NULL, 
new sal NUMERIC (10.2) , 
newgrade CHAR(l) ) 

ssn revdate newsal newgrade 
038-68-6826 12/13/90 49500·00 c 
03~8-6826 12/11/89 45000.00 NULL 
03~8-6826 12/15/88 NULL NULL 
03~8-6826 12/14/87 38500.00 D 
122-98-6541 04/10/90 37800.00 NULL 
122-98-6541 04/08/89 31000.00 E 
122-99-4102 05/01/90 29000.00 NULL 
122-99-4102 05/01/89 25200.00 E 
139-42-1651 11/12/90 89500.00 NULL 
139-42-1651 11/08/89 81000.00 B 
139-42-1651 11/10/88 67500.00 C 
139-42-1651 11/10/87 NULL NULL 
139-42-1651 11/08/86 53000.00 D 
154-32-6610 02/Ot,KJl 43100.00 D 
310-77-3997 07/16190 38000.00 D 
310-77-3997 07/14/89 30000.00 E 

18 JAM/OBi Release 5 May 92 



310-32-0084 
310-32-0084 

03/01/91 
03/01/90 

Figure 7: Table review 

47500.00 
43000.00 

o 
E 

Overview 

The sample application permits an end user to view rows from these tables and to update 
data in some columns. 

4.2.2. 

Source Module dbiini t . c 
To save memory, JAM supplies several features as optional subsystems. These subsystems 
include soft keys and alternate scrolling as well as OBi. The JAM/OBi subsystem is in
stalled by setting the OBI macro in jrnain. c (or jxrnain. c) or by setting a compiler di
rective. 

The application must initialize an engine with the function drn _ ini t before making a con
nection. Developers may call this function directly or they may use the vendor structure in 
dbiini t . c to store the engine initialization information. JAM/OBi supplies a version of 
this file customized for your engine. 

An excerpt from dbiini t . c is shown below. The boldface text shows the statements that 
would install a fictional DBMS called XYZdb for the.sample application. 

'include "smdefs.h" 
'include "dmerror.h" 
#include "smusrdbi.h" 
#include "dmuproto.h" 

Hif DBlVENDORLIST 
1* Support routine function prototypes *1 
1* Copy the following line for each support routine *1 
1* that is to be installed. Uncomment each copy, *1. 
1* and replacle 'support_routine' with the name of *1 
1* the support routine to be installed. *1 

1* extern int support_routine PROTO«int»; *1 
extern int ~xyzsup PROTO«int»; 

1* Add one entry to the following structure for each database support*1 
1* routine that is to be installed. The form of each entry is as *1 
1* follows: 

1* 

May 92 JAMIDBi Release 5 

*1 
*1 

19 



JAM/OBi Overview 

1* ( "engine_name", support_routine, case_flag, (char *) 0 }, *1 
1* *1 
1* Replace 'engine_name' with the name of the database you are *1 
1* installing. Replace 'support_routine' with the name of the *1 
1* support routine for that database. Replace 'case_flag' with */ 

1* one of: */ 
1* 
1* 
1* 
1* 
1* 
1* 
/* 

1* 
1* 
1* 
1* 
1* 

DM PRESERVE CASE 

DM FORCE TO LOWER_CASE 

(Use the default value for the 
case_flag specified in 

*/ 

*/ 
the support routine) */ 

(No case conversion is performed on */ 

database columns) 
(Maps upper and mixed case column 
names to lower case jam field 
names during a database query) 

(Maps lower and mixed case column 
names to upper case jam field 
names during a database query) 

*/ 
*/ 
*/ 
*1 
*1 
*1 
*1 
*/ 

1* The last member in the structure is for future expansion. 
*/static vendor_t vendor_list[] = 

1* 

} ; 

"engine_name", support_routine, case_flag, (char *) O}, *1 
"xyzdh", dm_xyzsup, DM_FORCE_TO_LOWER_CASE, (char *) 0 }, 
(char *) 0, (int (*) () 0, (int) 0, (char *) a } 

The entry 

{ "xyzdh", dm_xyzsup, DM_FORCE_TO_LOWER_CASE, (char *) 0 } 

contains four elements. The first. 

"xyzdh" 

names the engine for the application. It may be any name the developer wishes; an abbre
viated vendor name is common. The second element. 

names the engine's support routine. This support routine is supplied in a library as a part of 
the JAM/OBi distribution and its name is documented in the README file. The third. 

DM FORCE TO LOWER CASE - - - -

20 JAM/OBi Release 5 May 92 



Overview 

tells J AMiDBi how to handle the case of column names when executing a SELECT. This flag 
tells JAM/OBi to convert column names to lower case when searching for JAM variable 
destinations for a SELECT. Therefore, the application uses lower case for screen, LDB, and 
JPL variables that are targets for database columns. 

Any developer-written C hook functions are installed in funclist. c. Since the sample 
application uses only JPL it uses the distributed funclist. c without any modifications. 
For more information on funclist. cor prototyped functions, see the JAM Program
mer's Guide. 

4.2.3. 

Data Dictionary and Initialization File 
The application's data dictionary has three types of entries. They are the following: 

• constants named and initialized for JAM/OBi errors 

• variables for passing database values between screens at runtime 

See the figures below. 

DATA-DICTIONARY MAINTENANCE -

NAME SC RIG 

DM NOCONNECTION 1 - -
DM NO MORE ROWS 1 - - - -

COMMENT 

Initialized_to_value_of_DBi_code 

Initialized to value of DBi code - - -
DM ROLLBACK 

current ssn -
current name 

1 

2 

2 --

Initialized to value. of DBi code 

For-passing_the_value_of_index_key_ 

For-passing_the_concatenated_name_ 
EOF 

Figure 8: Developer's View of the Data Dictionary. 

May 92 JAM/OBi Release 5 21 



.JAM/OBi Overview 

# const.ini 
# This file inia1izes LOB constants. 
# Values correspond to those in OBi header file dmerror.h 

"OM NO MORE ROWS" 
"DM ROLLBACK" 
"DM NOCONNECTION" 

"53256" 
"53263" 
"53271" 

Figure 9: Developer's View of the Constants' Initialization File. 

The OM_ variables are named after symbolic constants in theJAM/DBi file dmerror. h. 
Note that the scope of these variables is 1. At runtime, these values are treated as constants 
by the local data block (LDB) initialization. A constants' initialization file, such as 
const . ini, assigns the values to the constants. See Appendix B. for the complete list of 
JAMIDBi error codes. 

The entries current_ssn and current_name are used to pass database values be
tween screens at runtime. 

4.2.4. 

JAM Screens 
There are three application screens. 

Each of the screens uses one or more JPL modules. There are several ways of storing and 
accessing JPL procedures and modules. A module is one or more JPL procedures. The type 
of module describes how it is stored-in a file, as a miscellaneous field edit, etc. See the JPL 
Guide in the JAM manual for a discussion of these LOpics. 

Main Screen 
The screen mainscrn. jam contains a menu and two data entry fields, uname and 
pword. The screen opens in data entry mode. The field pword has a procedure in its JPL 
field module. When the end user tabs from this field, the procedure installs an error handler 
and attempts to log the end user onto the database with the user name and password entered 
in the fields. IfIog on is successful, it calls the built-in function jm_mnutoglLO toggle the 
screen from data entry mode to menu mode. 

22 JAM/OBi Release 5 May 92 



Enter JPL program text: 
Enter username & passwo dbms ON ERROR JPL dbi_error_handler 

dbms ENGINE xyzdb 

NOTE: 
Logon ?rgumel1t~ 

are engine-specific. 

dbms DECLARE cl CONNECTION FOR \ 
USER :uname PASSWORD :pword 

call jm_mnutogl 
msg setbkstat "Choose an application \ 

and press %KNL." 
return 0 

JPL Field Module 
attached to pword 

Figure 10: Human Resources Application Main Menu. mainscrn. 

JPL Field Module Attached to Field pword 

Overview 

The fIrst statement of the procedure sets up error processing for the rest of the application. 
The DBMS ONERROR statement installs the JPL procedure dbi error handler as the 
application's error handler. Whenever a JAM/OBi error occurs~ JAM/OBi passes three ar
guments to the procedure-the text of the statement that failed, the name of the current en
gine, and an error flag-and executes the procedure. A sample error handler is shown in 
Figure 11. 

The statement DBMS ENGINE names xyzdb as the default engine. Since only one engine 
was installed in dbiini t . c, this statement is optional. 

May 92 JAM/OBi Release 5 23 



JAJ\oUDBi Overview 

The statement DBMS DECLARE CONNECTION altempts to log the user on to a database server. 
If log on is successful JPL continues executing the procedure: it toggles mainscrn from 
data entry mode to menu mode and displays a new status line message. 

JPL Procedure for Error Handling, dbi_error_handler 

If the log on is unsuccessful, JAM/OBi immediately calls the installed error handler 
dbi error handler: - -

proc dbi error handler 
parms st;t code flag 
# All OM variables are constants in the LOB. 

# If stmt failed because the user did not logon, prompt user to return 
# to main screen. 

if (@dmretcode 
( 

DM_NOCONNECTION) 

msg emsg "Not logged on. Press %KPF10 to restart." 

else 
( 

# For all other errors, display the JAM/OBi message and any database 
# error message. 

msg emsg @dmretmsg 
if @dmengerrmsg != II 

msg emsg @dmengerrmsg 

# For all errors, return the abort code (1) to abort the JPL procedure 
H where the error occurred. If 0 were returned, the procedure where the 
H error occurred would continue executing. 

return 1 

Figure 11: Sample JPL Error Handler for Human Resources Application. 

Note that three arguments are automatically passed to any error handler installed with DBMS 

ONERROR: 

• the text of the statement that failed 

• the name of the engine in use when the error occurred 

• a flag indicating that this procedure was called because an error occurred 

24 JAM/OBi Release 5 May 92 



Overview 

After receiving the arguments, the procedure examines the error code. Note the use of the 
variables @cimretcode, @cimretmsg, and @cimengerrmsg. These are global variables 
defined and maintained by JAM/OBi. If there is an error executing a sql or dbms state
ment, JAM/OBi writes a JAM/OBi error code to @cimretcode, a JAM/OBi error mes
sage to @cimretmsg, an engine-specific error code to @cimengerrcode and an engine
specific error message to @dmengerrmsg. The application may use these variables in JPL 
statements such as if or msg when processing for errors. 

The procedure first checks if the user is connected to an engine. For instance, if the user has 
a mouse and clicks on a menu choice, he or she may move to the next screen before logging 
on. However, once he or she attempts to view employee data, JAM/OBi will return an error 
because there is no connection to the database. In case of this error, the error handler 
prompts the user on how to recover-pressing PFlO returns the user to the top-level form 
where a user name and password may be entered.2 Recall that DM_NOCONNECTION was 
defined as an LOB constant (Figure 8 and Figure 9). 

For all other errors, the error handler displays a standard J AM/OBi error message, and also 
an engine-specific message if there is one in the global JAM variable @cimengerrmsg. 
For example, the user may enter a user name and password on mainscrn, but the logon 
may fail for some reason. In such a case, the handler first displays a JAM/OBi message tell
ing the user that the operation failed. Next it displays the engine-specific message further 
describing the failure-for example invalid user name, password is required, or the server 
is not available, etc. 

In addition to displaying messages, the error handler also determines whether to continue or 
abort execution of the JPL procedure where the error occurred. If the error handler returns 
0, JPL continues execution at the next statement after the one that failed. If the handler re
turns I, JPL aborts the procedure and returns control to the procedure's caller. 

The sample error handler returns the abort code (1) for all errors. Therefore, if logon fails, 
JPL does not execute the rest of the procedures in the JPL field module of pword. There
fore, it does not execute the statements which toggle the screen to menu mode and change 
the status line message. Instead, it returns control to the procedure's caller, in this case JAM. 

There are many advantages to JAM/OBi's error handling features. Most notably, it gives 
developers both generic and vendor-specific means of handling errors. In addition,theerror 
handler like the rest of the application is easily prototyped. In early stages of the application, 
the error handler may simply display all error messages. As the application grows, the de
veloper may enhance the error handler, adding special processing and messages for particu
lar errors. The error handler may also be written in C. 

2. Of course, a targellisl on the menu control slrings on mainscrn could prevenlthis. Each menu choice 
could call a procedure thal verifies thalthc has user logged on before opening the neXl form or window. See the 
Author's Guide in the JAM documcnuuon for informalion on using largcllislS. 

May 92 JAM/OBi Release 5 25 



JAM/OBi Overview 

To usc a JPL error procedure most efficiently, the procedure should be in a public module. 
See the JPL Guide for details. 

Menu Choices on mainscrn 

Once in menu mode on mainscrn, the user may choose among the three applica
tions-Benefi ts, Personnel, Recrui ting-or may quit 

The last option on the menu, QUI T, calls the JPL procedure qui t to log the user off the 
database and exit the application. Logoff may be executed with the statement, 

dbms CLOSE ALL CONNECTIONS - -
The rest of this chaptcr describes the Personnel option. 

Employee Screen 
If the user chooses Personnel from the menu, JAM opens the form empscrn shown 
below. 

PF1:Last Name Search PF2:Salary PF3:Update PF4:Next PFIO:Main Menu 

Figure 12: Personnel Application Employee Screen empscrn. The social securi
ty, salary, and grade fields are protected from data entry. 

26 JAM/OBi Release 5 May 92 



Overview 

The screen empscrn. jam is used to update and display data from the database. The 
screen has eleven fields: last, first, street, city, st, zip, ssn,grade, sal and 
exmp. The function keys PFl and PF2 are associated with JPL functions that query the 
tables acc, emp, and review. The PF3 key permits a user to update name and address 
values in the table emp, and the number of exemptions in the table acc. If the end user 
wishes to scroll through the employee records, pressing the PF4 will fetch a new row. The 
PF10 key returns the user to the menu screen. 

The fields ssn, sal, and grade are protected from data entry. The end user may update 
an employee's name, address, or number of exemptions. The application assumes that an 
employee's social security number should not change. An employee's salary and grade may 
only be changed after an employee review. We assume that such information is entered in 
another application. Developers, of course, could write a function that permits certain users 
to change data in protected fields. The JAM Programmer's Guide documents the library 
functions necessary for this type of processing. 

Below is the text of the JPL procedures for empsc rn and an explanation of the procedures. 

JPL Procedure open 

proc open 
msg setbkstat "\ 
%KPFl Last Name Search %KPF2 Salary %KPF3 Update %KPF4 Next \ 
%KPF10 Main Menu" 

dbms DECLARE emp_cursor CURSOR FOR \ 
SELECT emp.first, emp.last, emp.street, emp.city, emp.st, emp.zip,\ 
emp.ssn, emp.grade, acc.sal, acc.exmp FROM emp, acc \ 

WHERE emp.ssn=acc.ssn AND emp.last LIKE ::parm_last \ 
ORDER BY emp.last, emp.first 

return 0 

Figure 13 a: JPL screen module for empscrn. 

This procedure is the screen entry function. The msg statement displays a status line mes
sage which describes the screen's control keys. The second statement declares a cursor, 
emp_cursor, for a SELECT statement. The SELECT is just like a SELECT statement ex
ecuted in a DBMS interface, except for the argument : : pa rm _1 a st. This argument is a 
binding parameter. JAM/OBi will not know its value until the end user presses the PFI key 
which executes the cursor. Executing the cursor will execute the SELECT and fetch data to 
the screen. 

May 92 JAM/OBi Release 5 27 



JAM/OBi Overview 

JPL Procedures search and next 

proc search 
if last == .... 

dbms WITH CURSOR emp_cursor EXECUTE USING parm_last '%' 
else 

dbms WITH CURSOR emp_cursor EXECUTE USING parm_last last 

msg emsg "There are no employees with the surname :last ." 
return 0 

proc next 
dbms WITH CURSOR emp_cursor CONTINUE 
if dbi_retcode == DM_NO_MORE_ROWS 

msg emsg "There are no more rows." 
return 0 

Figure 13 b: Continuation of JPL screen module for empscrn. These functions 
are executed with PF1 and PF4. 

The procedure search begins by checking if the field last is empty. If it is empty, the 
procedure executes emp_cursor (declared in Figure 13 a) using the wild character '%'. 
Thus, if the end user presses PFl without supplying a surname, JAM/OBi fetches all the 
employee rows one at a time in alphabetical order. 

If the field last is not empty, the procedure executes emp_cursor with thesumameen
tered in the field. If two or more employees have the same surname, more than one row is 
returned. The end user presses the Next key to see the next available record. 

For example, if the end user entered the surname "Jones" in the field named last, the 
DBMS would find three qualifying employees in the database. JAM/OBi displays the infor
mation on employee Bamabus Jones when the PFl key is pressed. When the PF4 key is 
pressed, JAM/OBi displays the next employee in the SELECT set, John P. Jones. When the 
PF4 is pressed a second time, JAM/OBi displays the information on the final employee, 
Michael Jones. If the user presses the PF4 key a third time, the procedure tells the user that 
there are no more rows in the SELECT seL 

The procedure can tell the user when all rows have been displayed because the engine sends 
a no-more-rows signal if the application tries to fetch more rows than there are in the SELECT 

set. When this signal is returned, JAM/OBi writes the value of the OM NO MORE ROWS 

code to the global variable @dmretcode. The JPL procedure knows the vaiue of 
OM NO MORE ROWS because a variable of the same name was defined as an LOB con
stam (Figure 8)-and was assigned a value by the initialization file const. ini (Figure 9). 

28 JAi\-UDBi Release 5 May 92 



Overview 

JPL Procedure check_ssn 

proc check_ssn 
if ssn != 'In 

return 0 
msg emsg n\ 
A social security number is required. please enter an employee's\ 
last name and press %KPF4 to retrieve the necessary information.\ 
When a record is displayed, press %KPF2 to see the salary history\ 
or press %KPF3 to make an update." 

return 1 

Figure 13 c: Continuation of JPL screen module for empscrn. 

The procedure check_ssn is used by the procedures salhist and update. It verifies 
that the user has entered a social security number. If no number is given, check_ssn dis
plays an error message. 

JPL Procedure salhist 

proc salhist 
vars jpl_retcode 
retvar jpl_retcode 

jpl check_ssn 
if jpl_retcode == 0 
( 

cat current_ssn ssn 
cat current_name first " " last 
call jm_keys PF14 

return 0 

Figure 13 d: Continuation of JPL screen module for empscrn.This function is 
executed with PF2. 

The end user presses the PF2 key to review an employee's salary history. The procedure 
begins by setting up a return variable and calling the procedure check ssn. The proce
dure check_ssn (Figure 13 c) tests whether the field ssn is empty. Ifssn is empty, the 
procedure displays a message telling the user to press the PFl key before requesting a histo
ry. The return code from check _ssn determines whether salhist continues executing. 
If the code is 0 (Le., s sn is not empty) the procedure continues. 

This routine copies the current employee social security number to the LOB variable 
current_ssn, and concatenates the values of first and last in the LOB variable 
current_name. The values are copied to the LOB so that the salary history screen may 
use them. 

May 92 JAM/OBi Release 5 29 



JAM/OBi Overview 

The statement call jm _keys executes a control string. The JAM control string window 
for empscrn contains the entry 

PF14 &(9,25)salhist 

which opens the screen salhist at row 9, column 25. The discussion of the salhist 
screen begins on page 33. 

30 JAM/OBi Release 5 May 92 



Overview 

JPL Procedure upda te and Related Procedures 

proc update 
vars jpl_retcode ans 
retvar jpl_retcode 

jpl check_ssn 
if jpl_retcode == 0 

msg query "Update this record now?" ans 
if ans 

jpl tran_handle upd_emp 

return 0 

proc tran_handle 
parms subroutine 
vars tran_error 
retvar tran_error 

jpl :subroutine 
if tran_error 
{ 

msg emsg "Rolling back transaction." 
dbms ROLLBACK 

else 
msg emsg "Transaction successful." 

return 0 

proc upd_emp 
dbms BEGIN 
sql UPDATE emp SET last=:+last. first=:+first. \ 

NOTE: 
Transaction commands 

are engine-specific . ./ 

street=:+street. city=:+city. st=:+st, zip=:+zip WHERE ssn=:+ssn 
sql UPDATE acc SET exmp=:+exmp WHERE acc.ssn~:+ssn 
dbms COMMIT 
return 0 

Figure 13 e: End of JPL screen module for ernpscrn. The procedure update is 
executed with PF4. 

The procedure update begins by setting up a return variable and calling the procedure 
check_ssn. The procedure check_ssn (Figure 13 c) tests whether the field ssn is 
empty. If ssn is empty, the procedure displays a message telling the user to press the PFl 
key before performing an update. The return code from check_ssn determines whether 
upda te continues executing. If the code is 0 (i.e., 5 sn is not empty) the procedure contin
ues, asking the user to confirm the update. If the end user enters the value of SM _ YE S (typi
cally "y"), the procedure passes the name of a subroutine upd _ ernp to a transaction handler 
tran handle. 

May 92 JAM/OBi Release 5 31 



JAM/OBi Overview 

The procedure tran_handle is a generic procedure that may be used to execute any 
transaction. It receives one argument, the name of a subroutine that contains the transaction 
statements. Before calling the subroutine, however, t ran handle defines and declares a 
return variable tran error. AfLer calling the subroutine, tran handle checks if 
tran error is non:Zero; a non-zero value signals that an error has occurred and that 
tran -handle must execute a rollback. This method permits the application to test and 
rollback for both JAM andJAM/DBi errors. Theretumcode foraJAM error is always-I, 
and the return code from the sample error handler dbi_error_handler is 1. 

The procedure upd_emp is engine-specific. Some engines, such as ORACLE, begin a 
transaction with the command DBMS AUTOCOMMIT OFF. If you are building this application, 
please consult the engine-specific documentation. 

Note the use of : + variable in the UI?DATE statements. This is the COlon-plus preprocessor. 
Before executing the statement, JPL replaces each instance of : + variable with the value of 
variable in a format suitable for the engine. 

For example, if the screen contained the following values, 

I?Fl:Last Name Search I?F2:History I?F3:Update I?F4:Next I?F10:Main Menu 

Figure 14: Screen Editor Entry Screen 

and assuming that the fields last, first, street, ci ty, st, and zip are all character 
fields with no special edits, and exmp is a digi ts only field, the procedure would ex
ecute something like the following, 

32 JAM/OBi Release 5 May 92 



UPDATE emp SET last='O"Toole', first='Hilary', \ 
street='64 Yorkville Road', city='Albuquerque',\ 
st='NM', zip='87124' WHERE ssn='122-98-6541' 

UPDATE acc SET exmp=4 WHERE acc.ssn='122-98-6541' 

Overview 

Note that the colon-plus processor formats character data differently than numeric data. 
Character strings are automatically enclosed in quotes and embedded quotes in character 
strings are escaped. Numeric values are not quoted. This formatting is engine-specific and 
is handled automatically by JAM/OBi. This topic is covered in detail in the Developer's 
Guide of this manual. 

Salary History Screen 
If the user presses the Salary History key while an employee row is displayed, JAM 
opens the window salhist, shown below. 

Screen entry function 
is 

jpl getsalhist 

PFIO: Main Menu 

Figure 15: Developer's View of salhist. 

Upon opening salhist, JAM calls the JPL function getsalhist, shown below. 

May 92 JAM/OBi Release 5 33 



.JAIWDBi Overview 

proc getsalhist 
msg setbkstat" %KPFIO Main Menu" 
sql SELECT revdate, newsal FROM review WHERE ssn=:+current_ssn 

return 

Figure 16: Developer's View of the JPL Screen Module for salhist. 

Remember that current_name and current_ssn are LOB variables (Figure 8). The 
procedure salhist on the previous screen concatenated the values of first and last 
in the variable current_name, and copied the social security number from ssn to 
current_ssn (Figure 13 d). The field name is protected from data entry and tabbing. 

If empscrn is displaying the data belonging to the employee Bamabus Jones when the 
History key is pressed, then getsalhist executes 

SELECT revdate, newsal FROM review \ 
WHERE ssn='038-68-6826' 

and JAM displays the following data: 

34 JAM/OBi Release 5 May 92 



Overview 

PFIO: Main Menu 

Figure 17: Personnel Application Salary History Window salhist. 

The arrays revdate and newsal are large scrolling arrays. The user may press the 
page-up and page-down keys (JAM logical keys SPGU and S PGD) to view all the rows. The 
user may press the EXIT key to return to empscrn, or press the Main Menu key to return 
to the application's first screen. 

4.3. 

JAM/DBi CONTROL FLOW SUMMARY 
In this section we review control flow between JAM and a database, using the Personnel 
Application as an example. 

In JAM/OBi applications, database queries are embedded in hook functions written in JPL 
or C. Hook functions are explained in detail in the JAM Programmer's Guide. Here we note 
that the choice of hook function and the choice of coding language affects the construction 
and the control flow of a query. 

May 92 JAM/OBi Release 5 35 



JAiWDBi Overview 

4.3.1. 

Variable Substitution 
Applications usually require that the end user specify search criteria at runtime. In these 
cases, an end user enters data into screen fields and JAM uses the fields' contents in the 
SELECT statement. JAM provides several ways of accessing field contents at runtime. They 
are the following: 

• colon preprocessor 

• sm_getfield and related functions 

• argument of a field function 

The colon preprocessor is an easy and efficient method of accessing field contents at run
time. JAM invokes the colon preprocessor on the arguments of a control string beginning 
with a caret. Therefore, developers may pass the contents of JAM variables as parameters 
to the control function. If the control string is passing more than one parameter to a C func
tion, the function should be installed as a prototyped function. See the Author's Guide for 
more information on colon preprocessing and control strings. See the Programmer's Guide 
for information on proto typed and control string functions. 

JAM invokes the colon preprocessor each time it executes a JPL statement. Therefore, JPL 
developers may access field and LDB values within a JPL procedure. (See the JPL Guide 
for information on colon preprocessing with JPL commands.) 

JAM also invokes the colon preprocessor on the arguments of the JAM/OBi library func
tions dm_sql and dm_dbms. In addition, C developers may use the library function 
sm_getfield, or a host of variants, to access runtime values. See the Programmer's 
Guide for descriptions of these JAM functions. 

In JAM/OBi applications, colon preprocessing is usually preferable to the functions like 
s~getfield because it automaticalIy formats data in an engine's style. 

4.3.2. 

Cursors 
SQL vendors support cursors as a part of the interface to custom applications such as 
j amdbi. A cursor is a SQL object that alIows an application 

• to fetch rows from a SELECT set incrementally 

• to use more than one SELECT set at a time 

36 JAM/OBi Release 5 May 92 



Overview 

• to improve efficiency when executing a SQL statement many times 

On each connection, JAM/OBi automatically creates a cursor for SELECT statements. For 
some engines, it also creates another cursor non-SELECT statements. These cursors are 
known as the "default" cursors. The JPL command sql and the library function dm_sql 
always use a default cursor. 

In addition, developers may declare cursors with the command DBMS DECLARE CURSOR. A 
declared cursor is always named and associated with a SQL statement. Named cursors are 
executed with the JPL command dbms or with the library function dm_dbms. In JPL, the 
statement is 

dbms WITH CURSOR cursor EXECUTE 

Executing a named cursor executes the statement that was associated with the cursor at its 
declaration. 

Fetching a SELECT Set Incrementally 
When creating screens for displaying database values, the developer may, at best, only ap
proximate the number of rows which will be in a SELECT set fetched by the application. 
Therefore, JAM/OBi needs a mechanism for handling SELECT sets that contain more rows 
than can be held by the JAM destination variables at one time. If, for example, a SELECT set 
contains 100 rows, but destination variables have only twenty occurrences each, JAM/OBi 
cannot fetch more than 20 rows at a time. Therefore, it needs a "place holder" in the set so 
that after fetching rows 1 through 20 when the SELECT is executed, it can fetch rows 21 
through 40 when DBMS CONTINUE is first executed, rows 41 through 60 when DBMS 
CONTINUE is executed a second time, and so on. A cursor acts as such a placeholder. 

Using Multiple SELECT Sets 
JAM/OBi automatically creates one default cursor for SELECT statements. Very often, how
ever, applications use two or more SELECT sets concurrently. This would permit a user, for 
example, to select many item "summary" rows where he or she may position the screen cur
sor and then execute one or more SELECTS for "detail" rows further describing the item. Af
ter viewing detail rows, the user may contain viewing the item summary rows. 

This was the approach in the sample application where we used a named cursor to select 
employee rows and the default cursor to select salary details on an individual employee. 
This permitted the end user to switch between SELECT statements. If the user pressed the 
PFI key without specifying a last name,the application selected all the rows. While scroll
ing through the rows (pressing the PF4 key), the user was also permitted to view each em-

May 92 JAM/OBi Release 5 37 



JAM/OBi Overview 

ployee's salary history before viewing the next employee row. If the application did not use 
a named cursor to select employee rows, JAM/OBi would use the default cursor again,los
ing the user's place in first SELECT set when it issued the second SELECT statement. 

Improving Efficiency 
Before executing a SQL statement,the DBMS must prepare the statement. Preparation may 
include parsing the statement and declaring an engine-cursor. If a statement will be executed 
many times, declaring a cursor may improve the application's efficiency because the prepa
ration is done only once, rather than each time the statement is executed. An application 
may declare some cursors upon start up or upon screen entry, and it may use function keys 
to call procedures which execute the named cursors. 

4.3.3. 

Error Processing 
JAM/OBi provides two ways of managing errors in an application. The default method 
writes error messages to the status line, just as for JAM errors, and aborts the JPL proce
dure it was executing. The other method is for the developer to write and install an error 
handler which JAM/OBi will execute whenever a JAM/OBi error occurs. 

An error handler written in JPL is installed with the statement 

dbms ONERROR JPL procedure_name 

An error handler written in C must be a prototyped function (i.e. installed in pfuncs in 
funclist. c) and is installed with the statement 

dbms ONERROR C function 

When a JAM/OBi error occurs, JAM/OBi will execute the installed error handler. JAM/ 
OBi automatically passes arguments to the error handler-the text of the statement that 
failed, the engine name, and an error flag. The engine name is the name that was used 10 
initialize the engine in jmain. c. The error flag equals 2. 

The error handler is responsible for displaying any error messages. It may use @dmretmsg 
to display a JAM/OBi message, @dmengerrmsg to display an engine-specific error mes
sage, or it may examine the error codes @dmretcode and @dmengerrcode and display 
its own error messages. 

The procedure's return code determines whether or not JPL continues or aborts the proce
dure it was executing. 

Error handling is summarized in the figure below. 

38 JAM/OBi Release 5 May 92 



GLOBALS 
@dmretcode 
@dmretmsg 
@dmengerrcode 
@dmengerrmsg 

When default error handling , 
is used, error messages are ; 
written to the status line. 'f' 

GLOBALS 
@dmretcode 
@dmretmsg 
@dmengerrcode 
@dmengerrmsg 

When an error handler is 
installed. JAM/OBi ex
ecutes thefunction when an 
error occurs. 

Overview 

Figure 18: JAM/OBi Error Flow from the Database to JAM. The solid line shows 
the path used by the example. 

May 92 JAM/OBi Release 5 39 



JAM/OBi Overview 

Chapter 5. 

JAM/OBi Philosophy 

In this chapter, we address several features of JAM/OBi and suggest some development 
strategies. 

5.1. 

JAM/OBi FEATURES 
JAM/OBi is a powerful tool for developing frontend applications and interfaces. The sec
tions below discuss its prominent features. 

5.1.1. 

SQl-Based 
SQL (Structured Query Language) is the standard for relational database languages. It is a 
tool which provides interactive users with a non-procedural, easy-to-use means of accessing 
databases and it assumes litlle or no programming skills. A key feature of JAM/OBi is that 
it uses the SQL syntax of the database you are using. You have complete access to all the 
features supplied by your DBMS. You do not need to learn a new syntax to use JAM/OBi 
because any SQL statement may be embedded in JPL and C hook functions. In JPL, a SQL 
statement is prefixed with the verb sql or associated with a declared cursor. In C, a SQL 
statement is passed as an argument to the JAM/OBi library function elm _ sql. 

As a result, JAM/OBi developers may create an entire frontend application simply using 
SQL and the JAM authoring tools. 

40 JAM/OBi Release 5 May 92 



Overview 

5.1.2. 

OS Portability 
JAMIDBi is available on most operating system platfonns. The JAM terminal and key
board translation files provide all the hardware configuration needed by JAM/OBi. Devel
opers customize the makefile distributed with JAM/OBi for software and operating system 
specifics. 

5.1.3. 

Vendor Independence 
Vendor independence is an important feature of JAM/OBi. Since JAM/OBi is available for 
many popular relational databases, developers may choose a database for its data manage
ment capabilities while using JAM's powerful tools to create the frontend applications. In 
this way, developers are not limited by the vendor's frontend development tools. 

In addition, JAM/OBi provides a standard means of moving applications from one database 
to another, with no changes to screens. If the two databases use different SQL syntax, how
ever, developers may need to make some changes to SQL statements. Additional changes 
may be needed for differences in locking and transaction management on the two databases. 

5.1.4. 

Multi-engine Support 
Some installations may maintain several databases, each with a DBMS supplied by a differ
ent vendor. JAM/OBi permits developers to access different engines in the same applica
tion. The user must have a JAM/OBi support routine for each DBMS product that the appli
cation will use. 

May 92 JAM/OBi Release 5 41 



.JAM/OBi Overview 

Application 

JAM/OBi 
i I 

support routine support routine 

Network 

Engine 1 Engine 2 

Figure 19: Components of JAM/OBi Architecture when using multiple engines. 

5.1.5. 

Multi-connection Support 
Some engines permit multiple connections. This allows an application to have connections 
to multiple servers and databases of the engine. Connections are named, pennilting the 
application to set a default connection and to switch between connections as it executes da
tabase operations. 

42 JAM/OBi Release 5 May 92 



Overview 

Engine 

Connection 1 

Application 

JAM/OBi 
I I 
support routine 

Connection 2 

Figure 20: Components of JAM/OBi Architecture when using multiple connec
tions. 

5.1.6. 

Prototyping 
Developers using JAM/OBi may prototype an application with real links to a database 
without writing any third-generation programming code. Database functions may be simu-

May 92 JAM/OBi Release 5 43 



JAM/OBi Overview 

luted by placing sample data on screens with JPL. Later, the the simulation code can be re
placed with sql and dbms statements. 

5.2. 

JAM/OBi DEVELOPMENT HINTS 
There are a few suggestions which developers should consider before developing an appli
cation. 

• Execute SELECT statements when the target variables are on the active 
screen. Use the LOB just to pass a particular column value to another 
screen when necessary. In the sample application, two screens needed the 
values of the em ployee 's social security number, first name, and last name. 
Rather than putting the target variable ssn in the data dictionary, the 
application defined ssn on the screen empscrn and defined 
current ssn in the data dictionary. Therefore, current ssn con
tains a value only when the application explicitly writes to the vanable. By 
keeping only necessary column variables in the LOB, the developer re
duces the amount of memory needed by the LOB, reduces the chances that 
the LOB will pass data to an unexpccted target, and reduces the amount of 
application maintenance. 

• Use an error and/or exit handler to process error and status information. 
Not only does this reduce the amount of code in the application, it also en
sures consistent error handling throughout the application. 

Appendix C. covers these topics in more detail. 

44 JAM/OBi Release 5 May 92 



Developer's 
Guide 





Introduction 

Chapter 6. 

Introduction to Development 
This document is intended for JAM/OBi developers. We discuss the development and cre
ation of executable JAMIDBi programs using developer-written hook functions to access 
and manipulate a database. 

We assume that the reader is familiar with JAM. JAM/OBi developers should see the JAM 
Author's Guide for information on using the Screen Editor, Keyset Editor, and the Data Dic
tionary Editor. They should see the JPL Guide for information on writing and storing JPL 
procedures. They should see the Programmer's Guide for information on installing C hook 
functions in the application function list and for customizing the source modules, jmai n . c 
or jxmain . c. 

In addition, developers should review the JAM Development Overview and the JAM/OBi 
Development Overview before proceeding. These sections discuss the architectural compo
nents and the control flow of JAM and JAM/OBi. 

6.1. 

SQl VARIANTS 
SQL is an evolving standard in the database industry and there are numerous SQL-based 
products on the market today. At this writing JAM/OBi supports more than ten vendors' 
SQL-based products. Each of these vendors implements aspects of SQL differently. For ex
ample, some engines permit the use of only single quotes around literals in query state
ments. Other engines permit the use of either single or double quotes. Engines often have 
different rules for the use of case and special characters in variable names. JAM/OBi pro
vides features to assist developers with these differences. Developers may use the colon
plus preprocessor to format values for a particular DBMS engine before inserting them in 
database columns. They may control case handling by setting the engine's case flag at ini
tialization. 

May 92 JAM/OBi Release 5 47 



II. Developer's Guide 

The obvious advantage is ease of use. JAM/OBi provides access to almost all functions sup
ported by the vendor, without changes in command syntax. Developers concerned with 
DBMS portability, however, must use a compatible SQL syntax. For example, the SQL syn
tax of most vendors includes a subset of ANSI-compliant SQL commands. The syntax of 
these commands is usually portable. 

The Developer's Guide discusses concepts common to all supported engines. For this rea
son, we do not emphasize any particular implementation of SQL. Any SELECT, INSERT, 

UPDATE, or DELETE statement in the examples is used only to clarify concepts. When using 
the concept in an actual application, use the SQL syntax of the DBMS. 

6.2. 

JAM/DBi COMMANDS 
Developers may execute J AMIDBi functions from JPL statements and C language function 
calls. JAM/OBi distinguishes between two types of database commands. In JPL, database 
commands are executed with either the command sql or the command dbms. Similarly in 
C, database commands are executed with the functions dm _ sql or dm _ dbms. 

The sql variants execute statements that may be given in the interactive query language of 
the database. They include CREATE, DROP, SELECT, INSERT, UP DATE and DELETE. 

The dbms variants execute the following types of functions: 

• 
• 

Statements not needed or not supported in the database's interactive query 
language. (i.e., LOGON, DECLARE CURSOR, CONTINUE) 

Statements to customize the JAM/OBi environment. These include error 
trapping and directing output to a file or an array occurrence. 

• Vendors' "extended" SQL functions. These functions are non-standard en
hancements to SQL (e.g., browse, control execution of a stored procedure, 
etc.). 

• SQL statements to be executed under the control of explicitly declared 
cursors. 

Actually, any SQL statement may be executed with a dbms command. This is done in two 
steps: a cursor is declared and associated with the SQL statement, and then the cursor is ex
ecuted. Developers may use the "short-cut" command sql to execute simple queries in a 
single step. For example, 

48 

dbms DECLARE item_cursor CURSOR FOR \ 
SELECT description, price FROM products \ 
WHERE code = :+code 

dbms WITH CURSOR item cursor EXECUTE 

JAM/OBi Release 5 May 92 



fetches the same rows as 

sql SELECT description, price FROM products \ 
WHERE code = :+code 

6.2.1. 

JPL versus C 

Introduction 

The colon preprocessor has always been a powerful incentive to use JPL rather than C for 
JAM/OBi functions. Release 5 makes two improvements to the colon preprocessor: it pro
vides a special form for formatting database values, and it performs colon preprocessing on 
the arguments of dm _ dbms and dm _ sql, the library functions for executing database com
mands. 

The decision to use JPL or C is left to the developers' discretion. Developers should know 
that they may execute any SQL statement from either language, and they may use either or 
both languages in an application. JPL procedures may be executed without compilation. 

Most of the examples in this guide use JPL. 

May 92 JAM/OBi Release 5 49 





Access and Execution 

Chapter 7. 

Access and Execution 

In this chapter we discuss how an application accesses and queries a database. We discuss 
the following topics: 

May 92 

• Initializing one or more engines - the application tells JAM/OBi which 
engines (Le .• vendor products) it will use. (Section 7.1.) 

• Connecting to a server and database - the application connects to a server 
where an initialized engine is running. (Section 7.2.) 

• Using cursors - the application uses a default or named cursor to execute 
an operation on a connection. (Section 7.3.) 

JAM/OBi Release 5 51 



II. Developer's Guide 

7.1. 

INITIALIZING ONE OR MORE ENGINES 
An engine is a DBMS product. It is identified by a specific vendor and version. For exam
ple, SYBASE 4.0, ORACLE 6.0, and ORACLE 5.1 are three distinct engines. JAM/OBi is 
distributed with an object file containing a support routine for a particular engine. The sup
port contains all the vendor-specific code necessary for executing database operations with 
JAM/OBi. 

JAM/OBi permits an application to access one or more engines. The application must have 
a support routine for each engine, and it must initialize an engine before opening a connec
tion or a executing a query on the engine. 

7.1.1. 

Initializing an Engine in dbiini t . c 
A call to initialize one or more engines may be put in the JAM/OBi source module 
dbiini t . c. A sample dbiini t . c is distributed with JAM/OBi. The file, 

1. makes a function declaration for one or more support routines 

2. describes the engine initialization in the structure vendor_list 

vendor_list appears like the following, 

static vendor_t vendor_list[] 
{ 

{"engine", supporLroutine, case_flag/error_flag, (char *) 0), 
{(char *) 0, (int (*) (» 0, (int) 0, (char *) 0) 

) ; 

The name for engine is chosen by the developer. If an application uses two or more engines, 
the application will use the mnemonic engine to tell JAM which DBMS to use. Most of the 
examples in the guide use a vendor name as the mnemonic, for example sybase or 
oracle, but any character string that is not a keyword is valid. Keywords are listed in Ap
pendix A. 

The name of supportJoutlne is documented in the distributed dbiinit. c. The name is 
usually in the form dm_vendorsup where vendor is an abbreviated vendor name. Some 
examples are 

• dm_intsup 

• dm_orasup 

52 JAM/OBi Release 5 May 92 



Access and Execution: Initializing an Engine 

• dm_sybsup 

casej'ag sets the case-handling feature of JAM/OBi. It determines how JAM/OBi uses 
case to map column names to JAM variables when executing a SELECT. The options are 

• DM PRESERVE CASE Use case exactly as returned by the en
gine. 

• DM FORCE TO UPPER CASE Force all column names returned by an 
engine to upper case. The developer 
should use upper case when naming JAM 
variables. 

• DM FORCE_TO_LOWER_CASE Force all column names returned by an 
engine to lower case. The developer 
should use lower case when naming JAM 
variables. 

• DM DEFAULT CASE Usually defaults to 
DM PRESERVE CASE. Anotherdefault - -
value may be set by JYACC in the support 
routine. 

For example, ORACLE returns all column names in upper case. If DM _P RE SERVE_CAS E 
is set, JAM/OBi will look for JAM variables with upper case names. To map columns to 
JAM variables with lower case names, set the case flag to 
DM FORCE TO LOWER CASE. SYBASE, on the other hand, is case sensitive and it may 
return colunln mimes in upper. lower, or mixed cases. To map SYBASE columns to single 
case JAM variables, set the case flag to DM_FORCE_TO_UPPER_CASE or 
DM_FORCE_TO_LOWER_CASE. 

erro,-"ag determines which error messages are displayed by the default error handler. This 
flag is "or-ed" with the case flag. The options are 

• DM DEFAULT DBI MSG 

• DM DEFAULT ENG MSG 

The default error handler displays engine
independent error messages when an error 
occurs. These messages are defined in the 
JAM message file. 

The default error handler displays engine
dependent error messages when an error 
occurs. These messages are supplied by 
the engine. 

If neither flag is used, the default is DM_DEFAULT_DBI_MSG. 

The last argument (char *) 0 is provided for future use. 

May 92 JAlWDBi Release 5 53 



II. Developer's Guide 

If the DBI subsystem is installed (Le., iLS macro is set to 1 in jmain. c or by a compiler 
directive), jmain (or jxmain) will call the JAM/OBi library function dm_init for each 
support routine in the list. 

If the initialization is successful, supportJoutine returns zero. In some cases sup
portJoutine may reject the initialization and return an error code. In these cases, there may 
be insufficient memory, the engine may not be installed, or the application may have initial
ized the same support routine more than once. If such an error occurs when executing 
jmain, JAM will display an error message and terminate. 

7.1.2. 

Initialization Procedure 
As a part of initialization, JAMIDBi calls the support routine for information on the particu
lar DBMS. For each engine, JAM/OBi has information on the following 

• the engine's capabilities (e.g., whether the engine can execute stored pro
cedures or support multiple connections) 

• the required formatting for character and null strings being inserted into a 
table 

• the default for case handling 

In addition, JAM/OBi seLS up some structures at initialization, including structures for 
tracking the number and names of all connections on an engine. 

7.1.3. 

Setting the Default Engine 
The application may connect to any initialized engine. 

An application with two or more initialized engines seLS the defaull engine with the com
mand 

DBMS ENGINE engine 

or sets a current engine for a statement with the clause WITH ENGINE. An application access
ing multiple engines must reset the default or current engine when declaring connections to 
the different engines. Once a connection is declared, the default connection determines the 
default engine. 

54 JAM/OBi Release 5 May 92 



Access and Execution: Connecting to a Database 

7.2. 

CONNECTING TO A DATABASE SERVER 
Before performing operations on database tables, JAMIDBi must connect to a DBMS serv
er with the statement 

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \ 
FOR OPTION argument [OPTION argument] 

Different engines support different options. Please see the DBMS-specific NOles in this doc
ument for a list of the valid options. 

Once a connection is opened, the application may operate on the database tables. 

A declared connection is a named structure describing a session on an engine. This informa
tion includes 

• a connection name 

• a pointer to engine information 

• logon information supplied by the option arguments, for example, a user 
and database name 

• a data structure for a default SELECT cursor 

• pointers to other structures associated with the connection, including 
named cursors (thus when an application closes a connection, JAM/OBi is 
able to close all open cursors on the connection) 

If no engine is named, the connection is declared for the default engine. 

The statement 

dbms CLOSE CONNECTION connection 

logs off and closes the connection. 

7.2.1. 

Connections to Multiple Engil1es 
If an application is using two or more engines, a connection may be declared for each en
gine. A default connection may be set with the command 

dbms CONNECTION connection 

For example, 

May 92 JAM/OBi Release 5 55 



II. Developer's Guide 

dbms WITH ENGINE sybase DECLARE sybcon CONNECTION FOR \ 
USER :uname PASSWORD :pword SERVER birch 

dbms WITH ENGINE oracle DECLARE oracon CONNECTION FOR \ 
USER :uname PASSWORD :pword 

dbms CONNECTION sybcon 
sql SELECT * FROM emp WHERE last = :+last 

In the example. connections are declared on the engine sybase and the engine oracle. 
The connection sybcon is chosen as the default. Therefore. JAM/DBi performs the 
SELECT on the connection sybcon and uses the support routine of sybcon's engine to 
execute the query. 

The WITH CONNECT ION clause specifics a connection to be used for a single statement. over
riding the default connection. For example. 

sql WITH CONNECTION oracon SELECT * FROM sales 

Remember that a connection is always associated with an installed engine. Selling a connec
tion as the current or default connection also sets the current or default engine. 

7.2.2. 

Multiple Connections to a Single Engine 
Some engines pennit two or more simultaneous connections. See the DBMS-specific NOles 
in this document for information on your engine. Developers who wish to take advantage of 
this feature on a valid engines should declare a named connection for each session on the 
engine. 

dbms ENGINE sybase 
dbms DECLARE sl CONNECTION FOR \ 

USER :uname PASSWORD :pword SERVER birch 
dbms DECLARE s2 CONNECTION FOR \ 

USER :uname PASSWORD :pword SERVER maple 
dbms CONNECTION sl 

If this is the second or later connection on the engine. and the engine supports multiple con
nections. the support routine opens the additional connection and JAM/DBi keeps a count 
of the number of active connections for the engine. If the engine does not support multiple 
connections or the connection name is not unique. JAM/DBi returns the error 
DM ALREADY ON. 

The application may close all connections by executing DBMS CLOSE CONNECTION for each 
declared connection or it may close all connections on an engine or all engines by executing 

dbms [WITH ENGINE engme] CLOSE_ALL_CONNECTIONS 

56 JAM/OBi Release 5 May 92 



Access and Execution: Using Cursors 

7.3. 

USING CURSORS 
A cursor is a SQL object associated with a specific query or operation. JAM/OBi stores 
information on each cursor. This includes, 

• the cursor's name 

• the cursor's connection 

• any cursor attributes assigned with the commands DBMS ALIAS, DBMS 
CATQUERY, DBMS FORMAT, DBMS OCCUR, DBMS START, DBMS STORE, and 
DBMS UNIQUE 

• other operation-specific information (e.g., the number of rows to fetch, in-
formation on target variables or binding parameters, etc.) 

Cursors are not JAM variables, and they do not follow the scoping rules of JAM variables. 
When a cursor is declared, JAM/OBi creates a structure for it and adds its name to a list of 
open cursors. The cursor is available throughout the application until the application closes 
the cursor or closes the cursor's connection. JAMIDBi frees the structure when the cursor 
is closed. 

Every connection has one or two default cursors which JAMIDBi automatically creates. An 
application may also declare named cursors on a connection. A JAM/OBi application may 
use either or both of these types of cursors. 

The default cursors are convenient for SQL statements that are executed once, and for appli
cations using only one SELECT set at a time. All database commands executed with the JPL 
command sql or the library function dIn _ sql use default cursors. 

Named cursors are convenient for SQL statements that are executed several times. A cursor 
is declared for a statement; executing the cursor executes the statement. Named cursors of
ten improve an application's efficiency because the same statement does not need parsing 
each time it is executed. Named cursors are also necessary for applications using more than 
one SELECT set at a time. 

The rest of this section describes the use of cursors in an application. Please note that the 
discussion of how data is passed between an application and a database is not covered here 
but in Chapters 8. and 9. 

7.3.1. 

Using the Default Cursor 
For most engines, JAM/OBi automatically declares two default cursors--one for SELECT 
statements and one for non-SELECT statements such as UPDATE. In a few cases, the engine's 

May 92 JAM/OBi Release 5 57 



II. Developer's Guide 

standard is a single default cursor and JAM/OBi will declare one default cursor. On such 
engines, an additional option, CURSORS, is supported in the engine's DECLARE connection 
statement. It permits the developer to choose between one or two default cursors for the con
nection. See the DBMS-specific NOles in this document for more infonnation, 

A default SELECT cursor is associated with a particular connection, namely the connection in 
effect when a SELECT statement is executed. For example, 

dbms CONNECTION c2 
dbms WITH CONNECTION cl \ 

SELECT code, region FROM sales WHERE sales> 999.99 
sql UPDATE sales SET code = :+code WHERE region = :+new 

The first statement sets the default connection. The second statement uses WITH 

CONNECTION to set cl as the current connection for the SELECT statement. In the last state
ment, no connection is specified for the UPDATE statement. Therefore, JAM/OBi uses the 
default connection c 2. 

7.3.2. 

Using a Named Cursor 
A developer may create one or more named cursors to access and manipulate data. The se
quence is the following: 

• Declare one or more named cursors. 

• Execute cursor(s). 

• Close cursor(s). 

Declaring a Cursor 
Named cursors are created with a declaration statement. The statement names the cursor and 
associates it with a connection and a SQL statement. If a connection is not named in the 
declaration, JAM/OBi uses the default connection. 

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \ 
FOR SQLstmt 

For example, 

dbms DECLARE customer_cur CURSOR FOR \ 
SELECT * FROM directory WHERE lname = :+lname 

This statement is a declaration statement. JAM/OBi does not pass the query to the DBMS. 
Instead it parses the query, performing any specified colon expansion. Colon expansion is 
not ·repeated when the cursor is executed. 

58 JAM/OBi Release 5 May 92 



Access and Execution: Using Cursors 

Executing a Cursor 
Once a cursor has been created, the statement 

dbms WITH CURSOR cursor_name EXECUTE 

executes the SQL statement associated with cursor_name. For the examples used above, 
the statement 

dbms WITH CURSOR customer_cur EXECUTE 

executes the SQL statement SELECT * FROM directory WHERE lname = 
value of Iname when cursor was declared. If qualifying rows are found, the database will 
return them now to JAMIDBi. 

If the SQL statement is a SELECT statement that retrieves more rows than will fit on the 
screen, the statement 

dbms WITH CURSOR cursor_name CONTINUE 

continues the previous EXECUTE for cursor_name by fetching the next screenful of records 
from the SELECT set. 

Executing a Cursor with Parameters 

Parameters may be passed with the statement DBMS EXECUTE. The syntax is the following: 

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \ 
FOR SOL statement 

dbms [WITH] CURSOR cursor EXECUTE USING var1 [, var2 ... ] 

There is a one-to-one mapping between parameters in SOL statement and the var values 
in the USING statement. In a DECLARE CURSOR statement for any engine, JAMIDBi inter
prets : : parameter as a binding parameter. For example, 

dbms WITH CONNECTION cl DECLARE x_cursor CURSOR \ 
FOR SELECT * FROM sales WHERE cost = ::parm 

dbms WITH CURSOR x cursor EXECUTE USING newcost 

Note that the use of parameters is different than the use of colon preprocessing when declar
ing a cursor. When the colon preprocessor is used, column values are supplied when the cur
sor is declared. To use different values, the cursor must be redeclared before it is executed. 
When binding is used, the application supplies column values each time it executes the cur
sor. 

If an engine uses another syntax for binding parameters, JAM/OBi wiII also support it. 

This topic is covered in detail in Section 8.2. 

May 92 JAM/OBi Release 5 59 



II. Developer's Guide 

Note to Developers Using Multiple Connections 

Note that the command DBMS EXECUTE does not pennit the WITH CONNECTION clause. The 
cursor remains associated with the connection specified by name or by default in the 
DECLARE statement. For example, 

dbms CONNECTION sybcon 
dbms DECLARE curl CURSOR FOR SELECT * FROM books 
dbms CONNECTION oracon 
dbms WITH CURSOR curl EXECUTE 
sql UPDATE .... 

When cursor curl is declared JAM/OBi associates it with the default connection 
sybconl. Although the default connection is changed to oracon before the cursor is ex
ecuted, the connection associated with curl does not change. When the cursor is executed, 
the JAM/OBi performs the SELECT on connection sybcon. The default connection 
ora con performs the subsequent UPDATE. 

Modifying or Closing a Cursor 
A cursor may be redeclared for another SQL statement. For example, 

DBMS DECLARE abc CURSOR FOR \ 
SELECT order_id, total FROM newsales \ 
WHERE total> :+cost 

DBMS WITH CURSOR abc EXECUTE 

DBMS DECLARE abc CURSOR FOR \ 
SELECT * FROM directory WHERE dept = 'Sales' 

DBMS WITH CURSOR abc EXECUTE 

JAM/OBi provides several commands for changing the default behavior for a cursor asso
ciated with a SELECT statement. The commands are DBMS ALIAS, DBMS CATQUERY with DBMS 

FORMAT, DBMS OCCUR, and DBMS START. They are discussed in Chapter 9. Here we note that 
these settings are not lost when a cursor is redeclared, but only when the cursor is closed. 

To close a cursor and free its data structure, execute the foHowing 

dbms CLOSE CURSOR cursor_name 

60 JAM/OBi Release 5 May 92 



Data Flow from JAM 

ChapterB. 

Data Flow from JAM 

This chapter discusses how JAM/OBi passes data from an application to a database. The 
topics are the following: 

May 92 

• Colon preprocessing: using the colon preprocessor to put JAM values 
into SQL statements. Its forms are : variable and :+varlable. 

• Parameters: binding values to SQL parameters when executing a named 
cursor. Their form is :: variable. 

JAM/OBi Release 5 61 



II. Developer's Guide 

8.1. 

COLON PREPROCESSING 
JAM supports two types of colon preprocessing, 

• :var Standard colon preprocessing, and 

• :*var Re-expanded colon preprocessing. 

Both methods are described in theJPL Guide in Volume II of JAM. One or more colon vari
ables may appear almost anywhere in a sql or dbms statement. There are two exceptions. 

The flfst word in the statement may not be colon-expanded. Therefore, the statements 

:verb SELECT * FROM students 
:command EXECUTE cursorl 

arc both illegal. JPL must know the command word to perform syntax checking and compi
lation before executing a JPL statement. 

Colon expansion is not permitted in the WITH ENGINE or the WITH CONNECTION clause. 
Therefore, 

dbms :eng_str DECLARE cl CONNECTION FOR USER :uname 
sql WITH CONNECTION :cname SELECT * FROM students 

are also both illegal. JPL must know which engine or connection is in use before performing 
any colon processing. 

In addition to the standard forms, JAM/OBi supports special forms of colon pre-processing 
for values sent to a database. The forms are 

• :+var Database colon preprocessing for column values (colon-plus) 

• :=var Database colon preprocessing for operator and column values 
(colon-equal) 

These forms of colon preprocessing replace a variable with its value and format it in a style 
that is appropriate for a column value in an INSERT statement, an UPDATE statement, or a 
WHERE clause. They are described below. 

8.1.1. 

Colon-plus Processing 
Before colon preprocessing a statement, JPL determines which engine to use. If executing 
a sql or dbms statement, the JPL parser examines the statement for a WITH ENGINE clause. 

62 JAM/OBi Release 5 May 92 



Data Flow from JAM: Colon Preprocessing 

If it finds the clause, it uses the specified engine. If it finds a WITH CONNECTION clause, it 
uses Lhe connection's engine. If neither clause is used, JPL uses Lhe engine of the default 
connection. In oLher JPL statements, such as ca t, JPL always uses the engine of the default 
connection. Note Lhat colon-plus processing is not necessary in statements using the WITH 

CURSOR clause. The only WITH CURSOR statement Lhat uses column values is DBMS EXECUTE 

and Lhis statement uses binding, not colon-plus processing, to supply column values. 

For each : + variable used in the JPL statement, Lhe following steps are performed: 

1. The standard colon preprocessor replaces the variable : + variable wiLh 
the value of variable. 

2. The colon-plus processor examines the source. If variable has a null edit 
and its value is the null edit's string, Lhe colon-plus processor replaces the 
value wiLh Lhe engine's null value. If it does not have a null edit, or does 
not contain Lhe null edit string, the processor determines the variable's 
JAM type. The term JAM type refers to a classification of JAM field 
characteristics used by Lhe library function sm ftype, the colon-plus 
processor, and JAM/OBi routines for binding. The JAM types are 

• DT CURRENCY 

• DT DATETIME 

• DT YESNO 

• FT CHAR 

• FT DOUBLE 

• FT FLOAT 

• FT INT 

• FT LONG 

• FT PACKED 

• FT SHORT 

• FT UNSIGNED 

• FT VARCHAR 

• FT ZONED 

3. If Lhe JAM type is DT_DATETIME, FT_CHAR, or FT_VARCHAR the 
processor formats the value according to engine-specific rules, usually 
enclosing Lhe string in quote characters. For Lhe oLher format types, the 
processor calls a function to strip amount editing characters, such as dol
lar signs, from Lhe value. Finally, Lhe new value is returned to Lhe JPL 
statement. 

May 92 JAM/OBi Release 5 63 



II. Developer's Guide 

The steps are described in full below. 

Step 1. Perform Standard Colon Preprocessing 
JAM will search for variable in the following places 

• JPL variables local to the procedure that JPL is executing 

• JPL variables local to the module containing the procedure that JPL is ex
ecuting 

• 
• 

fields on the current screen 

LOB variables3 

When it finds the variable, it copies its value to an internal work buffer. Any formatting is 
performed on this copy. The variable's contents remained unchanged. 

For more information on variables and scope, see the JPL Guide. 

Step 2. Determine the Variable's JAM Type 
If the variable is a field or LOB entry that has a null edit, and the value of the variable equals 
this null edit string, the processor replaces the value with the engine's null string. On most 
engines, it is the Siring NULL. For example, if field named address had a null field edit, 
the Screen Editor window could appear as the following: 

enter null indicator string 

* 

replicated?~ 

Figure 21: Null field edit window in JAM Screen Editor. 

If the user or program does not enter text in the field named addres s, the field is null and 
JAM will display the Siring, * * * * * * * as the field contents. JAM/OBi would convert the 
string * * * * * * * to NULL (i.e., the value of the engine's null siring) before passing it to a 
DBMS. 

If the variable does not have a null edit, or its value does not equal its null edit Siring, the 
processor calls a routine to examine field characteristics and determine the variable's JAM 
type. 

3. Note that when J AM is executing a screen enlry/lUlClion, JAM by default will search for """.bIe in the LOB 
before searching the current screen. 

64 JAM/OBi Release 5 May 92 



Data Flow from JAM: Colon Preprocessing 

A field or LOB variable has exactly one JAM type. Since a variable may have more than 
one of the qualifying PF4 characteristics, JAM uses some precedence rules when assigning 
the JAM type. 

Field Summary 
"""",.,.",,'" 

Name field for colon ;elus Char Edits unfilt 

Length12... (Max ) Onscreen Elems L Distance unfilt 
digit 

Display Att:WHlTE ONDLN HILIGHT yes/no 
~4 Field Edits: letters 

numeric 
Other Edits: TYPE OSR-DT/TM SYS-DT/TM CURRENCY alphanum 

~ \, ~ ~ ~ 
reg exp 

1 2 3 

Summary Setting of Field Characteristic 
Submenu Option JAM Type Keyword (PF4 menu in draw mode) 

TYPE type char string FT CHAR 
(C types for structures) int FT-INT 

unsigned int FT-UNSIGNED 
short int FT-SHORT 
long int FT-LONG 
float FT-FLOAT 
double FT-DOUBLE 
zoned dec. FT-ZONED 
packed dec. FT=PACKED 

USR-DT/TM misc. edits date or time DT DATETIME 
SYS-DT/TM -

CURRENCY misc. edits currency DT CURRENCY 

Char Edits char edits digits only FT UNSIGNED 
yes/no field DT-YESNO 
numeric FT-DOUBLE -

Figure 22: Field Summary Screen (PF5 in draw mode). Use the summary screen to de
termine a field's JAM type. A TYPE edit has the highest priority, then a date time edit, 
then a currency edit, and finally a character edit. A variable with any other edits has the 
JAM type FT_CHAR. 

C record types are assigned with the type option on the PF4 key menu. For clarity, we call 
these types C types. To assist developers using utilities such as f2struct, JAM automati
cally assigns a default C type to each field. Developers may also explicitly set a C type. 
JAM/DBi' ignores C types assigned by default; it only uses those assigned explicitly by a 

May 92 JAM/OBi Release 5 65 



II. Developer's Guide 

developer. The field summary screen is an easy way of checking whether or not JAM/OBi 
will use the variable's C type. If the word TYPE is shown on the Other Edits line of the 
field summary window, and the type is not omit, JAM/OBi will use it to assign a JAM 
type. 

Otherwise, JAM examines the miscellaneous edits; a date-time or currency edit will pro
vide a JAM type. If the variable does not have a date-time or currency edit, JAM examines 
the variable's PF4 char edits. An edit of digits only, yes/no field, or 
numeric will provide a JAM type. For all other field and LOB variables, and for all JPL 
variables, JAM assigns FT_CHAR as the JAM type. 

Beware of C type edits that may conflict with other edits. For example, if a field had a type 
edit int and a date-time edit, its JAM type would be FT_INT. The Screen Manag
er would enforce the date-time format for user entry but JAM/OBi would not convert the 
dale-time string into a format the engine would recognize. 

Note: developers may also use sm _ ftype lO determine a variable's JAM type. The assign
ments are the same as those in the table above, except for JPL variables. The library function 
sm_ftype returns 0, not FT_CHAR, for JPL variables. 

Step 3. Format a Non-null Value 
Once JAMIDBi determines a variable's JAM type, it uses the classification to perform any 
necessary formaLLing and returns the formatted text to JPL. 

DT DATETIME Variable 

If JAM type is DT_DATETIME, the processor calls the support routine to format the text in 
the engine's default syntax for dates. Some support routines store a JAM date-time format 
string in the style of the engine. When formatting a field value, it may simply pass the for
mat string and value to JAM's date-time routines to reformat the string. Other support rou
tine may call a conversion function from the DBMS library to perform the task. 

Of course, the actual result is dependent on the engine. For example, if the value in a date
time field is December 31, 19993:05 PM and the current engine is using the ORACLE sup
port routine, JAM/OBi formats the date as 

TO_DATE('31121999 150500', 'ddmmyyyy hh24miss') 

If the engine is using the SYBASE support routine, however, JAM/OBi formats the date as 

'Dec 31,1999 3:5:0:000PM' 

Some engines support more than one datatype for date-time columns. Please see the engine
specific Notes. 

66 JAM/OBi Release 5 May 92 



Data Flow from JAM: Colon Preprocessing 

FT CHAR Variables 

If JAM type is FT _CHAR, the processor checks if the engine uses quote and escape charac
ters. By default, an engine uses a single quole for quote_char, and a single quote for 
escape_char. 

The processor first determines the size of the formaued text by adding the length of the un
formatted text, the number of embedded quote_char's in the text, and 2 (for the enclos
ing quote characters). If it cannot allocate a buffer large enough for the text, the processor 
returns the SM _ MALLOC error. If the allocation is successful, the processor writes the for
matted text to the buffer. It puts a quote_char at the first position in the buffer and, as it 
copies each character from the source string to the buffer, it compares the character with 
quote_char. If the character equals quote_char the processor" puts an 
escape_char before the embedded quote_char. A final enclosing quote_char is 
put at the end of the text. 

For example, JAM/OBi would format the field value 

Ms. Penelope O'Brien 

to 

'MS. Penelope O"Brien' 

JAM/OBi would format the field value 

Reported record sales for "The Novice's Guide to PC's" 

to 

'Reported record sales for "The Novice"s Guide to PC"s" 

A few engines do not support both single and double quotes within a character string. For 
engine-specific information, please see the NOles section in this document. 

FT numeric and DT CURRENCY Variables - -
For the remaining JAM types, the processor calls the JAM function 
sm _ st rip _ amt yt r to strip editing characters from the numerical string. The function 
strips all non-digit characters except for an optional leading negative sign and a decimal 
point. See the JAM Programmer's Guide for more information on sm _ st rip _amt yt r. 
The colon preprocessor does not use precision edits when formatting numeric values. 

For example, JAM/OBi would format 

$500,000.00 

as 

500000.00 

May 92 JAM/OBi Release 5 67 



II. Developer's Guide 

JAM/OBi would format 

(-89.003) 

as 

-89.003 

It would format 

001-02-0003 

as 

001020003 

If you wish to preserve embedded punctuation in numeric fields, set the field's C type to 
char. 

See the engine-specific NOles for additional information. 

8.1.2. 

Colon-equal Processing 
To specify a NULL value in a search criteria, most engines require the syntax 

SELECT column_list FROM table WHERE column IS NULL 

To permit end users to select rows where a column value is either known or unknown (i.e., 
NULL), use the colon-equal processor. For example, 

sql SELECT * FROM emp WHERE zip :=zip 

If zip is a character field with the null edit 

enter null indicator string 
o 

replicated?~ 

Figure 23: Null field edit window in JAM Screen Editor. 

JAM/OBi would format the value 

10038 

68 JAM/OBi Release 5 May 92 



Data Flow from JAM: Colon Preprocessing 

as 

, 10038' 

thus executing 

SELECT * FROM emp WHERE zip 

It would format the field's "null" value 

00000 

as 

IS NULL 

thus executing 

'10038' 

SELECT * FROM emp WHERE zip IS NULL 

8.1.3. 

Examples 

A Field with Default Characteristics 
If the current screen has a field named last with no field, miscellaneous or type edits, and 
a character edit unfilt, its field summary screen would appear as 

Field Summary 

Name last Char Edits unfilt 
Length~ (Max ) Onscreen Elems _1_ Distance (Max Occurs 

Display Att: WHITE UNDLN HILIGHT 
Field Edits: 
Other Edits: 

Figure 24: Field Summary Screen. With these edits, JAM type = FT_CHAR. 

Since the field does not have any of the field characteristics listed in Figure 22 on page 65, 
JAM type = FT_CHAR. If the field last contained the textD' Angelo when the follow
ing were executed, 

sql SELECT * FROM employee WHERE last = :+last 

May 92 JAM/OBi Release 5 69 



II. Developer's Guide 

JAM/OBi would pass the query 

SELECT * FROM employee WHERE last = 'D"Angelo' 

If the field last were empty, JAMIDBi would pass the empty string, not the null string, 

SELECT * FROM employee WHERE last = " 
Null conversion is performed only on variables with a null field edit. 

A Variable with a Date-time Edit and a Null Edit 
If the current screen contains a field hiredate with a null field edit string 00/00/00, a 
date-time edit MON 2 / DA TE 2 / YR2 for a user -speci fled d.1te, and character edit of di g its 
only, its summary screen would appear as 

Field Summary 
AAAAAAAA 

Name hiredate Char Edits digit 

Length~ (Max ) Onscreen Elems 1-- Distance (Max Occurs 

Display Att: WHITE ONDLN HILIGHT 
Field Edits: 
Other Edits: OSR-DT/TM NOLL 

Figure 25: Field Summary Screen. For this field, JAM type = DT DATETIME. 

Assume that back slash characters are saved with the field as embedded punctuation. Since 
a date-time edit has a higher precedence than a character edit, the JAM type for this field is 
DT_DATETIME. If the user entered the dale 12/31/91 and executed the following func
tion, 

sql WITH CONNECTION oracle_conn \ 
INSERT INTO employee (last, hiredate) \ 

VALUES (:+last, :+hiredate) 

and the engine, for example, were ORACLE, JAM/OBi would pass the statement 

INSERT INTO employee (last, hiredate) VALUES \ 
('D"Angelo', \ 
TO_DATE('31l21991 000000', 'ddmrnyyyy hh24miss'» 

to the engine. 

If the user did not change the text in the field hiredate, so that its contents were 
00/00/00, JAM/OBi would pass the statement 

70 JAiWDBi Release 5 May 92 



Data Flow from JAM: Colon Preprocessing 

INSERT INTO employee (last, hiredate) \ 
VALUES ('D"Angelo', NULL) 

to the engine. 

A Variable with a Digits Only Character Edit and a 
C-Type char string Edit 
Very often it is useful to use the digits only character edit on fields that accept values 
such as a social security number. zip code, or telephone number. If this is the only edit on the 
field. the colon-plus processor will format the field's value as an unsigned integer, removing 
embedded punctuation and leading zeros. However. if the developer resets the C-type edit to 
char string. the colon-plus processor will format the field's contents as a character 
string. preserving embedded punctuation and leading zeros. 

If the current screen contains a field zip_code with a character edit of digi ts only 
and a C type of char string. its summary screen would appear as 

Field Summary 
"''''''''''''''''''''A 

Name zip code Char Edits digit 
Len9th~ (Max ) Onscreen Elems _1_ Distance (Max Occurs 

Display Att: WHITE ONDLN HILIGHT 
Field Edits: 
Other Edits: TYPE 

Figure 26: Field Summary Screen. For this field. JAM type is set according to 
the value of TYPE. If TYPE is "char string" JAM type = FT_CHAR. 

For example, if a user entered 00912 in the field zip_code and executed the following 
function. 

sql SELECT * FROM marketing WHERE zip = :+zip_code 

JAM/OBi would pass the query 

SELECT * FROM marketing WHERE zip = '00912' 

to the DBMS. 

Note that if the developer assigned digi t only to the field, but did not reset the C type. 
JAM/OBi would pass the query 

SELECT * FROM marketing WHERE zip = 912 

May 92 JAM/OBi Release 5 71 



II. Developer's Guide 

8.2. 

USING PARAMETERS IN A CURSOR 
DECLARATION 
Some engines permit parameters in the SQL statement of a cursor declaration statement. 
Therefore, they permit one or more values to be supplied when the cursor is executed. On 
those engines that do not suppon binding (e.g., Progress and SYBASE) JAM/DBi internal
ly supports cursors with parameters. 

When JAM/DBi executes a DECLARE CURSOR statement, it scans the statement for parame
ters. For all engines, JAM/DBi recognizes 

: : parameter 

to be a parameter.4 If JAM/DBi finds a parameter, it sets up a data structure for it. It will 
attempt to find a value for the parameter when the cursor is executed. Parameters may be 
used to supply column values for any SELECT, INSERT, UPDATE, or DELETE statemenL For 
example, 

dbms DECLARE a_cursor CURSOR FOR \ 
SELECT * FROM emp WHERE last = ::xyz 

dbms DECLARE b_cursor CURSOR FOR \ 
INSERT INTO acc VALUES (::ss, : :sal, ::exmp) 

dbms DECLARE c_cursor CURSOR FOR \ 
UPDATE ernp SET street=::street, city=::city, \ 
st=::st, zip=::zip WHERE ss=::ss 

dbms DECLARE d cursor CURSOR FOR \ 
DELETE newsales WHERE custid=::id 

The binding data structures are stored with an individual cursor. Therefore, the application 
should give a unique name to each parameter belonging to a single cursor. A cursor cannot 
have two parameters with the same name. 

4. Many vendors use a single colon to begin a parameter name. Since this form conflicts with the colon prepro· 
cessor, two colons must be used in IPL. The second colon prevents the colon processor from performing variable 
substitution. Some vendors. such as INFORMIX. use a single question mark to represent a parameter. JAMJDBi 
also recognizes these engine·specific forms. 

72 JAM/DBi Release 5 May 92 



Data Flow from JAM: Parameters 

A value for a parameter is supplied in the us ING clause of an EXECUTE statement, 

dbms WITH CURSOR cursor EXECUTE USING arg [, arg ... 1 

JAM/DBi looks for the keyword USING before passing the cursor's query to the DBMS. If 
it finds the keyword, it assumes the arguments which follow are parameter values. If an arg 
is not quoted, JAM/DBi assumes it is a variable and performs variable substitution and for
matting. Values and parameters may be bound by position. For example, 

dbms DECLARE b cursor CURSOR FOR \ 
INSERT INTO acc VALUES (::pl, ::p2, ::p3) 

dbms WITH CURSOR b cursor EXECUTE USING ss, sal, exmp 

Values and parameters may also be bound explicitly by name, 

dbms DECLARE b_cursor CURSOR FOR \ 
INSERT INTO acc VALUES (::pl, ::p2, : :p3) 

dbms WITH CURSOR b cursor EXECUTE \ 
USING p3=exmp, pl=ss, p2=sal 

Note that p3, pl, and p2 are not JAM variables but exmp, ss, and sal are. JAM/DBi 
uses the values of exmp, ss, and sal to execute the INSERT. To supply a literal value to the 
INSERT, put the value in quotes, 

dbms WITH CURSOR b_cursor EXECUTE \ 
USING pl=ss, p2=sal, p3="O" 

JAM/DBi formats binding values in a method similar to the colon-plus processor. This is 
discussed in detail in the next section. 

On those engines that support parameters, using them often improves the efficiency of the 
application, especially when a query is executed several times. On engines whereJAM/DBi 
simulates support, such as SYBASE,the use of parameters will be less efficient. However, 
the convenience and the greater ease of portability may compensate for the additional pro
cessing. 

8.2.1. 

Parameter Substitution and Formatting 
An arg in a us ING clause may be either 

• a quoted string, or 

• a JAM variable 

May 92 JAM/DBi Release 5 73 



II. Developer's Guide 

Colon-plus processing is not necessary because JAM/DBi automatically formats the value 
of parameter variables. If Lhe variable is an array name, an occurrence number may be given. 
If no occurrence is given, JAM/DBi concatenates all the non-empty occurrences in the 
array, separating the occurrences with a single space. Substrings are not pennitted. 

For each cursor, JAM/DBi maintains binding information. When a cursor's statement uses 
parameters, JAM/DBi stores Lhe names of the parameters. When a cursor is executed, 
JAM/DBi compares the values in Lhe DBMS EXECUTE statement with Lhe binding infonna
tion from Lhe cursor's declaration. This permits both positional and explicit binding. 

JAM/DBi uses a data structure 10 store the formatted text and JAM type of argo If arg is not 
quoted, JAM/DBi assumes it is a variable and calls sm _ ftype to determine the variable's 
ftype code and flags. Like the colon-plus processor, Lhe binding routine distinguishes be
tween empty and null variables; a variable is null if it has a null edit and contains the nuIl 
edit string. 

If ftype=DT_DATETIME, JAM/DBi calls Lhe support routine to convert Lhe value to a 
binary date-Lime value. See Lhe discussion of DT_DATETIME on page 66 for more infonna
tion. 

No processing is done on Lhe values of FT _CHAR variables or quoted strings. 

For all oLher types, JAM/DBi strips characters other Lhan digits, Lhe decimal point, and a 
leading negative sign from the value. 

Below are some examples showing the different formats for arg in a USING clause. 

dbms DECLARE x CURSOR FOR \ 
SELECT * FROM emp WHERE name=::pl or ss=:p2 

* newname and ss number are LOB variables 
dbms WITH CURSOR x EXECUTE \ 

USING pl=newname, p2=ss_number 

* code is a JPL variable containing the text "ss_number" 
* and ss number is a field on the current screen 
dbms WITH CURSOR x EXECUTE USING pl='Jones', p2=:code 

* name and ss_number are field arrays. i is a JPL variable 
dbms WITH CURSOR x EXECUTE \ 

USING pl=name[iJ, p2=ss_number[iJ 

Examples 
If the current screen contained a field named total wiLh a currency edit and character edit 
of numeric its summary screen would appear as 

74 JAM/DBi Release 5 May 92 



Data Flow from JAM: Parameters 

Field Summary 
,,"",...A,,"""" 

Name total Char Edits numeric 
LengthllL (Max ) On screen Elems _1_ Distance (Max Occurs 

Display Att:WHITE ONDLN HILIGHT 
Field Edits: 
Other Edits: CCRRENCY 

Figure 27: Field Summary Screen. For this field, ftype = DT_CURRENCY. 

If the user entered the total $ 9, 499 . 99 and executed the following statements: 

dbms DECLARE sales_cursor CURSOR FOR \ 
SELECT * FROM orders WHERE total> ::x 

dbms WITH CURSOR sales cursor EXECUTE USING x=total 

the DBMS would execute 

SELECT * FROM orders WHERE total> 9499.99 

If the current screen contained a field named description with a null field edit 
and a word wrap edit, its summary screen would appear as 

Field Summary 

Name description Char Edits unfi1t 

Length~ (Max Onscreen Elems ~ Distance (Max Occurs10) 

Display Att: WHITE ONDLN HILIGHT 
Field Edits: WDWRP 
Other Edits: NOLL 

Figure 28: Field Summary Screen. With these edits, ftype FT CHAR. 

If the user executed the following statements: 

dbms DECLARE ins_cursor CURSOR FOR \ 
INSERT INTO products (description) VALUES (::pl) 

dbms WITH CURSOR ins cursor EXECUTE USING description 

May 92 JAM/DBi Release 5 75 



II. Developer's Guide 

when the word wrapped array were empty, the DBMS would execute 

INSERT INTO products (description) VALUES (") 

If, however, the array contained text, JAM/DBi would concatenate the non-empty occur
rences into one long string which the DBMS would insert into the column description, 

76 JAMIDBi Release 5 May 92 



Data Flow from a Database 

Chapter 9. 

Data Flow from a Database 
A JAM/OBi application receives two types of information from a database: 

• data requested by a SELECT statement 

• a count of the rows fetched for a SELECT statement 

• error and status codes from an engine and from JAM/OBi 

The rest of the chapter discusses how this information flows from one or more databases to 
variables in a JAM application. The first part discusses the destination and fonnat of data 
returned by SELECT statements. The second part discusses the global JAM/OBi variables for 
status and error data. 

In addition to the two types of infonnation described above, an application may also receive 
data as the result of executing a stored procedure. Since all engines do not support stored 
procedures, and the syntax of commands varies among those that do, the topic is covered in 
the Notes section of this document. 

May 92 JAM/OBi Release 5 77 



Developer's Guide 

9.1. 

DATA FETCHED BY SELECT 

When a SELECT statement is passed to an engine, JAMIDBi perfonns several steps before 
transferring data to JAM variables. 

l. JAM/OBi counts the number of columns in the query and records infor
mation on each column's name, length, and type. Type is 
DT_DATETIME,FT_INT,or FT_CHAR. 

2. For each column, it searches for a JAM variable destination. If a destina
tion exists, JAM/OBi records the length of the variable. If no JAM desti
nation exists for a column, or the destination is an LDB constant, JAM/ 
OBi does no fetches for the column. The discussion of JAM destinations 
is in Section 9.1.l. on page 78. 

3. It determines the number of rows to fetch. This number usually equals the 
number of occurrences in the smallest JAM destination variable, or 0 if 
there are no target variables, See Section 9.1.2. on page 83. 

4. Finally, JAM/OBi fonnats data before writing it to the destination vari
ables if the database column has a date datatype, or if the destination vari
able has a null, currency, or precision edit. See Section 9.1.3. on page 89. 

The sequence above describes a SELECT that writes database column values to individual 
occurrences of a field, JPL variable, or LDB variable. Developers may also direct the results 
of a SELECT to two other types of targets. See Section 9.l.4. on page 92 for more infonna
tion. 

9.1.1. 

JAM Targets for a SELECT 

For an application to retrieve data from a database, there must be an unambiguous mapping 
between a selected database column and its JAM destination. There are two ways of asso
ciating JAM targets with database columns. 

78 

• The developer gives a JAM target variable the same name as a database 
column. This is called automatic mapping. 

• The developer explicitly declares a JAM variable as the target of a data
base column. This is called aliasing. 

JAM/OBi Release 5 May 92 



Data Flow from a Database: Targets of a SELECT 

Automatic Mapping 
By default when executing a SELECT statement, JAMIDBi will search for JAM variables 
with the same names as the specified columns. For the statement, 

sql SELECT lastname, ssnumber, dept, date FROM emp 

to return values to JAM variables, the table emp must have at least four columns: 
lastname, ssnumber, dept, and date. If any of Lhese columns does not exist in the 
table emp, the engine returns an error. 

The application may have a JAM destination variable for none, some, or every named col
umn in the SELECT statement. To return the values of all four columns to the application, 
then there must be a JAM variable for each column. The variables may be named 
lastname, ssnumber, dept, and date. If one of these fields does not exist, JAM/ 
OBi ignores the values belonging to that particular column. 

Developers may also use one or more qualified column names in SELECT statements. For 
example, 

sql SELECT emp.lastname, emp.ssnumber, emp.dept, \ 
emp.date FROM emp 

The JAM targets, however, must be given unqualified names: lastname, ssnumber, 
dept, and date. 

JAM/DBi also permits the use of the shortcut SELECT statement, 

sql SELECT * FROM emp 

Using automatic mapping, JAM/DBi looks for a JAM variable for each column in the table 
emp. Columns without matching variables are simply ignored. This is not treated as an er
ror. 

When using automatic mapping, the case of the JAM variable names should correspond to 
the case flag used in the engine initialization in dbiini t . c. If the engine's case flag is 
OM_FORCE_TO_LOWER_CASE, the JAM variables for a SELECT should have lower case 
names. If the case flag is OM_FORCE_TO_UPPER_CASE, the JAM variables should have 
upper case names. If the case flag is OM_PRESERVE _CASE, the JAM variables should use 
the exact case of the database columns. 

Aliasing 
Aliasing is used when automatic mapping is inconvenient or impossible LO use. In particular, 
aliasing is necessary when selecting any of the following: 

• a column whose name is not a legal JAM variable name 

May 92 JAM/OBi Release 5 79 



Developer's Guide 

• a column whose name conflicts with oLher JAM variable names in the 
application 

• a computed column or an aggregate function (COUNT, SUM, AVG, MAX, MIN) 

Ali<lsing is not limited to these conditions. Any or all columns may be aliased if desired. 
Occasionally, developers like to alias a column if its name is not descriptive or because they 
wish to name target variables for a particular table and column. 

Developers use Lhe command DBMS ALIAS to specify aliases. On some engines, developers 
may also use Lhe engine's SELECT syntax to specify aliases. 

Using DBMS ALIAS 

DBMS ALIAS is associated with a SELECT cursor, eiLher a named cursor or Lhe default SELECT 

cursor. If a cursor is not named, the aliases affect all SELECT'S executed with Lhe default cur
sor. The syntax for assigning aliases to a cursor is either of Lhe following: 

dbms [WITH CURSOR cursor] ALIAS column1 jam_var1 \ 
[, c~/umn2 jam_var2 ... ] 

to alias a column name to a JAM variable, or 

dbms [WITH CURSOR cursor] ALIAS [jam_var1] \ 
[, [jam_var2] ... ] 

to alias a column position to a JAM variable. Either named or positional aliasing may be 
used, but both forms may not be used in a single statement. 

To tum off aliasing, execute DBMS ALIAS without any arguments. Again, if a cursor name is 
given, aliasing is turned off on the named cursor. If no cursor name is given, aliasing is 
turned off on the" default cursor. 

The case of the column names in the DBMS ALIAS statement should correspond to Lhe case 
flag used in Lhe engine initialization in dbiini t . c. If Lhe engine's case flag is 
DM_FORCE_TO_LOWER_CASE, Lhe column names should be in lower case. If the case 
flag is DM _FORCE_TO _UP P ER _CAS E, the column names should be upper case. If Lhe case 
flag is DM_ PRES ERVE _CAS E, Lhe column names should use the exact case ofLhe database 
columns. The case of Jam_var should always match Lhe exact case of the JAM variable 
name. 

If an application aliases a column to a JAM variable that does not exist JAM/OBi ignores 
the column's values. This is NOT treated as an error. 

Using DBMS ALIAS to Alias Column Names 

First consider an example that aliases column names to JAM variables. For example, 

80 JAM/OBi Release 5 May 92 



Data Flow from a Database: Targets of a SELECT 

dbms ALIAS first firstname, last lastname 
sql SELECT ssn, last, first FROM emp 

JAM/OBi writes the values from the column first to the variable firstname and it 
writes the values of column last to the variable lastname. Since no alias was given for 
ssn, it maps it to a variable of the same name. See the figure below. 

Table emp: last first 

Jones Arnold 
Lee Lucinda 

dbms ALIAS aliases: 

ssn 

001-23-9876 
001-31-0058 

last -> lastname first -> firstname 

JAM Screen: ~~~~~~~ 

Figure 29: The mapping of SELECT ssn, last, first FROM emp when 
aliases are used. 
Aliases may also be given after declaring a named cursor. For example, 

dbms DECLARE sales_cursor CURSOR FOR \ 
SELECT inv#, sale_date, ship_date, amount FROM acc 

dbms WITH CURSOR acc_cursor ALIAS "inv#" invoice_id 
dbms WITH CURSOR acc cursor EXECUTE 

Since inv# is not a legal JAM variable name, the application must declare an alias for the 
column if it is to receive the column's value. Before executing the cursor, the application 
aliases column inv# to variable invoice _ id. The cursor keeps this alias until the appli
cation turns it off with DBMS ALIAS or closes the cursor with DBMS CLOSE CURSOR. If a 
column name is not a valid JAM identifier, enclose it in quote characters; this ensures that 
JAM/OBi parses it correctly. 

Using DBMS ALIAS to Alias Column Positions 

Now consider an example that uses positional aliases. For example, 

May 92 JAM/OBi Release 5 81 



Developer's Guide 

dbms ALIAS min_salary, max_salary, avg_salary 
sql SELECT MIN(sal) , MAX (sal) , AVG(sal) FROM acc 

JAMIDBi writes the aggregate function values to the alias variables. MIN (s al) is written 
to the variable min_salary, MAX (sal) is written to the variable max_salary, and 
AVG ( sal) is wrillen to the variable a vg sal a ry. Note that there is no automatic map
ping available. If the application had not declared aliases, the values would not be written to 
JAM variables. 

Of course, the application should turn off the positional aliases when it is finished. If it does 
not turn them off before executing the next SELECT, JAM/OBi will auempt to write the first 
three columns' value to the three positional alias variables. If those variables are no longer 
available, JAM/OBi will ignore the first three columns in the SELECT set. 

Using the Engine's SELECT Syntax 

Many engines support aliasing in their SELECT syntax. In interactive mode, this permits the 
user to specify for a view a column heading that is different than the database column name. 
Typically, the syntax is 

SELECT column 1 heading 1 , column2 heading2 . .. FROM table 

In interactive mode, the values of column 1 are placed under the heading heading 1 ,and the 
values of column2are places under the heading heading2. Please note that in this syntax a 
space separates a column from its alias, and a comma separates the column-alias set from 
the next column or column-alias set. Some engines may support another syntax. See your 
database documentation for details. 

If an engine supports aliasing in a SELECT statement, JAM/OBi will also support it. Devel
opers may follow the syntax of the engine, replacing heading with the name of the appro
priate JAM variable. 

For example, if the syntax shown above is supported by the engine, than the following could 
be used in a JAM/OBi application, 

sql SELECT id product_no, supplier, ucost price FROM inv 

When this statement is executed, the DBMS tells JAM/OBi that the columns 
product_no, supplier, and ucost were selected. JAMIDBi will look for variables 
with those names. If there is a variable id available, this SELECT statement will not write to 
it because the engine has aliased it to product_no. 

Although this form is supported, we recommend the use of DBMS ALIAS, especially for 
applications accessing more than one engine. JAM/OBi provides identical support for DBMS 

ALIAS on all engines, 

82 JAM/OBi Release 5 May 92 



Data Flow from a Database: Number of Rows Fetched 

9.1.2. 

Number of Rows Fetched 
A SELECT set often contains more than one row. JAM/OBi must determine how many rows 
it may fetch at one time from a SELECT set. The rest of the SELECT is fetched by executing 
one or more DBMS CONTINUE'S. 

• If an occurrence number was specified with a target variable name, only 
one row is fetched. 

• If a target is a word wrapped array, only one row is fetched. 

• If using browse mode, only one row is fetched. (See the engine-specific 
NOles). 

Otherwise, JAM/OBi examines the number of occurrences in each of the targeted vari
ables. Usually, all the target variables have the same number of occurrences. If this is true, 
JAM/OBi fetches a row for each occurrence. If the targets do not have the same number of 
occurrences, JAM/OBi finds the target variable with the least number of occurrences and 
fetches that number of rows. Be careful of LOB variables that are unintentional targets of a 
SELECT especially when using the wild card * in a SELECT or when executing a SELECT in a 
screen entry function. 

For example, consider an application using the wild card, 

sql SELECT * FROM table 

The application has onscreen fields for some of the columns in the table. The LOB, howev
er, contains an entry with the name of one of these unrepresented columns. If the onscreen 
fields have 20 occurrences and the LOB entry has 5 occurrences, the SELECT will fetch only 
five rows at a time. 

Also, consider an application that executes a SELECT in a screen entry function. By default, 
JAM first searches the LOB and then the screen for JAM variables when executing screen 
entry functions. Therefore, if a variable is represented both as an onscreen field and as an 
LOB variable, a screen entry function will write to the LOB variable before the LOB merge 
writes to the onscreen field. If the LOB variable and the field do not have the same number 
of occurrences, data is lost or appears lost when the LOB merge updates the screen fields. 

Scrolling Through a SELECT Set 
Most JAM/OBi developers must create applications capable of handling a fluctuating num
ber of data rows. Based on the type of data selected and the hardware in use, a developer 
may use either or both types of scrolling-JAM scrolling or JAM/OBi scrolling. 

May 92 JAM/OBi Release 5 83 



Developer's Guide 

With JAM scrolling, the application uses large scrolling arrays as the destination variables 
of a SELECT statement. The entire SELECT set is fetched in a single step and the user presses 
the page up and page down keys (logical keys SPGU and SPGo) to view the rows. 

With JAM/OBi scrolling, the application uses single-element fields or non-scrolling arrays 
as the destination variables of a SELECT statement. The SELECT set is fetched incrementally. 
To permit the user to scroll backward and forward in the set, the application must set up 
function keys to execute the JAM/OBi scrolling commands. 

The two methods are described in detail below. 

JAM-based Scrolling 

JAM-based scrolling is useful for small to mid-sized SELECT sets. The upper limit on the 
number of rows is 9999, the maximum number of occurrences allowed for a JAM variable. 
Since the application must keep the entire SELECT set in memory, the realistic limit may be 
much lower on a platform like MS-DOS or for a SELECT involving many columns. 

With this approach, the developer creates large scrolling arrays with more occurrences than 
the number of rows he or she expects to be in the SELECT set. When the SELECT is executed 
at runtime, there is no penalty for unused occurrences; JAM allocates only whatever 
memory is needed to hold the returned rows. Therefore, a JAM screen might contain vari
ables each with 10 elements and 1000 occurrences. If a SELECT set contained only 75 rows 
JAM would allocate memory for 75 occurrences in each of the variables; it would not allo
cate memory for the 925 unused occurrences. 

There are several ways of verifying that the arrays actually contained enough occurrences to 
hold the entire SELECTset. Most often the application examines the value of the global vari
able @dmretcode, JAM/OBi writes a no-more-rows status code to this variable when the 
engine signals that it has returned all requested rows, The value of this variable may be ex
amined after a SELECT. See page 93 for more information on these variables. An example 
procedure is shown below: 

proc select_all 
# OM NO MORE ROWS is an LOB constant. 
sql SELECT inv_no, prod_no, prod_desc, quantity, \ 

unit-price, total FROM new_sales 
if @dmretcode == OM_NO_MORE_ROWS 

msg esmg "All rows returned." 
else 

msg emsg "Application could not display all orders_" 
return 

This approach is very easy to use. Since all the rows are fetched at once, the application 
makes only one request of the database server and it is free to use the default SELECT cursor 
to make new selccts. 

84 JAM/OBi Release 5 May 92 



Data Flow from a Database: Number of Rows Fetched 

It is not the best method for large SELECT sets. If the application is too slow displaying the 
data or is sluggish after the rows have been fetched, the developer should consider JAM/ 
OBi-based scrolling or some other alternative scroll driver. 

JAM/OBi-based Scrolling 

JAMIDBi-based scrolling is useful for mid-sized to large SELECT sets. Neither JAM nor 
JAM/OBi impose any limit on the number of rows that may be displayed with this method.s 

With this approach, developers create non-scrolling arrays. The target fields contain ele
ments to display one or more rows on the screen at time. At least two procedures are needed 
to view the SELECT set. The first procedure executes the SELECT and fetches the first screen
ful ofrows. The second procedure executes a DBMS CONTINUE to fetch the next screenful of 
rows from the SELECT set. The second procedure may be executed many times before the 
user sees all the rows. 

For example, the current screen has fields named for the columns in the table emp_ Each 
field has five elements. The application uses the procedures like the following to select data 
from a table: 

proc select_emp 
sql SELECT * FROM emp 
return 

proc continue_select 
dbms CONTINUE 
return 

as well as control strings like the following: 

PFl ~jpl select_emp 
PF2 ~jpl continue_select 

Assume that table emp contains 12 rows. When the user presses the PFl key, the applica
tion executes the JPL procedure select_emp and writes rows 1 through 5 to the screen. 
If the user presses PF2, the application executes the procedure continue select 
which clears the arrays and writes rows 6 through 10 to the screen. If the user presses PF2 
again, the application executes continue_select again which clears the arrays and 
writes rows 11 and 12 to the screen. If the user presses PF2 a third time, the application does 
nothing because there are no more rows in the SELECT set. 

An application may simulate scrolling through a SELECT set by using the following com
mands: 

S. In multi-user environments developers should know how lhe engine ensures read consistency: lhe guarantee 
lhat data seen by a stLECT does not change during statement execution. The engine may be using roUback seg
ments or shared locks to provide read consistency. Since a shared lock prevents olherusers from updating locked 
rows, applications on these engines should release lhe lock as soon as possible. See lhe engine·specific NOles for 
more information. 

May 92 JAM/OBi Release 5 85 



Developer's Guide 

• DBMS CONTINUE UP 

• DBMS CONTINUE TOP 

• DBMS CONTINUE BOTTOM 

to scroll up a screenful of rows 

to scroll to the frrst screenful of rows 

to scroll to the last screenful ofrows 

Some engines have native support for these commands. For example, the engine may buffer 
the rows in memory on the server. JAM/OBi .lIso provides its own support for these com
mands. Applications may use DBMS STORE FILE to set up a continuation file for a named or 
default SELECT cursor. When it is used, JAM/OBi buffers SELECT rows in a temporary 
binary file. The syntax of the command is 

dbms [WITH CURSOR cursor] STORE FILE [file] 

The command is supported on all engines. To select and view data, an application uses pro
cedures like the following: 

proc select_emp 
dbms STORE FILE 
sql SELECT * FROM emp 
return 

proc scroll_down 
dbms CONTINUE 
return 

proc scroll_up 
dbms CONTINUE UP 
return 

proc scroll_top 
dbms CONTINUE TOP 
return 

proc scroll end 
dbms CONTINUE BOTTOM 
return 

as well as control strings like the following: 

PFI ~jpl select_emp 
PF2 ~jpl scroll down 
PF3 ~jpl scroll_up 
PF4 ~jpl scroll_top 
PFS ~jpl scroll end 

Using the same number of rows and occurrences as earlier, when the user presses the PFI 
key, the application executes the JPL procedure select_emp and writes rows 1 through 

86 JAM/OBi Release 5 May 92 



Data Flow from a Database: Number of Rows Fetched 

5 to the screen. If the user presses PF2. the application executes the procedure 
scroll_down which clears the arrays and writes rows 6 through 10 to the screen. If the 
user presses PF3.the application executes scroll_up which clears the arrays and writes 
rows 1 through 5 to the screen. If the user presses PFS the application executes 
scroll_end which clears the armys and writes the last 5 rows in the SELECT set. rows 8 
through 12. to the screen. 

Although function keys are needed to call the JPL procedures which execute the JAM/OBi 
scrolling commands. end users usually prefer the standard page up and page down keys to 
the PF keys. The logical keys SPGU and SPGD are not listed in the JAM Control String 
window of the screen editor but their logical values may be reassigned with the JAM library 
function sm_ keyoption. Therefore. the application may use an entry and exit function to 
change how SPGU and SPGD work on a screen or in a field. The entry function calls 
sm _ keyoption so that SPGU acts like the function key that calls the scroll up procedure. 
and calls sm keyoption so that SPGD acts like the function key that calls the scroll down 
procedure. The exit function calls sm_keyoption to restore the default behavior. 

Developers who wish to use JPL to call sm_keyoption must install the function in the 
prototyped list in funclist . c. TheJPL procedure must also use the decimal or hexadeci
mal values of the logical keys. The hexadecimal values are listed in the JAM Configuration 
Guide in the key file chapter. An example function is shown below. This function could be 
used as the field entry and exit on each ulrget field. 

vars ENTRY (4) EXIT(4) 
vars SPGU(6) SPGD (6) APP1(6) APP2(6) KEY_XLATE(l) 
cat ENTRY , 128' 
cat EXIT ' 16' 
cat SPGU ' Oxl13' 
cat SPGD 'Oxl14' 
cat APP1 ' Ox6102' 
cat APP2 'Ox6202' 
cat KEY XLATE ' 2' 

proc entry_exit 
parms f_no f_data f_occ f_flag * APPl Ajpl scroll_up * APP2 Ajpl scroll_down 

if (f_flag & ENTRY) 
( 

call sm_keyoption :SPGU :KEY XLATE :APPl 
call sm_keyoption :SPGD :KEY XLATE :APP2 

else if (f_flag & EXIT) 

May 92 JAM/OBi Release 5 87 



Developer's Guide 

call sm_keyoption :SPGU :KEY XLATE :SPGU 
call sm_keyoption :SPGO :KEY XLATE :SPGO 

return 

JAM/OBi-scrolling uses less memory than JAM scrolling. The application needs only 
enough memory for the rows displayed on screen. The other rows are buffered either in a 
binary disk file or by the database server. With large SELECT sets, this approach often im
proves the application's performance and response time. 

This approach requires a litLle more work by the developer. The application needs proce
dures to handle the scrolling and possibly the remapping of cursor conlrol keys. Also, the 
method restricts the SELECT cursor. If the application needs to perform other SELECT state
ments while scrolling through this set, the application must declare named cursors. 

Controlling the Number of Rows Fetched 
Developers using field or LOB arrays as the destinations of a SELECT may specify the maxi
mum number of rows to fetch and the first occurrence to write to in the array destination. 
The command is 

dbms [WITH CURSOR cursor] OCCUR int [MAX Int] 
dbms [WITH CURSOR cursor] OCCUR CURRENT [MAX Int] 

See the Reference Guide in this document for information. 

ChOOSing a Starting Row in the SELECT Set 
A developer may also change the number of rows fetched by using the command 

dbms [WITH CURSOR cursor] START Int 

The command tells JAMIDBi to read and discard int- I rows before writing the rest of the 
SELECT set to JAM variables. 

See the Reference Guide in this document for information. 

88 JAM/OBi Release 5 May 92 



Data Flow from a Database: Format of SELECT Output 

9.1.3. 

Format of SELECT Resu Its 
Before writing a database column value to a JAM variable occurrence, JAM/OBi deter
mines the data type of the database column. In all cases, if the value equals the engine's null 
(e.g., NULL), JAM/OBi writes clears the variable. IfLhe variable has a null field edit, JAM 
automatically converts the null string to the one assigned by the field edit. 

If any value is longer than the variable, the data is truncated. 

Character Column 
If a column has a character datatype, the value is simply written to the target variable. If the 
variable has a word wrap edit or a right-justified edit, the edit is applied. 

Date·time Column 
If a column has a date datatype, JAM/OBi formats the value before writing it to a JAM 
variable. If the variable has a date-time edit, JAM/OBi uses it. If the variable does not, 
JAM/OBi uses the format assigned to the message file entry SM_ODEF_DTIME. By de-
fault, the ~ntry is . 

SM_ODEF_DTIME = %m/%d/%2y %h:%OM 

Forexample,April 1,1991 10:05:03wouldbeformattedas4/1/91 10:05. 
When the message file default is used, JAM/OBi assumes a 12-hour clock. 

See the AUlhor's Guide and the Configuralion Guide in the JAM documentation for infor
mation on date-time formats. 

Numeric Column 
Ifa column has an integral type,JAMIDBi converts the value to a long. JAM then converts 
the value to ASCII and writes it to the variable, truncating any data longer than the destina
tion field. 

If a column has a real type, JAM/OBi converts the value to a double. Before writing the 
value to a JAM variable, JAM/OBi determines the precision by examining the variable's 
currency and/or C type edit. 

May 92 

• The field has a currency edit, bUl no C type edit. If the value is less precise 
than the edit's minimum number of decimal places, the value is padded to 
the minimum number of decimal places. If the value is more precise, it is 

JAM/OBi Release 5 89 



Developer's Guide 

rounded or adjusted to the currency edit's maximum number of decimal 
places. NOle that the round up, round down, or adjust option of the curren
cy edit is applied. 

• Thefield has a C type edit, but no currency edit. If the C type is one of the 
integer types, the value is adjusted by standard rounding 10 0 places. If the 
C type is float or double, the value is padded or adjusted to the type's preci
sion. 

• The field has a currency edit and C type edit that conflict. If the value is 
less precise than the currency edit's minimum number of decimal places, 
the value is padded to the minimum number of decimal places. If the value 
is more precise than the minimum number of places, JAM/OBi compares 
the currency's maximum number of places and the C type's precision, and 
uses the less precise of the two. If it uses the currency's maximum number 
of places, then it also uses the currency's round up, round down, or adjust 
option.lfit uses the C type precision, it adjusts by standard rounding to the 
precision. 

• The field has neither a currency edit or a C type edit. The precision de
faults to 2. 

See the Author's Guide in the JAM documentation for more information on currency edits. 

Fetching Unique Column Values 
By default, when a column is selected JAM/OBi returns all values. JAM/OBi also provides 
a command for displaying only a column's unique values, 

dbms [WITH CURSOR cursor] UNIQUE column [column ... ] 

JAM/OBi replaces a repeating value with the empty string. 

This command is useful if an application is selecting values from a table which uses two or 
more columns as the primary key. For example, if the table projects has the columns 
project id, staff, task code and the columns project idand staff consti
tute the primary key, an application could suppress the repeaLing values in one of the col
umns of the primary key LO improve readability on the screen. 

90 JAM/OBi Release 5 May 92 



Data Flow from a Database: Format of SELECT Output 

project_ id staff task code 

1001 Jones A 
1001 Carducci A 
1001 Bryant C 
1004 Carducci B 
1004 Mohr A 
1004 Silver B 
1004 Thomas 0 
1031 Jones E 

Figure 30: The primary key of table projects is (project_id, staff). 

dbms DECLARE proj_cur CURSOR FOR \ 
SELECT * FROM projects ORDER BY project_id 

dbms WITH CURSOR proj_cur UNIQUE project_id 
dbms WITH CURSOR proj_cur EXECUTE 

Below is a sample screen displaying the results. 

Project Employee 

1001 Jones 
Carducci 
Bryant 

1004 Carducci 
Mohr 
Silver 
Thomas 

IOTI Jones 

Task 

A 
A 
C 
B 
A 
B 
o 
E 

Figure 31: The JAM layout is easier to read than the table layout. 

See the Reference Guide in this document for more information. 

May 92 JAM/OBi Release 5 91 



Developer's Guide 

9.1.4. 

Redirecting SELECT Results to Other Targets 
Occasionally. developers need other destinations for SELECT statements. JAM/OBi pro
vides a feature for concatenating a full result row and writing it to either a JAM variable or 
a text file. 

dbms [WITH CURSOR cursor] CATQUERY TO jam_var \ 
[SEPARATOR text] [HEADING [ON I OFF] ] 

dbms [WITH CURSOR cursor] CATQUERY TO FILE filename \ 
[SEPARATOR text] [HEADING [ON I OFF] ] 

JAM/OBi also provides a command for formatting the results. 

dbms [WITH CURSOR cursor] FORMAT [colUmn] format 

See the Reference Guide in this document for details. 

92 JAM/OBi Release 5 May 92 



Data Flow from a Database: Status and Error Codes 

9.2. 

STATUS AND ERROR CODES 
JAM/OBi supplies several pre-defined variables where it stores error and status data for the 
application. These variables are 

• @dmretcode The status of the last executed dbms or sql statement. Its 
value is 0 or one of the codes defined in dmerror. h. 

• @dmretmsg A message describing the status of the last executed dbms 
or sql statement. Its value is empty or one of the messages 
from the JAM message file. If @dmretcode is 0, this vari
able is empty. 

• @dmengerrcode An engine-specific error code fonhelastexecuted dbmsor 
sql statement. Its value is 0 or an engine-specific code. If 
0, the engine did not detect any errors. 

• @dmengerrmsg An engine-specific error message for the last executed 
dbms or sql statement. If @dmengerrcode is empty, 
this variable is also empty. 

• @dmengwarncode An engine-specific warning code orbit setLing for the lastex-
ecuted dbms or sql statement. If empty, the engine did not 
detect any warning conditions. 

• @dmengwarnmsg An engine-specific warning message describing the warning 
code for the last executed dbms or sql statement. If 
@dmengwarn is a byte or is blank, this variable is also 
empty. 

• @dmengreturn The return code from the last executed stored procedure. Its 
value is eitherblankoran integer. Ifblank, the engine did not 
supply a return code. 

• @dmrowcount The number of rows fetched to JAM variables by the last 
SELECT or CONTINUE statement. See the engine-specific 
NOles. 

• @dmserial An engine-generated value for a serial column. Its value is 
o or an appropriate serial value for the column. See the en
gine-specific NOles. 

After executing a statement JAM/OBi updates these variables with any error, warning, or 
status information returned by the engine. In addition to the engine-specific codes and mes
sages, JAM/OBi also supplies engine-independent codes and messages to the variables 
@dmretcode and @dmretmsg. 

May 92 JAM/OBi Release 5 93 



Developer's Guide 

These global variables are available throughout the application from both JPL and C. Note 
that JAM/OBi does not automatically display these values, except in the case of error mes
sages. 

JAM/OBi uses a default error handler when executing dbms and sql commands from JPL 
or C. If a JAM/OBi error occurs, the default error handler displays an error message. The 
source of the message depends on the message flag used to initialize the engine, either the 
DM_DEF_ENG_MSG flag orthe DM_DEF_DBI_MSG flag. 

If a JAM/OBi error occurs while executing JPL, the default error handler displays a mes
sage and JAM displays the dbms or sql statement where the error occurred. When the last 
message is acknowledged, JAM/OBi aborts the JPL procedure where the error occurred. 
An aborted JPL procedure always returns -1 to its caller. 

If a JAM/OBi error occurs while executing one of the C library functions, the default error 
handler displays the error message and JAM returns -1 to the function. 

An application may override the default handler by installing its own function to handle er
rors. It may also install an exit function to process all error and status information and dis
play these values to the end user. This topic is covered in the next chapter. 

94 JAM/OBi Release 5 May 92 



Hook Functionss 

Chapter 10. 

Hook Functions 
JAM/OBi provides three hooks for developer-written functions. They are the following 

• ONENTRY This function is called before executing any dbms or sql com
mand from JPL or C. 

• ONEXIT This function is called after executing any dbms or sql com
mand from JPL or C. 

• ONERROR This function is called if an error occurs while executing any 
dbms or sql command from JPL or C. 

JAM/OBi hook functions may be written in JPL or C. 

A JPL hook function is installed like the following: 

dbms ONXXXX JPL entryJ'oint 

where entryJ'olnt is an entry point to a JPL module. An entry point may be a procedure 
name or a file name. See the JPL Guide for more information. 

A C hook function is installed like the following: 

dbms ONXXXX CALL function 

where function is a prototyped function. A prototyped function appears on JAM's 
PROTO_FUNC list. As a JAM/OBi hook function, it must be proto typed with three argu
ments: two strings and an integer. For example, 

static struct fnc_data pfuncs[] = 
{ 

{sm_flush () ", flush, 0, 0, 0, 0 }, 

{ function ( s, s, i) ", function, 0 , 0 , 0 , 0 }, 

May 92 JAM/OBi Release 5 95 



Developer's Guide 

Please consult the JAM Programmer's Guide for more information on prototyped func
tions. 

10.1. 

ONENTRV FUNCTION 
Before executing a dbms or sql command from JPL or C, JAM/OBi will execute the 
application's installed ONENTR'f function. An ONENTR'f function is useful for logging or de
bugging statements. You may also use an ONENTR'f function to modify the JAM environ
ment, for insL:1nce remap cursor control keys or change protection edits on fields. 

To install an ONENTR'f function, use one of the following: 

dbms ONENTRY JPL entrYJ'oint 

dbms ONENTRY CALL function 

To tum off the ONENTR'f function, execute the command with no arguments: 

dbms ONENTRY 

10.1.1. 

ONENTRV Function Arguments 
An ONENTR'f hook function receives three arguments: 

1. A copy of the first 255 characters of the command line. If the command 
was executed from JPL, this is the first 255 characters after the JPL com
mand word dbms or sql. 

2. The name of the current engine. If the command used a WITH ENGINE or 
WITH CONNECTION clause, the argument identifies this engine. If no WITH 

clause is used, the argument identifies the default engine. 

3. A context flag identifying why this function was called. For an ONENTR'f 

function this value is O. 

10.1.2. 

ONENTRV Return Codes 
In the present release, the return code from an ONENTR'f function is ignored if the current 
command was executed from JPL. If the command was executed from C, the return code is 
returned to the calling function. 

96 JAM/OBi Release 5 May 92 



Hook Functionss 

To ensure compatibility with future releases, it is recommended that this function returns O. 

10.1.3. 

Example ONENTRY Functions 
The following sample function logs the current statement in a text file. 

/* This function is installed as a prototyped function.*/ 
/* It writes the current time, name of the current */ 
/* engine, and the command which JAM/OBi will execute */ 
/* to a file called dbi.log. */ 

/* dbrns ONENTRY CALL dbientry */ 

.jf:include "srndefs.h" 

int 
dbientry (strnt, engine, flag) 
char *strnt; 
char *engine; 
int flag; 
{ 

FILE *fp; 
tirne_t tirneval; 

fp = fopen ("dbi.log", "a"); 
tirneval = tirne(NULL) 
fprintf (fp, "%s\n%s\n%s\n\n", 

ctirne(&tirneval), engine, strnt); 
fclose (fp); 
return 0; 

This sample function displays a message before performing any JAM/OBi opemtions . 

.jf: dbrns ONENTRY JPL entryrnsg 

proc entryrnsg 

May 92 

rnsg setbkstat "Processing. Please be patient ... • 
flush 
return 0 

JAM/OBi Release 5 97 



Developer's Guide 

10.2. 

ONEXIT FUNCTION 
After executing a dbms or sql command from IPL or C, JAM/OBi will execute the appli
cation's installed ONEXIT function. An ONEXIT function is useful for logging or debugging 
statements. You may also use an ON ENTRY function to modify the JAM environment, for in
stance remap cursor control keys or change protection edits on fields. This function is useful 
for checking error and status codes after each command. 

10.2.1. 

ONEXIT Function Arguments 
An ONEXIT hook function receives three arguments: 

1. A copy of the first 255 characters of the command line. If the command 
was executed from IPL, this is the first 255 characters after the IPL com
mand word dbms or sql. 

2. The name of the current engine. If the command used a WITH ENGINE or 
WITH CONNECTION clause, the argument identifies this engine. If no WITH 

clause is used, the argument identifies the default engine. 

3. A context nag identifying why this function was called. For an ONEXIT 

function its value is 1. . 

10.2.2. 

ON EXIT Return Codes 
The return code from an ONEXIT function is ignored unless an error occurred while execut
ing a sql or dbms command using IPL. If the return code from the function is non-zero, 
JAM/OBi will abort the IPL procedure where the error occurred. If the command is ex
ecuted from C, the return code is returned to the calling function. 

If the application is also using an ONERROR function, the return code from the ONERROR func
tion overrides the return code from the ONEXIT function. 

10.2.3. 

Example ONEXIT Function 
This sample function looks for the no more rows codes after executing a command. 

98 JAM/OBi Release 5 May 92 



Hook Functionss 

# dbms ONEXIT JPL checkstat 

# OM_NO_MORE_ROWS is an LOB constant set to 53256 

proc checks tat 
parms stmt engine flag 
if @dmretcode != 0 
{ 

if @dmretcode 
{ 

OM NO MORE ROWS - - -

msg emsg "All rows were returned." 
return 0 

msg emsg "Error executing " stmt "%N" \ 
@dmretmsg "%N" @dmengerrrmsg 

return 1 

return 0 

10.3. 

ONERROR FUNCTION 
If a JAM/OBi error occurs while executing a dbms or sql command from JPL or C, 
JAM/OBi wiII execute the application's insLalled ONERROR function. An ONEXIT funcLion 
usually displays the values of the global error variables @dmretmsg and 
@dmengerrmsg. It may also display the text of the command Lhat failed. The applicaLion 
may use this function to log error informaLion in a LexL file. 

There are two classes of JAM/OBi errors: 

May 92 

• Syntax or Logic Error in a dbms Statement. Some examples are execut
ing a dbms command Lhat is not supported by the current engine, using an 
invalid a keyword, execuLing a cursor LhaL has not been declared, or failing 
to declare a connection before execuLing an sql statement. These errors 
are detected by JAM/OBi and reported using standard JAM/OBi error 
codes and messages. These errors update the global variables 
@dmretcode and @dmretmsg. 

• Engine Error. Some examples are auempting to SELECT from a non-exis
tent table or column, inserting invalid data in a column, logging on with 
invalid arguments, or attempLing to connect LO a server that is not running. 

JAM/OBi Release 5 99 



Developer's Guide 

These errors are detected by the engine and reported by the JAM/OBi in
terface. These errors update the global variables @dmretcode, 
@dmretmsg,@dmengerrcode,@dmengerrmsg. 

Note that JAM and JPL errors are not a class of JAM/OBi errors. In addition to a JAM/OBi 
error, a JPL procedure may fail because of JPL syntax or colon preprocessing errors. If a 
JPL error occurs, JAM displays an error message describing the error, the source of the JPL 
statement, and the statement that failed. Furthermore, it aborts the JPL procedure where 
such an error occurred and returns control to the procedure's caller. It is assumed that JPL 
and JAM errors are detected and corrected during application development. The only time 
that developers may need special handling for these errors is during transaction processing. 
This is discussed in Chapter II. 

An ONERROR function overrides JAM/OBi's default error handler. The function controls the 
display of error messages. If the error occurred while executing a command from JPL, the 
ONERROR function also determines whether control is returned to the procedure or to the pro
cedure's culler. 

Developers using JPL are encouraged to use an ON ERROR function. This ensures consistent 
error handl ing throughout the application and reduces the amount of code needed to handle 
errors. If an ONEXIT function is also installed, JAM/OBi calls the ONEXIT function, then the 
ONERROR function. 

To install an ONERROR function, use one of the following: 

dbms ONERROR JPL en trYJ'oint 

dbms ONERROR CALL function 

To turn off the ON ERROR function and reinstall the default error handler, execute the com
mand with no arguments: 

dbms ONERROR 

10.3.1. 

ONERROR Function Arguments 
An ONERROR hook function receives three arguments: 

100 

1. A copy of the tirst 255 characters of the command line. If the command 
was executed from JPL, this is the first 255 characters after the JPL com
mand word dbms or sql. 

2. The name of the current engine. If the command used a WITH ENGINE or 
WITH CONNECTION clause, the argument identifies this engine. lfno WITH 

clause is used, the argument identifies the default engine. 

JAM/OBi Release 5 May 92 



Hook Functionss 

3. A comext nag idemifying why this function was called. For an ONERROR 

function its value is 2. 

10.3.2. 

ONERROR Return Codes 
If an application is using an installed error handler, the error handler determines the handl
ing for JAM/OBi errors that occur while using JPL. 

If a JAM/OBi error occurs while executing JPL, a non-zero return code aborts the JPL pro
cedure where the error occurred. The procedure's caller (either JAM or another JPL proce
dure) gains control. If the return code is 0 however the JPL procedure resumes control; 
JAM will execute the next statemem in the JPL procedure. 

If a JAM/OBi error occurs while executing C, the ONERROR return code is returned to the 
calling function. 

The return code from an ON ERROR function overrides the return code from an ONEXIT func
tion. 

10.3.3. 

Example ONERROR Function 
f DM ALREADY ON is an LDB constant. - -
proc dbi_error_handler 
parrns strnt engine flag 

May 92 

if (@drnretcode == DM_ALREADY_ON) 
{ 

rnsg ernsg "You are already logged on." 
return 0 

if (@drnengerrcode != 0) 
{ 

else 
{ 

rnsg ernsg @drnretmsg 
jpl engine_errors :engine 

JAM/OBi Release 5 101 



Developer's Guide 

msg emsg "Application Error: "\ 
@cimretmsg \ 
"See the DBA for assistance." 

return 1 

proc engine_errors 
parms engine_name 

if engine_name == "xyzdb" 

* Examine DBMS ERROR codes here. 

This procedure first checks if the checks if Lhe error is DM_ALREADY_ON. In this case, it 
simply displays a message and returns O. For all other errors, it checks for an engine error 
code. If there is an engine error it calls anoLher subroutine to check for engine-specific er
rors. For any other errors, it displays the standard JAM/DBi message. 

102 JAM/OBi Release 5 May 92 



Transactions 

Chapter 11. 
Transactions 

In addition to the data access capabilities of an engine, JAM/OBi supports the engine's 
transaction processing capabilities. 

A transaction is a logical unit of work on a database. The unit of work is usually a set of 
statements that update a database in a consistent way. That is, the update takes the database 
from one consistent state to another. Using the familiar personnel database described 
throughout the document, consider these possible transactions: 

• An employee review transaction. It involves: an insert to the table 
review supplying a social security number, review date, new salary, and 
new grade level and an update to the employee's current salary in the table 
acc. 

• A new employee transaction. It involves: an insert to the table emp supply
ing the employee's social security number, name, and home address; an 
insert to the table review supplying the employee's social security num
ber, hire date, salary, and grade; and an insert to the table acc supplying 
the employee's social security number, current salary, and number of tax 
exemptions. 

Transaction processing is sometimes a difficult topic for new developers. For one, transac
tion processing is very engine dependent and thus it requires a clear understanding of the 
engine's behavior. For another, transaction processing in a JAM/OBi application requires 
careful error processing. For some errors, the application must explicitly tell the engine to 
undo the transaction. The application must test for these errors. 

May 92 JAM/OBi Release 5 103 



II. Developer's Guide 

11,1. 

ENGINE-SPECIFIC BEHAVIOR 
As noted earlier, transaction processing is not implemented consistently among SQL data
bases. Developers should review the documentation on transaction processing supplied by 
the database vendor before using JAM/OBi features. 

Generally, transaction processing falls into two types: those that support explicit transac
tions and those that support auto transactions. An explicit transaction starts with a BEGIN 

statement; an auto transaction generally starts with the first recoverable statement after a 
logon, COMMIT, or ROLLBACK. Usually an engine supports either explicit transactions or auto 
tmnsactions, but not both. 

On engines supporting explicit transactions, each COMMIT or ROLLBACK must have a match
ing BEGIN. On engines supporting autocommit modes, the application may use any number 
of COMMIT or ROLLBACK statements; if there is no recoverable statement, the COMMI or 
ROLLBACK is ignored. Engines have different ways of handling transactions that are not ter
minated by an explicit commit or rollback. Some engines automatically commit or rollback 
the transaction. Others may leave the database in an inconsistent state. Under no circum
stances should the application use the engine's default behavior to terminate a transaction. 

The use of explicit rollbacks and commits 

• protects the integrity of the database 

• makes new and updated data available to the rest of the application and 
other users at the logical end of the transaction 

• releases locks set on tables by the transaction once the transaction is com
pleted, not when the connection closes, permitting the rest of the applica
tion or other users to begin new transactions on the tables 

• reduces the chances for unrelated operations interfering with one another 

• produces applications which are less database-dependent 

Finally, although vendors supply commands for transaction processing in their SQL lan
guage, developers should use those provided by JAM/OBi either with the JPL command 
dbms or the library routine dm_dbms. Using sql or dm_sql to handle transaction pro
cessing like commit and rollback is NOT recommended. Using the DBMS versions permits 
JAM/OBi to establish necessary structures and it provides better error handling if a transac
tion fails. 

104 JAM/OBi Release 5 May 92 



11.2. 

ERROR PROCESSING FOR A 
TRANSACTION 

Transactions 

The engine is responsible for recovery from system failures such as power loss. Also, if a 
single statement fails for some reason in the middle of execution, the engine is responsible 
for rolling back the effects of that statement. If that statement was executed in a transaction, 
however, the application must execute an explicit rollback to undo any work done between 
the start of the transaction and the failed statement. 

At the very least, JAM/OBi must execute a rollback when the engine returns an error to the 
application. For example, the engine might reject an insert because the row's primary key is 
not unique. If the insert were part of a transaction, the application should stop executing the 
transaction and execute a rollback to undo any work done by previous statements in the 
transaction. 

As an additional precaution, developers very likely want to execute a rollback for any error 
that occurs during the transaction, including an error detected by JAM or JAM/OBi before 
a statement is passed to the engine. An error detected by JAM or JAM/OBi rather than the 
engine is usually the result of a development or maintenance error rather than bad user input 
(e.g., a statement's colon-plus or binding variable cannot be found because a JAM field was 
renamed). While these errors should be rare, the application should provide handling for 
them. 

If the transaction processing is done with the JAM/OBi C library functions, JAM and 
JAM/OBi error codes are returned to the calling function, either directly or via an installed 
error handler. If a transaction requires very sophisticated error handling, it may be easier to 
use these JAM/OBi library functions rather than JPL. 

If the transaction processing is done in JPL with dbms, developers should use the JPL com
mand ret v a r to declare a return variable. A ret v a r variable is set to 0 if a called proce
dure returns 0 (the default for success) or if a dbms or sql statement executes without er
ror. Ifacalled procedure aborts becauseofa JAM error, a retvar variable is set to-I. If 
an installed error handler is called, a retvar variable is set to the handler's return code. 
The JPL Guide in Volume II of the JAM manual has a complete description of this com
mand. The examples in this chapter use retvar so that a transaction is rolled back for all 
JAM/OBi and JAM errors. 

The best method for transaction processing in JPL uses a generic JPL procedure as a trans
action hander. This procedures does the following: 

• defines and declares a JPL return variable, Jplretcode. 

• caIls a JPL subroutine that contains the actual transaction statements. 

May 92 JAM/OBi Release 5 105 



II. Developer's Guide 

• on return from the subroutine, examines the JPL return variable, jplrel
code, If it is 0, the subroutine, and therefore the transaction, executed suc
cessfully, If it is not zero, the subroutine was aborted by a JAM or by the 
error handler, For either type of error, it executes a rollback. 

A sample of such a procedure is shown in the JPL code below. The actual transaction state
ments are executed in the subroutine whose name is passed to this procedure. This transac
tion handler may be used with the default error handler or with an installed error handler that 
returns the abort code (1) for all errors. 

proc tran handle 
{ 

parms subroutine 
vars jpl_retcode 
retvar jpl_retcode 

* Call the subroutine. 
jpl :subroutine 

t Check the value of jpl_retcode. If it is 0, all statements in 
t the subroutine executed successfully and the transaction was 
t committed. If it is 1, the error handler aborted the 
t subroutine. If it is -1, JAM aborted the subroutine. Execute a 
t ROLLBACK for all non-zero return codes. 

if jpl_retcode 
{ 

msg emsg "Aborting transaction." 
dbms ROLLBACK 

else 

msg emsg "Transaction succeeded." 

return 0 

proc update_emp 
{ 

dbms COMMIT 
return 0 

To execute the update transaction, the application should execute 

jpl tran_handle update_emp 

Once tran_handle has set up the return variable, it calls the procedure update_emp. 
Whether update_emp is successful or unsuccessful, control is always returned to 
tran handle. 

106 JAM/OBi Release 5 May 92 



Transactions 

In the engine-specific Notes, there is a list and description of the supported Iransaction com
mands with more examples. 

May 92 JAM/OBi Release 5 107 





JAM/OBi 
Reference Guide 





Reference Overview 

Chapter 12. 

JAM/DBi Reference Overview 

This guide has a reference chapter on each of the following: 

• JAM/OBi global variables 

• DBMS commands 

• JAM/OBi library functions 

• JAMIDBi utilities 

Each reference chapter provides a summary of the topic, and a reference page for each com
mand, function, or utility. The reference pages use following notation: 

literal 

SMALL CAPS 

Italics 

[xl 

{x I x} 

x ... 

May 92 

This font indicates text that the developer will type verbatim. In par
ticular, it is used for all examples and for the names of JAM library 
functions, JPL commands, or utilities. 

Uppercase is used for SQL keywords and dbms command keywords. 
This use of case is stylistic. Case is significant only for identifiers
names of fields, columns, tables, variables. functions, etc. 

Bold italics show where variable or procedure names should appear. 
Text in this font should be replaced with a value appropriate for the 
application. 

Brackets indicate an optional element The brackets should not be 
typed. 

Braces indicate a series of valid options. At least one option must be 
used. The braces should not be typed. 

Ellipses indicate that an element may be repeated one or more times. 

JAM/OBi Release 5 111 





Global Variable Reference 

Chapter 13. 

DBMS Global Variables 
This chapter summarizes and categorizes the JAM/OBi global variables. 

13.1. 

VARIABLE OVERVIEW 
The global JAM/DBivariabies are automatically dermed by JAM/OBi at initialization. All 
JAM/OBi global names begin with the characters @dm. Since the character @ is not per
mitted in user-defined JAM variables, these variables will never conflict with any screen, 
LDB, or JPL variables dermed by your application. 

These variables and their values are available to JPL commands and to JAM library func
tions like sm_n_getfield and sm_n_fptr. 

The variables are automatically maintained by JAM/OBi. Before executing a dbms or sql 
statement, JAM/OBi clears the contents of all its global variables. After executing the state
ment and before returning control to the application, JAMIDBiupdates the variables to in
dicate the current status. 

13.1.1. 

Error Data 
@dmretcode 

@dmretmsg 

@dmengerrcode 

May 92 

JAM/OBi error code. Codes are the same for all engines. 

JAMIDBi error message. Messages are the same for all 
engines. 

Engine error code. Codes are unique to the engine. 

JAM/OBi Release 5 113 



III. Reference Guide 

@dmengerrmsg 

13.1.2. 

Status Data 
@dmretcode 

@dmretmsg 

@dmengreturn 

@dmrowcount 

@dmserial 

@dmengwarncode 

@dmengwarnmsg 

13.2. 

Engine error message. Messages are unique to the en
gine. Some engines do not supply messages. 

JAM/OBi status code for "no more rows" or "end of 
proc." 

JAM/OBi status message for "no more rows" or "end of 
proc." 

Engine return code from a stored procedure. Not used by 
all engines. 

Count of the number of rows fetched to JAM by the last 
SELECT or CONTINUE. Used by all engines. 

A serial value returned after inserting a row into a table 
with a serial column. Not used by all engines. 

A code or byte signalling a non-fatal error or unusual 
condition. Used by all engines. 

A message corresponding to an engine warning code. 
Not used by all engines. 

VARIABLE REFERENCE 
The rest of this chapter contains a reference page for each global variable. Since some vari
ables store engine-specific values, additional information is provided in the engine-specific 
Notes. 

Each reference page has the following sections: 

• A description of the variable. 

• A list of related variables and commands. 

• An example. 

The variables are documented in alphabetical order. 

114 JAM/OBi Release 5 May 92 



@dmengerrcode 

@dmengerrcode 
contains an engine-specific error code 

DESCRIPTION 

JAM/OBi sets this variable to 0 before executing a dbms or sql statement. If the engine 
detects an error, JAM/OBi writes the engine's error code to @dmengerrcode. 

Note that a 0 value in this variable does not guarantee that the last statement executed with
out error. Some errors are detected by JAMIDBi before a request is made to the engine. For 
example, if an application attempts a SELECT before declaring a connection, JAM/OBi de
tects the error. Use the global variable @dmretcode to check for JAM/OBi errors. 

Because the value of @dmengerrcode is engine-specific, the use of an installed error 
handler is strongly recommended. The application may test for engine-specific errors with
in the error handler or in a multi-engine application, the error handler may call another func
tion to do this. 

Please consult the engine-specific Noles for more information about the codes for your en
gine. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter to .. 
RELATED FUNCTIONS 

dbms ONERROR [JPL entry point I CALL function] 

RELATED VARIABLES 

@dmengerrmsg 

@dmretcode 

@dmretmsg 

EXAMPLE 

proc dbi_errhandle 
parms stmt engine flag 
if @dmengerrcode == 0 

msg emsg @dmretmsg 
else if engine == "xyzdb" 

jpl xyzerror @dmengerrcode 
else if engine == "oracle" 

May 92 JAM/OBi Release 5 115 



III. Reference Guide 

jpl oraerror @dmengerrcode 
else 

msg emsg "Unknown engine." 
return 1 

proc xyzerror 
# Check for specific xyzdb error codes. 
parms error 

116 

if error == 90931 
msg emsg "Invalid user name." 

else if error == ... 

else 
msg emsg @dmengerrmsg 

return 

JAM/OBi Release 5 May 92 



@dmengerrms9 

@dmengerrmsg 
contains an engine-specific error message 

DESCRIPTION 

JAM/OBi clears this variable before executing a new @dbms or @sql statement. If the en
gine returns an error message after attempting to execute the statement, JAM/OBi writes 
the message to this variable. 

If @dmengerrcode is 0, this variable contains no message. 

Please consult the engine-specific Notes for more information about the error messages for 
your engine. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

RELATED FUNCTIONS 

dbms ONERROR [JPL entrypolnt I CALL function] 

RELATED VARIABLES 

@dmengerrcode 

@dmretcode 

@dmretmsg 

EXAMPLE 

proc dbi_errhandle 
parms stmt engine flag 
if @dmengerrcode == 0 

msg emsg @dmretmsg 
else 

msg emsg @dmretmsg "%N" @dmengerrmsg 
return 1 

May 92 JAM/OBi Release 5 117 



III. Reference Guide 

@dmengreturn 
contains a return code from a stored procedure 

DESCRIPTION 

If your engine supports stored procedures and stored procedure return codes, use this vari
able to get a procedure's return or status code. 

By default, JAM/OBi will pause the execution of a stored procedure if the procedure ex
ecutes a SELECT statement and the number of rows in the SELECT set is greater than the num
ber of occurrences in the JAM destination variables. The application must execute DBMS 

CONTINUE or DBMS NEXT to resume execution. If the value of @cimengreturn is null after 
calling a stored procedure, the procedure may be pending. If the engine has completed the 
execution of the procedure, @dmretcode will contain the OM END OF PROC code and 
@dmengreturn will contain the procedure's return code. - --

Note that the value of this variable will be cleared once another dbms or sql statement is 
executed. If the application needs this value for a longer period of time, it should copy it to 
a standard JAM variable or some other static location. 

SEE ALSO 

Notes 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor] NEXT 

dbms [WITH CURSOR cursor] SET \ 
[SINGLE_STEPISTOP_AT_FETCHIEXECUTE_ALL] 

RELATED VARIABLES 

@dmretcode 

@cimretmsg 

EXAMPLE 

* create proc checkid @id char(lS) as * declare @idcount int * select @idcount = SELECT COUNT (*) FROM products WHERE * id = @id * if @idcount == 1 * return 1 

118 JAM/OBi Release 5 May 92 



#" else 
#" return -1 

sql EXEC checkid :+id 
if @drnengreturn == 1 

jpl add row 
else if @drnengreturn == -1 

msg emsg "Sorry, " id " is not a valid code." 
return 

May 92 JAM/OBi Release 5 

@dmengretum 

119 



III. Reference Guide 

@dmengwarncode 
contains an engine-specific warning code 

DESCRIPTION 

Most engines supply a mechanism for signalling an unusual, but non-fatal condition. 

Some engines use an eight-element array. If there is a warning, it sets the first element to 
indicate a warning and then sets one or more additional elements to describe the warning. 
Other engines uses codes and messages similiar to those it uses for errors. Those of a high 
severity are handled as errors and those of a low severity are handled as warnings. Please 
consult the engine-specific Notes for information about your engine and for an example. 

By default, JAMIDBi ignores warnings. If an application needs to alert users to warning 
codes, it must use a JPL or C function to check for them. There is no default warning han
dler. The most efficient way to process warning codes is with an installed exit handler. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

RELATED FUNCTIONS 

dbms ONEXIT [JPL sntrypolnt I CALL function] 

RELATED VARIABLES 

@dmengwarrunsg 

120 JAM/OBi Release 5 May 92 



@dmengwarnmsg 

@dmengwarnmsg 
contains an engine-specific warning message 

DESCRIPTION 

Most engines supply a mechanism for signalling an unusual, but non-fatal condition. Some 
engines uses a warning array or byte. These engines do not supply warning messages and 
therefore do not use @dmengwarmsg. Others use a code and message for low-severity er
rors. Please consult the engine-specific NOles for information about your engine and for an 
example. 

By default, JAM/OBi ignores warnings. If an application needs to alert users to warning 
codes or messages, it must use a JPL or C function to check for them. There is no default 
warning handler. The most efficient way to process warning values is with an installed exit 
handler. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

RELATED FUNCTIONS 

dbms ONEXIT [JPL entrypoint I CALL function] 

RELATED VARIABLES 

@dmengwarncode 

May 92 JAM/OBi Release 5 121 



III. Reference Guide 

@dmretcode 
contains an engine-independent error or status code 

DESCRIPTIO~ 

Before executing a new dbms or sql statement, JAM/OBi writes a 0 to @dmretcode. If 
the statement fails because of a JAM/OBi or engine error, JAM/OBi writes an error code to 
@dmretcode describing the failure. These codes are defined in dmerror. h and are en
gine-independent. The codes are 5-digits long. See Appendix B. for a listing. 

Usually a non-zero value in @dmretcode indicates that an error occurred. The default or 
an installed error handler is called for an error. If the default handler is in use, JAM/OBi will 
display an error message. If the application has installed its own error handler, the installed 
function controls what messages are displayed. Since these codes are generic, applications 
often need engine-specific error values as well. Engine-specific error codes are written to 
@dmengerrcode. 

There are two non-zero codes for @dmretcode which are not errors: 
DM_NO_MORE_ROWS and DM_END_OF_PROC. When an engine indicates that it has re
turned all rows for a SELECT set, JAM/OBi writes the DM_NO_MORE_ROWS code to 
@dmretcode. Since this is not considered an error, JAM/OBi does not call the default or 
an installed error handler. You may test for DM _ MORE _ROWS after executing a SELECT or in 
an exit handler. JAM/OBi uses DM _END_OF _PROC with engines that suppon stored pro
cedures. When an engine indicates that it has completed executing the stored procedure, 
JAM/OBi writes the DM _END_OF _ PROC code to @dmretcode. This is not an error. An 
application may test for this code in an exit procedure or after calling a stored procedure. 
See the engine-specific Notes for infonnation on stored procedures. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

AppendixB. 

RELATED FUNCTIONS 

dbms ONERROR [JPL entrypolnt I CALL function] 

dbms ONEXIT [JPL entry point I CALL function] 

RELATED VARIABLES 

@dmengerrcode 

@dmengerrmsg 

122 JAM/OBi Release 5 May 92 



@dmretrnsg 

EXAMPLE 

* The following are LOB constants. * OM ALREADYON = 53251 * OM LOGON DENIED 53253 - -* OM NO MORE ROWS = 53256 - - -

proc dbi_errhandle 
parrns strnt engine flag * Check for logon errors. 
if @dmretcode == DM_ALREADYON 

return 0 
else if @dmretcode == DM_LOGON_DENIED 

rnsg ernsg @dmretrnsg "%N" @dmengerrrnsg 

return 1 

proc dbi_exithandle 
parrns strnt engine flag 
if @dmretcode == OM NO MORE ROWS 

rnsg ernsg "All rows returned." 
return 0 

May 92 JAM/OBi Release 5 

@dmretcode 

123 



III. Reference Guide 

@dmretmsg 
contains an engine-independent error or status message 

DESCRIPTION 

Before executing a new dbms or sql statement, JAM/OBi clears @dmretmsg. If the 
statement fails because of a JAM/OBi or engine error, JAM/OBi writes an error message to 
@dmretmsg describing the failure. These messages are defined in JAM's msgfile and 
are engine-independent. See Appendix B. for a listing. 

Note that if @dmretcode is 0, @dmretmsg is always empty. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

RELATED FUNCTIONS 

dbms ONERROR [JPL entry point I CALL function] 

dbms ONEXIT [JPL entrypolnt I CALL function] 

RELATED VARIABLES 

@dmengerrcode 

@dmengerrmsg 

@dmretcode 

EXAMPLE 

proc dbi_errhandle 
parms stmt engine flag 

124 

msg emsg "Statement" stmt " failed." \ 
@dmretmsg "%N" @dmengerrmsg 
return 1 

JAM/OBi Release 5 May 92 



@dmrowcount 

@dmrowcount 
contains a count of the number of rows fetched to JAM by 
a SELECT or CONTINUE 

DESCRIPTION 

Before executing a new dbms or sql statement, JAM/OBi writes a 0 to this variable. If the 
statement fetches rows, JAM/OBi updates the variable writing the number of rows fetched 
to JAM variables. 

Most SQL syntaxes provide an aggregate function COUNT to count the number of values in 
a column or the number of rows in a SELECT set. The value of@dmrowcount is NOT the 
number of rows in a SELECT set; rather, it is the number of rows returned to JAM variables. 
Therefore if a SELECT set has 14 rows in total, and its target JAM variables are arrays, each 
with ten occurrences, @dmrowcount will equal 10 after the SELECT is executed, and 4 after 
the DBMS CONTINUE is executed. If DBMS CONTINUE were executed a second time, 
@dmrowcount would equal O. 

The integer written to @dmrowcount is either less than or equal to the maximum number 
of rows that can be written to the targeted JAM destinations; the maximum number of rows 
is the number of occurrences in a destination variable. If the value in @dmrowcount is less 
than the maximum number of occurrences, then the entire SELECT set was written to the tar
get variables and no further processing is needed. If@dmrowcount equals the maximum 
number of occurrences, then the SELECT may have fetched more rows than will fit in the 
variables. To display the rest of the SELECT set, the application must execute DBMS 

CONTINUE until @dmrowcount is less than the maximum number of occurrences (or equals 
0) or until @dmretcode receives theOM_NO_MORE_ROWS code. 

SEE ALSO 

JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

RELATED FUNCTIONS 

dbms ONEXIT [JPL entry point I CALL function] 

RELATED VARIABLES 

@dmretcode 

May 92 JAM/OBi Release 5 125 



III. Reference Guide 

EXAMPLE 
proc get_selection 

126 

sql SELECT * FROM movie archive WHERE subject=:+subj 
jpl check_count 
return 

proc check count 
* If rows are returned but not the NO_MORE_ROWS code, 
* let the user know there are rows pending. 

if (@dmrowcount > 0) && (@dmretcode != DM_NO_MORE_ROWS) 
msg setbkstat "Press %KPFl to see more." 

else 
msg setbkstat "AII rows returned." 

return 

proc get_more 
* This function is called by pressing PF1. * It retrieves the next set of rows. 

dbms CONTINUE 
jpl check_count 
return 

JAM/OBi Release 5 May 92 



@dmserial 

@dmserial 
contains a serial column value after performing INSERT 

DESCRIPTION 

Some engines supply the datatype serial to assist endusers and applications that need to 
assign a unique numeric value to each row in a table. When an application insens a row in 
a table with a serial column, the engine generates a serial number, inserts the row with the 
number, and returns the number to the application. See the engine-specific Notes for infor
mation about suppon for this on your engine. 

Before executing a new dbrns or sql statement, JAM/OBi writes a 0 to @dmserial. If 
the statement is an INSERT and the engine returns a serial value, JAM/OBi writes the value 
to @drnserial. Since this variable is cleared before executing a new sql or dbrns state
ment, you must copy its value to another location if you wish to use the value in subsequent 
statements. 

SEE ALSO 
JAM/OBi Developer's Guide, Section 9.2. and Chapter 10 .. 

EXAMPLE 

* Column order nurn is a SERIAL column. 

proc new order 
vars i(3) order_ideS) 

dbrns BEGIN 
* First INSERT row into invoices table. * Column order_id in table invoices is a SERIAL. 

sql INSERT INTO invoices \ 
(order_id, order_date, cust_nurn) VALUES \ 
(0, :+today, :+cust_nurn) 

# Copy the serial value to a JPL variable for use with 
# subsequent INSERTS. 

May 92 

cat order_id @dmserial 

# Use order number to insert new rows to the orders 
# table. Column order id in table orders is an INT. 

for i=l while i<=rnax step 1 

JAM/OBi Release 5 127 



III. Reference Guide 

sql INSERT INTO orders \ 
(order_id, part_id, quant, u_cost) VALUES \ 
(:order_id, :+part_id[i) , :+quant[i), :+u_cost[i) 

dbms COMMIT 

msg emsg "Order completed. Invoice number is " order num 
return 

128 JAM/OBi Release 5 May 92 



Command Reference 

Chapter 14. 

DBMS Commands 

This chapter summarizes and categorizes the DBMS commands supported by all engines. 
These commands are executed with the JPL command dbms or the C library function 
dm _ dbms. Commands that are specific to an engine are described in Notes. This includes 
the transaction commands and any special feature commands. 

14.1. 

DBMS COMMAND OVERVIEW 
The DBMS commands fall into several categories. The sections below summarize the com
mands in each category. Some commands may be listed more than once. 

14.1.1. 

Engine Selection 
ENGINE set the default engine for the application 

WITH ENGINE set the default engine for the duration of a command 

14.1.2. 

Using Connections 
CLOSE CONNECTION close a named connection 

May 92 JAM/OBi Release 5 129 



I". Reference Guide 

CLOSE_ALL_CONNECTIONS 

CONNECTION 

DECLARE CONNECTION 

WITH CONNECTION 

14.1.3. 

Using Cursors 
CLOSE CURSOR 

CONTINUE 

DECLARE CURSOR 

EXECUTE 

WITH CURSOR 

14.1.4. 

close all connections on all engines 

set a default connection and engine for the application 

declare a named connection to an engine 

set the defaul t connection for the duration of a command 

close a cursor 

fetch the next screenful ofrows from a SELECT set 

declare a named cursor 

execute a named cursor 

specify the cursor to use for a statement 

Changing SELECT Behavior 
ALIAS 

BINARY 

CATQUERY 

FORMAT 

OCCUR 

START 

UNIQUE 

14.1.5. 

name a JAM variable as the destination of a selected col
umn or an aggregate function 

create a JAM/OBi variable for fetching binary values 

redirect SELECT results to a file or a JAM variable 

format the results of a CATQUERY 

set the number of rows for JAM/OBi to fetch to an array 
and choose an occurrence where JAM/OBi should begin 
writing result rows 

set the first row for JAMlDBito return from a SELECT set 

suppress repeating values in a selected column 

Paging through Multiple Rows 
CONTINUE fetch the next screenful of rows from a SELECT set 

130 JAM/OBi Release 5 May 92 



CONTINUE BOTTOM 

CONTINUE DOWN 

CONTINUE UP 

CONTINUE TOP 

STORE FILE 

14.1.S. 

Command Reference 

fetch the last screenful of rows from a SELECT set 

fetch the next screenful of rows from a SELECT set 

fetch the previous screenful of rows from a SELECT set 

fetch the first screenful of rows from a SELECT set 

store the rows of a SELECT set in a temporary file so that 
the application may scroll through the rows 

Handling Binary Data 
BINARY define one or more binary variables 

14.1.7. 

Status and Error Processing 
ONENTRY 

ONERROR 

ONEXIT 

14.2. 

install a JPL procedure or C function which JAM/OBi 
will call before executing a sql or dbms statement 

install a JPL procedure or C function which JAM/OBi 
will call whenever a sql or dbms statement fails 

install a JPL procedure or C function which JAMIDBi 
will call after executing a sql or dbms statement 

COMMAND REFERENCE 
The rest of this chapter contains a reference page for each DBMS command. The commands 
in this chapter may be executed with the JPL command dbms or the library function 
dIn _ dbms. Some engines may support additional commands. See the engine-specific Notes 
for a list of such commands. 

Each reference page has the following sections: 

May 92 

• A synopsis of the command, including a listing of available keywords and 
arguments. 

JAM/OBi Release 5 131 



III. Reference Guide 

• A description of the command. 

• A list ofrelated commands. 

• An example. 

132 JAM/OBi Release 5 May 92 



ALIAS 
set aliases for a declared or default SELECT cursor 

SYNOPSIS 

dbms [WITH CURSOR cursor] ALIAS [ column jamvar \ 
[ , column jamvar ..• ] ] 

dbms [WITH CURSOR cursor] ALIAS jamvar [, jamvar •.. ] ] 

DESCRIPTION 

ALIAS 

By default, database values are written to JAM variables with the same names as the se
lected columns. Use this command to map a database column or value to any JAM variable. 

If a column name is given, the column is associated with the variable name that follows it. 
For example, 

dbms ALIAS lastname emp_lastname, street address 

If the column 1 a s tname is selected with the default cursor, JAM/OBi will write its values 
to the JAM variable emp lastname. If the column street is selected with the default 
cursor, JAM/OBi will write its values to the JAM variable address. For all other col
umns selected with the default cursor, JAM/OBi will write to a variable with the same (un
qualified) name as the selected column. 

If column contains characters not permitted in JAM identifiers, enclose column in quotes 
to ensure correct parsing. 

The case of column should match the setting of the case flag used to initialize the engine in 
dbiinit. c. For example, if the case flag is DM FORCE TO LOWER CASE, column 
must be typed in lower case. The case of jamvar must be the caSe used to name the JAM 
variable. If jamvar does not exist, JAM/OBi ignores the column when it executes the 
SELECT. 

If no column arguments are given, the association is positional. For example, 

dbms ALIAS emp_var, , abc 

If the above statement is executed, then each time values are selected with the default cursor, 
JAM/OBi will write the values of the first and third columns to the JAM variables 
emp _ var and abc respectively. For all other columns selected with the default cursor, 
JAM/OBi will write to a variable with the same (unqualified) name as the selected column. 
The order of column names in the SELECT statement determines the mapping. The case of 

May 92 JAM/OBi Release 5 133 



III. Reference Guide 

Jamvar must be the case used to name the JAM variable. If Jamvar does not exist, JAM/ 
OBi simply ignores the column when it executes the SELECT. 

Named and positional aliases may not be assigned in a single statement. 

If aliases are declared for a CATQUERY cursor with the HEADING ON option, JAM/OBi will 
use the aliases rather than the column names to build the heading. The alias for a column 
selected with a CATQUERY cursor may be enclosed in quotes. This permits a column heading 
to use embedded spaces. For example, 

dbms DECLARE emp_cursor CURSOR FOR \ 
SELECT first, last, dept FROM emp 

dbms WITH CURSOR emp_cursor CATQUERY TO FILE emp_list 
dbms WITH CURSOR emp_cursor ALIAS \ 

"First Name", "Last Name", Department 
dbms WITH CURSOR emp_cursor EXECUTE 

Aliasing for a cursor is turned off by executing the DBMS ALIAS command with no argu
ments. Closing a cursor also turns off aliasing. If a cursor is redeclared without being closed, 
the cursor keeps the aliases. Aliases do not affect INSERT, UPDATE, or DELETE statements. 

This command is necessary if the name of a selected column is not a valid JAM variable 
name, if the application is selecting values from different tables which use the same column 
name for different values, or if a selection is not a column value, but the value of an aggre
gate function. 

SEE ALSO 
JAM/OBi Developer's Guide, page 79. 

RELATED FUNCTIONS 
dbms [WITH CURSOR cursor] CATQUERY [TO [FILE] destination \ 

[SEPARATOR "text"] [HEADING [ON I OFF]] ] 

[WI TH CURSOR cursor] 

EXAMPLE 
f Assign aliases by named for a declared cursor. 
dbms DECLARE x CURSOR FOR \ 

SELECT lname, fname, code FROM directory 
dbms WITH CURSOR x ALIAS \ 

lname last, fname first, code dept 
dbms WITH CURSOR x EXECUTE 
dbms WITH CURSOR x ALIAS 

134 JAM/OBi Release 5 May 92 



* Set a positional alias for the 2nd and 4th columns. * Use automatic mapping for the 1st and 3rd columns. 
dbms ALIAS , var_x, , var-y 
sql SELECT ssn, last, first, address FROM emp * DBi will write * Column ssn to Variable ssn, * Column last to Variable var_x, * Column first to Variable first, and * Column address to Variable var-y. 

* Note how the mappings change when the columns are 
# listed in another order. 
sql SELECT last, first, address, ssn FROM emp 
# DBi 
# 
# 
# 
# 

May 92 

will write 
Column last to Variable last, 
Column first to Variable var_x, 
Column address to Variable address, 
Column ssn to Variable var-y. 

JAM/OBi Release 5 

and 

ALIAS 

135 



III. Reference Guide 

BINARY 
define JAM/DBi variables for fetching binary values 

SYNOPSIS 

dbms BINARY variable [, variable ... ] 

DESCRIPTION 

Many engines support a binary datatype for bytes strings and other non-printable data. An 
application cannot fetch binary values to JAM variables (fields, LOB variables, or JPL vari
ables) but it may fetch them to JAM/OBi variables defined with the command DBMS 

BINARY. 

variable is the name of the binary variable which JAM/OBi will create. Its definition may 
include a number of occurrences and/or a length. If a number of occurrences is supplied, it 
must be enclosed in square brackets. If a variable length is supplied, it must be enclosed in 
parentheses. If both are supplied, the number of occurrences must be first. Any of the fol
lowing are permitted: 

dbi binvar 
dbi binvar [10] (255) 
dbi binvar [5] 
dbi binvar (8) 

Any valid JAM variable name is a legal JAM/OBi variable name. The default number of 
occurrences is I, and the default length is the maximum, 255. Memory is allocated for the 
occurrences when they are used (i.e., when a binary column is fetched). 

If an application is selecting a binary column, use this command to create a binary variable 
for the column. The variable may have the same name as the column, or it may be mapped 
to the column with DBMS ALIAS. Because a binary variable is a target of a SELECT, JAM/ 
OBi will examine its number of occurrences when determining how many rows to fetch. 
Therefore, the binary variable should have the same number of occurrences as the other 
JAM target variables. When searching for target variables, JAM/OBi searches among the 
binary variables before searching among the JAM variables. The developer is responsible 
for ensuring that the binary variable names do not conflict with JAM variable names. 

The only legal use of a binary variable in JPL is in the USING clause of a DBMS EXECUTE 

statement. If no occurrence is given for the variable, the first occurrence is the default. 

Once defined, a binary variable is available to the rest of the application. Note that 

136 JAM/OBi Release 5 May 92 



dbms BINARY dbi_binvar[lOl 
dbms BINARY timestamp[lOOl 

is the same as 

dbms BINARY dbi_binvar[lOl timestamp[lOOl 

To delete all binary variables. execute DBMS BINARY with no arguments: 

dbms BINARY 

BINARY 

Several JAM/OBi library routines are provided for accessing and manipulating the binary 
variables. These routines are only available in C. They are described in Chapter 15. and 
listed below. 

RELATED FUNCTIONS 

dm_bin_create_occur (variable, occurrence); 
dm _bin_delete _occur ( variable, occurrence); 
dm_bin_get_dlength (varlab~, occurrence); 
dm bin get occur (variable, occurrence); 
dm=bin=length (variable); 
dm_bin_max_occur (variable); 
dm_bin_set_dlength (variable, occurrence, length); 

EXAMPLE 

*' "photo" is a binary column 
dbms BINARY dbi binvar 
dbms ALIAS photo dbi_binvar 
sql SELECT jobcode, site, photo FROM newbuildings \ 

WHERE architect = :+lastname 

dbms BINARY lastchanged[201 
sql SELECT id, name, description, 

May 92 JAM/OBi Release 5 137 



CATQUERY 

CATQUERY 
concatenate a full result row to a JAM variable or a file 

SYNOPSIS 
dbms [WITH CURSOR cursor] CATQUERY TO Jamvar 

[SEPARATOR "text"] [HEADING [ON I OFF]] 

dbms [WITH CURSOR cursor] CATQUERY TO FILE file 
[SEPARATOR "text"] [HEADING [ON I OFF]] 

DESCRIPTION 

The result columns of a SELECT statement are usually mapped to individual variables. Use 
CATQUERY to map full result rows to a variable's occurrences or to a text file. The options are 
described below. 

WITH CURSOR cursor Names a declared SELECT cursor. If the clause is not used, 
JAMIDBi uses the default SELECT cursor. 

TO jamvar Names a JAM variable as the destination. 

TO FILE fl/e Names a text file as the destination. If the file already exists, 
it is overwritten when the SELECT is executed. 

SEPARATOR "text' Specifies that JAM/OBi should use text to separate column 
values in a result row. The default is two blank spaces. 

HEADING ON Specifies that JAM/OBi should put a heading at the begin
ning of the SELECT results. This is the default for a catquery to 
a file. The heading is built using the column names or any 
aliases assigned to the cursor. The maximum length of a 
heading is 255 characters. Any additional characters are trun
cated. 

HEADING OFF Specifies that JAM/OBi should not use a heading. This is the 
default for a catquery to a JAM variable. 

JAM/OBi attempts to format the column values by searching for JAM variables of the 
same name and using their attributes for length, precision, and date-time or currency edits. 
The application may override any default formatting with the command DBMS FORMAT. 

The catquery for a cursor is turned off by executing the DBMS CATQUERY command with no 
arguments. Closing a cursor also turns off the catquery. If a cursor is redeclared without be
ing closed, the cursor keeps the catquery destination as the cursor's SELECT destination. 

138 JAM/OBi Release 5 May 92 



III. Reference Guide 

Catquery to a Variable 

When the catquery destination is a JAM variable, JAMIDBi concatenates a result row and 
writes it to jamvar when the SELECT is executed. If Jamvar is an LDB or field array, JAM/ 
OBi writes the result rows to the array occurrences. If there are more result rows than occur
rences in jamvar, use DBMS CONINUE to fetch the additional rows. 

If the clause HEADING ON is used, JAM/OBi creates a heading by using the cursor's aliases 
and column names. If Jamvarhas two or more occurrences, JAMIDBi will put the heading 
in the fIrst occurrence of jamvar. 

Catquery to a Text File 
When the catquery destination is a text fIle, JAM/OBi writes all the result rows to the speci
fied text file when the SELECT is executed. Any existing fIle with the same name is overwrit
ten. If a result row is longer than the page width, JAM/OBi wraps the row to the next line. 

If aliases have been specified for the cursor, JAM/OBi uses those aliases as column head
ings in the text file. If there are no aliases, JAM/OBi uses the columns' names. If the clause 
HEADINGOFF is used, JAM/OBi does not print a heading. 

Since all result rows are written to the file, the DBMS CONTINUE commands should not be 
used with a CATQUERY TO FILE cursor while the fIle is open. 

The fIle remains open until DBMS CATQUERY is reset or the cursor is closed. 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor] ALIAS [column] " text" ... 

dbms [WITH CURSOR cursor] FORMAT [column] format •.. 

EXAMPLE 

* select an employee's first and last name * and concatenate the values in the field "fullname" 
dbms DECLARE name_cursor CURSOR FOR \ 

SELECT last, first WHERE ssn=:+ssn 
dbms WITH CURSOR name cursor CATQUERY TO fullname \ 

SEPARATOR ", " 
dbms WITH CURSOR name cursor EXECUTE 

f/: select the maximum value from the column "cost" 
f/: and write it to the JPL variable "hi cost" * formatting it with currency edit saved with the LDB * variable "money_var" 
vars hi cost 
dbms DECLARE max cursor CURSOR FOR \ 

May 92 JAM/OBi Release 5 139 



SELECT MAX(cost) FROM inventory 
dbms WITH CURSOR max_cursor CATQUERY TO hi cost 
dbms WITH CURSOR max cursor FORMAT money_var 
dbms WITH CURSOR max cursor EXECUTE 

CATOUERY 

* Write the results of the default SELECT cursor * to a file with heading. Turn off ALIAS and CATQUERY * when finished. 

140 

dbms CATQUERY TO FILE phonelist 
dbms ALIAS emplast "Last Name", empfirst "First Name",\ 

phonel "Main Number", phone2 "Additional Number" 
sql SELECT emplast, empfirst, phonel, phone2 FROM emp 
dbms CATQUERY 
dbms ALIAS 

JAM/OBi Release 5 May 92 



CLOSE ALL CONNECTIONS 

CLOSE ALL CONNECTIONS 
close all connections on an engine 

SYNOPSIS 

dbms CLOSE ALL CONNECTIONS 

DESCRIPTION 

When this command is executed, JAM/OBi closes every connection which the application 
declared on any and all engines. For each connection, it closes all cursors belonging to the 
connection, disconnects from the engine, and frees all structures associated with the connec
tion. 

SEE ALSO 

JAM/OBi Developer's Guide, page 55. 

VARIANTS 

dbms CLOSE CONNECTION [connection] 

RELATED FUNCTIONS 

dbms [WITH ENGINE engme] DECLARE connecUon CONNECTION \ 
FOR [OPTION arg ... ] 

May 92 JAM/OBi Release 5 141 



III. Reference Guide 

CLOSE CONNECTION 
close a declared connection 

SYNOPSIS 

dbms CLOSE CONNECTION [connection] 

DESCRIPTION 

Executing this command closes all open cursors associated with the named or default con· 
nection, logs off the connection from its engine. and frees the connection data structure. 

SEE ALSO 
JAM/OBi Developer's Guide. 55. 

VARIANTS 

dbms [WITH ENGINE engme] CLOSE ALL CONNECTIONS 

RELATED FUNCTIONS 

dbms [WITH ENGINE engme] DECLARE connecUon CONNECTION \ 
FOR [OPTION arg ... ] 

WITH CONNECTION connection 

142 JAM/OBi Release 5 May 92 



CLOSE CURSOR 

CLOSE CURSOR 
close a named or default cursor 

SYNOPSIS 

dbrns CLOSE CURSOR [cursor] 

dbrns WITH CONNECTION connecUon CLOSE CURSOR 

DESCRIPTION 

Use this command to close an open cursor. Closing a cursor frees all structures associated 
with the cursor. 

Closing a cursor is convenient way of turning off all attributes assigned to the cursor with 
DBMS ALIAS, DBMS CATQUERY, DBMS FORMAT, DBMS OCCUR, DBMS START, DBMS 

STORE_FILE, DBMS TYPE, and DBMS UNIQUE. 

If cursor is not given, JAM/OBi closes the default SELECT cursor. A connection may also 
be specified when closing a default cursor. JAM/OBi will automatically declare another de
fault SELECT cursor when needed. A connection name should not be given when closing a 
named cursor. 

Closing a connection also closes all cursors associated with the connection. 

SEE ALSO 

JAM/DBi Developer's Guide, page 57. 

VARIANTS 

dbrns [WITH ENGINE engine] CLOSE CONNECTION [connection] 

dbrns CLOSE ALL CONNECTIONS - -

RELATED FUNCTIONS 

dbrns [WITH CONNECTION connecUon] DECLARE cursor CURSOR \ 
FOR SQLstmt 

dbrns WITH CURSOR cursor EXECUTE 

WITH CURSOR cursor 

May 92 JAM/OBi Release 5 143 



III. Reference Guide 

EXAMPLE 

* Assign a catquery and aliases to the default SELECT * cursor. Close the cursor when finished. 
dbms CATQUERY TO FILE phonelist 
dbms ALIAS emplast "Last Name", empfirst "First Name", \ 

phonel "Main Number", phone2 "Additional Number" 

144 

sql SELECT emplast, empfirst, phonel, phone2 FROM emp 
dbms CLOSE CURSOR 

JAM/OBi Release 5 May 92 



III. Reference Guide 

CONNECTION 
set or change the default connection 

SYNOPSIS 

dbms CONNECTION connect/on 

DESCRIPTION 

If an application has declared two or more connections. the application may set a default 
connection with this command. The default connection is used for aU subsequents state
ments that do not use a WITH CONNECTION or WITH CURSOR clause. 

RELATED FUNCTIONS 

dbms CLOSE CONNECTION connection 

dbms [WITH ENGINE engine) DECLARE CONNECTION connection 

WITH CONNECTION connection 

EXAMPLE 

dbms ENGINE sybase 
dbms DECLARE a CONNECTION FOR \ 

USER :uname PASSWORD :pword SERVER sl DATABASE master 
dbms DECLARE b CONNECTION FOR \ 

USER :uname PASSWORD :pword SERVER s2 DATABASE projects 
dbms CONNECTION a 
dbms WITH CONNECTION b DECLARE c1 CURSOR FOR \ 

INSERT finance (number, title, manager) \ 
VALUES (::number, ::title, ::manager) 

May 92 JAM/OBi Release 5 145 



III. Reference Guide 

CONTINUE 
fetch the next set of rows associated with a default or 
named SELECT cursor 

SYNOPSIS 
dbms [WITH CURSOR cursor] CONTINUE 

DESCRIPTION 

If a SELECT retrieves more rows than will fit in its destination variables, JAM/OBi will re
turn only as many rows as will fit. It continues fetching more rows from the SELECT set when 
the application executes this command. If there are pending rows, executing this command 
clears the destination variables, and fetches the next screenful of rows from the SELECT set. 
If there are no pending rows, executing this command does nothing. 

DBMS CONTINUE is always associated with a SELECT cursor. If no cursor is named, JAM/OBi 
uses the default SELECT cursor. 

Note that if the cursor's aliases have changed between the execution of the SELECT and the 
execution of DBMS CONTINUE, DBMS CONTINUE uses the new settings. 

This command should not be used with a CATQUERY TO FILE cursor. CATQUERY TO FILE 

always writes out the entire select set to the CATQUERY file. 

VARIANTS 
dbms [WITH CURSOR cursor] CONTINUE DOWN 

RELATED FUNCTIONS 
dbms [WITH CURSOR cursor] CONTINUE BOTTOM 

dbms [WITH CURSOR cursor] CONTINUE TOP 

dbms [WITH CURSOR cursor] CONTINUE UP 

dbms [WITH CURSOR cursor] STORE [FILE [fIle] ] 

EXAMPLE 

dbms DECLARE movie_list CURSOR FOR \ 
SELECT * FROM movie archive WHERE subject=::subj 

proc get_selection 
dbms WITH CURSOR movie list EXECUTE USING subject 

146 JAM/OBi Release 5 May 92 



CONTINUE 

jpl check_count 
return 

proc check count 
* DM_NO_MORE_ROWS is an LDB constant equal to 53256 
if @dmretcode != DM_NO_MORE_ROWS 

msg setbkstat "Press %KPFl to see more films " \ 
"or press %KPF2 to specify another topic." 

else 
msg setbkstat "That's all folks!" 

return 

proc get_more * This function is called by pressing PF1. * It retrieves the next set of rows. 
dbms WITH CURSOR movie list CONTINUE 
jpl check_count 
return 

May 92 JAM/OBi Release 5 147 



III. Reference Guide 

CONTINUE BOTTOM 
fetch the last page of rows associated with the default or 
named SELECT cursor 

SYNOPSIS 
dbrns [WITH CURSOR cursor] CONTINUE_BOTTOM 

DESCRIPTION 
This command fetches the last screenful of rows from the cursor's SELECT set. If no cursor 
is named, JAM/OBi uses the default SELECT set. If number of rows in the SELECT set is less 
than the number of occurrences in the JAM variables, JAM/OBi will ignore the request. 
Some engines automatically support this command. Other engines require a temporary stor
age file created by the command DBMS STORE FILE. If JAM/OBi returns OM_BAD _ CMD 
error when the application executes this command, the engine needs a scrolling file. See the 
engine-specific Notes for more information. 

This command should not be used with a CATQUERY TO FILE cursor. 

RELATED FUNCTIONS 
dbrns [WITH CURSOR cursor] CONTINUE 

dbms [WITH CURSOR cu~or] CONTINUE DOWN 

dbrns [WITH CURSOR cursor] CONTINUE TOP 

dbrns [WITH CURSOR cursor] CONTINUE UP 

dbrns [WITH CURSOR cursor] STORE [FILE [filename]] 

EXAMPLE 

'Engines not requiring STORE FILE 
dbrns DECLARE ernp_cursor FOR SELECT * FROM ernp 
dbms WITH CURSOR emp_cursor EXECUTE 

dbrns WITH CURSOR ernp_cursor CONTINUE BOTTOM 

'Engines requiring STORE FILE 
dbms DECLARE ernp_cursor FOR SELECT * FROM ernp 
dbrns WITH CURSOR ernp_cursor STORE FILE 
dbrns WITH CURSOR ernp_cursor EXECUTE 

dbrns WITH CURSOR emp_cursor CONTINUE_BOTTOM 

148 JAM/OBi Release 5 May 92 



CONTINUE DOWN 

CONTINUE DOWN 
fetch the next set of rows associated with the default or 
named SELECT cursor 

SYNOPSIS 
dbms [WITH CURSOR cursor] CONTINUE DOWN 

DESCRIPTION 

This command is identical to DBMS CONTINUE. 

Note that CONTINUE is always associated with a SELECT cursor. If no cursor is named, JAM! 
OBi uses the default SELECT cursor. 

VARIANTS 

dbms [WITH CURSOR cursor] CONTINUE 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor] CONTINUE BOTTOM 

dbms [WITH CURSOR cursor] CONTINUE TOP 

dbms [WITH CURSOR cursor] CONTINUE UP 

dbms [WITH CURSOR cursor] STORE [FILE [fIlename] ] 

EXAMPLE 

dbms DECLARE emp_cursor FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor EXECUTE 

proc get_more 
dbms WITH CURSOR emp_cursor CONTINUE DOWN 

May 92 JAM/OBi Release 5 149 



III. Reference Guide 

CONTINUE TOP 
fetch the first page of rows associated with the default or 
named SELECT cursor 

SYNOPSIS 

dbms [WITH CURSOR cursor) CONTINUE TOI? 

DESCRIPTION 

This command fetches the first screenful of rows from the cursor's SELECT set. If no cursor 
is named, JAM/OBi uses the default SELECT cursor. If number of rows in the SELECT set is 
less than the number of occurrences in the JAM variables, JAM/OBi will ignore the re
quest. 

Some engines automatically support this command. Other engines require a temporary stor
age file created by the command DBMS STORE FILE. If the engine needs such a file and the 
application tries to execute DBMS CONTINUE_TOP without executing DBMS STORE, JAM/OBi 
returns the error DM _BAD _ CMD. See the engine-specific NOles for more infonnation. 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor) CONTINUE 

dbms [WITH CURSOR cursor) CONTINUE BOTTOM 

dbms [WITH CURSOR cursor) CONTINUE DOWN 

dbms [WITH CURSOR cursor] CONTINUE UI? 

dbms [WITH CURSOR cursor] STORE [FILE [ filename) ] 

EXAMPLE 

fEngine not requ~r~ng STORE FILE 
dbms DECLARE emp_cursor FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor EXECUTE 

proc go_to_start 
dbms WITH CURSOR emp_cursor CONTINUE TOI? 

150 JAM/OBi Release 5 May 92 



#Engines requiring STORE FILE 
dbms DECLARE emp_cursor FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor STORE FILE 
dbms WITH CURSOR emp_cursor EXECUTE 

proc go_to_start 
dbms WITH CURSOR emp_cursor CONTINUE TOP 

May 92 JAM/OBi Release 5 

CONTINUE TOP 

151 



III. Reference Guide 

CONTINUE UP 
fetch the previous page of rows associated with the 
default or named SELECT cursor 

SYNOPSIS 

dbms [WITH CURSOR cursor] CONTINUE UP 

DESCRIPTION 

Use this command to scroll backwards through a SELECT set. If no cursor is named, JAMI 
OBi uses the default SELECT set. If number of rows in the SELECT set is less than the number 
of occurrences in the JAM variables, JAM/OBi will ignore the request. 

Some engines automatically support this command. Other engines require a temporary stor
age file created by the command DBMS STORE FILE. If the engine needs such a file and the 
application tries to execute DBMS CONTINUE_UP before executing DBMS STORE, JAM/OBi 
returns the error DM _BAD _ CMD. See the engine-specific Notes for more information. 

This command should not be used with a CATQUERY TO FILE cursor. 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor] CONTINUE 

dbms [WITH CURSOR cursor] CONTINUE BOTTOM 

dbms [WITH CURSOR cursor] CONTINUE DOWN 

dbms [WITH CURSOR cursor] CONTINUE TOP 

dbms [WITH CURSOR cursor] STORE [FILE [fflename]] 

EXAMPLE 

*Engine not requ~r~ng STORE FILE 
dbms DECLARE emp_cursor FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor EXECUTE 

proc go_back 
dbms WITH CURSOR emp_cursor CONTINUE UP 

152 JAM/OBi Release 5 May 92 



iEngines requ1r1ng STORE FILE 
dbms DECLARE emp_cursor FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor STORE FILE 
dbms WITH CURSOR emp_cursor EXECUTE 

proc go_back 
dbms WITH CURSOR emp_cursor CONTINUE UP 

May 92 JAM/OBi Release 5 

CONTINUE UP 

153 



III. Reference Guide 

DECLARE CONNECTION 
create a named connection to a server and database 

SYNOPSIS 

dbms [WITH ENGINE engme] DECLARE connecUon CONNECTION \ 
[FOR OPTION arg ... ] 

DESCRIPTION 

Applications which must connect to two or more servers should use this command to de
clare a named connection to a server. If JAM/OBi executes this statement successfully, it 
allocates a connection structure and adds it to the list of open structures. 

The combination of necessary or supported options is engine-specific. See the engine-spe
cific Notes in this document for a listing. 

The connection remains open until it is closed with DBMS CLOSE CONNECTION or DBMS 

CLOSE_ALL_CONNECTIONS. 

RELATED FUNCTIONS 

dbms CLOSE CONNECTION [connection] 

dbms CLOSE_ALL_CONNECTIONS 

dbms CONNECTION connection 

WITH CONNECTION connection 

154 JAM/OBi Release 5 May 92 



DECLARE CURSOR 

DECLARE CURSOR 
declare a named cursor for a Sal statement 

SYNOPSIS 
dbms [WITH CONNECTION connection] DECLARE cursor CURSOR \ 

FOR SQLstmt 

DESCRIPTION 
Use this command to create or redeclare a named cursor. 

If the application has not already declared cursor, JAM/OBi allocates a new cursor struc
ture and adds its name to the list of declared cursors. 

If a structure already exists for cursor and the connection is the same, JAMlDBi reinitial
izes the structure. Reinitialization clears any information on SELECT columns, binding pa
rameters, and the maximum number of rows to fetch. It does not clear any attributes as
signed to the cursor with the statements DBMS ALIAS, DBMS CATQUERY, DBMS FORMAT, DBMS 

OCCUR, DBMS START, DBMS STORE, DBMS TYPE, or DBMS UNIQUE. JAMIDBi will use these 
settings if the cursor is redeclared with a SELECT statement It will ignore the attributes if the 
cursor is redeclared with an INSERT, UPDATE, or DELETE statement. To redeclare the cursor 
with a new (empty) structure, close the cursor with DBMS CLOSE CURSOR before executing 
the new declaration. 

If a cursor is redeclared on another connection, JAM/OBi automatically closes the cursor 
and declares a new structure. 

The cursor remains open until it is explicitly closed with the command DBMS CLOSE 

CURSOR. Closing a connection also closes all cursors on the connection. 

There are few restrictions on valid cursor names. However, you should avoid using any SQL 
or JAM/OBi keyword as a cursor name. Please note that JAMlDBi is case sensitive regard
ing cursor names; for example, it interprets cursor cl as distinct from cursor Cl. 

SEE ALSO 
JAM/OBi Developer's Guide, pages 57, 72. 

RELATED FUNCTIONS 
dbms WITH CURSOR cursor EXECUTE 

dbms CLOSE CURSOR cursor 

WITH CURSOR cursor 

May 92 JAMlDBi Release 5 155 



III. Reference Guide 

EXAMPLE 

dbms WITH ENGINE oracle DECLARE emp_cursor FOR \ 
SELECT ss, last, first FROM emp \ 
WHERE dept = ::parameter 

dbms WITH CURSOR emp_cursor EXECUTE USING dept_name 

156 JAMIDBi Release 5 May 92 



ENGINE 

ENGINE 
set or change the default engine 

SYNOPSIS 

dbms ENGINE engme 

DESCRIPTION 
If an application has initialized two or more engines. the application may use this command 
to set a default engine. If an application has only one initialized engine. JAM/DBi automati
cally assigns that engine as the default. 

engine is a mnemonic associated with one of the support routines initialized in 
dbiinit. c orin a call to dm_init. 

SEE ALSO 

JAM/DBi Developer's Guide. page 52. 

RELATED FUNCTIONS 

WITH ENGINE engine 

May 92 JAMJDBi Release 5 157 



III. Reference Guide 

EXECUTE 
execute the SQl statement declared for a named cursor 

SYNOPSIS 
dbms WITH CURSOR cursor EXECUTE [USING 8rgS] 

DESCRIPTION 
Use this statement to execute the statement associated with a declared cursor. 

This statement does not support the WITH CONNECTION clause. JAM/OBi uses the engine 
that was specified either by name or by default when the cursor was declared. The only way 
to change the cursor's engine or connection is to redeclare the cursor. 

If an application is executing a similar statement many times, it is often more efficient to 
declare a cursor for the statement. Usually the engine saves the parsed statement, executing 
it when the application executes the cursor. It is not necessary to redeclare the cursor to sup
ply new data for a WHERE or VALUES clause. Instead, the application may declare the cursor 
and use a substitution parameter for each value that the application will supply when it ex
ecutes the cursor. Substitution parameters begin with a double colon (::). For example, 

dbms DECLARE c1 CURSOR FOR \ 
SELECT * FROM titles WHERE author LIKE ::author-Farm 

a u tho r -Fa rm is simply a place holder for the value that will be supplied when the cursor 
is executed. For example, 

dbms WITH CURSOR c1 EXECUTE USING "Fau%" 

would fetch rows where author began with the characters "Fau." The application could 
execute the cursor repeatedly, each time with a new value. It may use the value of a field to 
supply a value. For example, 

dbms WITH CURSOR c1 EXECUTE USING aname 

Since aname is not quoted, JAM/OBi assumes it is a JAM variable. If an argument in the 
USING clause is a field or LDB variable with a date-time, currency, null field, or type edit 
JAM/OBi fonnats the variable's value before passing it to the engine. 

This topic is covered in detail in the Developer's Guide. 

SEE ALSO 
JAM/DBi Developer's Guide, page 72. 

RELATED FUNCTIONS 
dbms DECLARE cursor CURSOR FOR SQLstmt 

158 JAM/OBi Release 5 May 92 



EXECUTE 

dbms CLOSE CURSOR cursor 

dbms [WITH CURSOR cursor] CONTINUE 

WITH CURSOR cursor 

EXAMPLE 
dbms DECLARE x CURSOR FOR \ 

SELECT * FROM inventory WHERE Iname=::pl OR ss=::p2 

# bind by position: 
dbms WITH CURSOR x EXECUTE USING newname, 55_number 

# or bind by name: 
dbms WITH CURSOR x EXECUTE \ 

USING pI = newname, p2 = 55_number 

May 92 JAM/OBi Release 5 159 



III. Reference Guide 

FORMAT 
format CATQUERY values 

SYNOPSIS 

dbms [WITH CURSOR cursor] FORMAT \ 
[ [column] format [, [column] format ... ]] 

DESCRIPTION 

Use this command to format CATQUER y values before writing them to a variable or a text file. 
The options are explained below. 

WITH CURSOR cursor Names a declared SELECT cursor. If the clause is not used, 
JAM/OBi uses the default SELECT cursor. 

column Names a selected column. The case of column should match 
the setting of the case flag for the engine in dbiini t . c. If 
columns are not named, the formats are applied by position. 

format Describes how JAM/OBi should format the value. format is 
either a JAM variable or a quoted precision edit. 

If format is a JAM variable, JAM/OBi formats the column value as if it were writing to the 
field. In particular, the following characteristics will affect the formatting: 

• variable's maximum shifting length 

• variable's JAM type 

See Section 9.1.3. in the Developer's Guide of this document for more information about 
formatting with JAM type. 

format may also be a precision edit A precision edit is a quoted string beginning with a 
percent sign. It supplies the length of the value, and optionally, a decimal precision for nu
meric values. 

A precision is given in the form 

"%wldth" 

" % wldth.preclslon" 

To tum off formatting on the default or named cursor, execute the command with no argu
ments. 

160 JAM/OBi Release 5 May 92 



FORMAT 

EXAMPLE 

'* use column "lastname" exactly as returned 
'* format column "revdate" with the LDB variable "today", 
'* format column "sal" to width 15 with 2 decimal places, 
'* format column "comment" to width 30 and truncate excess 
dbms CATQUERY TO FILE listing 
OOms FORMAT revdate today, sal "%15.2", comment "%30" 
sql SELECT lastname, sal, revdate, comment FROM employee 

May 92 JAM/OBi Release 5 161 



III. Reference Guide 

OCCUR 
change the behavior of a SELECT cursor that writes to JAM 
arrays 

SYNOPSIS 

dbrns [WITH CURSOR cursor] OCCUR oce_lnt [~X Int] 
dbrns [WITH CURSOR cursor] OCCUR CURRENT [MAX Int] 

DESCRIPTION 

By default, if the destination of a SELECT is one or more arrays, JAM/OBi fetches as many 
rows as will fit in the arrays and begins writing at the first occurrence in the arrays. Use this 
command to change the default behavior for a SELECT cursor. The options for the command 
are: 

WITH CURSOR cursor Names a declared SELECT cursor. If the clause is not used, 
JAM/OBi uses the default SELECT cursor. 

occ_int Specifies the occurrence number where JAM/OBi should be
gin placing SELECT results. 

CURRENT Specifies that JAM/OBi should use the occurrence number 
of the "current" field. JAM/OBi begins writing at this occur
rence number in the target arrays. Note that the current field 
is the one containing the JAM screen cursor and is not neces
sarily a target variable. 

MAX Int Specifies the maximum number of rows to fetch for a SELECT 

or CONTINUE. If Intis less than I, no rows are fetched. 

The setting is turned off by executing the DBMS OCCUR command with no arguments. Clos
ing a cursor also turns off the setting. H a cursor is redeclared without being closed, the cur
sor continues to use to the setting for SELECT'S and CONTINUE'S. 

DBMS OCCUR is ignored with a CATQUERY cursor. 

RELATED FUNCTIONS 

[WITH CURSOR cursor] 

162 JAM/OBi Release 5 May 92 



EXAMPLE 
dbms DECLARE title cursor CURSOR FOR \ 

SELECT * FROM booklist WHERE isbn :+code 
dbms WITH CURSOR title cursor OCCUR CURRENT 
dbms WITH CURSOR title cursor EXECUTE 

May 92 JAM/OBi Release 5 

OCCUR 

163 



III. Reference Guide 

ONENTRY 
install an entry function 

SYNOPSIS 

dbms ONERROR CALL function 
dbms ONERROR JPL lPtentryJJolnt 

DESCRIPTION 

Use this command to install a JPL routine or a C function which JAM/OBi will caIl before 
it executes a sql or dbms statement. 

Currently, this function is for infonnational purposes only. For instance, you may wish to 
log statements to a file on disk before executing them. You may use this function with an 
exit handler to track the start and complete time for a query or any database other operation. 

The function is passed three arguments: 

1. a copy of the first 255 characters of the statement; if the statement 
was executed from JPL, this is the first 255 characters after the 
command word sql or dbms 

2. the name of the engine where 

3. context flag; for the entry handler its value is 1. 

The function's return code is not used. 

If the error occurred while executing a JPL statement with the command dbms or sql: 

• 0 returns control to the JPL procedure where the error occurred 

• I aborts the JPL procedure where the error occurred and returns 
1 to the procedure's caller (either JAM or another JPL procedure) 

If the error occurred while executing a statement with one of the elm_library functions, the 
elm function returns the error handler's return code. 

To use a C function as an error handler, you must first install the function as a prototyped 
function. Please consult the JAM Programmer's Guide for more infonnation. 

SEE ALSO 

JAM/OBi Developer's Guide, page 93. 

JAM/OBi Reference Guide, global variables, page 113 

164 JAM/OBi Release 5 May 92 



ONENTRY 

RELATED FUNCTIONS 
dbms ONEXIT [JPL entry point I CALL function] 

May 92 JAM/OBi Release 5 165 



III. Reference Guide 

ONERROR 
set the behavior of the error handler 

SYNOPSIS 
dbms ONERROR CALL function 
dbms ONERROR CONTINUE 
dbms ONERROR JPL /plentry""po1nt 
dbms ONERROR STOP 

DESCRIPTION 
Use this command to set or change the behavior of the JAM/OBi error handler for the appli
cation. The default error handler displays an error message. The source of the message is 
determined by the engine's initialization. If an engine is initialized with the flag 
DM _DEFAULT_ENG _ MSG the default error handler displays an engine-specific error mes
sage. If it is initialized with the flag DM_DEFAULT_DBI_MSG the error handler uses mes
sages only from the JAM message file. If an error occurs while executing a JPL procedure, 
the default handler aborts the procedure, returning -I to the calling procedure. 

An application may override the default error handler with the command DBMS ONERROR 

and an argument. Please note that the error handler is global to the application. Each execu
tion of this command overrides the previous error handler. 

The command variants are explained below. 
ONERROR STOP 
This command restores the default error handler. 
ONERROR CONTINUE 
This command prevents the default error handler from aborting a JPL procedure where a 
JAM/OBi error occurs. Message display is not changed. 
ON ERROR JPL or ONERROR CALL 
These commands install a user function as the error handler. If JAM/OBi or the engine find 
an error, JAM/OBi updates the global error and status variables (i.e., @dm variables) and 
calls the installed function. 

The function displays any error messages and its return code controls whether or not JPL 
execution is aborted. 
The function is passed three arguments: 

166 

1. the first 255 characters of the statement; if the statement was ex
ecuted from JPL, this is the first 255 characters after the com
mand word sql or dbms 

JAM/OBi Release 5 May 92 



ONERROR 

2. the name of the engine for the attempted statement 

3. context flag; for the error handler its value is 2. 

The function's return code is returned to the application. 

If the error occurred while executing a JPL statement with the command dbms or sql: 

• 0 returns control to the JPL procedure where the error occurred 

• 1 aborts the JPL procedure where the error occurred and returns 
1 to the procedure's caller (either J AM or another JPL procedure) 

If the error occurred while executing a statement with one of the dm _library functions, the 
dm function returns the error handler's return code. 

To use a C function as an error handler, you must frrst install the function as a prototyped 
function. Please consult the JAM Programmer's Guide for more information. 

SEE ALSO 

JAM/OBi Developer's Guide, page 93. 

JAM/OBi Reference Guide, global variables, page 113 

RELATED FUNCTIONS 

dbms ONEXIT [JPL entrypoint I CALL function] 

May 92 JAM/OBi Release 5 167 



III. Reference Guide 

ONEXIT 
install an exit handler 

SYNOPSIS 
dbms ONEXIT CALL function 
dbms ONERROR JPL }p,-entry"'polnt 

DESCRIPTION 
Use this command to install a function which JAM/OBi will call after executing a dbms or 
sql command from JPL or C. You may use this function to process error and status codes 
after every command. 

Installing an ONEXIT function will override the default error handler. Please note that the exit 
handler is global to the application. Each execution of this command overrides the previous 
exit handler. 

The function is passed three arguments: 

1. the first 255 characters of the statement; if the statement was ex
ecuted from JPL, this is the first 255 characters after the com
mand word sql or dbms 

2. the name of the engine for the attempted statement 

3. context flag; for the exit handler its value is 1. 

The function's return code is returned to the application. Ifan error occurred while execut
ing a JPL statement with the command dbms or sql and there is no ONEXIT function, then 

• 0 returns control to the JPL procedure where the error occurred 

• 1 aborts the JPL procedure where the error occurred and returns 
1 to the procedure's caller (either JAM or another JPL procedure) 

If an error occurred while executing a statement with one of the dm _ library functions and 
there is no ONEXIT function, the dm _ function returns the exit handler's return code. 

To use a C function as an exit handler, you must first install the function as a prototyped 
function. Please consult the JAM Programmer's Guide for more information. 

SEE ALSO 

JAM/OBi Developer's Guide, page 93. 

JAM/OBi Reference Guide, global variables, page 113 

168 JAM/OBi Release 5 May 92 



ONEXIT 

RELATED FUNCTIONS 

dbrns ONEXIT [JPL entry point I CALL function] 

May 92 JAM/OBi Release 5 169 



III. Reference Guide 

START 
specify a starting row in a SELECT set 

SYNOPSIS 

dbms [WITH CURSOR cursor] START [int] 

DESCRIPTION 

By default, when a SELECT set contains more than one row, JAM/OBi fetches them sequen
tially beginning with the first row in the SELECT set. Use this command to begin fetching at 
row Int. JAMIDBi will read and discard Int - 1 rows from the SELECT set before returning 
the requested rows to the application. If the application is counting the rows fetched, the 
discarded rows do not update @dmrowcount. If Intis greater than the number of rows in 
the SELECT set, no rows are displayed. 

If no cursor is specified, JAM/OBi uses the default SELECT cursor. 

The setting is turned off by executing DBMS START with no arguments. Closing a cursor also 
turns off the setting. IT a cursor is redeclared without being closed, the cursor continues to 
use to the setting for SELECT'S. 

RELATED FUNCTIONS 

WITH CURSOR cursor 

EXAMPLE 

proc discard_lOa * dbi count is an LDB variable 
dbms COUNT dbi count 
dbms START 100 
sql SELECT * FROM emp 
if @dmrowcount == a 

msg emsg "There are less than 100 employees." 
dbms START 
return 

170 JAM/OBi Release 5 May 92 



STORE 

STORE 
set up a continuation file for a named or default cursor 

SYNOPSIS 

dbms [WITH CURSOR cu~or] STORE [FILE ["_name]] 

DESCRIPTION 

When this command is used with a SELECT cursor, JAMIDBi maintains a copy of the result 
rows in a temporary binary fIle. The use of a file permits an application to scroll forward and 
backward in a SELECT set, even if the database has no native support for backward scrolling. 

If filename is not given, JAM/OBi calls the standard C library routine tmpfile to create 
and open a temporary binary fIle. 

A continuation file remains open for the life of the cursor, or until the feature is turned off 
with the command, 

dbms [WITH CURSOR cu~or] STORE 

Executing the command without the keyword FILE closes and deletes the fIle and turns off 
the feature for the named or default cursor. Closing the cursor also closes and deletes the 
file. If a cursor is not closed but simply redeclared for another SELECT statement, the fIle is 
cleared. Therefore, a continuation fIle holds the results of one SELECT statement only. 

The use of a continuation file does not force the engine to return the entire SELECT set when 
the SELECT is executed. In its usual manner, JAM/OBi examines the number of occurrences 
in the destination variable to determine the number of rows to fetch. Each time it fetches 
rows from the engine by executing the SELECT or a DBMS CONTINUE, JAM/OBi updates the 
screen and appends the new data to the continuation fIle. If the application wishes to see 
rows already fetched, JAM/OBi uses the continuation file to get the rows and update the 
screen. If JAM/OBi reaches the end of the continuation file and the application executes 
another DBMS CONTINUE, JAM/OBi will attempt to get more rows from the engine. When 
the engine returns the no-more-rows code, JAM/OBi sets @dmretcode to the value of 
DM NO MORE ROWS. Similarly, if the application attempts to scroll back past the first row 
in the continuation file, JAM/OBi sets @dmretcode to DM_NO_MORE_ROWS. See Ap
pendix B. for a list of error and status codes. Write errors are not reported. 

This command provides several advantages: 

• a means for displaying very large SELECT sets without keeping all rows in memory 
at once 

May 92 JAM/OBi Release 5 171 



III. Reference Guide 

• better response time for very large SELECT sets; since fetches are incremental it is 
not necessary to get the entire SELECT set at once 

• a means for forcing an engine to release a shared lock on a large SELECT set 

Consult the Notes for information on engine-specific scrolling issues. 

RELATED FUNCTIONS 

dbms [WITH CURSOR cursor] CONTINUE BOTTOM 

dbms [WITH CURSOR cunor] CONTINUE TOP 

dbms [WITH CURSOR cursor] CONTINUE UP 

EXAMPLE 

dbms DECLARE emp_cursor CURSOR FOR SELECT * FROM emp 
dbms WITH CURSOR emp_cursor STORE FILE 
dbms WITH CURSOR emp_cursor EXECUTE 
jpl mapkeys 

proc mapkeys 
vars SPGU(6) SPGD(6) APPI(6) APP2(6) XLATE(l) 
cat SPGU "Oxl13" 
cat SPGD "Oxl14" 
cat APPI "Ox6l02" 
cat APP2 "Ox6202" 
cat XLATE "2" 
# Set the control strings for APPI and APP2 on 
# this screen to call DBi scroll functions 
call sm....,.putjctrl :APPI ""jpl scroll_forward" 0 
call sm....,.putjctrl :APP2 ""jpl scroll_back" 0 
# Remap the logical page up and down keys to 
# APPI and APP2. (This should be reset on screen exit.) 
call sm_keyoption :SPGU :XLATE :APPI 
call sm_keyoption :SPGD :XLATE :APP2 
return 

proc scroll_forward 
# SPGU -> APPI = "jpl scroll_forward 
dbms WITH CURSOR emp_cursor CONTINUE 
return 

172 JAM/OBi Release 5 May 92 



proc scroll back 
• SPGD -> APP2 = Ajpl scroll_back 
dbms WITH CURSOR emp_cursor CONTINUE UP 
return 

May 92 JAM/OBi Release 5 

STORE 

173 



III. Reference Guide 

UNIQUE 
suppress repeating values in selected columns 

SYNOPSIS 
dbms [WITH CURSOR cursor] UNIQUE column [, column ••. ] 

DESCRIPTION 

The following command suppresses repeating values in each named column of a SELECT set 
when the values are in adjacent rows. Typically, this feature is set for a column named in an 
ORDER BY' clause. 

The options are 

WITH CURSOR cursor Names a declared SELECT cursor. If the clause is not used, 
JAM/OBi uses the default SELECT cursor. 

column Specifies a column name in the SELECT statement. 

If no cursor is specified, JAMIDBi uses the default SELECT cursor. 

If the destination variable has a null edit, an occurrence containing a suppressed value is 
blank, not null. 

The setting is turned off by executing the DBMS UNIQUE command with no arguments. Clos
ing a cursor also turns off the setting. If a cursor is redeclared without being closed, the cur
sor continues to use to the setting for SELECT'S and CONTINUE'S. 

RELATED FUNCTIONS 
WITH CURSOR cursor 

EXAMPLE 

iSince several items may be ordered on the same invoice, 
isuppress repeating invoice numbers when listing 
ioutstanding sales orders. 

dbms DECLARE order cursor CURSOR FOR \ 
SELECT invoice_no, id, desc, quan, cost FROM newsales \ 
ORDER BY invoice_no 

dbms WITH CURSOR order cursor UNIQUE invoice_no 
dbms WITH CURSOR order cursor EXECUTE 

174 JAM/OBi Release 5 May 92 



WITH CONNECTION 

WITH CONNECTION 
use a named connection for the duration of a statement 

SYNOPSIS 

dbms WITH CONNECTION connection DBMS_statement .. . 

sql WITH CONNECTION connection SOL_statement .. . 

DESCRIPTION 
This clause specifies a connection for the execution of the command. overriding the default 
connection. connection must be declared and open. 

Any sql statement may use this clause. 

Some dbms statements may also use it. In particular, 

dbms [WITH CONNECTION connection] DECLARE cursor CURSOR ... 

Once a cursor is declared it remains associated with the connection on which it was de
clared. After declaring the cursor, the WITH CONNECT ION clause should not be used in state
ments that manipulate the cursor. However, the WITH CONNECTION clause may be used on 
statements that manipulate the default cursor on any declared connection. Therefore, the 
following statements: 

dbms WITH CONNECTION connection ALIAS ... 
dbms WITH CONNECTION connection CATQUERY ... 
dbms WITH CONNECTION connection CLOSE CURSOR 
dbms WITH CONNECTION connection CONTINUE 
dbms WITH CONNECTION connection CONTINUE BOTTOM 
dbms WITH CONNECTION connection CONTINUE TOP 
dbms WITH CONNECTION connection CONTINUE UP 
dbms WITH CONNECTION connection FORMAT ... 
dbms WITH CONNECTION connection OCCUR 
dbms WITH CONNECTION connection START ... 
dbms WITH CONNECTION connection STORE ... 
dbms WITH CONNECTION connection UNIQUE ... 

perform the request on the default SELECT cursor on the named connection. 

Some engine-specific dbms commands may also support the WITH CONNECTION clause. See 
the engine-specific Notes for more information. 

SEE ALSO 

JAM/OBi Developer's Guide, page 55. 

May 92 JAM/OBi Release 5 175 



III. Reference Guide 

Engine-specific Notes. 

RELATED FUNCTIONS 

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \ 
SERVER server [DB database] 

dbms CONNECTION connection 

dbms CLOSE CONNECTION [connection] 

dbms CLOSE ALL CONNECTIONS 

WITH CURSOR cursor 

WITH ENGINE engine 

176 JAM/OBi Release 5 May 92 



WITH CURSOR 

WITH CURSOR 
use a named cursor for the duration of a statement 

SYNOPSIS 

dbms WITH CURSOR cursor DBMS_statement 

DESCRIPTION 

This clause specifies the name of a declared cursor on which JAM/OBi will execute the 
dbms command. 

Once a cursor has been declared, the application may manipulate or execute the cursor by 
using the WITH CURSOR clause. 

dbms WITH CURSOR cursor ALIAS ... 
dbms WITH CURSOR cursor CATQUERY ... 
dbms WITH CURSOR cursor CONTINUE 
dbms WITH CURSOR cursor CONTINUE BOTTOM 
dbms WITH CURSOR cursor CONTINUE TOP 
dbms WITH CURSOR cursor CONTINUE UP 
dbms WITH CURSOR cursor EXECUTE ... 
dbms WITH CURSOR cursor FORMAT ... 
dbms WITH CURSOR cursor OCCUR 
dbms WITH CURSOR cursor START ... 
dbms WITH CURSOR cursor STORE ... 
dbms WITH CURSOR cursor UNIQUE ... 

If the WITH CURSOR clause is not used with these statements, JAM/OBi uses the default 
SELECT cursor. The application may also manipulate the default cursor by using the WITH 

CONNECTION clause. 

Some engine-specific dbms commands may also support the WITH CONNECTION clause. See 
the engine-specific NOles for more infonnation. 

SEE ALSO 

JAM/OBi Developer's Guide, page 57. 

Engine-specific NOles. 

RELATED FUNCTIONS 

dbms DECLARE cursor CURSOR FOR SQLstmt 

May 92 JAM/OBi Release 5 177 



III. Reference Guide 

dbrns CLOSE CURSOR cursor 

WITH CONNNECTION connection 

WITH ENGINE engme 

178 JAM/OBi Release 5 May 92 



WITH ENGINE 

WITH ENGINE 
use a named engine for the duration of a statement 
_~-:% ::8ru;::::;;:"at:W;:;:::;::::~~~~::S~'~ 

SYNOPSIS 

dbms WITH ENGINE engine DBlcommand . .. 

DESCRIPTION 

This clause specifies which engine JAM/OBi should use when executing a command. en
gine must be an initialized engine. An engine is initialized by using the vendor_list 
structure in dbiinit. c or by a call to dm_init. 

engine must be one of the mnemonics associated with an initialized support routine. 

The following commands accept an optional WITH ENGINE clause: 

dbms WITII ENGINE engine DECLARE connection CONNECTION ... 

Ifthe WITH ENGINE clause is not used, JAM/OBi uses the default engine. If only one engine 
is initialized, that engine is automatically the default An application using two or more en
gines may set the default engine with the DBMS ENGINE command. 

Once a connection is declared it remains associated with the engine on which it was de
clared. After declaring the connection, the WITH ENGINE clause is no longer necessary or 
valid in any statement except DBMS CLOSE CONNECTION if the application wishes to close 
the default connection on an engine. 

SEE ALSO 

JAM/OBi Developer's Guide, 52. 

RELATED FUNCTIONS 

dbms ENGINE engine 

WITH CONNECTION connection 

WITH CURSOR cursor 

May 92 JAM/OBi Releases 5 179 





Ubrary Functions 

Chapter 15. 

JAM/DBi Library Reference 
This chapter contains a reference page for each of the JAM library functions. 

The library includes functions for initializing JAM/OBi, and installing and de-installing an 
engine at runtime. The functions are: 

• dm_dbi_init: initialize JAM for use with JAM/DBi. 

• dm _ i ni t: initialize an engine. 

• dm _reset: close all structures associated with an engine. 

It includes functions for executing SQL and DBMS commands. The functions are 

• dm _ dbms: execute any DBMS command directly from C. 

• dm_sql: execute any SQL statement directly from C. 

• dm _ dbms _ noexp: like dm _ dbms except no colon preprocessing is per
fonned. 

• dm_sql_noexp: like dm_sql except no colon preprocessing is per
fonned 

It provides a function for simulating colon-plus processing from C. It is 

• dm_expand 

It provides a function for getting the full text of the last executed dbms or sql command. 
It is 

• dm _getdbi text 

The library also provides functions for handling binary values. They are 

• dm bin create occur - -
• dm bin delete occur - -

May 92 JAM/OBi Release 5 181 



III. Reference Guide 

• dm_bin_get_dlength 

• dm_bin_get_occur 

• dm_bin_length 

• dm_bin_max_occur 

• dm_bin_set_dlength 

Developers may use these functions in any C hook function. Each reference page has the 
following sections: 

• A synopsis of the function. including a listing of available keywords and 
arguments. 

• A description of the function. 

• A list of related functions. 

• An example. 

182 JAM/OBi Release 5 May 92 



library Functions: dm bin create occur 

dm bin create occur 
get or allocate an occurrence in a binary variable 

SYNOPSIS 

char *dm_bin_create occur (variable, occurrence) 
char * variable; 
in t occu"ence; 

DESCRIPTION 

If the application has created a binary variable with DBMS BINARY, this routine gets the spe
cified occurrence from the variable. If the occurrence has not been allocated, this routine 
will allocate it. Note that occu"ence must be less than or equal to the number of occur
rences specified in the DBMS BINARY statement 

RETURNS 

o if the variable is not found or the occurrence number is not valid 
else a pointer to an occurrence in a binary variable 

VARIANTS 

dm_bin_get_occur (variable, occurrence); 

RELATED FUNCTIONS 

dbms BINARY varlable[occ] (length) [, variable (occ] (length) .•• ]] 

dm_bin_delete_occur (variable, occurrence); 
dm_bin_get_dlength (variable, occurrence); 
dm_bin_length (variable); 
dm_bin_max_occur (variable); 
dm_bin_set_dlength (variable, occurrence, length); 

May 92 JAM/OBi Release 5 183 



III. Reference Guide 

dm bin delete occur 
delete an occurrence in a binary variable 

SYNOPSIS 

void dm_bin_delete occur (variable, occurrence) 
char *varlablei 
int OCCU"enCSi 

DESCRIPTION 

If the application has created a binary variable with DBMS BINARY and the occurrence has 
been allocated, this routine frees the specified occurrence and sets the pointer to the occur
rence to O. If the occurrence has not been allocated, the routine does nothing. 

RETURNS 

Nothing. 

RELATED FUNCTIONS 

dbms BINARY [ variable [, variable ... ] 

dm_bin_create_occur (variable, occurrence) i 
dm_bin_get_dlength (variable, occurrence) i 
dm_bin_get_occur (variable, occurrence) i 
dm_bin_length (variable) i 
dm_bin_max_occur (variable) i 
dm_bin_set_dlength (variable, occurrence, length) i 

184 JAM/OBi Release 5 May 92 



Ubrary Functions: dm bin get d1ength 

dm_bin_get_dlength 
get the length of an occurrence in a binary variable 

SYNOPSIS 

unsigned int dm_bin_get_dlength (variable, occu"ence) 
char * variable; 
in t occurrence; 

DESCRIPTION 

If the application has created a binary variable with DBMS BINARY and the occurrence has 
been allocated. this routine returns the length of the contents in the specified occurrence. 

RETURNS 

o if variable or occurrence is not found. 

else the length of the occurrence 

RELATED FUNCTIONS 

dbms BINARY [variable [, variable ... ]] 

dm_bin_create_occur (variable, occurrence); 
dm_bin_delete_occur (variable, occurrence); 
dm_bin_get_occur (variable, occurrence); 
dm_bin_length (variable); 
dm_bin_max_occur (variable); 
dm_bin_set_dlength (variable, occurrence, length); 

May 92 JAM/OBi Release 5 185 



III. Reference Guide 

dm_bin_get_occur 
get the data in an occurrence of a binary variable 
~~~ If'::::P..JJ9SSE!! _'fC:: iia=;:j:;::a:":':f';j:f:j: __ 

SYNOPSIS

char *dm_bin_get_occur (variable, occurrence)
char * variable;
int occu"ence;

DESCRIPTION

If the application has created a binary variable with DBMS BINARY and the occurrence has
been allocated, this routine gets the specified occurrence from the variable.

RETURNS

o if the variable or occurrence is not found
else a pointer to an occurrence in the variable

VARIANTS

dm_bin_create_occur (variable, occurrence);

RELATED FUNCTIONS

dbrns BINARY [variable [, variable .,. 1

dm bin delete occur (variable, occurrence);
dm -bin-get dlength (variable, occurrence);
dm=:bin=:length (variable);
dm_bin_rnax_occur (variable);
dm_bin_set_dlength (variable, occurrence, length);

186 JAMlDBi Release 5 May 92

Ubrary Functions: dm bin length

d m_bi n_length
get the maximum length of an occurrence in a binary
variable

SYNOPSIS

unsigned int drn_bin_length (varlab.)
char * variable;

DESCRIPTION

If the application has created a binary variable with DBMS BINARY', this routine gets the max
imum length of a single occurrence in the variable. To get the length of an occurrence's con
tents, use drn_bin_get_dlength.

RETURNS

o if the variable is not found
else the length of the variable

RELATED FUNCTIONS

dbrns BINARY [variable [, variable ...]

drn bin create occur (variable, occurrence);
drn_bin_delete_occur (variable, occurrence);
drn _bin_get _ dlength (variable, occurrence);
drn_bin_get_occur (variable, occurrence);
drn_bin_rnax_occur (variable);
drn_bin_set_dlength (variable, occurrence, length);

May 92 JAM/OBi Release 5 187

III. Reference Guide

dm bin max occur
get the maximum number of occurrences in a binary
variable

SYNOPSIS

int dm_bin_max_occur (variable)
char * variable;

DESCRIPTION

If the application has created a binary variable with DBMS BINARY, this routine gets the max
imum number of occurrences in the variable.

RETURNS

o if variable is not found
else the number of occurrences in the variable.

RELATED FUNCTIONS

dbms BINARY [variable [, variable ...]

dm_bin_create_occur (variable, occurrence);
dm bin delete occur (variable, occurrence);
dm-bin-get dlength (variable, occurrence);
dm::::bin::::get::::occur (variable, occurrence);
dm_bin_length (variable);
dm_bin_set_dlength (variable, occurrence, length);

188 JAM/OBi Release 5 May 92

Ubrary Functions: dm bin set dlength

dm_bin_set_dlength
set the length of an occurrence in a binary variable

SYNOPSIS

void dm_bin_set_dlength (variable, occurrence, length)
cha r * variable;
int occu"ence;
unsigned int length;

DESCRIPTION

If the application has created a binary variable with DBMS BINARY, this routine sets the max
imum length of a single occurrence in the binary variable. length may be less than or greater
than the variable's declared length.

RETURNS

Nothing.

RELATED FUNCTIONS

dbms BINARY [variable [, variable ...]

dm_bin_create_occur (variable, occu"ence);
dm_bin_delete_occur (variable, occurrence);
dm_bin_get_dlength (variable, occurrence);
dm_bin_get_occur (variable, occurrence);
dm_bin_length (variable);
dm_bin_max_occur (variable);

,-

May 92 JAM/OBi Release 5 189

III. Reference Guide

dm dbi init·
initialize JAM for JAM/OBi

SYNOPSIS

DESCRIPTION

JAM must be initialized for use with JAM/OBi. This function tells JAM the class of error
messages for JAM/OBi and how to handle the JAM/OBi JPL commands dbms and sql.

In the distributed source files jmain. c and jxmain. c, this function is called in the
ini tiali ze routine. Developers modifying these source files or using a custom execu
tive, may call this routine at another time. dm_dbi_init should be called before
sm_initcrt to ensure that the message me is loaded properly.

RETURNS

Nothing

190 JAM/OBi Release 5 May 92

Ubrary Functions: dm dbms

dm dbms
execute a DBMS command directly from C

SYNOPSIS

int dm dbms (arg)
char *arg;

DESCRIPTION

Use this function to execute any DBMS command directly from C.

First arg is examined for the WITH ENGINE or WITH CONNECTION clause. If it is not used,
dm_dbms assumes the default engine and connection. Next the colon preprocessor ex
amines arg for colon variables. Finally, arg is passed to the appropriate routine for handing
DBMS commands.

After executing the requested command, JAM/OBi updates all global status and error vari
ables (@dm).

If the application has installed an entry function with DBMS ONENTRY, an exit function with
DBMS ONEXIT, or an error handler with DBMS ONExIT.the installed function will be called
for commands executed through,the function dm _ dbms.

RETURNS

o is no error
else an error code from the default or installed error handler

RELATED FUNCTIONS

dm_dbms_noexp (arg);

dm_sql (arg);

EXAMPLE

int retcode;

retcode = dm dbms ("ONERROR CALL do_error");
if (retcode)
{

May 92

sm_emsg ("Cannot install the application error handler.")
return 0;

JAM/OBi Release 5 191

III. Reference Guide

192

dm dbms ("DECLARE cl CONNECTION FOR USER :user PASSWORD :password");

return 0;

JAM/OBi Release 5 May 92

Ubrary Functions: dm dbms noexp

dm_dbms_noexp
execute a DBMS command without colon preprocessing

SYNOPSIS

int dm_dbms_noexp (arg)
char *arg;

DESCRIPTION

This function is identical to dm _ dbms except that colon preprocessing is NOT perfonned
onarg.

RETURNS

o is no error
else a return code from an installed or default error handler

RELATED FUNCTIONS

dm_dbms (arg);

dm _expand (arg);

dm_sql (arg);

dm_sql_noexp (arg);

May 92 JAM/OBi Release 5 193

III. Reference Guide

dm_expand
format a string for an engine

SYNOPSIS

int dm_expand (engine, data, type, bul, bullen, edit)
char *argi
char *datlli
int typei
char *buli
int *bufleni
char *editi

DESCRIPTION
Use this function to format a string for a particular engine and JAM type. The function co
pies the fonnatted string to a buffer provided by the program.

engine is the name of an initialized engine. If this argument is null, JAM/OBi uses the de
fault engine.

data is the string to formal Use a JAM library functions such as sm_getfield to get the
value of a field or LDB entry.

type is one of the JAM types defined in smedi t s . h:

• DT_CURRENCY

• DT DATE TIME

• DT YESNO

• FT CHAR

• FT DOUBLE

• FT INT

• FT LONG

• FT FLOAT

• FT SHORT

bufis a buffer provided by the program. The program is responsible for allocating a buffer
large enough for the fonnatted string. bullen points to the size of the buffer. Upon return

194 JAM/OBi Release 5 May 92

Library Functions: dm exeand

from elm expand, the value contained in the integer will be the length of the formatted
text The program can compare this value with the allocated length to ensure that truncation
did not occur.

edit is a date-time edit string describing data. It is required when type is DT DATETIME.
Use sm _ edi t yt r to get a format from a date-time field, or construct a format string us
ing JAM's date-time tokens. See sm_dtime for more information.

RETURNS

o is no error,
-1 if engine is invalid,
-2 if arguments are invalid (illegal JAM type, buflen <= 0, buf not allocated, or
DT_DATETIME was used without a datetime edit)

-3 formatting routine failed

RELATED FUNCTIONS
int elm_dbms_noexp (arg) i

int elm_sql_noexp (arg) i

EXAMPLE

#inc1ude "smdefs.h"
#inc1ude "smedits.h"
#inc1ude "smerror.h"

#define FLO_NOT _FOUND -1;
#define MALLOC ERROR -2;
idefine EXPAND ERROR -3;
idefine NO FORMAT -4;

lint
formatter (src_name, dst_name, engine, jamtype)
char *src_name, *dst_name, *engine;
int jamtype;
{

May 92

int dst_1en, src_1en, prec, ret;
char *edit, *dst_buf, *src_buf;

/* Get data. */
/* Allocate a buffer based on the length of the source */
/* text and call getfie1d. */
if ((src_1en D s~n_d1ength (src_name» == -1)

return FLD_NOT_FOUND;

JAM/OBi Release 5 195

III. Reference Guide

if «src_buf=malloc(src_len + 1» == 0)
return MALLOC_ERROR;

sm_n_getfield (src_buf, src_name);

/* If no type was supplied, get it from the source field.*/
if (jamtype == 0)
{

/* If type is DT_DATETIME get format from field. */
if (jamtype == DT_DATETIME)
{

edit - sm_n_edit-ptr (src_name, UDATETIME);
if (edit == 0)
{

edit = sm_n_edit-ptr (src_name, SDATETIME);
if (edit == 0)

return NO_FORMAT;

edit '" edit +2;

/* Allocate a buffer based on the length of the
desination fie1d.*/

if ((dst_Ien a sm_n_Iength(dst_name» a", 0)
return FLD_NOT_FOUND;

if «dst_buf=malloc(dst_len + 1» == 0)
return MALLOC_ERROR;

/* Call dm_expand. */
ret '" dm_expand

196

(engine, src_buf, jamtype, dst_buf, &dst_Ien, edit);
if (ret == 0)
{

/* Write formatted text to destination field. */
sm_n-putfield (dst_name, dst_buf);

/* Free buffers.
free (src_buf);
free (dst_buf);

JAM/OBi Release 5

*/

May 92

Library Functions: dm expand

/* If formatted string was too long for destination field, */
/* ret will be greater than o. If the format failed, it will */
/* be less than O. */

return ret;

May 92 JAM/OBi Release 5 197

III. Reference Guide

dm_getdbitext
get the text of the last executed dbms or sql command

SYNOPSIS

char *dm_getdbitext

DESCRIPTION
Use this function to get the full text of the last executed dbms or sql command. This in
cludes all commands executed from JPL with dbms or sql. or executed from C with
dm_dbms.dm_dbms_noexp.dm_sql.ordm_sql_noexp.

The text pointed to by the pointer returned by dm _getdbi text has a limited duration. If
the application needs this information. it should call this function immediately after execut
ing a JAM/OBi command. The program should process the returned string or copy it to a
local variable before making additional function calls.

This is the same string that is passed to the first argument of an installed entry. error or exit
handler. except that the error or exit handler is limited to 255 characters.

RETURNS

A pointer to the last executed JAM/OBi command

RELATED FUNCTIONS
dbms ONERROR [JPL entry point I CALL function]

dbms ONEXIT [JPL entrypolnt I CALL function]

EXAMPLE

int
logfunc (stmt, engine, flag)
char *stmt;
char *engine;
int flag;
{

198

FILE *fp;
if (strlen(stmt) >= 255»

stmt = dm_getdbitext();
fp = fopen ("dbi.log", "a");
fprintf (fp, "%s\n", stmt);
fclose (fp);
return 0;

JAM/OBi Release 5 May 92

Library Functions: dm init

dm init
initialize JAM/OBi to access a specific database engine

SYNOPSIS

int dIn_init (engine, supportJoutlne, options, arg)
char * engine;
int supporfJoutlne;
int options;
char *arg;

DESCRIPTION

Before an application can access a database, JAM/OBi must perfonn an engine initializa
tion. The initialization adds the engine name to the list of available engines, allocates a data
structure for the engine, calls the engine's support routine to initialize the data structure, and
sets case and error handling for the engine. Developers may use the vendor list struc
ture in dbiini t . c to initialize an engine at startup or else use dIn ini t to initialize an
engine at a later point in the application. -

The name for engine is chosen by the developer. If an application uses two or more engines,
the application will use the mnemonic engine to indicate a particular DBMS. Most of the
examples in the guide use a vendor name as the mnemonic, for example sybase or
oracle, but any character string that is nota keyword is valid. Keywords are listed in Ap
pendix A .. If engine is already installed, dIn _ ini t simply returns O.

The name of supportJoutine is documented in the dbiini t . c me provided with the
distribution. The file name is usually in the fonn dIn vendorsup where vendor is an ab-
breviated vendor name. Some examples are -

• dIn_sybsup

• dIn_orasup

• dIn_intsup

options sets some defaults for the engine. It is composed of one or two flags: case and
e"or. They may be "or-ed."

The option case sets the case-handling feature of JAM/OBi. It detennines how JAM/OBi
uses case to map column names to JAM variables when executing a SELECT. The values are

• DM DEFAULT CASE Defaults to DM PRESERVE CASE.

May 92

- Another may be set by JYACC in the sup
port routine.

JAM/OBi Release 5 199

III. Reference Guide

• DM PRESERVE CASE Use case exactly as returned by the en
gine.

• DM FORCE TO UPPER_CASE Force all column names returned by an
engine to upper case. Therefore, the appli
cation should use upper case names for
JAM variables.

• DM_FORCE_TO_LOWER_CASE Force all column names returned by an
engine to lower case. Therefore, the appli
cation should use lower case names for
JAM variables.

The option error sets the behavior of the default error handler. If none is given, the default
is DM_DEFAULT_DBI_MSG. The values are

Restrict the default error handler to using
generic JAM/OBi messages for all error
messages.

Allow the default error handler to use en
gine-specific messages when an error oc
curs.

8rg is provided for future use. It should be set to O.

Once the engine has been initialized, the application may declare a connection on it.

RETURNS

o if there is no error,
otherwise a return code from the support routine.

RELATED FUNCTIONS

elm reset (name);

EXAMPLE
'include "dmerror.h"
'include "smusrdbi.h"

int retcode;
ret code = dm_init("oracle",

dm_orasup,
DM FORCE TO LOWER CASE DM_DEFAULT_DBI_MSG,
0); - - -

200 JAM/OBi Release 5 May 92

Ubrary Functions: dm reset

dm reset
disable support for a named engine

SYNOPSIS

int dm reset (name)
char * name;

DESCRIPTION

An application may caU this function to disable support for a named engine.

If the routine executes successfully. it perfonns the following steps:

1. Closes all active connections on the engine.

2. Calls the support routine to perfonn any engine-specific reset processing.

3. If name was the default engine. sets the default engine to O.

4. Frees all data structures associated with the engine.

Once an engine has been reset. the application cannot connect to the engine unless it initial
izes the engine with drn_ini t.

RETURNS
o if the database engine was successfully disabled.

-1 if name was not a valid engine name.

RELATED FUNCTIONS

dm init (engine, supporfJoutlne, case, args);

EXAMPLE
dm reset ("oracle");

May 92 JAM/OBi Release 5 201

III. Reference Guide

dm_sql
execute a Sal command directly from C

SYNOPSIS

int dm_sql (arg)
char *arg;

DESCRIPTION

Use this function to execute any SQL command directly from C.

First arg is examined for the WITH CONNECTION clause. If it is not used, dm_sql assumes
the default connection. Next the colon preprocessor examines arg for colon variables. Final
ly, arg is passed to the appropriate routine for handing SOL commands.

After executing the requested command, JAM/OBi updates all global status and error vari
ables (@dm).

If the application has installed an entry function with DBMS ONENTRY, an exit function with
DBMS ONEXIT, or an error handler with DBMS ONExIT.the installed function will be called
for commands executed through the function dm _ sql.

RETURNS

o is no error,
else the return code from the default or an installed error handler

RELATED FUNCTIONS

int dm dbms (arg);

EXAMPLE

int select_ssn ()

int retcode;
retcode - dm_sql ("SELECT * FROM emp WHERE ssn LIKE :+ssn");
return retcode;

202 JAM/OBi Release 5 May 92

Library Functions: dm s91 noexp

dm_sql_noexp
execute a Sal command without colon preprocessing

SYNOPSIS

int dm_sql_noexp (arg)
char *arg;

DESCRIPTION

This function is identical to dm _ sql except that colon preprocessing is NOT performed on
argo

RETURNS

o is no error,
else an code from the default or an installed error handler

RELATED FUNCTIONS

int dm_dbrns (arg);

int dm_dbrns_noexp (arg);

int dm_expand (arg);

int dm_sql (arg);

May 92 JAM/OBi Release 5 203

Utilities

Chapter 16.

JAM/DBi Utility Reference

Unlike the JAM utilities, the JAM/OBi utilities f2tbl and tb12f are not distributed as
executables. Libraries, object code, and a makeflle for f2tbl and tb12f are included
with the JAM/OBi distribution. Developers must edit the makeflle to describe the environ
ment and to supply the paths to the JAM, JAM/OBi, and database installations.

The rest of this chapter contains reference pages for the JAM/OBi utilities:

• f2tbl: create a database table from a JAM form

• tb12 f: create a JAM form from a database table

Each reference page has the following sections:

• A synopsis of the utility, including a listing of options and arguments.

• A description of the utility.

• Examples.

May 92 JAM/OBi Release 5 205

III. Reference Guide

f2tbl
create a database table from a JAM form

SYNOPSIS

f2tb1 [-i) \
[-u user [-p password]] [-s server] [-d database] [-y dictionary] \
[-t tablename] [-1 {11 u}] [-c outflle] [-f) screen ...

OPTIONS

-i Run utility in interactive mode. This opens windows where you may enter any
information not supplied on the command line.

-u Connect with the given user name.

-p Connect with the given password.

-s Connect to the named server.

-d Connect to the named database.

-y Connect using the named dictionary.

-t Use tablename as the name of the database table. By default, the table name
is the screen name minus SM FEXTENSION.

-1 Conven all field names to lower or upper case column names in the CREATE

statement. For case, use -11 for lower or -1 u for upper. The default is to use
the case of the field names.

-c Write the SQL CREATE statement(s) to the named ASCII file. Do not create the
table on the database.

-f Overwrite an existing database table or script file. To overwrite an existing
table, f2 tb1 executes a SQL statement to drop the existing table before creat
ing the new one. All rows in the old table will be lost when the table is
dropped.

If no options or invalid options are given, the utility displays a usage message and a list of
the valid options.

DESCRIPTION

Use this utility to create a database table or a script file for one or more JAM screens. If you
are converting many screens, interactive mode is recommended.

206 JAM/OBi Release 5 May 92

Utility: f2tbl

For each screen, the utility defines a table with a column for each named field on the screen.
The column's datatype is engine-specific and is based on the field's JAM type. If a field has
a character JAM type, the utility calculates the column length by examining the field's
edits. Based on the field's null field edit, the utility declares whether or not the column ac
cepts nulls.

The -c flag is recommended, particularly for new users. With this flag, f2tbl writes the
CREATE statement to an ASCII file where it may be examined and edited before it is ex
ecuted.

Some of the logon flags are not supported on some engines. If you use an unsupported logon
flag, the utility ignores it and the argument. See the engine-specific Notes for a list of the
supported logon options.

If f2tbl cannot create the table, it displays either a JAM/OBi or engine error message.

Converting Fields to Column Definitions

COLUMN NAME

f2tbl uses the field name as the column name. If a field is unnamed, f2tbl ignores it.
Please note that some valid JAM field names may be not be valid column names. For exam
ple, JAM allows the characters $ and . in JAM field names but many engines do not penn it
these characters in column names. If a name is illegal, f 2 tbl will display the engine's error
message when it attempts to create the table.

MATCHING A JAM TYPE TO AN ENGINE DATATYPE

A field has exactly one JAM type. Since a field may have more than one of the qualifying
PF4 characteristics, JAM uses precedence rules when detennining the JAM type. You may
detennine a field's JAM type by looking at its summary screen while inside the Screen Edi
tor.

May 92 JAM/OBi Release 5 207

III. Reference Guide

Field Summary
""",...""",.,

Name field for f2tbl Char Edits unfilt = -
Length12.. (Max) Onscreen Elems L Distance unfilt

digit
Display Att:WHlTE OHDLH BILIGBT yes/no

~4 Field Edits: letters
numeric

Other Edits: TYPE OSR-DT/'.rK SYS-O'l'/TII ClJRRENCY alphanum
~ , I '-f-J ~

reg exp

1 2 3

Figure 32: Field Summary Window (PF5 in draw mode). Use the summary screen to de
termine a field's JAM type. A TYPE edit has the highest priority, then a date time edit,
then a currency edit, and finally a character edit.

Summary Setting of Field Characteristic
Submenu Option JAM Type Keyword (PF4 menu In draw mode)

TYPE type char string FT CHAR
(C types for structures) int FT-INT

unsigned int FT-UNSIGNED
short int FT-SHORT
long int FT-LONG
float FT-FLOAT
double FT-DOUBLE
zoned dec. FT-ZONED
packed dec. FT-PACKED

USR-DT/TM misc. edits date or time DT DATETIME
SYS-DT/TM

CURRENCY misc. edits currency DT CURRENCY -
Char Editf char edits digits only FT UNSIGNED

yes/no field DT-YESNO
numeric FT-DOUBLE

Figure 33: The keywords on the summary window indicate which of the field characteris
tics has set the field's JAM type.

If the word TYPE appears on the field summary window, you must press the PF4 key and
choose type to open the C type submenu. The setting on the submenu indicates the JAM
type. For example, if double is chosen on the submenu, the JAM type is FT_DOUBLE.
Figure 33 shows the C type names and the corresponding JAM types.

208 JAM/OBi Release 5 May 92

Utility: 12thl

If the keyword TYPE is not on the summary window, the JAM type is immediately deter
minable. With the keyword USR-DT /TM or SYS-DT /TM, the JAM type is
DT DATETIME. Otherwise, with the keyword CURRENCY, the JAM type is
DT -CURRENCY. If none of those keywords appear, the character edit may apply: with
digits only the JAM type is FT_UNSIGNED, with yes/no field the type is
DT_YESNO, or with numeric the type is FT_DOUBLE.

If none of the above edits are set, but the field has a word-wrapped edit, the JAM type is
FT _ VARCHAR. For all other fields, the JAM type is FT _CHAR.

Since engines uses different names for datatypes, the mapping of J AM types to engine data
types is listed in the engine-specific Notes.

CALCULATING THE COLUMN LENGTH

If the field has the JAM type FT _CHAR, FT _ VARCHAR, or DT _ YESNO, f 2 tbl attempts
to use the field's length as the column length. For all other JAM types, a length is not calcu
lated because the JAM type is mapped to an engine datatype with a default length.

For FT VARCHAR fields (word-wrapped), the calculated length is the maximum shifting
length times the total number of occurrences in the array. For FT CHAR and DT YESNO
fields, the calculated length is the maximum (shifting) length of the field. -

If the calculated length in either case is greater than the length permitted by the engine,
f2tbl will use the maximum permitted length.

DEFINING A COLUMN AS NULL OR NOT NULL

If the field has a null field edit, the column is defmed as permitting nulls. On some engines,
this is the default Others may explicitly use the keyword NULL.

If the field does not have a null field edit, the column is defined as NOT NULL.

OUTPUT

f2tbl builds a SQL CREATE statement in a form similar to the following:

CREATE TABLE tablename (

May 92

column_1 datatype [(length)] [NOT] [NULL] ,
column_2 datatype [(length)] [NOT] [NULL] ,

column_n datatype [(length)] [NOT] NULL]

JAM/OBi Release 5 209

III. Reference Guide

Example
Assume the screen named inventory has the following named fields:

• id no

• product_name

• price

• description

The figures below show the field summary window for each field. A sample column decla
ration is also shown for each field. Since column datatypes are engine-specific, the names
used here are solely for illustration.

Field Summary
AA"'A"'''''''

Name .id_DO Char Edits d.iq.it

Lengthll- (Max) Onscreen Elems ~ Distance (Max Occurs 15)

Display Att:WBlTE ONDLH BILIGBT
Field Edits:
Other Edits: TYPE

Figure 34: Field id_no. The type edit is set to char string to override the dig
its only character edit. Therefore, its JAM type is FT_CHAR.

The column definition would appear like the following

NOT NULL

Since the field does not have a word-wrapped edit, the number of occurrences is ignored. In
addition, since the field does not have a null field edit, the column is defmed as not allowing
null values.

210 JAM/OBi Release 5 May 92

Utility: f2tbl

Field Summary
,.. A. A. ",.. ""A.

Name product=nama Char Edits unfilt

LengthlA.. (Max25) Onscreen Elems L Distance (Max Occurs 15)

Display Att: WHITE ORDLa BILIGBT
Field Edits:
Other Edits:

Figure 35: Field product_name. Its JAM type is FT_CHAR.

The column defmition would appear like the following

product_name char (25) NOT NULL

Note that the column length is 25 which is the maximum shifting length, rather than 15
which is the onscreen length. Since the field does not have a word-wrapped edit, the number
of occurrences is ignored. In addition, since the field does not have a null field edit, the col
umn is defined as not allowing null values.

Field Summary

Name price Char Edits numeric

Length~ (Max) Onscreen Elems L Distance (Max Occurs15

Display Att:WHITE OHDLa BILIGBT
Field Edits:
Other Edits: CURRENCY

Figure 36: Field price. Its JAM type is DT_CURRENCY.

If the engine had a datatype called money, the col umn defmition would appear like the fol
lowing

price money NOT NULL

On most engines, a currency datatype has a predefmed length. In this case, f2tbl ignores
the field's length. If the engine does not have a currency type, f2tbl may use a type such
as NUMERIC or FLOAT and it may calculate a length or precision.

Since the field does not have a null field edit, the column is defined as not allowing null
values.

May 92 JAM/OBi Release 5 211

III. Reference Guide

Field Summary
"AA.""'A"'''''

Name description Char Edits unfilt
Length~ (Max Onscreen Elems ~ Distance (Max Occurs

Display Att:WHI~ UHDLB BILIGB~
Field Edits:WDMRP
Other Edits: HULL

Figure 37: Field description. Its JAM type is FT _ VARCHAR.

The column defmition would appear like the following

description char (250)

Note that the column's length is the field's length 50 multiplied by the number of elements
5, and therefore 250. In this case, the field's number of occurrences affected the column
length because the word-wrap edit was set. Since the field also has a null field edit, the col
umn is defmed as permitting null values. Some engines may also use the keyword NULL at
the end of the definition.

The resulting CREATE statement would appear similar to the following:

CREATE TABLE inventory (
id_no (11) NOT NULL,
product_name char (20
price money NOT NULL,
description char (250

SEE ALSO

Engine-specific Notes

NOT NULL,

212 JAM/OBi Release 5 May 92

Utility: tbl2f

tbl2f
create a JAM screen from a database table

SYNOPSIS

tb12f [-i) \
[-u user [-p password]] [-5 server] [-d da,abase] [-y dictionary] \
[- j /p,-'empla'e] [-t screen_'empla'e] \
[-k Index_key] [-1 {u II}] [-e ext] [-f) 'able [table ...]

OPTIONS

-i Run utility in interactive mode. This opens windows where you may enter any
infonnation not supplied on the command line.

-u Connect with the given user name.

-p Connect with the given password.

-5 Connect to the named server.

-d Connect to the named database.

-y Connect using the named dictionary.

-j Use the named file as a template for creating theJPL screen module and assign-
ing control strings. The utility looks in the current directory and in the SMP AT H
directories for the named file. The default template is dbexm. jpl.

-t Use the named file as a template for creating the JAM screen.

-k Use the named column as the index key in theJPL procedures. If this flag is not,
tb12 f chooses an index by querying the engine's system tables. If it cannot
find one for the table, it defaults to the first column in the table.

-1 Force the case of column names in the JPL procedures and the field names on
the screen to upper (-1 u) or lower (-11) case. The default is to preserve case.

-e Append ext as the extension to the screen files. The default is
SMFEXTENSION, typically JAM.

-f Overwrite an existing screen file.

If no options or invalid options are given, the utility displays a usage message and a list of
the valid options.

DESCRIPTION
Use this utility to create a JAM screen for each named database table. If you are converting
many tables, interactive mode is recommended.

May 92 JAM/OBi Release 5 213

III. Reference Guide

In each screen, tb12f will create the following

• A field for each column in the table, with up to 250 fields created in total.

• Display text on the screen identifying the name of the screen and the name
of each field.

• Control strings to call the JPL procedures.

• JPL procedures to query and update the table.

The following topics are covered in the remaining sections:

• Controlling the case of field names and predicting field characteristics on
the created screen (page 214).

• Using a JPL template me to change and add procedures in the JPL screen
module (page 216).

• Using a JPL template file to put control strings on the created screen (page
223).

• Using a screen template to change the default screen characteristics (page
225).

Fields
The utility creates a field for each column in the table, with up to 250 fields created in total.
Field characteristics are assigned according to the column's data type. A field is named for
its column in the table. The field's length is taken from the column definition.

FIELD NAMES

When tb12 f creates a field, it names the field for a database column. By default, the utility
uses case exactly as returned by the database. On engines where column names are always
upper case, for example ORACLE, the utility will create upper case field names by default.
On engines where columns names may be in either or mixed case, the utility will create field
names using the exact case of the column name.

The utility provides the option of forcing case to upper or lower. This is done with the -1
flag on the command line or with the Options menu in interactive mode. Please note that
this option forces the case of both onscreen field names and the column names used in the
SQL statements in the JPL procedures.

To the left of each field, the utility displays the field name. Note that if the field name con
tains any draw field symbols, such as the underscore, those characters will be converted to
fields when the screen is edited.

While almost all column names are valid JAM identifiers, tb12 f does not verify if a col
umn name is a valid JAM field name and thus does not report an error for bad field names.

214 JAM/OBi Release 5 May 92

Utility: tbl2f

You may easily verify the validity offield names by using the JAM utility f2asc to create
an ASCII version of the screen file and then run f 2 a s c to convert it back to binary. Since
f2asc validates field names before re-creating the binary file, it will report any invalid
field names. If it does, you may use a text editor to quickly edit the f2asc ASCII file and
then convert the file to a binary screen fIle. If the screen has JPL procedures referencing the
fields, you should change only the references to the invalid field name and not change the
references to the column name. For example, if the table i nven tory contained three col
umns id#, product, and description, the field names product and
description are valid, but the field name id# is notIC the field were renamed id no,
a JPL statement like the following -

sql SELECT id#, product, description FROM inventory \
WHERE id# = :+id#

should be edited to

dbms ALIAS id# id no
sql SELECT id#, product, description FROM inventory \

WHERE idt = :+id no

FIELD CHARACTERISTICS

When tb12 f creates a field, it assigns field characteristics based on the column's datatype
and characteristics. The distributed JPL file dbt2f. jpl, where db is an abbreviated ven
dor name, equates engine datatypes with JAM types. For example, an engine datatype such
as money is typically treated as the JAM type DT _CURRENCY. An engine datatype cha r
is usually treated as the JAM type FT _CHAR. See the engine-specific Notes for a listing.

Based on the JAM type, the field is assigned the following edits:

May 92 JAM/OBi Release 5 215

III. Reference Guide

Column Type Assigned
Equivalent to: Field Characteristics:
JAM Type C type (non-delauh) misc. edits char edits

FT SHORT short int digits only

FT INT int digits only

FT UNSIGNED unsigned int digits only

FT LONG long int digits only

FT FLOAT float numeric

FT DOUBLE double numeric

DT DATETIME date time unfiltered

DT CURRENCY currency unfiltered

FT CHAR unfiltered

FT_VARCHAR unfiltered

. :::'; " " Y.: : . " "
" ~

Since engines uses different names for datatypes, the mapping of datatypes to JAM types is
listed in the engine-specific Notes.

The length of the field depends on the field's JAM type.

• An FT CHAR or FT VARCHAR field is assigned the length of the col
umn, up to the maximum length of 255.

• A DT_DATETlME column is assigned a default length of20.

• A numeric type column is assigned an engine-specific length and preci-
sion defined in dbt2 f . jpl.

tb12 f supports the engine's standard datatypes. Some engines permit developers to define
their own" datatypes. To change the JAM type of a standard datatype or to supply one for a
user datatype, you must modify dbt2 f . j pI. After editing the file, you must recompile the
tb12 f executable so that the new assignments are used.

JPL Procedures
As a part of the distribution, JAM/OBi supplies a template of JPL procedures. It uses this
template to create a JPL screen module. The default template dbexm. jpl builds proce
dures to fetch, update, insert, and delete rows in the table.

These table-specific procedures are created with the use of special tb12 f variables which
begin with a double colon (: :). The tb12 f variables provide strings or statements to help
perform some commonly useful tasks.

There are 18 tb12 f variables. The variable names are composed ora root and a suffix. The
6-character root describes an action such as : : CLR _ for clear or : : QBEX for query by ex-

216 JAM/OBi Release 5 May 92

Utility: tbl2f

pression. The 3-character suffix describes which columns the action will involve. The roots
and suffixes are described in the tables below.

Root Description

: :CLR for clearing the onscreen value of one or more columns in the fonn
cat column

: :COND for a list of conditions in the fonn
column = :+column [:CONAND column - :+column ••• J

: :LIST for a list of one or more column names in the fonn
column [:LISTAND column ••• J

: :SET for a list of one or more onscreen column values in the fonn -
:+column [:SET_AND :+column ••• J

: : VAL for a list of one or more onscreen column values in the fonn
:+column [:VAL_AND :+column ••• J

on some engines this is equivalent to SET_

: :QBEX for if block(s) that build a query-by-expression clause in the form
if (column ! .. "")
{

CAT QBYEXAM QBEXAM VAND "column {:LlKEWORDI=} :+column "
CAT VAND LlKEAND

}

Suffvc Description

ALL use all columns

EIN use all columns except the index column

IND use only the index column

Every combination of rootsufflx is a legal tbl2 f variable.

If there any other double colon variables in the template, tb12 f simply strips off the first
column. The utility will attempt to expand standard colon variables. If

:tabname

is used in the template, the utility replaces it with the name of the table that it is processing.
If it cannot expand a colon variable it ignores it. For best results, use the backslash to pre
serve all variables that should be expanded by the application rather than the utility. For ex
ample,

May 92 JAM/OBi Release 5 217

III. Reference Guide

* tbl2f will replace :tabname with the table name
sql SELECT * FROM :tabname

* JPL will replace :uid when the application is run
dbms DECLARE connl CONNECTION FOR USER \:uid

The sections below give an example for each root showing a suggested use in a template and
its output The output is shown in two forms, one generic and the other based on a sample
table called acc. The table acc contains three columns:

• ssn

• salary

• exmp

a character column of length 11

a money column

an integer column

The index column for acc is ssn.

::CLR_ VARIABLES

Use the : : CLR _ variables to create ca t statements to clear one, some, or all the onscreen
column values.

Syntax In a JPL Template

proc clear
: :CLR ALL
return

Output Syntax In a JPL Scraen Module

proc clear
cat Inde,c field
cat fle1d1
cat fleld2

return

Output for Sample Table ace

proc clear
cat ssn
cat salary
cat exmp
return

218 JAM/OBi Release 5 May 92

Utility: tbl2f

::COND VARIABLES

Use a : : COND variable to get a string suitable for a WHERE clause. While all : : COND vari
ables are legal, the condition :: CONDALL or :: CONDIND is more useful than
: : CONDEIN when perfonning a SELECT, UPDATE, or DELETE.

If : : CONDALL is used, the conditions are separated with the JPL variable: CONDAND. In
the distributed templates, CONDAND is usually the keyword AND.

Syntax In a JPL Template

sql SELECT * FROM :tabnarne WHERE ::CONDIND
Output Syntax In JPL Screen Module

sql SELECT * FROM table WHERE Index_column = : +Index_field

Output for Sample Table ace

sql SELECT * FROM ace WHERE ssn = :+ssn

::LlST VARIABLES

Use a : : LI ST variable to get a string of one, some, or all column names separated by the
value of the JPL variable LISTAND. In the distributed template, LISTAND is usually a
comma.
Syntax In a JPL Template

vars LISTAND(lO)
cat LISTAND ", "

sql SELECT ::LISTALL FROM :tabnarne
Output Syntax In a JPL Screen Module

vars LISTAND(lO)
cat LISTAND ", "

sql SELECT column1 : LISTAND co/umn2 ••• FROM table

Output for Sample Table ace

vars LISTAND(lO)
cat LISTAND ", "

sql SELECT ssn :LISTAND salary :LISTAND exmp FROM ace

::QBEX VARIABLES

Use a : : QBEX variable to create JPL statements which at runtime genel3te a string expres
sion suitable for the WHERE clause of a query-by-expression procedure. For each column re-

May 92 JAM/OBi Release 5 219

III. Reference Guide

quested by the SUffIX, it creates a block of statements which test if the on screen field is
empty and concatenate a JPL variable called QBYEXAM with the name of the column and its
onscreen value. Other procedures may use the value of QBYEXAM as the search criteria for
a SELECT or an UPDATE.

Syntax In a JPL Template

vars QYBEXAM LIKEWORD(10) LIKEAND(10)
cat LIKEWORD "LIKE"
cat LIKEAND "AND"

proc sellike
f Call procedure "query" to build the QBE expression
f QBYEXAM is replaced when the application is executed.
jpl query
sql SELECT * FROM :tabname \:QYBEXAM
return

proc query
f Assign a value to the JPL variable "QBYEXAM"
vars VAND (10)
cat QYBEXAM
cat VAND
I ::QBEXALL puts an "if" block for each column here:
,"'flfflffff'f'fff'fff'ffffffff',f'f""',""",'f""'f
: :QBEXALL
,"'f"','ffff'fffffff",f""f"",f""'f"""',f""ff
if (QBYEXAM != "")
{

cat QBEXAM " WHERE " QYEXAM

return 0

Output Syntax In a JPL Screen Module

For each FT _CHAR column, : : QBYEXAM produces the following statements:

if (field ! = '11')

{

ca t QBYEXAM QBEXAM VAND "column : LI KEWORD : + field"
cat VAND LIKEAND

For each non-FT _CHAR column (e.g. numeric and date columns), QBYEXAM produces the
following statements:

220 JAM/OBi Release 5 May 92

Utility: tbl2f

if (fIeld ! = " ")
{

cat QBYEXAM QBEXAM VAND "column
cat VAND LIKEAND

Output for Sample Table ace

: + field"

vars QYBEXAM LIKEWORD(lO) LIKEAND(lO)
cat LIKEWORD "LIKE"
cat LIKEAND "AND"

proc sellike * Call procedure "query" to build the QBE expression
jpl query
sql SELECT * FROM ace :QBYEXAM
return

proc query * Assign a value to the JPL variable "QBYEXAM"
cat QYBEXAM
cat VAND * ::QBYEXAM puts an "if" block for each column here:

**
if (ssn != "")
{

cat QBYEXAM QYEXAM VAND " ssn :LIKEWORD :+ssn"
cat VAND LIKEAND

if (salary != "")
{

cat QBYEXAM QYEXAM VAND " salary
cat VAND LIKEAND

if (exmp ! = '''')
{

cat QBYEXAM QYEXAM VAND " exmp
cat VAND LIKEAND

:+salary"

:+exmp"

}

**

May 92 JAM/OBi Release 5 221

III. Reference Guide

if (QBYEXAM != "")
{

cat QBEXAM " WHERE " QYEXAM

return a

::SET_ VARIABLES

Use a : : SET variable to get a string of the name and onscreen value of one or more col
umns. The pailS of column name and column value are separated by the value of the variable
SET_AND. In the distributed template SET_AND is a usually comma These variables are
useful for the SET clause of an UPDATE statement.

Syntax In a JPL Template

vars SET AND
cat SET_AND ","

sql UPDATE :tabname SET ::SET EIN WHERE ...

Output Syntax In a JPL Screen Module

vars SET AND
cat SET_AND ","

sql UPDATE table SET column1 = : +column : SET AND \
column2 = : +column2 ... WHERE ...

Output for Sample Table ace

vars SET AND
cat SET_AND ","

sql UPDATE ace SET salary = :+salary :SET AND \
exmp = : +exmp WHERE •..

::VAL_ VARIABLES

Use a : : vAL_variable to create a string of the name and onscreen value of one or more
columns. The pairs of column name and column value are separated by the value of the vari
able VAL_AND. In the distributed template VAL_AND is a usually comma. These variables
are useful for the VALUES clause of an ONSERT statement. In the distributed template,
VAL AND is a comma.

222 JAM/OBi Release 5 May 92

Syntax In a JPL Template

vars LISTAND(10) VAL_AND (10)
cat LISTAND" "
cat VAL_AND ", "

sql INSERT INTO :tabname (::LISTALL) \
VALUES (::VAL_ALL)

Output Syntax In a JPL Screen Module

vars LISTAND(10) VAL_AND (10)
cat LISTAND ", "
cat VAL_AND ", "

sql INSERT INTO table (column1 : LISTAND column2 •..) \
VALUES (: +column1 : VAL_AND : +column2 •..)

Output for Sample Table ace

vars LISTAND(10) VAL_AND (10)
cat LISTAND" "
cat VAL_AND ", "

Utility: tbl2f

sql INSERT INTO ace (ssn :LISTAND salary :LISTAND exmp) \
VALUES (:+ssn :VAL_AND :+salary :VAL_AND :+exmp)

Control Strings
Ifa screen template is not used, control strings may be assigned to logical keys PF1-PF10,
and SPFl-SPFl 0 using the JPL template. The syntax is

#jetl 1 control string for PF1
jetl 2 control string for PF2
j etl 3 control string for PF3
#jetl 4 control string for PF4
j etl 5 control string for PF5
#jetl 6 control string for PF6
j etl 7 control string for PF7
j et 1 8 control string for PFB
#jetl 9 control string for PFS
j etl 10 control string for PF10
jet 1 11 control string for SPF1
#jetl 12 control string for SPF2
#jetl 13 control string for PF13
#jetl 14 control string for PF14
#jetl 15 control string for PF15

May 92 JAM/OBi Release 5 223

III. Reference Guide

#"jctl 16 control string for PF16
4f:jctl 17 control string for PF17
4f:jctl 18 control string for PF18
4f:jctl 19 control string for PF19
4f:jctl 20 control string for SPF10

Note that the pound sign must be in the fast column of the line and the word jtcl must
follow it immediately. Any lines that do not begin this way are assumed to be JPL comments
and they are simply copied to the JPL screen module. controls string may be any valid
JAM control string. Control strings are documented in the Author's Guide of the JAM man
ual.

You may assign none, some, or all these control strings. No assignments are made for num
bers outside the range of 1 to 20. The assignments may be in any order and place in the tem
plate but we recommend that you put them in a block at the beginning of the template. If the
template assigns a control string more than once, the last assignment takes precedence.

In the JPL template you may wish to include a procedure that displays a status line message
describing the key assignments. Remember that %K may be used in messages to display key
top labels. See the JPL Guide for more information on message display.

If a screen template is used (-t option), tb12 f ignores any control string assignments in
the JPL template.
Example Template

4f:jctl 1 Ajpl select all
4f:jctl 2 Ajpl select_by_index
#jct1 10 main menu

proc message_line
msg setbkstat \

"%KPF1: Select_All "\
"%KPF2: Select_by_Index "\
"%KPF10: Main Menu"

return

proc select all
vars LISTAND(10)
cat LISTAND .. , ..
sql SELECT ::LISTALL FROM :tabname
return

proc select_by_index
sql SELECT ::LISTALL FROM :tabname WHERE ::CONDIND
return

224 JAM/OBi Release 5 May 92

Utility: tbl2f

Screen Characteristics
An existing JAM screen may be used as a template for new screens created with tb12 £. A
screen template is supplied with the -t flag or in interactive mode. If you are using a local
engine on a PC, you may not have enought memory to use a screen template.

The following screen characteristics are supported by the template:

1. Minimum number of lines and columns. tb12 £ will not create a screen
smaller than these dimensions. If necessary, it may create a larger screen.
The maximum width is the default number of columns defined in the vid
eo file. Ifa field is longer than the onscreen width, £2 tbl creates a shift
ing field. If there are not enough onscreen lines for the fields, tb12£
creates a virtual screen with up to the maximum 254 lines.

2. Border style and attribute. tb12£ uses the template's border style and
attribute for the new screen.

3. Background color. tb12£ uses the template's background color for the
new screen.

4. Start as menu setting. If the template screen has menu fields, set the start
ing mode for the new screen.

5. Screen-level help. Assign a screen-level help window for the new screen.

6. Screen entry/exitfunctions. Assign screen entry and exit hook functions
for the new screen.

7. Screen-level keyset. Assign a keyset for the screen.

8. Display text attribute. Use the PF4 key in draw mode to set the attributes
for pen on the template screen. tb12£ will use this pen when writing
labels on the new screen.

Please note that any JPL in the screen JPL module of the template is not copied to the new
screen. Use the JPL template option to supply JPL procedures for the screen.

tb12£ has its own default attributes for the fields it creates. Any draw field symbols on the
template screen are copied to the new screen, but they are not used by the utility.

All control strings on the template screen are copied to the new screen. Any control string
assignments in the JPL template are ignored.

All fields and display text on the template are written to the new screen. tb12 £ begins writ
ing the database fields at the f1l'St empty line below the template's display text and/or fields.
The current release does not copy groups from the template.

SEE ALSO

Engine-specific Notes

May 92 JAM/OBi Release 5 225

Appendixe

Keywords

Appendix A.

Keywords

Below is a list of all the keywords for JAM/OBi commands. We strongly encourage devel
opers to avoid using these keywords as identifiers, particularly for cursors, connections, en
gines, and transactions. We also recommend that developers avoid using these keywords
when naming JAM variables which will be used in a dbms or sql statement. The list in
cludes keywords supported by Release 4.8 and Release 5.

alias
autocommit

begin
binary
browse

call
cancel
catquery
checkpt_interval
close
close all connections
commit
connect
connected
connection
continue
continue bottom
continue-down
continue_top
continue_up
create_proc
create_trigger
count
current

May 92

cursor
cursors

database
db
dbms
declare
disconnect
drop_proc
drop_trigger

end
engine
error
error continue
exec
execute
execute all

flush
file
for
format

heading

interfaces

JAM/OBi Release 5

jpl

locklevel
locktimeout
logon
logoff

max

next
null

occur
off
on
onentry
onerror
onexit
options
out
output

password
prepare_commit
print
proc
proc_control

A.1

Appendix A

redirect
return
retvar
rfjournal
rollback
rpc

save
schema
select
select aliases
separator
serial

A.2

server
set
set buffer
single step
sql -
start
stop
stop_at_fetch
store
supreps

tee

JAM/OBi Release 5

timeout
to
transaction
type

unique
update
use
user
using

warn
with

May 92

Error Codes

Appendix B.
Error and Status Codes
Like JAM, JAM/OBi uses symbolic constants to define its error codes. Any error handling
functions written in C may simply include the header file dmerror. h to use these con
stants. JPL, on the other hand, is an interpreted language and it has no access to these con
stants when perfonning variable substitution. JPL does have access, however, to constants
in the local data block (LDB). Therefore, we recommend that developers using JPL for error
handling also use the data dictionary and an initialization me to define all the constants that
the procedures will need. A sample data dictionary and initialization me are provided with
the JAM/OBi distribution. Please see the README for directions on using these samples.

For example, if a JPL procedure must test for the no more rows signal, add the entry
DM _NO_MORE _ROWS to the data dictionary, with length 5 and scope 1. Use an initialization
me such as const . ini to assign its value,

"DM NO MORE ROWS" "53256" - - -
The developer may then use the name of the LDB constant in JPL procedures rather than
hard-coding the decimal value in the procedure. For example, it may execute the following

proc select_all
sql SELECT * FROM emp
if @dmretcode == DM_NO_MORE_ROWS

msg emsg "AII rows returned."

May 92 JAM/OBi Release 5 B.1

Appendix B.

The table lists the constant's name, its decimal value, and its default error message.

Constant Value Message

OM NODATABASE 53249 No database selected. -

OM NOTLOGGEDON 53250 Not logged in. -
OM ALREADY ON 53251 Already logged on. - -
OM ARGS NEEDED - - 53252 Arguments required.

DM_LOGON_DENIED 53253 Logon denied.

OM BAD ARGS 53254 Bad arguments. -
OM BAD CMD 53255 Bad command. -
OM NO MORE ROWS 53256 No more rows indicator. - - -
OM ABORTED 53257 Processing aborted due to DB error.

OM NO CURSOR 53258 Cursor does not exist.

OM MANY CURSORS 53259 Too many cursors. - -

OM KEYWORD 53260 Bad or missing keyword.

OM INVALID DATE 53261 Invalid date. -
OM COMMIT 53262 Commit failed.

OM ROLLBACK 53263 Rollback failed.

OM PARSE ERROR 53264 SQL parse error. - -
DM_B I NO_COUNT 53265 Incorrect number of bind vars.

DM_BIND_VAR 53266 Bad or missing bind variable.

OM DESC COL 53267 Describe select column error. - -
OM FETCH 53268 Error during fetch.

OM NO NAME 53269 No name specified.

B.2 JAM/OBi Release 5 May 92

Error Codes

Constant Value Message

OM END OF PROC 53270 - -- End of procedure.

OM NOCONNECTION 53271 No connection active.

OM_NOT SUPPORTED 53272 Command not supported for the
specified engine.

OM TRAN PEND 53273 Transaction pending. -
OM NO TRANSACTION 53274 Transaction does not exist.

OM ALREADY IN IT 53275 Engine already installed.

May 92 JAM/OBi Release 5 B.3

Using JAM's Screen Editor

Appendix c.
Fields in a
JAM/OBi Application

JAM/OBi applications primarily use fields to move data between the end user and a data
base. Developers create a named JAM field for each database column that the end user will
view or update.

In this chapter, we give some suggestions on creating fields for a JAM/OBi application. We
briefly discuss how you may use the various field settings of JAM's PF 4 key when creating
JAM/OBi fields, and how these settings may affect an application. In particular, we discuss
how these settings affect

• the end user's interface

• data fonnatting between JAM and a database

The physical flow of data between JAM and a database is discussed in detail in Chapters 8.
and 9 ..

22.1.

JAM FIELD CHARACTERISTICS (PF4)
JAM's field characteristics provide developers with many tools for creating attractive and
successful interfaces. Very briefly, we highlight here those features that are likely to be use
ful to JAM/OBi developers.

Furthennore, we discuss how the features affect data fonnatting between JAM and an en
gine.

May 92 JAM/OBi Release 5 C.l

Appendix C.

22.1.1.

Field Display Attributes
The use of display attributes like color or highlight have no effect on the data.

22.1.2.

Character Edits
A character edit provides one way of helping end users enter data quickly and correctly,
since it verifies each character as it is entered.

Developers may use character edits to enforce rules or checks at the application frontend.
Although rules and data integrity should still be enforced by the database, effective use of
character edits should reduce the number of unnecessary trips to the server, thus improving
the application's efficiency.

Embedded punctuation is a useful feature with certain character edits. When a field has the
character edit digits-only,letters-only, or alphanumeric the developer may save punctuation
characters in the field which the user cannot type over or delete. For example, a field that
accepts a U.S. telephone number would have a digits-only character edit and parentheses
and a dash as embedded punctuation.

Contact:

Phone:

Comment:

Figure 38:
JAM/OBi uses character edits to detennine a JAM type if the field or LOB variable does
Dot have any of the following edits: date/time, currency, or data type (excluding omi t and
char string).

C.2 JAM/OBi Release 5 May 92

Character Filter

digits only
yes/no field
numeric (+, - .)
all other

22.1.3,

Field Edits

Format Type

ft_unsigned
dt...,Yesno
ft double
ft char

Using JAM's Screen Editor

Developers may also use field edits to enforce some integrity checks at the application fron
tend. Remember that field edits are not enforced until the field is validated.

The field edits right justified and null field are enforced when JAM/OBi writes SELECT data
to afield.

By default. JAM distinguishes between empty fields and null fields. To make JAM and
JAM/OBi treat a blank field as null, you must modify the message file:

SM NULLEOIT " "

22.1.4.

Field Attachments
The following field attachments are useful in a JAM/OBi application:

• field name

• item selection

• table lookup

We discuss them below.

Field Name
This is the only required field characteristic for a JAM/OBi field. Database values cannot
be written to unnamed fields.

Usually the developer gives a field the same name as a database column. The case of the
field name is veryimportanL In the vendor_list structure in dbiinit . c the develop
er sets a case flag for the engine. If the flag is OM_FORCE _ TO _ LOWER_CASE the develop
er must use lower case for the database fields. If the flag is OM_FORCE _TO_UPPER _CASE

May 92 JAM/OBi Release 5 C.3

Appendix C.

the developer must use upper case for the database fields. If the flag is
OM_PRESERVE _CASE the developer must use the exact case of the column names for the
database fields.

A developer may also alias a database column to a JAM variable. This is done with the com
mand DBMS ALIAS. When aliasing is used, the developer may use any valid JAM variable.

Item Selection and Table Lookup Screens
These attachments often improve an application's user interface. The screen entry function
of the lookup or selection screen may query the database for lookup or selection values.
Since the application saves the query, rather than the values, the screen maintains itself.

Developers may use the JAM library function sm_svscreen to save the selection or
lookup screen in memory at runtime. If the screen is saved in memory, the application will
not need to execute the query each time it displays the lookup or selection screen.

See the JAM Author's Guide and Programmer's Guide for more information.

22.1.5.

Miscellaneous Edits
Developers may execute database functions from any of the field hook functions attached in
this window. Two of the miscellaneous edits may be used to format data, the date time edit
and the currency edit.

JAM TYPE:

Miscellaneous Edit

date or time field
currency format

Format Type

OT OATETIME
OT_CURRENCY

Precision

n/a .
from places edit

If data is fetched to fields with either of these edits, the database values are automatically
formatted with the date-time or currency edit.

22.1.6.

Field Size
The length of a field should generally be the same as the width of its associated database
column. If the column is very wide, set field length to a smaller size and set the maximum

C.4 JAM/DBi Release 5 May 92

Using JAM's Screen Editor

shifting length to the column width. Ifa field's maximum length is not equal to the width of
its associated column, surplus data is truncated without warning.

Developers should set the number of elements and occurrences for aJAMlDBi field accord
ing to the screen size and the type of query. If a query is designed to return only one row at
a time, developers should create a field with one element for each column in the row. If the
query is designed to return multiple rows, the developers should create an array for each
column in the row. Developers may create a scrolling array by setting the maximum number
of occurrences to the greatest number of rows that may be retrieved. Developers may also
create a non-scrolling array.

In brief, the two approaches are:

• Retrieve all qualifying records into large scrolling arrays. Each array rep
resents a database column. The arrays usually have the same number of
occurrences, so that array occurrences with the same occurrence number
represent a database row. Developers may use @dmrowcount to ensure
that the number of rows selected is less than the number of array occur
rences. Users scroll through the arrays with the PgUp and PgDn keys (log
ical keys SPGU and SPGD). Developers may also install a customized
scroll driver for an array. See the JAM Programmer's Guide for details.

• Retrieve n qualifying records incrementally into non-scrolling arrays. In
MS-DOS environments where memory is limited, developers may wish to
limit the number of rows read in at anyone time. For each column, devel
opers create an array with n non-scrolling occurrences. The fIrSt select re
trieves the fast n rows. Each subsequent DBMS CONTINUE retrieves the
next n rows. To make this arrangement invisible to the user, the developers
may use a key change function or a keyset to map the DBMS CONT INUE call
to the user's physical PgDn key. Of course, the function may also be called
by a standard function key. To support backward scrolling, the application
may use a continuation file. A continuation fIle is created with the DBMS

STORE command.

Developers may use the word-wrap edit to write long character strings to an array.

22.1.7.

Data Type
JAM data type edits have no affect on the application interface. In other words, JAM does
not validate a field's contents against its data type edit and developer's cannot use this fea
ture to perform frontend integrity checks. Developer's may use it however to set a field's
format type.

May 92 JAM/OBi Release S c.S

Appendix C.

When detennining a variable's fonnat type, JAM/OBi first checks the data type edit. If a C
type is explicitly set, the keyword TYPE will appear on the field's summary window (PF 5
in draw mode of the JAM Screen Editor). If there is no explicit data type, or it is omit
JAM/OBi will examine the variable's date-time, currency, and character edits to detennine
a fonnat type. The data type edits which set fonnat types are listed below.

Data Type Format Type Precision

char string FT CHAR
int FT INT
unsigned int FT UNSIGNED
short int FT SHORT
long int FT LONG
float FT FLOAT yes
double FT DOUBLE yes
zoned dec. FT ZONED
packed dec. FT_PACKED

C.6 JAM/OBi Release 5 May 92

Symbols
:: Overview27; Developers72-76

:+ Overview 32; Developers 62---68

:= Developers 68---69

@ Developers93; Reference 113-114

A
Aggregate functions: Developers 81-82

Aliases: Overview 10; Developers
79--82

Autocommit. See Transaction

AVO. See Aggregate functions

B
Binary columns: Reference 131, 181

Binding: Overview 27; Developers
72-76

examples: Developers 74

c
Case sensitivity: Overview 20;

Developers 53
alias names: Developers 80
connection names: Developers 55
cursor names: Developers 57
engine names: Developers 52
field names: Developers 79
keywords: Appendices 1

Colon preprocessing: Overview 32, 33,
36; Developers 62-71

colon equal: Developers 68
colon plus: Developers 62---68
examples: Developers 69-71
simulating from C: Reference 181

Commit
See also Transaction

Connection: Developers 55-56;
Reference 129-130

closing: Developers 55, 56,60
current: Developers 56
declaring: Developers 55
declaring, options. See Engine specific

Notes
default: Developers 55, 56
using more than one: Overview 42;

Developers 55, 60

Continuation File: Developers 85

Currency edits: Developers 67,89-90

Cursor: Overview 27, 36; Developers
57; Reference 130

declaring: Developers 58
default: Developers 57
executing: Developers 59
executing with parameters: Developers

59
maximum number of. See Engine

specific Notes
named: Developers 58
redeclaring: Developers 60

D
Data dictionary: Overview 44

Date and time edit: Developers 66, 89

dbiinit.c: Overview 5,7,19-21;
Developers 52

May 92 JAMlDBi Release 5 Index-1

dbms: Developers 4~9

DBMS commands: Reference 129-132
ALIAS: Developers 79-82
CATQUERY: Developers 92
COMMIT: Developers 104
CONTINUE: Developers 85-88
CONTINUE_BOTTOM: Developers

86-88
CONTINUE_TOP: Developers 86
CONTINUE_UP: Developers 86
FORMAT: Developers 92
OCCUR: Developers 88
ONENTRY: Developers 96-97
ONERROR: Developers99-102
ONEXIT: Developers 98-99
ROLLBACK: Developers 104
START: Developers 88
STORE Fll.E: Developers 85-88
UNIQUE: Developers 90-91

DBMS functions, ROLLBACK:
Developers 105-107

dbms versus sql: Developers 48

dm_
@dm variables: Reference 113-114
dm_library functions: Reference

181-182

E
Engine: Overview 3, 7, 42; Developers

52; Reference 129
accessing: Developers 55
current: Developers 54, 56
de--instaIling: Reference 181
default: Developers 54, 56
errors: Developers 93
initializing: Overview 19; Developers

52,54; Reference 181

using more than one: Overview 41;
Reference 179

Errors: Overview 11,38,39; Reference
131

@dmengerrcode, @dmengerrmsg:
Reference 113, 115-116, 117

@dmretcode, @dmretmsg: Reference
113,122-123,124

customized processing: Overview 38,
44; Developers 98-102

default processing: Developers 94
displaying error messages: Overview

38; Developers 53
engine-specific error codes:

Developers 93; Reference
115-116, 117

error handler: Overview 38;
Developers 98-102

sample: Overview 24
generic DBi error codes: Developers

93; Reference 122, 124;
Appendices 1-3

transactions: Developers 105-107
warning codes: Developers 93

F
t'2tbl: Reference 206-212

Field characteristics, affecting formatting
and colon preprocessing: Developers
64-66

Fonnatting text for a database:
Developers 62-71, 73-76

Formatting text from a database:
Developers 89

G
Global error and status variables:

Reference 113

Index-2 JAM/OBi Release 5 May 92

H
Hook functions: Developers 95;

Reference 131

I
Identifier

case sensitivity for field names:
Developers 79

column name: Developers 79

Initialization: Overview 19
engines: Reference 181
JAM/DBi: Reference 181

J
JAM type: Developers 63, 64, 89

C type: Developers 66, 71
character: Developers 67, 69---70, 89
currency: Developers 66, 67-71
date and time: Developers 66, 70, 89
null: Developers 64, 70
numeric: Developers 67-71, 89

JPL versus C: Developers 49

L
Logging on and off. See Connection

M
MAX. See Aggregate functions

Multiple rows, retrieving: Overview 37;
Developers 83-88

N
No more rows status: Developers 84;

Reference 122, 124

Null: Developers 64, 68---69

Number of rows fetched: Developers
83-88

@dmrowcount: Reference 114, 125

p
Parameters: Developers 72-76

binding: Developers 73

Precision: Developers 89-90

R
Rollback. See Transaction

s
SELECI': Developers 78-82;

Reference 130
aliasing: Overview 10; Developers

79---82
automatic mapping: Overview 10;

Developers 79
binary columns: Reference 131
concatenating result row: Developers

92
destination of: Overview 10;

Developers 78-82, 92
aggregate functions: Developers 81

format of results: Developers 89
no more rows: Developers 84;

Reference 125
number of rows fetched: Developers

83-88; Reference 125

May 92 JAM/OBi Release 5 Index-3

scrolling: Developers 83-88;
Reference 130

suppressing repealing values:
Developers 90---91

unique column values: Developers
90---91

writing 10 a file: Developers 92
writing to a specific occurrence:

Developers 83, 88
writing to word-wrapped arrays:

Developers 83

Serial
See also Engine specific Notes
@dmserial: Reference 114, 127-128

sql: Developers 48

SQL syntax: Overview 40; Developers
47

Slored procedure
See also Engine specific Notes
return code, @dmengreturn: Reference

114, 118-119

SUM. See Aggregate functions

Support routine: Overview 3, 7,19,20,
41; Developers 52

T
lbl2f: Reference 213-225

Transaction: Overview 41; Developers
103-107

See also Engine specific Notes
error handling: Developers 105-107

u
Utilities: Reference 205

v
Variables, global @dm: Reference 113

w
Warnings, @dmengwarncode,

@dmengwammsg: Reference
113-114,120,121

WITH clause: Reference 175, 177, 179

Word wrapped edit: Developers 83

Index-4 JAMlDBi Release 5 May 92

JAM/DBi
for

ORACLE

August 17, 1992

Notes for
ORACLE
This appendix provides documentation specific to ORACLE.

It discusses lhe following:

• engine initialization

• connection declaration

• cursors
• formatting for colon-plus and binding

• errors and warnings

• utilities
• engine-specific features

• command directory for JAM/OBi ORACLE

Notes

This document is designed as a supplement. not a replacement, to the JAM/OBi manual.
Each section identifies its companion chapter or section in the JAM/OBi manual.

1.1

ENGINE INITIALIZATION See Section 7.1

9y default, JAM/OBi uses the following values in dbiini t . c for ORACLE initializa
tion:

static vendor_t vendor_list[1 -
{

{ (char *) 0, (int (*) (» 0, (int) 0, (char *) 0 }
} ;

August 92 JAM/OBi Release 5 ORACLE Notes

ORACLE

The default settings are as follows:

oracle

dIn_orasup

DM FORCE TO LOWER CASE

1.1.1

Engine name. May be changed.
Support routine name. Do not change.

Case setting for matching SELECT columns
with JAM variable names. May be changed.

Engine Name and Support Routine
An application may change the engine name associated with the support routine dIn_ora
sup. The application then uses that name in DBMS ENGINE statements and in WITH ENGINE

clauses. For example, if you wish to use "tracking" as the engine name, make the following
change:

static vendor_t vendor_list[] =
{

{ (char *) 0, (int (*) () 0, (int) 0, (char *) 0 }
} ;

If the application is accessing multiple engines, it makes ORACLE the default engine by
executing:

dbms ENGINE oracle_engine_name

where oracle_engine_name is the string used in vendor_list. For example,

dbms ENGINE oracle

or
dbms ENGINE tracking

dIn orasup is the name of the support routine for ORACLE. The support routine uses
ORACLE's Call Interface (OCI). This name should not be changed.

If your application is using multiple engines. you need to add a line to vendor list for
each engine. You also need to modify your makefile to support both engines andfecompile
the JAM/OBi executables. jxdbi and j amdbi.

1.1.2

Case and Error Flags
The case flag. DM _FORCE_TO _LOWER_CASE. determines how JAM/OBi uses case when
searching for JAM variables for holding SELECT results. JAM/OBi uses this setting when

2 JAM/OBi Release 5 ORACLE Notes August 92

Noles

comparing ORACLE column names to either a JAM variable name or to a column name in
a DBMS ALIAS statement.

ORACLE is case insensitive. Regardless of the case in a SQL statement, ORACLE creates
all database objects-tables, views, columns, etc.,-with upper case names. In SQL state
ments, users may use any case to refer to these objects. By default, JAM/OBi initializes
case-insensitive engines using the DM]ORCE_TO_LOWER_CASE flag. This means that JAM/
OBi attempts to match an ORACLE column name to a lower case JAM variable name
when processing SELECT results. If your application is using this default, use lower case
names when creating JAM variables.

The case setting may be changed. If you wish to use upper case JAM variable names, re
place DM_FORCE_TO_LOWER_CASE with DM_PRESERVE_CASE or DM]ORCE_TO_UPPER_CASE.

You may also set an optional flag to change the behavior of JAM/OBi's default error han
dIer. An application may set either of the following:

OM DEFAULT DBI MSG - -

DM DEFAULT ENG MSG

Set the default error handler to display stan
dard JAM/OBi messages for all error mes
sages.

Set the default error handler to display
ORACLE error messages instead of JAM/
OBi error messages.

If neither flag is used, DM_DEFAULT_DBI_MSG is the default. To show ORACLE error mes
sages as the default, use the bitwise OR operator and DM_DEFAULT_ENG_MSG:

static vendor_t vendor_list[] =
{

) ;

{"oracle", dm_orasup, DM_FORCE_TO_LOWER_CASE I DM_DEFAULT_ENG_MSG,
(char *1 0 I,

{ (char *1 0, (int (*1 () 1 0, (int) 0, (char *1 0 1

If you modify the selling'; in dbiini t . c, you must recompile and link the JAM/OBi
executables, jxdbi and jamdbi. dbiinit. c does not affect the utility executables,
tb12f and f2tbl.

Please note that DM_DEFAULT_DBI_MSG and DM_DEFAULT_ENG_MSG do not affect an ap
plication using an error hook function. An error hook function is installed with DBMS

ONERROR and controls all error message display.

AugusI92 JAM/OBi Release 5 ORACLE NOles 3

ORACLE

1.2

CONNECTION
The following options are supported for connections to ORACLE:

USER

PASSWORD

user_name

password

See Section 7.2

where user_name is a valid logon name for the ORACLE database. user_name must have
CONNECT privileges to logon. For more information see your DBA or the ORACLE
RDBMS Database Administr"cltor's Guide.

The syntax is,

dbms [WITH ENGINE engine] DECLARE connection CONNECTION \
[FOR USER user_name [PASSWORD password]]

For example,

dbms DECLARE dbi session CONNECTION FOR \
USER :+uname PASSWORD :+pword

where uname and pword are JAM field names.

ORACLE allows your application to use one or more connections. The application may
declare any number of named connections with DBMS DECLARE CONNECTION statements.

1.3

CURSORS See Section 7.3

JAM/OBi uses two cursors for operations performed by sql and its equivalents, dIn _ sql
and dIn _ sql_ noexp. In ORACLE terminology, a cursor is also known as a context area.
JAM/OBi uses one cursor for SELECT statements and the other for non-SELECT statements.
These two cursors may be sufficient for small applications. Larger applications often re
quire more; an application may declare named cursors using DBMS DECLARE CURSOR. For
example, master and detail applications often need to declare at least one named cursor: one
cursor selects the master rows and additional cursors select detail rows. In short, if an ap
plication is processing a SELECT set in increments (Le., by using DBMS CONTINUE) while it
is executing other SELECT statements, two or more cursors are necessary.

Declaring a named cursor may improve the performance of some SELECT statements. In
particular, if an application is executing a SELECT statement more than once and the SELECT
fetches 40 or more columns from a remote server, a named cursor is recommended. In this

4 JAM/OBi Release 5 ORACLE Notes August 92

Notes

case, the parse and describe is done just once when the cursor is declared, not each time the
cursor is executed.

JAM/OBi does not put any limit on the number of cursors an application may declare to
an ORACLE engine. Since each cursor requires memory and ORACLE resources, howev
er, it is recommended that applications close a cursor when it is no longer needed.

1.4

FORMATTING FOR COLON-PLUS AND
BINDING See Chapter 8

JAM/OBi uses ORACLE's built-in TO_DATE function and the ORACtE format string,
ddmmyyyy hh2 4rni s s to convert JAM dates to ORACLE form.

1.5

SCROLLING See Section 9.1.2

ORACLE does not have native support for backward scrolling in a SELECT set. Before using
any of the following commands

dbms [WITH CURSOR cursor) CONTINUE BOTTOM

dbms [WITH CURSOR cursor) CONTINUE TOP

dbms [WITH CURSOR cursor) CONTINUE UP

the application must set up a continuation file for the cursor. This is done with the command

dbms [WITH CURSuR cursor) STORE FILE [filename)

1.6

ERROR AND STATUS INFORMATION
See Section 9.2 and Chapter 13

In Release 5,JAMlDBi uses the global variables described in the following sections to sup
ply error and status information in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other engines
and for use in future releases of JAM/OBi for ORACLE.

August 92 JAM/OBi Release 5 ORACLE Notes 5

ORACLE

1.6.1

Errors
JAM/OBi initializes the following global variables for error code information:

@dmretcode Standard JAM/OBi status code.

@dmretmsg

@dmengerrcode

Standard JAM/OBi status message.

ORACLE error code.

@dmengerrmsg ORACLE error message.

@dmengreturn Not used in JAM/OBi for ORACLE.

ORACLE returns error codes and messages when it aborts a command. It aborts a command
usually because the application used an invalid option or because the user did not have the
authority required for an operation. JAM/OBi writes ORACLE error codes to the global
variable @dmengerrcodeandwritesORACLEmessagesto @dmengerrmsg.

All ORACLE errors are JAM/OBi errors. Therefore, JAM/OBi always calls the default or
the installed error handler when an error occurs.

The easiest way to test for ORACLE errors is with an installed error or exit handler. For
example,

dbms ONERROR JPL errors
dbms DECLARE dbi session CONNECTION FOR ..•

proc errors
parms stmt engine flag

if @dmengerrcode == 0
msg emsg "JAM/DBi error: " @dmretmsg

else
msg emsg "JAM/DBi error: " @dmretmsg " %N" \
":engine error is" @dmengerrcode " " @dmengerrmsg

return 1

If you need additional information about ORACLE errors, please consult your ORACLE
documentation.

1.6.2

Warnings
JAM/OBi initializes the following global variables for warning information:

6 JAM/OBi Release 5 ORACLE Notes August 92

.,

Notes

@dmengwarncode ORACLE bit warning flag.

@dmengwarnmsg Not used in JAM/OBi for ORACLE.

ORACLE uses a warning byte called flag s 1 to signal conditions it considers unusual but
not fatal. @dmengwarncode derives its value from this byte. @dmengwarncode is an
8-occurrence array. If ORACLE sets a bit in flags 1 of the Cursor Data Area, JAM/OBi
puts a "W" in the corresponding occurrence of @cimengwarncode. The settings for
flagsl in ORACLE 6.0 are:

Bit Value Meaning

001 There i .. a warning. This is set when any other bit in flagsl is set.

002 Set if ~:ly data item was truncated.

003 Unused.

004 Unused

005 Set if an UPDATE or DELETE statement does not contain a WHERE

clause.

006 Unused.

1007 Unused.

008 Unused.

Before using @cimengwarncode, you should verify these settings by consulting your
Oracle Call Interfaces Manual.

You may wish to use an e':it hook function to process warnings. An exit hook function is
installed with DBMS ONEX I T. A sample exit hook function is shown below.

proc check_status
parms stmt engiue flag

if @dmretcode == 0
(

if @dmengwarncode [1) "w"
(

if @dmengwarncode [2) == "w"
msg emsg "Some data was truncated."

August 92 JAM/OBi Release 5 ORACLE Notes 7

ORACLE

else if @dmengwarncode [51 == "w"
msg emsg "The operation did not use a WHERE clause."

return

1.6.3

Row Information
JAM/OBi initializes the following global variables for row information:

@dmrowcount Count of the number of ORACLE rows af-
fected by an operation.

@dmserial Not used in JAM/OBi for ORACLE.
ORACLE returns a count of the rows affected by an operation. JAM/OBi writes this value
to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount after
a SELECT is the number of rows fetched to JAM variables which may be less than or equal
to the total number of rows in the select set. Immediately after an INSERT, UPDATE, or
DELETE, @dmrowcount is set to the total number of rows affected by the operation. This
variable is cleared whenever a DBMS COMMIT statement is executed.

1.7

UTILITIES See Chapter 16

If you start the utilities in interactive mode using the - i flag, the utility displays an engine
independent logon screen. JAM/OBi uses the following options:

• User

• Password

when declaring a connection to ORACLE for the utilities. Enter the same information you
use to declare a connection in j amdbi. The other fields on the logon screen may remain
empty.

1.7.1

f2tbl
f2 tbl creates a database table based on a JAM form. It uses each named field on the form
to create a column, translating field edits to an appropriate ORACLE column definition.
The table below shows the default ORACLE column definitions for each JAM type.

8 JAM/OBi Release 5 ORACLE Notes August 92

Notes

If you do not know how 10 check a field's JAM type, please see the Ulilily Reference Chap
ler of the JAM/OBi manual.

JAM Type ORACLE Column Definition

Type Lenglh Precision

DT CURRENCY NUMBER Same as field length Field's precision I
(maximum of 42)

DT DATETIME DATE -
DT YESNO CHAR Same as field length - (maximum of 240)

FT CHAR CHAR Same as field length
(maximum of 240)

FT DOUBLE NUMBER Same as field length Field's precision I
(maximum of 42)

FT FLOAT NUMBER Same as field length Field's precision I - (maximum of 42)

FT INT NUMBER Same as field length 0 - (maximum of 42)

FT LONG NUMf.IER Same as field length 0
(maximum of 42)

FT PACKED NUMBER Same as field length Field's precision I
(maximum of 42)

FT SHORT NUMBER Same as field length 0 -
(maximum of 42)

FT UNSIGNED NUMBER Same as field length 0
(maximum of 42)

FT VARCHAR LONG Same as field length -
FT ZONED NUMBER Same as field length Field's precision - (maximum of 42)

I. If the field length is greater than 42, the precision is adjusted using the calculation:
precision - field length + 42

August 92 JAM/OBi Release 5 ORACLE Notes 9

ORACLE

To change these defaults you must edit the JPL procedure type in the distribution JPL
module oraf2t . jpl, compile it by using jp12bin, and replace the previous version in
orajpl.lib by using forrnlib -r.

1.7.2

tbl2f
tb12 f creates a JAM form based on an ORACLE table. It creates a field for each column
in the table, using the column's data type to assign the appropriate field characteristics. The
table below lists the default field lengths and precisions for each ORACLE datatype. It also
lists a default JAM type.
Although ORACLE columns names are upper case, JAM/OBi by default uses lower case
when creating field names for a tb12f screen. This is consistent with the default case set
ting for ORACLE in dbiinit. c (see Section 1.1). If you changed the default in
dbiinit. c to DM_PRESERVE_CASE or DM_FORCE_TO_UPPER_CASE, you should set the
case option of tb12 f to match. The case option may be set on the command line or from
a pull-down menu in interactive mode. For example, to start tb12f in interactive mode and
use upper case for JAM variables, type

tb12f -i -lu

Note that there are additional characteristics associated with each JAM type. Those are
described in the Utility Reference Chapter of the JAM/OBi manual.

ORACLE Type JAM Field Definition

JAM Type Length Precision

NUMBER(O length) FT FLOAT 16 5

NUMBER FT INT Same as column -
(0 precision) length

CHAR FT CHAR Same as column
length

DATE DT DATETIME 20 -
LONG FT VARCHAR Same as column - length (maximum

of 255)

To change these defaults, you must edit the JPL procedure type in the distribution JPL
module orat2f. jpl, compile it by using jp12bin, and replace the previous version in
orajpl.lib by using forrnlib -r.

10 JAM/DBi Release 5 ORACLE Notes August 92

NOles

1.8

ORACLE-SPECIFIC COMMANDS See Chapter J J

JAM/OBi for ORACLE provides additional commands for ORACLE-specific features. If
you are using multiple engines or are porting an application to or from another engine,
please note that these commands may work differently or may not be supported on some
engines.

1.8.1

Using Transactions
JAM/OBi supports the following commands when using transactions. See the reference
pages for more information on each command.

AUTOCOMMIT

COMMIT

ROLLBACK

tum on or off autocommit processing

commit a transaction

rollback a transaction

ORACLE transactions are per connection. An application must test for errors during the
:ransaction and terminate j transaction by issuing an explicit ROLLBACK or COMM IT.

When an application closes a connection with CLOSE_ALL _CONNECTIONS or CLOSE

CONNECTION, ORACLE commits any pending transactions on those connections. If an
application terminates without explicitly closing its connections, ORACLE rolls back any
pending transactions on those connections. However, these procedures arc not recom
mended. Instead, it is strongly recommended that applications use explicit COMMIT and
ROLLBACK statements to terminate transactions.

Augusl92 JAM/OBi Release 5 ORACLE Noles 11

ORACLE

AUTOCOMMIT
turn autocommit on or off

SYNOPSIS

dbrns [WITH CONNECTION connection] AUTOCOMMIT ON
dbrns [WITH CONNECTION connection] AUTOCOMMIT OFF

DESCRIPTION

This command controls whether changes to a database occur immediately upon execution
of a SELECT, INSERT, UPDATE, or DELETE command, or whether they occur when a DBMS

COMMIT is explicitly executed.

If the WITH CONNECTION clause is not used, JAM/OBi applies the AUTOCOMMIT setting to
the application's default connection.

The default mode is AUTOCOMMI T OFF. This means that the engine automatically starts
a transaction after an application declares a connection. When a recoverable statement
(INSERT, UPDATE, and DELETE) is executed, it is not automatically committed. The effects
of the statement are not visible until the transaction is terminated. If the transaction is termi
nated by DBMS COMMIT, the updates are committed and visible to other users. If the trans
action is terminated by DBMS ROLLBACK, the updates are not committed, and the database
is restored to its Slate prior to the start of the transaction. Once a transaction is terminated,
the engine automatically begins a new transaction.

Developers may change the default behavior by using the AUTOCOMMIT ON mode. In this
mode, a statement is committed automatically upon successful execution. Its effects are im
mediately visible to other users, and it cannot be rolled back.

ORACLE recommends AUTOCOMMIT OFF mode because it may improve performance.

In AUTOCOMMIT OFF mode, an application should issue a COMMIT at the end of each logical
unit of work. It should also use an error handler to test for errors and perform rollbacks as
needed.

RELATED FUNCTIONS

dbrns [WITH CONNECTION connection] COMMIT

dbrns [WITH CONNECTION connection] ROLLBACK

12 JAM/OBi Release 5 ORACLE Notes August 92

Notes

EXAMPLE

proc tran_handle
vars jpl_retcode
retvar jpl_retcode
dbms WITH CONNECTION xxxI AUTOCOMMIT OFF
jpl update_emp

If the procedure "update_emp" executes successfully,
jpl_retcode = 0; if a statement fails, jpl_retcode = -1
or the value ~eturned by the installed error handler.
For all errors, execute a ROLLBACK.

if jpl_retcode
{

dbms ROLLBACK
msg emsg "New employee data NOT entered."

else
msg emsg "New employee data successfully entered."

return 0

proc new_emp
sql INSERT INTO emp \
(ssn, last, first, street, city, st, zip, grade) VALUES

(:+ssn, :+last, :+first, \
:+street, :+city, :+st, :+zip, :+grade)

sql INSERT INTO review (ssn, revdate, newsal, newgrd) \
VALUES (:+ssn, :+hiredate, :+sal, :+grd)

sql INSERT INTO acc (ssn, sal, exmp) \
VALUES (:+ssn, :+sal, :+exmp)

dbms COMMIT
return 0

August 92 JAM/OBi Release 5 ORACLE Notes 13

ORACLE

COMMIT
commit a transaction

SYNOPSIS
dbms (WITH CONNECTION connection] COMMIT

DESCRIPTION
Use this command to commit a pending transaction. Committing a transaction saves all the
work since the last COMM I T. Changes made by the transaction become visible to other users.
If the transaction is terminated by DBMS ROLLBACK, the updates are not committed, and the
database is restored to its state prior to the start of the transaction. Once a transaction is ter
minated, the engine automatically begins a new transaction.

If the WITH CONNECTION clause is not used, JAM/OBi issues the commit on the default
engine.

Before beginning a transaction, the application should ensure that the connection is using
AUTOCOMMIT OFF mode; this is usually the default It should COMMIT or ROLLBACK any
pending lransactions before starting a new one.

If an application is using AUTOCOMM I T ON mode, this command is not needed.

RELATED FUNCTIONS
dbms (WITH CONNECTION connection] AUTOCOMMIT {ON I OFF}

dbms [WITH CONNECTION connection] ROLLBACK

EXAMPLE

Refer to the example shown for AUTOCOMMIT.

14 JAM/OBi Release 5 ORACLE Notes August 92

Notes

ROLLBACK
rollback a transaction

SYNOPSIS
dbms [WITH CONNECTION connection] ROLLBACK

DESCRIPTION
Use this command to rollback a transaction and restore the database to its state prior to the
start of the transaction.

If the WITH CONNECTION clause is not used, JAM/OBi issues the rollback on the default
engine.

If a statement in a transaction fails, an application must attempt to reissue the statement suc
cessfully or else rollback the transaction. If an application cannot complete a transaction, it
should rollback the transaction. If it does not, it may inadvertently commit the partial trans
action when it commits a later transaction.

RELATED FUNCTIONS
dbms [WITH CONNECTION connection] AUTOCOMMIT {ON I OFF}

dbms [WITH CONNECTION connection] COMMIT

EXAMPLE

Refer to the example shown for AUTOCOMMIT.

August 92 JAM/OBi Release 5 ORACLE Notes 15

ORACLE

1.9

COMMAND DIRECTORY FOR ORACLE
This section contains a directory for all the commands available in JAM/OBi for ORACLE.
The following table lists the command, a short description of the command, and the location
of the reference page for that command. If the location is described as ORACLE Notes, that
information is enclosed in this document.

Command Description Documentation

ALIAS name a JAM variable as the destina- JAM/OBi
tion of a selected column or aggregate Manual
function

AUTOCOMMIT tum on or off autocommit processing ORACLE
Notes

BINARY create a JAM/OBi variable for fetch- JAM/OBi
ing binary values Manual

CATQUERY redirect SELECT results to a file or a JAM/OBi
JAM variable Manual

CLOSE CONNECTION close a named connection JAM/OBi
Manual

CLOSE CURSOR close a cursor JAM/OBi
Manual

CLOSE ALL CONNECTIONS close all connections on all engines JAM/OBi
Manual

COMMIT commit a transaction ORACLE
Notes

CONNECTION set a default connection and engine JAM/OBi
for the application Manual

CONTINUE fetch the next screenful of rows from JAM/OBi
a SELECT set Manual

CONTINUE BOTTOM fetch the last screenful of rows from a JAM/OBi
SELECT set Manual

16 JAM/OBi Release 5 ORACLE Notes August 92

Noles

Command Description Documentation

CONTINUE DOWN felCh the next screenful of rows from JAM/OBi
a SELECT set Manual

CONTINUE UP felCh the previous screenful of rows JAM/OBi
from a SELECT set Manual

CONTINUE TOP felCh the first screenful of rows from JAM/OBi
a SELECT set Manual

QECLARE CONNECTION declare a named connection to an en- JAM/OBi
gine Manual

DECLARE CURSOR declare a named cursor JAM/OBi
Manual

ENGINE set the default engine for the applica- JAM/OBi
tion Manual

EXECUTE execute a named cursor JAM/OBi
Manual

FORMAT format the results of a CATQUERY JAM/OBi
Manual

OCCUR set the number of rows for JAM/OBi JAM/OBi
to felCh to an array and choose an oc- Manual
currence where JAM/OBi should be-
gin writing result rows

ONENTRY install a JPL procedure or C function JAM/OBi
which JAM/OBi will call before ex- Manual
ecuting a sql or dbms statement

ONERROR install a JPL procedure or C function JAM/OBi
which JAM/OBi will call whenever a Manual
sql or dbms statement fails

ONEXIT install a JPL procedure or C function JAM/OBi
which JAMIDBi will call afLer ex- Manual
ecuting a sql or dbms statement

Augusl92 JAM/OBi Release 5 ORACLE Notes 17

ORACLE

Command Description Documentation

ROLLBACK rollback a transaction ORACLE
Notes

START set the first row for JAM/OBi to re- JAMIDBi
tum from a SELECT set Manual

STORE FILE slore the rows of a SELECT set in a JAMIDBi
lemporary file so lhat the application Manual
may scrolllhrough the rows

UNIQUE suppress repeating values in a se- JAMIDBi
lecled column Manual

WITH CONNECTION set the default connection for the du- JAM/OBi
ration ofa command Manual

WITH CURSOR specify the cursor to use for a Slate- JAM/OBi
ment Manual

WITH ENGINE set the defaull engine for the duration JAM/OBi
ofacommand Manual

18 JAM/OBi Release 5 ORACLE Notes August 92

JAM/DBi
for

SYBASE

Au~ust 19, 1992

Notes for
SYBASE
This appendix provides documentation specific to SYBASE.

It discusses the following:

• engine initialization

• connection declaration

• cursors
• fonnatting for colon-plus and binding

• errors and warnings

• utilities
• engine-specific features
• command directory for JAM/OBi SYBASE

Notes

This document is designed as a supplement. not a replacement, to the JAM/OBi manual.
Each section identifies its companion chapter or section in the JAM/OBi manual.

1.1

ENGINE INITIALIZATION See JAM/OBi Manual-Section 7.1

By default. JAM/OBi uses the following values in dbiini t . c for SYBASE initializa
tion:

static vendor_t vendor_list[] =
{

{"sybase", dm_sybsup, DM_PRESERVE_CASE , (char *) OJ,

{ (char *) 0, (int (*) ()) 0, (int) 0, (char *) 0 }
} ;

August 92 JAM/OBi Release 5 SYBASE Notes

SYBASE

The default settings are as follows:

sybase

dIn_~ybsup

DM PRESERVE_CASE

1.1.1

Engine name. May be changed.
Support routine name. Do not change.

Case setting for matching SELECT columns
with JAM variable names. May be changed.

Engine Name and Support Routine
An application may change the engine name associated with the support routine
dIn _ sybsup. The application then uses that name in DBMS ENGINE statements and in WITH

ENGINE clauses. For example, if you wish to use "tracking" as the engine name, make the
following change:

static vendor_t vendor_list[] =
{

{"tracking", dm_sybsup, DM_PRESERVE_CASE, (char *) OJ,

{ (char *) 0, (int (*) () 0, (int) 0, (char *) 0 }
} ;

If the application is accessing multiple engines, it makes SYBASE the default engine by
executing:

dbms ENGINE aylnJae_englne_name

where sybaae_englne_nameis the siring used in vendor_list. For example,

dbms ENGINE sybase

or
dbms ENGINE tracking

dIn sybsup is the name of the support routine for SYBASE. This name should not be
changed.
If your application is using multiple engines, you need to add a line to vendor list for
each engine. You also need to modify your makefile to support both engines and-recompile
the JAM/OBi executables, jxdbi and jamdbi.

1.1.2

Case and Error Flags
The case flag, DM _PRESERVE_CASE, determines how JAM/OBi uses case when search
ing for JAM variables for holding SELECT results. JAM/OBi uses this setting when

2 JAM/OBi Release 5 SYBASE Notes August 92

Notes

comparing SYBASE colwnn names to either a JAM variable name or to a column name in
a DBMS ALIAS statement.
SYBASE is case-sensitive. SYBASE uses the exact case of a SQL statement when creating
database objects like tables and columns. In a SQL statement, users must use the same exact
case when referring to these objects. By default, JAM/OBi initializes case-sensitive en
gines using the OM_PRESERVE _CASE flag. This means that JAM/OBi matches the SYBASE
column name to a JAM variable with the same name and case.
By changing this flag, you can force JAM/OBi to perform case-insensitive searches. Use
DB JORCE _TO_LOWER _CASE to match SYBASE column names to lower case JAM names;
use OM_FORCE _TO _ UPPER_CASE to match to upper case JAM names.

You may also set an optional flag to change the behavior of JAM/OBi's default error han
dler. An application may set either of the following:

DM_DEFAULT_DBI_MSG Set the default error handler to display stan
dard JAM/OBi messages for all error mes
sages.

DM DEFAULT ENG MSG Set the default error handler to display SY
BASE error messages instead of JAM/OBi er
ror messages.

If neither flag is used, DM_DEFAULT_DBI_MSG is the default To show SYBASE error mes
sages as the default, use the bitwise OR operator and DM_DEFAULT_ENG_MSG:

static vendor t venaor list!] =
{ --

} ;

("sybase", dm_sybsup, OM_PRESERVE_CASE I OM_OEFAULT_ENG_MSG,
Ichar *) 0 },

(Ichar *) 0, lint 1*) II) 0, lint) 0, (char *) 0 }

If you modify the settings in dbiini t . c, you must recompile and link the JAM/OBi
executables, jxdbi and j amdbi. dbiini t . C does not affect the utility executables,
tb12f and f2tbl.

Please note that DM_DEFAULT_DBI_MSG and DM_DEFAULT_ENG_MSG do not affect an ap
plication using an error hook function. An error hook function is installed with DBMS

ONERROR and controls all error message display.

1.2

CONNECTION See JAM/OBi Manual- Section 7.2

The following options are supported for connections to SYBASE:

August 92 JAM/OBi Release 5 SYBASE Notes 3

SYBASE

USER user_name

PASSWORD password

SERVER server_name

DATABASE database_name

INTERFACES Interfaces_flleJJathname

CURSORS 1/2

TIMEOUT seconds

Use INTERFACES to supply the pathname to an interfaces fIle. An interfaces fIle contains
the name and network address of every SYBASE server available on the network. If this
option is not used. SYBASE looks for a file called interfaces in the SYBASE parent
directory (e.g .• lusrlsybase/interfaces). This option is ignored for OSn.. MS
DOS. and Windows applications.

Use TIMEOUT to set the number of seconds that Open Client wailS for a SYBASE response
to a request for a connection. A timeout of 0 seconds represenlS an infinite timeout period.
The default is usually 60 seconds.

Use CURSORS to control the number of default cursors JAM/OBi creates when the appli
cation declares a connection. The default is 1. This means that JAM/OBi uses one cursor
for any operation executed with sql or dm_sql. whether it is a SELECT or nOO-SELECT
operation. The application must set CURSORS to 2 to use browse mode. You may also wish
to use two deCault cursors iC your application swi,lChes between a SELECT and nOll-SELECT
operations. See the section on cursors Cor additional information.

The syntax for declaring a connection is.

dbms DECLARE connection CONNECTION FOR \
USER us.,._nam. PASSWORD password DATABASE datllb ... \
SERVER server INTERFACES InterfaCIJ....Pathnam. \
TIMEOUT timeout CURSORS numbet'_o'-cul'8ors

For example.

dbms DECLARE dbi session CONNECTION FOR \
USER :uname PASSWORD :pword DATABASE sales \
SERVER birch INTERFACES '/usrlsybase/interfaces.app'
TIMEOUT 15 CURSORS 2

where uname and pword are JAM field names.

SYBASE allows your application to use one or more connections. The application may de
clare any number of named connections with DBMS DECLARE CONNECTION statemenlS.
up to the maximum number permitted by the server.

4 JAM/OBi Release 5 SYBASE Notes August 92

Notes

1.3

CURSORS See JAM/OBi Manual- Section 7.3

JAM/OBi uses two cursors for operations performed by sql and its equivalents, dIn_sql
and dIn _ sql_ noexp. JAM/OBi uses one cursor for SELECT statements and the other for
non-SELECT statements. Tilese two cursors may be sufficient for small applications. Larger
applications often require more; an application may declare named cursors using DBMS
DECLARE CURSOR. For exa.'11ple, master and detail applications often need to declare at least
one named cursor: one cu..--sor selects the master rows and additional cursors select detail
rows. In short, if an application is processing a SELECT set in increments (i.e., by using DBMS
CONTINUE) while it is exe.;uting other SELECT statements, two or more cursors are neces
sary.

JAMIOBi does not put F.ny limit on the number of cursors an application may declare to
an SYBASE engine. Since each cursor requires memory and SYBASE resources, however,
it is recommended that applications close a cursor when it is no longer needed.

1.4

FORMATTING FOR COLON-PLUS AND
BINDING SeeJAMIOBiManual-Chapter8

SYBASE requires a leading dollar sign for values inserted in a money column in order to
ensure precision. JAM/OBi will use a leading dollar sign when it formats DT _CURRENCY
values. Any other amount formatting characters are stripped. Therefore, if a currency field
contained

500,000.00

JAM/OBi would format it as

$500000.00

1.5

SCROLLING See JAM/OBi Manual- Section 9.1.2

SYBASE has native suppon for backward scrolling in a SELECT seL Before using any of the
following commands

August 92 JAM/OBi Release 5 SYBASE Notes 5

SYBASE

dbrns [WITH CURSOR cursor] CONTINUE BOTTOM

dbrns [WITH CURSOR cursor] CONTINUE TOP

dbrns [WITH CURSOR cursor] CONTINUE_UP

the application must specify whether to use native scrolling or JAM/OBi scrolling. To use
native scroUing, use the command

dbrns [WITH CURSOR CUlltor] SET_BUFFER arg

where arg is the number of rows to buffer.

To use JAM/OBi scrolling, use the command

dbrns [WITH CURSOR cursor] STORE FILE [filename]

1.5.1

Locking
JAM/OBi SYBASE developers should consider locking issues when building applications
that SELECT large amounts of data.

When an application executes a SELECT that returns many rows, SYBASE may use a
"shared lock"to preserve read-consistency. That is, to preserve the state of the selected data,
SYBASE may prevent other applications or users from changing the data until the applica
tion has received all the rows. This behavior is usually seen for SELECT sets that contain
500 or more rows.

As a part of developing and testing an application, JAM/OBi developers should monitor
SYBASE's behavior by running the SYBASE command sp _lock from another terminal
when the application executes a SELECT. H a SELECT executed by a JAM/OBi application
is holding a lock, the cursor's spid will be listed.

Since a shared lock prevents other users from updating data, it is important to release shared
locks as soon as possible. To release a shared locked,

• get all the rows in the SELECT set, or

• flush pending rows in the SELECT set

An application has two ways of getting the entire SELECT set:

6

• create JAM arrays which are large enough to hold the entire SELECT set,
or

• use DBMS STORE FILE and DBMS CONTINUE BOTTOM to buffer all the
rows in a temporary me on disk

JAM/OBi Release 5 SYBASE Notes August 92

Notes

For example, an application may set up a continuation fIle before executing a SELECT. Be

fore returning control to the user, the application may execute DBMS CONTINUE_BOTTOM

which forces JAM/OBi get all the rows from the SELECT set and buffer them in a temporary
file. This also forces SYBASE to release any shared lock it is holding for the SELECT.

In the following example, the application puts a message on the status line and flushes the
display. Next is sets up a continuation fIle and executes the SELECT. It calls
CONT INUE _BOTTOM to force JAM/OBi to get all the rows. Finally, it calls CONT INUE _TOP
to ensure that the SELECT set's first page (rather than its last page) of rows is displayed
when control is returned to the user.

proc big_select
msg setbkstat "Processing. Please be patient .•. "
flush
dbms STORE FILE
sql SELECT •..•
dbms CONTINUE_BOTTOM
dbms CONTINUe TOP

return

An application may also limit the number of rows a use may view at a time by using the
DBMS FLUSH command. When this command is executed, SYBASE discards any pending
rows and releases all associated locks. For example,

proc big_select
sql SELECT ...•
if @dmretcode != OM NO MORE ROWS

dbms FLUSH
return

To monitor lock informatiun within the application, the application may query SYBASE for
the spid number of a cursor and the number of locks held by the cursor. Note that each cur
sor has its own spid and it keeps the same spid number until the application closes the cur
sor. To get a cursor's spid number, an application must use the cursor to select the global
SYBASE variable@@spid.

* Get the SYBAS~ spid for a JAM/OBi cursor * before SELECTing rows.
proc get_spid
parms cursor
vars spid

if cursor == ""
sql SELECT spid

else
@@spid

August 92 JAM/OBi Release 5 SYBASE Notes 7

SYBASE

dbms DECLARE :cursor CURSOR FOR \
SELECT spid = @@spid

dbms EXECUTE :cursor

return spid

* Get the number of locks held by a SYBASE spid.
proc lockstatus

parms spid4select
vars lcount
dbms DECLARE lock_count CURSOR FOR \

SELECT COUNT(*) FROM master.dbo.syslocks \
WHERE spid = :spid4select

dbms WITH CURSOR lock cursor ALIAS lcount
dbms WITH CURSOR lock cursor EXECUTE
dbms CLOSE CURSOR lock cursor
return lcount

An application may get a cursor's spid before executing a SELECT for rows. After fetching
rows the application may query SYBASE for the number of locks. Note that the order of
these statements is important: if an ap'plication attempts to get a cursor's spid after fetching
rows, the SELECT for the cursor's spid will release any locks and any pending rows. For this
reason, be sure to get the cursor's spid before fetching rows. See the example below.

8

proc select
vars cursor_spid locks

retvar cursor_spid
jpl get_spid "cl"
retvar

dbms DECLARE cl CURSOR FOR SELECT
dbms WITH CURSOR cl EXECUTE

retvar locks
jpl lockstatus :cursor_spid
retvar

msg emsg "The number of lock(s) is " locks
return

JAM/OBi Release 5 SYBASE Notes August 92

Notes

1.6

ERROR AND STATUS INFORMATION
See JAM/OBi Manual- Section 9.2 and Chapter 13

In Release 5, JAM/OBi uses the global variables described in the following sections to sup
ply error and status infonnation in an application. Note that some global variables may not
be used in the current release; however, these variables are reserved for use in other engines
and for use in future releases of JAM/OBi for SYBASE.

1.6.1

Errors
JAM/OBi initializes the fnllowing global variables for error code infonnation:

@dmretcode Standard JAM/OBi status code.

@dmretmsg

@dmengerrcode

@dmengerrmsg

Standard JAM/OBi status message.

SYBASE error code.

, SYBASE error message.

@dmengreturn Return code an executed stored procedure.

SYBASE returns error codes and messages when it aborts a command. It aborts a command
usually because the application used an invalid option or because the user did not have the
authority required for an operation. JAM/OBi writes SYBASE error codes to the global
variable @dmengerrcode and writes SYBASE messages to @dmengerrmsg.

All SYBASE errors with a severity greater than 10 are JAM/OBi errors. Otherwise, they
are considered warnings.

The easiest way to test for SYBASE errors is with an installed elTOr or exit handler. For
example,

dbms ONERROR JPL errors
dbms DECLARE dbi session CONNECTION FOR ...

proc errors
parms stmt engi~e flag

if @dmengerr.code == 0
msg emsg I .JAM/DBi error: " @dmretmsg

else
msg emsg ",JAM/OBi error: " @dmretmsg " %N" \
":engine ~rror is" @dmengerrcode " " @dmengerrmsg

return 1

August 92 JAM/OBi Release 5 SYBASE Notes 9

SYBASE

If you need additional information about SYBASE errors, please consult your SYBASE
documentation.

1.6.2

Warnings
JAM/OBi initializes the following global variables for warning information:

@dmengwarncode SYBASE warning code.

@dmengwarnmsg SYBASE warning message.

A warning usually describes some non-fatal change in the SYBASE environment. For ex
ample, SYBASE issues a warning when the application changes a connection's default da
tabase.

You may wish to use an exit hook function to process warnings. An exit hook function is
installed with DBMS ONEXIT. A sample exit hook function is shown below.

proc check_status
parms stmt engine flag

if @dmengwarncode
msg emsg "SYBASE Warning is " @dmengwarnmsg

return

1.6.3

Row Information
JAM/OBi initializes the following global variables for row information:

@dmrowcount Count of the number of SYBASE rows af-
fected by an operation.

~dmserial Not used in JAM/OBi for SYBASE.

SYBASE returns a count of the rows affected by an operation. JAM/OBi writes this value
to the global variable @dmrowcount.

As explained on the manual page for @dmrowcount, the value of @dmrowcount after
a SELECT is the number of rows fetched to JAM variables. This number is less than or equal
to the total number of rows in the select sel Immediately after an INSERT, UPDATE, or
DELETE, @dmrowcount is set to the total number of rows affected by the operation. This
variable is cleared whenever a DBMS COMMIT statement is executed.

10 JAM/OBi Release 5 SYBASE Notes August 92

Notes

The value of @dmrowcount may be unexpected after executing a stored procedure. If the
stored procedure executes a SELECT, @dmrowcount equals the number of rows fetched.
If, however, the stored procedure does an INSERT, UPDATE, or DELETE, @dmrowcount is
set to -1. This is documented SYBASE behavior. If you need this information, SYBASE
recommends that you test for it within the stored procedure and return it as an output param
eter or return code. @rowcount is a SYBASE global variable. For example,

create proc update_ship_fee @class 1nt, @change float
as
declare @u_count int
update cost set ship_fee = ship_fee * @change

where class = @class
select @u_count = @rowcount
return @u count

See your SYBASE Command Reference Manual for more infonnation.

1.7

UTILITIES See JAM/OBi Manual- Chapter 16

If you start the utilities in interactive mode using the - i flag, the utility displays an engine
independent logon screen. JAM/OBi uses the following options:

• User

• Password

• Server name

• Database name

when declaring a connection to SYBASE for the utilities. Enter the same infonnation you
use to declare a connection in j amdbi. The other fields on the logon screen may remain
empty.

1.7.1

f2tbl
f2tbl creates a database ".:able based on a JAM fonn. It uses each named field on the fonn
to create a column, translating field edits to an appropriate SYBASE column definition.
The table below shows the default SYBASE column definitions for each JAM type.

August 92 JAM/OBi Release 5 SYBASE Notes 11

SVBASE

If you do not know how to check a field's JAM type, please see the Utility Reference Chap
ter of the JAM/OBi manual.

JAM Type SYBASE Column Definition

Type Length Precision

DT CURRENCY money -
DT DATETIME datetime -
DT YESNO char Same as field length

FT CHAR char Same as field length

FT DOUBLE float -
FT FLOAT float -
FT INT int -
FT LONG int -
FT PACKED float -
FT SHORT smallint

FT UNSIGNED int

FT VARCHAR varchar Same as field length -
FT ZONED float

The utility assigns a length for character-type columns. For all other columns, it uses the
default length of the datatype.

To change these defaults you must edit the JPL procedure type in the distribution JPL
module sybf2t. jpl, compile it by using jp12bin, and replace the previous version in
sybjpl.lib by using formlib -r.

1.7.2

tbl2f
tb12 f creates a JAM form based on an SYBASE table. It creates a field for each column
in the table, using the column's datalype to assign the appropriate field characteristics. The

12 JAM/OBi Release 5 SVBASE Notes August 92

Notes

table below lists the following for each SYBASE datatype: the identification number for
that datatype from the SYBASE system table systypes, the default JAM type and the
default field length and precision.

JAM/OBi by default preserves the same case when creating field names for a tb12f
screen. This is consistent with the default case setting for SYBASE in dbiini t . c (see
Section 1.1). If you changed the default in dbiinit.c 10 DMJORCE_TO_LOWER_CASE
or DMJORCE_TO_UPPER_CASE, you should set the case option of tb12f 10 match. The
case option may be set on the command line or from a pull-down menu in interactive mode.
For example, 10 start tb12f in interactive mode and use upper case for JAM variables,
type

tb12f -i -!u

Note that there are additional characteristics associated with each JAM type. Those are
described in the Utility Reference Chapter of the JAM/OBi manual.

SYBASE Type JAM Field Definition

JAM Type Length Precision

smallint 52 FT SHORT 6

tinyint 48 FT_SHORT 3

timestamp, FT UNSIGNED
varbinary 37

int 45 FT UNSIGNED 11

bit 50 FT_UNSIGNED 11

int 56 FT_~ONG 11

intn 38 FT_LONG 11

float 62 FT FLOAT 25 5

floatn 59,109 FT_FLOAT 25 5

char 47 FT CHAR

money 60 DT CURRENCY 11

moneyn 110,122 DT CURRENCY 11

datetime 58,61 DT DATETIME 20

August 92 JAM/DBi Release 5 SYBASE Notes 13

SYBASE

SYBASE Type JAM Field Definition

JAM Type Length Precision

datetimen 111 DT DATETIME 20 -
varchar 35 FT VARCHAR 255 -
sysname, FT VARCHAR -
varchar 39

To change these defaults, or to add other datatypes, you must edit the JPL procedure type
in the distribution JPL module sybt2f. jpl, compile it by using jpl2bin, and replace
the previous version in sybjpl.lib by using formlib -r.

1.8

STORED PROCEDURES
An application may execute a stored procedure with the command sql and the engine's
command for execution. For example,

sql EXEC procedure

executes the named stored procedure. An application may also use a named cursor to ex
ecute a stored procedure.

dbms DECLARE cursor CURSOR FOR \
[declare parameter type [declare parameter type • ••]] \
EXEC procedure [parameter [OUT], [parameter [OUT] •..]

dbms [WITH CURSOR cursor] EXECUTE [USING values]

For example, if emp _g rades is the following stored procedure.

create proc emp_grades @gval char(l)
as
select last, first from emp where grade @gval

either of the following.

or

14

sql EXEC emp_grades :+grade

dbms DECLARE x CURSOR FOR EXEC emp_grades ::g-parrn
dbms WITH CURSOR x EXECUTE USING grade

JAM/OBi Release 5 SYBASE Notes August 92

Notes

executes the stored procedure, ~Iecting the names of all employees with the specified
grade. If the current screen (or LOB) contains the fields last and first, the procedure
writes the values to JAM.

Remember, double colons (::) in a DECLARE CURSOR statement are for cursor parameters.
A value is supplied for the employee grade each time the cursor is executed. If a single
colon or colon-plus were used, the employee grade would be supplied when the cursor was
declared, not when it was executed. See Section 8.2 in the JAM/OBi manual for more in
fonnation.

If the DBMS supports outt>ut parameters, the keyword OUT traps the value of an output pa
rameter in a JAM variable. For example, if sumrn _by _grade is the following stored pro
cedure,

create proc sumrn_by_grade
@cnt int output, @asal money output, @gr char(l)

as
create table empsum (ss char(ll), sal money)

insert into empsum select emp.ss, acc.sal from emp, acc
where emp.ss=acc.ss and emp.grade = @gr

select @cnt = count(*) from empsum
select @asal = ~vg(sal) from empsum
drop table empsum

the application should declare a cursor for the procedure:

dbms DECLARE curl CURSOR FOR \
declare @tl lnt declare @t2 money \
EXEC sumrn_by_grade @cnt=@tl OUT, @asal=@t2 OUT, \
@gr=::grade-parm

dbms WITH CURSOR curl EXECUTE USING gr = grade

If cnt and asal are JAM variables, the procedure returns the number of employees in the
specified grade and their average salary. Note that t1 and t2 are temporary SYBASE vari
ables, not JAM variables. SYBASE requires that output values be passed as variables, not
as constants. The application may use DBMS AL lAS to map the values of output parameters
to JAM variables. For example,

dbms DECLARE curl CURSOR FOR \
declare @tl int declare @t2 money \
EXEC sumrn_by_grade @cnt=@tl OUT, @asal=@t2 OUT, \
@gr=::grade-parm

dbms WITH CURSOR curl ALIAS cnt emp_count, asal sal_avg
dbms WITH CURSOR curl EXECUTE USING gr = grade

August 92 JAM/OBi Release 5 SYBASE Notes 15

SYBASE

maps the value of cnt to the JAM variable emp_count and the value of asal to the
JAM variable sal_avg.

1.8.1

Remote Procedure Calls
In addition to the EXEC command, SYBASE supports a remote procedure call ("rpc'') for
executing a stored procedure. Developers should consider using rpc rather than EXEC when
either the following occur:

• One or more of the stored procedure's parameters has a datatype that is not
cha r. An rpc is more efficient in these cases because it is capable of pass
ing parameters in their native datatypes rather than only as ASCII charac
ters. This reduces the amount of data conversion for the application and
the server.

• The stored procedure returns output parameters. An rpc provides a faster
and simpler mechanism for accommodating output parameters.

To make an remote procedure call, an application performs the following steps:

1. Must declare an rpc cursor.

2. Must declare the datatype of each parameter that has a non-char datatype.

3. May specify aliases for output parameters or selected columns.

4. Must execute the cursor, supplying in the USING clause a JAM variable
for each parameter.

The sections below describe these steps in detail. Examples follow.

Declaring the rpc Cursor

JAM/OBi uses binding to support rpcs. Therefore, to execute a stored procedure with an
rpc, the application must declare an rpc cursor. The syntax is the following:

dbms [WITH CONNECTION connectlem] \
DECLARE cursor CURSOR FOR \
RPC procedure [:: parameter [OUT] [, :: parameter [OUT] •••]]

The keyword RPC is required. Following the keyword is the name of the procedure and the
names of the procedure's parameters. All parameters must begin with a double colon, the
JAM/OBi syntax for cursor parameters. If a parameter is an output parameter, the keyword
OUT should follow the parameter name if the application is to receive its value.

16 JAM/OBi Release 5 SYBASE Notes August 92

Notes

Datatyplng the rpc Parameters

To pass parameters in their native datatypes, the application must specify a datatype for
each non-chamcter parameter. The syntax for DBMS TYPE is the following:

dbms [WITH] CURSO~t cursor TYPE [parameter] englne_datatype \
[, [parameter] enr;/ne_datatype •••]

parameter is a parameter in the DBMS DECLARE CURSOR statement englne_datatype is the
datatype of a parameter in the procedure. If parameter names are not given, the types are
assigned by position.

JAM/OBi uses the information in the DBMS TYPE statement to make the required calls 10

add parameters 10 an rpc. j)lease note that DBMS TYPE has no effect on the data formatting
performed for binding.

Redirecting the Value of Output Parameter

By default, when an rpc cursor with an output parameter is executed, JAM/OBi searches
for a JAM variable with the same name as the output parameter. To write the output value
to a JAM variable with ar.other name, use the DBMS ALIAS command.

dbms [WITH] CURSOR cursor ALIAS [outputJHIrameter] Jamvar \
[, [Qutpuf...pllrameter] Jamvar •••]

If the procedure selects rows, aliases may be given for the tables' columns. If the procedure
returns output parameters and column values, aliases should be given by name rather than
by position.

Executing the rpc Cursor

The application executes the stored procedure by executing the rpc cursor. The USING

clause must provide a JAM variable for each parameter. The syntax is the following:

dbms [WITH] CURSC·~ cursor EXECUTE \
USING [parameter =] variable [, [parameter =] variable •••]

JAM/OBi passes the name of parameter given in the DBMS DECLARE CURSOR statement,
the datatype of the parameter given in the DBMS TYP E statement, and the parameter's value
which is the value of variable.

Parameters and JAM vari~bles may be bound either by name or by position. The two forms
should not be mixed, how~ver, in one statement.

Example

If newsal is the following stored procedure,

August 92 JAM/OBi Release 5 SYBASE Notes 17

SYBASE

create proc new sal
@ssn char(ll), @change float,
@sa1ary money output, @proposed_sal money output

as
select @salary = (select sal from acc where ssn = @ssn)
select @proposed_sal = @salary * (@change + 1)

an rpc would be more efficient than an exec cursor because the procedure has an input pa
rameter with a non-char datatype, and because it returns two output parameters.

The following statement declares an rpc cursor for the stored procedure. Note that the key
word OUT follows each of the output parameters.

dbms DECLARE cur2 CURSOR FOR RPC newsal ::ssn, ::change,\
::salary OUT, ::proposed_sal OUT

Before executing the cursor, the application must specify the SYBASE datatypes for the
three non-character datatypes.

dbms WITH CURSOR cur2 TYPE \
change float, salary money, proposed_sal money

When executing the cursor, the application must provide a JAM variable for each parame
ter. JAM/OBi passes the name, datatype, and value of the parameters to the procedure. Note
that the procedure does not use the input value of the parameters salary and
proposed_sal. JAM/OBi's binding mechanism, however, requires a variable in the
USING clause for each parameter.

dbms WITH CURSOR cur2 EXECUTE \
USING ssn, change, salary, proposed_sal

The procedure passes its output, the two salary values, to the JAM variables salary and
proposed_sal. To put the output values in the fields saIl and sal2, execute the fol
lowing:

dbms WITH CURSOR cur2 ALIAS salary saIl, \
proposed_sal sal2

dbms WITH CURSOR cur2 EXECUTE USING ssn=ssn, \
change=change, salary=currency, proposed_sal=currency

Note that the variable names in the USING clause do not affect the destination of output val
ues when the cursor is executed. Only a DBMS ALIAS statement can remap the output vari
ables to other JAM variables.

Of course, this procedure may also be executed with the standard EXEC cursor. It would re
quire the following declaration,

18 JAM/OBi Release 5 SYBASE Notes August 92

dbms DECLARE cur3 CURSOR FOR \
declare @x money declare @y money \
EXEC newsal @ssn = ::ssn, @change ::change, \
@salary = @x output, @proposed_sal = @y output

Notes

dbms WITH CURSOP. cur3 EXECUTE USING ssn=ssn, change=change

1.8.2

Controlling the Execution of a Stored
Procedure
JAM/OBi provides a command for controlling the execution of a stored procedure that con
tains more than one SELE':T statemenL The command is

dbms [WITH CURSOR cUnlor] SET behavior

where behavior is one of the following

STOP AT FETCH

EXECUTE ALL

If behavior is STOP_AT_FETCH, JAM/OBi stops each time it executes a non-scalar
SELECT statement in the f.tored procedure. Therefore, a SELECT from a table will halt the
execution of the procedure. However, a SELECT of a single scalar value (i.e., using the SQL
functions SUM, COUNT, AVU, MAX. or MIN) does not halt the execution of a stored procedure.

The application may exec·:te

dbms [WITH CURSC1R cUnlor] CONTINUE

or any of the CONTINUE \anants to scroll through the selected records. To abort the fetching
of any remaining rows in the SELECT set, the application may execute

dbms [WITH CURS0R cUnlor] FLUSH

To execute the next statement in the procedure the application must execute

dbms [WITH CURSOR cUnlor] NEXT

DBMS NEXT automatically flushes any pending SELECT rows.

To abort the execution of any remaining statements in the stored procedure or the sql state
ment, the application may execute

dbms [WITH CURSOR cUnlor] CANCEL

August 92 JAM/OBi Release 5 SYBASE Notes 19

SYBASE

All pending statements are aborted. Canceling the procedure also returns the procedure's
return status code. The return code OM_END _OF _ PROC signals the end of the stored proce
dure.

If _hawor is EXECUTE ALL, JAM/OBi executes all statements in the stored procedure
without halting. If the procedure selects rows, JAM/OBi returns as many rows as can be
held by the destination variables and continues executing the procedure. The application
cannot use the DBMS CONT INUE commands to scroll through the procedure's SELECT sets.

1.8.3

Trapping a Return Code from a Stored
Procedure
JAM/OBi provides the global variable

@dmengreturn

to trap the return status code of a stored procedure. This variable is empty unless a stored
procedure explicitly sets it. Note that the variable will not be set until the procedure has
completed execution. Therefore, an application should evaluate @dmengreturn when
@dmretcode .= DM_END_OF_PROC. See Appendix B in the JAM/OBi manual for the
value of DM END OF PROC. - - -
Executing a new sql or dbms statement, clears the value of@dmengreturn.

If mul t i pl Y is the following stored procedure,

create proc multiply @ml int, @rn2 int,
@guess int output, @result int output

as
select @result = @ml * @rn2
if @result = @guess

return 1
else

return 2

the application should set up variables for the output parameters.

Either an rpc cursor or an exec cursor may be declared and executed for the procedure,

20 JAMIDBi Release 5 SYBASE Notes August 92

Notes

f RPC cursor
dbms DECLARE x CURSOR FOR \

RPC multiply ::ml, ::m2, ::guess OUT, ::result OUT
dbms WITH CURSOR x TYPE ml int, m2 int, \

guess int, result int
dbms WITH CURS Ok x ALIAS guess attempt, result answer
dbms WITH CURSOR x EXECUTE USING ml, m2, attempt, answer

f EXEC cursor
dbms DECLARE y CURSOR FOR \

declare @syb __ tmpl int \
declare @syb ___ tmp2 int \
select @syb_tmpl = ::user_guess\
EXEC multipl} @ml=::pl, @m2=::p2, \

@guess= @syb_tmpl OUT, @result= @syb_tmp2 OUT
dbms WITH CURSO~ y ALIAS guess attempt, result answer
dbms WITH CURSO~ y EXECUTE \

USING user_guess = attempt, pI = ml, p2 = m2

After executing the CurSOl, the application may test the value of@dmengreturn and dis
playa message based on the return status code.

proc check_ret
f DM_END_OF_PROC is a constant in the LOB.
if @dmretcode == OM END OF PROC
{

if @dmengretllrn == I
msg emsg "Good job!"

else if @dme~greturn == 2
msg emsg "Better luck next time."

else
{

dbms NEXT
jpl cheek_ret

return

1.9

TRANSACTIONS
On SYBASE, a transaction controls exactly one cursor. Therefore, in a JAM/OBi applica
tion a transaction controls all statements executed with a single named cursor or the default

Augusl92 JAM/OBi Release 5 SYBASE NOles 21

SYBASE

cursor. Applications that need transaction control on multiple cursors should use two-phase
commit service. The discussion of the JAM/OBi commands for two-phase commit is in
Section 1.9.2.

The following events commit a transaction on SYBASE:

• executing DBMS COMMIT

• executing a data definition command such as CREATE, DROP. RENAME, or
ALTER

The following events rollback a transaction on SYBASE:

• executing a DBMS ROLLBACK.

• closing the transaction's cursor or connection before the transaction is
committed

Note that SYBASE will not rollback remote procedure calls (rpcs) or data defmition com
mands that create or drop database objects. See the SYBASE documentation for more infor
mation on these restrictions.

1.9.1

Transaction Control on a Single Cursor
Once a connection has been declared, an application may begin a transaction on the default
cursor or on any declared cursor.

SYBASE supports the following transaction commands:

22

• DBMS [WITH CONNECTION connection] BEGIN

DBMS [WITH CURSOR cursor] BEGIN

Begin a transaction on a default or named cursor.

• DBMS [WITH CONNECTION connect/on] SAVE SIIvepo/nt
DBMS [WITH CURSOR cursor] SAVE SIIvepolnt
Create a savepoint in the transaction on a default or named cursor.

• DBMS [WITH CONNECTION connect/on] COMMIT

DBMS [WITH CURSOR cursor] COMMIT

Commit the transaction on a default or named cursor.

• DBMS [WITH CONNECTION connect/on] ROLLBACK [SIIvepo/nt]

DBMS [WITH CURSOR cursor] ROLLBACK [SIIvepo/nt]
Rollback to a savepoint or to the beginning of the transaction on a default
or named cursor.

JAM/OBi Release 5 SYBASE Notes August 92

Notes

A transaction on a default .;W'Sor controls all inserts, updates, and deletes executed with the
JPL command sql or drn _ sql. The application may set the default connection before be
ginning the transaction or it may use the WITH CONNECTION clause in each statement. A
simple transaction on a default cursor may appear as

dbms CONNECTION connection
dbms BEGIN
sql statemsnt
sql statemsnt

dbms SAVE SIIvepolnt
sql statemsnt
dbms ROLLBACK savflpo/nt
dbms COMMIT

If a named cursor is declared for multiple statements, it may be useful to execute the cursor
in a transaction. This way' the application may ensure that SYBASE executes either all of
the cursor's statements or 1I0ne of the cursor's statements. A simple transaction on a named
cursor may appear as

dbms DECLARE cursor CURSOR FOR statemsnt [statement ... 1
dbms WITH CURSOR cursor BEGIN
dbms WITH CURSOR tCUrsor EXECUTE [USING parm [parm ... 11

dbms WITH CURSOR cursor COMMIT

If necessary, the cursor may be executed more than once in the transaction. The application
should not, however, redeclare a cursor within a transaction.

Examples are shown below with error handlers.

Example 1. A Transaction on the Default Cursor

i Call the transaction handler and pass it the name
i of the subroutine containing the transaction commands.
jpl tran_handle new_employee

August 92 JAM/OBi Release 5 SYBASE Notes 23

SYBASE

proc tran_handle
{

parms subroutine
vars jpl_retcode
retvar jpl_retcode * Call the subroutine.

jpl :subroutine * Check the value of jpl_retcode. If it is 0, all statements in * the subroutine executed successfully and the transaction was
t committed. If it is 1, the error handler aborted the * subroutine. If it is -1, JAM aborted the subroutine. Execute a * ROLLBACK for all non-zero return codes.

if jpl_retcode == 0
{

msg emsg "Transaction succeeded."

else
{

msg emsg "Aborting transaction."
dbms ROLLBACK

proc new_employee
dbms BEGIN

sql INSERT INTO emp VALUES \
(:+ssn, :+last, :+first, \
:+street, :+city, :+st, :+zip)

sql INSERT INTO review VALUES \
(:+ssn, :+startdate, :+startsal, :+grade)

sql INSERT INTO acc VALUES (:+ssn, :+startsal, :+exmp)
dbms COMMIT
return 0

The procedure t ran_handle is a generic handler for the application's transactions. It is
like the one described in the Developer's Guide. The procedure new employee contains
the transaction statements. This method reduces the amount of error checking code.

The application executes the transaction by executing

jpl tran_handle new_employee

The procedure tran_handle receives the argument "new_employee" and writes it to the
variable subroutine. It defines and declares aJPL variable to receive a JPL return code.
After performing colon processing : subroutine is replaced with its value,

24 JAM/OBi Release 5 SYBASE Notes August 92

Notes

new_employee, and JPL calls the procedure. The procedure new_employee begins
the transaction, performs three inserts, and commits the transaction.

If new employee executes without any errors, it returns 0 to the variable
j pl_ r~code in the calling procedure t ran_handle. JPL then evaluates the if state
ment, displays a success Qlessage, and exits.

If however an error occurs while executing new _ employee, JAM/OBi calls the applica
tion's error handler. The error handler should display any error messages and return the
abort code, 1.

For example, assume the first INSERT in new_employee executes successfully but the
second INSERT fails because it violates the rule grade_range. In this case, JAM/OBi
calls the error handler to display an error message. When the error handler returns the abort
code 1, JAM aborts the procedure new_employee (therefore, the third INSERT is not
attempted). JAM returns 1 to jpl_retcode in the calling procedure tran_handle.
JPL evaluates the if stale ment, displays a message and executes a rollback. The rollback
undoes the insert to the table emp.

1.9.2

Transaction Control on Multiple Cursors
SYBASE provides two-phase commit service for distributed transactions. In a two-phase
commit, one main transaction controls two or more subtransactions on one or more servers.
A subtransaction is a transaction on single cursor, like those described in the section above.

With two-phase commit service using Microsoft SQL Server, the commit server and the
target server must be different servers.

The main transaction must be declared with the command

dbms [WITH CONNECTION connect~n) \
DECLARE transaction TRANSACTION FOR \
APPLICATION applkaUon SITES sUes

• connection: if no connection is given, the default connection is used; the
connection ~.ata structure stores a user login name, a server name, and an
interface me name. Since SYBASE requires that a particular server be re
sponsible for coordinating a two-phase commit, the connection declara
tion must inr.lude a server name.

• transaction: the name of the transaction; SYBASE does not permit peri
ods (.) or cc Ions (;) in a transaction name. Since "transaction" and ·'tran"
are keyword1 for both JAM/OBi and SYBASE, do not use these words for
this argument.

August 92 JAM/OBi Release 5 SYBASE Notes 25

SYBASE

• application: the name of the application; it may be any character string
that is not a keyword.

• sites: the number of cursors (i.e., subtransactions) participating in the
two-phase commit This value is used by the SYBASE commit and recov
ery systems and must be set appropriately.

Once the two-phase commit transaction is declared, its name is used to begin and to commit
or rollback the transaction. The syntax is

dbms BEGIN transaction

dbms COMMIT transaction

dbms ROLLBACK transaction

As with cursors and connections, JAM/OBi uses a data structure to manage a two-phase
commit ttansaction. This structure should be closed when the ttansaction is completed.
When the structure is closed, JAM/OBi calls the support routine to close the connection

. with the SYBASE commit service. The command is the following:

dbms CLOSE TRANSACTION transaction

Operations on a single cursor are subttansactions. To control a subttansaction in a
two-phase commit ttansaction, the following commands may be used:

dbms [WITH CURSOR cursor] BEGIN

dbms [WITH CURSOR cursor] SAVE savepo/nt

dbms [WITH CURSOR cursor] PREPARE COMMIT

dbms [WITH CURSOR cursor] COMMIT

dbms [WITH CURSOR cursor] ROLLBACK [savepo/nt]

The command DBMS PREPARE_COMMIT is an additional command required by the two
phase commit service. Executing it signals that the subtransaction has been performed and
that the server is ready is to commit the update. Once the application has "prepared" all the
subttansactions, it issues a COMMIT to the main transaction and each subttansaction.

The sequence of events in a SYBASE two-phase commit ttansaction is the following:

26

1. Declare any necessary connections and cursors.

2. Declare the main transaction.

dbms DECLARE tname TRANSACTION FOR SITES sites \
APPLICATION application

3. Begin the main transaction.

dbms BEGIN tname

JAM/OBi Release 5 SYBASE Notes August 92

4. For each subtransaction cursor, begin the subtransaction and execute the
desired operations. When all sub transactions are complete, execute a
PREPARE_COMMIT for each. In the pseudo code below there are three
subtransactions (using cursorl, the default cursor, and cursor2):

dbms WITH CURSOR cursorl BEGIN
dbms WITH CURSOR cursorl EXECUTE USING parm

dbms BEGIN
sql statement
sql statement
dbms SAVE savepoint
sql statement
dbms ROLLBACK savepoint

dbms WITH CURSOR cursor2 BEGIN
dbms WITH CURS0R cursor2 EXECUTE USING parm

dbms WITH CURSOR cursorl PREPARE COMMIT
dbms PREPARE COMMIT
dbms WITH CURSOR cursor2 PREPARE COMMIT

5. Commit the main transaction.
dbms COMMIT tname

6. Commit each subtransaction indicating a named or default cursor.
dbms WITH CURSOR cursorl COMMIT
dbms COMMIT
dbms WITH CURSOR cursor2 COMMIT

7. Close the transaction.
dbms CLOSE TRANSACTION tname

Notes

It is strongly recommended that the application use an error handler while the transaction is
executing. If an error occurs while executing a command in the subtransaction (i.e., execut
ing a sql statement or a named cursor) the application should not continue executing the
transaction.

An example with an error handler follows.

ttttttttt.ttt.tttt.ttt •• ttt •• tt •• tttt.t •• ttttttt.tttt.tt
t Declare connections and specify servers.
dbms DECLARE cl CONNECTION \

FOR USER :uid PASSWORD :pwd SERVER maple \
INTERFACES '/usr/sybase/interfaces.ny'

dbms DECLARE c2 CONNECTION \
FOR USER :uid PASSWORD :pwd SERVER juniper

August 92 JAM/OBi Release 5 SYBASE Notes 27

SYBASE

28

• Declare cursors .
• Use :: to insert a value when the cursor is executed,
i not when the cursor is declared.
dbms WITH CONNECTION c1 DECLARE x CURSOR FOR INSERT \

emp (ss, last, first, street, city, st, zip, grade) \
VALUES (::ss, ::last, ::first, ::street, ::city, \
::st, ::zip, ::grade)

dbms WITH CONNECTION c2 DECLARE Y CURSOR FOR INSERT \
acc (ss, sal, exmp) VALUES (::ss, ::sal, ::exmp)

itt.t •• t.ti •• it ••••••• ttttt.tti.t.t.t ••• tt •• t.tt •••• iii.
proc 2phase
vars retval
call sm s val
if ret val
{

msg reset "Invalid entry."
return

dbms WITH CONNECTION c1 DECLARE new_emp TRANSACTION \
FOR APPLICATION personnel SITES 2

dbms ONERROR JPL tran error
jpl do_tran
if ! (retval)

msg emsg "Transaction succeeded."
else
{

dbms ROLLBACK newemp
if retval >- 100

dbms WITH CURSOR x ROLLBACK
if retval >a 200

dbms WITH CURSOR Y ROLLBACK

dbms ONERROR CALL generic_errors
dbms CLOSE TRANSACTION new_emp
return

proc do_tran
i Begin new_emp and set the flag tran_level (LDB var)
dbms BEGIN new_emp

dbms WITH CURSOR x BEGIN
cat tran level "1"
dbms WITH CURSOR x EXECUTE USING \

(ss, last, first, street, city, st, zip, grade)

JAM/OBi Release 5 SYBASE Notes August 92

dbm5 WITH CURSOR Y BEGIN
cat tran_level" "2"
dbm5 WITH CURS.)R Y EXECUTE USING \

(55, 5tartsal, exemptions)

dbms WITH CURSOR x PREPARE_COMMIT
dbms WITH CURSOR Y PREPARE_COMMIT

* Execute commits.
dbms COMMIT new _ elnp

dbms WITH CURSOR x COMMIT
dbms WITH CUR~OR Y COMMIT

msq emsq "Insert completed."
cat tran_level ""
return

*ititi.t.tiitttiiitttt.i*i*iiii*iiittiiiit ••••• iii.iiiit
proc tran_error
vars fail_area [21 (20), tran_err(3)
cat fail_area [11 ~'address"

cat fail_area[21 "accountinq data"

if tran level ! co "'"

{

• Display an error messaqe describinq the failure.
msq emsq "%WTransaction failed. Unable to insert \

: fail_area [tran_levell because of " @dmenqerrmsq
math tranerr .. tran_level * 100
cat tran_level ""
return :traner-r

msq emsq @dmenqercmsq
return 1

1.10

SYBASE-SPECIFIC COMMANDS

Notes

See JAM/OBi Manual- Chapter 11

JAM/OBi for SYBASE provides additional commands for SYBASE-specific fealUres. If
you are using multiple engines or are porting an application to or from another engine,
please note that these commands may work: differently or may not be supported on some
engines.

August 92 JAM/OBi Release 5 SYBASE Notes 29

SYBASE

1.10.1

Using Browse Mode
. BROWSE

UPDATE

1.10.2

execute a SELECT for browsing

update a table while browsing

Using Stored Procedures
CANCEL abort execution of a stored procedure

DECLARE CURSOR FOR RPC declare a cursor to execute a stored procedure using a
remote procedure call

FLUSH abort execution of a stored procedure

NEXT

SET

execute the next statement in a stored procedure

set execution behavior for a procedure (execute all,
stop at fetch, etc.)

TYPE set data types for parameters of a stored procedure
executed with an rpc cursor

1.10.3

Using Transactions
JAM/OBi supports the following commands when using transactions. See the reference
pages for more information on each command.

lJEGIN begin a transaction

CLOSE ALL TRANSACTIONS close all transactions declared for two-phase commit

CLOSE TRANSACT ION close a named transaction

COMMIT commit a transaction

DECLARE TRANSACT ION declare a transaction for two-phase commit

PREPARE COMMIT prepare to commit a transaction

30 JAM/OBi Release 5 SYBASE Notes August 92

ROLLBACK

SAVE

August 92

rollback a transaction

save a two-phase commit

JAM/OBi Release 5 SYBASE Notes

Notes

31

SYBASE

BEGIN
start a transaction
lS!!eSSSBBBSBBSSS8!S8!!9Si9iS99!899i9!9181188666658858!S9988ii98899iiSimiiiiSiliOliiiimmiiiSJI6i6Si68888S8Si8liS8Sii!iilmmSmmSmmiiBilOiiiliiliiii:S8S,S8!89I1BiiiliBE

SYNOPSIS

dbms [WITH CONNECTION connection] BEGIN
dbms [WITH CURSOR cunror] BEGIN

dbms BEGIN lWo....Ph ••• _commlt

DESCRIPTION

This command sets the starting point of a transaction. It is available in two contexts. It can
stan a transaction on a single cursor or it can stan a distributed transaction which may in
volve multiple cursors on different servers.

A transaction is a logical unit of work on a database contained within DBMS BEGIN and
DBMS COMMIT statements. DBMS BEGIN dermes the start of a transaction. Once a transac
tion is begun, changes to the database are not committed until a DBMS COMMIT is executed.
Changes are undone by executing DBMS ROLLBACK.

If a WITH CURSOR clause is used in a DBMS BEGIN statement, JAM/OBi begins a transac
tion on the named cursor. If a WITH CONNECT ION clause is used, JAM/OBi begins a trans
action on the default cursor of the named connection. If no WITH clause is used, JAM/OBi
begins a transaction on the default cursor of the default connection.

To begin a distributed transaction (two-phase transaction), first declare a named transaction
with DBMS DECLARE TRANSACTION. Since this statementsupports a WITH CONNECTION

clause, JAM/OBi associates the transaction name with a particular connection; the connec
tion's server is the coordinating server for the distributed transaction. When the application
executes DBMS BEGIN lWo....Pha •• _commltwhere lWo....Ph ••• _commltis the name of the de
clared transaction, JAM/OBi starts the transaction on the coordinating server.

Be sure to terminate the transaction with a DBMS ROLLBACK or DBMS COMMIT before
logging off. Note that JAM/OBi will not close a connection with a pending two-phase com
mit transaction.

SEE ALSO

Section J .9 - Transactions.

Documentation provided by the database vendor.

32 JAM/OBi Release 5 SYBASE Noles August 92

RELATED COMMANDS

dbms COMMIT

dbms ROLLBACK

dbms SAVE

EXAMPLE

Refer to the examples b Section 1.9 - Transactions.

August 92 JAM/OBi Release 5 SYBASE Notes

Notes

33

SYBASE

BROWSE
retrieve SELECT results one row at a time

Mm

SYNOPSIS
dbms BROWSE SELECT.Im'

DESCRIPTION

This command allows an application to execute a SELECT in "browse" mode. This means
that SYBASE will return the SELECT rows one at a time to the JAM/OBi application; SY
BASE will not set any shared locks for the SELECT. The application may use the companion
command DBMS UPDATE to update the current row. SYBASE will verify that the row has
not been changed before it issues the UPDATE.

To use browse mode, the table being updated must have a timestamp column and a unique
index. A row's timestamp indicates the last time the row was updated. If the timestamp has
not changed since DBMS BROWSE was executed, the application may UPDATE the row. If the
timestamp has changed, then some other user or application has updated the row after DBMS

BROWSE was executed. The update is aborted and an error is returned.

Browse mode requires a connection with two default cursors. The application must open the
browse mode connection by setting the CURSORS option to 2. JAM/OBi uses one default
cursor to select the rows and the other default cursor to update the rows.

It is the programmer's responsibility to determine whether a table is browsable. It the table
is not browsable, JAM/OBi returns the DM _BAD _ ARGS error. If a table is browsable,
JAM/OBi returns the first row in the select set when DBMS BROWSE is executed. Note that
only row is returned at a time.

To view the next row, the application must execute DBMS CONTINUE.

RELATED COMMANDS
dbms CONTINUE

dbms FLUSH

dbms UPDATE

EXAMPLE

* Browse mode requires a connection declared with 2 * cursors.
dbms DECLARE browse_con CONNECTION FOR \

USER :user PASSWORD :pass SERVER :server CURSORS 2

34 JAM/OBi Release 5 SYBASE Notes August 92

Notes

proc start_browse_mode
dbms CONNECTION browse con
dbms BROWSE SELECT ss, last, first, sal FROM employee
return

proc update_browse_row
* Allow the user to update the employee salary. OBi builds * the WHERE clause to identify this row.

dbms UPDATE ~mployee SET sal = :+sal
return

proc next_browsc __ row * Fetch the next row.
dbms CONTINUE..
return

August 92 JAM/OBi Release 5 SYBASE Notes 35

SYBASE

CANCEL
cancel the execution of a stored procedure

SYNOPSIS

dbms [WITH CURSOR cursor] CANCEL

DESCRIPTION

This command cancels any outstanding work on the named cursor. In particular, this com
mand may be used to cancel a pending stored procedure. When the statement is executed,
the following operations are performed:

• any rows to be fetched are flushed

• any remaining unexecuted statements are ignored

• the procedure's return status code is returned

If the WITH CURSOR clause is not used, JAM/OBi executes the command on the default
cursor.

SEE ALSO

. Section J .8 - Stored Procedures.

RELATED COMMANDS
dbms FLUSH

·36 JAM/OBi Release 5 SYBASE Notes August 92

Notes

CLOSE ALL TRANSACTIONS
close all transactions declared for two-phase commit
~W,!SJ:i3iI3'3888383!!S88S1383iiE383833S8Sre!lre.$S:9;mi;8EIEEI!!li3888188S88iili8388888ISS3S888388!8!!iil!ii!iOl,EI1888!:li38E18E11833!83888888388838888338888918888898881

SYNOPSIS

dbms CLOSE ALL TRANSACTIONS

DESCRIPTION

This command auempts to close all transactions declared for two-phase commit with DBMS

DECLARE TRANSACTION. If the transaction has not been terminated by a COMMIT or
ROLLBACK, JAM/OBi will return the error DM_TRAN_PENDING.

If an application terminates with a pending two-phase commit transaction, SYBASE will
mark the transaction's process as "infected." You will need the system administrator to de
lete the infected process. To help prevent this, JAM/OBi will not close a connection unless
aU two-phase commit transactions have been closed. Furthermore, JAM/OBi will not close
a two-phase commit transaction unless the application explicitly terminated the transaction
with a DBMS COMMIT twoJJhsse_commllor DBMS ROLLBACK Iwo-phsse_comm/t

Since this command verifies that all two-phase commit transactions were terminated, you
may wish to call this command before logging off.

SEE ALSO

Section 1.9 - Transactions.

RELATED COMMANDS
dbms BEGIN

dbms CLOSE TRANSACTION

dbms COMMIT

dbms DECLARE TRANSACTION

dbms ROLLBACK

EXAMPLE

proc cleanup
dbms ONERROR JPL cleanup_failure
dbms CLOSE_ALL_TRANSACTIONS
dbms CLOSE_ALL_CONNEC~IONS
return

August 92 JAM/OBi Release 5 SYBASE Notes 37

SYBASE

38

* APPl = Ajpl two-phase_cleanup
proc cleanup_failure

parms stmt engine flag
if @dmretcode == DM_TRAN_PENDING
{

call jm_keys APPl

return 0

proc two-phase_cleanup
dbms ROLLBACK ...
dbms CLOSE TRANSACTION
return

JAM/OBi Release 5 SYBASE Notes August 92

Notes

CLOSE TRANSACTION
close a declared transaction structure

SYNOPSIS

dbms CLOSE TRANSACTION transscrIon

DESCRIPTION

This command closes the main transaction which was previously defined using DBMS

DECLARE TRANSACTION. A main transaction controls the execution of a two-phase com
mit process. This command signals the completion of the main transaction and closes the
SYBASE Sb'Uctures associated with the transaction.

An error code is returned if a transaction was pending. An application cannot close a con
nection with an open transaction.

SEE ALSO

Section 1.9 - Transacti,'ns.

RELATED COMMANDS

dbms BEGIN

dbms COMMIT

dbms DECLARE TRANSACTION

dbms PREPARE COMMIT

dbms ROLLBACK

dbms SAVE

August 92 JAM/OBi Release 5 SVBASE Notes 39

SYBASE

COMMIT
commit a transaction

SYNOPSIS
dbms [WITH CONNECTION connection] COMMIT
dbms [WITH CURSOR CUI'801'] COMMIT

dbms COMMIT lWo....,Ph ... _commll

DESCRIPTION
Use this command to commit a pending transaction. Committing a transaction saves all the
work since the last COMM I T. Changes made by the transaction become visible to other users.
If the transaction is tenninated by DBMS ROLLBACK, the updates are not committed, and the
database is restored to its state prior to the start of the transaction.

This command is available in two contexts. It can commit a transaction on a single cursor
or it can commit a two-phase commit transaction. If a WITH CURSOR clause is used in a
DBMS COMMIT statement, JAM/OBi commits the transaction on the named cursor. If a
WITH CONNECTION clause is used, JAM/OBi commits the transaction on the default cur
sor of the named connection. If no WI TH clause or no distributed transaction name is used,
JAM/OBi commits the transaction on the default cursor of the default connection.

If a distributed transaction name is used, JAM/OBi issues the commit to the coordinating
server. If this is successful, the application should issue a DBMS COMM IT for each subtrans
actions. A WITH CURSOR or WITH CONNECTION clause is required for a subtransaction on
a named cursor or a subb'ansaction on the default cursor of a non-default connection.

SEE ALSO
Section 1.9 - Transactions.

RELATED COMMANDS
dbms BEGIN

40

dbms CLOSE TRANSACTION

dbms DECLARE TRANSACTION

dbms PREPARE COMMIT

dbms ROLLBACK

dbms SAVE

JAM/OBi Release 5 SYBASE Notes August 92

Notes

EXAMPLE

Refer to the example in Section 1.9 - Transactions.

August 92 JAM/OBi Release 5 SYBASE Notes 41

SYBASE

DECLARE CURSOR FOR RPC
declare a named cursor for a remote procedure

iiiliii"

SYNOPSIS

dbms [WITH CONNECTION connection] DECLARE cunor CURSOR \
FOR RPC procedure [:: parameter [OUT] [dallItype] \
[, :: parameter [OUT] [dsllItype] •••]]

DESCRIPTION

Use this command to create or redeclare a named cursor to execute a remote procedure call
(rpc). Since JAM/OBi uses its binding mechanism to support rpc's, the default cursor can
not execute an rpc.

The keyword RPC is required. Following the keyword is the name of the procedure and the
names of the procedure's parameters. All parameters must begin with a double colon, which
is the JAM/OBi syntax for cursor parameters. If a parameter is an output parameter, the
keyword OUT should follow the parameter name if the application is to receive its value. A
parameter's datatype may be given in the DBMS DECLARE CURSOR statement, or in a DBMS

TYPE statement.

The application executes an rpc cursor as it executes any named cursor, with DBMS

EXECUTE.

SEE ALSO

Section 1.8 - Stored Procedures.

@dmengreturn

RELATED COMMANDS

dbms CLOSE CURSOR

dbms WITH CURSOR cursor EXECUTE

dbms TYPE

WITH CURSOR

EXAMPLE

Refer to the example in Section 1.8 - Stored Procedures.

42 JAM/OBi Release 5 SYBASE Notes August 92

DECLARE TRANSACTION
declare a named. transaction for two phase commit

SYNOPSIS

dbms [WITH CONNECTION connection] \
DECLARE transaction TRANSACTION FOR \
SITES .11 •• APPLICATION appllcallon

DESCRIPTION

This command declares a two-phase commit transaction structure.

Notes

The WITH CONNECT ION clause identifies the server which will coordinate the distributed
transaction. H the clause is not used, the server of the default connection is used. Be sure to
name the server when declaring the connection.

Iransactlon is the name of the two-phase commit transaction. Do not use the keywords
"tran" or "transaction" for this argumenL The application will use this name to begin, to
commit or rollback, and to close the transaction .

• It •• is the number of subtransactions involved in the distributed transaction. Each cursor
where a BEGIN is issued is a subtransaction. This number is critical to recovery if the trans
action fails.

appl'caUon is an optional argument which identifies the name of the transaction.

The application must use tran.acllon to begin and commit or rollback the two-phase com
mit.

After declaring the transaction, begin the transaction using DBMS BEGIN. When the trans
action is complete, close the transaction using either CLOSE TRANSACTION or
CLOSE_ALL_TRANSACTIONS. An application must close all declared transactions before
closing their connections.

SEE ALSO

Section 1.9 - Transactions.

RELATED COMMANDS

dbms CLOSE TRANSACTION IransacUon

EXAMPLE
Refer to the examples in Section 1.9 - Transactions.

August 92 JAM/OBi Release 5 SYBASE Notes 43

SYBASE

FLUSH
flush any selected rows not fetched to JAM variables
11!!!!IIB!I!!I!!B!!ISOlS"sewlSs!:S!!>:!:[mm[IIB!IISlli:!imsml[lltl111!!!IS!!S!ISSBIIII!ISSIIBISBBS,BS:!I!SBBSSI!IS[IB8I81IS1SSS1S!!il,m:smsmmlillllliIIIISSSSII[IISSE

SYNOPSIS

dbms [WITH CURSOR cursor] FLUSH

DESCRIPTION

Use this command to throwaway any unread rows in the SELECT set of the default or
named cursor.

This command is often useful in applications that execute a stored procedure. If the stored
procedure executes a SELECT, the procedure will not return the DM _END_OF _ PROC signal if
the SELECT set is pending. The application may execute DBMS CONTINUE until the
DM_NO_MORE_ROWS signal is returned, or it may execute DBMS FLUSH which cancels the
pending rows .

. This command is also useful with queries that fetch very large SELECT sets. The application
may execute DBMS FLUSH after executing the SELECT, or after a defined time-out interval.
This guarantees a release of the shared locks on all the tables involved in the fetch. Of
course, once the rows have been flushed, the application may not use DBMS CONTINUE to
view the unread rows.

RELATED COMMANDS

dbms DECLARE CURSOR

dbms CANCEL

dbms CONTINUE

dbms NEXT

EXAMPLE

44

proc large_select * Do not allow the user to see any more rows than
* can be held by the onscreen arrays.
sql SELECT * FROM cities_data
if @dmretcode != DM_NO_MORE_ROWS

dbms FLUSH
return 0

JAM/OBi Release 5 SYBASE Notes August 92

Notes

NEXT
execute the next statement in a stored procedure

SYNOPSIS

dbrns [WITH CURSOR cUISQr] NEXT

DESCRIPTION

Unless DBMS SET equals EXECUTE _ALL, an application must execute DBMS NEXT after a
stored procedure returns one or more SELECT rows to JAM. DBMS NEXT executes the next
stalement in the stored procedure. If the application executes DBMS NEXT and there are no
more statements to execute, JAM/OBi returns the DM _END _OF _ PROC code.

If a cursor is associated with two or more SQL statements and DBMS SET equals
STOP _AT _FETCH, the application must execute DBMS NEXT after each SELECT that returns
rows to JAM. If DBMS SET equals SINGLE_STEP, the application must execute DBMS
NEXT after each statement, including non-SELECT stalements. If the application execules
DBMS NEXT afler all of the cursor's statements have been executed, JAM/OBi returns the
DM END OF PROC code. - - -

SEE ALSO

Section 1.8 - Stored Procedures.

RELATED COMMANDB

dbrns DECLARE Cm:SOR

dbrns CANCEL

dbrns CONTINUE

dbrns FLUSH

dbrns SET [EXECU~E_ALL

EXAMPLE

SINGLE STEP

Refer to the example in Section 1.8 - Stored Procedures.

STOP AT FETCH

August 92 JAM/OBi Release 5 SYBASE Notes 45

SYBASE

PREPARE COMMIT
prepare a two phase commit

SYNOPSIS

dbms [WITH CURSOR c:uISor] PREPARE COMMIT

DESCRIPTION

Use of this command is required during the two-phase commit service. It needs to be
executed for each subtransaction when the subtransaction has been performed. Execution
of this command signals the application that the server is ready to commit the update. Once
the application has "prepared" all the subtransactions, it needs to issue a DBMS COMMIT to
the main transaction and to each subtransaction.

If the WITH CURSOR clause is not used, JAM/OBi issues the command on the default cur
sor.

SEE ALSO

Section 1.9 - Transactions

RELATED COMMANDS

dbms BEGIN

dbms CLOSE TRANSACTION

dbms COMMIT

dbms DECLARE TRANSACTION

dbms ROLLBACK

dbms SAVE

EXAMPLE

Refer to the example in Section 1.9 - Transactions.

46 JAM/OBi Release 5 SYBASE Notes August 92

ROLLBACK
rollback a transaction
~:m m C::-:::~:m

SYNOPSIS
dbms [WITH CONN~CTION connection] ROLLBACK sa.,.polnt
dbms [WITH CURSOR cUI'8or] ROLLBACK savepolnt

dbms ROLLBACK tMJJ'h"s._c:ommlt

DESCRIPTION

Notes

m~mm::c

Use this command to rollback a transaction and restore the database to its state prior to the
start of the b'ansaction.

This command is available in two contexts. It can rollback a transaction on a single cursor,
or it can rollback a two-J:!1ase rollback transaction. If a WITH CURSOR clause is used in a
DBMS ROLLBACK statemr.nt, JAM/OBi rollbacks the transaction on the named cursor. If a
WI TH CONNECT ION clause is used, JAM/OBi rollbacks the transaction on the default cur
sor of the named connection. If no WITH clause or no distributed transaction name is used,
JAM/OBi rollbacks the transaction on the default cursor of the default connection.

If a distributed transaction name is used, JAM/OBi issues the rollback to the coordinating
server. The application should also issue a DBMS ROLLBACK for each subtransaction. A
WITH CURSOR or WITH ':ONNECTION clause is required for a subtransaction on a named
cursor or a subtransaction on the default cursor of a non-default connection.

SEE ALSO
Section 1.9 - Transact!f'JnS

RELATED COMMANDB
dbms BEGIN

dbms COMMIT

dbms DECLARE TRl'.NSACTION

dbms PREPARE Cm4MIT

dbms ROLLBACK

dbms SAVE

EXAMPLE
Refer to the example in Section 1.9 - Transactions.

August 92 JAM/OBi Release 5 SYBASE Notes 47

SYBASE

SAVE
set a savepoint or checkpoint within a transaction

SYNOPSIS

dbms [WITH CONNECTION connecUon] SAVE 8llvepo/nt
dbms [WITH CURSOR CUl3or] SAVE •• vepolnt

DESCRIPTION

This command creates a savepoint in the transaction. A savepoint is a pointer set by the
programmer within a transaction. When a savepoint is set, the procedures following the
savepointcan be cancelled using DBMS ROLLBACK •• vepo/nt.

When the transaction is rolled back to a savepoint, the transaction must then be completed
or completely rolled back to the beginning .

. SEEALSO

Section 1.9 - Transactions

RELATED COMMANDS

dbms BEGIN

dbms COMMIT

dbms DECLARE TRANSACTION

dbms PREPARE COMMIT

dbms ROLLBACK

dbms SAVE

EXAMPLE

Refer to the example in Section 1.9 - Transactions.

48 JAM/OBi Release 5 SYBASE Notes August 92

Notes

SET
set handling for a cursor that executes a stored procedure
or multiple statements
lSSSiEiUlWlSJuJm![)!8!!!sti8iiS!!SI!!!I!~II!lumi!Sii!!i!i!iiuSl!iii!!i!li!!:n~!mu!!iiiiuSlu!!uuSllluuS!BBu!l!ii55!!I!!5!!ISIsmSllSI

SYNOPSIS

dbms [WITH CURSOR cu~,] SET \
[EXECUTE_ALL I SINGLE STEP I STOP_AT_FETCH]

DESCRIPTION
This command controls the execution of a stored procedure or a cursor with multiple state
ments. Its options are

EXECUTE ALL

SINGLE STEP

Specifies that the DBMS return control to JAM/OBi only
when all statements have been executed or when an error oc
curs. If a SELECT is executed, only the first pageful of rows
is returned to JAM variables. This option may be set for a
multi-statement or a stored procedure cursor.

Specifies that the DBMS return control to the JAM Execu
tive after executing each statement belonging to the multi
statement cursor. After each SELECT, the user may press a
function key to execute a DBMS CONTINUE and scroll the
SELECT set. To resume executing the cursor's statements, the
application must execute DBMS NEXT. This option may be
set for a multi-statement cursor. If this option is used with a
stored procedure cursor, JAM/OBi uses the default setting
STOP_AT_FETCH.

STOP AT FETCH Specifies that the DBMS return control to the JAM Execu
tive after executing a SELECT that fetches rows. (Note that
control is not returned for a SELECT that assigns a value to a
local SYBASE parameter.) The application may use DBMS

CONT INUE to scroll through the SELECT seL To resume ex
ecuting the cursor's statements or procedure, the application
must execute DBMS NEXT. This option may be set for a mul
ti-statement or a stored procedure cursor.

The default behavior for both stored procedure and multi-statement cursors is
STOP _ AT_FETCH. Executing DBMS SET with no arguments restores the default behavior.

August 92 JAM/OBi Release 5 SYBASE Notes 49

SYBASE

SEE ALSO
Section 1.8 - Stored Procedures

RELATED COMMANDS
dbms CANCEL

dbms CONTINUE

dbms DECLARE CURSOR

dbms DECLARE CURSOR FOR EXEC

dbms DECLARE CURSOR FOR RPC

dbms FLUSH

dbms NEXT

EXAMPLE

50

vars DM_NO_MORE_ROWS(5) DM_END_OF_PROC(5)
cat DM_NO_MORE_ROWS "53256"
cat DM END OF PROC "53270"

dbms DECLARE x CURSOR FOR ,
SELECT company, street, city, st, zip ,

FROM client_list WHERE co_id = ::company_id ,
INSERT INTO contacts VALUES ,

(: :newfirst, : :newlast, : :newloc, : :newphone) ,
SELECT first, last, location, phone FROM contacts ,

WHERE co_id = ::company_id
msg d_msg "%KPFl START %KPF2 SCROLL SELECT'

%KPF3 EXECUTE NEXT STEP"

proc f1
dbms WITH CURSOR x SET SINGLE STEP
dbms WITH CURSOR x EXECUTE USING company_id, newfirst, ,

newlast, newloc, newphone, company_id
dbms WITH CURSOR x SET
return

proc f2 * This function is called by the PF2 key.
dbms WITH CURSOR x CONTINUE
if @dmretcode == DM_NO_MORE_ROWS

msg emsg "AII rows displayed."

JAM/OBi Release 5 SYBASE Notes AugUSl92

return

proc f3 * This function is called by the PF3 key.
dbms WITH CURSOP. x NEXT
if @dmretcode == DM_END_OF_PROC

msg emsg "Done!"
return

August 92 JAM/OBi Release 5 SYBASE Notes

Notes

51

SYBASE

SET BUFFER
set up a buffer for engine-supported scrolling
SS8SS8SSSSSSSSSSSSSliiSS8SSSSSSmSS3!:SmiS:SiSSSSismssssssssssS!S8SS!8!SlSSSSSS:S!!S8SSSSS!O!!lSSS!OJSiiSSSSSSiSiS,mSSSSSSiiSS8S!SSSSSS!8!SSSSiSS8lS!8IlJSSSllSSSi!S8SmSmilB

SYNOPSIS

dbms [WITH CURSOR cursor] SET BUFFER [number_ot.rowa]

DESCRIPTION
SYBASE supports non-.sequential scrolling if the application has set up a buffer for result
rows. If an application does not need DBMS CONTINUE_UP or is using a continuation file
(DBMS STORE FILE), this command is not needed.

number_ot.rows is the number of rows SYBASE will butTer. To be useful, number_otrows
should be greater than the number of occurrences in the JAM destination fields.

When this command is used with a SELECT cursor, SYBASE saves the specified number of
result rows of the SELECT in memory. When the application executes DBMS

CONTINUE_BOTTOM, DBMS CONTINUE_TOP, or DBMS CONTINUE_UP commands, the re
sult rows in memory are returned.

The buffer is maintained for the life of the cursor, or until the butTer is released with the
command,

dbms [WITH CURSOR cursor] SET_BUFFER

Executing the command without supplying the number_ ot.rows argument turns otT the fea
ture for the named or default cursor and frees the butTer. Note that redeclaring the cursor
does not free the buffer. Closing the cursor does release the buffer.

Because the use of this command is expensive (approximately 2K of memory per row), it
should be used only if the application needs non-sequential scrolling but cannot use scrol
ling arrays or a continuation fIle. The application should tum otT DBMS SET_BUFFER when
finished with the SELECT set.

SEE ALSO

dbms STORE [FILE [filename]]

RELATED COMMANDS

dbms CONTINUE BOTTOM

52

dbms CONTINUE TOP

dbms CONTINUE UP

JAM/~B; Release 5 SYBASE Notes August 92

EXAMPLE
dbms DECLARE emp_cursor CURSOR FOR SELECT * FROM emp
dbms WITH CURSOR emp_cursor SET_BUFFER 500

proc scroll_up
dbms WITH CURSOR emp_cursor CONTINUE UP
return

proc scroll_down
dbms WITH CURSOR emp_cursor CONTINUE DOWN
return

August 92 JAM/OBi Release 5 SYBASE Notes

Notes

53

SYBASE

TRANSACTION
set a default declared two-phase commit transaction

SYNOPSIS

dbms TRANSACTION variable

DESCRIPTION

If an application has declared more than one two-phase commit transaction, it may use this
command to set the default two-phase commit transaction for a subtransaction.

RELATED COMMANDS

dbms BEGIN

54

dbms COMMIT

dbms DECLARE TRANSACTION

dbms PREPARE COMMIT

dbms ROLLBACK

dbms SAVE

JAM/OBi Release 5 SYBASE Notes August 92

Notes

TYPE
declare parameter datatypes for an rpc cursor
BSSIE!SESSSS!i!SSiiSBSSBSSSIBSBSSBIEssssmmilBSilBi li!!iSSSSIISISs,ssssmlSSSSiSSSSli'i!;i SSSSSlSSiSSiCSiSI3:iSSS!SlSSSSSSssSSSSSSSII!SS!!CC3SilliSSCi8SSSSSSSmsssssSSSSSS!SIES~

SYNOPSIS

dbms WITH CURsor. curs"r TYPE psrllmeter dlltatyps \
[, parsmeter da"Jtype ••• 1

DESCRIPTION
If an application has declared a cursor for a remote procedure call ("rpc") but has not de
clared the datatypes of the procedure's parameters, it should use the DBMS TYPE command.

pllr.meter is the name of a parameter in the stored procedure and in the DBMS DECLARE

CURSOR statemenL datatype is the dalatype of the parameter in the slOred procedure. JAM!
OBi uses the infonnation slJpplied with this command 10 execute the remote procedure call.
Please note that these datatypes have no effect on any data fonnatling perfonned by colon
plus processing or binding.

Executing this command with no arguments deletes aU type infonnalion for the named cur
sor.

SEE ALSO
Section 1.8 - Stored Pr.1cedures

RELATED COMMAND~;
dbms DECLARE cu",,,r CURSOR FOR RPC procedUI'fI \

[: : psrsmeter [OUT 1 datatype [, :: pllrsmeter [OUT 1 datatype ••• 1

dbms DECLARE cul'SDr CURSOR FOR RPC prot:edUl'fl \
[: : psl'llmeter [OU'l] [, :: psrameter [OUT 1 ••• 1

EXAMPLE
######11#1#111##11#####1##11#11#1##1#1###1#1#1#111#111#1
#procedure newsal:
#create proc newsal @ss char(11), @change float,
@salary money output, @proposed_sal money output
1 as
1 select @salary = (select sal from acc where ss = @ss)
1 select @proposed_sal = @salary * (@change + 1)
#11#111#1#11###*11#1111111*11#111111111111111111111111II

August 92 JAM/OBi Release 5 SYBASE Notes 55

SYBASE

56

dbms DECLARE sal_cursor CURSOR FOR \
RPC newsal ::ss, ::change, ::salary OUT, \

::proposed_saIOUT

dbms WITH CURSOR sal cursor TYPE \
change float, salary money, proposed_sal money

dbms WITH CURSOR sal_cursor EXECUTE \
USING ss, change, salary, proposed_sal

JAM/OBi Release 5 SYBASE Notes August 92

Notes

UPDATE
update a table while browsing
~)S:

SYNOPSIS

dbms UPDATE ~bM SET ~umn ",,'ue [, column = ",,'ue ...]

DESCRIPTION

Browse mode permits an application to browse through a SELECT set, updating a row at a
time. Browse mode is useful for an application that wants to ensure that a row has not been
changed in the interval between the fetch and the update of the row.

When DBMS BROWSE is executed, it fetches the rows in the SELECT set one at a time. The
application should provide two other procedures to execute DBMS CONTINUE and DBMS

UPDATE.

Please note that the DBMS UPDATE statement has no WHERE clause. JAM/OBi calls a SY
BASE routine to build a where clause using the unique index of the current row and the
value of its timestamp cotumn when the row was fetched. If the timestamp value has not
been changed, the row is updated. However, if the timestamp value has changed, then
another user has modifieci the row since the application executed DBMS BROWSE; in this
case SYBASE will not perform the update.

RELATED COMMANDS

dbms BROWSE

dbms CANCEL

dbms CONTINUE

dbms FLUSH

EXAMPLE

See manual page for DBMS BROWSE.

Augusl92 JAM/OBi Release 5 SYBASE NOles 57

SVBASE

USE
open an existing database

SYNOPSIS

dbms [WITH CONNECTION connection] USE datab .. e

DESCRIPTION
This command changes a connection's default database. database must be an existing data
base, and the user must have the appropriate permissions to use the database or else JAM!
OBi returns an error.

RELATED COMMANDS

dbms DECLARE connect/on CONNECTION FOR [USER us.r [PASSWORD
password]] [SERVER server] [DATABASE database] [CURSORS [112]]
[INTERFACES filename] [TIMEOUT seconds]

EXAMPLE

58

dbms DECLARE c1 CONNECTION FOR \
USER :uname PASSWORD :pword SERVER :server \
DATABASE master

sq1 SELECT * FROM emp
dbms WITH CONNECTION c1 USE projects
sql SELECT * FROM newjobs

JAM/OBi Release 5 SVBASE Notes August 92

Notes

1.11

COMMAND DIRECTORY FOR SYBASE
This section contains a directory for all the commands available in JAM/OBi for SYBASE.
The following table lists the command. a short description of the command. and the location
of the reference page for that command. If the location is described as SYBASE Notes. that
information is enclosed in this document.

Command Description Documentation

ALIAS name a JAM variable as the destina- JAM/OBi
tion of a selected column or aggregate Manual
function

BEGIN begin a transaction SYBASE Notes

BINARY create a JAM/OBi variable for fetch- JAM/OBi
ing binary values Manual

BROWSE execute a SELECT for browsing SYBASE Notes

CANCEL abort execution of a stored procedure SYBASE Notes

CATQUERY redirect SELECT results to a file or a JAM/OBi
JAM variable Manual

CLOSE_ALL_CONNECTIONS close all connections on all engines JAM/OBi
Manual

CLOSE ALL TRANSACTIONS close all transactions SYBASE Notes

CLOSE CONNECT ION close a named connection JAM/OBi
Manual

CLOSE CURSOR close a cursor JAM/OBi
Manual

CLOSE TRANSACTION close a named transaction SYBASE NOles

COMMIT commit a transaction SYBASE Notes

CONNECTION set a default connection and engine JAM/OBi
for the application Manual

August 92 JAM/OBi Release 5 SYBASE Notes 59

SYBASE

Command Description Documentalion

CONTINUE fetch the next screenful of rows from JAM/OBi
a SELECT set Manual

CONTINUE BOTTOM fetch the last screenful of rows from a JAM/OBi
SELECT set Manual

CONTINUE DOWN fetch the next screenful of rows from JAM/OBi
a SELECT set Manual

CONTINUE TOP fetch the first screenful of rows from JAM/OBi
a SELECT set Manual

CONTINUE UP fetch the previous screenful of rows JAM/OBi
from a SELECT set Manual

DECLARE CONNECTION declare a named connection to an en- JAM/OBi
gine Manual

DECLARE CURSOR declare a named cursor JAM/OBi
Manual

DECLARE CURSOR FOR declare a cursor to execute a stored SYBASE Notes
RPC procedure using a remote procedure

call

DECLARE TRANSACTION declare a transaction for two-phase SYBASE Notes
commit

ENGINE set the default engine for the appJica- JAM/OBi
tion Manual

EXECUTE execute a named cursor JAM/OBi
Manual

FLUSH abon execution of a stored procedure SYBASE Notes

FORMAT format the results of a CATQUERY JAM/OBi
Manual

NEXT execute the next statement in a stored SYBASE Notes
procedure

60 JAM/OBi Release 5 SYBASE Notes August 92

Notes

Command Description Documentation

OCCUR set the number of rows for JAM/OBi JAM/OBi
to fetch to an array and choose an oc- Manual
currence where JAM/OBi should be-
gin writing result rows

ONENTRY install a]PL procedure or C function JAM/OBi
which JAM/OBi will call before ex- Manual
ecuting a sql or dbms statement

ONERROR install a]PL procedure or C function JAM/OBi
which JAM/OBi will call whenever a Manual
sql or dbms statement fails

ONEXIT install a]PL procedure or C function JAM/OBi
which JAM/OBi will call after ex- Manual
ecuting a sql or dbms statement

PREPARE COMMIT prepare to commit a transaction SYBASE Notes

ROLLBACK rollback a transaction SYBASE Notes

SAVE save a two-phase commit SYBASE Notes

SET set execution behavior for a procedure SYBASE Notes
(execute all, stop at fetch, etc.)

SET BUFFER set up a buffer for engine-supported SYBASE Notes
scrolling

START set the first row for JAM/OBi to re- JAM/OBi
tum from a SELECT set Manual

STORE store the rows of a SELECT set in a JAM/OBi
temporary file so that the application Manual
may scroll through the rows

TRANSACTION set the default transaction SYBASE Notes

TYPE set data types for parameters of a SYBASE Notes
stored procedure executed with an rpc
cursor

August 92 JAM/OBi Release 5 SYBASE Notes 61

SVBASE

Command Description Documentalion

UNIQUE suppress repeating values in a se- JAM/OBi
lected column Manual

UPDATE update a table while browsing SYBASE Notes

USE open an existing database SYBASE Notes

WITH CONNECTION set the default connection for the du- JAM/OBi
ration of a command Manual

WITH CURSOR specify the cursor to use for a state- JAM/OBi
ment Manual

WITH ENGINE set the default engine for the duration JAM/OBi
ofacommand Manual

62 JAM/OBi Release 5 SVBASE Notes August 92

JAMI
ReportWriter

Release 5.1

November 12, 1993

This is the manual for JAMlReportWriter Release 5.1. It is as accurate as possible at
this time. Both J AMlReportWriter and this manual are subject to revision.

JAM and JAMlDBi are registered trademarks of JYACC, Inc.

JAMlReportWriter is a trademark of JYACC, Inc.

MS-DOS is a registered trademark of Microsoft Corportation.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a regis~../trademark of AT&T.

Other product names mentioned in this manual may be trademarks of their respective
proprietors, and they are used only for identification purposes.

Please send suggestions and comments to:

Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038

(212) 267-7722

© 1993 JYACC. Inc.
All rights reserved.
Printed in USA.

TABLE OF CONTENTS
Chapter 1

Introduction . 1
1.1 About this Manual .. 2
1.2 Terminology. 3
1.3 A Note about Languages Supported. 5
1.4 Conventions Used ~ 5

Chapter 2
ReportWriter Philosophy 7

2.1 How ReportWriter Works with JAM 7
2.2 A Developer's Tool ... 9
2.3 Features. 9

2.3.1 Fully Integrated with JAM and JAM/DBi 9
2.3.2 Support for Both Linked-in and Stand-alone Reports. 10
2.3.3 Databases Supported . 10
2.3.4 Support for Multiple Report Types. 10
2.3.5 Intelligent Page Break Control 11
2.3.6 Non-Procedural Report Script 11
2.3.7 Dynamic Report Composition 12
2.3.8 Device-Specific Processing 12

2.4 New Features in JAMlReportWriter Release 5 13
2.4.1 A Single Report File . 13
2.4.2 Modularity. 14
2.4.3 Field Name Aliasing 14
2.4.4 Compatibility with Release 4 Reports 15
2.4.5 Append Output Option 15
2.4.6 Finer Control Over Break Processing . 15
2.4.7 Row-Supply Hook Functions 16
2.4.8 Table-to--Report Utility 16
2.4.9 C-Style Comments in the Report Script. 16
2.4.10 area Clause ... 16
2.4.11 Improved "Shrink" Processing 17

2.5 New Features in JAMlReportWriter Release 5.1 17

Chapter 3
Quick Start and Sample Application 19

3.1 Quick Start .. 20

JAMlReportWriter Release 5.1 12 November 93 Page i

JAMlReportWriter Developer's Guide and Reference Manual

3.2 Review of the Sample Application. 22
3.3 Adding a Report to the Sample Application 28

3.3.1 User's View. 28
3.3.2 Developer's View '... 28

Chapter 4
The Report Format Screen 35

4.l Report Area Layout ... 35
4.1.1 Name Tags. 36
4.1.2 Organizing the Report Format Screen 37
4.1.3 Field Names .. 39
4.1.4 Fields That Do Not Appear in Output Areas 40

4.2 The Report Script . 40
4.2.1 Structure of the Script Language 41
4.2.2 Format of the Report Script 42

4.3 Compiler directives ~ 46
4.3.1 Script Delimiters 46
4.3.2 Using Multiple Report Format Screens 46

Nested Includes . 48
4.4 Compiling the Report . 49
4.5 Installing Called Functions. 50

Chapter 5
Using the Script Statements 51

5.1 Specifying the Database Query: detail. 51
5.1.1 Detail-Level Processing 52
5.l.2 detail Clauses and Keywords 53

query .. 53
cur-sor . 53
are.a ••••.•.••.•••••.•.•••.•.•••.•••••..•.••••..•••• 54
re.POrt . 55
jpl .. 55
call . 55
newpage ... 55
split ... 55
breakcheck ... 56

5.2 Defining Break Fields and Processing: break 57
5.2.1 Hierarchy of Break Fields 58
5.2.2 Break Field Processing 59

Pageii JAMlReportWriter Release 5.1 12 November 93

Table of Contents

5.2.3 Retaining Pre-Break Values 60
5.2.4 Computed Breaks 60
5.2.5 break Clauses and Keywords 62

field. 62
header ... 63
footer. 65
newpage ... 67
norepeat . 67
norepeatattop . 69

5.3 Outputting a Single Area or Invoking a Procedure: insert. 69
5.3.1 Insert Processing. 70
5.3.2 insert Clauses and Keywords 70

area ... 70
report . 71
jpl .. 71
call . 71
newpage ... 71
split ... 72

5.4 Initializing the Report: init 72
5.4.1 InitializationProcessing -.......... 73
5.4.2 init Clauses and Keywords 73

lines . 74
columns . 74
Ie ftnlargin .. 74
feedlines ... 75
fixedlength ... 75
varlength ... 75
param eter . 76

5.4.3 Accepting and Processing Arguments 76
5.4.4 Output Parameter Defaults 77

5.5 Specifying Page Headers and Footers: page 78
5.5.1 Page Break Processing 78
5.5.2 Changing Page Specifications. 78
5.5.3 page Clauses and Keywords 80

header ... 80
footer . 81

5.6 Cancelling Page and Break Specifications: clear. 82
5.6.1 clear Keywords . 83

breakspecs .. -. . 83

JAMlReportWriter Release 5.1 12 November 93 Page iii

JAMIReportWriter Developer's Guide and Reference Manual

page specs .. 83

Chapter 6
Report Components .. 85

6.1 ReportWriter Variables . 85
6.1.1 Colon Expansion . 85

Colon Substitution in Detail Queries ;...... 85
Dynamic Reports. 86
Quotation Marks around Colon-Expanded Variables. 86
Variable Substitution For Numeric Values 87

6.1.2 Scope of Variables. 88
6.2 Subreports . 88

6.2.1 Prerequisites '. 89
6.2.2 Defming the Subreport 89
6.2.3 Invoking the Subreport . 90
6.2.4 Preserving the Parent Report's Break Context 93
6.2.5 Subreports Invoked from Page Headers and Footers. 94
6.2.6 Storing Subreport Definitions in Separate Files 94
6.2.7 Suppression of "No Rows Found" Warning Message 94
6.2.8 Output Options in the Subreport: RWOPTIONS 95

6.3 Report Arguments .. 95
6.3.1 Accepting and Processing Arguments 96
6.3.2 Passing Arguments to a Main Report 97
6.3.3 Passing Arguments to a Subreport 98

6.4 Function Calls . 99
6.4.1 Passing Arguments 99
6.4.2 Using Return Codes 99
6.4.3 Calling C Routines 100

6.5 Report Areas .. 100
6.5.1 Sizing Dynamically 100
6.5.2 Consolidation of Leading and Trailing Blank Lines. 102

6.6 Queries. .. 102
6.7 Named Cursors. .. 103

6.7.1 Reserved Cursor Names 105
6.7.2 Using the Default Cursor 105

Chapter 7
Processing Flow 107

7.1 Order of Script Statements. .. 107

Page iv JAMIReportWriter Release 5.1 12 November 93

Table of Contents

7.1.1 In voking Actions Direct! y .. 107
7.1.2 Page Specifications. 108
7.1.3 Defining Break Groups , 109

7.2 Order of Clauses .. 112
7.2.1 Order-sensitive Clauses 112
7.2.2 Multiple Areas and Subreports per Statement 113

Placement of Qualifying Keywords 113
Multiple Areas in Page Footers. 114
Page Breaks between Areas 114

7.2.3 Break Processing. .. 114
7.2.4 Computed Breaks ~..... 117
7.2.5 Break Processing Summary 117

7.3 Order of Included Screens 118
7.4 PagmatIon .. 119

7.4.1 Keeping Report Areas Intact. 119
7.4.2 White Space Consolidation '. . .. 120
7.4.3 Orphan Suppression 120
7.4.4 Effect of Dynamic Report Areas on Orphan Suppression 121
7.4.5 Changing Page SpeCifications .. 122

Chapter 8
ReportWriter Input and Output 123

8.1 Device Configuration Files 123
8.1.1 FOI1llat ; 124
8.1.2 Example. .. 126
8.1.3 Compiling the Device Configuration File. 126

8.2 Resolving Conflicting Output Specifications. .. 127
8.2.1 Destinations. .. 127
8.2.2 Page Specifications .. 128

8.3 Developer-Written Row-Supply Functions. .. 128
8.3.1 The Query .. 129
8.3.2 Arguments. .. 129
8.3.3 Return Values 129
8.3.4 Invoking the Row-Supply Function. .. 130

8.4 Developer-Written Output Procedures 131
8.4.1 Arguments. .. 131
8.4.2 Return Values 132
8.4.3 Invoking the Output Procedure .. 132

8.5 Installing Developer-Written Functions 132

JAM/ReportWJiter Release 5.1 12 November 93 Page v

JAMIReportWriter Developer's Guide and Reference Manual

Chapter 9
Running ReportWriter . 135

9.1 From the Command Line. 135
9.1.1 Examples. 136

9.2 From aJPL Procedure ... 137
9.3 From a C Routine .. 138
9.4 RWOPTIONS .. 139

9.4.1 Format. .. 140
9.4.2 Append and Close Options: -a and -c _ 141

Chapter 10
Development Hints. .. 143

10.1 Alternative Method for Subreports 143
10.2 Giving the End User Control over Report Composition 149
10.3 Reports Developed Under ReportWriter Release 4 150
10.4 Running Release 5.0 Reports Under Release 5.1 .. 151
10.5 Interactions with JAM Features .. 151

10.5.1 Fields and Arrays 152
Word-Wrapped Arrays. 152
Shifting and Scrolling 152
Onscreen Arrays 152

10.5.2 Screen and Field Functions. 153
Screen Entry and Exit Functions .. 153
Field Functions 153

10.5.3 Display Characteristics. 154
Non-Display .. 154

10.5.4 Field and Miscellaneous Edits 154
10.5.5 Borders and Line Drawing 155
10.5.6 Colon Preprocessing 155
10.5.7 Screen Manager Functions 156
10.5.8 Control Strings...................................... 156
10.5.9 Math Precision and FOlmatting 157
10.5.10 Screen Editing and Documentation Facilities. 157

10.6 Interactions with JAMlDBi 157

Chapter 11
Script Statement Reference. .. 159

break define break field and action. .. 161

Page vi JAMlReportWriter Release 5.1 12 November 93

Table of Contents

clear cancel page or break specifications 165
detail specify action for each row fetched from the database. 167
init initialize the report 170
insert output an area and/or invoke one or more procedures 173
page specify page headers and/or footers 175

Chapter 12
Library Function Reference . 179

dbi_rwrun
rw_init
rw_options
rw_run

invoke the report generator from a user-written function 180
initialize the report generator and the JAM screen manager 182
parse ReportWriter options .. 183
produce a report 0 • 0 0 0 ••••• 0 ••••• 0 •• 0 • •• 185

Chapter 13
Utilities Reference . 187

dev2bin compile a device configuration file 0 • • • • • • •• 188
rprt2bin compile a report format screen 0 0 • • • • • • • •• 189
rw4to5 convert a ReportWriter 4 report to ReportWriter 5 format. 190
rwrun run ReportWriter .. 0 •••••• 0 •••• 0 ••••••• 0 •• 192
tb12r create a report format screen from a database table. 194

Appendix A
Glossary of Reserved Words .. 197

Appendix B
Implementation Notes 203

B.l Customizing ReportWriter .. 203
B.2 Fetching into Onscreen Arrays 0 0 0 0 0 • 0 0 • 0 ••• 0 ••• 0 •• 0 •• 0 • •• 204

Bo2.1 Outputting the Array in a Break Footer 205
B.2.2 Padding the Source Table 205

Appendix C
Troubleshooting Guide 0 • • • • • • • • • • • • • • • • •• 207

Appendix D
Examples ... 217

0.1 Sample Application-Revisited .. 217
0.2 Using the tbl2r Utility 0 • • • • • • • • •• 224

0.2.1 A Quick Start Report 0 ••••••••••• 0 •••• 224

JAM/ReportWriter Release 5.1 12 November 93 Page vii

JAMlReportWriter Developer's Guide and Reference Manual

D.2.2 A Cosmetic Improvement .. 227
D.2.3 More Extensive Changes 229

D.3 Subreports .. 233
D.3.1 Comprehensive Subreport Example 233
D.3.2 Example from Chapter 100Revisited 240

D.4 Calendar. .. 243

Index • 000 0 • • • 0 0 • 0 • • • • • • 253

Page viii JAMlReportWriter Release 5.1 12 November 93

Chapter 1

Introduction

JAM!
ReportWriter

JAMlReportWriter is an add-on to JAM and JAMIDBi that allows developers to define
and produce complex reports and analyses for their JAMIDBi or stand-alone database
applications.

JAMlReportWriter is part of a family of JYACC products. The following table describes
the rest of the family:

Product Description

JAM® JYACC Application Manager

JAMlDBl'® Interface for SQL relational database systems

J AMlPi for Motif Presentation interface for the Motif GUI

J AMlPi for Microsoft Windows Presentation interface for Microsoft Windows

J AMlPi for Graphics Presentation interface for Graphics

Jterm® Color Temlinal Emulator optimized for JAM

This manual is intended for developers who are using J AMlReportWriter for the first
time and for more experienced developers who wish to gain a better understanding of this
product.

To get the most out of JAMlReportWriter and this manual, you should be familiar with
both JAM and JAMIDBi and with the concepts discussed in the Overview portions of
their respective manuals.

JAMlReportWriter Release 5.1 12 November 93 Page 1

JAMlReportWriter Developer's Guide and Reference Manual

1.1

ABOUT THIS MANUAL
This manual is both a user's guide and a reference manual. Chapters 1 through 3 serve as
a general introduction to J AMJReportWriter, its features, and concepts. Chapters 4
through 10 provide instructions for developing reports, with Chapters 11 through 13
constituting the reference portion of the manual. In addition, four appendices provide fur
ther reference information such as a glossary of reserved words, implementation notes, a
troubleshooting guide, and report development examples.

• Chapter 1, Introduction, describes the organization of this manual,
introduces ReportWriter terminology and concepts, and lists the typo
graphical conventions used in the reference chapters.

• Chapter 2, ReportWriter Philosophy, describes the product's features
and explains how ReportWriter takes advantage of its integration with
JAM and JAMlDBi. In addition, this chapter identifies the differences
between release 5.1 and previous releases of ReportWriter.

• Chapter 3, Sample Application, shows the development of two simple
reports based on the sample application Originally introduced in the
JAM and JAMlDBi manuals. These examples are provided to illustrate
the process of developing reports with JAMlReportWriter.

• Chapter 4, The Report Format Screen, explains how to create and
compile the report format screen.

• Chapter 5, Using the Script Statements, thoroughly describes each of
the statements in the report scripting language.

• Chapter 6, Report Components, provides additional information
about variables, subreports, function calls, report areas, and queries.

• Chapter 7, Processing Flow, consolidates the order-of-processing is
sues raised in other contexts in previous chapters. This chapter develops
a generic example to illustrate these topics. The chapter also summa
rizes ReportWriter's 'default pagination rules and explains how the re
port developer can suppress their application.

• Chapter 8, ReportWriter Input and Output, describes device configu
ration fIles, explains how ReportWriter resolves conflicting output
specifications, and provides guidelines for writing custom input and/or
output functions.

Page 2 JAMlReportWriter Release 5.1 12 November 93

1.2

Chapter 1: Introduction

• Chapter 9, Running ReportWriter, explains how to invoke ReportWrit
er-from the command line as a stand-alone application or from a JPL,
C, or other supported language routine within aJAMlDBi application.

• Chapter 10, Developments Hints, describes several techniques to help
you to take advantage of ReportWriter's capabilities. Among these are
sub--queries, end user control over report composition, and converting
reports developed under ReportWriter release 4. Chapter 10 also identi
fies JAM features which are particularly useful in report development.

• Chapter 11 is the Script Statement Reference.

• Chapter 12 is the Library Function Reference.

• Chapter 13 is the Utilities Reference.

• Appendix A is a Glossary of Reserved Words.

• Appendix B, Implementation Notes, provides infOlmation that will be
of use to some report developers. The topics covered include: how to
create a custom version of the report generation program executable,
and how to use onscreen arrays as target variables for a database fetch.

• Appendix C, Troubleshooting, provides a chart listing common prob
lems in report composition and suggestions for correcting them.

• Appendix D, Examples, illustrates, by means of sample reports, vari
ous techniques for using ReportWriter's capabilities.

TERMINOLOGY
The following discussion introduces terminology and concepts used throughout this
manual.

A break is a logical di vision in a report, whether between pages (a page break) or between
groups of data (a data break).

As the term implies, a page break occurs at the end of each page of the report.

A data break occurs when there is a change in the value of one or more variables desig
nated as breakfields. A break group is the data associated with a particular value of the
break field. Figure 1 shows a report in which category and vendor are defmed as
break fields; all entries for a given vendor constitute a break group; within the listing for
a single vendor, all items in the same category consitute a lower-level break group.

JAMlReportWriter Release 5.1 12 November 93 Page 3

JAMlReportWriter Developer's Guide and Reference Manual

Part Units
Vendor Category Number on Hand

ABC Mfg. bolt 12-421 179
12-422 220
12-583 112
12-593 381

nail 19-635 10000
19-640 5890
19-735 8000

nut 22-421 203
22-422 190
22-593 380
22-601 512

ABC Mfg. Total Units on Hand: 26067

Figure 1: A Report With Break Fields

Throughout this manual, whenever the term break is used without qualification, it refers
to a data break.

Both page and data breaks can have associated headers and footers. Header refers not
only to the text printed at the beginning of a page or break group, but also to any proces
sing invoked at this point Similarly, a footer includes both the text output as well as any
processing associated with the end of a page or break group.

Page headers and footers are distinct from break headers and footers.

The page header and page footer, if defined for the report, occur at the beginning and
end, respectively, of each page and are independent of the report data on the page. Page
headers or footers typically include some processing to calculate and display the page
number, and might show a title for the report or report section.

Break headers are likely to display column headings or some kind of identification for the
break group that follows and may include processing to reinitialize variables such as run
ning totals for the break group. Breakfooters are often used to d,utput subtotals for the
break group and to update running totals for the next higher break level or for grand to-
tals. !

Page 4 JAMlReportWriter Release 5.1 12 November 93

,
.'

Chapter 1 : Introduction

The format for a report is defmed on a report/onnat screen. This is a JAM screen that
contains the formatting information for any or all report areas. A report area is any sepa
rately identifiable section of the report: a page header, a title page, the format for report
ing data retrieved from the database, a break footer, etc.

In this manual, the term area is used in reference both to the actual contents of a fmished
report as well as to these components defmed and labelled in the report format screen.

The detail area of a report is driven by a database query and consists of the processing and
output associated with each row retrieved from the database in response to the query.
Data break checking and processing take place within the context of processing for the
detail area. A report format screen can contain more than one detail area, each with its
own associated database query, processing, and output format. Each detail area defined in
the report format can, of course, produce multiple copies of itself in the fmished report
the number depending on how many rows are fetched and reported as a result of the query
for that detail area.

1.3

A NOTE ABOUT LANGUAGES
SUPPORTED
Throughout this manual, wherever reference is made to developer-written C functions, it
should be understood that this applies also to any other language supported by the JAM
and JAMlDBi installation at your site. Sometimes the phrase "C (or other supported lan
guage)" is used as a reminder; the absence of this phrase should not be taken to exclude
any other programming language you use to develop your JAM and JAMlDBi applica
tions.

1.4

CONVENTIONS USED
The following typographical conventions are used in the reference chapters of this
manual:

1 i teral This font is used for text that should be typed verbatim, for examples, and
for file and directory nrones.

JAMIReportWriter Release 5.1 12 November 93 Page 5

JAMlReportWriter Developer's Guide and Reference Manual

italics Bold italics show where screen, file, and variable names should appear. Re
place these with the appropriate names in your applications.

[x] In this notation, the brackets indicate that x is an optional element Do not
type the brackets.

x... Ellipses indicate that the element x may be repeated one or more times in the
indicated location.

[x] * An asterisk following an element indicates that the element can appear mul
tiple times within a statement or clause. Do not type the asterisk.

[x I y I z] The elements shown are mutually exclusive. No more that one may be pres
ent in the statement, clause, or command. Do not type the brackets or the
vertical bars.

{ x I y I z} At least one of the elements shown must be present in the statement or clause.

Page 6

Unless otherwise indicated, more than one element in the group can appear.
Do not type the braces or the vertical bars.

JAM/ReportWriter Release 5.1 12 November 93

.,
..

JAM!
ReportWriter

Chapter 2

ReportWriter Philosophy

JAMIReportWriter is a report-generation tool that allows developers to design and
create query-based reports for JAMlDBi or stand-alone database applications. Like the
other products in the JAM family, it conforms to the JAM philosophy of platform- and
database-independence.

2.1

HOW REPORTWRITER WORKS WITH
JAM
JAMIReportWriter, as an add-on to JAM and JAMlDBi, relies on JAM's functionality
to define and produce reports. In particular, it utilizes the following JAM and JAMlDBi
components:

• screen editor - to derme the content and appearance of each section of
the report,

• JPL, the JYACC Procedural Language - to direct any specialized pro
cessing or computations associated with the report, and

• JAMlDBi - to support the database query associated with each detail
area and any additional database commands issued from the JPL or C
routines associated with the report.

Each report is defined as a single JAM screen containing the formatting and JPL code for
all report areas. The report script, which ties together all these components, is maintained
in the screen JPL module.

JAMIReportWriter Release 5.1 12 November 93 Page 7

JAMIReportWriter Developer's Guide and Reference Manual

Just as the developer of a JAM application uses the screen editor to paint each screen in
the application, the report designer uses the screen editor's layout, data formatting, and
editing capabilities to define the appearance and content of each report area (detail, page
headers and footers, break headers and footers, title page, trailer, etc.) .

Since all report areas are drawn on a single screen, the developer can easily determine if
related areas (such as column titles in the break header and the corresponding data in the
detail area) will line up correctly when the report is printed. The report designer has just
one screen to edit and one JPL module to maintain during the development process. The
use of a single screen also minimizes or eliminates the need to use the LDB (Local Data
Block) for passing report data at runtime.

In addition, report designers can take advantage of JAM's data formatting and editing
capabilities, including

• a wide variety of date, time, and currency formats, including the ability
to defme custom currency formats,

• computations and numeric formatting,

• justification, and

• word wrap.

JPL procedures required for report processing are entered as named procedures in the
screen JPL module.

Report areas and associated processing, thus defined, are linked together through the Re
portWriter script to generate a report.

The ReportWriter script language is designed to take advantage of JAM's data handling
capabilities. This not only provides for access to the data being reported, but also allows
for flexible report definition. Through the use of colon-expanded variables, for example,
the selection of report components, header and footer text, query arguments, and the like,
can be controlled by data available at runtime, whether the result of a database query,
computations performed in JPL or C language routines, or user input.

JAMlDBi capabilities are also available to the report developer. The report script pro
vides a mechanism for issuing SQL (Structured Query Language) statements to fetch
data from the database. The report developer can access all other JAMlDBi capabilities
from JPL procedures and C (or other supported language) routines invoked through the
report script.

Page 8 JAM/ReportWriter Release 5.1 12 November 93

Chapter 2: ReportWriter Philosophy

2.2

A DEVELOPER'S TOOL
Note that while end users can initiate report generation, either from within a J AMlDBi
application or by entering the appropriate command at the system prompt, report defini
tion is performed by JAM developers within the authoring environment, as distinguished
from the production environment. JAMIReportWriter is not intended to allow users to
construct reports "on the fly."

Developers can, however, defme flexible report formats that are sensitive to parameters
entered by the end user. While this allows end users to have a certain degree of control at
runtime over the content and format of the report, it is the developer, not the end user,
who is responsible for constructing the various formats that may be used and for creating
a report script that can respond to specified user input.

2.3

FEATURES

2.3.1

Fully Integrated with JAM and JAM/OBi
Since JAM's standard tools are used to create reports under JAMIReportWriter, devel
opers can leverage their existing knowledge of JAM and JAMlDBi: text and data are
placed and formatted by creating standard JAM screens; information is retrieved from
the database using JAMlDBi's interface; and control and manipulation are provided
through JPL or C subroutines. The only new component the developer must learn is the
report script, which ties the pieces together to create the report

JAM variables communicate information between JAMIReportWriter and the JAM!
DBi application. This provides considerable flexibility in report composition. For exam
ple, report breaks can be defined on any JAM field, whether fetched in the report query
or computed in a JPL or C routine. In addition, using JAM's colon expansion feature,
various report specifications, such as the whe re clause of the database query, can use a
variable whose value is not known until runtime or can change as the application runs.

JAMIReportWriter can be linked with any current version of JAM, JAMlDBi (including
4.x as well as S.x), or JAMlPi. It supports all the features of any linked-in product, in
cluding intelligent colon expansion in JAMlDBi S.x.

JAMIReportWriter Release 5.1 12 November 93 Page 9

JAMIReportWriter Developer's Guide and Reference Manual

2.3.2

Support for Both Linked-in and Stand-alone
Reports
Reports can be invoked from within the JAMIDBi application or directly from the com
mand line. In addition, the calling sequence for invoking JAMJReportWriter can be cus
tomized, if desired. (The source code for the Report Writer main program is supplied,
allowing developers to make this and other modifications as needed.)

2.3.3

Databases Supported
ReportWriter can be used with all relational databases supported by JAMlDBi. It pro
vides a single, consistent report generation tool across all supported databases.

In addition, developers can write their own row-supply functions, allowing data input
from flat files and other sources. (Refer to Section 8.3 for further information on develop
er-written input functions.)

2.3.4

Support for Multiple Report Types
With JAMlReportWriter, developers can produce reports of almost any type: columnar
reports, statistical summaries, fmancial analyses with as many calculations, subtotals,
and break levels as needed, or executive summaries showing just the summary data with
out the related detail.

JAMlReportWriter reports can be grouped into the following general types:

Page 10

ROW-level report: In a row-level report, a detail line (or more) is
printed for each row selected from the database. JAMlDBi Report
Writer supports up to 20 break levels so that the report can also include
subtotals or other results from the groupings (and sub-groupings).
Row-level reports are driven by database queries (or fetches from alter
nate input sources).

Summary report: Like row-level reports, summary reports perform
computations based on rows fetched from the database or other sources.

JAM/ReportWriter Release 5.1 12 November 93

2.3.5

Chapter 2: ReportWriter Philosophy

In summary reports, however, only the results of the computations, not
the fetched data, are printed.

Instance report: Any tagged area on the report format screen can be
printed as a report or a section of a report. Unlike a row-level report, an
instance report is not generated repetitively as the result of a query, but,
rather, is initiated by a statement that is executed once as it is encoun
tered in the report script.

MUlti-section report: Any of the above report types can be com
bined and paginated as a single, continuous report. The combination of
a header page identifying the report, the main body of the report based
on one or more database queries, and a trailer page containing grand to
tals is an example of a multi-section report. The header and trailer are
instance reports; the body comprises one or more row-level reports.

Intelligent Page Break Control
JAMlReportWriter automatically chooses page breaks that are reasonable and visually
appealing. For example, break headers are not printed at the bottom of a page, and forms
are not unnecessarily split across pages. Alternatively, report designers can override
these options.

Of course, the report designer can also specify all page breaks related to report content, at
each detail row, for instance, or at various break levels.

2.3.6

Non-Procedural Report Script
The report script is written in a high-level, non-procedural language and is maintained in
the report's screen-level JPL module.

Report generation is an event-driven procedure: the script indicates the appropriate ac
tion to take when some specified event (such as a change in the value of a particular vari
able) occurs. The report script, in effect, orchestrates the various report components
while remaining independent of their details-formatting information is contained in
each area of the JAM report screen, and any arithmetic or other processing is contained
in JPL (or C, etc.) routines. Because the report script is insulated from such details, report
designers can make changes to report formatting and calculations without the need to edit
the script itself.

JAMlReportWriter Release 5.1 12 November 93 Page 11

,

JAMlReportWriter Developer's Guide and Reference Manual

2.3.7

Dynamic Report Composition
A single report definition will, of course, produce different reports if given different
data-different data printed, different page sizes, breaks at different places, etc.

JAMlReportWriter, however, also allows developers to define a report in which the re
port definition, itself, can vary under the control of a JAM application. Through the use
of colon-expanded JAM variables in the report script, the following infonnation can be
supplied to the ReportWriter at runtime:

• arguments to the database query,

• field(s) to break on in row-level and summary reports,

• the report area to be output, and

• JPL, C, or other supported language routines to be invoked.

For example:

1. In a report of account infonnation, it might be useful to let the end user
specify the saleperson whose accounts should be listed. The applica
tion that generates the report would include a prompt for the user to
enter this infonnation. In the report script, the where clause of the da
tabase query would be written with the appropriate colon-expanded
variable, so that the requested salesperson's ID will be inserted into the
SQL statement at runtime.

2. The type of infonnation in a report containing municipal data might
vary, depending upon whether it relates to a city, a town, or a village.
The report developer would create three different report areas for detail
infonnation; the area selected for any particular row would be deter
mined by the value of the variable that identifies the means of govern
ment for the municipality represented by that row.

2.3.8

Device-Specific Processing
ReportWriter is output device- and printer-independent, generally relying on the operat
ing system to drive the printer or other output.

Developers can, however, implement device support through the mechanism of device
configuration files. Any or all of the following information can be entered into these files:

Page 12 JAMlReportWriter Release 5.1 12 November 93

• initialization and reset strings,

• page width and length,

.. leftnaargin,

Chapter 2: ReportWriter Philosophy

• output device, file nam.e, or process to which output is spooled, and

.. nanae of a developer-written output function and the size of its output
buffer.

The applicable device configuration me, if any, is specified when the JAMJReportWriter
is invoked.

2.4

NEW FEATURES IN JAMIReportWriter
RELEASE 5
Developers fam.iliar with earlier versions of ReportWriter will notice the following dif
ferences in upgrading to release 5:

2.4.1

A Single Report File
Under ReportWriter 5, the entire report specification is contained in a single me.

Instead of separate screens for each report area, the layouts for all areas are consolidated
on a single screen. Each line of the screen is tagged with the nam.e of the report area(s) to
which it applies. These nam.e tags correspond to the forna naDles referenced in the form
clauses of earlier report scripts.

The report script is also contained in the report fOmIat screen. It appears as conanaents in
the screen JPL naodule. All JPL procedures used in the report naay also be included in the
screen JPL naodule.

Consolidating the report into a single me provides the following advantages over the pre
vious method of using a separate me for each JPL procedure and a separate JAM screen
for each report area:

.. Greater runtime efficiency: ReportWriter need not continually open and
close mes during report generation.

JAMlReportWriter Release 5.1 12 November 93 Page 13

JAMIReportWriter Developer's Guide and Reference Manual

2.4.2

• Reduced need to use the LDB for passing data: Since all report areas are
contained on a single screen, field data from one report area can be
propagated to any other area or used by any JPL or C routine without
need of passing it through the LDB.

• Ease of aligning report areas: By placing all report areas on the same
screen, the report developer can readily line up related fields from dif
ferent report areas, such as aligning columns in the detail area with the
corresponding headings in the associated break header or with totals
fields in a break footer.

Modularity
Report developers can still maintain common modules for report components (source
screens and JPL code) that are shared among reports.

ReportWriter release 5 has a new inc 1 ude screen compiler directive that causes the
compiler to include specified source screens in the compiled (binary) report. Thus, a
common page header, for example, need be defined only once and can be shared by any
number of reports.

JPL continues to be accessible from libraries or separate flIes, as well as from the report
format screen.

Refer to Section 4.3.2 for more information about the include screen compilerdi
rective.

2.4.3

Field Name Aliasing
Report design will at times require the same field to appear in more than one report area.
ReportWriter release 5 provides a field-naming syntax that allows developers to equate
field names on the report format screen while still observing JAM's restriction against
duplicate field names on a single screen.

When the include screen compiler directive is used, ReportWriter automatically
aliases and equates fields on the included screen to the identically-named fields on the
report format screen and to identically-named fields on other included screens.

Refer to Section 4.1.3 for more information about ReportWriter's field naming conven
tions.

Page 14 JAMlReportWriter Release 5.1 12 November 93

Chapter 2: ReportWriter Philosophy

2.4.4

Compatibility with Release 4 Reports
Release 5 of ReportWriter includes the utility rw4 toS, which converts reports devel
oped under ReportWriter release 4 into the single-file format required for release 5. This
utility consolidates the screens, JPL modules, and report script fIle of the release 4 report
and produces a release 5 report format screen with area tags added and field name aliases
provided where needed.

Refer to Chapter 13 for detailed information on this utility.

2.4.5

Append Output Option
When ReportWriter is invoked iteratively from within a JAMlDBi application, the out
put of successive invocations can be consolidated into a single, through-paginated re
port

A new command line option, -a, directs ReportWriter output to be appended to the spe
cified file. This option allows an application to invoke ReportWriter in a loop, without
overwriting output from previous iterations.

Refer to Sections 9.1 and 9.4 for further information on the use of this output option.

2.4.6

Finer Control Over Break Processing
Report developers can now control where break: processing should occur in the flow of
detail processing. Put the keyword breakcheck in the detail statement at the point
where you want break processing to take place. If this keyword is omitted, break: proces
sing is done immediately before the detail form is output or, if no form is specified, after
all jpl and call clauses are executed.

Refer to Section 5.1.2 for more information on the breakcheck keyword.

JAMIReportWriter Release 5.1 12 November 93 Page 15

JAMlReportWriter Developer's Guide and Reference Manual

2.4.7

Row-Supply Hook Functions
ReportWriter uses JAMlDBi to fetch rows from the database. In some circumstances,
however, developers might need to supply their own data from flat files, wire services, or
other sources not supported by JAMlDBi.

In release 5, programs that fetch or generate such data can be linked with ReportWriter.
The query specified in the detai 1 statement is passed to the installed developer-written
function rather than to J AMlDBi.

Refer to Section 8.3 for infonnation on writing and installing developer-written row
supply functions.

2.4.8

Table-to-Report Utility
A new utility, t b 12 r, creates a simple report format screen and report script to output the
values in a database table. This report can also be used as a template or initial model for
a more elaborate report based on the specified database table. (This utility must be linked
with the JAMIDBi release 5 libraries.)

2.4.9

C-Style Comments in the Report Script
With release 5 of ReportWriter, comments in the report script are entered as they would
appear in the C programming language: / * comment * / .

Refer to Section 4.2.2 for a discussion of the report script format and syntax.

2.4.10

area Clause
The new reserved word area bas replaced the ReportWriter release 4 reserved word
form. area clauses and subclauses serve the same purpose in ReportWriter 5 scripts as
form clauses and subclauses served in release 4.

Page 16 JAM/ReportWriter Release 5.1 12 November 93

Chapter 2: ReportWriter Philosophy

2.4.11

Improved "Shrink" Processing
A new method for shrinking report output areas has been implemented under Report
Writer release 5. Shrink processing in this release is geared specifically to the require
ments of report production, condensing report areas vertically only and leaving intention
al blank lines unaffected. As in ReportWriter release 4, use of the shrink feature for any
report output area remains optional and is controlled by the report developer through the
report script

2.5

NEW FEATURES IN JAMlReportWriter
RELEASE 5.1
Developers familiar with ReportWriter release 5.0 should note that the following features
have been added to release 5.1:

• full subreport capability

• argument passing on invocation of reports and subreports

• multiple areas and subreports per statement

• named cursors

• variable substitution for numeric values

• use of array elements as break fields

JAMlReportWriter Release 5.1 12 November 93 Page 17

JAM!
ReportWriter

Chapter 3

Quick Start and Sample
Application

This chapter illustrates the procedure for creating reports with JAMlReportWriter. The
frrst section summarizes the steps you would use to develop and generate a report. The
remainder of this chapter develops a report based on the sample application introduced in
the JAM Development Overview and expanded upon in the JAMJDBi Overview.

The example in this chapter is not intended to be a comprehensive demonstration of Re
portWriter's features. Rather, it builds a modest report based on a fairly simple database
application. This approach will allow you to follow the basic procedure without getting
bogged down in the intricacies of a major application or a complex report.

This section begins with a summary of the application and its associated database tables.
If you want to review the sample application in more detail, refer to the manuals men
tioned above.

Following the application description, a report is presented. This report retrieves data
from two database tables, consists of several different report areas-a title page and a
break footer, as well as a detail area-and uses data breaks to organize the detail output.

This chapter explains the steps required to create the report and shows the report format
screen layout and associated JPL.

Appendix D, "Examples," shows how to use ReportWriter's capabilities to extend this
basic example to meet more complex reporting needs.

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 19

JAM/ReportWriter Developer's Guide and Reference Manual

3.1

QUICK START
This section summarizes the steps for developing and generating a report with J AM/Re
portWriter.

Depending upon your application, you may choose to create the report format screen
yourself or to use the tb12r utility to create a basic report format screen and a rudimen
tary report script from a database table.

1. Create the report format screen.

Using any JAM screen editor (jxform, jxdbi, or jxrw), create a
report format screen that includes the areas you want in your report.
Refer to Section 4.1 for an explanation of the report format screen.

Or

Run the tb12r utility to create a basic report format screen from a
specified database table. Refer to Chapter 13 for a detailed description
of this utility. A basic report created with tb12r is shown in Appen
dix 0, Section 0.2.1.

2. Enter the report script.

Type the script into the screen JPL of your report format screen. The
report script is described in Section 4.2; the script statements are cov
ered in detail in Chapters 5 and 11.

Or

If you have used the tb12r utility to create the report format screen
and its associated script, you can edit the screen and the script as need
ed. Section D.2 shows a report created with this utility and subsequent
modifications.

3. Save the report format screen.

4. Compile the report.

Use the rprt2bin utility to compile the report format screen. This
procedure is described in Section 4.4. The rprt2bin utility is de
scribed in detail in Chapter 13.

5. If you need to specify non-standard output parameters:

Create and compile a device configuration fIle.

Page 20 JAM/OBi ReportWriter Release 5.1 12 November 93

Chapter 3: Sample Application

Device configuration flIes are described in Section 8.1; they are com
piled with the dev2bin utility, which is covered in Section 8.1.3 and
in Chapter 13.

6. Run the report

You can invoke ReportWriter

• from the command line with the rwrun utility,

• from a JPL procedure in your application- with the rwrun JPL com-
mand, or

• from a C routine with the dbi_rwrun library function.

Refer to Chapter 9 for more information on running ReportWriter. The
rwrun utility is described in Chapter 13; the dbi_rwrun library
function is covered in Chapter 12.

- JAMJReportWriter can be invoked only from j xrw or j amrw, the JAM authoring and application execut
ables, respectively, with ReportWriter linked in. It cannot be invoked from j x form, jam, j xdb i, or j amd
bi. as ReportWriter is not linked into these executables.

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 21

JAMlReportWriter Developer's Guide and Reference Manual

3.2

REVIEW OF THE SAMPLE APPLICATION
The sample application presented in the JAM and JAMlDBi manuals is the personnel
portion of a human resources application. It consists of a series of screens for the end user
to log on to the system, select the desired application, and, in the Personnel applica
tion, enter or review employee information. These screens are shown in Figure 2 through
Figure 4.

'.' ": . ", :.:.- : :" ,,': . ~ .. ':':. . ~".; ,,',:: ... ::. .:. ': ':': . ::' .: .. ',. :', ': ::':~ .. :. :.:: ,:,-:', :: :', ',', .:. ". " .' :::

Enter username & password. Press NL to sign on & enter menu mode.

Figure 2: Human Resources Application Main Menu mainscrn.

Page 22 JAM/OBi ReportWriter Release 5.1 12 November 93

Chapter 3: Sample Application

Personnel Application
. .

Employee Information' Screen

. "'Last; .: •• ~ _____ _ First: . '. '.' •• , ________________ 11

..... " . SSN:_._"" ~"_-"':-........ __ _
.. Address ; _________ " .. :. :

" " .

: .': . sal~:ri: ___ ,,_. _-i--... ,,--..
. .. ---------.... . .. ,'

: :

.. ': . Grade: -
....' '. : ", .. :.
. ':'." .:'" :. " . ," "." .
. :' .E:xempt1.ons ::~ .:" .. : .:,,, ':

..... ,,'.' '. '.. .: ..
',

"'::.: '.: . ',:.

PF1:Last Name Search PF2:History PF3:Update PF4:Next PFIO:Main Menu

Figure 3: Personnel Application Employee Screen empscrn.

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 23

,,:;- .. ,--,,-~,.-.
" '''~''I''r:."WI'\J:~ ... ~ ,,....

JAM/ReportWriter Developer's Guiqe and RefererlJ~~ ~~~_~§I_, '-.~ __

Personn-el Appli~at-ion_
Employee Information $cre-en ..

- ,.,..-

'. '.' :
.: . "

i

;:;-'

PFIO: Main Menu

- -.......... :.
. . :::.:" :::'. ::',:' r:" ::":':':' . :' " :::

-idns::; ~ - ;,:;:::' '-~:-::_",: :::_'
.:::" .. :':'

," ::.
: ".

Figure 4: Personnel Application Salary History Window salhist.

The personnel application relies on thFee datbase tables: emp, ace, and review. These
tables, plus sample SQL statements for creating them, are shown below. (Note that some
d.:'ltabase engines use different names for column datatypes.)

The t:c'ible entries represent seven employees.

Page 24 JAM/OBi ReportWriter Release 5.1 12 November 93

Chapter 3: Sample Application

Table emp has eight columns. Each row stores an employee's social security number,
name, home address, and current grade.

CREATE TABLE ernp (
ssn CHAR(11) NOT NULL,
last CHAR(20),
first CHAR(12),
street CHAR(20),
city CHAR(l5),
st CHAR(2),
ZlP CHAR(5),
grade CHAR(l))

ssn last first street city st zip grade
038-68-6826 Jones Bamabus 321 West II St Albuquerque NM 87124 C
122-98-6541 Aumond Hilary 11-12 Front St Albuquerque NM 87124 E
122-99-4102 Jones Michael 5 Maple Drive Albuquerque NM 87124 B
139-42-1651 Blake Norman 34 Concord Ave Albuquerque NM 87124 D
154-32-6610 Cory Richard 411 Ann St Albuquerque NM 87124 D
310-77-3997 Grundy Janet 70-2 Poe Ave Albuquerque NM 87124 D
310-32--0084 Jones John P 9 Vern Terrace Albuquerque NM 87124 D

Figure 5: Table emp

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 25

JAM/ReportWriter Developer's Guide and Reference Manual

Table ace has three columns. Each row stores an employee's social security number,
current salary, and a number of tax exemptions.

CREATE TABLE ace (
ssn CHAR(ll) NOT NULL,
sal NUMERIC(lO.2) ,
exmp NUMERIC(l»

ssn
038--68--6826
122-98--6541
122-99-4102
139-42-1651
154-32--6610
10--77-3997
310--32-0084

sal
29500.00
37800.00
26000.00
89500.00
43100.00
38000.00
47500.00

exmp
1
3
3
2
4
1
5

Figure 6: Table ace

Page 26 JAM/OBi ReportWriter Release 5.1 12 November 93

Chapter 3: Sample Application

Table review has four columns. Each row stores an employee's social security number,
a hire date or review date, a new salary if it has cbanged since the previous review, and a
new grade if it has cbanged since the previous review. If newsal or newgrade is null,
the employee was reviewed but there was no change in salary or grade.

CREATE TABLE review (
ssn CHAR(ll) NOT NULL,
revdate DATE NOT NULL,
newsal NUMERIC(lO.2),
newgrade CHAR(l))

ssn rev date newsal newgrade
038-68-6826 12113/90 49500.00 C
038-68-6826 12/11/89 45000.00 NULL
038-68-6826 12115/88 NULL NULL
038-68-6826 12114/87 38500.00 D
122-98--6541 04/10/90 37800.00 NULL
122-98--6541 04/08/89 31000.00 E
122-99-4102 05/01190 29000.00 NULL
122-99-4102 05/01189 25200.00 E
139-42-1651 11/12/90 89500.00 NULL
139-42-1651 11108/89 81000.00 B
139-42-1651 11110/88 67500.00 C
139-42-1651 11/10/87 NULL NULL
139-42-1651 11108/86 53000.00 D
154-32--6610 02/01191 43100.00 D
310-77-3997 07116/90 38000.00 D
310-77-3997 07114/89 30000.00 E
310-32-0084 03/01191 47500.00 D
310-32-0084 03/01190 43000.00 E

Figure 7: Table review

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 27

JAMIReportWriter Developer's Guide and Reference Manual

3.3

ADDING A REPORT TO THE SAMPLE
APPLICATION
Figure 8 shows a report based on the sample application. This report and its components
are described in the following sections.

NOTE: In some distributions of JAMIDBi, the Social Security Number columns in the
sample database tables were labeled ss instead of ssn, as shown in Section 3.2. The
code shown in the examples in this section is based on this column being named ssn.

3.3.1

User's View
The report shown in Figure 8 is a listing of employees and their salaries. The report be
gins with a title page followed by a detail area that lists the employees alphabetically
within employment grade. The salary total for each grade is shown.

3.3.2

Developer's View
The report format screen for this report is named sal_rpt. jam. Figure 9 shows the
screen JPL module for sa l_rpt . j am; it includes both the report script as well as the
JPL procedures.

Page 28 JAM/OBi ReportWriter Release 5.1 12 November 93

Chapter 3: Sample Application

XYZ Corporation

Personnel Department

Report of Employee Salaries by Grade

B 122-99-4102 Jones Michael 26000.00

Total salaries at GRADE B 26000.00

C 038-68-6826 Jones Barnaby 29500.00

Total salaries at GRADE C 29500.00

D 139-42-1651 Blake Norman 89500.00
D 154-32-6610 Cory Richard 43100.00
D 310-77-3997 Grundy Janet 38000.00
D 310-32-0084 Jones John P. 47500.00

Total salaries at GRADE D 218100.00

E 122-98-6541 Aumond Hilary 37800.00

Total salaries at GRADE E 37800.00

Figure 8: Output of Salary Report

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 29

" I I

JAMlReportWriter Developer's Guide and Reference Manual

« begin report »

init

break

jpl = startup

area = titlepg

newpage

field = grade

footer area = bfoot

/* invoke the JPL proc
"startup" */

/* output the report
title page */

/* ensures that next
output after title
page begins on a new
page */

/* group report output
by employment
grade */

jpl = reset_tot /* after break
footer area is
output, invoke JPL
procedure to reset
the cumulative
salary total */

detail query =

"SELECT emp.ssn, emp.last, \
emp.first, emp.grade, acc.sal \
FROM emp, ace \ #

insert

area
jpl

WHERE emp.ssn = acc.ssn \
ORDER BY emp.grade, emp.last, \

emp.first"
= employee
= add_salary

jpl = cleanup

/* invoke JPL procedure
to maintain running
total of salaries for
the current break
group (grade) */

« end report »

(figure continued on next page)

Figure 9: Screen JPL Module for sal_rpt . jam - Report Script

Page 30 JAM/OBi ReportWriter Release 5.1 12 November 93

"\

Chapter 3: Sample Application

proc startup
This procedure is invoked once, at the start of
report generation. It performs two functions:
1) initializes variables used in the report
2) opens a connection to the database

the following statement initializes the running
total of salaries for the break group (grade)

cat sal_tot

Since this report will be run stand-alone, we
need to open a database connection from within
ReportWriter. If the report were invoked from
within a OBi application, the application would
usually handle opening and closing connections.

The following syntax is specific for Sybase:

dbms DECLARE rw_conn CONNECTION FOR USER user \
PASSWORD pword

proc reset_tot
After the break footer has been output, the
cumulative salary total must be reset for the
next break group

proc add_salary
Add the salary for this employee to the
running total of salaries at this grade

proc cleanup
dbms CLOSE CONNECTION rw_conn

Figure 9 (cont'd.): Screen JPL Module for sal_rpt. jam - JPL
Procedures

)

JAM/OBi ReportWriter Release 5.1 12 November 93 Page 31

JAMlReportWriter Developer's Guide and Reference Manual

Figure lOis the report format screen layout. Each line of the layout is tagged to indicate
the report output area it belongs to. The report output is reproduced again in Figure 11 to
show which part of the output corresponds to which area.

X¥Z Corporation

Personnel Department

Report of Employee salaries by Grade

Total salaries at GRADE

<:<:titlepg
«title-pg
<:<titlepg
«tit;:.l@9:
<-<titlepg

,«employee

<::<bfoot'
«bfoo.t:.
<.<:broot.

Figure 10: Report Format Screen sal_rpt . jam - Output Areas

This report must be compiled with the rprt2bin utility:

rprt2bin sal_rpt

The report generation program is invoked, either as a stand-alone utility (as shown in this
example) or from within a JAMlDBi application, to produce the finished report. The
command used to generate the report shown here is

Page 32 JAMlDBi ReportWriter Release 5.1 12 November 93

\

Chapter 3: Sample Application

.," .

. . ,
~. \.'

XYZ Corporation
, "

. '. -.
Personnel Departm~nt: " . '. Area is titlepg

.. .
,Report'of Employee Salaries bY,Grade

",.'

....

Area is bfoot ., ... ::,:'. , Area is employee

'. . " .. ~-.

B 122-99-4102 Jones Michael , '26000.00

, .
C 038-68-6826 Jones' ,Barnaby, ' '29500.00

~\tm?:IIt::::::tm?mtt::t::ttrtrItI:ttItI:I::Ii8.fkiIJ~MlifiMr@1ttMiibiI¥ItImttz~5lQ:iltiittt - , .

D 139-42-1651 'Blake Norman 89500.00
'D 154-32-6610 .Cory .' Richard 43100.00
D 310-77-3997 Grundy Janet 38000.00
0' 310-32-0084 J'ones John P.' .47500.00

E 122-98-6541. Aumohd .. , Hilary ~: '.. :' '37800.00

••.••• 1,'

:.,

' ".

Figure 11: Output of Report sal_rpt with Gorresponding Report:Areas
Indicated '. ."

..... ,
, .. :

.~'

~. .',~" .

JAM/OBi ReportWriter Release 5:1 1;2 Nov'emb,er 93 , , page 33

',': .

JAM!
ReportWriter

Chapter 4

The Report Format Screen
Each report is defined as a JAM screen containing the formatting and JPL code for all
report areas. The report script, which ties together all these components, is also main
tained as part of the report format screen-as comments in the screen JPL module.

This chapter explains how to create the report format screen.

Section 4.1 explains how to layout and identify the report areas on this screen.

Section 4.2 describes the syntax of the report script and how to incorporate the script into
the screen JPL module. (Refer to Chapter 5 for a complete description of the script state
ments and how to use them to direct report processing and composition.)

Once the report format screen is completed, it must be compiled before it can be used to
generate a report. This step is described in Section 4.4.

IfC (or other supported language) functions are invoked by the report script, they must be
installed on the control function list or the prototyped function list and linked with the
ReportWriter executable. This procedure is summarized in Section 4.5.

4.1

REPORT AREA LAYOUT
The report format screen serves as a template for the finished report. All report areas can
be included on this screen. Layout the fields and display text just as you would if you
were designing a screen for a JAM application.

You may also choose to store some of the report areas in separate report format screens,
especially those areas that are used in several different reports. The information in this
section applies to all report format screens, whether they contain entire reports or only an

JAMlReportWriter Release 5.1 12 November 93 Page 35

JAMlReportWrit~r Developer's Guide and Reference Manuai

area or two. (Section 4.3-.2 explains how to compose a report from multiple report format
screens using the «include screen» compiler directive.) '. ' ..

J

4.1.1 . ,

Name Tags' ... '

Since ReportWriter allows multiple report areas on a single screen, you must include a
name tag at the end of each line to identify which area the line belongs to. Multiple area
names can be entered in the tag. Thus, if the same line appears in more than one report
area, you can label it with the names of all relevant areas.

The syntax for name tags is

«areaname [areaname ...]

Put the name tag to the right of all fields and display text on the line. It can immediately
follow the last field or display area on the line:

SAMPLE REPORT 3/11/92 « exphead
« exphead exshead-dr exshead-cr
STATE CITY' DEBIT « exshead-dr
STATE CITY " CREDIT « exshead-cr
-----~-------------------------------- « exshead-dr exshead-cr
« exshead-cr exshead-dr

___ «exdeta il
«expfoot

Page _ « expfoot
Acme, Inc. Wallahasoo, TN « expfoot

Or you ~ay prefer to line up all the name tags for improved readability:

SAMPLE REPORT

STATE CITY
STATE CITY

DEBIT

3/11/92

CREDIT

« exphead
« exphead exshead-dr
« exshead-dr
« exshead-cr

exshead-cr

« exshead-dr exshead-cr . ,
« exshead-cr exshead-dr
« exdetail
« expfoot

Page _ . « expfoot
« expf.oot .. Acme, Inc. Wallah~soo, TN

, ' • I

ReportWrlter's use of «as the name tag delimiter does not preclude the report designer
from using this symbol in a report display area. The rightmost appearance of this symbol
on the line is interpreted as the start of the name tag; all characters to the left of it are part
of the screen line.

Page 36 JAM/ReportWriter Release 5.1 12 November 93

\

" .

. , .

.

"'~..,I • _.. ~. ,,,, -_ , Chapter 4: The Report Fonnat Screen
.' .

.,' ~,

NOTE: Since the underbar is JAM's default draw field symbol. you should avoid this
character in area names. Unless you select a different draw field symbol, the JAM screen
editor will interpret the underbar as a one-character field instead of part of the area name
tag. In this manual, hyphens are used in multi-part area names.

'. .

4.1.2

Organizing the Report Format Screen
ReportWriter imposes no restrictions as to the order in which repQrt areas are placed on
the consolidated screen.

You may find it helpful, for example, to follow a break header area with its corresponding
detail area so that you can more easily line up the columns with their titles, or you may
prefer to keep break headers and footers at the same level adjacent to each other. If you
are using a title page for the report, you can put it frrst, last, or anywhere in between.

In short, the order of report areas on the format screen is of no consequence. Their order
in the final report is controlled by the report script, not by the order in wl?-ich they appear
on the format screen.

Lines belonging to the same area do not have to be contiguous on the screen. Normally,
you would want to keep an area intact so that you can see its layout more clearly. The
exception would be if you use multiple tags to avoid repeating identical lines.

While the lines for a given area do not have to be kept together on the format screen, they
must, however, appear in the proper order. Suppose, for example you have a report with
the following break headers:

Break header 1:

COLUMN-A COLUMN-B

Break header 2:

COLUMN-C . COLUMN-D COLUMN-E '

You could draw these report areas in any of several different ways, some taking advan
tage of the fact that the horizontal rules repeat in both headers, and some that do not use
this capability: ' .

JAMlReportWriter Release 5.1 12 November 93 Page 37

~.... . -' • i.~

JAMIReportWriter Developer's Guide and Reference Manual

Method 1 draws each area individually:

«bheadl
«bheadl

COLUMN-A COLUMN-B «bheadl
«bheadl
«bhead2
«bhead2

COLUMN-C COLUMN-D COLUMN-E «bhead2
«bhead2

Method 2 takes advantage of some of the duplication:
______________________________________ «bheadl bhead2

«bheadl bhead2
«bheadl

______________________________________ «bheadl
COLUMN-A COLUMN-B

«bhead2
______________________________________ «bhead2

COLUMN-D COLUMN-E COLUMN-C

Method 3 takes maximum advantage of the duplication:
______________________________________ «bheadl bhead2

COLUMN-A
COLUMN-C COLUMN-D

COLUMN-B
COLUMN-E

«bheadl bhead2
«bheadl
«bhead2

______________________________________ «bheadl bhead2

, '

" .

Note that in each of the preceding screen layouts, the correct ordering of lines in the break
headers is preserved. Do not draw these areas, for example, as shown here:

______________________________________ «bheadl bhead2

«bheadl bhead2 '
COLUMN-A COLUMN-B «bheadl
______________________________________ «bheadl bhead2, "
COLUMN-C COLUMN-D COLUMN-E «bhead2

The above example formats break header 1 correctly but would produce the following for
break beader 2: ' ,

COLUMN-C COLUMN-D COLUMN-E

Page 38 . JAMlReportWriter Release 5.1 12 November 93

.. ' It,_ • , " Chapter 4: The Report Format Screen

4.1.3

Field Names

In JAM, all field names on a screen must be unique. When designing a report, however,
you may want the same field to appear in more than one report area. ReportWriter pro
vides a field-naming syntax that allows you to equate fields on the report format screen
while observing JAM's restriction against duplicate field names: '

base. extension

pne field, either on the screen or in the LDB, must be named base (with no extension).

Use the same base name for all other fields identical to this one, and distinguish them
with unique extensions. For example, suppose the field eus t_narne appears in the de
tail area, in the break footer, and in a summary area. One must be named eus t_narne;
its clones might be named eust_narne.1 and eust_narne. 2.. ,

You can choose whatever extensions you prefer. In the example above, 1 and 2 were used
for simplicity. You may prefer to have the extensions identify the report areas, as in
eust_narne. dtl and eust_narne. bfoot (assuming that you are using
eus t_narne with no extension in the summary area). As long as the base names are the
same, ReportWriter will recognize these as identical fields.

The extension delimiter must be a period.

When using these fields as variables in the report script and in JPL code, refer only to the
base name. In the above example, YOl,1 might have the customer name designated as a
break field: '

, II break field = cust_name

Similarly, JPL code should reference the base name only:

cat cust_name first n ", last

Make sure that all fields with the same base name are identical in length and format. Re-
. portWriter operates only on the base field (with no extension). Whenever one of its

clones is output, ReportWriter copies the current contents of the base field into the clone.
If the clones have different characteristics than the base field, unexpected results might
occur on output. .

The base. extension syntax is only required for fields on ,the report format screen
that must be equated. Fields that appear in one area only can be named as you would any
other JAM screen field.

, JAMlReportWriter Release ~.1 12 November 93 Page 39

JAMlReportWriter Developer's Guide and Reference ~a.nuEiI "

4.1.4

Fields That Do Not Appear in Output Ar~as
In some cases, you will need to define fields that can be used as screen-level variables
even though these fields are not intended to appear in any report area.'-

For example, you can defme breaks based on values computed in JPL procedures, but
JPL variables do not have the scope required for break fields. Screen fields, however, do
have the correct scope, so a simple way to handle this situation is to create screen fields
for these variables. (Refer to Section 5.2 for a more complete discussion of break fields
and break processing.) , .

If your report requires such fields but they are not needed in any report output areas, place
these fields on any line of the report fOlTIlat screen that does not have an area name tag.
,Such fields will be available to all JPL procedures and ReportWriter processing in the
same way as fields in the tagged areas. Make sure that you name the fields and that these
names match those of the corresponding break fields and JPL variables.,

A field that appears on the report format screen but is not on a line containing an area
name tag is a non-output field.

Non-output fields can also be used as target variables for a database fetch, temporary
variables, date/time fields, and so forth. Since they are screen fields, their scope makes
them useable in the report script or wherever needed in the JPL procedures associated
with the screen.

Use of non-output fields can minimize or eliminate the need to put report variables in the
LDB.

4.2

THE REPORT SCRIPT
Enter the report script into the screen JPL module of the report format screen. Each line
of the script must begin with the JPL comment indicator, #. The script can appear any- ,
where within the JPL module and is delimited by the lines

II « begin report »

and
II « end report »

. A simple report script might look like:
·11 <:< begin report »
II init . , jpl = dbinit
II· lines .= 24 'f* length of multi-part invoice form *,f
II
II page header jpl'= init'count ..

Page 40 JAM/ReportWriter Release 5.1 12 November 93 "

"
, Chapter 4: The Report Fonnat Screen

area = phead

detail query = "select * from invoices \
, # order by acct_id"

area = inv-detail '
jpl = detail_jpl

break field = acct_id
footer area = bfoot

« end report »

4.2.1

Structure of the Script Language, '
The report scripting language comprises the following six, statements:

break

clear

detail

init

insert

page

defmes a "break" field and the action to occur when the value of this
field changes

cancels all previous page and/or break specifications

specifies the SQL statement used to fetch data for a row-level report
section; also specifies the report area(s) used to format the fetched data
in the report and any routines to be called for additional processing

performs report initialization

specifies report area(s) to be inserted, a subreport to be invoked, or a
JPL or C routine to be executed on a one-time basis

specifies page headers and footers and any associated processing

In the discussion that follows, statements are described as having associated clauses, sub
clauses, and keywords.

The broad use of the term keyword refers to any string that has a specific meaning in the
report script-the six statement names, and all statement modifiers. In the narrower
s~nse, keyword refers to statement modifiers that stand alone without additional modifi
ers or arguments. For the sake of clarity, the term reserved word is sometimes used in
place of the broader meaning of keyword. ,

. 'The term clause is used to refer to a modifying keyword that requires an argument of
some sort, such as the name of a report area or a JPL module, or that can take additional

"

JAMlAeportWriter Release 5.1 12 November 93 Page 41

JAMlReportWriter Developer's Guide and Referenc!3 Mam~a!

modifiers. The term subclause refers to any clause that is incorporated within another
clause. .

Consider the following break statement:

II break field = authname
II
II footer call = subtots
II area = authfoot
II call = zerotots
II
II header area = newauth
II. showattop
II
II norepeat

. .
This statement consists of field, footer, and header clauses and the keyword
norepeat. The footer clause consists of two call subclauses and an area sub
clause. The header clause contains an area subclause and the keyword showat top.

The six report script statements are described more thoroughly in Chapter 5 of this manu
al. The complete syntax for each is provided in Chapter II, the script statement reference: .
The format of the report script is described below.

4.2.2

Format of the Report Script
This section describes the formatting requirements of the report script within the screen
JPLmodule.

JPL Comment Indicator .

Since the report script is incorporated as a comment in the JPL module, eacb line must
begin with a pound sign (#), the JPL comment indicator.

Delimiting the Report Script

The script can appear anywhere within the JPL module and is delimited by the lines

II « begin report [= mmw] »

and

II « end report »
, .

Each subreport in the script, as well as the primary report, must be delimited by these
compiler directives. The report name is optional for the fIrst report in the script. All sub
seque~t reports, however, must be identified by a name.

Page 42 JAMlReportWriter Release 5.1 12 November 93

Chapter 4: The Report Fonnat Screen

Refer to Sections 4.3.1 and 6.2 for a more detailed explanation of these compiler direc-
tives. ' . '.

White Space

At least one space, newline, or tab character must separate each keyword (statement or
clause name) from the text that precedes it. .

For example,

II page header area = phead
II footer jpl = pfoot
II area = pfoot

is equivalent to

II page header area=phead footer jpl=pfoot area=pfoot

While each of the two examples above is acceptable input to the script compiler, the style
of the frrst is recommended for its readability.

White space is not significant in report script delimiters. The following are all interpreted
correctly by the script compiler:

1I«begin report»

II «begin report »

#« begin report »

Note, however, that the words begin and report must be separated by at least one
space. Similarly, in the ending delimiter, end and report must be separated by at least
one space.

Comments

Comments can be included in the report script. Any text appearing between / * and * / is
interpreted as a comment. Remember that lines containing script comments must begin
with the JPL comment indicator, #, as do all other lines in the script.

II /* This entire line is a comment. */

II init columns = 80/*This comment follows a statement.*/

II /* This is a
It mUlti-line
comment */

Blank lines

Blank lines can appear anywhere in the script

For example,

JAMlReportWriter Release 5.1 12 November 93 Page 43

JAMIReportWnter Developer's GUide and Reference Manual,

II inlt columns = 80
II

II page header area = phead
II footer area = pfoot

IS equivalent to
II lnit columns = 80
II page header area = phead
II footer area = pfoot

or
II inlt columns = 80
II page header area
II
\I = phead
\I footer area = pfoot

In the ftrst of the examples above, the blank line between statements is used to improve
readability of the script.

It is recommended that blank lines begin with the JPL comment indicator, even though
this is not a requirement. (The report script compiler excludes uncommented blank lines
in assigning the line numbers which appear in error messages; therefore, beginning every
line witb a comment indicator will probably make it easier for you to locate any line ref
erenced in an error message.) Throughout tbis manual, all blank lines begin with the JPL
comment indicator.

Use of Quotation Marks

Non-numeric (string) arguments to script keywords and compiler directives are enclosed
in quotation marks. The quotation marks can be omitted if the argument string consists
only of letters, digIts, hyphens, periods, or the underbar character.

If the argument contains blanks or special characters, or if the argument is the null string,
the quotation marks are required.

QuotatIon marks are required in the following examples:
II call = "dototals credits debits"

II area = "h/foot"

II query= "SELECT * FROM accts"

II Jpl = "getname last first"

II a rea = "N

QuotatIon marks are optional III these examples:
II call = lnltval

II area = detail2

II jpl = cleartots

II «include screen = screen. jam»

Page 44 JAM/ReportWnter Release 5.1 12 November 93

Chapter 4: The Report Format Screen

Continuation Character

If a quoted string occupies more than one line, a backslash (\) is used as the continuation
character.

The backs lash must be the last character on the line. The SQL statement that appears in
the query clause of a detai 1 statement frequently requires more than a single line:

~ detall area = datascrn
~ query ="SELECT emp.grade, emp.flrst, emp.last,\
~ acc.sal \
~ FROM emp, acc WHERE emp.ss=acc.ss \
~ ORDER BY emp.grade, emp.last, \
~ emp.first"

Note that the JPL comment indicator is required at the beginning of each continued line.

Case Sensitivity

Keywords in report script statements and clauses are not case-sensitive.

Remember, though, that this applies only to script me keywords and not to me names (if
your operating system is case-sensitive) or to the text of SQL statements.

The following two script statements are equivalent:

~ INIT COLU~~S = 80

~ init columns = 80

Similarly, the script delimiters are not case-sensitive:

« END REPORT »

~ « End Report »

~ « end report »

Any other permutation of upper- and lower-case is also accepted by the script compiler.

SQl Statements

The great latitude available in formatting and capitalization within the report script does
not apply to the SQL statement that appears in the query clause. The SQL statement
must conform to the formatting and capitalization requirements of the database in use.

JAMlReportWnter Release 5.1 12 November 93 Page 45

JAMlReportWnter Developer's GUIde and Reference Manual

4.3

COMPILER DIRECTIVES

4.3.1

Script Delimiters
«begin report»

«end report»

Each report or subreport in a report format screen must be delimited by the «begin
report» and «end report» compiler directives to indicate the beginnmg and
end of each script.

The syntax of the «begin report» compiler directive allows you to specify a
name for each report:

« begin report [= name] »

where:

name is the name by which the report or subreport is invoked; it is re-
quired for any report that is called as a subreport

The names of all reports defined and/or included in a report format screen must be unique
in the first 21 characters.

If the first report defined in a report format screen does not have the name argument, it is
known by the name of the screen and can be invoked only as a primary report. If you want
to invoke it as a subreport, you must specify the name argument in the «beg in
report» compiler directive. This argument is optional only for the first report script
associated with a screen; it is required for all subsequent scripts. Only the frrst script in a
report format screen can be invoked as a primary report.

Each «begin report» must be paired with an «end report» compiler di
rective following the corresponding script. Nesting of report scripts is not permitted.

Refer to Section 6.2 for further information on subreports.

4.3.2

Using Multiple Report Format Screens
«include screen»

If several of your reports share a common layout for a particular area, a standard page
header, for example, or a common trailer page, you can create the layout once as a sepa-

Page 46 JAMlReportWnter Release 5.1 12 November 93

Chapter 4: The Report Format Screen

rate J AM report format screen and dIrect the compiler to include it in each relevant re
port.

Similarly, you may store some or all subreports in separate report format screens. Each
report that invokes these subreports must direct the compiler to include the relevant re
port format screen(s).

To include another report format screen in your report, add the following compiler direc
tive to the script:

~ « include screen = scmmmw »

where scrnname is the name of the report format screen containing the area(s), script(s),
and/or JPL you want to add to the main report.

This compiler directive must appear after the

« begin report »

delimiter but before any script statements.

In the following example, headfoot . j am contains layouts for the page headers and
footers; these areas are tagged phead and pfoot, respectively. A second screen,
tit 1 e . jam, is also included; it contains an area named tit 1 epg.

« begin report »
« include screen = headfoot.jam »
~ « include screen = title.jam »

init

jpl
area

= inltjpl
= titlepg

page header area
page footer area
~

« end report »

= phead
= pfoot

The «inlcude screen» compiler directive imports the area layouts, report
scripts, and screen JPL from the specified report format screen.

Scripts imported from included screens are appended to the end of the primary report
script. They are added 10 the same order as the «include screen» directives are
processed.

Similarly, screen JPL code is appended to the primary report format screen's JPL module.

JAMIReportWriter Release 5.1 12 November 93 Page 47

JAMIReportWnter Developer's GUide and Reference Manual

The following mformation IS omitted from an included screen when It IS imported mto
the primary report fonnat screen:

• border and background color

• screen edits

• control strings

Any number of additional screens can be included, as long as the total number of lines in
the merged screen does not exceed 254. Once the merged screen has reached the limit of
254 lines, no further display text or fields can be imported.

The screen(s) to be included can con tam any number of report areas, as long as each is
correctly tagged.

If a field name on an included screen matches a field name on the main screen, the script
compiler adds an extensIOn to the field on the included screen and treats it as a clone of
the similarly-named field on the main screen. The extension chosen is the name of the
included JAM screen.

Refer to Section 4.1.3 for more information on naming identical fields in separate report
areas.

If an area name tag on an incl uded screen matches one on the main screen, that area of the
included screen is appended to the corresponding area of the main screen. If the same
area name tag appears on multiple included screens, they are appended to the main screen
in the order of the «include screen» compiler directives.

Nested Includes
If your report script imports another report format screen that £)Iso contains < < inc 1 ude
screen» compiler directives, you will want to be aware of the order in which the
screens are appended to the primary report format screen. This is an issue only when mul
tiple imported screens contain areas, reports, or procedures bearing identical names.

Each «include screen» compiler directive in the primary report format screen
is processed to its full depth before the next screen is imported.

Suppose, for example, the primary report format screen contains the following
«include screen» compiler directives:

« lnclude screen = x »
« lnclude screen = y »

and screen x contains

« lnclude screen = z »

The resulting merged screen would begin with the entire primary report format screen,
followed by screen x, screen z, and, finally, screen y.

Page 48 JAM/ReportWnter Release 5.1 12 November 93

"

Chapter 4: The Report Format Screen

As mentioned above, if an area name tag on an included screen matches one on the pnma
ry screen, that area of the included screen is appended to the corresponding area of the
main screen. If the same area name tag appears on multiple included screens, they are
appended to the primary screen in the order the «include screen» compiler di
rectives are processed.

To continue the example, suppose the primary report format screen, screen y, and screen
z all contain areas with the tag a. The resulting area a on the merged screen would con
sist of all the a hnes from the primary screen, followed by those from screen z and then
from screen y.

If you are developing reports that import screens containing «include screen»
compiler directives, you should keep in mind the order in which these directives are pro
cessed and the screens appended to the primary screen.

4.4

COMPILING THE REPORT
When you have completed the report format screen-laying out the report areas, entering
the report JPL into the screen JPL module, and entering the report script as a comment in
the screen JPL module-you must compile the report with the rprt2bin utility.

On the command line, type

rprt2bin [-e en) ~~

where rprtname is the name of the report format screen to be compiled. If rprtname does
not include an extension, the default extension specified in the environment variable
SMFEXTENSION is assumed.

The output of rprt2bin is a binary file named rprtname. ext If the -e option is
omitted, the resulting file is named rprtname. bin.

The report binary fIle will be used as input to rwrun, the report generation utility.

The report binary file cannot be edited. If you need to change the report in any way after
it has been compiled, you must make the changes to the source file for the report format
screen and recompile.

The report fonnat screen to be compiled must be in ReportWriter release 5 format. Use
the rw4 to5 utility, described in Chapter 13, to convert your release 4 reports to release
5 fonnat before attempting to compile them.

JAMlReportWriter Release 5.1 12 November 93 Page 49

JAMlReportWnter Developer's GUide and Reference Manual

4.5

INSTALLING CALLED FUNCTIONS
Any functton invoked by a call clause in the report script must fIrst be installed on
either the control function list or the prototyped function list and linked into the Report
Writer executable.

The steps below outline the general procedure for installing and linking your compiled C
(or other supported language) functions into ReportWriter. The details of this process are
operating system dependent. Refer to the fIles provided in your ReportWriter distribution
for more specifics.

I. Install the functions into the control function list or the prototyped
function list of funclist. c. Instructions for this step are provided
in the JAM Programmer's Guide and in the funclist. c fIle, which
is part of the JAM distribution.

2. Compile funclist. c.

3. In rwmain. c, make sure that the line

is not commented out.

4. In the supplied makefIle, append the names of the object fIles for your
functions onto the line that begins

USERMODS = funclist.o

This step is documented in the makefIle. (The exact name of the make
me depends upon your operating system.)

5. Run the makefIle to create the desired executables. This step recom
piles rwrnain . c and relinks rwrun, j arnrw, and/or j xrw, depend
ing upon your other modifications to the me. (Refer to instructions in
the makefile for specifying which executables to create.)

Page 50 JAM/ReportWriter Release 5.1 12 November 93

JAM!
ReportWnter

ChapterS

Using the Script Statements
This chapter explains how to use the script statements to produce a report with the re
quired content and formatting.

The frrstthree statements described, detail, break, and insert, deal primarily with
generating report content-capturing, processing, and formatting report data.

The remaining three report script statements, ini t, page, and clear, deal primarily,
but not exclusively, with page formatting: dimensions, margins, page headers, and page
footers. Each of these statements can also interact with report contents in such ways as

• using ini t to invoke a routine that logs on to the database,

• inserting the current value of a report variable into a header specified in
the page statement, or

• using clear to terminate prior break specifications.

The six report script statements are described functionally in the sections that follow. For
a concise syntactical description of these statements, refer to Chapter 11.

5.1

SPECIFYING THE DATABASE QUERY:
detail
The detai 1 statement is used to specify the database query that fetches data for a row
level or summary report.

NOTE: If a developer-written row-supply function is installed, the detail query is passed
to this function rather than to J AMlDBi. Refer to Section 8.3 for information on develop
er-written row-supply functions.

JAMIReportWnter Release 6.1 12 November 93 Page 61

JAMIReportWnter Developer's GUide and Reference Manual

Each detall statement must Include a smgle query clause or cursor clause. In
addItion, this statement can contaIn any number of area, report, jpl, or call
clauses. Tbe keywords ne1Npage and spl it can also be mcluded as necessary to con
trol formatting of detatl report areas. The keyword breakcheck may be added to specI
fy where break processIng should occur. In addition, the area clause can be modified by
the shrink keyword.

A typICal detai I statement might look like

II detall
It

II

II
II

II

II

5.1.1

query = "SELECT * FROM aeets \
ORDER BY state, acctld"

breakcheck
Jpl = dtlcale
drea = aectdtl shrlnk
Jpl = "acctproc cumtots"
newpage

Detail-Level Processing
When a detai 1 statement is encountered in the report script, ReportWriter processes
the SQL statement In the query clause or executes the named cursor specified in the
cursor clause and, upon each fetcb from the database, executes the area, report,
j pI, and call clauses. ReportWriter continues to cycle througb the detail statement in
thIS manner until no more rows are fetcbed from the database.

The area, report, jpl, and call clauses and the breakcheck keyword are
executed in the order they are encountered within the detai 1 statement. Thus, any pro
cedures that compute values required for the output areas must be invoked with jpl or
ca 11 clauses placed before the applicable area clauses. Similarly, if any procedures
modify data in ways that you do not want reflected in the current cycle's output, place the
corresponding j pI or call clauses after the corresponding area clause.

If break processing is enabled for this section of the report, the order in whicb rows are
fetched must be consistent with the blerarchy of break fields. The SQL statement in the
query clause (or the named cursor) must include an ORDER BY clause specifying the
same fields as the break fields and in the same order. Refer to Section 5.2 for more in
formation on break processing.

In the event that no rows match the query, no detail processing or output is performed.
ReportWriter issues a warning message in this case. (Warning messages can be sup
pressed by using the - i option when ReportWriter is Invoked; refer to Sections 9.1 and
9.4 for more information on this option.)

Page 52 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

5.1.2

detail Clauses and Keywords

query
The query clause consists of a SQL statement that fetches the desired rows from the
database. Note that the SQL statement must be a SELECT statementl and must conform
to the syntax of the database in use. The SQL statement must be enclosed in quotation
marks.

If a developer-written row-supply function is used in place of JAMlDBi to provide input
to ReportWriter, the query must conform to the syntax expected by the input function.

This clause can appear anywhere within the detai I statement Typically, it is either the
frrst or last clause, but this is not required, since its position does not affect the order of
processing.

As each row is fetched from the database, ReportWriter must output an area, perform
some processing, or both. The area, j pI, and call clauses specify the appropriate ac
tions.

cursor
A named cursor can be invoked as an alternative to the query clause in the detai I
statement.

You must declare the cursor in a JPL or C routine that will be executed before the corre
sponding detail statement is encountered. Execute the cursor by using a cursor
clause instead of a query in the detai I statement. The syntax for the cursor clause
is

cursor = invocation_string

where:

invocation_string
consists of the name of the cursor followed by the applicable argu
ments, if any. A space separates the cursor name and the argu
ments, if any. The arguments themselves should be formatted ac
cording to your J AMlDBi specifications for the dbms statement
EXECUTE USING. The arguments are colon expanded and then
passed as a string to

1. If you are usmg Sybase, the query clause can also be used to invoke a stored procedure. For example:
query = "exec procname :arguments"

JAMlReportWnter Release 5.1 12 November 93 Page 53

JAMIReportWnter Developer's GUide and Reference Manual

dbms WITH CURSOR cursor EXECUTE USING argumenCstrlng

if ReportWriter is linked WIth JAlVllDBi release 5, or to

dbms EXECUTE cursor US ING argumenCstrlng

if ReportWnter is linked with JAMJDBi release 4.

The invocation string must be enclosed in quotation marks If it con
tams embedded spaces or other special characters.

Each detai 1 statement must contain one query clause or cursor clause, but not
both.

Refer to Section 6.7 for more information on using named cursors in the detail state
ment.

area

The area clause specifies a report area to be output for each fetch from the database.
This clause is optional; multiple area clauses are permitted in a detai 1 statement.

Use the shrink keyword to remove excess blank fields from the specified report area
on output. Tbis feature is particularly useful for report areas containing arrays that may
not be fully popUlated. If shr ink is specified, the trailing unused elements are removed
and the report area is condensed accordingly. If the entire field, which could have one or
more onscreen elements, is blank, the entire field is removed. Tbis keyword removes
only blank lines, not columns, thus shrinking the area vertically, but not horizontally.
Place the shrink keyword after the area name:

detail area = empdtl shrink

Refer to Section 6.5.1 for more infOlmation on sizing areas dynamically.

If the breakcheck keyword does not appear in the detail statement, placement of
the first area or report clause determines the point at which break processing is per
formed. By default, break checking and processing occur immediately before the first
area or report clause, or, if neither of these clauses is present, after all jpl and call
clauses in the detail statement have been executed. Refer to Section 5.2 for a more
complete explanation of break checking and processing.

If you are creating a summary report that displays only totals and subtotals rather than the
values for each row in the database, you can omit the area clause. (Remember, however,
that with no area or report clause present, you will probably need to use the
breakcheck keyword to ensure that break checking and processing occur at the cor
rect point in the execution flow of the detai 1 statement. The breakcheck keyword
is described below.)

Page 54 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5. USing the SCript Statements

report

The report clause specifies a subreport to be mvoked for each fetch from the database.
This clause is optional; multiple report clauses are permitted.

If the breakcheck keyword does not appear in the detail statement, placement of
the first report or area clause detennines the point at which break processing IS per
formed. By default, break checking and processing occur immediately before the first
area or report clause, or, if neither of these clauses is present, after all j pI and ca 11
clauses in the detail statement have been executed. Refer to Section 5.2 for a more
complete explanation of break checkmg and processing.

Refer to Section 6.2 for a complete discussion of subreports.

jpl

The j pI clause specifies a JPL procedure to be executed for each fetch from the data
base. This clause is optional; multiple j pI clauses are permitted.

call
The call clause specifies a C (or other supported language) routine to be executed for
each fetch from the database. This clause is optional; multiple call clauses are per
mitted.

newpage

The newpage keyword forces a page break after output for each cycle through the
detai 1 statement is completed. This keyword is ignored if no report area or subreport
with output is specified in the detai 1 statement.

Use the newpage keyword to ensure that each row's output begins on a new page.

split

By default, ReportWriter will not unnecessarily split a multi-line area between pages. If
there is insufficient room on the current page to accommodate the entire report area, Re
portWriter will force a page break and begin it on a new page.

The spl it keyword overrides this pagination rule, permitting the area to begin part way
down on a page, even if that means it will be split across pages.

The spl it keyword must be placed with the area clause to which it applies.

JAMlReportWnter Release 5 1 12 November 93 Page 55

JAMIReportWnter Developer's GUide and Reference Manual

breakcheck
ThIS keyword indIcates where in the sequence of area, subreport, jpl, and call
clauses break processmg should occur. For example, In the following detail statement.,
break processing takes place after the JPL procedure prebreak is executed and before
the procedure pos tbreak is invoked:

II der..all query = "SELECT " . - -
\I Jpl = prebreak
II breakcheck
II Jpl = postbreak
\I area = dtlarea

If the breakcheck keyword is not specified, break processing takes place immediately
before the first area output or subreport invocation (or after all j pI and call clauses, if
no area or report clause is present). In the above example, if the breakcheck key
word were omitted, break processing would take place after execution of the JPL routine
postbreak.

The breakcheck keyword is also useful for retaining the pre-break value of a break
footer field computed from a fetched field.

Suppose, for example, that the procedure set_b computes the value of field b from that
of fetched field a. Suppose, too, that b is a field in the break footer area, so it must show,
when the break footer is output, the value computed from the previous fetch rather than
that corresponding to the current fetch. To ensure that the correct value will be displayed,
simply delay computing its value from the current fetcb until after the break footer has
been output.

Consider the following two code fragments:

II /* code fragment (1): */
II
\I break field = a
II
II

footer area = bfoot

II detall query = "SELECT a FROM t ORDER BY a"
\I Jpl = set_b
\I area = dtl-area

II /* code fragment (2): */
II
II break field = a
\I footer area = bfoot
II
II detail query = "SELECT a FROM t ORDER BY a"
II breakcheck
II Jpl = set_b
II area = dtl-area

Page 56 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

In fragment (1) the value of b is computed before break processmg. If break cbecking
determmes that field a has broken (and thIS row, therefore, begins a new break group),
the prior value of b will have already been lost, and the new value will appear m the foot
er for the previous break group.

In fragment (2), the computation of variable b is delayed until after break checking and
processing. Therefore, when the break footer for the previous break group is output, the
value shown for b will be that computed from the correct value of the break field. Mter
break processing, b is recomputed so that it will show the correct value based on the cur
rent value of field a.

Refer to Section 5.2.3 for additional information on retaining the pre-break values of
break footer fields.

The breakcheck keyword is effective only if it appears ahead of the first area or
report clause.

Refer to Section 5.2 for more information on break processing.

5.2

DEFINING BREAK FIELDS AND
PROCESSING: break

The break statement is used to define a breakfield and to specify the associated proces
sing and/or output that should occur when there is a change in the value of this field. The
break field must be either a field on the report format screen or an LDB variable.

A JPL variable cannot be used as a break field. You can avoid having to use the LDB by
creating a non-output field of the appropriate type on the report format screen. Refer to
Section 4.1.4 for more information on entering non-output fields onto the screen.

Each break statement must specify a break field and, optionally, a break header, break
footer, or both. In addition, the keywords norepeat, norepeatattop, and
newpage can be included, if applicable, to control formatting. Output areas in the break
header clause can be modified by the nodupl, split, shrink, and showattop
keywords; output areas m the footer clause can be modified by the nodupl,
shr ink, and sp 1 it keywords. The break footer can also be modified by the keyword
noorphanbreak.

A typical break statement might look like:

JAMlReportWnter Release 5.1 12 November 93 Page 57

JAMlReportWnter Developer's GUide and Reference Manual

II break fJ.eld = authname
II
II footer call = "subtots authtoc salestot"
II area = authfoot
II call = zerotots
II
II header area = newauth showattop
II
II norepeat

5.2.1

Hierarchy of Break Fields
Multiple break statements define a hierarchy of breaks. The first break statement
identifies the highest-level break field. Subsequent break statements define breaks at
increasingly lower levels. Whenever a break occurs, all lower-level breaks are automati
cally forced to occur at the same time.

The following example defines breaks by genus, species, and subspecies:

II break field = genus
II header area = head
II footer area = gfoot
II
II break field = species
II footer area = sfoot
II jpl = sfoot
II
II break field = subspecies
II footer area = ssfoot
II jpl = ssfoot

Whenever the value of a break field is found to have changed, break processing is initi
ated, not only for that field, but also for all lower-level break fields. Thus, you can cause
a given set of break field actions to occur if anyone of several specified fields is changed.

To do so, define each such field as a break field, and associate the desired action with only
the lowest of these breaks. If anyone or more of the specified fields change value, the
indicated actions are invoked.

In the following example, the area name-header is output whenever any part of the
name changes:

II break
II break
II break
II

Page 58

field = last_name
f leld = first_name
field = middle_initial
header area = name-header

JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

5.2.2

Break Field Processing
The detail statement causes all rows matching its query to be fetched from the data
base and processed. Before the ftrst fetch is processed, break header procedures and areas
are executed and output, from the highest level break to lowest. (If no rows match the
detail query, no break processing or output is performed.)

As subsequent rows are processed, each break fteld is checked to determine if its value
has changed since the previous row was processed. If no break is detected (that is, the
values of the break ftelds have not changed), the new row is processed as indicated in the
detail statement.

Break checking is performed immediately before the point in the detail statement
where break processing would occur, if needed; that is, where the breakcheck key
word is encountered, or, if breakcheck is not present, immediately before the ftrst
area or report clause, or, if neither is present, after all jpl and call clauses have
been executed.

If the value of a break field is found to have changed, break processing is initiated for that
field and all lower-level break fields, in the following order:

I. The procedures and areas for break footers are executed and output,
beginning with the lowest level break field.

2. Header procedures and areas for the broken fields are processed simi
larly, but in the opposite order-highest level to lowest.

3. Processing of the current database fetch resumes.

Break specifications remain in effect until a clear or clear breakspecs state
ment is encountered in the report script.

break statements can appear anywhere before or after the detai 1 statements to which
they apply, as long as there is no clear or clear breakspecs statement between
the break and detai 1 statements.

Similarly, break statements that deftne a hierarchy need not immediately follow each
other. (Although, for the sake of clarity, you should place the break statements together
in the script so that the hierarchy is obvious.) Once a clear or clear breakspecs
statement is encountered, however, additional break statements defme a new break
hierarchy, rather than adding to the previous one.

Where break processing is enabled, the order in which rows are fetched from the database
must be consistent with the hierarchy of break ftelds. The SQL statement in the detai 1
query clause must include an ORDER BY clause specifying the same fields as the break
fields and in the same order. Refer to Section 5.1 for more information on detail proces
sing.

JAMIReportWnter Release 5.1 12 November 93 Page 59

JAMIReportWnter Developer's GUide and Reference Manual

The order of clauses and keywords wIthm the break statement IS not sigmficant. The
order of area, report, j pI, and call subclauses within the footer and header
clauses, however, IS sIgnificant and detemunes the order m which processmg and area
output occur.

5.2.3

Retaining Pre-Break Values
An y break field that appears ill a break footer area will show its pre-break value when the
footer is output. Non-break fields whose values are fetched by the detail query will nOf
mally conta.in, at break-footer time, the values associated with the detail row that will
beglll the following break group. To force these fields to show their pre-break values in
break footers, define them as lowest-level break fields with no actions, such as:

" break field = name

II l)reak fleld = address

Any field computed from a fetched field will also show its post-break value when it ap
pe,U's in a break footer unless

• it is defined as a lowest level break field (as described above), Of

5.2.4

• the detail processing that computes its value is mvoked after break pro
cessing takes place. (Refer to the breakcheck keyword description
for an example of this sequence.)

Computed Breaks
At times, you will need to define breaks on variables that are not fetched from the data
base.

For example, in a long row-level report, you may want to insert a blank line every few
rows to make the report easier to read. Or, you may want your break field to be a value
derived from data fetched from the database, such as ordering rows by date and then
grouping them by quarter of the year. Alternatively, you may need to output an additional
report area each time a row of data meets some specified criterion, as in an employee
listing where you want to show the territory information for each employee whose de
partment is "sales."

In each of these cases, the break field is not a column in the database but, rather, a variable
whose value is generated in a JPL or C routine. The variable may be simply a flag whose

Page 60 JAMIReportWnter Release 5.1 12 November 93

Chapter 5: USing the Script Statements

value is changed for the sole purpose of tnggenng a break, as III the fIrst and third exam
ples in the preceding paragraph, or it might bear a more direct relationship to the data in
the row, as in the second example.

As mentioned earlier, break fIelds must be either screen fields or LDB variables. Since
the break fIeld in a computed break is not likely to appear In a report output area, remem
ber to define a non-output field on the report format screen so that this variable can be
used as a break field. This procedure is described in Section 4.1.4.

The following example is similar to the second scenario, above, in that the value of the
break field is derived from the fetched data. Suppose you are reporting questionnaire re
sults and you want to group the responses by age range: under 18, 18 - 25, 25 - 40, and
so forth. (Assume that each respondent's age is included in the database.)

To implement thIS:

• On the report format screen, create a non-output field to use as the
break field. You may want to call it age_range. The procedure for
creating non-output fields is described in Section 4.1.4.

• Write a JPL procedure that computes age_range for each fetched
row.

• Defme a break on the age_range fIeld.

• Order the fetched rows by age.

The break and detai 1 statements to implement this break might look like:

II break held = age_range
II footer jpl = fill - in _range
II area = age-group-summary
II Jpl = reset_totals
II header area = column-titles
II
II detall query = "SELECT * FROM responses\
II ORDER BY age"
II jpl = figure_age_range
II area = detail-area
II JPl = do_running_ totals

The JPL procedure f igure_age_range, invoked each time a row is fetched, would
include the following:

II determl.ne which age range the respondent for this
II row belongs in

II the ranges are: 1 : under 18
II 2 : 18 - 25
II 3 : 26 - 40

JAMlReportWriter Release 5.1 12 November 93 Page 61

JAMIReportWnter Developer's GUide and Reference Manual

II
II

4: 41 - 60
S: 61 and over

II the var1able age_range 1S a non-output f1eld
II on the report format screen

if age >= 61
cat age_range "S"

else if age >= 41
cat age_range "4"

else if age >= 26
cat age_range n3"

else 1f age >= 18
cat age_range

else
cat age_range

II""" <-

"l"

Since f igure_age_range computes the break field value for the current row, it must
be invoked before break checking takes place. The detail statement (shown on the
preceding page) implements this required order of processing.

You will probably also want some text on the break footer area to identify which age
range the responses belong to. Write a JPL procedure, called f i ll_in_range in this
example, to supply the applicable text for a field on the age-group-surmnary area
(the break footer). Your procedure will determine the appropriate text from the value of
the break field, age_range.

Note that ReportWriter saves the prior value of any variable defmed as a break field; it
uses the old value, rather than the new one, in all break footer processing. Even though
the value of age_range will have changed by the time f i ll_in_range is invoked,
it will access the correct (Le., the one that pertains to the just-printed group) value of
age_range.

5.2.5

break Clauses and Keywords

field

The fie 1 d clause specifies the break field. This field must appear on the report format
screen or be in the LDB. Typical break fields include columns fetched from the database
and values computed in JPL or C routines.

If the break field is a computed value that is not propagated to a field in a report area, you
will have to create a non-output field on the report format screen or else place the vari
able in the LDB.

Page 62 JAM/ReportWriter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

The field name can, optionally, be modified by a substnng specificatIon, giving the char
acter positIon for starting the companson and the number of characters to compare. Sup
pose, for example, a company uses a part numbering scheme in which characters 3
through 7 identify the manufacturer. To produce an inventory report in which the
manufacturer is the break group, specify the relevant substring of the part number as the
break field:

II break field ::: partno (3,5)

Array elements can also be used as break fields. For example:

II break field = city[2]

II break field = city[:i]

II break field = city[5] (10,2)

II break field = :field[:iJ (:x, :y)

Remember that variables used to identify the array element or the substring must be
colon-expanded. The following are not legal break field designations:

II break field = city[iJ

II break field = :field[l] (a, b)

header
The header clause specifies the processing to be performed and the area(s) to be printed
at the beginning of a break group. Typical header processing includes re-initializing sub
totals for the new break group and printing a header area with the current break field val
ue, column titles, etc.

Each header clause must include at least one area, report, jpl, or call sub
clause.

area The area subclause specifies a report area to be output at the begin
ning of a break group. The area subclause is not required, as long as at
least one report, jpl, or call subclause is present in the header
clause; multiple area subclauses are permitted.

report
The report subclause specifies a subreport to be invoked at the start
of each break group. This subclause is optional, as long as at least one
area, jpl, or call subclause is present; multiple report sub
clauses are permitted. Refer to Section 6.2 for a complete discussion of
subreports.

j p I The j p I subclause specifies a JPL procedure to be run at the start of
each break group. This subclause is optional, as long as at least one

JAMlReportWnter Release 5.1 12 November 93 Page 63

JAMIReportWnter Developer's GUide and Reference Manual

area, report, or call subclause is present; multiple j pl sub
clauses are permitted.

call The call subclause specifies a C (or other supported language) routine
to be run at the start of each break group. This subclause is optional, as
long as at least one area, report,or j pl subclause is present; multi
ple call subclauses are permItted.

area, report, jpl, and call subclauses are executed 111 the order they are encoun
tered in the header clause.

The area subclause 111 the header clause can also contain the following keywords to
control output of the area:

nodupl

shrink

split

The nodupl keyword causes header output to be suppressed if it im
mediately follows the header output of the next higher break level. All
other subclauses associated with the header clause are executed,
however.

If this keyword is present in the highest-level break header, the report
compiler issues a warning and ignores the nodupl.

The nodupl keyword is typIcally used in the case where columns la
belled by the lower-level header are a subset of those labelled by the
higher-level header. In such a case, it is redundant to output the lower
level header if the same (and likely, more) column labels appear im
mediately above.

Figure 12 illustrates such an application. A small portion of the report
script and the relevant report areas are shown.

The s hr ink keyword removes excess blank lines from the output area.
Refer to Section 6.5.1 for information on sizing report areas dynamical
ly.

The split keyword allows the area to begin, end, or span a page. If
this keyword is not present, ReportWriter will keep all headers together
and unbroken.

showattop
If the showa t top keyword is present, the area will appear at the top of
each new page during detail processing (after the page header), whether
or not a break has occurred at that point.

The nodupl and showattop keywords can be combined for a break header area. In
the event of a conflict, nodupl supersedes showattop.That is, showattop directs

Page 64 JAM/ReportWnter Release 5 1 12 November 93

Chapter 5: Usmg the Script Statements

break field = state
header area = s-head

break field = city
header area = c-head nodupl

«s-head
STATE CITY «s-head

«s-head
«c-head

CITY «c-head
«c-head

Figure 12: A Typical Use of the nodupl Keyword

that the break header area be output at the top of each page; if however, the next higher
level header area is output at that point (whether because a break has occurred or because
it, too, has the showat top keyword), nodupl suppresses the current break header out
put

footer
The footer clause specifies the processing to be perfonnedand the area(s) to be printed
at the end of a break group. This is typically where subtotals for the group are printed,
before the next group begins.

Each footer clause must include at least one area, report, jpl, or call sub
clause. In addition, the noorphanbreak keyword can be included as necessary to con
trol formatting of the break footer.

JAMlReportWriter Release 5.1 12 November 93 Page 65

JAMIReportWnter Developer's GUide and Referenc:e Manual

area The area subclause specifies a report area to be output at the end of a
break group. The area subclause IS not required, as long as at least one
report, jpl, or call subclause is present in the footer clause;
multiple area subclauses are permitted.

report
The report subclause specifies a subreport to be invoked at the end of
each break group. This subclause is optional, as long as at least one
area, jpl, or call subclause is present; multiple report sub
clauses are permitted. Refer to Section 6.2 for a complete discussion of
subreports.

j pI The j p 1 subclause specifies a JPL procedure to be run at the end of
each break group. This subclause is optional, as long as at least one
area, report, or call subclause is present; multiple jpl sub
clauses are permitted.

call The call subclause specifies aC (or other supported language) routine
to be run at the end of each break group. This subclause is optional, as
long as at least one area, report,or jpl subclause is present; multi
ple ca 11 subclauses are permitted.

area, report, jpl, and call subclauses are executed in the order they are encoun
tered in the footer clause.

Suppose, for example, that part of the footer processing consists of clearing out the subto
tals from the previous break group. The area subclause must appear before the j pI or
call that invokes the procedure to zero out these variables. Otherwise, the footer area
will display the re-initialized values rather than the correct totals for the group. In the
following example, f 00 t ca 1 c . j p 1 performs some calculations and additional proces
sing to generate values for the footer area; c 1 ear tot . j p 1 zeros out the totals from the
break group just completed.

break

field = custname
footer jpl = footcalc

area = custacct
jpl = cleartot

The area subclause in the footer clause can also contain the following keywords to
control output of the area:

nodupl

Page 66

If the nodupl keyword is present in an area subclause the footer
clause and if the next higber break level occurs at the same time, this
footer area is not output. All report, j p 1, or ca 11 subclauses
associated with the footer clause are executed, bowever.

JAMlReportWriter Release 5.1 12 November 93

shrink

split

Chapter 5' USing the SCript Statements

If this keyword is present in the highest-level break footer, the report
compiler issues a warning and ignores the nodupl.

The shr ink keyword removes excess blank lines from the output area.
Refer to Section 6.5.1 for information on sizing report areas dynamical
ly.

The spl it keyword allows a footer area to begin, end, or span a page.
If this keyword is offiltted and if there is not sufficient room on the cur
rent page to fit the entire area, it begins on a new page.

The footer clause can also contain the following keyword to control output of all spe
cified areas:

noorphanbreak
If this keyword is present and if the group just printed had only one
member, the footer areas are not printed and subreports are not invoked.
All jpl and call subclauses associated with the footer clause are
executed, however.

The noorphanbreak keyword can be qualified by the 1 ines sub
clause. lines specifies a number of blank lines to be output in lieu of
the footer areas.

For example, to omit the footer area when a break group consists of just
a single row and to insert three blank lines in place of that area, include
the following in the footer clause:

noorphanbreak lines = 3

newpage

Specify newpage if you want each break group at this level to begin on a new page. A
new page is begun after processing of break footer output for all break levels.

The presence of the newpage keyword at a given level implies the presence of
newpage at all higher levels. If newpage is specified at multiple levels in the break
hierarchy, only one page break occurs, no matter how many levels have broken.

norepeat
The norepea t keyword suppresses output of the break field in the detail area except for
the first fetched row in each break group. The field is also output, however, when the row
fetched is the first one on a page.

JAMlReportWnter Release 5.1 12 November 93 Page 67

JAMlReportWnter Developer's GUide and Reference Manual

Consider, for example, the following report:

Vendor

ABC Mfg.
ABC MEg.
ABC Mfg.
ABC Mfg.
ABC Mfg.
ABC Mfg.
ABC Mfg.
ABC Mfg.
ABC Mfg.
ABC MEg.
ABC Mfg.

Category

bolt
bolt
bolt
bolt
nall
nall
nall
nut
nut
nut
nut

Part
Number

12-421
12-422
12-583
12-593
19-635
19-640
19-735
22-421
22-422
22-593
22-601

Unlts
on Hand

179
220
112
381

10000
5890
8000

203
190
380
512

ABC Mfg. Total Units on Hand: 26067

To make this report less redundant and more readable, include the norepea t keyword
in the vendor field break statement. The field that appears in the category column can
also be defined as a break field so that its contents will be printed only when the value
changes. The break statements for this report might look like:

II ixeak field = vendor

" header Jpl = cleartot
II area = vendhead
II footer jpl = vendcalc
II area = vendfoot
II norepeat

" newpage
II
II i)reak fIeld = category
II norepeat

The newpage keyword in the first break statement ensures that each vendor's listing
will begin on a separate page.

These break statements yield a report that looks like:

Page 68 JAM/ReportWriter Release 5.1 12 November 93

Chapter 5· USing the Scnpt Statements

Vendor Category

ABC Mfg. bolt

nail

nut

ABC Mfg. Total units

norepeatattop

Part
Number

12-421
12-422
12-583
12-593
19-635
19-640
19-735
22-421
22-422
22-593
22-601

on Hand:

Unlts
on Hand

179
220
112
381

10000
5890
8000

203
190
380
512

26067

Tbe nor epea tat t op keyword suppresses output of the break field in the same manner
as norepeat, with the following difference: if the listmg for the break group spans mul
tiple pages and if norepea ta t top is specified, the break field is not repeated in the
fust row on each new page, as it would be if norepea t had been specified instead.

If the norepea ta t top keyword is specified, the break field is output in the detail area
only wben its value cbanges.

5.3

OUTPUTTING A SINGLE AREA OR
INVOKING A PROCEDURE: insert
Use the insert statement to output a report area, invoke a subreport, and/or to specify
procedure(s) to be executed. Any area output or procedure invoked with this statement is
performed once only. (Contrast this with the detai 1 statement, whicb is driven by a
database query and perfonns area output and associated processing for eacb fetcb.)

Typical uses for the insert statement include

• producing a title page for the report,

• generatmg a trailer page sbowing grand totals accumulated during re
port generation,

JAMlReportWnter Release 5.1 12 November 93 Page 69

JAMIReportWnter Developer's Guide and Reference Manual

• forcing a page break so that the next report area will begin on a new
page,or

• invoking a JPL procedure that performs any necessary cleanup at the
end of a report, including closing connections to the database.

Each insert statement must include at least one area, report, j pI, or call clause
or the keyword newpage. In addition, the keywords split and shrink can be in
cluded as necessary to control formatting of this report area.

A typical insert statement might look like:

II lnsert area = title2
II jpl = pagenum
II Jpl = "init"
II newpage

5.3.1

Insert Processing
When an insert statement is encountered in the report script, ReportWriter executes its
area, report, j pI, and call clauses in order of appearance. Thus, any procedures
that compute values required for the output area must be invoked with jpl or call
clauses placed before the area clause. Similarly, if any procedures modify data in ways
that you do not want reflected in the output area, place the corresponding j pI or call
clauses after the area clause.

5.3.2

insert Clauses and Keywords

area
The area clause specifies a report area to be output. This clause is optional; multiple
area clauses are permitted in an insert statement.

The area clause can be modified by the shr ink keyword. If the specified area contains
any arrays that are not fully populated, shr ink removes unused elements at the end of
the array and shrinks the output accordingly. The shr ink keyword should be placed af
ter the area name:

II area = summary shrink

Refer to Section 6.5.1 for more information on sizing areas dynamically.

Page 70 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: Using the SCript Statements

report
The report clause specifies a subreport to be invoked. This clause is optional; multiple
report clauses are pennitted.

Refer to Section 6.2 for a complete discussion of subreports.

jpl
The jpl clause specifies a JPL procedure to be executed. ThIS clause is optional, and
multiple jpl clauses are permitted.

call
The ca 11 clause specifies a C (or other supported language) routine to be executed. This
clause is optional, and multiple call clauses are permitted.

newpage
The newpage keyword forces a page break.

If the insert statement contains any area or report clauses, the page break occurs
after these area are output.

If no area or report clause is present, newpage simply forces a page break. This is
useful for ensuring that the next area output begins on a new page. For example, suppose
a detail section of the report has just been completed and the next area to be output is a
title page for a new report section. The following script fragment shows how to make sure
that the title occupies a page of its own:

/* The following statement forces a page break,
ensuring that the next area output will begin on
a new page: */

insert newpage

/* When the title page for section 2 is output, use
the newpage keyword to prevent the printing of any
additional area on the same page. */

insert

jpl = sec2init.jpl
area = sec2titl.jam
newpage

newpage does not force blank pages. If a page is currently opened, it is closed so that the
next output will be on a new page. If there is no open page, newpage has no effect; that
is, it will not cause a blank page to be output

JAMlReportWnter Release 5.1 12 November 93 Page 71

JAMlReportWnter Developer's GUide and Reference Manual

If you need to force a blank page, create a report area conslstmg of a blank Ime and use
newpage to ensure that It occupies a page of its own, as in the following:

II
II lnsert newpage /* next area output wlll be on a
II ne\oJ page .. I
II

II lnsert area = empty
II newpage
II

split
By default, ReportWnter will not unnecessarily split a multI-line area between pages. If
there IS not sufficient room on the current page to accommodate the entire area, Report
Writer will force a page break and begin the area on a new page.

The s pI it keyword ovemdes this pagination rule, permitting the area to begin part way
down on a page, even if that means that the area will be split across pages.

The spl it keyword must be placed with the area clause to which it applies.

5.4

INITIALIZING THE REPORT: ini t
The in i t statement allows you to initialize the page size and left margin parameters for
the report as well as to specify the arguments accepted by the report on invocation.

In addition, you can use the in i t statement to output report areas and/or to specify pro
cedure(s) to be executed as part of report initialization. This is usually the appropriate
place to invoke procedures that initialize report variables and, if you are running Report
Writer stc'Uld-alone, open a connection to the database.

The init statement can include any of the foUowing clauses and keywords: lines,
columns, leftmargin, feedlines, area jpl, call, fixedlength,
varlength, parameter, newpage, shrink and split.

A typical in i t statement might look like:

II wit Jpl = lnit _rpt_var
II Jp1 = open_ db - conn
II area = tltlepg
II newpage
II Ilnes = 54
II colulTU1s = 72
II 1eftmargln = 8

Page 72 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the Script Statements

NOTE: When ReportWnter is run from a JAMIDBi application, It IS usually the applica
tion, not ReportWnter, that opens the connection to the database. When ReportWriter is
run from the stand-alone utIlIty rwrun, however, the report, itself, must be responsible
for connectmg to the database.

5.4.1

Initialization Processing
The ini t statement is normally the fIrst executable statement in the report script. The
area, j pI, and ca 11 clauses are executed in order of appearance (as in any other state
ment where these clauses can be used). The lines, columns, feedlines, and
leftmargin clauses and the fixedlength and varlength keywords govern
page size and formatting until overridden by the presence of another ~ni t statement in
the script.

Values for lines, columns, feedlines, and leftmargin can also be specified
in the device fIle, as can the fixedlength or varlength keyword. If specifIed in
both the device fIle and in an ini t statement, the value in the ini t statement takes
precedence. If not specifIed in either place, ReportWriter default values are used. Refer to
Section 5.4.4 for a discussion of the ReportWriter defaults.

Output parameters specified in the ini t statement take effect when the statement is en
countered in the script Therefore, if one or more insert or detai 1 statements pre
cede the frrst ini t statement in the script, any areas output as a result of those statements
will be on pages governed by parameters in the device fIle, if present, or by ReportWriter
defaults.

Since output parameters in the ini t statement take precedence over the corresponding
entrIes in a device fIle, it is recommended that you use the in i t statement only for out
put parameters that should never change, no matter where the report output is directed.
Specify all other parameters in device fIles, each of which can be tailored to a particular
output device or fIle. Refer to Section 8.1 for further information on device confIguration
fIles.

Arguments passed to the report on invocation must be defined in parameter clauses in
the ini t statement

5.4.2

ini t Clauses and Keywords
The area, jpl, and call clauses and the split, shrink, and newpage keywords
function exactly as they do in the insert statement. Refer to the insert statement
description in Section 5.3.1 for an explanation of these clauses and keywords.

JAMlReportWnter Release 5.1 12 November 93 Page 73

JAMIReportWriter Developer's Guide and Reference Manual

lines
Use the lines clause to specify the report page length.

The value specified in thIS parameter refers to the space where you want printing to occur
on the page. It includes the areas for the page header and footer as well as the space avail
able for the report body.

Suppose you are designing a report to be printed on standard 8.5 by 11 inch paper. At 6
lines per inch, the paper can phYSIcally accommodate 66 lines. Suppose, too, that you
want to leave top and bottom margins of one inch each, allowing 54 lines per page for the
body of the report. The page header and footer you have created will each require two
lines within the margin space (perhaps one printing line and one blank line each to sepa
rate it from the report content), leaving top and bottom unprinted areas of four lines
each2• To obtain this page length, specify

II lnit Ilnes = 58

To produce a report without page breaks, set the value of lines to zero:

II lnlt Ilnes = 0

The default page length is 60.

columns
Use the co 1 urons clause to specify the width of the report page.

The value specified in this parameter refers to the area of the page from the leftmost print
able position to the rightmost column in which you want printing to occur. It includes the
left margin plus the area in which the report will be printed but does not include the right
margin. The example given in the description of the leftmargin clause, below, shows
how these two parameters, together, position the report horizontally on the page.

The default value for columns is 132.

leftmargin
Use leftmargin to specify a number of spaces to be prep ended to each non-blank
line. The spaces used to create the left margin must be included in the page width
(columns clause).

Suppose, for example, you are derming a report that will print on an 8O-column printer.
You want margins of 8 characters on either side, for a print area 64 columns wide. To
achieve this effect, specify

2. ReportWriter does not have an expliCIt way to control page top and bottom margins. The phYSIcal page
SIze m lines minus the lines parameter determmes how many blank lines constItute the top and bottom
margms, combmed. Alignment of the page m the printer determInes how these blank lines are appor
tioned.

Page 74 JAM/ReportWriter Release 5.1 12 November 93

Chapter 5 Usmg the SCript Statements

II init columns = 72
II
II
II

/* allows up to 72 characters
from the leftmost prlntable
positlon */

II leftmargin = 8 /* forces a left margin of 8 char.;
II report prlnting begins at
II position 9, leaving 64
II characters per line for printing
II of the report text */

Ifno leftrnargin value is specified, it is assumed to be zero.

feedlines

The f eedl ines parameter specifies the number of line feed characters that should be
used to separate pages. If this parameter IS omitted or if the value specified is 0, Report
Writer uses a form feed to begin the next page. If this clause is used, the value of
feedlines plus lines must equal the physical length of the page.

To continue the example provided above in the discussion of 1 ines, if the printer re
quires an explicit number of hne feed characters rather than a form feed to position print
ing on a new page, include a f eedl ines clause in the ini t statement:

II init Ilnes = 58
II feedlines = 8

fixedlength

If the f ixedlength keyword is specified, all report lines are padded with spaces to
equal the number of columns specified. If f ixedlength is not specified, ReportWriter
outputs variable length lines.

varlength

If the fixed 1 ength keyword appears in the device file, you can override it by includ
ing varlength in the ini t statement. Since variable length output lines is the default,
this keyword is not normally required, except to ensure that line output is variable length,
no matter what the device fIle in use specifies.

The keywords f ixedlength and var length are mutually exclusive.

JAMIReportWnter Release 5.1 12 November 93 Page 75

JAMIReportWnter Developer's GUIde and Reference Manual

parameter

Use a parameter clause to specIfy each argument to be accepted by the report when it
is Invoked. Refer to Sections 5.4.3 and 6.3 for infonnation on passing arguments to re
ports and subreports.

5.4.3

Accepting and Processing Arguments
All arguments to be accepted by a report must be declared in parameter clauses in the
report's ini t statement. The syntax of the parameter clause is

parameter = name

where:

name is the JAM variable to receive the value of the next unprocessed
argument in the invocation string or in RWOPTIONS. If all argu
ments have been exhausted, the value of name remains unchanged.

Use a separate parameter clause for each argument accepted by this report. The order
of the parameter clauses determines the order in which arguments must be passed to
the subreport

Each parameter must exist as a field on the report format screen or in the LDB. Any num
ber of parameter clauses can appear in an ini t statement.

The report in the following example accepts two arguments. The first is used in the
WHERE clause of the detai 1 query. The other specifies the report area to use in the page
header.

Page 76 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

« begln report »

II init Jpl = startup
parameter =
parameter =

page header area
footer Jpl
area

parml
parm2

= :parm2
= pnum
= pfoot

break fleld = eustno

detail

II

query "SELECT * FROM orders \
WHERE sales_id = ' :parml'\
ORDER BY eust_no"

« end report »

If arguments to a primary report or subreport appear both in RWOPTIONS and in the in
vocation string, those in RWOPTIONS are passed ftrst.

5.4.4

Output Parameter Defaults

As noted above, ReportWriter defaults are used for any page specification parameters not
supplied in either the ini t statement or in the device me. These defaults are:

lines and columns
The default page size is 60 lines by 132 columns.

leftmargin
If no value is specified for the left margin offset, it is assumed to be O.

feedllnes
If the feedl ines parameter is not specified, ReportWriter issues a
form feed to begin each new page.

fixedlength and varlength
In the absence of either of these keywords, ReportWriter defaults to
variable-length output lines.

JAMIReportWnter Release 5.1 12 November 93 Page 77

JAMIReportWriter Developer's GUide and Reference Manual

5.5

SPECIFYING PAGE HEADERS AND
FOOTERS: page
The page statement allows you to specify headers and footers to appear on each page of
the report.

The header and footer specified in a page statement are distinct from those specified in
a break statement. Break headers and footers are displayed when a break group begins
or ends, wbich may not necessarily correspond to the start or end of a page. Page headers
and footers, on the other band, are related strictly to the beginning or end of a page, and,
if specified, appear on every page, regardless of the report content.

Eacb page statement can specify a page beader, a page footer, or both.

A sample page statement might look like:

II page header jpl
II area
II footer area

5.5.1

= pagenum
= pghead
= "footer"

Page Break Processing

float

Page specifications take effect at the point where the page statement is encountered in
the report script and remain in effect until a clear, clear pagespecs, or another
page statement is encountered.

The order of header and footer clauses within the page statement is not significant.
The order of area, jpl, and call subclauses within the header and footer
clauses, however, is significant and determines the order in which processing and area
output occur.

5.5.2

Changing Page Specifications
ReportWriter provides several ways to cbange page header and footer information.

The most straigbtforward method is to use clear or clear pagespecs to cancel the
current page specifications. If a new header and/or footer is required, place a new page

Page 78 JAM/ReportWnter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

statement after the clear. This method completely cancels out all previous page header
and footer speclficatIons and ensures that there are no unintended interactions between
the page statements.

Page specificatIons can also be changed by the presence of a subsequent page statement.
In the absence of any clear statements, however, this method can result in interactIons
between the page statements. To avoId unwanted effects from these interactions, keep III
mind the way page statements supersede all or part of the current specificatIon:

• Any header or footer in the new page statement supersedes the corre
sponding (header or footer) specification currently in effect from a prior
page statement.

• If a header or footer clause is omitted in the new page statement, the
corresponding component (if any) currently in effect remains in effect.

Consider the following examples:

1. The page specification currently III effect includes both a header and a
footer. At this point in the report, it is necessary to cbange just the page
header; the footer should remain as currently specified.

In this situation, the interaction between page statements can work to
the developer's advantage. At the point in the script where you want
the page specifications to change, enter a page statement containing
only a header clause. From this point on, the new header will appear
at the top of each report page; the footer previously in effect will con
tinue to appear at the bottom of each page.

2. The page specification currently in effect contains only a footer. The
next section of the report should be displayed on pages with a header
only and no footer.

In this situation, you must use the clear or clear pagespecs
statement to cancel out the previous page specification before entering
the new page statement with the desired header specification. Other
wise, the previous footer area and processing will remain in effect.

3. The page specification currently in effect contains a header with both
a JPL procedure and an area specified. The next section of the report
will also require processing at the beginning of each page but should
not have an area output.

In this case, the page statement alone can override the previous page
specification. When the second page statement is encountered with
its header clause, the entire previous header specification is super
seded. Simply the presence of a header clause serves to override any
previous header specification; the subclauses do not have to cancel
each other out individually.

JAMIReportWnter Release 5.1 12 November 93 Page 79

JAMlReportWnter Developer's GUide and Reference Manual

If a page has been started but not closed when the page specificatIons change (either as a
result of a new page statement or a clear or clear pagespecs statement), that
page remams govemed by the pnor page specificatIons. When filled, It will be closed
with the prevIous page footer, since it was opened with the previous header. The new
page specificatIons will t.:'lke effect when a new page IS started.

A page statement does not lffiply newpage. To force the new page specifications to
take effect immediately, issue an insert newpage just before or after the page
statement. That WIll force the currently open page to be closed (with the old page footer)
and any subsequent output to appear on a new page. Section 5.6.l contains an example
showmg a typical scenario In which the detail area of the report, witb page headers and
footers, IS to be followed by a separate trailer page witb no headers or footers.

5.5.3

page Clauses and Keywords

header
The header clause specifies tbe processing to be performed and the area to be printed
at the beginning of each page. Typical header processmg mIght include updating the page
number or captunng the current value of a break field for inclusion in tbe page header.

Each header clause must include at least one area, report, jpl, or call sub
clause.

area The area subclause specifies the report area to be output at the begin
lUng of each page. The area subclause is not required, as long as at
least one report, j pI, or call subclause is present in the header
clause; multiple area subclauses are permitted.

report

jpl

Page 80

The area subclause can be modified by the shrink keyword, if re
quired. Refer to Section 6.5.1 for information on sizing report areas dy
namically.

The report subclause specifies a subreport to be Invoked at the begin
ning of each page. This subclause is optional, as long as at least one
area , j p 1, or ca 11 subclause is present; multiple report sub
clauses are permitted. Refer to Section 6.2 for a complete discussion of
subreports.

The j pI subclause specifies a JPL procedure to be run at the beginning
of each page. This subclause is optional, as long as at least one area,

JAM/ReportWnter Release 5.1 12 November 93

Chapter S' USing the SCript Statements

report, or call subclause IS present; multiple jpl subclauses are
permitted.

call The call subclause specIfies a C (or other supported language) routine
to be run at the beginnmg of each page. This subclause IS optional, as
long as at least one area, report,or jpl subclause is present; multi
ple call subclauses are pemutted.

area, report, jpl, and call subclauses are executed in the order they are encoun
tered in the header clause.

footer
The footer clause specifies the processing to be performed and the area to be printed
at the end of each page. Processing associated with the footer might include calculating
the page number or computing or capturing any other data you want to appear at the bot
tom of the page.

Each footer clause must include at least one area, report, jpl, or call sub
clause.

area The area subclause specifies the report area to be output at the end of
each page. The area subclause is not required, as long as at least one
report, jpl, or call subclause is present in the footer clause;
multiple area subclauses are pemutted.

report

The area subclause can be modified by the shrink keyword, if re
quired. Refer to Section 6.5.1 for information on sizing report areas dy
namically.

The area subclause can also be modified by the float keyword, de
scribed below.

The report subclause specifies a subreport to be invoked at the end of
each page. This subclause is optional, as long as at least one area,
j pI, or call subclause is present; multiple report subclauses are
permitted. Whenever a report is invoked from a page footer, the
reserve I ines subclause must be included to specify the number of
lines the subreport will occupy. Refer to Section 6.2 for a complete dis
cussion of subreports.

jpl The jpl subclause specifies a JPL procedure to be run at the end of
each page. This subclause is optional as long as at least one area,
report, or call subclause is present; multiple jpl subclauses are
permitted.

JAMlReportWnter Release S.1 12 November 93 Page 81

JAMIReportWnter Developer's GUide and Reference Manual .

call The call subclause specifies a C (or other supported language) routme
to be run at the end of each page. This subclause is optional as long as at
least one area, report, or j pI subclause is present; multiple call
subclauses are permitted.

area, jpl, and call subclauses are executed in the order they are encountered In the
footer clause.

area subclauses in the footer clause can also contain the following keyword to con
trol placement of that area:

5.6

f loa t If this keyword is present, the area immediately follows the last printed
line on the page. Otherwise, it appears at the bottom of the page. All
areas with the f loa t designatlon must be output before any non-float
ing areas.

The following example shows how both floating and non-floating areas
can be combined III a page footer.

II page footer area = pfl float
II jpl = j3
II area = pf2 float
II jpl = j4
II area = pf3

CANCELLING PAGE AND BREAK
SPECIFICATIONS: clear
The clear statement cancels all previous page and/or break specifications. This state
ment is processed as it is encountered in the report script, cancelling specifications before
it in the script, but not affecting those placed after it.

The keywords breakspecs and pagespecs can, optionally, be included to indicate
that only the break or page specifications are to be cancelled.

If neither keyword is present, c I ear cancels all previous page and break statements.
To cancel both page and break specifications at once, enter the following statement into
the report script:

II clear

Page 82 JAM/ReportWriter Release 5.1 12 November 93

Chapter 5: USing the SCript Statements

5.6.1

clear Keywords

breakspecs

If the breakspecs keyword is present, the c lear statement cancels all break proces
sing enabled by previous break statements.

To clear the break hierarchy without affecting the current page specifications, enter the
followmg into the report script:

~ clear breakspecs

Break specifications are cancelled only by the clear or clear breakspecs state
ment. Break specifications must be cleared if you are defining a new break hierarchy (for
example, If rows are to be fetched from a second table using a new detal.l statement);
otherwise, any new break statement would defme a break subordinate to those already
in effect.

pagespecs

If the pagespecs keyword is present, the clear statement cancels page header and
footer specifications currently in effect. Further pages of the report will show no page
headers or footers unless another page statement follows.

To clear the current page specifications without affecting the current break hierarchy, en
ter the following into the report script:

clear pagespecs

Page specifications are cancelled by the c lear or clear pagespecs statement. (In
some circumstances, it is desirable to use a page statement not preceded by a clear to
override current page specifications. Refer to Section 5.5.2 for more information on
changing page specifications.)

The following example shows a typical context in which the clear statement is used to
cancel previous page headers and footers:

1* The detail area of this report is printed on pages
with headers and footers specified in a "page"
statement. *1
~

~ page

~ break

header area = pghead
footer area = pgfoot
footer jpl = breakcalc

area = breakarea

JAMlReportWnter Release 5.1 12 November 93 Page 83

JAMlReportWnter Developer's GUide and Reference Mal)ual

11 1 n~,81't

II

" II

II
II detail
II
II
II

nt?wpage ;.

query
Jpl
area

forces detail area output to
begln on a new page with
the header and footer specifled
in the page statement above *1

= "SELECT
= dtljpl
= dtlarea

II 1* End the report with a trailer page (area name =
II traller) that has no headers or footers: *1
II

II clear
II

II insert
II
II
II lnsert
II

Page 84

pagespecs

newpage I * forces next output to beg in
on a new page */

Jpl
area

= grandtot
= trailer

JAM/ReportWriter Release 5.1 12 November 93

JAM!
ReportWriter

Chapter 6

Report Components

6.1

REPORTWRITER VARIABLES

6.1.1

Colon Expansion
ReportWriter allows the use of JAM colon-expanded variables in the report script. This
penn its you to design reports that are responsive to data that may not be known until run
time or that may vary during the course of generating the report.

NOTE: While colon-expanded variables are permitted in report script statements, they
cannot be used in the include screen compiler directive.

Colon Substitution in Detail Queries
JAM variables can appear in the query clause of the detai 1 report script statement.
A colon must immediately precede the variable name, and the current value of that vari
able is inserted when the query is executed. In the following example, the value to
match in the name column is not known until runtime.

II detail query = "select * from t\
II where name =':x'"

JAMlReportWnter Release 5.1 12 November 93 Page 85

JAMIReportWnter Developer's GUide and Reference Manual

This feature is particularly useful when ReportWriter is invoked from WIthin a JAM ap
plication. In the above example, x might be a JAM screen field whose value is entered
by the end user. Alternauvely, the values of the colon-expanded vanables in the query
clauses of a report scnpt might be detennmed by some other processing performed by the
application or by data previously fetched from the database.

Dynamic Reports
J AM variables can also be used to specIfy report areas, subreports, programs, or break
fields in the report script. Any of the following report script clauses can accept a colon
expanded variable in place of a specific area, routine, or field name:

field
area
report
jpl
call

Substitution is fully dynamic: it is performed whenever the referenced object is needed.
For example, suppose a report script contains the statement

page header area = :pghead

ReportWriter examines the current value of the variable pghead each time a page head
er is to be output. The value of this variable specifies the area on the report format screen
to use as the page header. If the value of pghead is null when a page header is to be
output, the header area is omitted for that page. If the value of pghead is not null but
does not reference an area on the report format screen, a runtime error occurs.

Similar rules govern the use of colon-expanded variables in field, jpl, and call
clauses. When the field, JPL procedure, or C routine name is needed at runtime, it is de
tennined from the current value of the applicable variable.

If the resulting string is null in the case of a j p 1 or ca 11 clause, no program is called. If
afield specification is null, its entire break statement is ignored. A runtime erroroc
curs if variable substitution yields a non-null object that cannot be found.

Quotation Marks around Colon-Expanded Variables
A colon-expanded variable must be surrounded by quotation marks if the resulting string
would have to be enclosed in quotes. In the following query statement,

detall query =" select * from tablel \
where name = ': who' "

Page 86 JAM/ReportWnter Release 5.1 12 November 93

Chapter 6: Report Components

suppose that the variable who contams the text string Shakespeare, the name you
want to search for in the database. ReportWriter will pass to JAMIDBi the string

select * from table1 where name = 'Shakespeare'

If the quotation marks around: who were olll1tted in the query, ReportWriter would have
passed to JAMlDBl

select * from table1 where name = Shakespeare

In this case, Shakespeare would be treated as a column name, rather than a character
string.

Users of JAMIDBi release 5 may use the colon-plus (: +) form of colon expansion in
preference to enclosing string-valued variables in quotes. Refer to the JAMIDBi docu
mentation for information colon-plus expansion.

Quotation marks are also required when the resulting string contains (or might contain)
spaces or special characters. Suppose the argument to a j p 1 clause is a colon-expanded
variable that is likely to contain both the name of a procedure to invoke and one or more
arguments to be passed to the procedure. The variable to be expanded would have to be
enclosed in quotes since there is the possibility that the resulting string would need
quotes.

detail jpl = ":proc_and_args"

When in doubt as to whether or not the expanded variable will result in a string that must
be quoted, use the quotation marks. Refer to Section 4.2.2 for more information on when
quotation marks are required in the report script.

Variable Substitution For Numeric Values
Colon-expanded variables can also be used in the report script in place of numbers. For
example:

II init lines = 3

II init lines =:X

All variables substituted for numeric values must be colon-expanded. The following are
not legal ReportWriter statements:

II inlt llnes = 3x

II inlt lines = x

II init lines =" :X [2] (1,3)"

Colon-expanded variables cannot be used in device configuration files.

JAMlReportWnter Release 5.1 12 November 93 Page 87

JAMlReportWnter Developer's GUide and Reference Manual

6.1.2

Scope of Variables
Any variable that appears m the report scnpt, whether as a colon-expanded variable or as
the break field, must be either a field on the report format screen or an LDB variable.

Following good JAM and JAMIDBi programming practice, use the LDB Judiciously.
Where possible, use screen variables, instead.

Fields on the report fonnat screen do not have to appear in output areas. Any field re
qUIred for data passing only, rather than for report output, should be placed on a screen
hne with no area name tag.

Any field on the report fonnat screen (mcluding non-output fields) can be used as a vari
able m the report script or JPL. Refer to SectIOn 4.1.4 for a further descnption of non
output fields.

6.2

SUBREPORTS
J AMlReportWriter release 5.1 supports subreports that can be invoked directly from any
other report.

In general, any report can be used as either a primary report or a subreport. There is no
inherent distinction, since the same report format screen requirements and script
capabilities apply, whichever way the report is used. A report is a primary report if it is
invoked from the command line or from a JPL or C routine. A report is a sub report if it
is invoked from another report

ReportWriter provides you with considerable flexibility in developing both primary
reports and subreports. A single report, for instance, can be designed to be invoked in
either context, or you may choose to tailor It for one particular use. The comprehensive
subreport example in Appendix D shows how a single report might be used as either a
primary report or a subreport.

In addition, you can decide where you want to define your subreports. If the report will
also be used as a primary report or may be invoked as a subreport from several different
reports, you will want to create a separate report fonnat screen for it. On the other hand,
if It will only be invoked from one particular report, you might choose to defme it as part
of the invokmg report's format screen.

Page 88 JAM/ReportWnter Release 5.1 12 November 93

Chapter 6: Report Components

The following sections descnbe how to define and invoke subreports. Two subreport
examples are provided in Appendix D.

6.2.1

Prerequisites
The subreport capability described here applies only when ReportWriter is linked with

• JAM release 5.03a or higher and

• JAMlDBi release 5.

If you are using an earlier version of JAM or JAMlDBi, refer to Section 10.1 of this
manual for an alternate means of producing subreports.

6.2.2

Defining the Subreport
As noted above, the subreport can be defmed in a separate report format screen, can re
side in the report format screen for the primary report, or can reside in a report format
screen with other subreports.

If multiple reports are defined in the same report format screen, each must be surrounded
by the «begin report» and «end report» compiler directives to indicate
the beginning and end of each script. The syntax of the < <beg in report» compiler
directi ve IS:

« begin report [= name] »

where:

name is the name by which the subreport is invoked; it is required for any
report that is called as a subreport

The names of all reports defined and/or included in a report format screen must be unique
in the first 21 characters.

If the first report defined in a report format screen does not have the name argument, it is
known by the name of the screen and can be invoked only as a primary report. If you want
to invoke it as a subreport, you must specify the name argument in the «begin re
port» compiler directive. This argument is optional only for the first report script
associated with a screen; it is required for all subsequent scripts. Only the first script in a
report format screen can be invoked as a primary report.

JAMlReportWnter Release 5.1 12 November 93 Page 89

JAMlReportWnter Developer's GUide and Reference Manual

Each «begin report» must be paired with an «end report» compiler di
rectIve following the correspondmg ScnpL Nestmg of report scripts is not pemlltted.

If you have subreports defmed in report format screens external to the parent report, be
sure to lDlport these screens with the «include screen» compiler directive.
When a report format screen IS included in a compiled report, any report defined in the
mcluded screen can be invoked as a subreport. (Refer to SectlOn 4.3.2 for more informa
tion on the «include screen» compiler directive.)

6.2.3

Invoking the Subreport
Use the report clause to invoke a subreport. This clause/subclause can appear as a
clause in either of the following statements:

detail
insert

or as a subclause in the following clauses:

break header
break footer
page header
page footer

The syntax for the report clause/subclause is

report =

where:

invocation_string
[preserve]
[preserve breakspecs]
[preserve initspecs]
[preserve pagespecs]
[reservelines = number]

invocation_string

Page 90

consists of the name of the invoked subreport followed, optionally,
by arguments passed to the report. The arguments are processed by
the parameter clauses in the subreport's ini t statement. If ar
guments are passed to the subreport, the entire invocation string
must be enclosed in quotation marks; this is analogous to the way

JAM/ReportWnter Release 5.1 12 November 93

number

Chapter 6' Report Components

JPL and C routines are Invoked in the script, as described in Sec
tions 4.2.2 and 6.4.1.

this argument to the reservel ines subclause indicates the
maximum number of lines the subreport will occupy; reserve-
1 ines is required for subreports invoked from page footers; it is
optional elsewhere. This subclause is particularly useful for print
ing on forms with a fixed-length space for the subreport data.

If the reservelines subclause is present, ReportWriter as
sumes that the subreport will occupy the stated number of lines;
page breaks are computed accordingly. ReportWriter does not at
tempt to merge leading and trailing blank lines of the subreport
with those of the areas that precede and follow it. If the reserve
lines clause is omitted, ReportWriter attempts to consolidate
blank lines with those of the adjacent areas (as described in Section
6.5.2).

If the reservelines subclause is present, the number of lines
specified is always output exactly. If the subreport generates fewer
lines than specified, ReportWriter pads the output with blank lines
to achieve the required size. If the subreport generates more than
the specified number of lines, the output is truncated, and an ap
propriate warning message is generated.

If the reservel ines subclause is not given for a subreport in
voked in a break header, the header may end the page as a "widow."

The preserve keywords cause the relevant specifications currently in effect for the
"parent" report to take precedence over those in the sub report script:

preserve breakspecs
indicates that break specifications from the parent report remain in
effect for the subreport; any breaks specified in the subreport are
added to the existing hierarchy. By default, if the preserve
breakspecs keyword is not present, the subreport begins with
no break specifications in effect; any break statements in the sub
report begin a new break hierarchy.

When invoked with preserve breakspecs in effect, the sub
report also inherits the parent report's current break level to prevenL
unwanted duplication of break headers in the subreport. Refer to
Section 6.2.4, "Preserving the Parent Report's Break Context," for
more information on this topic.

JAMIReportWnter Release 5.1 12 November 93 Page 91

JAMIReportWnter Developer's GUide and Reference Manual

preserve lnltspecs
tells ReportWriter to Ignore the contents of the subreport's ini t
statements, except for the par arne t e r clauses; 1 nit specifica
tIons from the parent report remain In effect throughout the subre
port. If this keyword IS not present, the default is to begin with the
parent report's initIalizatIon but to observe any ini t statements in
the subreport.

Regardless of whether or not this keyword is present, area, j pI,
call, and parameter clauses from the parent report's ini t
sL:'ltemem are not executed in the subreport.

parameter clauses in the subreport's ini t statement are never
ovemdden by the preserve inltspecs keyword. They de
tennine the arguments accepted by the subreport, whether or not
thIS keyword is present.

preserve pagespecs
tells ReportWriter to ignore the contents of the subreport's page
statements; page specifications from the parent report remain in ef
fect. If this keyword is not present, the default is to begin with the
parent report's page specifications but to observe any page state
ments in the subreport.

When a subreport is invoked in a page header or footer, the subre
port does not inherit its parent's page specifications. The report
compiler will ignore the preserve pagespecs keyword if it
is applied to a subreport invoked from a page header or footer. Re
fer to SectIon 6.2.5 "Subreports Invoked from Page Headers and
Footers," for more infonnation on this topic.

Used without modification, the keyword preserve implies all three of the above
variants.

preserve keywords used on subreport invocation also affect the corresponding
clear statements in the subreport.

• Ifpreserve pagespecs is in effect, clear or clear pages
pees does not reset the page specifications inherited from the parent.

• If preserve breakspecs is in effect, clear or clear
breakspecs resets only that portion of the break hierarchy specified
in the subreport. Breaks inherited from the parent report are retained.

Page 92 JAM/ReportWnter Release 5.1 12 November 93

Chapter 6: Report Components

6.2.4

Preserving the Parent Report's Break Context
Execution of a detail statement normally forces an initial break at all levels. If, how
ever, a subreport inherits its parent's break specifications and if detail processing is al
ready active in the parent, forcing iniual breaks in the subreport would undesirably dupli
cate break output.

Therefore, if a subreport is invoked with the preserve breakspecs keyword in
effect, the subreport inherits not only the parent's break hierarchy, but also the current
break level. This ensures that when a detai 1 statement is executed in the subreport,
initial breaks are forced only for break levels subordinate to the parent report's current
level and not for those at or above this level.

The type of statement from which the subreport (with preserve breakspecs in
effect) is invoked determines which break levels are affected:

• A subreport invoked from the parent's detai 1 statement never forces
breaks within the parent's break structure.

• A subreport invoked from a break header or footer does not force a
break at that or any higher level. It will force initial breaks at all lower
levels.

• When invoked from an insert statement, the subreport inherits the
break level current in the parent at the time the insert statement is
processed. The detai 1 statement in the subreport will force initial
breaks at all lower levels. If no break level is active, then the detai 1
statement will force breaks at all levels.

• When invoked from a page statement, the subreport inherits the break
level current in the parent at the time the page header or footer is pro
cessed. The detai 1 statement in the subreport will force initial breaks
at all lower levels. If no break level is active, then the detai 1 state
ment will force breaks at all levels.

If the subreport is not invoked with preserve breakspecs in effect, the parent's
break context is ignored, and the subreport processes breaks according to the hierarchy in
its own script.

JAMlReportWnter Release 5.1 12 November 93 Page 93

JAMlReportWnter Developer's GUide and Reference Manual

6.2.5

Subreports Invoked from Page Headers and
Footers
In most cases, a subreport begins by inberiting its parent's page header and footer. These
page specificatlons mayor may not be overridden by page statements in the subreport.

A subreport invoked from a page header or footer, however, does not inherit page specifi
cations from the report that invoked it. If such a subreport were to inherit its parent's page
specifications, it would attempt to invoke itself, resulting in an infmite loop.

The preserve page specs keyword is meaningless in the context of a subreport in
voked from a page header or footer. If specified, it is ignored by the report compiler.

6.2.6

Storing Subreport Definitions in Separate
Files
You may prefer to maintain both primary reports and subreports in a single screen to fa
cilitate layout. On the other band, modularity may be an important consideration for your
application, and you may want to maintain your subreports in screens separate from the
primary report ReportWriter allows you to manage your report screens either way.

If you are maintaining all subreports with the primary report, you need only defme them
in the script as described above, in Section 6.2.2. If any of the subreports are maintained
as separate JAM screens, you must use the «include screen» compiler direc
tive to ensure that all such reports are included at compilation. (Refer to Section 4.3.2 for
a description of the «include screen» compiler directive.)

6.2.7

Suppression of "No Rows Found" Warning
Message
Subreports, by their very nature, may fail to fetch any rows. While this would be consid
ered an error in a primary report and result in the "no rows found" warning message, it is
not treated as an error in a subreport Therefore, this warning message is never output for
subreports.

Page 94 JAM/ReportWnter Release 5.1 12 November 93

Chapter 6' Report Components

6.2.8

Output Options in the Subreport: RWOPTIONS

If your subreport requires different output options from those set in the parent report, you
should invoke aJPL or C routine that sets RWOPTIONS immediately before invoking the
subreport. If the new value of RWOPTIONS differs from the old, the new value will gov
ern the subreport's output. The change will not affect the parent report.

For example, suppose the primary report IS invoked from a JPL routine, as in

cat RWOPTIONS "-0 parentoutput"
rwrun mainrpt

The script and JPL code in mainrpt . j am might be something like

« begin report »
insert area = hello
detail query =
jpl = setoptions
report = U subreport : key"

« end report »

« begin
init
detail

report = subreport »
parameter = x
query =
area = a

« end report »

proc setoptions
cat RWOPTIONS n-a -0 childoutput n

return 0

In the above example, all output from mainrpt, whether generated before or after the
subreport is invoked, is sent to parentoutput. All output from subreport, when
invoked as shown in the detail statement, is sent to childoutput.

6.3

REPORT ARGUMENTS
In ReportWriter release 5.1, both primary reports and subreports can accept arguments.
They can be passed on invocation or through the LDB or environment variable
RWOPTIONS.

JAMlReportWnter Release 5.1 12 November 93 Page 95

JAMIReportWnter Developer's Guide and Reference Manual

NOTE: Command line inVOcatIon of a primary report does not access RWOPTIONS; re
port arguments must be included on the rwrun command line. For primary reports in
voked wIthm a JAMlReportWnter application, arguments must be in RWOPTIONS. For
subreport invocations, arguments can appear either in the invocation string or in RWOP
TIONS.

6.3.1

Accepting and Processing Arguments
All arguments to be accepted by a report must be declared in parameter clauses in the
report's lnl t statement. The syntax of the parameter clause is

parameter = name

where:

name is the JAM variable to receive the value of the next unprocessed
argument in the invocation string or in RWOPTIONS. If all argu-
ments have been exhausted, the value of name remains unchanged.

Use a separate parameter clause for each argument accepted by this report. The order
of the parameter clauses determines the order in which arguments must be passed to
the subreport.

Each parameter must exist as a field on the report format screen or in the LDB. Any num
ber of parameter clauses can appear in an ini t statement.

The following report accepts two arguments. The first is used in the WHERE clause of the
detai 1 query. The other specifies a report area for the page header.

ij « begln report »
ij

ij init jpl = startup
" parameter = parmI
ij parameter = parm2
ij

ij page header area = :pa rm2
ij footer jpl = pnum
ij area = pfoot
ij

ij break f ieJ.d = custno

II detail
ij

query II SELECT * FROM orders \

ij

ij « end report »

Page 96

WHERE sales_id = ' :parml'\
ORDER BY cust_no"

JAM/ReportWnter Release 5.1 12 November 93

Chapter 6' Report Components

If arguments to a primary report or subreport appear both in RWOPTIONS and in the in
vocation stnng, those in RWOPTIONS are passed frrst.

I

6.3.2

Passing Arguments to a Main Report
When a main report is Invoked from the operating system command line with the rwrun
command, report arguments are included in the invocation string. (RWOPTIONS is not
accessed when a report is invoked from the command line.) The synytax for rwrun is

rwrun [- f I -a] [-0 output] [-d device] report [arg1 arg2 ...]

The report arguments must appear In the order they are defined in the report's parame
ter clauses.

NOTE: If you want to preserve the command line syntax of ReportWriter release 5.0
(which considers extra tokens erroneous), edit the me rwopts. c according to the
instructions in that me.

To invoke a primary report with arguments from within a J AMlReportWriter applica
tion, place the arguments (in the required order) in the LDB or environment variable
RWOPTIONS before invoking the report.

The following example shows how the report shown above might be invoked from the
operating system command line:

rwrun myreport -0 myoutput.txt fred regionl

The report might be invoked from a JPL procedure in your J AMlReportWriter applica
tion:

cat RWOPTIONS "fred regionl"
rwrun myreport myoutput.txt

Note that in the above two examples, the argument values themselves, rather than vari
ables, are passed to the invoked report. Alternatively, you might pass the arguments as
colon-expanded variables:

cat argl "fred"
cat arg2 "regionl"
cat RWOPTIONS ":argl :arg2"
rwrun myreport myoutput.txt

JAMlReportWnter Release 5.1 12 November 93 Page 97

JAMIReportWnter Developer's Guide and Reference Manual

6.3.3

Passing Arguments to a Subreport
Pass arguments to a subreport either by including them in the invocation stnng of the
report clause or by placing them in the LDB or environment variable RWOPTIONS
before invokmg the subreport.

Note that the parameter clauses in the subreport are always observed, even if the
preserve ini tspecs keyword was specified when the subreport was invoked. (Pa
rameter clauses from the parent report are not lDlported into the subreport.)

In the examples below, argl and arg2 are variables whose values are the arguments
passed to the subreport.

The following example shows a subreport invocation with arguments.

insert report = "myreport :argI :arg2"

In the next example, the arguments are placed in RWOPTIONS before the subreport is
invoked.

« begin report »

insert jpl =
report
« end report »

setargs
= subr

«begin report = subr»
lnit parameter = pI
parameter = p2

« end report »
proc setargs
cat RWOPTIONS ":argI :arg2"
return 0

In either case, the arguments must be listed in the order of the parameter clauses in the
subreport.

Page 98 JAMlReportWnter Release 5.1 12 November 93

Chapter 6: Report Components

6.4

FUNCTION CALLS

6.4.1

Passing Arguments
Most report script statements provide for the execution of JPL, C, or other supported lan
guage routines during report generation. JPL procedures are invoked With the j pI
clause; C and other programming language routines, with the ca 11 clause.

To pass arguments to a procedure or routine, enclose the entire invocation string in quota
tion marks, as described in Section 4.2.2 of this manual. For example:

Jpl = "condense_name namevar : last : first"

call = "inv_val :partno : list-price"

6.4.2

Using Return Codes
ReportWriter interprets return codes from procedures invoked with j pI or call clauses
as follows:

o This is a normal return; it has no effect on report processing.

-1 ReportWriter aborts with an error message.

any other negative value
The report is closed prematurely at that point without producing an er
ror message.

any positive value
ReportWriter skips only the portion of the report currently being pro
cessed.

When a positive value is returned from a detai I statement, proces
sing of the current fetch is curtailed, and the next fetch is begun.

When a positive value is returned during break processing, the query
is abandoned and the next report element is begun.

JAMlReportWriter Release 5.1 12 November 93 Page 99

JAMIReportWnter Developer's GUide and Reference Manual

6.4.3

When a positive value is returned by a procedure In a page, ini t, or
lnsert statement, all following area output and procedure execution
forethat statement IS suppressed.

Calling C Routines
Any C routines reqmred for processing your report are invoked through ca 11 clauses in
the report script. These routmes must be linked with the ReportWriter executables,
rwrun and j amrw.

Follow the instructions in the JAM Programmer's Guide and in the provided fIles
func 1 is t . c, rwma in. c, and the makefile for installing user-developed functions.
Refer to Section 4.5 for further mformation on this tOpIC.

6.5

REPORT AREAS

6.5.1

Sizing Dynamically
In some cases, you cannot know in advance how much data will appear in a given report
area. ReportWriter provides the keyword shr ink to allow report designers to specify
that a given report area should be condensed vertically if some of the allocated fields and
trailing array elements are empty.

You might, for example, have an array that is not necessarily fully populated each time a
fetch from the database is processed. Such would be the case if you are producing an em
ployee report containing a salary and job description history for each employee. The
number of lines required in the detail section will vary-from a line or two for relatively
new employees, up to a dozen or more for those who have been with the company for
many years. (Tbis type of report is implemented as a sub-query. ReportWriter fetches the
employees, and a procedure in the detail statement uses JAMlDBi to fetch the em
ployee history. For more information on implementing sub-queries, refer to Section
10.1.)

Page 100 JAM/ReportWnter Release 5 1 12 November 93

Chapter 6: Report Components

Withm a report area, you might also have certain fields and dlsplay text applicable to
some, but not all, rows fetched from the database. Contltluing Wlth the personnel applica
lion example, a benefits report would require sections for health ltlsurance and covered
dependents, life insurance and beneficiaries, tUItion assistance, and so forth. Since em
ployees will not all be taking each of the available benefits, it would be nice to design the
detaIl area so that, for each employee reported, the final report contains only the relevant
fields.

Each of the above scenarios can be implemented through appropriate screen design com
bined with use of the shr ink keyword in the ReportWriter script.

In the frrst example above, you might design the screen with several parallel arrays (date,
salary, job descnption, etc.) to display the job history data. To provide sufficient space for
repornng lengthy job histones wlthout producing excess white space for those with short
listings:

I. Make the parallel arrays large enough to accommodate the largest his
tory you need to report. These must be on screen arrays.

2. In the area clause of the detai 1 statement, qualify the area name
with the shr ink keyword:

detail query = "SELECT * FROM emp_table\
ORDER BY emp_id, date"
jpl = process_history
area = emphist shrink

When the report is generated, each detail area will contain only as many history lines as
needed for the employee reported.

The second example involves not only omitting unpopulated array occurrences, but also
removing blank lines resulting from empty fields and unneeded display text. The screen
design technique required here is to use data entry fields in lieu of display text to head up
each section of benefits information. The JPL code executed before the area is output
should populate these fields with the appropriate text if the associated benefit is to be re
ported and should leave the fields blank if the associated benefit is not taken. As long as
no other field or display text is on the same line, use of the shr ink keyword in the script
will suppress printing of the line(s) if the associated benefit is not reported. (An example
using this technique is shown in Section 10.1.)

Null fields on aJAM screen are not the same as blank fields. The shrink keyword re
moves only blank fields. Null fields are not removed unless the null character is a blank
space.

The shr l.nk keyword does not affect blank lInes that contain neither fields nor display
text.

JAMJReportWnter Release 5.1 12 November 93 Page 101

JAMlReportWriter Developer's GUide and Reference Manual

6.5.2

Consolidation of Leading and Trailing Blank
lines
ReportWriter consolidates trailing and leading blank lines of adjacent report areas. The
number of blank lines actually output equals the number of traIling blanks in the rust of
the two areas or the number of leading blank lines in the second are~ whIchever is great
er.

Suppose, for example, that a page header ends with two blank lines and that the next area
to appear on that page is a break header that begins with one blank line. ReportWriter
outputs only two blank lines between the text of the page header and the text of the break
header.

ReportWriter's pagination procedure accounts for blank line consolidation in computing
the amount of space remaining on a page.

NOTE: A blank line contains no display text, fields, or array elements of any kind,
whether populated or not. A line consisting of a field that is currently blank is not a blank
line in this context; such a line would be affected by the shrink keyword (described in
the previous section) but does not affect consolidation of leading and trailing blank lines.

Section 10.5.3 suggests a technique for using the non-display attribute to suppress

the consolidation of blank lines.

6.6

QUERIES
The query clause of the detai 1 statement is used to specify the data to be retrieved
from the database or other input source.

The only processing ReportWriter performs on the query string is colon expansion and,
if JAMlDBi release 5 is initialized, colon-plus expansion. Otherwise, processing of the
query is entirely the responsibility of the program that will retrieve the data.

The query, then, must confonn to the requirements of your input processor, whether that
be JAMIDBi initialized for a particular database or a developer-written row-supply
function. The examples in this manual are written in SQL but do not necessarily conform
to every one of the SQL dialects used by JAMlDBi-supported databases. Some data
bases, such as Sybase, allow for the use of stored procedures; you can invoke a stored

Page 102 JAM/ReportWnter Release 5.1 12 November 93

Chapter 6' Report Components

procedure If supported in your environment. If you are using a custom input function, the
query strings must be in the form expected by that function.

While the query clause must obey ReportWriter syntax regarding the use of quotation
marks and continuation characters, the ReportWriter imposes no requirements on the for
mat and content of the actual query string and performs no processing other than colon
(and colon-plus) expansion. Refer to the documentation for the input processor (J AMI
DBi or your custom input function) to determine the correct format of the query string for
your application.

6.7

NAMED CURSORS
ReportWriter now permits the use of a named cursor as an alternative to the query
clause in the detai 1 statement.

You must declare the cursor in a JPL or C routine that will be executed before the corre
sponding detai 1 statement is encountered. Execute the cursor by using a cursor
clause instead of a query in the detail statement. The syntax of this clause is de
scribed in Section 5.1.2.

Named cursors are particularly effective in promoting runtIme efficiency when used in
subreports that are invoked repeatedly. The cursor is declared just once (typically at start
up of the application or of the parent report). The detail statement in the subreport
then operates by the equivalent of a DBMS EXECUTE, which is faster than performing
the implicit cursor declaration of the query clause each time the detai 1 statement is
invoked.

Refer to the J AMlDBi documentation for information on declaring and executing named
cursors.

In the following example, a named cursor is declared in a JPL procedure invoked from the
primary report. The cursor is executed in the detai 1 statement of the subreport.

JAMlReportWnter Release 5.1 12 November 93 Page 103

JAMIReportWnter Developer's Guide and Reference Manual

~ « begin report »
~

~ init jpl = deflne_cursor
~

~ detail query = "select unique dept, id from employees"
~ report = "vita :dept : id"
~

~ « end report »
~

~ ~< begin report = vlta »
~

~ /* The parameters department and emp_id must exist in the LOB or
~ as fields on the report format screen: */
II
~ lnit parameter = department
~ parameter = emp_id
~

detail cursor = "jobs department, emp_id"
area = joblist

« end report »

This JPL procedure is invoked from the prlmary report. It declares
the cursor that is invoked in the detail statement of the subreport.
By declaring the cursor only once, no matter how many times the
subreport is called, the report will run more efficiently.

proc define_cursor
cllims declare jobs cursor for select dept, ld from history where \

dept = ::d and id = ::i order by dept

The use of d and i as placeholding variables in the preceding cursor
declaration is standard OBi usage. The names are arbitrary.

Page 104 JAM/ReportWriter Release 5.1 12 November 93

Chapter 6: Report Components

6.7.1

Reserved Cursor Names
ReportWriter uses named cursors internally to implement the subreport feature. To avoid
conflicts with cursor names that report developers are likely to use, ReportWriter re
serves the following naming convention for its own use:

_RWcursor4$

where:

$ is the name of the report whose detail query is being executed

6.7.2

Using the Default Cursor
ReportWriter 5.1, when linked with JAMlDBi release 5 does not use the default (un
named) cursor. Thus, developers can now use JAMlDBi sql statements in procedures
invoked from within the report without disrupting the current query.

If you are using ReportWriter linked with JAMlDBi release 4, you can use the cursor
clause, described above, in lieu of a query in the detai 1 statement. This frees the de
fault cursor for you to use in any associated procedures.

JAMlReportWnter Release 5.1 12 November 93 Page 105

Chapter 7

Processing Flow

JAM!
ReportWnter

Chapter 5 describes, in detail, how each of the six statements in the script language oper
ates. In doing so, it brings up topics related to the order of processing during report gen
eration.

This chapter presents a consolidation of the order of processing issues introduced in
Chapter 5 and further elaborates on the interactions among clauses within a statement and
among statements within a script. A generic example is developed here to illustrate these
issues.

7.1

ORDER OF SCRIPT STATEMENTS

7.1.1

Invoking Actions Directly
The detai 1, ini t, and insert statements all invoke various actions-initiating pro
cessing or outputting a report area Consequently, these statements must appear in the
script in the order you want these actions to occur.

To begin the generic example: Suppose you are designing a report that will consist of a
title page, followed by a detail report based on data fetched from the database, and con
cluding with a trailer page that indicates the end of the report.

You will start by initializing report variables and, if running ReportWriter with the stand
alone utility, opening a connection to the database before beginnmg any of the detail pro-

JAMIReportWnter Release 5.1 12 November 93 Page 107

JAMIReportWnter Developer's GUide and Reference Manual

cessmg. Assuming that you've chosen to call these routmes from an ini t statement,
your script would look something hke:

« begln report »

init jpl = init var
jpl = open_ db - conn

insert area = title-pg

insert newpage

detail query = "SELECT "
area = dtl-area

insert newpage

insert area = trailer
jpl = close db_ conn -

« end report »

The insert newpage statements force the different report areas to each begin on a
new page. Otherwise, the detail report might start on the title page or the trailer on the last
detail page.

7.1.2

Page Specifications
Next, suppose that you want headers and footers on the pages in the detail area but not on
the title and trailer pages.

The page statement does not initiate action as do the three statements discussed above.
Rather, it defmes what should happen when a specific event-a page break-occurs. Its
position in the script is, however, significant, since it affects only those statements that
follow it and not those that precede it. page affects all statements after it until a clear
or clear page specs or another page statement is encountered.

Similarly, clear (and its variants) does not cause an action, but does affect the proces
sing and output of the statements after it

To add page headers and footers to the detail area of the report, you would add page and
clear statements to the script, as:

Page 108 JAMlReportWnter Release 5.1 12 November 93

Chapter 7: Processing Flow

« begln report »

init Jpl = lnit var -
jpl = open_ db_ conn

insert area = title-pg

page header area = phead
footer area = pfoot

insert newpage

detail query = "SELECT "
area = dtl-area

clear page specs

insert newpage

insert area = trailer
jpl = close db-conn -

« end report »

Note that insert newpage statements follow the page and clear statements. This
is necessary to ensure that the next output invoked will be on a new page governed by the
new specifications.

7.1.3

Defining Break Groups
The next step is to add break processing to the example script.

break statements can appear anywhere before or after the detai 1 statements to which
they apply, as long as there is no clear or clear breakspecs between the
detail and the break statements. The order of break statements among themselves
does matter, as they form a break hierarchy, the first break encountered being the high
est level.

break statements do not have to be contiguous, but this is recommended practice so that
the break hierarchy can be readily identified. For the sake of clarity, it is also recom-

JAMlReportWnter Release 5.1 12 November 93 Page 109

JAMlReportWriter Developer's Guide and Reference Manual

mended that break statements be placed immediately before the corresponding
detail statement.

To continue the example, suppose you want to generate subtotals for each account re
ported. In addition to adding the appropriate break statement to the script, you would
need to specify in the detai 1 query that the rows be fetched from the database in
order of account number so that all transactions related to the same account will appear
together and be included in the break group subtotals.

You will also need to mvoke a procedure from within the detail statement to add the
values from the current row to the running totals that will be printed in the break footer.
The break statement must also invoke a procedure to clear break group totals at the start
of each new group.

« begin report »

init jpl = init var -
jpl = open_db_conn

insert area = title-pg

page header area = phead
footer area = pfoot

insert newpage

break field = acct id -
header jpl = clear_break_ tots
footer area = acct-total

detail query = " SELECT * FROM trans \
ORDER BY acct id" -
area = dtl-area
jpl = do_break_tots

clear pagespecs

insert newpage

insert area = trailer
jpl = close _db_conn

« end report »

Page 110 JAM/ReportWriter Release 5.1 12 November 93

Chapter 7: Processing Flow

Suppose, too, that you need to report the aggregate totals by state as well as by account.
Create a break hierarchy of account within state and reflect this hierarchy in both the or
der of the break statements and in the detai 1 query:

« begin report »

init

jpl
jpl

insert area = title-pg

page

header area
footer area

insert newpage

break

break

field = state
header jpl
footer area

field = aect_id
header jpl
footer area

= phead
= pfoot

= elear_state_tots
= state-total

= aect-total

detail query = "SELECT * FROM trans, acc \
WHERE trans.acct_id=acc.acct_id\

area
jpl

ORDER BY ace.state, trans.acct_id"
= dtl-area

elear pagespecs

insert newpage

insert area = trailer
jpl = close_db_conn

« end report »

Additional topics related to break processing are covered in Section 7.2.

JAMlReportWnter Release 5.1 12 November 93 Page 111

JAMIReportWnter Developer's GUide and Reference Manual

7.2

ORDER OF CLAUSES
The effects of incorrect placement of clauses and subclauses within script statements can
be difficult to correct unless you understand the processing flow among these clauses and
their interactions across statements.

7.2.1

Order-sensitive Clauses
In any statement or clause where area, jpl, and call clauses can be used, they are
executed in order of appearance. In the de t a i I statement, the br eakche c k keyword
is also executed at the point where it is encountered (assuming that it is placed before the
area clause).

Certain clauses are not sensitive to their order within the statement. For example,
header and footer clauses can be placed anywhere within a page or break state
ment without affecting the function of the statement Thus,

page header area = phead
footer area = pfoot

will produce exactly the same results as

page footer area = pfoot
header area = phead

On the other hand,

page footer jpl = calc-pnum
area = pfoot

may produce different results from

Page 112 JAM/ReportWnter Release 5.1 12 November 93

page

footer

Chapter 7: Processing Flow

area = pfoot
Jpl = calc-pnum

Break processmg is particularly sensItive to the subtleties of clause placement This topic
is covered In the next section.

7.2.2

Multiple Areas and Subreports per Statement
In ReportWnter 5.1, you can output more than one report area and/or subreport in a single
statement. Areas can be output with procedure invocations in any combination. For ex
ample,

II lnsert area
II Jp1
II area

= al
= J
= a2

outputs report area a 1, executes JPL procedure j, and then outputs report area a2 (if
procedure j returns 0).

The followmg example invokes a subreport after each fetch and then executes JPL proce
dure j 1, followed by output of areas a3 and a4:

II detal1 query = " "
II report = subl
II Jp1 = jl
II area = a3
II area = a4

In the next example, both a subreport and an area are output as part of the page footer.
Note the use of the reservel ines subclause.

II page footer
II Jp1 = j 2
II report = sub2 reservel ines = 3
II area = as

Placement of Qualifying Keywords
Because more than one area is now allowed in any statement, certain keywords that, in
earlier releases of ReportWnter, could be placed anywhere within the statement must
now be placed directly after the particular area to which they apply. These keywords are
shrink, split, float, nodupl, and showattop.

JAMIReportWnter Release 5.1 12 November 93 Page 113

JAMlReportWnter Developer's GUide and Reference Manual

The followmg examples show correct placement of quahfymg keywords:

II page footer area = a float shnnk
II area = b

Ii break fleld = f
II header area = a showattop
II area = b showattop nodupl shrlnk

The nodupl and showattop keywords can also be applied to jpl and call sub
clauses as well as to area. This allows you to ensure that procedures are executed syn
chronously with a particular area

Multiple Areas in Page Footers
Multiple areas are permitted in all statements where the area clause or subclause can
appear. The only restriction occurs when the float keyword is used for page footer
areas. In that case, all areas with the float designation must be output before any non
floating areas. The following example shows how both floating and non-floating areas
can be combined in a page footer.

II page footer area = pEl float
II jpl = j3
II area = pf2 float
II jpl = j4
II area = pO

Page Breaks between Areas
ReportWriter allows page breaks to occur between areas output in the same statement
except in the following case: If multiple areas are output in the detail statement, the
first set of detail areas in a break group remains intact and with the break: headers. Subse
quent sets of detail areas in the same break group may be split across pages. (The individ
ual areas, however, will not be split across pages unless the split keyword has been
specified.)

7.2.3

Break Processing
Break processing occurs during each iteration of the detail statement. It consists of
determining if the value of any break field has changed since the last iteration and, if so,
performing all break footer processing and output for the previous break: group and then

Page 114 JAMlReportWnter Release 5.1 12 November 93

Chapter 7. Processrng Flow

performing all break header processing and output for the new group that begins with the
row most recently fetched.

For each loop through the detai 1 statement. the frrst step is to fetch from the database.
When the fmtTow is returned, all area, jpl. and call clauses and the breakcheck
keyword are processed in the order in which they are encountered. If the breakcheck
keyword is present, break processing occurs at that point; if not, break processmg takes
place immediately before the area clause is executed; if neither the area clause nor the
breakcheck keyword is present, break processing takes place after all jpl and call
clauses have been executed.

Depending upon the types of breaks you have defmed, you might have some procedures
that must be invoked before break checking and processing and some that must be in
voked after.

Procedures that determine the value of a computed break field must precede break pro
cessing. The age range example shown in Section 5.2.4 includes a procedure of this type.

Procedures that depend upon some action in the break header must be executed after
break processing. Suppose, for example, you have an application in which each detail
form reports some value as a percentage of the sum for the break group. The sum is
fetched by a routine in the break header and is then available to the detail procedure that
computes the percentage for the current row. This procedure must follow break proces
sing so that the correct sum is used in calculatmg the percentage for the frrst row in the
break group.

In the following example, the JPL procedure get_sum fetches the sum of the population
for all counties in the state. The procedure do-percent calculates the county's popula
tion as a percentage of the state total previously calculated in the break header. This per
centage is then displayed as a field in the report area coun ty-pop.

break field = state
header jpl = get_sum

detail query = "SELECT * FROM census\
ORDER BY state, county"
breakcheck
jpl = do-percent
area = county-pop

Procedures that calculate values required for the break footer must also be mvoked after
break processing. The detail statement from the examples in Section 7.1.3 contains
such a procedure:

JAMlReportWnter Release 5.1 12 November 93 Page 115

JAMlReportWnter Developer's GUide and Reference Manual

deta~l query = "SELECT * FROM trans, acc \
WHERE trans.acct_~d=acc.acct_id\

ORDER BY acc.state, trans.acct_id"
area = dtl-area
jpl = do_break_tots

The do_break_tots procedure updates the running totals for the current row's break
group. (Unhke the previous example, thlS procedure does not calculate a value needed for
the detaIl area; it can, thus, be placed after the area statement, and break checkmg and
processing can occur at therr default position.)

If this J pI statement were executed before break processing occurred, it would add the
current row's values to the previous row's break group. This would cause each running
total to be missing the values from the frrst row that belongs to that group and to include
the values from the frrst row that belongs to the next group. By placing this clause after
break processing, the values are added to the correct runnmg totals.

A look at one of the break statements from the same example explains why this works:

break field =
header
footer

acct -
jpl
area

id

=
=

clear_acct_tots
acct-total

Nouce that break header processing includes calling a procedure that clears the applica
ble runnmg total. If the break field has not changed from one row to the next, break pro
cessmg does not take place, so the running total continues to accumulate. If the break
field has changed with the current row, the break footer for the previous group is pro
cessed. (In this case an area, which presumably shows the running total, is output) Then
header processing for the new group takes place. Thus, the account totals are cleared out
after the previous break group's totals are output but before the current row's values are
added, which is just as it should be for the frrst row in the group.

There is not necessarily one right way to organize a report script In the break statement
shown above, the same effect could be achieved by putting the j pI subclause in the
footer clause and omitting the header clause altogether:

break

Page 116

field = acct_id
footer area = acct-total

jpl

JAM/ReportWnter Release 5 1 12 November 93

Chapter 7: Processing Flow

In tillS versIon of the break statement, it is necessary to remember that the area and the
j p 1 subclauses will be executed m the order they are encountered. Since the JPL proce
dure clears out totals that you want to appear in the footer area, make sure that you output
the area first and then clear the totals, as shown above.

A summary of break processmg appears in Section 7.2.5.

7.2.4

Computed Breaks
The break examples given so far in this chapter have been based on fields fetched from
the database. You can also derme breaks based on values generated in JPL procedures or
C routines.

Computed breaks can be of many different types, each requiring a slightly different tech
nique to implement:

• inserting special processing or an area after every nth detail line (per
haps an area consisting of Just a blank line to improve readability of the
report)

• outputting a special area whenever data in the fetched row meet certain
criteria (such as an invoice value greater than a specified amount)

• grouping fetched rows into categories derived from the data in the row
(such as grouping dated transactions into year quarters)

An example of how to implement this type of break can be found in Section 5.2.4.

The same order-of-processing issues that apply to the breaks described above also apply
to computed breaks. In addition, you must keep in mind how the routine that generates
the break field value will interact with break processing.

7.2.5

Break Processing Summary
• Break checking occurs during each pass through the detai 1 statement

(at the point indicated by breakcheck, before the area clause, or
after all jpl and call clauses).

• If checking reveals that a break field has changed, break processing
takes place.

JAMIReportWnter Release 5.1 12 November 93 Page 117

JAMlReportWnter Developer's GUide and Reference Manual

• After the frrst fetch from the database (but before detall output), all
break headers are processed (as if a break had been detected, but, of
course, no footer processing is done because there was no prior break
group).

• After the last row has been processed, all break footers are processed for
the last break group.

• During break header processmg, all area, jpl, and call subclauses
wlthm the header clause are processed m the order they are encoun
tered; colon-expanded variables can be used as arguments to any of
these subclauses, as applicable. Break footers are processed in like fash
ion.

• When a break is detected, that level and all lower-level breaks are pro
cessed.

• Multi-level break header processing is from highest-level to lowest.

• Multi-level break footer processing is from lowest-level to highest.

No break or detail processing or output occurs ifno rows match the detail query. Report
Writer issues a warning in this case. (Warning messages can be suppressed by using the
- i opuon when ReportWriter is invoked; refer to Sections 9.1 and 9.4 for more informa
tion on this option.)

7.3

ORDER OF INCLUDED SCREENS
If your report script imports another report format screen that also contains «inc I ude
screen» compiler directives, you will want to be aware of the order in which the
screens are appended to the primary report format screen. This is an issue only when mul
tiple imported screens contain areas, reports, or procedures bearing identical names.

Each «include screen» compiler directive in the primary report format screen
is processed to its full depth before the next screen is imported.

Suppose, for example, the primary report format screen contains the following
«include screen» compiler directives:

« include screen = x »
« include screen = y »

and screen x contains

« include screen = z »

Page 118 JAMlReportWriter Release 5.1 12 November 93

Chapter 7: Processing Flow

The resultmg merged screen would begm with the entIre primary report format screen,
followed by screen x, screen z, and, fmally, screen y.

If an area name tag on an mcluded screen matches one on the pnmary screen, that area of
the mcluded screen IS appended to the corresponding area of the main screen. If the same
area name tag appears on multiple included screens, they are appended to the primary
screen m the order the «include screen» compiler directives are processed.

To continue the example, suppose the pnmary report format screen, screen y, and screen
z all contam areas with the tag a. The resulting area a on the merged screen would con
sist of all the a lines from the primary screen, followed by those from screen z and then
from screen y.

If you are developmg reports that import screens cont8ming «l.nclude screen»
compiler directives, you should keep in mmd the order in which these directives are pro
cessed and the screens appended to the primary screen.

7.4

PAGINATION
ReportWriter applies a variety of rules in determining when it should begin a new page.
This section reviews ReportWriter's pagination defaults and explains how to use report
script commands to force a page break or to override those defaults you do not want ap
plied.

7.4.1

Keeping Report Areas Intact
By default, ReportWriter will not unnecessarily split a report area across pages.

If the next area to be output will fit in the space remaining on the current page, It is output
immediately. If it will not fit on the current page but will fit, in its entirety, on a single
page, ReportWriter begins a new page before the area is output.

If the area is longer than a single page, output begins on the current page and continues to
the top of the next page. As much of the area as fits on the current page is written, a page
break occurs (with its associated processing and footer and header output, if any), and
output of the area continues on the next page.

To suppress this feature for any report area (except page headers and footers), add the
spl it keyword to the corresponding area clause or subclause. When the area is out-

JAMIReportWnter Release 5.1 12 November 93 Page 119

JAMlReportWnter Developer's GUide and Reference Manual

put, It begms on the current page, contmumg to subsequent pages, as necessary. Note,
however, that the first line of a mulu-line area IS never orphaned on the bottom of a page,
even If the Spllt keyword has been specified.

Page headers and footers will never be split over two or more pages. If a page header or
footer IS too big to fit on a single page, an error occurs, and execution of the report IS

aborted.

The spl it keyword IS also used to override ReportWnter's orphan suppression feature,
as descnbed m the Section 7.4.3.

7.4.2

White Space Consolidation
ReportWnter consohdates trathng and leading blank hnes of adjacent report areas. The
number of blank lines actually output equals the number of trailing blanks in the first of
the two areas or the number of leading blank lines in the second area, whichever is great
er.

Refer to Section 6.5.2 for a more thorough explanation of this feature. A technique for
suppressing blank line consolidation is provided in Section 10.5.3.

7.4.3

Orphan Suppression
By default, ReportWriter requires that all break headers plus at least one instance of de
tHiI remain together and unbroken.

When a break occurs, if the current page does not have enough space to accommodate all
of the headers that must be output plus at least one instance of the detail area, a new page
is begun before the frrst header is output.

To override the orphan suppression feature, add the spl it keyword to one or more
break header area subc1auses and/or to the detai 1 area clause, as appropri
ate.

Any break header area with the Spll t keyword is exempt from the orphan suppression
rule and may end, span, or begin a page. If there are multiple headers, this may result in
some appearing at the bottom of one page and the remainder at the top of the next

Page 120 JAM/ReportWnter Release 5.1 12 November 93

Chapter 7: Processing Flow

If spll. t is applted to the detall area, not only can the area be spht across pages, as de
scribed 10 Section 7.4.1, but It can begm a new page, even If Its headers end the prevIous
page.

7.4.4

Effect of Dynamic Report Areas on Orphan
Suppression
As descnbed in Sections 6.1.1 and 6.5.1, report areas may be selected and sized dynami
cally. This flexibility on the part of ReportWriter can, however, present difficulty in de
termining the amount of space required to effect suppression of orphan break headers.
This seCUon explains how and when the computation of requIred space is performed and
shows how the use of dynamic areas can affect its accuracy.

ReportWnter computes the number of lines needed to output all break headers plus one
instance of the detail area. The computation takes into account the consolidation of lead
ing and trailing blank lines of adjacent report areas.

This pre-computation takes place after break checking but before break beader proces
sing. Therefore, these computations may not reflect the state of the break beader or detail
area when either is actually output.

Break header JPL or other routines called before header area output might alter that area.
Routines processed at any break level can also alter any lower-level break header area,
particularly if area selection is dynamic.

Stmilarly, the detail area can be affected by break header processing or by detail routines
invoked after break processing but before area output.

As a result, when a dynamic area is actually output, it might might be a different size from
that anUcipated when the calculations were performed. This could result in an area or a
sequence of headers bemg split on output, or it might mean that a new page is started to
accommodate areas that could have fit on the prevIous page.

If you are using dynamic report areas and a possible miscalculation of the space requIred
to avoid orphan headers would be a problem, you might try some of the following to
minimize the likelihood of this occumng:

• If the detail area is speCified dynamically, make sure the routine that
fills in the relevant variable IS mvoked before, rather than after, break
processmg.

• If break header areas are dynamic, you might want to create them so
that all areas that might be used for a given header are the same length.

JAMlReportWnter Release 5 1 12 November 93 Page 121

JAMlReportWnter Developer's GUide and Reference Manual

This way, even 1f the selected area cbanges, the computatIon is unaf
fected.

• If it is not possible to define all areas for the same header to be the same
length, you might want to execute a routine during lowest-level footer
processing that places the name of the longest possible area into the
variable for each dynamically selected header. This would ensure that
the calculated space requirement would be adequate to fit all scenarios.

• If orphan break headers are not considered a problem for your reporting
needs, use the s p 11. t keyword.

Similar problems can occur when dynamic page footers are used.

7.4.5

Changing Page Specifications
When a page, clear, or clear pagespecs statement is encountered in the report
script, the new page header and footer specIfications take effect at the beginning of the
next page. .

A cbange in page specifications does not force a page break; if the current page is partial
ly fIlled, ReportWriter will continue to output to this page either until it is full or until a
new page is otherwise forced-by orphan suppression, non-splitting of areas, or the
newpage keyword. The current page, having been started under the prevIOus page spec
ifications, is closed with the previous page footer.

If you want to close out the currently open page so that the next area output will be on a
page with the new header and/or footer specifications, place an insert newpage
statement either immediately before or immediately after the page statement. This will
force the current page, if one is open, to end. The next output to occur will begin on a new
page. An example is shown in Section 7.1.2.

Page 122 JAM/ReportWnter Release 5.1 12 November 93

JAM!
ReportWnter

ChapterB

ReportWriter Input and Output

8.1

DEVICE CONFIGURATION FILES
Output device support is implemented through the use of device configuration fIles. Any
or all of the following information can be entered into these fIles:

• initialization and reset strings,

• page width and length,

• left margin,

• output device, file name, or process to which output is spooled, and

• name of the developer-written output function and the size of its output
buffer.

The applicable device configuration file, if any, is specified when the J AMlReportWriter
is invoked.

Device configuration files are created as ASCII source files which must be compiled us
mg the dev2bin utility.

JAMIReportWriter Release 5.1 12 November 93 Page 123

JAMlReportWnter Developer's GUide and Reference Manual

8.1.1

Format
Each device configuratIon file IS created as an ASCII source file which can contaIn any
of the following statements:

1. n 1. t = iniCstring

reset = reseCstring

spool = spooCcmd

procedure = outproc

obuffsize = bu&ae

l1.nes = nlines

columns = ncols

leftmargin = nblanks

feedlines = nmnu

fixedlength

varlength

init_string and reseCstring are the initialization and reset strings for the output device.
These strings follow the conventions of JAM video me capability strings: the capabili
tIes are given byte-by-byte, separated by spaces. Non-printable bytes and the space
character are represented by their respective ASCII names: NUL, NL, ESC, SP, etc. Any
byte can, instead, be represented by its octal value, in the fonn

\ddd

where d is an octal digit. Refer to the chapter on video files in the JAM Configuration
GUide for further information on the format of initialization and reset strings.

If an init string is specified, ReportWriter prefaces the report with the string. If a
reset string is specified, ReportWriter appends it to the report.

spooCcmdis the name of a program or me. On UNIX systems, output is piped to the spe
cified program. On other operating systems, the output is written to the specified me. The
spool st.:'ltement is just one of several ways of directing ReportWnter output; refer to
Section 8.2 for mformation on resolving conflictIng output specifications.

Page 124 JAM/ReportWnter Release 5 1 12 November 93

Chapter 8: ReportWnter Input and Output

outproc IS the nrune of a user-wntten procedure which writes or fIlters output Refer to
Section 8.4 for mformatlon on writing output functions.

bufsize is the size of the output buffer, in bytes, used by the function outproc. If not speci
fied' the default size IS 256 bytes.

nlines specifies the length of the printing area on the report page. nco/s specifies the Width
of the pnntlng area on the report page. These parameters can also be specified in the re
port scnpt ini t statement; if they appear 10 both places, the values in the ini t state
ment take precedence. If they are not specified either in the ini t statement or in the de
vice configuration file, the page size defaults to 60 lines by 132 columns.

nblanks specifies the number of blank spaces to be prepended to each non-blank line.
These spaces must be included in the line length ncols. This parameter can also be speci
fied in the report scnpt ini t statement; if it appears in both places, the value in the
init statement take precedence. If leftmargin is not specified in either location,
nblanks defaults to O.

nflines is the number of line feed characters that should be used to separate pages. If spe
Cified, nflines plus nlines must equal the physical length of the page. The feedlines
parameter can also be specified in the report script inl. t statement; if it appears in both
places, the value in the in it statement take precedence. If not specified in either place,
or if the value of nflines is 0, ReportWriter outputs a form feed to begin the next page.

If the f ixedlength keyword is specified, all report lines are padded with spaces to
equal the number of columns specified. If f ixedlength is not specified, ReportWriter
outputs variable-length lines.

If the varlength keyword is specified, ReportWriter outputs variable length lines.
Since varible length is the default, this keyword is normally not needed in an ini t state
ment, except to override the f ixedlength keyword m the device file.

The fixedlength and varlength keywords are mutually exclusive.

fixedlength or varlength can also be specified in the report script init state
ment. The keyword specified in the init statement overrides whichever of these ap
pears 10 the device fIle.

Create the device configuration fIle with any ASCII editor.

JAMlReportWnter Release 5.1 12 November 93 Page 125

JAMIReportWnter Developer's GUide and Reference Manual

8.1.2

Example
The following is an example of a device configuration file:

init = ESC P
reset = ESC Q
lines = 55
columns = 80
spool = lp

8.1.3

Compiling the Device Configuration File
The device configuration file must be compiled with the dev2bin utility before it can
be used by ReportWriter. The invocation sequence from the command line is

dev2bin [-e ext] devfile

where devtile is the name of the device configuration file to be compiled. If devfile does
not include an extension, dev2bin looks fIrSt for deville. dev. If that file cannot be
opened, it attempts to open devfile (with no extension).

The output of dev2bin is a binary file named devflle. ext. If the -e option is omitted,
the resulting file is named devtlle. bin.

The resulting binary device file can be specified as the argument to the -d option of
rwrun, the report generation utility.

To use a compiled device me in producing a report, invoke ReportWriter with the -d
option:

rwrun report -d devfile

Page 126 JAM/ReportWnter Release 5.1 12 November 93

Chapter 8: ReportWnter Input and Output

8.2

RESOLVING CONFLICTING OUTPUT
SPECIFICATIONS

8.2.1

Destinations
Because ReportWriter provides several different ways to indicate the output destination,
the potential exists for conflicting output specifications at runtime. This section explains
how ReportWriter chooses the output desunation if multiple specifications are present.

When ReportWriter is invoked from the command line, the precedence of output specifi
cations is

1. procedure statement in the specified device configuration file

2. output me specified in the command line -0 option

3. spool statement in the specified device configuration file

4. standard output-default if no output destination is otherwise speci-
fied

If ReportWriter is invoked from within a JAMIDBi application, the command line op
tions are taken from RWOPTIONS, which can be either an LDB variable or an environ
ment variable. If both exist, the LDB variable is used. The precedence of output specifi
cations is

1. procedure statement in the specified device configuration file

2. output me specified in the RWOPTIONS -0 option

3. output file specified in the rwrun JPL command or in the string
passed to the dbi_rwrun () function

4. spool statement in the specified device configuration file

Note that there is no default output destination when ReportWriter is invoked from within
a JAMlDBi application. At least one of the above output specifications must be present;
otherwise, an error message is generated.

Refer to Section 9.4 for further information on RWOPTIONS.

If the output procedure specified in the device configuration rtIe (precedence # 1 in both

JAMlReportWnter Release 5.1 12 November 93 Page 127

JAMlReportWnter Developer's GUide and Reference Manual

lists, above) IS Invoked and returns With a value of 1, ReportWriter continues to the next
output optIOn.

NOTE for users of Microsoft Windows: If no output destlnatlOn is specified when Re
portWriter 5.1 is runmng under Microsoft Windows, ReportWnter sends its output to the
Windows Pnnt Manager. Tlus applies whether ReportWriter IS invoked as a stand-alone
application or from within a Cor JPL routine.

8.2.2

Page Specifications
Some of ReportWriter's page parameters can be specified either in the report script in i t
statement or In the device configuration file. In the event of a conflict between parame
ters, those in the in 1 t statement take precedence.

It is recommended that you use the ini t statement for parameters that must remain
constant no matter where report output is directed. Use the device cOnfigwation me for
parameters, such as page size, that might vary, depending upon the output device or me.

8.3

DEVELOPER-WRITTEN ROW-SUPPLY
FUNCTIONS
ReportWriter uses JAMIDBi to perform fetches from the database. You may, however,
need to deSign a report that requires data from flat files, wire services, or other sources
not supported by JAMIDBi.

This section provides guidelines for writing custom row-supply input functions for a
J AMlReportWriter application.

Instructions for installing your input function and hnking it with ReportWriter are pro
vided in Section 8.5.

NOTE: When a user-written row-supply function is installed, ReportWriter neither
fetches data nor places it into the report fonnat screen. These tasks become the responsi
bihty of the row-supply function.

Page 128 JAM/ReportWriter Release 5.1 12 November 93

Chapter 8: ReportWnter Input and Output

8.3.1

The Query
ReportWriter passes the query string in the report scnpt to the row-supply function, hav
ing frrst performed colon expansIOn, if needed. The format of the query depends upon the
format your function expects. It need not be a SQL statement unless, of course, your
function is designed to parse a SQL statement

8.3.2

Arguments
The row-supply function should accept two arguments: an integer type code and a point
er to a string, in that order.

The type code argument is one of

RW_P_OPEN
RW_P_CLOSE
RW_P_READ

These are defined in the rwde f s . h m.e, included in the ReportWriter distribution. Re
port Writer calls the row-supply function once with RW_P _OPEN and once with
RW_P _CLOSE. Between these two calls, ReportWriter calls the row-supply function re
peatedly with RW_P _READ until there are no more rows to fetch.

When the row-supply function is called with RW_P _OPEN, the second argument is the
colon--expanded query from the report script For all subsequent calls, the second argu
ment is the null pointer.

8.3.3

Return Values
The row-supply function should return one of the following:

RW_USEROK
on open: The file was successfully opened.

on. input: Data were fetched successfully.

on close: The fIle was successfully closed.

JAMlReportWriter Release 5.1 12 November 93 Page 129

JAMlReportWnter Developer's GUide and Reference Manual

RW_USEREND
on open: Skip the rest of the current detai 1 statement and continue
with the remainder of the report. This would occur, for example, if the
query were the null string.

on input: End of file was reached.

on close: The file could not be closed, but ReportWriter should not
abort.

RW_USERABORT
Abort the remainder of the report. The report is aborted, but Report
Writer does not display any specific error message explaining why the
report failed. You can use the row-supply function to put out a message,
if appropriate.

These return codes are dermed in the rwde f s . h file, included in the ReportWriter dis
tribution.

8.3.4

Invoking the Row-Supply Function
In addition to installing and linking the input function as described in Section 8.5, you
must make the following modification to the rwopts. c module supplied with the Re
portWriter distribution:

In the rw_options () function, set the variable rw_input-procedure to the
name of the row-supply function. If this variable is set to the null value, ReportWriter
uses JAMlDBi to fetch data; if it is set to the name of a developer-wntten procedure,
ReportWriter uses that procedure for input

Alternatively, you may choose to modify rwopt s . c to allow the end user to choose one
of several installed input functions. To do this, derme, in rwopts . c, a new command
line option through which the user can specify the desired input function.

Page 130 JAM/ReportWnter Release 5.1 12 November 93

Chapter 8: ReportWnter Input and Output

8.4

DEVELOPER-WRITTEN OUTPUT
PROCEDURES
This section provides guidehnes for wnting custom procedures to write or filter Report
Writer output.

To use an installed output funcuon, specify it 1D the devlce me procedure statement.
Use the obuffsl.ze statement to specify a buffer size greater than the default of 256
bytes. (Refer to Section 8.1 for more information on device configuration files.)

Instructions for installing and linking developer-written output funcuons are provided m
Section 8.5.

8.4.1

Arguments
The output function should accept two arguments: an integer type code and an output
buffer, in that order.

The type code argument is one of

RW_P_OPEN
RW_P_CLOSE
RW_P_WRITE

These are defined in the rwdefs . h file, included in the ReportWriter distribution. Re
portWriter calls the funcuon once with RW_P _OPEN, once per Ime of output with
RW_P _WRITE, and once with RW_P _CLOSE.

The second argument is an output buffer.

• When the type code is RW_P _WRITE, the buffer contains a line of out
put, terminated by the NEWLINE and NULL characters. Your proce
dure can modify the contents of the buffer.

• When the type code is RW_P _OPEN, the buffer contains the initializa
tion string, as specified in the device file; the string is terminated by the
NULL character.

• When the type code is RW_P _CLOSE, the buffer contains the reset
string, as specified in the device file; the string is terminated by the
NULL character.

JAMlReportWnter Release 5.1 12 November 93 Page 131

JAMlReportWnter Developer's GUide and Reference Manual

NOTE: Smce the mitialIzation and reset stnngs are termmated WIth the NULL character
when passed to the output functIon, neither can contain this character as part of the string.

8 4.2

Return Values
The output procedure should return one of the followmg:

o ReportWnter should not output the buffer; the developer-wntten proce
dure bas handled thiS step.

I ReportWriter should output the buffer; the developer-written procedure
bas only filtered or analyzed the data.

-I Request for ReportWriter to abort the rest of the report.

8.4.3

Invoking the Output Procedure
To use a custom output procedure with ReportWnter, specify the procedure's name in the
procedure parameter of the device configuration file. The default size for the output
buffer, described in SectIon 8.4.1 is 256 bytes. You can specify a different size through the
obu f f s i z e parameter of the device configuration file.

Refer to SectIon 8.1 for more mformation on device configuration flIes.

8.5

INSTALLING DEVELOPER-WRITTEN
FUNCTIONS
The installation instructIons in thIS section apply to both row-supply functions and devel
oper -written output functions.

I. Install the procedures into the prototyped function list of
func 11. st. c. InstructIons for this step are provided in the JAM Pro
grammer's Guide and in the funclist. c file, which is part of the
J AM distributIon. For each, use the prototype (i, s) .

2. CompIle func1ist. c.

Page 132 JAM/ReportWnter Release 5.1 12 November 93

Chapter 8' ReportWnter Input and Output

3. In rwma in . c, make sure that the lme

is not commented out.

4. In the supplied makefile, append the names of the object fIles for your
custom mput and output procedure onto the line that begins

USERMODS = funclist.o

This step is documented in the makefile. (The exact name of this file
depends upon your operating system.)

5. Run the makefile to create the desired executables. This step recom
piles rwmain. c and relinks rwrun, Jamrw, and/or jxrw, depend
ing upon your other modifications to the file. (Refer to instructions in
the makefile for specifying which executables to create.)

NOTE: If you are developing input or output functions in C, remember to include the
ReportWriter constants described earlier in this chapter:

#include "rwdefs.h"

JAMIReportWnter Release 5.1 12 November 93 Page 133

JAM!
ReportWnter

Chapter 9

Running ReportWriter

JAMlReportWriter can be invoked directly from the command line or from withm a
JAM or JAMlDBi application. This chapter explains how to run ReportWriter from

• the command line, using the rwrun utility

• a JPL module, using the rwrun JPL command

• a C routine, using the dbi_l:wrun () function

9.1

FROM THE COMMAND LINE
Use the rwrun utility to generate a report directly from the operating system command
line. The invocation sequence is

rwrun [-d dev/cefl/e] [-al-f] [-i] [-ooutputflle] report [al!11 arg2 ••.]

lepolfmust identify a binary report file. It is not necessary to specify the . bin extension,
as rwrun looks fllSt for a file named repolf. bin. If that file cannot be opened, it at
tempts to open repolf (with no extension). The opened file must be the output of the report
compiler rprt2bin.

alg1, arg2, etc. are the arguments passed to the report. Each argument accepted by the
report must be defined by a parameter clause in the init statement of the report. Re
fer to Section 6.3 for more information on report arguments.

The rwrun options are

JAMlReportWriter Release 5.1 12 November 93 Page 135

JAMlReportWnter Developer's Guide and Reference Manual

-d devlcefile
Use the parameters in the named device file to control report output If
any parameters specified in the device file are also specified in an in i t
statement in the report script, those in the in it statement take prece
dence. Refer to Section 8.1 for a detailed description of the device me.

-a Append the output to the file named in the -0 opuon. If the me does not
exist, create it as a new me. This option does not apply if output is sent
to a spool command or to a developer-written output procedure.

The fmal page of each report is closed so that any subsequent report ap
pended will begin on a new page. Note that this behavior of the -a op
tion applies only when ReportWriter is invoked as a stand-alone ap
plication with the rwrun utility.

Refer to Section 9.4 for an explanation of how this option works when
ReportWriter is invoked from within aJAMlDBi application.

- f Allow ReportWriter to overwrite the report output file. This option does
not apply if output is sent to a spool command or to a developer-written
output procedure.

- i Ignore warning messages. If this option is omitted, warning messages
are displayed on the screen or sent to the standard destination for error
messages in your configuration.

-0 outputfile
Direct the fmished report to the named file. If this option is omitted, and
if no spool command or output procedure is specified in the device me,
the report is sent to standard output. Refer to Chapter 8 for a more thor
ough discussion of report output

The -a and - f options conflict and should not be specified simultaneously.

9.1.1

Examples
The following examples assume that the report screen emphist. jam bas been com
piled by the rprt2bin utility and that the binary file produced is emphist. bin.

1. To generate the report and display the output on the terminal screen
(standard output), enter the following at the command line:

rwrun emphist

Page 136 JAMlReportWriter Release 5.1 12 November 93

9.2

Chapter 9: Running ReportWnter

2. Suppose you are accumulating the output of several reports in a smgle
file, named emp_reports. txt, to be prmted at a later time. To
send the output of ernph i s t to this me without overwriting any other
reports previously generated and stored in the file, enter:

rwrun ernphist -a -0 ernp_reports.txt

3. You want to send the output of ernphist to the prmter described in
the device file p r 3. n t f i 1 e. Suppose, also, that you expect some
warning messages, which you do not want displayed. Enter the follow
ing on the command line:

rwrun ernphist -d pr3.ntfile -i

FROM A JPL PROCEDURE
Use the rwrun JPL command to invoke ReportWriter from within a JAMIDBi applica
tion. The syntax of this JPL command is

rwrun reporlname [outputfile]

reportname identifies a binary report me. It is not necessary to specify the . bin exten
sion, as rwrun looks first for a me named reportname. bin. If that file cannot be
opened, it attempts to open report name (with no extension). The opened me must be the
output of the report compiler rprt2bin.

Output options are specified in the RWOPTIONS variable, described in Section 9.4. Al
ternatively, the output me name can be specified in the rwrun command. If outputflle is
specified in the rwrun command and the -0 option is included in the RWOPTIONS vari
able, the me specified in RWOPTIONS takes precedence.

Refer to Section 8.2 for further infonnation on resolving conflicting output specifica
tions.

Report arguments are also speCIfied m RWOPTIONS. Refer to Section 6.3 for more in
formation on report arguments.

JAMlReportWnter Release 5.1 12 November 93 Page 137

JAMlReportWnter Developer's GUide and Reference M~nual

9.3

FROM A C ROUTINE
User-written C functions linked With Jarnrw can Invoke ReportWnter With the
dbi_rwrun library funcllon:

err = db i_rwrun (s)
char *s;
int err;

The variable s points to a string whose contents are the name of a report binary file and,
optionally, an output rue. Ifboth file names are present, they must be separated by one or
more spaces. The format of the string s is analogous to the argument list for the rwrun
JPL command:

reportname [outputflle]

reportname identifies a binary report file. It is not necessary to specify the . bin exten
sion, as dbi_rwrun looks rust for a file named reportname. bin. If that file cannot be
opened, it attempts to open reportname (with no extension). The opened fIle must be the
output of the report compiler rprt2bin.

Output options are specified in the RWOPTIONS variable, described in Section 9.4. Al
ternatlvely, the output rue name can be specified in the argument string supplied to the
dbi_rwrun function. If outputfile is specified in the argument string and the -0 option
is included in the RWOPTIONS variable, the file specified in RWOPTIONS takes prece
dence.

Refer to Section 8.2 for further information on resolving conflicting output specifica
tions.

Report arguments are also specified in RWOPTIONS. Refer to Section 6.3 for more in
formation on report arguments.

The return value of dbi_rwrun is -1 if an error occurred; otherwise, it is zero. If, how
ever, the JPL statement dbms error_continue is active, dbi_rwrun will always
return zero.

Page 138 JAM/ReportWnter Release 5.1 12 November 93

Chapter 9. Running ReportWnter

9.4

RWOPTIONS
When ReportWriter is invoked with the rwrun utIlity, as descnbed in Section 9.1, output
options are entered directly on the command line. When ReportWriter is invoked WIth the
JPL rwrun command or with the C function dbi_rwrun (), however, any required
options must be specified in the variable RWOPTIONS.

RWOPTIONS can be either an LDB variable or a system envIronment vanable. Report
Writer first looks for RWOPTIONS in the LDB. Only if tlus field is empty or does not
exist, does ReportWriter check RWOPTIONS in the system environment.

In either case, RWOPTIONS is a string containing ReportWriter optIons. Any of the fol
lowing options can appear in RWOPTIONS:

-a Append the output to the me named in the -0 option. If the file does not
exist, create It as a new file. ThIs option does not apply if output is sent
to a spool command or to a developer-written output procedure.

The fmal page of the report is left open so that the next report output
will be appended without forcing a page break.

If ReportWnter is invoked successively with -a and the same output
file specified, unexpected results can occur if the reports involved use
different page footers. Refer to Section 9.4.2 for further information on
this option.

If both the -a and the -c optIons are specified, the -c option takes pre
cedence.

Note that the -a option works somewhat differently when ReportWriter
is invoked with the stand-alone utility rwrun. Refer to Section 9.1 for
an explanation of how this option works in that case.

-c Close the last page of the latest report appended to the file named in the
-0 optIon. No new report is generated nor is any other output produced.

If ReportWriter is invoked fIrst with -a and then with -c, unexpected
results can occur if the reports involved use different page footers. Re
fer to Section 9.4.2 for further information on these options.

This optIon does not apply If output is sent to a spool command or to a
developer-written output procedure.

This option is ignored when ReportWriter is invoked from the stand
alone utility rwrun.

JAMlReportWnter Release 5.1 12 November 93 Page 139

JAMlReportWnter Developer's GUide and Reference Manual

-d devicefile
Use the parameters m the named devIce file to control report output. If
any parameters speCIfied 111 the device file are also specified in an in i t
statement In the report scnpt, those In the ini t statement take prece
dence. Refer to Section 8.1 for a detailed descnption of the device file.

- f Allow ReportWnter to overwnte the report output file. ThIs opuon does
not apply If output is sent to a spool command or to a developer-written
output procedure.

- J. Ignore warning messages.

-0 outputfile
Direct the fmished report to the named file. If this option is omitted, and
if no spool command or output procedure is specified 10 the device fIle,
the report IS sent to standard output. Refer to Chapter 8 for a more thor
ough dISCUSSIon of report output.

The -a, -c, and -f options conflict and should not be specified at the same time.

9.4.1

Format
Options are entered into RWOPTIONS in the same format they would be entered on the
command hne.

The following example shows how the LOB variable RWOPTIONS might be setup and
ReportWriter invoked from IPL.

cat RWOPTIONS "-a -d mydevice -0 myoutput"
rwrun myreport

Note that the output file can also be specified as an argument to rwrun. The following is
equivalent to the preceding example.

cat RWOPTIONS "-a -d mydevice"
rwrun myreport myoutput

If an output file is specified in the rwrun command and also in RWOPTIONS, output is
sent to the file named in RWOPTIONS. In the following example, ReportWriter will send
the output to myoutput.

cat RWOPTIONS "-a -0 myoutput"
rwrun myreport yourfile

Page 140 JAM/ReportWnter Release 5,1 12 November 93

Chapter 9' Running ReportWnter

Refer to Secuon 8.2 for a more a more complete discussion of conflicting output specifi
cations.

9.4.2

Append and Close Options: -a and -c
The append option, -a, when invoked from within a JAM/DBi application, causes out
put to be appended to the prevIous report III the file without forcing a page break between
reports. The close option, -c, closes the final page of the last report appended to the out
put file; It produces no additional output

The -a option is used primarily when ReportWriter is invoked in a loop, producing indi
vidual reports that are essentially sinular parts of a larger report driven by the JAMlDBi
application. This IS a super-query, as described m Section 10.1, "Sub-Reports."

The followlllg example shows how a JAMlDBi applicauon might invoke ReportWriter
III a loop to produce a continuous (no page breaks between invocations) section of a re
port. It subsequently invokes ReportWnter again to close the final page of the continuous
report section so that the next report appended to the output file will begin on a new page.
Finally, it invokes ReportWriter agam to create another report appended to the rust

dbms count dbcount
cat pagenum "0"
system rm -f outfile
cat RWOPTIONS "-a"

dbms declare c cursor for SELECT ...
dbms execute c

while dbcount > 0
{

}

rwrun report_l out file
dbms continue

cat RWOPTIONS "-c"
rwrun report_l outfile

cat RWOPTIONS "-a"

JAMlReportWnter Release 5.1 12 November 93 Page 141

JAMIReportWnter Developer's GUide and Reference Manual

rwrun report_2 outfile

eat RWOPTIONS "-e"
rwrun report_2 outfile

If ReportWriter is invoked in a loop and you want each iteration of the report to begm on
a new page, place an insert newpage statement at the beginning of the script.

The reports specified by the rwrun commands that are executed with the -a and -e
options need not be the same. Unexpected results can arise, however, if the two reports
use different headers and footers. In general, you will want to close the last output page
by specifying the same report that was used to generate the output, as shown in the exam
ple above.

Page 142 JAMlReportWnter Release 5.1 12 November 93

Chapter 10

Development Hints

10.1

ALTERNATIVE METHOD FOR
SUBREPORTS

JAM!
ReportWnter

The subreport capability described in Section 6.2 of this manual applies only when
ReportWriter is linked WIth

• JAM release 5.03a or higher and

• JAMlDBirelease 5.

If you are using an earlier version of JAM or JAMlDBi, you may want to use the tech
niques shown here as an alternate means of producing subreports.

When linked with releases of JAM, and JAMlDBi earlier than those noted above, Re
portWriter uses the unnamed (default) cursor of JAMIDBi. Thus, it can have only one
query open at a time. Notice, for example, that while multiple detail statements are
permitted in a report script, they are processed sequentially rather than being nested or
interleaved. This does not, however, preclude the possibility of creatmg subreports. JPL
procedures or other developer-wntten functions, whether invoking or invoked from Re
portWriter, can declare and use named cursors, which will not conflict with the unnamed
cursor used in the detail query. Two techmques are available for nestmg queries to create
subreports:

• Sub-Queries: The ReportWriter detail statement provides the outer
query, and a JPL procedure (or called funcuon) fetches addItional data
with a named cursor.

JAMlReportWnter Release 5.1 12 November 93 Page 143

JAMlReportWnter Developer's GUide and Referenc~ Manual

• Super-Queries: The JAMlDBl apphcation performs the main query,
usmg a named cursor, and mvokes ReportWnter in a loop to fetch low
er-level data as needed.

The followmg example uses both of these techmques to create a multi-level report. (Sec
tion 0.3.2 of this manual shows how thIS example would be implemented using the full
subreport capability of ReportWriter release 5.1.)

This report hsts mdividuals and account balances. For any With a negauve balance, a sub
report is produced showing the creditors and the amount owed to each. A further level of
detail IS produced wherever the individual owes $200 or more to a particular creditor.
Figure 13 shows a secuon of the sample report.

Mary +400

Paul -400

Butcher -100

Baker -200

DETAIL

donuts 50
cupcakes 30
bread 20
turnovers 30
b'day cakes 70

Candlestick Maker -100

Peter +150

Figure 13: A Report With Subreports

The top-level query, whIch fetches information about individuals, is performed in a JPL
module of the JAMlDBi applicauon. ReportWriter is invoked in a loop to fetch the credi
tor information for each indiVIdual reported and, in turn, to invoke a IPL procedure to
fetcb further creditor detail information.

ReportWriter handles the report output, including the data fetched in the main applica
tion. The data must, of course, be in the LDB for ReportWnter to have access to it.

Page 144 JAM/ReportWnter Release 5.1 12 November 93

Chapter 10' Development Hints

Smce the creditor subreport and purchase detaIl are not required in all cases, this report
area is populated only as needed. The shrink keyword associated with the area in the
report script elimmates excess white space. (Refer to Section 6.5.1 for further informa
tion on sizmg reports dynamically.)

Figure 14 shows a portion of JPL code from the main application. It performs the top
level query and invokes ReportWriter in a loop to fetch subsequent levels of data. The

dbms count dbcount

append ReportWriter output to the file
"output"

cat RWOPTIONS "-a -0 output -i"

dbms declare c cursor for select person, \
sum (bal) bal from all_bal \
group by person

dbms execute c

for each person fetched from the database,
run the report oneperson:

while dbcount > 0
{

}

rwrun oneperson
dbms continue c

close the final page of the oneperson report:

cat RWOPTIONS "-c -0 output"
rwrun oneperson

Figure 14: The Super-Query: Invoking ReportWriter in a Loop

JAMlReportWnter Release 5.1 12 November 93 Page 145

JAMlReportWnter Developer's GUide and Reference Manual

invoked report is named oneperson. Figure 13 shows three iteratlons of oneperson.
The append output optlon (-a) is used so that they form a single report.

« beg1n report»

/* This is the "oneperson" report: */

insert jpl = format_individual_bal

insert area = individual

detail query = "select person, vendor,
bal balance \
from all _bal \

\

where person = ' :person'
and bal < 0"
jpl = purchases
area = creditors shrink
jpl = reset creditors flds - -

« end report»

Figure 15: Script for Report oneperson

\

Figure 15 shows portions of the oneperson report, including the detai I statement
This statement

• performs the database query to fetch the creditor information for the in
dividual selected in the main query and

• invokes the JPL procedure purchases.

The purchases procedure, shown in Figure 16, is invoked during each iteration of the
detail statement. The SQL select statement in this procedure is the sub--query to
fetch further details on the indiVIdual's account with the creditor.

Page 146 JAMlReportWriter Release 5.1 12 November 93

Chapter 10: Development Hints

proc purchases

get the list of purchases only if person
owes $200 or more:

if balance <= -200
{

"item" and "item-price" are arrays:

dbms declare d cursor for select item, \
item-price from stores \
where buyer = ':person' and\

store = ':vendor'
dbms execute d

Put title on this section of report only if
it will be used. Otherwise, leave this field
blank so the entire subreport can be shrunk
out if not needed.

}

if dbcount >0
{

}

cat item_label "DETAIL"
cat underscore "------,,

Figure 16: The Sub-Query: Using Detail JPL to Fetch Further Data

JAMlReportWnter Release 5.1 12 November 93 Page 147

JAMlReportWnter Developer's GUide and ReferenclgI Manual

person __________ _ bal __ _

vendor __ _ balance __
itern_label_
underscore_

itern, __ _
item'--__
itern'--__
itern, __ _
l.tern. __ _
itern~ __
l.tern. __ _
itern, __ _
l.tern, __ _
l.tem, __ _
itern, __ _
itern, __ _
l.tern, __ _
l.tern. __ _
l.tern'--__
itern'--__

l.tern-price_
itern-price_
itern-price_
itern-price_
itern-prl.ce_
item-price_
itern-prl.ce_
itern-price_
itern-price_
itern-price_
l.tern-price_
it ern-price_
itern-price_
itern-price_
itern-price_
itern-price_

Figure 17: The Report Areas (with Field Names)

«individual
«indivl.dual

«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«credl.tors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors
«creditors

The layout of the report screen is shown in Figure 17. The report area indi vidual is
output once each time ReportWriter is invoked from the application code. The fields in
this area, person and bal, are filled in from the main query.

The area credl. tor is output once for each line fetched by the query in the detai 1
statement. It may, however, be empty or only partially filled, depending upon the individ
ual's balance. The shrink keyword IS, therefore, used in the scnpt where this area is
output.

The vendor and balance fields are filled from the detai 1 query, the i tern and
l. tem-price arrays from the sub--query (in the purchase procedure).
item_label and underscore, which form the title for the purchase detail section,
are fIlled in only if the sub--query returns data.

Page 148 JAM/ReportWnter Release 5.1 12 November 93

Chapter 10' Development Hints

10.2

GIVING THE END USER CONTROL
OVER REPORT COMPOSITION
Although J AMlReportWriter reports are developed in the authoring environment rather
than at mnurne, end users can still be given a considerable amount of control over report
content and composiuon.

This section shows how to use colon-expanded variables in the report script m conjunc
tion with various user interface and coding techmques to make report composition sensi
tive to the user's input (Refer to Section 6.1.1 for more information on colon-expanded
vanables.)

Design the user interface of your application to soliCit relevant information about the re
port from the user. Use data entry fields, menus, checklists and/or radio buttons, as ap
propriate, to allow the user to make the report data and content selections.

The information may apply to the data to be fetched, such as:

Enter the year for wh~ch you want benefits data: __ __

Or it may specify which format, or variation, of a report area to use:

Wh~ch employee h~story format do you want?

bnef full

In the flfSt of the above examples suppose that the data entry field is named year. The
query clause of the detai 1 statement might then be something like:

It deta~l
It

query = "SELECT * from emp_benef~ts \
WHERE yr = :year·

In the second example, you might have two alternate areas defined. One might be called
emphist-brl.ef and the other emphist-full. The area clause of the detail
statement might look something like:

" detail
It

query
area

=" "
= :select~on

Your application code would determine the user's selection from this radio button group
and insert the applicable area name into the variable selection. Suppose the radio
button group name IS but ton. Your application JPL mIght contain the followmg:

if button == 1
cat select~on "emph~st-brief·

else
cat select~on "emphist-full R

JAMlReportWnter Release 5.1 12 November 93 Page 149

JAMIReportWnter Developer's GUide and Reference Manual

You can also use colon-expanded variables to include or exclude vanous processing or
area output. For example:

Do you want totals by salesperson' (YIn) _

In this example, your report script might lDvoke, as part of break footer processmg, JPL
to calculate the running total for each salesperson. Mter the detail area is output, a sepa
rate report area listing those totals is output. You want this processing and output to occur
only if the user requests it. The break and insert statements might look like:

II break
II

field = acctnum
footer jpl =: calc

II area = bfoot

II insert area = :totals

The JPL code in the apphcation is responsible both for capturing the user's response to
the query about reporting the totals and for assigning appropriate values to the variables
calc and totals. Suppose the input variable in the prompt above IS pquery; the ap
plication JPL might contain:

If pquery
{

cat calc ·calc_salesperson
cat totals "tot_area-

else
{

cat calc ''''
cat totals .. II

Note that the application code assigns the null string to these variables if the user does not
want the totals computed and reported. When the value of an argument to an area, j p 1,
or ca 11 clause is the null string, ReportWriter simply bypasses the clause without caus
ing an error and without attempting to output an area or invoke any code.

10.3

REPORTS DEVELOPED UNDER
REPORTWRITER RELEASE 4
Reports developed under ReportWnter release 4 can be run under release 5 if they are
flfSt converted with the rw4 toS utility.

Page 150 JAMlReportWriter Release 5.1 12 November 93

Chapter 10' Development Hints

rw4toS converts reports developed under JAMIReportWnter release 4 mto release 5
format. This utility takes as mput the report script file, the JAM screens, and the JPL
modules that make up the release 4 report and produces as output a single report fOlmat
screen that can be compIled by the release 5 rprt2bin utility.

The rw4toS utility is described m Chapter 13, the Utilities Reference.

If your report, under ReportWnter release 4, made use of the LDB for passing the values
of report variables, you may be able to use non-output fields on the release 5 report for
mat screen instead. Under ReportWriter release 5, the report format screen is open
throughout report generatIon, so the content of all screen fields is always accessible. This
makes it possIble (and, indeed, preferable) to use non--output fields on the screen in place
of LDB vanables. Refer to Section 6.1.2 for more infonnation about the scope of Report
Wnter vanables and the use of non--output fields.

10.4

RUNNING RELEASE 5.0 REPORTS
UNDER RELEASE 5.1
AIl ReportWriter release 5.0 report format screens and device configuration files must be
recompiled with the release 5.1 rprt2bin and dev2bin utilities, respectively.

The source code, however, need not be changed.

10.5

INTERACTIONS WITH JAM FEATURES
ReportWriter is closely integrated with JAM and derives much of Its functionality from
the base product. A few of JAM's screen composition and navigation features, however,
are not applicable to report development and are ignored when used with report fOlTIlat
screens. This section provides guidelines to help you take maximum advantage of Re
portWriter's integration with JAM.

JAMlReportWnter Release 5 1 12 November 93 Page 151

JAMlReportWnter Developer's GUide and Reference Manual

105.1

Fields and Arrays

Word-Wrapped Arrays
Word-wrapped arrays work as they do in JAMIDBi: If a target variable for the SELECT
is a word-wrapped array, a smgle row IS fetched on each cycle through the detail
statement, and text in long columns is apportioned mto as many elements of the word
wrapped destination as are needed.

Shifting and Scrolling
Scrolling arrays are meaningless in reports and should not be used. Sunilarly, shifted
fields are irrelevant in report generation. ReportWriter outputs only the on screen portions
of fields and arrays.

Onscreen Arrays
JAMlDBi permits the use of arrays as target variables for database fetches. As noted
above, however, any such arrays should be onscreen arrays in the detail area. Each cycle
through detail processing will fetch as many rows as the elements in the detail area will
accommodate.

Bear in mind, however, that fetching into arrays differs from fetching into single-element
target variables. ReportWriter invokes procedures specified in j pI and ca 11 clauses on
each cycle through the query. When the target variables are simple fields, this means that
these procedures are executed for each row fetched. When the target variables are arrays,
these procedures are executed once for each fetch, not for each row.

Similarly, break checking and processing occur once for each cycle through the query. To
implement break checking and processing for each row, the data must be fetched into
single-element fields. When data is fetched into arrays of, say, n elements, only the first
of the n rows retrieved is checked for breaks.

Thus, the nominal case of detail processing, as described in Section 5.1, occurs when
data is fetched into single-element fields.

You may, however, encounter circumstances where it is appropriate to fetch into ons
creen arrays. Refer to Appendix B, Section B.2, for additional information on using ar
rays as target variables with JAMlDBi.

Page 152 JAM/ReportWnter Release 5.1 12 November 93

Chapter 10. Development Hints

10.5.2

Screen and Field Functions
In general, you should avoid attaching functions to the report format screen or to fields on
the screen.

Instead, invoke screen entry and exit actions and field validation procedures explicitly
through JPL and CALL clauses appropriately placed in the report script. This simplifies
debuggmg of the report by making all procedure and function calls VISIble in the scnpt,
rather than having some of the processing take place "behind the scenes."

The above recommendation notwithstanding, it is useful to know how JAMlReportWrit
er mteracts WIth the various screen and field functions, if present. Such might be the case,
for example, if you were developing a report format screen from a JAM application
screen that had associated screen and/or field functions.

Screen Entry and Exit Functions
If a screen entry function is specified for the report format screen. JAM executes it auto
matically when ReportWriter opens the screen (before the script is executed). Similarly,
the screen exit function, if one is specified, is executed when the report is closed, after the
script has been executed.

As noted above, use of these functions is not recommended.

Field Functions

Field Validation Function

Field validation is performed prior to output in order to apply field and miscellaneous
edits (refer to Section 10.5.4). Therefore, if a validation function is specified for the field,
it, too, is executed.

If custom edits or other validation are required, invoke the needed procedures directly
through the script rather than in a field validation function.

If any field fails JAM field validation, an unrecoverable runtime error occurs. If, howev
er, your "validation function" is invoked through the script, your code can control the
resultmg behavior througb appropriate use of return values (described in Section 6.4.2).

Field Entry and Exit Functions

Field entry and exit functions have no meaning in report generation and are ignored.

JAMlReportWnter Release 5 1 12 November 93 Page 153

JAMlReportWnter Developer's GUide and Reference Manual

10.5.3

Display Characteristics
Most display attributes, such as blinkIng, highlIght, underhne, etc., specified for fields
and text on the report format screen are ignored.

Non-Display
The non-display attnbute, however, is observed. If a field or piece of text has this
attribute, it is not output.

This behavior is useful If you want to apply the shr ink feature to the report area but
need to protect a particular line from bemg shrunk out, even if all fields on it are empty.
Place some text or a field on the line and give it the non-di splay attribute. If all other
fields on the line are blank, the line will appear as a blank line in the report, the presence
of the non-display text making it immune from the effect of shrink.

The non -di sp lay attribute can be used in a similar manner to prevent consolidation of
leading and trailing blank lines. Place a field or a printable character on either the last
trailing blank line of the flISt area or first leading blank line of the second area; give this
field or display text the non-display attribute. On output, the line will be blank, and
ReportWriter will not attempt to suppress it.

10.5.4

Field and Miscellaneous Edits
Most field and miscellaneous edits are irrelevant in the context of report generation and
are ignored. The following field and miscellaneous edits, however, do apply to fields on
the report format screen:

right justified

null fleld

currency format

date or time field

ReportWriter gets the system date and time when the report format screen is opened. This
date and/or time is entered into any field designated as a system date/time field.

To update the contents of a system date/time field prior to output, invoke a procedure that
clears the field, such as:

Page 154 JAM/ReportWnter Release 5.1 12 November 93

Chapter 10: Development Hints

proc update_sys_time
cat rprt._time

The current system date and/or time will be entered into the cleared field.

10.5.5

Borders and Line Drawing
Borders and line drawing do not convert well to printed output, and their use is not rec
ommended.

If these features are used on the report format screen, their graphics characters are con
verted to various text characters, depending on the border or drawing style chosen. On
screens incorporated with the include screen compiler directive, borders are
omitted.

10.5.6

Colon Preprocessing
Colon-expanded JAM variables are permitted within any user-defmed character stnng
in the report script. JAMlDBi colon-plus preprocessing may be used in the query string
if the string is passed through JAMlDBi release 5. The following are legal ReportWriter
statements:

It break field = :varl
It header area = ": var2 II

It detall query = "SELECT ... WHERE x = :+var3"

Colon-expanded JAM variables are not permitted where a ReportWriter reserved word,
a file name, or a numeric value is expected. The following are not legal ReportWriter
statements:

It lnlt lines = :varl

It :arbitrary_report_script_statement

It clear :what_to_clear

It «include screen = :filename»

Refer to Section 6.1.1 for a further discussion of colon-expanded JAM variables.

JAMlReportWnter Release 5.1 12 November 93 Page 155

JAMlReportWnter Developer's GUide and Reference Manual

10.5.7

Screen Manager Functions
When ReportWnter IS mvoked from the command line with the rwrun utility, functions
that apply only to the keyboard (such as sm_input) or to the physical screen (such as
sm_rescreen) are not supported; data access rouunes (such as sm-putfield and
sm_getfield) are.

As a general rule--of-thumb, the following types of functions are supported in the stand
alone ReportWnter:

• functions that provide access to
field and array data
field and array attributes
groups
theLDB
global data

• mass storage and retrieval functions

• functions that manipulate JAM's behavior (except those functions that
involve the keyboard)

• miscellaneous functions, such as sm_l_close, sm_l_open,
sm_jplload, and sm_sdtime (except those functions that involve
the keyboard)

• message display functions (behave differently than they do in JAM
display results to standard error output without pausing for user ac
knowledgement)

When invoked from within a JAM or JAMlDBi application, ReportWriter supports all
Screen Manager functions. The behavior of these functions is the same as it is in JAM.

10.5.8

Control Strings
Control strings associated with the report format screen are ignored.

Page 156 JAM/ReportWnter Release 5.1 12 November 93

Chapter 10' Development Hints

10.5.9

Math Precision and Formatting
Precision specifications in JPL rna th statements are a convenient means of on-the-fly
formatting, especially for numenc fields, such as page numbers, that have no currency
edit. For example, the statement

math %.0 page = page + 1

overrides the math statement's default precision of two decimal places.

10.5.10

Screen Editing and Documentation Facilities
When you are creating the report format screen, remember that you are working in the
JAM Screen Editor and have all its capabiliues available to you. For example, when mo
difying the existing contents of a screen, you can use not only the Screen Editor's Move,
Copy, and Repeat Last Action function keys, but also the INSERT LINE, DELETE
LINE, and other JAM logical keys.

Similarly, JAM's 1st form utibty is especially recommended to help you document the
report.

10.6

INTERACTIONS WITH JAM/OBi
Programs invoked from the ReportWriter script can use the JPL statements sql and
dbms (or their C language equivalents) to take advantage of all JAMlDBi features, with
the following exceptions:

• Do not use the default (unnamed) cursor in any program invoked from
a detail, break, or page statement, as ReportWriter uses the un
named cursor to effect the detail query. All database access from such
programs should be performed using the dbms declare cursor
and dbms execute statements, rather than the sql statement.

• ReportWriter inhibits JAMIDBi's error processing. While ReportWrit
er is active, JAMIDBi uses its default error handling, regardless of the

JAMlReportWnter Release 5 1 12 November 93 Page 157

JAMIReportWnter Developer's Guide and Reference Manual

Page 158

use of dbms error statements. Do not execute dbms error from
programs invoked via ReportWriter jpl or call clauses.

JAMlReportWnter Release 5.1 12 November 93

JAM!
ReportWnter

Chapter 11

Script Statement Reference

This chapter contaIns a reference page for each report script statement. The statements
are listed alphabetically, and each entry includes

• a synopsis of the statement, including a listmg of available keywords
and arguments,

• a description of the statement's operation, and

• an example illustrating the statement's use.

The typographical conventions used here are listed in Section 1.4 of this manual.

For a more thorough description of the operation of each statement, its interactions with
other script statements, and more extensive examples, refer to Chapter 5 of this manual.

The six ReportWriter script statements are:

break: derme a break field and its action

clear:

detail:

init:

insert:

page:

cancel page and/or break specifications

specify the action for each row fetched from the database

initialize the report

output an area, invoke a subreport, and/or execute one or more
procedures

specify page headers and footers

A Reminder about Arguments to Script Clauses:

JAMlReportWnter Release 5.1 12 November 93 Page 159

JAMlReportWnter Developer's GUide and Reference Manual

Wherever the field, query, cursor, jpl, call, report, or area clause or sub
clause can appear, the argument following the equal sign must be one of the folloWlOg:

• a stnng of letters, digits, hyphens, and/or underscores, e.g.,

break field = emp_no

• a colon--expanded JAM variable, e.g.,

page footer area = :which_area

• any string, possibly incIudmg colon--expanded JAM variables, en
closed in quotation marks, e.g.,

detail query = "SELECT * from emp_table \
WHERE emp_no = ':emp1d'"

Page 160 JAM/ReportWnter Release 5.1 12 November 93

Chapter 11: Scnpt Statement Reference

break
define break field and action

SYNOPSIS

break field = fieldname [(start[I length])]
[header {[area = head-area

[shrink] [split]
[nodupl] [showattop]]*

[report = " h_invocation_string"
[preserve]
[preserve breakspecs]
[preserve initspecs]
[preserve pagespecs]
[reservelines = h_numb.]]*

[j p I = hjpl] * I
[call = hfunction] *}]

[footer {[area = mot~rea
[shrink] [split] [nodupl]]*1

[report = " '-'nvocation_string"
[preserve]
[preserve breakspecs]
[preserve initspecs]
[preserve pagespecs]
[reservelines = '-numb.]]*

[jpl = fjpl] * I
[call = ffunctlon] *}
[noorphanbreak [lines = nllnes]]

[norepeat] [norepeatattop] [newpage]

DESCRIPTION

... . " " .".

The break statement defines a break field and the actions to occur when the value of the
break field changes. Multiple break statements can be used to define a hierarchy of data
breaks; the fust defines the highest level break, the last, the lowest.

field name is the field on which this break occurs. It must be a field on the report format
screen or an LDB vanable. Optionally, the break field can be a substring of the specIfied
field, startmg at position start, for a length of length characters. Array elements can also
be used as break fields, as explained in SectJon 5.2.5.

JAMlReportWnter Release 5.1 12 November 93 Page 161

JAMlReportWnter Developer's GUide and Reference Manual

head-area IS the name of a report area to be pnnted In the header for each break group.

h_invocation_string specifies a subreport to be generated as pan of the header for each
break group; if arguments are passed to the subreport through the invocation string, the
entire strmg must be enclosed in quotation marks. h_number specifies the number of lines
the subreport will occupy.

hjp/IS the name of a JPL procedure to be invoked dunng break header processing.

hfunction is the name of a C (or other supported language) function to be invoked during
break header processing.

Any number of area, report, jpl, and call subclauses can appear in the header
clause; they are executed in the order they are encountered.

If the nodupl keyword is specified for a header area, that area is not output if the next
higher-level break output occurs at the same time. All other header subclauses (except
for other area subclauses with this keyword) are executed regardless of whether or not
a higher-level break has occurred.

The showa t top keyword directs ReportWriter to output the specified header area at the
top of each page, after the page header, whether or not a break has occurred at that point
The showattop keyword does not affect any other header subclauses; report, jpl,
call, and area subc1auses without this keyword are executed only when the field has
broken.

foot-area is the name of a report area to be printed in the footer for each break group.

f_invocation_string specifies a subreport to be generated as part of the footer for each
break group; if arguments are passed to the subreport through the invocation string, the
entire string must be enclosed in quotation marks. '_number specifies the number of lines
the subreport will occupy.

fjp/ is the name of a JPL procedure to be invoked dunng break footer processing.

"unction is the name of a C (or other supported language) function to be invoked during
break footer processing.

Any number of area, report, jpl, and call subclauses can appear in the footer
clause; they are executed in the order they are encountered.

If the nodupl keyword is specified for a footer area, that area is not output if the next
higher-level break occurs at the same time. All other footer subclauses (except for other
area subclauses with this keyword) are executed regardless of whether or not a higher
level break has occurred.

If the noorphanbreak keyword is present and If the group Just pnnted bad only one
member, the footer areas and subreports are not printed. All j p I and ca 11 subclauses

Page 162 JAMlReportWnterRelease 51 12 November 93

Chapter 11: Scnpt Statement Reference

associated with the footer clause are executed, however. If the lines = nlines
clause modifies noorphanbreak, the specified number of blank hnes IS output m lieu
of the footer area.

If the shr ink keyword follows the name of an area, ReportWriter shnnks that area ver
tically by removing lines that consist solely of empty fields or empty trading array ele
ments.

If the spl it keyword follows the name of an area, ReportWriter allows that area to be
gin, end, or span a page. For headers, the default is to keep them all unbroken and togeth
er, along with at least one instance of the detail area. The s pI it keyword allows the
break header to be left as an orphan at the end of a page while subsequent break headers
and/or the corresponding detail area are output on the next page. For footers, the default
is to begin on a new page if there is not enough room remammg on the current page to
accommodate the entire area.

If any of the preserve keywords follows a subreport invocation string, the relevant
specifications currently in effect for the parent report take precedence over those In the
subreport script.

norepeat suppresses output of the break field in the detail area except when the value
of the field changes or is at the top of a new page. norepeatattop is similar to
norepeat except that the break field is output only when its value changes.

If newpage is specified, each break group after the frrst begins on a new page.

EXAMPLE

See following page.

JAMlReportWnter Release 5.1 12 November 93 Page 163

JAMlReportWnter Developer's Guide and Reference Manual

/* The following break statements define a break
hierarchy of genus, species, and subspecies. */

break field = genus
header area = head
footer area = gfoot
newpage norepeat

break f1eld = species
footer area = sfoot
jpl = sfoot...,proc
header area = shead
nodupl
norepeat

break field = subspecies
footer area = ssfoot
header area = sshead
nodupl

Page 164 JAMlRepo rtWriter Release 5.1 12 November 93

Chapter 11: Scnpt Statement Reference

clear
cancel page or break specifications

.. : ~ : : : :.:.. '" : .: ... '"

SYNOPSIS

clear [pagespecs] [breakspecs]

DESCRIPTION

.... -. : ..
.:'

The clear statement cancels all previous page and/or break specifications. This state
ment is processed as it is encountered in the report script, cancelling specifications that
precede it in the scnpt, but not affecting those placed after it.

The keywords breakspecs and pagespecs can, optionally, be included to indicate
that only the break or page specifications are to be cancelled. If neither keyword is pres
ent, clear cancels all previous page and break statements.

A clear or clear pagespecs statement cancels all previous page specifications.
Subsequent pages of the report will show no page headers or footers unless another page
statement follows.

A clear or clear breakspecs statement cancels all break processing enabled by
previous break statements. Break specifications must fust be cleared before defming a
new break hierarchy; otherwise, any new break statement would define a break subor
dinate to those already in effect.

EXAMPLES

See following page.

JAMlReportWriter Release 5.1 12 November 93 Page 165

JAMIReportWnter Developer's GUide and Reference Manual

/*

This example clears an existing break hierarchy
in preparation for a new detail statement

and its associated break statements --
without changing the page headers and
footers currently in effect. */

break ...

break .. .
detail .. .

clear breakspecs

break
break
detail ...

/* End a report with an area "trailer" on a page with
no headers or footers */

clear pagespecs

insert newpage

insert area = trailer

Page 166 JAMlReportWnter Release 5.1 12 November 93

Chapter 11. Scnpt Statement Reference

detail
specify action for each row fetched from the database

.. :

SYNOPSIS

detail (query =" sqCstatement" I cursor = " cu,-in voc_string II)

[area = area [shrink] [split]] *
[report =" rptJnvoc_string"

[preserve]
[preserve breakspecs]
[preserve 1nitspecs]
[preserve pagespecs]
[reservelines = numb~]]*

[jpl = Jpl] *
[call = function] *
[breakcheck] [newpage]

DESCRIPTION

The detai I statement specifies the database query for fetching rows from the database
and defmes the action that should occur as each fetch is made.

When a detail statement is encountered in the report script, ReportWriter processes
the SQL statement in the query clause or executes the named cursor; then, as each fetch
is made from the database, it executes the area, report, j pI, and ca 11 clauses. Re
portWriter continues to cycle through the detail statement in this manner until no more
rows are fetched from the database.

The area, report, jpl, and call clauses and the breakcheck keyword are
executed in the order they are encountered. breakcheck is ignored if It appears after
the frrst area or report clause.

Each detai 1 statement must have exactly one query clause or one cursor clause.
Both may not appear in the same detai 1 statement, but one must be present.

sql-statement directs how rows are fetched from the database. It must be enclosed 10

quotation marks. If break processing is enabled, the order in which rows are fetched must
be consistent With the hIerarchy of break fields.

If a row-supply (input) function is installed, the query is passed to this function instead
of to JAMlDBi. In this case, the query statement must conform to the syntax reqUlred by
the row-supply function.

JAMlReportWnter Release 5.1 12 November 93 Page 167

JAMlReportWnter Developer's GUide and Reference Manual

The SQL statement IS often complex and may requIre multiple hnes. The line continua
tIon character is a backslash (\); it must be the last character on each continued line.

cu,-invoc_string specifies a named cursor to be invoked to fetcb rows from the database;
If arguments are passed to the cursor through the Invocation stnng, the entire string must
be enclosed 10 quotatIon marks. The named cursor must be declared in a JPL or C routine
that IS invoked before the detal.l statement is encountered.

area IS the name of a report area to be output for each row fetched.

rpCinvoc_string specifies a subreport to be generated for each row fetched; if arguments
are passed to the subreport through the invocation stnng, the entire string must be en
closed in quotatIon marks. number specifies the number of lines the subreport will
occupy.

If any of the preserve keywords follows a subreport invocation string, the relevant
specificatIons currently in effect for the parent report take precedence over those in the
subreport script.

jp/ is the name of a JPL procedure to be invoked during detail processing for the row.

function is the name of a C (or other supported language) function to be invoked during
detail processing.

Any number of area, report, jpl and call clauses can be specified.

If the shr ink keyword follows the name of the area to output, ReportWriter shrinks the
area vertically by removing lines that consist solely of empty fields or empty trailing
array elements.

If the breakcheck keyword is specified, break checking and processing take place at
the point where this keyword is encountered. Otherwise, break checking and processing
take place immediately before the first area or subreport is output or, if no area or
report clauses are present, after all jpl and call clauses have been executed. The
breakcheck keyword is effective only if it appears before the frrst area or report
clause.

The spl it keyword allows a detail area to begin, end, or span a page. The default is to
begin an area on a new page if there is not enough room remaining on the current page to
accommodate the entire area (as well as any required break headers). The spl it key
word also allows the corresponding break headers to be left as orphans on the previous
page.

If newpage is specified, a new page is forced at the end of each pass through the detail
statement unless no output resulted from that pass. newpage has no effect if there is nei
ther an area clause nor a sub report that generates output in the detai I statement.

Page 168 JAMlReportWnter Release 5.1 12 November 93

Chapter 11: Script Statement Reference

EXAMPLE
/* For each row fetched from the database,

perform the JPL procedure "prebreak" before
break checking and processing. After break
processing, perform the procedure "postbreak"
and output the area "dtlarea." This area has a
large array that may not be fully populated;
to save space on the printed report, do not
print trailing blank lines that result from
unused array elements. */

detail query = "SELECT * FROM accts \

ORDER BY state, acctid"
jpl = prebreak
breakcheck
jpl = postbreak
area = dtlarea shrink

JAMIReportWriter Release 5.1 12 November 93 Page 169

JAMlReportWnter Developer's GUide and Reference Manual

init
initialize the report

SYNOPSIS

init { [area = Mea [shrink] [split]]*
[j p I = jpl] * I
[call = function] *
[newpage] I
[lines = nlines] I
[columns = ncols]
[leftmargin = nb~nks]
[feedlines = nflmes] I
[fixedlength] I [varlength]
[parameter = mv_name]* }

DESCRIPTION

The ini t statement performs report initialization. This is usually the appropriate place
to invoke procedures that open a connection to the database (if you are running Report
Wnter from the stand-alone utility rwrun) and initialize report vanables.

In addition, the ini t statement can be used to specify page size, left margin, and other
output parameters for the report. These parameters can, alternatively, be specified in a
device configuration me. Any output parameter specified in the ini t statement over
rides the corresponding parameter In the device me.

Use the in i t statement, also, to derme the arguments that can be accepted by this report.

The area, Jpl, and call clauses are executed in the order they are encountered.

area is the name of a report area to be output when the ini t statement is executed.

jpl is the name of a JPL procedure to be Invoked during during initialization.

function is the name of a C (or other supported language) function to be invoked at this
time.

Any number of area, jpl, and call clauses can be specified.

If the shr ink keyword follows the name of an area to output, ReportWriter shrinks the
area vertically by removing lines that consist solely of empty fields or empty trailing
array elements.

Page 170 JAM/ReportWnter Release 5 1 12 November 93

Chapter 11: Scnpt Statement Reference

The sp 1l. t keyword allows the area to begin, end, or span a page. The default is to begin
an area on a new page if there IS not enough room remaining on the current page to ac
commodate the entire area.

If newpage IS specified, subsequent output will appear on a new page.

nlines specifies the length of the pnnung area on the report page. ncols specifies the width
of the pnnting area on the report page. If these parameters are not specified either 10 the
ini t statement or in the device configuration fIle, the page size defaults to 60 lines by
132 columns.

nb/anks specifies the number of blank spaces to be prepended to each non-blank line.
These spaces must be included in the line length. If 1eftmargin is not specified, it
defaults to O.

nflines is the number of lme feed characters that should be used to separate pages. If spe
cified, nflines plus n/ines must equal the physical length of the page. If not specified, or if
the value of nflines is 0, ReportWriter uses a form feed to begin each new page.

If the f ixed1ength keyword is specified, all report lines are padded With spaces to
equal the number of columns required by the columns specifier nco/so If f ixedlength
is not specified, ReportWriter outputs variable length Imes.

If the var1ength keyword is specified, ReportWriter outputs variable length lines.
Since variable length is the default, this keyword is normally not needed except to over
ride the f ixed1 ength keyword in the device fIle.

The fixed1ength and var1ength keywords are mutually exclusive.

Each parameter clause specifies an argument to be accepted by this report. al1Lname
is the JAM variable to receive the value of the next unprocessed argument in the invoca
tion string or in RWOPTIONS. If all arguments have been exhausted, the value of
al'9....nameremains unchanged. The order of parameter clauses determines the order in
which arguments must be passed to this report

The ini t statement can be repeated in a report script. Any new page size parameters
specified in subsequent inl. t statements override the previous ones.

JAMlReportWnter Release 5 1 12 November 93 Page 171

JAMlReportWnter Developer's GUide and Reference Manual

EXAMPLES
/* This 1nit statement invokes JPL routines that
init1alize report variables and open a connection
to the database. It outputs the area "titlepage"
and sets up the page size parameters. Printing will
occur 1n an area 58 lines long by 64 characters
wide (72 - 8 = 64). */

init jpl = 1nit _rpt_var
jpl = open_db_conn
area = titlepg
newpage
lines = 58
columns = 72
leftmargin = 8

/*

The report in this example accepts two arguments.
The first is used in the WHERE clause of the detail
query. The other specifies the report area to use
in the page header. */

« begin report »

init

page

jpl = startup
parameter =
parameter =

header area
footer jpl

area

break field = custno

parml
parm2

= :parm2
= pnum
= pfoot

detail query "SELECT * FROM orders \
WHERE sales_id = ':parml'\
ORDER BY cust_no"

« end report »

Page 172 JAMlReportWriter Release 5.1 12 November 93

Chapter 11: Scnpt Statement Reference

insert
output an area and/or invoke one or more procedu res

SYNOPSIS

insert { [area = area [shr1nk] [split]]*

DESCRIPTION

[report = " rpt_invoc_string"
[preserve]
[preserve breakspecs]
[preserve initspecs]
[preserve pagespecs]
[reservelines = number]] *

[jpl = jpl] * I
[call = function] *
[newpage] }

....'" '" ..

Use the insert statement to output one or more report areas, invoke one or more subre
ports, and/or to specify procedure(s} to be executed. Any area output, subreport genera
tion, or procedure invocation specified in this statement is performed once only. (Con
trast this with the deta i 1 statement, which is driven by a database query and performs
area output and associated processing for each fetch.)

Typical uses for the insert statement include

• producing a title page for the report,

• generating a trailer page showing grand totals accumulated during re
port generation,

• forcing a page break so that the next report area will begin on a new
page, or

• invoking a IPL procedure that performs any necessary cleanup at the
end of a report, including closing connections to the database.

The area, report, jpl, and call clauses are executed in the order they are encoun
tered.

area is the name of a report area to be output.

JAMlReportWnter Release 5 1 12 November 93 Page 173

JAMlReportWnter Developer's GUide and Reference Manual

rpCinvoc_string spectfies a subreport to be generated; if arguments are passed to the sub
report through the invocation stnng, the enUre string must be enclosed in quotation
marks. number specIfies the number of hnes the subreport will occupy.

If any of the preserve keywords follows a subreport lDvocation stnng, the relevant
specificatIons currently in effect for the parent report take precedence over those m the
subreport script.

jp/ is the name of a JPL procedure to be invoked.

function is the name of a C (or other supported language) funcuon to be invoked.

Any number of area, report, jpl, and call clauses can be specified.

If the shr ink keyword follows the name of an area to output, ReportWriter shrinks the
area vertically by removing lines that consist solely of empty fields or empty trailing
array elements.

The sp lit keyword allows the area to begin, end, or span a page. The default is to begin
an area on a new page if there is not enough room remaining on the current page to ac
commodate the entire area.

The newpage keyword causes subsequent output to appear on a new page. If the
insert statement contains an area clause, the page break occurs after the area is out
put If no area clause is present, newpage simply ensures that whatever area is output
next will begin on a new page.

EXAMPLE

/* The first insert statement forces a page break,
ensuring that the report trailer area will begin
on a new page.

*/

The second invokes processing to produce data for
the report trailer page, outputs the area, and
invokes a JPL procedure to perform any needed
cleanup and close the connection to the database_

insert newpage

insert jpl
area
jpl

Page 174

=
=
=

trailer
close_db_conn

JAM/ReportWnter Release 5.1 12 November 93

Chapter 11' Scnpt Statement Reference

page
specify page headers and/or footers

SYNOPSIS

page { [header

[footer

DESCRIPTION

{[area = head-area [shrink]] *
[report = n h_invocation_string"

[preserve]
[preserve breakspecs]
[preserve initspecs]
[reservelines = h_number]] *

[j pI = hjpl] * I
[call = hfunction] *}] I
{[area = mot-area [shrink] [float]]*
[report = n ,-invocation_string"

[preserve]
[preserve breakspecs]
[preserve initspecs]
reservelines = '-number] * I

[jpl = fjpl] * I
[call = ffunction] *} }

::

The page statement defines the page headers and/or footers and their associated proces
sing.

head-area is the name of a report area to be printed in the header on each page.

h_invocat/on_string specifies a subreport to be generated as part of the page header; if ar
guments are passed to the subreport through the invocation string, the enure string must
be enclosed in quotation marks. h_numberspecifies the number of lines the subreport will
occupy.

hjpl is the name of a JPL procedure to be invoked during page header processing.

hfunction is the name of a C (or other supported language) function to be invoked dunng
page header processing.

Any number of area, report, jpl, and call subclauses can appear in the header
clause; they are executed in the order they are encountered.

foot-area is the name of a report area to be printed in the footer on each page.

JAMIReportWnter Release 5.1 12 November 93 Page 175

JAMlReportWnter Developer's GUide and Reference Manual

'-invocation_string specifies a subreport to be generated as part of the page footer; if argu
ments are passed to the subreport through the invocation string, the entire string must be
enclosed in quotauon marks. '_number specifies the number of lmes the subreport will
occupy. The reservelines subclause is required for any subreportinvoked m a page
footer.

fjp/IS the name of a JPL procedure to be Invoked during page footer processing.

ffunction IS the name of a C (or other supported language) function to be invoked during
page footer processing.

Any number of area, report, j pI, and call subclauses can appear in the footer
clause; they are executed in the order they are encountered.

If the float keyword appears in an area subclause of the footer clause, that area
IInmedlately follows the last printed line on the page. Otherwise, it appears at the bottom
of the page. All areas with the f loa t designation must be output before any non-float
ing areas.

If the shr ink keyword follows the name of either area, ReportWriter shrinks that area
vertically by removing lines that consist solely of empty fields or empty trailing array
elements.

page can be repeated in a report script.The header specifications in a page statement
override the header specifications of any previous page statements. Similarly, the footer
specifications override those in any previous page statements. Use clear or clear
pagespecs to cancel out all ClUTent page headers and footers.

Page 176 JAM/ReportWnter Release 5 1 12 November 93

Chapter 11: Script Statement Reference

EXAMPLES
/* The area "head" contal.ns fixed text. The
area "foot" contains a field "page."

The JPL procedure "init_vars" contal.ns the line:

CAT page "0"

The JPL procedure "incr-pg" contains the line:

MATH page = page + 1

Mal.ntain numbered pages by the following: */

init Jpl = l.nit_vars

page header area = head
footer jpl = incr-pg

area = foot

/* This example shows how both floating and
non-floating areas can be combined in a
page footer. */

page footer area = pfl float
jpl = j3
area = pf2 float
jpl = j4
area = pf3

JAMlReportWnter Release 5.1 12 November 93 Page 177

JAM!
ReportWnter

Chapter 12

Library Function Reference

This chapter contains a reference page for each of the library functions supplied with
JAMlReportWriter. Each reference page contains a synopsis of the statement, including
a listing of available keywords and arguments, and a description of the statement's opera
tion and return values.

The typographical conventions used here are listed in Section 1.4 of this manual.

The library includes a function for invoking ReportWriter from a JAMlDBi applicauon.
This function is:

• dbi_rwrun: invoke JAMlReportWriter

It also includes three functions that are called directly from rwma in. c, the main routine
for rwrun. Information on these functions is provided to assist developers who are creat
ing customized versions of the report generation program. These functions are:

initialize the report generator

• rw_opt ions: parse ReportWriter options

produce a report

JAMlReportWnter Release 5.1 12 November 93 Page 179

JAMlReportWnter Developer's GUide and Reference Manual

dbi rwrun
invoke the report generator from a user-written function

.. '".

SYNOPSIS

e" = dbi_rwrun(~;
l.nt err;
char *5;

DESCRIPTION

.. : :: :
. "" A.·

This function is used to mvoke the report generator from a user-written function linked
into a JAMJReportWriter application.

The variable 5 is a string whose contents are the name of a report binary file and, option
ally, an output file. If both fIle names are present, they must be separated by one or more
spaces. The format of the variable 5 is analogous to the argument list for the rwrun JPL
command:

reportname [outputfile]

reportname identifies a binary report file. It is not necessary to specify the . bin exten
sion, as dbi_rwrun looks first for a file named reportname. bi n. If that fIle cannot be
opened, it attempts to open reportname (with no extension). The opened fIle must be the
output of the report compiler rprt 2bin.

Output options are specified in the RWOPTIONS variable, described in Section 9.4. Al
ternatively, the output me name can be specified in the argument string supplied to the
dbi_rwrun funcuon. If outputfi/e is specified in the argument string and the -0 option
is included in the RWOPTIONS variable, the file specified in RWOPTIONS takes prece
dence.

Refer to Section 8.2 for further information on resolving conflicting output specifica
tions.

dbi_rwrun () is intended for use within a JAMlReportWriter application, such as
j amrw. It must be called after the JAM initialization normally performed by jmain . c
or jxmain. c. To invoke ReportWriter from a non-JAM application such as rwrun,
use, instead, the functions rw_ini t and rw_run.

Page 180 JAMlReportWnter Release 5 1 12 November 93

Chapter 12: library Function Reference

RETURNS
-1 = error
0= no error

If the JPL statement dbms error_continue is active, dbi_rwrun always returns
zero.

EXAMPLE
The following example uses the syntax for JAMIDBi Release 4:

sm_n-putfield ("RWOPTIONS", "-f");
dbi_dbms ("error"); /* use default error processing */

if (dbi_rwrun{"myreport myoutput") == -1)
{

sm_n-putfield ("myrwstatus", "failure");
}

JAMlReportWnter Release 5.1 12 November 93 Page 181

JAMlReportWriter Developer's Guide and Reference Manual

rw init
initialize the report generator and the JAM screen
manager
~.:.. "": : :.. -: .. ".. .. -:: .:: : -:. -.. : .. :."~ .. : ,," 2':.:. ".. .. V: ... :. ~: .. ::::. ::-:~: ~:..:- ~: .. :.: ~::: .~ "".: : ...

SYNOPSIS

rw_init (}i

DESCRIPTION

......

This function is called from the stand-alone ReportWriter utility main program,
rwmain . c, to initialize the JAM screen manager and the ReportWriter globals. It must
be called before any JAM function, or the function rw_run, is executed.

EXAMPLE
rw_init (}i
sm_l_open ("myjpllibrary"}i
if (rw_run (report, dev1ce, output)}
{

exit (1);
}

Page 182 JAMIReportWriter Release 5.1 12 November 93

Chapter 12. library Function Reference

rw_options
parse ReportWriter options

.. .." ~ ~ -. -.-.o: ... :.

SYNOPSIS

error = rw_options (argc, argv, report, device, output);
int error;
int argci
char *argv[];

char * * report;
char * * device;
char * * output;

DESCRIPTION

ThIS routine parses the options accepted by the rwrun utility or used by aJAMlReport
Writer application.

The options are null-terminated strings in argv, with the count in argc. The variables re
port, device, and output are set to the relevant file names, as specified by the arguments.

When ReportWriter is invoked as a stand-alone utility, the arguments argc and argvare
the command line arguments. When ReportWriter is invoked from the rwrun JPL com
mand or from the dbi_rwrun () library function, the arguments argc and argv are
constructed from the reportname and outputfile arguments in the calling sequence and
from the LDB or environment varIable RWOPTIONS.

The source code for rw_opt ions is provided in rwopts . c, which is suppbed With
the ReportWriter distribution.

RETURNS

-1 = error in options
O=no error

EXAMPLE

See following page.

JAMIReportWriter Release 5.1 12 November 93 Page 183

JAMlReportWnter Developer's Guide and Reference Manual

~nput = (char*) MJLL;
dev~ce = (char*) NULL;
output = (char*) NULL;

if {rw_options (argc, argv, &input, &device, &output)
== -1 I I input == (char*) NULL)

{

}

fprintf (stderr, "Usage error\n");
exit (1);

if (rw_run (input, device, output)== -1)
(

exit (1);
}

Page 184 JAMlReportWnter Release 5.1 12 November 93

Chapter 12: library Function Reference

rw run
produce a report

SYNOPSIS

error = rw_run (report, device, output) i

int errori
char *reporti
char *devicei

char *OUtputi

DESCRIPTION

:: "..:: .. : :.: ",,"

This routine generates the report specified by the argument report.

report must be a compiled report format screen, the output of the rprt2bin utility. de
vice is the name of the compiled device file, the output of the dev2bin utility; and out

put is the name of a file to which ReportWriter output is to be sent. The values of these
three arguments are normally supplied by rw_opt ions (), which is called before
rw_run ().

RETURNS

-I = error
0= no error

All errors generate messages on the standard error file and are fatal. Examples include
errors detected in the binary file, inability to access report areas specified in the binary
file, and the absence of a prior call to rw _i nit.

EXAMPLE

rW_l.nit ()i

if (rw_rwrun ("myreport", (char*) NULL, "myoutput")
== -1)

(

exit (1) i

)

JAMIReportWnter Release 5 1 12 November 93 Page 185

JAM!
ReportWnter

Chapter 13

Utilities Reference

This chapter contains a reference page for each of the utilities supplied with JAMlRe
port Writer. Each reference page contains a synopsis of the command, including a listing
of available keywords and arguments, and a description of the utility's operation.

The typographical conventions used here are listed m Section 1.4 of this manual.

The following utilities are supplied with ReportWriter:

dev2bin:

rprt2bin:

rw4to5:

rwrun:

tb12r:

compile a device configuration source ftle

compile a report format screen

convert a ReportWriter 4 report to ReportWriter 5 format

run ReportWriter

create a report format screen from a database table

dev2bin, rprt2bin, and rw4toS are provided as executables. The makefile sup
plied with your ReportWriter distribution makes the stand-alone utility rwrun, as well
as the interactive JAMlReportWriter applications j amrw and j xrw. The tb12 r utility
must be linked with the JAMlDBi release 5 libraries.

You may wish to customize rwrun. Source code for rwmain . c, the main routine for
rwrun, is provided for this purpose. Refer to Appendix B, Section B.l, for instructions
on customizing ReportWriter.

JAMlReportWriter Release 5.1 12 November 93 Page 187

JAMlReportWnter Developer's GUide and Reference Manual

dev2bin
compile a device configuration file

.. ~ . : .. -. : ~ ::

SYNOPSIS

dev2bin [-e ext] filename

OPTIONS

-e ext specifies the extension for the device binary file; if this option is omitted, the
resulting file is named filename. bin.

DESCRIPTION

The dev2bin utility produces a device binary file from the device configuration file
identified by filename. If the name does not mclude an extension, dev2bin looks fIrSt
for filename. dev. If that file cannot be opened, it attempts to open filename (with no
extension).

The output of dev2bin is a binary file named filename. ext. If the -e option is omitted,
the resulting file is named filename. bin.

The resulting binary device file can be specified as the argument to the -d option of
rwrun, the report generation utility, or in the IDB or environment variable
RWOPTIONS for use by the interactive program jamrw.

Page 188 JAMlReportWnter Release 5.1 12 November 93

Chapter 13: Utilities Reference

rprt2bin
compile a report format screen

.. " ~
•• N·

SYNOPSIS

rprt2bl.n [-e ext] rprtname

OPTIONS

.. : ..

-e ext specifies the extension for the report binary file; if this option is omitted, the
resulting file is named rprtname. bin.

DESCRIPTION

The rprt2bin utility produces a report binary file from the report format screen identi
fied by rprtname. If rptfname does not include an extension, the default extension speci
tied in the environment variable SMFEXTENSION is assumed.

The output of rprt 2bin is a binary file named rprtname.ext If the -e option is omitted,
the resulting flle is named rprtname. bin.

If the report script in the report format screen rprtname contains any

« include screen = »

compiler directives, the JAM screens indicated in those directives are compiled and in
corporated into the resulting binary file.

The report binary me is used as input to rwrun, the report generation utility, or as an
argument to the JPL statement rwrun in JAMlDBi.

The report binary file cannot be edited. If you need to change the report in any way after
It has been compiled, you must make the changes to the source ftIe for the report format
screen and recompile.

Refer to Chapters 4 and 5 for a description of the format and content of the source file to
be compiled by the rprt2bl.n utility.

JAMlReportWnter Release 5.1 12 November 93 Page 189

JAMlReportWnter Developer's GUide and Reference Manual

rw4to5
convert a ReportWriter 4 report to ReportWriter 5 format

..
.~ .. ~

SYNOPSIS

rw4t05 script [-f] [-k] [-n] [-v] [-ooutput'IIe] [-e ext] screen ... Jpl ...

OPTIONS

- f Output me may overwrite an existing file.

-k Retain the screen me name extension in area name tags. If this option is
omitted, rw4to5 removes the . jam extension from the rtIe name before
converting it to a name tag on the ReportWriter 5 report format screen. If
the original script uses the . j am extension in its form clauses, use this op
tion when converting the report.

-n Do not add a report script to the output me. A dummy argument, however,
is required in place of the script argument on the command line. Use this op
tion if you are creating a report format screen with areas only, intended for
inclusion in other reports.

-v Generate a list of files processed.

-0 Dutputflle
Direct the output to the named me. If this option is omitted, the output fIle
is created in the same directory as the report script.

-e ext Append the specified extension to the report format screen. By default,
rw4toS uses the value in the environment variable SMFEXTENSION.

DESCRIPTION
This uuIity creates a ReportWriter release 5 report format screen from a release 4 report
ScrIpt and its associated screen and JPL files.

scriptis the name of the me containing the report script in ReportWriter release 4 format
The full file name, including extension, of the report script file must be entered; no de
fault extension is assumed.

screen is the name of a JAM screen used as a form in the release 4 report script If no
extension is specified, rw4to5 attempts to open a file with the file name screen and the
default extension specified in the environment variable SMFEXTENSION.

Page 190 JAMlReportWnter Release 5 1 12 November 93

Chapter 13. Utilities Reference

jp/ is the file name of a JPL module referenced (either directly or by its named proce
dures) in the release 4 report script. The full file name, includmg extension, of each JPL
module must be entered; no default extension is assumed.

The new report format screen is built on a copy of the [rrst specified screen. The screen
JPL, attached JPL, and control strings of thiS screen are kept, while those of the remain
ing screens are dropped. The report script is mserted as comments at the top of the screen
JPL. Area name tags assigned m the release 5 report format screen are taken from the file
names of the corresponding release 4 screens.

The JPL procedures are also added to the screen JPL of the report format screen. Un
named procedures are given the name of the JPL file from which they are taken. The re
maming specified screens are appended to the end of the report format screen.

If the -0 outputfi/e option is not specified, rw4 to 5 uses the full script fIle name, includ
ing extension, and appends the extension specified in the -e ext option. (See the exam
ples below.)

When the converter drops a screen's attachments, a warning message is displayed. All
borders are also dropped, and warning messages are displayed.

EXAMPLES
The following examples show how the name of the resulting report format screen is gen
erated:

rw4t05 example.rpt exdetall.jam exshead.jpl

produces ReportWriter 5 report format screen in the fIle named example. rpt. jam

rw4t05 example.rpt -0 example2 exdetail.jam exshead.jpl

produces ReportWriter 5 report format screen in the fIle named examp 1 e 2 . jam

rw4t05 example.rpt -0 example2 -e form exdetall.)am exshead.jpl

produces ReportWriter 5 report format screen in the fIle named example2. form

JAMlReportWnter Release 5.1 12 November 93 Page 191

JAMlReportWnter Developer's GUide and Reference Manual

rwrun
run ReportWriter

... .. . - '". - : ..

SYNOPSIS

rwrun [-d deviceflle] [-a I -f] [-1] [-0 outputflle] report [arg1 arg2 ...]

OPTIONS

-d devieefile
Use the parameters in the named device me to control report output If any
parameters specified in the device file are also specified in an inl. t state
ment m the report script, those In the in i t statement take precedence. Refer
to Section 8.1 for a detailed description of the device file.

-a Append the output to the file named in the -0 option. If the me does not exist,
create it as a new me. This option does not apply if output is sent to a spool
command or to a developer-written output procedure.

The final page of each report is closed so that any subsequent report ap
pended will begin on a new page. Note that this behavior of the -a option
applies only when ReportWriter is invoked as a stand-alone application with
the rwrun utility.

Refer to Section 9.4 for an explanation of how this option works when Re
portWriter is invoked from within a JAMlDBi application.

-f Allow ReportWriter to overwrite the report output me. This option does not
apply if output is sent to a spool command or to a developer-written output
procedure.

-i Ignore warning messages. If this option is omitted, warning messages are
displayed on the screen or sent to the standard destination for error messages
in your configuration.

-0 outputfile
Direct the finished report to the named file. If this option is omitted, and if
no spool command or output procedure is speCified in the device file, the re
port is sent to standard output. Refer to Chapter 8 for a more thorough discus
sion of report output.

The -a and - f options conflict and should not be specified simultaneously.

Page 192 JAMlReportWnter Release 5.1 12 November 93

Chapter 13: Ubhtles Reference

DESCRIPTION

The report defined by the bmary file report is generated and the output sent to the file
named in the -0 option, if present.

report must Identify a binary report fIle. rwrun looks rust for a file named report. bin.
If that file cannot be opened, it attempts to open report (with no extension). The opened
file must be the output of the report compiler rprt2bin .

• rg1, .rg2, etc. are the arguments passed to the report. Each argument accepted by the
report must be defined by aparameter clause in the init statement of the report. Re
fer to Section 6.3 for more information on report arguments.

JAMlReportWnter Release 5.1 12 November 93 Page 193

JAMlReportWnter Developer's GUide and Reference Mam,!al

tbl2r
create a report format screen from a database table

..

SYNOPSIS

tb12r table [table •••] [-i) [-u user [-p password]] [-8 server]
[-d database] [-e ext] [- f] [-1] [-y datdic]

OPTIONS

-i

-u user

Run this utility in interactive mode. This opens a screen on which you can
enter any information not specified on the command line.

Log on with the given user name.

-p password
Log on with the given password.

-8 server
Log on to the named server.

-d database
Log on to the named database.

-e ext Append the specified extension to the report format screen. By default,
tb12r uses the value in the environment variable SMFEXTENSION.

- f Overwrite an existing report format screen file.

-1 Use lowercase when creating report format screen fIle names.

-y datadic Use the named data dictionary. If this option is omitted, dbuti1dd .die
is used.

DESCRIPTION

NOTE: This utility must be linked with the JAMlDBi release 5 libraries.

The tb12r utility creates a report format screen for each database table named on the
command line. Each report format screen created by tb12r contains

• A field for each column in the table, with up to 250 fields created in to
tal. Field characteristics are assigned according to the column's data
type. A field is named for its column 10 the table.

• Display text on the screen identifying the name of each field.

Page 194 JAMlReportWnterRelease 5.1 12 November 93

Chapter 13: Ubhtles Reference

• A report script template in the screen IPL. This rudimentary script spec
ifies the page header (the display text), the detaIl area (the fields), and
thedetailquery("select * from table").

This utility IS a convenient way to begin a JAMlReportWriter report. JAM fields are as
signed PF4 characteristics compatible with their respective database columns. The area
containing the fields is labelled «detail. The area containing the display text that
identifies the fields is labelled «header.

The output of tb12r is a JAM screen named table.ext. If the -e option is omitted, the
resulting file is is given the extension specified in the environment variable
SMFEXTENSION.

JAMlReportWnter Release 5.1 12 November 93 Page 195

JAM!
ReportWnter

Appendix A

Glossary of Reserved Words

This appendix lists all J AMlReportWriter reserved words alphabetically, summarizes the
purpose of each, and indicates where it can appear in a report script Refer to the "Script
Statement Reference," Chapter 11, or to "Using the Script Statements," Chapter 5, for
more detailed and context-oriented information on the use of these reserved words.

area clause or subclause; indicates a report script area to be output; a clause

break

in any of the following statements:
detail
init
insert

a subclause in the following clauses:
break header
break footer
page header
page footer

statement; specifies a break field and the break header and footer pro
cessing and output to occur when the value of the break field changes

breakcbeck keyword; indIcates where break checking and processing should occur
within detail processing; used in the detail statement

breakspecs keyword; used in the clear statement to cancel current break: specifi
cations

caD clause or subclause; mdlcates a C (or other supported language) func-
tion to be invoked; a clause in any of the following statements:

detail
init
1nsert

JAMlReportWnter Release 5.1 12 November 93 Page 197

JAMlReportWnter Developer's GUide and Reference Manual

a subclause in the following clauses:
break header
break footer
page header
page footer

clear statement; cancels page and/or break specliications

columns clause (output parameter); used In the ini t statement (0 specify the
width of the printing area on the report page; also used in the device
configuration fIle

cursor clause; invokes the specified named cursor to fetch data from the data
base or other source; used in the detail statement

detail statement; specifies the action and output as data are fetched from the
database or other input source

feed lines clause (output parameter); used in the ini t statement to specify the
number of line feed characters to be used between pages; also used in
the device configuration fIle

field clause; used in the break statement to specify the break: field

fixedlength keyword (output parameter); used in the ini t statement to specify that
report lines must be of fixed length; also used in the device configura
tion file

float keyword; indicates that page footer should appear immediately after the
last report line on the page; used in the footer clause of the page
statement

footer clause; used in the break statement to specify processing and/or out
put to occur at the end of a break: group; used in the page statement to
specify processing and/or output to occur at the end of a page

header clause; used in the break statement to specify processing and/or out
put to occur at the beginning of a break group; used in the page state
ment to specify processing and/or output to occur at the beginning of a
page

init statement; iniUallze the report and specify certain output parameters

insert statement; output an area and/or invoke one or more procedures

jpl clause or subclause; indicates a JPL procedure to be invoked; a clause in
any of the following statements:

detail

Page 198 JAMlReportWnter Release 5.1 12 November 93

inl.t
insert

a subclause in the following clauses:
break header
break footer
page header
page footer

Appendix A: Glossary of Reserved Words

leftmargin clause (output parameter); used In the init statement to specify the
number of columns reserved for the left margin; also used In the device
configuration fIle

lines 1) subclause; used in the break footer noorphanbreak sub
clause to indicate the number of blank lines to be output in lieu of the
footer

2) clause (output parameter); used in the ini t statement to specify the
length of the printing area on the report page; also used in the device
configuration fIle

newpage keyword; forces subsequent output to begin on a new page; used in the

nodupl

following statements:
break
detail
init
insert

keyword; suppresses break header or footer output if the next higher
level break or header output occurs at the same time; used in the break
header and break footer clauses

noorphanbreak
clause; suppresses break footer output if the break group consists of
only one member; used 10 the break footer clause

norepeat keyword; suppresses output of the break field except when its value
changes or at the top of a page; used in the break statement

norepeatattop
keyword; suppresses output of the break field except when its value
changes; used in the break statement

page statement; specify page headers andlor footers

pagespecs keyword; used in the clear statement to cancel current page header
and footer specifications

JAMlReportWnter Release 5.1 12 November 93 Page 199

JAMlReportWnter Developer's GUide and Referf'nc~ ManlJal

parameter clause; used III the inl. t statement to specIfy an argument accepted by
thIS report

preserve keyword; used 10 the report clause to indIcate that 1Oluahzauon,
page, and break speCIficatIons in the parent report should override the
correspondlllg speclficauons III the 1Ovoked subreport

preserve breakspecs
keyword; used III the report clause to indicate that any break specifi
cations in the invoked subreport should be added to the hierarchy estab
lIshed 10 the parent report

preserve initspecs
keyword; used in the report clause to indIcate tbatinitializaUon spec
Ifications III the parent report should override the corresponding specifi
cations III the invoked subreport

preserve pagespecs

query

report

reserve lines

keyword; used in the report clause to indicate that page specifica
uons in the parent report should override the correspond1Og specruca
Uons in the invoked subreport

clause; directs how data are fetched from the database or other source;
used in the detail statement

clause or subclause; invokes the named subreport; a clause in either of
the following statements:

detal.l
insert

a subclause in the following clauses:
break header
break footer
page header
page footer

subclause; used in the report clause to indicate the maximum number
of lines the subreport will occupy

showattop keyword; causes the break header to be output at the top of each new
page, whether or not a break has occurred at that point; used in the
break header clause

shrink keyword; shrink the report area vertically to eliminate any rows that
consIst only of unpopulated trailing array occurrences or blank fields;
used with the area clause or subclause

Page 200 JAMlReportWnter Release 5 1 12 November 93

Appendix A: Glossary of Reserved Words

split keyword; allows the associated area to begin, end or span a page; over
ndes ReportWriter's default pagination rule which will not unnecessan
ly split an area across pages; used with the area clause or subclause;
when used m the break header area subclause, allows the head
er to be separated from its rust detail area or from other headers occur
nng at the same time

varlength keyword (output parameter); used in the ini t statement to specify that
report lines may be variable length; also used in the device configura
Uon file

JAMlReportWnter Release 5.1 12 November 93 Page 201

Appendix B

Implementation Notes

B.1

JAM!
ReportWnter

CUSTOMIZING REPORTWRITER
rwrun, as made from the distributed makefile, is capable of producing any report com
piled by rprt2bin.

Some report developers, however, may need to create a custom version of the report gen
eration program. For example, a custom executable that always generates the same report
would eliminate the need for a report name argument on invocation.

For this reason, rwmain. c, the main routine for rwrun, and rwopts. c, the argu
ment-processing module, are included in the JAMlReportWriter distribution. You can
modify or replace either module to create a custom report generator.

rwmain. c includes instructions for modifying ReportWriter, as well as for linking in
developer-written functions invoked in the report script or through an output procedure
specification. The only library functions accessed directly from rwmain. c are
rw_ini t and rw_run. These functions are described in Chapter 12, the Library Func
tion Reference.

You can alter rwopt s . c if you want to modify the options accepted by ReportWnter or
to specify a custom row-supply procedure to use as an alternative to JAMIDBi.

JAMlReportWnter Release 5.1 12 November 93 Page 203

JAMlReportWnter Developer's GUide and Reference Manual

After you have modified rwmain. c and/or rwopts. c, run the supplied makefIle3 to
create the new report generator executables. Refer to the makefIle for instructions on
mstallmg user-written functions and selecting the executable modules to be made.

Refer to Secuon 4.5 for further mformaUon on installing your own funcuons into the Re
portWriter executable.

B.2

FETCHING INTO ONSCREEN ARRAYS
When fetching data into on screen arrays, you must be aware of the way your input func
tion handles the last fetch, which mayor may not contain enough rows to fIn the array.

This secUon explains what happens on the fmal fetch when ReportWnter uses JAMJDBi
to retneve rows from a database. If you are using a developer-written input function in
place of JAMlDBI, you may want to review this secUon anyway to help identify issues
tllat need to be considered when the target variables are on screen arrays.

As ReportWnter cycles through the detail query, JAMlDBi returns n rows from the data
base, where n is the number of elements in the smallest target variable array. There is no
assurance, however, that the number of rows satisfying the query will be a multiple of the
number of elements in the target arrays. Thus, the last cycle may yield fewer than n rows.

Beginning with JAMlDBI release 5.1, JAMlDBi provides full information to Report
Writer on completely or partially fIlled dsetination arrays. When linked with JAMlDBi
release 5.1 or later, ReportWriter handles all queries without loss of data, whether or not
the destinauon variables are arrays.

When linked with a release of J AMIDBi previous to 5.1, however, ReportWriter ignores
the last fetch if the destination arrays are not completely fIlled. Suppose, for example, the
target variables for a fetch are arrays of three elements each. If seven rows of the database
satisfy the query, the fIrSt two cycles would fully populate the arrays, and the third would
yield a single row (which would normally be lost):

fetch1: rowl.
row2
row3

3. The name of the makefde supplied With ReportWnter depends upon your operatlDg system. It generaI1y
contaulS the word "make" ID the fde name The function oftbJS fde is to create (make) the ReportWnter execut
abies. Smce the procedure IS operatlDg system dependent. each makefJle contruns the applJcable InstruCtIons
for Jts operalJOn.

Page 204 JAM/ReportWnter Release 5.1 12 November 93

Appendix 8: Implementation Notes

fetch2: row4
rowS
row6

fetch3: row7

The followmg sections descnbe two ways to ensure that the results of the last fetch are
retained: moving the output to a break footer or padding the source table with trailmg
blank rows.

Of the two proposed solutions, the first, using a break footer, is the more generally appli
cable and is, therefore, the recommended technique.

NOTE: The methods descnbed in the following sectIons should be used only if Report
Wnter IS Imked with JAMlDBl release 5.0 or earlier.

B.2.1

Outputting the Array in a Break Footer
Create a report area contaming the array you want to use for output of the query results.
Instead of using this as the detail output area, however, you will use it as a break. footer.
In the deta i 1 statement, fetch one row at a time (into single-element fields), but do not
perform output. The detail JPL should copy the results of the fetch into the next available
elements of the arrays in the break footer area.

Your detail processing will need to keep count of the number of rows fetched since the
break footer was output The count variable will serve two pwposes: it will tell Report
Writer which elements to copy the current row into, and it can be used to update the break
field: break every n rows (where n is the number of elements in the on screen arrays) to
output the arrays.

No rows are lost, since any partlally fllled arrays are output as the fmal break footer.

B.2.2

Padding the Source Table
This technique is not suitable for all databases or all applications. It is useful m some situ
ations and IS, therefore, noted here.

Pad the source table with n-l trailing blank rows, where n is the size of the query's des
tInation arrays. The added rows will blank-fill the final fetch and ensure that the final row
containing actual data is passed to ReportWriter.

JAMlReportWnter Release 5.1 12 November 93 Page 205

JAMlReportWriter Developer's GUide and Reference Manual

There may be some difficulty with this approach: you may be unable to modify the tables,
the query may perform (inner) joins, a stored procedure may be used to invoke the fetcb,
etc. Using temporary tables may resolve some of these problems.

Page 206 JAM/ReportWnter Release 5.1 12 November 93

JAM!
ReportWnter

AppendixC

Troubleshooting Guide

When ReportWriter detects an error during report compilation or at runtime, it sends an
appropriate message to the standard error file on your system. ReportWriter's error mes
sages will help you detect and correct these errors involving the mechanics of using Re
portWriter.

You may also encounter errors that show up as unexpected results in the report format,
content, or output. The chart in this appendix is intended to help you identify and correct
problems in report composition and output specification.

JAMlReportWnter Release 5.1 12 November 93 Page 207

JAMlReportWnter Developer's GUide and Reference Manual

Problem Cause SolutIOn

A field fetched by the FIeld name dIffers from Correct the spellIng of the
detall query IS blank name of fetched column field name.
or data is III the wrong

Use SELECT ahasing; refer format.
to the JAMIDBI manual for
mstructlons.

JAMIDBi release 41s re- Create, ei ther on the report
turnmg dates m the format screen or m the LOB,
DBMS's native format. additional variables whose

date formats match that of
your DBMS. Fetch into those
vanables and use a JPL pro-
cedure invoked In the
detal.l statement to copy
them Into the appropriate
fields in the deSIred report
areas. (For infonnatIon on
variable and date formats, re-
fer to descriptIons of the
math statement and the
@date function in the JPL
Guide of the JAM documen-
tation set.)

The field has the no Turn off the no display
display attribute. attribute for this field via

JAM's Display Attributes
window.

The field appears on a Add the correct name tag to
line that does not bear the line containing this field,
the correct detail area or move the field to a line in
name tag. the desired report area.

contznued ...

Page 208 JAM/ReportWnter Release 5.1 12 November 93

Appendix C Troubleshooting GUide

Problem Cause Solution

The report stops proces- Another database fetch, Make sure that all other SQL
smg a det.:1i1 query after using the default statements executed during
one row. SELECT cursor, IS bemg report generatlOn use their

run-lll a JPL or C rou- own named cursors.
tine mvoked from the re-
port script, or m a screen
entry/exit procedure.

Number of rows re- ReportWriter is lmked Fetch into single-element
ported from the database with JAMlDBi release fields.
IS less than the number 5.0 or earlier, and des-
expected. tinatlOn variables are

on screen arrays; last
Use one of the workarounds fetch does not fill the

array and IS not passed to suggested 111 Section B.2.

ReportWriter.

An array will not shrink, There is another field or Remove all other fields and
even though the area display text on the same display text from lines you
clause was issued with line as the unwanted want to be affected by
the shr ink keyword. array element. shrink.

An element further down Consolidate populated array
10 the array contains elements so that the blank
data. ReportWriter elements are at the end.
shrinks out only traihng
array elements.

continued ...

JAMlReportWnter Release 5 1 12 November 93 Page 209

JAMlReportWnter Developer's GUIde and Reference Manual

Problem Cause Solution

Break header or footer Procedures that calculate Procedures that calculate run-
data IS out of sync with break footer values are mng totals or other break
its break group. unproperly placed in the footer values should be in-

detail statement. voked after break processing
10 the detai 1 statement
(Refer to Section 7.2.3 for a
further explanation of this
topic.)

Procedures that calculate Break header or footer proce-
break header or footer dures that fetch or calculate
values are 1lllproperly data to be output 10 the re-
placed 10 the break spective header or footer must
statement. be invoked before the corre-

sponding area clause.

A non-break field in the Define the field as a lowest-
break footer IS showing level break field with no out-
its post-break, rather put or actions. (Refer to Sec-
than pre-break value. tion 5.2.3 for information on

retaIning pre-break values
and to Section 5.1.2 for an
explanation of how to use the
breakcheck keyword to
ensure proper break footer
output)

Break header or footer Removal of the area Insert the breakcheck key-
data that was correct in a clause from the detail word at the pomt where break
row-level report is out statement can change the checking and processing
of sync when the report P010t at which break should take place.
is converted to a summa- checking and processing
ry report. occur.

continued ...

Page 210 JAMlReportWnter Release 5.1 12 November 93

Appendix C' Troubleshooting GUide

Problem Cause Solution

When you attempt to run The version of Make sure that the executable
your reports after up- rprt2bin that com- you are using (rwrun,
gradmg them to release plied the report is later j arnrw, j xrw, or your own
5.1, ReportWriter gives than the version of Re- ReportWriter appbcation)
the message "Error read- portWriter you are run- was made from files of the
mg reportfile." rung. same ReportWriter release as

the rprt2bin you used to
compile the report format
screens.

JAMlDBi errors men- ReportWriter implements Correct the query.
tion dbms dec lare the query clause of the
statements that do not detail statement as a
appear m the applica- dbms declare state-
tion's JPL code. ment. It creates for each

report a cursor whose
name is _RWcursor4n,
where n is the report
name (if the report is
named). Each error mes-
sage (such as "SQL parse
error'') that refers to one
of these cursor names re-
flects an error in a query
of the associated report.

continued ...

JAMlReportWnter Release 5.1 12 November 93 Page 211

JAMlReportWnter Developer's GUide and Reference Manual

Problem Cause SolutLOn

An area name tag refer- The area name has a Remove underbars (the JAM
enced m the scnpt IS nO[JAM draw field symbol default draw field symbol)
found when the report embedded m it. For ex- from area names. If you have
format screen IS com- runple: emp_lst. any other draw field symbols
pIled. defined for the report format

screen, do not use them, ei-
ther, in area names.

(Wherever compound area
names appear m thiS manual,
hyphens are used in order to
avoid underbars. For exam-
ple: emp-l st.)

The referenced area is Use the 1nc 1 ude screen
defmed on another JAM compiler dIrective to incorpo-
screen. rate all required screens into

the report.

The area name is mis- Make sure that both the spell-
spelled, either in the ing and case of the area name
script or in the name tag; are identical in the script and
or the area name tag does on the screen layout.
not appear on the screen.

Make sure that the referenced
area has been defmed and that
its name tag has been ap-
pended to each line of the
area

continued ...

Page 212 JAM/ReportWnter Release 5.1 12 November 93

Appendix C Troubleshooting GUide

Problem Cause Solution

An area name tag refer- The report format screen In jxform, edit the script in
enced in the script is not was created by rw4toS, the report format screen to re-
found when the report and the original scnpt move each use of . jam
format screen IS com- uses the file name exten- where it appears in an area
piled. (contznued) sion . jam m the speclfi- name specificauon.

caUon of form (area)
names. By default,
rw4toS drops this ex-

Rerun rw4to5 With the -k tension when it creates
option to retain the extension area name tags, so that

scnpts that use only the 1D the generated area name

base me names will work tags.

properly.

Parameters work fine in The two clauses employ Use space-separated strings
a report clause but different syntax for pa- or colon-expanded variables
produce error messages rameter specification. In for report parameters. Use
when used in a cursor a report clause (as comma-separated simple van-
clause. well as in a jpl or able names for cursor pa-

call clause), parame- rameters.
ters are separated from
the object called and
from one another by one
or more spaces. In a
cursor clause, a space
follows the name of the
cursor; the parameters
that follow must be listed
according to the syntax
ofthedbms execute
statement of the JAM!
OBi in use. This IS usual-
ly a list of variable
names (without preced-
ing colons) separated by
commas.

continued. ..

JAMlReportWnter Release 5 1 12 November 93 Page 213

JAMlReportWnter Developer's GUide and Reference Manual

Problem Cause Solutzon

A C (or other supported The functton either bas Make sure the functIon IS on
language) function can- not been entered mto the control functIon or proto-
not be called from the funclist. c or bas not typed functton hst of
report script. been installed. funclist. c.

(Refer to Section 4.5 for Make sure the call to

addItional information on srn_do_ulnstalls bas
instalhng called func- been uncommented in
tions.) rwmain . c (if using rwrun

stand-alone) .

Make sure the executable bas
been rebuilt since source
cbanges were made.

Report output cannot be No deVice file has been 1. Create a device file con-
sent to the printer. specified, or the device taining the appropriate

file in use does not con- spool parameter.
tain a spool parameter 2. Compile the device me
to direct the output to the with the dev2bin utility.
printer. 3. Reference the device file at

runtime (-d devfile option on
the command line or in
RWOPTIONS).

(Refer to Section 8.1 for more
information on device config-
uration mes and to Section
9.4 for mformation on
RWOPTIONS.)

The spool command spe- Verity that the spool com-
cified is incorrect mand specified in the device

me is correct for your envi-
ronment.

continued ...

Page 214 JAMlReportWnter Release 5.1 12 November 93

Appendix C: Troubleshooting GUide

Problem Cause SolutlOn

The printer does not re- ReportWriter does not IS- Use the reset parameter 1D

set to the begmning of sue a form feed at the the device configuraUon file
the next page when done end of output. to force a form feed at the end
printing a report. of the report:

reset = \014
(Refer to SectIOn 8.1 for more
information on device config-
uration mes.)

The number of lines and! Default setungs are in ef- Specify the required 1 ines
or columns is different fect. ReportWriter's de- and columns settings 1D ei-
than expected. fault page size is 60 lines ther an ini t statement or a

by 132 columns. device configuratJon file.

Conflicting page SizeS If you want to be able to
are specified in the de- change the page size specifi-
vice configuration me cations for different runs of
and in an in i t state- the report, remove them from
ment. If both are speci- the in i t statement and use,
tied, the values in the instead, device files with the
ini t statement take pre- required page size parame-
cedence over the values tefS. (Refer to Section 8.1 for
in the device file. more information on device

configuration file parame-
ters.)

If you want the page size
spectfication to be consistent
for all runs of the report, put
the lines and columns
parameters in an in i t state-
ment 1D the report scnpt. (Re-
fer to Section 5.4 for more in-
fOlIDation on output parame-
ters in the 1ni t statement.)

continued ...

JAMlReportWnter Release 5.1 12 November 93 Page 215

JAMIReportWnter Developer's GUide and Reference Manual

Problem Cause Solution

Core dump occurs while Some beta verSIOns of Always use your J MOOBt
accessmg the database J AMIDBt release 5 wIll makeftle to create the Report-
through J AMIDBi re- core dump if the database Wnter executables, where
lease 5. engme IS not properly possible.

miuahzed. Otherwise, modify the Re-
portWriter makefile to link
all the modules required, par-
tIcularly dblinit .0, if it
eXIsts, to make J AMlDBi.
dbllni t . ° InItializes the
database engine.

If your JAMlDBi release 5
distribution does not include
dbi ini t .0, modify your
rwmain. c source module
to manually initialize the da-
tabase engine-see the
instructions in rwmaln. c
and use the Jmain. c in your
JAMlDBt distribution as a
model.

A report format screen JAM flushes all active Don't use the JPL statement
is displayed unexpected- screens to the display msg or the screen manager
Iy 10 a j amrw applica- while posting messages; function sm_emsg () or its
tion. this mcludes screens not variants from wlthm pro-

intended for display grams that are invoked by
(such as report format j p 1 or ca 11 clauses in the
screens). report script. Instead, save the

message in a non-output field
or in an LDB variable, and
display it after execution of
the rwrun statement.

Page 216 JAM/ReportWnter Release 5 1 12 November 93

JAM!
ReportWnter

Appendix 0

Examples

The sample reports in this appendix demonstsrate some of the techniques explained in the
body of this manual. Each example begins with a prose description of the report and a list
of the techniques illustrated. Sample output is shown, followed by a lisung of the screen
JPL module, the screen layout, and the field descriptions.

TheJAM f2asc and 1st form utilities were used to capture the JPL, layout, and field
listing of each example. The output of these utilities is reproduced here with minimal em
bellishment.

Procedures for connecting to the database are not shown in these examples, both because
the report may be part of a J AMlDBi application that manages the connection and also
because the syntax for accomplishing tins in JAMlDBi depends upon the version of
J AMlDBi and the database engine in use.

D.1

SAMPLE APPLICATION - REVISITED
Chapter 3 of this manual presents a simple report based on the sample application de
scribed in the JAM and JAMlDBi documentation. This section shows how you might
enhance this relatively basic report.

The following features are added to the report originally presented in Section 3.3.1:

• Page footers on all pages except the title page

• Page numbers (field page and JPL procedure incr-page); example
of a procedure that must be executed before the corresponding area is
output

JAMlReportWnter Release 5.1 12 November 93 Page 217

JAMlReportWnter Developer's GUide and Reference Manual

• TraIler page with a grand total of all salanes reported

• Break footer omItted if the break group has only one entry
(noorphanbreak keyword)

• Break headers

• Break field (grade) displayed only 1D the first detail area of the break
group (norepea t keyword)

• Non-output fields (last and first) on the report format screen:
condensing the employee's fIrst and last names into a single field (field
name and JPL procedure condense_name); another example of a
procedure that must be executed before the corresponding area is output

Sample output from this report is shown in FIgure 18.

Page 218 JAMlReportWnter Release 5.1 12 November93

GRADE

B

GRADE

C

GRADE

D

GRADE

E

XYZ Corporation

Personnel Department

Report of Employee Salaries by Grade

SSN NAME

122-99-4102 Jones, Michael

SSN NAME

038-68-6826 Jones, Barnaby

SSN NAME

139-42-1651 Blake, Norman
154-32-6610 Cory, Richard
310-77-3997 Grundy, Janet
310-32-0084 Jones, John P.

Total salaries at GRADE D

SSN NAME

122-98-6541 Aumond, Hilary

Report of Employee Salaries by Grade

Appendix D: Examples

SALARY

26,000.00

SALARY

29,500.00

SALARY

89,500.00
43,100.00
38,000.00
47,500.00

218,100.00

SALARY

37,800.00

page 1

***************~********************************

*
*
*
*
*

Total Salaries For All Grades Reported

$311,400.00

*
*
*
*
*

**

Report of Employee Salaries by Grade page 2

Figure 18: Output of Salary Report

JAMlReportWriter Release 5.1 12 November 93 Page 219

JAMlReportWnter Developer's GUide and Reference Manual

The screen JPL module IS reproduced below. AdditIons to the report ongmally presented
1Il Chapter 3 are pnnted m boldface type.

The fIrst part of the JPL module contains the report script:

~ :~ begln report »
~

~ wit JPl
~ area
~ np.wpage
~

~

= startup
= t1tlepg

/* 1nvoke the JPL proc "startup" */
/* output the report tltle page */
/* ensure that next output after title page

beg1ns on a new page */

/* page footer should not appear on the title page; hence, the
following page statement is placed after the title page has been
output; page footers will appear on all subsequent pages: */

~

~

" #

" "
" "
" #

"

page footer jpl = incr...,page
area = pfoot

/* page number must be incremented*/
/* before the pg footer is output */

break fielc..l = grade

header area =
footer area =

Jpl =

norepeat

noorphanbreak

/* group
grade

bhead
bfoot
reset_tot

the report output by employment
*/

/* after break footer area lS
output, invoke JPL procedure to
reset the cumulat1ve salary
total */

/* display grade only for the
first row of each break group */

/* do not output break footer if there is
only one row in the break group */

~ deta1l query = "SELECT emp.ssn, emp.last, \
~ emp.flrst, emp.grade, acc.sal \
~ FROM emp, acc \
~ WHERE emp.ssn = acc.ssn \
" ORDER BY emp.grade, emp.last, \
~ emp.first"
jpl = condense_name/* must be invoked before detail
area is output */

"
" It
It

area
jpl

= employee
= add_salary /* lnvoke JPL procedure to maintain

running total of salarles for
the current break group (grade)
and for all employees reported */

insert newpage
It

It 1nsert
It /*
It

area
Jpl

= trailer
= cleanup (omitted in this example) */

It ,< end report ,~

Page 220 JAM/ReportWnter Release 5.1 12 November 93

Appendix 0: Examples

The JPL procedures referenced in the report scnpt follow m the JPL module:

proc startup
B ThIS procedure is invoked once, at the start of report
B generatIon. It performs two functions:
B 1) InItIalizes variables used in the report
B 2) opens a connection to the database (code for this
function is omitted in this example)

the following statement InItIalIzes the runnIng
total of salarIes for the break group (grade)

cat sal_tot

the following statement initializes the running
total of salaries for all employees reported

cat all_sal

page number: will be incremented each time the page footer is
output

cat page

proc reset_tot
D After the break footer has been output, the
D cumulative salary total must be reset for the
B next break group

proc add_salary
D Add the salary for this employee to the
B runnIng total of salaries at thIS grade
and to the running total of all salaries reported

math sal_tot = sal_tot + sal
math all_sal = all_sal + sal

proc incr"'page
compute the page number immediately before the page
footer is output

math %.0 page = page + 1

proc condense_name
to close up the gap between the last and first names,
consolidate them into a single field

cat name last ", " first

JAMlReportWnter Release 5.1 12 November 93 Page 221

JAMlReportWnter Developer's GUide and Reference Manual

The screen layout for thiS report example is shown in Figure 19.

XYZ Corporation

Personnel Department

Report of Employee Salaries by Grade

GRADE SSN NAME SALARY

« titlepg
« tltlepg
« tltlepg
« tltlepg
« tltlepg

«bhead
«bhead

----------- ------------------------- ---------- «bhead

Total salarles at GRADE

Total Salaries For All Grades Reported

Report of Employee Salarles by Grade

«employee

«bfoot
«bfoot
«bfoot
«bfoot

«traller
«trailer
«trailer
«traller
«trailer
«trailer
«trailer

page _ «pfoot

The followlng two flelds are non-output flelds Thelr fleld names are
-last- and -flrst-, respectlvely:

Figure 19: Salary Report Screen Layout

Field descriptions, as generated by JAM's f2asc utility, are reproduced below:

F:grade
It NUMBER=!

LINE=!! COLUMN=6
UNFILTERED
LENGTH=! ARRAY-SIZE=!
WHITE HILIGHT

F:ssn
It NUMBER=2

LINE=!! COLUMN=!3
UNFILTERED
LENGTH=!! ARRAY-SIZE=!
WHITE HILIGHT

Page 222 JAM/ReportWnter Release 5.1 12 November 93

F:name
11 NUMBER=3

LINE=ll COLUMN=26
UNFILTERED
LENGTH=25 ARRAY-SIZE=!
WHITE HILIGHT

F:sa!
II NUMBER=4

LINE=!! COLUMN=54
UNFILTERED
LENGTH=10 ARRAY-SIZE=1
WHITE HILIGHT
RIGHT-JUSTIFIED

Appendix 0: Examples

CURR-FORMAT= DEC-SYMBOL= MIN-DEC-PLACES=2 MAX-DEC-PLACES=2
ROUND-ADJUST RIGHT-JUST

F:grade.1
II NUMBER=5

LINE=14 COLUMN=48
UNFILTERED
LENGTH=1 ARRAY-SIZE=1
WHITE HILIGHT

F:sal_tot
II NUMBER=6

LINE=15 COLUMN=54
UNFILTERED
LENGTH=!O ARRAY-SIZE=1
WHITE HILIGHT
RIGHT-JUSTIFIED
CURR-FORMAT= DEC-SYMBOL= . MIN-DEC-PLACES=2 MAX-DEC-PLACES=2
ROUND-ADJUST THOU-SEP-SYMBOL= , RIGHT-JUST

F:all_sal
II NUMBER=?

LINE=23 COLUMN=30
UNFILTERED
LENGTH=12 ARRAY-SIZE=1
WHITE HILIGHT
CURR-FORMAT= DEC-SYMBOL= . MIN-DEC-PLACES=2 MAX-DEC-PLACES=2
ROUND-ADJUST THOU-SEP-SYMBOL= , CURR-SYMBOL= $ CUR-LEFT RIGHT-JUST

F:page
II NUMBER=8

LINE=2? COLUMN=63
DIGITS-ONLY
LENGTH=2 ARRAY-SIZE=1
WHITE HILIGHT

JAMlReportWriter Release 5.1 12 November 93 Page 223

JAMlReportWnter Developer's GUide and Reference Manual

F: last
II NUMBER=9

LINE=28 COLUMN=12
UNFILTERED
LENGTH=20 ARRAY-SIZE=l
WHITE HILIGHT

F:fl.rst
II NUMBER=lO

D.2

LINE=28 COLUMN=43
UNFILTERED
LENGTH=12 ARRAY-SIZE=l
WHITE HILIGHT

USING THE tb12r UTILITY
ReportWnter provides a utility that creates, from a specified database table, a report for
mat screen that can be used to generate a simple report showing the contents of the table.
The report format screen produced by this utility can also be used as the starting point for
a more elabomte report.

The examples in this section develop three reports:

• The frrst IS generated, without modification, from the report format
screen produced by the tb12r utility.

• The second is a cosmetic enhancement only to the original report lay
out No changes were made to the report script.

• The third report is the result of modifications to both the screen layout
and the report script Several JPL procedures were also added to effect
the required processing.

The reports shown in this section are based on the emp database table, described in Chap
ter 3, "Sample Application."

0.2.1

A Quick Start Report
This section describes the report format screen, emp. j am, produced when the tb12r
utility is run on database table emp. The report generated from this report format screen
is shown in Figure 20. It is a simple listing of the contents of the database table. The page

Page 224 JAMlReportWnter Release 5.1 12 November 93

Appendix O' Examples

header hsts the table column utles.

ssn last f~rst street:
city st zip grade

038-68-6826 Jones Barnaby 321 West 11 St
Albuquerque NM 9876 C

122-98-6541 Aumond H~lary 11-12 Front St
Albuquerque NM 09876 E
122-99-4102 Jones M~cha~l S Maple Dl"i ve
Albuquerque NM 09876 8

139-42-1651 Blake Norman 34 Concord Ave
Albuquerque NM 09876 D
154-32-6610 Cory R~chard 411 Ann St
Albuquerque NM 09876 D
310-77-3997 Grundy Janet 70-2 Poe St
Albuquerque NM 09876 D
310-32-0084 Jones John P. 9 Vern Terrace
Albuquerque NM 09876 D

Figure 20: Output of Report emp. jam

The screen JPL module, reproduced below, consists only of a report script There are no
JPL procedures.

~ «BEGIN REPORT»
~ page header area = header
II
II deta~l area = deta~l
II query = "select '* from emp"
II «END REPORT»

Figure 21 shows the screen layout for this report

FIeld descriptions, as generated by JAM's f2asc utility, are reproduced below:

F:ssn
II NUMBER=l

LINE=5 COLUMN=2
UNFILTERED
LENGTH:11 ARRAY-SIZE:1
WHITE UNDERLINE HILIGHT

JAMlReportWnter Release 5.1 12 November 93 Page 225

JAMlReportWnter Developer's GUide and Reference Manual

ssn
City

last flrst
st ZiP grade

street

Figure 21: Report Format Screen emp • jam - Output Areas

F:last
" NUMBER=2

LINE=5 COLUMN=14
UNFILTERED
LENGTH=20 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:first
" NUMBER=3

LINE=5 COLUMN=35
UNFILTERED
LENGTH=12 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:street
" NUMBER=4

LINE=5 COLUMN=48
UNFILTERED
LENGTH=20 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:city
" NUMBER=5

LINE=6 COLUMN=2
UNFILTERED
LENGTH=15 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:st
" NUMBER=6

LINE=6 COLUMN=18
UNFILTERED
LENGTH=2 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

Page 226 JAMlReportWriter Release 5.1 12 November 93

«header
«header
«header
«detail
«detall

F:Z1P
II NUMBER=?

LINE=6 COLUMN=21
UNFILTERED
LENGTH=5 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:grade
II NUMBER=8

0.2.2

LINE=6 COLUMN=2?
UNFILTERED
LENGTH=l ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

A Cosmetic Improvement

Appendix D: Examples

The report shown in this section is built on the report fOlmat screen produced by tb12 r
and described in the previous section. To create the output shown in Figure 22, the devel
oper

• rearranged the fields in the detail area and

• changed the display text in the header area

No other changes were made to the report format screen. The script was not modified in
any way, and no JPL procedures were added.

The new layout of the report format screen is shown in Figure 23.

JAMlReportWnter Release 5.1 12 November 93 Page 227

JAMlReportWnter Developer's GUide and Reference Manual

SSN

038-68-6826

122-98-6541

122-c)'l-4102

13'l-42-1651

154-32-6610

310-77-1'l97

310-32-0084

EMPLOYEE

Jcmes
321 West 11 St
Albuquerque

Allmond
11-12 Front St
Albuquerque

Jones
5 Maple On ve
Albuquerque

Blake
34 Concord Ave

, Barnaby

NM 9876

, Hilary

NM 09876

, M~chael

NM 09876

, Norman

Albuquerque NM 09876

Cory
411 Ann St
Albuquerque

Grundy
70-2 Poe St
Albuquerque

, R~chard

NM 09876

, Janet

NM 09876

Jones , John P.
9 Vern Terrace
Albuquerque NM 09876

Figure 22: Output of Report emp2. jam

Page 228 JAM/ReportWnter Release 5.1 12 November 93

GRADE

C

E

B

D

o

D

D

SSN t EMPLOYEE

Appendix 0 Examples

GRADE <-<header
.. <hedder
«header

«detaIl
«detaIl
«detaIl
«detaIl

Figure 23: Report Format Screen erop2 . jam - Output Areas

0.2.3

More Extensive Changes
The report shown in this section is also built on the report originally generated by the
tb12r utility. tb12r provided a headstart on the report development process by creat
ing a report format screen that mcluded fields of the appropriate types and lengths for the
columns in the database table and by writing a rudimentary script with a simple query
clause. The developer can now retain or discard fields as necessary, add new fields, de
fine breaks, modify the query, and so forth, to create the desired report.

The report shown in Figure 24 lists employees alphabetically. It shows the last name, fmt
name, social secunty number, and employment grade level for each employee listed in
the table. A blank line is inserted after every third row to improve readability of the re
port.

This revision adds the following features to the original report

• Computed break (field rowgroup; to insert the blank line as a break
footer after every third line of the detail area)

• Non-output fields on the report format screen:

last and first to receive the employee's first and last names, which
are then condensed into a single field (field emp_name in the detai 1
area and JPL procedure condense_name)

rowcoun t and rowgroup to effect the computed break

JAMlReportWnter Release 5 1 12 November 93 Page 229

JAMlReportWnter Developer's Guide and Reference Manual

EMPLOYEE SSN GRADE

---------------------------------- -----------
Allmond, Hilary 122-98-6541 E
Blake, Norman 139-42-1651 D
Cory, R~chard 154-32-6610 D

Grundy, Janet 310-77-3997 D
Jones, Barnaby 038-68-6826 C

Jones, John P. 310-32-0084 D

Jones, Michael 122-99-4102 B

Figure 24: Output of Report emp3 . jam

• Specifying the order in which rows are to be fetched (order by
clause added to the query)

• Procedure that must be invoked before area output
(condens e_name)

• Procedure invoked after break checking (do_rows to compute the row
number and change the break field value as needed)

In addition, unneeded fields from the original screen were deleted, and a new output area
was added.

The new area, blank-l ine, is specified as the break footer and is the blank line output
after every third row. Note that this area name contains a hyphen rather than an underbar
between the two words of the name. By default, the JAM screen editor intetprets under
bars in area name tags as screen fields; area names with underbars (or any other draw
field symbol in use) are not correctly recognized when the screen is compiled.

The screen JPL module is reproduced below. Additions to the report originally created by
tb12r are printed in boldface type.

H «BEGIN REPORT»

insert jpl = startup
H page header area = header
It

/* The break field shown below is a computed break.
Xts value is computed in the JPL proc do_rows, which
is invoked during detail processing. */

Page 230 JAMlReportWnter Release 5.1 12 November 93

Appendix D' Examples

break field = rowgroup
footer area = blank-line
jpl = reset_row_count
II
II detall jpl = condense_name
II area = detail
II jpl = do_rows
II query = "select '* from emp order by last, first"
II c::.

II «END REPORT'>~

proc startup
This procedure initializes the variables required for
computing the break field.

cat rowcount
cat rowgroup

proc condense_name
To close up the gap between last and first name, consolidate
them into a single field

cat amp_name last ., " first

proc

do_rows
Compute the position of the just-output row within its break
group. If it is the third row, then also increment the value of
the break field, rowgroup, so that a break will occur on the next
fetch.

math rowcount = rowcount + 1
if rowcount == 3

proc

{

math rowgroup = rowgroup + 1
}

reset_row_count
After the break footer has been output, reset the row count
so that the do_rows procedure will work properly for the next
set of rows output

cat rowcount

Figure 25 sbows the screen layout for this report.

JAMlReportWnter Release 5.1 12 November 93 Page 231

JAMlReportWnter Developer's GUide and Reference Manual

EMPLOYEE SSN

The followlng fOllr flelds are non-output flelds·
last, fIrst, rowgroup, rowcount

GRADE «header
«hedder
<..<header

«detdll

«bldnk-llne

Figure 25: Report Format Screen erop3 . jam - Output Areas

Field descriptions, as generated by JAM's f2asc utility, are reproduced below:

F:emp_name
ft NUMBER=l

LINE=6 COLUMN=2
UNFILTERED
LENGTH=32 ARRAY-SIZE=l
WHITE HILIGHT

F:ssn
ft NUMBER=2

LINE=6 COLUMN=39
UNFILTERED
LENGTH=ll ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:gracie
ft NUMBER=3

LINE=6 COLUMN=59
UNFILTERED
LENGTH=l ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:last
B NUMBER=4

LINE=12 COLUMN=2
UNFILTERED
LENGTH=20 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

Page 232 JAM/ReportWnter Release 5 1 12 November 93

Appendix 0: Examples

F:first
II Nm,1BER=5

LINE=!2 COLUMN=24
UNFILTERED
LENGTH=!2 ARRAY-SIZE=!
WHITE UNDERLINE HILIGHT

F:rowgroup
II NUMBER=o

LINE=17 r.OLUMN=40
UNFILTERED
LENGTH=3 ARRAY-SIZE=!
WHITE UNDERLINE HILIGHT

F:rowcollnt
II NUMBER=?

0.3

LINE=!2 COLUMN=49
UNFILTERED
LENGTH=! ARRAY-SIZE=!
WHITE UNDERLINE HILIGHT

SUB REPORTS
This section contains two subreport examples.

The fIrst builds a subreport in stages, beginning with a report that can be invoked on its
own as a primary report and then adding enhancements that invoke the original report as
a subreport.

The second example shows how the simulated subreport application in Chapter 10 would
be implemented as a true subreport if JAMlReportWriter release 5.1 were linked with
JAM release 5.03a or higher and JAMlDBi release 5.

0.3.1

Comprehensive Subreport Example
The example in this section builds an applicauon for selecting and printing the resumes
of opera singers by ID, by voice range, and for all singers m the database.

The application is built in stages, beginmng with a single report script contairung a pri
mary report and a subreport; this report generates the reswne for one singer and serves as
the base for additional reporung capabilities.

The Imtial report and its enhancements proVide examples of

JAMlReportWnter Release 5 1 12 November 93 Page 233

JAMIReportWnter Developer's GUide and Reference Manual

• nested subreports,

• reports that can be lDvoked as either primary reports or subreports,

• subreports stored in screens external to the primary report format
screen, and

• a variety of methods for passing arguments to both primary and subre-
ports.

Stage 1: Print the resume of an opera smger identified by ID number. The report name
is resume; it takes a single argument, the ID of the singer whose resume is to be gener
ated. The following command line invocation sends the output to a fIle named re
surne. txt; the resume generated will be for the singer whose ID is 47.

rwrun resume -0 resume. txt 47

The report uses three separate queries to format fetched data for the resume and a subre
port to print the singer's name and address at the top of each page.

The destination variable of the flfSt query, intro, is a word-wrapped array. The
shrink keyword, as usual, removes its unused elements.

Only the thIrd query uses break processing. The clear breakspecs statement iso
lates the break statements from the previous queries.

The script for this report is:

D « beg~n report = resume »
D
D ~nit parameter = id
D lines = 40
D jpl = logon
tI
insert Jpl = clearcontinued

D page header report = -address :id-
tI footer jpl = setcontinued

tI detail query = 'select ~ntro from allintros where id = :+id'
area = intro shrlnk

~nsert area = e-begin

detail query = 'select estart, eend, school from edu \
D where student = :+ld order by estart'
area = e-deta~l

Insert area = r-beg~n

clear breakspecs
D

Page 234 JAM/ReportWnter Release 5.1 12 November 93

Appendix D: Examples

ij break field = company
header area = r-where showattop

ij break field = opera
ij norepeat
ij footer area = r-foot
ij

ij detail query = 'select company, opera, role from performances \
ij where slnger = :+id order by company, opera'
ij area = r-detail
ij

ij « end report »
ij

ij « begin report = address »
ij

ij init parameter = id
ij

ij break field = name
ij header area = h-begin
footer area = h-end
ij

ij detail query = 'select name, phone, addrseq, addr from nameaddr\
ij where id = :+id order by addrseq'
ft area = h-detail
ft
ft « end report »

The JPL procedures invoked by this script follow:

proc logon
if loggedon 1= 'y'
{

ft dbms-speclfic logon statment goes here
cat loggedon 'y'

proc clearcontinued
cat continued

proc setcontinued
cat contlnued "(continued)·

The screen layout for the resume report is shown in Figure 26.

Stage 2: We can also invoke the preceding report as a subreport by including it in anoth
er report format screen. This example invokes the resume report for each singer having
a range given by the primary report's argument. The report name is onerange.

A header page prints the chosen voice category. The report format screen field voice
also serves as a parameter field. The preserve ini tspecs keyword in the subre
port invocation ensures that it takes on the page size of the parent report

JAMlReportWnter Release 5.1 12 November 93 Page 235

JAMIReportWnter Developer's GUide and Reference Manual

Inn oduct Ion

Educcltlon

___ to __ _

Roles

Singer ld
Address sequence
Logon flag

Figure 26: Report resume. Jam - Screen Layout

We could invoke the report one range from the command line as

rwrun onerange -0 resume. txt Soprano

or from IPL, as in

cat RWOPTIONS 'Soprano'
rwrun one range resume. txt

The script for this report is

II « beg~n report = onerange »
II « lnclude screen = resume »
II
II in~t l~nes = 30
II parameter = voice
II Jpl = logon
II
II lns~rt area = t~tle
II
II

newpage

II deta~l query = 'select id from all~ntros \
II where range = :+vo~ce'

Page 236 JAM/ReportWnter Release 5.1 12 November 93

«n-begln
«h-detall
«h-end
<-:h-end
«Intro
«Intro
«Intro
«Intlo
«Intro
«lntro
«Intra
«Intro
«e-begln
«e-begln
< .. e-detall
..... e-detall
..... e-detall
«r-begln
«r-begln
«r-where
«r-where
«r-where
«r-detall
«r-foot

Appendix D: Examples

I reporc = "resume :+~d"

I preserve ~n~tspecs
I newpage
I

I ,< end report »

The screen layout for the one range report is shown m Figure 27.

«tLtle
HubrIs Management Company «tltle

Resumes
«tItle
«tltle

Figure 27: Report one range . jam - Screen Layout

Stage 3: The report onerange, as well, can serve as a subreport. Our fmal example
includes it and fetches all voice ranges to produce resumes for all clients.

The field range on the report format screen is used as the query destination and also for
passing an argument to the subreport. All output is performed in the subreport; no pre
serve keywords are needed in this example.

I « begin report »
» « ~nclude screen = onerange »
It
D in~t jpl = logon
»
D deta~l query = 'select distinct range from all~ntros \
D order by range'
D report = ·onerange :range"
D
D « end report »

Sample output from this application IS shown in Figure 28 through Figure 30.

JAMlReportWnter Release 5.1 12 November 93 Page 237

JAMlReportWnter Developer's GUide and Reference Manual

Hubrls Management Company

Resumes Soprano

Alma Gluck
14 WIllow Lane
Scarsdale, New York
555-4321

IntroductIon

A promlslng young soprano

EducatIon

01/01/81 to 01/01/91
Actors' and SIngers' School

Roles

Acme Industrlals

The World of Flber

Stony Creek Communlty Theater

Carousel

Celery

Julle

Figure 28: Resume Application - Sample Output

Page 238 JAMlReportWnter Release 5.1 12 November 93

Appendix D: Examples

Marla Stupendlta
23 Rue Pons
ParlS
046 554 22-43

Intl"oductlon

A versatlle soprano wIth stage presence SkIlled lnterpreter
of Verdl herolnes, and a proponent of bel canto

Educatlon

09/01/71 to 06/01/73
ParlS Conservatory

07/01/73 to 11/15/75
JUllllard school

Roles:

Berhn Opera

La boheme Mlml

Les contes d'Hoffmann Antonla

Covent Garden

Alda Alda

Figure 29: Resume Application - Sample Output (cont'd.)

JAMIReportWnter Release 5.1 12 November 93 Page 239

JAMlReportWnter Developer's GUide and Reference Manual

Manti Stupenrllta
2) Rue Pons
PailS
04b 554 22-43

Covent Garden

Don Callo

Lcl ooneme

Otello

WOZZl?ck

Rome Opeta

Fidelia

Norma

Ellsabetta

MImi
Musetta

Desdemona

Elizabeth
Venus

Mane

Leonota

AdalglSa
Norma

(continued)

Figure 30: Resume Application - Sample Output (cont'd.)

0.3.2

Example from Chapter 10-Revisited
Section 10.1 of this manual shows a sample report that uses super-query and sub-query
techniques to produce subreports. These are the techniques that were used to produce
subreports under ReportWriter release 5.0. Users of the current release of ReportWriter
may sull have to use these techniques if it is not hnked with J AM release 5.03a or higher
and JAMIDBi release 5.

The example m this section shows how the subreport application shown in Section 10.1
would be implemented with the full subreport capability provided in ReportWriter 5.1.

Developers who have prevIOusly used ReportWriter 5.0 will notice that this example also
takes adv(ultage of other features new to release 5.1, namely:

Page 240 JAMlReportWnter Release 5.1 12 November 93

Appendix O' Examples

• In procedure get_sum_bal, a sql statement can be used because
ReportWnter, when hnked with JAMlDBi release 5 or later, now uses
named cursors for its queries.

• MulUple area and/or report clauses appear 10 a single statement m
both the primary report and 10 the subreport credi tors.

In addition, two different methods are used to conditionally execute subreports:

• The primary report calls JPL procedure check_sum_bal, which re
turns 1 or 0 to skip or invoke the subreport that follows. (Refer to Sec
tion 6.2.2 of the ReportWriter manual for a discussion of return codes
from JPL procedures and C functions.)

• The subreport creditors calls JPL procedure check_ven
dor_bal, which resets the vanable subreports or sets it to the
subreport name purchases.

Figure 31 shows the screen layout for this example. The script and JPL procedures fol
low:

(person) ~a1.lndIVIdUaI)
«lndlVldual

«lndlVldual

(vendor) 0,81 creditor)
«credltor

DETAIL «purchase-hdr

«purchase-hdr

(dem) (dem-prlce)
«purchase

«blank-llne

(bal) (SUbreport)

Figure 31: Subreport Example, Upgraded - Screen Layout (with field names)

JAMlReportWnter Release 5.1 12 November 93 Page 241

JAMlReportWnter Developer's GUide and Reference Manual

I « BEGIN REPORT »
I inn
I jpl = dbin~t
I detail
I query = 'select dist~nct person from all_bal"

Jpl = get_sum_bal I
I area = individual
I Jpl = check_sum_bal
II report = cred~tors
I insert
I JPI = dbex~t
« END REPORT »

I « BEGIN REPORT = cred~tors »
I deta~l
query = 'select vendor, bal from all_bal \
I where person = :+person and bal < 0'
area = creditor
I jpl = check_vendor_bal
report = :subreport
area = blank-line
« END REPORT »
I
« BEGIN REPORT = purchases »
insert
I area = purchase-hdr
I detail
query = 'select item, item-price from stores \
where buyer = :+person and store = :+vendor'
area = purchase
« END REPORT »

proc get_sum_bal
sql select person, sum (bal) bal from all_bal where person =\

:+person group by person
if bal > 0

cat bal -+- bal

proc check_sum_bal
if bal >= 0

return 1

proc check_vendor_bal
if bal > -200

cat subreport
else

cat subreport ·purchases·

Page 242 JAMIReportWnter Release 5.1 12 November 93

Appendix 0: Examples

0.4

CALENDAR
Although producmg a monthly calendar is an atypIcal use for the ReportWriter, the ex
ample presented in this section demonstrates a variety of techniques you will find appli
cable to more "traditional" reports.

In particular, the calendar requrres that multiple rows from the database be presented
across a single mstance of a report area. The same requrrement would apply if you were
using ReportWnter to generate mailing labels, two or more across a page. The technique
shown in this example avoids the use of onscreen arrays to receive the fetched data, as
this approach would not give the developer the fine control over handling each row that
is required for the application.

This report demonstrates the following techniques:

• Single instance of a report area to output multiple rows fetched from the
database

• Lowest-level output in break: footer (rather than in the detai 1 state-
ment)

• Computed break: (field weeks)

• Order-sensitive processing (break header for month)

• Auxiliary SELECT using named cursor

• breakcheck needed between two detai 1 JPL procedures

• Non-output variables in the report format screen

• Field name aliasing (date. week2 and text. week2)

• Alternative output areas and suppressed output, controlled by a variable
containing an area tag name (variable weekarea in the week break
footer)

• Use of pre- and post-break values at break-footer time (variables
week and newweek)

• Output area conditionally populated (field divider for "six-line"
months)

• Arrays
• shrink keyword (footer area for break field month)

JAMlReportWnter Release 5.1 12 November 93 Page 243

JAMlReportWnter Developer's GUide and Reference Manual

Sample output from this report appears in Figure 32. Two montbs are shown. Note that
the August, 1992, calendar is a "six-line" montb; thIS example compresses such calen
dars into five hnes.

January 1992

Sunday Monday Tuesday Wednesday Thursday Frlday Saturday

2 3 4

Hollday

5 6 7 8 9 10 .11

.12 13 14 15 .16 17 .18

.19 20 .21 .22 .23 24 25

Hohday

26 27 .28 29 30 31

1 New Year's Day
20 Martln Luther Klng. Jr 's Blrthday

Figure 32: Calendar Report Sample Output

Page 244 JAMlReportWnter Release 5.1 12 November 93

Appendix 0: Examples

August 1992

Sunday Monday Tuesday Wednesday Thursday Frlday Saturday

2 J . 4 567 8

9 10 11 12 1J .14 .15

16 17 18 .19 .20 .21 .22

2J .24 .25 .26 27 .28 29

JO. Jl.

Figure 32 (cont'd.): Calendar Report Sample Output

JAMlReportWnter Release 5.1 12 November 93 Page 245

JAMlReportWnter Developer's GUIde and Re{erence Manual

The screen JPL module is reproduced below.

The first part of the JPL module contains the report script:

II « begln report »
II
II /'Il
II
II This report produces a monthly calendar. It reads from a table
II wnose columns are as follows:
II
II
II
II
II
II
II

year
month
dayofmonth
dayofweek
remark

lnteger
lnteger
lnteger
integer
char (40)

II In the table is one row for every day of the month, for as many
II months as are deslred.
II
II An auxillary table maps the month number to ltS name. Its
II columrls are
II
tI month integer
tI monthname char (9)
II
II */
II
tI lnit Jpl = on
II
tI break field = year

tI break field = month
tI header JPl = getmonthname
II area = head
II footer area = foot shrink
tI newpage
tI

tI break field = week
tI header jpl = clearweek
tI footer jpl = setweekarea
area = :weekarea

detall query = ·select * from calendar order by year, month,\
II dayofmonth-
II jpl = computeweek
tI breakcheck
II jpl = enterday
tI

« end report »

Page 246 JAMlReportWnter Release 5.1 12 November 93

Appendix 0: Examples

The JPL procedures referenced In the report script follow in the JPL module:

proc getmonthname
It

It Get month name given its number, and clear holiday-listlng
It arrays.

dbms declare c cursor for select monthname from months where\
month = :month

dbms execute c
for nexthollday = 1 while nexthollday <= 10 step 1
{

cat holdate[nextholiday1
cat holname[nextholiday)

cat nextholiday '1 n

proc clearweek
II
II Clear out the arrays to be used for the upcoming week.
II
vars i(10)
for i = 1 while i <= 7 step 1
{

}

cat date[i)
cat text[i1

proc setweekarea
It

It If this week is the 5th line of a 6-line month, move its data to
It the top arrays in the shared-week output area for output with the
It 6th Ilne. Otherwise output thlS week's data. If this lS a
II '6th-line- week, use the condensed output area, and add dots to
II SpIlt the second frame if needed. ReportWriter has already stored
It the current week's data in the bottom arrays of the shared-week area
II because their names are allases of the arrays in the slngle-week
II area.
II
II Because field 'week" appears in a 'break" statement in the report
II scrlpt, RW uses its pre-break value when thlS routine is executed
D (i.e., at break-footer time). Field 'newweek' does not appear in
D any break statement; therefore at break-footer time ReportWriter
II uses its post-break value.

vars i (10)
if week -- 5 && newweek __ 6
{

cat weekarea
for i = 1 while i <= 7 step 1
{

JAMIReportWnter Release 5.1 12 November 93 Page 247

JAMlReportWnter Developer's GUide and Reference Manual

else if

else

week

cat

--

cat prevdate[l) date[i]
cat prevtext[l) text!l)

b

weekarea "week2"
if date[2) -- ""

cat dlvlder
else

cat divider " "

cat weekarea "week"

proc C'omputeweek
II
II Determlne in WhlCh calendar llne this day falls, and perserve its
II value in a varlable not represented in a "break" statement, so that
II we may see the new value when the previous group's footer is
II computed.

math ~t.O week = (dayofmonth + 13 - dayofweek) / 7
cat newweek week

proc enterday
II
" Enter thlS day's data lnto the output arrays.
II
cat date [dayofweekJ dayofmonth
lf t·emark != ""

(

cat text (dayofweekj "Hollday"
cat holdate(nextholiday] dayofmonth
cat holname[nexthollday) remark
math ~.O nextholiday = nextholiday + 1

The screen layout for the calendar example is shown in Figure 33.

Page 248 JAM/ReportWnterRelease 51 12 November 93

Appendix D: Examples

«head
«head
«head

Sunday Monday Tuesday .Wednesday Thursday. Frlday Saturday «head
«head
«week
«week
«week
... <week
«week
«week
«week2
«week2
«week2
«week2
«week2
«week2
«foot
«foot
«foot
«foot
«foot
«foot
«foot
«foot
«foot
«foot
«foot

Figure 33: Calendar Report Screen Layout

Field descriptions, as generated by JAM's f2asc utility, are reproduced below:

F:monthname
It NUMBER=!

LINE=! COLUMN=28
UNFILTERED
LENGTH=9 ARRAY-SIZE=!
WHITE UNDERLINE HILIGHT

F:year
It NUMBER=2

LINE=! COLUMN=38
UNFILTERED
LENGTH=4 ARRAY-SIZE=!
WHITE UNDERLINE HILIGHT

JAMlReportWnter Release 5 1 12 November 93 Page 249

JAMIReportWnter Developer's GUide and Reference Manual

F.dnte
II NUMBERS=3, 4, 5, 6,7,8,9

LINE=7 COLUMN=2
II (7,12 7,22 7,32 7,42 7,52 7,62)

UNFILTERED
LENGTH=2 ARRAY-SIZE=7 HORIZ-DISTANCE=8
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

F:text
II NUMBERS=10, 11, 12, 13, 14, 15, 16

LINE=9 COLUMN=2
II (9,12 9,22 9,32 9,42 9,52 9,62)

UNFILTERED
LENGTH=7 ARRAY-SIZE=7 HORIZ-DISTANCE=3
WHITE UNDERLINE HILIGHT

F:prevdate
II NUMBERS=17, 1B, 19, 20, 21, 22, 23

LINE=12 COLUMN=2
II (12,12 12,22 12,32 12,42 12,52 12,62)

UNFILTERED
LENGTH=2 ARRAY-SIZE=7 HORIZ-DISTANCE=8
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

F:prevtext
II NUMBERS=24, 25, 26, 27, 28, 29, 30

LINE=13 COLUMN=2
B (13,12 13,22 13,32 13,42 13,52 13,62)

UNFILTERED
LENGTH=7 ARRAY-SIZE=7 HORIZ-DISTANCE=3
WHITE UNDERLINE HILIGHT

F:divider
B NUMBER=31

LINE=14 COLUMN=13
UNFILTERED
LENGTH=7 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT

F:date.week2
B NUMBERS=32, 33

LINE=15 COLUMN=9
B (15,19)

UNFILTERED
LENGTH=2 ARRAY-SIZE=2 HORIZ-DISTANCE=8
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

Page 250 JAM/ReportWnter Release 5.1 12 November 93

Appendix O' Examples

F:text.week2
ij NUMBERS=34, 35

LINE=16 COLUMN=4
II 116,141

UNFILTERED
LENGTH=7 ARRAY-SIZE=2 HORIZ-DISTANCE=3
WHITE UNDERLINE HILIGHT

F:holdate
II NUMBERS=36, 38, 40, 42, 44, 46, 48, 50, 52, 54

LINE=19 COLUMN=22
II (20,22 21,22 22,22 23,22 24,22 25,22 26,22 27,22 28,22)

UNFILTERED
LENGTH=2 ARRAY-SIZE=10 VERT-DISTANCE=1
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

F:holname
II NUMBERS=37, 39, 41, 43, 45, 47, 49, 51, 53, 55

LINE=19 COLUMN=25
ij (20,25 21,25 22,25 23,25 24,25 25,25 26,25 27,25 28,25)

UNFILTERED
LENGTH=40 ARRAY-SIZE=10 VERT-DISTANCE=1
WHITE UNDERLINE HILIGHT

F:month
II NUMBER=56

LINE=29 COLUMN=1
UNFILTERED
LENGTH=2 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT

F:week
ij NUMBER=57

LINE=29 COLUMN=4
UNFILTERED
LENGTH=2 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

F:newweek
ij NUMBER=58

LINE=29 COLUMN=7
UNFILTERED
LENGTH=2 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT
RIGHT-JUSTIFIED

F:dayofmonth
ij NUMBER=59

LINE=29 COLUMN=10
UNFILTERED
LENGTH=2 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT

JAMIReportWnter Release 5.1 12 November 93 Page 251

JAMIReportWnter Developer's GUide and Reference Manual

F:dayofweek
II NUMBER=60

LINE=29 COLUMN=l3
UNFILTERED
LENGTH=2 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

F:nexthollclay
II NUMBER=61

LINE=29 COLUMN=16
UNFILTERED
LENGTH=2 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT

F:remark
II NUMBER=62

LINE=30 COLUMN=1
UNFILTERED
LENGTH=40 ARRAY-SIZE=1
WHITE UNDERLINE HILIGHT

F:w~ekarea

II NUMBER=63
LINE=30 COLUMN=42
UNFILTERED
LENGTH=10 ARRAY-SIZE=l
WHITE UNDERLINE HILIGHT

Page 252 JAM/ReportWnter Release 5.1 12 November 93

INDEX
Symbols

#, JPL comment mdlcator, 40, 42

1* . *1, report scnpt comment, 43

«, name lag delImiter, 36

\, contmuatton character, 45

A
Append, output option, 15, 136, 139,

141-142, 146, 192

Area
consolidattng blank. Imes, 102, 120
defmed,5
dynamic selectIOn, 86, 121-122, 149-150
INCLUDE SCREEN compiler directtve,

46-49
nrunetag,36-37,48,49,119
shared, 46-49

See also INCLUDE SCREEN compiler
dIrective

Size, 100-10 1

AREA clause, 16, 112, 197
break footer, 66
break header, 63
colon-expanded argument, 86, 149-150
DETAIL statement, 52, 54
INIT statement, 72, 73
INSERT statement, 70
multiple permitted, 113-114

example, 241-252
page footer, 81
page header, 80

Arguments
functton calls, 99
output functions, 131-132

reports. 76-77, 95-98
example, 234-252

row-supply functtons, 129
scnpt statements

colon expansion, 85-87, 149-150
scope, 40, 88

subreports, 76-77, 95-98
example, 234-252

Array, 152
elements as break fields, 63
unpopulated elements. See SHRINK key

word

B
BEGIN REPORT compIler dIrectIve, 40, 42,

46,89-90

Blank. hnes, consolidatmg, 102, 120, 154

Border, 155

Break
cancelhng, 82-83
checking, 59-60, 114-117
computed, 60-62, 117

example, 61--62, 229-233, 243-252
defmed,3
field,57

array element as, 63
colon-expanded varIable, 86
defined,3
processmg, 59

footer, 65-67
defined,4
order of processmg, 115

group, defmed, 3
header, 63-65

defmed,4
order of processmg, 115
orphan suppression, 120-121

hierarchy, 58, 59, 111
cancellmg, 83

JAM/ReportWnter Release 5.1 12 November 93 Page 253

JAMlReportWnter Developer's Guide and Reference Manual

processlDg. 15. 52. 56-69. 109-111,
114-117

subreports.91-93
swnmary. 117

BREAK statement. 41, 57-69. 109-111.
161-164, 197

clauses and keywords, 62-69
location. 59
subreports.91

BREAKCHECK keyword. 15.52,56-57.
112, 115, 197

BREAKSPECS keyword, 83, 90, 91-92,
197.200

c
C language functJ.ons

See also CALL clause
arguments, 99
mstallmg. 50. 100
invokmg ReportWnter, 138, 180-181
return codes. 99-100

CALL clause, 50, 112, 197-198
break: footer. 66
break header, 64
colon-expanded argument, 86, 150
DETAll... statement, 52, 55
INIT statement, 72. 73
INSERT statement, 71
page footer. 82
page header, 81
pasSlDg arguments, 99

Case sensitIvity, report script keywords, 45

Clause, defmed, 41

Clauses, order of. 112-118

CLEAR statement, 41, 59, 78, 82-84,108,
165-166, 198

Close, output optJ.on. 139. 141-142

Colon expansion, 85-87, 149-150, 155

Colon-plus preprocesslDg, 155

COLUMNS output parameter. 198
default value, 77
deVice configuratIon file, 124, 125
INIT statement. 72. 73. 74

Comments. 10 report scnpt, 16. 43

Compiler
deVIce configuration file. See dev2bm
report. See rprt2bm

Compiler drrectJ. ves, 46-49

Computed break. 60-62, 117
example, 61-62. 229-233, 243-252

ContmuatIon character. report scnpt state-
ments, 45

Control strings, 156

Currency format edit. 154

Cursor
default, 105
J~nDBl, 103-105,143-144, 157
named,53-54, 103-105.143

CURSOR clause, 52, 53-54, 198

D
Data break

See also Break:
defmed,3

Database table, creating report format screen
from, 16, 187, 194-195

Date/tlDle edIt, 154-155

dbi_rwruo, 135, 138, 179, 180-181

Default cursor, 105, 143, 157

Detail area, defined, 5

DETAll... statement, 41, 51-57, 107,
167-169, 198

break: checking, 56-57, 117
break: processmg, 115
clauses and keywords, 53-57
processlDg, 52

Page 254 JAMlReportWnter Release 5.1 12 November 93

dev2bm. 123, 126, 187, 188

DevIce configuratlOn file, 12, 73, 123-126
compIhng, 126, 187, 188

Device fue, output optlon, 136, 140, 192

DIsplay attributes, 154

E
END REPORT compiler directlve, 40, 42,

46

End user, controlhng report composibon,
149-150

Error processing, JAMlDBI, 158

Errors. See Troubleshootmg

F
FEED LINES output parameter, 198

default value, 77
devIce configuratlOn fIle, 124, 125
INIT statement, 72, 73, 75

Field
display attributes, 154
duplIcate names, 14,39,48
edits, 154-155
entry function, 153
exit funcbon, 153
extenSIon delimiter, 39
funcbons, 153
name, 39
non-dlSplay, 102, 154
non-output, 40, 88

exmnple, 217-224,229-233,243-252
retaimng pre-break value, 56-57, 60
shIfting, 152
validabon function, 153

FIELD clause, 62, 198
colon-expanded argument, 86

Index

FIXEDLENGTH output parameter, 198
default, 77
deVIce configuratlon file, 124, 125
INIT statement, 72, 73, 75

Flat file mput. See Row-supply funcbon

FLOAT keyword, 81, 82, 113-114, 198

Footer
See also Break, footer; Page, footer
dermed,4

FOOTER clause, 198
BREAK statement, 57, 65-67
PAGE statement, 81-82

FORM, ReportWnter 4 scnpt reserved word,
16

funclist.c, 50, 100, 132

Function calls, 99-100

H
Header

See also Break, header, Page, header
dermed,4

HEADER clause, 198
BREAK statement, 57, 63-65
PAGE statement, 80-81

I
INCLUDE SCREEN compuer directIve, 14,

46-49,85,94-96,118-119,155

INIT output parameter, deVice configuratIon
me, 124

INIT statement, 41, 72-77, 107, 170-172,
198

clauses and keywords, 73-76, 96
processmg, 73
subreports, 92

IDltializatlOn string, 124

INITSPECS keyword, 90, 91, 200

JAM/ReportWnter Release 5.1 12 November 93 Page 255

JAMlReportWnter Developer's GUide and Reference Manual

Input procedure. See Row-supply functIon

INSERT statement, 41, 69-72, 107,
173-174, 198

clauses and keywords, 70
processmg, 70

J
JAMlDBI, 157

Jamrw, 50, 100

JPL clause, 112, 198-199
break footer, 66
break header, 63-64
colon-expanded argument, 86, 150
OET AIL statement, 52, 55
INIT statement, 72, 73
INSERT statement, 71
page footer, 81
page header, 80-81
pasSlDg arguments, 99

JPL procedures
arguments, 99
invokmg ReportWriter, 137
math precision, 157
return codes, 99-100

JXfW, 50

K
Keyword,defined,41

L
Languagessupported,5

LOB, 88,144

LEFfMARGIN output parameter, 199
default value, 77
deVice configuration file, 124, 125
IN'IT statement, 72, 73, 74-75

LIbrary functions, 179-185
dbi_rwrun, 135, 138, 179, 180-181
rw_init, 179, 182
rw_opbons, 179, 183-184
rw_ruo, 179, 185

Lme drawing, 155

LINES clause, modifylDg
NOORPHANBREAK, 67, 199

LINES output parameter, 199
default value, 77
device configurabon file, 124, 125
!NIT statement, 72, 73, 74

Local data block. See LOB

M
Makef~e,50, 100,133

math, JPL statement, 157

Microsoft Wmdows, report output, 128

Miscellaneous edits, 154-155

N
Name tag, 36-37

Named cursor, 53-54,103-105, 143

NEWPAGE keyword, 122, 199
BREAK statement, 57, 67
DETAll... statement, 52, 55
INIT statement, 72, 73
INSERT statement, 71-72, 108

NODUPL keyword, 113-114, 199
break footer, 57,66
break header, 57, 64

Page 256 JAMlReportWnter Release 5.1 12 November 93

Non-chsplayattnbute, 102, 154

Non-output field. See FIeld, non-output

NOORPHANBREAK keyword, 57, 67,199

NOREPEAT keyword, 57,67-69,199

NOREPEATATTOP keyword, 57, 69,199

Null field edIt, 154

Null stnng, argument to scnpt keyword, 44,
86, 150

o
OBUFFSIZE output parameter, device con-

fIguratlon fUe, 124, 125, 131, 132

On screen array, 152

Orphan suppression, 120-121

Output
append to file, 15, 136, 139, 141-142,

146, 192
buffer, 124, 125, 131
destlnatIons, 127-128

fUe. 136, 137, 140. 192
optlons

RWOPTIONS, 139-142
rwrun utllIty, 135-136, 192
subreports, 95-97

parameters
conflictmg, 127-128
deVIce configuration fUe, 123-126
!NIT statement, 73-76, 170-172

procedure
mstallmg, 132-133
mvokmg, 132
speclfymg 10 deVIce configuratlon fUe,

124, 125
wntmg, 131-132

under MICroSOft Wmdows, 128

Overwnte, output optIon, 136, 140, 192

p
Page

break
defIDed,3
processIDg, 78, 114, 119-122

composItlon

Index

consolIdatIng blank. lInes, 102, 120
keeping areas mtact, 119-120
orphan suppressIOn, 120-121

footer
cancellIng, 82-84
changmg, 78-80
derIDed,4
locatlon, 82
mUltiple areas 10, 114
omittIng on title and traIler pages,

108-109
processmg, 78
specifymg, 81-82, 175-177
subreports, 92-94

header
cancellIng, 82-84
changmg, 78-80
dermed.4
omItting on title and traIler pages.

108-109
processmg, 78
specifYIng, 80-81, 175-177
subreports. 92-94

margins. 72, 74-75, 124, 125
defaults, 77

numbenng, 177
parameters

confhctmg, 128
subreports, 92

size, 72, 74-76, 124, 125
defaults, 77

PAGE statement, 41, 78-82, 108-109, 122,
175-177, 199

clauses and keywords. 80-82
subreports, 92

PAGESPECS keyword, 83, 90. 91-92,199,
200

PagInatlon, 108-109, 119-122

JAMlReportWriter Release 5 1 12 November 93 Page 257

JAMlReportWnter Developer's GUide and Reference Manual

PARAMETER clause, 76-78. 96-98, 200
IN'IT statement. 72. 76

PrecIsion, numenc fields. 157

PRESERVE keyword, 90. 91-92. 200

Pnmary report, 88

PROCEDURE output parameter. device
configuratIon me, 124, 125, 131, 132

Programmmg languages supported, 5

Q

QUERY clause. 52, 53,102-105,200
colon-expanded variables, 85-86

QUick start, 20-21, 224-227

QuotatIon marks
enclosmg script arguments, 44
with coloo-expanded variables. 86-87

R
Report

See also Report format screen
converting from ReportWnter release 5.0

to 5.1, 151
converting to current release of Report

Wnter. See rw4to5
examples, 19-32, 217-252
generating

from C functions, 138, 180-181
from IPL, 137
stand-alone unlity, 187, 192-193

mlt1altzation, 72-77
layout, 35-40
qUick start, 20-21

REPORT clause, 90-92,113-114,200
break footer, 66
break header, 63
colon-expanded argument, 86
DETAIL statement, 52, 55

INSERT statement, 71
page footer, 81
page header, 80

Report format screen, 35-50
comptlmg, 49. 187, 189
creatmg from a ReportWnter release 4 re

port. See rw4t05
creating from database table, 16, 187,

194-195
defmed,5
for shared areas, 46-49

Report output. See Output

Report Script, 40-45
comments. 43
contInuanon character. 45
delimIters, 40, 42, 46
format, 42-45
statements, 51-84

reference, 159-177

ReportWriter
executables, 50, 100
imna1izing, 182
mvoking in a loop, 141. 145. 146
option parser, 183-184

Reserved word
defmed, 41, 42
glossary, 197-201

RESERVELINES subclause, 91, 200

RESET output parameter, deVice configura
tion me, 124

Reset string, 124

Return values
example, 241-252
function calls, 99-100
output functions, 132
row-supply functions. 129-130

Right Justified edIt, 154

Row-supply function, 16
arguments, 129
installing, 132-133
mvokmg, 130
return values, 129-130
wntmg, 128-130

Page 258 JAMlReportWnter Release 5 1 12 November 93

rprt2blD,49, 187, 189

rw_mlt, 179,182

rW_lDpucprocedure, 130

rw_optIons, 130, 179, 183-184

rw_run, 179, 185

rw4to5, 15, 150-151, 187, 190-191

rwmalD.c, 100

RWOPTIONS, 95-97, 98-100, 137,
139-142, 180

rwopts.c, 130, 183

rwrun JPL command, 135, 137

rwrun UtilIty, 50, 97, 100, 135-137, 156,
187, 192-193

s
Scope, report variables, 40, 88

Screen functions, 153

Screen Manager functions, 156

Script. See Report script

Scrolling array, 152

SHOWA1TOP keyword, 57, 64, 113-114,
200

SHRINK keyword, 100-101, 113-114, 145,
148,200

break footer, 57
break header, 57, 64, 67
DETAIL statement, 52, 54
INIT statement, 72, 73
INSERT statement, 70
mteractIon With non-display attnbute, 154
page footer, 81
page header, 80

Index

SPLIT keyword. 113-114, 119-120,201
break footer, 57, 67
break header, 57, 64
DETAll... statement, 52, 55
INIT statement, 72, 73
INSERT statement, 72

SPOOL output parameter. deVIce configura
tIon fIle, 124

SQL statement
break processmg, 52, 59
colon-expanded variables, 85-86
contmuation character, 45
in report scripts, 45

Stand-alone ReportWnter utIlIty. See rwrun

Sub-query, 143, 146, 147

Subclause, defmed, 42

Subreports, 88-95, 143-148
dynamic selection, 86
example, 233-240

Super-query, 144, 145

System date/time fIeld, 154-155

T
tb12r, 16,20, 187, 194-195,224-233

Title page, OmItting header and footer,
108-109

TraIler page, OmIttmg header and footer,
108-109

Troubleshootmg, 207-216

u
Unnamed cursor, 143, 157

User-wntten functIons
See also CALL clause, Output, procedure,

Row-supply functIon
mstalling,50,l00

JAM/ReportWriter Release 5.1 12 November 93 Page 259

JAMlReportWnter Developer's GUIde and Reference Manual

v
ValIdation, field. 153

Vanables
colon-expanded.85-87.149-150
scope. 40. 88

VARLENGTH output parameter. 201
default. 77
deVice configuration file. 124. 125
INIT statement. 72. 73, 75

w

WarDIng messages. Ignore. output option.
136. 140. 192

Wmdows Print Manager. 128

Word-wrapped array. 152

Page 260 JAMlReportWnter Release 5.1 12 November 93

JAM/Presentation

interface

for

OSF/Motif,

OPEN LOOK

and

MS Windows

Release 1.4

This is the manual for the JAM/Presentation interface for Microsoft Windows, OSF/
Motif, and OPEN LOOK. It is as accurate as possible at this time; however, both this
manual and JAMlPresentation interface itself are subject to revision.

JAM is a registered trademark and JAM/Presentation interface is a trademark of
JYACC, Inc.

IBM, PCIXT, IBM AT, PS/2, and IBM PC are registered trademarks of International
Business Machines Corporation.

Windows is a trademark and Microsoft, MS, and MS-DOS are registered trademarks
of Microsoft Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

OSFlMotif is a trademark of the Open Software Foundation.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

Helvetica and Times are registered trademarks of Linotype Company.

Times Roman is a registered trademark of Monotype Corporation.

Other product names mentioned in this manual may be trademarks of their respective
proprietors, and they are used for identification purposes only.

Please send suggestions and comments regarding this document to:

Technical Publications Manager
JYACC, Inc.
116 John Street
New York, NY 10038

(212)267-7722

© 1992 JYACC, Inc.

Al! rights reserved.
Printed in USA.

TABLE OF CONTENTS

Chapter 1
Introduction 1

1.1 About This Document .. .
1.1.1 Conventions. 1

1.2 What is the JAMlPresentation interface? . 2

1.3 Using JAMlPi Effectively 2

1.4 Overview of Features in JAMlPi 4
1.4.1 Portability Across Environments 4
1.4.2 Compatibility with Character JAM. 5
1.4.3 Support for GUI features 5

Transformation of Objects and Text 5
Extended Functionality . 5
Extended Fonts and Colors . 5
Application Defaults . 7
Extended Library Routines . 8

Chapter 2
JAM Objects into GUI Widgets 11

2.1 Introduction. 11

2.2 Widget Attributes 12
2.2.1 Widget Attribute Hierarchy. 12
2.2.2 Application-Wide Attributes 13
2.2.3 Screen-Wide Attributes 15
2.2.4 Widget-Specific Attributes . 16

2.3 Transformation into Widgets 17
2.3.1 Display Text and Protected Fields 17
2.3.2 Data Entry Fields 17
2.3.3 Arrays. 18
2.3.4 Menus. 19
2.3.5 Groups. 20

JAM/Pi Release 1.4 1 December 92 Pagei

JAM/Pifer OSFlMotif, Microsoft Windows and OPEN LOOK

Chapter 3
Arranging Screens in JAMlPi .. 23

3,1 Overview of Positioning 23

3.2 Anchoring. 26
3.2.1· Anchoring by Field Justification. 26
3.2.2 Horizontal Anchoring: the halign Field Extension 26
3.2.3 Vertical Anchoring: the valign Field Extension 27
3.2.4 Anchoring Display Text 28

3.3 Whitespace. 29

3.4 Proportional vs. Fixed Width Fonts 30

3.5 Widget Size ... 32

3.6 Fine Tuning Screen Arrangement 33
3.6.1 The space Field Extension 33
3.6.2 The noadj Field Extension 33
3.6.3 The hoff and voff Field Extensions. 34

3.7 Refreshing the Screen. 35

3.8 Separator Rows and Columns 36
3.8.1 Separators and the Elastic Grid. 37

Chapter 4
JAM Behavior in a GUI Environment. 39

4.1 JAM Screens. 39
4.1.1 Title Bars : 39
4.1.2 Multiple Document Interface in MS Windows. 40
4.1.3 Focus... 41
4.1.4 JAM Borders. 42
4.1.5 Iconification. 43

Preventing Iconification 43
4.1.6 Toggling Between Menu Mode and Data Entry Mode. 44

4.2 Error and Status Messages 44
4.2.1 Dialog Box Icons 46
4.2.2 Location of the Status Line. 47

Status Line Key tops 47
Key top Functions in the Authoring Tool 47

Page ii JAMlPi Release 1.4 December 92

Table of Contents

4.3 Shifting and Scrolling. 47
4.3.1 Shifting Fields and Proportional Fonts 48
4.3.2 User Interface to Shifting and Scrolling 49
4.3.3 Shifting and Scrolling Indicators 49

Turning Off JAM Shift/Scroll Indicators 49
Changing the Characters Used as Indicators. 50

4.4 Cutting, Copying & Pasting Text '. 50

4.5 Soft Keys ... 51
4.5.1 Location of Soft Keys . 52
4.5.2 Soft Keys vs. Menu Bars . 52

The kset2mnu Utility 52

Chapter 5
Entering Screen and Field Extensions 53

'5.1 Introduction .. '.' 53

5.2 The Screen Extensions Window. ... 54
5.2.1 The Details Window for Lines and Boxes 58

5.3 The Field Extensions Window. 61
5.3.1 Synchronizing JAM and the GUI 61
5.3.2 Forcing the Widget Type. 61
5.3.3 Entering Data in the Field Extensions Window 62
5.3.4 The Frame Window. 66
5.3.5 Widget Details Windows. 68
5.3.6 The Size and Alignment Window. 71

Chapter 6
Extension Reference. .. 75

6.1 Introduction. 75

6.2 Extension Syntax ... 76
6.2.1 Colon Expansion of Extension Arguments 76

6.3 Propagating Extensions .. 77

6.4 Extension Reference. 77
bg
fg specify background or foreground color for a screen or widget. 81
box draw a box . 84
checkbox create a checklist style toggle button 87
dialog create a dialog box from a screen 88
font specify the font for a screen or widget 89

JAM/Pi Release 1.4 1 December 92 Page iii

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

frame
halign
valign
height
width
hline
vline
hoff
voff
icon
iconify
label
list
maxImIze
multiline
multitext
noadj
noborder
noclose

create a frame around a widget , . 92

specify alternative horizontal or vertical alignment for a widget 94

specify the width or height of a widget . 96

create a vertical or horizontal line ... '. 98

specify a horizontal or vertical offset for a widget 102
enable iconification and associate an icon with a screen 104
start this screen as an icon .. 106
create a label widget 107
create a list box from an array .. 108
invoke a window maximized 110
create a m!Jltiline label for a menu or group button 111
create a multiline text widget from an array 113
disable vertical or horizontal grid adjustment for a widget 115
suppress the GUI border for this screen 116
suppress the close option on the GUI window menu 118

nomaximize prevent the user from maximizing a window 119
120
122
123
124
125
126
127
130
134
136
138
139
140
141
142
143

nomenu suppress the GUI window menu
·nominimize
nomove
noresize
notitle
nowidget

prevent the user from minimizing a GUI window
suppress the move option on the aUI window menu
prevent the user from resizing a aUI window
suppress title bar
don't create a GUI widget for this field

optionmenu create an option menu widget
pixmap associate a bitmap or pixmap with a label
pointer specify the pointer shape
pushbutton create a pushbutton widget
radiobutton create a radio style toggle button
scale create a scale widget
space equally space the elements of an array
text create a text widget
title change the title bar on a screen
togglebutton create an in/out style toggle button

Pageiv JAM/Pi Release 1.4 1 December 92

Table of Contents

Chapter 7
Setting Application Defaults 145

7.l Resource and Initialization Files 145
7.1.1 Resource and Initialization File Names 145
7.1.2 Structure of Resource and Initialization Files. 146
7.1.3 Location of Resource and Initialization Files. 148

7.2 Colors. 149
7.2.1 Setting JAM Palette Colors. .. 149
7.2.2 Colors Beyond the JAM Palette 151

Motif Color Resources 151
OPEN LOOK Color Resources. .. 151
Motif/OPEN LOOK Background and Foreground Resources .. 152

7.3 Fonts. 153
7.3.1 Where Fonts are Specified 153

The Application Default Font ... 153
The Default Screen Font. .. 154
A Widget's Font 154

7.3.2 Naming Fonts 155
Windows font naming .. 155
Motif and OPEN LOOK font naming. 155

7.4 Aliasing: GU! Independent Fonts and Colors 158
Restrictions on Aliasing 159

7.5 Windows Initialization Options. .. 160
7.5.1 The [Jam Options] Section of the Initialization File. 160

GrayOutBackgroundForms .. 160
FrameTitle .. 160
StartupSize ... 160
StatusLineColor 161
SMTERM .. 161

7.5.2 The Windows Control Panel and win.ini File. 161
7.5.3 Highlighted Background Colors in Windows. 161
7.5.4 Samplejam.ini File. 162

7.6 Motif and OPEN LOOK Common Resource Options.. 163
7.6.1 Motif and OPEN LOOK Behavioral Resources. 163

The baseWindow Resource. .. 163
The formStatus Resource 163
The formMenus Resource. .. 164
Combinations of base Window, formMenus and formStatus ... 164

JAM/Pi Release 1.4 1 December 92 Page v

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

7,6,2 Restricted Resources, , , .. 165
7.6.3 Suggested Resource Settings 165
7.6.4 The rgb.txt File in Motif and OPEN LOOK. 166

7.7 Motif Resource Options.. 167
7.7.1 Motif Global Resource and Command Line Options] 67
7.7.2 Widget Hierarchy in PilMotif .. 168

Base Screen ..] 68
Dialog Boxes. .. 169
JAM Screens ..] 69
Fields.]71
Display Text, Lines and Boxes] 73
Menu Bars .. 173

7.7.3 Sample Motif Resource File for JAM. 175

7.8 OPEN LOOK Resource Options 179
7.8.] OPEN LOOK Global Resource and Command Line Options .. 179
7.8.2 The OPEN LOOK keepOnScreen Resource. 180
7.8.3 Widget Hierarchy in Pi/OPEN LOOK 180

Base Screen .. 181
JAM Screens .. 182
Dialog Boxes. .. 183
Fields. 183
Display Text, Lines and Boxes 185
Menu Bars .. 185

7.8.4 Sample OPEN LOOK Resource File for JAM 188

Chapter 8
Menu Bars .. 191

8.1 Introduction. .. 191

8.2 Location of Menu Bars , .. 191
8.2.1 Pop-Up Menu Bar in Motif and OPEN LOOK 192

8.3 Menu Bar Scope .. 192

8.4 The Menu Script. .. 194
8.4.1 Menu Script Structure '. 194
8.4.2 Menu Script Components. .. 194
8.4.3 Sample Menu Script. .. 198

8.5 Testing Menu Bars in The Authoring Utility 200

8.6 Menu Bar Library Routines 201
Prototyping Menu Bar Library Routines 202

Page vi JAM/Pi Release 1.4 1 December 92

Table of Contents

8.7 Installing Menu Bars .. 202
8.7.1 Enabling Menu Bars 202
8.7.2 Installing Menu Bars of Various Scopes. 202

Installing an Application-Level Menu Bar 202
Installing a Screen-Level Menu Bar .. 202
Installing Override-Level Menu Bars. 203
Installing Memory-Resident Menu Bars 203
Installing the System-Level Menu Bar 203

8.7.3 Storing a Menu Bar in Memory 203

8.8 Using Menu Bars Effectively. .. 203

8.9 Menu Bars vs. Soft Keys 204
8.9.1 Using Libraries to Store Menu Bars and Keysets 204
8.9.2 Converting Keysets into Menu Bars. .. 205

Chapter 9
Using the Mouse . 207

9.1 Introduction. .. 207
9.l.l Mouse Cursor Display 207
9.1.2 Mouse Buttons 208
9.1.3 Mouse Functions. .. 208

Menu Bars .. 209
Focus. 209
Move, Offset and Resize .. 210
Moving the Cursor and Making Selections. 210
Scrolling and Shifting .. 211
Editing Text. .. 212
Select Mode. .. 212
Miscellaneous 212

Chapter 10

10.1

10.2

10.3

GUI Specific Features 213
Overstrike Mode in PilMotif and Pi/OPEN LOOK. 213

Interfacing with the GUI Library .. 213

System Commands in PilWindows 214

Chapter 11
Conversion Issues . 215

11.1 Background Highlights. .. 215

JAMlPi Release 1.4 1 December 92 Page vii

JAM/Pifor OSFlMotif, Microsoft Windows and OPEN LOOK

11.2 Line Drawing """,. .. 215
11.3 JAM Version 4 Applications 216
11.4 JAM Version 5 Applications 216

Chapter 12
Library and Utility Reference 217

12.1 JAMlPi Library Routines ... , 217
GUI Library Interface Routines 217
Menu Bar Routines 217
File Selection Box Routines 218
Miscellaneous Routines 218

sm_adjuscarea refresh the current screen 219
sm_c_menu
sm_d_menu
sm_drawingarea
sm_filebox
smjiletypes
sm_menuinit
sm_mn_forms
sm_mnadd
sm_mnchange
sm_mndelete

close a menu bar
display a menu bar stored in memory
get the widget id of the current JAM screen
open a file selection dialog box
set up a list of file types for a file selection dialog box .
initialize menu bar support
install menu bars in memory
add an item to the end of a menu bar
alter a menu bar item
delete a menu bar item

sm_mnget get menu bar item information
sm_mninsert insert a new menu bar item
sm_mnitems get the number of items on a menu bar
sm_mnnew create a new menu bar by name
sm_r_menu read & display a menu bar from memory, library or disk
sm_translatecoords translate screen coordinates to display coordinates
sm_ widget get the widget id of a widget
sm_win_shrink trim the current screen

12.2 Utilities .. .
menu2bin
kset2mnu

Appendix A

convert ASCII menu scripts to binary format
convert key sets into ASCII menu scripts ; ..

Terminology
General Terms
Terms Relating to Screens
Terms Relating to Items on Screens

Index

Page viii JAM/Pi Release 1.4 1 December 92

220
222
224
226
231
233
234
235
238
240
242
244
246
248
250
252
255
257
258
259
261

263
263
264
264

267

Chapter 1

Introduction

1.1

ABOUT THIS DOCUMENT

Chapter 1: Introduction

This document is intended to introduce the JAMlPresentation interface to developers
who are already familiar with JAM®. It is not intended as a substitute for any part of
Volumes I and II of the JAM manual. If you are new to JAM, please read the JAM
manual first.

Conceptually, this manual is separated into two parts. The first part describes what the
JAM/Presentation interface is and explains how to use it. Chapters 1 through 5 com
prise this part. The balance of the manual is a reference, giving the details of the various
features and functions in the product. An appendix at the end of the manual contains a
glossary of terms associated with Graphical User Interfaces (GUI's) and JAM. These
terms are used throughout the manual. Please refer to Appendix A if you are confused
about the meaning of any terms used.

1.1.1

Conventions
. All conventions in the JAM manual are adopted for this manual. In addition, the fol
lowing icons indicate that a particular section applies to one presentation interface only.

gj:q!:~!tt:n~:::..ad~~ •. ~~f.:~':~~~:~::~~t~~~~~~~~t,:ii~~g~~:~~.~~~~~~ff:~n···

JAM/Pi Release 1.4 1 December 92 Page 1

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

1.2

-WHAT IS "THE JAM/Presentation interface?
The JAMlPresentation interface (JAMlPi) product line provides a layer between the
user and the application that enables JAM to support a variety of textual and graphical
environments. JAMlPi products include:

• JAMlPresentation interface for Microsoft Windows (PilWindows)

• JAMlPresentation interface for Motif (PilMotif)

• JAMlPresentation interface for OPEN LOOK (Pi/OPEN LOOK)

• JAMlPresentation interface for Graphics (Pi/Graphics)

Presentation interfaces for other environments, such as Macintosh, are in development.

Traditional, character-based JAM, is referred to in this document as "character JAM".

This document covers the JAMlPresentation interface for three Graphical User Inter
faces (or GUI's): Microsoft Windows, Motif and OPEN LOOK. Pi/Graphics is covered
in a separate document. The abbreviation JAMlPi, when used here, encompasses Pit
Windows, PilMotif and Pi/OPEN LOOK, but not Pi/Graphics.

The JAM/Pi layer transforms JAM into a GUI compliant product. JYACC's philoso
phy is that JAM should be a flexible tool for creating device independent software
applications. Figure 1 illustrates this layered concept.

JAMlPi retains JAM functionality but adopts the look and feel of the presentation de
vice. Preserving the look and feel of the GUI was the overriding concern in the develop
ment of JAMlPi.

The previous paragraph should not be taken to imply that JAMlPi applications only
look like GUI applications. In fact, applications developed with JAMlPi are GUI com
pliant applications.

1.3

USING JAM/Pi EFFECTIVELY
In order to effectively use JAMlPi, you must have an understanding of JAM. JAM
screens are built from JAM objects: fields, groups, menus and display text. JAM ap-

Page 2 JAM/Pi Release 1.4 1 December 92

Chapler 1: Introduction

Character JAM JAM/Pi

Figure 1: Schematic models of character JAM and JAM/Pi. User input, termi
nal output, and screen appearance are handled by the Presentation
interface layer instead of the Screen Manager.

JAM/Pi Release 1.4 1 December 92 Page 3

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

plications are built from JAM screens, The Screen Manager handles processing within
a screen, and the JAM Executive provides interscreen links and data flow control.

JAMIPi provides a link to the GUI world by converting JAM objects into GUI widgets.
But JAMIPi provides a higher level interface than that available from most products,
For example, with JAMlPi the developer has no need to worry about callbacks for each
widget on a screen. The JAM Screen Manager deals with these issues. Similarly, inter
screen links are easily specified in JAMlPi, and the developer does not need to define
what happens, for example, when the close button on a screen is pressed by the user.
These events are handled by the JAM Executive, and may be defined on an applica
tion-wide basis.

The best way to use this product is to develop screens from a functional viewpoint, and
worry about their appearance as an implementation detail. Don't take the approach that
you want a certain six widgets on a screen and then go about placing them there. The
best approach is to design screens with JAM objects and JAM interactions in mind.
Once a screen has been created, you can worry about changing the type of widget used
in a particular case. JAM provides a default transformation of each type of JAM object
into a GUI widget, but the developer is free to override the default choices

1.4

OVERVIEW OF FEATURES IN JAM/Pi

1.4.1

Portability Across Environments
Applications developed in charac.ter JAM can be run without modification under
PilWindows, PilMotif or Pi/OPEN LOOK, JAM screens adopt the look and feel of the
GUI, but JAM functionality remains constant. JAM screen binaries are identical

. among environments. Each environment simply interprets them in its own way, _ _ ,-. ::

In many real world applications the developer will wish to make certain cosmetic modi
fications to screens in order to take maximum advantage of GUI features. Most of these
modifications are portable back to character JAM, as well as to other Presentati'on in
terfaces.

Certain features in JAMIPi are extensions to JAM, and are not currently portable back
to character-based environments. These features are implemented so they translate to
parallels in character JAM. For example, menu bars translate to key sets. Planned en
hancements to character JAM will eliminate many of these limitations.

Page 4 JAM/Pi Release 1,4 1 December 92

Chapter 1: Introduction

1.4.2

Compatibility with Character JAM
From the developer's point of view, the functionality of JAMIPi is virtually identical to
character JAM. The Screen Editor, Data Dictionary Editor, and Keyset Editors retain
their functionality, as does Application Mode within the Authoring tool. Navigational

. techniques and mouse behavior differ slightly among interfaces, but conceptually the
JAM authoring tools work as they always have.

From the end-user's point of view on the other hand, JAMIPi applications are purely
GUIbased.

1.4.3

Support for GUI features
In order to create real GUI applications, JAM/Pi provides support for a wide range of
GU! features.

Transformation of Objects and Text
Each type of object on a JAM screen is transformed into an equivalent GU! object. For
example, in Figures 2 and 3 we see a JAM menu, a data entry field, a checklist group,
and display text in character JAM and in PilMotif respectively.

Each JAM window comes up as its own GUI window, with appropriate decorations as
prescribed by the window manager. These windows can be moved, resized, scrolled,
and in some cases, iconified.

Extended Functionality
Another example of GUI feature support is the implementation of menu bars, which are
often the primary tool for user interaction in GUI applications. The key set hook in char
acter JAM may be used in JAMIPi to enable menu bars. Like keysets;menu bars are
created as external components to an application, and accessed from disk files, li
braries, or as memory resident 'files'. This architecture minimizes the steps required to
convert applications from one environment to another. For applications that are already
using keysets, a utility is provided for converting keysets into menu bars.

Figures 4 and 5 compare two applications. In the first, key sets are used to navigate. In
the second, the key sets have been converted into menu bars.

Extended Fonts and Colors
GUI's offer a host of extended font and color choices that are unavailable on most char
acter-based platforms. In order to support these enhancements and maintain portability,

JAM/Pi Release 1.4 1 December 92 Page 5

" -;'

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

401K Plan
Insurance
Childcare
Exit

I Principal Only
I Dependents Only
~ Principal/Dependents

l~·J~ill~illtiilllilllllml!!!llill.!III!!lilllltiD:

elect a benefit category
Figure 2: Screen in character JAM.

cosmetic screen .alterations taking advantage of these extended display options are indi
cated by special comments in the JPL modules associated with each field and screen.
These comments are called extensions. The following can all be specified as exten
sions: font, widget size, widget position and alignment, specialized widgets, extended
colors, title bars, bitmaps, border decorations, and graphics. Formatted screens are pro
vided to aid the developer in entering extensions.

Since extensions are stored in JPL comments, they are portable. In environments such
as character mode, where extensions are unavailable, the comments are simply ignored.

Page 6 JAM/Pi Release 1.4 1 December 92

=1 jxfonn

£.dit Qptions Keys Windows

Sel ect a benefi t cat egory

EMPLOYEE BENEFITS

1401K Plan I
I Insur~~~"1
I Childcare I
I Exit I

Iijt.M'. [Cindi Phon,emajl

• Principal Only

¢ Dependents Only

¢ PrincipaVDependents

Figure 3: Same screen· in PilMotif.

Application Defaults

Chapter 1: Introduction

I" 10
Help

Resource files and initialization files provide for customization on a screen-wide and
application-wide basis. These are external to JAM, and therefore may be changed by
the end-user. Resource files determine the display characteristics and user interface be
havior of an application. Items such as default colors, default fonts, border and shadow
characteristics, and keyboard focus policy can all be included if the GUI supports them.

JAM/Pi Release 1.4 1 December 92 Page 7

JAM/PI for OSF/Motif, Microsoft Windows and OPEN LOOK

Figure 4: Character-based screen with keysets

The structure and contents of resource and initialization files are specific to the GUI
being employed,

Extended Library Routines

JAMIPi also provides extended library routines for functionality specific to GUI's, For
example, routines are available to modify menu bars at runtime and interact with the
GUI directly. While some of these extensions are not portable among environments,
they provide additional features in situations where portability is not an issue.

PageS JAM/Pi Release 1.4 1 December 92

..

Percentage of weekly
paycheck contributed

'iM·MM!" III
• Money Market 0 %

o Growth Fund D %

• Income Fund ~ %

• Bond Fund ~ %

,.,,1\ 100 1%

Figure 5: PUMotif Screen with menu bars

JAM/Pi Release 1.4 1 December 92

Chapter 1: Introduction

Page 9

Chapter 2: JAM Objects into GUI Widgets

Chapter 2

JAM Objects into GUI Widgets
This chapter examines how JAM screen objects are transformed into GUI widgets un
der JAMIPi. An illustration of each widget is provided, along with a brief description
of how the user interacts with it.

2.1

INTRODUCTION
GUI screens are cOI!IPosed of widgets (also called controls in MS' Windows). When a
JAM screen is brought up under JAMlPi, JAM screen objects become widgets. Each
type of JAM object is transformed into a particular type of widget. Each JAM object
has a default transformation, but you may choose to use a different widget than the de
fault. The table below lists the default transformations using Motif terminology. Names
for all the widgets in the various interfaces are listed in Chapter 7.

JAM Object Default Widget

Display Text Label Widget

Data Entry Field Text Widget

Protected Field Label Widget

Menu Push Button

Radio Button Group Radio Toggle Buttons

Checklist Group Checklist Toggle Buttons

Border - none-

Line Drawings - none-

JAM/Pi Release 1.4 1 December 92 Page 11

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

Additional widgets that a developer can specify are listed below. The specifics of how
to create each widget are detailed in Chapters 5 and 6.

• List box

• Optionmenu (or combo box)

• Multiline text widget

• Multiline button

• Scale widget

• Pixmap

There are three additional widgets used for screen decoration. They are:

• Separator (horizontal or vertical line)

• Frame

• Box

2.2

WIDGET ATTRIBUTES
Before going into the specifics of how JAM objects are transformed into widgets, it is
important to understand where widgets get their attributes from.

2.2.1

Widget Attribute Hierarchy
The design of each widget is detenruned by the GUI, but various attributes may be set
by the developer. Certain-attributes, such as foreground-and background colors, are in-.
hereted from JAM. JAMIPi extensions may be used to override these inhereted attrib- -
utes. Other attributes, such as font, may be set on an application-wide, screen-wide, or
individual widget basis.

JAMlPi provides a hierarchical system for determining attributes. It goes from GUI
defaults files for application-wide settings, to screen extensions for screen-wide set
tings, to JAM field attributes and field extensions for widget-specific settings. Figure
6 illustrates the hierarchy that determines which attributes are effective for a widget.
The various ways of setting attributes are summarized below.

Page 12 JAM/Pi Release 1.4 1 December 92-

Chapter 2: JAM Objects into GUI Widgets

Field-Wide

Screen-Wide {

Application- _
Wide

Field Extensions

JAM Field Attributes

Screen Extensions

win.ini

Motif & OPEN LOOK Windows

Figure 6: Hierarchy for widget attributes. Field extensions override screen
extensions, which override the command line, etc.

2.2.2

Application-Wide Attributes
Application-wide attributes are set in GUI defaults files. These are external to a JAM
application. Their structure is determined by the GUI. Note that the end user may edit
these files, thereby changing the default values. Application-wide attributes may be set
in the following locations:

JAMlPi Release 1.4 1 December 92 Page 13

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

Page 14 JAM/Pi Release 1.4 1 December 92

Chapter 2: JAM Objects into GUI Widgets

o~,,,,.···,··

.. : .. :}}:: .. : .. : .. :~f;~:
,t." ,:.k· speclfydefaultyalues~fo"')Yldget ~qI9XSJQI)!{i;1ll!40t1!eI;,attnblites,.A~tnb."

"e,. ,'., , ..•. ;::; .• '.~ ,', .. ', .. ,~.', •. :,: .·:~·.··~L~~;~{~~~~~~~!~~~!g;:.~(e~1~i~r~!~~~~;~:~1~~~~~~~~~~j4~~~;f~~:
k.. '. ?'\ tiibute'seCificatiOrisih<if1tie"n61a '"'lic'aiio~\Vld~overridejscreenSwide~i

~~~tfiJ~ijiJli,ii'ijii!¥~~·~~f~ 
~ _:-.{: ~ ,~~..;:: .:-¥« ,'" .:=t:~ -<... i."" ~. ~ '::t, 

·~Xq.Ei!faultR file", ~',x ", ~." :h '''~ \t <~, +. <' Y' /'~' '¥ ,j , ..... ;.. .<". '\ ~ 
}: ' " . "·w THis is th((u~r s;"';ific reso'tirce. fili ill :ihe:,x: Wjndow..S~y~stdin.;qt i§ nbr- ' 
, ' :ik 'm: ~,:":'~ :;""- M' m <~ <,,-,- ~ .~»~~ ~":;;::=a ~-:::::~ <:*::..::. ~ ~', 

; >, J't" "i; ~ally J?u~d'i~ t~~" u~<~(~ho:;:e~pir~ct~:ry. ~J1 ,~tt~ing~,t?!.t ~.a~ ',pe, ~aqe , 
,f. i. '. "", •. I~'the. applIcatIon resourse file m.,~x alsq be, m~de here", SettIngs I.n ~hls fi}e' 

~~~'i}i;~~i;;;;~!ilt~;~I~~o~i~~ 
2.2.3

Screen-Wide Attributes
Screen-wide attributes may be set via the:

• screen extensions
These are used to specify a default background color, foreground color and
font for widgets on the screen. Screen extensions are stored in the screen
level JPL comments and may entered through special formatted screens ac
cessed via SPFll. Screen extensions are detailed in Chapters 5 and 6.

11V~! .J 0 ~i';ln PiIMotifarid.Pi/OPEN;;LOOK.;atttjbutes~specified'j'riihe;reS6i:irce
JH.~· t~at;tt<f~rJQ~~;s2f~~n·,Il~~¢jk~jq4iY.~I~htto '$.¢r~~n ;.ex i~iisi6'Tj\ ~ftndjdve):ri8~Xljeri'ti

JAM/Pi Release 1.4 1 December 92 Page 15

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK

2.2.4

Widget-Specific Attributes
Widget-specific attributes may be set through the:

• JAM display attributes window
Here you may specify attributes for individual fields or groups. Certain set
tings, such as blinking, may not be implemented in certain interfaces. This
window is accessed via PF4 in the Screen Editor .

• field extensions
Attributes set here override all other settings. Attributes that may be set in
clude: widget size, font, extended foreground and background colors, in
cremental positioning, and specialized widgets. Field extensions are stored
in the field-level JPL comments and may be entered through special for
matted screens accessed via SPFI2. For details see Chapters 5 and 6.

I.M~:I ~QJI ... ··•· Ii\":Pi!M:61ifand Pi/O.PEI9" Lt)()KY'ahiibiites sp'ecinediiF"the'resour&'

j~~!:b~Z;;~;:~~~;~·:~~~~t~:?:'~::,~.~~:.~~ts'~;:~l~~~~~>~~I~~~~tb.~.8eld ;~~~i~~i~~"~~jtn~:~;~~:;

Page 16 JAM/Pi Release 1.4 1 December 92

Chapter 2: JAM Objects into GUI Widgets

2.3

TRANSFORMATION INTO WIDGETS
The following sections detail the transformation of each JAM object into its GUI coun
terpart.

2.3.1

Display Text and Protected Fields
Regions of display text become label widgets in JAMIPi. Regions of display text are
not fields, and therefore cannnot have field extensions. They do however have JAM
display attributes, and can inheret other attributes from the screen.

Fields protected from data entry and tabbing also become label widgets. They have an
advantage over display text in that they can have field extensions, making them more
flexible. For example, if you wish to change the font of a single region of display text,
convert it into a protected field and change the font with a field extension. Using pro
tected fields also allows label widgets to be right justified. Right justified label widgets
are discussed further in section 3.2.1, in relation to positioning.

Figure 7 illustrates how label widgets appear in Motif and Windows.

Display Text 8Ild

Protected Fields

become

Label Widgets

Display Text and
PN1n1H Fit>ItIs
become
Label Widgets

~ Labe I Widgets

Display Text and
P1tltected Fields

become
label Widgets

Figure 7: Label widgets in PVMotif, PilWindows and PVOPEN LOOK.

2.3.2

Data Entry Fields
Data entry fields become text widgets in JAMIPi. The look and feel of the text widget
is determined by the GUI, but the JAM field edits control its behavior.

JAM/Pi Release 1.4 1 December 92 Page 17

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK

I.:!..I Text Widgets

Widget 1: I wwwww I
Widget 1: IwwwwW

Widget2:_

Widget ,1: WWWWWW~

Widget 2: I iiiiiiiiiiiiiii
Widget 2: lIIiiiliiiliiii

Widget 3: I iiiiiiiiii I Widget 3: liiiiiiiii~ Widget 3: iiiiiiiiii

Figure 8: Text widgets in Pi/Motif, PUWindows and Pi/OPEN LOOK.

2.3.3

Arrays
By default, each array element is a separate text widget. Field extensions provide ways
to change arrays into multiline text widgets (for data entry fields) or list boxes (for
selection fields). There is also a field extension to assure that individual array elements
are spaced evenly on the screen. Refer to Chapters 5 and 6 for details.

Arrays protected from data entry and tabbing become label widgets.

An array may be scrolled by dragging the mouse cursor beyond the edge of the array in
the direction you wish to scroll, or by using the keyboard or scrolling indicators (if pres
ent). List boxes and multiline text widgets may be scrolled and shifted from optional
scroll bars.

B
text widget

Second 'for entering
continuous

I.:il

First

Second

Arrays

= Multillne
text widget
for entering :.

~ Multiline ~
~ ... Iin_' _t.S_o_'_..I

First
S~ond

'd
Foorth
Fifth

Multiline
text widget
tOl'mmng
COI1inuous
lines of

Thlrd ..
continuous ~ ,,'

I Fourth I
~

Fourth lines of tb ---
Fifth

Figure 9: An array and multiline text widget in PilMotif, PUWindows and Pi/
OPEN LOOK.

Page 18 JAM/Pi Release 1.4 1 'December 92

2.3.4

Menus

Chapter 2: JAM Objects into GUI Widgets

Menu fields appear as push buttons in JAMIPi. Push buttons perfonn an action when
activated with the mouse or keyboard. Label text is centered within the push button
widget, and drop shadows make the widget appear to protrude from the screen. '

As in character JAM, menu fields must have the menu edit and be protected from data
entry and tabbing in order to look and act as menus in both data entry and menu modes.

@) Menu

Benefits I Benefits

;p.~~9.O:6~!i t Newsletter

(Recruiting I Recruiting I
Newsletter

Recruiting

[Sign Off) Sign Off I Sign Off

Figure 10: A set of menu fields in Pi/Motif, PUWindows and Pi/OPEN LOOK.
The "Personnel" option is selected.

~it!t~~i~if(~!~~!~~~~If!~r!~({:3
iM~ltI1melbuttons'c;.a,nhavecll~tomjpplon>.Hlfyou Wl~J1 tochange'the,c91qr of;ll}regular
"pu'§h'button, make it a multilinehu'iton:with only. one line. See,Chapten> 5 'and;6,for
i\t~Y;l.i~ls·~~~~t~:.;;.,:.: . 'J\?~~~" ~.:.:~ ~~ .. ;~.~~~:, . ·tt.~g~ :r ,'X ~.~~~~~~" ::~.~ rnI;", .r~ !::':~ '.:~ .. (:~:Jif: ~~~~:w ... ~,~ ;. .: .. ', .. w.,~~~ ... ,::.~::

JAM/Pi Release 1.4 1 December 92 Page 19

L(:'.

JAM/Pifer OSF/Motif, Microsoft Windows and OPEN LOOK

Menu bars are als,o available in JAMlPi. Refer to Chapter 8.

2.3.5

Groups
Groups become sets of toggle button widgets in JAMlPi. Radio buttons have one style
and checklists another. The details are set by the GUI. The checkbox on a toggle button
is filled in when the entry is selected, and empty when it is unselected.

A group can be converted into a list box widget via the field extensions. List boxes are
appropriate for groups since groups are selection criteria, rather than data entry tields.

I M~<iliimltM6ti{. grOups \Witpout<the:cheSk~6$>ediC~ppei#.;a$·~,;,t,§,~~H§ ~U!t()ri~,_,
'withbutii check:bOx''h lilHhisifonrt,.thel~~lik~·i iiShibuTtons'ilia:demitin. ',' ushecUX'

~~!~i~~'r~~~~f~~~tti~~~;ir~~f~j
"Y:ounlal¢h~t1geJI:te.waJl!e f6r,thi'5;resourcetoAr.;IGNMg:N~_C:ENTER.fo(tentetJ~~tl'"

;~~~~~:~~~~f~~t~g~~~~:.~~· f6r~righ:f~~~~~g~~ti::h;:~~~\;~,~:~~~~rfT~ti9h)rt~:ie:~

Page 20 JAM/Pi Release 1.4 1 December 92

Chapter 2: JAM Objects into GUI Widgets

<> Choice 2 • Choice 2

• Choice 3 • Choice 3
ChoiceS

o Choice 1
o Choice 2
@) Choice 3

@

0 Choice 1

0 Choice 2

!if Choice 3

D Choice 1
IZI Choice 2
IZI Choice 3

Groups

0 Choice 1

~ Choice 2

!if Choice 3

c::J
Choice 6 r-=-...
GeMi'- t--

I-
Choice 8

I;:;:;

Figure 11: A radio button, checklist, and list box in PUMotif, PitWindows and
PUOPEN LOOK.

JAM/Pi Release 1.4 1 December 92 Page 21

Chapter 3: Arranging Screens in JAM/Pi

Chapter 3

Arranging Screens in JAM/Pi

When JAM screens are displayed in JAMlPi, JAM objects are transfonned into wid
gets. The size of a widget may be different than the size of the JAM object that it re
places. In fact, most widgets are slightly larger than their character based counterparts.
-In order to convert JAM screens intoGUI screens without enlarging them excessively,
JAMIPi uses a positioning algorithm that attempts to fit widgets onto screens with as
little disturbance as possible to the relative alignment of the objects.

3.1

OVERVIEW OF POSITIONING
Each JAM screen has a grid of rectangular cells whose default size is determined by the
font in use. The display text and fields that are the basic building blocks of JAM
screens are created in draw mode by typing text or underscores. Each character or un
derscore in character JAM occupies one grid cell, and every grid cell is the same size.
This is true in character JAM and in draw mode of JAMIPi.

In test and application modes of JAM/Pi though, fields and display text are converted
into widgets. For example, data entry fields become text widgets; menu fields become

.. ,. push button;widgets; and display text and protected fields become label widgets. GUI
widgets mayor may not fit into the cells that they were created in, in draw mode.

When a realized widget is larger than the cells it was drawn in, JAMIPi stretches some
of the rows or columns of the grid to accommodate the widget. This means that grid
cells in test and application modes of JAMlPi are not all the same size.

The grid in JAMIPi is elastic; its size depends upon the objects on the screen. JAMIPi
stretches the grid only as much as is necessary. In fact, if whitespace is available to the
right of a left justified widget or to the left of a right justified widget, JAMlPi uses up
that space before it stretches the grid. When the grid stretches, cells don't stretch indi-

JAMIPI Release 1.4 1 December 92 Page 23

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

vidually. Rather, entire rows or columns of cells stretch, assuring that other objects on
the screen remain properly aligned. Figure 12 illustrates the elastic grid.

A B C

Figure 12: A schematic illustrating the elastic grid. The second and third col
umns have stretched, as have the first and third rows.

Although the grid stretches to accommodate large widgets, it does not shrink to accom
modate small widgets. When a widget is smaller than the cells that it was drawn in, it
anchors to a particular cell, and occupies only part of the available space. A widget an
chors based on its justification: right justified widgets anchor by default on their right;
left justified widgets anchor by default on their left.

For example, the widget in row 3 of Figure 12 is left justified. It anchors on its left.

The positioning algorithm is designed to allow maximum portability between character
mode and GUIs. It maintains widget 'alignment even when the font or size of a widget
changes. The following rule of thumb applies to positioning:

• Left justified fields that begin in the same column result in left aligned
widgets.

• Right justified fields that end In the same column result in right
aligned widgets,

Figures 13 and 14 compare a screen in draw mode and test mode of PilMotif.

Note that JAM objects appear as widgets only in test and application modes, not in
draw mode.

Page 24 JAM/Pi Release 1.4 1 December 92

· Chapter 3: Arranging Screens In JAM/Pi

Emplo~ee Information Screen

Name __________ ID# ___ _
Address SSN ___ _
Ci t~ Salar~ __ ~_
State Zip____ Exemptions_'_

Figure 13: A JAM screen in draw mode of Pi/Motif,

Emplo~ee Information Screen

Name I::1 ID# =[~
Address [I SSN (

---;====~
C i t~ [I Sa 1 ar~ [I

:=::;~-;::::===~
State D Zip I Exemptions D

Figure 14: The same JAM screen in test mode, Draw mode looks like
character JAM, while test mode looks like a GUI screen.

Notice how the Name, Address and City text widgets in Figure 14 stretch the grid hori
zontally, pushing the other objects on the screen to the right. Vertically, the last four
rows stretch to accommodate the text widgets in them. As the grid stretches, the GUI
window containing the JAM screen expands to accommodate it.

JAM/Pi Release 1.4 1 December 92 Page 25

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK

3.2

ANCHORING
In Figure 14, the ID# and SSN fields align on their left side in test mode, because they
are left justified fields. The Salary and Exemptions fields align instead on their right
side, because they are right justified. The alignment differences are due to where the
widgets are anchored. Anchoring comes into play when a widget is not the same size as
the cells allotted to it.

3.2.1

Anchoring by Field Justification
Each widget is anchored to a specific cell in the grid. The default anchor point of a
widget is based on its justification. Right justified widgets anchor by default on their
right: to the last (or rightmost) cell in which they are drawn. All other widgets anchor
by default on their left: to the first (or leftmost) cell in which they are drawn. When the
grid expands, widgets maintain their anchor points, and move along with the expanded
grid. Widgets don't expand to fit the grid, rather the grid expands, if necessary, to fit the
widgets.

Using field justification to determine alignment ensures compatibility with character
JAM. For example, a column of numbers in right justified fields that line up on their
right in character JAM will also line up on their right in J AM/Pi. A set of left justitied
data entry fields that start in the saine column in JAM will maintain their left alignment
in JAM/Pi, regardless of how the grid expands.

Alignment follows justification by default. If you wish to change the anchor point of a
widget, use the halign or valign field extensions. These are described below.

3.2.2

Horizontal Anchoring: the hal-ign -Field ,- --.'
Extension
The default positioning behavior specifies the anchor points of objects based on their
field justification. The ha 1 ign field extension (pronounced "aitch - align") overrides
the default anchoring. Field extensions are documented in Chapters 5 and 6.

halign takes one argument, which is a number between zero and one. An halign of
zero means that the left edge of the widget should anchor in its first (or leftmost) cell.

Page 26 JAM/Pi Release 1.4 1 December 92

Chapler 3: Arranging Screens in JAM/Pi

Zero is the default halign for left justified fields. An ha1ign of one means that the
right edge of the widget should anchor in its last (or rightmost) cell. This is the default
for right justified fields. An ha 1 ign between zero and one means that the widget
should anchor proportionally between its first and last cells. Thus, an ha1ign of .5
means that the center of the widget should anchor in the center of the available cells.

The schematic diagram below represents a screen containing three text widgets of
length 3 which span columns-that have been stretched by a large label widget.

2 3 4 5 6 7 8 9 10 11 12 13

Figure 15: A screen containing a large heading and three data entry fields of
length 3. The fields start in columns 2,6 and 10, respectively. The ha1ign of
each field is shown as the field's contents.

In Figure 15, the large heading that runs the length of the screen stretches the grid. Each
widget below is thus smaller than the cells available for it (3 columns worth of cells).
ha1ign determines where within its allotted cells a widget anchors.

Note that ha1ign only has an effect when a widget is larger or smaller than its avail
able cells.

3.2.3

Vertical Anchoring: the val ign Field
Extension
By default, all objects align vertically in the center of their row or rows. The va1ign
field extension (pronounced "Vee - align") specifies some other alignment. Like ha 1-
ign, va1ign takes one argument, a number between zero and one. Zero indicates that
the top of the widget should align with the top of the top cell. One indicates that the
bottom of the widget should align with the bottom of the bottom cell. Decimal values

JAMlPi Release 1.4 1 December 92 Page 27

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK

in between indicate proportional alignment between the top and bottom cells. The de
fault va 1 ign for all objects is .5, indicating center alignment.

3.2.4

Anchoring Display Text
Regions of display text become left justified label widgets in JAMIPi. Left justified
widgets have a default halign of 0, and thus anchor on their left. Regions of display
text are not fields, and therefore cannot be right justified or have field extensions. To
change the alignment of a region of display text, you must convert the text into a pro
tected field. Fields protected from data entry and tabbing also become label widgets in
JAMlPi, but they have an advantage over display text in that they can be right justified
and have field extensions. This means that their alignment can be adjusted. It also al
lows a label widget to have a font other than the default screen font.

A case where you might wish to anchor text on the right is in a field label. Field labels
should retain their relationship to a field, regardless of the font used or how the grid
stretches. By converting field labels from display text into right justified, protected
fields, you can assure that they will always be right next to their associated field. This
is illustrated in Figure 16 below.

] 1
Acct No. Acct No.

Last: I 1 Last:1]
First: I] First:1]

Initial:
D

Initial:D

Figure 16: The screen on the left uses display text for the First, Last and Initial
labels. The screen on the right uses right justified, protected fields.

Page 28 JAM/Pi Release 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

The Bank No. field in Figure 16 stretches the grid. The first eight columns, which con
tain the field labels, stretch. In the screen on the left, the labels anchor in their starting
cell, and consequently are no longer next to the fields that they correspond with. In

. addition, the colons at the end of each label don't line up. In the screen on the right, the
labels have been converted into right justified, protected fields. They stilI look like dis
play text, but they now anchor on the right in their ending cell, next to their correspond
ing fields.

3.3

WHITESPACE
If a widget does not horizontally fit in the celIs it was drawn in, it expands into any
unused cells (whitespace) around it before stretching the grid. Since a widget with an
halign of 0 anchors on its left side, it can only expand into empty cells on its right.
Similarly, a widget with an halign of 1 anchors on its right, and thus can only expand
to' i ts left.

Available whitespace is used up in proportion to halign. A widget with an halign
of . 5 fills whitespace evenly on both sides. Expansion into whitespace based on ha 1-
ign assures that by default, left justified fields align on their left and right justified
fields align on their right.

12345678901234567 12345678901234567

Left Right I Left 11 Ri ght J

Figure 17: A screen with two fields of length six, shown in draw mode (left)
and test mode (right). Left justified widgets expand into whitespace on their
right. Right justified widgets expand into whitespace on their left.

Figure 17 illustrates how widgets appropriate whitespace. The screen contains two data
entry fields of length six. The first field is left justified; it begins in column I and ends
in column 6. The widget containing the field expands into the unoccupied space in col
umns 7 and 8. The second field is right justified. This field begins in column 12 and
ends in column 17. Its widget expands leftward into columns 10 and 11.

JAM/Pi Release 1.4 1 December 92 Page 29

JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK

The screen in Figure 18 below is the same as in Figure 17, except that there is a region
of display text between the two data entry fields. Since there is no longer whitespace
available, columns 1 - 6 and 12 - 17 stretch.

12345678901234567

~Text.1 Right]

Figure 18: A screen with two fields of length six, and a region of display text.
Since there is no room for the widgets to expand into, the grid stretches to
accommodate them.

The numbers in individual protected fields at the top of the screen in Figure 18 indicate
how the columns stretch. Notice that the extra space required for a widget is amortized
evenly over the entire length of the widget.

3.4

PROPORTIONAL VS. FIXED WIDTH
FONTS
The size of the grid in JAMlPi is based on the average character width of the default
screen font. There are two categories of fonts, proportional fonts and fixed width fonts.

In a fixed width font (like the Courier. you are reading now) each
character occupies the same amount of horizontal space.

In a proportional font (like the Times ·Roman ·you 'are reading now) .. wider .characters
like "w", and capital letters occupy more space than narrow characters like "i" or "I".

In a fixed width' font, the average character width is the width of each character. In a
proportional font, the average character width is the mean width of all the characters in
the font. The average character width of a proportional font is usually less than that of
a comparably sized fixed width font, so the grid in a proportional font is smaller.

If a fixed width font is used throughout a screen, then text occupies the same amount of
space as the cells available for it, provided that the grid has not stretched. This may be

Page 30 JAM/Pi Release 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

desirable for applications converted from character JAM, since it tends to minimize the
need to adjust alignment.

On the other hand, since proportional fonts take up less room than fixed width fonts,
screen space can be economized without shrinking the font size by using a proportional
font. Proportional fonts also enhance readability in large blocks of text.

EMPLOYEE TIME OFF

N am e : I::J

aLS Available:

c==JSiCk c==Jpersonal c==Jvacation

MPLOYEE TIME OFF

avs Available:

DSiCk Dpe.rsonal Dvacation

Figure 19: The same JAM screen in a 12 point fixed width font (top) and a
12 point proportional font (bottom).

JAM/Pi Release 1.4 1 December 92 Page 31

JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK

The screens in Figure 19 demonstrate the size and alignment differences between pro
portional and fixed fonts. Notice that the proportional font makes for a smaller screen,
but the spacing between items is inconsistent. For example, the horizontal white space
between the first two fields at the bottom of the proportional screen is smaller than the
white space between the second and third fields. These spaces can be adjusted with the
hoff and voff field extensions (see section 3.6.3).

- Screens may use'a combination of proportional and fixed fonts. There is a default font
for the application, and there may also be a default screen font and a font for an individ
ual widget. Since the grid stretches but does not shrink, it is usually best to define the
smallest font that you will use on a screen to be the default screen font. This strategy
tends to make screens more compact by eliminating unnecessary whitespace.

3.5

WIDGET SIZE
The default size of a widget is based on the size of the field or region of display text, but
is also influenced by other factors, including the font of the widget, and the border or
other decorations around the widget. The font used in a widget is the default screen
font, unless another font is specified as a field extension. The border and decorations
around a widget depend upon the type of widget. The following sizing rule applies:

Width

Height

(Avg_char_size_of_font x JAM_length) + Borders

Max_char_height_of_font + Borders

Since most widgets have a border, they are often wider than the grid cells allotted to
them, and tend to stretch the grid horizontally unless there is at least one blank space
available for them to expand into. Since vertical whitespace is not acquired by widgets,
most widgets stretch the grid vertically as well.

If the text entered into a widget is wider than the widget, then the GUI shifts the text.
For display-type widgets that cannot shift, if the above sizing rule does not leave

, enough room for the initial data, then the following rule is used instead:

Width

Height

Total_length_of_text + borders

Max_char_height_of_font + borders

The default size of a widget may be overridden via the height and width field ex
tensions. For details, refer to Chapters 5 and 6,

~~J~l~b~~i~~I~t&~;r~~rLt&?~~~tNi~,r:t~:}a~~~~~
Page 32 JAM/PI Release 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

3.6

FINE TUNING SCREEN ARRANGEMENT
Several additional field extensions are available for fine tuning the arrangement of
JAM/Pi screens. These are space, for equally spacing array elements regardless of
grid stretching; noadj, for turning off adjustment; and hoff and voff, for moving a
widget horizontally and vertically.

3.6.1

The space Field Extension
Array elements are created as separate text widgets by default. These widgets are sub
ject to the elastic grid. This means that there may be differences in the amount of space
between the elements of an array, depending on how the grid has stretched. The space
field extension guarantees that each element of an array has the same space between
itself and the next element. The extension takes one argument, .namelY the space be
tween each element.

For calculating its effect on the elastic grid, the total height of an equally spaced verti
cal array is the height of each element plus the space between elements. The row height
of each element is then the total height of the array divided by the number of rows it
occupies. The same is true for the total width and column width of a horizontal array.
space is detailed in Chapters 5 and 6. An example screen is shown in Figure 20.

3.6.2

The noadj Field Extension
To override the elastic grid, use the noadj (called noadjust) field extension. Noadjust
specifies that no grid stretching should be performed to account for a particular widget.
Noadjust should be used with care, as it can cause widgets to overlap.

noadj takes a single string argument, either the word rows or the word columns.
noadj (rows) turns off vertical grid stretching for the widget. noadj (columns)
turns off horizontal grid stretching.

noadj (rows) is particularly useful to turn off vertical grid adjustment for very large
widgets that have ample whitespace above or below them. It prevents a widget from
upsetting the spacing between other objects on the screen and insures smooth screen
scrolling for very large objects. noadj (rows) is often used in conjunction with val
ign, as shown in Figure 21.

JAM/PI Release 1.4 1 December 92 Page 33

JAM/Pi far OSFlMolif. Microsoft Windows and OPEN LOOK

D
D
D
D

o-F
D
D
D
D

Figure 20: Two screens with a four element array and a radio button. The
array is double spaced. The second group item in the radio button falls in the
first blank row of the array. Its widget stretches this row. In the left hand
screen, the result is an unequally spaced array. The array in the right hand
screen has the space field extension, causing each element of the array to
have the same space between itself and its neighbor. In this case, 10 pixels.

In the left screen of Figure 21, the BOOK push button stretches its row, causing uneven
spacing between the Class, Rate and Avail. fields. In the right screen, BOOK has a ver
tical noadjust field extension that prevents it from stretching the grid. It also has a va 1-
ign of 0, anchoring it at the top, rather than at the center of its row. Without a valign
of 0, the push button would overlap the screen title bar.

Noadjust is less useful horizontally, since JAMlPi uses up available horizontal white
space'before- stretching -the .grid_· Since noadj (columns) disallows grid-stretching-:,t
for a widget, it almost always results in widgets overlapping.

3.6.3

The ho f f and vo f f Field Extensions
To adjust a widget's position on the screen, use the hof f and vof f (for horizontal and
vertical offset) field extensions. ho f f specifies the horizontal offset of a widget from
its default placement. vo f f specifies the vertical offset. ho f f and vo f f are applied

Page 34 JAM/Pi Release 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

Figure 21: A screen where the noadj (rows) field extension is used to pre
vent a large button from stretching its row.

after any alignment or noadjust extensions. Therefore a widget with an ho f f or vo f f
still affects the grid as if it were in its default location, even though it is drawn else
where. These extensions should be used with care. They can cause widgets to overlap,
and excessive use makes applications hard to maintain.

ho f f and vo f f take a single argument, namely, a value indicating the amount to
move. A signed value indicates movement relative to the widget's default position. An
unsigned value indicates movement relative to the left side or top of the screen. The
default unit of measurement is pixels. Alternatives such as inches, millimeters,. charac
ters, and grid units may also be specified.

For more information on space, noadj, hof f, and vof f, refer to Chapters 5 and 6.

3.7

REFRESHING THE SCREEN
JAM calculates the positioning of objects only when a screen is fust displayed. If a
widget changes size or type while a screen is displayed, it may be necessary to recalcu
late the relative positioning of objects. This may be done via the sffi_adj us t_area
library routine. For example, if the protections on a field change, a label widget can
become a text widget. By not recalculating the screen, JAM avoids costly processing if
the change is only temporary. Refer to Chapter 12 for details on sffi_adj us t_area

JAMIPi Release 1.4 1 December 92 Page 35

JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK

3.8

SEPARATOR ROWS AND COLUMNS
JAM/Pi provides screen extensions that create GUI lines and boxes to enhance screen
appearance, Lines and box edges take up space, but the existence of a line or box should
not affect the alignment of screen objects, Therefore, lines and- boxes are not drawn
within the regular grid celk Instead, they are drawn in special separator rows and sepa
rator columns that appear between the rows and columns of the grid.

Separator rows and columns are created just wide enough to accommodate their con
tents, the edges of boxes and lines. Figure 22 illustrates how separator rows and col
umns relate to the elastic grid.

2 3 4

2

3

4

Figure 22: Screen containing two lines and a box, Lines and boxes are
drawn in separator rows and columns that are just wide enough to contain
the objects and their margins.

Page 36 JAM/Pi Release 1.4 1 December 92

Chapter 3: Arranging Screens in JAM/Pi

3.8.1

Separators and the Elastic Grid
The positioning algorithm considers lines and box edges to be non whitespace when
calculating whether there is room for widgets to expand. Widgets can overlap lines or
box edges, but only if they cross the row or column boundary containing the edge in
draw mode. If the widget does not cross the boundary in draw mode, then the grid ex
pands to prevent the widget from crossing the line or box edge. This strategy insures,
for example, that a box intended to surround a set of fields surrounds those fields re
gardless of how large the widgets containing the fields become.

For infonnation on how to create lines and boxes refer to Chapters 5 and 6.

JAMIPI Release 1.4 1 December 92 Page 37

Chapter 4: JAM Behavior in a GUI Environment

Chapter 4

JAM Behavior in a GUI
Environment
This chapter examines how the user interface in JAMlPi behaves, and describes some
of the screen level features available in JAMlPi.

4.1

JAM SCREENS
JAM screens each come up in their own GUI window. By default, the GUI window has
a border and is fully decorated with resize and move handles, a minimize and maximize
button, and a GUI window menu button. Scroll bars appear in the border only if they are
necessary-ie., when the GUI window is too small to contain the JAM screen.

Screen extensions can be used to control various aspects of screen appearance and be
havior. These include suppressing certain border decorations, starting the window as an
icon, and specifying the title bar text.

4.1.1

Title Bars
. The title bar on each screen contains the name of the file that the screen binary is stored
in by default. For a title other than the file name, use the tit le screen extension. You
may also suppress the title bar altogether with the notitle screen extension. See
Chapters 5 and 6 for more on screen extensions.

I.~~~·I.QJ ~:,In ~i~~~~f~n~,~!!,q~, '. "'i:~~ftiU2\q~ .te~~·.mayt!~so:'~seq
'tnrough tli¢~r~~ciurcedile: Fore~~ple .¢h~n,g¢the~it1¢\b#rAfor a :formc~.Ile4;
11II1gtq~m iA,M6tif, ~P~f.ifYJth.~J9ji9~W~pg;,)I.~ir!tJ}jI1g;t9kfu·~~~~~i\~\.lflr!~'f~~€';

JAM/Pi Release 1.4 1 December 92 Page 39

JAM/PI for OSFlMotif, Microsoft Windows and OPEN LOOK

4,1.2

Multiple Document Interface in MS Windows

Page 40 JAM/Pi Release 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

Employee

Newsletter

Recruiting Grade:

SignOr!

Benefits

Figure 23: PilWindows runs in an MOl frame with a single menu bar at the top
and a single status line at the bottom. JAM screens are constrained to move
only within the frame.

4.1.3

Focus
Just as in character JAM, control flow is specified by the developer, using any combi
nation of forms, windows and sibling windows. Although several screens may appear
on the display at any given time, only the screen at the top of the window stack or one
of its siblings may be made active.

A user may select a sibling window with a mouse click, or choose it by name from the
optional Window heading on the menu bar. The names of all open screens appear under
this heading, but only those that are siblings of the active screen may be selected.

JAM/Pi Release 1.4 1 December 92 Page 41

JAM/Pi for OSFIMotif. Microsoft Windows and OPEN LOOK

An option in the resource or initialization file greys out text on inactive screens. Refer
to Chapter 7.

Certain aspects of focus behavior are dictated by the GUI. These are detailed below.

4.1.4

JAM Borders
JAM borders, specified in the Screen Attributes window, are ignored in JAM/Pi since
the interface provides a border for each GUI window. The appearance of the GUI win
dow border is controlled by the screen extensions.

Page 42 JAM/Pi Release 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

4.1.5

Iconification
. As a general rule. if you wish the user to iconify screens in your application. use sibling
windows. The specifics of when the user may iconify screens are GUI dependent:

1.:·.,.o.,.·.O •...• n··.··I·.·-.. yl ~ :l·tr.··.;.··~.·a·.···.·.· .. ·.··.·n·.·· .. ·.I._.·.s·.n·.·.··.·I··~··.:.e':····.P··.··n.: .. ··.·ml.tl :.' 0 ...•.
w
· .•. · ... :.· ···.P •.. i· .. ·.n·.E.·····'d·:~.·o·.·.·.···.· .•.•. w •. : .. E· .. ·.·.· .. ·.'.· ... :.s··O ' •.. ," ... :•.. O.s •.. · .•. · ..•. ·.·: •... ·· ·····riywiOdb\VtIiaChawa"Wjnd6wheade'F'iriayoe~lc6'iiifiM···:

. • ~~" »?," .,:" .• "• ~1~grs1ig~fWiti~qw~~~n,~Q~§¢~jhd'.Yjt~~jyji~~Mfi~;illt~\~

Preventing Iconification

The nominimi ze screen extension removes the minimize button and the minimize
entry from the GUI window menu.

JAM/Pi Release 1.4 1 December 92 Page 43

JAM/Pi lor OSFlMotil. Microsoft Windows and OPEN LOOK

4.1.6

Toggling Between Menu Mode and Data Entry
Mode
JAMIPi allows the user to switch between menu mode and data entry mode on mixed
use s-creens simply by clicking the mouse~ Clicking on it push button t-oggles JAM into
menu mode before processing the selection. Clicking on a text widget toggles JAM
into data entry mode. This makes it very convenient to incorporate push buttons into
your data entry screens. This behavior has been incorporated into character JAM.

4.2

ERROR AND STATUS MESSAGES
In JAM/Pi, status messages appear on the status line and messages requiring acknowl
edgement appear in dialog boxes. A dialog box is an application modal window: a user
must deal with it before doing anything else in the application. The table below indi
cates where each type of message appears. Figure 24 illustrates the various dialogs.

ModeinlPL Equivalent C Function Message Location

setbkstat sm_setbkstat status line

d_msg sm_d_msg_line status line

emsg sm _emsg dialog box

err_reset sm_err_reset dialog box

qui_msg sm_qui_msg dialog box

quiet sm_quiet_err dialoRbox

query sm_query _msg "OK I Cancel" or "YeslNo"
dialog box.

Page 44 JAM/Pi Release 1.4 1 December 92

Chapter 4: JAM Behavior in a GUI Environment

9' Query Message

Error

fO'kl I
'r;;;' ..

Figure 24: A Motif OK/Cancel dialog (left) and a Windows OK dialog (right).

To acknowledge an OK dialog box, click on the OK button or press the space bar (or
. other ER~ACK_KEY as specified in the setup file). In an "OK / Cancel" dialog box,
click on either button or press SM_YES or SM_NO. The OK button returns SM_YES and
the Cancel button returns SM_NO.

~~~_~~~~i~M~f!D~l'; 

JAMfPi Release 1.4 1 December 92 Page 45 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

4,2,1 

Dialog Box Icons 

A dialog box may have one of several icons on it Specify the icon by prefacing the 
message with %T, The character immediately following the %T specifies the icon, The 
table below illustrates the icons, 

Character Meaning Motiflcon Windows Icon 

e Error ~ Error • Error 

• 0 i Information 1 Information Information 

t Wait III Wait - Not available -

w Warning t 
IJ 

Wanring , Warning 

If there is no %T in the message string, then no icon appears, In OK/Cancel or YeslNo 
dialogs, a question mark icon appears by default. JAM/Pi cannot change this icon, . 

Page 46 JAM/PI Release 1.4 1 December 92 



".:"." 

Chapter 4: JAM Behavior in a GUI Environment 

4.2.2 

Location of the Status Line 

Status Line Key tops 
Status line key tops work as they do in character JAM. For a more GUI compliant navi
gation tool, you may wish to use menu bars instead of key tops. See Chapter 8. 

Keytop Functions in the Authoring Tool 
Functions that appear on the status line in the authoring tool in character JAM appear 
in the menu bar or as keysets (depending upon which is enabled) in JAMlPi. 

4.3 

SHIFTING AND SCROLLING 
JAM's user interface exhibits certain shifting and scrolling behavior. In addition, GUIs 
have their own shifting and scrolling behavior. This section explains how JAMlPi rec
onciles both these behaviors. 

JAM/Pi Release 1.4 1 December 92 Page 47 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

4.3.1 

.Shifting Fields and Proportional Fonts 
In JAMlPi, the distinction between shifting and non-shifting· fields' becomes clouded, 
particularly when proportional fonts are used. 

In character JAM, a field that has a maximum shifting length that is. greater than its 
on-screen length is defined to be a shifting field. When the number of on-screen char
acters is reached, the field shifts to accommodate additional data, up to the shifting 
length. 

In JAMlPi, the length of the actual data determines whether a widget shifts. Since the 
length of a text widget is determined by the average character size of the font, it is pos
sible that a non-shifting field (in the JAM sense) may actually shift, if it happens to 
contain wide characters in a proportional font. It is also possible that a shifting field 
does not shift, even though it is full, because it happens to contain narrow characters. 

These two cases are illustrated in Figure 25. Widget I is a "non-shifting" field of length 
ten. It shifts to accommodate the ten "W"s inside it. Widget 2 is a "shifting" field of 
length ten with a maximum shifting length of fifteen. It contains fifteen "i"s, but still 
has space left over, and therefore does not need to shift. Widget 3 is a field of length ten. 
Because it uses a fixed width font, it is sized to contain exactly ten characters regardless 
of which characters they are. 

Widget 1: I wwwww I 
Widget 2: I :iiiiiiiiiiiiii 
Widget 3: I iiiiiiiiii I 

Widget 1: IwwwwW 

Widget 2: fufiijimi 

Widget 3: Iii iii iii i ~ 

Figure 25: Text widgets in PllMotif and PUWindows. 

Page 48 JAM/Pi Release 1.4 1 December 92 

.. ,~' 



Chapter 4: JAM Behavior in a GUI Environment 

4.3.2 

User Interface to Shifting and Scrolling 
A field may be shifted and scrolled in several ways. With the mouse, a user may shift or 
scroll a field by dragging the mouse cursor beyond the edge of the widget in the desired 
direction. If shifting or scrolling indicators are active, the user may click on these to 
shift or scroll a field. The following JAM logical keys shift fields via the keyboard: 
LSHF, RSHF, LARR and RARR. The following JAM logical keys scroll fields via the 
keyboard: SPOU, SPOD, UARR, DARR and NL. 

Shifting or scrolling fields in multiline text widgets or list boxes may be shifted or 
scrolled via optional scroll bars. 

4.3.3 

Shifting and Scrolling Indicators 
JAM scrolling indicators appear whenever an array may be scrolled. JAM shifting in
dicators appear only when a field requires shifting from JAM's perspective-ie., when 
there are more characters in the field than the field's on-screen length. 

Turning Off JAM Shift/Scroll Indicators 
In JAMlPi, you may wish to turn the JAM shifting and scrolling indicators off, as they 
don't conform to OUI style guides and may confuse end users. Use the IND_OPTIONS 
keyword in the Setup File to select the level of shift/scroll indication that you wish. 
There are four possible settings for this keyword, as described below: 

• IND_NONE No indicators 

• IND_SHIFT Shift indicators only 

• IND_SCROLL Scroll indicators only 

• IND_BOTH Shift and scroll indicators 

The setup file is fully documented in the JAM Configuration Guide. Note that the 
value of IND_OPTIONS may also be changed at runtime, via the SID_option library 
routine. 

JAM/Pj Release 1.4 1 December 92 Page 49 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Changing the Characters Used as Indicators 
If you choose to use JAM shifting and scrolling indicators, you may wish change the 
characters that represent them. Depending on the character set of the font you are using, 
the default values mayor may not appear to your liking. To change the shift/scroll indi
cator characters, you must alter the Video File. The ARROWS keyword controls these 
characters. Refer to the Video File chapter of the JAM Configuration Guide for details. 

4.4 

CUTTING, COPYING & PASTING TEXT 
Within a text widget, the user may take advantage of the text cut, copy and paste fea
tures offered by the GUI. These features provide access to the clipboard maintained by 
the GUI, allowing inter-application text manipulation. For example, you can copy text 
from a JAM application and paste it into a word processor that also supports the GUI 
clipboard. Only text in text widgets may be manipulated in this way. 

Page 50 JAM/Pi Release 1.4 1 December 92 



Chapter 4: JAM Behavior in a GUI Environment 

When pasting text into a widget, JAM enforces the field's character edits. JAM does 
not overflow the text into the next field if there is more text in the paste buffer than fits 
in the designated field. Overflow text is truncated. 

When an area of text is selected, typing from the keyboard deletes the selected text. The 
first character typed replaces the highlighted text; subsequent characters are inserted in 
or overwrite the line, depending on whether you are in insert or overstrike mode. 

Text that is not in a text widget cannot be edited via the GUI-provided cut and paste, 
although it can be manipulated via the JAM select mode feature in the screen editor. 
Select mode includes a clipboard for convenient cutting and pasting. 

4.5 

SOFT KEYS 
Soft keys work as they do in character JAM. Soft key labels are converted into button 
widgets which can be clicked on with the mouse. Just as in character JAM, you must 
make the appropriate entries in the main routine (jmain or jxmain) and in the video 
file to activate soft keys. Refer to the JAM Author's Guide or Configuration Guide for 
more information. Soft keys should not be implemented using the "simulated" keyword 

JAM/Pi Release 1.4 1 December 92 Page 51 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

in the video file. This keyword is reserved for machines that don't provide support for 
either soft keys or push buttons. 

I ,,~] 'W\iN,O,1;l!:: .. '··.·SQft1IceyS)if¥1hQtt¢.~rr¢Qtryi.i.IPP.If!I$¢nl¢"d;ifi'PilWiri(F:lV{~; •.• ;\ •••. 11".;Wh¥; 

4.5.1 

Location of Soft Keys 

4.5.2 

Soft Keys vs. Menu Bars 
Soft keys and menu bars are mutually exclusive, because they share the same program
matic hooks. The developer must choose whether to use one or the other. The selection 
of soft keys versus menu bars is made in the main routine, either jmain. c or 
jxmain. c, by initializing either soft key support or menu bar support. If an applica
tion is to use keysets in character JAM and menu bars in JAMlPi, then the main rou
tine should call the soft key initialization routine before it calls the menu bar initializa
tion routine. The second library call will override the first in JAMlPi, but will be 
ignored in character JAM .. 

If you are using menu bars on some platforms and keysets on others, you may wish to 
use libraries to store the key set and menu bar files. This strategy is explained in section 
8.9. 

The ks et 2mnu Utility 
The kset2mnu utility converts key sets into menu bars. This is useful for porting char
acter JAM applications developed with soft keys into JAMlPi applications that use 
menu bars. For an explanation of how to implement menu bars and convert keysets into 
menus, refer to section 8.9. For a description of the kset2mnu utility, see section 12.2. 

Page 52 JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

ChapterS 

Entering Screen and Field 
Extensions 
Field and screen extensions provide access to the multitude of features available under 
OUI's. Here the developer may specify fonts, colors, window decorations, positioning, 
and specialized widgets. This chapter discusses how to enter screen and field exten
sions into the formatted screens provided by JAMlPi. Chapter 6 is a reference for the 
extensions. 

5.1 

INTRODUCTION 
Screen and field extensions are stored in the JPL module comments associated with 
screens and fields. Extensions may be entered directly into the JPL module, or they may 
be entered into special screens provided with JAMlPi. Entering extensions into the for
matted screens is more convenient than entering them directly into the JPL comments. 

• The SPFll key opens the screen extensions window. The scope of a 
screen extension is the current screen. 

• The SPF12 key opens the field extensions window. The scope of a 
field extension is the current field. 

When either of these screens is opened, the extensions stored in the JPL comments are 
read, and the screen is filled in with any relevant data. When the screen is closed with 
the transmit key or OK button, changes to the extensions are written back into the JPL 
comments. 

For field extensions, any changes made to a widget type that are inconsistent with the 
edits on the underlying JAM field cause the JAM field edits to be updated when the 
extensions screen closes. 

JAMIPI Release 1.4 1 December 92 • Page 53 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

This chapter describes the fonnatted screens, and briefly discusses each extension. 
Chapter 6 is a reference chapter for screen and field extensions, with a man page for 
each extension. Refer to Chapter 6 for any details not covered in this chapter. 

The values entered as arguments to the various extensions may be colon expanded vari
ables. This is discussed in section 6.2.1. 

NOTE: The name of each extension as it appears in the JPL is noted alongside each 
entry in this chapter. This way it may be easily referenced in Chapter 6. 

5.2 

THE SCREEN EXTENSIONS WINDOW 
To open the screen extensions window, press SPFll. The window that appears is shown 
in Figure 26. The following options are available: 

• title? (title) 
Select yes or no. If you select no, the screen name (with the extension 
stripped off) is used as the title. If you select yes, a data entry field appears 
for you to fill in with the title text. For a blank title, leave this data entry 
field blank. 

• icon (icon) 
Enter the name of the icon to use when this screen is minimized. Specify 
the full path if the icon is not on the icon search path used by the GUI. If 
no entry is made, then the screen cannot be iconified. If the specified icon 
is not found, the default icon is used. 

• font (font) 
Enter the name' of the default screen font This font is used for display text 
and widgets that don't have a font of their own. The font name may be either 
a GUI font specification or a GUI independent font alias. Press the JAM 
HELP key, or choose Help from the menu bar to bring up an item selection 
screen containing a list of font aliases defined in the resource file. Select 
a font alias from this list or choose "custom fonts" to bring up a font selec
tion screen to search for a GUI dependent font. See Figure 27. 

• foreground (fg) 

Page 54 

Specify the default foreground color for this screen. The default foreground 
color overrides any un highlighted white foregrounds on the screen. Enter 
the name of a GUI color or a GUI independent alias. Press the JAM HELP 
key, or choose Help from the menu bar to bring up an item selection screen 
containing a list of color aliases defined in the resource file. Select a color 
alias from this list or choose "custom colors" to bring up a color selection 
screen to search for a GUI dependent color. See Figure 28. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

title: 

icon 

font 

foreground 

background 

pointer 

BOXES/LINES: 

start end 

type row col row col 

>0 DDDD~ 
I Show Details ". 

Figure 26: The Screen Extensions window . 

• background (bg) 

DECORA TIONS: 

o noborder 

o noclose 

o dialog 

o iconify 

o maximize 

o nomaximize 

o nomenu 

o nominimize 

o nomove 

o noresize 

o notitle 

ICANCELI 

Specify the default background color for this screen. The default back
ground color overrides the screen's background color, and any background 
on the screen whose display attributes match the screen background. Enter 
the name of a color, or press the HELP key for a list of aliases. 

JAM/Pi Release 1.4 1 December 92 Page 55 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

Edit Q.ptiCll:> Keys Windows Help 

Farge"":::""'''''''''' """W " , :I 
{medium I 
{small I 

( custom fonts 

Figure 27: An item selection screen with a list of user-defined font aliases, 

~dit PptiCll:> Keys Windows Help 

[~hampa~~ "''' 
(JYACC Blue 

I pumpkin 

{ custom colors 

Figure 28: An item selection screen with a list of user-defined color aliases, 

• pointer (pointer) 
Enter the name of the pointer shape to use on this screen, The default point
er is an arrow, 

• Decorations 

Page 56 

The following options may be set regarding the decorations on the aUI 
window border: 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

• noborder (noborder) 
Eliminate the Gm border, removing the resize handles, title bar, and 
maximize and minimize buttons, leaving only a thin bounding box. 

• nodose (noclose) 
Suppress the close option on the GUI window menu. 

• dialog (dialog) 
Make this screen into a dialog box. A dialog box is an application 
modal window that cannot be resized, maximized or minimized. 
This is not supported in PilMotif. 

• iconify (iconi fy) 
Start screen as an icon. 

• maximize (maximize) 
Start screen maximized . 

• nomaximize (nomaximize) 
Prevent screen from being maximized by removing the maximize 
button and the maximize option on the GUI window menu . 

• nomenu (nomenu) 
Eliminate the Gm window menu. 

• nominimize (nominimize) 
Prevent screen from being minimized by removing the minimize 
button and the minimize option on the GUI window menu. 

• nomove (nomove) 
Suppress the move option on the am window menu. This option 
does not prevent the user from moving the window with the mouse. 

• noresize (noresize) 
Prevent this screen from being resized by removing the resize han
dles and the size option on the Gm window menu. 

• notitle (notitle) 
Eliminate the title bar, including the minimize, maximize and Gm 
window buttons. To eliminate only the title text, usetitle () . 

• Boxes and Lines (box, hline, vline) 

• type 

Boxes and lines may be drawn on the screen by filling in the appropriate 
information in the fields described below: 

• start row 

Enter B for a box, H for a horizontal line, or V for a vertical line. 

Enter the starting row for the line or box. 

• start column Enter the starting column for the line or box. 

JAMlPi Release 1.4 1 December 92 Page 57 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

• end row Enter the ending row for the line or box. If type is a horizontal line, 
then this field is protected from data entry. 

• end column Enter the ending column for the line or box. If type is'a vertical line, 
then this field is protected from data entry. 

• Show details Click on this button to set the display details for the line or box. A 
different screen appears depending on which type of object is se
lected. The details window is described below. 

5.2.1 

The Details Window for Lines and Boxes 
Specify the appearance of a line or box by popping up the details window, described 
below. A sample details window is shown in Figure 29. The items on this screen pro
vide the arguments to the hl ine, vl ine, and box screen extensions . 

• Row/Column 

• Style 

Page 58 

The row and column fields are the same as the row and column fields on 
the main screen extensions window. On this screen, though, only those 
fields that are appropriate for the type of object appear. 

Choose a style from the option menu. Styles are aUI dependent. If the spe
cified style is not supported, the default style is used instead. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

HORIZONT AL LINE: 

Row D 
Starting column D 
Ending column D 
Style none I:J I 

'-;:::==~ 
Color I 

Width D I pixels I:J I 
Margin D I pixels I:J I 

(CANCELI 

Figure 29: The details window for a horizontal line. There are similar win
dows for vertical lines and boxes. 

• Color Enter a color for the line or box. Color may be a GUI color or a GUI inde
pendent color alias. Press HELP for a list of color aliases. 

I ,wI :;·mjgi&yi:hi;l§w§hjffYP'u·sJl€i¢ifYH~~c()ldf,fcit;Mp9~;Jq¢.~§,tYH{I§lignQf~QEM¥J:~@fiI; 
JAMIPI Release 1.4 1 December 92 Page 59 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

, .................. -... -........ . 
I default 
j-
I etched in 
1-

etched out 

!ingle 

dash 

dot 

I ~ashdot 
I ~ashdotdot 
lin 
1-
I~ut 

Figure 30: The styles option menu, 

• Width Enter the width of the line or the matte width of the box, For certain line 
styles the width is ignored. Refer to Chapter 6 for details. 

Choose the units for the value you've entered from the option menu to the 
field's right. The list is shown in Figure 31. Available units are: 

:e.ixels 

characters 

.&rid units 

inches 

millimeters 
Figure 31: The units option menu. 

• pixels The value is in screen pixels. 

• characters The value is in character units. One character unit is the average 
character width of the default screen font. . 

• grid units The value is in grid units. Grid units are based on the average charac
ter width of the default screen font. For screen extensions, grid units 
and characters are the same. 

• inches The value is in inches. In order to use inches, the X server must know 
the dimensions of your physical display. 

• millimeters The value is in millimeters. In order to use millimeters, the X server 
must know the dimensions of your physical display. 

Page 60 JAM/Pi Release 1.4 1 December 92 



• Margin 

5.3 

Chapter 5: Entering Screen and Field Extensions 

This defines a blank margin around the outside of the line or box. Choose 
the units for the value you've entered from the option menu to the field's 
right. 

THE FIELD EXTENSIONS WINDOW 
The field extensions window allows you to set the details for a widget. Each type of 
JAM field has a default widget type associated with it. Use this screen to change the 
widget type of a field or set the font, colors, frame, size and alignment of a widget. 

Each widget type has a Details screen associated with it, where you can set options spe
cific to that widget, like scroll bars on a list box, or a pixmap on a push button. A sample 
field at the bottom of the extensions screen illustrates the extensions you've chosen. 

5.3.1 

Synchronizing JAM and the GUI 
JAMlPi attempts to keep JAM synchronized and consistent with the OU! options 
you've chosen. If you change the widget type for a field, and that widget type is incon
sistent with the JAM field edits, JAMlPi forces you to adjust the JAM field edits when 
you transmit out of the extensions screen. This prevents you from creating undesirable 
effects, like having a push button represent a field that is not a selection field. 

If the option, "prompt for JAM field adjustments," is selected, JAMlPi asks you 
whether you want to adjust each relevant edit upon transmitting out of the screen. If this 
option is not selected, JAM/Pi makes the adjustments without consulting you. 

5.3.2 

Forcing the Widget Type 
If the option "force widget type" is selected, JAM/Pi creates a field extension associat
ing the widget type with the field, even if the widget type selected is the default widget 
type for that field. So, for example, an unprotected data entry field would get a text 
field extension, even though text is the default widget type for data entry fields. If this 
option is not selected, the widget type of the field can change depending on the JAM 
field edits, so subsequently protecting a data entry field would make it a label widget. 

Be careful to satisfy JAM's requirements for field behavior if you force a widget type. 
For example group items and menus must have text in them in order to be selectable. 

JAM/Pi Release 1.4 1 December 92 Page 61 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

Widget~typ:....:......e ___ l::r=I'·'=t~=w'==I'=~~"'1' 
Font I 

'-----;:=====::::::l 
Foreground color 

Background color 

• prompt for jam field adjustments 

o force widget type 

I Frame!!, I 
I Widget Details!!, 

I Size and Alignment", 

I sample field 

/CANCELI 

Figure 32: The Field Extensions window. 

5.3.3 

Entering Data in the Field Extensions Window 
To open the field extensions window, move the cursor to a field and press SPF12. The 
window that appears is shown in Figure 32. The following options are available: 

• Widget type 

Page 62 

Each type of JAM object has a default GUI widget that it transforms into. 
The default widget appears as the initial value in this field. Pop up the op-

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

tion menu to specify a widget other than the default. The list of widgets ap
pears in Figure 33. Available widget types are: 

checkbox 

label 

list 

multitext 

~tionmenu 

E,ushbutton 

radiobutton 

scale 

text 

!o gglebutton 

~owidget 

Figure 33: The widget type option menu. 

- checkbox (checkbox) 
Create a checklist style toggle button widget from this field. This 
widget is the default for JAM checklist groups with boxes. This ex
tension can be applied only to a group. A radio button group with this 
extension still acts like a radio button. it only appears as a checklist. 
Use the widget details window to replace the label text on the toggle 
button with a pixmap or to create a multiline label for the widget. 

-label (label) 

-list (list) 

Create a label widget from this field. Label widgets should be used 
for display text and protected fields. They do not support data entry 
or tabbing. Use the widget details window to replace the label with 
a pixmap or to create a multiline label. 

Create a list box widget from this field. List boxes are most appropri
ate for selection criteria like checklists. radio buttons. or menus on 
item selection screens. Use the widget details window to turn scroll 
bars on or off for the widget. 

- multitext (multi text) 
Create a multiline text widget from this field. Multiline text widgets 
are most appropriate for arrays. The number of lines in the multiline 

JAM/Pi Release 1.4 1 December 92 Page 63 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

text widget is determined by the number of on-screen elements in 
the array. If the array is scrolling, the widget will scroll as well. Use 
the widget details window to turn scroll bars on or off for the widget. 

• optionmenu (optionmenu) 
Create an option menu widget from this field. An option menu pres
ents the user with a list of options from which to fill a field. The field 
should be either a cycle field (a scrolling array with one element) or 
a simple non-scrolling field. The off-screen occurrences of a cycle 
field can be used as the list of options. Alternatively, the list of op
tions for the widget may be pulled from some other screen, much like 
an item selection screen. Set this behavior in the widget details win
dow. 

• pushbutton (pushbutton) 
Create a push button widget from thls field. Push buttons are normal
ly associated with protected menu fields since they are used as selec
tion criteria. Use the widget details window to replace the label text 
on the push button with a pixmap or to create a multiline label. 

• radiobutton (radiobut ton) 
Create a radio style toggle button widget from thls field. This widget 
is the default for JAM radio button groups with boxes. This exten
sion can be applied only to a group. A checklist group with this ex
tension stilI acts like a checklist, it only appears as a radio button. Use 

, the widget details window to replace the label text on the togglebut-· 
ton with a pixmap or to create a multiline label for the widget. 

• scale (scale) 
Create a scale widget from this field. Scales are appropriate for nu
meric fields whose contents are chosen from a range of values. Use 
the widget details window to input the range and number of decimal 
places. 

• text (text) 
-Create a text widget from this field. Text widgets are the default wid: 

get for unprotected fields. This extension allows you to turn a pro
tected field into a text widget, but the widget's tabbing and data entry 
behavior is stilI dictated by the field's protections. 

• toggle button (togglebutton) 

Page 64 

Create a toggle button widget without checkboxes from this field. 
This widget is the default for JAM radio button or checklist groups 
without boxes. Use the widget details window to replace the label 
text on the toggle button with a pixmap or to create a multiline label. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

• no widget (nowidget) 
Do not create a widget for this field. This is the default for fully pro
tected non-<iisplay fields like menu control fields. 

• Font (font) 
Specify the font name for the widget. If no font is specified, the default 
screen font is used. The font name may be either a GUI font specification 
or a GUI independent font alias. Press the JAM HELP key, or choose Help 
from the menu bar to bring up an item selection screen containing a list of 
font aliases defined in the resource file. From the item selection screen, 
choose an alias or choose "custom fonts" to bring up a file selection box 
to search for a GUI dependent font. See Figure 27 in the previous section. 

• Foreground color/Background color (fg, bg) 
Specify the foreground and background colors for the widget. If no colors 
are specified, the default screen foreground and background colors are 
used. The colors may be either GUI color names or GUI independent color 
aliases. Press the JAM HELP key, or choose Help from the menu bar to 
bring up an item selection screen containing a list of color aliases defined 
in the resource file. From the item selection screen, choose an alias or 
choose "custom colors" to bring up a file selection box to search for a GUI 
dependent color. See Figure 28 in the previous section for an illustration. 

• Prompt for JAM field adjustments 
This item is important only if you've changed the widget type of the field 
from its default value. 

If this toggle is set and there is an inconsistency between the JAM field 
edits and the widget type you've selected,JAMlPi prompts you with a dia
log box asking whether you wish to alter the JAM edits on the field to 
match the widget type. The dialog box appears when you attempt to trans
mit out of the screen. Some inconsistencies may be ignored, while others 
must be changed. The buttons in the dialog box indicate whether a change 
is necessary or may be ignored. Figure 34 illustrates a sample field adjust-

. ment dialog box. If you choose not to make a required change, you are re
turned to the field extensions screen. 

If the .. prompt... .. toggle is not set, JAMlPi makes the changes to the JAM 
field edits upon transmitting out of the screen without consulting you. 

• Force widget type 
This item is important when you have not changed the widget type from 
its default. If this toggle button is set, JAMlPi creates a field extension that 
forces this widget type on the field. If the protections or edits on the field 
subsequently change, the widget type does not change. If this option is not 

JAM/Pi Release 1.4 1 December 92 Page 65 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

This widget type should be applied only to protected 

fields; 

protect this field? 

[CANCEL I 

Figure 34: A sample field adjustment dialog box. 

5.3.4 

set. no extension is written to the JPL, and the field changes its widget type 
depending upon its edits. 

If you have changed the widget type from its default. JAMJPi forces this 
option to be set. 

The Frame Window 
You can create a frame around a widget by pressing the frame push button to pop up the 
field frame specifications window shown in Figure 35. -This creates a frame field ex
tension. The following options set the arguments to the extension: 

• Style 

Page 66 

Choose a style from the option menu. Styles are aUI dependent. If the spe
cified style is not supported, the default style is used instead. See Figure 30 
in the previous section for an illustration. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

Frame Specifications 

Margin width DI pixels 

Border width DI pixels 

~ 

Figure 35: The field frame specifications window. 

• Color Enter a color for the frame. Color may be a GUI color or a GUI independent 
color alias. Press HELP for a list of color aliases. 

I ,lY] ;!2WJ.ii~gi!)¥IndQ,ws,jify:bq$P[¢iJY'i¢olQr:fQtt~e,ffafu~;ilt~ ... styl¢.is .ignot~im:I.;tllilil 
• Margin This is the width of a blank margin area around the outside of the frame. 

See Chapter 6 for details. Choose the units for the value you've entered 
'from the option menu to the field's right. The list is shown in Figure 31 in 
the previous section. Available units are: 

• pixels The value is in screen pixels . 

• characters The value is in character units. One character unit is the average 
character width of the widget's font. 

• grid units The value is in grid units, Grid units are based on the average charac
ter width of the default screen font. 

• inches The value is in inches. In order to use inches, the X server must know 
the dimensions of your physical display. 

JAM/Pi Release 1.4 1 December 92 Page 67 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

• millimeters The value is in rriillimeters. In order to use millimeters, the X server 
must know the dimensions of your physical display. 

• Border 

5.3.5 

Enter the matte width of the frame. The matte is the area between the edge 
of the widget and the edge of the frame, Frames are drawn within the grid, 
so a frame with a wide matte or margin stretches the grid. 

Widget Details Windows 
Each widget type (except text) has an associated widget details screen with settings ap
propriate for the particular widget. The various screens are described below . 

• Default Details screen 
The widget details screen for checklists, labels, push buttons, radio buttons 
and toggle buttons is illustrated in Figure 36. 

Default Options 

Pixmap ....-1. ~::] 
Multi-line? Iyes Iinol 

Figure 36: The widget details screen for: checklists, labels, push buttons, . 
radio buttons and toggle buttons.· 

• pixmap (pixmap) 
Enter the name of a pixmap or bitmap file to display in the widget 
instead of the field's contents. See pixmap in Chapter 6 for details. 

• multiline (multiline) 

Page 68 

Specify whether the widget should have multiple lines of text. The 
additional lines are held in the off-screen shifting length of the field. 
See mul til ine in Chapter 6 for details. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

• List and Multitext Details screen 
These widgets can have scroll bars as an option. The level of scrolling is 
set in the arguments to the list or multitext extension. The details 
screen, shown in Figure 37, sets these arguments, controlling when scroll 
bars appear. 

List Box 

Horizontal bar 

Vertical bar 

default 

default 

~ways 

~ never 

Figure 37: The widget details screen for list boxes and multiline text widgets. 
Notice that the option menu for vertical bar is posted. 

• Horizontal bar 
There are three options: default, always, and never: .. 0_. 

- de fa u 1 t posts the scroIl bar only when the field is a shifting field. 

• Vertical bar 

- always posts the scroll bar regardless of need. 

- never posts no scroll bar . 

There are three options: defaul t, always, and never: 

- defaul t posts the scroll bar only for a scrolling field. 

- always posts the scroll bar regardless of need. 

- never posts no scroIl bar . 

• Scale Widget Details screen 
Use the details screen to enter the arguments to the scale extension. 
These are the lower limit, upper limit, and number of decimal places in the 
scale's range. The screen is shown in Figure 38. 

• Lower limit Enter the lower bound of the range. The default is O. 

• Upper limit Enter the upper bound of the range. The default is 100. 

JAMlPi Release 1.4 1 December 92 Page 69 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Scale Widget 

LowerJirnit D 
UpperJirnit D 
Decimal places D 

Figure 38: The details screen for a scale widget. 

• Decimal places 
Enter the number of decimal places to use in the value, The default 
is 0 (whole numbers), 

• Optionmenu Widget Details Screen 
Depending upon the arguments to the optionmenu extension, an option"_
menu may be populated in one of two ways: 

With no arguments, an option menu is populated from the offscreen occur
rences of the field, In this case the details screen is not needed, The field 
containing the optionmenu should be a scrolling array with one element 

If the field is not an array, the option menu is popUlated from menu fields 
on another screen, similar to an item selection screen. The arguments indi
cate the screen name and when the screen should be initialized. The option
menu details screen sets these arguments. It is shown in Figure 39 . 

• Form name To populate the option menu from another screen, enter-the screen's 
name here. Menu fields on the specified screen become items on the 
option menu. 

• Initialize? The screen containing the options must be initialized before the op
tion menu pops up. Initialization consists of opening and closing the 
screen and writing the values to the option menu widget. Initializa
tion may be done at screen entry or each time the option menu pops 
up (or both). 

Page 70 JAM/Pi Release 1,4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

Option Menu 

Fonn name II.....: h .. " ::::::::::::::::::: " ..... ..1 
Initialize? Iyes llno I 
Initialize on popup? f yes II no I 

Figure 39: The option menu widget detail screen. 

Set this to yes if you wish to initialize the optionmenu at screen entry . 

• Initialize on popup? 

5.3.6 

Set this to yes if you wish to initialize the option menu each time the 
option menu field is entered. 

The Size and Alignment Window 
JAMJPi gives each widget a default size, and places each widget on the screen in accor
dance with an algorithm based on the concept of an elastic grid. This algorithm is ex
plained in detail in Chapter 3. The size and alignment window is for fine tuning the size 
and placement of widgets. Adjusting the placement of widgets is best done after all the 
widgets on a screen have been created and sized, since new widgets can affect the align
ment of existing widgets. It is usually best to keep alignment settings to a minimum, as 
they can make a screen inflexible and hard to maintain. The size and alignment window 
is shown in Figure 40. The following options are available: 

• height (height) 
Enter the height of the widget in this field and select the units for the height 
from the option menu to the field's right. Units are listed on page 67. 

JAM/Pi Release 1.4 1 December 92 Page 71 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

Aligmnent Options 

Height DI pixels t:I 

Width 01 pixels t:I 

X offset 01 pixels t:I 

Yoffset 01 pixels t:I 

Array sp acing 01 pixels t:I 

Horizontal aligmne.nt D 
Vertical aligmne.nt [§J 
Adjust rows (yes I ~ 
Adjust colwnns (yes I ~ 

EJ 

Figure 40: Screen for entering field size and alignment options . 

• width (width) 
Enter the width of the widget in this field and select the units for the width 
from the option 'menu to the field's·right. Units are listed on page 67. . -,J" 

• H offset (ho f f) 

Page 72 

Enter the horizontal placement of the widget. An unsigned value indicates 
placement relative to the left margin. A signed value indicates a distance 
to move the widget relative to its default position. A positive signed value 
moves the widget the specified distance to the right of its default position, 
a negative value moves it to the left. The offset is calculated after the posi
tioning algorithm has done its work, so this extension can cause widgets to 
overlap or run off the edge of the screen. 

JAM/Pi Release 1.4 1 December 92 



Chapter 5: Entering Screen and Field Extensions 

• V offset (voff) 
Enter the vertical placement of the widget. An unsigned value indicates 
placement relative to the top margin. A signed value indicates a distance 
to move the widget relative to it default position. A positive signed value 
moves the widget the specified distance down from its default position, a 
negative value moves it up. The offset is calculated after the positioning 
algorithm has done its work, so this extension can cause widgets to overlap 
or run off the edge of the screen . 

.. Array Spacing (space) 
Enter the amount of space to leave between array elements that appear as 
separate text widgets. Sometimes array elements are spaced unevenly due 
to grid stretching. Entering a value here assures that each element in the 
array is evenly spaced. 

• Horizontal alignment (halign) 
Specify where this widget should anchor if it is narrower or wider than its 
grid cells. A widget will be narrower than its grid cells if another widget 
caused the grid to stretch horizontally. It will be wider than its grid cells if 
the option "Adjust columns" is set to no. See Chapter 3 for details. 

Enter a value between 0 and 1. 0 means that the left edge of the widget an
chors in its starting cell (left alignment). 1 means that the right edge of the 
widget anchors in its ending cell (right alignment). Decimal values be
tween 0 and I mean that the widget should align proportionally between 
its starting and ending cells. For example, .5 indicates center alignment. 
The default is 0 for left justified widgets, and 1 for right justified widgets. 

• Vertical alignment (valign) 
Specify where this widget should anchor if it is shorter or taller than its grid 
cells. A widget will be shorter than its grid cells if another widget caused 
the grid to stretch vertically. It will be taller than its grid cells if the option 
"Adjust rows" is set to no. See Chapter 3 for details. 

Enter a value between 0 and 1. 0 indicates that the top of the widget should 
anchor at the top of the widget's uppermost cell. I indicates that the bottom 
of the widget should anchor at the bottom of its lowermost cell. Decimal 
values between 0 and I indicate that the widget should align proportionally 
between its top and bottom cells. The default is .5, or center alignment. 

• Adjust rows (noadj) 
Set this option to no if you wish the positioning algorithm to ignore this 
widget in its vertical calculations. This is useful for tall widgets that have 
ample whitespace above or below them, since it prevents them from 
stretching the grid. It is often used in conjunction with the vertical align-

JAMIPi Release 1.4 1 December 92 Page 73 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

ment option, which controls where a non-adjusted widget anchors (see 
valign above), This option defaults to yes, 

• Adjust columns (noadj) 

Page 74 

Set this option to no if you wish the positioning algorithm to ignore this 
widget in its horizontal calculations, Since the positioning algorithm uses 
up horizontal whitespace before stretching the grid, this option is of limited 
use, since it tends to cause widgets to overlap, This option defaults to yes, ' 

JAM/PI Release 1 A 1 December 92 



Chapter 6: Extension Reference 

Chapter 6 

Extension Reference 
Field and screen extensions provide access to the multitude of features available under 
GUI's. Here the developer may specify fonts, colors, window decorations, positioning, 
and specialized widgets. This chapter is a reference for the extensions, Chapter 5 ex
plains how to enter them into the fonnatted screens provided with JAMlPi. 

6.1 

INTRODUCTION 
Extensions are stored in the JPL modules associated with fields and screens: 

. • Field extensions are stored in the field level JPL module. Their scope 
is the widget that represents the field. 

• Screen extensions are stored in the screen level JPL module. Their 
scope is the screen on which they appear. 

Extensions may be entered directly into the JPL comments, or they may be. entered 
through a set of fonnatted screens described in Chapter 5. . . 

Certain options that may be set via the extensions may also be specified as application 
defaults in the resource or initialization file. These are discussed in Chapter 7. Hierar
chically, field extensions override screen extensions,. which in tum override the re
source or initialization file. 

JAM/Pi Release 1.4 1 December 92 Page 75 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

6.2 

EXTENSION SYNTAX 
Field and screen extensions are specified in the JPL module comments. Comments in 
JPL begin with the # character. Extensions are set off from other comments by double 
angle brackets (pairs of "less than" and "greater than" signs), as in: 

# comment text 
# «extension (srguments) » comment text 

Since extensions are in the comments, they are not part of the executed JPL. This makes 
applications that use extensions portable to environments that don't support the exten
sions: a special parser interprets the extensions in JAMlPi, but they are simply ignored 
in character JAM. 

The parser looks only as far as the first non-comment line in each JPL module, so ex
tensions must appear at the top of the module, before any blank lines or JPL code. Com
ments may appear on the same line as extensions, and more than one extension may 
appear on a line. Text lines in JPL are limited to 254 characters. Extensions that are 
specified incorrectly are ignored by the parser. 

NOTE: Currently, no syntactic error checking is performed on the extensions. Rather 
than entering extensions directly into the JPL module, it is easier and more convenient 
to enter extensions into the formatted screens that are accessed via the SPF 11 and 
SPF12 keys. When these screens are processed, the extensions are written into the JPL, 
and the developer is guaranteed that the syntax is correct. 

6.2.1 

Colon Expansion of Extension Arguments 
Arguments to screen and field extensions are colon expanded before they are processed. 
Colon expansion occurs when JAM/Pi is about to open the GUI window to display the 
screen. At this point, the screen entry function has already been called, so variables for 
colon expansion can be set in screen entry function. Care must be taken, though, that 

. - the fields or variables upon which the expansion is based remain .unchanged for the life-:, 
time of the screen. Since rescanning may occur at arbitrary times, these variables 
should be left in a stable condition. 

Form variables, LDB variables, and screen-local JPL variables can be used for expan
sion. Arguments are expanded individually, so replacement text containing commas 
does not create more arguments. Two examples are shown below: 

#«title(:mytitle»> 
#«scale(:min, :max, :places»> 

Page 76 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

6.3 

PROPAGATING EXTENSIONS 
Since field and screen extensions are located in JPL modules, you may use the save 
to- file and retrieve from file functions of JPL screens, or the GUI cut and 
paste operations to copy extensions from one field or screen to another. The file func
tions are accessed via the PF4 key from a JPL module screen. You may also use the 
template feature when creating a new screen to propagate extensions from one screen 
to another. 

Propagating Fonts and Colors 

The font and color screen extensions affect widgets that don't have font or color field 
extensions of their own. For a standardized format, you can use the font and color 
screen extensions once on each screen instead of using the field extensions for each 
field. 

6.4 

EXTENSION REFERENCE 
The following pages constitute the field and screen extension reference section. List
ings appear alphabetically, but some related extensions are grouped together, specifi
cally: foreground and background color; height and width; horizontal and vertical off
set; and horizontal and vertical alignment. The two tables below indicate the page that 
each extension appears on, and provide a quick reference to the syntax of each exten
sion. The first table covers field extensions, and the second covers screen extensions. 
The tables are organized by extension type. 

NOTE: The iconification and window decoration screen extensions are implemented 
as hints to the window manager. This means the window manager may ignore any of 
these requests that it deems problematic. It can ignore any or all of them, partially or 
completely, although usually it does not. 

JAM/PI Release 1.4 1 December 92 Page 77 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Field Extensions 

Type Syntax Page 

Incremental Positioning 
, 

Height height (value [units]) 96 

Width width (value [units]) 96 

Horizontal Offset hoff (distance [units)) 102 

Vertical Offset vo f f (distance [units)) 102 

Horizontal Alignment halign (value) 94 

Vertical Alignment val ign (value) 94 

Disable Adjustment noadj (direction) 115 

Equally Space an Array space (distance [units]) 140 

Fonts, Colors and Decorations 

Foreground Color fg (color) 81 

Background Color bg (color) 81 

Font font (fontname) 89 

Bitmapped Image pixmap (name) 130 

Frame frame ( [style, color, matte, margin] ) 92 

Specialized Widgets 

Checklist Toggle Button .checkbox 87 

In/Out Toggle Button togglebutton 143 

Label Widget label 107 

List Box list [ (no hbar, no vbar)] 108 

List of Options optionmenu [ (selectscreen, init, popup) ] 127 

Multiline Text Widget multitext [(no hbar, no vbar) 1 113 

Page 78 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

Field Extensions 

Type Syntax Page 

Multiline Button multiline III 

No Widget nowidget 126 

Push Button pushbutton 136 

Radio Toggle Button radiobutton 138 

Scale Widget scale (min, max) 139 

Text Widget text 141 

JAM/Pi Release 1.4 1 December 92 Page 79 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

Screen Extensions 
Type Syntax Page 

Fonts and Colors 

Font font (fontnsms) 89 

Foreground Color fg (color) 81 

Background Color bg (color) 81 

Lines and Boxes 

Horizontal Line hI ine(r. c1. c2 [. style. color, width. msrgln] ) 98 

Vertical Line vline(c. r1. r2[. style. color, width. msrgin)) 98 

Box box (11. c1. 1;1. c2 [. style, color. mstte. msrgin] ) 84 

Screen Behavior 

Associate Icon with Screen icon (nsme) 104 
and Allow Iconification 

Start the Screen as an Icon iconify 106 

Specify the Pointer Shape pointer (cursor) 134 

Window Decorations and Features 

Suppress GUI Border noborder 116 

Suppress GUI Window Menu nomenu 120 

Disable Resize noresize 124 

Disable Maximize nomaximize 119 

Disable Iconification nominimize 122 

Disable Move (from menu) nomove 123 

Disable Close (from menu) noclose 118 

Invoke Maximized maximize 110 

Create Dialog Box dialog 88 

Title Bar Text t i tl e (string) 142 

Suppress Title Bar notitle 125 

Page 80 JAM/Pi Release 1.4 1 December 92 



«bg» 
«fg» 

Chapter 6: Extension Reference 

specify the background or foreground color for a screen 
or widget 

SYNOPSIS 

# «fg (color»> 

# «bg ( color) » 

TYPE 

Field Extension 
Screen Extension 

DESCRIPTION 

JAM/Pi supports a palette of sixteen colors that are specified in the resource or initial
ization file. Sixteen colors are usually enough for an application, as too many colors 
make screens hard to read. If you require more than sixteen colors, the fg and bg 
screen and field extensions set the foreground and background colors of screens and 
widgets to any color that the GU! supports. 

fg and bg as Field Extensions 

The fg field extension sets the foreground color of a widget. The bg field extension 
sets the background color of a widget. These field extensions override any other color 
specifications that may be applicable to the widget. 

l~~.,1l~I~~'Ir;l$li~l;'itkCtl1'~~ii'~!r~~. 
f g and bg as Screen Extensions 

The fg screen extension sets the color of any foreground on the screen whose attributes 
are white unhighlighted to the color specified. white unhighlighted is 
the default foreground color in the Screen Editor display attributes screen. fg affects 
both display text and fields. fg is provided for convenience, as it allows you to change 
the foreground color of many objects at once. 

JAM/Pi Release 1.4 1 December 92 Page 81 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

The bg screen extension sets the color of the screen background, as weB as any other 
background on the screen that has the exact same display attributes as the screen back-

. ground, to the color specified. For example, if the screen background according to the 
display attributes is red highlighted, and the screen extension says 
«bg (goldenrod», then any background on the screen that is red high
lighted becomes goldenrod. This extension is designed so that any object whose 
background matches the screen background continues to match the screen background, 
even when it is changed. 

Specifying the Color 

color may be either a GUI dependent color specification or a GUI independent alias. 

GUI Dependent Colors 

, lor;:9~t?a~e,. T?~ colorst'@}able o? your ~ys~em are, 
)JYNfound ~nt~e;/tusr Ilip4Xl1 drrector:Y--:i%< .. . 

Page 82 JAM/Pi Release 1.4 1·· December 92 



Chapter 6: Extension Reference 

GUllndependent Color Aliases 

To simplify color specification, use the color aliasing feature. Color aliasing allows you 
to make up your own names for color, like "champagne", "gun metal grey" or "Taupe", 
and then specify their equivalent GUI dependent values in an alias list in the resource 
or initialization file. For example, you might specify «fg (pink) » as a field exten-

. sion. The Motif and OPEN LOOK resource files would then have an alias pair like: 

pink = salmon \n\ 

and the Windows initialization file would have an alias pair like: 

pink = 247/138/115 

For instructions on creating the alias list, refer to section 7.4. 

Color aliasing enhances development flexibility, since you can change color choices in 
one place (the initialization or resource file) and affect changes throughout the applica
tion. It also enhances portability among GUI's, since GUI independent color names are 
resolved externally to your application. 

JAM/Pi Release 1.4 1 December 92 Page 83 



,t. 

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«box» 
draw a box 

SYNOPSIS 
. # «box (11, c1, /2, c2 [, style, c%r, matte, margin] »> 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension draws a box in the rectangle described by the specified coordi
nates. Box style, fill color, matte width and margin size can be optionally specified. A 

. comma must be inserted as a placeholder for any item not specified. Boxes lay behind 
other widgets on the screen. 

11, c1, 12, and c2 are one-based JAM lines and columns. For example, 
«box (1, 1, 1, 1, , , , ) » draws a box around the single cell at line one, column 
one. 

style describes the appearance of the box. It may be anyone of the following keywords: 

color is the background color of the box. It may be either a OUI dependent or OUI inde
pendent color specification. For more on colors, see page 149. 

Page 84· JAM/PI Release 1.4 1 December 92 



Chapter 6: Extension Reference 

1 ... , ..... :'.: .. ' .•.... ' ... : .... :a
If

W 

............ : .... b.,·.a·.·.b.···· .. c.,' .•... ,·· ... S.d .•.• o(.·.:.~ • .b.I •... • ... , .•. ·or .. · •.. ,~ •. , ..•• , •. e •. ·.r' ..• ',.I .. ?, .. :, •. n.· .• !.·I'.,.a.f.·.· .. · .•.. Sf.:.' .. '.~.·,.R .. t ..••.• ' .• Sh.~.!p·.r.~.e··.·· •. ,s.sc •. ·.' ... '.* ...... i .. i.l .. · ....•..•... "fi .• ~.~.:.·· .•. :.".~· ....... ,· .. "" .• ,.O.:!;, ..•••••. ,.fi ..•.•• w .•.• , .. ~ .•.. ~ .•. , .....•..•.... ~ .......••. ;., .•. "d., .. :,'.: .• · •.•.••.•. ;e •... ·'., .. k .•... i .... S.' ..• '., ..• , ....• I .• , .. gb ..•• · ... ' ...•..•.. ,~.~o •..•. ~ ..•. , •.. :.·.p .. O.t .•• x .. , .•.. e.u., .••. ,.: ..•. ;1S •.•. ' .. ;? ..• :.~., ... O.Th .• ~.d .•. ; .... ·~ ... , •..•. ·'fi,' .•. · .•.. ·.·O.l."··.·.··.I~.rJ··.'.\e·.;.~.· .• ··~I!~P~}w~~~~·~·~~~~W~I·~1qt~~il1~i ••• · "'!~;i 
:, ." ~'.. . "'·'=u. ~'l ...• . = ~~a~~~,i~l~~i~;.~:~t·s;~·;~~~~..>:'~j::t;i:t 

mat!e is the width of the area between the edge of the cells and the edge of the box. It 
increases the size of the box beyond the edge of its cells. If you put a box around a group 
of fields, it looks better if there is a matte of at least 3 pixels between the fields and the 
box edge. 

margin is the blank margin around the outside of the box. It provides a blank area be
tween the box and any adjoining cells. It insures that other objects outside of the box 
don't get too close. 

The value of matte or margin may be in pixels, characters, grid units, inches, or milli
meters. Refer to the chart on page 96 for a list of unit suffixes. 

Figure 41 illustrates two screens with the boxes. The first has no matte or margin, and 
the second has both a matte and a margin. 

Figure 41: Two screens with black boxes. The box around fields 1 and 2 on 
the left hand screen has no matte or margins. The box on the right hand 
screen has a 5 pixel matte and a 5 pixel margin. 

JAMiP; Release 1.4 1 December 92 Page 85 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Figure 42, below, illustrates the parts of boxes, and how boxes affect the elastic grid. 
Lines and box edges are drawn in special "separator rows" and "separator columns" 
that appear between regular rows and columns. Separator rows and columns are just 
wide enough to accommodate their contents. 

1 2 3 4 

Figure 42: Two one--cell boxes that have different margins. The edges of 
the boxes are drawn in separator rows and columns that are just wide 
enough to accommodate the matte, lines and margins, 

In locations ,where lines and boxes cross each other'or overlap. the order that they ap" .• · .. 
pear in the screen level JPL module determines how they are layered. The first exten
sion encountered in the module is the top-most object. The next object defined in the 
module is layered beneath the first object. and so on. 

RELATED EXTENSIONS 
# «frame [ (sty/e, c%r, matte, margin) ]» 

# «hline(r, c1, c2 [, style, c%r, width, margin] »> 
# «vline(c, r1, r2 [, style, c%r, width, margin] »> 

Page 86 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«checkbox» 
create a checklist style toggle button 

SYNOPSIS 

# «checkbox» 

TYPE 

Field Extension 

DESCRIPTION 

This extension creates a checklist style toggle button from a field. Members of check
list groups default to this widget type. To function properly the field must be a member 
of a checklist group. If it is not, the developer must add callbacks to handle selection 
processing. This is not recommended. 

iii.tlE~'.i~ 
"f" ... r1@] Toggle 

.............................. 

IZ1 First 1.~ ... ~.~.~~: .. ..1 !if First 

D 
Cl Second D Second Second • Third 

IZ1 ~i'h'i';:d'~ ~ Third 
................. 

Figure 43: Checklist style toggle buttons in Windows, Motif and OPEN 
LOOK. 

L 

JAM/PI Release 1.4 1 December 92 Page 87 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

«dialog» 
create a dialog box from a screen 

SYNOPSIS 

# «dialog» 

TYPE 

Screen Extension 

DESCRIPTION 

This extension makes a screen into a dialog box, A dialog box is an application modal 
window that cannot be resized, maximized or minimized. 

!.e_~~~j~t!i 
Since it is modal, the user is forced to deal with a dialog box before continuing with the 
application. A screen with the dialog extension may not be sibling, it will always be 
application modal. Only another dialog box can be opened on top of a displayed dialog 
box. If a window without the dialog extension opens on top of a dialog box, JAMIPi 
forces that window to be a dialog box too. 

The noborder, and iconi fy screen extensions are ineffective in a dialog box, and 
any viewport size specifications are ignored when a dialog box opens. 

NOTE: The developer must not use wselect to give focus to a window below a dia
log box that is not itself a dialog box. Doing so is undefined. 

I~J~I&~ "ij\~ ~E!ii 

Page 88 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«font» 
specify the font for a screen or widget 

SYNOPSIS 

# «font (fontname»> 

TYPE 

Field Extension 
Screen Extension 

DESCRIPTION 

The font screen extension specifies the default font for a screen. The font field ex
tension specifies the font for a particular widget. 

Fonts may be specified at several levels: 

1. The application default font is specified in the resource or initializa
tion file, or on the Motif command line. If a font is specified on the 
command line, it overrides the one specified in the resource file. In 
the absence of any other font specification, the application default 
font will be the font used for the entire application. 

2. The default screen font is either the application default font or a font 
specified with the font screen extension. A font screen extension 
overrides the application default font. In the absence of any other 
specification, this font is used by all display text and widgets on the 
screen. 

3. The widget's font is either the default screen font or a font specified 
with the font field extension. A font field extension overrides the 
default screen font. A region of display text can be made to have a 
widget's font by converting the display text into a protected field. See 
section 3.2.4. 

Specifying the Font 

The fontname argument to this extension can be either a GUI dependent font name or 
a GUI independent font alias. These are described below. 

JAM/Pi Release 1.4 1 December 92 Page 89 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

GUI Dependent Font Names 

GUI Independent Font Aliases 

To simplify font naming, use the aliasing feature, Font aliasing allows you to make up 
your own designations for fontname, like "small", "medium" and "large", and then 
specify their equivalent aUI dependent names in an alias list in the resource or initial
ization file, For example, you might specify «font (bold»> as a field extension. 
The Motif or OPEN LOOK resource files would then have an alias pair like: 

bold = *times-bold-r*14* \n\ 

Page 90 JAM/PI Release 1.4 1 December 92 



Chapter 6: Extension Reference 

and the Windows initialization file would have an alias pair like: 

bold = Tms Rmn-14-bold 

For instructions on creating the alias list, refer to section 7.4. 

Font aliasing enhances development flexibility, since you can change font choices in 
. one place (the initialization or resource file) and affect changes throughout the applica

tion. It also enhances portability among ours, since ~UI independent font names are 
resolved externally to your application. 

JAM/Pi Release 1.4 1 December 92 Page 91 



JAM/PI for OSFIMotif. Microsoft Windows and OPEN LOOK 

«frame» 
create a frame around a widget 

SYNOPSIS 
# «frame ( [style, c%r, matte, margin] ) » 

TYPE 

Field Extension 

DESCRIPTION 
This field extension creates a frame around a widget, or if the widget is an array, around 
all the elements of the array. Edge style, color, matte width and margin size can be op
tionally specified. A comma must be inserted as a placeholder for any item not speci
fied. 

NOTE: Frames are different than boxes and lines in that they are drawn in the same 
grid cells as their associated widgets. A frame increases the size of a widget, and there
fore can cause the grid to stretch. Boxes and lines, on the other hand, are drawn in spe
cial "separator" rows and columns. See page 84 for more on boxes, and page 98 for 
more on lines. 

style describes the appearance of the frame~ It can be anyone of the following: 

Page 92 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

color is the background color. It may be either a OUI dependent or OUI independent 
color specification. For more on colors, see page 149. 

matte is the width of the area between the edge of the widget and the edge of the frame. 
It increases the size of the frame beyond the edge of the widget. A frame looks better if 
there is a matte of at least 3 pixels between the widget and the frame border edge. 

margin is the blank margin around the outside of the frame. It provides a blank area 
between the frame and the edge of the cell. It insures that other adjoining objects don't 
get too close to the frame. 

The value of matte or margin may be in pixels, characters, grid units, inches, or milli
meters. Refer to the chart on page 96 for a list of unit suffixes. 

I~~_~_II Acld 2 

. Figure "44:- Two screens with a framed field. The frame around field 1 on the 
left hand screen has no matte or margin. The frame on the right hand screen 
has a 5 pixel matte and a 5 pixel margin. 

RELATED EXTENSIONS 

# «box (11, c1, /2, c2 [, style, c%r, matte, margin] »> 
# «hline(r, c1, c2 [, style, c%r, width, margin] »> 
# «vI ine (c, r1, r2 [, style, c%r, width, margin] »> 

JAM/PI Release 1.4 1 December 92 Page 93 



'.fo. 

JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«halign» 
«valign» 
specify an alternative horizontal or vertical alignment for 
this widget 

SYNOPSIS 
# «halign (value»> 

# «valign (value) » 

TYPE 
Field Extension 

DESCRIPTION 
JAMIPi calculates the default placement for widgets on a screen using a positioning 
algorithm described in Chapter 3. This algorithm takes into account many factors, in
cluding field justification, the white space available on the screen, and the size of wid
gets. Each widget has a certain number of rows or columns that it is supposed to occupy. 
These are referred to as grid cells. At times, the algorithm stretches rows or columns in 
order to fit large widgets onto a screen. Other widgets that span these stretched rows or 
columns may now be smaller than the grid cells allotted to them. JAMlPi must decide 
where to align these objects within their allotted cells. 

By default, left justified fields and display text align on their left, in their starting cell. 
Right justified fields align on their right, in their ending cell. The ha 1 i gn field exten
sion enables the developer to specify any alignment for a widget, regardless of its justi
fication. 

Vertically, all widgets align by default in the center of their allotted cells. The va 1 ign 
field extension enables the developer to specify any vertical alignment for a widget. 

. Note that these extensions come into play only when a widget is larger or smaller than.!;:, 
the space available in its allotted cells. 

value is a number between 0 and 1. Horizontally, 0 means that the left edge of the wid
get should anchor in its starting cell. 0 is the default alignment for left justified fields 
and display text. 1 means that the right edge of the widget should anchor in its ending 
(or rightmost) cell. This is the default for right justified fields. A value between 0 and 
1 means that the widget should align proportionally between its starting and ending 
cells. Thus, . 5 means that the center of the widget should anchor in the center of the 
available space. 

Page 94 JAM/Pi Release 1.4 1 December 92 .;: .. 



Chapter 6: Extension Reference 

Vertically, a value of 0 means that the top of the widget should align with the top of its 
uppermost cell. 1 indicates that the bottom of the widget should align with the bottom 
of its lowermost cell. Decimal values in between indicate proportional alignment be
tween the top and bottom cells. The default vertical alignment is .5, or centered. 

Values for hal ign or valign that are less than 0 or greater than 1 result in alignment 
outside of the allotted cells. Alignment outside of the allotted cells may result in wid
gets· overlapping one another. Values less than 0 or greater than 1 are not recom
mended. 

Chapter 3 discusses the positioning algorithm. Read this chapter to get a full under
standing of how positioning works. Figure 15 in Chapter 3 has a diagram that illustrates 
halign. 

RELATED EXTENSIONS 
# «hoff (distance [units))» 

# «voff (distance [units))» 

# «noadj (direction) » 

JAMIPI Release 1.4 1 December 92 . Page 95 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«height» 
«width» 
specify the width or height of a widget 

SYNOPSIS· 
# «width (value [unIts]»> 

# «height (value [units]»> 

TYPE 
Field Extension 

DESCRIPTION 
Each widget has a default size based on several factors, including the size of its font, the 
length or contents of its associated JAM object, and any widget decorations. The 
JAMlPi positioning algorithm allocates enough screen space for a widget based on its 
size. 

The height and width field extensions enable the developer to override the default 
size of a widget. Any size may be specified. The positioning algorithm uses the new 
size of the widget, rather than its default size, in making its calculations. 

value represents the· height or width of the widget. value may be either an integ~r, in 
which case it represents the height or width in pixels, or it may be any floating point 
number followed by the units suffix, indicating which units to used. units are listed 
below: 

SUffu Units Description 

p Pixels If no suffix is used, then the value is assumed to be in pix-
(or none) , . ... els. value must be an integer if it is in pixels. These mea-· 

surements depend upon screen resolution. 

c Characters A character is the average character width of the widget's 
font. 5c means 5 average characters in the widget's font. 
Contrast with grid units, which refer to the default screen 
font. Characters and grid units are the most portable units 
of measure, since they are sensitive to the font in use. (In 
screen extensions, characters are the same as grid units.) 

Page 96 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

SuffIX Units Description 

g Grid Units A grid unit is the average character width of the default 
screen font. 5g means 5 standard (unstretched) grid cells. 
Grid units and characters are the most portable units of 
measure, since they are sensitive to the font in use. 

mrn Millimeters The value is in millimeters. The X server must know the 
correct physical screen dimensions in order for these mea-
surements to be accurate. How the server is configured, 
though, is machine dependent. 

in Inches The value is in inches. The X server must know the correct 
physical screen dimensions in order for these measure-
ments to be accurate. How the server is configured, 
though, is machine dependent. 

, For example, you might want to make a text widgeLwider if its input will be all capital 
letters, like a field for a state abbreviation. The default width of a widget is based on the 
average character width of the font times the length of the field. If the widget is using 
a proportional font, then an entry of all capital letters most likely won't fit, since most 
capital letters are wider than the average character. The user will be able to enter the 
correct number of characters, but they won't all display at the same time; the widget 
will have to scroll. If a two character field is given a width field extension like 
«width (3 c) », then any two characters are likely to display without scrolling. 

Another example of when you might wish to use a width and a height field exten
sion is to make a large (1 inch square) push button. To do this, you would simply specify 
the following in the field level JPL module for a menu field: 

# «height(lin»> «width(lin»> 

In an array with a height or width extension, each widget in the array takes on the 
height and width specified. So a vertical array with three elements that has a 
«height (lin»> extension occupies at least three inches, since it contains three 
widgets. Arrays with the multitext, optionmenu or list extensions should not 
have the height extension. 

Fields with pixmaps or bitmaps respect height and width extensions. 

I ,'YY,ll [']I!nRj&yiri9§""'~ElliIffi~p~~~f?;'§¢~I~' •• !9:fit ••• m:Jmfth~jgh!t~fi9.t\Yigllitspe¢.ifi.@:tB;i •. 

1:J1~~!firt&IIfSJI~~_illljr 
JAM/Pi Release 1.4 1 December 92 Page 97 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

«hline» 
«vline» 
create a vertical or horizontal line 

SYNOPSIS 
# «hline (r, c1, c2 [, style, c%r, width, margin] »> 
# «vline (c, r1, r2 [, style, c%r, width, margin] »> 

TYPE 
Screen Extension 

DESCRIPTION 
These screen extensions draw vertical and horizontal lines between the specified coor
dinates. Style, color, width and margin for lines can be optionally specified. A comma 
must be inserted as a placeholder for any item not specified. 

Figure 45 illustrates horizontal and vertical lines in Windows and Motif. 

Field1 

IField3 I 

IField5 I 

IField2 I 

IField4 I 

IFieldS I 

I Field3 I I Field4 I 
I FieldS I I Field6 I 

Figure 45: Screens broken into quadrants by horizontal and vertical lines. 

For a horizontal line, specify a row, r, and a starting and ending column, c1 and c2. For 
a vertical line, specify a column, C, and a starting and ending row, r1 and r2. Horizontal 
lines are drawn at the top of the row specified, from the left side of column c1 to the 
right side of column c2. Vertical lines are drawn at the left of the column specified, 
from the top of row r1 to the bottom of row r2. 

Page 98 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

To draw a line to the right of the last column on the screen or below the last row, specify 
a row or column that is one greater than the last row or column. For example, on a 
23x80 screen, «vline (81 to 0 0) » draws a vertical line to the right of column 80. 

style describes the appearance of the line. It can be anyone of the following: 

I "lYJ .... s.~i1gJ~·.·fEg§!§Jl@!:&Q£!:i~§}ido 1: .·.,.··.?::.· . .".,.~'.'?·H~.~ ••. ';i.~·"!' •• '" ••• : •• ".".:,.,:,:."::;; •. :." .•.••• : .•• '. 

The single and dash styles happen to be portable between Windows, Motif and 
OPEN LOOK. If the specified style is not supported under the GUI, a closely matching 
style, or the default, sing Ie, is used. 

color is the color of the line. It may be either a GUI dependent or GUI independent 
color specification. For more on colors, refer to page 149. 

width specifies the width of a line. provided that the style is sing 1 e. 

I ,WI.tI.hPi&..i~q9\V~;1~riJh~:#Yl~Ii:$mO( sJJn:g;Jr.~X~I1ewidthj~jgijQr~d.,)i.\ .. "."\ 

JAM/Pi Release 1.4 1 December 92 Page 99 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

margin specifies the size of a blank margin area on either side of the line. The value of 
width or margin may be in pixels, characters, grid units, inches, or millimeters. Refer 
to the chart on page 96 for a list of unit suffixes. width defaults to one pixel. margin 
defaults to zero. 

Lines are drawn in "separator rows" and "separator columns" that run between grid 
celis. Separator rows and columns are just wide enough to hold their contents. There
fore, the width of a separator row is detennined by the width of the widest line in the 
row and its margins, plus the matte width and margins of any box edges in the row. The 
same rule is true for columns. For more on boxes, see page 84. 

Figure 46 illustrates where lines are drawn, and how they affect the grid. 

A widget that in Draw Mode crosses a row or column containing a line, will overlap the 
line in Test and Application Modes. A widget that in Draw Mode does not cross the row 
or column boundary containing a line, will not overlap the line. Instead, the grid will 
stretch if necessary. For example, in the above diagram, imagine a widget in row 3 that 
spans columns I and 2. Regardless of how wide the two column widget becomes, it will 
not cross the vertical line in column 3. On the other hand, a widget spanning columns 
1, 2, and 3 will overlap the line, and the line will be drawn behind the widget. The de
termining factor as to whether a widget overlaps a line is whether the widget crosses the 
row or column containing the line in Draw Mode. The same rule applies for the edges 
of boxes. 

Page 100 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

2 3 4 

2 

3 

4 

Figure 46: Screen containing two lines and a box. The vertical line is speci
fied for column 3, the horizontal line for column 4. lines and boxes are drawn 
in separator rows and columns that are sized just wide enough for them. 

In locations where lines and boxes cross each other or overlap, the order that they ap
pear in the screen level JPL module determines how they are layered. The fIrst exten
sion encountered in the module is the top-most object. The next object defIned in the 
module is layered beneath the fIrst object, and so on. 

RELATED EXTENSIONS 

# «box (11, c1, 12, c2 [, style, color, matte, margin) »> 
# «frame ( [style, color, matte, margin) ) » 

JAM/Pi Release 1.4 1 December 92 Page 101 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

«hoff» 
«voff» 
specify a horizontal or vertical offset for a widget 

SYNOPSIS 
# < <ho f f (distance [units)) > > 

# «vof f (distance [units))» 

TYPE 
Field Extension 

DESCRIPTION 
JAMlPi calculates the default placement for widgets on a screen using a positioning 
algorithm described in Chapter 3. This algorithm takes into account many factors, in
cluding field justification, the white space available on the screen, and the size of wid
gets. 

The hoff and voff field extensions move a widget a specified distance from its de
fault position. hoff moves a widget horizontally. voff moves it vertically. These 
field extensions are applied after the positioning algorithm makes its calculations, so 
there is no guarantee that widgets with an ho f f or vo f f will not overlap other wid
gets. Use these extensions sparingly, as too many hoff and v6ff extensions make a 
screen hard to maintain. 

distance indicates the distance to move. A signed distance indicates movement rela
tive to the widget's default position. An unsigned distance indicates an absolute loca
tion relative to the top or left margin. 

A positive distance for hoff moves the widget to the right. A negative distance 
moves it to the left. An unsigned distance places the widget relative to the left margin. 

A positive-distance forvof f moves the widget down. A negative distance moves it. 
up. An unsigned distance places the widget relative to the top margin. 

distance may be either an integer, in which case it represents the distance in pixels, or 
it may be any floating point number followed by a units suffix. units may be charac
ters, grid units, inches, or millimeters. Refer to the chart on page 96 for details. 

A common use of hoff is to obtain equal horizontal spacing between a set of objects 
when some large object above them on the screen has stretched the grid. Figure 47 illus
trates such a screen. 

Page 102 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

70.S 2.0 70.S 2.0 
I •• IM __ ...... r __ .* r • 

D DD DDD 
Figure 47: Screens with two scale widgets and three multiline text widgets. 
In the left hand screen, an oversized scale widget at top left has stretched 
the grid, causing unequal spacing between the widgets below it. In the right 
hand screen, an ho f f screen extension on the middle multiline -widget takes 
care of the problem. 

Figure 47 illustrates a use of relative offset. An alternative solution to the unequal spac
ing of the widgets is absolute ho f f extensions on each of the three multiline widgets. 
For example, «hoff (lg»> for the leftmost widget, «hoff (6g»> for the 
middle widget, and «hoff (llg) » for the rightmost widget. This places each wid
get in a specific location relative to the left edge of the screen. With this model, you can 
control exactly where each item on a screen is located. 

RELATED EXTENSIONS 

# «hal ign (value) » 

# «val ign (value) » 

JAM/Pi Release 1.4 1 December 92 Page 103 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

. 
«Icon» 
·enable iconification and associate an icon with a screen 

SYNOPSIS 
# «icon(name»> 

TYPE 

Screen Extension 

DESCRIPTION 

This extension associates the icon specified by name with a screen. A screen with the 
icon screen extension may be iconified (minimized) individually. A minimize push 
button appears in the screen border, and the minimize option is enabled on the GUI 
window menu. If the specified icon bitmap is not found, the default bitmap is used 
instead. 

Page 104 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

RELATED EXTENSIONS 
# «iconify» 

# «nominimize» 

JAM/Pi Release 1.4 1 December 92 Page 105 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

«iconify» 
start this screen as an icon 

SYNOPSIS 

# «iconify» 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension specifies that the screen should initially display in an iconified 
state. If the screen does not have an icon screen extension specified, then the default 
icon is used. 

RELATED EXTENSIONS 

# «icon (name»> 

Page 106 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«label» 
create a label widget 

SYNOPSIS 
# «label» 

TYPE 
Field Extension 

DESCRIPTION 
This extension creates a label widget from a field. Fields protected from data entry and 
tabbing default to this widget type. If you use this extension for a field that is not pro
tected from data entry or tabbing, JAM allows tabbing and data entry in the widget, but 
the user does not see the cursor in the widget. This is very confusing to the user. We 
strongly recommend against using this extension on unprotected fields. 

Label widgets for left justified fields anchor by default on their left. Label widgets for 
right justified fields anchor by default on their right. The halign extension can be 
used to change the default alignment. See Chapter 3 for details on the positioning algo
rithm used in JAMJPi. 

~i~1'3~'1:~_~P«.~~ 
Figure 48 illustrates label widgets. 

Display Text and 
Protected Fields 
become 
Label Widgets 

Figure 48: Label widgets in Windows and Motif. 

JAM/Pi Release 1.4 1 December 92 

Displa!::l 
Text and 
Protected 
Fields 

Page 107 



JAM/Pi for OSFIMolif, Microsoft Windows and OPEN LOOK 

«list» 
create a list box from an array 

SYNOPSIS 
# «list [(no hbar, no vbar)) » 

TYPE 

Field Extension 

DESCRIPTION 

An array in JAM/Pi normally consists of one widget for each element in the array. This 
extension transforms an array into a single widget called a list box. Items in a list box 
can be selected. so they are appropriate only for checklists, radio buttons and menus on 
item selection screens, 

NOTE: Fields that are not selection criteria may be made into list boxes. but the devel
oper must add callbacks to handle the selection event. Otherwise, the widget will look 
like a list box. but no selection can take place because data entry fields have no selec
tion semantics. 

Normally. items in a list box are protected from data entry and clearing. as they are 
selection criteria, rather than data entry fields. A radio button converted to a list box 
allows only one item to be selected. A checklist converted to a list box allows multiple 
items to be selected. Selected items appear in reverse video. Item selection screens that 
contain list boxes copy the selection to the uriderlying screen. 

List boxes can be tailored to your preference for scroll bars. If no parentheses appear 
after the 1 i s t keyword, then the list box has scroll bars only when appropriate. A 
scrolling array has a vertical scroll bar. A shifting array has a horizontal scroll bar. A 
shifting and scrolling array has both scroll bars. . 

If parentheses appear after the list keyword. then the list box has the specified level. 
of scroll bar turned off. regardless of need. For example. ali s t (no hbar) widget 
has no horizontal scroll bar, but it always has a vertical scroll bar. Ali s t () widget 
has both scroll bars, whether they are needed or not. If scroll bars are turned off. the 
widget may still be shifted or scrolled by dragging the mouse cursor beyond the edge of 
the widget in the desired direction. or with the JAM shift, scroll, or zoom keys. 

NOTE: The settings regarding horizontal and vertical scroll bars are implemented as 
hints to the window manager. Therefore they may be ignored under certain conditions. 
For example in Windows 3.1. no vbar is ignored unless you also specify no hbar. 

Page 108 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

A list box anchors vertically in the center of the area available for the array it replaces. 
To make it anchor at the top of that area, give it a val ign of O. 

Single widgets that represent JAM arrays can have only one foreground and one back-
. ground color. This means that the library routines that alter display attributes for ele
ments or occurrences of arrays (the _e_, _i_ and _0_ variants of sm_achg and 
sm_chg_at tr) have no effect on list boxes. 

Figure 49 illustrates list boxes in Windows and Motif. 

Choicel I [ijn;ni*4 
Choice 3 
~ 

@) List 

r--------,c::J 

~ • 

Choice 1 
Choice 2 

Choice 3 
c::J 

Figure 49: List boxes with vertical scroll bars in Windows, Motif and OPEN 
LOOK. 

RELATED EXTENSIONS 

# «multitext [(no hbar, no vbar)) » 

# «<optionmenu [(seiectscreen, Init, popup)) » 

JAM/Pi Release 1.4 1 December 92 Page 109 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

. . 
«maXimiZe» 
invoke a window maximized 

SYNOPSIS 

# «maximize» 

TYPE 

Screen Extension 

DESCRIPTION 

This extension causes a JAM screen to appear in a maximized GUI window when the 
screen is first displayed. 

Lw.l/ lriPilWindows;ama)drriized window Occupies the entire MDI frame. To 
,~ring ilpyour applicatibninaniaximized MDI frame, use theStartupSize option 
,Iin.~heapplicatiori iriitiahzliilOnflle,The MDI limits the number of maximized win~ 
:d9~~' to one~The mlllxirrii~~.\Vi(lclowmusfbe the t6prriost window, "" I "" 

RELATED EXTENSIONS 

# «nomaximize» 

# «iconify» 

Page 110 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«multiline» 
create a multiline label for a menu or group button 

SYNOPSIS 
# «multiline» 

TYPE 

Field Extension 

DESCRIPTION 
Certain widgets in JAMlPi have a label associated with them. These are: toggle buttons 
(for checklists and radio buttons), push buttons and label widgets. Normally the label 
has only one line of text. This extension enables the label to have multiple lines of text. 

The first line of text is stored in the field's on-screen data. The subsequent lines are 
stored in the field's off-screen data, so if you wish to have more than one line of text, 
use a shifting field. The length of each text line in a multiline widget is equal to the 
on-screen length of the field, and the number of lines is determined by the field's shift
ing length. For example, a field whose on-screen length is 5 and total length is ] 4 will 
have 3 lines of text. The first five characters in the field will appear on line I, the next 
five characters on line 2, and the last four on line 3. 

Use the ZOOM key in draw mode to enter text into the shifting field, remembering to 
include sufficient spaces to make the text lines break properly. 

A multiline widget occupies only one row of the grid, so it stretches the grid vertically 
if it contains more than one line. You may use the noadj (rows) field extension to 
prevent grid stretching for a multiline widget, as long as there is whites pace available 
above or below the widget. Use valign to align the widget vertically. 

JAM/Pi Release 1.4 1 December 92 Page 111 



JAM/Pi for OSF/Motif. Microsoft Windows and OPEN LOOK 

Figure 50 illustrates a multiline button in Motif and Windows. Follow the following to 
steps create this button: 

1. Create a field of length 8 

2. Give the field a shifting length of24 

3. Protect the field from data entry and tabbing. 

4. Give the field the menu edit. 

5. Give the field the multiline extension. 

6. Enter the following text into the field: 

A Buttonwith 3 lines 

A Button 
with 3 
lines' 

............................ 

A Button 
Vlith3 

: lines 

Figure 50: A multiline button in Windows (left) and Motif (right). 

Page 112 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«m U Ititext» 
create a multiline text widget from an array 

SYNOPSIS 
# «multitext [(no hbar, no vbar)) » 

TYPE 

Field Extension 

DESCRIPTION 

An array in JAMJPi normally consists of one text widget for each element in the array. 
This extension transforms an array into a multi-line text widget. A multi-line text wid
get is like a regular text widget, except that it has as many text lines as the array has 
on-screen elements, all enclosed in the same border. Multi-line text widgets are appro
priate for both word wrap arrays and arrays containing discrete data elements. They are 
not appropriate for groups or menus. 

Multiline text widgets can be tailored to your preference for scroll bars. If no paren
theses appear after the mu 1 tit ext keyword, then the array has scroll bars only when 
it is appropriate. A scrolling array has a vertical scroll bar. A shifting array has a hori
zontal scroll bar. A shifting and scrolling array has both scroll bars. 

If parentheses appear after the mul t i text keyword, then the widget has the specified 
level of scroll bar turned off, regardless of need. For example, a multitext (no 
hbar) widget has no horizontal scroll bar, but always has a vertical scroll bar. A 
mul t i text () widget has both scroll bars, whether they are needed or not. 

If scroll bars are turned off, the widget may still be shifted or scrolled by dragging the 
mouse cursor beyond the edge of the widget in the desired direction, or with the shift, 
scroll or zoom keys. 

NOTE: The settings regarding horizontal and vertical scroll bars are implemented as 
hints to the window manager. Therefore they may be ignored under certain conditions. 
For example, all multitext widgets in OPEN LOOK have scroll bars. 

Figure 51 illustrates how a multiline text widget appears, as opposed to a regular array, 
in Windows and Motif. 

Single widgets that represent JAM arrays can have only one foreground and one back
ground color. This means that the library routines that alter display attributes for ele
ments or occurrences of arrays (the _e_, _i_ and _0_ variants of sm_achg and 
sm_chg_attr) have no effect on list boxes. 

JAM/Pi Release 1.4 1 December 92 Page 113 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

"I' ... 

D " D ~ 

D D 
D ~ D l!j 

11111 D D 
Figure 51: Multiline text widgets versus regular arrays in Windows and Motif. 

RELATED EXTENSIONS 

# «list [(no hbar, no vbar)] » 

Page 114 JAM/Pi Release 1.4·· 1 December 92 



Chapter 6: Extension Reference 

«noadj» 
disable vertical or horizontal grid adjustment for a widget 

SYNOPSIS 
# «noadj (direction) » 

TYPE 
Field Extension 

DESCRIPTION 
JAM/Pi calculates the default placement for widgets on a screen using a positioning 
algorithm described in Chapter 3. This algorithm takes into account many factors, in
cluding field justification, the white space available on the screen, and the size of wid
gets. Each widget occupies a certain number of rows or columns, referred to as grid 
cells. At times, the algorithm stretches rows or columns in order to fit large widgets 
onto a screen. 

The noadj field extension indicates that a widget should not be considered by the po
sitioning algorithm in its calculations. As a result, the elastic grid does not stretch to 
accommodate the widget. This means that if the widget is large, it may run over into 
cells that it would not normally occupy, whether those cells are occupied by another 
widget or not. Thus, noadj can result in widgets overlapping each other or clipping the 
edge of the screen. 

direction may be either the literal word rows or columns. noadj (rows) turns off 
vertical grid adjustment, and noadj (columns) turns off horizontal grid adjustment. 

This extension is mostly used in the vertical direction for tall widgets that have space 
available above or below them. noadj (rows) prevents the tall widget from distort
ing the vertical alignment of other widgets that happen to lie in the same rows. You may 
wish to use valign in combination with noadj, to control where a widget aligns ver
tically. See page 94 for more on valign. 

noadj is less useful horizontally, since the default behavior of the positioning algo
rithm is to use up available whitespace around a widget before stretching the grid. 
noadj (columns) simply tends to make widgets overlap. 

See Figure 21 on page 35 for an example of noadj. Refer to Chapter 3 for more on the 
positioning algorithm. 

RELATED EXTENSIONS 
# «halign (value) » 
# «valign (value) » 

JAM/Pi Release 1.4 1 December 92 Page 115 



JAM/Pifer OSFlMotif, Microsoft Windows and OPEN LOOK 

«noborder» 
suppress the GUI border for this screen 

SYNOPSIS 

# «noborder» 

TYPE 

Screen Extension 

DESCRIPTION 

The GUI windows that contain JAM screens are normally drawn with a GUI border and 
resize handles. The noborder screen extension suppresses the border and resize han
dles, leaving only a bounding box. 

':i~'tf:"~~~~ ·~·"V~~ti~l!!tIi!,mj#\mi~;'mii1il" 
,,',. , ................... ".,., .. ,., ..... "'. " , , .. , .. ' .... "".' . " .... , .... ".' " " ...... , .. ,." ..... , ... ,.,' ... ,' ..... ·'·1······;,·,' .. () .....•• '." .•. e.,.'.','.~ ..•.. ',.,~,.,'.,'.".,., •. lo.,:,.t,t'~"'·'."·.u"'·'·'·.g.,·.r'·.'h'.h,'.,·."p.,".".',., •.. ~ .. , .• ',., •.. , ... , •. , .. ,: .. , ... ,b.e., .. , •.. , ... , •. , ... ,.,,' .. , .•.. , .•. , .. ,' .. '., ..•... , •.. , .. o ... , •.. , .. b .. ,'."' .. "'." .•. " •. "r"y.".".,, •. ,, •. " •.. " •.. , .. d .. "' .. , ..•.. " •.. , ..•.. "t." •.. ,, •. ,,h .. "e.",.;."., •.. "e.",' .. ,~,.,> .. ,.'., •. ,., •.. ,." •. " •. ".·."·,,·,e .•. ,,·,.,· .. ,·,.,.,.·,~.,,, .•. ,.;.·"c.· .• d .•.. , .• " •. ,r., e •.• u.·.',',' .•.. ,· ... ,',.,s., .. , •.. ,."""e.: .. , ... ,~ ... , .. ,.;.,r: •. ! .. ,',.,.,' .. , .. ,: •.. ,· ..... ' .... ,' .. ',; .. ,.',:,: .. '., .. ,.,.,' .. ,' ..•. ,.,',.,',~ ••. ',.,., .. ,','.,!1,·,I .. ,·" •. · .•. ,', .. ,o, .. , •. ,., •. ,· ... ·" .. k,t, e bey'.". _ !~[~~@rJi~~~~~j~7h~\TI;-;~~~~~ti~ ... , ..' :,,',"';:;~:,.,;<, ~f'~:: 

Page 116 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

II noborder a:a . '. Reservation Screen 

Re s elV ation S CT e en 

B 
I EXIT I 

Figure 52: noborder screens in PVWindows and PVMotif. 

RELATED EXTENSIONS 

# «notitle» 

JAM/Pi Release 1.4 1 December 92 Page 117 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

«noclose» 
suppress the close option on the GUI window menu 

SYNOPSIS 

# «noclose» 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension suppresses the close option on the GUI window menu, This pre
vents the user from closing the window via the mouse, 

RELATED EXTENSIONS 

# «nomenu» 

Page 118 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

. . 
«nomaxlmlze» 
prevent the user from maximizing a window 

SYNOPSIS 

# «nomaximize» 

TYPE 

Screen Extension 

DESCRIPTION 

GUI windows usually have a maximize button in their border. This screen extension 
removes the maximize button from the title bar and the maximize entry from the GUI 
window menu. This prevents the user from maximizing thc window. 

RELATED EXTENSIONS 

# «nomenu» 

JAM/Pi Release 1.4 1 December 92 Page 119 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«nomenu» 
suppress the GUI window menu 

SYNOPSIS 

# «nomenu» 

TYPE 

Screen Extension 

DESCRIPTION 

Each GUI window has a "window menu" with options on it for controlling various as
pects of the window. This menu is accessed by a button that appears in the upper left 
hand corner of the GUI window's border. Items on the window menu depend upon the 
GUI, but usually include: Restore, Move, Size, Minimize, Maximize and Close. Most 
features on this menu also have other means of access, such as resize handles, the maxi
mize button, or keyboard shortcuts. The nomenu screen extension suppresses the win
dow menu button, and prevents the user from accessing the menu. It does not inhibit the 
features listed on the menu if they are accessible through another means. 

I wI ~Mjjlij ••• ·R!&yXijgQ}Y~;nQ'&~Q\fljfupJi~i ••• n9i:D.~·n.,ilmJ.;~":~t~i)4 POI]ClxJjIlfJ!l~§7;·;fnti; •... j 

Page 120 JAM/PI Release 1.4 1 December 92 



Chapter 6: Extension Reference 

Hf~"S torx~ f~t~·F~) 

Move Alt+F7 

Size Alt+F8 

Minimize Alt+F9 

Maximize Alt+FlO 

Lower Alt+FJ 

Oose Alt+F4 

Figure 53: The GUI window menu in Motif. 

JAM/Pi Release 1.4 1 December 92 Page 121 



JAM/Pi for OSFlMolif, Microsoft Windows and OPEN LOOK 

. . . 
. «nomlnlmlze» 
prevent the user from minimizing a GUI window 

SYNOPSIS 

# «nominimize» 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension prevents the user from minimizing a screen by removing the 
minimize button from the border, and removing the minimize entry from the GUI win
dow menu, 

1~1!l~jlllifiAIi!f~ilt!J~~~~;~_{l·~&_~.l 

RELATED EXTENSIONS 

# «icon (name»> 

# «nomenu» 

Page 122 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«nomove» 
suppress the move option on the GUI window menu 

SYNOPSIS 

# «nomove» 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension suppresses the move option on the GUI window menu. It does not 
however suppress the move handle on the GUI window, so the window may still be re
positioned by the user, unless the noborder or notitle extension is used as well. 

RELATED EXTENSIONS 

# «noborder» 

# «nomenu» 
# «notitle» 

JAMIPi Release 1.4 1 December 92 Page 123 



JAM/Pi for OSFIMotif. Microsoft Windows and OPEN LOOK 

• «noreslze» 
prevent the user from resizing a GUI window 

SYNOPSIS 
# «noresize» 

TYPE 
Screen Extension 

DESCRIPTION 
GUI windows containing JAM screens are normally drawn with resize handles in the 
window border. The nare s i z e screen extension suppresses these handles, and re
moves the "size" option from the GUI window menu. The user will no longer be able to 
shrink or expand such a window. Since the window has no resize handles, the border 
will be slightly narrower than normal. Figure 54 compares a window with resize han
dles to one without resize handles. 

. ........................... . 

. ~Ti ~rlilli£Wt;: 
Reservation Screen 

Reservation Screen 

Figure 54: A Motif screen with and without resize handles. 

RELATED EXTENSIONS 
# «noborder» 

Page 124 JAM/PI Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«notitle» 
suppress title bar 

SYNOPSIS 

# «notitle» 

TYPE 

Screen Extension 

DESCRIPTION 

aUI windows normally have a title bar. This extension suppresses the title bar and the 
decorations on it: the minimize, maximize and aUI window menu buttons. This is il
lustrated in Figure 55. 

Reservation Screen 

~SD 
Rco:e D 
Avail Dill 

Figure 55: A screen with the noti tle extension. It has no title bar, mini
mize button, maximize button or GUI window menu button. 

If you wish to suppress only the text in the title bar, use the extension tit 1 e ( ) . See 
page 142 for details. 

RELATED EXTENSIONS 

# «title (string»> 

# «noborder» 

JAMlPi Release 1.4 1 December 92 Page 125 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«nowidget» 
don't create a GUI widget for this field 

SYNOPSIS 

# «nowidget» 

TYPE 

Field Extension 

DESCRIPTION 

This extension prevents a widget from being created for this field. Protected fields that 
are non-display (such as menu control fields) default to this widget type. 

In terms of positioning, a nowidget field occupies the number of columns that the 
field was drawn in. These columns are not considered whitespace, even though they 
contain no GUI objects. This means that other widgets on the screen are not free to ex
pand into the area that a nowidget field occupies. 

Page 126 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«optionmenu» 
create an option menu widget 

SYNOPSIS 
# «optionmenu [(selectscreen, In It , popup) 1 » 

TYPE 
Field Extension 

DESCRIPTION 
An option menu widget allows the user to pull up a list of options and choose one. The 
user clicks on an indicator in the widget to pop up the list of options, or uses the arrow 
keys to scroll through them. There are two variations of optionmenus. In the first varia
tion, the list of options is contained in the off-screen occurrences of the field. In the 
second, the list of options comes from another screen, much like item selection screen. 

In the first variation, the opt ionmenu extension is specified without arguments. This 
converts a scrolling array into an option menu widget. The underlying array should: 

• have one element. 

• have as many occurrences as there are options in the list. 

• be protected from data entry and clearing. 

• not be protected from tabbing. 

• be circular. 
The initial data in the occurrences of the array make up the items in the option menu. In 
the character world, this is sometimes called a cycle field, because the user can tab to 
the field and cycle through the choices with the arrow keys. Use the library routine 
sm_e_get f ie ld to determine the user's selection. 

The first occurrence in the array is the default value in the field. If you want the field to 
default to blank, add an extra occurrence· to the array, and make the first occurrence 
blank. 

Single widgets that represent JAM arrays can have only one foreground and one back
ground color. This means that the library routines that alter display attributes for occur
rences of an array (sm_i_achg and sm_o_achg) have no effect on option menus 
made from cycle fields. 

In the second variation, the optionmenu extension is specified with a selectscreen 
argument. This indicates that the values in the pop-up should be retrieved from another 
screen, much like an item selection screen. 

JAM/Pi Release 1.4 1 December 92 Page 127 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

A JAM field with this variation of optionrnenu should be a non-scrolling field or 
array. Each array element gets its own optionmenu widget. If you wish the user to select 
only from the list of choices on an optionmenu, protect the field from data entry and 
clearing. If the field is not protected from data' entry, the. user may type directly into Jhe 
opt ionrnenu widget. This allows the widget to function like a Windows combo box. 

I ..••..•.• c .. :.r ....•. ·u •.••. ~e.~.r· •. ··.~s· .••...• o~.t.·rJmPe.?dai .• ·yfn .•. e .•. ·ct.os .• ···nr.·.hf·.·.·.IU •. 1."sm.we .•. p .••. • •. ,Ud.iOO.~ .• S .. ~ ...•. g .• ei.:rs~.~,.~.t.·.' .•.. ;.~l,.n.· .. b.f .•.•.. :r .. " ..•.... ~ ....•.... t ............. ' ... ·.n .•. d .•••. ~iiii~If.fr.p .... a.:: .. : .•. r •.. ~.: .•. O.: .• i .. · ... t ..• l •. :., .• l .. a,,:~ ..... ~.~.~f' .. ~.j .. ~ .•. ~.:: .. I .•. b.e.i.'; ..•.. ,~.·., .... ·l ..•. '.[ .. '.' ... i .• 
. . {:':::::::{ :::::.:·.J::;:::;{;;~\\{j(:.\\::::":~L>::::~L{X::::WJ:~~w~m::<::;:d:t~:{:t(~ .. 'v.-~:;...J..»:''''''~ .~~ ~ 

The selectscreen contains the values for the optionmenu. The value fields on the se
lectscreen must have the menu edit. The seiectscreen is never actually displayed, but 
all menu fields on it appear as entries in the optionmenu. The values on the selects
creen may come from a database or other outside source. Since this screen is never 
displayed, two additional arguments, Init and popup specify when JAM should open 
and close (but not display) the selectscreen. Opening and closing the selectscreen 
initializes the opt ionrnenu widget and performs any screen entry or exit processing 
on the selectscreen. This allows the selectscreen populate the menu fields from a da
tabase call at screen entry. 

The Init argument may have the value i or no_i. A value of i indicates that the se
lectscreen should be opened and closed when the screen containing the opt ionrnenu 
widget is initialized. A value of no_i indicates that it should not. Inlt defaults to i. 

The popup argument may have the value p or no-p. A value of p indicates that the 
selectscreen should be opened and closed when the pop-up is activated by the user. A 
value of no-p indicates that it should not. popup defaults to no-p. 

Opening and closing the selectscreen may take a certain amount of time, particularly 
if a database query is involved. Therefore, you will probably wish to open and close the 
selectscreen as few times as possible. The default behavior, (i, no-p) , is appropri
ate if the values on the selectscreen do not change while the parent screen is displayed 
or if several fields on the screen use the same" selectscreen. Other combinations are 
appropriate in other circumstances. 

NOTE: A combination of (no_i, no-p) is invalid, and causes the optionmenu 
pop-up to come up blank. The selectscreen must be opened and closed at least once, 
either upon initialization or pop-up. 

Unless there is initial data in the JAM field, optionmenus with a selectscreen do not 
contain any value until the user posts the pop-up. 

If you wish to pass a value from an optionmenu on one screen to another screen via the 
LDB, use the selectscreen flavor of optionmenu. The cycle field flavor of optionmenu 
cannot effectively pass a value. It simply passes the first occurrence of the array. 

Page 128 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

To convert a JAM field with an item selection screen to an opt ionmenu, specify the 
item selection screen as the selectscreen. The user may then pop-up the optionmenu 
to make a selection or press the HELP key and open the item selection screen and make 
a selection that way. 

WARNING: Do not attempt to post error messages from the field entry function of an 
optionmenu widget. If the field entry function causes a message dialog box to ap
pear, the list of options closes immediately, before the user has a chance to make a 
selection. 

Figure 56 illustrates optionmenus in Windows and Motif. 

[red c I 
Ired 

red 

9r een 
Iiiii ____ i!blue 

cyan 
white 

c!:jan 

white 

Figure 56: Option menus in Windows (left) and Motif (right). The right hand 
widget on each screen has its pop-up posted. 

RELATED EXTENSIONS 

# «list::>::> 

JAM/Pi Release 1.4 1 December 92 Page 129 



JAM/PI for OSF/Motif, Microsoft Windows and OPEN LOOK 

• «plxmap»· 
associate a bitmap or pixmap with a label 

SYNOPSIS 

# «pixmap(name»> 

TYPE 

Field Extension 

DESCRIPTION 

Nonnally, a label displays a text string. This extension replaces that text string with the 
bitmapped image specified in name. It may be used wherever a label widget appears. 
Specifically, in a protected field, or the label on a push button or toggle button. If you 
plan to use a bitmap on a push button, remember to place some text in the menu field; 
a blank menu field does not act as a menu. 

Bitmaps display by default at the size they were created. If the field containing the bit
map has a height or width extension, this is respected. 

Bitmap creation is GUI dependent. 

Page 130 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

JAM/Pi Release 1.4 1 December 92 Page 131 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Page 132 JAM/Pi Release 1,4 1 December 92 



Chapter 6: Extension Reference 

RELATED EXTENSIONS 

# «icon(nsme»> 

JAM/Pi Release 1.4 1 December 92 Page 133 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«pointer» 
specify the pointer shape 

SYNOPSIS 

# «pointer(shape»> 

TYPE 

Screen Extension 

DESCRIPTION 

This screen extension specifies the shape of the mouse pointer on this screen. Some 
pointer shapes are listed below: 

num~lyphs dot II_angle sb_ v_double_arrow 
X_cursor dotbox Ir_angle shuttle 
arrow double_arrow man sizing 
based_arrow _down drafUarge middlebutton spider 
based_arrow _up drafcsmall mouse spraycan 
boat draped_box pencil star 
bogosity exchange pirate target 
bottom_lefccorner fleur plus tcross 
bottom_righccorner gobbler question_arrow top_left_arrow 
bottom_side 

gumby 
right_ptr 

top_left_corner 
bottom_tee righcside 
box_spiral handl righuee top_righccorner 

centecptr hand2 rightbutton top_side 

circle heart rtUogo top_tee 

clock icon sailboat trek 

coffee_mug iron_cross sb_down_arrow ul_angle . 

cross lefcptr sb_h_double_arrow umbrella 
cross_reverse lefcside sb_Iefcarrow ucangle 
crosshair lefctee sb_righcarrow watch 
diamond_cross leftbutton sb_up_arrow xterm 

Strip off the XC_ prefix when specifying the shape argument. The pointer shape may 
also be controlled with the pointerShape resource. The pointerForeground 
and pointerBackground resources control its color. 

Page 134 JAM/Pi Release 1.4 . 1 December 92 



Chapter 6: Extension Reference 

JAM/Pi Release 1.4 1 December 92 Page 135 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«pushbutton» 
create a pushbutton widget 

SYNOPSIS 
# «pushbutton» 

TYPE 

Field Extension 

DESCRIPTION 

This extension creates a pushbutton widget from a field. Menu fields default to this 
widget type. For proper functionality a field with this extension should be a menu field, 
and it should be protected from data entry and tabbing. If it is not, the developer must 
add calI backs to handle selection processing. This is not recommended. 

A push button widget performs an action when activated by the mouse or keyboard. It 
appears on the display as a button with a centered label and a drop shadow that causes 
it to protrude from the screen. Push buttons may be navigated via the keyboard or 
mouse just like character JAM menus. 

You may wish to protect push buttons from clearing, as you would not want the user to 
inadvertently clear the label text in the button. 

Page 136 JAM/Pi Release 1.4 1 December 92 



Figure 57 illustrates push buttons in Windows and Motif. 

First 

Second 

Third 

Figure 57: Push Buttons in Windows and Motif 

Chapter 6: Extension Reference 

I"a 
1'1.11'-' 
1"11.1 

JAMlPi Release 1.4 1 December 92 Page 137 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

«radiobutton» 
create a radio style toggle button 

SYNOPSIS 
# «radiobutton» 

TYPE 

Field Extension 

DESCRIPTION 
This extension creates a radio style toggle button from a field. Members of radio button 
groups default to this widget type. To function properly the field must be a member of 
a group. If it is not, the developer must add callbacks to handle selection processing. 
This is not recommended. 

l.Mtl.~ttyii~~i~gf/N1g •. ~~~~~t~~~Jli~~~!N~Jt~()KHa~ji, .. ,.::o .. 's •... ·.,',x.:,.:,.~.t'·,.·,.·,:. ~.Pt\?'ii:·.,·t~.·.t'o'.~."w.'.'n'.'<.:':·:,e.·.l.:,.~" .. ':»~tijr'J.·.· .. ,.· .• n.o,~.l5:/m:.'::.,.,.~,b.u.X.·.a:.':~'.,:".~' .•. ~.ra'.s~'.~ ..•.. ,·.,' .. ,t., .•. :.·.';db.y:.i .• ,~ .. JI,.·.· .. , •. o,e.:>.,c .•..•. ,:.: ... ,;, .• ', .. ';:.;' .. '. 

~!<~iWt~[il{~~!:~~~~~~i~~~!~~li_. 
One potential use for this extension is for a field that allows zero or one selection. In 
JAM, such a field must be created asa checklist group, since a radio button forces one 
and only one selection. The enforcement of only one selection in the checklist would be 
handled by the developer via a validation function. If the developer wished such a field 
to appear on the display as a radio style toggle button this extension would be necessary. 

Toggle L 

~'"'''''''''''' 

~tf..i.r.§~l 
o Second 

o Third 

j"---"--! 

'. First 1 I.. ......... _ ................. ! 
¢ Second 

¢ Third 

~ First 

o Second 

o Third 

Figure 58: Radio buttons in Windows, Motif and OPEN LOOK. 

Page 138 JAM/Pi Release 1.4' 1 December 92 



Chapter 6: Extension Reference 

«scale» 
create a scale widget 

SYNOPSIS 
# «scale (minimum-value, maximum-value, declmai-places»> 

TYPE 
Field Extension 

DESCRIPTION 
This extension transfonns a field into a scale widget. A scale is a combination widget 
consisting of a slider that runs between minimum-value and maximum-value, and a 
label that changes to reflect the current value. decimal-places indicates the number of 
decimal places to be used in the value. 

The contents of the underlying JAM field will be the value shown in the label, so you 
may use sm_getfield and sm-putfield to retrieve and set the value. The field 
should be long enough to hold the value and a sign, if necessary. A scale widget defaults 
to the size of the underlying JAM field. You may wish to give a scale a width field 
extension in order to widen it. The greater the range of values, the wider you should 
make the widget. You may also wish to give the field a no autotab edit. 

For compatibility with character JAM, make a scale field digits only or numeric, and 
add a range check. 

Figure 59 illustrates scale widgets in Windows and Motif. 

.... ... 

61.5 
-;;::;[;;1 

Scale 

62 
00-II~OO 

L 

Figure 59: Scale widgets in Windows, Motif and OPEN LOOK. 

JAMIPI Release 1.4 1 December 92 Page 139 



JAM/Pi for OSF/Motif. Microsoft Windows and OPEN LOOK 

«space» 
equally space the elements of an array 

SYNOPSIS 

# «space (distance [units]»> 

TYPE 

Field Extension 

DESCRIPTION 

Array elements are created by default as separate text widgets. These widgets are sub
ject to the elastic grid. This means that there may not always be the same amount of 
space between array elements depending on how the grid has stretched. The space 
field extension guarantees equal spacing between each array element. 

distance specifies the amount of space between each element. distance may be either 
an integer, in which case it represents the distance in pixels, or it may be any floating 
point number followed by a units suffix. units may be characters, grid units, inches, or 
millimeters. Refer to the chart on page 96 for an explanation. 

The total height of an equally spaced vertical array is the sum of the heights of each 
element plus the space between the elements. The row height for the purposes of the 
elastic grid is the total height of the array divided by the number of rows it occupies. 
The same is true for the width and column size of a horizontal array. 

The space field extension has no effect on multi-element arrays that are contained in 
single widgets, like those with the multitext or list extensions. 

Page 140 JAM/Pi Release 1.4 1 December 92 



Chapter 6: Extension Reference 

«text» 
create a text widget 

SYNOPSIS 

# «text» 

TYPE 

Field Extension 

DESCRIPTION 

This extension creates a text widget from a field. Unprotected data entry fields default 
to this widget type. Protected fields can become text widgets with this extension. Their 
behavior depends on the specific protections. For example, the cursor will not stop at a 
field protected from tabbing. 

If you use this extension on a selection field (ie.-a group member or menu field), the 
selection event will occur, but the user may have no way to tell, because the widget has 
no armed or selected state. Such use is not recommended. 

Text widgets for left justified fields anchor by default on their left. Text widgets for 
right justified fields anchor by default on their right. The hal ign extension can be 
used to change the default alignment. See Chapter 3 for details on the positioning and 
widget sizing algorithms used in JAMIPi. 

Figure 60 illustrates text widgets in Windows and Motif. 

Figure 60: A Text widget in Windows and in Motif. 

JAM/Pi Release 1.4 1 December 92 Page 141 . 



JAM/Pifer OSFlMotif, Microsoft Windows and OPEN LOOK 

«title» 
'change the title bar on a 'screen 

SYNOPSIS 

# «title (string»> 

TYPE 

Screen Extension 

DESCRIPTION 

By default, each screen has a title bar, The contents of the title bar default to the name 
of the file that contains the screen binary, for example, mainscrn. j am (in PifMotif, 
the extension is dropped in the title bar). 

The title screen extension places string in the title bar of the screen, instead of the 
screen's file name. To blank out the text in the title bar, specify title (). To remove 
the title bar altogether, use the not i t Ie extension. 

l:!i~L1~~~i~!o~=~:~i~r:;~~~J~~ 
RELATED EXTENSIONS 

# «notitle» 

Page 142 JAM/Pi Release 1,4 1 December 92 



Chapter 6: Extension Reference 

«togglebutton» 
create an in/out style toggle button 

SYNOPSIS 

# «togglebutton» 

TYPE 

Field Extension 

DESCRIPTION 

This extension creates an inlout style toggle button from a field. Members of radio but
ton and checklist groups without boxes default to this widget type. To function properly 
the field must be a member of a group. If it is not, the developer must add callbacks to 
handle selection processing. This is not recommended. 

;'t.~~_~~l1 
Figure 61 shows a set ofMotifinlout style toggle buttons. 

I", Fir~~,J 
(Secondl 

( Third I 

Figure 61: A set of Motif in/out style toggle buttons. The first item is selected. 

JAM/Pi Release 1.4 1 December 92 . ·Page 143 





Chapter 7: Setting ApPlication Defaults 

Chapter 7 

Setting Application Defaults 

Each GUI provides its own method for setting defaults. PilMotif uses resource files, and 
PilWindows uses initialization files. Resource and initialization files are integral to the 
GUI. They control how the GUI and applications running under the GUI appear and act. 
The developer sets up the initial state of these files, but the user is free to change these 
settings. Allowing users to set their own preferences is fundamental to GUI philosophy. 

7.1 

RESOURCE AND INITIALIZATION FILES 
The structure of resource and initialization files is determined by the GUI. Preferences 
are indicated by setting attribute/value pairs. JAMlPi applications use resource and ini
tialization files to determine values for a variety of attributes including: 

• Default fonts and colors 

• Mapping between JAM colors and GUI colors 

• GUI independent font and color names 

• Application behavior 

7.1.1 

Resource and Initialization File Names 
Each application may have an application specific resource or initialization file. The 
name of this application specific resource or initialization file is determined by the first 
argument to the JAM initialization routine, srn_Xll ini t. This routine is called from 
the main routine of your application (usually either j rna in. c or j xmain . c). If the 

JAM/Pi Release 1.4 1 December 92 Page 145 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

first argument to sm_Xllinit is, for example, the string "myapp", then the applica
tion specific resource file in PifMotif and Pi/OPEN LOOK is named myapp, and the 
application specific initialization file in PiIWindows is named myapp. ini. The de
fault value for this argument in the distributed software is "XJam". in PifMotif, 
"OLJam" in Pi/OPEN LOOK and "Jam" in PiIWindows. 

7.1.2 

Structure of Resource and Initialization Files 
Resource files and initialization files have a similar structure. Each is arranged as a list 
of attributes to be set along with a value for each attribute. 

Page 146 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

JAM/Pi Release 1.4 1 December 92 Page 147 



JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK 

7.1.3 

. Location of Resource and Initialization Files 

Page 148 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

7.2 

COLORS 
JAMIPi offers access to many more color choices than character JAM. Resource and 
initialization files provide a mapping between JAM colors and GUI colors. JAMlPi 
also provides a way to set up a GUI independent color naming scheme in the resource 
and initialization files. These colors can be used in the field and screen extensions. 

7.2.1 

Setting JAM Palette Colors 
Character JAM provides sixteen colors to choose from, eight highlighted and eight un
highlighted. In the resource or initialization file, you can map these sixteen JAM colors 
to any of the colors supported by the GU!. This mapping between JAM colors and GUI 
colors defines your JAMlPi palette. Keep in mind that since end users have access to 
resource and initialization files, they are free to change the palette. The sixteen JAM 
colors that may be defined in the palette are: 

black red hi_black hi_red 
blue magenta hi - blue hi _magenta 
green yellow hi _green hi-yellow 
cyan white hi _cyan hi_white 

JAM/Pi Release 1.4 1 December 92 Page 149 



JAM/Pi for OSFIMotif. Microsoft Windows and OPEN LOOK 

Page 150 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

7.2.2 

Colors Beyond the JAM Palette 

For most applications, sixteen colors are sufficient. It is stylistically undesirable to 
flood screens with a multitude of hues, as they tend to distract the user. If additional 
colors beyond the sixteen defined in the the palette are. needed though, they may be 
specified in the field or screen extensions. 

The fg and bg extensions allow the developer to specify foreground and background 
colors for screens and widgets. These extensions can use either GUI specific colors or 
GUI independent color aliases. fg and bg are explained in Chapters 5 and 6. GUI inde
pendent color aliases are explained in section 7.4 of this chapter. 

JAM/PI Release 1.4 1 December 92 Page 151 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Page 152 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

7.3 

FONTS 
. JAM/Pi uses the standard GUI conventions for specifying fonts by name. For portabili
ty, font names can be aliased. Each application has a default font specified in the re
source or initialization file. In addition, fonts may be specified for individual fields and 
screens. 

7.3.1 

Where Fonts are Specified 
There are several places to set fonts in JAMlPi. Each type of specification has its own 
scope. 

The Application Default Font 
The application default font is specified in the resource or initialization file. In the ab
sence of any other font specification, the application default font will be the font used 
for the entire application. 

JAM/Pi Release 1.4 1 December 92 Page 153 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

The Default Screen Font 

The default screen font is either the application default font or a font specified via the 
font screen extension. A font screen extension overrides the application default font 
for a particular screen. In the absence of any other specification, this font will be used 
by all display text and widgets on the screen. The font screen extension takes either a 
GUI specific font name or a GUI independent alias. See page 89 for more on the font 
screen extension. See section 7.3.2 for an explanation of font naming, and section 7.4 
for an explanation of font aliasing. 

A Widget's Font 

A widget'S font is either the default screen font or a font specified via the font field 
extension. A font field extension overrides the default screen font for a particular 
widget. The font field extension takes either a GUI specific font name or a GUI inde
pendent alias. See page 89 for more on the font field extension. See section 7.3.2 for 
an explanation of font naming, and section 7.4 for an explanation of font aliasing. 

Page 154 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

7.3.2 

Naming Fonts 
Each GUI has its own font naming convention. JAMlPi can use either a GUI specific 
font name or a GUI independent font alias. This section describes the Windows, and 
Motif and OPEN LOOK font naming conventions. Section 7.4 describes aliasing. 

Windows font naming 
PilWindows uses the following font naming convention: 

fontnsme-polntsize [-bold) [-i talic) [-underline) 

fontname and polntslze are required values. bold, italic and underline are op
tional. For example: 

Tms Rmn-24-bold 

means Times Roman 24 point bold. Use the MS Windows Control Panel to find out 
what fonts are installed on your system. An additional font not listed in the Control Pan
el is terminal. This font is the same as the OEM_FIXED_FONT that can be specified 
in the initialization file as an application default font. 

If the specified font is not found, it is either synthesized or replaced by a closely match
ing font according to the MS Windows GDI font mapping scheme. This scheme assigns 
weighted values to the various properties of a font, and then selects a font that is close 
to the one specified. Character set is given the greatest weight, followed by pitch, fami
ly, and face, then comes height and width, followed by weight, slant, underline and 
strikeout characteristics. Refer to Reference Volume J of the MS Windows SDK docu
mentation for a full description of the GDI and the various font characteristics. 

Motif and OPEN LOOK font naming l 

In Motif and OPEN LOOK, the simplest way to find out what fonts are available on 
your system is to run the xlsfonts program provided with the GUI. There are two 
common ways of specifying font names. The first is a simple font name, like "courier" 

1. This section on Motif and OPEN LOOK font names is adapted from Logical Font Description Conven-
tions. Version 1.3. Mrr X Consortium Starulard. 

Copyright © 1988 by the Massachusetts Institute of Technology. 

Copyright © 1988, 1989 by Digital Equipment Corporation. All rights reserved. 

Pennission to use, copy, modify, and distribute this appendix; for any purpose and without fee is hereby 
granted, provided that the above copyright notice and this permission notice appear in all copies. MIT and Dig
ital Equipment Corporation make no representations about the suitability for any purpose of the information 
in this document. This document is provided "as is" without express or implied warranty. 

JAM/Pi Release 1.4 1 December 92 Page 155 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

or "fixed". The second is for font names that conform to the XLFD font specification. 
These may be identified by the prefix ,,_no XLFD fonts use the following naming con
vention: 

- foundry- famlly- welght- slant- wldth- style-pixel size-point size-x resolutlon-
y resolutlon- spacing-average wldth- charset reglstry- charset encoding 

Abbreviated definitions for the above values appear below. See the X Protocol Refer
ence Manual for detailed explanations. 

foundry Identifies the company that designed the typeface. 

family Identifies the font family, for example, courier. Spaces are allowed in 
family names. 

weight Nominal blackness of the font. Examples are: medium, demi-bold, bold .. 

slant A code that indicates the slant of the font. Options are: 
R roman, I italic, 0 oblique, RI reverse italic, RO reverse oblique, OT other. 

width Nominal width of characters. Examples are: normal, condensed, narrow. 

style General style description, such as: serif, sans serif, informal, decorated. 

pixel size The body size of the font in pixels at a particular point size and y resolution. 

point size Device independent point size. Expressed in deci-points, eg.-12 0 means 
12 point type. 

x resolution Horizontal resolution of the font in pixels per inch (dpi). 

y resolution Vertical resolution of the font in pixels per inch (dpi). 

spacing A code that indicates the spacing of the font. Options are: 
P proportional, M monospaced, C character cell. 

average width Average width of the characters in the font in deci-pixels (l/lOth pixels). 
For the default screen font, this value determines the grid size. For a text 
widget, it determines the width of the widget. 

charset registryThe registration authority that owns the font's character set encoding. 

charset encoding The registered name that identifies the coded character set. 

Case is ignored in the font name specification. Wildcards may be used for any of the 
. values, but the more exact a specification is, the more likely that the correct font isse-· 
lected. 

Example Font Specifications 

-adobe-he1vetica-bo1d-r-normal--24-240-75-75-p-130-iso8859-1 

*he1vetica-bo1d-r-normal--24-240* 

-*he1vetica*24* 

Page 156 JAMIPi Release 1.4 1 -December 92 



Chapter 7: Setting Application Defaults 

The xfontsel Program 

There is a program in some implementations of Motif and OPEN LOOK called 
xf on t s e 1 that provides a convenient interface for selecting fonts. It consists of a se
ries of pull-down menus for selecting the various attributes of a font. Use this program 
to specify a font, and then "select'~ and paste the font specification into JAMlPi. 

The xfontsel screen is shown below. 

1 font matches 

fndry-fmly-wght-slant-sWdth-adstyl 
resx-resy~spc-avgWdth-rgstry-enc 

-*-times-bold-r-*-*-14-*-*-*-* 

ABCDEFGHIJKLMNOPQRS 
abcd.efghijklnmopqrstuvwxyz 
0123456789 

Figure 62: The xfontsel program. 

. , . 

. :. ~~ 

18 
24 

To use xfontsel, select values from the pull-down menus associated with the vari
ous attributes to narrow down the list of fonts. A specification using the selected values 
appears in the center of the screen, and a sample of the first font that matches it appears 
beneath. The number of fonts that match the specification is listed at the upper right. On 
pull down menus, only those values that result in a valid font name based on the specifi
cation so far are available; all other values appear greyed out. If too many choices on 
menu appear greyed out, go to another selection and enter an asterisk. 

When you are happy with the specification, click on the select button to copy it into 
the paste buffer. You may then paste this specification into the appropriate location in 
JAMlPi by clicking the middle mouse button or selecting paste from the menu bar. 

JAMIPi Release 1.4 1 December 92 Page 157 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

7.4 

ALIASING: GUIINDEPENDENT FONTS 
AND COLORS 
Font and color aliasing allows the developer to specify GUI independent font and color 
names in the field and screen extensions. This enhances the portability of JAMJPi and 
simplifies the extensions, by moving the sometimes complex font and color specifica
tions to the resource or initialization file, where they need be set only once. 

Font and color aliases are made up by the developer, and their identities are resolved in 
an alias list in the resource or initialization file. 

If you wish to use the JAM palette color names, like hi_red, in foreground or back
ground extensions, you must add them to the list of color aliases. 

Page 158 JAM/PI Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

Restrictions on Aliasing 

Font and color aliases may be used in the field extensions, the screen extensions, and in 
the specification of the JAMIPi palette. 

JAM/Pi Release 1.4 1 December 92 -Page 159 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

7.5 

WINDOWS INITIALIZATION OPTIONS 
The following sections describe options that are particular to PilWindows. 

7.5.1 

The [Jam Options] Section of the 
Initialization File 
The following behavior and appearance options may be set in the [Jam Opt ions 1 
section of the application specific initialization file, 

GrayOutBackgroundForrns 
This setting controls whether text on inactive screens is grayed out. While this behavior 
is usually desirable, there is a performance tradeoff associated with this functionality, 
since the background forms must be redrawn. GrayOutBackgroundForms defaults 
to off. To enable graying out, set this option to on. 

FrarneTitle 
This setting controls the title text in the MDI frame around a JAM application. The 
default title string is the value of the first argument to sm_Xll ini t in jmain. c or 
j xrna in . c (see section 7.1.1). 

StartupSize 
This option, if set to maximized, brings up a JAM application in a maximized MDI 
frame. If it is set to minimized, then the application comes up in an iconified frame. 
Any other value brings up the application in a standard size frame. The default is to use 
a standard size frame. 

Page 160 JAM/Pi Release 1.4 . 1 December 92 



chapter 7: Setting Application Defaults 

StatusLineColor 
. This option sets the default background color for the JAM status line. For compatibility 

with other windows applications, it defaults to grey. Specify either an ROB value or a 
OUI independent color alias to change the default status line background. Messages 
with embedded display attributes can override the default background color. 

SMTERM 
This option overrides the SMTERM environment variable for PilWindows applications. 
It allows both DOS and Windows to use JAM without the need to change the environ
ment. To take advantage of this feature, set SMTERM to mswin in the initialization file, 
and to a DOS terminal type in the environment or SMVARS file. Example DOS terminal 
types are: ega, ega, mono, softeol and softbw. 

7.5.2 

The Windows Control Panel and win. ini File 
Default attributes for Windows may be set from the "Windows Control Panel", usually 
found in the "Main" folder. From the Control Panel, you can setup the color scheme for 
Windows, as well as other defaults. The Control Panel alters the win. ini file, 
supplied by Microsoft. Refer to the MS Windows documentation for details of how to 
use the control panel 

Some settings, such as the default color for buttons in Windows 1.2, can only be made 
by editing the win. ini file directly. A supporting document, the winini . txt file, 
is distributed with Windows. Read this file for instructions on altering win. ini. 

7.5.3 

Highlighted Background Colors in Windows 
Note that in PilWindows, highlighted background colors are different from unhigh
lighted background colors. In character JAM on a PC under DOS, there is normally no 
difference between highlighted and unhighlighted background colors. 

JAM/Pi Release 1.4 1 December 92 Page 161 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

7,5A 

Sample jam. ini File 

[Jam Colors] 

Black=O/0/128 
Blue=JYACC Blue 
Green=O/255/0 
Cyan=O/255/255 
Red=255/0/0 
Magenta=255/0/255 
Yellow=128/128/0 
White=255/255/255 
HBlack=O/O/O 
HBlue=O/128/128 
HGreen=O/128/0 
HCyan=128/128/128 
HRed=128/0/0 
HMagenta=128/0/128 
HYellow=255/255/0 
HWhite=255/255/255 

[Jam Fonts] 

[Jam Options] 

GrayOutBackgroundForms=Off 

FrameTitle=JAM 

;StartupSize=Maximized 

SMTERM=mswin 

StatusLineColor=128/128/128 

[Jam ColorTable] 

JYACC Blue=O/O/128 

[Jam FontTable] 

Big Script=script-24-bold 

Page 162 JAMlPi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

7.6 

MOTIF AND OPEN LOOK COMMON 
RESOURCE OPTIONS 
This section describes resources that are common toPilMotif and Pi/OPEN LOOK. 

7.6.1 

Motif and OPEN LOOK Behavioral Resources 
Three resources control the behavior of JAM/Pi on an application-wide basis. 

The baseWindow Resource 
This resource controls whether a base window appears on the display. The base window 
is a special window that contains only a menu bar, a key set, and a status line. If base
Window is: 

• true (default) A base window appears on the display . 

• false No base window appears on the display. Any menu bar, keyset or status line 
that would have appeared in this window will be lost. See formStatus 
and formMenus to determine which status line and menu bars appear in 
the base window. 

The formStatus Resource 
This resource controls where status messages appear. Note that there is a difference be
tween status and error messages. Error messages appear in dialog boxes in JAMIPi. 
Status messages appear on the status line. This resource controls whether status mes
sages appear on the base window's status line (the default), or on the active form's (or 
window's) status line. The existence of the base window is controlled by the base
Window resource (see above). 

There are five levels of status messages: 

I. d_msg_line' 

2. wait 

3. field 

4. ready 

5. background· 

JAM/Pi Release 1.4 1 December 92 Page 163 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

Background status messages can only appear in the base window. If formstatus is: 

• false 

• true 

(Default) All status messages appear in the base window. Individual 
screens have no status line of their own. If there is no base window 
(ie-baseWindow: false), then there is no status line at all. 

Background status messages appear in the base window. All other status 
messages appear in a status line on the active screen. The status line on indi
vidual screens appears at the bottom of the screen. Only the active screen's 
status line is updated. If a screen is not active, then its status line is not up
dated. 

The f ormMenus Resource 
This resource controls whether individual forms (or windows) have their own menu 
bars. If formMenus is: 

• false 

• true 

(Default) Only the base window displays a menu bar. Individual screens 
display no menu bar. Menu bars of all scopes, including screen-level, ap
pear in the base window. If baseWindow is also false, then no menu bars 
appear at all. 

Individual screens display their own menu bar. Screens display menu bars 
of the scope KS_FORM (screen-level) and KS_OVERRIDE (override-le
vel). Only the active screen's menu bar is updated and active. Menu bars 
on inactive screens are inactive. 

The base window, if there is one, displays menu bars of the scope 
KS_APPLIC (application-level) and KS_SYSTEM (system-level). 
Whether the application-level or system-level menu bar is displayed in the 
base window may be toggled via the SFfS logical key. If there is no base 
window, then no system or application level menu bars are displayed. 

Suggested Combinations of baseWindow, 
formMenus and formStatus 

1. For compatibility with PiIWindows and backward compatibility with 
controlled release versions of PilMotif, the default settings should be 
used: 

XJam*baseWindow: true 
XJam*formStatus: false 
XJam*formMenus: false 

2. For full functionality with menu bars and status lines local to screens: 

Page 164 JAM/Pi Release 1.4 1 December 92 



Chapier 1: Setting Application Defaults 

XJarn*baseWindow: true 
XJam*formStatus: true 
XJarn*formMenus: true 

3. If you wish to have no base window: 

XJarn*baseWindow: false 
XJarn*formStatus: true 
XJarn*formMenus: true 

Be sure not to use application level menu bars or background status 
messages with this third combination, as they will not appear. 

I "Qj ii]i!;.·:FiQ~[QPJ;.I'fll$.Q~K,.·.t~pI~¢¢·'ifi¢r){;j'&lfuinjifi¢·~@'ipl~s5Yiifi9P4;¥#i;!.·ili··;; •· ••• · ••• ·.}.· ••• Y···.· 

7.6.2 

Restricted Resources 
The following items in the distributed XJam file must not be changed: 

XJam* ... *translations 
XJam*keyboardFocusPolicy 
XJam* ... *traversalOn 

All other items (including: Mwrn*XJam*keyboardFocllsPolicy) may be changed 
at the developer's or user's discretion. 

I~OJ;;£QtQ~r;~\FQ§>$i;jf~plaC¢hn~3.Q.§mj!f··theJ[fuPt¢.~ ••• 'jI,iUiT0r,.Qa,rrL]?·tEF~n>T 

7.6.3 

Suggested Resource Settings 
We strongly suggest the following resource setting. 

XJam*focusAutoRaise:true 

This setting will bring a JAM screen to the top of the display when it gets the focus. It 
is slightly different than the MWM resource of the same name. 

I QI t; .•.. ·:Fi()r!~P:gNi·!i.tQQK;.··.t¢pl~~~~~JZq1Lr@j.!Etb~ .•.. §~fup!¢$.\Wiih··.6J:;jga.Ij1:i .•.• ; • •.. ··w;r·.·· ........ . 

JAMIPi Release 1.4 1 December 92 Page 165 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

7.6A 

The rgb. txt File in Motif and OPEN LOOK 
Motif and OPEN LOOK colors are listed in the rgb. txt file, often found in the direc-
tory /usr/lib/Xll in Motif and in $OPENWINHOME/lib in OPEN LOOK. The 
rgb. txt file lists color names along with their red, green, and blue components. The 
colors appearing in this file are system dependent. Some common color names are: 

alice blue deep sky blue light sky blue papaya whip 
antique white dim gray light slate blue peach puff 
aquamarine dim grey light slate gray peru 
azure dodger blue light slate grey pink 
beige firebrick light steel blue plum 
bisque floral white light yellow powder blue 
black forest green lime green purple 
blanched almond gainsboro linen red 
blue ghost white magenta rosy brown 
blue violet gold maroon royal blue 
brown goldenrod medium blue saddle brown 
burlywood gray medium orchid salmon 
cadet blue green medium purple sandy brown 
chartreuse green yellow medium sea green sea green seashell 
chocolate grey medium slate blue sienna 
coral honeydew medium turquoise sky blue 
cornflower blue hot pink medium violet red slate blue 
comsilk indian red midnight blue slate gray 
cyan ivory mint cream slate grey 
dark goldenrod khaki misty rose snow 
dark green lavender moccasin spring green 
dark khaki lavender blush navajo white steel blue 
dark olive green lawn green navy tan 
dark orange lemon chiffon navy blue thistle 
dark orchid light blue old lace tomato 
dark salmon light coral olive drab turquoise 
dark sea green light cyan orange violet 
dark slate blue light goldenrod orange red violet red 
dark slate gray light gray orchid wheat 
dark slate grey light grey pale goldenrod white 
dark turquoise light pink pale green white smoke 
dark violet light salmon pale turquoise yellow 
deep pink light sea green pale violet red yellow green 

Page 166 JAM/PI Release 1.4 1 December 92 



Chapter 7: Settind Application Defaults 

7.7 

MOTIF RESOURCE OPTIONS 
The following sections describe resources and options that are particular to PilMotif. 

7.7.1 

Motif Global Resource and Command Line 
Options 
The resources in the table below are global settings for an application. They may also 
be specified on the command line, as may the standard X Toolkit command line op
tions. Refer to the X Toolkit manual for a full list of command line switches. 

NOTE: D indicates the default. : 

Resource Type Command Line Description 

fontList string -fn font Sets the application default font. 

foreground string -bg color Sets unhighlighted white 
foregrounds to color. 

background string -fg color Sets unhighlighted black 
backgrounds to color. 

setSensitive boolean -setSensitive Controls whether screens that 
(on) are not at the top of the window 

stack appear grayed out. You 
+setSensitive may wish to tum this off, since 

(off) D it slows down the application, 
and may cause other problems. 

ownColormap boolean -cmap (on) Tells JAM whether to use its 
+cmap (off) D own color map. Turning JAM's 

color map on is useful only on 
systems with limited colors. 

cascadeBug boolean -cascadeBug Fixes a bug that appears in 
(on) some versions of Motif 1.1. 

+cascadeBug The bug causes popup menus to 
(off) D appear as small, empty boxes. 

JAMlPi Release 1.4 1 December 92 Page 167 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

" 

Resource Type Command Line Description 

indicators boolean -ind (on) Controls whether the Motif 
+ind (off) D shift/scroll indicators are used. 

NOTE: There are also JAM 
shift/scroll indicators. To turn 
these off, use the IND_OP-
TIONS keyword in the Setup 
File, To change the characters 
used for the JAM indicators 
use the ARROWS keyword in 
the Video File. See the JAM 
Configuration Guide for more 
information. 

The following illustrates a sample command line in PilMotif: 

xjxform -fn '-*courier*r*12' myscreen.jam 

7.7.2 

Widget Hierarchy in Pi/Motif 
Widgets are arranged in a parenH:hild hierarchy. The following tables describe the 
widget hierarchy in PilMotif. This is useful to know if you wish to set resources for 
particular widgets or classes of widgets in an application. Refer to the OSFlMotif Pro
grammer's Guide for more information on widgets, widget classes, and the resources 
associated with them. 

Base Screen 
The base screen in a JAM application is an ApplicationShell widget. Its class is 
given by the first argument to the sm_Xll ini t initialization routine, and its name is 
the name of the application program (the value of argv [0 1 in main). If the baseWin
dow resource is set to false, then this shell is created but never displayed. 

NOTE: Avoid application program names that contain periods or asterisks, as the re
source parser interprets these as special characters. Screen name extensions, though, 
are removed when they are used as widget names. 

By default, JAM has class name XJam and application name xj xf orm. 

Page 168 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Appiication Defaults 

The widget hierarchy for the base Screen is: 

Widget Class Name 

ApplicationShell ... (class given by sm_X11 ini t) sppl/cst/on-nsme 

XmMainWindow main 

XmDrawingArea status 

XmRowColumn menubar 

XmForm workarea 

XmPushButton softkey 

XmPushButton softkey 

The workarea gets softkeys only when softkeys are enabled, and the main screen 
gets a menu bar only when menu bars are enabled (these are mutually exclusive). The 
status area is used for the JAM status line in the base screen. 

Dialog Boxes 

File selection dialog boxes are created by the sm_f i lebox library routine. 

Message dialog boxes are created when a message needs to be posted. Error message 
dialogs are created by XmCreateErrorDialog and query message dialogs are 
created by XmCreateQuestionDialog. JAM specifies the message string, which 
buttons appear, and which button is the default. The JAM message call can specify the 
icon to appear. Other options, like the title bar text, can be set in the resource file. 

The children of dialog boxes are handled by Motif. Refer to your Motif manual for de
tails. 

JAM Screens 

The widgets used for JAM screens are all subclasses of the Motif shell widget. The 
shell's parent is the ApplicationShell. 

JAM/Pi Release 1.4 1 December 92 Page 169 



JAM/PI for OSFIMotif. Microsoft Windows and OPEN LOOK 

The widget hierarchy for JAM Screens is: 

Widget Class Name 

... TopLevelShell screen-name 

XmDialogShell message-popup 

XmMessageBox ... message 

XmDialogShel1 filebox-popup 

XmFileSelectionBox ... fileBox 

XmMainWindow scroll 

XmDrawingArea clip 

XmDrawingArea ... area 

XmDrawingArea status 

XmScrollBar scrollbar 

XmScrollBar scrollbar 

XmRowColumn menubar 

JAM screens have a status line only if the value of the formStatus resource is 
true. They have a menu bar only if formMenus is true. 

New screens created in draw mode are named shell before they have been saved. 

Since the name of the shell used for JAM screens is the screen name, resources may be 
restricted to a specific screen by beginning the specification with c/ass* screen_name. 
For example, XJam*empscrn... begins a specification for a screen named 
empscrn in an application of class XJam. Resources restricted to a named screen are 
equivalent to screen extensions. For example, 

XJam*empscrn.background: gold 

is the same as specifying a «bg (gold»> as a screen extension on empscreen. The 
resource setting overrides the extension. 

area is the parent widget for all the widgets on a JAM screen. If you place your own 
widgets on a JAM screen, you'll need the widget id of area. The library function 
sITLdrawingarea returns the widget ill of area. A related function, 

Page 170 JAMlPiRelease 1.4 1. December 92 



Chapter 7: Setting Appilcation Defaults 

sm_translatecoords, translates JAM screen coordinates into pixel coordinates 
relative to the upper left hand corner of area. 

Fields 
JAM fields are created as child widgets of area. If a field has a name, its widget is 
given that name. If a field doesn't have a name, its widget is named _fld#, where # is 
the field number (this is analogous to the JAM f2 s truct utility). In a named array 
consisting of multiple widgets, each widget has the same name. Widgets that represent 
multiple fields take the name of their first field. 

The library routine sm_widget returns the widget ID of a widget. Asterisks in the 
table below indicate which widget is returned by sm_widget in cases where there is 
more than one possibility. If the widget returned by sm_widget is not the one you are 
looking for, use XtParent to obtain the widget id of its parent. This is particularly 
useful when working with scale widgets and scrolling multiline and list box widgets. 

Some entries in the table have prefixes or suffixes with their names. For example, 
fleld-namesW indicates that the widget has name of the field followed by the literal 
characters SW. 

The widget hierarchy for JAM fields is as follows: 

Object Widget Class Name 

Data Entry Field · .. XmText field-name 

· .. XmDrawingArea field-name 

XmText W field-name 

Data Entry Field 
XmArrowButton indicator with Indicators 

XmArrowButton indicator 

Protected Field ... XmLabel fleld-name 

Menu Field · .. XmPushButton field-name 

Group Member · .. XmToggleButton fleld-name 

Multiline Text · .. XmText field-name 

JAM/PI Release 1.4 1 December 92 Page 171 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

Object Widget Class Name 

... XmScrolledText field-nameSw 
Multiline Text 
with Scroll bars XmText* field-name 

List Box · .. XmList field-name 

· .. XmScrolledList fleld-nameSw 
List Box with 
Scroll Bars XmList* field-name 

· .. XmRowCo 1 umn * field-name 

· .. XmMenuShe 11 popup_field-name.....pane 

XmRowColumn fleld-name.....pane 

. Optionmenu XmPushButton label-text 

XmPushButton label-text 

· .. XmScale field-name 
Scale 

XmScrollBar* scale scrollbar -

To refer to a whole class of widgets, use the widget class. For example, XJam *XrnText 
refers to all text widgets. To refer to a class of widgets on a screen, use the screen name 
followed by the widget class. For example, XJarn*empscreen*XmText refers only 
to text widgets on the screen empscreen. To refer to an individual widget, use the screen 
name followed by the widget's name. For example, XJarn*empscreen*empnarne 
refers only to the empname widget on the screen empscrn. 

If the indicators resource is on (section 7.7.1), shifting and scrolling text widgets 
have indicator arrows. There can be up to four indicators, one for each direction. 

In the optionmenu widget, the text field and the popup pane are linked through the 
subMenuID field of the RowColumn widget. Since the push buttons in the option
menu are named by their contents, it is easier to set a resource for all the push buttons 
in an optionmenu than it is to set a resource for an individual button. 

Page 172 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

Display Text, Lines and Boxes 
Display text, lines and boxes are child widgets of area. The hierarchy for display text 
and screen decoration widgets is as follows: 

Object Widget Class Name 

Display text · .. XmLabel display 

Line · .. XmSeparator line 

Box · .. XmFrame box 

Frame · .. XmFrame frame 

Menu Bars 
Menu bars, submenus and pop-up menus are created within RowCo 1 umn widgets. Menu 
bars are children of either the base form's or an individual screen's MainWindow. Sub
menus are children of MenuShells, but the name of the shell is unclear, since Motif 
reuses these shells. If a new shell is created, its name will be popup_submenu-name. 
The best way to specify resources for a submenu is to use the form: 
XJam*XmMenuShell. submenu-name. 

The hierarchy for menus and pop-up menus is as follows: 

Object Widget Class Name 

Menu Bar ... XmRowColumn ... menu-name 

... XmMenuShell (name varies) 
Submenu 

XmRowColumn ... submenu-name 

ApplicationShell appllcatlon-name 

Pop-up TransientShell dummy 

Menu Bar 
XmMenuShell popup-popupmenu 

XmRowColumn ... popupmenu 

Submenus pop up through the auspices of a CascadeBut ton widget. A submenu is 
tied to its CascadeBut ton via the XmNsubMenuID field of the button. 

JAM/PI Release 1.4 1 December 92 Page 173 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Items on menus and submenus are children of the menu's RowColurnn widget. The 
hierarchy for items on menus and submenus is identical. It is as follows: 

Menu Script Keyword Widget Class Name 

separator · .. XmSepara tor separator 

title ... XmLabel label-text 

key or control ... XmCascadeButton label-text 
(in top-level bar) 

key or control ... XmToggleButton label-text 
(with indicator) 

key or control · .. XmPushButton label-text 
(without indicator) 

menu ... XmCascadeButton ... label-text 

edit ... XmPushButton ... label-text 

windows · .. XmPushBut ton ... label-text 

The edi t and windows submenus provide access to special JAM functions. Their 
contents are controlled by JAM, as opposed to being user designed with a menu script. 

The hierarchy is shown below: 

Object Widgets Class· Name 

... XmRowColurnn windows 

XmPushButton wlndow-name 

Windows Menu 

XmPushButton window-name 

XmSeparator sepl 

XmPushButton windows _raise 

Page 174 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

Object Widgets Class Name 

... XmRowColumn edit 

XmPushButton edit _cut 

Edit Menu XmPushButton edit _copy 

XmPushButton edit-paste 

XmPushButton edit _delete 

XmPushButton edit - select 

7.7.3 

Sample Motif Resource File for JAM 
!######################################################## 
!### Resource Specifications for XJarn ### 
!######################################################## 

! Initial screen size: 

XJarn.geornetry: 600x75+0+0 

! Application-wide foreground and background: 

!XJarn*foreground: 
!XJarn*background: 

! Application default font: 

!XJarn*fontList: 

! GUI focus policy: 

XJarn*keyboardFocusPolicy: 
XJarn*focusAutoRaise: 

JAM/Pi Release 1.~ 1 December 92 

white 
dark slate gray 

fixed 

explicit 
true 

Page 175 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

! GUI widget highlight and selection behavior: 

XJam*highlightOnEnter: 
!XJam*highlightColor: 
XJam*highlightThickness: 
!XJam*alloWOverlap: 

XJam*area.XmToggleButton.fillOnSelect: 
XJam*area.XmPushButton.fillOnSelect: 

! Label widget preferences: 

XJam*area.XmLabel.marginWidth: 
XJam*area.XmLabel.marginHeight: 
XJam*area.XmLabel.highlightThickness: 
XJam*area.XmLabel.highlightOnEnter: 

! GUI indicator preferences: 

XJam*indicator.width: 
XJam*indicator.height: 
XJam*indicator.highlightOnEnter: 
XJam*indicator.shadowThickness: 
XJam*indicator.traversalOn: 
XJam*indicators: 

! Disable greying out of inactive screens: 

XJam*setSensitive: 

true 
dark orange 
2 
false 

true 
true 

o 
o 
o 
false 

15 
15 
false 
o 
false 
false 

false 

On some versions of Motif, a bug prevents the 
XmNcascadingCal1back on a cascade button from 
being called, and therefore popup menus do not 
pop up. If this is so, set the following to true: 

XJam*cascadeBug: 

Under VMS, text widgets seem to grab the 
selection unless the following is set: 

XJam*area*navigationType: 

Page 176 JAM/Pi Release 1.4 1 December 92 

false 

NONE 



Chapter 7: Setting Application Defaults 

! Keyboard traversal activation: 

XJam*area.XmPushButton.traversalOn: 
XJam~area.XmToggleButton.traversalOn: 

XJam*area.XmScale.traversalOn: 
XJam*area*scale_scrollbar*traversalOn: 
XJam*area.XmText.traversalOn: 

! Label text alignment: 

true 
true 
true 
true 
true 

XJam*area.XmLabel.alignment: ALIGNMENT_BEGINNING 
XJam*area.XmToggleButton.alignment: ALIGNMENT_BEGINNING 

! JAM palette colors: 

XJam.black: #000000 
XJam.blue: #0000a8 
XJam.green: #00a800 
XJam.cyan: #00a8a8 
XJam.red: #a80000 
XJam.magenta: #a800a8 
XJam.yellow: #a85400 
XJam.white: #a8a8a8 
XJam.hi_black: #545454 
XJam.hi_blue: #5454ff 
XJam.hi_green: #54ff54 
XJam.hi_cyan: #54ffff 
XJam.hi_red: #ff5454 
XJam.hi_magenta: #ff54ff 
XJam.hi....Yellow: #ffff54 
XJam.hi_white: #ffffff 

Labels and keyboard mnemonics for the edit and windows 
menu bars: 

XJam*XmMenuShell.windows.windows_raise.labelString: Raise All 
XJarn*XmMenuShell.windows.windows_raise.mnemonic: R 
XJam*XmMenuShell.edit.edit_cut.labelString: Cut 
XJam*XmMenuShell.edit.edit_cut.mnemonic: t 
XJam*XmMenuShell.edit.edit_copy.labelString: Copy 
XJam*XmMenuShell.edit.edit_copy.mnemonic: C 
XJam*XmMenuShell.edit.edit-paste.labelString: Paste 

JAM/Pi Release 1.4 1 December 92 Page 177 



JAM/PI for OSFIMotif, Microsoft Windows and OPEN LOOK 

XJam*XmMenuShell.edit.edit-paste.mnemonic: 
XJam*XmMenuShell.edit.edit_delete.labeIString: 
XJam*XmMenuShell.edit.edit_delete.mnemonic: 
XJam*XmMenuShell.edit.edit_select.labeIString: 
XJam*XmMenuShell.edit.edit_select.mnemonic: 

P 
Delete 
D 

Select All 
S 

! Name of the RGB.TXT file to search for GUI color names: 

XJam.rgbFileName: /usr/lib/X11/rgb.txt 

The standard JAM key file for X, nxwinkeysn, maps 
unmodified, shifted, and control function keys 1-12 
into the JAM logical keys PFl-12, SPFl-12, and SFTl-12. 
This conforms to the standard key conventions used 
for JAM on character terminals. 

Unfortunately, these may conflict with the fallback or 
vendor-specific default bindings which Motif uses for 
its virtual keysyms. The following line disables all of 
the virtual keysyms within a JAM application. 
(Actually, the default binding for osfMenuBar is 
remapped to F25. If we were to unmap it, the Motif 
library would reset it to FlO.) 

If you prefer the standard Motif usage for the function 
keys, you can change the JAM key file to avoid the keys 
which conflict with Motif. The following line can then 
be commented-out: 

XJam*defaultVirtuaIBindings: \n\ 
osfMenuBar: <Key>F25 \n\ 
osfActivate: <Key>KP_Enter \n\ 
osfCancel: <Key>Escape \n\ 
osfDown: 
osfLeft: 
osfRight: 
osfUp: 

Page 178 

<Key>Down \n\ 
<Key>Left \n\ 
<Key>Right \n\ 
<Key>Up 

JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

GUI independent color and font aliases for use in screen 
and field extensions: 

XJam*colors: dark blue 
champagne 
pumpkin 

= navy blue \n\ 
#OOeedd \n\ 
orange 

XJam*fonts: small 
medium 
large 

*-schumacher-*-6-* \n\ 
*-helvetica-medium-r-*-10-* \n\ 

= *-new century *-bold-i-*-20-* 

7.8 

OPEN LOOK RESOURCE OPTIONS 
The foJIowing sections describe resources and options in Pi/OPEN LOOK. 

7.8.1 

OPEN LOOK Global Resource and Command 
Line Options 
The resources in the table below are global settings for an application. They may also 
be specified on the command line, as may the standard X Toolkit command line op
tions. Refer to the X Toolkit manual for a fuJI list of command line switches. 

NOTE: D indicates the default. 

Resource Type Command Line Description 

font string -fn font Sets the application default font. 

foreground string -bg c%r Sets unhighlighted white 
foregrounds to color. 

background string -fg c%r Sets unhighlighted black 
backgrounds to c%r. 

JAM/Pi Release 1.4 1 December 92 Page 179 



JAM/Pi for OSF/Molif. Microsoft Windows and OPEN LOOK 

Resource Type Command Line Description 

setSensitive boolean -setSensitive Controls whether screens that 
(on) are not at the top of the window 

stack appear grayed out. You 
+setSensitive may wish to turn this off, since 

(oft) D it slows down the application, 
and may cause other problems. 

ownColormap boolean -cmap (on) Tells JAM whether to use its 
+cmap (off) D own color map. Turning JAM's 

color map on is useful only on 
systems with limited colors. 

The following illustrates a sample command line in Pi/OPEN LOOK: 

oljxform -fn '-*courier*r*12' myscreen.jam 

7.8.2 

The OPEN LOOK keepOnScreen Resource 
The keepOnScreen resource controls whether newly opened JAM screens are al
lowed to extend beyond the edge of the display. Nonnally, the OPEN LOOK window 
manager (olwm), allows this behavior. Setting this resource to true causes JAM to re
size and move screens that the window manager initially places partially or totally off 
the display. 

Once a screen has been opened, the user may move it off the edge of the display regard
less of this resource setting. 

7.8.3 

Widget Hierarchy in Pi/OPEN LOOK 
Widgets are arranged in a parent-child hierarchy. The following tables describe the 
widget hierarchy in Pi/OPEN LOOK. This is useful to know if you wish to set resources 
for particular widgets or classes of widgets in an application. Refer to the OPEN LOOK 
Programmer's Guide for more infonnation on widgets, widget classes, and the re
sources associated with them. 

Page 180 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

Base Screen 

The base screen in a JAM application is an Appl icat ionShell widget. Its class is 
given by the rust argument to the sm_Xllini t initialization routine, and its name is 
the name of the application program (the value of argv [Olin main). If the baseWin
dow resource is set to false, then this shell is created but never displayed. 

NOTE: Avoid application program names that contain periods or asterisks, as the re
source parser interprets these as special characters. Screen name extensions, though, 
are removed when they are used as widget names. 

By default, JAM has class name OLJam and application name oljxform. 

The widget hierarchy for the base Screen is: 

Widget Class Name 

ApplicationShell ... (class given by sm_Xllinit) application-name 

Form main 

Form workarea 

Control softkeys 

OblongButton softkey 

OblongButton softkey 

StaticText status 

Control menubar 

MenuButton Edit 

MenuButton Windows 

MenuButton menu-name 

MenuButton menu-name 

JAM/Pi Release 1.4 1 December 92 Page 181 



JAM/Pi for OSF/Moti( Microsoft Windows and OPEN LOOK 

JAM Screens 
The widgets used for JAM screens are all subclasses of the OPEN LOOK shell wid
get. The shell's parent is the Appl icationShell. 

The widget hierarchy for JAM Screens is: 

Widget Class Name 

._ .TopLevelShell screen-name 

Form scroll 

StaticText status 

Control menubar 

MenuButton Action 

MenuButton menu-name 

MenuButton menu-name 

ScrolledWindow clip 

Scrollbar Hscrollbar 

Scrollbar Vscrollbar 

Bulletin BulletinBoard 

Bulletin area 

JAM screens have a status line only if the value of the formStatus resource is 
true. They have a menu bar only if formMenus is true. 

New screens created in draw mode are named shell before they have been saved. 

Since the name of the shell used for JAM screens is the screen name, resources may be 
restricted to a specific screen by beginning the specification with c/ass* screen_name. 
For example, OLJam*empscrn. .. begins a specification for a screen named 
empscrn in an application of class OLJam. Resources restricted to a named screen are 
equivalent to screen extensions. For example, 

OLJam*empscrn.background: gold 

Page 182 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

is the same as specifying a «bg (gold»> as a screen extension on empscreen. The 
resource setting overrides the extension. 

area is the parent widget for all the widgets on a JAM screen. If you place your own 
widgets on a JAM screen, you'll need the widget id of area. The library function 
sm_drawingarea returns the widget ID of area. A related function, 
sm_translatecoords, translates JAM screen coordinates into pixel coordinates 
relative to the upper left hand corner of area. 

Dialog Boxes 
Message dialog boxes are created when a message needs to be posted. Error and query 
message dialogs are created by XtCreatePopupShell with a widget type of 
noticeShell. JAM specifies the message string, which buttons appear, and which 
button is the default. Other options, like the title bar text, can be set in the resource file. 

The children of dialog boxes are handled by OPEN LOOK. Refer to your OPEN LOOK 
manual for details. 

Fields 
JAM fields are created as child widgets of area. If a field has a name, its widget is 
given that name. If a field doesn't have a name, its widget is named _fld#, where # is 
the field number (this is analogous to the JAM f2struct utility). In a named array 
consisting of multiple widgets, each widget has the same name. Widgets that represent 
multiple fields take the name of their first field. 

The library routine sm_widget returns the widget ID of a widget. Asterisks in the 
table below indicate which widget is returned by sm_widget in cases where there is 
more than one possibility. If the widget returned by sm_widget is not the one you are 
looking for, use XtParent to obtain the widget id of its parent. This is particularly 
useful when working with scale widgets and scrolling multiline and list box widgets. 

Some entries in the table have prefixes or suffixes with their names. For example, 
fleld-nameSW indicates that the widget has the name of the field followed by the literal 
characters SW. 

The widget hierarchy for JAM fields is as follows: 

JAM/PI Release 1.4 1 December 92 Page 183 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

Object Widget Class Name 

Data Entry Field · .. TextField field-name 

Protected Field · .. StaticText field-name 

Menu Field · .. OblongButton field-name 

Checklist ... CheckBox field-name 

Radio Button · .. RectButton field-name 

Multiline Text · .. TextEdit fleld-name 

List Box · .. ScrollingList field-name 

· .. Control field-namec 

StaticText* fleld-name 

AbbrevMenuButton field-nameB 

· .. MenuShell menu 

Optionmenu Form menu form -

Control pane 

OblongButton label-text 

OblongButton label-text 

· .. Control fleld-namec 

Scale StaticText fleld-nameT 

Slider* field-name 

To refer to a whole class of widgets, use the widget class. For example, 
OLJam*TextField refers to all text widgets. To refer to a class of widgets on a 
screen, use the screen name followed by the widget class. For example, OL
Jam*empscreen*StaticText refers only to text widgets on the screen emps
creen. To refer to an individual widget, use the screen name followed by the widget's 

Page 184 JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Application Defaults 

name. For example, OLJam*empscreen*empname refers only to the empname 
widget on the screen empscreen. 

In the option menu widget, the text field and the popup pane are linked through the 
subMenuID field of the RowColumn widget. Since the push buttons in the option
menu are named by their contents, it is easier to set a resource for all the push buttons 
in an optionmenu than it is to set a resource for an individual button. 

Display Text, Li nes and Boxes 
Display text, lines and boxes are child widgets of area. The hierarchy for display text 
and screen decoration widgets is as follows: 

Object Widget Class Name 

Display text ... StaticText display 

Line ... Stub line 

Box ... BulletinBoard box 

Frame ... BulletinBoard frame 

Menu Bars 
Menu bars, submenus and pop-up menus are created within Control widgets. Menu 
bars are children of either the base form's or an individual screen's Form. Submenus are 
children ofMenuShells. but the name of the shell is unclear, since OPEN LOOK reuses 
these shells. If a new shell is created, its name will be menu. The best way to specify re
sources for a submenu is to use the form: OLJam*MenuShell *button-name. 

The hierarchy for menus and pop-up menus is as follows: 

JAM/Pi Release 1.4 1 December 92 Page 185 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Object Widget Class Name 

Menu Bar ... Control ... menubar 

... MenuShell menu 

Form menu form -

Submenu 
Control pane 

OblongButton button-name 

OblongButton button-name 

Submenus pop up through the auspices of a MenuBu t ton widget. A submenu is tied 
to its MenuBu t ton via the XtNmenuPane resource of the button. This is the Con
trol widget that the buttons are children of. 

Items on menus and submenus are children of the menu's Control widget, except the 
title, which is a child of the menus form. The hierarchy for items on menus and subme
nus is identical. It is as follows: 

Menu Script Keyword Widget Class Name 

title · .. Button title 

key or control · .. MenuBu t ton label-text 
(in top-level bar) 

key or control · .. OblongBut ton labei-text 

menu · .. MenuBut ton ... label-text 

edit · .. OblongButton ... label-text 

windows · .. OblongButton ... label-text 

The edi t and windows submenus provide access to special JAM functions. Their 
contents are controlled by JAM, as opposed to being user designed with a menu script. 

The hierarchy is shown below: 

Page 186 JAM/Pi Release 1,4 1 December 92 



Chapter 7: Setting Application Defaults 

Object Widgets Class Name 

· .. MenuBu t ton windows 

· .. MenuShell menu 

Form menu-form 

Control pane 

Windows Menu OblongButton window-name 

OblongButton wlndow-name 

Stub sepl 

OblongButton windows - raise 

· .. MenuButton edit 

· .. MenuShell menu 

Form menu-form 

Control pane 

Edit Menu OblongButton edit _cut 

OblongButton edit_copy 

OblongButton edit-paste 

OblongButton edit_delete 

OblongButton edit - select 

JAM/Pi Release 1.4 1 December 92 Page 187 



JAM/Pifer OSFlMotif, Microsoft Windows and OPEN LOOK 

7,8.4 

Sample OPEN LOOK Resource File for JAM 
!################################################################ 
!### Resource Specifications for OLJam ### 
!################################################################ 

Set the position with the geometry. 
Set the width of the Base Window by setting the width of the 
status line, Set the text alignment in the status bar with the 
gravity resource. 

OLJam.geometry: 
OLJam.main.status.width: 
OLJam.main.status.recomputeSize: 
OLJam.main.status.gravity: 
OLJam*scroll.status.gravity: 

+0+0 
600 
false 
west 
west 

! Set the look of the softkey area if they 
OLJam.main.workarea.softkeys.layoutType: 
OLJam.main.workarea.softkeys.measure: 

are used. 
fixedcols 
4 

OLJam.main.workarea.softkeys.sameSize: all 

! Keep JAM screens completely on the display. 
OLJam.keepOnScreen: true 

! Turning on/off of indicators are not supported in OLJam. They 
! must be off. 
OLJam*indicators: false 

! Disable greying out of inactive screens. 
OLJam*setSensitive: false 

! Gur focus policy. 
OLJam*keyboardFocusPolicy: 
!OLJam*allowOverlap: 

explicit 
false 

! Set the positioning of text on windows and in buttons. 
OLJam*area.StaticText.gravity: west 
OLJam*area.RectButton.labelJustify: 
OLJam*area.OblongButton.labelJustify: 
OLJam*area.CheckBox.labelJustify: 
OLJam*area.CheckBox.position: 

center 
center 
left 
right 

Page 1BB JAM/Pi Release 1.4 1 December 92 



Chapter 7: Setting Appiication Defaults 

! Turn off Copy/Paste operations on scrolling lists. 
OLJam*selectable: false 

! Set application-wide foreground and background 
OLJam*foreground: white 
OLJam*background: grey50 

! Set color aliases. 
OLJam*colors: JAMfg 

JAMbg 

! Set JAM palette colors 
OLJam.black: #000000 
OLJam.blue: 
OLJam.green: 
OLJam.cyan: 
OLJam.red: 
OLJam.magenta: 
!OLJam.yellow: 
OLJam.yellow: 
OLJam.white: 
OLJam.hi_black: 
OLJam.hi_blue: 
OLJam.hi_green: 
OLJam.hi_cyan: 
OLJam.hi_red: 
OLJam.hi_magenta: 
OLJam.hi-yellow: 
OLJam.hi_white: 

#0000a8 
#00a800 
#OOa8a8 
#a80000 
#a800a8 
#a85400 
#e8e800 
#a8a8a8 
#545454 
#5454ff 
#54ff54 
#54ffff 
#ff5454 
#ff54ff 
#ffff54 
#ffffff 

white /n/ 
grey50 

! Set application default font. 
OLJam*font: -*-lucida sans-bold-r-*-*-14-* 

! Set font aliases. 
OLJam* fonts: \n \ 

small = -*-lucida sans-bold-r-*-*-12-* \n\ 
medium = -*-lucida sans-bold-r-*-*-18-* \n\ 
large = -*-lucida sans-bold-r-*-*-24-* \n\ 
editorfont = -*-lucida sans typewriter-bold-r-*-*-18-~n\ 
JAMfont = -*-lucida sans typewriter-bold-r-*-*-18-* 

! Set the labels for OK and Cancel buttons on Notices. 
OLJam*NoticeShell*Control.okbutton.label: OK 
OLJam*NoticeShell*Control.cancelbutton.label: Cancel 

JAMIP/ Release 1.4 1 December 92 Page 189 



JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK 

! Labels and keyboard mnemonics for the edit 
OLJam*MenuShell*windows_raise,label: 
·OLJam*MenuShell*windows~raise.mnemonic: 

OLJam*MenuShell*edit_cut.label: 
OLJam*MenuShell*edit_cut.mnemonic: 
OLJam*MenuShell*edit_copy.label: 
OLJam*MenuShell*edit_copy.mnemonic: 
OLJam*MenuShell*edit-paste.label: 
OLJam*MenuShell*edit-paste.mnemonic: 
OLJam*MenuShell*edit_delete.label: 
OLJam*MenuShell*edit_delete.mnemonic: 
OLJam*MenuShell*edit_select.label: 
OLJam*MenuShell*edit_select.mnemonic: 

and windows menu bars 
Raise All 
R 
Cut 
t 
Copy 
C 
Paste 
P 
Delete 
D 
Select All 
S 

! Set no pointer warping when Notices are displayed to work around 
a warping bug in olit patch TI0045l-39. 
OLJam*NoticeShell.pointerWarping: False 

! Location of rgb.txt file to search for GUI color names. 
OLJam.rgbFileName: /usr/openwin/lib/rgb.txt 

The standard JAM key file for X, ·xwinkeys·, maps unmodified, 
shifted, and control function keys 1-12 into the JAM logical 
keys PFl-12, SPFl-12, and SFTl-12. This conforms to the 
standard key conventions used for JAM on character terminals. 

Unfortunately, these may conflict with the fallback or vendor
specific default bindings which Motif uses for its virtual 
keysyms. The following line disables all of the virtual keysyms 
within a JAM application. (Actually, the default binding for 
osfMenuBar is remapped to F25. If we were to unmap it, the 
Motif library would reset it to FlO,) 

If you prefer the standard Motif usage for the function keys, 
you can change the JAM key file to avoid the keys which conflict 
with Motif. The following line can then be commented-out. 

OLJam*defaultVirtuaIBindings: \n\ 
osfMenuBar: cKey>F25 \n\ 
osfActivate: cKey>KP_Enter \n\ 
osfCancel: 
osfDown: 
osfLeft: 
osfRight: 
osfUp: 

Page 190 

cKey>Escape \n\ 
cKey>Down \n\ 
cKey>Left \n\ 
cKey>Right \n\ 
cKey>Up 

JAM/Pi Release 1,4 1 December 92 



ChapterB 

Menu Bars 

Chapter 8: Menu Bars 

This chapter describes how to create and implement menu bars in JAMlPi. Manual 
pages describing the menu bar library routines, which allow you to create, display and 
alter menu bars dynamically at runtime, are located in Chapter 12. 

8.1 

INTRODUCTION 
Menu bars provide a convenient, permanently displayed area from which the user can 
select functions. A menu bar appears as a horizontal bar containing one or more menu 
bar headings. The contents of a menu bar can be changed according to the context. A 
menu bar can have several levels of submenus, which appear as vertical menus. 

Menu bars are created as ASCII scripts. The script describes the content of the menu 
bar, the actions associated with each choice on the menu bar, and the display attributes 
of the items. Display attributes include grayed out choices, keyboard mnemonics, sepa
rators, and checked items. The menu bar utility, menu2bin, converts ASCII· menu 
scripts into a binary format for inclusion in an application. menu2bin is described in 
section 12.2. 

The content and selection of menu bars may be changed at runtime by library routines. 

8.2 

LOCATION OF MENU BARS 

~ 

JAM/Pi Release 1.4 1 December 92 Page 191 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

8.2.1 

Pop-Up Menu Bar in Motif and OPEN LOOK 

~.O 

8.3 

MENU BAR SCOPE 
Just as with keysets, each menu bar has a scope. The scope is specified when the menu 
bar is installed. There may be an application-level menu bar, a screen-level menu bar, 
an override-level menu bar, a system-level menu bar, and any number of memory
resident menu bars. The table below describes the various menu bar scopes, and where 
they appear. 

Page 192 JAM/Pi Release 1.4 1 December 92 



Scope Description 

Application-level menu bar. 

KS FORM Screen-level menu bar. 

KS_OVERRIDE Override-level menu bar for 
help screens, zoom windows 
etc. Not used for error messages. 

KS SYSTEM 

Scope for storing memory-resi
dent menus that can be accessed 
by menu bars at other scopes. 
Menus at this scope are stacked. 

System-level menu bar in the 
authoring utility j xf orm. A de
veloper does not normally 
install a menu bar at this scope. 

Chapter 8: Menu Bars 

If a window without a screen-level menu bar opens, the previously active menu bar 
remains displayed. This may be the screen-level menu bar from the previous screen, or 
the application-level menu bar, if the previous screen had no screen-level menu bar. If 
a form without a screen-level menu bar opens, then the application menu bar is active. 

~~, I Q'!1?~~ ilOREN'goo FformMenus'il",rue"lfie'lCiien ' 

1~~i~Jii!~~:f~j~·~~I~l~t~I~.11! 
When an override-level menu bar opens, the currently active menu bar is saved in a 
special stack (o_stack). When the override-level menu bar closes, this saved menu 
bar is restored. This stack may be 10 deep. 

JAMlPi Release 1.4 1 December 92 Page 193 



JAM/PI for OSFIMotlf, Microsoft Windows and OPEN LOOK 

8.4 

THE MENU SCRIPT 
Menu bars are created as ASCII scripts and converted to binary with the menu2bin 
utility, A menu script may contain specifications for one menu and one or more subme
nus, The first menu specification in a script file is the top level (horizontal) menu bar; 
subsequent menu definitions are for submenus, 

8,4,1 

Menu Script Structure 
The general structure for specifying a menu is as follows: 

menuname [global display options I 
{ 

"Label" action [ modifiers I [ display options I 

# corrunents 
} 

An alternative structure references an external menu, which is a menu that is already 
open or one that is stacked at the scope KS_MEMRES, This structure is as follows: 

menuname external 

The external keyword allows the developer to build menu bars in a modular fashion 
and reuse parts of menu scripts, Open menus are searched first for an external menu, 
then the KS_MEMRES stack is searched in a last opened, first searched order, 

8,4,2 

Menu Script Components 
The various components of the general menu script structure are described below, 

• menuname 

Page 194 

identifies the menu, Any display options specified directly after the me
nuname are "global options" that apply to all relevant items in the menu, 
See display options below for an explanation. The curly braces are literal; 
they enclose the body of the menu, 

JAM/Pi Release 1.4 1 December 92 



Chapter 8: Menu Bars 

• "label n is the text that appears in the menu entry. The label must appear in quotes. 

• action 

The menu bar compiler accepts labels up to 255 characters long, but in 
practice a menu bar displays only as many characters as will appear in the 
viewport. Backslash escapes may be used within the label for tabs, new
lines and quotes if they are supported in your environment. 

An ampersand (&) is used as the keyboard mnemonic indicator in a label. 
Place the ampersand before the character in the label to be typed to select 
the entry from the keyboard. This character appears underlined in the menu 
entry. For example, 

E&xit 

produces the entry 

Exit 

where x is the keyboard mnemonic. 

specifies the type of menu entry this is. Available keywords are: 

title 

menu 

key 

control 

specifies that label is the title of this menu. No modifier 
is allowed. The title must be the rust entry in the menu. 

specifies that modifier is the menuname of a submenu. 

specifies that modifier is a key to return when the entry 
is selected. Selecting the menu choice is equivalent to 
pressing the key. modifier can be a JAM logical key or 
a hex, binary or octal number. Specify hex with a lead
ing Ox. Specify binary with a leading Ob. Specify octal 
with a leading O. 

specifies that modifier is a JAM control string. Colon 
expansion is supported for menu bar control strings. 

separator produces a blank line. label is ignored. A separator can 

edit 

take a special separator display option. Separators have 
no effect in horizontal menus. 

specifies that the edit submenu should appear. No modi
fier is allowed. The edit submenu contains the options: 
Cut, Copy, Paste, Delete, and Select All. 
These are useful for manipulating text in widgets. 

JAMlPi Release 1.4 1 December 92 Page 195 



JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK 

windows specifies that the windows submenu should appear. No 
modifier is allowed. The windows submenu lists the ten 
topmost open screens by name. Selecting a screen from 
the list raises it to the top of the display. If the selected 
screen is a sibling of the screen at the top of the window 
stack, it becomes the top JAM screen. 

,.""".~,.u.~~.t,,~~g~.~·;}:l:\& ..• ··?::~~~~~~l~~lg~~t'·· 

$g~;;~:JJ::~iC~ih~;v.;Hhi!1. .. m~:£ff~:iI·. 'i.~ ,: 9:njf~I~~iilfif::~: 

• Text display options 
specify how an entry should appear. The display options for text entries are 
listed in the table below. Certain options are restricted to certain actions. 
A display option that is inappropriate for an action produces an error. More 
than one display option may be selected for an entry. 

Display Option Actions Description 

inactive menu, key, Makes the entry inactive. The user may still 
control, edit, click on the entry, but the entry has no ef-
windows fect. 

grayed all actions Grays out the entry's label and makes the 
greyed entry non-selectable. 

indicator key, control Shift all menu items to the right to leave 
room on the left for an indicator. 

indicator_on key, control Turns an indicator on for this item. The indi-
cator, often a check mark, denotes the state 
of a menu entry that serves as a toggle 
switch. If the indica tor option is not also 
specified, this option shifts the menu. Indica-
tors are ignored on horizontal menu bars. 

Page 196 JAM/PI Release 1.4 1 December 92 



Chapter 8: Menu Bars 

Display Option Actions Description 

showkey key Shows the key top label from the key file to 
the right of the entry's label. If there is no 
key top in the key file, then the key mnemon-
ic is shown. 

help menu, key, Shifts an entry to the extreme right on a hor-
control, edit, izontal menu bar. Only one item may appear 
windows on the right. If the help item is not the last 

item in the menu bar specification, the com-
piler rearranges the items so it appears last. 

• Separator display options 
specify how a separator should appear. If no display option is specified, the 
separator is a single line. Only one separator display option may be se
lected. Separator display option keywords are GUI dependent. They are 
shown in the table below. 

Description 

JAMlPi Release 1.4 1 December 92 Page 197 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

• Global displsyoptions 

• Comments 

are global to the menu, They are specified directly after the menunsme, 
Global options affect all applicable menu entries, For example, if the glob
al options are showkey and noline, all separators in the menu default 
to noline and all keys and control strings in the menu have showkey, 
Submenus and titles do not have showkey however, since it is not applica
ble to them, 

You cannot tum off a global option for an entry, but you can override a glob
al separator option by specifying a new option for a particular separator, 

begin with the # sign. Comments may appear on a line of their own any
where within the script. 

Keywords for sctlon and displsy option are not case sensitive, Isbels and modifiers 
are case sensitive, White space characters in a script (space, tab, CR) are ignored by the 
menu bar compiler except when they separate keywords, so each menu specification 
can be quite compact. 

8.4,3 

Sample Menu Script 
The following is an example of a menu script. Scripts must be compiled with 
menu2bin before they can be used. Figure 63 illustrates the menu that the sample 
script produces after it has been compiled. 

Page 198 JAM/Pi Release 1.4 1 December 92 



Chapter B: Menu Bars 

# The first menu definition becomes the top level menu bar. 

Main 

"Edit" edit 
"FormN menu FormMenu 
"Text" menu TextMenu 
"Help" menu HelpMenu help 
"&Quit H key OxlO3 

FormMenu 
{ 

title NForm" 
N&New" 
"&Open" 
"&Close" 
"&Save" 
"Save &As" 

key PFl 
control 
key PF3 
key PF3 

"~jm_filebox file /usr/home * File" 
inactive 

key PF4 
separator etchedin 
menu OtherMenu 

# White space is ignored. 

OtherMenu grayed showkey { ·Other" title NOther&lH key PFl 
"Other&2" key PF2 "E&xit" KEY EXIT } 

# Keywords are not case sensitive. 

TextMenu 
{ 

"&Cut N 

"C&Opy" 
"&Paste" 

"&Undo" 

KEY PFl 
key PF2 
Key PF3 
sEpArAtOR double menubreak 
Key SPFl 

# An external menu is one that is defined elsewhere, either 
# in an open menu or at the scope KS_MEMRES. 

HelpMenu external 

JAM/Pi Release 1.4 1 December 92 Page 199 



JAM/PI for OSFIMotif, Microsoft Windows and OPEN LOOK 

edit cut 

edit_copy 

editj)aste 

edit delete 

edit select 

Fonnl 

Fonn 

New -
Qpen 

Close -
Save -
Save As -
Other I> 

Help 

Text I 
Cut -
C2PY 

Paste -

Undo -

Other 

(;~:herl 
yJO 
)( "'~ • .1': 

.... :., =s , .. '1. 

(;~:her:~ 
yJO 
)< .. ,.. ,:; 
: ... :'> " •• 

.. n 

E:x~t ... :. 
" .... 

H elp 

S _creen Help 

Field Help 

Figure 63: The menu bars produced by the sample menu script. 

8.5 

TESTING MENU BARS IN THE 
AUTHORING UTILITY 
Menu bars can be tested in Application Mode of the authoring utility, but you must de
fine a SFfS (soft key select) key in your keyboard translation ftIe in order to do so. The 

Page 200 JAM/Pi Release 1.4 1 December 92 



Chapter 8: Menu Bars 

SFfS key toggles between user-defined menu bars and the system-level menu bar. In 
Application Mode, the default menu bar is the system-level menu bar. Use the SFfS 
key to toggle to your user-defined menu bars. Refer to the JAM Utilities Guide for 
details on using the modkey utility to edit a key translation file. Refer to the JAM Con
figuration Guide for an explanation of the key file. 

8.6 

MENU BAR LIBRARY ROUTINES 
Library routines equivalent to those for keysets are provided to manipulate menus bars 
at runtime. Routines are available to create, display, close, and change the contents of 
menus bars. The table below summarizes these routines. For a detailed listing, see 
Chapter 12. 

Routine Description 

sm_c_menu close a menu bar 

sm_d_menu display a menu bar stored in memory 

sm_menuinit initialize menu bar support 

sm_mn - forms install menu bars in memory (in a custom executive) 

sm_mnadd* add an item to the end of a menu bar 

sm_mnchange * alter a menu bar item (eg- grey out an item) 

sm_mndelete delete a menu bar item 

sm_mnget* get menu bar item information 

sm_mninsert* insert a new menu bar item 

sm_mnitems get the number of items on a menu bar 

sm_mnnew create a new menu bar by name 

sm_r_menu read and display a menu bar from memory, a library or disk 

NOTE: Library routines with an asterisk in the above table cannot be prototyped be
cause they access an external data structure. 

JAMlPi Release 1.4 1 December 92 Page 201 



JAM/Pi for OSFIMotlf, Microsoft Windows and OPEN LOOK 

Prototyping Menu Bar Library Routines 
You may wish to prototype the menu bar related library routines in order to use menu 
bars more flexibly, Prototyped library routines can be called directly from control 
strings and JPL procedures. Refer to the "Hook Functions" chapter in the JAM Pro
grammer's Guide for an explanation of prototyped functions, and instructions on using 
and installing them. Refer to the JPL Guide for an explanation of how to use prototyped 
functions from JPL. 

8.7 

INSTALLING MENU BARS 
Menu bars must be enabled and installed before they can be used in an application. 

8.7.1 

Enabling Menu Bars 
In order to incorporate menu bars into your application, set MENUS to 1 in the appropri
ate #def ine in the main routine (jmain. cor jxmain. c). This causes the program 
to call the menu bar initialization routine, sm_menuini t. Alternatively, set the fol
lowing flag in the makefile for your application: -DMENUS. 

8.7.2 

Installing Menu Bars of Various Scopes 
The methods of installing menu bars depend on their scope. 

Installing an Application-Level Menu Bar 
Install an application-level menu bar with the library routine sm_r_menu or 
sm_d_menu using the scope KS_APPLIC. This is usually done in the main routine, 
jmain. c or jxmain. c, in the area reserved for code to be executed before the first 
screen is brought up. 

Installing a Screen-Level Menu Bar 
Menu bars are associated with screens in place of keysets; so to install a menu bar for 
a screen, insert the name of the menu bar file into the field for "Screen Level Keyset" 

Page 202 JAM/Pi Release 1.4 1 December 92 



Chapter 8: Menu Bars 

in the screen attributes window of the Screen Editor. A screen-level keyset may also be 
installed with the library routine SID_r_IDenu or sID_d_IDenu with a scope KS_FORM. 

Installing Override-Level Menu Bars 
Install an override-level menu bar with the SID_r_menu or sm_d_menu routine using 
the scope KS_OVERRIDE. 

Installing Memory-Resident Menu Bars 
Install memory-resident menu bars with the sm_r_IDenu or sm_d_IDenu routine us
ing the scope KS_MEMRES. More than one menu bar can be loaded at this scope, and all 
are available simultaneously for use as an external menu by menu bars at other scopes. 
Installing a menu bar at this scope does not cause it to be displayed. 

Installing the System-Level Menu Bar 
The system-level menu bar is used only in the authoring utility. It is installed automati
cally by JAM. 

8.7.3 

Storing a Menu Bar in Memory 
Binary menu bar files may be stored as disk files, as members of a library or in memory. 
A menu bar is stored in memory by converting it to a C structure with the bi n2 c utility, 
and then registering it to JAM with sID_forml ist. For more information on this pro
cedure, see the JAM Programmer's Guide. 

NOTE: Do not confuse the memory-resident menu bar scope with the idea of storing 
menu bars in memory. The memory-resident menu bar scope, KS_MEMRES serves the 
purpose of keeping menu descriptions available for use as external menus. Storing a 
menu bar in memory means that it is compiled with your application, as opposed to 
being stored in a separate file. 

B.B 

USING MENU BARS EFFECTIVELY 
Since menu bars are often the primary navigation tool in a GUI application, we suggest 
that you carefully consider which menu bar (or menu bars) appears in your application 
at any given point. 

JAM/PI Release 1.4 1 December 92 Page 203 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

Use the sm_mnchange library routine to grey out or activate menu bar items in re
sponse to a change in context in the screen. Once you've altered a displayed menu bar, 
you must calI sm_c_menu before calIing sm_r_menu if you want to refresh the menu 
bar to its original state. This is because sm_r_menu does not reopen a menu bar if one 
with the same name is already open at a particular scope. 

We suggest that you ins talI a menu bar on each screen, rather than relying on the inheri
tance of menu bars from one screen to another. If you wish a screen to have no menu 
bar, instalI a dummy menu bar. If choose to rely on menu bar inheritance from screen to 
screen, be aware that altering an inherited screen-level menu bar changes the menu bar 
for the screen it was inherited from as well. 

Instead of using the screen-level keyset field, you may wish to explicitly call 
sm_r_menu in the screen entry function and sm_c_menu in the screen exit function 
on each screen to open and close menu bars. This way you are always sure of which 
menu bar is displayed at any given time. 

For greater efficiency, use the scope KS_MEMRES to store menus that are used by more 
than one menu bar. 

8.9 

MENU BARS VS. SOFT KEYS 
Soft keys and menu bars are mutually exclusive, because they share the same program
matic hooks. The developer must choose whether to use one or the other. The selection 
of soft keys versus menu bars is made in the main routine, either jmain. c or 
j xmain. c, by initializing either soft key support or menu bar support. If an applica
tion is to use keysets in character JAM and menu bars in JAMlPi, then the main rou
tine should calI the soft key initialization routine before it calls the menu bar initializa
tion routine. The second library call will override the first in JAMlPi, but will be 
ignored in character JAM. 

8.9.1 

Using Libraries to Store Menu Bars and 
Keysets 
If an application uses menu bars on some platforms and soft keys on others, use li
braries to store the key set and menu bar files. Libraries provide a convenient method 
for switching between soft keys and menu bars on different platforms. If you name your 
keysets the same as your menu bars, but place the keysets in one library and the menu 

Page 204 JAM/Pi Release 1.4 1 December 92 



Chapter 8: Menu Bars 

bars in another, you may then specify which library to use on a particular platform with 
the SMFLIBS variable in the setup file. Use the forml ib utility to create a library. 

Refer to the JAM Configuration Guide for details on the setup file, and the JAM Utili
ties Guide for details on formlib. 

8.9.2 

Converting Keysets into Menu Bars 
Since soft keys and menu bars are mutually exclusive, the kset2rnnu utility is pro
vided to convert a key set into an ASCII menu script. 

Use the script output by this utility as a starting point for your menu bar. Since key sets 
are often organized differently than menu bars, you may wish to edit this script with a 
text editor before converting it to binary format. Menu bars usually have few direct ac
tions listed on the top level menu; most headings are for submenus. Keysets, on the 
other hand, usually have direct actions in their first row, and then one or two additional 
rows of keys. 

Menu bar are more versatile than keysets, so no direct conversion from key sets to menu 
bars is sufficient. 

The kset2rnnu utility is described in Chapter 12. 

JAMlPi Release 1.4 1 December 92 Page 205 





Chapter 9 

Using the Mouse 

9.1 

Introduction 

Chapter 9: Using the Mouse 

The mouse is generally the primary method for navigating through a GU! application. 
Mouse functionality in JAMIPi is similar to that in Jterm or JAM under DOS or OS2 
character mode, although there are exceptions in cases where GUI dictated functional
ity differs from standard JAM functionality. In those cases, the GUI method is usually 
implemented. 

9.1.1 

Mouse Cursor Display 
The mouse cursor is distinct from the JAM cursor. If a mouse is active, a mouse cursor 
will appear on the display. 

JAM/PI Release 1.4 1 December 92 Page 207 



JAM/Pi for OSF/Motif. Microsoft Windows and OPEN LOOK 

9.1.2 

Mouse Buttons 
The left mouse button positions the cursor, makes selections and operates widgets. 

~~ffila~ii:~~\#.Jl.q~~I<'~'wt~4~q)~~~ 

9.1.3 

Mouse Functions 
You may substitute a mouse click or drag for many keypresses, such as a PF1, NL, or 
the arrow keys. Below is a summary of how the mouse is used in JAMlPi. For a com
plete description of editing features, or directions on creating fields, menus, groups, 
etc., please see the JAM Author's Guide. 

Page 208 JAM/Pi Release 1.4 1 December 92 



Chapter 9: Using the Mouse 

Menu Bars 

[M] 
[M] 
[ill 

• To select a menu bar function, click on its menu bar heading to display 
its pull-down menu, and then click again on your selection; or press 
and hold the mouse button on its menu bar heading, and then drag the 
cursor down to your selection and release the mouse button. 

• 
• 
• 

Menu bars may have several levels, called submenus. When the cursor 
is on a submenu heading, drag to the right to post the submenu. A sub
menu appears to the right of its heading in the parent menu. 

For detailed instructions on creating menu bars, refer to Chapter 8. 

Focus 

~ 
[M] 
[ill 

• 
• 

• Click on a sibling of the active screen to change the focus to the sib
ling. If the click is on a field, then the JAM cursor moves to that field. 
If the click is on a display or protected area, then the JAM cursor is 
restored to the same location inside the sibling window that it was in 
when the window was last visited, or to the first unprotected field if 
the screen was never visited. 

NOTE: Windows that are not siblings of the active screen cannot be 
made active. A click within one of these stacked windows does not 
change JAM's focus. 

\ ~~ !,:i.,:,ifioc~.;~.~ .. ;' .. u'd .. r.·srbte~.~h,.~.,.'a'.:.~.;vj~lo~rt .•. ' .•. ~.,.M •..•.• '.: .• ,·.'.~:.,.,.I..t.· .•. :;.:.,~.dl.jl.:.~.:.s.;.~.~.:.oo.:.· .. :.;.\.:.:.!.·.~.ilit 
. .." ... """ ... '~" ,;&;;\i:)d ::., .. L:0L:::" .. ::it; 

JAM/PI Release 1.4 1 December 92 Page 209 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

• A sibling window may also be activated by selecting its name from the 
optional "Window" heading on the menu bar, The names of all open 
screens appear under this heading. but only those that are siblings of 
the active screen can be selected, 

• A screen that cannot be activated may still be moved and resized by 
dragging on its border (see below), 

1:~e~~I~I.r-t~ 
• In JAMlPi. the JAM viewport (VWPT) key is not available. JAM's 

viewport functions are replaced by the OUI's screen manipulation pro
tocols. These are described in detail in the Microsoft Windows User's 
Guide or the X Window System User's Guide, and briefly here as well. 
To manipulate screens, do the following: 

MOVE 

RESIZE 

OFFSET 

Drag on the title bar of the screen. 

Move the mouse cursor to the border or corner of the 
screen. The cursor changes shape. Drag the corner or 
border to the desired size. 

When a viewport is smaller than its underlying screen, 
scroll bars appear. 

NOTE: Unlike character JAM, a viewport may be 
larger than its underlying screen. When the viewport is 
as large as or larger than the underlying screen. the 
scroll bars disappear. 

Drag the scroll bar at the bottom or right hand border of 
the screen, or click on a scrolling arrow. 

The move and resize functions can be suppressed with the nomove 
and noresize screen extensions. 

Moving the Cursor and Making Selections 
• In Draw Mode, clicking anywhere on a screen moves the JAM cursor 

to the mouse cursor's position. 

• Clicking on a regular data entry field moves the JAM cursor to the 
field. The JAM cursor moves to the character position of the mouse 

Page 210 JAM/Pi Release 1.4 1 December 92 



Chapter 9: Using the Mouse 

cursor within the field. If you click on display text or a tab-protected 
field in Test or Application Modes, JAM ignores the click. 

• Clicking on a checklist item moves the JAM cursor to that item and 
either selects or deselects it, depending on its current state. If a check
list group has the autotab edit, the JAM cursor goes to the next item in 
the group when the user selects an item. 

• Clicking on a radio button item moves the JAM cursor to that item 
and selects it. Radio button items may only be deselected by selecting 
another item. If a radio button group has the autotab edit, the JAM 
cursor automatically leaves the group when a selection is made. 

• Clicking twice in a yes/no field toggles its value. The first click moves 
the cursor to the field, and the second click executes the toggle. The 
click is translated as if the opposite value was typed (Le., via unget
key). If the field has an autotab edit, the second click toggles the 
value and then moves the JAM cursor to the next field. 

BEWARE: Do not click twice when choosing to edit JPL textfrom the 
screen attributes window of the screen editor. 

If there is already text in the JPL window, the toggle field contains a y. 
A double click toggles the value to to n, and the existing JPL text is 
permanently lost. Instead of double clicking, click once (or tab to the 
field) and press yon the keyboard. 

• Clicking once on the "OK" or "Cancel" button in a dialog box ac
knowledges the message. Dialog boxes replace character JAM error 
and acknowledgement messages. Pressing the space bar (or other 
ERR_ACK_KEY) also clears these messages. See section 4.2. 

• Dragging and releasing (or clicking once) on an onscreen application 
menu makes a selection. The selection is made on the "click up". 

• When using soft keys, clicking on a key label is the same as pressing 
that key. 

• Clicking on a status line key top is the same as pressing the logical key. 

Scrolling and Shifting 
• Scroll or shift a field by dragging the cursor beyond its edge in the di

rection you wish to scroll or shift. Note that this method has the effect 
of selecting the text that you drag through, so be sure not to type a 
character while the text is highlighted, or the text will be deleted. 

JAM/Pi Release 1.4 1 December 92 Page 211 



JAM/PI for OSFIMotif, Microsoft Windows and OPEN LOOK 

• Drag the scroU bar or click on the scroll arrows to shift or scroll wid
gets with scroU bars, 

Editing Text 
• When an area of text is selected, typing from the keyboard deletes the 

selected text The first typed character replaces the text In overstrike 
mode, as you continue to type, subsequent characters type over exist
ing characters, In insert mode, subsequent characters are inserted. 

• 
• 
• 
• 

• 
....•.......•.... ~~~y.: 

another. If you attempt to paste data into more occurrences than are 
available, the overflow is truncated. 

Select Mode 
• In select mode, click on a field or area of display text to select or dese

lect the text, depending on its current state. Selected items may be cut, 
copied, moved, or altered, using JAM select mode functionality. 

• In select mode, click the mouse to mark the corners of a selection box. 
First click on the position where the box is to begin. Then choose the 
"box" option. Finally, click on the opposite corner of the box. All 
fields and display text inside the box are surrounded by selection 
brackets. 

• When using the move or copy functions in select mode, either click 
once at the new position to move or copy the selection or use the cur
sor keys. The cursor keys are more exact in this case. 

Miscellaneous 
• Click on a character in the Special characters window to 

move the cursor to the character and select it. Note that not aU charac
ters are available in aU fonts. 

Page 212 JAM/Pi Release 1.41 December 92 



Chapter 10: GUI Specific Features 

Chapter 10 

GUI Specific Features 
This chapter deals with issues that are specific to a particular GUI. 

10.1 

OVERSTRIKE MODE IN Pi/MOTIF AND 
PI/OPEN LOOK 

fMi .. l.J!!lI... ;;;:;JWDAf;;; 

10.2 

INTERFACING WITH THE GUI LIBRARY 
JAM/Pi provides three library routines that enable the developer to refer to JAM win
dows and screen objects as GUI objects. They provide an interface between JAMIPi 
and GUI-provided library functions. 

The first routine, sm_widget, returns the widget id of (or handle to) a widget on a 
screen. The second routine, sm_drawingarea, returns the widget id of (or handle to) 
the GUI window that contains the current JAM screen. The widget id is necessary in 
order to manipulate a GUI object or refer to it from a GUI library function. 

The third routine, sm_translatecoords converts JAM screen coordinates (line 
and column) into pixel coordinates relative to the upper left hand corner of the drawing 
area, which is the container widget used to hold a JAM screen. The pixel coordinates 
are required if you wish to place external objects on JAM screens. 

JAM/Pi Release 1.4 1 December 92 Page 213 



JAM/PI for OSF/Molif, Microsoft Windows and OPEN LOOK 

sm_widget, sm_drawingarea and sm_translatecoords are fully docu
mented in Chapter 12. Included on the manual page for sm_translatecoords is an 
example illustrating how to use these functions to place a bitmap on a JAM screen in 
PilWindows. 

A demonstration program that uses external graphics is provided in source form with 
JAMlPi. It is called winpie in PilWindows, xpie in PilMotif. This program also il
lustrates how to use sm_drawingarea and sm_translatecoords. Refer to this 
code, and your GUI toolkit documentation, for detailed information on how to proceed. 

10.3 

SYSTEM COMMANDS IN PilWlNDOWS 

5Y1 ....•.....•. 

Page 214 JAM/PI Release 1.4 1 December 92 



Chapter 11: Conversion Issues 

Chapter 11 

Conversion Issues 

This chapter deals with issues relevant to applications that are being converted from 
character JAM into JAMIPi. 

11.1 

BACKGROUND HIGHLIGHTS 
On certain terminals (such as the PC), there is normally no such thing as a highlighted 
background color, so setting the highlight attribute for a background has no effect. In 
JAM/Pi though, highlighted background colors are supported, giving you much more 
flexibility in color selection. If you normally set the background highlight on, then 
when you convert your applications, be sure to check the color to make sure it is to your 
liking. 

11.2 

LINE DRAWING 
Line drawings do not convert well into JAMIPi screens. Use the hline, vline, box, 
and frame extensions instead. See Chapters 5 and 6 for more information. 

JAM/PI Release 1.4 1 December 92 Page 215 



JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK 

11.3 

JAM VERSION 4 APPLICATIONS 
JAM version 4 applications must first be converted into version 5 applications before 
being transferred to JAMlPi, 

11,4 

JAM VERSION 5 APPLICATIONS 
Screens from JAM version 5,0 or later can be opened under JAMlPi.You will probably 
wish to embellish these screens with extended colors and fonts, and to reposition and 
resize some of the screen objects. As mentioned in previous chapters, display text 
should be converted into protected fields to take advantage of positioning and extended 
features. 

If you have used menu fields and submenus to simulate pull down menus in character 
JAM, you will want to convert these into menu bars, and then eliminate the menu fields 
from the screen. Since menu bars are often the primary navigational tool in GUI appli
cations, you may wish to take advantage of them. 

Page 216 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

Chapter 12 

Library and Utility Reference 
This chapter is divided into two sections, Library Routines and Utilities. 

12.1 

JAM/Pi LIBRARY ROUTINES 
JAM/Pi library routines are available for each GU! interface as noted in the "Supported 
Interfaces" section on each man page. These routines are not portable to character 
JAM. 

GUI Library Interface Routines 
The following routines give the developer access to the widgets created by JAMIPi so 
that they may interact with them directly. 

sm_drawingarea get the widget id (or handle) of the current JAM screen 

sm_translatecoords translate screen coordinates to display coordinates 

sm_widget get the widget id (or handle) of a particular widget 

Menu Bar Routines 
The menu bar routines are analogous to the equivalent key set routines. Keysets are doc
umented in the JAM Author's Guide, and the keyset routines are documented in the 
JAM Programmer's Guide. Menu bars are described in detail in Chapter 8. 

You may wish to prototype some of these routines, in order to increase your flexibility 
in dealing with menu bars. Prototyping library routines allows them to be called direct
ly from control strings and JPL procedures. Refer to the "Hook Function" chapter in the 
JAM Programmer's Guide for an explanation of prototyped functions, and instructions 

JAM/PI Release 1.4 1 December 92 Page 217 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

on their installation and use. Refer to the JPL Guide for an explanation of how proto
typed functions may be used from JPL. 

The following routines create, alter, install and display menu bars. 

sm_c_menu 

sm_d_menu 

sm_menuinit 

sm_mn_forms 

sm_mnadd 

sm_mnchange 

sm_mndelete 

sm_mnget 

sm_mninsert 

sm_mnitems 

sm_mnnew 

sm_r_menu 

close a menu bar 

display a menu bar stored in memory 

initialize menu bar support 

install menu bars in memory 

add an item to the end of a menu bar 

alter a menu bar item 

delete a menu bar item 

get menu bar item information 

insert a new menu bar item 

get the number of items on a menu bar 

create a new menu bar by name 

read and display a menu bar from memory, a library or 
disk 

File Selection Box Routines 
The following routines initialize and open a file selection dialog box. 

sm_filebox 

sm_filetypes 

open a file selection dialog box 

set up a list of file types for a file selection dialog box 

Miscellaneous Routines 
sm_adjust_area 

sm_win_shrink 

refresh the current screen 

trim the current screen 

NOTE: The header file smdefs. h must be included to run any JAM library routine. 
Other header files required by specific routines are noted on each routine's manual 
page. 

Page 218 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

sm_adjust_area 
refresh the current screen 

SYNOPSIS 
#include ·smpi.h· 

DESCRIPTION 

This routine redisplays the current screen, recalcuIting the positioning and sizing. It is 
useful if a widget has changed size, due to its protection changing, or the screen being 
toggled in or out of menu mode. 

If a widget is changed to or from a label widget as a result of its protection being 
changed, it will most likely shrink or stretch. Similarly, fields that have the menu edit 
but are not protected from data entry will change their nature depending on whether the 
screen is in menu mode or data entry mode. This may change the size of their widgets. 
JAM does not automatically refresh the screen under these conditions, which may 
cause widgets to overlap. Use sm_area_adj us t to refresh the screen and recalculate 
the relative positioning of objects. 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

JAM/Pi Release 1.4 1 December 92 Page 219 



JAM/Pi for OSFfMotif, Microsoft Windows and OPEN LOOK 

sm c menu 
close a menu bar 

SYNOPSIS 
#include "smsoftk.h" 

int sm_c_menu(scope) 
int scope; 

DESCRIPTION 

This routine closes the menu bar at the given scope. It frees all memory associated 
with the menu bar. If the menu bar is currently displayed, it is removed at the next 
delayed write. 

Scope Description 

KS FORM Screen-level menu bar. -

KS_APPLIC Application-level menu bar. 

KS_OVERRIDE Override-level menu bar, 

KS_MEMRES Memory-resident menu bar, 

KS - SYSTEM System-level menu bar. 

When a menu bar with a scope of KS_OVERRIDE closes, the previously displayed 
menu bar is restored from the override stack 

If scope is KS_MEMRES, the last menu bar opened at that scope is closed. 

To refresh a menu bar with a new copy from disk (or memory), first call sm_c_menu, 
and then call sm_r_menu or sm_d_menu. 

RETURNS 
o if there 'is no error. 
-2 if there is no menu bar currently at scope. 
-3 if menu bars are not supported or scope is out of range. 

RELATED FUNCTIONS 
sm_d_menu(menu, scope); 
sm_r_menu(name, scope); 

Page 220 JAM/Pi Release 1,4 1 December 92 



Chapter 12: library and Utility Reference 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
~include "smdefs.h" 
~include "smsoftk.h" 

/* Close the current JAM window'S menu. */ 

JAM/Pi Release 1.4 1 December 92 Page 221 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

sm_d_menu 
display a menu bar stored in memory 

SYNOPSIS 
#include ·smsoftk.h" 

int sm_d_menu(menu, scope) 
char *menu; 
int scope; 

DESCRIPTION 

The parameter menu is the address of a menu bar stored in memory. The utility bin2 c 
is used to create program data structures from disk based menus. These structures are 
then compiled into your application and added to the memory-resident screen list, de
scribed in Chapter 9 of the JAM Programmer's Guide. 

scope is one of the mnemonics listed in smsoftk. h and shown in the table below. 

Scope Description 

KS FORM Screen-level menu bar. -
KS_APPLIC Application-level menu bar. 

KS_OVERRIDE Override-level menu bar. 

KS_MEMRES Memory-resident menu bar. 

KS - SYSTEM System-level menu bar. 

If there is currently a menu bar with the specified scope, the name of that menu bar is 
compared with menu. If they are the same, the routine returns immediately. Thus to 
refresh a menu bar with a new copy from memory, call sm_c_menu first. 

If scope is KS_OVERRIDE, the currently displayed menu bar is saved in a stack 
(o_stack). When the override menu bar closes, the saved menu bar is restored. This 
stacking is performed only for a scope of KS_OVERRIDE. This scope is used for help 
screens, zoom windows, etc. The stack is fixed at 10 deep. 

If scope is KS_MEMRES, the menu bar is read from memory and added to the stack of 
memory-resident menu bars for use as external menus. 

Page 222 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

For all other scopes, the menu bar is read from memory and installed. The old menu bar 
at this scope, if any, is freed. If the menu bar at this scope is currently displayed, it must 
be refreshed. This fact is marked and the actual refresh is performed at the next delayed 
write. 

RETURNS 

o if no error occurred during display of the menu bar. 
-1 if the format is incorrect (ie, not a menu bar). 
-3 if menu bars are not supported or the s cope is out of range. 
-5 if there is a malloc failure. 

In the case of an error, the previously displayed menu bar remains displayed. 

For all errors except -3 a message is posted to the operator. 

RELATED FUNCTIONS 
sm_c_menu(scope); 
sm_r_menu(name, scope); 

SUPPORTED INTERFACES 
PiIWindows 
Pi/Motif 
Pi/OPEN LOOK 

EXAMPLE 

#include "smdefs.h" 
#include "smsoftk.h" 

extern char customer_menu[); 

/* Display the customer menu as the application-level menu. 
* Customer_menu was created using bin2c. 
*/ 

JAMlPi Release 1.4 1 December 92 Page 223 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

sm_drawingarea 
get the widget id of the current JAM screen 

SYNOPSIS 

DESCRIPTION 
Provides the widget id of the current JAM screen. This function in conjunction with 
sm_translatecoords is useful when placing objects such as bitmapped graphics 
or custom widgets on a JAM screen. Refer to the source listing for the pie chart demon
stration provided with JAM/Pi for a detailed example of how to import graphics and 
use these functions. An example is also provided on the manual page for 
sm_translatecoords. 

RETURNS 
Returns NULL if there is no current screen. 
Otherwise: 

RELATED FUNCTIONS 
sm_translatecoords(column. line. column-ptr. line-ptr); 

sm_widget(); 

SUPPORTED INTERFACES 
Pi/Windows 
PilMotif 
Pi/OPEN LOOK 

Page 224 JAM/Pi Release 1.4 1 December 92 



EXAMPLE 
/* This is a Pi/windows example */ 

#include ·smdefs.h· 
#include <windows.h> 

int current_window_maximize( void 
( 

Chapter 12: Library and Utility Reference 

/* This is a JAM prototype-able function which max~m~zes the current 
* JAM window. It is the equivalent of having the user click the 
* window's maximize button. The function sm_drawingarea returns 
* the window handle for the currently active JAM window. 
*/ 

PostMessage( sm_drawingarea(), WM_SYSCOMMANO, SC_MAXIMIZE, 0 ); 
return ( 0 ); 

JAM/Pi Release 1.4 1 December 92 Page 225 



JAM/PI for OSFlMotif, Microsoft Windows and OPEN LOOK 

8m filebox 
open a file selection dialog box 

SYNOPSIS 
#include "smpi,h" 

int sm_filebox(buffer, length, path, file_mask, title, flag) 
char ·buffer 
int length 
char ·path 
char ·file_mask 
char ·title 
int flag 

Built-in control function variant: 

~jm_filebox fieldname path file_mask title flag 

DESCRIPTION 

This function opens a file selection dialog box. A file selection box allows the user to 
browse through a directory tree and select a file by name. The implementation details 
of the dialog are GUI dependent, but the function's parameters are the same across 
GUI's. 

buffer is used to contain the full pathname of the user's selection. length is the 
length of buf fer. It is up to the developer to provide a buffer large enough to hold the 
pathname. 

path is the initial path for the directory tree. file_mask is a filter for narrowing 
down the files in path. It should contain at least one wildcard character. 

tit 1 e specifies the title text of the dialog. 

flag is used only in PilWindows. It may either have the value FE_SAVE or 
FE_OPEN, depending on whether the file selection box is being used to save or open a 
file. It controls the title next if none is supplied, and the label on one of the fields in the 
dialog. This argument is ignored in PilMotif. 

The variant j m_f i 1 ebox is a built-in control function, Its first argument is a field 
name or the name of a JPL variable. The selected file name is copied to this field or 
variable instead of to the buffer. The path, file_mask, title and flag arguments 
are the same as for sm_f i lebox. To leave an argument out, use"" in its place. Built
in control functions may be used in control strings and in JPL call statements. A 
menu bar can open a file selection box by calling jm_f ilebox from a control string. 

Page 226 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

Filter 

[ I deve I op/home/* 

Directories 
:)/home/rleff/. 
Ihomelrleff/ •• 

:)/home/rleff/debbiex 
:)/home/rI eff/doc 

r:. :::::::;:::::;:;:::::::::::;::;:::Ii 
Selection 

Files 

'rallle. ·am 
gibl in 
halign.jalll 
h!::lmie 
icontest.jam 
jamp.txt 
jampi.txt 
jxform 
ke!::lscrn.jam 

.... _ .. :jP.: 
,-, . . .............................. . 

[/develoP/home/rleff/frame.jam" 

Figure 64: A Motif File Selection Box 

JAM/Pi Release 1.4 1 December 92 Page 227 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

Page 228 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

JAMIPi Release 1.4 1 December 92 Page 229 



JAM/PI for OSFIMotif, Microsoft Windows and OPEN LOOK 

File Name: 

I~ 
assign. com 
backup. com 
chkdsk.com 
command. com 
comp.com 
debug. com 
diskcomp.com 

Save File as !.Io'pe: 

III 

Save As 

J!irectories: 

c:\dos 

~c:\ 

"dos 

Drives: 

IIiiil c: dos400 

Figure 65: A Windows File Selection Box 

RETURNS 

OK I 
Cancel 

1 if the user presses OK. The full pathname of the selected file is copied to the buffer. 
o if the user presses Cancel. 
-J if there is a memory allocation error or bu f fer is too small. 

RELATED FUNCTIONS 
sm_filetypes(description, filters); 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 

EXAMPLE 
#include "smdefs.h" 
#include "smpi.h" 

#define LENGTH 256 
char buf [LENGTH]; 

sm_filebox(buf, LENGTH, "/usr/home/bill" , "*.txt·, "Bill's Files·, 0); 

Page 230 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

sm_filetypes 
set up a list of file types for a file selection dialog box 

SYNOPSIS 
#include ·smpi.h" 

int sm_filetypes(description, filters) 
char *description; 
char *filters; 

DESCRIPTION 
This function sets up a list of filters for display in the "file type" field of a file selection 
dialog box under Windows. A file selection dialog is brought up by the routine 
sm_f i lebox. The file type field contains a list of file types, or masks, that can be set 
up by the developer. It provides a convenient way for the user to narrow down a directo
ry listing. 

description is a text string describing a file type. It appears in the list of file types. 
f i 1 t er s is a semicolon separated list of file masks that are included in the particular 
file type. Each time this function is ca\1ed, a new description and set of filters 
is added to the end of the existing file type list. 

To erase the file types list, call sm_filetypes with null pointers (or null strings). 

This function must be added to the prototyped function list if it is to be called from JPL. 
In Motif, sm_filetypes is ignored. 

RETURNS 
o if the description is successfully added to the list. 
-I if there is a memory allocation error. 

RELATED FUNCTIONS 
sm_filebox(buffer, length, path, file_mask, title, flag); 

SUPPORTED INTERFACES 
PilWindows 

EXAMPLE 
#include ·smdefs.h" 
#include "smpi.h" 

/* Clear the file types list, set up two file type filters, and call 
* the filebox routine. */ 

JAM/Pi Release 1.4 1 December 92 Page 231 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

#define LENGTH 256 
char buf [LENGTH]; 

sm_filetypes(NULL, NULL); 
sm_filetypes("Text files", "*.doc; *.txt"); 
sm_filetypes("Executables", "·.com; *.exe; *.bat"); 
sm_filebox(buf, LENGTH, ·c:"', '*.*., '., FB_OPEN); 

Page 232 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

sm menuinit 
initialize menu bar support 

SYNOPSIS 
void sm_menuinit(); 

DESCRIPTION 

This routine should be called explicitly only if you are writing a Custom Executive. If 
you are using the JAM Executive, then you simply have to enable support for menu 
bars in the main routine (either jmain.c or jxmain.c) by setting the appropriate 
#de fine to 1. This will cause the rna in routine to call this routine automatically. 

If you are writing a Custom Executive and you wish to include menu bar support, you 
must call this routine. It should be done in the main routine before the call to ini tcrt. 

The routine simply sets a global variable to point to a control function. All screen man
ager functions that need menu bar support check the variable and, if it is non-zero, call 
indirectly with the request. 

If an application is to use key sets in character JAM and menu bars in JAMlPi, then the 
main routine should call sm_skeyinit before it calls sm_menuinit. The second 
library call will override the first in JAMlPi, but will be ignored in character JAM. 

If you wish to store menu bars in memory, you must also call sm_mn_forms, or set the 
appropriate #define in the main routine. 

NOTE: Since menu bars and key sets share the same hooks, they may not be used to
gether. 

RELATED FUNCTIONS 

SUPPORTED INTERFACES 

PilWindows 
PilMotif 
Pi/OPEN LOOK 

JAMIPi Release 1.4 1 December 92 Page 233 



JAM/PI for OSFlMotif, Microsoft Windows and OPEN LOOK 

sm mn_forms 
install menu bars in memory 

SYNOPSIS 

DESCRIPTION 

This routine should be called explicitly only if you are writing a Custom Executive, If 
you are using the JAM Executive, then you simply have to enable support for menu 
bars in the main routine (either jmain.c or jxmain.c) by setting the appropriate 
#def ine to 1. This will cause the main routine to call this routine automatically. 

If you are writing a Custom Executive and storing menu bars in memory, this routine 
should be called by the main application program to install the menu bars in memory 
for use by the screen manager. You must compile menu bars stored in memory into your 
application and add them to the memory-resident screen list, described in Chapter 9 of 
the JAM Programmer's Guide. An alternative to storing menu bars in memory is to 
open a library of menu bars or to open the menu bars as individual files on disk 

A related function, sm_menuini t, must also be called in order to initialize menu bar 
support. To open a menu bar stored in memory, call sm_d_menu or sm_r_menu. 

RELATED FUNCTIONS 
sm_menuinit(); 
sm_d_menu(menu. scope); 
sm_r_menu(menu_name. scope); 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

Page 234 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

sm mnadd 
add an item to the end of a menu bar 

SYNOPSIS 
#include ·smsoftk.h" 
#include "smkeys.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_mnadd(scope, menu_name, data) 
int scope; 
char "menu_name; 
struct item_data "data; 

DESCRIPTION 
Adds an item at the end of the menu bar specified by scope and menu_name. 

scope is one of the mnemonics listed in smsoftk. h, and shown in the table below. 

Scope Description 

KS FORM Screen-level menu bar. -
KS_APPLIC Application-level menu bar. 

KS_OVERRIDE Override-level menu bar. 

KS_MEMRES Memory-resident menu bar. 

KS - SYSTEM System-level menu bar. 

menu_name is the name of the menu as specified in the menu script. 

item_data is a user-allocated structure that describes the appearance and function of 
a menu bar item. Its contents are shown in the table below: 

Member Description 

type Specifies the type of item. Possible values are: 
MT_SEPARATOR,MT_TITLE,MT_SUBMENU,MT_KE~ 

MT_CTRLSTRNG,MT_EDIT,MT_WINDOWS 

label Label text for the item. Text beyond 255 characters is truncated. The 
label is ignored if type is MT_SEPARATOR. Default is o. 

JAMlPi Release 1.4 1 December 92 Page 235 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Member Description 

accel Offset of the keyboard shortcut character in the label text string. Default 
is -l. 

key Logical key mnemonic. This is used only if type is MT_KEY. See 
smkeys . h for a listing of valid key mnemonics. Default is o. 

submenu A text string containing the submenu name. This is used only if type 
is MT_SUBMENU. Default is o. 

option Display options. There are separate display options for separators and text 
type items. See the table below. 

Any structure members that are not relevant to the item should have the default value, 
namely: 0 for label, key, and submenu; and -1 for accel. 

The mnemonics for display options shown in the following table are defined in 
smmenu. h. They are described in detail in the menu bar chapter in section 8.4. Text 
options may be bitwise or'ed together; separator options may not. 

Text Item Options Value Separator Options Value 

Ox0200 MO_SINGLE OxOOOO 

Ox0400 MO_DOUBLE Ox0001 

Ox0800 MO_NOLINE Ox0002 

Ox1000 MO_SINGLE_DASHED Ox0003 

Ox2000 MO_DOUBLE_DASHED Ox0004 

Ox4000 MO_ETCHEDIN Ox0005 

Ox8000 MO_ETCHEDOUT Ox0006 

RETURNS 
o if there is no error. 
-2 if there is no menu bar at this scope. 
-3 if menu bars are not supported or scope is out of range. 
-4 if menu_name is not found. 
-6 if data in it em_da ta is bad. 
-7 if there is a malloc error. 

Page 236 JAM/Pi Release 1.4 1 December 92 



Chapter 12: library and Utility Reference 

RELATED FUNCTIONS 
sm_mnehange(seope, menu_name, item_no, data); 
sm_mndelete(seope, menu_name, item_no); 
sm_mnget(seope, menu_name, item_no, data); 
sm_mninsert(seope, menu_name, item_no, data); 
sm_mnitems(seope, menu_name); 
sm_mnnew(seope, menu_name); 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#inelude "smdefs.h" 
#inelude "smsoftk.h" 
#inelude "smmaeh.h" 
#inelude "smmenu.h" 
#inelude "smkeys.h" 

struet item_data *data; 
data = ( struet item_data * ) malloe( sizeof( struet item_data) ); 

1* Call sm_d_menu wi a disk resident menu and KS_FORM. 
* Call sm_mnadd to add a title for submenu. 
*1 

sm_r_menu("mymenu.bin", KS_FORM); 
data->type = MT_TITLE; 
data->label = "Submenu"; 
data->aeeel = -1; 
data->key = 0; 
data->submenu = 0; 
data->option = MO_INDICATOR_ON; 
sm_mnadd(KS_FORM, "SubmenuO" , data); 

JAM/Pi Release 1.4 1 December 92 Page 237 



JAM/Pi for OSFIMotif, Microsoft Windows and OPEN LOOK 

sm_mnchange 
alter a menu bar item 

SYNOPSIS 

#include ·smsoftk.h· 
#include ·smkeys.h" 
#include ·smmach.h" 
#include ·smmenu.h· 

int sm_mnchange(scope, menu_name, item_no, data) 
int scope; 
char *menu_name; 
int item_no; 
struct item_data *data; 

DESCRIPTION 

Change the data associated with the menu bar item specified by item_no, 
menu_name and scope, to the data contained in the item_data structure. 
item_data is a user-allocated structure that describes the appearance and function of 
a menu bar item. See sm_mnadd for details on the item_data structure and a listing 
of the various scopes. The first item on a menu is i tern_no zero. 

Use this routine, for example, to grey out or check an item. 

RETURNS 

o if there is no error. 
-2 if there is no menu bar at this scope. 
-3 if menu bars are not supported or scope is out of range. 
-4 if menu_name is not found. 
-5 if item_no is not found. 
-6 if data in item_data is bad. 
-7 if there is a malloc error. 

RELATED FUNCTIONS 
sm_mnadd(scope, menu_name, data); 
sm_mndelete(scope, menu_name, item_no); 
sm_mnget(scope, menu_name, item_no, data); 
sm_mninsert(scope, menu_name, item_no, data); 
sm_mnitems(scope, menu_name); 
sm_mnnew(scope, menu_name); 

Page 238 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#include ·smdefs.h· 
#include ·smsoftk.h" 
#include ·smmach.h" 
#include ·smmenu.h" 
#include "smkeys.h" 

/* menu file stored in memory */ 
extern char mymenu[]; 

struct item_data *data; 
data = ( struct item_data * ) malloc ( sizeof ( struct item_data ) ); 

/* Call sm_r_menu w/ a disk resident menu and KS_APPLIC. 
* Call sm_mnchange to grey out a menu item in the submenu. 
*/ 

sm_r~enu("mymenu.bin", KS_APPLIC); 
data->type = MT_KEY; 
data->label = "Newltem"; 
data->accel = 3; 
data->key = PF1; 
data->submenu = 0; 
data->option = MO_GRAYEDIMO_SHOWKEY; 
sm_mnchange(KS_APPLIC, "SubmenuO" , 0, data); 

JAM/Pi Release 1.4 1 December 92 Page 239 



JAM/Pi for OSFIMotif. Microsoft Windows and OPEN LOOK 

sm mndelete 
delete a menu bar item 

SYNOPSIS 
#include "smsoftk.h" 
#include "srnrnach.h" 
#include "srnrnenu.h" 

int sm_mndelete(scope, menu_name, item_no) 
int scope; 
char *menu_name; 

DESCRIPTION 
Delete the item specified by i tern_no, menu_name, and scope from the menu bar. 
The first item on a menu is item_no zero. 

RETURNS 
o if there is no error. 

-2 if there is no menu bar at this scope. 
-3 if menu bars are not supported or scope is out of range. 
-4 if menu_name is not found. 
-5 if item_no is not found. 

RELATED FUNCTIONS 
sm_rnnadd(scope, menu_name, data); 
sm_rnnchange(scope, menu_name, item_no, data); 
sm_mnget(scope, menu_name, item_no, data); 
sm_mninsert(scope, menu_name, item_no, data); 
sm_rnnitems(scope, menu_name); 
sm_mnnew(scope, menu_name); 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 
#include "srnrnach.h" 
#include "srnrnenu.h" 

Page 240 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

int count; 

1* Delete the last item from the application menu called "customer" *1 

if ((count = sm_mnitems( KS_APPLIC, "customer· )) > 0) 
sm_mndelete( KS_APPLIC, ·customer" , count ); 

JAM/PI Release 1.4 1 December 92 Page 241 



JAM/Pi for OSFlMoti( Microsoft Windows and OPEN LOOK 

sm_mnget 
get menu bar item information 

SYNOPSIS 

#include "smsoftk.h" 
#include "smkeys.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_mnget(scope, menu_name, item_no, data) 
int scope; 
char "menu_name; 
int item_no; 
struct item_data "data; 

DESCRIPTION 

Get the specified menu bar item's data. Given the menu_name (as given in the menu 
script) and an item_no, this function fills the fields in the item_data structure with 
the associated data for that item. The first item on a menu is i tern_no zero. Note that 
you must create buffers for the label and submenu elements of the structure that are 
large enough to hold the label and submenu names (see the example below). The maxi
mum length is 255 characters. See sm_mnadd for details on the it em_da t a structure 
and a listing of the various scopes. 

RETURNS 

o if there is no error. 
-2 if there is no menu bar at this scope. 
-3 if menu bars are not supported or s cope is out ofrange. 
-4 if menu_name is not found. 
-5 if item_no is not found. 

RELATED FUNCTIONS 
sm_mnadd(scope, menu_name, data); 
sm_mnchange(scope, menu_name, item_no, data); 
sm_mndelete(scope, menu_name, item_no); 
sm_mninsert(scope, menu_name, item_no, data); 
sm_mnitems(scope, menu_name); 
sm_mnnew(scope, menu_name); 

Page 242 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#include "smdefs.h" 
#include "smmach.h" 
#include "smmenu.h" 
#include "smsoftk.h" 

/* menu file stored in memory */ 
extern char mymenu[]; 

char bufl[lOO], buf2[lOO]; 

struct item_data *data; 

data = ( struct item_data • ) malloc( sizeof( struct item_data) ); 

data->label = buf1; 
data->submenu = buf2; 

/* 

* 
*/ 

Call sm_r_menu with a disk resident menu. 
Call sm_mnget to get an override-level menu bar item. 

5 ID_r_menu("mymenu.bin", KS_OVERRIDE); 
sID_mnget(KS_OVERRIDE, "Main", 0, data ); 

JAM/Pi Release 1.4 1 December 92 Page 243 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

sm_mninsert 
insert a new menu bar item 

SYNOPSIS 

#include "smsoftk.h" 
#include "smkeys.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_mninsert(scope, menu_name, item_no, data) 
int scope; 
char *menu_name; 
int item_no; 
struct item_data *data; 

DESCRIPTION 

Insert a new menu bar item before the menu item specified by item_no, 
menu_name, and scope, using the data in the menu bar structure item_data. 
item_data is a user-allocated structure that describes the appearance and function of 
a menu bar item. See sm_mnadd for details of the it em_da t a structure and a listing 
of the various scopes. The first item on a menu is item_no zero. 

RETURNS 

o if there is no error. 
-2 if there is no menu bar at this scope. 
-3 if menu bars are not supported or scope is out of range. 
-4 if menu_name is not found. 
-5 if item_no is not found. 
-{j if data in i tem_da ta is bad. 
-7 if there is a malloc error. 

RELATED FUNCTIONS 
sm_mnadd(scope, menu_name, data); 
sm_mnchange(scope, menu_name, item_no, data); 
sm_mndelete(scope, menu_name, item_no); 
sm_mnget(scope, menu_name, item_no, data); 
sm_mnitems(scope, menu_name); 
sm_mnnew(scope, menu_name); 

Page 244 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

SUPPORTED INTERFACES 
PiIWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#inc1ude "smdefs.h" 
#inc1ude "smsoftk.h" 
#inc1ude "smmach.h" 
#inc1ude "smmenu.h" 
#include "smkeys.h" 

struct item_data *data; 

data = ( struct item_data * ) malloc( sizeof( struct item_data) ); 

1* Call sm_r_menu wi a disk resident menu and KS_FORM. 
* Call sm_mninsert to insert a submenu. 
*1 

sm_r_menu("mymenu.bin", KS_FORM); 
data->type = MT_SUBMENU; 
data->label = "NewItem"; 
data->accel = 3; 
data->key = 0; 
data->submenu = "Submenu1"; 
data->option = MO_INDICATOR; 
s~mninsert(KS_FORM, "Main", 1, data); 

JAM/Pi Release 1.4 1 December 92 Page 245 



JAM/Pi for OSF/Motif. Microsoft Windows and OPEN LOOK 

sm mnitems 
get the number of items on a menu bar 

SYNOPSIS 
#include "smsoftk.h" 
#include "smmach.h" 
#include ·smmenu.h" 

int sm_mnitems(scope, menu_name) 
int scope; 
char *menu_name; 

DESCRIPTION 

Returns the number of items on the menu bar specified by menu_name and scope. 
Refer to sm_mnadd for a list of values for scope. When referring to items in related 
functions, the first item on a menu is item number zero. 

RETURNS 

-2 if there is no menu at this scope. 
-3 if menu bars are not supported or scope is out of range. 
-4 if menu_name is not found. 
otherwise the number of items on the menu bar is returned. 

RELATED FUNCTIONS 
sm_mnadd(scope, menu_name, data); 
sm_mnchange(scope, menu_name, item_no, data); 
sm_mndelete(scope, menu_name, item_no); 
sm_mnget(scope, menu_name, item_no, data); 
sm_mninsert(scope, menu_name, item_no, data); 
sm_mnnew(scope, menu_name); 

SUPPORTED INTERFACES 
PilWindows 
Pi/Motif 
Pi/OPEN LOOK 

EXAMPLE 
#include ·smdefs.h" 
#include "smmach.h" 

Page 246 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

int ret; 

1* Call sm_r_menu wi a disk resident menu and KS_OVERRIDE. 
* Call sm_mnitems to get the number of items on the menu bar, and 
* place the number in the current field. 
*1 

sm_r_menu("mymenu.bin", KS_OVERRIDE); 
ret = sm_mnitems(KS_OVERRIDE, "Main"); 

sm_n_itofield( "number", ret ); 

JAM/Pi Release 1.4 1 December 92 Page 247 



JAM/Pi for OSFlMotif. Microsoft Windows and OPEN LOOK 

sm_mnnew 
create a new menu bar by name 

SYNOPSIS 

#include ·smsoftk.h" 
#include ·smmach.h· 
#include ·smmenu.h· 

int sm_mnnew(scope, menu_name) 
int scope; 
char "menu_name; 

DESCRIPTION 

This routine creates a new submenu in the menubar structure at the specified scope. 
Refer to sm_mnadd for a list of values for scope. This routine does not add an item 
for the submenu to the top-level menu bar, it simply makes the new submenu available 
for adding items to, via sm_rnnadd or sm_rnninsert. After the new submenu is 
fleshed out, an entry for it can added to an existing menu or submenu, also via 
sm_mnadd or sm_mninsert. 

RETURNS 
o if there is no error. 

-2 if there is no menu bar at the specified scope. 
-3 ifmenu bars are not supported or scope is out ofrange. 
-4 if menu_name is invalid or already exists. 
-7 if there is a malloc error. 

RELATED FUNCTIONS 
sm_mnadd(scope, menu_name, data); 
sm_mnchange(scope, menu_name, item_no, data); 
sm~ndelete(scope, menu_name, item_no); 
sm_mnget(scope, menu_name, item_no, data); 
sm_mninsert(scope, menu_name, item_no, data); 
sm_mnitems(scope, menu_name); 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

Page 248 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 
#include "smkeys.h" 

int ret; 
struct item_data *data; 

data = ( struct item_data * ) malloc( sizeof( struct item_data) ); 

1* Call sm_r_menu wi a disk resident menu and KS_OVERRIDE. 
* Call sm_mnnew to create a new menu bar . 
* Call sm_mnadd to add items to it and finally add this new menu 
* to the menu displayed as a submenu. 
*1 

sm_r_menu("main.bin", KS_OVERRIDE); 
ret = sm_mnnew(KS_OVERRIDE, "NewItem"); 

if ( ret == 0 ) 
( 

data->type = MT_TITLE; 
data->label = "Submenu"; 
data->accel = -1; 
data->key = 0; 
data->submenu = 0; 
data->option = MO_INDICATOR_ON; 

sm_mnadd(KS_OVERRIDE, "NewItem", data); 

data->type = MT_SUBMENU; 
data->label = "I"; 
data->accel = 0; 
data->key = 0; 
data->submenu = "Submenul"; 
data->option = MO_INDICATOR; 

sm_mnadd(KS_OVERRIDE, "NewItem", data); 

data->type = MT_SUBMENU; 
data->label = "NewItem"; 
data->accel = 3; 
data->key = 0; 
data->submenu = "NewItem"; 
data->option = MO_INDICATOR; 

sm_mnadd(KS_OVERRIDE, "Main", data); 

JAM/PI Release 1.4 1 December 92 Page 249 



JAM/Pi for OSFlMolit Microsoft Windows and OPEN LOOK 

sm r menu --
read and display a menu bar from memory, a library or 
disk 

SYNOPSIS 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 

int sm_r_menu(menu_name, scope) 
char *menu_name; 
int scope; 

DESCRIPTION 

The parameter menu_name is the name of the menu bar. This name is sought first in 
the memory-resident screen list, next in any open libraries and finally on disk in the 
directories specified by the argument to sm_initcrt and by SMPATH. Screens and 
menu bars may be mixed in the screen list and in libraries. 

scope is one of the mnemonics listed in smso f t k . h and shown in the table below. 

Scope Description 

KS - FORM Screen-level menu bar. 

KS_APPLIC Application-level menu bar. 

KS_OVERRIDE Override-level menu bar. 

KS_MEMRES Memory-resident menu bar. 

KS - SYSTEM System-level menu bar. 

If there is currently a menu bar with the specified scope the name of that menu bar is 
compared with menu_name. If they are the same, the routine returns immediately. 
Thus to refresh a menu bar with a new copy from disk, call sm_c_menu first. 

If scope is KS_OVERRIDE, the currently displayed menu bar is saved in a stack 
(o_stack). When the override menu bar closes, the saved menu bar is restored. This 
stacking is performed only for a scope of KS_OVERRIDE. This scope is used for help 
screens, zoom windows, etc. The stack is fixed at 10 deep. 

Page 250 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

If scope is KS_MEMRES, the menu bar is read and added to the stack of memory-res i
dent menu bars for use as external menus. 

For all other scopes, the menu bar is read and installed. The old menu bar at this scope, 
if any, is freed. If the menu bar at this scope is currently displayed, it must be refreshed. 
This fact is marked and the actual refresh is performed at the next delayed write. 

RETURNS 

o if no error occurred during display of the menu bar. 
-I if the format is incorrect (not a menu bar). 
-2 if menu_name is not found. 
-3 if menu bars are not supported or the scope is out of range. 
~ if there is a read error. 
-5 if there is a malloc failure. 

In the case of an error the previously displayed menu bar remains displayed. 

For all errors except -3 a message is posted to the operator. 

RELATED FUNCTIONS 
sm_c_menu(scope}; 
sm_d_menu(menu. scope}; 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
#include "smdefs.h" 
#include "smsoftk.h" 
#include "smmach.h" 
#include "smmenu.h" 

/* Read in the company menu and display it at the form level. */ 

JAMlPi Release 1.4 1 December 92 Page 251 



JAM/PI for OSFlMotif. Microsoft Windows and OPEN LOOK 

sm translatecoords 
translate screen coordinates to display coordinates 

SYNOPSIS 
#include "smpi.h" 

int sm_translatecoords{column. line. column-ptr. line-ptr) 

int column; 
int line; 
int *column-ptr; 
int *line-ptr; 

DESCRIPTION 
Translates the JAM 1 ine and col umn relative to a screen, into pixel line and column 
relative to the upper left hand corner of the drawing area. line and column are zero 
based. This function in conjunction with sm_drawingarea is useful when placing 
objects such as bitmapped graphics or custom widgets on a JAM screen. Refer to the 
source listing for the pie chart demonstration provided with JAMJPi for a detailed ex
ample of how to import graphics and use these functions. 

RETURNS 
The pixel coordinates are placed in the integers referenced by *column-ptr and 
*line-ptr. 

The function also returns: 
-1 if the 1 ine or column is out of range; 
o otherwise. 

RELATED FUNCTIONS 
sm_drawingarea(); 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

EXAMPLE 
/* The following program illustrates how to use sm_drawingarea and 

• sm_translatecoords to display a bitmap on the current JAM screen in 
• Pi/Windows. 
*/ 

Page 252 JAM/Pi Release 1.4 1 December 92 



Chapter 12: library and Utility Reference 

#include <windows.h> 
#include <smdefs.h> 

void DrawBitmap(HDC hdc, HBITMAP hBitmap, short xStart, short yStart); 

int 
JAM_display_bitmap( char *bitmap_name, int line, int col ) 
( 

HWND hwnd; 
HDC hdc; 
HBITMAP hBitmap; 
int pixel_line; 
int pixel_col; 

hwnd = sm_drawingarea(); 
hdc = GetDC( hwnd ); 

hBitmap = LoadBitmap( GetWindowWord( hwnd, GWW_HINSTANCE ), 
bitmap_name ); 

if (hBitmap == NULL) 
( 

char buf[lOO]; 

sprintf( buf, "JAM_display_bitmap: no such bitmap '%s'", 
bi tmap_name ); 

sm_emsg ( buf ); 
return ( -1 ); 
} 

if (sm_translatecoords( col, line, &pixel_col, &pixel_line ) < 0) 
( 

char buf[100]; 

sprintf( buf, "JAM_display_bitmap: invalid line/column: %d/%d", 
line, col ); 

sm_emsg ( buE ); 
return ( -1 ); 
} 

DrawBitmap( hdc, 
hBitmap, 
(short) pixel_col, 
(short) pixel_line ); 

DeleteObject( hBitmap ); 
ReleaseDC( hwnd, hdc ); 
return ( 0 ); 
} 

void 
DrawBitmap( HDC hdc, HBITMAP hBitmap, short xStart, short yStart ) 

JAM/Pi Release 1.4 1 December 92 Page 253 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

BITMAP bm; 
HOC hdcMem; 
DWORD dwSize; 
POINT ptSize, ptOrg; 

hdcMem = CreateCompatibleOC( hdc ); 
SelectObject( hdcMem, hBitmap ); 
SetMapMode( hdcMem, GetMapMode( hdc ); 

GetObject( hBitmap, sizeof( BITMAP ), (LPSTR) &bm ); 
ptSize.x = bm.bmWidth; 
ptSize.y = bm.bmHeight; 
DPtoLP( hdc, &ptSize, 1 ); 

ptOrg.x = 0; 
ptOrg.y = 0; 
DPtoLP( hdcMem, &ptOrg, 1 ); 

BitBlt( hdc, xStart, yStart, ptSize.x, ptSize.y, hdcMem, ptOrg.x, 
ptOrg.y, SRCCOPY ); 

DeleteOC( hdcMem ); 
) 

Page 254 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

sm_widget 
get the widget id of a widget 

SYNOPSIS 

DESCRIPTION 

Provides the widget id of (or handle to) a widget, given a field number, field name, or 
field name and element number. The widget id is necessary for GUI function calls 
where you wish to interact directly with a particular widget. 

RETURNS 

Returns NULL if there is no such widget. 
Otherwise: 

JAMIPI Release 1.4 1 December 92 Page 255 



JAM/Pifer OSFlMotif, Microsoft Windows and OPEN LOOK 

RELATED FUNCTIONS 
sm_drawingarea(); 

SUPPORTED INTERFACES 
PilWindows 
PilMotif 
Pi/OPEN LOOK 

Page 256 JAM/Pi Release 1,4 1 December 92 



Chapter 12: Library and Utility Reference 

sm win shrink 
trim the current screen 

SYNOPSIS 
#include "smpi.h" 

DESCRIPTION 

This routine trims all space on a screen to the right of the rightmost widget and below 
the bottommost widget. It does not change the number of JAM lines and columns. It is 
primarily useful when hoff or voff extensions are heavily used to reposition fields. 
Call sm_adjust_areaO to restore a screen to its original size. 

SUPPORTED INTERFACES 
PilMotif 
Pi/OPEN LOOK 

JAM/Pi Release 1.4 1 December 92 Page 257 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

12.2 

UTILITIES 
Two utilities are provided for creating menu bars. The first, menu2bin, converts an 
ASCII menu script into a binary menu file. The second, kset2mnu, converts a JAM 
key set into an ASCII menu script. For detailed instructions on creating menu bar scripts 
refer to Chapter 8. 

Page 258 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

menu2bin 
convert ASCII menu scripts to binary format 

SYNOPSIS 
menu2bin [-pv] [-e ext] menuf//9 ... 

OPTIONS 
-p Places the binary files in the same directories as the input files. 

-v Lists the name of each input file as it is processed. 

-e Appends ext to the output file name. The default extension is bin. 

DESCRIPTION 
The menu2bin utility converts ASCII menu scripts into binary format for use by 
JAMlPi applications in place of keysets. Menu scripts are created as text files. Refer to 
section 8.4 for instructions on creating a menu script. 

To store a menu file in memory, first run the binary file produced by this utility through 
the bin2c utility to produce a program source file; then compile that file and link it 
with your program and add it to the memory-resident screen list (see Chapter 9 of the 
JAM Programmer's Guide). The extended library routines sm_d_menu and 
sm_r _menu can display menu bars stored in memory. 

Menu binary files can be placed in libraries with the f orml ib utility. Refer to the 
JAM Utilities Guide for more information. 

ERRORS 
Too many menu definitions. Max is 128. 
Cause: Only 128 menu definitions may be included in one menu script. 

Too many item definitions. Max is 128 . 
. Cause: Only 128 item specifications may be included in one menu definition. 

Cannot create '%s' 
Error writing '%s' 
Cause: An output file could not be created, due to lack of permission or perhaps lack 
of disk space. 
Corrective action: Correct the file system problem and retry the operation. 

Neither '%s' nor '%s' found. 
Cause: An input file was missing or unreadable. 
Corrective action: Check the spelling, presence and permissions of the file in question. 

JAMIPI Release 1.4 1 December 92 Page 259 



JAM/Pi for OSF/Motif, Microsoft Windows and OPEN LOOK 

Error in '%s' line '%d' 

followed by one of the following: 

Expected left brace '{' after menu name. 
No right brace '}' found before EOF. 
No menu name specified. 
Expected quoted item label. 
Missing action. 
Unknown action '%s'. 
Unknown option '%s'. 
No key specified. 
Bad key , % s' . 
Bad escape sequence '%s'. 
Undefined submenu '%s'. 
More than one option of this type (%5). 
More than one accelerator character assigned. 
Accelerator character at end of string - Ignored. 
Menu '%5' is on menu bar so cannot be used as submenu. 

Cause: The syntax of your script on the specified line is incorrect. 
Corrective action: Find the error on the line specified and correct it. Refer to section 
8.4 for a description of the proper syntax, and a sample menu script. 

Page 260 JAM/Pi Release 1.4 1 December 92 



Chapter 12: Library and Utility Reference 

kset2mnu 
convert keysets into ASCII menu scripts 

SYNOPSIS 
kset2mnu [-pv) [-e ext) keyset ... 

OPTIONS 
-p Places the binary files in the same directories as the input files. 

-v Lists the name of each input file as it is processed. 

-e Appends ext to the output file name. The default extension is mnu. 

DESCRIPTION 

The kset2mnu utility converts keysets into menu scripts. The file is converted accord
ing to the following rules: 

• The first row in the keyset becomes the top-level menu. 

• Subsequent rows become submenus. Submenus are named "Rowx", 
where x is the row number. 

• The SFTX key (goto row x) becomes an entry for the submenu named 
Rowx. 

• The SFTN (next row) and SFTP (previous row) keys become entries 
for the submenus named Row{I+1) or Row{I-1), where I is the current 
row. 

The menu script created by the utility is an ASCII text file. Refer to section 8.4 for an 
explanation of the structure of a menu script. You may wish to edit the script produced 
by the conversion utility to make your converted menu bars more like standard menu 
bars. While key sets often have direct actions in their first row, menu bars usually have 
no direct actions on the top level menu, only entries for submenus. 

Once you are happy with the contents and display options of your script, run the script 
through the menu2bin utility and install it in your application. 

ERRORS 

Soft key '%s' designates a nonexistent submenu. 
Cause: The key set contains a SFTn key for a row that does not exist. 
Corrective action: Remove the offending key from the keyset and reconvert it. 

JAMIPI Release 1.4 1 December 92 Page 261 



JAM/PI for OSF/Motif, Microsoft Windows and OPEN LOOK 

Neither '%s' nor '%s' found. 
Cause.' An input file was missing or unreadable. 
Corrective action.' Check the spelling, presence, and permissions of the input file. 

Cannot create '%s' 
Error writing '%s' 
Cause.' An output file could not be created, due to lack of permission or disk space. 
Corrective action: Correct the file system problem and retry the operation. 

Page 262 JAM/Pi Release 1.4 1 December 92 



Appendix A: Terminology 

Appendix A 

Terminology 
The following terms are used throughout the manual. Some of these terms are defined 
more rigorously in the GLossary Appendix to Volume I of the JAM Manual. 

General Terms 
character JAM 

initialization file 

JAMIPi 

Motif 

OPEN LOOK 

PiiMotif 

Pi/OPEN LOOK 

PilWindows 

resource file 

Windows 

The JAM product for character-based terminals. 

A text file containing default specifications for the appear
ance and behavior of Microsoft Windows applications. The 
jam. ini and win. ini files are examples of initialization 
files. Contrast with resource fiLe in Motif. 

The JAMIPresentatioh interfaces for Windows and Motif. 

An X widget set created by the Open Software Foundation. 
Motif also includes an Application Program Interface (API), 
and a window manager. 

An X widget set created by UNIX System Laboratories. 
OPEN LOOK also includes an Application Program Inter
face (API), and a window manager. 

The JAMIPresentation interface for Motif. 

The JAMIPresentation interface for OPEN LOOK. 

The JAMlPresentation interface for Microsoft Windows. 

A text file containing default specifications for the appear
ance and behavior of Motif applications. The . Xdefaul ts 
file, and the XJam file are examples of resource files. Individ
ual items in the file are called resources. Contrast with initiaL
izationfiLe in Windows. 

The Microsoft Windows Graphical User Interface. 

JAMIPI Release 1.4 1 December 92 Page 263 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Terms Relating to Screens 
active screen 

base window 

display 

focus 

form 

frame 

GUlwindow 

screen 

window 

The JAM screen that is currently accepting input. 

An optional window in PilMotif that contains only a status 
line, key set and menu bar. 

The physical screen of the terminal or monitor, 

The GUI window that the GUI is sending keyboard input to 
has focus. This mayor may not be the active screen. 

A JAM form, 

The area on the display within which JAM operates under the 
Microsoft Windows Multiple Document Interface. 

A region on the display that may be created by an application. 
JAM screens appear within GUI windows. 

General term for a JAM form or JAM window. 

A JAM window. Windows may be stacked or sibling. 

Terms Relating to Items on Screens 
bounce bar 

control 

rlXed width font 

menu 

menu bar 

proportional font 

Page 264 

A highlighted bar that indicates a selection on a menu. 

The Windows equivalent of a widget. This document uses the 
term widget in favor of the term control. 

A font in which each character has the same width, deter
mined by the point size of the font. Most standard terminals 
use fixed width fonts. This sentence is set in a 
fixed width font. 

A JAM on-screen menu, consisting of a field or set of fields 
with the menu edit. 

The list of pull-down headings that appears on certain 
screens, directly below the title bar. Some menu bars appear 
in the base window or frame, while others may be local to a 
JAM screen. 

A font in which the widths of the characters vary. Proportion
al fonts are more readable than fixed width fonts, and they 
look more elegant. The sentence you are reading is set in a 
proportional font. 

JAM/Pi Release 1.4 1 December 92 



scroll bar 

widget 

Appendix A: Terminology 

A widget that is used to scroll the infonnation in a screen or 
widget. Scroll bars may be horizontal or vertical. A scroll bar 
usually has an outward pointing arrow at either end and an 
elevator (also called a thumb, or scroll box) that moves along 
within the bar, indicating which portion of the screen is vis
ible. Under Motif, the size of the thumb also indicates how 
much of the screen is visible. The appearance and functional
ity of scroll bars are detennined by the GUI. 

A GUI object. GUI applications are built from widgets. Some 
widgets are used as to interact with an application, while oth
ers are for display only. Widgets are created in a hierarchical 
(parent/child) fashion .. JAM fields and groups and display 
text become widgets in JAMlPi. Widgets are called controls 
in MS Windows. This document uses the tenn widget in favor 
of the tenn control. 

JAM/Pi Release 1.4 1 December 92 Page 265 





INDEX 
NOTE: Italicized page references (eg.- Array, 17) indicate figures. 

A 

Alias, 158-160 
in bg extension, 83 
in fg extension, 83 
in font extension, 90 
sample 

Motif,179 
OPEN LOOK, 189 
Windows, 162 

Alignment, 23-37 

Anchoring, 26--29 

app--defaults directory, 148 

Application mode, 23 

Arranging screens, 23-37 

Array, 18, 18 
list box, 108-109 
scrolling 

behavior, 47-50 
optionmenu. 127 

spacing between elements, 33, 73, 140 
text editing in, 212 

Attributes, 12-16 
application-wide, 13 
defaults, 145-190 
hierarchy, J3 
JAM,16 
lines and boxes, 58-61 
screen-wide, 15 
widget specific. 16--17 

B 
Background color 

resource in Motif/OPEN LOOK, 151 
screen, 55, 81-83 
widget, 65, 81-83 

Base window, 163 

bg,55,65,81-83 
command line option in Motif/OPEN 

LOOK,152 

Bitmap, 68, 130 
compiling in Windows, 131 
height, 97 
icon. 104-106 
width,97 

Border, 42 
eliminating. 57,116--117 

Box,84-86,85 
color, 84 
creating, 57-61 
grid stretching and, 86 
layering, 86 
positioning, 36, 36--37 
style, 58, 84 

box, 57-61,84-86 

Button. See Pushbutton; Togglebutton 

c 
Callbacks, 4 

Character JAM 
converting applications, 216 
line drawing, 215 
portability to JAM/Pi, 4 
vs. JAMlPi, 3 

JAM/Pi Release 1.4 1 December 92 Page 267 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Characters, 96 

checkbox, 63, 87 

Checklist, 20--21, 21, 63, 87 
checkbox widget, 87 
converting to list box, 108-109 
togglebutton widget, 64, 143 

Class 
application, 147, 168, 181 
widget, 168, 180 
widgets for JAM fields, 171-172, 183-185 

Colon expansion, 76 

Color, 149-152 
alias, 83, 158-160 
background highlight on a pc, 215 
box. 59. 84 
frame. 67. 93 
JAM colors, 149-150 
line. 59.99 
ownColorMap resource in Motif and 

OPEN LOOK. 167. 180 
palette, 81. 149-150 

sample in Motif, 177 
sample in OPEN LOOK. 189 
sample in Windows. 162 

push button. in Windows. III 
resources. 151 
screen 

background. 55. 81-83 
foreground. 54. 81-83 

widget 
background. 65, 81-83 
foreground. 65. 81-83 

Combo box. 128 

Command line. 14, 15. 148, 179-180 
Motif. 167-168 

bg switch. 152. 167 
cascadeBug switch, 167 
fg switch. 152. 167 
fn switch. 154. 167 
ind switch, 50 

Command line (continued) 
indicators switch. 168 
name switch. 147 
ownColormap switch, 167 
setSensitive switch. 167 

OPEN LOOK 
bg switch, 152. 179 
fg switch. 152. 179 
fn switch. 154. 179 
name switch, 147 
ownColormap switch. 180 
setSensitive switch. 180 

Control. See Widget 

Copy. 50--51.212 

Cursor 
moving. 210--211 
shape. 207-208 

Cut, 50-51, 212 

Cycle field. 64. 127 

D 
Data entry field. 17-18 

multiline text widget. 1 13 
text widget, 64. 141 

Data entry mode, 44 

Defaults. 7. 14. 15, 145-190 
attributes. 12-16 

dialog, 57. 88 

Dialog box 
for error messages, 44-47 
icons. 46 
screen extension. 57. 88 

Display attributes. See Attributes 

Display text, 17 
placement. 28-29 

Draw mode. 23, 25 

Drawing area. 169. 182 

Page 268 JAM/Pi Release 1.4 1 December 92 



E 

Edit, 50--51 

Elastic grid. See Grid 

Error Message. See Message 

Extensions, 53-74, 75-143 
See also individual extensions by name 
colon expansion of arguments, 76 
field, 16,61-74,62,78 

array spacing, 33, 73, 140 
background color, 65, 81-83 
bitmap, 68, 130--133 
checklist style togglebutton, 63, 87 
disable grid adjustment, 33-34, 73, 115 
font, 65, 89-91 
foreground color, 65, 81-83 
frame, 66, 92-93 
horizontal anchor, 26-27,73,94-95 
horizontal position, 34-35, 72, 102-103 
in/out style togglebutton, 64, 143 
label widget, 63, 107 
list box, 63, 108-109 
multiline button, 68, 111-112 
multiline text widget, 63-64, 113-114 
optionmenu,64, 127-129 
push button, 64, 136-137 
radio style togglebutton, 64, 138 
scale widget, 64, 139 
suppress widget, 65-67, 126 
text widget, 64, 141 
vertical anchor, 27-28, 73, 94 
vertical position, 34-35, 73, 102-103 
widget height, 71, 96-97 
widget type, 62-65 
widget width, 72, 96-97 

portability, 76 
screen, 15,54-61,55,80 

background color, 55, 81-83 
dialog box, 57, 88 
draw a box, 57, 84-86 
draw a line, 57, 98-101 
eliminate title bar, 57,125 

Extensions, screen (continued) 
font, 54, 89-91 
foreground color, 54, 81-83 
mouse pointer, 56, 134-135 
pointer shape, 56, 134-135 
prevent iconification, 43, 57, 122 
prevent maximization, 57, 119 
prevent resizing, 57, 124 
specify icon, 43, 54, 104-105 

Index 

start as icon (minimized), 43, 57, 106 
start maximized, 57, 110 
suppress border, 57, 116-117 
suppress close, 57, 118 
suppress move option, 57, 123 
suppress window menu, 57, 120--121 
title, 54, 142 

summary tables, 78-81 
syntax, 76 
vs. resources, 75 

F 
fg, 54, 65, 81-83 

command line option in Motif/OPEN 
LOOK,152 

Field 
See also Array; Group 
cycle, 127 
data entry, 17-18 

multiline text widget, 113 
justification and positioning, 24, 94 
menu, 19-20, 136-137 
non-display, 126 
protected, 17, 107 

label widget, 107 
non-display, 126 

scrolling behavior, 47-50 
shifting behavior, 47-50 

Field extensions. See Extensions 

File selection box, 226-230 
file types list, 231-232 

Focus, 41-42 
mouse, 209-210 

JAM/Pi Release 1.4 1 December 92 Page 269 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

Font, 153-157 
alias, 90, 158-160 
application default, 153-154 
field extension, 89-91 
fixed width, 30--32,31 
fn command line option in Motif/OPEN 

LOOK,154 
font resource in OPEN LOOK, 179 
fontList resource in Motif, 167 
location, 153-154 
naming, 155-160 
proportional, 30--32,31 

and shifting fields, 48 
screen, 154 
screen extension, 89-91 
widget's, 154 
xfontsel, 157 

font, 54, 65, 89-91 

font resource in OPEN LOOK, 179 

fontList resource in Motif, 167 

Foreground color 
resource in Motif/OPEN LOOK, 151 
screen, 54 
widget, 65 

formMenus, 164 

Fnune,66-68,92-93,93 
color, 67, 93 
MOI,4O 
style, 66, 92 
vs. box, 92 

frame, 66-68, 92-93 

G 
Greyed text, 167, 180 

Grid, 23-25, 24 
boxes and, 86 
disabling stretching, 33, 73, 115 
equally spacing array elements, 73, 140 

Grid (continued) 
font and grid size, 30--32 
lines and, 100 
separators, 37 
units, 97 

Group, 20--21 
creating a checkbox widget, 87 
creating a list box, 63, 108 
creating a radiobutton widget, 138 
creating a togglebutton widget, 143 

GUI independent fonts and colors. See Alias 

GUI interface routines, 217, 224-225 
sm_drawingarea, 224-225 
sm_translatecoords, 252-254 
sm_widget, 255-256 

GUI library, 213-214 

H 
halign, 26-27,27,73,94-95 

and whitespace, 29-30 

height, 71,96-97 

hline, 57-61, 98-10 I 

hoff, 34-35, 72, 102-103 

Horizontal alignment. See halign 

Horizontal positioning. See hoff 

icon, 43, 54, 104-105 

Iconification, 43, 54, 57, 104-105, 106 
preventing, 122 

iconify, 57, 106 

Inches, 97 

Indicators, 49-50, 168 
name, Motif, 171 

Page 270 JAM/Pi Release 1.4 1 December 92 



Initialization file, 7, 14, 160-162 
aliases, 158-160 
color aliases, 158-160 
colors, 149-152 
font, 153-157 
FrameTitle, 160 
GrayOutBackgroundForms, 160 
JAM Colors, 149 
JAM ColorTable, 158 
JAM Fonts, 153 
JAM FontTable, 158 
JAM Options, 160-161 
location, 148 
name, 145 
sample, 162 
SMTERM,I61 
StartupSize, 160 
StatusLineColor, 161 
syntax, 146-147 

Item selection screen, 127, 129 

J 
jarn.ini, 14, 146 

sample, 162 

jmain.c, 145 

JPL comments. See Extensions 

Justification, 24, 26, 94 

jxmain.c, 145 

K 
Keysets, 51-52 

kset2mnu, 261-262 

Key tops, 47 

kset2mnu utility, 261-262 

L 
label, 63, 107 

Label widget, 17, 17,107, 107 
bitmap, 130-133 
creating, 63 
name 

Motif, 171 
OPEN LOOK, 184 

LOB, optionmenus and, 128 

Left justified, 24, 26, 94 

Library routines, 217-257 
file selection box, 218 
GUI interface routines, 217 
menu bar, 217-218 
sm_adjuscarea, 35, 219 
sm_c_menu, 220-221 
sm_d_menu, 222-223 

Index 

sm_drawingarea, 170, 183,213,224-225 
sm_filebox, 226-230 
sm_filetypes, 231-232 
sm_menuinit, 233 
sm_rnn_forms, 234 
sm_mnadd, 235-237 
sm_mnchange, 238-239 
sm_mndelete, 240-241 
sm_mnget, 242-243 
sm_mninsert, 244-245 
sm_mnitems, 246-247 
sm_mnnew, 248-249 
sm_cmenu, 250-251 
sm_translatecoords, 213, 252-254 
sm_widget, 171, 183,213,255-256 
sm_win_shrink,257-258 
sm_XlIinit, 145 

Line, 98, 98-101 
color, 99 
creating, 57-61 
layering, 100 
positioning, 36, 36-37 
style, 58, 99 

Line drawing characters, 215 

list, 63, 108-109 

JAM/Pi Release 1.4 1 December 92 Page 271 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

List box, 20-21, 21,108-109,109 
creating, 63 
height, 97 
name 

Motif, 172 
OPEN LOOK, 184 

vertical anchor, 109 

Look and feel, 2 

M 
maximize, 57, 1I0 

MOl, 40-41, 41 
dialog boxes, 88 
icon location in, 43 
maximized window, 110 

Menu, 19-20, 136-137 
See also Menu bar 
selecting, 210-211 

Menu bar, 191-205,200 
add an item, 235-237 
alter an item, 238-239 
cascadeBug resource in Moitf, 192 
cascadeBug resource in Motif, 167 
close, 220-221 
converting key sets into, 205, 261-262 
create new menu bar, 248-249 
delete an item, 240 
display, 222-223 
edit heading, 50-51 
enabling support, 202 
formMenus resource, 164, 193 
get data about, 242-243 
get number of items, 246-247 
initialize support, 233 
insert an item, 244-245 
install in memory, 234 
installing, 202-203 
library routines, 201-202, 217-218 

See also Library routines 
prototyping, 202 

location, 164, 191-192 

Menu bar (continued) 
menu2bin utility, 259-260 
mouse, 209 
pop-up, 192,209 
read and display, 250-251 
scope, 164, 192-193 
script, 194-200 

comments, 198 
converting to binary, 259-260 
display options, 196-197 
general structure, 194 
global display options, 198 
keywords, 194-198 
sample, 198-200 

storing in memory, 203 
testing, 200-201 
vs. sof~eys,52,204-205 
widget hierarchy in Motif, 173-175 
widget hierarchy in OPEN LOOK, 

185-187 
wi ndow headi ng, 41, 210 

Menu mode, 44 

menu2bin utility, 259-260 

Message 
error, 44-47 

dialog box icons, 46 
optionmenu limitation, 129 

status, 44 
formStatus resource, 163 

Millimeters, 97 

Mode, menu vs. data entry, 44 

Motif 
color naming, 150 
font naming, 155-157 
overstrike mode, 213 
resources. See Resource file 
shift/scroll indicators, 50 

Mouse, 207-212 
buttons, 208 
editing text, 212 
focus, 209-210 
in select mode, 212 
menu bars, 209 
move function, 210 

Page 272 JAM/Pi Release 1.4 1 December 92 



Mouse (continued) 
offset function, 210 
pointer shape, 56,134-135,207 
resize function, 210 
scrolling, 49, 211-212 
selecting text, 50 
shifting, 49, 211-212 
toggling mode with, 44 

MS Windows. See Windows 

multiline, 68, 111-112 

Multiline text widget, 113-114, 114 
creating, 63 
name 

Motif,I71 
OPEN LOOK, 184 

Multiple Document Interface. See MDI 

multitext, 63, 113-114 

N 
noadj, 33-34,35, 73,115 

noborder, 57, 116-117 

noclose, 57, 118 

nomaximize, 57, 119 

nomenu,57,I20-121 

nominimize, 43, 57, 122 

nomove, 57, 123 

Non-display field, 126 

noresize, 57, 124 

notitle, 57, 125 

nowidget, 65, 126 

o 
OUam file, 146 

sample, 188-190 

OPEN LOOK 
color naming, 150 
font naming, 155-157 
overstrike mode, 213 
resources. See Resource file 
shift/scroll indicators, 50 

optionmenu,64, 127-129 

Optionmenu widget, 127-129,129 
creating, 64 
height, 97 
name 

Motif,l72 
OPEN LOOK, 184 

populating, 70-71 

p 

Paste, 50-51, 212 

Pixels, 96 

pixmap, 68,130-133 

pointer, 56, 134-135 

Pop-up menu bar, 192 

Portability, 4 

Positioning, 23-37 
boxes, 86 
lines, 100-101 

Protected field, 17, 107 
non-display, 126 

Push bunon, 19, 19-20, 136-137,137 
bitmap, 130-133 
color in Windows, 19, III 
creating, 64 
multiline, 68, 111-112, J 12 
name 

Motif,I71 
OPEN LOOK, 184 

selecting, 210-211 
text alignment in Motif, 20, 21 
toggling into menu mode, 44 

pushbutton, 64, 136-137 

Index 

JAMIPI Release 1.4 1 December 92 Page 273 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

R 
Radio button, 20-21, 21, 64, /38 

converting to list box, 108-109 
radiobutton widget, 138 
togglebutton widget, 64, 143 

radiobutton, 64, 138 

Range check, 139 

Resource. See Resource file 

Resource file, 7,14,15,163-173 
aliases, 158-160 
armPixmap, 131 
background, 167, 179 

vs. bg extension, 82 . 
background resource, 152 
baseWindow, 47,52,163,168,181 
bitmaps in Windows, 131 
cascadeBug in Motif, 167, 192 
class name, 147 
color aliases, 158-160 
colors, 149-152 
focusAutoRaise, 42, 165 
font, 153-157 
font resource in OPEN LOOK, 179 
fontList, 167 
foreground, 167, 179 
foreground resource, 152 
formMenus, 52, 193 
fonnStatus, 47, 163 
indicators, 50, 168 
location, 148 
Motif,167-179 

sample, 175-179 
names, 145-146 
OPEN LOOK, 179-190 

sample, 188-190 
overriding extensions, 75, 151 
ownColorMap, 167, 180 
restricting resources to a screen, 170, 182 
screen title, 39, 142 
selectPixmap, 131 
setSensiti ve, 167, 180 
syntax, 146--147 

RGB,149 

rgb.txt, 166 

Right justified, 24, 26,94 

s 
scale, 64, 139 

Scale widget, 139, 139 
accessing data in, 139 
creating, 64 
name 

Motif,l72 
OPEN LOOK, 184 

range, 69 

Scope, 192-193 

Screen 
appearance, 39-44 
arrangement, 23-37 

fine tuning, 33-35 
border, 42 

eliminating, 57, 116--117 
decorations, 56--57 
focus, 41-42 

mouse, 209-210 
font, 89-92 
handle, 224-225 
iconification, 43 
minimizing, 43 
mouse pointer shape, 134-135 
moving, 210 
refresh, 35, 219 
resizing, 210 
resources 

Motif,170 
OPEN LOOK, 182 

scroll bar, 39 
scrolling, 210 
size, 257-258 
size and fonts, 30-32 
start maximized, 110 
title bar, 39, 142 

suppressing, 57 
trim, 257-258 

Page 274 JAM/Pi Release 1.4 1 December 92 



Screen (continued) 
widget hierarchy 

Motif, 169 
OPEN LOOK, 182 

widget id, 224-225 

Screen extensions. See Extensions 

Script. See Menu bar 

Scroll bar 
list box, 69, 108 
multiline text widget, 69, 113 
scrolling with mouse, 211-212 

Scrolling array, 47-50 
list box, 108 
multiline text widget, 113 

Scrolling indicator, 49-50 

Select mode, 212 

Separator, 98-101 
creating, 57-61 
positioning, 36,36--37, 100-101 

SFrS, 200-201 

Shifting field, 47-50 
shifting with mouse, 211-212 

Shifting indicator, 49-50 

Sibling window, 43 
mouse, 209 

sm_ .... See Library routines 

SMTERM,161 

Soft keys, 51-52 

space, 33,34, 73,140 

SPF11,53 

SPF12,53 

State abbreviations, 97 

Status line, 44-47 
formStatus resource, 163 
location, 47, 163 

System command, 214 

T 
Test mode, 23, 25 

Text 
cut, copy and paste, 50-51 
editing with mouse, 212 

text, 64, 141 

Text widget, 17-18,18,141,141 
creating, 64 
editing text, 212 
multiline, 63, 113-114 

height, 97 
name 

Motif, 171 
OPEN LOOK, 184 

shifting, 48 
toggling into data entry mode, 44 

title,54,142 

Title bar, 39 
suppressing, 57, 125 
text, 54, 142 

Togglebutton, 20-21, 21 
bitmap, 130-133 
multiline, 111-112,112 
name 

Motif,171 
OPEN LOOK, 184 

selecting, 210-211 

togglebutton, 64, 143 

u 
Units of measurement, 60, 96--97 

Utilities, 258-262 
kset2rnnu, 261-262 
menu2bin, 259-260 

Index 

JAMIPi Release 1.4 1 December 92 Page 275 



JAM/Pi for OSFlMotif, Microsoft Windows and OPEN LOOK 

v 
vruign, 27-28,73,94-95 

Verticru ruignment. See vruign 

Verticru positioning. See voff 

vline, 57-61, 98-101 

voff, 34-35, 73, 102-103 

VWPT key, 210 

w 
Whitespace, 23, 29-30 

Widget, 11-21 
See also individuru widgets by name 
adjusting position, 34-35 
anchoring. See Anchoring 
attribute hierarchy, J 3 
attributes, 12-16 
default type, 11 
drawing area, 170, 183 
expanding into whitespace, 29-30 
font, 65, 89-92 
forcing a type, 61, 65 
handle, 255-256 
hierarchy 

Motif,168-175 
base screen, 168-169 
boxes, 173 
diruog box, 169 
display text, 173 
fields, 171-172 
JAM screens, 169-171 
lines, 173 
menu bars, 173-175 

OPEN LOOK, 180-187 
base screen, 181 
boxes, 185 
diruog box, 183 
display text, 185 
fields, 183-185 
JAM Screens, 182-183 

lines, 185 
menu bars, 185-187 

id,255-256 
invisible, 65 
JAM objects into, 17-21 
names in Motif, 168-175 
names in OPEN LOOK, 180-187 
placement, 26-29 

horizontru, 72, 102-103 
verticru, 73, 102-103 

recruculating position, 35 
scroll bars, 69, 108, 113 
setting the type, 62 
size 

default,32 
specifying height, 71, 96-97 
specifying width, 72, 96-97 

width, 72, 96-97 

win.ini, 14, 161 

Windows 
color naming, 149 
control panel, 14, 149, 161 
font naming, 155 
maximized frame, 40 
MDI,40-41 
Multiple Document Interface, 40-41 
system commands, 214 
title bar, 40 

x 
XAPPLRESDIR, 148 

Xdefaults, 14, 15, 148 
sample, 175-179, 188-190 

xfontsel, 157 

XJam file, 146 
sample, 175-179 

xlsfonts, 155 

x off. See hoff 

xrdb,148 

y 
yoff. See voff 

Page 276 JAM/Pi Release 1.4 1 December 92 



JAM 

PL/1 
Programmer's 

Guide 
for Stratus 

© 1991 IYACC, Inc. 



This is the PL/l Programmer's manual for JAM Release 5. It is as accurate as possible at 
tJus time; however, both thiS manual and JAM itself are subject to revISion. 

Stratus and vas are regIStered trademarks of Stratus Computer Inc. 

JAM is a trademark of JYACC, Inc. 

Other product names mentioned in this manual may be ttademarks, and they are used for 
identtfication purposes only. 

Please send suggestions and comments regarding this document to: 

Technical Publications Manager 
JYACC,Inc. 
116 John Street 
New York, NY 10038 

(212)267-7722 

© 1991 JYACC,Inc. 
All rights reserved. 
Pnnted ID USA. 



A Note to Languaae Interface Users 

A Note To Language Interface Users 
JYACC makes every effon possIble to design language mterfaces that duplicate the angI
nal C Programmers LIbrary. However, due to differences among vanous programmmg 
languages, an exact one to one correspondence IS not always possIble. In some cases, rou
tines contaIned 10 the C version have been replaced WIth other roubnes designed to take 
advantage of a parncular programmmg language's features. 

Please note that your interface contaIns intentionally undocumented routmes. Some of 
these routines are no longer pan of JAM, haVIng been replaced by more effiCIent rou
tines, and are included only for backward campabbility WIth applicabons created WIth 
earlier versions of JAM. The rest are mternal roubnes and are not intended to be directly 
accessed by developers. 

A-Note To Non-UNIX Users 
Throughout the manual, a forward slash (j) has been used to indicate a subdirectory. For 
example, 

lusr/local/f:Lle 

means that file is a me 10 the directory local whIch is in tum a sub-directory of us r, 
which is not the root directory. 

JAM Release 5 1 March 91 





JAM PU1 Programmer's Guide 

TABLE OF CONTENTS 

Chapter 1. 
Introduction ..................................... 1 

1.1. ApplIcation Executable ..................................... 2 
1.1.1. Applications Using the] AM Executive . . . . . . . . . . • . . . . . 2 
1.1.2. Applications USlDg a Custom Executive .........•..... 3 

1.2. Authoring Executable ..........••..............••....•..... 5 

Chapter 2. 
H()()k Functions .................................. 7 

2.1. Preparation and Installabon . . . . . . . . • . . . . . . • • . . . . . . • . . . . . . . . . . 7 
2.1.1. Types of Hook Functions ......•....••..........• . . . 8 
2.1.2. Installing Funcbons ..........•..•••.........•...•. 10 

2.2. Writing Hook Functions ............••.•.•.•...••••..•.••.•• 10 
2.2.1. Field Functions. . . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . 11 

Field FunCbon Invocabon ......................•... 11 
Field Function Arguments .......................... 11 
Field Function Return Codes .•...................... 13 
Example FIeld Function.. . .•.. . . . .• . . .. . •. .. . . . . . . . 14 

2.2.2. Screen Functions ................•...•.••......... 15 
Screen Function Invocation ........•.....•.......•.. 15 
Screen Function Arguments . . . . . . . . . . . . . . . • . . . . . . . . . 15 
Screen Function Return Codes .. . . . . . . . . . . . . . . . . . . . . . 16 

2.2.3. ConbOl Funcbons . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 16 
ConbOlFunctionInvocation ......•................. 17 
ConbOl Function Arguments ...•.............•...... 17 
ConbOl Function Return Codes ...................... 17 

2.2.4. Key Change Functions •••.•... . . . . . . . • • . • . . . . . . . . . . 17 
Key Change Function Invocation. . . . • . . . . . . . . . . . . . . . . 18 
Key Change Function Arguments .................... 18 
Key Change Function Return Codes .................. 18 

2.2.5. GroupFunctions.................................. 18 
Group Function Invocation ..............•.......... 18 
Group Funcbon Arguments ......................... 19 
Group Funcbon Return Codes ....................... 19 

2.2.6. Asynchronous Functions ...........•............... 19 

JAM Release 5 1 March 91 Pagel 



JAM PU1 Programmer's Guide 

Asynchronous Function Invocation. . . . . . • . . . . . . • . . . . . . 20 
Asynchronous Function Arguments ...........•....... 20 
Asynchronous Function Return Codes ................. 20 

2.2.7. Insert Toggle Functions ...•••••••••.••.....•.•...•.• 20 
Insert Toggle Function Invocabon •.••••......•.•..... 20 
Insert Toggle Funcbon Arguments ....•..•............ 21 
Insert Toggle Funcbon Return Codes ..•••............. 21 

2.2.8. Check Digit Functions •••.••....•.•.........•.... , . . 21 
Check DigIt Function Invocation .....•.........•..... 21 
Check Digit Function Arguments .••. . • . . . . . . . . . . . . . • . 21 
Check Digit Function Return Codes .. . . . . . . . . . . . . . . . . . 21 

2.2.9. Initialization and Reset Functions. . • • . . • . . . . . . . . . . . . . . 22 
Initialization and Reset Function Invocation ............ 22 
InitIalization and Reset Function Arguments ....•....... 22 
InitIalization and Reset Function Return Codes ....••.... 22 

2.2.10. Recording and Playing Back Keyslrokes ............... 23 
Record/Playback Function Invocation .•............... 23 
Record/Playback Funcbon Arguments •......... ,...... 23 
Record/Playback Function Return Codes .•. ,........... 23 

2.2.11. Status Line Functions ••.•••........................ 23 
Status Line Function Invocabon .....••........... , . . . 24 
Status Line Function Arguments. • • • • • • • . . . . • . • . . . . . • . 24 
Status Une Function Return Codes . • • . • • . . . . . • . . • . . . . . 24 

2.2.12. Video Processing Functions •••••••.•.•.....•.•.....• 24 
Video Processing Function Invocation ••.•....•..•..... 24 
Video Processing Function Arguments • • . • . • . • . . • • . . . . • 24 
Video Processing Function Return Codes •• • • • • . . • . . . . . • 26 
Other Hook Functions . • • • • • . • • • • • . • • • . . • . . . . . . . . . • . 26 

2.3. Coding Strategy, Rules and Pitfalls •••••..•••.••.•...•.•..... ,. 26 
2.3.1. Displaymg Screens .•••.••••.•.••.••.•..••.....•... 26 
2.3.2. Recursion. • • • • • • • . • • • . • • . • . • • • . . • . . . . . . . . . . . • . . . . 27 

Chapter 3. 
Local Data Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

3.1. LDB Creation. . • • . • . .•••• •. • • . • . • • •• • • • •• . . • . . . . .. . . . .. . . . 29 
3.2. IIow JAM uses the LDB • • . • • • . • • . • . . . • . . . . . . . . . . . . . . . . . . . . . . 29 
3.3. LDB Access ••...•••.••.••.••••••••••.•••••........••...•• 30 

Chapter 4. 
Built-in Control Functions •••••••••••••••••••••••.• 31 

end processing and leave the currentscreen . . . . . . . . . . . . . . . . . . . 32 

Pagen JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Jm...,gotop 
Jm-8oform 
Jm_keys 
jm_mnutogl 
jm_system 
jm_wmsize 
jpl 

Chapter S. 

return to applicauon's top-Ievelform ....................... 33 
prompt for and display an arbilI'al'y form . . . . . . . . . . . . . . . . . . . . . 34 
simulate keyboard input . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . 35 
switch between menu and data entry mode on a dual-purpose screen 36 
prompt for and execute an operating system command. . • . . . . . . . 37 
allow end-user to interactively move and resize a window. . . . . . . 38 
Invoke a JPL procedure ..............•..•................ 39 

Keyboard Input .................................. 41 
5.1. Logical Keys ...........................•................. 41 
5.2. Key Translauon ..........•.•.......•••••.•....•••.......•. 42 
5.3. Key Routing. . . . . . . . . . . . • • . • . . . . . . . . . . • . . . . . . . . • . . . . . . . . . . 42 

Chapter 6. 
Terminal Output Processing •••••••••••••••••••••••• 4S 

6.1. Graphics Characters and Alternate Character Sets ................ 45 
6.2. The Status Line ........................................... 46 

Chapter 7. 
Writing International (8 bit) Applications •••••••••••• 49 

7.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . 49 
7.1.1. General Overview ................................ 49 

7.2. LocalizatIon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
7.2.1. Background..................................... 50 
7.2.2. 8 Bit Character Data • . . . • • . • . • • • . • • • • • • • • . . • • . • • . . • 50 
7.2.3. Date And TIme Fields ..•.........•..........••.... 51 
7.2.4. Currency Fields .................•................ 54 
7.2.5. I>ecimal Symbols ....... . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
7.2.6. Character FIlters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
7.2.7. Status And Error Messages ......................... 58 
7.2.S. Screens In The Uullties ................••.......... 5S 
7.2.9. Screens In Application Programs..................... 5S 
7.2.10. MenuProcessing ..........•...................... 58 
7.2.11. lstform,lstdd, andjammap .......................... 59 
7.2.12. Range Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
7.2.13. CalculationsUsing@SUMand@DATE .............. 60 
7.2.14. xSIIl_dblvalandxSIIl_dtofield ............•.......... 60 

JAM Release 5 1 March 91 Page III 



JAM PU1 Programmer's GUide 

7.2.15. xsm_ls-yes and xsm_query_msg .. , .... ,............. 60 
7.2.16. BalCh Ublines .................................... 60 

Chapter 8. 
Writing Portable Applications • • • • • • • • • • • • • • • • • • • • • • • 61 

8.1. Terminal Dependencies ••••......•.......................... 61 

Chapter 9. 
Writing Efficient Applications • • • • • • • • • • • • • • • • • • • • • • • 63 

9.1. Memory-resident Screens ..........•........................ 63 
9.2. Memory-resident Configwation Files .......................... 64 
9.3. Message File Options. . . . . • . • . . . • • . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
9.4. AVOiding Unnecessary Screen Output .......................... 64 
9.5. JPL VS. Compiled Languages ................................. 6S 

Chapter 10. 
Block Mode ...................................... 67 

10.1. Using Block Mode ......................................... 67 
10.1.1. General Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
10.1.2. Authoring ..••................................... 68 
10.1.3. Selecting Block Mode. . . . . . . . . . . .• . . . . . . . . . . . . . . .. . 68 
10.1.4. Differences Between Block Mode And Interactive Mode .. 69 

Windows. ...... .... .......... .... ............... 69 
Menus ... .......... .•. .................... ...... 69 
Character ValIdation ............................... 70 
Field Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 
Screen Validation ..•........•...•................. 71 
Right Justified Fields. . . . . . . . . • . . • . . . . . . . . . . . . . . . . . . 71 
Field Entry Function, Automatic Help, Status Text, etc. ... 71 
Currency Fields . . . . . . . . • . . . . • . . . • . . . . . . . . . . . . . . . . . 71 
Shifting Fields . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 72 
Scrolling Fields .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
Messages . . .. . . . .. .. .. . . .. . • . . .. .. .. .. .. . . .. .. .. . 72 
Insert Mode .. . .. .. • . .. . .. .. • . . .. . . .. . .. .. . . .. . .. . 72 
Non-Display Fields . . . . . . • . . . • . . . • . . . . . . . . . . . . . . . . . 73 
System Calis ...•...............•.•........... ,.,' 73 
Zoom •••• ......... ...... ..... ......... ..... ..... 73 
Help and Item Selecuon ......•..................... 73 

Page IV JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Groups, ................ ..... ..... ..... ... ...... 73 
10.2. Wnting A Block Mode Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

10.2.1. Installation...................................... 73 
10.2.2. Application Program Suppon . . . . . . . . . . . . . . . . • . . . . . . . 74 

Chapter 11. 
Library Function Overview •••••••••••••••••••••••• 75 

11.1. Inltiahzation/Reset......................................... 76 
11.2. Screen and VIewpott Conb'ol ................................ 76 
11.3. Display TenninalIlO . . . . . • . . . . . . . . . • . . . . . . . . . . . . . . . . . . . • . . . 77 
11.4. Field/Array Data Access. . . .. . . . . . . . . .. . . ..• . • .. . . . .. . . .• . . . 78 
11.5. Field/Array Atbibute Access.. . . . .. . . . .. . • ... . . •. . . . •. . . .. . . . 79 
11.6. Group Access . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . • . . . • . . . . . . . . . 80 
11.7. Local Data Block Access. . . . . . . .•. . . . •. . •••• . . . . . . . .• . . .. . • . 81 
11.8. CUISOrConb'ol............................................ 81 
11.9. Message DIsplay ...•.........•.....•...•.....•••.••...•... 82 
11.10. Scrolling and Shifting ...................•.................. 83 
11.11. Mass Storage and Rebieval .................................. 83 
11.12. Validation................................................ 84 
11.13. Global Data and Changing JAM's Behavior. . ... . . . . . . . .. . . .. • . . 84 
11.14. Soft Keys and Keysets ...................................... 85 
11.15. JAMExecutiveConb'ol..................................... 85 
11.16. Block Mode Conttol •.........................••..•........ 86 
11.17. Miscellaneous .••....••.••••••..•.••••••••••••....•...•••• 86 

Chapter 12. 
Function Reference ............................... 87 

achg 

alIget 
amt30nnat 
ascroll 
async 
backtab 
base_f1dno 
bel 
bltop 
blcrect 
blkinit 

change the display atbibute of an occurrence witlun a scrolling 
array .......•......................................... 
load screen from the LDB ••.•..•••••••.••.•..••••.•.....• 
write data to a field, applymg currency editing ...............• 
scroll to a given occurrence ..•............................ 
install an asynchronous function ....•..•................... 
backtab to the stan of the last unprotected field ..............• 
get the field number of the fll'St element of an array ...........• 
beep! ................................................ . 
manipulate validation and data editing bits ••.........••...... 
set background color of rectangle ......................... . 
initialize (and tum on) block mode tenninal ......•..........• 

88 
90 
91 
92 
93 
94 
95 
96 
97 
99 

100 

JAM Release 5 1 March 91 Page v 

------------ ---------------



JAM PU1 Programmer's GUide 

reset (and tum oft) block mode terminal , •• ' .•• , .•... , ..• , .• , 
close a keyset •..•••••...••••.•••.••................ , ... 
tum the cursor off ••..••.•••••••••.•••........... , ..•.... 

c_on tum the cursor on •••••••••••••.••.•.•..•••. , ..•. , ..•.... 
c_ vis tum cursor position display on or off ....................... . 
calc execute a math edit style expression •.••.•................... 
cancel reset the display and exit ...••..•.•...••...••.............. 
chLattt change the display atttibute ofa freld ...•.................... 
ckdigit Validate check digit .......•••.••••••••...••..•......•.... 
cl_a1I_mdts clear all MDT bits ....••••••••••..•••••••.••..•.....•..•• 
cCunprot clear all unprotected fields ••••••.•..•.•••.•..........•.•.. 
clear_array clear all data in an anay .•••••••.•.•••••.•................ 
close_windowclose current window •....•••.•.•..••.••................. 
d_msLline display a message on the status line ........................ . 
dblval get the value of a field as a real number .••................... 
dd_able turn LOB wriUHhrough on or off ••••••••...•.•..•.....•.... 
deselect deselecta checklist occurrence •..•.•...•..•...........•.... 
d1cname set data dictionary name ..•.••••.•..•.••.................. 
disp_off get displacement of cursor from stan of field •................• 
d1ength get the length ofa field's contents ......................... . 
do_region rewrite part or all of a screen line .......................... . 
docclD' delete occurrences .•.•....•..••.••..••...••..•••..••••.•. 
dtofield write a real number to a field ............................. . 

err_reset 
fi-J)8th 
fmquire 
f1dno 
flush 
form 
fonnlist 
Cpti' 
ftog 
ftype 
fval 
getcumo 

Page vi 

variants that take a field name and element number ....•..••.... 
get special edit string •..••••••.••••••.................... 
display an error message and reset the message line Without turning 
on the cursor .•••.••••.•••.•••••••••••.••••..••....•.... 
display an error message and reset the status Ime .............. . 
return the full path name ofa file .......................... . 
obtain information abouta field ........................... . 
get the field number of an array element or occurrence ...•.....• 
flush delayed writes to the display •••..••....•.............. 
display a screen as a form ••••...•........•..........•..... 
update list of memory-resident files ...•••..•................ 
get the content of a field ..•••...••••••••.•.•............•• 
convert field references to group references ..•....••.......... 
get the data type and precision ofa field .................... . 
force field validation •....••..•.••.••..•............••..•• 
get current field number .•••••••••••••••••.........•...... 

JAM Release 5 1 March 91 

101 
102 
103 
104 
105 
106 
107 
108 
110 
III 
112 
113 
114 
115 
118 
119 
120 
121 
122 
123 
124 
126 
127 
128 
129 

132 
135 
136 
137 
139 
140 
141 
143 
144 
145 
146 
148 
150 



JAM PU1 Programmer's GUide 

getfield Copy the contents ofa field ••.•••.•..••••.••••••.•••.•...• 
getjcuI get control string associated with a key ..•••••••••.••.•••••.• 
getlcey get logical value of the key hit •...•..••••.••..••.•••.•••••• 
gofield move the cursor into a field .........•••....••.•.••••.••••• 
gp_inquire obtain information about a group •••••••••••••••••••.••••••• 
gtof conven a group name and index into a field number and occurrence 
gval force group validation .•••..•.•••.•.••••.•.•••.•••.••••.• 
gwrap get the contents ofa wordwrap array ••••.•.•..••..•.••••.•.• 
hlp_by _name display help window •............•.••••........•..••.•.. 
home home the cursor ••....•........•.••••••...••.•••••.••.•• 
i_ variants that take a field name and occurrence number ••..•••••• 
minames record names of initial data files for local data block ••••••••••• 
mitcrt initialize the display and JAM data sttuctures ••••••.•••.••••.. 
mput open the keyboard for data entry and menu selection .•••.•••••• 
inquire obtain value of a global mreger variable ••••••••••.•••••••••• 
intval get the integer value ofa field ••.••..••••••..•••••••••••••• 
ioccur insen blank occurrences into an array ..•..•.....•.•...•.••.. 
is_DO test field for no .••••••••••.•..••........•..•.....•.....• 
is-yes test field for yes ••..•.....•..••.••••.••••.•••.•••.••••.. 
isabort test and set the abort control flag •••...••••••••..•••.•••.•.• 
iset change value of integer global variable ••••..••••••.•.••••..• 
Isselected determine whether a radio button or checklist occurrence has 

issv 
itofield 
jclose 
jform 
jplcall 
jpUoad 
Jplpublic 
jplunload 
jtop 
Jwindow 
keyfilrer 
keyhit 
keymit 
key label 
keyoption 
keyset 

been selected ...••.•..•.•••.•••••••••....•••••••••••••• 
detennme if a screen is in the saved list .•.••..••.......••.•.. 
wrire an integer value to a field .•••••••••..••••..••••••••.• 
close current window or form under JAM ExecUbve control .•••• 
display a screen as a form under JAM control ••••..••.•..••••• 
execute a JPL jpl procedure ••••.••.•.•••....•..•.••.••.••• 
execute the JPL load command ....••.••.••••.......•••.••• 
execute the JPL public command ••.•..••••..•...••...••...• 
execute the JPL unload command .•..•..•.......•.•.•..•.•• 
start the JAM Executive ••••....••••••••....•••••••••••••. 
display a window at a given position under JAM control •..•••.. 
conbOl keystroke record/playback filtering •..•••••.•••.•.••.. 
test whether a key has been typed ahead ••••••••••••••••••••• 
initialize key ttanslation table •..••...•••••.••••.••••..••.• 
get the printable name ofa logical key •.•...•....•.•..••..•. 
set cursor conbOl key options •.••.•••••••.••...•••.•••.••• 
open a keyset ......••....••••.•.•.........•.••...••..•• 

151 
153 
154 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
167 
168 
170 
171 
172 
173 
174 
175 

177 
178 
179 
180 
181 
183 
184 
185 
186 
187 
188 
190 
191 
192 
193 
194 
196 

JAM Release 5 1 March 91 Page VII 



JAM PU1 Programmer's GUide 

kscscope 
ksmq 
ksoff 
kson 
I_close 
I_open 
last 
Iclear 
Idb_init 
leave 
length 
Ingval 
!reset 
Istore 
ItoflCld 
m_flush 
max_occur 
mnutogl 

msg 
msuet 
msgfind 
msgread 
mwindow 
n_ 
name 
nl 
novalbit 
null 
num_occurs 
0_ 

occur_no 
off-8ofield 
option 
oshift 
pmquire 
protect 
pset 
putfield 

Page viii 

query current keyset scope .........•.••....•...... , ...... . 
inquire about keyset infonnation ..••...•............... , ..• 
turn off soft key labels .•.•...•••••.•.•................... 
tum on soft key labels ••.•••••.••••.•.•..••............ , .. 
close a bbrary •..••..••••••...•••..•.....•.......... , ..• 
open a bbrary •.••...••••••..•.•..••.•.•................ 
position the cursor in the last field .................. , ...... . 
erase LDB enmes of one scope ......................... , .. . 
iruuaIize (or reinitialize) the local data block .•••...... , • , . , .. . 
prepare to leave a JAM apphcabon temporarily .......•.... , .. . 
get the maximum length ora field ...................... , .. . 
get the long mteger value of a field ................ , ........ . 
reiruuaIize LDB enmes of one scope ....................... . 
copy everything from screen to LOB ••.•...•............ , .•• 
place a long integer in a field •.••..•..••...•............... 
flush the message hne •..•.••.••.••.•.•. , ••..... , ........ . 
get the maximum number of occurrences .•................... 
sWitch between menu mode and data entry mode on a dual-purpose 
screen .•••.••.....••••.••.••.•..•.•.•••............... 
display a message at a given column on the stablS Ime ......... . 
fmd a message given its number ........................... . 
fmd a message given its number ••.•...••.•...•............• 
read message file into memory ............................ . 
display a status message in a window ....................... . 
variants that take a flCld name only ••.....•••.•......•.. , .. . 
obtain field name given field number ................... , , .. . 
POSition cursor to the first unprotected field beyond the current hne 
forcibly mvalidate a field •••..••.........••.....•......... 
test If field is null ••••......•••.•.••••....•.............. 
fmd the highest numbered occurrence containing data .. , .......• 
vanants that take a field number and occurrence number ........ . 
get the current occurrence number ••..•••••••........•...... 
move the cursor into a field. offset from the left .••.........••. 
set a Screen Manager option •..•••••.•••..•...•........ , ..• 
shift a field by a given amount ............................ . 
obtain value of a global strings .••••.••••..••.....•......... 
protect an army ..•••••.•••..••••..••..•••........•...... 
Modify value of global strings ..•••..•.•................•.• 
put a string into a field •...•..••••..•.•..•..•.••...••..... 

JAM Release 5 1 March 91 

198 
199 
201 
202 
203 
204 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 

217 
218 
219 
220 
221 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
238 
240 
242 



JAM PU1 Programmer's GUide 

putjctrl 
pwrap 
query_msg 
qD1_msg 

associate a control Sb'mg With a key •..•.....••...•.......•. 244 
put text to a wordwrap field . • • • . • • • • . • • • . • • . • . . . . . . . . . . . . . 245 
dISplay a quesbon, and return a yes or no answer .•......•••••• 246 
display a message preceded by a constant tag, and reset the 
message lme • • . • • . . . . . . . . . . . . . . . . . • • • • . . . • • . • . . • . . • . . •• 24 7 
display error message preceded by a constant tag, and reset the quiecerr 
status hne ...••.•........••..•...•.••.•••.•••••••...... 248 

rd-P8rt 
rdstruct 
rescreen 
resetcrt 
resize 
return 
nnfonnlist 
rrecord 
rscroll 
s_val 

read part of a data structure to the current screen •••...•.••.•.. 249 
read data from a structure to the screen •••••••••••••••••••••• 251 
refresh the data displayed on the screen • . • • • • • . . • . • • . . • • • • • • • 253 
reset the tennmal to operating system default stale • • • . . • . • • • • • • 254 
notify JAM of a change in the dISplay size •••.••.••.••..••••• 255 
prepare for return to JAM application •...•..•.••.••.•..••••• 256 
empty the memory-resident form list ....................... 257 
read data from a slrUcture to a data dicbonary record •....••.••• 258 
scroll an array . . • • . • . . • . . • • • • • • • • • • . • • • • . . • • • • . . . . • • • • .• 260 
validate the current screen ••••.........•.......•.......... 261 

sc_max alter the maximum number of occurrences allowed in a scrollable 
array ••.•...••••.•••.........•......•.•.•.•..••....... 

sdbme - get formatted system date and time ........................ . 
select select a checklist or radio button occurrence .•...•......•••••• 
setbkstat set background text for status line .•••••••••...•.•..••••••.• 
setstatus tum alternating background status message on or off •.••..••..• 
sh_off determine the cursor location relative to the start of a shd'bng freld 
shrink_to_fit remove tnubng empty array elements and shrink screen ...•.•••• 
sibling define the current wmdow as being or not being a sibling window. 
size_of_array get the nwnber of elements ••••.•....•••••••••••••.••••••• 
skinq obtain soft key information by posibon ...•.................. 
skmark mark or unmark a soft key label by position .••••••••••.•••••• 
skset set characteristics of a soft key by position •....••.••••.•••••• 
skvinq obtain soft key information by value ....................... . 
skvmark mark a soft key by value ................................ . 
skvset set characteristics ofa soft key by value .................... . 
stnp_amCptr strip amount editmg characters from a string ••••••......•.•..• 
submenu_close close the current submenu •••••..•.•••••..••...•••••••.• 
svscreen 
t_scroll 
,-shift 
tab 

register a list of screens on the save list ..................... . 
test whether an array can scroll •••••.•••••••••.•••••.••••.• 
test whether field can shift .••.•.••••.•••.....••••••.•••••• 
move the cursor to the next unprotected field .•.•••..••.•.•••• 

263 
264 
266 
267 
269 
270 
271 
272 
274 
275 
277 
279 
281 
283 
284 
286 
287 
288 
289 
290 
291 

JAM Release 5 1 March 91 Page IX 



JAM PU1 Programmer's GUide 

tscalCmdts rmd rust modified occurrence, ••• , •••••.••••••.••••. , .•..•. 
uinstall 
ungetkey 
unsvscreen 
viewport 
vmit 
wcount 
wdeselect 
window 
winsize 
wrecord 
wrt...,parl 

wrtstruct 
wselect 

install an apphcauon function ...••••••....•...........•.... 
push back: a translated key on the input ••.•••....••.......... 
remove screens from the save list .••.•.....••...•.•......... 
modify viewport size and offset ••••••••••••.•..••...•...... 
iruualize video lranslation tables •.••.•...••...••••......... 
obtain nwnber of currently open windows ...•.•..•......•...• 
restore the fonnerly acbve wmdow •••••.•.•••.............. 
display a window at a given position •••...••...••..•........ 
allow end-user to interactively move and resize a window •.•..•. 
write data from a data dictionary record to a structure .......... . 
wnte part of the screen to a strucblre ••••••.•.••••.....•...•. 
write data from the screen to a structure •..•••........•....... 
activate a window .•••..•.•..•...•.•..•.................. 

Chapter 13. 
Library Function Index 

292 
293 
295 
296 
297 
298 
299 
300 
301 
304 
305 
306 
308 
309 

311 

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 

Page x JAM Release 5 1 March 91 



JAM PU1 Proarammer's GUide 

Chapter 1. 

Introduction 
This document is mtended for JAM Programmers. We discuss the development and cre
ation of executable JAM programs incorporating the Screen Manager, developer-written 
hook functions, and the JAM Executive. We WID briefly touch on how custom executives 
may be written. Finally, there is a comprehensive reference of JAM library functions. 

Discussions on the creation of JAM screens, data dictionaries, and keysets are found in 
the Author's Guide. JPL IS fuDy documented in the JPL Programmer's Guide. 

This document assumes that the reader has previously read the JAM Development Over
view and the Author's GUide. The Development Overview is panicularly important as the 
major architectura1 components of JAM are explained there in detail. 

JAM is written in C, and the C programming interface and libraries are distributed with 
every license. This PUllanguage interface document IS an adaptation of the JAM C Pr0-
grammer's GUide. 

You will need to program in PUl (or some other supported third-generation language) to 
accomplish the following tasks: 

• 
• 
• 

To customize JAM to your environment or application by modifying 
the main program provided in source form with the producL 

To write hook functions that do application-specific and back-end pr0-
cessing during the execution of the application. 

To take fuD control of the application by writing an application-specific 
executivel . 

• To create executable JAM Programs. 
As discussed in detail in the Development Overview, JAM Applications consist of 
screens, a data dictionary, hook functions, and an executable program. The creation of 
I. h 11 Itftlngly recommended that the JAM Execubve be used m all but the most lDlusuai m c:m:umstances. 
A ccmpanson or the JAM Execubve with yaur own execubve 11 presenled m the Deve10pnent OveMew. 

JAM Release 5 1 March 91 Page 1 



JAM PLl1 Programmer's GUide 

screens and data dictionaries is discussed in the Author's Guide. JPL programmmg is dis
cussed in the JPL Programmer's Guide. In this chapter, we discuss how to create a JAM 
program. Compilation and hoking are specific to plalfonns and operating systems and are 
discussed in the Installation GUide. 

Two different versions of an application can be created with JAM. The Apphcation Ex
ecutable is the program delivered to the end-user to control the run time application. The 
JAM Authoring Executable is used to create application components and test the applica
tion during developmenL Only the JAM Authoring Executable wIll grant user access to 
the Screen Editor, the Data Dictionary Editor, and the Keyset Editor. The JAM Authoring 
Executable can only be used for the testing of applications that use the JAM Executive. 

1.1. 

APPLICATION EXECUTABLE 
Application Executable programs fall into two categories: those that use the JAM Execu
tive to manage the flow of control from screen to screen, and those that use an applica
tion-specific executive. We discuss both of these approaches in the sections that follow. 

1.1.1. 

Applications Using the JAM Executive 
In applications that use the JAM Executive, most of the control flow IS encapsulated in 
the screens. The majonty of the PL/l programming task is to wnte hook functions (sec
tion 2. page 7) that are called by the Screen Manager or by the JAM Executive when 
certain events occur. 

Applications that use the JAM Executive will need to be linked with the PUl interface 
lIbrary xi f, the Screen Manager library sm, the JAM Executive library jm, and, in gen
eral, the standard math lIbrary on your system. 

NOTE: Refer to the SlrablS Software Release Bullebn for specifics of the VOS library 
setup. 

JYACC provides the main routine source code for applications that use the JAM Execu
tive in a fIle called jrnain. pll. This roubne performs vanous necessary initializations 
before calling the function that starts up the JAM Executive. You may want to modify 
this code to change JAM's default behaVior. 

Page 2 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

11 2, 

Applications Using a Custom Executive 
In rare cases, a developer may choose to write a custom executive, one that is specific to 
a particular application. In custom execubves, no library functions specifIC to Ihe JAM 
Executive should be used. The JAM Executive funcbons may only be used in applica
bons using the JAM Execubve - they are listed m section 11.15. on page 85 .. 

Applicabons that do not use the JAM Executive should be llnked wilh the PUI interface 
lIbrary xi f, the Screen Manager lIbrary sm. and, in general, the standard math library. If 
the LDB IS needed, the JAM Executive hbrary jm should also be hoked in, but it is im
portant the appliCation not call any JAM Executive routines. 

The "sample" application proVided with JAM IS a simple example of an application using 
a custom execubve.2 This application brings up a screen on which Ihe end-user can enter 
some account data. and then save the data and call it up again. There is a help screen, tied 
to one of the function keys, which is implemented as a memory-resident screen, and a 
hook written funcbon that verifies the area code. The dIScussion below outlines the basic 
steps that a custom executive should perfonn, using sample. plI as an example. 

To follow this discussion, you should either pnnt thIS file out, or call it up in an editor. 
Refer to the SlrabiS Software Release Bulletin for the location of sample. plI. The 
hook function AREACODE can be found in the same file. 

Header Flies 

JAM user defines are included as necessary, depending on the library roubnes utilized in 
the program. The documentation for each hbrary routine indicates which, If any, header 
files are required. 

Declarations 

A memory-resident screen is declared at the top of the program along with whatever vari
ables are necessary. 

Screen Manager Initialization 

After all the header files and declambons at the top of the source module, the Screen Man
ager and the terminal are rust initialized with a call to xsm _ ini tcrt. Since an empty 
string is passed as the argument, the search path for screens is expected to be found in the 
environmenL 

2 Noce malJPL IS avuJable 10 apphc:abOlls mal do not usc me JAM Exewllvc Noce also thai hook func-
110111 may be mstallcd and used m apphcabons that do nOl usc the JAM ExCCUIIYC. Thescapphcal1ons, howev
er, will nOl be able 10 usc control Slnngs. 

JAM Release 5 1 March 91 PageS 



JAM PU1 Programmer's GUide 

Install Hook Functions 

Most Screen Manager hook functions are installed via the -retain_all argument to 
the bind command, This is the case for the hook functIOn areacode, which IS called 
as a field validation function. For certaIn types of hook functions, explicit installation is 
necessary and should occur here--after initialization, but before dIsplaying the rust 
screen. The various types of hook functions and their installation are descnbed 10 detaIl in 
Chapter 2. 

Display the Main Fonn 

After initiaIization IS complete, the screen sample 1 • f rm is opened as a fonn with a call 
to xsm _ r _form. If an error occurs, the program will terminate. 

Activate Screen 

samplel. frm is activated within a loop. The loop terminates if the user strikes the 
EXIT key, which causes the routine xsm_input to return With the return code EXIT 
defined in smkeys . incl. pll. The actual data entry, cursor movement, help process
ing, character edit masking, and validation are handled within xsm _1nput, so the pro
grammer need not be concerned with them. Whenever the user stnkes lRANSMIT, 
EXIT, or some other function key, xsm _input retlD'DS control to the calling program. In 
this case, the PFl, PF3 and EXIT keys cause specific actions. All other function keys 
cause a beep and the while loop to continue, calling xsm_input agam. 

Open a Window 

The PF3 key brings up the memory-resident screen that was declared earlier, and then 
waits for the user to press a key. 

Close a Window 

During the run of any applIcation, there is always a form dIsplayed. When a new form is 
displayed, all existIng screens are implicitly closed. Windows, however, need to be ex
pliCitly closed if the application is to retreat to an underlylOg screen. After the PF3 win
dow is dIsplayed, when the user strikes a key the program calls xsm close window 
to close this wmdow. - -

Handle Errors 

The executIve should have a facilIty to handle errors. The PF2 key blggers a procedure, 
PROCESS, which opens a window allowing the user to save or read data. While the spe
cifies of this data manipulation are beyond the scope of this introductory dIscussion, use 
of the error handling routine xSRL err_reset, which displays an error message on the 

Page 4 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

status line, IS illustrated about halfway through the procedure listing. xam _ err _ re a et 
takes a single string argument, and places that string on the status line. The user is forced 
to acknowledge the error by striking the space bar3. 

Reset the Terminal 

Before the application termmates, It calls xam _ reaetcrt to reset tenninal characteris
tics to a state expected by the operatmg system. Here this occurs when the user presses the 
EXIT key. 

1.2. 

AUTHORING EXECUTABLE 
The Authormg Executable must use the JAM Executive, and may have developer-writ
ten hook functions linked in. The main routine for the Authoring Executable is provided 
in source form in a file called jxmain. plI. You may want to modify that file to change 
the default behavior of the authoring tool j x form. It is strongly suggested that JAM de
velopers read and understand this code, as it is msbUctive and may help with an under
standing of the product. 

The compiled Authoring Executable may be called with the optional command-line 
SWitch -e. This will cause the authoring tool to start up directly within the Screen Editor 
(as opposed to starting up in appliCation mode). 

Authoring executables must be linked with the Pl/l mterface library xi f, the JAM Au
thoring Library jx, the JAM Executive library jm, the Screen Manager library am, and, 
in general, the standard math library. Smce these executables are linked with the JAM 
Authoring Library jx, they may not be re-sold or distributed on machmes for which 
there is no software license from JYACC. This restriction applies only to Authoring Ex
ecutables, which are intended for application development only. 

NOTE: Refer to the Stratus Software Release Bulletin for specifics of the VOS library 
setup. 

3 The deve1opermaychange!he way messages areac:knowledged wllh lhehb18rylUlllUle XSM _OPTION. 

JAM Release 5 1 March 91 Page 5 





JAM PU1 Programmer's Guide 

Chapter 2. 

Hook Functions 
The primary coding task facing JAM programmers is writing hook functiOWI. These 
functions, which are called by the JAM Executive and by the Screen Managec when cer
tain well-defined events occur, are written m PUIS. 

In this chapter, we dIscuss how hook functions are written and inslalled. They must also 
be compiled and hoked into the JAM Applicabon (or Authonng) Executable: see the In
slallation Gwde for detaJ.ls of thaL We also discuss what JAM events have hooks accessi
ble to developers and what arguments are passed to hook functions from any given hook. 
Finally, we discuss in detail the vanous types of hook funCbOWl, showing examples of 
some of them, and explaining how they are installed and used. 

2.1. 

PREPARATION AND INSTALLATION 
Hook functions, once properly inslalled, are called at certain well- defmed JAM events. 
These events are outlined below ID seebon 2.1.1. and discussed m detail later in the chap
ter. 

There are many events that have hooks accessible to developers. JAM passes different 
arguments to the various hook functions, and interprets the relUrn codes differently for 
each one. It is important that hook: funCbons process the arguments that are passed cor
rectly, and that they relUrn meamngful codes based on the events to which they are at
tached. 

Hook functions are installed indiVidually, and are called at runtime by JAM when a cer
tam event type occurs. Most hook functions are called by the Screen Manager. Howevec, 
S. Hook func:uons may also be wnlten In C and other liwd-seneral1cn prognnmung languages for winch 
JYACC supports a language mterface In parucu1ar, Fortran, Cobolllld PUI are avulabie for JAM 011 scme 
pIatfonna 

JAM Release 5 1 March 91 Page 7 



JAM PU1 Programmer's GUide 

the hook functions invoked With control strings are called by the JAM Execuuve, and 
will only be accessible to apphcations using a custom executive through JPL. 

2.1.1. 

Types of Hook Functions 
There are twenty-two installable hook funcuon types, six of which are installed when the 
application is bound and sIXteen of which are installed as mdividual functions. They are 
bnefly outlined beloW, and discussed m detalilaler in the document: 

-FIELD FUNC 
- These functions are installed using the -retain_all argument of the 

bind command. The funcuons on this list may be deSignated in the Screen 
Editor to be called by Ibe Screen Manager as field entry, eXit or validation 
functions for specifIC fields. The IPL atch verb may also be used to access 
these funcuons. 

-GROUP FUNC 
These functions are mstalled using the -retain_all argument of the 
bind command. These functions may be designated in the Screen Editor to 
be called by the Screen Manager as group entry, exit or validabon functions 
for specific groups (Radio Buttons and Checklists). 

-SCREEN FUNC 
- These functions are installed using the -retain_all argument of the 

bind command. These funcUons may be designated in the Screen Editor to 
be called by the Screen Manager as screen entry or exit funcUons on particu
lar screens. 

-CONTROL FUNC 
-These functions are installed using the -retain_all argument of the 

bind command These functions may be entered and invoked from control 
strings. They are often associated with function keys and menus in the Screen 
Editororwiththexsmyutjctrllibrarycall. TheIPLcall vern can in
voke control functions. 

-DFLT FIELD FUNC 
This is an individual function. It is installed using the library routine 
xsm _ n _ uinstall.Onceinstalled, it is called on entry, exit and validation 
for all fields. 

-DFLT GROUP FUNC 
- Similar to the DFLT FIELD FUNC, Ibis individual function is called on 

entry, exit, and validiiion for 8iJ groups. 

PageS JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

-DFLT SCREEN FUNC 
- IndiVidual function called on entry and exit for all screens, 

-KEYCHG FUNC 
- IndiVidual function called whenever JAM reads a key from the keyboard. 

This allows for the application to inten:ept and process (and possibly trans
late) keystrokes at the logical key level. 

-INSCRSR FUNC 
-Individual function called by JAM whenever the keyboard entry mode 

toggles between insenand overslnke mode. This allows an application to up
date the display, if desired, to provide an indication of the new mode. Often 
used 1f there is no ability to change cwsor styles between insert and over
strike modes. 

-CKDIGIT FUNC 
-Individual function called by JAM for check digit validation of numeric 

fields. Only necessary if the default check-digit algorithm provided with 
JAM is not suft1cICnl. 

.UINIT_FUNC 
Individual function called just before the Screen Manager and the physical 
display are initialized at the start of the application. 

-URESET FUNC 
Individual function caIIedjustafter the Screen Manager and the physical dis
play are closed and reset at the end of the application, even if the application 
aborts ungracefully. 

-RECORD FUNC 
Individual function used to record keystrokes so they can be played back for 
tutonals or for regression testing. 

-PLAY FUNC 
- Individual function used to playback recorded keys. 

-AVAIL FUNC 
- Individual function used in advanced record/playback algorithms. 

-STAT FUNC 
- Individual function used to intercept JAM status hne processmg and alter or 

replace it. 

~PROC FUNC 
- Individual function used to intercept JAM video processing and to alter or 

replace it. 

JAM Release 5 1 March 91 Page 9 



JAM PU1 Programmer's Guide 

-BLKDRVR FUNC 
-This is an individual function that acts as a block mode terminal driver. This 

IS discussed in section 10.1.3. 

-ASYNC FUNC 
Individual function called asynchronously when JAM is waitmg for key
board inpUL This is installed via the library routinexsm _ async. Often used 
to poll external systems for mail delivery or the availability of data over a 
communications line. 

2.1.2. 

Installing Functions 
As mentioned above, certain hook functions must be installed expliCitly With the library 
routines xsm n uinstall or xsm async, others are mstalled using the -re
tain_all afgUiDent of the bind command. 

xsm n uinstall is called with three arguments. The fIrSt argument identifies the 
type of function being installed, and may be one of the following values: 

UINIT_FUNC 
URESET_FUNC 
VPROC]UNC 
KEYCHG_FUNC 
INSCRSR]UNC 

CKDIGIT]UNC 
BLKDRVR_FUNC 
PLAY]UNC 
RECORD_FUNC 
AVAIL_FUNC 

STAT FUNC 
DFLT_FIELD_FUNC 
DFLT SCREEN FUNC 
DFLT=:GROUP]UNC 

The second argument is the name of the function. The third argument idenbfies the lan
guage. This argument should be 1 for all programming languages except c. 
xsm _a sync is used exclusively for installing asynchronous functions. It takes as argu
ments the address of the function and a timeout period. 

The other function types, which are installed via the -retain_all argument to the 
bind command, are the following: 

FIELD FUNC 
SCREEN FUNC 
CONTROL_FUNC 
GROUP FUNC 

2.2. 

WRITING HOOK FUNCTIONS 
Arguments passed to hook functions and return values received from hook functions vary 
from hook to hook. In this section, we discuss the vanous JAM hooks ID detail. 

Page 10 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

2.2.1. 

Field Functions 
The Screen Manager will call field functions, if specified, on field enlry, field exit, and 
field validation. Calis to field enlry and field exit functions are guaranteed to be paired for 
any given field 

A single default field function may also be installed. It will be invoked on enlry, exit, and 
validabon for every field The default field function must be installed explicitly as via 
xsm_n_uinstall. 

JPL procedures may be directly specified as field functions in the Screen Editor by pre
ceding thelI' name with the sb'1Og "jpl ", for example jpl fieldfunc. 

Field Function Invocation 
Field functions are called for field enlry whenever the cursor enters a field, including 
when the field containing the cursor IS activated by virbre of an overlying window being 
closed Field functions are called for field exit whenever the cursor leaves a field, includ-
10g when the field IS exited because a window is popped up over the existing screen. Field 
functions are called for validation whenever the field is validated. This occurs at the fol
lowing times: 

• As part of field validation, when you exit the field or scroll to the next 
occurrence by filling it or by hltbng TAB or RETURN key. The BACK
TAB and arrow keys do not normally cause validation. Field functions 
are called for validation only after the field's cmtents pass all other vali
dations for the field. 

• As part of screen validation when the XMIT key is sb'uck. 

• When the application code calls library routines for field validation. 

Field functions may also be invoked from JPL With the atch verb. 

For fields that are members of menus, radio buttons, or checklists, the validation function 
is not called as part of validation. The validation function for such fields is called instead 
when that field is selected. For checklist fields, the field validation function is also called 
when the field is deselected. 

Field functions specified for field enlry via the Screen Editor are invoked after any in
stalled default field function. Field functions specified for field exit or validation via the 
Screen Editor are called before any installed default field function. 

Field Function Arguments 
All field functions receive four arguments: 

JAM Release 5 1 March 91 Page 11 



JAM PU1 Programmer's GUide 

1. The field number as an integer, 

2. A buffer contairung a copy of the field's contents. 

3. The occurrence number of the data as an integer. 

4. An integer bltmask containing contextual information about the valida
tion state of the field and the circumstances under which the function 
was called. 

The contextual information in the last parameter includes the following bit masks 7: 

~ALIDED 

-K ENTRY 

-K EXPOSE 

If this is set (i.e. if the 'bitwise and' ofparam4 and VALIDED is not zero), 
the field has passed aU its validations and has not been modified since. 

If this is set (i.e. if the 'bitwiseand' ofparam4 and MDT is notzero),the field 
data has been changed either from the keyboard or from the applicabon code 
smcethecurrentscreen wasopenedB.JAMneverclears thiS bit. Theapplica
tion code may clear it direcdy with the xsm _ bi top library routine. 

If set (i.e. If the 'bitwise and' ofparam4 andK_ENTRY IS not zero), the field 
funcbon was called on field entty. 

If set (i.e. If the 'bitwise and' ofparam4 and K EXIT is notzem), the field 
function was called on field exit9• -

- If set (i.e. if the 'bitwise and' ofparam4 and K_EXPOSE is not zero), the 
field function was called because a window overlymg the screen on which 
the field resides was opened or closed 10. 

Mask for the bits indicabng winch keyslrnke or event caused the field to be 
entered, exited, or validated. The IDtersection of this mask and the fourth pa

NO TAG. 
The example field funCbon below amtams a procedure called bi tmask Ihat u useful for chec:kmg whether 
a parIIc:ular flag (ballocallon m a binary value) u set. Soun:e code for Ihu procedure can also be fOlDld m !he 
sample apphc:al1011 provuIed wuh JAM. 

B. NOIe !hal when !he screeD u bema opened, when !he screeD enby funCbOll modmes dau m a field !he 
MDT billS not seL However, when Ihe sc:reeu u exposed by VUlue of an overlllld wmdow bemg closed, mochfi
caI10n of field dau m the screen enlJy funcuon will cause the MDT Inl 10 be BeL 

9. NOIe thai IfnellherK_ENTRY nor K_EXIT are set, die field II bema validated. 

10 TIns means dial Ifbolh K_ENTRY and K_EXPOSE are set, Ihefield IS bema exposed. UK_EXIT and 
K _EXPOSE are set, the field IS bemg hidden. 

Page 12 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rameter to the field function should be tested for equality against one of the 
six remaining values below: 

-K NORMAL 
- If set (i.e. if the 'bitwise and' ofparam4 andK_KEYS equalsK_NORMAL), 

a "normal" key caused the cursor to enter or exit the field in question. For 
field entty, '"Donnal" keys are NL, TAB, HOME, and EMOH. For field exit, 
only TAB and NL are considered "nonnal". 

-K BACKTAB 
- If set (i.e. if the 'bitwise and' ofparam4 and K_KEYS equals K_BACK-

-K OTHER 

TAB), the BACKTAB key C8lI5ed the cursor to enter or exit the field in ques
tion. 

If set (i.e. if the 'bitwise and' of param4 and K _KEYS equals K _ARROW), 
an arrow key caused the cursor to enrer or exit the field m question. 

If set (i.e. if the 'bitwise and' ofparam4 andK_KEYS equalsK_SVAL), the 
field is being validated as part of screen validation. 

Ifset(i.e.lfthe 'bitwise and' ofparam4 andK_KEYS equals K_USER), the 
field is being validated direcdy from the appbcation With the xsm _ fva 1 Ii
brary routine. 

If set (i.e. if the 'bitwise and' ofparam4 and K_KEYS equals K_OTHER), 
some key other than backtab, arrow or those mentioned as "nonnal" caused 
the cursor to enrer or exit the field in quesbOll. 

Field functions are called for validation regardless of whether the field was previously 
validated. They may test the VALIDED and MDT bits to aVOld redundant processing. 

Field Function Return Codes 

Field functions called on entry or exit should return O. Field functions called for valida
tion should return 0 if the field contents pass the valldabon criteria. Any non-zero return 
code should indicate that the field does not pass validation. If the returned value is I, the 
cursor will not be repositioned to the offending field. Any other non-zero return value 
will cause the cursor to be repositioned to the field that failed the validation. This is useful 
because when the entire screen IS undergomg vahdabon, the field that fads validation 

JAM Release 5 1 March 91 Page 13 



JAM PU1 Programmer's Guide 

may not be the field where the cursor is.11 

Example Field Function 
The following code iIIuStraleS how to interpret the fourth argument passed to a field func
tion, and how to handle errors. 

'1nclude 'smdefs.incl.pll'; 1* baS1C JAM user def1nes *1 

apfuncl: 
procedure(field number, field data, occurrence, misc bits) 
returns(fixed_bInary(3l»; - -

declare field number 
declare field:data 
declare occurrence 
declare misc_bits 
declare error 

if bitmask(misc bits, VALIDED) 
then return-O 

1* and later... *1 
1* check for error *1 

if (error "= 0) 
then do; 

fixed binary(3l); 
char(.) varyinq; 
fixed binary(3l); 
fixed-binary(3l); 
fixed:binary(3l); 

xsm qoheld(l); 
xsm-qu1et err('Re-enter all data.'); 
return (l); 
end; 

return(O); 
end apfuncl; 

1* The followinq procedure checks 1f a part1cular flaq 1S set. *1 
1* NOTE: ·unspec· only works on variables. Constants are passed *1 
1* into bitmask as parameters, so b1tmask will work w1th them. *1 

b1tmask: 
procedure (xb1tS, ybits) 
returns(b1t(l»; 
declare (xbits,ybits) f1xed b1nary(3l); 
return«unspec(xbits) , unspec(ybits» "= 'O'b); 

end bitmask; 

11 In many cases, It u beuer for the field vahdab.ClII funcb.on ItsdflO reposlb.on the cursor before chsplaymg 
an enor message, OIberwue the error message IOIgbt be muleadmg 

Page 14 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

2.2.2. 

Screen Functions 
The Screen Manager will call screen functions, if specified, on entry and exit of screens. 
Calls 10 screen entry and screen exit functions are guamnteed to be paired for each screen. 

A single default screen function may be installed. It will be invoked on entry and exit for 
every screen. The default screen function is installed as via xsm _ n _ uinstall. Screen 
functions specified as entry or exit functions for a screen via the Screen Editor are in
stalled via the -retain_all argument 10 the bind command. JPL procedures may 
also be directly specified as screen funcbons in the Screen Editor by preceding their name 
with the string "jpl ", for example jpl screenfunc. 

Because of the way LDB processing and fonn stack handling is done, it is neither recom
mended nor supported 10 call any fonn or window display library routines from screen 
entry or exit funcbons. If it is necessary to display wmdows at screen entry, the bbrary 
routine xsm unget key can be invoked, passing as the argument a function key with a 
corllrol string that brings up a window. 

Screen Function Invocation 
Screen functions are called for screen entry whenever a screen is opened. Screen func
tions are called for screen exit whenever a screen is closed. Optionally, screen functions 
may also be called for entry when a screen is exposed by virtue of a window overlaying 
it being closed or deselected, and called for exit when a window is popped up or selected 
over the screen in question. This is not the default behavior because it would inttoduce 
incompatibilities with earlier releases of JAM. 

If you are not concerned with compatibility with earlier releases, it is slrongly suggested 
that you make the followmg library function call near the beginning of your application, 
enabling the calling of screen functions when screens are exposed or hidden: 

xsm_option(EXPHIDE_OPTION, ON_EXPHIDE) 

Screen functions specified for screen entry via the Screen Editor are invoked after any 
installed default screen function. Screen functions specified for screen exit via the Screen 
Editor are called before any installed default screen function. 

Screen Function Arguments 
All screen functions receIVe two arguments: 

1. The screen name. 

2. An integer biunask contammg contextual infonnation about the Cll'

cum stances under which the function was called. 

JAM Release 5 1 March 91 Page 15 



JAM PU1 Programmer's GUide 

The contextual information m the second parameter includes the following bit masks: 

-K ENTRY 
Hthis is set (i.e. if the 'bitwise and' ofparam4 and K ENTRY is not zero), 
the function was called on screen entty. -

H tlus is set (i.e. if the 'bitwise and' of param4 and K EXIT is not zero), 
the function was called on screen exiL -

-K EXPOSE 
- Hthis is set (i.e. if the 'bitwise and' ofparam4 and K EXPOSE is not zero), 

the function was called because the screen was selected or deselected, or be
cause a window was popped over the screen ora wmdow that used to be over
laid on the screen was closedl2• 

-K NORMAL 

Mask for the bits mdicating which event caused the screen to be exited. The 
intersection of this mask and the second pammeter to the screen function 
should be rested for equality against one of the two remaining values below: 

- Hset(i.e.ifthe'bltwiseand'ofparam4andK KEYSequaisK NORMAL), 
a "nonnal" call to xsm _close_window cauSed the screen tOclose. 

-K OTHER 
If set (i.e. if the 'bitwise and' of param4 and K _KEYS equals K _OTHER), 
the screen is being closed because another fonn is being displayed or because 
xsm resetcrt is called. 

Screen Function Return Codes 
All screen funcbons should return O. 

2.2.3. 

Control Functions 
Control functions are called by the JAM Executive in the processing of control sbings 
and by JPL routines that call PLll functions. The JAM Executive wJ.lI call control func
bons, if specified and installed, when control smngs that start with a caret (") are ex
ecuted. JPL procedures may also execute control functions by using the call verb. 

12. Ifboch K_ENTRY and K_EXPOSE are set, Ihe sc:reea II bemg uncovered and achvated by vutue of an 
ovedBld W1Rdow being closed. Hboch K _EXIT and K _EXPOSE are set, !he screen IS bemg covered and deaCb
valed by vutue of a wmdow bemg popped up over IL 

Page 16 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

There is no default control flDlction. Control functions are installed via the -re
tain_all argument to the bind command.JPL procedures may be directly specified 
as control functions by precedmg the name of Ihe procedure in a control stnng wilh the 
string "jpl ". 

A number of control functions of general use are built in to JAM. These built-ins can be 
used by any JAM application. They are listed in Chapter 4. 

Control Function Invocation 
Control functions are called by the JAM Executive when a control string starlIng with a 
caret is processed. Such control smngs are often auached, via Ihe Screen Editor, to func
tion keys or to menu selections in control fields. In addition, the JPL verb call can be 
used to invoke control functions.13 

Control Function Arguments 
Control functions receive a single argument, namely a buffer containing a copy of the 
control string that invoked Ihe function, wilhout the leading carel It is only the fU"St word 
on the control string that identifIeS the function, Ihe rest of the string may contain arbi
trary data that can be parsed and used as arguments. 

Control Function Return Codes 
Control functions may return any integer. The return value from a control function may 
be used for conditional control branching in target lists (see Ihe Authoring Guide), Iflhere 
IS no target list, and the control string returns a flDlction key which has an associated con
trol string in it's own right, then that control string is executed. 

2.2.4. 

Key Change Functions 
The key change flDlction is called by the Screen Manager as keys are read from the key
board from within the library routine xsm _get key , which is called in the input process
ing for all keys by JAM. Only one individual keychange function may be installed at a 
time. 

Keys placed on the queue with Ihe library routine xsm _ ungetkey or with the built-in 
control flDlction A jm-keys are not processed by Ihe installed key change funcbon. 

13 The JPL call verb does not exec:ule conlml stnngs. h looks for func:tlOlll to calL 

JAM Release 5 1 March 91 Page 17 



JAM PU1 Programmer's GUIde 

The key change function is installed as KEYCHG _FUNC via xsm _ n_ uinstall. 

Key Change Function Invocation 
The key change function is called exactly once for every key read in from the keyboard or 
supplied by the playback hook funcbon descnbed in section 2.2.10 .. 

Key Change Function Arguments 
The key change function is passed a single integer argument, namely the JAM logical key 
that was read from the keyboard or received from the playback hook function. 

Key Change Function Return Codes 
The key change function returns the key 10 be substituted for the one passed as an argu
menL Any key returned to xsm _get key will be returned by xsm_getkey to its caller. 
However, if the key change function returns 0, xsm _get key wIll get the next key from 
the keyboardl4• 

2.2.5. 

Group Functions 
The Screen Manager will call group functions, if specified, on entry, exit, and vaiidabOn 
of radio buttons and checklists. Calls 10 group entry and group exit functions are guaran
teed to be paired for each group. 

A single default group function may be installed. It will be IDvoked on entry, exit, and 
validation for every group. The default group function IS installed as via 
xsm_ n _ uinstall. Group functions specified as entry, exit, or vabdation functions for 
a given group ID the Screen Editor are installed VI3 the -retain_all argument to the 
bind command. JPL procedures may also be directly specified as group functions in the 
Screen Editor by preceding their name with the string "Jpl ", for example jpl 
groupfunc. 

Please note that field validation functions for fIelds that are members of groups or menus 
are called at selection and, in the case of checklists, deselection as dIscussed above in sec
tion 2.2.1. on page 11. 

Group Function Invocation 
Group functions are called for group entry whenever the cursor enters a group, including 
the tImes when the group containing the cursor is activated by virtue of an overlying win-
14. See !he hbrary IOUIlnC XS~U<EYOPTION for a cWfen:nl melhod of changing the func:llQll of a logical 
key. 

Page 18 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

dow being closed. Group functions are called for group exit whenever the cursor leaves a 
group, including the times when the group is left because a window is popped up over the 
eXIsting screen. Group functions are caIled for valIdation whenever the group IS vali
dated. This occurs at any of the following times: 

• As part of group validation, when you exit the group by hitting TAB or 
making a selection from an autotab group. The BACKTAB and arrow 
keys do not normally cause validation. 

• As part of screen validation when the XMIT key is struck. 
• When the application code calls library routines for group validation. 

Group functions specified for group entty via the Screen Editor are invoked after any in
stalled default group function. Group functions specified for group exit or validation via 
the Screen Editor are called before any installed default group function. 

Group Function Arguments 
All group functions receive two arguments: 

1. The group name. 
2. An integer containing contextual infonnation about the valIdation state 

of the group and the circumstances under which the function was 
called. 

The infonnation contained in the third argument to group functions is identical to that 
passed m the fourth argument to field functions. See section 2.2.1. on page 11 for an ex
planat1on. 
Group functions are called for validation regardless of whether the group was previously 
validated. They may test the VALIDED and MDT bits to avoid redundant processing. 

Group Function Return Codes 
Group functions called on entry or exit should return O. Group functions called for valida
tion should return 0 if the group selections pass the validation criteria. Any non-zero re
tum code should indicate that the group does not pass validation. If the returned value is 
1, the cursor will not be reposiboned to the offending group. Any other non-zero return 
value will cause the cursor to be reposiboned to the group that failed the validation. 

2.2.6. 

Asynchronous Functions 
The installed asynchronous function is called periodically by the Screen Manager while 
the keyboard input routine waits for user inpuL It can be used to poll or otherwise manipu
late communications resources, or to update the display on the screen. 

JAM Release 5 1 March 91 Page 19 



JAM PU1 Programmer's GUide 

The asynchronous function is installed individually as ASYNC _ FUNC via the library rou
tine xsm_async. 

Asynchronous Function Invocation 
The asynchronous function is called from the very lowest level of JAM keyboard input. 
When the asynchronous function is installed, the device dover clock on the termmal mput 
device is set to time out on its character read operation, and if a character is not read m that 
time interval the asynchronous funcbon is invoked before another character read opera
tion is attempted. The time out interval is specified when the funcbon is installed. The 
time out is measured in tenths of seconds. The maximum interval IS 255 (25.5 seconds). 

Asynchronous Function Arguments 
The asynchronous function is passed no arguments. 

Asynchronous Function Return Codes 
The asynchronous function should generally return O. If it returns -1, it will not be called 
agam unbl at least one addibonal character has been read from the keyboard The asynch
ronous function may return a key, which will be returned to xsm get key and on to the 
application. If that key is a JAM logical key, no further IraDSlaifon will be done. If the 
asynchronous function returns a data character, JAM will interpret it as a physical key
board stroke. 

2.2.7. 

Insert Toggle Functions 
The Screen Manager will call the Insert Toggle Function when switchmg between input 
and overslnke mode for data entry. Generally this hook function will be used to update 
some aspect of the display mforming the user of the current mode. 

The insert toggle function is installed individually as INSCRSR FUNC via 
xsm_n_uinstall. JAM automatically installs an insert toggle function that changes 
the cursor style when the mode is changed. If an application installs its own insert toggle 
function, the JAM function will be de-installed, and the new insert toggle function may 
want to call the funcbon directly. 

Insert Toggle Function Invocation 
The function Will be invoked by JAM whenever the data entry mode shifts from insert to 
overstrike mode or from overstrike to insert mode. Most often, thIS occurs when the end
user strikes the INSERT key. 

Page 20 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Insert Toggle Function Arguments 
One integer argument is passed to the insert toggle function. It specifies the mode. If its 
value is I, JAM is entering insert mode. If it IS 0, JAM is entering overstrike mode. 

Insert Toggle Function Return Codes 
The insert IOggle function should return O. 

2.2.8. 

Check Digit Functions 
The Screen Manager will call the check digit function for any field that is marked for 
check digit in the Screen EdItor. It may be used to implement any desired check-digit al
gorithm. If there is no check digit function installed in the application, JAM will use the 
default library function xsm_ckdigit. A new check digit function is installed as 
CKDIGIT_FUNC via the library roubne xsm _n_uinstall. 

Check Digit Function Invocation 
The check digit function is called by JAM dlDing validation of fields marked for check 
digiL 

Check Digit Function Arguments 
The check digit function is passed the foUowmg arguments: 

1. The integer number of the field undergoing validation. 

2. The field contents. 

3. The integer occurrence number for the data undergOing validation. 

4. The integer modulus as specified in the Screen Editor. 

S. The integer minimum number of digits as specified in the Screen Edi
tor. 

Check Digit Function Return Codes 
The check digit function should return 0 If the field passes the check digit validation. If a 
non-zero value is returned, the cursor is positioned 10 the offending field and the field is 

JAM Release 5 1 March 91 Page 21 



JAM PU1 Programmer's GUide 

not marked as validated. It is assumed that the check digit function display its own error 
messages. 

2.2 9. 

Initialization and Reset Functions 
The initialization and reset functions are called by the Screen Manager on display serup 
and display reset respectively. The initializabon function can be used to set the tenninal 
type and lhe reset function can be used to handle any cleanup lhat the applicabon needs to 
do whether it is terminated gracefully or nOl. 
Initiahzation and reset functions are installed indIvidually as UINIT_FUNC and URE
SET_FUNC respectively VJacalls toxsm_n_uinstall. 

Initialization and Reset Function Invocation 
The initialization function is called from lhe library routine xsm ini tcrt. When it is 
called, JAM has not yet allocated its required memory Sb'uctureS", and the physical dis
play charactenstics are still untouched by JAM. In general, it IS suggested that hook func
tions be installed after initia1ization wilh xsm_initcrt, but clearly lhls is an excep
tion. The mibahzation funcuon must be installed before xsm initcrt is called. This 
funcbon IS installed as UINIT FUNC via lhe library routine "ism n uinstall. - --
The reset function is called from the library routine xsm _ resetcrt after JAM has re
leased its memory and reset lhe physical display characteristics. Since the JAM abort 
routine xsm cancel calls xsm resetcrt before the applicabon tenninates, the re
set funcbon 18 generally called alapplication exit whether the exit is graceful or notlS• 
This funcbon is installed as URESET_FUNC via the bbrary routIne xsm_n_uins
tall. 

Initialization and Reset Function Arguments 
The mitialization function is passed a single argument, namely a 30 byte character buffer 
into which it may place the null-terminated string mnemonic identifying the tenninal 
type in use. This is primarily of use on operabng systems wilhout an environment. This 
funcbon can be used to obla1ll the terminal type in some system-specific way. 
The reset function is passed no arguments. 

Initialization and Reset Function Return Codes 
Both the initial1Zallon and reset hook functions should return O. 
IS Jnlel1Upthandlcn may need 10 be sel by the deve1operlO msure thai XSM_CANCEL is called al alllhe 
necessary hardware and software mlel1Upl ngnals.llts Suggesled thallhll selUp be done m the funcuon m· 
SlaIled as an IIl1lIahzanon funCbOn. 

Page 22 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

2.2.10. 

Recording and Playing Back Keystrokes 
The Screen Manager provides hooks for recording and playing back keyS1rokes, This fa
cility could be used to Implement simple macro capabilities, or to pedorm regression test
ing on a JAM applical1on. The developer should ensure that the record and playback 
functions are not in use simullaneously. 

Record and playback functions are installed individually as RECORD _FUNC and 
PLAY_FUNC respectively viaxsm_n_uinstall. 

Record/Playback Function Invocation 
The record function is called from xsm get key when it has a translated key value in 
hand that it is about to return to the apPlication. The playback function is called from 
xsm _getkey, when installed, in place of a read from the keyboardl6• For accurate re
gression testing, the playback function may need to pause and flush the output to simulate 
a realistic rate of typing, and may need to call the asynchronous function, if there is one. 

Record/Playback Function Arguments 
The record functIOn IS passed a single integer, which is the JAM logical key to record. 
Generally that key is recorded in some fashion for a possible playback at a later dale. The 
playback function receives no arguments. 

Record/Playback Function Return Codes 
The record function should return O. The playback function should return the logical key 
that was recorded at an earlier time. 

2.2.11. 

Status Line Functions 
The SlablS line function is called by the Screen Manager whenever the status line is about 
to be flushed, or phySically written to the terminal device. It is intended for use on termi
nals that require unusual status line processmg, beyond the scope of the generic code, but 
other uses are possible. 
16. Smce c:haracten an: ~ after processmg by the key chlllge func:uon but played back before key 
change traaslabOll, some key change funcnOllS may mterfen: With the ICCIlI'IIe playback of recorded key
sIrOkes. See the dcsc:npIlan of XSH _ GETKE Y m the Programmer's Reference Manual for more wormlllOll. 

JAM Release 5 1 March 91 Page 23 



JAM PU1 Programmer's GUide 

The status line funchon is lDStalled individually as STAT_FUNC via xsm_n_uins
tall. 

Status Line Function Invocation 
The status line function is called when the stablS line is about to be physically written to 
the terminal display, Because of delayed write, this mayor may not be at the time when 
the functions that specify message Ime text are actually called. 

Status Line Function Arguments 
The stablS line function receives no arguments. It can access Copies of the text and attnb
utes about to be flushed to the status line using the following library routine calls: 

stat_text - xsm-pinquire(SP_STATLlNE); 
stat_attr - xsm-pinquire(SP_STATATTR); 

Status Line Function Return Codes 
If the stabJS lme function returns 0, JAM conbnues its usual processmg and actually 
writes out the status line. If the function returns any other value, JAM assumes that the 
physical write of the stabJS line was handled in the hook function. 

2.2.12. 

Video Processing Functions 
The Screen Manager calls the developer-installed Video processmg function to allow for 
special handling of various video sequences by the application. Tlus is a specIalized hook 
required only when the JAM video file is unable to provide support for a partIcular type 
of terminal. 

The video processing function is installed individually as VPROC FUNC via 
xsm n uinstall. 

Video Processing Function Invocation 
The video processing function IS called by JAM's output routine just before a video out
put operation is about to begin. 

Video Processing Function Arguments 
The Video processing function receives two arguments. The first is an integer Video pro
cessing code defined m the header me smvideo . incl. pll and outlined in the table 

Page 24 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

below. The second is an anay of integers with parameters for the video processing code, 
The number of parameters passed depends on the operation as shown in the table below. 
For video processing codes that require no arguments, a NULL is passed. 

Code Operalion DescriptIOn #of 
params 

V ARGR remove area atlribute -
v ASGR set area graphics rerubtion 11 

V BELL visible alarm sequence -
V CMSG close message line 

v COF tum cursor off -
v CON tum cursor on 

v CUB - cursor back (left) 1 

v CUD cursor down 1 -
VCUF cursor forward (right) 1 

v CUP set cursor position (absolute) 2 -
vcuu cursor up 1 -
V ED erase entire display -
v EL erase to end of line -
V EW erase window to background 5 -
v INIT initializab.on siring -
V_INSON set insert cursor style 

v INSOFF set overslrike cursor style 

v KSET write to soft key label 2 

v MODE4 single character graphics mode (also V_MODES, 6) -
VJ!ODEO set graptucs mode (also V MODEl, 2, 3) 

V OMSG open message line 

JAM Release 5 1 March 91 Page 25 



JAM PU1 Programmer's Guide 

Code Operation Descrlptlon #of 
params 

V RESET reset string 

V RCP restore cursor position 

V REPT repeal character sequence 2 -
V SCP save cursor poSition 

V SGR set latch graphics rendition 11 

Video Processing Function Return Codes 
When the video processmg function returns 0, JAM will conbnue With nonnal process
ing. If it reblrns any other value, JAM will assume that the operation has been handled m 
the hook function. This allows the developer to implement only necessary operabons. 

Other Hook Functions 
The Screen Manager proVides an additional hook to handle block mode tennmals. This 
function is best viewed as a driver. Block mode is descnbed in Chapter 10. 

2.3. 

CODING STRATEGY, RULES AND 
PITFALLS 

2.3.1. 

Displaying Screens 
There are a number of library functions provided for the display of screens as fonns or 
wmdows. In general, the following rules and gwdelmes should be followed in choosing 
between them and deciding when they can be used: 

Page 26 

• The display of screens as forms or windows from within screen func
bons at screen entry or screen exit is neither recommended nor sup
ported. 

JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• The routines xsm jform, xsm jwindow, and xsm jclose are 
provuled specifically for the dlspI8y and desbUction of screens in appli
cations that use the JAM Execubve. Applications not using the JAM 
Executive should not use these routines. They are recommended over 
the other screen display routmes ID appllcabons that do use the JAM 
Executive. 

• The form display routme xsm_jform manipulates the form stack ap
propriately. The use of any other fonn display routines in applications 
that use the JAM Executive will exlublt unexpected behavior, as the 
form stack will not be synchronized with the application flow. 

23.2. 

Recursion 
The developer should be careful, when using hook functions, to avoid the recursion that 
will come from nested hook function calls. Such recursion will not be easy to detect in the 
source code itself: some understandmg of the product mechanISm is reqUlI'ed. 

For example, care should be taken when writing record, playback, or key change func
bons that read from the keyboard, or status line functions that themselves cause the status 
line to be flushed. A default screen entry functton that m and of Itself opens new screens 
could be a problem. 

JAM Release 5 1 March 91 Page 27 





JAM PU1 Programmer's GUide 

Chapter 3. 

Local Data Block 
The Local Data Block. or LDB, is a region of memory for the storage of JAM field data 
that is generally shared between screens. It is discussed ID the JAM Development Over
view and in the Author's Guide. 

3.1. 

LOB CREATION 
The LDB is created With the hbrary routine call xsm_ldb_init. This routine searches 
for a data dictionary me created from the authonng tool with the Data Dictionary Editor. 
For more information about the data dictionary and the Data Dictionary Editor, see the 
Author's Guide. 

If the data dictionary file IS found, it IS read and a smgle LDB entry IS created in memory 
for every data dictionary entry that has a non-zero scope. Note that only the name of the 
LDB entry IS placed in memory, storage for the field data that is stored with the entry is 
not allocated until the entry is used. 

After it is created, the LDB IS initialized from ASCII text meso These files, described in 
the Author's Guide, contain pairs ofLDB names and values. The LDB enllies named are 
filled with the values that follow them m the files. 

3.2. 

HOW JAM USES THE LOB 
JAM uses the LDB for the storage and propagation of field data from screen to screen in 
the application. Every time a screen is opened, or exposed by the closing of a window that 

JAM Release 5 1 March 91 Page 29 



JAM PU1 Programmer's GUide 

covers It. every field on the screen named identically to an LOB entry IS filled with the 
value of the LOB entry, ThIS occurs after the screen entry function is called. 

Correspondmgly. every time a screen is closed, or hidden when a wmdow pops up over it. 
every LOB entry that 18 named idenbcally to a field on the screen is fIlled with the value 
of the screen field. This occurs before the screen exit function is called. 

When a screen IS populated from the LOB at screen entry time. there is a subtle difference 
between a new screen bemg opened and a screen being exposed when a covering window 
is closed. When a screen IS newly opened. only empty fields with corresponding LOB 
entries will be populated from the LOB. When a screen is exposed. all fields that have 
corresponding LOB enbles will be populated. 

3.3. 

LOB ACCESS 
Oata in the LOB can be accessed with the library routines xsm_n_getfield. 
xsm_n.....Putfield. xsm_i_getfield. xsm_i.....Putfield. and related funchons 
that access data by field name. These routines access the data on the current screen If the 
field that is named exists on the current screen. If the field does not eXist on the current 
screen. these routines access the LOB. 

~uring screen entry and exit processing only. the search order is reversed. ~uring the 
screen entry and exit functions. these access routines fll'St search the LOB and then search 
the screen. ThIS IS because the LOB is merged to the screen after the screen entry func
tion, and the screen IS stored to the LOB before the screen exit function. If the search or
der were not reversed the data accessed would be invalidl8• 

18 Thu could,m a very small number of cases, mtroduce some mcompanbwties With apphcalJ.OIls that were 
wntteD With earher releases of JAM If such c:ompalJ.lnhty problems arue, use the hbrary functJ.on XSM_ OF-

TION selbng the opuon ENTEXT_OFTION 10 FORM-FIRST. 

Page 30 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Chapter 4. 

Built-in Control Functions 
This section describes control functions supplied with JAM. Note that the synopsis is for 
a JAM control string. not a programming language source statement The return value of 
a control function can be used 10 a target list; see the Author's Guide for information on 
control strings and target lISts. 

You may use these functions in control strings and in JPL call statements. 

JAM Release 5 1 March 91 Page 31 



JAM PU1 Programmer's GUide 

jm_exit 
end processing and leave the current screen 

SYNOPSIS 

DESCRIPfION 

Clears the current fonn or window and returns to the preVIous one. If the current fonn IS 

the application's top-level fonn, JAM will prompt and exit to the operabng system. 

The effect is like the default action of the run-time system's EXIT key. 

EXAMPLE 

The following control string invokes a function named proce s s. If it returns 0, another 
function is invoked to reinlbahze the screen; but if it returns -I, the screen is exited. See 
jm _90toP for another example. 

~(-1=~Jm_ex1t; O=~re1nit)process 

The example below shows how a fonn or a window can be replaced by another fonn or a 
wmdow: 

Page 32 JAM Release 5 1 March 91 



JAM PU1 programmer's GUide 

jm_90top 
return to application's top-level form 

SYNOPSIS 

DESCRIPTION 

Returns 10 the application's top-level screen, ordinarily the fllSt screen to appear when 
the application was run. All fonns on the fonn stack and windows on the wmdow stack: 
are discarded. 

The run-time system's SPFI key perfonns the same action, unless you change it using 
SMINICTRL. 

EXAMPLE 

The following menu makes use of both jm_exit and jm_90top. 

+-------------------------------------------------+ 
Query customer database __ 
Update customer database_ 
Free-form query ___ _ 
Return to previous menu __ 
Return to main menu __ 

custquery.jam 
custupdate. jam 
Isql -
"jm_exit __ _ 
"Jm_90top __ 

+-------------------------------------------------+ 

JAM Release 5 1 March 91 Page 33 



JAM PU1 Programmer's GUIde 

jm_goform 
prompt for and display an arbitrary form 

SYNOPSIS 

DESCRIPTION 

This function pops up a window in which you may enter the name of a fonn; it will then 
close all open wmdows and attempt 10 display the fonn, as if that fonn's name had ap
peared in a conttol string. It IS useful for providing a shortcut around a menu system for 
experienced users. 

The result is the same as the default action of the run-time system's SPF3 key. 

EXAMPLE 

The followmg line, if placed m your seblp file, will make the PFIO key act like SPF3 nor
mallydoes: 

SHINICTRL= PFI0=~jm_goform 

Page 34 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

jm_keys 
simulate keyboard input 

SYNOPSIS 

~jm_keys keyname-or-string {keyname-or-string ••• } 

DESCRIPfION 

Queues cbaracters and function keys that appear after the function name for input to the 
run-time system, usmg xsm _ unget key. The run-time system then behaves as though 
you had typed the keys. 

Function keys should be written usmg the lOgIcal key mnemonics hsted in 
smkeys.incl.pll • Data characters should be enclosed between apostrophes' , , back
quotes' ',or double quotes"" . This function passes its arguments to xsm _ ungetkey 
in reverse order, so you supply them in the natural order. 

jm keys will process a maximum of 20 keys. This limit includes function keys plus 
chalaeters contained m strings. 

EXAMPLE 

Enter the name of your favorite bar, followed by a tab and the name of its owner: 

~jm_keys 'Steinway Brauhall' TAB ·James O'Shaughnessy· 

Return to the preceding menu and choose the second opbon: 

~jm_keys EXIT HOME TAB XMIT 

JAM Release 5 1 March 91 Page 35 



JAM PU1 Programmer's GUide 

jm_mnutogl 
switch between menu and data entry mode on a dual
purpose screen 

SYNOPSIS 

~jm_mnutogl {screen-mode} 

DESCRIPfION 

JAM Supports the use of a single screen forboth menu selection and data entry; one popu
lar example is a data entry screen with a "menu bar". The screen must, however, be either 
one or the other at any given momenL This function switches the run-time system's treat
ment of the screen to the other mode. This function performs the same funcuon as the 
MTGL logical key. 

An optional argument may be specified which will force the screen into a parbcular 
mode, regardless of its current state. To specify menu mode, use the argument 'M' (or 
'm'). To specify open-keyboard (data entry) mode, use the argument '0' (or '0'). 

Page 36 JAM Release 5 1 March 91 



JAM PLJ1 Programmer's GUide 

jm_system 
prompt for and execute an operating system command 

SYNOPSIS 
Ajm_system 

DESCRIPfION 

This function pops up a small window, in which you may enter an operating system com
mand. When you press 1RANSMIT, It closes the wlDdow and executes the command. 
Whlle the command is executing, your terminallS returned to the operating system's de
fault 110 mode. 

The run-time system's SPF2 key invokes this function by defaWL 

EXAMPLE 

The following line, when placed in your sebJp file, will cause the PFIO key to act as SPF2 
nonnally does: 

SMINICTRL= PFIO = AJm_system 

JAM Release 5 1 March 91 Page 37 



JAM PU1 Programmer's GUide 

• •• Jm_wlnslze 
allow end-user to interactively move and resize a win
dow 

SYNOPSIS 

DESCRIPfION 

Calling jm winsize has the same effect as if the end-user had just hit the VWPT 
(viewport) iOgical key. The viewport status line appears and the user can move, resize and 
change the offset of the screen as well as move to any Sibling windows. When the end-us
er hits XMIT (transmit) the previous Status line is restored. 

In order for the end-user to able to move from one window to another, the wmdows must 
be slblmgs. Windows may be specified as siblings by specifying & & in a JAM control 
strmg. See the secuons on "Viewports and Posiuoning" and "Control Smngs" in the Au
thor's Guide for further mformabon. Tlus function parallels the bbrary rouUne 
xsm_winsize. 

Page 38 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

jpl 
invoke a JPL procedure 

BOO 

SYNOPSIS 
~Jpl procedure argument ••• ] 

DESCRIPfION 

This function invokes a procedure written in the JYACC Procedural Language. procedure 
should be the name of a JPL procedure or module; anything following that will be passed 
to the procedure as arguments. See the JPL Programmer's Guide for the rules used by the 

• JPL interpreter to determine wtuch JPL procedure is executed. The value returned by 
yom procedure will be returned by jpl for use in a target list 

This function is similar to the JPL jpl command. Colon expansion is done on the argu
ments. 

EXAMPLE 
The conlrol stting below invokes a JPL function to concatenate two sttings and store the 
result in target. 

JAM Release 5 1 March 91 Page 39 





JAM PU1 Programmer's GUide 

Chapter 5. 

Keyboard Input 

Keystrokes are processed in three steps. First, the sequence of characters generated by 
one key is identified. Next the sequence is ttanslated to an internal value, or logical char
acter. Finally, the internal value is either acted upon or returned to the application ("key 
routing"). All three steps are table-driven. Hooks are provided at several points for appli
cation processing; they are described in the chapter "Writing and Installing Hook Func
bons". 

5.1. 

LOGICAL KEYS 
JAM processes characters lDtemaily as logical values, which frequently (but not always) 
correspond to the physical ASCII codes used by terminal keyboards and displays. Specif
ic physical keys or sequences of physical keys are mapped to logIcal values by the key 
ttanslation table, and logical characters are mapped to video output by the MODE and 
GRAPH commands in the VIdeo fIle. For most keys, such as the normal displayable char
acters, no explicit mappmg is necessary. Certain ranges of logical characters are inter
preted specially by JAM; they are 

• Ox01OO to OxOlff: operations such as tab, scrolling, cursor mo-
tion 

• Ox6101 to Ox7801: function keys PFI-PF24 

• Ox4101 to OxS 8 0 1: shifted function keys SPFI - SPF24 

• Ox6102 to Ox7802: applICation keys APPl- APP24 

JAM Release 5 1 March 91 Page 41 



~. -

JAM PU1 Programmer's GUide 

5.2. 

KEY TRANSLATION 
The first two steps together are controlled by the key translation table, which IS loaded 
during inibahzabon. The name of the table is found in the environment (see the configu
ration guide for details). The table itself IS derived from an ASCII file which can be modi
fied by any editor; a screen-onented ubhty, modkey, is also supplied for creating and 
modifying key translation tables (see the UUlibes Guide). 

JAM assumes that the fll'St character of any multi-character key sequence to be translated 
to a single logical key is a conbOl character in the ASCn chart (OxOO to Ox If, Ox7f, Ox80 
to Ox9f, or Oxfi). AU characters not in this range are assumed to be displayable characters 
and are not translated. 

Upon receipt of a control character, the keyboard input function xsm _get key searches 
the translation table. If no match is found on the fIrst character, the key IS accepted with
out translation. If a full match is found on the fIrst character, an exact match has been 
found, and xsm get key relumS the value indicated in the table. The search continues 
through subsequent chamcters unbl either 

1. an exact match on n characters is found and the n+ 1 'th character in the 
table is zero, or n is 6. In this case the value m the table is returned. 

2. an exact match IS found on n-l characters but not on n. In thiS case 
xsm_getkey attempts to flush the sequence of chamcters returned 
by the key. 

This last step is of some importance: if the operator presses a function key that IS not in the . 
table, the Screen Manager must know "where the key ends". The algorithm used is as fol
lows. The table is searched for all entries that match the fIrst n-l chamcters and are of the 
same type in the n'th character, where the types are digit, control character, letter, and ) 
punctUlJtion. The smallest of the totallenglhs of these entries is assumed to be the length 
of the sequence produced by the key. (If no entry matches by type at the n'th character, the 
shortest sequence that matches on n-l characters is used.) TIus method allows 
xsm_getkey to distinguish, for example, between the sequences ESC 0 x, ESC [ 
A. and ESC [ 1 0 • 

5.3. 

KEY ROUTING 
The maID routine for keyboard processing is xsm input. This routine calls 
xsm _getkey to obtain the translated value of the key. It then decides what to do based 
on the following rules. 

Page 42 JAM Release 5 1 March 91 



JAN PU1 Programmer's GUide 

If the value is greater than Ox Iff, xsm_l.nput returns to the caller with this value as the 
retumcode. 

If the value is between OXO 1 and Ox 1 ff, the key is fll'St tIansla1ed Via the key translation 
table. This table is changed With the library routine xsm_ keyoption. Then processing 
is detennined by a routing table. Use xsm _ keyoption to get and set the routing IOfor
mation for a particular key. The routing value consists of two bits, examined independent
ly, so four different actions are possible: 

1. If neither bit is set, the key IS ignored. 

2. If the EXECUTE bit is set and the value is in the range OxOl to Oxff, It 
is wntten to the screen (as interpreted by the GRAPH enlry in the video 
fIIe,lfone exists). If the value IS m therangeOxlOO to Ox 1 ff, the appro
priate action (tab, field erase, etc.) is taken. 

3. If the RETURN bit is set, xsm_input retwns the logical value to the 
caller; otherwise, xsm _get key IS called for another value. 

4. If both bits are set, the key is executed and then returned. 

The default settings are Ignore for ASCII and extended ASCII control characters (OxOl
Ox If, Ox7f, Ox80 - Ox9f, Oxft), and EXECUTE only for all others. The default setting for 
displayable characters is EXECUTE. All other ASCII and exteneded ASCII characters 
are ignored. The applicabon function keys (PFl-24, SPFl-24, APPl-24, and ABORT) 
are not handled through the routing table. Their routing IS always RETURN, and cannot 
be altered. AU other function keys (EXIT, SPGU etc ... ) are mitially set to EXECUTE . 

. • Applications can change key actions on the fly by using xsm _ keyoption. For exam
ple, to disable the backtab key the appbcation program would execute 

call xsm_keyoption(BACK, KEY_ROOTING, KEY_IGNORE) 

To make the field erase key return to the application program. use 
call xsm_keyoption (FERA, KEY_ROUTING, RETURN) 

Key mnemonics can be found in the file smkeys . incl. pll. 

JAM Release 5 1 March 91 Page 43 





JAM PU1 Programmer's GUIde 

Chapter 6. 

Terminal Output Processing 
JAM uses a sophIsticated tklayed-wrile output scheme. to minimize unnecessary and re
dundant output to the display. No output at all is done until the display must be updated, 
either because keyboard input is being solicited or the lIbrary function xsm flush has 
been called. Instead,the run-tlme system does screen updates in memory, and keeps track 
of the dlsplay positions thus "dirtied". Flushing begms when the keyboard is opened; but 
if you type a character while flustung is incomplete, the run-time system will process it 
before sending any more output to the display. This makes it possible to type ahead on 
slow lines. You may force the display to be updated by calling xsm _flush. 

JAM takes pains to avoid code specifIC to particular displays or terminals. To achieve this 
it defIDes a set of logical screen operations (such as "position the cursorj, and stores the 

.. character sequences for performing these operauons on each type of display in a file spe
cific to the dlsplay. Logical display operations and the coding of sequences are detailed in 
the Video Manual; the following sections describe additional ways in which apphcations 
may use the information encoded in the video file. 

6.1. 

GRAPHICS CHARACTERS AND 
ALTERNATE CHARACTER SETS 
Many terminals support the display of graphics or special characters through alternate 
character sets. Control sequences switch the terminal among the various sets, and charac
ters in the standani ASCII range are displayed differently in different sets. JAM supports 
alternate character sets via the MODEx and GRAPH commands in the video fIle. 

The seven MODEx sequences (where It is 0 to 6) switch the terminal into a particular char
acter seL MODEO must be the normal character seL The GRAPH command maps logical 

JAM Release 5 1 March 91 Page 45 



JAM PU1 Programmer's GUide 

characters to the mode and physical character necessary to display them, It consIsts of a 
number of entries whose fonn is 

logical value = mode physical-character 

When JAM needs to output logical value it wiD fust uansmit the sequence that 
switches to mode, then uansmitphysical-character. It keeps track of the current 
mode, to aVOid redundant mode switches when a string of characters in one mode (such as 
a gmphics border) is being written. MODE4 through MODE 6 sWitch the mode for a single 
character only. 

6.2. 

THE STATUS LINE 
JAM reserves one line on the display for error and other status messages. Many terminals 
have a special status line (not addressable with nonnal cursor posluoning); if such is not 
the case, JAM wiD use the bottom line of the display for messages. There are several sorts 
of messages that use the status line; they appear below in priority order. 

1. Transient messages issued by xsm _err_reset or a related funcuon 

2. Ready/wait status 

3. Messages installed with xsm_d_msg_line or xsm_msg 

4. Field status text 

S. Background status text 

There are several routInes that display a message on the status line, W8lt for acknowledge
ment from the operator, and then reset the status line to its previous state: 
xs~query_msg, xsm_err_reset, xsm_emsg, xsm_quiet_err, and 
xsm_qui_msg. xsm_query_msg W8lts fora yes/110 response, which it returns to the 
calling progmm; the others wait for you to acknowledge the message. These messages 
have highest precedence. 

xsm_setstatus provides an alternating pair of background messages, which have 
next highest precedence. Whenever the keyboard is open for input the status line displays 
Ready; it displays Wai t when your progmm is processing and the keyboard is not open. 
The stnngs may be altered by changing the SM _READY and SM _ WAI T entries in the mes
sagefJ.J.e. 

If you call xsm_d_msg_line, the display attribute and message text you pass remain 
on the status line untIl erased by another call or overridden by a message of higher prece
dence. 

Page 46 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

When the stams line has no higher pnonty text, the Screen Manager checks the current 
field for text to be displayed on the status lme. If the cursor IS not in a field, or if it is in a 
field with no status text, JAM looks for background stams text, the lowest prionty, Back
ground stams text can be set by calling xsm_setbkstat, passing it the message text 
and display attribute. 

In addition to messages, the rightmost part of the status line can display the cursor's cur
rent screen posibon, as, for example, C 2, 18. This display is controlled by calls 10 
xsm c vis. 

During debugging, calls IOxsm_err_reset orxsm_quiet_err can be used to pro
vide stams information to the programmer without dISturbing the main screen display. 
Keep in mind that these calls will work properly only after screen handlmg has been ini
tializedby acalltoxsm_initcrt. xsm_err_reset andxsm_quiet_err can be 
called with a message text that is defmed locally, as in: 

call xsm_err_reset("ZIP CODE INVALID FOR THIS STATE."); 

However, the JAM library funcbons use a set of messages defmed in an intemal message 
table. This table is accessed by the function xsm _ msg_get, using a set of defmes in the 
header me smerror. incl. pH. The return value from xsm msg get can be used 
as input for one of the stams line fUDCbons. - -

The message table is imbalized from the message me Identified by the enVlfOnment vari
able SMMSGS. AppliCation messages can also be placed m the message me. See the sec
tion on message files in the Configurabon Guide. 

JAM Release 5 1 March 91 Page 47 





JAM PU1 programmer's GUide 

Chapter 7. 
Writing International (8 bit) 
Applications 

7.1. 

INTRODUCTION 
This chapter describes how to use the 8 bit internationalization capabilities that have been 
incorporated into JAM Release 5. 

- -From the point of view of someone who has used JAM without these features, a few dif
ferences will be apparent Immediately. Other, more subtle, differences wiD emerge as the 
package is used in building language-independent applications. F'mally, many of the 
changes were made so that the development utilitIeS could be localized for use in other 
countties. These wil1largly go unnoticed by people using the package in English. 

7.1.1. 

General Overview 
The purpose of the 8 bit NLS is to allow the JAM product and applications created with 
with it to be "localized" for use in non-English-speaking countties. This means that the 
product can be made to look like it originated m the country in which it is being used. All 
prompts and messages can appear in the appropriate language and customs for formatting 
dates, currency fields and the like can be observed. Notwithstanding this, many of the fea
tures that are only visible to programmers WID continue to be in English since many pro
grammers are used to working in English. 

JAM Release 5 1 March 91 Page 49 



~ .... 

JAM PU1 Programmer's GUide 

The capabllibes descnbed are limited to languages in which characters can be represented 
in 8 bits of infonnallOn and those that use a left-to-right entry order. This ehminates the 
compleXlbes assocaated with many far- and nuddle-eastem languages. 

7.2. 

LOCALIZATION 
JAM and JAM applications can be localized by taking the following steps: 

• Use the Screen Editor to trans1ale all screens in the application. 

• Modify and recompile the message file. 

• Translate the documentation. 

7.2.1. 

Background 
The JAM product was originally developed With some intematlOnalizabon issues in 
mind. It has always used 8 bit character data, without appropriating a bit for internal use. 
So one of the major demands of the international market was already sabsfied. 

Date and time fonnats have always been completely specified by the screen creator. The 
wide variety of fonnats available in Release 4 could satisfy most requirements. In Release 
5, additional capablliues were added to make it easier to convert screens from one lan
guage to another. Currency fonnats were the least international of the features in the Re
lease 4 prodUCL Release 5 makes these completely language independenL 

Each of the sections below discusses some aspect of internaUonalizabon. 

7.2.2. 

8 Bit Character Data 
As pointed out in the introduction, JAM supports 8 bit character data. Video files specific 
to the ternunal can give special instructions, if necessary, as to how to display internation
al characters. This is needed if the tenninal requires shifting to a different character set to 
display non-ASCII characters. Most tenninals used in the international market will not 
need to shift character sets. 

The video file can also be used to translate between two different standards for interna
tional characters. Thus the screens could be created with one standard and displayed using 
a different one. 

Page 50 JAM Release 5 1 March 91 



JAM PLl1 Proarammer's GUide 

The use of8 bit characters for international symbols does not necessanly preclude the use 
of graphics for borders, etc. Any unused entries 10 character set (e.g, OxO 1 - Ox 1 f, or Ox80 
- Ox9t) can be mapped to line graphics symbols. 

JAM rarely, if ever, interprets characters present 10 screens or entered from the keyboard. 
Internally it merely manipulates numbers. Any meaning as an alphabetic character, 
graphics symbol, or whatever, is generally irrelevant to JAM. The cursor control keys 
(arrows, tab, etc.), function keys, and soft keys are all assigned logical values that are out
Side the range OxOO to Oxff, and thus cannot conflICt with international characters. 

Keyboards that support international character sets will usually produce a single (8 bit) 
byte (perhaps with the high bit set) for each character. However there are some terminals 
that generate a sequence to represent an mtemational character. If so, modkey (or a text 
editor) would be used to map the byte sequences into a logICal value,just as the video file 

-would be used to map the logical value to the sequence reqwred by the display tenninal. 

If you have questions about how to display non-English characters or to receive them 
from the keyboard, consult the chapters on keyboard and video processing. 

7.2.3. 

Date And Time Fields 
Date and Tune fields have been completely revamped in Release S. They have been com-

n bined to enable one field to have both date and time mfonnation. ThIs, and the fact that 
more flexibility was added to date and lime fonnatbng, required changes to the date and 
time mnemonics. For example, 10 Release 4, the mnemonic rom was used for a 2-digit 
month in Date fIelds as well as the specifier for minutes in Tune fields. Clearly, this can
not serve both purposes when the fields are combined. 

In Release 5, the mnemonics for specifying date and time formats are stored in the mes
sage file so they may be changed. In addition, they are stored in a ''tokenized" fonn mter
nally which provides two major benefits. First, the need to parse the formats at runtime is 
eliminated, thus speeding up processmg and reducing memory requirements. Second, 

o screen designers in different countries editing the same screen will all see date and time 
specifications in fonnats they are used to. For example, if an English screen designer 
created a date field with the format mont day /year, it might show up on a French sys
tem as moi s / jour / annee. 

The problem of interchanging the month and day is dealt with later. 

The table below shows the default message me enllies for date and time mnemonics: 

JAM Release 5 1 March 91 Page 51 



JAM PU1 Programmer's Guide 

Msg # MneTnOfUc Daleffune Tokenized Description 
Mnemonic Format 

FM YR4 YR4 %4y 4 digit year 

FM YR2 YR2 %2y 2 digit year 

FM MON MON %m month number 

FM MON2 MON2 tOm month number, zero fIll 

FM DATE DATE %d date (day of month) 

FM DATE DATE2 %Od date, zero fIll 

FM HOUR HR %h hour 

FM HOUR HR2 %Oh hour, zero fill 

FM MIN MIN %M minute 

FM MIN2 MIN2 tOM mlDute, zero fill 

FM SEC SEC %s seconds 

FM SEC2 SEC2 %Os seconds, zero fill 

FM YRDA YDAY %+d day of the year 

FM AMPM AMPM %p am/pm 

FM DAYA DAYA %3d abbreviated day name 

FM DAYL DAYL %*d long day name 

FM MONA MONA %3m abbrev. month name 

FM MONL MONL %*m long month name 

Thus, a date field specifiedasmm/dd/yyyy in Release 4 would beMON2/DATE2/YR4 
in Release 5. The f4to5 conversion program will convert the format to %m/%d/%4y 
IDtemally so it will automatically show up correcdy when the screen IS edited. The mne
mODlcs were chosen to correspond to ANSI standards. You can change them to suit your 
own needs by simply changlDg the message file and running msg2bin. To change the 
mnemoDlc for a 4 digit year from YR4 to YYYY, for example, change the message file hne 

Page 52 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

to 
FM_YR4 0: YYYY 

and run msg2bin. 

If all development is done ID one language,the fact that dlfferent mnemonics for date and 
time fannalS can be used for different languages is unimponant, What is imponant, how
ever, is to be able to modify an application to operate in a different language. The goal is 
that only the text of the screens and the message file should need to be changed. 

Considera screen With a date field of the form DAYA MONA DATE, YR4. If executed 
on a system With an English message file It might appear as 

Men Apr 4, 1989 

whereas on a French system it would be 

Lun Avr 4, 1989 

This happens without changing the date formaL All that has changed are the names and 
abbreviations of the months and days which are also stored in the message file so it is a 
simple rnatiel' to convert them. 

Now conslCier a date field which in English should show up m mm./dd/yyyy form but 
should appear in French as dd-mm.-yyyy. In thiS case, the date fannat itself would have 
to be modified. For this reason, 10 additional formats are supplied for the designer's use. 
For instance, in the message file the designer can specify a new date mnemoDiC called 
REGULAR DATE. In the English message file this can be equated to mm/ ddt yyyy and 
in the French message file to dd-mm.-yyyy. Thus, if the date fannat is specified as 
REGULAR DATE, only the message file, not the screen, needs to be changed to CODven 
the date field to French. 

For this capability, both the mnemonics and what they represent are specified ID the mes
sage file. The actual formats are stored in the message file in tokenized form so that there 
is no need for a parser. 

The following table shows the default message file entnes for these extra date mnemon
ics: 

Msg Number DatefTime Toke- Corresponding Default 
Mnemonic Mnemonic nized Msgflle Entry 

Form 

FM_OMN_DEF _ DEFAULT %Of SM_ODEF _DTIM %m/%d/%2y 
DT E %h:%OM 

FM_1 MN_DEF_ DEFAULT %1f SM_1 DEF _DTIM %mI%d/%2Y 
DT DATE E 

JAM Release 5 1 March 91 Page 53 



JAM PU1 Programmer's Guide 

Msg Number Date/Time Toke- Corresponding Default 
Mnemonic Mnemonic nized Msgflle Entry 

Form 

FM_2MN_DEF _ DEFAULT %2f SM_2DEF _DTIM %h:%OM 
DT TIME E 

FM_3MN_DEF _ DE- %3f SM_3DEF _DTIM %m/%d/%2y 
DT FAULT3 E %h:%OM 

FM_ 4MN_DEF _ DE- %4f SM_ 4DEF _DTIM %m/%d/%2y 
DT FAULT4 E %h:%OM 

FM_SMN_DEF _ DE- %Sf SM_SDEF _DTIM %m/%d/%2y 
DT FAULTS E %h:%OM 

FM_6MN_DEF _ DE- %6f SM_6DEF _DTIM %m/%d/%2y 
DT FAULT6 E %h.%OM 

FM_7MN_DEF _ DE- %7f SM_7DEF _DTIM %m/%d/%2y 
DT FAULT7 E %h:%OM 

FM_8MN_DEF _ DE- %8f SM_8DEF _DTIM %m/%d/%2y 
DT FAULT8 E %h.%OM 

FM_9MN_DEF _ DE- %9f SM_9DEF _DTIM %m/%dfO/a2y 
DT FAULT9 E %h:%OM 

Thus. if the screen designer specifies a dale field with the format DEFAULT DATE. it 
would show up in mm/ dd/yy form. If the line 

SM_IDEF_DTlME = tm/td/t2y 

in the message file were changed to 

SM_IDEF_DTlME a td-tm-t2y 

the dale would show up m dd-mrn-yy form. To change the mnemonic for thIS date for
mat to REGULAR DATE. the message FM _lMN _ DEF _DT should be modified. 

7.2.4. 

Currency Fields 
Like Dale and Time fields. Currency fields have been modlflCd in Release 5. Smce it is 
not uncommon in Europe to be dealing with sevetal currencies simultaneously. release S 

Page 54 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

does not force anyone system on the screen creator. Thus, the formatting capabilities 
were enhanced to suppon any convention the screen creaJor might desire. As with date 
and time formats, a "default" format IS suppbed that causes the actual format to be taken 
from the message file. For Currency fields however, this option is supplied only for the 
parts of the format that may vary from one currency to another. 

The new release allows the followmg items to be specified for Currency fields: 

• the decimal symbol (usually dot or comma) 

• minimum number of decimal places 

• maximum number of decimal places 

• thousands separator (usually dot or comma; b = blank) 

• the currency symbol to be used (up to 5 characters) 

• the placement of that symbol (left, right or at decimal pt) 

• default currency from the message me (to replace the above entries) 

• rounding (round-up, round-down, round-adjust) 

• fill character 

• justification 

• clear If zero 
• apply if empty 

There is a slight problem in specifying currency symbols when using the Screen Editor . 
..... Since the currency symbol is entered mto a regular field, It is not possible to enter trailing 

spaces (they are always stripped oft). Thus, to specify a leading currency symbol sepa
rated from the data by a space (FF 123. 456, 78) you must use the message me. For 
this reason, the dot (.) may be used to signify a space when entered into the currency 
freld. A dot in the message file for this purpose Will appear as a dot. 

The default currency formats are strings of the form rmJdpc:cccc where: .r = decimal symbol (usually comma or dot) 

= minimum number of decimal places 

= maximum number of decimal places 

= thousands separator (usually comma or dot; b = blank) 

= placement of currency symbol (I, r or m) 

= up to 5 characters for the currency symbol 

Thus, if the screen designer specifies a currency field With the format CURRENCY, it 
would show up in $999, 999.99 form. If the line 

JAM Release 5 1 March 91 Page 55 



JAM PU1 Programmer's GUide 

SM_ODEF_CURR = W.22,I$W 

in the message file were changed to 

SM_ODEF_CURR = w,22.1FFW 

the field would show up as FF 999. 99, 99. To change the mnemonic for thIS currency 
fIeld, the message FM _ OMN _ CURRDEF should be modIfied. The following table shows 
the default message file entnes for the currency mnemomcs: 

Msg Number Mnemonic Currency Corresponding Msgfile De/ault 
Mnemonic Entry 

FM OMN CURRDEF CURRENCY SM ODEF CURR .22,1$ - - - -
FM lMN CURRDEF NUMERIC - - SM_1DEF_CURR .09, 

FM 2MN CURRDEF PLAIN SM_2DEF_CURR .09 - -
FM_3MN_CURRDEF DEFAULT3 SM_3DEF_CURR .09 

FM 4MN CURRDEF DEFAULT4 SM 4DEF CURR .09 - - - -
FM SMN CURRDEF DEFAULTS SM_SDEF_CURR .09 - -
FM_6MN_CURRDEF DEFAULT 6 SM_6DEF_CURR .09 

FM 7MN CURRDEF DEFAULT7 SM 7DEF CURR .09 - - - -
FM SMN CURRDEF DEFAULTS SM 8DEF CURR .09 - - - -
FM 9MN CURRDEF DEFAULT 9 SM 9DEF CURR .09 - - - -

7.2.5. 

Decimal Symbols 
JAM S will accomodate 3 decimal symbols which are used in different circumstances: 

• System Decimal Symbol 

• Local Decimal Symbol 

• Field Decimal Symbol 

The System Decimal Symbol is the one that bbrary routines like atof and sprintf 
use. The Local Decimal Symbol is the one that is used when local customs are followed 

Page 56 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

(dot in Enghsh; comma in French). The Field Decimal Symbol is the one specified for a 
given field if that field is not observing local convenbons. 

The System and Local Decimal Symbols are obtained from the operating system if the 
operating system supports such thmgs (see the installabon notes for JAM for your operat
ing system). The Local Decimal Symbol may be specified in the message file (message 
SM DECIMAL), in which case it overrides the operating system decimal symbol. Dot IS 
the system decimal If no symbol is specified in the message me and if the operabng sys
tem does not supply one. 

The sections below descnbe the circumstances under which each of the different symbols 
is used. 

7.2.6. 

Character Filters 
The one time that JAM requires some knowledge of the meaning of the data is while en
forcing the character filters on a field. The filters currently supported are digits only, nu
menc, alphabetic, alphanumeric, and yes/no and regular expression. 

To validate the data JAM uses the standard C macros: isdigit, isalpha, etc. JAM 
5 assumes that the operabng system supplies these macros m a fonn suitable for interna
tional use. In absence of such operating system support, care should be taken when using 
these capabilIties. 

Special code 18 used to process numenc fields since C does not provide an "isnumenc" 
macro. If the field has a currency edit, JAM uses the Field Decimal Symbol to validate 
the numeric entry. If the field has no currency edit or the currency edit has no declloal 
symbol specified, JAM uses the Local Decimal Symbol. 

Yes/no fIelds have always been internationalized in that the yes and no characters (y and 
n·in English) are specified in the message file. Although some vendors will supply infor
mation about these characters, the proposed ANSI standard does not address the issue. 
Therefore, for reasons of portability, JAM wiD continue to use the message file for this 
data. 

" Upper and lowercase fields wiD also behave properly provided that t ouppe rand related 
functions are language dependenL The present code assumes that the return from toup
pe r is appropriate for an upper case field. Therefore a lower case letter can appear in 
such a field if there is no upper case equivalent for that letter. ('The Genoan "double s" has 
no upper case equivaienL) 

In processing regular expressions, JAM 5 uses the ASCII coUating sequence for ranges 
of characters. Therefore, the expresSIOn 

JAM Release 5 1 March 91 Page 57 



JAM PU1 Programmer's GUide 

[a-z]* 

wiD match only the English lower case letters. The European character a, for example, 
would not be matched by this expression. 

7.2.7. 

Status And Error Messages 
All messages produced by JAM S are stored in the message fIle so they may be easily 
localIZed. Each message is a complete phrase or sentence. Message components are never 
pieced together because domg so would make it dlfficult to translate to a language that 
has a sentence structure different from English. 

7.2.8. 

Screens In The Utilities 
These screens were memory resident in Release 4. For international customers they must 
be modifiable. 

A linkable Jxform is be provided, and the library containing the source for the screens 
is made avaiIable. A developer may translate the screens and relink the ublities. Similan
Iy modkey is developer-linkable, and the source for its screens is provided. In this way 
the screens remam memory resident and no compromise of speed need be made. 

Unfortunately this solution is not ideal if several users on the same machine wish to use 
different languages. To support this, the screens may be kept on disk, The current mecha-, 
Dlsm of SMPATH allows run-time selecbon of the set of screens to be used. 

72.9. 

Screens In Application Programs 
The same approach as discussed in the above section can be used for screens m applica
bon programs. Thus different language screens can be kept in separate directones and the 
user can specify which is to be used at run-bme. 

7.2.10. 

Menu Processing 
xSIILinput returns the fust character of the selected entry. This, of course, is not lan
guage independent. JAM ublities have been modified to use the current field number 

Page 58 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rather than the return value. Because it cannot be assumed that all entries will have unique 
fll'St letters, the string opuon is specIfied. 

Application programs intended for an international market should not rely on the inibal 
character of the menu selecuon. The field number contaimng the cursor is a better way of 
detennining which selection the operator has made. However the freld numbers may 
change if the screen is redesigned. Note that thiS is not a problem when the JAM Execu
tive is used, since the JAM Executive uses relative field numbers to determine the control 
string to execute when a menu field is selected 

A new additional edlt was instituted lD JAM 4 that specifies the return code from a re
turn entry (or menu) field. The screen creator specifies the return code (an integer) 
when designing the screen. If this edit exists, xsm _input uses that value as the return 
code to the calImg program. If this edit does not exist, the usual return code is used. 

7.2.11. 

lstform, lstdd, and janunap 
These ublities list data about the screen in English. Since they are often used for docu
mentation it IS important that the text be translatable to other languages. Thus the textual 
material, headings, etc., have been moved to the message file. 

7.2.12. 

Range Checks 
"Range checks for numeric data are presently correctly handled since they use atof (as

suming that the "strip" routine works properly). 

Alphabet dam presents special problems. One of the major issues for internationalization 
is the collating sequence of a language. For dictionary or telephone book processing the 
problem is particularly troublesome. For example, upper and lower case Ieuers compare 
equal. Also, in a telephone book, St. and Saint compare equal, hyphens are Ignored, 
etc. In some languages even less demanding applications pose severe problems. For ex
ample, ligatures compare equally to pairs ofletters. The placement of vowels with dlacrit
lcal rnarlcs varies widely even among countries using the same language. 

- The proposed ANSI standard specifies a routine, strcoll, that can be used to expand 
the word into a fannat suitable for comparison by s t rcmp. These routines assume that 
the dam supplied is a word in the local language. They will given unexpected results on 
non-language data. 

JAM is not designed to process languages in a way that requires such niceties. It does sort 
names of fields and other objects, but that is done only to speed look-up. As long as the 
sort routine, and the search routine use the same algoothm, things will wort. 

JAM Release 5 1 March 91 Page 59 



JAM PU1 Programmer's GUide 

In JAM, range checks are often given on non-language data. For example a menu selec
bon might have a range of a 10 d. In certain languages an wnlaut would fall into that range 
if a language specific companson was made. TIns effect would complicate screen design. 
Different screens would be needed for different countries, even if they used the same lan
guage. 

For these reasons no changes have been made 10 the Release 4 method of range checking. 
s t rcmp and memcmp continue to be used. These compare the internal values of the 
characters, Without regard 10 thell' meanings in the local language. 

7.2.13. 

Calculations Using @SUM and @DATE 

These keywords have been retained even though they are language specific. Computa
tions With dates assume the Gregorian calendar. No provison is made for other calendars. 

72.14. 

xsm dblval and xsm dtofield 
These roubnes use a tof and sprintf therefore correctly interpret the System Decimal 
Symbol (radix character). 

7.2.15. 

xsm_is_yes and xsm_query_msg 
These routines use the characters in the message file for y and n and thus are already in
temabonalized. They use t oupper to recognize the upper case vanations. 

7.2.16. 

Batch Utilities 
All the ublities messages, including usage messages have been moved to the message fIle. 

The mnemonics for logical keys (XMIT, EXIT, etc.) are not translated 10 other languages, 
nor the mnemonics used in the video file, so the internal processmg of the ubbties need 
not be mocbfied. 

Page 60 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

ChapterS. 

Writing Portable Applications 
The following section describes features of hardware and operating system software that 
can cause JAM 10 behave in a non-umform fashion. An apphcation designer wishing 10 
create programs that run across a vanety of systems will need to be aware of these factots. 

8.1. 

TERMINAL DEPENDENCIES 
JAM can run on display terminals of any Size. On terminals without a separately addres
sable status line, JAM will steal the bottom hne of the display (often the 24th) for a status 

··Ime, and status messages will overlay whatever IS on that Ime. A good lowest common 
denominator for screen sizes is 23 hnes by 80 columns, including the border (21 if two
line soft key labels will be used). 

Different terminals support different sets of alblbutes. JAM makes sensible compromis
es based on the aunbutes available; but programs that rely extensively on auribute manip
ulation 10 highlight data may be confusing to users of terminals with an insufficient num
ber of alblbutes. Colors will not show up on monochrome terminals, e.g. Use of graphics 
character sets is particularly terminal dependent. 

-- Aunbute handling can also affect the spacing of-fields and texL In particular, anyone de
'"'" signing screens 10 run on termmals with onscreen attnbutes must remember to leave 

space between fields, highlighted text, and reverse video borders for the auributes. Some 
terminals with area auributes also hmit the number of attnbute changes permitted per line 
(or per screen). 

The key ttanslation table mechanism supports the assignment of any key or key sequence 
10 a particular logical character. However, the number and labelling of function keys on 
particu1arkeyboards can constrain the application designer who makes heavy use of func-

JAM Release 5 1 March 91 Page 61 



JAM PU1 Programmer's Guide 

tion keys for program contrOl. The standard VT100, for instance, has only four function 
keys. For simple choices among alternatives, menus are probably better than switching on 
function keys. 

Usmg function key labels, or key tops, instead ofhard-coded key names IS also important 
to malang an application run smoothly on a variety of terminals. Field status text and oth
er status hoe messages can have key tops inserted automancally, usmg the %K escape. No 
such translation is done for sarings written to fields; in such cases, you may want to place 
the sb'mgs in a message file, since the setup file can specify terminal-dependent message 
flies. 

Page 62 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Chapter 9. 

Writing Efficient Applications 

9,1. 

MEMORY-RESIDENT SCREENS 
Memory-resident screens are much qUicker to display than disk-resident screens, since 
no disk access is necessary to obtain the screen data. However, the screens must first be 
converted to source language modules with bi n2pll or a related utility (see the Utilities 
Guide), then complied and linked with the application program • 

. xsm_d_form and related library functions can be used to display memory-resident 
- screens; each takes as one of Its parameters the address of the global array containing the 

screen data. which will generally have the same name as the file the original screen was 
originally stored in. 

A more flexible way of achievmg the same object is to use a memory-resident screen liSL 
Bear in mind that the JAM Screen Editor can only operate on disk riles, so that altering 
memory-resident screens during program development requIreS a tedious cycle of test
edit-remsen with bin2pll-recompile. The JAM library maintamsan intemallistof 
memory-resident screens that xsm_r_window and related functions examine. Any 

_ screen found in the list will be displayed from memory, while screens not in the list will 
- be sought on disk. This means that the appliCation can be coded to use one set of calls, the 

r-version, and screens can be configured as disk- or memory-resident Simply by altering 
the lisL 

Call xsm_formlist to add a screen to JAM's memory-resident screen list 

Using memory-resident screens (and configuration files, see the next section) is, of 
course, a space-time tradeoff: mcreased memory usage for better speed. 

JAM Release 5 1 March 91 Page 63 



JAM PU1 Programmer's GUide 

JAM will append the extension found in the setup variable SMFEXTENSION to screen 
names (e g. in control fields) that do not already contain an extension; you must take this 
into account when creating the screen list JAM may also conven the name to uppercase 
before searching the screen list; this is governed by the SMFCASE vanable. 

9.2. 

MEMORY-RESIDENT CONFIGURATION 
FILES 
Any or all of the three configuration files required by JAM can be made memory resi
denL First a PIll source file must be created from the binary version of the file, using the 
bin2pll utility; see the Utilities Guide. The source files created are not readily deci
pherable. A CalliS then made to eitherxsm_msgread, xsm_vinit,or xsm_ keyi
ni t, depending on the type of configuration file being installed. 

If a file is made memory-resident, the corresponding environment variable or SMVARS 
entry can be dispensed with. 

9.3. 

MESSAGE FILE OPTIONS 
If you need to conserve memory and have a large number of messages in message files, 
you can make use of the MSG_DSK option to xsm _msgread. This option avoids load
ing the message files IOto memory; instead, they are left open, and the messages are 
fetched from disk when needed. Bear in mind that this uses up additional file descnptors, 
and that buffenng the open file consumes a certam amount of system memory; you will 
gam little unless your message files are quite large. 

9.4. 

AVOIDING UNNECESSARY SCREEN 
OUTPUT 
Several of the entries 10 the JAM video file are not logically necessary, but are there sole
ly to decrease the number of characters ttansmitted to paint a given screen. This can have 
a great impact on the response time of applications, especially on time-shared systems 

Page 64 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

with low data rates; but It is nObceable even at 9600 baud. To lake an example: JAM can 
do all its cursor posiboning using the CUP (absolute cursor position) command. Howev
er, it will use the relative cursor posibon commands (CUU, CUD, CUF, CUB) if they are 
defined; they always reqUire fewer characters to do the same job. Similarly, if the terminal 
is capable of savlOg and restoring the cursor position itself (SCP, RCP), JAM will use 
those sequences instead of the more verbose CUP. 

The global variable I_NODISP may also be used to decrease screen output. While this 
variable is set to 0 (via xsm iset), calls into the JAM library will cause the internal 
screen image to be updated, but nothlOg will be written to the actual display; the display 
can be brought up to date by resetting I_NODISP to 1 and calling xsm_rescreen. 
With the implementation of delayed write this sort of trick is rarely necessary. 

9.5. 

JPL VS. COMPILED LANGUAGES 
JPL code execution goes through an extra layer of IOtrepretabon that compded code, such 
as PLll, does noL In most cases, the total run bme is too small to matter, but If a JPL func
bon is long or loops many bmes and a delay is noted, it may pay to rewrite it in PLlt. 

JAM Release 5 1 March 91 Page 65 





JAM PU1 Programmer's GUide 

Chapter 10. 

Block Mode 
The purpose of this document is to descnbe the block mode capabilities of JAM from the 
perspective of someone using the system and from the perspective of a developer that -
needs to write a block mode driver. 

10.1. 

USING BLOCK MODE 

10.1.1. 

General Overview 
The purpose of the block mode interface is to allow JAM to be used With terminals, like 
the HP2392A and mM 3270's, that operate m block mode. Such terminals, which are 
hereinafter referred to as block mode terminals, operate differendy than their interactive 
or character mode cOlmterparts in that they do not interact with the computer on every 
keySb'Oke. Instead, a formatted screen is sent to the termmal and processed by the termi
nallocally. When a function key is pressed, data are transmitted to the computer and are 
available to the program which sent the formatted screen. 

Block mode terminals typically have capabilities for defining protected and unprotected 
fields and sometimes allow a minimal set of character validations such as restricting a 
field to only allow digits. They do not provide JAM-like capabilities such as shifting, 
scrolling and provisions for post-field validation. It should therefore seem obvious that 
an application will behave slighdy differendy on a block mode terminal than on an inter
active one. The goal of the block mode interface, however, is to minimize these differ
ences and, to the greatest extent poSSIble, allow applications to be created that can operate 

JAM Release 5 1 March 91 Page 67 

I' 



JAM PU1 Programmer's Guide 

in either mode without the need for the programmer to conSider the differences, This IS in 
keeping with the JAM philosophy of creauog terminal-independent applications, 

10.1.2. 

Authoring 
Certain JAM utilities, like modkey, the Screen Editor, and the Data Dictionary Editor 
only work in interactive mode. Thus, they can only be used with mteractive termmals or 
those that can be SWitched programmatically between block and interacUve mode. 

jxform is the JAM authoring utility. It allows the user to navigate through the screens 
in an application and to invoke the Screen and Data Dicbonary Editors when appropriate. 
When used with block mode-only tenninals, jxform does not permit entry into the 
aforementioned utilities. When used with hybrid terminals (i.e. those that can switch be
tween block and interactive mode programmatically), jxform forces interactive mode 
before entering the uUlities. 

10.1.3. 

Selecting Block Mode 
JAM operates with three types of terminals: interactive-only, block mode-only, and hy
brid. Block mode can be used with either of the latter two. 

By default, JAM operates in interactive mode regardless of the tenninal type. To operate 
in block mode requires a block tenninal dnver to be linked with the system. (Block termi
nal dovers are described in detail later.) This alone, however, will not mitiate block 
mode; two additional things must be done. 

First there must be a call to xsm _bIkini t. This is generally done in the "main" routine 
of the applIcation, jmain. pll.lfthis call is absent, the application will be run ID inter
active mode. Also the additional code to support block mode will not be lmked with the 
program. Thus programs not desiring block mode support are not penalIZed. 

Second the correct block mode dover must be selected. This can be done in one of two 
ways. 

If the application program author knows the correct driver he/she can install it by calling 
xsm uinstall. This should be done before calling xsm bIkinit. Typically the 
progl3m Will install a "hard-coded" driver, but it could instead key off of SMTERM, or 
some other environment variable, to fmd the correct one. In this case the application will 
run in block mode, independent of the end user's preference. 

The second method for selecting the driver leaves the job to the end user. If xsm _ bIki
ni t is called Without previously installing a driver, the entry BLKDRIVER in the video 

Page 68 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

me is exammed. If it is absent, xsm bIkini t fails and the apphcation remains in inter
active mode. If it is present the name given there is used to fmd the correct driver. This is 
done by a table lookup in a source routine (bIkdrvr. c) that must be linked with the 
applicauon. Naturally all possible choices of the driver must also be linked with the pro
gram. In this case the end user can override the application programers desire to use block 
mode. 

The design allows for three scenarios: the programmer can prohibit block mode (no call 
to xsm bIkinit), the programmer can fOJCe block mode (xsm install followed 
by xsm- bIkinit), or the programmer can permit block mode Iiit allow the end user 
fmal say(xsm_bIkinit only). 

Note that the application never calls sm_bIkdrvr. The source code to that routine is 
given to customers to enable them to extend the capabilities of the second method. 

10.1.4. 

Differences Between Block Mode And 
Interactive Mode 
Although every attempt has been made to preserve the look and feel of applications oper
ating in block mode, the following differences between block mode and interactive mode 
should be noted. 

Windows 
Wmdows work much as they do in interactive mode. The only noticable difference is that 
the cursor is not be restricted to the active window as thIS IS not possible in block mode. 
In keeping with the concepts of interactive mode, however, only the fields on the active 
window are unprotected. 

Menus 
~ In interactive mode, menus utilize a "bounce bar" to track the cursor. The bounce bar 

.;c moves when cursor-positioning keys are pressed and when ascii· data, are typed. Since 
block mode terminals do not return these keys, another approach must be taken. We sup
ply two options: 

In option 1, menu fields in block mode are unprotected, making it easy for an operalOr to 
tab to them. To make a selection, the operator positions to the appropriate field and pres
ses XMIT. Thus, selection IS similar to interactive mode except there is no bounce bar and 
there is no provision for selecting by typing the fmt N characters of the menu choice. 

JAM Release 5 1 March 91 Page 69 



.... r 

JAM PLJ1 Programmer's GUide 

If the operator madvertently types over a menu neld there are no adverse consequences as 
JAM WIU ''remember" the contents and restore It at an appropriate time, 

This approach works weU since the same screens can be used for block and mteractive 
mode operation. However, for those who do not wish to allow the operator to type over 
menu choice fields, option 2 may be chosen. With opbon 2, JAM creates an unprotected 
neld to the left of each menu choice so the menu fields themselves can remam protected. 
The operator can tab to these new nelds to make a selection, or type the fll'st character of 
a menu neld and press XMIT. The new fields to the left of the menu choices are created 
as long as there is room on the screen even if it means they would be placed in a border or 
a separate window. If there is no room on the screen because the menu neld starts m posi
tion 1 or 2, the system reverts to option 1. 

The above works weU for traditional menus. but two-level (puU- down) menus pose a 
different problem in that the ONLY way to move horizontally in interactive mode is via 
the arrows (since TAB moves between the entries of the sub-menu). Thus, In block mode 
the foUowing happens. When a pull-down menu is acbve, JAM unprotects all main menu 
fields except the one with which the pull-down IS associated. Thus, the operator can ei
ther make a selection from the pull-down or tab to another main menu chOice and press 
XMIT causing its sub-menu to be activated. 

The two opbons for processing menus described above work equally well for pull-down 
menus. 

Character Validation 
The block mode interface takes advantage of the terminal's capabilities for character vali
dation. However. for situations in which the specified validations go beyond what the ter
minal can handle, JAM will validate the character data during Screen Validation. The re
sult Will be somethmg l.Jke this: 

The operator enters alphabebc data in a digits-only field. When the XMIT key is pressed, 
aU nelds are validated in the normal fashion,left-to-ngbt, to~bottom. Thus, the cur
sor will be POSiboned to the errant neld and a message displayed. 

Since programs do not rely on data bemg correct unless and until Screen Validation com
pletes without enor. this should pose no problem. The only consideration is that invalid 
character data can get into the screen buffer and LDB if the operator enters mcorrect char
acters and then presses something like EXIT (this cannot happen in interactive mode be
cause the invalid characters would not be allowed in the first place. 

The only reason for mentioning this has to do with how punctuation characters in digits
only nelds are handled, Let's say that a diglts-only field got filled with slash (" f') charac
ters and this, in bU'n, got ttansferred to the screen buffer and hence to the LDB. On a sub
sequent auempt to enter data into the neld, an attempt to merge the slashes With the 

Page 70 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

entered data would be made, But since the field has AU.. slash characters,there would be 
no room for the digits. 

Thus, to eliminate the possibility of "punctuation character creep", when reading data 
from a digalS-only field, JAM fust sbips out all punctuation characters from the field and 
then merges in the punctuation characters from the screen butTer. 

Field Validation 
Clearly, fields are not vahdated when TAB and RETURN are pressed as in interactive 
mode. Thus,like character validations, field validations will be deferred unbl Screen VaI
ldabon. This should not be a problem since, even in interactive mode,the operator can 
usually bypass faeld validation by using the arrow keys to move from field to field. There
fore, programs should not rely on the data Wlbl Screen Vahdabon passes without error in 
either mode. 

One type of field validation is worth noting. Consider a faeld with an attached funcuon 
which does a databa~ lookup and displays infonnation in another field. In interacbve 
mode, this would usually be executed when the field is completed, so the user would see 
the resuiL Since this IS not really a validation, defening it unbl Screen Validation would 
not help because the data would never be seen by the operator. Therefore, if this type of 
feature is contemplated in a block mode environment, the database lookup should be at
tached to a function key rather than as an attached function. 

Screen Validation 
c ..screen validation works the same in interactive and block mode. The cursor will be posi

tioned to the fust field an error and a message Will be displayed to the operator. 

Right Justified Fields 
Unless the block mode tenninal supports this feature darectly, the cursor wdl always be 
positioned to the left side of right justified fields when the cursor enters them. 

Field Entry Function, Automatic Help, Status Text, 
etc. 
These are disabled in block mode since JAM does not know when fields are entered. 

Currency Fields 
Currency edits are usually applied to faelds as they are exited. In block mode, since this is 
not possible, currency fonnatting is done during screen validation. Care should be taken 

JAM Release 5 1 March 91 Page 71 



JAM PU1 Programmer's GUide 

with right Justtfied currency formats since subsequent entry may be difficult for the rea
sons cued above in the section on right justified fields, 

Shifting Fields 
Normally fields shift when the left or right 3Il'OWS are pressed with the cursor at the start 
or end of a shifting field or, in the case of unprotected fields, when the operator types off 
the edge of the field. Since 3Il'OWS and data entry keys are not returned in block mode, this 
is not possible. To utilize shifting fields in block mode, use the lOgIcal keys: Shift Left and 
Shift RighL These shift the field by the shifting increment and work equally well in block 
and mteractive mode. 

An alternative IS to use the Zoom feature if all shifting fields are bmited to the Width of 
the screen. 

Scrolling Fields 
This is similar to the situation with shifting fields. In block mode, one can define functton 
keys as PAGE UP and PAGE DOWN, or use the Zoom feature. 

Messages 
Error messages are normally acknowledged by pressing the space bar, although the spe
cific key used can vary dependmg on the setting of elTOr message opbons. Also, options 
govern whether the key should be used as the next keystroke or discarded after the mes
sage is acknowledged. In block mode, ANY key that gets transmitted from the terminal 
will suffice to acknowledge messages, regardless of what key is dermed for that purpose. 
Using or discarding the acknowledgement key apply equally to block mode and mterac
tivemode. 

With query messages, JAM normally expects a Y or N response. In block mode, JAM 
Will create a field on the status line into which the Y or N response can be entered. This 
entry must be followed by the XMIT key for it to be accepted. On terminals that have a 
separate stauts line it IS not possible to create such a field. In these cases, XMIT will be 
treated as a posibve response; EXIT will be lreated as a negative response. 

Insert Mode 
Insert mode will operate in whatever way the block mode terminal supports. However, 
since JAM never knows if insert mode is set or not in block mode, it will, for terminals in 
which thIS IS a problem, reset insert mode before transmitting data to the terminal. This is 
so the new data will not be INSERTED IOto the terminal buffer, causing all other data to 
move around. 

Page 72 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Non-Display Fields 
If the block mode tenninal supports tlus feature, it wiD be used. 

System Calls 
These operate as in interactive mode. However, before passing conlrol to the OS, JAM 
sets the tenninal to the mode (block or mteractive) expected by the OS, and resets It upon 
return from the system call. The JAM routines xsm_leave and xsm_return do the 
same. 

Zoom 
With the exception of the limitations expressed in the secbons on shifting and scrolling, 
Zoom works as in interactive mode. 

Help and Item Selection 
With the exception of the hmitations expressed in the sections on shifting, scrolling, field 
entry and menu processing, these functions work as in interactive mode. 

Groups 
Radio buUOns and check lists behave similar to menus as described above. 

10.2. 

WRITING A BLOCK MODE DRIVER 

10.2.1. 

Installation 
There are two parts to the installation process. These were discussed in greater detail 
above. 

First a block tenninal driver must be installed. This driver perfonns the low level commu
nICation between JAM and the tenninal. The PUt interface does not currently suppon 
writing your own block mode drivers. 

JAM Release 5 1 March 91 Page 73 



JAM PU1 Programmer's Guide 

Next the application program must initiate block mode by making the appropriate subrou
tine call. The application program can also switch to interactive mode by means of a call. 
The assumption is Iha1 the default is interactive mode, thus a call to set block mode is 
needed even if that IS the nonnal mode of the operabng system. The application program 
can also set some operal1llg parameaers by means of a subroutine call. 

10.2.2. 

Application Program Support 
JAM programs assume that the tenninal is in interactive mode. Explicit calls are needed 
to switch from interactive to block and vice versa. To tum on block mode, the program 
should call xsm_blkinit. To turn off block mode (and tum on mteracbve mode) the 
program calls XSIIL blkreset. The Screen Editor The key mapping ublily (modkey) 
also requires interactive mode. The authonng ubllty (jxform) can be made to work in 
block mode, switching to interactive mode when the Screen EdItor is lDvOked. This can 
be done by inserting the appropnare calls in jxmain. pH (provided) and relinking 
jxform. 

The routine xsm _option can be used to set some user-preference items. 

Page 74 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Chapter 11. 

Library Function Overview 
In this chapter, we summanze the JAM library functions and list them in categones. All 
JAM library function names begin with the prefIX xsm _. However, in the Function Ref
erence Chapter and in this chapter, the functions are listed without prefIX for clanty. 

In addibon to stripping off the prefIX in the listings that follow, groups of closely related 
vanant functions are listed under a single root name. The funCbons xsm_r_form, 
xsm_d_form, and xsm_l_form, for example, are all grouped under the headIng 
form. In a few cases, functions may be listed under a name that is not a portion of the the 
function name but is suggestive of the ublity of the function. For example, the function 
xsm rat cur, wluch displays a window at the cursor position, is listed under the root 
name window, along with xsm _ r _window (which displays a window at a fIXed loca
tion) and a number of other window display routines. The calling syntax of each function 
is found in the SYNOPSIS section of the function lisbng in the Function Reference Chap
ter. 

Most JAM library routines fall into one of the following categories: 

• InitializabonJReset 

• Screen and Viewport Control 

• Keyboard and Display I/O 

• Field/Array Data Access 

• Field/Array Characteristic Access 

• Group Access 

• Local Data Block Access 

• Cursor Control 

• Message Display 

JAM Release 5 1 March 91 Page 75 



JAM PUt Programmer's GUide 

• Scrolling and Shifnng 

• Mass Storage and Relrieval 

• ValIdation 
• Global Dara and Changing JAM's Behavior 

• Soft Keys and Keysets 
• JAM Executive Conb'Ol 

• Block Mode Conb'Ol 

• Miscellaneous 
The following sections summarize the functions that fall into these categories. Some list
ings are found in more than one category. 

11.1. 

INITIALIZATION/RESET 
The following library functions are called in order to Imtialize or reset cerrain aspects of 
the JAM runbme environment Those that are necessary for the proper operation of JAM 
are called from within the supplied main routine source modules jmain. pll and 
jxmain. pll. 

cancel 
dicname 
ininames 
initcrt 
keyinit 
ldb init 
leave 
msgread 
resetcrt 
return 
vinit 

11.2. 

reset the display and exit 
set data dictionary name 
record names of initial data files for local data block 
initialIze the display and JAM data structures 
initialize key ttanslation table 
initialize (or reinitialize) the local dara block 
prepare to leave a JAM application temporanly 
read message file into memory 
reset the terminal to operating system default state 
prepare for return to JAM application 
initialize video ttanslation tables 

SCREEN AND VIEWPORT CONTROL 
The following routines are used to conb'Ol viewports, the display of screens, and the fonn 
and window stacks. 

Page 76 JAM Release 5 1 March 9t 



JAM PU1 Programmer's GUide 

close window 
form 
hlp_by_name 
issv 
jclose 
jform 
jwindow 
mwindow 
shrink_to_fit 
sibling 

submenu close 
svscreen 
unsvscreen 
viewport 
wcount 
wdeselect 
window 
winsize 
wselect 

11.3. 

close current window 
display a screen as a fonn 
display help wmdow 
determine if a screen in the saved list 
close current window or fonn under JAM Executive conlrol 
display a screen as a fonn under JAM conlrol 
display a window at a given position under JAM conlrol 
display a status message in a window 
remove ttailing empty array elements and shrink screen 
derme the current window as being or not bemg a sibhng win
dow 
close the current submenu 
register a list of screens on the save list 
remove screens from the save list 

modify viewpon size and offset 
obtain number of currently open windows 
restore the fonnerly active window 
display a window at a gIVen position 
allow end-user to interactively move and resize a window 
activate a window 

DISPLAY TERMINAL 1/0 
The followmg routines provide the interface to JAM tenrunall/O. 

bel beep! 
• bkrect 

.' do_region 
flush 
get key 
input 
keyfilter 
keyhit 

set background color of rectangle 
rewrite pan or all of a screen line 
flush delayed writes to the display 
get logical value of the key tnt 

open the keyboard for data entry and menu selection 
conlrol keyslroke record/playback filtering 
test whether a key has been typed ahead 

JAM Release 5 1 March 91 Page 77 



JAM PU1 Programmer's Guide 

keylabel 

keyoption 

m flush 

rescreen 

resize 

ungetkey 

11.4. 

get lhe printable name of a logical key 
set cursor control key options 
flush the message line 
refresh lhe data displayed on lhe screen 
dynamically change lhe size of the display 
push back a translated key on lhe input 

FIELD/ARRAY DATA ACCESS 
The foUowing roUbDes aa:ess the data in fwlds and arrays. Most routmes m lhis section 
have a nwnber of variants lhat perform lhe same task but reference lhe field to be accessed 
differently. In these cases,lhe calling synrax of lhe major vanant is listed under lhe SYN
OPSIS section of the listing in the Function Reference Chapter. All other variants are 
listed under the VARIANTS section. 

Most field access routines have five variants, a1lhough some have fewer. The five possi
ble variants are shown in lhe table below: 

Variants of Functions That Access Fields 

Prefix Example Description 

xsm_ xsm_intval(fieldnum); Access a field via field number. 

xsm_n_ xsm_n_intval(fieldname); Access a fwld (or an entJre 
array) VIa field name. Access 
the LDB If lhere is no field on 
the screen. 

xsm_i_ xsm_i_intval(fieldname, Access an occurrence via field 
occurrence); name and occurrence number. 

Access the LDB if there is no 
field on the screen. 

xsm_o_ xsm_o_intval(fieldnum, Access an occurrence via field 
occurrence); nwnber and occurrence number. 

xsm_e_ xsm_e_intval(fieldname, Access an element via field 
element); name and element number. 

Page 78 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

amt_f0 rmat 

calc 
cl_unprot 
clear_array 
dblval 
dlength 

doccur 
dtofield 

fptr 
get field 
gwrap 
intval 
ioccur 
is no 
is...,Yes 
ito field 
lngval 

ltofield 
null 
put field 
pwrap 
strip_amtytr 

11.5. 

write data to a field, applying currency editing 
execute a math edIt style expression 
clear all unprotected fIelds 
clear all data m an may 
get the value of a field as a real number 
get the length of a field's contents 

delete occurrences 
write a real number to a field 

get the content of a fwld 
copy the contents of a fwld 

get the contents of a wonlwrap array 
get the integer value of a field 
insert blank: occurrences into an may 
test field for no 
test fwld for yes 
write an integer value to a field 
get the long integer value of a field 
place a long integer in a field 
test if field is null 
put a string into a field 
put text to a wordwrap field 
strip amount editing characters from a string 

,rFIELD/ARRAY ATIRIBUTE ACCESS 
- The following routines access informabon about fields and mays, Like the routines in the 
- previous section on fwld and may data access, each of these routines generally have five 

distinct variants. See the chscussion in the inttoduction to the previous section for more 
information on variants of JAM bbrary functions that access fields. 

base_fldno 

bitop 
chg_attr 

get the fwld number of the fust element of an may 
mampulate valldanon and data edItmg bits 

change the display attnbute of a field 

JAM Release 5 1 March 91 Page 79 



JAM PU1 Programmer's GUide 

dlength 

edit...,ptr 

£inquire 

fldno 

ftog 

ftype 

gtof 

clear all MDT bits 
get the length of a field's contents 
get special edit string 
obtain .information about a field 
get the field number of an array element or occurrence 
convert field references to group references 
get the data type and precision of a field 

convert a group name and mdex into a field number and occur-
rence 

length get the maximum length of a field 
max_occur get the maximum number of occurrences 
name obtain field name given field number 
nwn _occurs fmd the highest numbered occurrence contaming data 

protect protect an array 
sc max alter the maximum number of items allowed m a scrollable 

array 
size_of_array get the number of elements 
tst_alI_mdts fmd rust modlrled occurrence in the screen 

11.6. 

GROUP ACCESS 
The following routines access groups, that IS, radio buttons and check lists. Groups are 
made up of fields that have attributes and data in them, but groups in and of themselves 
are implemented as phantom fields which take up no screen real estate. The value of a 
group indicates the set of selected consituent fields, although it IS not recommended that 
that value ever be accessed or modified directly with any of the field access routines dis
cussed in the preceding sections. 

The routines that follow are those that are recommended for accessing groups: 

deselect 

ftog 

gp_inquire 

gtof 

Page 80 

deselect a checklist occurrence 
convert field references to group references 
obtain information about a group 
convert a group name and index into a field number and occur
rence 

JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

isselected detennine whether a radio button or checklist occurrence has 
been selected 

select select a checklist or radlo button occurrence 

11.7. 

LOCAL DATA BLOCK ACCESS 
The following routines access the Local Data Block, or LDB. Note that any of the field 
data access routines that reference fields by name or name and occurrence number (eg 
xsm _nand xsm _ i_variants) will access the LOB if the named field does not exist on 
the active screen. 

allget 

dicname 

dd_able 

ininames 
lclear 

ldb_init 
lreset 

lstore 

11.8. 

load screen from the LDB 

set data dictionary name 
tum LOB wrire-through on or off 
record names of initial data files for local data block 
erase LDB entries of one scope 

initialize (or reinitialize) the local data block 

reinitialize LOB enmes of one scope 
copy everything from screen to LOB 

CURSOR CONTROL 
The following roulmes control the positionmg and display of the cursor on the active 
screen. 

ascroll 
backtab 

c off 

c on 

c vis 
disp_off 
getcurno 

gofield 

scroll to a given occurrence 
backtab to the start of the last unprotected field 

tum the cursor off 

tum the cursor on 

tlD'll cursor position display on or off 

get displacement of cursor from start of field 
get current field number 

move the cursor into a field 

JAM Release 5 1 March 91 Page 81 



JAM PU1 Programmer's Guide 

home 

last 

n1 

occur no 
off_gofield 

rscr01l 
sh_off 

tab 

11.9. 

home the cursor 
position the cursor in the last field 
position cursor to the first unprotected field beyond the current 
line 

get the current occurrence number 
move the cursor into a field, offset from the left 
scroll an array 

determine the cursor location relative to the start of a sfnfting 
field 
move the cursor to the next unprotected field 

MESSAGE DISPLAY 
The following routines are intended for the access and display of runtime application 
messages. 

err_reset 
m_flush 
mag 

msg_get 
msgfind 

msgread 
mwindow 

setbkstat 
setstatus 

Page 82 

display a message on the slams line 
display an error message and reset the message line, without 
turning on the cursor 
chsplay an error message and reset the stams line 
flush the message hne 
display a message at a given column on the slatus line 
fmd a message given its number 
fmd a message given its number 
read message fIle into memory 
display a status message IR a window 
display a question, and return a yes or no answer 
display a message preceded by a constant tag, and reset the mes
sage line 

display error message preceded by a constant tag, and reset the 
status line 
set background text for Slams line 
turn alternating background status message on or off 

JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

11.10. 

SCROLLING AND SHIFTING 
The following routines provl(ie access to shifbDg and scrolling fields and arrays. 

achg 

ascroll 

doc cur 
ioccur 

max_occur 

num_occurs 

oshift 
rscroll 

t_scroll 
t_shift 

tst_all_mdts 

11.11. 

change the display aunbute of an occurrence Within a scrolling 
array 
scroll to a given occurrence 
delete occurrences 
insert blank occurrences into an array 
get the maxunum number of occurrences 
fwd the highest numbered occurrence conlaining data 

shift a field by a given amount 
scroll an array 
alter the maximum number of items allowed in a scrollable 
array 
detennine the cursor location relative to the start of a shifbng 
field 
test whether an array can scroll 
test whether field can shift 
fwd fust modified occurrence 

MASS STORAGE AND RETRIEVAL 
';1be following routines move data to or from sets of fields in the screen orLDB. 

rd...,;part 

rdstruct 

restore_data 

rrecord 
wrecord 

wrt...,;part 

wrtstruct 

read part of a data structure to the current screen 
read data from a structure to the screen 
restore previously saved data to the screen 
read data from a structure to a data dictionary record 
write data from a data dictionary record to a structure 
write part of the screen to a structure 

write data from the screen to a structure 

JAM Release 5 1 March 91 Page 83 



JAM PU1 Programmer's GUide 

11.12. 

VALIDATION 
The following routines provide an application IDterface to the field and group validation 
processes. 

bitop 
ckdigit 
fval 
gval 

novalbit 
s val 

11.13. 

manipulate validauon and data edIting bits 
validate check digtt 

force field validation 
force group validation 
forcibly invalidate a field 
vahdate the current screen 

GLOBAL DATA AND CHANGING JAM'S 
BEHAVIOR 
The following routines grant access to global clara and provide a way to manipUlate cer
tain aspects of JAM and Screen Manager behavior. 

async 
dd able 
finquire 
gp_inquire 
inquire 
isabort 
iset 
keyfilter 
keyoption 
li func 

msgread 
option 

pinquire 

pset 

Page 84 

install an asynchronous function 
tum LDB write-through on or off 
obtain information about a field 
obtain information about a group 
obtain value of a global integer variable 
test and set the abort control flag 
change value of integer global variable 
control keystroke record/playback flItering 
set cursor control key options 
install an application hook function 
read message file into memory 
set a Screen Manager option 
obtain value of a global strings 
Modify value of global strings 

JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

resize 
uinstall 

11.14. 

dynamically change the size of the display 

Install an application function 

SOFT KEYS AND KEYSETS 
The following routines provide an application interface to JAM's soft key suppon. 

c_keyset 
keyset 

kscscope 
ksinq 
ksoff 
kson 
skinq 
skmark 

skset 
skvinq 
skvmark 
skvset 

11.15 . 

close a keyset 

open a keyset 

query current keyset scope 

inquire about key set information 
tum off key labels 

tum on key labels 
obtain soft key information by posibon 

mark or unmark a softkey label by position 

set characterisbcs of a soft key by position 
obtain soft key information by value 
mark a soft key by value 

set characteristics of a soft key by value 

. JAM EXECUTIVE CONTROL 
..:. The following routines, available only to applications using the JAM Executive, provide 

JAM Executive services. 

getjctrl 
jclose 

jform 
jtop 
jwindow 
putjctrl 

get conbOl string associated with a key 

close current window or form under JAM Executive control 

display a screen as a form under JAM control 

start the JAM Executive 

display a window at a given position under JAM conbOl 

associate a conbOl string with a key 

JAM Release 5 1 March 91 Page 85 



JAM PU1 Programmer's Gurcle 

11.16. 

BLOCK MODE CONTROL 
The following routines are used in applicabons requiring block mode support. 

bIkdrvr install block mode driver 

bIkinit 

bIkreset 

11.17. 

initialize (and tum on) block mode tenninal 

reset (and tum off) block mode terminal 

MISCELLANEOUS 
fiJ>ath return the full path name of a file 
formlist update bst of memory-resident files 
jpIcall execute a IPL procedure 

jplload execute the JPL load command 
jpIpublic execute the IPL public command 
jpIunIoad execute the IPL unload command 

I close close a library 

I_open open a bbrary 
rmformlist empty the memory-resident fonn list 
sdtime get fmmatted system date and time 
udtime fonnat user-supplied date and time 

Page 86 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Chapter 12. 

Function Reference 
All JAM function names begin with the prefix xsm _. In the Function Reference Chapter 
functions are listed without the prefIX and, in a few cases, under a name that is not a por
tion of the function name - but that is suggestive of the ublity of the function. For exam
ple, the function xsm_r_at_cur, which displays a window at a specIfied position, is 
found under the listing name window, along with the function xsm r window. In 
these cases, the calling syntax of each function is listed under the SYNOPSIS section of 
the hsting. 

For each entty, you WIll fmd several secbons: 

• A synopsis similar to a PrJt function declaration, giving the types of the 
arguments and return value. 

• A description of the funcbon's arguments, prerequIsites, results, and 
side-effects. 

-.' The function's return values, if any, and their meanings. 

• A list of VarIants. 

• A hst of funcbons that perfonn related tasks. 

• An example Illustrating the function's use • 

..... A routine that calls JAM funcbons should include the fIle smdefs. incl.pll. If 
another fIle should be included, then it is referenced in the synopsis section. 

To view functions by category, refer to the Library Funcbon Overview (chapter 11.) To 
view a complete list of functions alphabetically by the acb1al funcbon name (including 
the xsm _ prefix), see the Library Function Index (chapter 13.). 

JAM Release 5 1 March 91 Page 87 



JAM PU1 Programmer's GUide 

achg 
change the display attribute of an occurrence within a 
scrolling array 
t:S8CSSi8Io BBiSBliBSlBI:B ~II_ iBBiBBBiBBIBiBlBBBBBBBBIIIBiUBBliBiBBBlSBSiSiBB mSiBiiBSSSBi98:SSB~0636iB91ro .. :SSSOS:' ~.as..,~:t,w. ';, '~ ........ ...J..j 

SYNOPSIS 
declare field_number fixed binary(31); 
declare occurrence fixed binary(31); 
declare display_attribute fixed binary(31); 
declare status fixed binary(31); 
status - xsm_o_achg(field-pumber, occurrence, 

display_attribute); 

DESCRIPrION 
NOTE: This function has only two variants, xsm _0_ achq and xs~ i _ achq. There is 
NOxsm_achq. 

This function changes the display attribute of an occurrence witfun a scrollable array. If 
the occurrence is onscreen, the aunbute with which the occurrence IS currently displayed 
is changed as well. When the occurrence IS scrolled to another position within the array 
the new attribute moves with the occurrence. Use xsm _ chq_ at t r if you want all of the 
occurrences wlthm the array to scroll through an awibute so that their appearance is de
termined by their onscreen positions. 

Possible values for the argument display at tribute are dermed 10 the header file 
smdefs. incl. pll, as shown in the tablebelow: 

Foreground AltnbUles Background Attributes 

BLANK B_HILIGHT 

REVERSE 

UNDERLN 

BLINK 

HILIGHT 

STANDOUT 

DIM 

ACS (alternate character set) 

Page 88 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Foreground Colors Bac/cground Colors 

BLACK B_BLACK 

BLUE B_BLUE 

GREEN B_GREEN 

CYAN B_CYAN 

RED B_RED 

MAGENTA B_MAGENTA 

YELLOW B_YELLOW 

WHITE B WHITE 

Foreground colors may be used alone or wilh one or more hIghlights, a background color, 
and a background highllghL If you do not speedy a highlight or a background color, the 
attribute defaults to white against a black background. Omitting Ihe foreground 
mnemonic will cause the atbibute to default to black. 

If display_attribute is zero, the occurrence's display atbibute is removed, leav
ing it with the field display atbibute. Then, if that occurrence is onscreen, it is displayed 
with the atbibute attached to Its field. 

This function will not work on an array that is not scrollable. Use xsm chg attr to 
change the display atbibute of an individual field. - -

RETURNS 

-1 if Ihe field isn't found or lSD't scrollable, or if occurrence is invalJd. 0 Otherwise. 

VARIANTS 

status - xsm_i_achq(field_name,. occurrence, display_attribute); 

RELATED FUNCTIONS 

JAU Release 5 1 March 91 Page 89 



JAM PU1 Programmer's GUide 

allget 
load screen from the LOB 

SYNOPSIS 
declare respect_flag fixed binary(31); 
call xsm_allget(respect_flag); 

DESCRIYfION 

This functton copies data from the local data block to fields on the current screen with 
matching names. 

If respect_flag is nonzero, this funcbon does not write to fields that already contain 
data, or that have their MDT bits set. If the flag is zero, all fields are imtialized. When this 
funcbon is called by the JAM run-time system, or by your screen entry funcbon, it does 
not set MDT bits for the fields it initializes. 

This functton 18 called automabcally by the JAM screen-dlsplay logic, unless LDB pro
cessing has been turned off using xsm _ dd _able. Applicabon code should not normally 
need to call it. 

RELATED FUNCTIONS 
call xsm_dd_able(flag); 
status a xsm_lstore(); 

Page 90 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

amt format 
write data to a field, applying currency editing 

SYNOPSIS 
declare field number fixed binaryC3l); 
declare buffer char(256) varying; 
declare status fixed binaryC3l); 
status a xsm_amt_formatCfield_number, buffer); 

DESCRIPfION 

If the specified field has a currency edit, it is applied to the data m buffer. If the result
ing smng is too long for the field, an error message is displayed. Otherwise, xsm ""put
field is called to write the edited string to the specified field. 

If the field has no currency edit, xsm ""put field is called with the unedited string. 

RETURNS 

-1 if the field is not found or the occurrence is out of range; 
-2 if the edited string wiD not fit in the field; 
o otherwise. 

VARIANTS 

status - xsm_e_amt_formatCfield_name, element, buffer); 
status - xsm_i_amt_formatCfield_name, occurrence, buffer); 
status - xsm_n_amt_formatCfield_name, buffer); 
status a xsm_o_amt_formatCfield_number, occurrence, buffer); 

RELATED FUNCTIONS 

status a xsm dtofieldCfield number, value, format); 
Qutbufaxsm=strip_amt-ptrCfield_number, inbuf, ); 

JAM Release 5 1 March 91 Page 91 



JAM PU1 Programmer's GUIde 

ascroll 
scroll to a given occurrence 

II 

SYNOPSIS 
declare field_number fixed binary(31); 
declare occurrence fixed binary(31); 
declare status fixed binary(31); 
status m xsm_ascroll(field_number, occurrence); 

DESCRIPTION 

This function seroUs the deslgnaled field so that the indicaled occurrence appears 
there. Synchroruzed arrays will scroll along with the target array. 

The field need not be the rust element of a serolhng array. You can use this function, for 
instance, to place the nineteenth occurrence in the third onscreen element of a five-ele
ment scrolling array. 

The validity of certain combinations of parameters depends on the exact nature of the 
field. For instance, if rleld number 7 is the third element of a scrolling array and occur
rence is 1 a call to xsm_ascroll will fall on a non-circular scrollmg array but 
succeed if scrolling is circular. 

RETURNS 

-1 if field or occurrence specificabon is invalid, 
o otherwise. 

VARIANTS 

status m xsm_n_8scroll(field_name, occurrence); 

RELATED FUNCTIONS 
lines m xsm_rscroll(field_number, re~scroll); 
status m xsm_t_scroll(field_number); 

Page 92 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

async 
install an asynchronous function 

SYNOPSIS 
declare func entry variable; 
declare timeout fixed binary(31); 
call xs~async(func, timeout); 

DESCRIPfION 

This roubne installs a a function that will be called regularly during keyboard processing 
(ie. - xs~ input). The fust paramerer is the address of the function. Use the operating 
system subroutine s $ find_entry to fmd the entry point The second paramerer is the 
umeout, in lentils of a second, between subsequent function calls. 

The asynchronous function is called only when the keyboard is being read, and only if a 
keystroke does not arrive within the specified bmeoul. The authonng utility, jxform, 
uses an asynchronous funcbon to updare Its cursor poslbon display. An asynchronous 
function might also be used to implement a real-time clock display. 

RELATED FUNCTIONS 
status g xsm_uinstall( usage, func, func_name); 

JAM Release 5 1 March 91 Page 93 



JAM PU1 Programmer's GUide 

backtab 
backtab to the start of the last unprotected field 

SYNOPSIS 
call xsm_backtab(); 

DESCRIPfION 
When the cursor is in a field unprotected from tabblDg into, but not in the flfSt enterable 
position, it is moved to the farst enterable position of that field. However, if the cursor IS 
m a field with a previous-field edit and one of the fields specified by the edit IS unpro
tected from tabbing, the cmsor is moved to the first enterable position of that field. Other
wise, the cursor IS moved to the farst enterable posItion of the ta1>-unprotected field with 
the next lowest field number. If the cursor is in the farst position of the first unprotected 
field on the screen, or before the flfSt unprotected field on the screen, It wraps backward 
into the last unprotected field When there are no unprotected fields, the cursor doesn't 
move. 

If the destinatIon field is shiftable, It IS reset according to its justification. The first enter
able position depends on the justification of the field and. in fields With embedded punc
tuation, on the presence of punctuation. 

11us function doesn't immediately bigger field entry, exit, or validation processing. Such 
processing occurs based on the cursor position when control returns to xsm _input. 

This function is called when the JAM logical key BACK is struck. 

RELATED FUNCTIONS 
field_number - xsm_home(); 
call xsm_last(); 
call xsm_nlO; 
call xsm_tabO; 

Page 94 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

base fldno 
get the field number of the first element of an array 

SYNOPSIS 
declare field_number fixed binary(31); 
declare base number fixed binary(31); 
base_number ~ xsm_base_fldno(field_number); 

DESCRIPfION 

A base field number is the field number of the first element of an array. Use 
xsm_base_fldno to obrain the base field number of an array. 

RETURNS 

The fIeld number of the base element of the array containing the specified field, or 
o if the field nwnber is out of range. 

JAM Release 5 1 March 91 Page 95 



JAM PU1 Programmer's GUide 

bel 
beep! 

SYNOPSIS 

DESCRIPfION 

Causes the terminal to beep, ordinarily by transmitting the ASCII BEL code to It. If there 
is a BELL entry in the video file, xsm _bel will transmit that instead, usually causing the 
terminal to flash instead of beeping. 

Even if there is no BELL entry, use this function instead of sending a BEL, because certain 
displays use BEL as a graphics character. 

Including a 'liB at the beginning of a message displayed on the status line will cause this 
function to be called. 

Page 96 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

bitop 
manipulate validation and data editing bits 

SYNOPSIS 

'include'smbitops.incl.pll'; 

declare field_number fixed binary(31); 
declare action fixed binary(31); 
declare bit fixed binary(31); 
declare status fixed binary(31); 
status - xsm_bitop(field_number, action, bit); 

DESCRlPfION 

You can use this function to inspect and modify validation and data editing bilS of screen 
fields, Wlthout reference to mtemal data structures. The fll'St parameter idenUfies the field 
to be operated upon. 

action can include a test and at most one manipulation from the following table of 
mnemonics, which are defined in smbi tops. incl. pll: 

Mnemonic Meaning 

BIT_CLR Tum bit off 
.. - -- ~-- -

BIT_SET Tum bit on 

BIT_TOOL Flip state of bit 

BIT_TST Report state of bit 

.,. The third parameter is a bit identifier, drawn from the fonowing table: -

Character edits 

N_ALL N DIGIT N_YES_NO N_ALPHA N_NUMERIC 

N ALPHNUM N_FCMASK 

JAM Release 5 1 March 91 Page 97 



JAM PU1 Programmer's Guide 

Field edits Field edits 

N RTJUST N_REOD N VALIDED N MDT N CLRINP - -

N MENU N UPPER N LOWER N RETENTRY N FILLED - - -
N NOTAB N WRAP N ADDLEDS N EPROTECT N TPROTECT - -

N CPROTECT N VPROTECT N ALLPROTECT N_SELECTED 

The character edJ.1S are not, stticlly speaking. bilS; you cannot toggle them. but the other 
functions work: as you would expect N _ ALLPROTECT is a Special value meaning all 
four protect bits at once. 

N_VALIDED and N_MDT are the only bit operations that can apply to individual off
screen and onscreen occurrences. The protection operations can apply to an array as a 
whole. including offscreen occurrences (see xSIIL aprotect). All other bit operations 
are attached to fIXed on screen posiuons. 

The variants xsm_e_bitop and xSIlLn_bitop can take a group name as an argu
ment The function will then affect the group bllS. 

This function has two additional variants. xsm a bitop and xsm t bitop. which 
perform the requested bit operation on all elementsof an array. Their synopsis appear be
low. If you include BIT_TST. these variants return 1 onlyifbit is set for every element 
of the array. Thevariantsxsm i bitopandxsm 0 bitoparerestrictedtoN VAL-
IDEDandN_MDT. - - - - -

RETURNS 
1 if there was no error. the action included 

-1 if the field or occurrence cannot be found 
-2 If the action or bit identifiers are invalid; a leSt operation. and bi t was set 
-3 ifxsm_i_bitop or xsm_o_bitop was called with bit set to something 

other than N VALIDED or N MDT 
o otherwise. - -

VARIANTS 
status a xsm_a_bitop(array_name, action, bit); 
status - xsm_e_bitop(array_name, element, action, bit); 
status - xsm_i_bitop(array_name, occurrence, action, bit); 
status - xsm_n_bitop(name, action, bit); 
status a xsm_o_bitop(field_number, occurrence, action, bit); 
status a xsm_t_bitop(array_number, action, bit); 

Page 98 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

bkrect 
set background color of rectangle 

~;;iIIi; 

SYNOPSIS 
declare start_line fixed binary(3l); 
declare start_column fixed binary(31); 
declare num_of_lines fixed binary(31); 
declare number_of_columns fixed binary(31); 
declare background_colors fixed binary(31); 
declare status fixed binary(31); 

., status - xsm bkrect (start_line. start_column. num of lines. 
number_of_columns. background_colors); 

DESCRIPfION 

This function changes the background color of a rectangular area of the current screen. 
Any fields or elements that begin WIthin the rectangular area will have their background 
attributes changed to the specified attribute. ThIS means that if there are any fwlds or ele
ments that are not entirely contained within the rectangular area, a ragged edge will resulL 
Display text that falls WIth 10 the rectangular area will have its background atlnbute set. 

The arguments start_line and start_column can have any value from 1 through 
the number of lines (or columns) on the screen. 

The background color must be one of the mnemonics defined in smdefs. incl. pll 
(B_BLACK, B_BLUE, etc.). You can highlight the background color by orlOg the back
ground color attribute with B_HILIGHT. 

RETURNS 

-1 if the starting line or column was invalid. 
1 if the starting line and col umn were valid, but the rectangle had to be b'uncated to tiL 
o if no error. 

JAM Release 5 1 March 91 Page 99 



JAM PU1 Programmer's GUide 

blkinit 
initialize (and turn on) block mode terminal 

SYNOPSIS 
declare return_value fixed binary(3l); 
return_value a xsm_blkinit(); 

DESCRIPfION 

This routine must be called by the appbcation program to mitiate block mode tenninal 
action. A block mode tenninal driver must have been previously installed. 

This routine checks that a block: mode tenninal dnver IS installed. If a dnver is found, It 
is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored. If the tennmal cannot be put into block mode It 
will still work (possibly better) in interacbve mode. 

If the dn ver signifies that all is OK, the global variable sm _ bl kcon t rol is set to point 
to the local block terminal control handler. All Screen Manager calls for block mode sup
port are made through this control routine. 

On the rust call to the present routine the driver 18 called with BLK_INIT to perform any 
required initializabon. 

On subsequent calls BLK_BLOCK is called instead of BLK_INIT. 

RETURNS 

retum value from driver if one exists. 
-1 otherwise. 

RELATED FUNCTIONS 
return_value - xsm_blkreset(); 

Page 100 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

blkreset 
reset (and turn off) block mode terminal 

SYNOPSIS 
declare return_value fixed binary(3l); 
return_value m xsm_blkreset(); 

DESCRIPfION 

This routine must be called by the application program to reset block mode tenninal ac
tion. A block mode tenninal driver must have been previously installed. 

ThIs roubDe checks that a block mode tenninal dnver is installed. H a driver is found, it 
is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored as the tenninal is often already in interacbve 
mode. The exception IS on those systems that are nonnally block mode. Many JAM pr0-
grams rely on the fact that the tenninal can be put into interactive mode. 

Note that the driver is called with BLK_CHAR, not With BLK_RESET. The only time the 
driver is called for a full reset is when JAM is aboullO go to the operating system - either 
exiting or perfonning a "shell escape". 

RETURNS 

return value from driver if one exists. 
-1 otherwise. 

RELATED FUNCTIONS 

return_value - xsm_blkinit(); 

JAM Release 5 1 March 91 Page 101 



JAM PU1 Programmer's GUide 

c_keyset 
close a keyset 

SYNOPSIS 

'include'smsoftk.incl.pll'i 

declare scope fixed binary(3l); 
declare status fixed binary(31); 
status a xsm_c_keyset(scope); 

DESCRIPrION 

This funcbon closes the keyset of the given scope. It frees all memory associated with the 
key set and marks that scope as free. If the keyset was currently displayed, the keyset la
bels are changed 10 reflect the new keyseL 

See the keyset chapter of the Author's Guide for a detailed explanation of keyset scopes. 

Scope MnemolUc from Descnption 
smsoftk.incl.pll 

KS_APPLIC Application scope. 
KS FORM Fonn or window scope. 

KS SYSTEM jxformsystem key sets. 

Use xsm_d_keyset and xsm_r_keyset 10 open keysets. 

RETURNS 

o if there is no error 
-2 if there is no keyset currently at that scope 
-3 if the scope IS out of range 

RELATED FUNCTIONS 
status a xsm_r_keyset(name, scope); 
status - xsm_d_keyset(address, scope); 

Page 102 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

c off 
turn the cursor off 

lllE 

SYNOPSIS 

DESCRIPrION 

This function notifies JAM that the normal cursor setting is off. The nonnal selting is in 
effect except 

• When a block cursor is in use. as dunng menu processing. the cursor is 
off. 

• While Screen Manager functions are wnling to the display the cursor is 
off. 

• Withm certam elTOr message display functions the cursor is on. 

If the display cannot tum its cursor on and off (V_CON and v _ COF entries are not defined 
in the video file). this function will have no effect 

Usexsm_c_on to tum the cursor on. 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 103 



JAM PU1 Programmer's Guide 

c on 
turn the cursor on 

SYNOPSIS 

DESCRIPI'ION 

This function notifies JAM that the normal cursor setting is on. The normal setting is m 
effect except: 

• When a block cursor is m use, as during menu processing, the CUISor is 
off. 

• While Screen Manager functions are writing to the display the cursor is 
off. 

• Within certain error message display functions the cursor IS on. 

If the display cannot tum its cursor on and off (V_CON and v _ COF entries are not defined 
in the video file), this function will have no effect. 

Use xsm _ c _off to tum the cursor off. 

RELATED FUNCTIONS 

Page 104 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• 
C VIS 
turn cursor position display on or off 

SYNOPSIS 
declare display fixed binary(3l); 
call xsm_c_vis(display); 

DESCRIYfION 

Assigning a non-zero value to display displays subsequent stabJs line messages with 
the cursor's position display, This includes background status messages. Messages that 
would overlap the cursor posibon display are bUncated. 

Settmg display to zero will cause subsequent stabJs line messages to be displayed 
without the cursor's position display. 

This function will have no effect if the CURPOS enlly in the video file is not defined. In 
that case the cursor position display will never appear. 

JAM uses an asynchronous function and a status line function to perform the cursor posi
tion display. If the applicabon has previously installed either of those, this function will 
overrideiL 

JAM Release 5 1 March 91 Page 105 



JAM PU1 Programmer's GUide 

calc 
execute a math edit style expression 

SYNOPSIS 
declare field_number fixed binary(31); 
declare occurrence fixed binary(31); 
declare expression char (256) varying; 
declare status fixed binary(31); 
status - xsm_calc(field_number, occurrence, expression); 

DESCRIPfION 

Use xsm _calc to execute a math edit style expression. With this function you can per
fonn mathematical operations that use the contents of one or more fields and then insert 
the result into a field. 

The third parameter expressl.on IS a math edit style expression. See the JAM Au
thor's GUide for a complete descnption on how to create the expression. 

The flIStlwoparameters, field_number and occurrence identIfy the field and oc
currence with which the calculation is associated. Nonnally you will not need to use them 
and should set them both to O. 

If you want to use relative references to fields ID your expresSion, use the arguments 
field_number and occurrence to specify the field to which they should,be rela
tive. 

If in the event of a math error you want the cursor to move a specific field, specify that 
field with field _ n umbe r. In addition, if the desired field is an occurrence withm an 
array, specifying the occurrence wdl cause the referenced array to scroll to 
field_number. 

RETURNS 

-1 is returned if a math error occmred. 
o is returned Otherwise. 

• 

Page 106 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

cancel 
reset the display and exit 

SYNOPSIS 
declare arg fixed binary(31); 
call xsm_cancel(arg); 

DESCRIPTION 

This function is installed by xsm _ ini tcrt 10 be executed if a keyboard interrupt oc
curs. It calls xsm_resetcrt 10 restore the display to the operating system's default 
state, and exits 10 the operating system. 

If your operabng system supports it, you can also install this function to handle conditions 
that nonnally cause a program 10 abort. If a program aborts without calling xSM_re
setcrt, you may fmd your tenninal in an odd state; xsm_cancel can prevent that. 

The argument arg IS a dummy argumenL It should have the value zero. 

JAM Release 5 1 March 91 Page 107 



JAM PU1 Programmer's Guide 

chg_attr 
change the display attribute of a field 
!:;)IiiBSii!ii99B9~li:BIB9B9199919mB~99B999IB:I_9B9:SSSSS:::ISSIB9BB~Bi991999999ii~~<;:"~~~"" ~,~ 

SYNOPSIS 
declare field number fixed binary(31); 
declare display_attribute fixed binary(31); 
declare status fixed binary(31); 
status - xsm_ch9_attr(field_number, display_attribute); 

DESCRIPrION 
Use tll1S function to change the display attribute of an individual field or an element With
in an array. To change an occurrence attribute so that the attribute moves With the occur
rence use xsm_o_aehg. 

H the field IS pan of a scrolling array, then each occwrence may also have a display attrib
ute that overrides die field display attnbute when the occwrence arrives onto the screen. 

Possible values for display attribute are defmed m smdefs .l.ne!. pU, as 
shown in the table below: -

Foreground Altnbutes Background Attributes 

BLANK B_HILIGHT 

REVERSE 

UNDERLN 

BLINK 

HILIGHT 

STANDOUT 

DIM 

ACS (alternate character set) 

Foreground Colors Background Colors 

BLACK B_BLACK 

BLUE B_BLUE 

GREEN B GREEN 

Page 108 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Foreground Colors Background Colors 

CYAN B_CYAN 

RED B_RED 

MAGENTA B_MAGENTA 

YEllOW B_YEllOW 

WHITE B WHITE 

Foreground colors may be used alone or ored wilh one or more highlights, a background 
mnemonic, and a background highlighL lfyou do not specify a highhght or a background 
mnemonic, the auribute defaullS to white against a black background. Omitting the 
foreground mnemonic will cause the auribute to default to black. 

NOTE: The variant xsm _0_ chg_ at t r does not take the usual arguments. The second 
argument is an element rather than an occurrence. 

RETURNS 

-1 if the field is not found 
o otherwise. 

VARIANTS 
status - xsm_e_chq_attr(field_name, element, 

display_attribute); 
.~. status - xsm_n_chq_attr(field_name, display_attribute); 

status D xsm_o_chq_attr(field_number, element, 
display_attribute); 

RELATED FUNCTIONS 
status - xsm_o_achq(field_number, occurrence, 

display_attribute); 

JAM Release 5 1 March 91 Page 109 



JAM PU1 Programmer's GUide 

ckdigit 
validate check digit 

SYNOPSIS 
declare field_number fixed binary(31); 
declare field_data char (256) varying; 
declare occurrence fixed binary(31); 
declare modulus fixed binary(31); 
declare minimum_d1gits fixed binary(31); 
declare status fixed binary(31); 
status - xsm_ckdigit(field_number, field_data, occurrence, 

modulus, minimum_digits); 

DESCRIPfION 

This function is called by field validation. It verifies that field data contains the re
quired mmlmUDl number of digits tenninated by the proper check digiL If not, it posts an 
error message before returning. It can also be used to check any character string or field. 
If field data is null, the string to check is obtained from the field number and 
occurrEffice and an error message is displayed If the string is bad. If field_number 
is zero, no message will be posted, but the function's return code will indicate whether the 
string passed Its check. 

A fuller description of sm _ ckdigi t is included with the source code, which is dislnb
uted With JAM. 

Note that this funcbon can be replaced by a user-installed check digit function which 
field validabon will call instead. See the chapter on installing funcbons. 

RETURNS 

o If the field contents are available and valid 
-1 If the field contents do not conlain the minimum number of digits or the proper 

check dlglL 
-2 If the length of field _ da t a is zero and the field or occurrence cannot be found 

Page 110 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

cl all mdts 
clear all MDT bits 

SYNOPSIS 

DESCRIPfION 

Clears the MDT (modified data lag) of every occurrence, both onscreen and off. 

JAM sets the MDT bit of an occurrence to indicate that it has been modified, either by 
keyboardentty or by a call to a function like xsmJ>utfield, since the screen was rU'St 
displayed (i.e., after the screen entty function returns). 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 111 



JAM PU1 Programmer's Guide 

cl_unprot 
clear all unprotected fields 

SYNOPSIS 

DESCRIPfION 

Erases onscreen and offscreen data from all fields that are not protected from cleanng 
(CPROTECT). Date and time fields that take system values are re-initialized. Fields with 
the null edit are reset to their null indicator values. 

This function is nonnally bound to the CLEAR ALL key. 

RELATED FUNCTIONS 

status m xsm_aprotect(field-?umber, mask); 

Page 112 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

clear_array 
clear all data in an array 

SYNOPSIS 

declare field_number fixed binary(31); 
declare status fixed binary(31); 
status a xsm_clear_array(field_number); 

DESCRIPfION 

Both functions clear all data from the array containing the field specifIed by field_num
ber. The value returned by xsm num occurs is changed to zero. The array IS cleared 
even if it is protected from clearing (CPROlECT). 

xsm _ clea r _array also clears arrays synchronized With the specified array, except for 
synchroniZed arrays that are protected from clearing. 

xsm_lclear_array only clears the specified array. 

RETURNS 

-1 if the field does not exist; 
o otherwise. 

VARIANTS 

status - xsm_n_clear_array(field_name); 
status a xsm_n_lclear~array(field_name); 

RELATED FUNCTIONS 

status - xsm_aprotect(field_number, mask); 
status - xsm-protect(field_number); 

JAM Release 5 1 March 91 Page 113 



JAM PU1 Programmer's Guide 

close window 
close current window 

SYNOPSIS 
declare fixed binary (31) ; 
status - xsm_close_window(); 

DESCRIPfION 

xsm close window is used to close a wlOdow opened by xsm r window (or vari-
ant),"'ism_r_at_cur (or vanant), or xsm_mwindow, - -

The currently open window is erased, and the screen is restored to the state before the 
window was opened. All data from the window being closed IS lost unless LOB process
ing is active. in which case named fields are copied to the LOB uSlOg xsm_lstore. 
SlOce windows are stacked, the effect of closing a window is to return to the previous 
window. The cursor reappears at the posibon it had before the window was opened. 

When using the JAM Executive, usexsm_jclose to close afonn. xsm_jclose will 
call xsm_jform to pop the fonn stack and open the new top fonn on the stack. In the 
caseofa window, xsm_jclose will call xsm_close_window to close the window. 

RETURNS 

-1 IS returned if there IS no Window open, (i.e. if the currently displayed screen is a fonn 
or if no screen IS displayed). 

o is returned otherwise. 

RELATED FUNCTIONS 

status m xsm r window(screen name, start line, start_column); 
return_value-m-xsm_wselect(w!ndow_number); 

Page 114 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

d_ms9_line 
display a message on the status line 

SYNOPSIS 
declare message char(256) varying; 
declare display_attribute fixed b1nary(3l); 
call xsm_d_msg_line(message, display_attribute); 

DESCRIPTION 
The message in message is displayed on the status line, with an initial display atuibute 
of display_attribute. If the cursor position display has been turned on (see 
xsm c vis), the end of the status line will contain the cursor's current row and column. 
MesSages displayed With xsm_d_msg_line override both background and field status 
text 

Messages posted with xsm_d_msg_line are displayed until the status line is cleared 
by xsm _ d _ msg_line. They will persist from screen to screen until cleared. Clearing is 
accomplished bypassing xsm_d_msg_line an empty string formessage and a 0 for 
d1splay_attribute. Once cleared, any cmrently overidden message will resume. 
The function xsm d msg line will itself be overridden by xsm err reset and 
related functions, or bY the ready/wait message enabled by xsm_setstatus. 

Possible values for display_attrl.bute are defmed in smdefs. incl.pll, as 
shown in the table below: 

Attribute Mnemonic HuCode Attnbute Mnemonic Hex Cork 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HI LIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemate character set) 2000 

JAM Release 5 1 March 91 Page 115 



JAM PU1 Programmer's Guide 

Attribute Mnemonu: Hex Code AttrIbute MnemonIC Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B WHITE 0700 

Foreground colors may be used alone or ored with one or more lughlights, a background 
mnemonIC, and a background hlgblighL If you do not specify a highlight or a background 
mnemonic, the attnbute defaults to white agamst a black background. Omitting the 
foreground mnemonic will cause the attribute to default to black. 

Several percent escapes provide control over the content and presentation of status mes
sages. The character following the percent sign must be in upper-case. Note that, if a mes
sage containing percent escapes is displayed before xsm _ ini tc rt is called, the percent 
escapes will show up in the message. 

If a string of the fonn %Annnn appears anywhere ID the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be apphed to the remainder of the message. The 
table gives the numeric values of the logical display attributes you will need to conslrUct 
embedded attnbutes. If you want a digit to appear unmedkltely after the attribute change, 
pad the attnbute to 4 digits with leading zeros. If the following character is not a legal hex 
digit, then leading zeros are unnecessary. 

If a string of the fonn %Kkeyname appears anywhere in the message, keyname IS inter
preted as a logical key mnemonic, and the whole expression is replaced with the key label 
string defined for that key in the key translation file. If there is no label, the %K is stnpped 
out and the mnemonic remains. Key mnemonics are dermed ID smkey s • incl. pl1; it 
is or course the name, not the number, that you want here. The mnemonic mustbe ID upper
case. 

If the message begins with a %B, JAM will beep the tenninal (using xsm _bel) before is
suing the message. 

Page 116 JAM Release 5 1 March 91 



JAM PLl1 Programmer's Guide 

RELATED FUNCTIONS 
call xs~err_reset(message); 
call xsm_msg(column, disp_length, text); 
status - xsm_mwindow(text, line, column); 

JAM Release 5 1 March 91 Page 117 



JAM PU1 Programmer's GUide 

dblval 
get the value of a field as a real number 

SYNOPSIS 
declare field_number fixed binary(31); 
declare value float binary(53); 
value - xsm_dblval(field_number); 

DESCRIPfION 

This function returns the contents of field number as a real number. It calls 
xsm_strip_amtytr 10 remove superfluous-amount edIting characters before con
verting the data. 

RETURNS 

The real value of the field is returned. 
If the field is not found, the function returns o. 
VARIANTS 

value - xsm_e_dblval(field_name, element); 
value - xsm_i_dblval(field_name, occurrence); 
value - xsm_n_dblval(field_name); 
value - xsm_o_dblval(field_number, occurrence); 

RELATED FUNCTIONS 
status D xsm_dtofield(field_number, value, format); 
outbuf D xsm_strip_amt-ptr(field_number, inbuf, ); 

Page 118 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

dd able 
turn LOB write-through on or off 
1I 

SYNOPSIS 
declare flag fixed binary (31) ; 
call xsm_dd_able(flag); 

DESCRIPfION 

During normal JAM processing, named fields m the screen and local clara block are kept 
in sync. When a screen is displayed (and after the screen entry function completes), val
ues are copied in from the LDB; when conlrol passes from the screen (before the screen 
entry function is executed), values are copied back to the LDB, Normally, when applica
tion code reads or wntes a value to or from a named fieldILDB entry JAM treats the name 
as a field name unless no such field exists, in which case JAM treats the name as an LDB 
entry name. During screen entry and exit processing, this logiC IS reversed in order to pre
serve the illusion that screen and LDB entries that share the same name also share the 
samedala. 

xsm dd able turns this feature off If flag is "0" and on ifit is "I". The feature is on 
by ddauiL When it is oft', the LDB is never accessed. 

JAM Release 5 1 March 91 Page 119 



JAM PU1 Programmer's GUide 

deselect 
deselect a checklist occurrence 

SYNOPSIS 
declare group_name char(256) varying; 
declare group_occurrence fixed b1nary(3l); 
declare status fixed binary(3l); 
status a xsm_deselect(group_name, group_occurrence); 

DESCRIPfION 

This function allows you 10 deselect a specific occurrence Within a checkhst The group 
name and occurrence number is used to reference the desIred selecbon. See the Author's 
Guide for a more detailed discussion of groups. 

Use xsm_select 10 select a group occurrence and xsm_isselected to check 
whether or not a partIcular group occurrence is currently selected. 

NOTE: You can not deselect a radio button occurrence. Usmg xsm _select on a radio 
button occurrence will automabcaUy deselect the current selection. 

RETURNS 

-1 arguments do not reference a check.llSt occurrence. 
o occurrence not previously selected. 
1 occurrence previously selected. 

RELATED FUNCTIONS 
status - xsm_isselected(group_name, group_occurrence); 
status a xsm_select(group_name, group_occurrence); 

Page 120 JAM Release 5 1 March 91 

\. 



JAM PU1 Programmer's GUide 

dicname 
set data dictionary name 

SYNOPSIS 
declare dic_name char(256) varying; 
declare status fixed binary(31); 
status - xsm_dicname(dic_name); 

DESCRIYfION 

This function names the application's data dictionary, which is data.die by defauIL It 
must be called before JAM imtializatiOQ, in particular before xsm ldb ini t is called 
to initialize the local data block from the data dIctionary. The argUment die_name is a 
character siring giving the file name; JAM will search for it in all the directories in the 
SMPATH variable. 

You can achieve the same effect by defining the SMDICNAME variable in your setup file 
equal to the data dictionary name. See the seebon on setup files in the Configuration 
Guide. 

Use the function xsm...,.pinquire to find the name of the data dictionary in use. 

RETURNS 

-1 if it fads to allocate memory to store the name, 
o otherwise. 

RELATED FUNCTIONS 

buffer - xsm-pinquire(which); 

JAM Release 5 1 March 91 Page 121 



JAM PU1 Programmer's GUide 

disp_off 
get displacement of cursor from start of field 

SYNOPSIS 
declare offset fixed binary(31); 
offset - xsm_disp_off(); 

DESCRIPfION 

Returns the difference between the rust column of the current field and the current cursor 
location. This function IgnOres off screen data; use xsm _ sh_ off to obtam the total cur
sor offset of a shiftable field. 

RETURNS 

The difference between cursor position and start of field, or 
-1 if the cursor is not in a field. 

RELATED FUNCTIONS 
call field_number a xsm_getcurno(); 
call offset a xsm_sh_off(); 

Page 122 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

dlength 
get the length of a field's contents 

SYNOPSIS 
declare field_number fixed binary(31); 
declare data length fixed binary(31); 
data_length ~ xsm_dlength(field_number); 

DESCRIPfION 

Returns the length of data stored in field_number. The length does not include lead
ing blanks in rightjusbfied fields, or tIailing blanks in left-justified fields (which are also 
ignored by xsm_getfield). It does include data that have been shlfted offscreen. 

RETURNS 

Length of field contents, or 
-1 if the field is not found. 

VARIANTS 

data_length - xsm_e_dlength(field_name, element); 
data_length - xsm_i_dlength(field_name, occurrence); 
data_length - xsm_n_dlength(field_name); 
data_length - xsm_o_dlength(field_number, occurrence); 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 123 



JAM PU1 Programmer's GUide 

do_region 
rewrite part or all of a screen line 
s;,~~ m:SSSBlBIlBliiBBSSSSJIISBBSBBBBSBBBBBBS III iBimmBBlBBBBBSBBBsm::lBBBiBiS 18S8SbltootolBSSBSSBS8S ~"""'m,;,'mssss:sss' ~!II!II" Mo-~ 

SYNOPSIS 

declare line 
declare column 
declare length 
declare display_attribute 
declare text 
call xsm_do_region(line, 

text) ; 

DESCRIPfION 

fixed binary(31); 
fixed binary(31); 
fixed binary(31); 
fixed binary(31); 
char(256) varying; 

column, length, display_attribute, 

The screen region defined by line, column, and length is rewritten. Line and 
col umn are counted/rom zero, With (0, 0) the upper left-hand comer of the screen. 

If text IS zero, the screen region is redrawn with whatever display attnbute 
has been assigned. If text 18 shorter than length, it is padded out With blanks. In either 
case, the display attnbute of the whole area IS changed to display_attribute. 

Possible values for display_attribute are dermed m smdefs. incl.pll, as 
shown in the table below: 

Foreground Allribules Background AttnbUles 

BLANK B_HILIGHT 

REVERSE 

UNDERLN 

BLINK 

HILIGHT 

STANDOUT 

DIM 

ACS (alternate character set) 

Page 124 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Foreground Colors Background Colors 

BLACK B_BLACK 

BLUE B_BLUE 

GREEN B_GREEN 

CYAN B_CYAN 

RED B_RED 

MAGENTA B_MAGENTA 

YELLOW B_YELLOW 

WHITE B WHITE 

Foreground colors may be used alone or ored With one or more highlights, a background 
mnemonic, and a background hlghlighL H you do not specify a highlight or a background 
mnemonic, the attribute defaults to white against a black background. Omitting the 
foreground mnemonic will cause the attnbute to default to black. 

JAM Release 5 1 March 91 Page 125 



JAM PU1 Programmer's Guide 

doccur 
delete occurrences 
WS8SIilBBiiiiiiiiSi BiiiSBBiiilliiiiiiiiiiiiiiiimmmmiBliiBiiiii88SiEiB8iiSSiBliiSiSliiil ~~ ,~~" ~~ '" ~~,~ 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare occurrence fixed binary(3l); 
declare count fixed binary(3l); 
declare return_value fixed binary(31); 
return_value = xsm_o_doccur(field_number, occurrence, count); 

DESCRIPTION 

NOTE: This function only exists in the 0 and i variations. There is NO xsm doc-
cur since this function only applies to ariiys. - -

This function deletes the data m count occurrences begmmng With the specified oc
currence. H the array IS scroUable, then it deaUocates count occurrences. The data in 
occurrences following the last deleted occurrence are moved up in the array so that there 
are no gaps. Fewer than count occurrences will be deleted if the number of Iemmning 
allocated occurrences, starting with the referenced occurrence, IS less than count. 

H count is negative, occurrences are inserted instead, subject to lImitations explained at 
xsm _ioccur. The function xsm _ ioccur is nonnally used to add blank occurrences. 

H occurrence is zero, the occurrence used is that of field number. -H occur
rence is nonzero, however, it is taken relative to the fIrSt field of the array in which 
field_number occurs. 

Any clearing-unprotected synchronized arrays will have the same operabons performed 
on them as the referenced array. 

This function is nonnally bound to the DELETE LINE key. 

RETURNS 

-1 if the field or occurrence number was out of I3Jlge; 
-3 if insufficient memory was available; 
otherwise, the number of occurrences actually deleted (zero or more). 

VARIANTS 

return_value - xsm_i_doccur(field_name, occurrence, count); 

Page 126 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

dtofield 
write a real number to a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare value float binary(53); 
declare format char(256) varyinq; 
declare status fixed binary(31); 
status - xsm_dtofield(field_number, value, format); 

DESCRIPfION 

The real number value is converted to human-readable fonn, according to format, 
and moved into field number via a call to xsm amt format. If the format 
string IS empty, the number of decimal places will be taken from a data type edit, if one 
exists; failing that, from a currency edit, if one exists; or failing that, will default to 2. 

The number of decimal places may be forced to be an arbltrary nwnber n, via rounding, 
by using the fonnat Sblng %. nf". The fonnat string %t. nf" may be used to truncate in
stead of to round. 

RETURNS 

-1 is returned if the field is not found. 
-2 is returned lf the output would be too wide for the destinabon field. 
o is returned otherwise. 

VARIANTS 

status - xsm e dtofield(field name, element, value, format); 
status - xsm=i=dtofield(field=name, occurrence, value, format); 
status - xsm_n_dtofield(field_name, value, format); 
status a xsm_o_dtofield(field_number, occurrence, value, 

format) ; 

RELATED FUNCTIONS 

status - xsm_amt_format(field_number, buffer); 
value - xsm_dblval(field_number); 

JAM Release 5 1 March 91 Page 127 



JAM PU1 Programmer's GUIde 

e 
variants that take a field name and element number 

SYNOPSIS 
declare field_name char (256) varying; 
declare element fixed binary(31); 
call xsm_e_ ••• (field_name, element, .•. ); 

DESCRIYfION 

The e variant functions access one element of an array by field name and element num
ber, For a description of any particular funcbon, look under the related function without 
e_ in its name. For example, xsm_e_amt_format IS descnbed under 
xsm_amt_format. 

Despite the fact that they take a field name as argument. these functions do not search the 
LDB for names not found in the screen because an element number 1S ambiguous when 
referring to the LDB. 

Page 128 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

edit_ptr 
get special edit string 

SYNOPSIS 
declare buffer char(256) varying; 
declare field_number fixed binary(31); 
declare edit_type fixed binary(31); 
buffer m xsm_edit-ptr(field_number, edit_type); 

DESCRIPfION 

This function searches the SpecIal edits area of a field or group for an edit of type 
edit_type, The edit_type should be one of the following values, which are de
fmed in smdefs. incl. pl1: 

Edit type Contents of edit strUl8 

NAMED Field name 

CPROG Name of field validation funcUOn 

FE CPROG Name of field entry funcbon 

FX CPROG Name of field exit function 

HELPSCR Name of help screen 

HARDHLP Name of automatic help screen 

HARDITM Name of automatic item selection screen 

ITEMSCR Name of item selection screen 

SUBMENU Name of pull-down menu screen 

TAB LOOK Name of screen for tabJe-.lookup validation 

NEXTFLD Next field (contains both primary and alternate fIelds) 

PREVFLD Previous field (contains both pnmary and alternate fields) 

TEXT Status line prompt 

JAM Release 5 1 March 91 Page 129 



JAM PU1 Programmer's GUide 

Efbttype COnlenls of edit string 

MEMOl ... Nme arbiD'3ry user-supplted text Slnngs 

MEMO 9 

JPLTEXT Attached JPL code 

CALC Math expression executed at field eXIt 

CKDIGIT Flag and parameters for check digit 

FTYPE Data type for inclusion in structure 

RETCODE Return value for menu or return entry field 

CMASK Regular expression for field validation 

CCMASK Regular expression for character validation 

CKBOX Offset and allribute of checkbox in a group 

ALTSC CPROG Name of alternate scrolling function -
KEYSET Name of keyset associated with screen. 

SDATETIME Date/time field with user fannat, imtialized with system values. 

UDATETIME Date/time field with user format, initialized by the user. 

CURRED Currency field fonnat, see smdefs. incl.pll fordetails. 

NULLFIELD Null field representation. 

RANGEL Low bound on range; up to 9 permitted 

RANGEH lbgh bound on range; up 10 9 permitted 

EDT BITS Nonnally for internal use (see smdefs . incl. pll for more -
infonnation.) 

The siring returned by xsm _ edi t...,pt r contains: 

• The total length of the slnng (including the two overhead bytes and any 
tennmators) in Its fllSt byte. 

Page 130 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• The ediUype code in its second byte. 

• The body of Ihe edit in the subsequent bytes. Refer 10 the source listing 
for the file smdef s • incl. pll for specific infonnation on how 10 in
terpret each individual edit. 

If the field has no edit of type edi t _type, the returned buffer will conlain a zero. If a 
field has multiple edits of one type, such as RANGEH or RANGEL, then each additional 
edit is added onlO the end of the siring following the same pattern as the flJ'St one. For 
example, the flJ'St byte would contain the length of the siring up 10 the end of the body of 
the edit of RANGEH. Adding one 10 this number would give you the byte that contains 
the length of the siring conlaining information on RANGEL and so forth. 

This funcbon is especially useful for retrieving user-defmed information conlained in 
MEMO edits. 

In the case of groups, the edits PREVFLD, NEXTFLD, CPROG, FE CPROG, and 
FE _ CPROG may be used 10 obtain group infonnalion. -

RETURNS 

The fIrSt (length) byte of the spec18l edit of the field. 
o if the field or edit is not found. 

VARIANTS 

JAM Release 5 1 March 91 Page 131 



JAM PU1 Programmer's Guida 

emsg 
display an error message and reset the message line 
without turning on the cursor 

SYNOPSIS 
declare message char(256) varying; 
call xsm_emsg(message); 

DESCRIPfION 
This fWlcbon displays message on the status line, if it fits, or ID a window if It is too 
long. If the cursor position display has been turned on (see xsm_ c _vi s), the end of the 
status line will contain the cursor's current row and column. If the message text would 
overlap that area of the status line, it will be displayed in a window mstead. The message 
remains visible Wltil the operaror presses a key. The fWlction's exact behavior ID dismiSS
ing the message is subject to the error message options; see xSIrL option. 

xsm_emsg is identical toxsm_err_reset, except that it does not attempt to tum the 
cursor on before displaying the message. It is Similar to xsm qu~ msg, which inserts a 
constant string (nonnally "ERROR:") before the message. - -

- Several percent escapes provide control over the content and presentabon of stams mes
sages. The chamcter following the percent sign must be in upper--case. Note that, if a mes
sage containing percent escapes is displayed before xsm _ ini tc rt IS called, the percent 
escapes will show up in the message. 

If a string of the fonn %Annnn appears anywhere in the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be applied to the remainder of the message. The 
table gives the numeric values of the logical display atlnbutes you will need to construct 
embedded attnbutes. If you want a digit to appear immediately after the attribute change, 
pad the attribute to 4 digits with leading zeros. If the following character is not a legal hex 
digit, then leading zeros are unnecessary. 

If a string of the fonn %Kkeyname appears anywhere in the message, keyname is inter
preted as a logical key mnemonIC, and the whole expression is replaced With the key label 
string dermed for that key in the key translation file. If there is no label, the %K is stripped 
out and the mnemonic remains. Key mnemonics are dermed in smkeys • incl. p11; it 
is of course the name, not the number, that you want here. The mnemonic must be in upper
case. 
If the message begins with a %B,JAM will beep the terminal (usingxsm bel) before is-
suing the message. -

Paga132 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

If %N appears anywhere in the message, the latter will be presented in a pop-up window 
rather than on the status line, and all occurrences of %N will be replaced by new lines. 

If the message begins with %W, it will be presented in a pop-up window instead of on the 
status line. The window will appear near the bottom center of the screen, unless it would 
obscure the current field by so doing; in that case, it will appear near the top. 

If the message begins With %Mu or %Md, JAM will ignore the default error message ac
knowledgement flag and process (for %Mu) or discard (for %Md) the next character typed. 

Possible hex values for display attribute are defined in smdefs. incl. pll, as shown 
in the table below: 

Attribute MnemofUc HuCode Attribute Mnemonic HuCode 

Foreground Highlights Background Highlights 

BLANK 0008 B_HILIGHT 8000 

REVERSE 0010 

UNDERLN 0020 

BLINK 0040 

HILIGHT 0080 

STANDOUT 0800 

DIM 1000 

ACS (altemal8 characl8r set) 2000 

JAM Release 5 1 March 91 Page 133 



JAM PU1 Programmer's GUide 

Attribute Mnemonic Hex CO" Attnbute Mnemomc Hex Code 

Foreground Colors Background Colors 

BLACK 0000 B_BLACK 0000 

BLUE 0001 B_BLUE 0100 

GREEN 0002 B_GREEN 0200 

CYAN 0003 B_CYAN 0300 

RED 0004 B_RED 0400 

MAGENTA 0005 B_MAGENTA 0500 

YELLOW 0006 B_YELLOW 0600 

WHITE 0007 B WHITE 0700 

Foreground colors may be used alone or ored with one or more hIghlights, a background 
mnemonic, and a background highlighllf you do not specify a highlIght or a background 
mnemonic, the aunbute defaults 10 whIte against a black background, OmItting the 
foreground mnemODlC will cause the attnbute 10 default to black. 

RELATED FUNCTIONS 
call xsm_err_reset(messaqe); 
call xsm_qui_msq(messaqe); 
call xsm_quiet_err(messaqe); 

Page 134 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

err reset 
display an error message and reset the status line 

SYNOPSIS 
declare message char(256) varying; 
call xsm_err_reset(message); 

DESCRIPfION 

The message is displayed on the SIalUS line until acknowledged it by pressing a key. If 
message is too long to fit on the stabJS line, it is displayed in a window instead. If the 
cursor position display has been turned on (see xsm _ c _vis), the end of the SIalUS hoe 
will contain the cursor's current row and column. If the message text would overlap that 
area of the stabJS line, it will be displayed in a window instead. The exact behavior of 
error message acknowledgement is governed by xsm _option. The initial message at
blbute is set by xsm _option, and defaults to blmlang. 

This function turns the cursor on before displaying the message, and forces off the global 
flag sm do not display. It IS similar to xsm emsg, which does not tum on the 
cursor, and ~ xsm='quiet_err, which insertsaconstantslring (nonnally ''ERROR:j 
before the message. 

Several percent escapes provide control over the content and presentation of stabJS mes
sages. See xsm _ emsg for details. 

RELATED FUNCTIONS 
call xsm_emsg(message); 
call xsm_qui_msg(message); 
call xsm_quiet_err(message); 

JAM Release 5 1 March 91 Page 135 



JAM PU1 Programmer's GUide 

fi_path 
return the full path name of a file 

SYNOPSIS 
declare buffer char(256) varying; 
declare file_name char(256) varying; 
buffer D xsm_fi-path(file_name); 

DESCRIPTION 

Use this function to fmd the full path name of a me. The file may be a screen or any other 
type of file. The file's full path name is returned in buffer, 

The file name is fllSt sought in the current directory. If that fails, the path given to 
xsm_initcrt is checked. Finally the path defined by SMPATH is searched. 

RETURNS 

o if the file cannot be found in any path. 
Else, The path is returned in buffer. 

Page 136 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

finquire 
obtain information about a field 
~ID BBSSBBSSSSSBBBBSBIIBSBS BBBBBJlBBBllBBBBBBtI ~ ~lBaBBBBSSSBBIIBBBBBBIBBSSBBS~ BBIIIBBBBBBB~~ SSBlBBlIIBiSSBiSBIIIBSSBS."'II mlBBBBB ~ ~ ~ 

SYNOPSIS 

'include'smqlobs.incl.pll'; 

declare field_number fixed binary(3l); 
declare which fixed binary(3l); 
declare value fixed binary(3l); 
value - xsm_finquire(field_number, which); 

DESCRIPfION 

Use tillS funcbon to obtain various infonnation about a field. The variable which is a 
mnemonic that specifies the particular piece of infonnation desired. 

Mnemonics for which are defmed in the file smglobs. incl. pll. The following 
values are available: 

Mnemomc Meaning 

FD LINE Line that field is on. -
FD_COLM Column of field's first position. 

FD ATTR Field attributes (see smdefs. incl.pll). 

FD LENG Onscreen field length. 

FD ASIZE Onscreen array size (1 if scalar). 

FD ELT Onscreen element number. 

FD SHLENG Shiftable length. 

FD SHINCR Shift incremenL 

FD SHOFS Current shift offset (number of positions freld has been 
shifted; 0 if shifted to left edge). 

FD_SCINCR Scrollmg increment (for Next/Prev page keys). 

FD SCFLAG Scrolling array circular? \f1F). 

JAM Release 5 1 March 91 Page 137 



JAM PU1 Programmer's Guide 

Mnemomc Meamng 

FD_SCATTR Scrolling occurrence display attributes set with 
xsm i achg; zero if onscreen element attnbutes is to be 
used:1<'or xsm i finquire variant only. 

FD FELT First onscreen occurrence of scrolling array (1 If scrolled to - top). 

RETURNS 

The value of which if found. 
o otherwise. 

VARIANTS 

value a xsm e finquire(field name, element, which); 
value a xsm:i:finquire(field:name, occurrence, wh~ch); 
value a xsm_n_finquire(field_name, which); 
value a xsm_o_finquire(field_number, occurrence, which); 

RELATED FUNCTIONS 

value m xsm_gp_inquire(group_name, which); 
value a xsm_inquire(which); 
value - xsm_iset(which, newval); 
buffer - xsm-pinquire(which); 
buffer a xsm-pset(which, newval); 

Page 138 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

fldno 
get the field number of an array element or occurrence 

SYNOPSIS 
declare field_name char(256) varying; 
declare field number fixed binary(31); 
field_number ~ xsm_n_fldno(field_name); 

DESCRIPTION 

NOTE: This function only exists in the e_, i_, n_, and 0_ variations. There is NO 
xsm _ fldno since tillS function detennines the field number given other infonnation. 

The e _ variant returns the field number of an array element specified by field_name 
and element. Ifelement is zero, then xsm e fldnoretumsthefieldnumberofthe 
named rIeld, or the base element of the named array. 

The i_and 0_ variants retum the number of the field containing the specified occurrence 
if the occurrence is onscreen, or 0 if the occurrence is offscreen. 

The n _ variant retums the field number of a field specified by name, or the base field 
number of an array specified by name. _ 

RETURNS 

o if the name is not found, if the element number exceeds 1 and the named field 
is not an array, or if the occurrence is off screen. 

OthelWlse, retmns an integer between 1 and the maximum number of fields on the 
current screen that represents the field number. 

VARIANTS 

field_number a xsm_e_fldno(field_name, element); 
field_number - xsm_i_fldno(field_name, occurrence); 
field_number a xsm_o_fldno(field_number, occurrence); 

JAM Release 5 1 March 91 Page 139 



JAM PU1 Programmer's GUide 

flush 
flush delayed writes to the display 

iiliiiiii 

SYNOPSIS 
call xsm_flush(); 

DESCRIPfION 

This function perfonns delayed writes and flushes all buffered output to the dISplay. It is 
called automatically via xsm input whenever the keyboard is opened and there are no 
keystrokes available. i.e. typed ahead. 

Calhng this routine indiscrimmately can significantly slow execution. As It is called 
whenever the keyboard is opened, the display is always guaranteed to be in sync before 
data entry occurs; however. if you want timed output or other non-interactive display. use 
of this routine Will be necessary. 

RELATED FUNCTIONS 
call xsm_flush(); 
call xsm_rescreen(); 

Page 140 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

form 
display a screen as a form 

SYNOPSIS 
declare screen_name char (256) varyinq; 
declare status fixed binary(31); 
status = xsm_r_form(screen_name); 

declare screen_address bit(O); 
declare status fixed binary(31); 
status = xsm_d_form(screen_address); 

declare lib_desc fixed binary(31); 
declare screen_name char (256) varyinq; 
declare status fixed binary(31); 
status - xsm_l_form(lib_desc, screen_name); 

DESCRIPfION 
This set of functions is primanly intended 10 be used by developers who are writing their 
own executive. These functions do not update the form stack, so It is generally not a good 
idea 10 use them with the JAM Executive. To open a form while under the control of the 
JAM Executive, use a JAM control string or xsm_jform. 

These functions display the named screen as a base fonn. Bringmg up a screen as a form 
with xsm_d_form, xsm_l_form, xsm_r_form causes the previously displayed 
form and windows to be dIscarded, and their memory freed. The new screen is displayed 
with its upper left-hand corner at the extreme upper left of the display (position (0, 0». 

If an error occurs a relUrn of -lor -2 means that the previously displayed fonn is sbll 
displayed and may be used. Other negative relUrn codes indicate that the display is unde
rmed. The caller should display another fonn before using Screen Manager funcbons. 

When you use xsm_r_form the named screen is sought rust in the memory-l'CIudent 
screen list, and if found there IS displayed using xsm d form. It is next sought in all the 
open screen libraries, and if found is displayed uslDg~&n _1_ form. Next it IS sought on 
disk m the current directory; then under the path supplied to xsm _ ini tcrt; then in all 
the paths in the seblp variable SMP ATH. If any path exceeds 80 characters, it is skipped. 
If the entire search fails, this function displays an error message and relUrnS. 

You may save processmg time by using xsm _ d _form 10 display screens that are memo
ry-residenL Use bin2pll 10 conven screens from disk files, which you can modify us-

JAM Release 5 1 March 91 Page 141 



JAM PU1 Programmer's Guide 

ing jxform, to program data structures you can compIle into your application. A 
memory-resident screen is never altered at run-time, and may therefore be made share
able on systems that provide for sharing read-only data. xsm _ r _form can also display 
memory-residentscreens, if they are properly installed using xsm_formlist. Memo
ry-res1dent screens are particularly useful in applications that have a limited number of 
screens, or in environments that have a slow disk (e g. MS-DOS). screen_address 
is the address of the screen m memory. 

You may also save processing time by using xsm _1_ form to display screens that are m 
a library. A library is a single file containing many screens (and/or JPL modules and key
sets). You can assemble one from individual screen files using the utibly formlib. LI
braries provide a convement way of distributing a large number of screens with an appli
cation, and can improve eff'lClency by cutting down on the number of paths searched. 

The library descriptor, lib _ desc, is an integer returned by xsm _1_ open, which you 
must call before bying to read any screens from a library. Note that xsm_r_form also 
searches any open IibIaries. 

To display a window use xsm _ r _at_cur, xsm _ r_ window, or one of thea variants. 

RETURNS 

o if no error occurred 
-1 if the screen file's format IS mcorrect; prevIous form still displayed and available 
-2 If the screen cannot be found or the maximum allowable number of files is 

already open; previous-form still displayed and available 
-4 if, after the screen has been cleared, the screen cannot be successfully 

displayed because of a read error; 
-5 If, after the screen was cleared, the system ran out of memory; 

RELATED FUNCTIONS 

status = xsm_r_window(screen_name, start line, start_column); 
status = xsm_r_at_cur(screen_name); 

Page 142 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

formlist 
update list of memory-resident files 

SYNOPSIS 
declare name char (256) varying; 
declare address bit(O); 
declare status fixed binary(31); 
status - xsm_formlist(name, address); 

DESCRIPfION 

This function adds a JPL module, keyset, or screen 10 the memory resident form list. Each 
member of the list is a sbUcture giving the name of the JPL module, screen, or keyset, as 
a character string, and its address in memory. This function is commonly called from 
main. It can be called any number of times from an application program 10 augment to 
the memory resident lisL 

The lIbrary functions xsm_r_form, xsm_r_window, xsm_r_at_cur, and 
xsm r key set all take a screen or keyset name as a parameler and search for it in the 
memory-:'resident list before auempting 10 read the screen or keyset from disk. The jpl 
command (see the JPL Programmer's Guide) and the fWlction xsm jplcall search 
the memory resident form list when looking for a JPL procedure 10 execule. 

To make a JPL module, keyset, or screen memory re8ldent, you can use the bin2pll 
Ublity 10 creale a static PUI sbUcture inlbalJZed with the binary conlent of the object. 
You must then compile and link the sbUcture With the application executable. 

RETURNS 

-I if insufficient memory is available for the new list; 
o otherwise. 

RELATED FUNCTIONS 

call xsm_rmformlist; 

JAM Release 5 1 March 91 Page 143 



JAM PLl1 Programmer's GUide 

fptr 
get the content of a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare buffer char (256) varying; 
buffer - xsm_fptr(field_number); 

DESCRIPTION 

This routine returns the contents of the field specified by field_number. Leading 
blanks in right-justified fields and Irallmg blanks m lefl-justified fields are stnpped. 

RETURNS 

The field contents, or 
o if the field cannot be found. 

VARIANTS 

buffer - xsm_e_fptr(f1eld_name, element); 
buffer - xsm_i_fptr(field_name, occurrence); 
buffer - xsm_n_fptr(field_name); 
buffer = xsm_o_fptr(field_number, occurrence); 

RELATED FUNCTIONS 

length - xsm_getfield(buffer, field_number); 
status - xsm-putfield(field_number, data); 

Page 144 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

ftog 
convert field references to group references 

me 

SYNOPSIS 
declare field_number fixed binary(31); 
declare qroup_occurrence fixed binary(31); 
declare buffer char(256) varyinq 
buffer - xsm_ftoq(field_number, qroup_occurrence); 

DESCRIPTION 

This funcbon converts field references to group references. Use xsm i gtof to con-
vert them back. - -

This function returns the name of the group containing the referenced field and inserts its 
group occunence number into the address of occurrence. 

RETURNS 

The group name Iffound and indirectly through group_occurrence the 
group occurrence number. 

o otherwise and group_occurrence is unchanged. 

VARIANTS 

buffer - xsm_e_ftoq(field_name, element, qroup_occur~ence); 
buffer - xsm i ftoq(field name, occurrence, qroup occurrence); 
buffer - xsm=n=ftoq(field=name, qroup_occurrence); 
buffer - xsm_o_ftoq(field_number, occurrence, 

qroup_occurrence); 

RELATED FUNCTIONS 

field_number - xs~i_qtof(qroup_name, qroup_occurrence, 
occurrence); 

JAM Release 5 1 March 91 Page 145 



JAM PU1 Programmer's GUide 

ftype 
get the data type and precision of a field 

SYNOPSIS 
declare field number fixed binary(31); 
declare precision-ptr fixed binary(31); 
declare type fixed binary (31) ; 
type - xsm_ftype(field_number, precision-ptr); 

DESCRIPrION 
This function analyzes the edits of a field or LDB entry, and returns data type infonnation. 
First the "type" (FTYPE) edit IS checked, then the "currency" edit, the "date/lIme" edIt, 
and fmally the "character" edIL 

Note thal this differs from the functionality of xsm_rdstruct, xsm_wrtstuct, 
xsm_rrecord, and xsm_wrecord. These functions only test the type and character 
edits. They use the currency edit only to detennine the preciSIOn of a numeric field that 
has no type ediL 

This function returns an integer containmg the data type code, plus any applicable flags. 
The data type codes and flags are detailed in the tables below. 

Data Type Code Mearung 

FT CHAR Type edit is chDr string; or character edit IS unfiltered, letters 
only, alphanumeric, or regular expression 

FT INT Type edit is int 

FT UNSIGNED Type edit is unsigned int; or character edit is digit 

FT SHORT Type edit is short int 

FT LONG Type edit is long int 

FT FLOAT Type edit isfloat 

FT_DOUBLE Type edit is double; or character edit is numeric 

FT ZONED Type edit is zoned dec. 

FT PACKED Type edit is packed dec. 

Page 146 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Data Type CfHk Meaning 

DT_YESNO Character edit is yes/no 

DT_CURRENCY Currency edit 

DT DATETIME Date/tune edit 

Flag Meaning 

DF NULL Null edit 

DF_REQUIRED Data required edit (not applicable to LDB) 

DF WRAP Word wrap edit -
DF OMIT Type edit is omit. 

To determine the data type code, check thIS mteger for each flag in the fashion of the ex
ample field function shown on page 14, starting with DF _OMIT and working up the list. 
The value remaining will be the data type code. 

Note that FT_OMIT is not listed as one of the data types. A field that has the type edit 
omit will return the data type determined by any of the other edits, as well as a flag indi
cating that It has the omit type edit 

The function will put the precision of float, double and currency values in the preci
son....ptr argument 

RETURNS 
major data type code plus any applicable flags (see tables above). 
o if field is not found 

VARIANTS 

JAM Release 5 1 March 91 Page 147 



JAM PU1 Programmer's GUide 

tval 
force field validation 

SYNOPSIS 
declare field_number fixed binary(31); 
declare status fixed binary(31); 
status - xsm_fval(field_number); 

DESCRIPTION 

This function perfonns all validabons on the indicated field or occurrence, and returns the 
result If the field is protected agamst validation, the checks are not perfonned and the 
functwn returns 0; see xsm _ aprotect. Vabdations are done in the order listed below. 
Some will be skipped if the field is empty, or if its VALIDED bit IS already set (implymg 
that it has already passed validation). 

Validation Slap if valid Skip if empty 

required y n 

must fill y y 

regular expression y y 

range y y 

check-digit Y y 

daleorbme y y 

table lookup y y 

currency format y n* 

math expresssion n n 

field validation n n 

JPL function n n 

* The currency fonnat edit contains a skip-if-empty flag; see the Author'S GUide. 

If you need to forte a skip-if-empty vabdation, make the field required. A field with em
bedded punctuation must contain at least one non-blank non-punctuabon character in or-

Page 148 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

der to be considered non-empty; otherwise any non blank: character makes the field non
empty, 

Math expressions, JPL funcuons and field validaUon functions are never skipped, smce 
they can alter fields other than the one being validated. 

Field validation is performed automatically withm xsm _input when the cursor eXits a 
field via the TAB or NL logical keys. All fields on a screen are validated when XMIT is 
pressed (see xsm_s_val). Application programs need call this function only to force 
validation of other fields. 

RETURNS 

-2 If the field or occurrence specification is invalid; 
-I If the field fails any validation; 
o otherwise. 

VARIANTS 

status a xsm_e_fval(array_name, element); 
status a xsm_i_fval(field_name, occurrence); 
status a xsm_n_fval(field_name); 
status a xsm_o_fval(field_number, occurrence); 

RELATED FUNCTIONS 

status - xsm_n_9Val(qroup_name); 
status a xsm_s_val(); 

JAM Release 5 1 March 91 Page 149 



JAM PU1 Programmer's Guide 

getcurno 
get current field number 

SYNOPSIS 
declare field_number fixed binary(3l); 
field_number - xsm_getcurno(); 

DESCRIPfION 

This funcbon returns the number of the field in which the cursor is currently posItioned. 
The field number ranges from 1 to the total number of fields in the screen. 

RETURNS 

Number of the current field, or 
o if the cursor is not within a field. 

RELATED FUNCTIONS 

Page 150 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

getfield 
copy the contents of a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare lenqth fixed binary(31); 
lenqth - xsm_qetfield(buffer, field_number); 

DESCRIPfION 
This function COpies the data found in field_number to buffer. Leading blanks in 
right-Justified fields and trailing blanks in left-justified fields are not copied. The varia
nts that reference a field by name will auemptlO get data from the corresponding LDB 
entry if there is no such field on the screen (except that the order is reversed during screen 
entry/eXIt processing). 

Responsibility for providing a buffer large enough for the field's contents rests with the 
calling program. This should be alieast one greater than the maximum length of the field, 
taking shifting into accounL 

In variants that take name as an argument, either the name of a field or a group may be 
used. In the case of groups, xsm isselectedispreferredlOxsm getfieldforde
termining whether or not a group occurrence is selected. H xsm _ n _get field is called 
on a radio button, the vallle in buffer will be the occurrence number of the selected 
item. If xsm i get field is called on a checklist, the vallle in the fust occurrence of 
the array wiUbe-the number of the fust selected item in the group, the value in the second 
occurrence will be the number of the next selected item in the group and so on. If a check
list has, for example, three items selected, the fourth array occurrence will be empty. 

Note that the order of arguments to this function is different from that 10 the related func
tion xsm --putf ield. 

RETURNS 

The IOtailength of the field's contents, or 
-1 if the field cannot be found. 

VARIANTS 
lenqth - xsm_e_qetfield(buffer, name, element); 
lenqth - xsm_i_qetfield(buffer, name, occurrence); 
lenqth - xsm_n_qetfield(buffer, name); 
lenqth - xsm_o_qetfield(buffer, field_number, occurrence); 

JAM Release 5 1 March 91 Page 151 



JAM PU1 Programmer's GUide 

RELATED FUNCTIONS 
buffer D xsm_fptr(field_number); 
status D xsm_isselected(qroup_name, qroup_occurrence); 
status - xsm-putfield(field_number, data); 

Page 152 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

getjctrl 
get control string associated with a key 

SYNOPSIS 

'include'smkeys.incl.pll'; 

declare key fixed binary(31); 
declare default fixed binary(31); 
declare buffer char (256) varying 
buffer - xsm_getjctrl(key, default); 

DESCRIPTION 

Each JAM screen contains a table of control strings associated with function keys. JAM 
also maintains a default table of keys and control strings, which take effect when the cur
rent screen has no control string for a funcuon key you press. This table enables you 10 
defme system-wide actions for keys. It is iniuahzed from SMINICTRL setup variables. 
See the secuon on setup in the ConfIgW3ti.on Guide for further information. 

This function searches one of the tables for key, a logical key mnemonic found m 
smkeys. incl.pll, and returns a the associated control string. If default is zero, 
the table for the current screen IS searched; otherwise, the system-wide table is searched. 

RETURNS 

The control slnng 
o if none is found. 

RELATED FUNCTIONS 

status - xsm""putjctrl (key, ,control_string, default).; 

JAM Release 5 1 March 91 Page 153 



JAM PU1 Programmer's GUide 

getkey 
get logical value of the key hit 

SYNOPSIS 

'include'smkeys.incl.pll'; 

declare key fixed binary(3l); 
key = xsm_getkey(); 

DESCRIPTION 

This function gets and interprets keyboard input and retwns the logical value to the call
ing program. Normal characters are returned WlChanged, Logical keys are interpreted ac
cording 10 a key ttanslation me for the particular tennina1 you are using. See the Key
board Input section in this guide, the Key Translation section m the Configuration Guide, 
and the modkey section in the Ublities Gwde. xsm _get key is nonnally not needed for 
application programming, since it is called by xsm_input. 

Logical keys include TRANSMIT, EXIT. HELP, LOCAL PRINT, arrows, data modifica
tion keys like INSERT and DELETE CHAR, user fWlction keys PFI through PF24, 
shIfted function keys SPFI through SPF24, and others. Defmed values for all are in ... 
smkeys. incl. pll. A few logical keys, such as LOCAL PRINT and RESCREEN, 
are processed locally in xsm _get key and not returned to the caller. 

There is another fWlcuon called xsm _ ungetkey, which pushes logical key values back 
on the input stream for retrIeval by xsm_getkey. Smce all JAM input routines call 
xsm_getkey, you can use It to generate any input sequence automaucally. When you 
use it, calls to xsm get key will not cause the display to be flushed, as they do when 
keys are read from the keyboard. 

There are a number of user-installed functions that may be called by xsm _get key . For. 
further infonnation see the section on installing functions in the Programmer's Guide.- ... _ 

Finally, there is a mechanism for detecting an ext.emallyestablishedabortcondIuon.es
sentially a tlag, which causes JAM input funcbons to return to their callers immediately. 
The present function checks for that condition on each iteration, and returns the ABORT 
key nit is true. See xsm_isabort. 

Application programmers should be aware that JAM control strings are not executed 
WIthin this fWlction, but at a higher level WIthin the JAM run-time system (i.e., funcuons 
that call xsm_getkey. If you call this fWlction, do not expect function key control 
strings to work. 

Page 154 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

The multiplicity of calls to user functions in xsm _get key makes it a little difficult to 
see how they interact, which take precedence, and so forth. In an eJJon to clarify the pro
cess, we present an outline of xsm _get key. The process of key translation is deliberate
ly omitted, for the sake of clanty; that algorithm is presented separately, in the keyboard 
tIanslation secbon of the Programmer's Guide. 

***Step 1 

• If an abon condition exists, return the ABORT key. 

• If there IS a key pushed back by ungetkey, return thaL 

• If playback is active and a key is available, take it directly to Step 2; 
otherwise read and translate input from the keyboard. When the key
board is read, then the asynchronous function (if one is installed) is 
called dunng periods of keyboard inactivity. 

*** Step 2 

• Pass the key to the keychange function. If that function says to dIScard 
the key, go back to Step 1; otherwise if an abon condition exists, return 
the ABORT key. 

• If recording is acbve, pass the key to the recording funcbon. 

*** Step 3 

• -If the routing table says the key is to be processed locally, do so. 

• If the routing table says to return the key, return it; otherwise, go back to 
Step 1. 

• If the key is a soft key, return lts logical value. 

RETURNS 

The standard ASCII value of a displayable key; a value greater than 255 (FF hex) 
for a key sequence m the key translation file. 

RELATED FUNCTIONS 
old_flag m xsm_keyfilter(flag); 
return_value m xsm_ungetkey(key); 

JAM Release 5 1 March 91 Page 155 



JAM PU1 Programmer's Guide 

gofield 
move the cursor into a field 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare status fixed binary(3l); 
status - xsm_90field(field_number); 

DESCRIPfION 

Positions abe cursor to abe fJl'St enlerable position of field_number. If the field is 
shiftable, it is reset. 

In a right-justified field, the cursor is placed in abe nghtmost position and m a left-jusb
fied field, in the leftmoSL In eiaber case, if the field has embedded punctuation, abe cursor 
goes to the nearest position not occupied by a punctuation character. Use xs~ of f _90-
field to place abe cursor in position oaber than that of abe first character of a field. 

When called to position the cursor in a scrollable array, xsm 0 go field and 
xsm i gofieldretumanerrorifabeoccmrencenumberpassedex~sbymorethan 
1 the luimber of allocated occurrences in the specified array. If the desD"ed occurrence is 
ofi'screen, it is scrolled on-screen. 

This function doesn't immediately trigger field entry, exit, or validation processing. Such 
processing occurs based on the cursor position when conttol returns to xsm _input. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 

status - xsm_e_90field(field_name. element); 
status a xsm_i_90field(field_name. occurrence); 
status m xsm_n_90field(field_name); 
status D xsm_o_90f1eld(field_number. occurrence); 

RELATED FUNCTIONS 

status a xsm_off_90field(field_number. offset); 

Page 156 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• • gp_lnqulre 
obtain information about a group 

0: 

SYNOPSIS 

'include'smqlobs.incl.pll'; 

declare group_name char(256) varying; 
declare which fixed binary(31); 
declare value fixed binary(31); 
value = xsm_gp_inquire(group_name, which); 

DESCRIPTION 
Use tillS function to obtain various information about group, The variable which is a 
mnemonic that specifies the particular piece of infonnation desired. 

Mnemonics for which are defined in the fIle smglobs . incl. pH. They are: 

Mnemonic Meaning 

GP_NOCCS Number of occurrences in the group (sum of number of occurrences of 
all fields/arrays in group) 

GP_FLAGS Flags 

RETURNS 
The value of which, if found, or 
-1 otherwise. 

JAM Release 5 1 March 91 Page 157 



JAM PU1 Proarammer's Guide 

gtof 
convert a group name and index into a field number and 
occurrence 

SYNOPSIS 
declare group_name char (256) varying; 
declare group_occurrence fixed binary(31); 
declare occurrence fixed binary(31); 
declare field_number fixed binary(31); 
field_number = xsm_i_gtof(group_name, group_occurrence, 

occurrence); 

DESCRlPfION 

NOTE: This function only exists m the i variation. There is no xsm gtof since 
groups cannot be referenced by number. - -

Use this function to convert a group name and group_occurrence into a field number and 
occurrence. The vanable group_name is the name of the group and group _ occur
rence is the specific field withm the group. 

The function returns the field number of the referenced field and inserts the occurrence 
number into the memory location addressed by occurrence. 

Using this function allows you to use other JAM library routines to manipulate group 
fields by converting group references into field references. -For mstance, if you wanted to 
access text from a specific field within a group you would need to use xsm _ i _gtof to 
get the field and occurrence number before you could use the function xsm _0 _get
field to retrieve the texL 

RETURNS 

The field number if found. 
o otherwise. 

RELATED FUNCTIONS 

buffer = x sm_ft og (field_number, group_occurrence); 

Page 158 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

gval 
force group validation 

SYNOPSIS 
declare group_name char(256) varying; 
declare status fixed binary(31); 
status a xsm_n_9Va1(group_name); 

DESCRIPfION 

NOTE: This function onlyexislS in thexsm n gval variation. There is no xsm gval 
since groups cannot be referenced by numbet. - -

Use this function to force the execution of a group's validation funcbon. Use 
xsm _ s _val to validate all fields and groups on the screen. 

RETURNS 

-1 if the group fails any validation. 
-2 if the group name is invalid. 
o otherwise. 

RELATED FUNCTIONS 
status - xsm_fval(f1eld_number); 
status a xsm_s_val(); 

JAM Release 5 1 March 91 Page 159 



JAM PU1 Programmer's GUide 

gwrap 
get the contents of a wordwrap array 

SYNOPSIS 
declare buffer char(256) varying; 
declare field_number fixed binary(31); 
declare buffer_length fixed binary(31); 
declare length fixed binary(31); 
length - xsm_qwrap(buffer, field_number, buffer_length); 

DESCRIPTION 

This function copies the contents of the array specified by field _ numbe r, one occur
renceata time, mto buffer, up to the size specified by buffer_length, A space is 
inserted before every nOlH:mpty occurrence, except the flfSL 

The variant xsm_ 0 _gwrap copies the contents of the array, beginning with the specified 
occurrence. 

RETURNS 

The length ofttansferrable data. If thiS is greater than buffer_length, then the data: 
was truncated. 

-1 if the field number is invalid or buffer_length is:s; o. 
VARIANTS 

status - xsm_o_qwrap(buffer, field_number, occurrence, 
buffer_length); 

RELATED FUNCTIONS 

status m xsm-pwrap(field_number, text); 

Page 160 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

hlp_by_name 
display help window 

mJ t 

SYNOPSIS 
declare help_screen char(256) varying; 
declare status fixed binary(31); 
status - xsm_hlp_by_name(help_screen); 

DESCRIPTION 
The named screen is displayed and processed as a nonnal help screen, mcluding input 
processing for the current field (if any), 

Refer to the Author's Guide for inSlJUCtlons on how to create various kinds of help 
screens and for details of the behaviour of help screens. 

RETURNS 
-1 if screen is not found or other error; 
1 if dara copied from help screen to underlymg field; 
o otherwise. 

JAM Release 5 1 March 91 Page 161 



JAM PU1 Programmer's Guide 

home 
home the cursor 

SYNOPSIS 
declare field_number fixed binary(31); 
field_number - xsm_home(); 

DESCRIPTION 

This function moves the cursor to the fust enterable position of the fust tab-unprotected 
faeld on the screen, If the screen has no tab-unprotected fields, the cursor is moved to the 
fust line and column of the topmost screen. However, if you are usmg the JAM Execu
tive, the cursor may not be viSible If there are no tab-unprotected fields. 

The cursor will be put into a tab-protected faeld If it occupies the fll'St hne and column of 
the screen and there are no tab-unprotected fields. 

This function doesn't immediately trigger field entry, exit, or validation processing. Pro
cessingis based on the cursor position when control returns to xsm_input. 

When the JAM logical key HOME is hit, xsm _home is called. 

RETURNS 

The number of the field m which the cursor IS left, or 
o if the form has no unprotected fields and the home position IS not in a protected field. 

RELATED FUNCTIONS 

call xsm_backtab(); 
status - xsm_90field(field_number); 
call xsm_last (); 
call xsm_nl (); 
call xsm_tab () ; 

Page 162 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

variants that take a field name and occurrence number 

SYNOPSIS 
declare field_name char(2S6) varyinq; 
declare occurrence fixed binary(31); 
call xsm_i_ ••• (field_name, occurrence, .•• ); 

DESCRIPfION 

The i variants each refer to data by field name and occunence number. An occunence 
is a slOt within an array in which data may be stored. Occurrences may be either on or 
off-screen. Since JAM tteats an individual field as an array With one field. even a single 
non-scrolling field is considered to have one occurrence. The JAM library contaIns rou
bnes that allow you to manipulate individual occurrences during run-tmle. 

If occurrence is zero, the reference is always to the cunent contents of the named 
field. or of the base field of the named array. 

For the description of a particular fmction, look under the related function without i in 
-its name. For example, xsm_i_amt_format is described underxsm_amt_fo~t. 

If the named field IS not part of the screen currently being displayed, these funcbons will 
attempt to rettieve or change its value in the local data block. 

JAM Release 5 1 March 91 Page 163 



JAM PU1 Programmer's Guide 

• • Inlnames 
record names of initial data files for local data block 

SYNOPSIS 
declare name_list char(256) varying; 
declare status fixed binary(31); 
status - xsm_ininames(name_list); 

DESCRIPfION 

Use this routine to set up a list of initialization files for local data block entries. The file 
names in the single stnng name_list should be separated by commas, semicolons or 
blanks. There may be up to ten fIle names. You may achieve the same effect by definmg 
the SMININAMES variable in your setup file to the hst of names. See setup flles 10 the 
Configuration Guide and the Data Dictionary chapter of the Author's GUide for details. 

The flles contain pallS of names and values, which are used to inlbalize local data block 
entries by xsm_ldb_init. This function is called during JAM lrubalization, so 
xsm_ininames should be called before then. White space in the initialization files is 
ignored, but we suggest a format hke the following: 

"emperor'" 
"11eutenant'" 
'"assass1n[l)" 
'"assassin(2)'" 

"Julius Caesar" 
"Mark Antony" 
"Brutus'" 
"Cassius" 

Entries of all scopes may be freely mixed within all fIles. We recommend, however, that 
entries be grouped in files by scope if you are planning to use xsm lreset. Use 
xsm_lreset to clear all entries of a given scope before reinitializing them from a 
single file. 

RETURNS 

-5 if insufficient memory is available to store the names; 
o otherwise. 

RELATED FUNCTIONS 

call xsm ldb init(); 
status a-xsm:lreset(file_name, scope); 

Page 164 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

initcrt 
initialize the display and JAM data structures 
~BlSSSS:SSSSSS8lS1sssmsssssssmISISIII!~~ISIIIIIII:s!i;~~ISIISISSSIIIISS:SSISISlmmlS:3:ssmIIISSSSSS:"'~ 

SYNOPSIS 
declare path char(256) varying; 
call xsm_initcrt(path); 

declare path char(256) varying; 
call xsm_jinitcrt(path); 

declare path char (256) varying; 
call xsm_jxinitcrt(path); 

DESCRIPTION 
The function xsm ini tcrt is intended for use only with a user-written executive. It is 
called automabcally by the JAM Executive. 

xsm ini tcrt must be called at the beginning of screen bandltng. that is. before any 
screens are displayed or the keyboard opened for input to a JAM screen. Functions that 
set options. such as xsm _opt i on. and those that install functions or conrIgW'alion mes 
such as xsm_uinstall or xsm_vinit. are the only kind that may be called before 
xsm_initcrt. 

The argument path is a directory to be searched for screen files by xsm_r_window 
and variants. FlI'St the me is sought in the current directory; if it is not there. it is sought 
in the path supplied to this function. If it is not there either. the paths specified in the envi
ronment variable SMPATH (If any) are bled. The path argument must be supplied. If all 
forms are in the current directory. or if (as JYACC suggests) all the relevant paths are spe
cified in SMPATH. an empty stting may be passed. After setting up the search path. 
xsm _ ini tcrt performs several initializations: 

1. It calls a user-defined initialization routine. 

2. It determines the terminal type. if possible by examining the environ
ment (TERM or SMTERM). otherwise by asking the user. 

3. It executes the setup mes dermed by the environment vanables 
SMVARS and SMSETUP. and reads in the binary configuration mes 
(message. key. and video) specific to the terminal. 

4. It allocates memory for a number of data structures shared among 
JAM library functions. 

JAM Release 5 1 March 91 Page 165 

_ ,r 



JAM PU1 Programmer's Guide 

5. If supported by the operating system, keyboard interrupts are trapped 
to a routine that clears the display and exits. 

6. It inlualizes the operating system display and keyboard channels, and 
clears the display. 

The functions xsm_Jinitcrt andxsm_jxinitcrt are called by jmain.pll and 
jxmain . pll respectively for applicauons that use the JAM Executive. They, In tum, 
call xsm_initcrt, 

RELATED FUNCTIONS 

call xsm_resetcrt(); 
call xsm_jresetcrt(); 
call xsm_jxresetcrt(); 

Page 166 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

input 
open the keyboard for data entry and menu selection s_ 
SYNOPSIS 

declare initial_mode fixed binary(31); 
declare key fixed binary(31); 
key a xsm_input(initial_mode); 

DESCRIPrION 

This routine is only used if you are wnting your own executive. Use xsm _input to open 
the keyboard for eiaber data entry or menu selection. 

You specify which mode you wish to be in wiab abe argument initial_mode. Possible 
choices are defined m smde£s. incl. pll. They are: 

8IN_AUTO JAM checks wheaber you specified the screen to begin menu mode or data 
entry mode (See Auabor's Guide). 

8IN_DATA Start in data entry mode. 

8IN_MENU Start in menu mode. 

In most cases you wiD want to use IN_AUTO mode. Use IN_DATA or IN_MENU if you 
wish to override the setting that you specified via the Screen Editor. 

This roubne calls xsm _get key to get and interpret keyboard entry. While in data entry 
mode ASrn data is entered into fields on abe screen, subject to any restrictions or edits 
that were defined for abe fields. The routine returns to abe calling program when it en
counters a logical key, when a "return entry" field is filled or tabbed from, or a key Wlab 
the return bit set ID the routing table. 

If abe logical value returned by xsm _get key IS lRANSMIT, EXIT, HELP, or a cursor 
.. position key, abe processing is detennined by a routing table. The routing options are set 

wiab xsm _ keyoption. See xsm _ keyoption for more infonnation. 

This fllDCtion replaces version 4.0 xsm_choice, xsm_menu.J>roc, and 
xsm _ openkeybd. These fllDCtions only exist in your version 5.0 library for backward 
compatibility. We strongly suggest that you do not use abem in abe future. 

RETURNS 

The key hit by abe end-user that terminated abe call to xsm input, or abe fllStcharacter 
of abe selected menu item. -

JAM Release 5 1 March 91 Page 167 



JAM PU1 Programmer's GUide 

inquire 
obtain value of a global integer variable 

SYNOPSIS 

'include'smqlobs.incl.pll'; 

declare which fixed binary(31); 
declare value fixed binary(31); 
value - xsm_inquire(which); 

DESCRIPfION 

This function is used to abram the current integer value of a global variable. The desired 
variable is specified by which. If the value of which is a true/false (the flag is on or oft) 
value then xsm inquire returns 1 for true and 0 for false. If you wish to modify a 
global integer v8iue use xsm_iset. The permissible values for which are defined in 
smglobs. incl. pH. The following values are avaIlable: 

Mnemonic Meaning 

I NODlSP In non-display mode? (TIF). InitJally FALSE, setting TRUE - causes no further changes to the actual display, although JAM's 
internal screen image IS kept up to date. This was release 4's 
sm_do_not_display flag. 

I lNSMODE In insert mode? (TIF). -
I lNXFORM In JAM screen editor? (TIF) Field validation muttnes are - generally SbU called when in editor; they can check: this flag to 

disable certain features. 

I MXLlNES Number of lines avadable for use by JAM on the hardware 
display. 

I MXCOLMS Number of columns avadable for use by JAM on the hardware - display. 

I NLlNES Maximum number of lines avaIlable on the current screen, not -- including the status line. 

I NCOLMS Maximum number of columns available on the current screen, not - including the status line. 

I lNHELP Help screen is currently displayed? (TIF) 

Page 168 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

Mnemonic Meamng 

I_BSNESS Screen manager is ID control of dlsplay? (TIF). (Replaces reI. 4 
inbusiness funcuon). 

I BLKFLGS Block mode is turned on? (TIF) 

SC VFLINE First screen line of Viewport (O-based). 

SC VFCOLM F1lSt screen column of vlewport (O-based). 

SC VNLINE Number of lines in viewport. 

SC VNCOLM Number of columns in viewport. 

SC_VOLINE Line offset of viewport. 

SC_VOCOLM Column offset of VIewport. 

SC_NLINE Number of lines in screen. 

SC NCOLM Number of columns in screen. 

SC CLINE Current line number in screen. 

SC CCOLM Current column number in screen. 

SC_NFLDS Number of fields on screen. 

SC NGRPS Number of groups on screen. 

SC_BKATTR Background attributes of screen. 

SC BDCHAR Border character of screen. 

SC BDATTR Border attributes of screen. 

RETURNS 

If the argument corresponds to an integer global variable, the current value of that vari
able is returned. 

1 true, flag is set to on. 
o false, flag is set to off. 

-1 otherwise. 

RELATED FUNCTIONS 

value - xsm_finquire(field_number, which); 
value - xsm_gp_inquire(group_name, which); 
value - xsm_iset(which, newval); 
buffer - xsm-pinquire(which); 
buffer - xsm-pset(which, newval); 

JAM Release 5 1 March 91 Page 169 



JAM PLJ1 Programmer's GUide 

intval 
get the integer value of a field 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare value fixed binary(3l); 
value m xsm_intval(field_number); 

DESCRIPTION 

This fWlction returns the integer value of the data contained ID the field specified by 
field_number. Any pWlctuationcharacters in the field, except a leadlng plus or mmus 
sign. are ignored. 

RETURNS 

The integer value of the specified field, 
o if the field is not fOWld. 

VARIANTS 

value - xsm e intval(field name, element); 
value - xsm=i=intval(field=name, occurrence); 
value m xsm_n_intval(field_name); 
value m xsm_o_intval(field_number, occurrence); 

RELATED FUNCTIONS 

status - xsm_itofield(field_number, value); 

Page 170 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• loccur 
insert blank occurrences into an array 
91515iI8ii8iSiiSSSSS5SS8S5SllliSSSSSSSSSSSSS5S!~*,iiSSSii:SS&:SSSSSSS~S8SS8BiSSSS:S5SSBiSS:SS8ESSESSBiSEESSSSSEEEBiS9SESSSSBSSSBS:&:SSSiSSSSSSe:~ 

SYNOPSIS 
declare field_number f~xed binary(31); 
declare occurrence fixed binary(31); 
declare count fixed binary(31); 
declare lines_inserted fixed binary(31); 
lines inserted - xsm_o_ioccur(field_number, occurrence, count); 

DESCRIPfION 
NOTE: This function only exists in the i_ and 0_ variations. There is no xsm_ioc
cur, since this function applies only to arrays. 

Inserts count blank occurrences before the specified occurrence, movmg that occur
rence and all following occurrences down. If inserting that many would move an occur
rence past the end of its array, fewer will be inserted. If the array is scrollable, then this 
function may allocate up to count new occurrences. TIns function never increases the 
maximum number of occurrences an array can contain; xsm _ sc _max does that. If 
count is negative, occurrences will be deleted instead, subject to Iimilations descnbed 
in the page for xsm doccur. In addibon, this funcbon never inserts more blank occur
rences than the number of blank occurrences following the last non-blank occurrence 
(that is, it won't push data off the end of an array). 

If occurrence is zero, the occurrence used IS that of field nwnber. If occur
rence is nonzero, however, it is taken relative to the fust field of the array in which 
field_nwnber occurs. 

Any clearing-unprotected synchronized arrays will have the same operations perfonned 
on them as the referenced array. Synchronized arrays that are protected from clearing will 
remain constant. Therefore, a prorected array may be used to number a list of data stored 
in a non-protected synchronized array as it grows and shrinks. 

This function is normally bound to the INSERT LINE key. 

RETURNS 
-1 if the field or occurrence number is out of range. 
-3 if insufficient memory is available. 

otherwise, the number of occurrences actually inserted (zero or more). 

VARIANTS 
lines_inserted a xsm_i_ioccur(field_name, occurrence, count); 

JAM Release 5 1 March 91 Page 171 



JAM PU1 Programmer's Guide 

• 
IS no 
test field for no 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare status fixed binary(3l); 
status D xsm_is_no(field_number); 

DESCRIPrION 

The first character of the rleld contents specified by field_number is compared With 
the first letter of the SM _NO entry in the message me, ignonng case, If they match this 
function will return a 1 for true, If they do not match for any reason, the funcbon returns 
a 0 for failure. There is no way 10 tell If the failure is due to a Y in the field or because of 
some other problem. If you Wish to check fora Y response usexsm_isJes. 

This function is ordinanly used with one-letter fields possessing the yes/no character 
ediL In this case, the only characters allowed in the field are y, n, or space (which means 
n). Unlike other funcbons, xsm_is_no does not ignore leadmg blanks. 

RETURNS 

1 if the field's rlrSt character matches the rlrSt character of the SM _ NO enlly 10 the 
messageflle. 

o Otherwise. 

VARIANTS 

status D xsm_e_is_no(field_name, element); 
status D xsm_i_is_no(field_name, occurrence); 
status D xsm_n_is_no(field_name); 
status D xsm_o_is_noCfield_number, occurrence); 

RELATED FUNCTIONS 

Page 172 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

• Is-yes 
test field for yes 

SYNOPSIS 
declare field_number fixed binary(31); 
declare status fixed binary(31); 
status - xsm_is-yes(field_number); 

DESCRIPfION 

The fUSlcharacter of the field contenlS specified by field_number is compared with 
the fuslleuer of the SM_ YES entry in the message file, ignoring case, If they match this 
function will return a 1 for true. If they do nOl match for any reason, the function returns 
a 0 for faIlure. There is no way to tell if the failure is due to an N m the field or because of 
some other problem. If you wish to check for an N response use xsm _is _no. 

This funcbon is ordinarily used with one-letter fields possessing the yes/no character 
edit In this case, the only characters allowed in the field are y, n, or space (which means 
n). Unlike other functions, xsm _is Jes does nol ignore leatbng blanlcs. 

RETURNS 

1 if the field's first character matches the fust character of the SM _YES entry in the 
message file. 

o otherwise. 

VARIANTS 
status m xsm_e_is-Y8s(field_name, element); 
status a xsm_i_is-yes(field_name, occurrence); 
status - xsm_n_is-yes(field_name); 
status a xsm_o_is-yes(field_number, occurrence); 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 173 



JAM PU1 Programmer's GUide 

isabort 
test and set the abort control flag 

SYNOPSIS 
declare flag fixed binary(3l); 
declare old flag fixed b1nary(31); 
old_flag - xsm_isabort(flag); 

DESCRIPTION 

Use xam iaabort to set the abort flag 10 the value of flag, and return the old value. 
flag must be one of the foUowmgas defined m amdefa. incl.pll: 

Flag Meaning 

ABT ON set abort flag 

ABT OFF clear abort flag -
ABT_DISABLE turn abort reporung off 

ABT NOCHANGE do not alter the flag 

Abort reporting is intended 10 provide a quick way out of processing m the JAM library, 
which may involve nested calls to xam_input. The biggenng event is the detection of 
an abort condiuon by xam _get key, either an ABORT keystroke or a call to this func
tion with ABT _ ON (such as from an asynchronous function). 

This funcuon enables application code to verify the existence of an abort condiuon by 
testing the flag, as well as 10 establish one. 

RETURNS 

The prevIous value of the abort flag. 

Page 174 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

iset 
change value of integer global variable 
BBiBiBBBBBliiiSBB8iBBiSBBiBBBBBBBBBIBIBSiBliB8BBBlBBIB mmmB s:sss8SI BBBB8B88BSiBBB ~&$'t BBB8BBBBSBSSBBBBBBB:::am::mBBBBBSSBSiBBiiSB ill ~~ :SSW~"Io'SfC"~ 

SYNOPSIS 

%include'smglobs.incl.pll'i 

declare which fixed binary(31)i 
declare newval fixed binary(31)i 
declare value fixed binary(31)i 
value - xsm_iset(which, newval)i 

DESCRIPTION 

JAM has a number of global parameters and settings. This function is used to modify the 
current value of integer globals. The vanable 10 change is specifled by which. The new 
value is specified by newval. If you wish to get the value of a global integer use 
xsm _ inqui reo 

The permissible values for the argument which are defined in the header file 
smglobs . incl. pH. The following values are avm.lable: 

MnemofUc Quantity Meaning 

I _NODISP 0 Disable updatmg of display. 

1 Enable updating of display. 

I INSMODE 0 Enter overtype mode. 

1 Enter insert mode. 

RETURNS 

If which is one of the pennissible values, the fonner value of the appropnate variable 
isretumed. 

1 True, the flag was set 10 on. 
o False, the flag was set to off. 
-1 otherwise. 

RELATED FUNCTIONS 
value - xsm_finquire(field_number, which)i 

JAM Release 5 1 March 91 Page 175 



JAM PU1 Programmer's GUide 

value m xsm_gp_inqu1re(group_name, Wh1Ch); 
value a xsm_inquire(which); 
buffer m xsm-pinquire(which); 
buffer a xsm-pset(which, newval); 

Page 176 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

isselected 
determine whether a radio button or checklist occur
rence has been selected 

SYNOPSIS 
declare group_name char (256) varying; 
declare group_occurrence fixed binary(31); 
declare status fixed binary(31); 

I]x 

status - xsm_isselected(group_name, group_occurrence); 

DESCRIPI'ION 

This functiOllle1S you check to see whether or not a specific occurrence within a check list 
or radio button has been selected. The selecbon is referenced by the group name and oc
currence number. If the occurrence is selected, xsm is selected returns a 1. A 0 is 
returned if the occurrence is not selected. See the Author's Guide for a more detailed dis
cussion of groups. 

Radio button and checklist occurrences are selected by uslOg xsm_select. Usmg 
xsm select on a radio button occurrence causes the current selecbon to be deselected. 
Checklist occurrences are deselected with xsm_deselect. 

RETURNS 

-1 argumenlS do not reference a checklist or radio button occurrence. 
o not selected. 
1 selected. 

RELATED FUNCTIONS 
status a xsm_deselect(group_name, group_occurrence); 
length - xsm_getfield(buffer, field_number); 
value - xsm_intval(field_number); 
status - xsm_select(group_name, group_occurrence); 

JAM Release 5 1 March 91 Page 1n 



JAM PU1 Programmer's GUide 

• 
ISSV 
determine if a screen is in the saved list 

SYNOPSIS 
declare screen_name char(256) varying: 
declare status fixed binary(31): 
status - xsm_issv(screen_name): 

DESCRIPfION 

JAM maintains a hst of screens that are saved in memory. This funcbon searches the save 
list for a single screen and returns 1 is the screen is found (See xsm_svscreen). 

This function is generally called by applications at screen entry to aVOId re-acquiring data 
(via a database query) fOl' previously saved screens. To accomplish tlus, fIrst use 
xsm svscreen to add the screen to the save hst upon screen eXIt. Next, use 
xsm ~) s sv to check the save list upon screen entry. If the screen is on the save lIst, you 
know that it has been previously displayed. 

RETURNS 

1 if the screen IS m the saved lisL 
o otherwise. 

RELATED FUNCTIONS 
status m xsm svscreen(screen_list, count); 

Page 178 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

itofield 
write an integer value to a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare value fixed binary(31); 
declare status fixed binary(31); 
status - xsm_itofieldCfield_number, value); 

DESCRIPfION 

The integer passed 10 xsm _ i tofield is converted to characters and placed in the spe
cified field. A number longer than the fIeld will be ttuncated, on the left or right, accord
ing to the fIeld's jusbfication, without warning. 

RETURNS 

-1 if the field is not found. 
o Otherwise. 

VARIANTS 

status - xsm_e_itofieldCfield_name, element, value); 
status - xsm_i_itofieldCfield_name, occurrence, value); 
status - xsm n itofieldCfield name, value); 
status - xsm:o:itofieldCfield:number, occurrence, value); 

RELATED FUNCTIONS 

value - xsm_intvalCfield_number); 

JAM Release 5 1 March 91 Page 179 



JAM PU1 Programmer's Guide 

jclose 
close current window or form under JAM Executive con
trol 

SYNOPSIS 
declare status fixed binary(3l); 
status - xsm_jclose(); 

DESCRIPfION 

The active screen is closed, and the display is restored to the state before the screen was 
opened. xsm_jclose should only be used when the JAM Execubve is in use. 

In the case of closing a fonn,xsm jclose pops the fonn stack and calls xsm jform 
to display the screen on the top ofdte form Slack. -

Inthecaseofclosingawindow,xsm jclosecallsxsm close window.Sincewm
dows are stacked, the effect of closmg a window is to return to the previous window. The 
cursor reappears at the same posluon it had before the window was opened. 

RETURNS 

-In there IS no window open, i.e. if the currently displayed screen IS a fonn 
(or if there is no screen displayed). 

o otherwise. 

RELATED FUNCTIONS 
status - xsm_close_window(); 
status - xsm_jform(screen_name); 
status - xsm_jwindow(screen_name); 

Page 180 JAM Release 5 1 March 91 



JAM PU1 Proarammer's GUide 

jform 
display a screen as a form under JAM control 

SYNOPSIS 
declare screen_name 
declare status 

char (256) varyingi 
fixed binary(31)i 

status - xsm_jform(screen_name); 

DESCRIPfION 
ThIs function must be used with the JAM Executive. If you are not using the JAM Ex
ecutive, use xsm r form or one of its variants. If you wish to display a window under 
JAM control, use xam _jwindow. 

This function displays the named screen as a form. You may close the form WIth 
xsm jclose, or leave the task to the JAM Executive (e.g., when the user presses the 
EXrr key). Bringing up a screen as a form causes the previously displayed form and win
dows to be discarded, and their memory freed. The new form IS placed on top of the 
JAM's form stack. 

The difference between xsm_jform and xsm_r_form, other than the function argu
ments, is that only xSln.-jform manIpulates the fonn stack. Since xsm_jform calls 
xsm r form, refer to xsm r form for information on other details, such as how the 
screen to be displayed is found.-

The character slnng screen_name uses the same format as that of a JAM control 
string that displays a fonn. In addition to the screen's name, you may optionally specify 
the position of the fonn on the phYSical display, the size of the viewport, and which por
tion of the form Will be positioned in the viewport's top-left comer. See the Authoring 
Reference in the Author's Guide for details of viewport positioning. The following are all 
legal strings: 

status - xsm_jfor.m('for.m'); 
Display form's fust row and column at the top-left comer of the physical display. 

status = xsm_jform(' (20,lO)for.m'); 
Display form's fust row and column at the 20th row and 10th column of the physical dis
play. 

status - xsm_jfor.m(' (20,lO,15,8)for.m'); 
Display the fust row and column of the form at the 20th row and 10th column of the phys
ical dISplay in viewport that is 15 rows by 8 columns. 

A fonn may be larger than the viewport. If the viewport does not fit on the screen where 
indicated, JAM will attempt to place it entirely on the display at a different location. If 

JAM Release 5 1 March 91 Page 181 



JAM PU1 Programmer's Guide 

you specify a viewport thal is larger than the physical display, the VIewport will be the 
SIZe of the physical display. If you wish to change the viewport size after the window is 
displayed, usexsm_viewport. 

RETURNS 
o if no error occurred. 
-1 if the screen fde's fonnal is incorrecL 
-2 If the screen cannot be found. 
-4 If, after the display has been cleared, the screen cannot be successfully displayed 

because of a read eaor. 
-5 if, after the display was cleared, the system ran oul of memory. 

RELATED FUNCTIONS 
status a xsm_r_form(screen_name); 
status a xsm_jwindow(screen_name); 

Page 182 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

jplcall 
execute a JPL jpl procedure 

SYNOPSIS 
declare jplcall_text char(256) varying; 
declare return_value fixed binary(3l); 
return_value - xsm_jplcall(jplcall_text); 

DESCRIPTION 

This function executes a JPL procedure precisely as if the following JPL statement were 
executed from withm a JPL procedure: 

jpl jplcall_text 

For example, if the value of jplcall_text were: 

verifysal :name 50000 

then 

and 

jpl verifysal :name 50000 

would be equivalenL See the JPL Programmer's Guide for further information on the JPL 
jpl command. 

RETURNS 

-1 if the procedure could not be loaded. 
Otherwise, the value returned by the JPL procedure. 

JAM Release 5 1 March 91 Page 183 



JAM PU1 Programmer's Guide 

jplload 
execute the JPL load command 

SYNOPSIS 
declare module_nama_list char(256) varying; 
declare status fixed binary(31); 
status - xsm_jplload(module_name_list); 

DESCRIPfION 

This function is abe PL/l interface to abe JPL load command. Use this command to load 
one or more modules mto memory. 

The character string module_name_list may be one or more module names. Sepa
rate module names With a space. 

Calhng xsm _jplload has precisely the same effect as using the JPL load command. 
See the JPL Programmer's Guide for further infonnation on the JPL load command. 

Use xsm _jpl unload to remove a module from memory. 

RETURNS 

-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

status - xsm_jplpublic(module_name_list); 
status D xsm_jplunload(module_name); 

Page 184 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

jplpublic 
execute the JPL public command 

SYNOPSIS 
declare module_name_list char(256) varyinq; 
declare status fixed binary(31); 
status - xsm_jplpublic(module_name_list); 

DESCRIPTION 
This function is the PL/I interface to the JPL public command. Use thIS command to 
load one or more modules into memory. 

The character siring module name may be one or more module names. Separate mod-
ule names With a space. -

Calling xsm_jplpublJ.c has precisely the same effect as usmg theJPL public com
mand. See the JPL Programmer's Guide for further information on the JPL public 
command. 

Use xsm_jplunload to remove a module from memory. 

RETURNS 
-I if there is an error. 
o otherwise. 

RELATED FUNCTIONS 
status - xsm_jplload(module_name_list); 
status - xsm_jplunload(module_name); 

JAM Release 5 1 March 91 Page 185 



JAM PU1 Programmer's GUide 

jplunload 
execute the JPL unload command 

SYNOPSIS 
declare module_name char (256) varying: 
declare status fixed binary(3l): 
status - xsm_jplunload(module_name): 

DESCRIPfION 

This function is the PIJI interface to the JPL unload command, Use thIS command to 
remove one or more modules from memory. Modules are read into memory by using ei
ther xsm_jplpublic or xSllLjplload or via the correspondmg JPL commands. 

Calling xsm _jplunload has precisely the same effect as usmg the JPL unload com
mand. See the JPL Programmer's Guide for further information on the JPL unload 
command. 

The character smng module_name may be one or more module names. Separate mod
ule names with a space. 

RETURNS 

-I if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

status - xsm_jplload(module_name_list): 
status a xsm_jplpublic(module_name_list): 

Page 186 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

jtop 
start the JAM Executive 

SYNOPSIS 
declare screen_name char(256) varying; 
declare status fixed binary(31); 
status - xsm_jtop(screen_name); 

DESCRIPfION 

All applicabons USlOg the JAM Executive must include a call to xsm _j top. ThIS func
tion starts the JAM Execubve. The argument screen_name is the name of the first 
screen that your applicatIon displays. It will be displayed as a fono. Once xsm _jtop IS 
called the JAM Executive is in control until the user exits the application. 

The JAM Executive makes calls to various JAM functions that handle all of the tasks 
needed to control the flow of an application such as opening the keyboard for input, open
ing and closing fonos and windows, and processing all control strings. 

If you do not use xsm _jtop you will have to write your own procedures to control the 
flow of your applicabon. See the JAM Development Overview for a more detailed dis
cusSIon of the JAM ExecutIve. 

RETURNS 

o Always. 

JAM Release 5 1 March 91 Page 187 



JAM PU1 Programmer's GUide 

jwindow 
display a window at a given position under JAM control 
ISSSBBBiBBBBBBiSi:~BBBBBBBBSB:SS! iSIBIBBiBSBBBSiliBSSBBBISBI~IISSBBSSBSBBiB!:mBBSII;~~~~ ,~~,~ 

SYNOPSIS 
declare screen_name char(256) varY1ng; 
declare status fixed binary(31); 
status - xsm_jwindow(screen_name); 

DESCRIPfION 

This funcbon must be used with the JAM Execubve. If you are not using the JAM Ex
ecubve, use xsm _ r _window or one of its variants. If you wish to display a form under 
JAM conbOl, use xsm_jform. 

This function displays the named screen as a window, by callmg xsm r window. You 
may close the window with a call to xsm_jclose, or leave the task to aheJAM Execu
tive (e.g., when the user presses the EXIT key). 

There is currently no dlfference between xsm_jwindow and xsm_r_window except 
for their arguments (although xsm_jwindow IS not supported unless the JAM Execu
bve is in use). See the description ofxsm_r_window for the details of the behavior of 
xsm_jwindow. 

The charactersbing screen_name uses a format similar to that of a JAM control sbing 
that displays a window. Use a single ampersand to specify a stacked window and a double 
ampersand to specify a Sibling window. If the ampersand is omitted, then the screen will 
be opened as a stacked window. In addltion to the screen's name, you may optionally 
specify the position of the window on the physical display, the size of the viewport, as 
well as which portion of the window Will be positioned in the viewport's top-left comer. 
The positioning and sIZing syntax IS identical to that of xsm_j form. See xsm_jform 
for examples of acceplable strings. 

RETURNS 

o if no error occurred during display of the screen 
-1 if the screen file's format is incorrect 
-2 if the form cannot be found 
-3 If the system ran out of memory but the previous screen was restored 

RELATED FUNCTIONS 
status ~ xsm_jclose(); 
status ~ xsm_jform(screen_name); 

Page 188 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

JAM Release 5 1 March 91 Page 189 



JAM PU1 Programmer's Guide 

keyfilter 
control keystroke record/playback filtering 

SYNOPSIS 
declare flag fixed binary(31); 
declare old_flag fixed binary(31); 
old_flag - xsm_keyfilter(flag); 

DESCRIPfION 

This function turns the keystroke record/playback mechanism of xsm get key on 
(flag = 1) or off (flag = 0), If no key recording or playback functionhas been in
stalled, tunung the mechanism on has no effect 

It returns a flag indicating whether recording was previously on or off. 

RETURNS 

The previous value of the filter flag. 

RELATED FUNCTIONS 

key - xsm_getkey(); 

Page 190 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

keyhit 
test whether a key has been typed ahead 

SYNOPSIS 
declare interval fixed binary(31); 
declare status fixed binary(31); 
status - xsm_keyhit(interval); 

DESCRIPfION 

This function checks whether a key has already been hit; if so, it returns I immediately. If 
nol, it WallS for the indicated interval and checks again, The key (if any is struck) is not 
read in, and IS available to the usual keyboard input routines. 

interval is in tenths of seconds; the exact length of the wait depends on the granularity 
of the system clock, and IS hardware- and operating-5ystem dependent. JAM uses this 
function to decide when to call the user-5uppbed asynchronous funcuon, 

If the operating system does not support reads with umeoul, this function ignores the in
terval and only returns Ilf a key has been typed ahead. 

RETURNS 

o if no key is available, 
non-O otherwise. 

RELATED FUNCTIONS 

key - xsm_qetkey(); 

JAM Release 5 1 March 91 Page 191 



JAM PU1 Programmer's GUIde 

keyinit 
initialize key translation table 

SYNOPSIS 
declare key_address bit(O); 
declare status fixed binary(31); 
status - xsm_keyinit(keY_8ddress); 

DESCRIPfION 

This routine is called by xsm ini tcrt as part of the initialization process, but it can 
also be called by an application program (either before or after xsm _ ini tc rt) to install 
a memory-resident key translation file. 

To install a memory-resident key translation file, key _ addres s must contain the ad
dress of a key tmnslanon table created using the key2bin and bin2pll utIlIties. 

RETURNS 

o if the key file is successfully installed. 
Program exIt if the key file is mvalid. 

VARIANTS 

Page 192 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

keylabel 
get the printable name of a logical key 

h 

SYNOPSIS 

%include'smkeys.incl.pll'; 

declare buffer char(256) varying; 
declare key fixed binary(31); 
buffer = xsm_keylabelCkey); 

DESCRIPfION 

Returns the label defmed for key in the key translation flle; the label is usually whal is 
printed on the key on the physical keyboard. If there is no such label. returns the name of 
the logical key from the following table. Here is a list of key mnemonics: 

LogICal Key Mnemonics 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS LP FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR EMOH 

INSL DELL ZOOM SFTS MTGL VWPT MOUS 

PFl-PF24 SPFl-SPF24 APPI-APP24 SFTl-SFT24 

If the key code IS invalid (nol one defmed in smkeys . incl. pll). this function returns 
an empty string. 

RETURNS 

A string naming the key. or an empty string if it has no name. 

JAM Release 5 1 March 91 Page 193 



JAM PU1 Programmer's Guide 

keyoption 
set cursor control key options 

SYNOPSIS 
'include'smkeys.incl.pll': 

declare key fixed binary(3l): 
declare mode fixed binary(31): 
declare newval fixed binary(31): 
declare oldval fixed binary(31): 
oldval = xsm_keyoption(key, mode, newval): 

DESCRIPfION 
Use xam keyoption to alter at run-time the behaviorofxam input when aparncu
lar key ispressed, The default values for key options are built in to JAM. This funCllon 
only works With cursor control keys. Cursor control keys mclude all JAM lOgIcal keys, 
except for PF, SPF, and APP keys. See "Key File" in the Configuration GUide. 

There are three different possible values for mode: KEY ROUTING, KEY GROUP, and 
KEY XLATE. The mnemonics that they use are defmed iii smkeya • inc!: pl!. All of 
these modes draw on the following values for key. 

Logical Key Mnemonics 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS LP FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR EMOH 

INSL DELL ZOOM SFTS MTGL VWPT MOUS 

-KEY_ROUTING 

Allows access to the EXECUTE and RETURN bilS of the routing table. This mode IS 

generally used to disable a key or to control explicdy what action is taken when a key is 
hiL The following mnemonics may be assigned to newval: 

1. KEY_IGNORE Disables key. JAM does nothing when key IS struck. 

2. EXECUTE The action normally associated with key is executed. May 
be ored with RETURN. 

Page 194 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

3. RE TURN No action IS perfonned. but the function returns to the caller 
in your code. Used to galD dlrect oonll'Ol of key's action. May be ored 
with EXECUTE. 

aKEY_GROUP 

Allows access to the group action bItS. Use this function to oonll'Ol the action of the cursor 
when it is within a group. The following values may be asstglled to newval: 

1. VF GROUP Obey group semantics. Hitting key will cause the cursor 
to move to the next field witlun the group in the mdicaJed direction. If 
this mnemonic is ored with VF _CHANGE the cursor will exit the group 
in the indicated direction. 

2. VF CHANGE This value bas no effect, unless it is ored with 
V(~ GROUP. In this case the cursor will exit the group in the indicaJed 
direction. 

3. 0 Assigning zero to newval will cause key to treat a field within a 
group as if It were not part of a group. 

4. VF OFF SCREEN Off screen data will scroll onscreen from the direc
tionindicated. 

S. VF NOPROT key will move cursor into a field protected from tab-
bing. 

aKEY XLATE 

Allows access to the cursor table. Use this routine to assign key the action prefonned by 
newval. newval may be any of the logical keys listed in the table above. This can often 
replace a user-supplied key change function. 

RETURNS 
-I if some parameter is out ofrange. 
the old value otherwise. 

JAM Release 5 1 March 91 Page 195 



JAM PU1 Programmer's GUide 

keyset 
open a keyset 

SYNOPSIS 
'include'smsoftk.incl.pll'; 

declare name char(256) varying; 
declare scope fixed binary(31); 
declare status fixed binary(31); 
status - xsm_r_keyset(name, scope); 

declare address bit(O); 
declare scope fixed binary(31); 
declare status fixed binary(31); 
status - xsm_d_keyset(address, scope); 

DESCRIPfION 
UsexsItLd_keyset andxsm_r_keyset to dispJaya keyseL The parameter name IS 
the name of the keyseL scope must be one of the .mnemonics listed in 
smsoftk. incl.pll. Application programs wIll nonnally use scope KS_APPLIC, 
Values for scope are defmed m smsoftk. incl. pll. For a more detaIled explana
tion of scope see the Key Set chapter of the Author's GUide. 

If there is currently a keyset of the specified scope the name of that keyset IS compared 
with the name passed. If they are the same the present routine returns immediately. This 
means that if you want to "refresh" a keyset with a new copy from dtsk, you must fIrSt 
close the key set with a call to xsm_c_keyset. 

If the calliS not successful then the current keyset remains displayed and an error message 
is posted to the end-user, except where noted otherwise. 

The most commonly used variant is xsm _ r _ keyset. You do not need to know where 
the keyset resides because xsm_r_keyset searches for you. It looks first in the 
memory resident fonn list, next in any open libraries, then on disk in the directory speci
fied by the argument to xsm_initcrt, and fma1ly in tne directories specIfied by 
SMPATH. Keyset files may be mIXed freely with screen files ID the screen lIst and in li
braries. 

You may save processing time by using xsm _ d _ keyset to display a memory-resident 
keyseL addres S IS a pointer to the keyset in memory. Use the Ubbty bin2pll to create 

Page 196 JAM Release 5 1 March 91 



JAM PU1 Proarammer's GUide 

program data SbUCtures, from disk-based keysets, that you can compile mto your 
application. 

To close a keyset use xsm _ c _ key set. 

RETURNS 
o If no error occurred during display of the keyseL 
-1 If the fonnat incorrect (not a keyset). 
-2 if the keyset cannot be found No message is posted 10 the end-user. 
-3 If the terminal doesn't support soft keys (or scope out ofrange). 
-4 If there is a read error. 
-5 If there is a rnal10c fallw-e. 

JAM Release 5 1 March 91 Page 197 



JAM PU1 Programmer's GUide 

kscscope 
query current keyset scope 

SYNOPSIS 

'include'smsoftk.incl.pll'; 

declare scope fixed binary(3l); 
scope - xsm_kscscope(); 

DESCRIPfION 
This routine returns the scope of the current keyset or -1 if no keyset IS currently acttve. 

This function can be used to detennine whether or not the appbcation keyset (as opposed 
to the system keyset) is currently displayed. 

Values for scope are dermed in smsoftk. incl. pH. 

RETURNS 
Current scope, or 
-1 lf not found. 

RELATED FUNCTIONS 
status - xsm_ksinq(scope, number_keys, number_rows, 

current_row, maximum_len, keyset-?ame); 
status - xsm_skv1nq(scope, value, occurrence, attribute, 

labell, label2); 

Page 198 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

ksinq 
inquire about keyset information 

SYNOPSIS 

'include'smsoftk.incl.pl1'; 

declare scope fixed binary(31); 
declare number_keys f1xed binary(31); 
declare number_rows fixed binary(31); 
declare current_row fixed binary (31) ; 
declare maximum_len fixed binary(31); 
declare keyset_name char(256) varying; 
declare status fixed binary(31); 
status - xsm_ks1nq(scope, number_keys, number_rows, 

current_row, maximu~len, keyset_name); 

DESCRIPfION 

Use this roubne to obtain the name, number of rows, number of items withm a row, and 
current row of a keyset currently in memory. You supply the keyset's scope and five 
addresses to hold the mfonnation returned by xsm_skinq, scope must be one of the 
mnemonics defined in smsoftk. incl. pH. 

The function places the number of rows in the keyset in number_row, the number of 
soft keys per row in number_keys, and the current row number in current_row. 
The name of the keyset is placed in the pre-allocated buffer keyset name. The size of 
keyset_name is specified by maximum_len. If the name of the keyset m longer then 
keyset_name, then xsm_ksinq fills the buffer to the end wUhout addmg a null char
acter, otherwise a null character is added to the end of the string. The null pointer may be 
used for any or all of the parameters about which you do not desire infonnabon. 

RETURNS 

o if infonnation is returned. 
-I If there is no active keyset for the given scope. 
-2 for an invalid scope. 

RELATED FUNCTIONS 

scope - xsm kscscope(); 
size m xsm skinq(scope, row, softkey, value, display_attribute, 

labell, label2); 

JAM Release 5 1 March 91 Page 199 



JAM PU1 Programmer's Guide 

status - xsm_skvinq(scope, value, occurrence, attribute, 
labell, label2); 

Page 200 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

ksoff 
turn off soft key labels 

B I 

SYNOPSIS 
call xsm_ksoff(); 

DESCRIPfION 

When a keyset is opened with any of the library roubnes, the labels are automatically dis
played. If you do not wish to display the labels at any pomt within your apphcation, use 
xSIrL, ksoff to tum the display off. 

If you wish to turn them the label display back on, use xsm _ kson. 

RELATED FUNCTIONS 
call xsm_kson(); 

JAM Release 5 1 March 91 Page 201 



JAM PU1 Programmer's GUide 

kson 
turn on soft key labels 

SYNOPSIS 
call xsm_kson(); 

DESCRIPfION 

Nonnally, keyset labels are displayed when a keyset is called up. The only way the dis
play can be turned off IS with the hbmry mubne, xsm_ksoff. Use this mutine to tum 
the label display back on. 

RELATED FUNCTIONS 

call xsm_ksoff(); 

Page 202 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

close 
close a library 

SYNOPSIS 
declare lib_desc fixed binary(31); 
declare status fixed binary(31); 
status - xsm_l_close(lib_desc); 

DESCRIPfION 

Closes the bbrary mdicated by lib_desc and frees all assOCl3ted memory, The library 
descnptor is a nwnber returned by a previous call to xsm _1_ open. 

RETURNS 

-1 is returned if the library me could not be closed. 
-2 is returned if the library was not open. 
o is returned if the bbrary was closed successfully. 

RELATED FUNCTIONS 
status a xsm_l_at_cur(lib_desc, screen name); 
status - xsm_l_form(lib_desc, screen_name); 
lib_desc - xsm_l_open(lib_name); 
status - xsm_l_window(lib_desc, screen_name, start_line, 

start_column) ; 

JAM Release 5 1 March 91 Page 203 



JAM PU1 Programmer's Guide 

I_open 
open a library 

SYNOPSIS 
declare lib_name char(256) varying; 
declare lib_desc fixed binary(31); 
lib_desc D xsm_l_open(lib_name); 

DESCRIPfION 

You must use xsm 1 open to open a library before you use a JPL module, a keyset, or 
a screen that is stoTed 10 the library. Use the Utility formlib to create a library. (See the 
JAM UtiIites Guide). 

This roubne allocates space in which to store infonnaboo about the library, leaves the li
brary me open, and returns a descriptor identifying the library. The descriptor may subse
quently be used by xsm_l_window and related funcboos, to display screens stored m 
the bbrary. The library can also be referenced implicitly by xsm_r_window, 
xsm_r_keyset, and xsm_jplcall, as well as related functions, which search all 
open libraries. 

The library me is sought ID all the directories identified by SMP AT H and the parameter to
xsm _ i ni tc rt. If you define the SMFLIBS variable in your setup file as a list oflibrary 
names xsm 1 open will automatically be called for those libraries. The xsm r rou-
tines will then ~h in the specified libranes. - -

Several libraries may be kept open at once. This may cause problems on systems with 
severe limits on memory or simultaneously open files. 

RETURNS 

-1 if the library cannot be opened or read. 
-2 If too many bbraries are already open. 
-3 if the named file is not a library. 
-4 if insuffiCient memory is available. 
Otherwise, a non-negative integer that identifies the library file. 

RELATED FUNCTIONS 
return_value a xsm_jplcall(jplcall_text); 
status D xsm_jplload(module_name_list); 
status a xsm jplpublic(module name list); 
status a xsm=l_at_cur(lib_desc, sc~een_name); 

Page 204 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

status 
status 
status 

status 
status 
status 
status 

xsm_l_close(lib_desc); 
xsm_l_form(lib_desc, screen_name); 
xsm_l_window(lib_desc, screen_name, start_line, 
start_column) ; 
xsm_r_at_cur(screen_name); 
xsm_r_form(screen_name); 
x sm_r_key set (name, scope); 
xsm_r_window(screen_name, start_line, start_column); 

JAM Release 5 1 March 91 Page 205 



JAM PU1 Programmer's Guide 

last 
position the cursor in the last field 

SYNOPSIS 
call xsm_Iast () ; 

DESCRIPI'ION 

Use this function 10 place the cursor at the rll'st enterable position of the last tab-unpro
tected field of the cwrent screen. If the last field unprotected from tabbing is right jusll
fted, the cursor is placed in the righunost posibon of the field. By the same IOken. If the 
last unprotected field is left justified, the cursor is placed in the lefunost position of the 
field 

Unlike xsm_home. xsm_last will not reposition the cursor If the screen has no unpro
tected fields. 

This function doesn't immediately tngger field entry, exit. or validabon processing. Such 
processing occurs based on the cursor position when control retl1l'Ds to xsm _input. 

This funcllon is called when the JAM logical key EMOH IS struck. 

RELATED FUNCTIONS 
call xsm_backtab(); 
field_number m xsm_home(); 
call xsm_nl (); 
call xsm_tab (); 

Page 206 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

Iclear 
erase LOB entries of one scope 

SYNOPSIS 
declare scope fixed binary(31); 
declare status fixed binary(31); 
status - xsm_lclear(scope); 

DESCRIPfION 

This function erases the values stored in the local data block for all names having a scope 
of the argument scope. Legal values for scope are between 1 and 9. Constant vanables 
havmg scope 1 can be erased. 

Refer to the LDB chapter of the Programmer's Guide for a diSCUSSion of the scope of 
LDBenbies. 

RETURNS 

-1 if scope is invalid. 
o otherwise. 

RELATED FUNCTIONS 
status - xsm_lreset(file_name, scope); 

JAM Release 5 1 March 91 Page 207 



JAM PU1 Programmer's GUide' 

Idb init 
initialize (or reinitialize) the local data block 

SYNOPSIS 

DESCRIPfION 

This funcuon creates an empty index of named data items by reading the data dIctionary, 
then loads values into them from initialization flies. Data Dictionary enmes with a scope 
of 0 are not loaded into the LOB. There is no LOB pnor to the flJ"St execubon of this func
tion. 

Selected parts of the LOB, namely those assigned a certain scope, can be remltiallzed us
ing xSItLlclear or xsm_Ireset. 

This function is called explicitly in jmain. pll and jxmain. pI 1. Other functions 
that affect its behavior, such as xsm _ dicname and xsm Jm.name s, should be called 
flfSL 

RELATED FUNCTIONS 
status m xsm_dicname(dic_name); 
status m xsm_ininames(name_list); 
status - xsm_lreset(file_name, scope); 

Page 208 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

leave 
prepare to leave a JAM application temporarily 

SYNOPSIS 
call xs~leave(); 

DESCRIPfION 

At times it may be necessary to leave a JAM apphcabon temporanly. For example you 
may need to escape to the command interpreter or to execute some graphics funcbons. In 
such a case, the terminal and its operatmg system channel need to be restored to theU' nor
mal states. 

This function should be called before leaving. It clears the physical screen (but not the 
mternal screen image); resets the operating system channel; and resets the terminal (using 
the RESET sequence found in the video file). 

RELATED FUNCTIONS 
call xsm_return(); 

JAM Release 5 1 March 91 Page 209 



JAM PU1 Programmer's Guide 

length 
get the maximum length of a field 

SYNOPSIS 
declare field number fixed binary(31); 
declare field length fixed binary(31); 
field_length ~ xsm_length(field_number); 

DESCRIYfION 

This funcbon relurns the maximum length of the field specified by field number. If 
the field IS sJuflable. its maximum siufbng length is relurned. This length IS88 dermed m 
the JAM Screen Editor. and has no relation to the currenl contents of the field. Use 
xsm dlength to gel the length of the contents. 

RETURNS 

Length of the field. 
o if the field is nOl found. 

VARIANTS 

field_length D xsm_n_length(field_name); 

RELATED FUNCTIONS 

data_length - xs~dlength(field_number); 

Page 210 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Ingval 
get the long integer value of a field 

SYNOPSIS 
declare field_number fixed b1nary(31); 
declare value fixed binary(31); 
value - xsm_lngval(field_number); 

DESCRlPfION 

This function returns the contents of field_number, converted to a long integer, All 
non-diglt characters are ignored, except for a leading plWl or mmus sign. 

RETURNS 

The long value of the field. 
o if the field IS not found. 

VARIANTS 
value - xsm_e_lngval(field_name, element); 
value - xsm_i_lngval(field_name, occurrence); 
value - xsm n lngval(field name); 
value - xsm:o:lngval(field:number, occurrence); 

RELATED FUNCTIONS 
value a xsm_intval(field_number); 
status a xsm_ltofield(field-pumber, value); 

JAM Release 5 1 March 91 Page 211 



JAM PU1 Proarammer's GUide 

Ireset 
reinitialize LOB entries of one scope 

SYNOPSIS 
declare file_name char(256) varying; 
declare scope fixed binary(31); 
declare status fixed binary(31); 
status - xsm_lreset(file_name, scope); 

DESCRIPfION 

This function sets local data block entries 10 values read from file name. The scope 
must be between 1 and 9. References in the file 10 LDB entries not belongtng 10 scope 
are ignored. All variables belonging 10 scope are cleared before relmtiallZing. This 
means that xsm _1 reset erases variables that are not in the file. 

The me may be in the current direclOry, or in any of the direclOnes listed in the SMP ATH 
environment variable. It contains pairs of names with values, each enclosed in quotes. 
While all whites space outside the quotes is ignored, we recommend for readability that 
the file have one name-value pair per line. If an entry has muluple occurrences, It may be 
subscripted in the me. Here are a few sample paIlS: 

-husband- wRonald ReaganW 
Wwife[l]- wJane Wyman
WWlfe[2]W WNancy Davis· 

If you plan to use thIS function, we recommend that you group your vanables in separate 
mes by scope. You can use xsm_ininames 10 lISt a numberofmes for iniuaIizauon. 

RETURNS 

-1 if file not found or scope out of range. 
o otherwise. 

RELATED FUNCTIONS 
status a xsm_lclear(scope); 

Page 212 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Istore 
copy everything from screen to LOB 

SYNOPSIS 
declare status fixed binary(31); 
status a xsm_lstore(); 

DESCRIPTION 

This function copies dara from the screen to local data block enbles With matchmg names. 

The JAM Executive automatically calls xsm _1 store when bringing up a new screen 
or before closmg a window. This funcbon need not be called by application code except 
under special circumstances. 

RETURNS 

-3 if sufficient memory IS not aV8llable. 
o otherwise. 

RELATED FUNCTIONS 

call xsm_Bllget(respect_flag); 

JAM Release 5 1 March 91 Page 213 



JAM PU1 Programmer's GUide 

Itofield 
place a long integer in a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare value fixed binary(31); 
declare status fixed binary(31); 
status a xs~ltofield(field_number, value); 

DESCRIPTION 

The long integer passed to this routine IS converted to human-readable fonn and placed 
in field number. If the number is longer than the field, It is ttuncated without warn-
109, on thenght or left depending on the field's jusbficabon, 

RETURNS 

-1 If the field is not found. 
o Otherwise. 

VARIANTS 

status a xsm_e_ltofield(field_name, element, value); 
status = xsm_i_ltofield(field_name, occurrence, value); 
status = xsm n ltofield(field name, value); 
status - xsm:o:ltofield(field:number, occurrence, value); 

RELATED FUNCTIONS 

status = xsm_itofield(field_nurnber, value); 
value = xsm_lngval(field_number); 

Page 214 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

m flush 
flush the message line 

SYNOPSIS 

DESCRIPfION 

This function forces updates to the message line to be wnuen to the display. TIus IS useful 
if you want to display the status of an operation with xsm d msg 1 ine, without flush-
ing the entire display as xsm _flush does. - - -

RELATED FUNCTIONS 

call xsm_flush(); 

JAM Release 5 1 March 91 Page 215 



JAM PU1 Programmer's GUide 

max occur 
get the maximum number of occurrences 

SYNOPSIS 
declare field_number fixed binary(31); 
declare maximum fixed binary(31); 
maximum - xsm_max_occur(field_number); 

DESCRIPTION 

This functtOll returns the maximum number of occurrences that the array can hold as de
rmed in the JAM Screen Editor or by xsm _ se _max. If you wish to find out the lughest 
occurrence number of an array tbalactually contams data, usexsm_num_oeeurs. 

RETURNS 

o if the field designation is invalid. 
1 for a non-scrollable single field. 
The number of elements ID a non--scrollable array. 
The maximum number of occurrences in a scrollable array. 

VARIANTS 

RELATED FUNCTIONS 

Page 216 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

mnutogl 
switch between menu mode and data entry mode on a 
dual-purpose screen 

SYNOPSIS 
declare screen-mode fixed binary(3l); 
declare old_mode fixed binary(3l); 
old_mode - xsm_mnutogl(screen_mode); 

DESCRIPTION 

JAM supports the use of a single screen as both a menu and a data entry screen. but the 
screen must be in one or the other "mode" at any given momenL This function can be used 
to change the mode of the screen and to test which mode the screen is in currently. The 
mode argument may have one of four values as defined in smdefs. incl. pll: 

Value Meamng 

IN AUTO No action (generally used just to test the return value). 

IN DATA Change the screen to data entry mode. 

IN MENU Change the screen to menu mode. 

IN TOGL Toggle the screen from one mode to the other (akm to the MTGL 
lOgIcal key). 

This function is sunilar to the built-in control function jm _ mnutogl. 

RETURNS 

The mode that the screen was in before the function was called (IN DATA or IN MENU.) 
-1 if the mode specification is invalid. --

JAM Release 5 1 March 91 Page 217 



JAM PU1 Programmer's GUide 

msg 
display a message at a given column on the status line 

SYNOPSIS 
declare column 
declare disp_length 
declare text 
call xsm_msg(column, 

DESCRIPfION 

fixed binary(31); 
fixed binary(31); 
char (256) varying; 

disp_length, text); 

The message is merged with the current contents of the status line, and dlsplayed begin
ning at col wnn. di sp _length gives the number of characters to display. 

On terminals WIth onscreen attributes, the column position may need to be adjusted to 
allow for attributes embedded in the status line. Refer to xsm d msg line for an ex
planabon of how to embed attributes and function key names Tn a staniS line message. 

This function IS called by the function that updates the cursor position display (see 
xsm_c_vis). 

RELATED FUNCTIONS 

Page 218 JAM Release 5 1 March 91 



JAM PU1 Programmer's Guide 

msg_get 
find a message given its number 

lUI II 

SYNOPSIS 

%include'smerror.incl.pll'; 

declare buffer char(256) varying; 
buffer a xsm_msg_get(number); 

DESCRIPfION 

The messages used by JAM library routines are stored in binary message files, winch are 
created from text files using the JAM utility, msg2bin. Use xsm_msgread to load 
message files for use by this function. 

This function takes the number of the message desired and returns the message, or a less 
informative string If the message number cannot be matched. 

Messages are divided into classes based on their numbers, with up to 4096 messages per 
class, The message class is the message number diVided by 4096, and the message offset 
within the class 18 the message number modulo 4096. Predefined JAM message numbers 
and classes are defined in smerror. incl. pll, 

RETURNS 

The desired message, if found 
otherwISe, the message class and number, as a smng 

RELATED FUNCTIONS 
buffer - xsm_msgfind(number); 
status - xsm_msgread(code, class, mode, arg); 

JAM Release 5 1 March 91 Page 219 



JAM PU1 Programmer's Guide 

msgfind 
find a message given its number 

SYNOPSIS 

'include'smerror.incl.pll'; 

declare buffer char (256) varying; 
declare number fixed binary(31); 
buffer - xsm_msgfind(number); 

DESCRIPI'ION 

This function takes the number of a Screen Manager message, and returns the message 
string. It is identical to xsm _msg_get, except that It returns zero If the message number 
IS not found. 

Screen Manager message numbers are defined in smerror. incl. pH. 

RETURNS 

The message 
o if the message number is out of range 

RELATED FUNCTIONS 

buffer - xsm_msg_get(number); 
status - xsm_msgread(code, class, mode, arg); 

Page 220 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

msgread 
read message file into memory 

SYNOPSIS 

%include'smerror.incl.pll'; 

declare code char (256) varying; 
declare class fixed binary(3l); 
declare mode fixed binary (31) ; 
declare arg char (256) varying; 
declare status fixed binary(31); 
status - xsm_msgread(code, class, mode, arg); 

DESCRIPfION 

Reads a smgle set of messages from a binary message file into memory. afler which they 
can be accessed using xam _mag_get and xSIrL msgfind. The code argument selects 
a single message class from a file that may contam several classes: 

Code Class Message Type 

SM SM_MSGS Screen Manager 

FM FM MSGS Screen Editor 

JM JM_MSGS JAM run-lime 

JX JX_MSGS Data Dictionary & Conttol Strings 

UT UT_MSG Ulllilies 

(blank) Undesignared user 

class identifies a class of messages. Classes 0-7 are reserved for user messages, and 
several classes are reserved to JAM; see smerror. incl. pH. As messages with the 
prefIX code are read from the file. they are assigned nwnbers sequentially beginning at 
4096 times class. 

mode is a mnemonic composed from the fonowing list. The fll'St five indicate where to 
get the message file; at least one of these must be supplied. The Iatler four modify the 
basic action. 

JAM Release 5 1 March 91 Page 221 



JAM PU1 Programmer's Guide 

MnemofUc Action 

MSG DELETE Delete the message class and recover Its memory. 

MSG DEFAULT Use the default me defmed by the setup variable SMMSGS. 

MSG FILENAME Use the file named by argo 

MSG ENVIRON Use the file named in an environment vanable named by 
argo 

MSG MEMORY Use a memory-l'esident file whose address is given by argo 

MSG NOREPLACE Modifier: do not overwrite prevIOusly installed messages. 

MSG DSK Modifier: leave file open, do not read mto memory 

MSG INIT Modifier: do not use screen manager error reporting. 

MSG QUIET Modifier: do not report errors. 

You can or MSG_NOREPLACE with any mode except MSG_DELETE, to prevent over
writing messages read prevIOusly. Error messages Will be displayed on the status Ime, If 
the screen has been inlbalized by xsm _ ini tcrt; otherwise, they Will go to the standard 
error outpuL You can or MSG_INIT with the mode to force error messages to standard 
error. Combinmg the mode with MSG_QUIET suppresses error reporting altogether. 

If you or MSG_DSK with the mode, the messages are not read mto memory. Instead the 
me is left open, and xsm mag get and xsm msgfind fetch them from disk when 
requested. If your message file iSlarge, this can save substantial memory; but you should 
remember to account for operating system me buffers in your calculations. 

arg contains the environment vanable name for MSG_ENVmON; the file name for 
- MSG_Fll..ENAME; or the address of the memory-l'esident file for MSG_MEMORY. It 

may be passed as zero for other modes. 

RETURNS 
o if the operation completed successfully. 
1 if the message class was already in memory and the mode mcluded 

MSG_NOREPLACE. 
2 if the mode was MSG_DELETE and the message me was not in memory. 
-1 if the mode was MSG_ENVIRON and the environment variable was undefmed. 
-2 If the mode was MSG_ENVmON or MSG_FU..ENAME and the message file could 

not be read from disk; other negative values if the message file was bad or insuffiCient 
memory was available. 

Page 222 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

RELATED FUNCTIONS 
buffer a xsm_msg_get(number); 
buffer - xsm_msgfind(number); 

JAM Release 5 1 March 91 Page 223 



JAM PU1 Programmer's GUide 

mwindow 
display a status message in a window 

SYNOPSIS 
declare text char(256) varying; 
declare line fixed binary(31); 
declare column fixed binary(31); 
declare status fixed binary(31); 
status - xsm_mwindow(text, line, column); 

DESCRIPTION 

This function displays text in a pop-up wmdow, whose upper left-hand corner appears 
at line and column. The line and column are counted from o. Ifline is 1, the top of 
the window will be on the second line of the display. The window itself is constructed on 
the fly by the run-time system. No data entry is possible m it, nor is data entry poSSible in 
underlying screens as long as it is displayed. 

Due to the delayed write feature in JAM, you should call xsm_flush to cause the 
screen to be updated and the message to be displayed. unless you call xsm input di
rectly after the call to xsm_mwindow. xsm_close_window may be used to close a .• 
wmdow called with xsm mwindow. 

All the percent escapes for status messages, except %M and % W, are effecbve. Refer to 
xsm_err_reset fora list and full descnptlon. If either line or column is negative, 
the window wIll be displayed according to the rules given for xsm_r_at_cur. 

RETURNS 

-1 if there was a malloc failure. 
1 if the text had to be truncated to fit in a window. 
o otherwise. 

RELATED FUNCTIONS 

Page 224 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

n 
variants that take a field name only 
SYNOPSIS 

declare field_name char(256) varying; 
call xsm_n_ .•• (field_name, ••. ); 

DESCRIPTION 

The n functions access a field by means of the field/group name. For a complete de
scription of individual funcbons, look under the related funcbon without n in its name. 
For example, xsm_n_amt_format is described under xsm_amt_fo~t. If the 
named field/group IS not on the screen, these funcbons will attempt 10 access a similarly 
named entty in the local data block. 

JAM Release 5 1 March 91 Page 225 



JAM PU1 Programmer's GUide 

name 
obtain field name given field number 

SYNOPSIS 
declare buffer char(256) varying; 
declare field_number fixed binary(31); 
buffer - xsm_name(field_number); 

DESCRIPfION 
Given a field number, xsm _name returns a buffer that contains the field name referenced 
by field_number. 

RETURNS 
The name of the field referenced, if found. 
o otherwise. 

Page 226 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

nl 
position cursor to the first unprotected field beyond the 
current line 

SYNOPSIS 

DESCRIPfION 

This function moves the cursor 10 the next occurrence of an array, scrollmg if necessmy. 
Unbke the down-arrow, it will allocate an empty scroUmg occurrence if there are no 
more below but the m8X1mum has not yet been exceeded. 

If the current field is not scroUing, the cursor IS positioned to the fust unprotected field, 
if any, followmg the current line of the fonn. If there are no unprotected fields beyond the 
current field, the cursor IS positioned to the fust unprotected field of the screen. 

If the screen has no unprotected fields at all, the cursor is POSItiOned to the fust column of 
the line following the current line. If the cursor is on the last line of the fonn,lt goes to the 
top left-hand comer of the screen. 

This function doesn't immediately trigger field entry, exit, or validatIOn processing. Such 
processing occurs based on the cursor position when control returns 10 xsm_input. 

This function is ordinarily bound to the RETURN key. 

RELATED FUNCTIONS 
call xsm_backtab(); 
field_number m xsm_home(); 
call xsm_last(); 
call xsm_tab () ; 

JAM Release 5 1 March 91 Page 227 



JAM PU1 Programmer's GUide 

novalbit 
forcibly invalidate a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare status fixed binary(31); 
status a xsm_novalbit(f1eld_number); 

DESCRIPTION 
Resets the VALIDED bit of the specified field, so that the field will again be subject to 
validation when it is next exited, or when the screen IS validated as a whole. 

JAM sets a field's VALIDED bit automatically when the field passes all Its valldabons. 
The bit is inibally clear, and is cleared whenever the field is altered by keyboard input or 
by a library function such as xsmJ>utfield. 

RETURNS 
-1 if the field is not found. 
o otherwise. 

VARIANTS 
status a xsm_e_novalbit(field_name, element); 
status a xsm_i_novalbit(field_name, occurrence); 
status a xsm_n_novalbit(field_name); 
status a xsm_o_novalbit(field_number, occurrence); 

RELATED FUNCTIONS 
status a xsm_fval(field_number); 
status a xsm_s_val(); 

Page 228 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

null 
test if field is null 

SYNOPSIS 
declare field_number fixed binary(31); 
declare status fixed binary(31); 
status - xsm_null(field_number); 

DESCRIPTION 

Use xsrn null to test a field to see whether it has both the null edit and contains the null 
characterstring that has been assigned to that field, See null edits in the Author's Guide. 

RETURNS 

1 IT the field has the null edit and contains the appropriate null character string. 
-1 If the field does not exist. 
o otherwise. 

VARIANTS 

status m xsm e null (field name, element); 
status - xsm:i:null(f1eld:name, occurrence); 
status m xsm_n_null(field_name); 
status m xsm_o_null(field_number, occurrence); 

JAM Release 5 1 March 91 Page 229 



JAM PU1 Programmer's GUide 

num occurs 
find the highest numbered occurrence containing data 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare number fixed binary(3l); 
number - xsm_num_occurs(field_number); 

DESCRIPfION 

This function returns the highest occurrence nwnber of the array specified by 
field_number that actually contains data. The field number may be that ofany field 
With the array. 

Most of the time the highest numbered occurrence containmg data will be the same as the 
number of occurrences actually containing data. However. It is posSible to have blank oc
currences preceding occurrences containing data. 

This count is different from the maximum capacity of an array. which you can retneve 
with xsm_max_occur. 

RETURNS 

The highest numbered occurrence containmg data. 
o if there is no data in the field. 
-1 if the field IS not found. 

VARIANTS 

Page 230 JAM Release 5 1 March 91 



JAM PU1 Proarammer's GUide 

o 
variants that take a field number and occurrence number 
SYNOPSIS 

declare field_number fixed binary(31); 
declare occurrence fixed binary(31); 
call xsm_o_ .•• (field_number, occurrence, ..• ); 

DESCRIPTION 

The 0 functions refer 10 dara by faeld number and occurrence number. An occurrence IS 

a slot within an array of fields in winch data may be stored. Occurrences may be either on 
or off-screen. Since JAM Irea1S an mdividual field as an array with one field, even a 
single non-scrolling field is considered to have one occurrence. The JAM library con
tains routines lhat allow you to manipulate individual occurrences during run-time. 

If the occurrence is zero, the reference is always to the current contents of the specified 
field. 

For the description of a particular function, look under the related funcbon without 0 in 
lis name. For example, xsm _0_ amt _ forma t is described under xsm _ amt _ fornia t. 

JAM Release 5 1 March 91 Page 231 



JAM PU1 Programmer's GUide 

occur no 
get the current occurrence number 

SYNOPSIS 
declare occurrence fixed binary(31); 
occurrence - xsm_occur_no(); 

DESCRIPrION 

This function retlD'DS the occurrence number of the field beneath the cursor. If the field is 
an element of a non-scrollable array, the occurrence number IS the same as the field's ele
ment number. Likewise, the occurrence number of a smgle non-scrolhng field is 1. 

RETURNS 
o if the cursor is not in a field. 
OtherwIse, the occurrence number. 

RELATED FUNCTIONS 

Page 232 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

off_gofield 
move the cursor into a field, offset from the left 

~;i!8IiSi I I : i;;i;i:lomli~ 

SYNOPSIS 
declare field_number fixed binary(31); 
declare offset fixed binary(31); 
declare status fixed binary(31); 
status - xsm_off_90field(field_number, offset); 

DESCRIPfION 

This function moves the cursor into field_number, at posibon offset willlln the 
field's contents, regardless of the field'sjustiflCabon. The field's contents will be shifted 
if necessary to bnng the appropriate piece onscreen. 

If offset is larger than the field length (or the maximum length If the field is shiftable), 
the cursor will be placed in the rightmost position. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 
status a xs~e_off_90field(field_name, element, offset); 
status - xsm_i_off_90field(field_name, occurrence, offset); 
status - xsm_n_off_90field(field_name, offset); 
status - xsm_o_off_90field(field_number, occurrence, offset); 

RELATED FUNCTIONS 

offset - xsm_disp_off(); 
status - xsm_90field(field_number); 
offset a xsm_sh_off(); 

JAM Release 5 1 March 91 Page 233 



JAM PU1 Programmer's Guide 

option 
set a Screen Manager option 

SYNOPSIS 
declare option fixed binary(31)i 
declare newval fixed binary(31)i 
declare oldval fixed binary(31)i 
oldval - xsm_option(option, newval)i 

DESCRIPfION 

Use xsm option to alter during run-time the default Screen Manager options defined 
m smsetup. incl. pll. PoSSIble options include, error window attnbutes, delayed 
write options, cursor display and zoom options. See the "Setup Fde" section m the Con
figuration Guide for a list of options and possible values. Use xsm _ key opt ion to alter 
the behavior of cursor control keys. 

If you wish to simply inquire as to an oPbon's current value, use the value NOCHANGE 
(defined in smsetup. incl. pH) for newval. 

This funcbon replaces the following version 4.0 functions: xsrn_ch_emsgatt" 
xsm_ch_form_atts,xsm_ch_qrnsgatt. xs~ch_urnsgatt, xsm_dw_op
tions, xsm_er_options, xsm_fcase, xsrn_fextension, xs~ind_set. 
xsm rnp options, xsrn rnp string, xsm ok options, xsm stextatt, 
and ~sm=zrn_options. They ire included m your version 5.0 bbrary only for back
ward compatibility. We strongly recommend that you do not use them in-the-future. 

RETURNS 

The old value for the specified option. 
-1 If the option is out of range. 

RELATED FUNCTIONS 
oldval = xsm_keyoption(key, mode, newval)i 

Page 234 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

oshift 
shift a field by a given amount 

:~ 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare offset fixed binary(31); 
declare return_value fixed binary(31); 
return_value - xsm_oshift(field_number, offset); 

DESCRIPTION 

This function slufts the contents of field_number by offset positions. Ifoffset 
is negative, the contents are shIfted right (data past the left-hand edge of the field become 
visible); otherwise, the contents are shIfted left. Slufting indIcators, if displayed, are ad
justed accordingly. 

The field may be shifted by fewer than off set positions if the maximum slufting width 
is reached with less shlfbng. 

RETURNS 

The number of positions acblally shifted. 
o if the field is not found or is not shifting. 

VARIANTS 

JAM Release 5 1 March 91 Page 235 



JAM PU1 Programmer's Guide 

• • plnqulre 
obtain value of a global strings 

SYNOPSIS 

'include'smqlobs.incl.pll'; 

declare buffer char (256) varying; 
declare which fixed binary(31); 
buffer a xsm-pinquire(which); 

DESCRIPrION 

'I1us fWiction is used to obtain the current value of a global pointer variable. The 
mnemonics for which are defmed m smglobs. incl. pH, If you wish to modify a 
global string use xsm...,Pset. 

Pointer values for which are defmed ID smglobs. incl. pH. They are: 

Mnemonlc Meaning 

P YES The Y character for YES/NO field This is returned as a three - character Sb1Dg, The fust character is the lowercase yes value, the 
second character IS the uppercase yes value, and the third character 
is the null terminator. 

P NO The N character for YES/NO field This is returned as a three 
character sb1Dg. The fust character IS the lowercase no value, the 
second character is the uppercase no value, and the third character is 
the null termmator. 

P DECIMAL This is returned as a three character string. The fust character is the - user's decimal point marker, the second character is the operating 
system's decimal point marker, and the third character is the null 
terminator. 

P FLDPTRS Pointer to an array of field structures. The implementation of these 
structures is very release dependenL 

P TERM Returns the name JAM uses as the terminal identifier or the null 
string If not foWid. 

P SPMASK Pointer to an memory-resident full SIZe form containing all blanks. 

Page 236 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Mnemonic Mearung 

P_USER Pointer to developer-specified region of memory. This pomter is not 
set by JAM; it is set and maintained, if desired, by the application. 

SP NAME Name of the active screen. 

SP STATLI Text of current sratus line. 
NE 

SP_STATAT Auributes of current sratus line (pointer to array of unsigned short 
TR integers). 

P DICNAME Name of data dictionary me. 

v Any of the flV _" mnemonics dermed in amvideo. incl. pll - may be passed to obram various video related informabon. 

In general, the objects pointed to by the pomters returned by xam -pinqui re have lim
ited duration and should be used or copied quickly (except for P _USER, which is main
tained by the application). The P _ pointers point to the actual objects within JAM. The 
SP _ pointers POlOt to copies of the objects. Since the characteristics of these objects are 
implementation dependent, they may change in future releases of JAM. In no case (ex
cept P _USER) should the objects be modified directly through the pointers returned by 
xam -pinqui reo Use xam -paet to modify selected objects). 

RETURNS 

If the argument corresponds to a global pointer variable, the value of that variable IS 

returned. 
o otherwise. 

RELATED FUNCTIONS 

value = xsm_finquire(field_number, which); 
value - xsm_gp_inquire(group_name, Wh1Ch); 
value - xsm_iset(which, newval); 
buffer - xsm-pset(which, newval); 

JAM Release 5 1 March 91 Page 237 



JAM PU1 Programmer's Guide 

protect 
protect an array 

SYNOPSIS 

declare field_number 
declare mask 
declare status 

fixed binary(31); 
fixed binary(31); 
f1xed binary(31); 

status - xsm_aprotect(field_number, mask); 
status - xsm_aunprotect(field_number, mask); 
status a xsm-protect(field_number); 
status - xsm_unprotect(field_number); 
status - xsm_lprotect(field_number, mask); 
status ~ xsm_lunprotect(field_number, mask); 

DESCRIPTION 

There are four types of protecuon associated with fields and arrays, any combination of 
which may be assigned: data entry, tabbing into, - clearing, and validabon.· 
xsm -protect and xsm _ unprotect always set and clear all four types of protection. 
The remaining protecuon functions set and clear any combination of protection, as speci
fied by mask. The mnemomcs for mask are defined in smdefs. incl. pH and are 
listed below, Combmabons may be specified by oring mnemomcs together. 

Mnemonic/or mask Meanmg 

EPROTECI' protect from data entry 

TPROTECI' protect from tabblDg into and from entering via any 
other key 

CPROTEcr protect from clearing 

VPROTEcr protect from validation 

ALLPROTECI' protect from all of the above 

Protection is associated an mdividual field (I.e, an element), and with an array as a whole. 
Therefore, all ofJscreen array occurrences always share the same level of protection, 

Page 238 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

while the onscreen occurrences have the levels of protection (possibly all different) asso
ciated with their host fields (I.e. elements). Since protection is associated with individual 
fields. and not with individual occurrences, deleting an occurrence with xsm doccur 
Will not scroll up the protectIon with the occurrences. -

xsm-protect, xsm_unprotect, xsm_lprotect, and xsm_lunprotect ~t 
and clear protection for mdlvidual fields. xsm _ aprotect and xsm _a unprotect ~t 
and clear protection for all of the fields of an array, and for the array as a whole (the 
field_number may speclfy any field in the array). For example, unprotecting an array 
Wlth xsm_aunprotect will undo protection done by xsm_lprotect. A subsequent 
call to xsm Iprotect will re-protect the specified field of the array, but can never af
feet the offscreen occurrences of the array. 

Cautlon: It is generally safer to protect and unprotect arrays with xsm aprotect and 
xsm _a unprotect, rather than with the field-oriented protection fuDctions. 

RETURNS 

-1 if the field does not exist; 
Ootherwi~. 

VARIANTS 

status a xsm_n-protect(field_name); 
status - xsm_e-protect(field_name, element); 
status = xsm_n_unprotect(field_name); 
status a xsm_e_unprotect(field_name, element); 
status = xsm_n_lprotect(field_name, mask); 
status = xsm_e_lprotect(field_name, element, mask); 
status = xsm_n_lunprotect(field_name, mask); 
status = xsm_e_lunprotect(field_name, element, mask); 
status a xsm_n_aprotect(field_name, mask); 
status - xsm_n_aunprotect(field_name, mask); 

JAM Release 5 1 March 91 Page 239 



JAM PU1 Programmer's GUIde 

pset 
Modify value of global strings 

SYNOPSIS 
'include'smglobs.incl.pll'; 

declare buffer char(256) varying; 
declare which fixed binary(31); 
declare newval char (256) varying; 
buffer a xsm-pset(which, newval); 

DESCRIPrION 
This funcbon is used to modlfy the contents of a global stnng. The stnng you wish to 
change is specIfied by which. The value that you wish to change the vanable to is speci
fied by newval. If you wISh only to get the value of a global slnng use xsm ...,pin
quire. 

The following values for whl.ch, dermed in smglobs. incl. pU, are avaIlable: 

Mnemonic Meaning 

P YES The Y character for YES/NO field. This is specified by a three - -
character string. The rust chamcter is the lowercase yes value, the 
second character is the uppercase yes value, and the third character-
is the null termmator. 

P NO The N chamcter for YES/NO field. ThIs is specified by a three 
character string. The first character is the lowercase no value, the 
second character is the uppercase no value, and the third character is 
the null terminator. 

P DECIMAL T1us IS specified by a three character stnng. The first character is the - - user's decimal point marker, the second character IS the operating 
system's decimal point marker, and the thud chamcter IS the null 
termmator. 

RETURNS 
If which is one of the above, the old contents of the corresponding array are returned. 
o otherwise. 

RELATED FUNCTIONS 
value - xsm_iset(which, newval); 

Page 240 JAM Release 5 1 March 91 

. 



JAM PU1 Proarammer's GUide 

buffer ~ xs~inquire(wh1ch); 

JAM Release 5 1 March 91 Page 241 



JAM PU1 Programmer's GUide 

putfield 
put a string into a field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare data char(256) varying; 
declare status fixed binary(31); 
status D xsm-putfield(field_number, data); 

DESCRIPfION 

The string data is moved into the field specified by field_number. Strings that are 
too long wdl be truncated without warning, while strings shorter than the destination field 
are blank fdled (to the left if the field is nght justified, otherwise to the nghO. If da t a is 
a null stnng, then the field is cleared. 11us causes date and time fields that take system 
values to be refreshed. 

This function sets the field's MDT bit to mdIcate that it has been modified, and clears its 
VALIDEO bit to indIcate that the field must be revalidated upon eXIt. xsm_n...,put
field and xsm_i...,putfield will store data in the LOB if the named field is not 
present in the SCfeeII. However, if the LOB item has a scope of 1 (constant),-Its contents. 
will be unaltered and the function will return -1. 

In variants that take name as an argument, name can be either the name of a field or a 
group. In the case ofa group. the functions xsm_select and xsm_deselect-should 
be used to change the group's value. 

Notice that the order of arguments to thIS function IS different from that of arguments to 
the related function xsm_getfield. 

RETURNS 

-1 if the field is not found; 0 otherwise. 

VARIANTS 
status D xsm_e-putfield(name, element, data); 
status D xsm_i-putfield(name, occurrence, data); 
status D xsm_n-putfield(name, data); 
status - xsm_o-putfield(field_number, occurrence, data); 

RELATED FUNCTIONS 
status - xsm_deselect(group_name, group_occurrence); 

Page 242 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

length 
status 

xsm_getfield(buffer, field_number); 
xsm_select(group_name, group_occurrence); 

JAM Release 5 1 March 91 Page 243 



JAM PLJ1 Programmer's Guide 

putjctrl 
associate a control string with a key 

SYNOPSIS 

'include'smkeys.incl.pll'; 

declare key fixed binary (31) ; 
declare control_string char (256) varying; 
declare default fixed binary(31); 
declare status fixed binary(31); 
status - xsm-putjctrl(key, control_string, default); 

DESCRIPfION 

Each JAM screen contains a table of control slnngs assOCiated With function keys, JAM 
also mamtains a default table of keys and control slnngs, which take effect when the cur
rent screen has no control string for a function key you press, This table enables you to 
define system-wide actions for keys. It is initialized from SMINICTRL setup vanables. 
See the section on setup in the Configuration Guide for further mformabon. 

---. ThisfuActionassocuues control str-ing with key in one of the tables,replacing.the
control string previously associated with key (if there was one). If default IS zero, the 
control slnng will be installed in the cmrent screen, and will disappear when you exit the 
screen; otherwise, it will go IOto the system-wide default table. If con t rOI_ s t ring IS 

empty, the existing control slnng, if any, will be deleted. If both screen and default-control 
strings exISt for a given key, deleting the control string for the screen will put the default 
control string into effecL 

If you install a default control slnng for a key that is defmed in the current screen, the 
defirubon in the screen will be used. Note also that JAM will not search the form or win
dow stack for function key defmitions; only the cmrent screen and the default table are .. 
consulted. Mnemonics for key are in smkeys. incl. pll. The syntax for control 
strings is defmed in the Author's Guide. 

RETURNS 

-5 if insufficient memory is available; 0 otherwise. 

Page 244 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

pwrap 
put text to a wordwrap field 

SYNOPSIS 
declare field_number fixed binary(31); 
declare text char(256) varyinq; 
declare status fixed binary(31); 
status D xsm-pwrap(field_number, text); 

DESCRIPTION 

This function copies text to a wordwrap field specified by field_number. Wraps 
occur at the end of words. The last character of every hoe is a space. If a word is longer 
than one less than the length of the field, the word is broken one character shon of the end 
of the field, a space is appended, and the remainder of the word wraps to the next line. 

The variant xsm_0J>wrap copies the text into an array beginmng at the specified oc
currence. 

Warning: If you attempt to copy data that is too large for the wordwrap field to hold, 
xsmJ>wrap will truncate the excess texL 

RETURNS 

-1 if the field number is mvalid. 
-2 if the text was truncated because it was too long for the field. 
o otherwise. 

VARIANTS 

status - xsm_o-pwrap(field_number, occurrence, text); 

RELATED FUNCTIONS 

lenqth D xsm_qwrap(buffer, field_number, buffer_lenqth); 

JAM Release 5 1 March 91 Page 245 



JAM PU1 Programmer's GUide 

query_msg 
display a question, and return a yes or no answer 

SYNOPSIS 
declare message char (256) varying; 
declare reply fixed binary(31); 
reply - xsm_query_msg(message); 

DESCRIPfION 

The message is displayed on the status line, unbl you type a yes or a no key. Ayes key 
is the fllSt letter of the SM _YES entry in the message file (or the XMIT key), and a no key 
is the fU'St Ieller of the SM _NO entry (or the EXIT key); case IS ignored. At that pomt, this 
function returns the lower case letter as defined in the message me to its caller. 

All keys other than yes and no keys are ignored. 

RETURNS 

Lower-ase ASCII 'y' or 'n', according to the response. 

RELATED FUNCTIONS 
call xsm_d_msg_line(message, display_attribute); 
status m xsm_1s_no(field_number); 
status m xsm_is-yes(field_number); 

Page 246 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• qUI_msg 
display a message preceded by a constant tag, and re
set the message line 

SYNOPSIS 
declare message char(256) varying; 
call xsm_qui_msg(message); 

DESCRIPfION 

This function prepends a tag (nonnally "ERROR:j to message, and displays the whole 
on the swus line (or in a window lf it is too long), The tag may be allerec1 by changmg the 
SM _ERROR entry in the message file. The message remains viSIble unbl the operator 
presses a key. Refer to the descripbon of setup in the Configuration Gwde for an exact 
descriPbon of error message acknowledgemenL If the message is longer than the status 
line, it wiD be displayed in a wmdow mstead. If the cursor position display has been 
turned on (see xsm c Vl.s), the end of the swus line wiD contain the cursor's current 
row and column. If Ibemessage lext would overlap that area of the status line, it will be 
displayed in a window instead 

This function is identical to xsm _quiet_err, except that it does not tum the cursor on. 
It 15 similar to xsm_emsg, which does not prepend a tag. 

Several percent escapes provide control over the conlent and presentation of status mes
sages. See xsm _ emsg for details. 

RELATED FUNCTIONS 
call xsm_emsg(message); 
call xsm_err_reset(message); 
oldval D xsm_option(option, newval); 
call xsm_quiet_err(message); 

JAM Release 5 1 March 91 Page 247 



JAM PU1 Programmer's GUide 

quiet_err 
display error message preceded by a constant tag, and 
reset the status line 

SYNOPSIS 
declare message char (256) varying; 
call xsm_quiet_err(message); 

DESCRIPfION 

This function prepends a tag (normally "ERRORj to mes sage, turnS the cursor on, and 
displays the whole message on the status line (or in a window if it is too long). This func
tion is identical to xsm qui msg, except that it turns the cursor on. It is similar to 
xsm err reset, whiCh ooes nOl prepend a tag. Refer to xsm emsg for an explana
tion of how to change display attributes and insert function key names witJun a message. 

RELATED FUNCTIONS 

call xsm_emsg(message); 
call xsm_err_reset(message); 
oldval - xsm_option(option, newval); 
call xsm_qui_msg(message); 

Page 248 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rd_part 
read part of a data structure to the current screen 

SYNOPSIS 
declare screen_struct bit(O); 
declare first_field fixed binary(31); 
declare last field fixed b~nary(31); 
call xsm_rd-part(screen_struct, first_field, last_field); 

DESCRIYI'ION 
This function copies data from a Sb'Uctwe to all fields between first_field and 
last field withm the current screen, converting mdividual members as appropriate. 
An army and its scrolling occurrences will be copied only if the first element falls be
tween first field and last field. This routine is commonly used with 
xsm _ w rt ya -;t, which writes part of the screen to a sb'Uctwe.lfyou wish to read infor
mabon into the entire screen, use xsm rdstruct. To read infonnauon into a data dic
bonary record, use xsm_rrecord:-Use xsmyutfield to write a stnng to an 
individual field. 

A data sb'Ucture named screen can be created from the screen file screen. j am via 
the f2struct utibty as follows: 

f2struct -gPLl screen. jam 

Each member of the Sb'Ucture is a field of the type specifed in the Screen Editor. If you 
specify the type omi t, data will not be written moo the field. See "Data Type" in the Au
thor's Guide and f2struct in the Utilities Guide for further infonnation. 

Once created, the declaration may be treated exacdy like any other Sb'UCtwe declaration. 
You can ignore the items that represent fields whICh do not fall Within the bounds of the 
specifed fields. However, the Sb'Ucture definition must contain all of the fIelds on the 
screen. The argument screen_struct is the address ofa variable of the type ofsb'Uc
ture generated by f2struct. 

The arguments that represent the range of fields to be COPied, first field and 
last_field are passed as field numbers. -

The Sb'Uctwe may be initialized with xsm_wrtyart or with data from elsewhere. 
Sb'UCture members within the specified range which will not be inlbalized prior to calling 
xsm_ rd ya rt must be zeroed-out or you risk crashing your application when garbage 
is read into the screen. 

Remember, you must update the Sb'UCture declaration whenever you alter the screen from 
which it was generated. 

JAM Release 5 1 March 91 Page 249 



JAM PU1 Programmer's GUIde 

RELATED FUNCTIONS 

status m xs~utfield(field_number, data); 
call xsm_rd_struct(screen_struct, byte_count); 
call xsm_rrecord(structure-ptr, record_name, byte_count); 
call x sm_w rt-part (screen_struct, first_field, last_field); 

Page 250 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rdstruct 
read data from a structure to the screen 

SYNOPSIS 
declare screen_struct bit(O); 
declare byte_count fixed binary(31); 
call xsm_rd_struct(screen_struct, byte_count); 

DESCRIPTION 

This function COpies data from a structure to the current screen, converting irubvidual 
members as appropriate. It is commonly used With xsm _ wrt st ruct, which wntes data 
from fields on the current screen to a structure. If you WISh to read infonnation into a 
group of consecutively numbered fields, use xsm _ rd ....Part. To read mfonnation from 
a data dictionary record, use xsm_rrecord. Use xsm....putfield to write a stnng to 
an individual field. 

A data structure named screen can be created from the screen file screen. jam via 
the f2struct ublity as follows: 

f2struct -gPLl screen. Jam 

Each member of the structure is a field of the type specifed in the Screen Editor. If you 
specify the type omi t, data Will not be written into the field. See "Data Type"m the Au
thor's Guide and f2struct in the Ublities Guide for further infonnation. 

Once created, the declaration may be treated exactly like any other structure declaration. 
The argument screen_struct is the address ofa variable of the type ofstructuregen
erated by f2struct. 

The argument byte count is an integer variable. xsm rdstruct will store in 
byte_count the number of bytes copied from the structure. 

The structure may be mitiahzed with xsm wrtstruct or with data from elsewhere. 
Members within the structure that wall not be initialized pnor to calling 
xsm_rdstruct must be zeroed-out or you risk crashing your application when 
garbage is read into the screen. 

Remember, you must update the structure declaration whenever you alter the screen from 
which it was generated. 

RELATED FUNCTIONS 
status = xsm-putfield(field_number, data); 

JAM Release 5 1 March 91 Page 251 



JAM PU1 Programmer's GUide 

call xsm_rd~rt(screen_struct, first_field, last_field); 
call xsm_rrecord(structure-ptr, record_name, byte_count); 
call xsm_wrtstruct(screen_struct, byte_count); 

Page 252 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rescreen 
refresh the data displayed on the screen 

SYNOPSIS 
call xsm_rescreen(); 

DESCRIPrION 

This function repamts the entire display from JAM's internal screen and aunbute buffers. 
Anything written to the screen by means other than JAM library funcbons wIll be erased. 
This function is nonnally bound 10 the RESCREEN key and executed automatically 
within xSDLgetkey. 

You may need to use this function after doing screen 110 With the flag 
xsm do not display turned on, or after escapmg from an JAM applicabon to 
another prograiii (see xsrn _leave). If all you want is to force writes to the display, use 
xsm flush. 

RELATED FUNCTIONS 
call xsm_flush(); 
call xsm_return(); 

JAM Release 5 1 March 91 Page 253 



JAM PU1 Programmer's GUide 

resetcrt 
reset the terminal to operating system default state 

SYNOPSIS 
call xsm_resetcrt(); 
call xsm_jresetcrt(); 
call xsm_jxresetcrt(); 

DESCRIPfION 

The function xsm_resetcrt is generally used only when you are wnting your own 
Executive. It resets terminal characterisucs to the operating system's nonnal state. Be 
sure to call xsm resetcrt be called when leaving the Screen Manager envmmment 
(before program exit). 

All the memory associaled with the display and open screens is freed However, the buff
ers holding the message file, key lranslation file, etc. are not released. A subsequent call 
to xsm ini tcrt will find them in place. Then xsm resetcrt clears the screen and 
turns on the cursor, lransmlts the RESET sequence defined in the Video file, and resets the 
operating system channel. 

The JAM Executive "calls xsm_resetcrt via xsm_jresetcrt (or via
xsm_jxresetcrt m the case of an authoring executable) automaucally as part of its 
exit processing. It should not be called by application programs except m case of-abnor
mal tennmation. 

RELATED FUNCTIONS 

call xsm_cancel(); 
call xsm_Ieave(); 

Page 254 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

• resize 
notify JAM of a change in the display size 

SYNOPSIS 
declare rows fixed binary(3l)i 
declare columns fixed binary(31)i 
declare status fixed binary(31)i 
status - xsm_resize(rows, columns); 

DESCRIPfION 

TIllS function enables you to change the size of the dIsplay used by JAM from the default 
defined by the LINES and COLMS entnes in the video file, It makes it possible to use a 
single video file in a windowing environment. Applications can be run m different sized 
windows with each application setting its display size at run time. It can also be used for 
swirchmg between nonnal and compressed modes (e.g. 80 and 132 columns on 
VTl()()....a)mpatible tennmals). 

If the specified rectangle is larger than the phYSical dIsplay, the results will be unpredict
able. You may specify at most 2S5 rows or columns. 

This function clears the physical and logical screens; any displayed fonns or windows, 
together with data entered on them, are lost. 

RETURNS 

-1 if a parameter was less than 0 or greater than 255. 
o if successful 
Program exit on memory allocation failure. 

JAM Release 5 1 March 91 Page 255 



JAM PU1 programmer's GUide 

return 
prepare for return to JAM application 

SYNOPSIS 
call xsm_return(); 

DESCRIYfION 

This routine should be called upon retunung to a JAM applicabon after a temporary exit. 

It sets up the operating system channel and initializes the display using the SETUP string 
from the video me. It does not restore the screen to the state It was in before xsm leave 
was called. Use xsm _rescreen to accomplish that, if desired. 

RELATED FUNCTIONS 

call xsm_Ieave(); 
call xsm_resetcrt(); 

Page 256 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

rmformlist 
empty the memory-resident form list 

SYNOPSIS 
call xsm_rmformlist; 

DESCRIPTION 

This function erases the memory-resldent fonn list established by xsm formli st, and 
releases the memory used to hold iL It does nOl release any of the memory-resldent JPL 
modules, key sets, or screens themselves. Calhng this funcUOn will prevent 
xsm r window, xsm r keyset, xsm jplcall, and related functions from rmd-
ing memory-resident objects. -

RELATED FUNCTIONS 

status - xsm_formlist(name, address); 

JAM Release 5 1 March 91 Page 257 



JAM PU1 Programmer's GUide 

rrecord 
read data from a structure to a data dictionary record 

SYNOPSIS 
declare structure-ptr bit(O); 
declare record-pame char(256) varying; 
declare byte_count fixed binary(31); 
call xsm_rrecord(structure-ptr, record_name, byte_count); 

DESCRIPfION 
11us function reads data from a PUl structure into fields on the current screen that are 
pan of a common data dictionary record. H a field is not on the current screen then the 
data is wntten to the LOB. This routine is commonly used with xsm wrecord, which 
writes data from a data dictionary record to a PUt structure. If you wiSh to read data mto 
all of the fields withm the current screen, use xsm _ rds t ruct. To copy data to a group 
of consecutively numbered fields, use xsItL rd yart. Use xsm yut field to wnte a 
string to an individual field. 

A data structure named record can be created from the data dictionary file da t a . dic 
via the dd2struct utility as follows: 

dd2struct -qPLl data.d1C 

Each structure member is a field withm a data dictionary record that IS of the type Speci
fied m the Screen Editor. Data will be written into the field onscreen even if the ami t 
type is specified. See "Data Type" in the Author'S Gwde and dd2 st ruct 10 the-t:Jblities 
Gwde for further mfonnation. 

Once created, the declarabons may be treated exactly like any other Structure declara
tions. The argument structytr is the address of a variable of one of the structure 
types generated by dd2struct. The argument record_name is the name of the data 
dictionary record from winch the structure was created. 

The argument byte_count IS a pointer to an integer. Upon return from· 
xsm_rrecord, the value contamed in the integer will be the number of bytes or 
characters read from the structure. The value will be 0 If an error occurred. 

The structure may be mitialized with xsm wrecord or with data from elsewhere. 
Members within the structure that will not be -mitialized prior to callmg xsm _ rrecord 
must be zeroed-out or you nsk crashing your application when garbage is read into the 
screen or the LDB. 

Remember, you must update the structure declarabon whenever you alter the data 
dictionary from which It was generated. 

Page 258 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

RELATED FUNCTIONS 
status - xsm-putfield(f~eld_number, data); 
call xsm_rd~rt(screen_struct, first_field, last field); 
call xsm_rd_struct(screen_struct, byte_count); 
call xsm_wrecord(structure-ptr, record_name, byte_count); 

JAM Release 5 1 March 91 Page 259 



JAM PU1 Programmer's Guide 

rscroll 
scroll an array 

SYNOPSIS 
declare field_number fixed binary(31); 
declare re~scroll f1xed binary(31); 
declare lines f1xed binary(31); 
lines - xsm_rscroll(field_number, re~scroll); 

DESCRIPfION 

This funcbon scrolls an array along with any synchronized arrays by re~scroll oc
currences. If re~ scroll is poSItive. the array scrolls down (towards the bottom of the 
data); otherwise. it scrolls up. 

The function returns the actual amount scrolled. This could be the amount requested, or 
a smaller value if the requested amount would bring the array past its begmnmg or end, If 
o is returned it means that the array was at its beginnmg or end, or an error occurred. Neg
ative numbers mdicate scrolling up occurred. 

RETURNS 

The actual amount scrolled. Posinve numbers mdicate downward scrolhng whIle 
negative numbers mean upward scrolling. 

o if no scrolhng or error. 

VARIANTS 

lines = xsm_n_rscroll(field_name, re~scroll); 

RELATED FUNCTIONS 

status = xs~ascroll(field_number, occurrence); 
status - xsm_t_scroll(field_number); 

Page 260 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

s val 
validate the current screen 

SYNOPSIS 
declare status fixed binary(3l); 
status - xsm_s_val(); 

DESCRIPTION 
This function validates each field and occurrence, whether on or offscreen,lhat is not pr0-

tected from validation (vpROTECf),lt is called automabcally from xsm _input when 
the TRANSMIT key is hit whIle in data entry mode. xSlILsval also validates groups. 

When Ihe fll'St element of a scrolhng array IS encountered, earlier offscreen occurrences 
are validated fUSL When the last element of a scrolling array is encountered, later otT
screen occurrences are ValIdated immediately after that elemenL 

If synchronized arrays exist, the following occws. When an offscreen occurrence IS valI
dated, the corresponding occurrences from synchronized arrays are valIdated as well. 
Synchronized array are validated in order according to Iheir base fIeld number. The off
screen occurrences preceding the synchronized arrays are validated before the first ons
CreeD occurrence of the fust (lowest base field number) of the synchronized arrays. Siml
larly,lhe off screen occurrencesfollowUlg the arrays are validated immediately after the 
last onscreen occurrence of the last (highest base field number) array. 

Validation Slap ifvallll Skip if empty 

required y n 

must fill y y 

regular expression y y 

range y y 

check-digit Y y 

date or time y y 

table lookup y y 

currency fonnat y n* 

math expresssion n n 

JAM Release 5 1 March 91 Page 261 



JAM PU1 Programmer's GUide 

Valulatwn Slap 1/ valid Slap 1/ empty 

field validabon n n 

JPL function n n 

• The currency format edIt contains a skip-if-empty flag; see the Author's Guide. 

If you need to force a skip-if-empty validation, make the field required. A field with em
bedded punctuation must contain at least one non-blank non-puncwation character in or
der to be considered non-empty; otherwise any non blank character makes the field non
empty. 

If an occurrence fails validation, the cursor is positioned to it and an error message dis
played. If the occurrence was ofIscreen, Its the array IS fast scrolled to bnng it onscreen. 
This routine returns at the fll'St error; any fields past will not be validated. 

RETURNS 

-1 if any field fails vahdation. 
o Otherwise. 

RELATED FUNCTIONS 

status = xsm_fval(field_number); 

Page 262 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

sc max 
alter the maximum number of occurrences allowed in a 
scrollable array 

SYNOPSIS 
declare field_number fixed binary(31); 
declare new_max fixed b1nary(31); 
declare actual_max fixed binary(31); 
actual_max - xsm_sc_max(field_number, new_max); 

DESCRIPfION 

This function changes the maximum number of occurrences allowed in field_num
ber, and m all synchronized arrays, The original maximum is set when the screen is 
created. If the desired new maximum is less than the Iughest numbered occurrence that 
contams data, -the-new maximum will be set to the number of that occurrence (i.e., the 
value returned by xsm _ num _occurs). The maximum can decrease only to a value be
tween the highest numbered occurrence containing data and the previous maximum. It 
can never be less than the number of elements in the array. 

RETURNS 

The actual new maxunum (see above). 
o if the desired maximum is invalid, or if the array is not scrollable. 

VARIANTS 

RELATED FUNCTIONS 
maximum - xsm_max_occur(field_number); 
number - xsm_num_occurs(field_number); 

JAM Release 5 1 March 91 Page 263 



JAM PU1 Programmer's Guide 

sdtime 
get formatted system date and time 

SYNOPSIS 
declare buffer char (256) varying; 
declare format char (256) varying; 
buffer - xsm_sdtime(format); 

DESCRIPfION 

This function gets the current date and/or time from the operating system and returns It m 
the form specified by f arma t. 

fa rma t is a stnng beginnmg with y or n fonowed by any combination of date/tIme to
kens and bteral texL y indicates a 12-hour clock; n (or any other character) indicates a 
24-hour clock. This character must be given, even if the fonnat does not include time 
tokens. The tokens are descnbed in the table below. These tokens are case-sensitive. 

Unit Descriphon Token 

Year 4 digit (e.g., 1990) %4y 

2 digit (e.g., 90) %2y 

Month 1 or 2 digit (1 - 12) %m 

2 digit (01 - 12) tOm 

fuD name (e.g., January) %*m 

3 character name (e.g., Jan) %3m 

Day lor 2 digit (1- 31) %d 

2 digit (01- 31) %Od 

Day of the Week CuD name (e.g. Sunday) %*d 

3 character name (e.g., Sun) %3d 

Day of the Year digit (1 - 365) %+d 

Page 264 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

UlUt DescriptIOn Token 

Hour 1 or 2 digit (I - 12 or 1 - 24) %h 

2 digit (01-12 or 01 -24) %Oh 

Minute 1 or 2 digit (I - 59) %M 

2 digit (01- 59) %OM 

Second 1 or 2 digit (I - 59) %s 

2 digit (01- 59) %Os 

AM or PM for use wilh a 12-hour clock %p 

Literal Percent use % as a literal character %% 

Ten Default FonnalS SM_ODEF_DTlME %0£ 

(from the message file) SM_IDEF_DTlME %1£ 

... ... 
SM 9DEF DTlME %09£ 

At runtime. JAM strips off lhe first character of forma t. If the character is y. it uses a 
12-hour clock; else it uses the default24-hour clock. Next it examines the rest of for
ma t. replacing any tokens With the appropriate values. All olher characters are used liter
ally. Therefore. be sure to put a y or an n (or perhaps a blank) at the beginning of for
ma t. If you do not, JAM strips off lhe flISt token's percentsign and it treats the rest of the 
token as literal text 

You may also retrieve a date/time fonnat from a field using xsm _ edi t...,pt r. 

The text for day and month names. AM and PM. as well as the tokens for the ten default 
fonnats. are all stored m the message file. These entries may be modified. See the Config
uration Guide for details. 

Note: This function replaces Release 4's xsm _ sda te and xsm _ stime function. 

RETURNS 
The current dateltime in the specified fonnat. 
Empty if format is invalid. 

RELATED FUNCTIONS 
status - xsm_calc(field_number, occurrence, expression); 

JAM Release 5 1 March 91 Page 265 



JAM PU1 Programmer's GUide 

select 
select a checklist or radio button occurrence 

SYNOPSIS 
declare group_name char (256) varying; 
declare group_occurrence fixed binary(31); 
declare status fixed binary(31); 
status - xsm_select(group_name, group_occurrence); 

DESCRIPfION 

This funcbon allows you to select a specific occurrence within a checklist or radio button. 
The group name and occurrence number are used to reference the desired selection. 

Use xsm deselect to deselect a checklist occurrence. 

Selecung a radio button occurrence automatically causes the currently selected radio but
ton to be deselected, because exactly one occurrence in a radio button group must be se
lected at allbmes. See the Author's Guide for a more derailed discussion of groups. 

Use xsm isselected to check whether or not a particular radio button or checklist 
occurrence IS currently selected. 

RETURNS 

-1 arguments do not reference a checkbst or radio button occurrence. 
o occurrence not previously selected. 
1 occurrence prevIOusly selected. 

RELATED FUNCTIONS 

status - xsm_deselect(group_name, group_occurrence); 
status - xsm_isselected(group_name, group_occurrence); 

Page 266 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

setbkstat 
set background text for status line 

SYNOPSIS 
declare messaqe char(256) varyinq; 
declare display_attribute fixed binary(31)i 
call xsm_setbkstat(messaqe, display_attribute); 

DESCRIPTION 
The message is saved. to be shown on the sWus line whenever there is no higher prior
ity message to be displayed. The highest priority messages are those passed to 
xsm_d_msg_line.xsm_err_reset. xsm_quiet_err, orxsm_query_m sg; 
the next haghest are those attached to a field by means of the status text option (see the 
JAM Author's Guide). Background status text has lowest priority. 

Possible values for the display_attribute argument are dermed in the header file 
smdefs .l.nel. pll. as shown in the table below: 

Foreground Attnbules Background Attributes 

BLANK B_HILIGHT 

REVERSE 

UNDERLN 

BLINK 

HILIGHT 

STANDOUT 

DIM 

ACS (alternate character set) 

Foreground Colors Background Colors 

BLACK B_BLACK 

BLUE B_BLUE 

GREEN B_GREEN 

CYAN B CYAN 

JAM Release 5 1 March 91 Page 267 



JAM PU1 Programmer's Guide 

Foreground Colors Background Colors 

RED B_RED 

MAGENTA B_MAGENTA 

YELLOW B_YELLOW 

WHITE B WHITE 

Foreground colors may be used alone or ored with one or more hIghlights, a background 
mnemonic, and a background highlighL If you do not specify a hIghlight or a background 
mnemonic, the attribute defaults to white agamst a black background. Omitbng the 
foreground mnemomc wIll cause the attribute to defauitlO black. 

xsm setstatus sets the background status to an alternating ready/wait flag; you 
should tum that feature off before caIlmg tins routine. 

Refer to xsm _ d _mag_line for an explanation of how to embed atblbute changes and 
function key names IOto your message. 

RELATED FUNCTIONS 

call xsm_d_msg_line(message, display_attribute); 
call xsm_setstatus(mode); 

Page 268 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

setstatus 
turn alternating background status message on or off 

SYNOPSIS 
declare mode fixed binary(3l); 
call xsm_setstatus(mode); 

DESCRIPfION 

If mode is non-zero, altemabng stabJs flags are turned on. After tillS call, one message 
(nonnally Ready) is displayed on tile SlabJs lme while JAM is waiting for input. and 
another (normally wai t) when it is noL If mode is zero, the messages are turned off. 

The status flags will be replaced temporarily by messages passed to xsm_err_reset 
or a related routine. They will overwrite messages posted with xsm_d_ms9_11ne or 
xsm_setbkstat. 

The alternating messages are stored In tile message file as SM READY and SM WAIT, 
and can be changed there. Attribute changes and function key mes can be em~ded in 
the messages; refer to xsm _ d _ ms9_1ine for Instructions. 

RELATED FUNCTIONS 
call xsm_setbkstat(message, display_attribute); 

JAM Release 5 1 March 91 Page 269 



JAM PU1 Programmer's Guide 

sh off 
determine the cursor location relative to the start of a 
shifting field 

SYNOPSIS 
declare offset fixed binary(31); 
offset m xsm_sh_off(); 

DESCRIPfION 

Returns the difference between the start of data in a shiftable field and the current cursor 
location. If the current field is not shiftable, it returns the dJfference between the leftmost 
column of the field and the current cursor location, like xsm _ disp _off. 

RETURNS 

The dIfference between the current cursor posItion and the start of shiftable data m 
the current field. 

-In the cursor is not m a field. 

RELATED FUNCTIONS 
offset m xs~disp_off(); 

Page 270 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

shrink to fit 
remove trailing empty array elements and shrink screen 

SYNOPSIS 

DESCRIPTION 

Use this routine to dynamically downsize the current screen when you don't know how 
many elements of an array are going to be populated willt data at run time. TIns routine 
removes all ttailing elements in all arrays on screen and lIten shrinks lite screen to a size 
just large enough to accommodate the displayed data. If no data is placed in lite array, the 
entire array will be removed. Only lite currently displayed copy of the screen in memory 
is altered. 

TIns routine only downSizes the array and screen. It wall not enlarge an array or screen 
that IS too small to hold the mfonnation, so be sure to create, within the Screen Editor, an 
array and screen that can hold the largest amount of data that you plan on inSerting. 

JAM Release 5 1 March 91 Page 271 



JAM PU1 Programmer's GUide 

sibling 
define the current window as being or not being a sibling 
window 

SYNOPSIS 
declare should_it_be fixed binary(31); 
call xsm_sibling(should_it_be); 

DESCRIPfION 
Users may sWitch between the acbve window and all siblmgs of that window whIle they 
are in viewport mode. Sibling windows must be next to each other on the wmdow stack. 
When a window is defined as a sibling, then It and the window ImmedIately beneath It on 
the window stack are considered to be slbhngs of one another. The user enters viewport 
mode when either the VWPT (viewport) logical key is pressed or when the applicabon 
program makes aeall to xsm_winsize. 

Use tins function to derme whether or not the current window is defined as siblIng To 
change the current sibling Status of a window assign should _1. t _be to: 

o 
1 

No, illS nOl a sibling window. 
Yes, it is a sibhng window. 

To understand how sibling windows work, imagine you have Ii- stack of three wmdows: 
window top, window middle, and window bot torn. To make window top 
and window_middle sfulmgs of each other, defme window_top as a sibhng win
dow. They are now considered siblmgs of each other. You can then add a thIrd sibhng to 
the paII', by defining window_middle as a SIbling wmdow. This results in win
dow_middle and window_bottom becoming siblings of one another and conse
quently, window_top and window_bot tom are also siblings of each other. There is 
no limit to the number of SIblings window you may chain together m this fashion, as long. 
as the windows are adjacent to each other on the stack. 

If you wish to bring a different window to the top of the stack, use xsm wselect. To 
get the number of wmdows currently in the window stack use xsm _ wccmnt. 

The base form can be a slblmg of the windows adjacent to It 

RELATED FUNCTIONS 
return_value = xsm_wcount(); 
status D xsm_winsize(); 

Page 272 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

return value a xsm_wselect(window_number); 

JAM Release 5 1 March 91 Page 273 



JAM PU1 Programmer's GUide 

size_ot_array 
get the number of elements 

SYNOPSIS 
declare field_number fixed binary(31); 
declare size fixed binary(31); 
size = xsm_size_of_array(field_number); 

DESCRIPTION 

This function returns the number of elements in the array contaIrung f l.eld _ numbe r. 
Elements are the onscreen portion of an array. An array always has alleasl one element. 

RETURNS 

o if the field designation is invalid. 
1 if the field IS nol an array. 
The number of elements in the array otherwise. 

VARIANTS 

RELATED FUNCTIONS 

Page 274 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

skinq 
obtain soft key information by position 

SYNOPSIS 

'include'smsoftk.incl.pll'; 

,include'smkeys.incl.pll'; 

declare scope fixed binary(3l); 
declare row fixed binary(3l); 
declare soft key fixed binary(3l); 
declare value fixed binary(3l); 
declare display_attribute fixed binary(3l); 
declare labell char(256) varyinq; 
declare labe12 char(256) varyinq; 
declare status fixed binary(3l); 
size = xsm_skinq(scope, row, softkey, value, display_attribute, 

labell, labe12); 

DESCRIPTION 

Use this routine to obtain the value, attributes, and label of a soft key contained in a keyset 
currently in memory, given a soft key's position within a keyset. 

The soft key is referenced by the keyset It belongs to, its row within the keyset, and its 
position within that row. Use scope to reference a particular keyseL Mnemonics for 
scope aredefmedm slIl5oftk. incl. pll. Fora more detailed explanation of scope 
see the Keyset chapter of the Programmer's Guide. 

The logical value of the specified soft key is placed in val ue. This will be a number that 
corresponds to a mnemonic defmed in smkey s . incl. pll. A value of 0 means the key 
is inactive • 

. -The attributes (color, blinking etc ... ) of the label will beplacedm dl.splay attrib
ute. Theaunbute should be one of the mnemonics listed in smdefs. incl.pll. 

The fll'St and second row labels are placed in labell and label2 respecuvely. You 
should prtHlllocate at least nine elements for I abell and I abel2 buffers (eight for the 
label characters and one for the null character). 

If you do not desire mformation about one or more of these parameters you may assign 
the parameters the null pointer. 

JAM Release 5 1 March 91 Page 275 



JAM PU1 Programmer's GUide 

If you want general infonnation about a keyset, see xsm _ ksinq. If you want the scope 
of the current keyset. use xsm _ kscscope. 

WARNING: This rouune can not be used when the keyset contains a greater number of 
keys per row than the tenninal does. When this occurs JAM automabcally breaks the 
rows to position them correctly on the monitor. This means that you wIll not be able to 
reliably reference a particular soft key by Its row and poslbon. Instead. use 
xsm_skvinq. 

RETURNS 

o If IDfonnation has been returned. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 

scope - xsm_kscscope(); 
status - xsm_ksinq(scope, number_keys, number_rows, 

current_row, maximum_len, keyset_name); 
status - xs~skvinq(scope, value, occurrence, attr1bute, 

label!, labe12); 

Page 276 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

skmark 
mark or unmark a soft key label by position 

SYNOPSIS 

%include'smsoftk.incl.pll'; 

declare scope fixed binary(31); 
declare row fixed binary(31); 
declare softkey fixed binary(31); 
declare mark fixed binary(31); 
declare status fixed binary(31); 
status - xsm_skmark(scope, row, softkey, mark); 

DESCRIPTION 

Use this routine to mark or unmark a soft key label m an open keyset. The mark is made 
in the last position of the fJJ'St label. 

The soft key is referenced by the keyset it belongs to, Its row wlthm the keyset. and Its 
POSition within that row. Use scope to reference a particular keyseL Possible values for 
scope are defined in srnsoftk. incl. pll. The argument row is the row number m 
which the desired softkey resides. Rows are counted from top to bottom, beginning 
with 1. The argument softkey is the position number within row of the desired soft 
key. Positions are numbered left to right, begmning with 1. 

The argument mark may be any single ASCII character. An asterisk (*) is the most com
monly used mark. To unmark the key use the space character (' ') for mark, 

The marking or unmarkmg of a soft key is often done to indicate a selection on a function 
key that toggles between two opbOns. 

--WARNING: ThIS routine can not be used when the keyset contains a greater number of 
keys per row than the terminal does. When this occurs JAM automatically breaks the 

• rows to position them correctly on the monitor. Tlus means that you will not be able to 
~ reliably reference a particular soft key by its row and position. Instead, use 

xsm_skvmark. 

RETURNS 

o if the marking was successful. 
-1 if there is no keyset of the specified scope. 
-2 if the scope is out of range. 
-3 if the row/soft key is out of range. 

JAM Release 5 1 March 91 Page2n 



JAM PU1 Programmer's Guide 

RELATED FUNCTIONS 
status - xsm_skvmark(scope, value, occurrence, mark); 

Page 278 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

skset 
set characteristics of a soft key by position 

SYNOPSIS 
'include'smsoftk.incl.pll'; 

'include'smkeys.incl.pll'; 

,include'smkeys.incl.pll'; 

declare scope 
declare row 
declare soft key 
declare value 
declare attribute 
declare labell 
declare label2 
declare status 

f1xed binary(3l); 
fixed b1nary(3l); 
fixed binary(3l); 
fixed binary(3l); 
fixed binary(3l); 
char(256) varying; 
char(256) varying; 
fixed binary(3l); 

status a xsm_skset(scope, row, softkey, value, attribute, 
labell, label2); 

DESCRIPTION 

This routine can be used to modify a soft key's scope, value, aunbute, or label of any cur
rently open keysets. You may modify one or more of these specifications With each call of 
xsm_skset. 

The soft key is referenced by the keyset it belongs to, its row withm the keyset, and its 
position within that row. Use scope to reference a partIcular keyseL Possible values for 
scope are defined 10 smsoftk. incl.pll. The argument row is the row number in 
which the desired softkey resides. Rows are counted from top to bottom, begmning 
With 1. The argument soft key IS the position number Within row of the desired soft 
key. PoSitiOns are numbered left to nghl, begmning With 1. 

The value refers to the logical key name to be assigned to the soft key. Available 
mnemonics are defined in smkeys . incl. p11. If you do not want to change the log
ical name, assign -1 to value. 

The attribute (color, blinking, etc.) is specified by usmg mnemonics listed in 
smde£s. inc!. pI!. If you do not want to change attribute, assign it o. (Note: If 
you set both the backgrolDld and foreground to black, xsm skset will set the fore
ground to white, proVided that the tenninal supports background color.) 

JAM Release 5 1 March 91 Page 279 



JAM PU1 Programmer's GUIde 

The vanables labell and label2 are the first and second lines of the labels respec
tively, If you do not wish to change one of the labels, assign it the null pomter. 

WARNING: This rouune can not be used when the keyset contams a greater number of 
keys per row than the tenninal does. When thIS occurs JAM automatically breaks the 
rows to position them correctly on the monitor. ThIs means that you wIll not be able to 
reliably reference a particular soft key by Its row and poslbon. Instead, use 
xsm skvset. 

RETURNS 

o if no error has occurred. 
-1 if there is no active keyset for the gIven scope. 
-2 for an invalId scope. 
-3 If the row/soft key IS out of range. 

RELATED FUNCTIONS 

status - xsm_skvset(scope, value, occurrence, newval, 
attr1bute, labell, labeI2); 

Page 280 JAM Release 5 1 March 91 



JAM PLJ1 Programmer's GUide 

skvinq 
obtain soft key information by value 

SYNOPSIS 

%include'smsoftk.incl.pll'i 

%include'smkeys.incl.pll'; 

declare scope fixed binary(3l); 
declare value fixed binary(3l)i 
declare occurrence fixed binary(3l); 
declare attribute fixed binary(3l); 
declare labell char(256) varying; 
declare label2 char(256) varying; 
declare status fixed binary(3l); 
status m xsm_skvinq(scope, value, occurrence, attribute, 

labell, label2); 

DESCRIPI'ION 

Use tins routine to obtain the label text and attributes of a soft key contained ID a keyset 
cmrently in memory, given the soft key's value. It can be used when the tennmal has a 
different number of keys than the keyset was designed for. 

The soft key is referenced by the keyset it belongs to, Its value, and its occmrence within 
the keyseL Use scope to reference a particular keyseL POSSible values for scope are 
dermed in smsoftk. incl.pll. The value of the soft key is one of the mnemonic 
defined 10 smkeys. incl. pll. The argument occurrence specifies which occur
rence of a key with the specified value is desired (in case of duplicates). 

The attnbutes (color, blmking etc ... ) of the label will be placed in attribute. The 
value of the attributes correspond to a mnemonic, or some combination of ored mnemon
ics listed in smdefs. incl. pll . 

.. - The first and second row labels are placed m labell and label2 respectively. You 
should pre-allocate alleast nine elements for 1 abell and label2 buffers (eight for the 
label characters and one for the null character). 

If you do nol desire infonnation about one or more of these parameters you may asSign 
the parameters the null pointer. 

For general infonnabon about a keyset, see xsm _ ksinq. If you want the scope of the 
current keyset, use xsm _ kscscope. 

JAM Release 5 1 March 91 Page 281 



JAM PU1 Programmer's GUide 

RETURNS 

o if information has been returned. 
-I If there is no active keyset for the given scope. 
-2 for an lDvalid scope. 
-3 If there is no soft key WIth the given value/occurrence. 

RELATED FUNCTIONS 

size ~ xsm_skinq(scope, row, softkey, value, display_attribute, 
labell, labe12); 

Page 282 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

skvmark 
mark a soft key by value 

SYNOPSIS 

%include'smsoftk.incl.pll'; 

%include'smkeys.incl.pll'; 

declare scope f1xed binary(31); 
declare value fixed binary(31); 
declare occurrence fixed binary(31); 
declare mark fixed binary(31); 
declare status fixed binary(31); 
status - xsm_skvmark(scope, value, occurrence, mark); 

DESCRIPTION 

Use this routine to mark or unmark a soft key )abel m an open keyseL The mark is made 
in the last position of the fmt )abel. 

The soft key is referenced by the keyset it belongs to, its value and its occurrence withm 
the keyseL Use scope to reference a particular keyseL Possible values for scope are 
defined in smsoftk. incl. pH. The value of the soft key is one of the mnemonic 

-. defmed m smJeeys. incl. pH. The argument occurrence IS the nth bme that 
value appears in the keyseL If you wish to mark all occurrences of value assign 0 to 
occurrence. 

The argument mark may be any single ASCII character. An asterisks (*) is the most 
commonly used mark. To unmark the key use the space character (' ') for mark. 

The marking or unmarking of a soft key is often done to indicate a selection on a function 
key that toggles between two options. 

RETURNS 

o if the mark was successful. 
-1 if there is no active keyset for the given scope. 
-2 for an invalJd scope. 
-3 if there is no soft key WIth the gtven value/occurrence. 

RELATED FUNCTIONS 

status - xsm_skmark(scope, row, 8oftkey, mark); 

JAM Release 5 1 March 91 Page 283 



JAM PU1 Programmer's GUide 

skvset 
set characteristics of a soft key by value 

SYNOPSIS 

%include'smsoftk.incl.pl1'; 

'include'smkeys.incl.p11'; 

declare scope 
declare value 
declare occurrence 
declare newval 
declare attribute 
declare labell 
declare label2 
declare status 

fixed binary(31); 
fixed binary(31); 
fixed binary(31); 
fixed binary(31); 
fixed binary(31); 
char(256) varying; 
char (256) varying; 
fixed binary(31); 

status - xsm_skvset(scope, value, occurrence, newval, 
attribute, labell, labeI2); 

DESCRIPTION 
TIlls routine can be used to modify the scope, value, atlribute, or label of a soft key within 
a currently open keyseL You may modify one or more of these specifications with each 
callofxsm_skset. 

The soft key is referenced by the keyset It belongs to, its value and Its occurrence withm 
the keyseL Use scope to reference a particular keyseL Possible values for scope are 
defined in smsoftk .l.ncl. pll. The value of the soft key is one of the mnemonic 
defined in smkeys. incl. pll. The argument occurrence is the nth bme that 
val ue appears in the keyseL If you wish to change all occurrences of v al ue assign 0 to 
occurrence. 

The value of newvalue refers to the logical key name to be assIgned to the soft key. 
AV81lable mnemonics are defined m smkeys. l.ncl. pll. If you do want to change the 
logical name, assign -1 to value. 

The attribute (color, blinking, etc.) is specified by usmg mnemonics listed in 
smdefs. incl. pll.lfyou do not want to change attribute, assign it O. (Note: If 
you set both the background and foreground to black, xsm skset will set the fore
ground to white, provided that the tennmal supports backgroUnd color.) 

The variables labell and labe12 are the fIrSt and second lines of the labels respec
bvely. If you do not WISh to change one of the labels, assign It the null pomter. 

Page 284 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

RETURNS 

o if no error occurred 
-1 if there IS no acbve keyset for the given scope 
-2 for an invalid scope 
-3 If there IS no soft key with the given value/occurrence. 

RELATED FUNCTIONS 

status - xsm_skset(scope, row, softkey, value, attribute, 
labell, labe12); 

JAM Release 5 1 March 91 Page 285 



JAM PU1 Programmer's GUide 

strip_amt_ptr 
strip amount editing characters from a string 

SYNOPSIS 
declare field_number fixed binary(31); 
declare inbuf char(256) varying; 
declare outbuf char (256) varying; 
outbuf - xsm_str~p_amt-ptr(field_number, inbuf); 

DESCRIPTION 

Sbips all non-digil characters from the sbing, except for an optional leading m10US sign 
and decimal pomt. If inbuf is not empty, field_number is Ignored and the passed 
sbing IS processed 10 place. 

If inbuf is empty, the contents of field_number are used. 

RETURNS 
The sbipped text, 
o If inbuf IS empty and the field number IS lDvahd. 

RELATED FUNCTIONS 
status a xsm_amt_format(f~eld_number, buffer); 
value a xsm_dblval(field_number); 

Page 286 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

submenu close 
close the current submenu 

SYNOPSIS 
declare status fixed binary(31); 
status = xsm submenu_close(); 

DESCRIPTION 
Submenus are ordinarily closed before xsm _input returns. It may. however. be told to 
leave them open by usmg the OK_LEAVEOPEN oPbon. either 10 the semp file or via 
xsm _option. See the Configuration GUlI.Ie for details. Regardless of how this option is 
set. submenus are automabcally closed whenever the underlying window is closed With 
xsm_close_window. 

This function. then. is needed only when all of the followmg conditions are true. 

1. OK_LEAVEOPEN is in use. 

2. The submenu IS no longer needed. 

3. Access is needed to the underlying w1Odow. 

RETURNS 
-1 if there is no submenu currently open. 
o otherwise. 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 287 



JAM PU1 Programmer's GUide 

svscreen 
register a list of screens on the save list 

SYNOPSIS 
declare screen_list 
declare count 
declare status 

char (256) varying; 
fixed binary(31); 
fixed binary(31); 

status - xsm_svscreen(screen_list, count); 

DESCRIPfION 

JAM maintams a list of screens that are saved in memory. The number of screens to be 
added is given by count. You may add screens to the list anywhere Within your code, 
however the screen IS not actua1Iy placed in memory until it IS closed for the fIrst ume. 
This means that the bme saving factor only comes into play 10 subsequent openings of the 
screen. Any data entered into a screen will not be saved unul the screen IS closed. 

Screens are removed from the lISt with xsm_unsvscreen. You can check to see If a 
screen IS on the save bst with xsm_issv. Checkmg the list pnor to caII10g 
xsm svsc reen, however,ls not crucial as any attempt to add a screen that is already on 
the list Will have no effecL 

This routine saves processing time at the expense of memory. It is best suited for use With 
screens that both require large amounts of data to be read in from elsewhere (databases, 
other fIles, etc.) and do not allow the user to enter data. For instance, If you have a help 
screen that needs to be populated by a data base and is going to be called up more then 
once, you can re-display the screen much more Quickly by saving the screen in memory. 

RETURNS 

o is returned if no error occurred. 
1 is returned If registration failed (out of memory). 

RELATED FUNCTIONS 

status m xsm_issv(screen_name); 
call xsm_unsvscreen(screen_list, count); 

Page 288 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

t scroll 
test whether an array can scroll 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare status fixed binary(3l); 
status a xsm_t_scroll(field_number); 

DESCRIPTION 

This function returns 1 if the array in question is scrollable. and 0 if noL The argument 
field_number may be any field within the array. 

RETURNS 

1 if the array is scroUmg, 
o ifit is not scrolling or if no such field_number. 

RELATED FUNCTIONS 

status - xs~t_shift(field_number); 

JAM Release 5 1 March 91 Page 289 



JAM PU1 Programmer's GUide 

t shift 
test whether field can shift 

SYNOPSIS 
declare field_number fixed binary(3l); 
declare status fixed binary(3l); 
status - xsm_t_shift(field_number); 

DESCRIPTION 
This funCbon returns 1 if the field in question is shiftable. and 0 if not or If there IS no such 
field 

--REtURNS 
1 if field is shifting. 
o If not shIfung or field_number IS invalid, 

RELATED FUNCTIONS 

Page 290 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

tab 
move the cursor to the next unprotected field 

SYNOPSIS 
call xsm_tab () : 

DESCRIPfION 

If the cursor is in a field With a next-field edit and one of the fields specIfied by the edit 
is unprotected from tabbmg, the cursor is moved to the first enterable position of that 
field. Otherwise, the cursor is advanced to the first enterable position of the next tab un
protected field on the screen. 
-- -- -- .--- - -- - - - - -- - -- - - - --- - - --- -
This function doesn't immediately trigger field entty, eXIt, or validation processing, Such 
processing occurs based on the cursor position when control returns to xsm _input. 

RELATED FUNCTIONS 

call xsm_backtab(): 
field_number - xsm_home(): 
call xsm_Iast(): 
call xsm_nIO: 

JAM Release 5 1 March 91 Page 291 



JAM PU1 Programmer's GUide 

tst all mdts 
find first modified occurrence 

SYNOPSIS 
declare occurrence fixed b1nary(31); 
declare field_number fixed binary(31); 
field_number a xsm_tst_all_mdts(occurrence); 

DESCRIPI'ION 

This function tests abe MDT bits of all occurrences of all fields on abe current screen, and 
returns abe base field and occurrence nwnbers of abe first occurrence Wlab Its MDT set, if 
there is one. The MDT bit indicates that an occurrence has been modtfied, eiaber from abe 
keyboard or by abe apphcation program, since the screen was displayed (or since Its MDT 
was last cleared by xsm_bitop). 

This funcbon returns zero if no occurrences have been modified. If one has been modi
fied, it returns abe base field nwnber, and stores the occurrence numberin occurrence. 

RETURNS 

o if no MDT bit is set anywhere on abe screen 
The nwnber of abe fIrSt field on abe current screen for which some occurrence has Its 

MDT bit set In this case, the nwnber of abe fIrSt occurrence wiab MDT set is returned 
m occurrence. 

RELATED FUNCTIONS 

status a xsm_bitop(field_number, action, bit); 
call xsm_cl_all_mdts(); 

Page 292 JAM Release 5 1 March 91 



..... 

JAM PU1 Programmer's GUIde 

uinstall 
install an application function 

SYNOPSIS 
declare usage 
declare func_name 
declare func 
declare language 
declare status 

fixed binary(31); 
char(256) varying; 
entry variable; 
fixed binary(31); 
fixed binary(31); 

status a xsm_uinstall( usage, func_name, func, language); 

DESCRIPfION 
This fWiction installs an application roubne that wiD be called from JAM lIbrary fWlc
bons. Installabon enables JAM to pass control to your code ID the proper function con
texL 

The possible values for usage are defined in the table below (and in the me: 
smdefs. incl. pll). See secbon 2.1.1. for more detaIled descriptions of the vanous 
function types. 

If an application is bound With the -retain_all oPbon, then JAM can find the entrypolDt 
func from the name. Most fWictions wiD lDStall themselves automatically the fust tune 
they are called. FWictions may also be explICitly lDStalled. func _name is the name of 

. the funcbon. Use the operating system subroubne s$find_entry to fmd the entry 
pomt, or use the variant xsm_n_uinstall, which will fmd it for you. language 
should be set to 1 when programming in Pl./I. 

Value/or usage Function type SectIOn - Page 

UINIT_FUNC Inltlalizabon 2.2.9. - p.22 

URESET_FUNC Reset 2.29. - p.22 

VPROC_FUNC Video processing 2.2.12. - p.24 

CKDIGIT FUNC Check digit computation 2.2.8. - p.21 

KEYCHG FUNC Keychange 2.2.4. - p. 17 

INSCRSR_FUNC Insert/overwrite toggle 2.2.1. - p.11 

PLAYFUNC Playback recorded keys 2.2.10. - p.23 

JAM Release 5 1 March 91 Page 293 



JAM PU1 Programmer's GUIde 

Value/or usage Function type 

RECORD_FUNC Record keys for playback 

AVAIL FUNC Check for recorded keys 

BLKDRVR FUNC Block Driver function 

STAT FUNC Status line function 

DFLT FIELD FUNC Default Field fundlon -
DFLT_SCREEN_FUNC Default Screen function 

DFLT SCROLL FUNC Default Scroll driver - -
DFLT GROUP FUNC Default Group function - -

RETURNS 

1 if funcbon was successfully installed. 
-1 if malloc faIlure occurred. 

VARIANTS 

Section - Page 

2.2.10. - p.23 

2.210. - p.23 

2.2.11. - p.23 

2.2.1. - p.11 

2.2.2. - p.IS 

2.2.S. - p. 18 

status a xsm_n_uinstall( usage, func_name, language); 

RELATED FUNCTIONS 

call xsm_async(func, timeout); 

Page 294 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

ungetkey 
push back a translated key on the input 

SYNOPSIS 

%include'smkeys.1ncl.pll'; 

declare key fixed binary(3l); 
declare return_value fixed binary(3l); 
return_value = xsm_ungetkey(key); 

DESCRIPfION 

TIus function saves the translated key given by key so that it will be retrieved by the next 
call to xsrn get key. Mulnple calls are pennitted. The key values are pushed onto a 
stack (LIFO). 

When xsrn get key reads a key from the uyboard, It flushes the display first, so that the 
operator sees a fuDy updated display before typing anything. Such is not the case for keys 
pushed back by xsrn_ungetkey; smce the input is coming from the program, it is re
sponsible for updating the display itself. 

RETURNS 

The value of its argument, or 
-1 if memory for the stack is unavailable. 

RELATED FUNCTIONS 

key a xsm_getkey(); 

JAM Release 5 1 March 91 Page 295 



JAM PU1 Programmer's Guide 

unsvscreen 
remove screens from the save list 

SYNOPSIS 
declare screen_list char (256) varying; 
declare count fixed binary(31); 
call xsm_unsvscreen(screen_list, count); 

DESCRIPTION 

JAM mainlams a list of screens that are saved in memory, TIns function is used to remove 
screens from the save list. The argument count specifies the number of screens to be 
removed from the save lisL See xsm _ svscreen. 

This function can be used at any pomt within your code. It is not necessary for the screen 
to be open at the time of the call. Any memory allocated to hold the screen IS freed at the 
time of the call unless the screen is open. The memory associated with an open screen IS 

de-a1located when that screen is closed. If a screen IS not on the save list, a call to 
xsm_unsvscreen has no effecL 

RELATED FUNCTIONS 

status - xsm issv(screen name); 
status = xsm=svscreen(screen_list, count); 

Page 296 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

viewport 
modify viewport size and offset 

SYNOPSIS 
declare position_row f1xed binary(31); 
declare position_col fixed binary(31); 
declare size_row fixed binary(31); 
declare size_col fixed binary(31); 
declare offset_row fixed b1nary(31); 
declare offset_col fixed binary(31); 
call xsm_viewport(position_row, position_col, size_row, 

size_col, offset_row, offset_col); 

DESCRIPfION 

This funcbon dynamically sizes the current screen's viewpon. A viewpon has a maxi
mum size of the screen or physical display - whichever is smaller. Use si ze row and 
si ze _col umn to specify the number of rows and columns. respectively. -

You can position the viewpon anywhere on the physical display. To do this. think of your 
physical display as a grid made up of rows and colwnns that are one character apart. The 
top left comer of your screen monitor is at poslbon row O. column 0 . Now use the argu
ments position_row and position_col to specify the coordinates of the view
pon's position. 

Likewise. you can also specify which row and column of the screen Will initially appear 
at top left comer of the VIewport. Again startmg at row O. column O. count from the top 
left of the screen to get the coordinates for offset_row and offset_col. 

This function performs range checks on aU parameters and suitably modifies them if nec
essary. In particular. be aware that a non-positive value of size row and size col 
will set the viewpon to the maximum size in that dimension. - -

JAM Release 5 1 March 91 Page 297 



JAM PU1 Programmer's GUide 

vinit 
initialize video translation tables 

SYNOPSIS 
declare video_address bit(O); 
declare status fixed b1nary(3l); 
status - xsm_vinit(video_address); 

DESCRIPTION 

This routine is called by xsm ini tcrt as pan of the mitializabon process. It can also 
be called directly by an application program. video_address contains the address of 
a memory resident video file. Such a file must be created by the v1d2bin and bin2c 
utilities, then compiled into the applicabon. 

RETURNS 

o if imtialization is successful. 
program exit If video file is invalldoflfvideo_address IS zero and SMVIDEO is 

undefmed. 

Note: The variant xsrn _ n _ vini t has no return value. 

VARIANTS 

Page 298 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

wcount 
obtain number of currently open windows 

SYNOPSIS 
declare return_value fixed binary (31) 
return_value - xsm_wcount(); 

DESCRIPI'ION 

11us function returns the number of windows currently open. The number is eqUivalent to 
the number of windows in the window stack. 

To select the screen beneath the current window, subtract 1 from the value returned by 
xsm _ wcount, and then use the result as the argument to xsm _ wselect. 

11us mubne IS useful when you are bringmg another window to the top of the window 
stack (making the wmdow aCbve) with xsm_wselect. 

RETURNS 

The number of windows. 
o if the base form IS the only open screen. 
-1 if there is no current screen. 

RELATED FUNCTIONS 

JAM Release 5 1 March 91 Page 299 



JAM PU1 Programmer's GUide 

wdeselect 
restore the formerly active window 

SYNOPSIS 
declare status fixed binary(31); 
status D xsm_wdeselect(); 

DESCRIPfION 

This function restores a window to ilS origmal posiuon in the wmdow stack, after it has 
been moved to the top by a call to xsm _ wselect, Information necessary to perform thiS 
task is saved during each call to xSRL wselect, but is not stacked. Therefore a call to 
this roubDe must follow a call to xsm_wselect if It is to properly restore the window 
to ilS original position. Note thatxsm_ wdeselect does not have to be called if the win
dow ordering on the stack IS acceptable. 

RETURNS 

-1 If there is no wmdow to restore. 
o otherwise. 

RELATED FUNCTIONS 
call xsm_sibling(should_it_be); 
return value D xsm wcount(); 
return:value D xsm:wselect(window_number); 

Page 300 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

window 
display a window at a given position 

SYNOPSIS 
declare screen name char (256) varying; 
declare start Ilone fixed binary(31); 
declare start column fixed binary(31); 
declare status fixed binary(31); 
status .. xsm_r_window(screen_name, start_line, start_column) ; 

declare screen_name 
declare status 

char(256) varying; 
fixed binary(31); 

declare screen address bit(O); 
declare start_line fixed binary(31); 
declare start_column fixed binary(31); 
declare status floxed blonary(31); 
status .. xs~d_window(screen_address, start_line, 

start_column) ; 

declare screen address bit(O); 
declare status fixed binary(31); 
status .. xsm_d_at_cur(screen_address); 

declare lib desc fixed binary(31); 
declare screen name char (256) varying; 
declare start_line fixed binary(31); 
declare start_column fixed binary(31); 
declare status fixed binary(31); 
status .. xsm_l_window(lib_desc, screen_name, start_line, 

start_column) ; 

declare lib_desc fixed binary(31); 
declare screen_name char(256) varying; 
declare status fixed binary(31); 
status .. xs~l_at_cur(lib_desc, screen_name); 

JAM Release 5 1 March 91 Page 301 



..-.!' o· 

JAM PLl1 Programmer's GUide 

DESCRIPTION 

This set of functions IS pnmarily intended to be used by developers who are wnbng thelC 
own execubve, To open a window while under the control of the JAM Execubve, use a 
JAM control sttmg or xsm_jwindow, 

Use xsm_d_window, x sm_l_window, or xsm_r_window to display 
screen name with Its upper left-hand comer at the specified line and column. The line 
and column are countedfrom zero. If start_line is I, the wmdow IS displayed start
IDg at the second line of the screen. 

Usexsm d at cur,xsm 1 at cur,andxsm r at cur to display aWlDdowat 
the curreni CUrsor poSition, Offset byone line to avoid hiding that hne's current display. 

Whatever part of the display the new window does not occupy will remain viSible. How
ever, only the topmost (active) window and its fields are accessible to keyboard entry and 
library routines. JAM will not allow the cursor outside the topmost window. If you wish 
to shuffle windows use xsm wselect. 

If the window will not fit on the display at the locabon you request, JAM will adjust Its 
starting position. If the window would hang below the screen and you have placed its up
per left-hand comer in the top half of the display, the window is simply moved up. If your 
starting position is in the bottom half of the screen, the lower left hand comer of the wm
dow IS placed there. Similar adjusunents are made in the horizontal direction. 

When you use xsm _ r _window the named screen is sought first in the memory-resident 
screen list, and Iffound there is displayed using xsm _ d _window. It IS next sought m all 
the open libraries, and iffound is displayed using xsm _I_window. Next it IS sought on 
disk in the current directory; then IDlder the path suppbed to xsm_initcrt; then in all 
the paths in the setup vanable SMPATH. If any path exceeds 80 characters, it is slapped. 
If the entire search fails, this function displays an error message and returns. 

You may save processing time by using xsm d window and xsm d at cur to dis
play screens that are memory-residenL Use bin2 c to convert screens from disk files, 
which you can modify usmg jxform, to program data structures you can compile into 
your application. A memory-resldent screen is never altered at run-time, and may there
fore be made shareable on systems that provide for sharing read-only data. 
xsm_r_window and xsm_r_at_cur can also display memory-resident screens, if 
they are properly installed usmg x sIlL f 0 rml i st. Memory-resident screens are PartiC
ularly useful in appliCations that have a limited number of screens, or in environments 
that have a slow disk: (e.g. MS-DOS). screen_address I!: the address of the screen in 
memory. 

You may also save processing time by using xsm _I_window and xsm _I_at _cur to 
display screens that are in a library. A library is a single file containing many screens 
(and/or JPL modules and keysets). You can assemble one from individual screen files us-

Page 302 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

mg the uubty formlib, Libraries provide a convenient way of distnbuung a large num
ber of screens With an application, and can Improve efficiency by cutting down on the 
number of paths searched. 

The library descriptor, lib _ desc, is an integer returned by xsm _1_ open, which you 
must call before trymg to read any screens from a library. Note that xsm_ r _window and 
xsm_r_at_cur also search any open hbranes. 

If you want to display a fonn use xsm r form or one of Its variants. Use 
xsm close window to close the window. - -- -
RETURNS 

o if no error occurred during display of the screen; 
-1 if the screen file's format is incorrect; 
-2 If the screen cannot be found; 
-3 if the system ran out of memory but the prevIous screen was restored; 
-5 is returned if, after the screen was cleared, the system ran out of memory. 
-6 is returned if the library is corrupted. 

RELATED FUNCTIONS 

status = xsm_close_window(); 
status - xsm_r_form(screen_name); 
status = xsm_jwindow(screen_name); 

JAM Release 5 1 March 91 Page 303 



JAM PU1 Programmer's GUide 

• • wlnslze 
allow end-user to interactively move and resize a win
dow 

SYNOPSIS 
declare status f1xed binary(31); 
status - xsm_winsize(); 

DESCRIPfION 

Calling xsm_winsize has the same effect as if the end-user had Just hit the VWPT 
(viewport) logical key. The viewport status lme appears and the user can move, resIZe and 
change the offset of the screen as well as move to any siblmg windows. When the end-us
er hits XMIT (transmit) the previous status line is restored. If you wish to resize the vlew
pon yourself, use xsItL viewport. 

In order for the end-user to able 10 move from one window to another, the windows must 
be siblings. Windows are defined as siblings of one another either With xsm sibling 
or by calling up a window as a sibling with a JAM control slnng, See the Secuons on 
"Viewports and Positiorung" and "Control Sbings" m the Author's Gwde for further m
formation. 

RETURNS 

-1 if call fails. 
o otherwise. 

RELATED FUNCTIONS 
call xsm_sibling(should_it_be); 
call xsm_viewport(position_row, position_col, size_row, 

size_col, offset_row, offset_col); 

Page 304 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

wrecord 
write data from a data dictionary record to a structure 

SYNOPSIS 

declare structure~r bit(O); 
declare record_name char(256) varying; 
declare byte_count fixed binary(31); 
call xs~wrecord(structure-ptr, record_name, byte_count); 

DESCRIPTION 

TIus function wntes data from fields within the current screen that are part of a common 
data dicuonary record to a PUl SbUcture. If a field is not on the current screen, then the 
data is read from the LOB, TIus routine is commonly used with xsm rrecord, which 
reads data from a slructure to a data dictionary record. If you WISh to Write data only from 
the current screen, use xsm _ wrtstruct. To write data from a group of consecutively 
numbered fields, use xsm_wrt....,Part. Use xsm_getfield to wnte infonnation 
from an mdividual field to a string. 

A data slructurenamed record can be created from the data dictionary file data .dic 
via the dd2struct utility as follows: 

dd2struet -gPLl data.die 

_ Each SlruCture member IS a field wlthm a data dictionary record that is of the type speci
fied in the Screen Editor. See "Data Type" in the Author's Guide and dd2struct in the 
Utiliues Guide for further infonnation. 

Once created, the declamuons may be treated exactly like any other structw'e declara
tions.-The argument struct....,ptr is the address of a Variable of one of the Slructure 
types genemted by dd2struct. The argument record name IS the name of the data 
dictionary record, from which the Slructure was created. -

The argument byte_count is a pointer to an integer. Upon return from 
xsm_wrecord, the value contained in the integer will be the number of bytes or 
characters written to the SIruCture. It will be 0 If an error occurred. 

RELATED FUNCTIONS 

status m xsm-putfield(field_number, data); 
call xsm_rrecord(structure-ptr, record_name, byte_count); 

JAM Release 5 1 March 91 Page 305 



JAM PU1 Programmer's GUide 

wrt_part 
write part of the screen to a structure 

SYNOPSIS 
declare screen_struct bit(O); 
declare first_field fixed binary(31); 
declare last_field fixed binary(31); 
call xsm_wrt-part(screen_struct, first_field, last_field); 

DESCRIPfION 

This function wntes the contents of all fields between first field and 
last _field to a data structure in memory. An array and Its scrolling occurrences will 
be copied only If thefust element falls between first_field and last_field. 
Group selections are not copied. This routine IS commonly used WIth xsm _ rd J>a rt, 
which reads part of a structure mto the current screen. If you wish to wnte the contents of 
all of the fields wIthin the screen use xsm wrtstruct. To wnte infonnatIon from a 
data dIctionary record. use xsm _ wrecord-:-Use xsm_getfield to wnte mfonnatIon 
from an mdividual field to a string. 

A data structure named screen can be created from the screen file screen. jam vIa 
the f2struct utIlity as follows: 

f2struct -qPLl screen. jam 

Each member of the structure is a field of the type specified in the Screen EdItor. See 
""Data Type" in the Author's Guide and f2struct in the UtIlItIes Guide for further m
formation. 

Once created, the declaration may be treated exactly lIke any other structure declaral1on. 
You can ignore the members that represent fields that do not fall withm the bounds of the 
specified fields. However, the structure defmltion must contain all of the fields on screen. 
The argument screen_struct is the address ofa variableoflhe type of structure gen
erated by f2struct. 

The arguments that represent the range of fields to be copied, first field and 
last_field are passed as field numbers. -

Remember, you must update the structure declaratIon whenever you alter the screen from 
whIch it was generated. 

RELATED FUNCTIONS 
status - xs~utfield(field_number, data); 

Page 306 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUIde 

call xsm_rd~rt(screen_struct, first_field, last_field); 
call xsm_wrtstruct(screen_struct, byte_count); 

JAM Release 5 1 March 91 Page 307 



JAM PU1 Programmer's GUide 

wrtstruct 
write data from the screen to a structure 

SYNOPSIS 
declare screen_struct bit(O); 
declare byte_count fixed binary(31); 
call xs~wrtstruct(screen_struct, byte_count); 

DESCRIPTION 

.. " ..... 
~ .. 

This function writes the contents of all of the fields within the current screen to a PL/l 
structure. It will not copy group selections. This roulme IS commonly used wilh 
xsm rdstruct which reads daIa from a Slructure to all of the fields wilhm Ihe current 
screen. If you wish to write the contents of a group of consecutively numbered fields into 
a SIruCture use xsm _ wrt yart. To write infonnatlOn from a data d1cuonary record, use 
xsm_wrecord. Use xsm_getfl.eld to wnte Ihe contents ofan mdlvldual field into 
a siring. 

A daIa Slructure named screen can be created from the screen file screen. jam via 
the f2struct utility as follows: 

f2struct -gPLl screen. jam 

Each member of Ihe structure is a field of the type specified in the Screen Editor. See 
"Data Type" in the Author's Guide and f2struct in the UUlities Guide for further m
fonnation. 

Once created, the declarabon may be treated exactly like any other structure declaration. 
The argument screen _ struct is the address of a variable of the type of slructure gen
erated by f2struct. If you specify the type omit, data will not be written into the 
field. 

The argument byte_count is an integer variable. xsm_wrtstruct wul store there 
the number of bytes copied to the structure. 

Remember, you must update the structure declaration whenever you alter the screen from 
which it was generated. 

RELATED FUNCTIONS 

status a xsm-putfield(field_number, data); 
call xs~rd_struct(screen_struct, byte_count); 
call xsm_wrt-part(screen_struct, first_field, last_field); 

Page 308 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

wselect 
activate a window 

SYNOPSIS 
declare w1ndow_number fixed binary(31); 
declare return value fixed binary(31); 
return_value =-xsm_wselect(window~umber); 

DESCRIPfION 

Although JAM allows you to display multiple windows at one bme. only one window 
may be active. Windows may overlap each other. or may be tiled (no overlap). The win
dow at the top of the window stack is the aCbve wmdow. and the only window accessible 
to bbrary routmes and keyboard entry. Use xsm _ wselect to bring a window to the ac
bve posibon on top of the window stack. If any of the referenced window is hidden by an 
overlymg window. it wIll be brought to the forefront of the display. In either case. the cur
sor IS placed Within the wmdow. JAM wI.lI restore the cursor to its posibon when the 
screen was most recently de-activated. 

The window to be activated is referenced by its number m the window stack. Wmdows 
are numbered sequentially. starting from the bottom of the stack. The fonn underlying all 
the wmdows (the base form) is window O. the fU'St window displayed is 1 and so forth. 
Since a screen's number depends on its poslbon on the wmdow stack, callmg xSIrLw se
J,ect wiIl alter a window's number as well as it position on the stack. 

Alternatively. windows may be referenced by their screen name with the variant 
xsm _ n _wselect. If you use this roubne. you do not have to worry about keeping track 
of the non-acbve window's position on the stack. However. xsm _ n _wselect wIll not 
fmd windows displayed with xsm _ d _window or related functions. because they do not 
record the screen name. 

Here are two different ways of using window selecbon. One way to use tillS is to select a 
hidden screen. update it (using xsm""putfield) and deselect it (using xsm_wdese
lect). The portion of the hidden screen that IS visible will be updated with the new data. 
Because of delayed wrIte the update will be done when the next keyboard input is sought. 
The other method IS to select a hidden screen and open the keyboard; in this case. the se
lected screen becomes visible. and may hide part or all of the screen that was previously 
active. In this way you can unplement multi-page forms. or SWitch among several win
dows that tIle the screen (do not overlap). 

JAM Release 5 1 March 91 Page 309 



JAM PU1 Programmer's GUide 

RETURNS 

The number of the window that was made aCUve (either the number passed, or the 
maximum If that was out of range). 

-1 if the window was not found or the window was not open. 

VARIANTS 

RELATED FUNCTIONS 

call xsm_sibling(should_1t_be); 
return_value m xsm_wcount(); 
status = xsm_wdeselect(); 

Page 310 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Chapter 13. 

Library Function Index 
This chapter lists all JAM library funcbons, sorted by name. Foocbon names appear on 
the left, and the section of the Foocbon Reference Chapter in which the foocbon is de
scribed appears on the right. 
status 
status 

xsm_lclear_array(f~eld_number); •••••••••••••••••••• clear_array 
xsm_lprotect(f~eld_number, mask); ••••..•••••••••••.•••• protect 

status xsm_lunprotect(f~eld_number, mask); •••••••••••••••••••• protect 
status = xsm_a_b~top(array_name, action, b~t); •••.•••••••••.••••.• b1top 
xsm_allget (respect_flag); ••••••••••.•.•••••.••••••.•••••.•••••••• allget 
status xsm_amt_format(f~eld_number, buffer); ••.•••••••••••• amt_format 
status = xsm_aprotect(f~eld_number, mask); •••••••••••••••••••••• protect 
status = xsm_ascroll(f~eld_number, occurrence); •••.••••••••••••• ascroll 
xsm_async(func, timeout); •••••••.••••••••••••••••••••••••••••••••• async 
status = xsm_aunprotect(f~eld_number, mask); •••••••.•••••.•••••• protect 
xsm_backtab (); ••••••••••••••••••••••••••.••••••••••••••••••••••• backtab 
base_number = xsm_base_fldno(f~eld_number); •••.•••••••••••••• base_fldDo 
xsm_bel II; •••••••••••••••••••••.••••..•••••.•••••••••••••••••••••••• bel 
status xsm_b~top(f~eld_number, act~on, b~t); •••..••••••••••••••• bitop 
status = xsm bkrect(start l~ne, start column, num of l~nes, 

number_of_columns, background_colors); - •• : ••••••••••••• bkrect 
return_value = xsm_blk~n~t II II; .••••.••••...••••••••••.•••.••••• blkin1t 
return_value = xsm_blkreset II II; •••••.••••.•••••••.•••••••••••• bUreset 
status = xsm_c_keyset (scope); ••••.••••••••••••••••••••••••••••• c_kay_t 
xsm_c_off (); •••••••••••••.•••••••••••••••••••••••••••••.•••••••••• c_off 
xsm_c_on II; •••••••••••.••••••••••••••••••.•••••••••••••.•••••.••••• c_on 
xsm_c_v~s (d~splay); ••••••••••••••••••••••••••••••.••••••••.••••••• c_vis 
status = xsm_calc(f~eld_number, occurrence, expression); ••••••••••• calc 
xsm_cancel (arq); ••.••••••••••••••••••••••••••••••••••••.••••••••• cancel 
status ~ xsm_chg_attr(field_number, d~splay_attribute); •••••••• chg_attr 
status = xsm ckd~git(f~eld number, f~eld data, occurrence, 

modulus, m~n~mum_d~g~ts); •.• : •••••••••••••••••••••••. ckdig1t 

JAM Release 5 1 March 91 Page 311 



JAM PU1 Programmer's GUide 

xsm_cI_all_mdts (); •••.•••••••••.••••••••.••••••.••••...••••. cl_all_mdts 
xsm_cl_unprot (); •••.••••••••••••••••••••••••••••••••.•••••..•• cl_unprot 
status xsm_clear_array(field_number); ••••••••••..••••••... clear_array 
status xsm_close_w1ndow() C); •••••••••.••••••••••.•.••••.. close_window 
status xsm_d_at_curCscreen_address); •••••••••••.••...•.•.••.••• window 
status xsm_d_formCscreen_address); ••••••••••••••.••••••...•••..•• form 
status xsm_d_keysetCaddress, scope); •••••••••••••••••••.••••..• keyset 
xsm_d_msg_11neCmessage, d1splay_attribute); .•••••.•••••••.•.• d_msq_line 
status = xsm_d_w1ndowCscreen_address, start_11ne, start_column); . window 
value = xsm_dblvalCfield_number); •.•••••.••••••••••••..••••.•••.• dblval 
xsm_dd_able Cflag); •••••••••••••••.•••••••••••••••••••••••••.•••. dd._able 
status xsm_deselect(group_name, group_occurrence); ••.•••••••• deselect 
status = xsm_d1cname Cdic_name); •.••••••••••••••••..••••••.•••..• dicname 
offset = xsm_d1sp_off () (); ••••••••••••..•••••••••.••••••..•••.• disp_off 
data_length = xsm_dlengthCf1eld_number); .•••••.••••••.•••••••••. dlength 
xsm_do_reg10nCI1ne, column, length, d1splay_attr1bute, text); • do_reqion 
status = xsm_dtofieldCf1eld_number, value, format); ••..•••••••• dtofield 
xsm_e_ ••• Cf1eld_name, element, ••• ); •••••••••••.•••••••••••.••••.•••• e_ 
status = xsm_e_lprotectCf1eld_name, element, mask); ••.•.•••.•••• protect 
status xsm_e_lunprotect(f1eld_name, element, mask); •.•••••••• protect 
status xsm_e_amt_formatCf1eld_name, element, buffer); •.••• amt_format 
status xsm_e_bitop(array_name, element, act10n, b1t); •••••.•••.• bitop 
status xsm_e_chg_attrCfield_name, element, display_attr1bute); cbq_attr 
value = xsm_e_dblval(f1eld_name, element); •••••••...•••••.•••.••• dblval 
data_length - xsm_e_dlength(f1eld_name, element); •••...••.•••••. dlength 
status = xsm_e_dtofield(f1eld_name, element, value, format); ••. dtofield 
value = xsm_e_finqu1re(field_name, element, wh1ch); .•••••••••.• finquire 
f1eld_number = xsm_e_fldno(f1eld_name, element); •••••••.•••••••.•• fldno 
buffer = xsm_e_fptr(field_name, element); ••••••••••••.••••••••••••• fptr 
buffer xsm_e_ftog(field_name, element, group_occurrence); •.•••••• ftoq 
status xsm_e_fval(array_name, element); •.••••••••••••••.••••••••• fval 
length = xsm_e_getf1eld(buffer, name, element); ••.••••••••••••• qetfield 
status xsm_e_gof1eld(f1eld_name, element); •••••••••••.••••.••• qofield 
value = xsm_e_intval(field_name, element); ••••••••••.•••.••••.••• intval 
status a xsm_e_1s_no(field_name, element); .•••••••••••.•••••••.••• is_no 
status = xsm_e_is_yes(f1eld_name, element); .••••••••••••••••••••• is-yes 
status = xsm_e_1tof1eld(field_name, element, value); ••••••••••• ito field 
value = xsm_e_lngval(field_name, element); ••••••••••••••••••••••• lnqval 
status = xsm_e_ltof1eldCf1eld_name, element, value); ••.•••••••• ltofield 
status xsm_e_novalb1t(field_name, element); •••••..•••••••••.• novalbit 
status xsm_e_null(field_name, element); •••••••.••••••••.••••••••• null 
status xsm_e_off_gof1eld(field_name, element, offset); •••• off_qofield 
status xsm_e-protect(field_name, element); •••••••••••••••••••• protect 
status = xsm_e-putf1eld(name, element, data); •••••••••••••••••• put field 

Page 312 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

status = xsm_e_unprotectlf1eld_name, element); •••••••••••••.••.• protect 
buffer = xsm_edlt_ptrlfleld_number, edlt_type); •••••••••••••••• ed1t-Ftr 
xsm_emsglmessage); ••••••••..••••••••••••••••••••••••••••••••••••.•• 8IIIBq 

xsm_err_reset Imessage); ••••.••.••••...•••••••••••••••••••••••• err_reset 
buffer = xsm_fl-pathlflle_name); •••••••••••••••••••••••.•••••••• f1-Fath 
value = xsm_finqulrelf1eld_number, Wh1Ch); ••.•••••.•••••.•••••• ftnqu1re 
xsm_flush II; ...................................................... flush 
status xsm_forml1stlname, address); •••••••••••••••••••••••••• forml1st 
buffer = xsm_fptr Ifleld_number); ••••••••••••••••••.•••••••••••••••• fptr 
buffer = xsm_ftoglfleld_number, group_occurrence); ••••••••••••••••• ftoq 
type = xsm_ftypelfleld_number, prec1s1on_ptr); •••••••••••••••••••• ftype 
status = xsm_fval Ifleld_number); ••••••••••••••••••••••••••.•••••••• fval 
field_number = xsm_getcurno () (); ••••••.•••••••••••••••••••••••• qatcurno 
length = xsm_getfieldlbuffer, field_number); ••••••••••••••••••• qatf1eld 
buffer = xsm_getjctrllkey, default); ••••..••••••••••••••••••••• qatjctrl 
key = xsm_getkey I) I); •••.••.••••••••••••••.•••••••••••••.•••••••• qatkey 
status = xsm_gof1eldlfleld_number); ••••••••••••••••••••••••••••• qof1eld 
value = xsm_gp_inqulrelgroup_name, WhlCh); .•••••••••••••••••• gp_1oquire 
length = xsm_gwraplbuffer, fleld_number, buffer_length); .•••••.••• gvrap 
status = xsm_hlp_by_namelhelp_screen); ••••••.••••••••••••••• hlp_by_oam8 
field_number = xsm_home () (); ....................................... home 
xsm_1_ ••• lf1eld_name, occurrence, ••• ); ••••••••••.•••.••••..••••••••• 1_ 
status = xsm_i_achglf1eld_name, occurrence, display_attribute); •.•• aahq 
status = xsm_i_amt_formatlfield_name, occurrence, buffer); ••• amt_format 
status = xsm_1_bitoplarray_name, occurrence, action, blt); •••••.•• bitop 
value = xsm_1_dblvallfleld_name, occurrence); •••••••••••••••••••• dblval 
data_length = xsm_l_dlengthlfield_name, occurrence); •••••..•••.• dlenqth 
return_value = xsm_i_doccurlfleld_name, occurrence, count); •••••• doccur 
status = xsm_i_dtofleldlfleld_name, occurrence, value, format); dtofield 
value = xsm_l_finquirelf1eld_name, occurrence, WhlCh); •••••••.• finquire 
fleld_number = xsm_l_fldnolfleld_name, occurrence); ••••••••••••••• fldno 
buffer xsm_1_fptrlf1eld_name, occurrence); ••••••••••••••••••••.•• fptr 
buffer xsm_i_ftoglfield_name, occurrence, group_occurrence); ••••• ftoq 
status = xsm_1_fvallfleld_name, occurrence); ••••••.•••••••.•••••••• fval 
length xsm_i_getfieldlbuffer, name, occurrence); ••••••••••••• qat field 
status xsm_l_gofieldlfield_name, occurrence); ••••••••••••••••• qofield 
fleld_number = xsm_l_gtoflgroup_name, group_occurrence, occurrence); qtof 
value = xsm_1_intvallfield_name, occurrence); •••••••••••••••••••• intval 
llnes_lnserted = xsm_i_loccurlfleld_name, occurrence, count); •••• ioccur 
status xsm_l_is_nolfield_name, occurrence); ••••••••••••••••••••• is_oo 
status = xsm_i_1s_yeslfield_name, occurrence); ••••••••••••.•••••• is-18s 
status = xsm_i_ltofieldlfleld_name, occurrence, value); •••••••. itofield 
value = xsm_i_lngvallfield_name, occurrence); ••••••••••••••.••••• lnqval 
status = xsm_i_ltofieldlfield_name, occurrence, value); ••••.••• ltofield 

JAM Release 5 1 March 91 Page 313 



JAM PU1 Programmer's GUide 

status 
status 
status 
status 

xsm_i_novalbit(f1eld_name, occurrence); •..••..•.•.•••• novalhit 
xsm_1_null(f1eld_name, occurrence); •••••••.•.••.••••.•.•.• null 
xsm_i_off_gofleld(fleld_name, occurrence, offset); • off_qofield 
xsm_1-putf1eld(name, occurrence, data); .••.•••••.•••.. put field 

status xsm_1ninames(name_list); ••••••••••••••••.••.•••.•••..• ininames 
xsm_in1tcrt (path); ••••.•••••••••••••••••••.••••••••..••..•••..•• initcrt 
key = xsm_lnput (lnit1al_mode); ••.•••.•••••••••••••••..•..••..••.•• input 
value = xsm_1nqu1re (which); ••••••••••••..•••.••••.••...••••••.•• inquire 
value = xsm_intval(field_number); •••••••••••••••.••••.••••.•••••• intval 
status = xsm_ls_no (f1eld_number); ••••••••••••••••••••••••••••••.•• is_no 
status = xsm_ls_yes(field_number); ••••••••••••••.••••.••.•••.•••• i8Jes 
old_flag = xsm_1Sabort (flag); ••••••.•••••••.••••.•••..••.•••.••. isabort 
value = xsm_1set (wh1ch, newval); ••.••••••••.••••••••••••.••••••.••• iset 
status 
status 
status 
status 

xsm_isselected(group_name, group_occurrence); ••.••.• isselected 
xsm_1ssv (screen_name); ••••••••.•••.•••••••.•.••.•••..••••. issv 
xsm_1tofleld(fleld_number, value); ••••••••••.••..••••• itofield 
xsm_Jclose () (); ••••••.•••.••••.•••••••••••.••••.•••.•••• jclose 

status xsm_Jform(screen_name); ••••••••••••.••••••...••..••..•.•• jform 
xsm_J1n1tcrt (path); •.•••.••••.•••.•••••••••.•••.•••••.•.•••..••. initcrt 
return_value = xsm_Jplcall(jplcall_textl; ••••••••••••.••.•••.••• jplcall 
status xsm_jplload(module_name_11st); •••••.••.....••.••••••••. jplload 
status = xsm_jplpublic(module_name_llst); •••••••••••••..••••. jplpublic 
status = xsm_Jplunload(module_name); ••.••••••••••••.•••••...•• jplunload 
xsm_Jresetcrt (); .••••••••••••••••••••.••••••••••••••..••••••••• res.tcrt 
status = xsm_Jtop(screen_name); •••••••••••••••••••••.•••..•.•••..•• jtop 
status = xsm_jwlndow(screen_name); ••••••••••••••••••.••..•••.••. jwindow 
xsm_jx1nltcrt (path); ••••••••••••.•••••••.••••••••••••.••.••••••• initcrt 
xsm_Jxresetcrt (); •••.••••••••.••••••••••••.•••••••.••..•••••••• res.tcrt 
old_flag = xsm_keyf1Iter(flag); •••••••••••.••••••••.•••••.•••. keyfilter 
status xsm_keyhlt(lnterval); ••••••••••••••••••••.•••.•••.••••.• k.yhit 
status xsm_keY1n1t(key_address); ••.•.••••••••.•••.••••.•••••.. keyinit 
buffer = xsm_keylabel (key); ••••••.•••••••••••.••••••.•••.•••••• keylabel 
oldval xsm_keyoption(key, mode, newval); •••••••.•••••.•••.•• keyoption 
scope = xsm_kscscope () (); •••••••••••••••••••••••••••..••..••••• kscscope 
status = xsm ksinq(scope, number keys, number rows, current row, 

maxlmum_len, keyset_name); ••••••. :-••.•••.••.••• :-••••••• !tsinq 
xsm_ksoff (); ••••••••••••••••••••••••••••••••••••••••••••.••.•..••• !tsoff 
xsm_kson (); •••••.•••••••••••••••••••••.••••••••••.•••••••••••••..•• kson 
status xsm_l_at_cur(lib_desc, screen_name); •••••••••••.•••••••• window 
status = xsm_l_close(lib_desc); ••••••••••••••••••••••••.••.•••.• l_close 
status = xsm_l_form(lib_desc, screen_name); ••••••..•••••.•••.•••••• form 
lib_desc = xsm_l_open(lib_name); ••••••.•••.•••.•••••••.•••••••••• l_open 
status = xsm I window(lib desc, screen name, start line, 

start_column) ;-••••••••.••• :-••••••••••• :-. . • • • • . • • . • • • .• window 

Page 314 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

xsm_last (); •••••.••..•.•••••••••••.••••••••..•••••••••••••••••••••• last 
status = xsm_lclear (scope); •••••••••••••••••••••••••••••••••••••• lclear 
xsm_ldb_l.nl.t (); .•••••••••.•••.••••.••..••••.•••.•••••••••.••••• ldb_init 
xsm_leave (); •••••••••.•••••••••••..•••••••.••••••••••••••••••.•••• leave 
fl.eld_length = xsm_Iength(fl.eld_number); •••••••••••.•••••..•••••• length 
value = xsm_Ingval(fl.eld_number); •.••.••••••••••••••••••••••••••• lngval 
status = xsm_Ireset(fl.le_name, scope); •••••••••••••••••.••••••••• lreset 
status = xsm_lstore () (); •••••.••••••••••••..••••••••••••••••••••• lstore 
status = xsm_Itofl.eld(fl.eld_number, value); •••••••••••••••.•••• ltofield 
xsm_m_flush (); •.••.••••••..••••••••.•.••••..••••.•••••••••••.••••• flush 
maXl.mum = xsm_max_occur(fl.eld_number); ••••.••••••••••••••••••• max_occur 
old_mode = xsm_mnutogl(screen_mode); •••••••••••••••.•••••••••.•• mnutogl 
xsm_msg (column, dl.sp_Iength, text); ••••••••••••••••••••••••••••••••• _g 
buffer xsm_msg_get (number); •••••.••••.•••••••••••.•••••••••••• _g_get 
buffer xsm_msgfind (number); •••••.••••••••••••..••••••••••••••• _gfind 
status 
status 

xsm_msgread(code, class, mode, arg); ••••••••••••••••••• _gread 
xsm_mwindow(text, ll.ne, column); •••••••••••.••••••••••• _indow 

xsm_n_ ..• (fl.eld_name, ••. ); •••••••.•••••••••••••••••••••••••••••••••• n_ 
status 
status 
status 
status 
status 
status 

= 
= 

xsm_n_Iclear_array(fl.eld_name); ..•••••••••..•••.••• clear_array 
xsm_n_Iprotect(fl.eld_name, mask); ••••.••••••••••••••.•• protect 
xsm_n_lunprotect(fl.eld_name, mask); ••••••.••••••••••.•• protect 
xsm_n_amt_format(fl.eld_name, buffer); ••••••••••.•••• amt_fo~t 
xsm_n_aprotect(fl.eld_name, mask); •••••••••••••••.•••••• protect 
xsm_n_ascroll(fl.eld_name, occurrence); .•••••••••••••••• ascroll 

status xsm_n_aunprotect(field_name, mask); •••••••••••••.•••••• protect 
status xsm_n_bl.top(name, action, bit); ••.••••••••••.•••••••••••• bitop 
status xsm_n_chg_attr(fl.eld_name, dl.splay_attribute); •••••••• cbg_attr 
status = xsm_n_clear_array(fl.eld_name); •••..•••••••••.••••••••..• alear_ 
value = xsm_n_dblval(fl.eld_name); •••••.•••.•••••.••••••••••••••.• dblval 
data_length = xsm_n_dlength(field_name); •••••••••••••••••••••••• dlength 
status = xsm_n_dtofl.eld(field_name, value, format); •••••••••••• dtofiald 
buffer = xsm_n_edit_ptr(fl.eld_name, edl.t_type); •••..••••••••••• edit-ftr 
value = xsm_n_finquire(fl.eld_name, WhlCh); •••••••••••••.••••••• finquire 
fleld_number - xsm_n_fldno(field_name); •••..•••••••.••••••••.••••• fldno 
buffer = xsm_n_fptr (fl.eld_name); ••••••••••••••••••.••••.••••••••••• fptr 
buffer = xsm_n_ftog(fl.eld_name, group_occurrence); ••••••••••••.•••• ftog 
type - xsm_n_ftype(fleld_number, preclsion_ptr); ••••••.•••••••••.• ftypa 
status xsm_n_fval(field_name); ••••••••••••••••••••••••••••••••••• fval 
length xsm_n_getfleld(buffer, name); ••.•••••••••••••••••••••• getfiald 
status xsm_n_gofl.eld(fl.eld_name); ••••••••••••••••••••••••••••• gofiald 
status xsm_n_gval (group_name); •••.•••••••••••••••••••••••••••.••• gval 
value = xsm_n_intval(field_name); .••••.•••••••••••••••••••••••••• intval 
status xsm_n_l.s_no(fl.eld_name); ••.••••••••••••••••.••••••••••••• is_no 
status = xsm_n_is_yes(field_name); ••••••••••••••••••••••••••••••• ia-rea 

JAM Release 5 1 March 91 Page 315 



JAM PU1 Programmer's GUide 

status = xsm_n_1tof1eld(field_name, value); ••••••.••••.•••••..• itofield 
status ~ xsm_n_keyinit(key_f1le); ..••••.••••••••••••••.••••.•••• keyinit 
f1eld_length ~ xsm_n_length(field_name); ••••••••••••.•••..•••••.. length 
value = xsm_n_lngval(f1eld_name); ••••••••••••••.••••••.••••••.••• lngval 
status. xsm_n_ltof1eld(f1eld_name, value); ••••••••...•••••.••• ltofield 
maximum = xsm_n_max_occur(f1eld_name); ••••••••••••••.••••.•.•• max_occur 
status = xsm_n_novalb1t(f1eld_name); •••••••••••.•••••.•••••..•• novalbit 
status = xsm_n_null(field_name); ••••••••••••••.••••..•••.••••••.••• null 
number = xsm_n_num_occurs(f1eld_name); ••..•••••.••.•••••••••• num_occurs 
status = xsm_n_off_gof1eld(f1eld_name, offset); ••••.••••.••• off_90field 
return_value = xsm_n_oshift(field_name, offset); •..••••••••••.••• oshift 
status = xsm_n_protect(f1eld_name); ••••••••••••••••••••••••..••• protect 
status = xsm_n-putfield(name, data); •••••••••••••.•••.••••••••• putfield 
l1nes = xsm_n_rscroll(field_name, re~scroll); •••••••••••••••••• rscroll 
actual_max = xsm_n_sc_max(field_name, new_max); ••••.•••••••••••.• sc_max 
S1ze = xsm_n_s1ze_of_array(field_name); ••••••••.•••••••••. size_of_array 
status = xsm_n_unprotect(f1eld_name); •.•••••••••••••••••••.••••• protect 
xsm_n_vinit (v1deo_file); •••••••••••.•••••••••••••••..•••.••••.•••• vinit 
return_value = xsm_n_wselect(w1ndow_name); ••••••••.••••.•••.••••• select 
buffer .. xsm_name (field_number); •••••••••••••••••..•••..•••..•••••• name 
xsm_nl (); •••••.••.•••••.••••••••••••••••••••••••••••••••.••...••••••• nl 
status = xsm_novalb1t(f1eld_number); •••••••••••••••..•••.••••.• novalbit 
status = xsm_null (f1eld_number); •••••••••••••••.••••••••••••••••••• null 
number .. xsm_num_occurs(f1eld_number); ••••••••••••••••••••••• num_occur. 
xsm_o_ ••• (f1eld_number, occurrence, ••• ); ••••.•••••.••••.••.••••••••• 0_ 

status = xsm_o_achg(field_number, occurrence, display_attr1bute); •• ach9 
status G xsm_o_amt_format(f1eld_number, occurrence, buffer); • amt_format 
status = xsm_o_bitop(field_number, occurrence, act1on, b1t); .••••• bitop 
status = xsm ° chg attr(field number, element, 

d1splay:attr1bute); ••••••••.••••••••••.•••••••.••••• ch9_attr 
value = xsm_o_dblval(f1eld_number, occurrence); ••••••..••••••••.• dblval 
data_length = xsm_o_dlength(f1eld_number, occurrence); •.••••.••• dlength 
return_value = xsm_o_doccur(f1eld_number, occurrence, count); •••• doccur 
status = xsm_o_dtofield(field_number, occurrence, value, format);dtofield 
value = xsm_o_f1nqu1re(f1eld_number, occurrence, Wh1Ch); ••••••. flnquire 
field_number = xsm_o_fldno(field_number, occurrence); •..•••.•••••• fldno 
buffer xsm_o_fptr(field_number, occurrence); •••.•••.••••.•••••••• fptr 
buffer xsm_o_ftog(f1eld_number, occurrence, group_occurrence); •• , fto9 
status xsm_o_fval(field_number, occurrence); ••.•••.•••••••••••••• fval 
length .. xsm_o_getf1eld(buffer, f1eld_number, occurrence); ••••• gatfield 
status xsm_o_gof1eld(field_number, occurrence); ..••••••••••••• 90field 

xsm 0 gwrap(buffer, f1eld number, occurrence, 
buffer_length); ••••••• :-................................ gwrap 

status 

value = xsm_o_intval(f1eld_number, occurrence); .••..••••.•••••••• lntval 

Page 316 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

l~nes_inserted = xsm_o_~occur(f~eld_number, occurrence, count); •. ioccur 
status xsm_o_is_no(f~eld_number, occurrence); ••••••••••••••••.•• is~o 
status ~ xsm_o_is-Yes(f~eld_number, occurrence); •••••••..••••.••. is-18s 
status a xsm_o_~tof~eld(f~eld_number, occurrence, value); •••••• itofield 
value e xsm_o_lngval(f~eld_number, occurrence); •.•••••••••.••..•• lnqval 

status xsm_o_ltofield(f~eld_number, occurrence, value); ltofield 
status xsm_o_novalb~t(f~eld_number, occurrence); ••••••••••••• novalbit 
status xsm_o_null(f~eld_number, occurrence); •••..•••••••••••••••. null 

status xsm_o_off_gof~eld(f~eld_number, occurrence, offset); off_gofield 
status xsm_o_putf~eld(f~eld_number, occurrence, data); ••.•••• put field 
status xsm_o-pwrap(fleld_number, occurrence, text); •••••••••.••• pwrap 

occurrence = xsm_occur_no 0 0; ••••••••.••••••••••••••••••••••••• occurno 
status = xsm_off_qof~eld(field_number, offset); •.••••••••••• off_gofield 
oldval = xsm_option(opt~on, newval); •••••••••••••••••••••••••••.• option 
return_value = xsm_osh~ft(f~eld_number, offset); •.•••••••.••••••• oshift 
buffer xsm_p~nquire (wh~ch); ••••••••••••••••••••.••••••••••••• pinquire 
status xsm-Protect(f~eld_number); •••.••••••••••••••••••..••••• protect 

buffer xsm_pset (which, newval); ••••••.•••..••.••••••••••••••••••• pset 
status = xsm-Putfield(f~eld_number, data); ••••••••••••••••••••. putfield 

status xsm_putJctrl(key, control_str~ng, default); ••••••••••• putjctrl 
status - xsm-pwrap(f~eld_number, text); •••••••••••••••••••••••.••• pwrap 
reply = xsm_query_msq(message); •••••••••••.••••.•••••••••••••• query_mag 
xsm_qu~_msg(message); ••••••••.•••••••••••••••••••••••••••••••••• qui_mag 

xsm_quiet_err (message); ••••••••••.••••••••.••••.•••••••••••••• quiet_err 
status xsm_r_at_cur(screen_name); .••••••••••••••••••••••.•••••• window 
status xsm_r_form(screen_name); •••••••••••••••••••••••••••••••••• fozm 

status xsm_r_keyset (name, scope); ••••.•• : •••••••••••••••••••••• keyset 
status xsm_r_window(screen_name, start_l~ne, start_column); •••• window 
xsm_rd-part(screen_struct, f~rst_field, last_f~eld); •••••••••••• rd-part 
xsm_rd_struct(screen_struct, byte_count); ••••••••••••••.•••••• rd_struat 
xsm_rescreen (); •••••••••••••••••••••••••••••••••••••••••••••••• rescreen 
xsm_resetcrt 0; ••.•••••••••••.••••••••••••••••••••••••••••••••• resetart 

status - xsm_res~ze(rows, columns); •••••••••••••••••.•••••••••••• resize 
xsm_return 0; •••••••.••••••••••••••••••••••••.••••••••••••••••••. return 
xsm_rmformlist; ••••••••••••••••••••••••••••••••.••••••••••••• zmfozmlist 

xsm_rrecord(structure_ptr, record_name, byte_count); •••••••••••• rreaord 

l~nes = xsm_rscroll(field_number, re~scroll); •.•••••••••••••••• racroll 
status = xsm_s_valO 0; ••••••••••••••••••••••••••••••••••••••••••• s_val 

actual_max = xsm_sc_max(field_number, new_max); •••••••••••••••••• ac_max 
buffer .. xsm_sdtime (format); ••••••••••••••••••••••••••••••••••••• adtima 

status = xsm_select(group_name, group_occurrence); ••••••••••••••• select 
xsm_setbkstat(message, d~splay_attr~bute); •••••••••••••••••••• sethkstat 
xsm_setstatus (mode); ............................................ tatatua 
offset = xsm_sh_offO 0; ......................................... ah_off 

JAM Release 5 1 March 91 Page 317 



JAM PU1 Programmer's GUide 

xsm_shrink_to_f~t (); , ••••••••••••••••••.••••.••••..••...•• shrink_to_fit 

xsm_s~bl1ng(should_~t_be); •••••••••.••••.•.••••.•••.•.•••.•••••• s1blinq 
s~ze xsm_s~ze_of_array(f~eld_number); •.•.••••••••.•••••• size_of_array 
s~ze = xsm sk~nq(scope, row, softkey, value, d~splay attr~bute, 

-labell, labe12); ••••••••••.••••••••••••• :-....••.••••.•• skinq 

status = xsm_skmark(scope, row, softkey, mark); ••.•••..•••••.••.. skmark 

status xsm skset(scope, row, softkey, value, attr~bute, 
labell, labe12); ••••••••••••..••••.•••.•••••.••••..•.•• skset 

status xsm skvinq(scope, value, occurrence, attr~bute, 
iabell, labe12); •••••••••••...••••••••.••••.•..••.•••. skvinq 

status xsm_skvmark(scope, value, occurrence, mark); ••••.••••.•• skmark 
status xsm skvset(scope, value, occurrence, newval, attr~bute, 

labell, labe12); ••••..••••..••••.••••.••••..•••••.•••• skvset 

outbuf = xsm_str~p_amt-ptr(f~eld_number, ~nbuf); •••••••.•• strip_~t-ptr 
status xsm_submenu_close() (); .•••••.•••••••••••••••••••• submenu_close 

status - xsm_svscreen(screen_list, count); •••••.••••••••••. svscrean 

status xsm_t_b~top(array_number, action, bit); .•••.•••••••••••• bitop 

status xsm_t_scroll(field_number); •••..••••••••••••..••••.••. t_scroll 

status xsm_t_shift(f~eld_number); •••.•••••.••••.•••••••••.•••.• tshift 

xsm_tab (I; •••••••••••••••.•••••.•••••...••.••••.•••..••••.••••..••.. tab 

f~eld_number = xsm_tst_all_mdts(occurrence); ••••••••..•••.• tst_all_mdts 

status = xsm_u~nstall( usage, func, func_name); ••••.•••••.••••. uinstall 

return_value = xs~ungetkey(key); •••••••••••.•••..•••..••.••••. unqetkay 

status = xsm_unprotect(field_number); •.•••••••••..•••.•••••••••• protect 
xsm_unsvscreen(screen_list, count); ••••••••••••••.•••••••••• un.vscrean 

xsm viewport(pos~t~on row, posit~on col, size row, s~ze col, 
- offset_roW; offset_col);-••••••••• :-•.••••••• :-.••••••• viewport 

status - xsm_vinit(video_address); ••.•••••••••.••••..••••••••••••• vinit 

return_value = xsm_wcount () (I; •••••.•••••••••..•••.•••..••...••.•• count 
status = xsm_wdeselect () (I; ••••••••••••..•••..•••.••••.•••.••• wdesalect 
status = xsm_w~ns~ze () (); ••••••••••••••.•••••••••••••••••.••••.•• insize 

xsm_wrecord(structure-ptr, record_name, byte_count); ••••••••••.•• record 

xsm_wrt-part(screen_struct, first_f~eld, last_field); ••••••••••• rt-part 

xsm_wrtstruct(screen_struct, byte_count); •••.•••••••••••••.•••• rtstruct 

return_value xsm_wselect(w~ndow_number); ••••••.••.•••••••••• , .select 

Page 318 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

INDEX 
A 

Abort. 174 

Apphcabon 
abort. 107, 174 
code, 2 

See also hook function 
custonuzation. 1 
data, 50-51, 168-169, 175-176, 

236-237,240-241 
library routines, 84-85 

development, 5,26-27 
See also hook function 

effiCIency, 63--65 
flow, 2 
uutiahzabon. 2, 42, 76, 165-166 
localization, 50--60 
memory, See memory 
messages, 46--47 
portabr.hty,61--62 
reset, 254 
suspend, 209 

Apphcatlon executable, 2-5 

Array 
base field, 95 
clear, 113 
element, XSlILe variants, 78, 128 
library routines - attribute access, 79-80 
bbrary routines - data access, 78-79 
occurrence 

xsmj variants, 78, 163 
xsm_o vanants. 78, 231 

scrollmg, 289 
size, 274 
word wrap, 160, 245 

AScn, non-AScn display, 50 

ASYNC_FUNC, 10 
See also asynchronous funCbon 

Asynchronous funcbon, 19-20 
arguments. 20 
installabon, 93 
invocation. 20 
return codes, 20 

ateb, 11 

Authormg 
executable,S 
JX library,S 
tool See Jxform 

Authoring executable, 5 

B 
BACK, library routine, 94 

BLKDRVR_FUNC,10 
See also block mode 

Block mode, 67-74 
initialization, 100 
bbrary routines, 86 
reset, 101 

Built-in control functions, 31-39 
.JIll_exit, 32-33 
.JIII...,goform, 34-35 
.JIII...,gotop, 33-34 
.J1113eys, 35-36 
JDIJIUlutogI. 36-37 
jnuystem, 37-38 
.JIII_ wmsize, 38 
JPI. 39 

c 
call, 16 

Character data, 8-bit, 50--51 

Check dIgIt function, 21-22 
arguments, 21 
invocation. 21 
return codes, 21-22 

JAM Release 5 1 March 91 Page 319 



JAM PU1 Programmer's GUide 

Checklist 
See also group 
deselect, 120 

CKDIGIT_FUNC,9 
See also check dJ.glt function 

CLR, library routmes, 112 

Configuration, memory-resIdent. 64 

Control function, 16-17 
arguments, 17 
mvocation, 17 
return codes, 17 

Control siring 
access, 153 
set, 244 

CONTROL_FUNC,8 
See also control function 

Cursor 
dJ.splacement, 122 
home, 162 
hbrary routines, 81-82 
location, ISO, 270 
move, 156, 233 
off,103 
on, 104 
positlon display, lOS 

D 
Data dictionary, file, name, 121 

Data entry, 167 

Data entry mode, .JI1l-mnutogI. 36-37 

Delayed wnte, 4S 

DFLT_FIELD_FUNC,8,l1 
See also field function, default 

DFLT_GROUP_FUNC,8,18,19 
See also group function, default 

DFLT_SCREEN_FUNC,9, 15 
See also screen function, default 

DISplay area. color, 99 

DISplay allributes 
change, 88-89 
field, 108-109 
portability, 61 
rectangle, 99 

E 
EMOH, hbrary roUbnes, 206 

Error handling, 4 

Executable, See application or authoring ex
ecutable 

Executive 
Su also JAM Executive 
custom, 3-5 

F 
Field 

character edit, 57-58 
mtematlonahzatlon, 57-58 

characteristlc,97-98, 129-131, 
137-138 

clear, 112 
currency,S4--56,91,286 

intematlonaIizatlon,S4-56 
~ 144,151-152,242--243 
dateltime fannat, 51-54 

intematlonahzation, 51-54 
dlSplayallnbutes. 108-109 
flolling point value, 118, 127 
group conversion, 145 
integer value, 170, 179 
length. 123,210 
hbrary routines - attnbute access, 79-80 
hbrary routines - dala access, 78-79 
long integer value, 211,214 
malh,l06 
MDT bit, 292 

Page 320 JAM Release 5 1 March 91 



JAM PU1 Pr09rammer's GUide 

Field (conbnued) 
name,226 

x~_evarianm,78,128 

~j varianm, 78, 163 
X~JI varianm, 78, 225 

null,229 
nwnber,139 
sJufting,290 

Field function, 11-14 
argumenm, 11-13 
default, 11 
invocation, 11 
returncodes,13-14 

FIELD_FUNC,8 
See also field function 

File. rmd, 136 

Fonn 
See also screen 
display, 4, 34, 141-142, 181-182 

Fonn stack, library roubnes, 76-n 

Function. See hook functIon, hbrary routmes 

G 
GRAPH,45-46 

Graphics characters, 45-46 

Group 
characteristIc, 157 
field amverslon, 158 
library routines, 80-81 
selectIon., In, 266 

Group functIon., 18-19 
argwnenm, 19 
default, 18, 19 
mvocation, 18-19 
return codes, 19 

GROUP _FUNC, 8 
See also group function 

H 
Help, display, 161 

HOME, library routmes, 162 
Hook function., 2, 7-27 

See also mwvidual hook function types by 
name 

arguments, 7 
development, 10-26 
indiVidual, 7 
installatIon, 4, 7-10, 293 
recursion, 27 
return codes, 7 
types (overview), 8-10 

I 
Initialization function, 22 

argwnenm, 22 
invocatIon, 22 
return codes, 22-23 

Input/output, 154-155 
flush, 140 
library routines, 77-78 
user,167 

INSCRSRyuNC,9 
See also insert toggle function 

Insert toggle functIon, 20-21 
argwnenm, 21 
mvocation, 20 
retum codes, 21 

Intemauonalizauon., 4~0 
8 bit characters, 50-51 
character filters, 57-58 
currency fields, 54-56,56 
date and time mnemonics, 52, 53 
date/time fields, 51-S4 
decimal symbols, 56--57 
documentation utIlities, 59 
hbrary routines, 60 
menu processing, 58-59 
messages, 58, 60 
product screens, 58 
range checks, 59-60 
screens, 58 

JAM Release 5 1 March 91 Page 321 



JAM PU1 Programmer's GUide 

Interrupt handler. 22.107 

J 
JAM 

behavior, 234 
customizatlOn., 1 
Executive, 2 

See also JAM Execubve 
initiahzation,3 
hbrary routmes - global behavior, 

84--85 
library routines - global data, 84-85 

JAM ExecUtIve 
autllonng executable, 5 
fonn dISplay, 181-182 
uutlahzation,2 
.JI1l hbrary, 2, 3, 5 
library routmes, 85 
screen close, 180 
screen display, 27 
start, 187 
window display, 188-189 

Jammap. mtemabonahzabon., 59 

IPI., 183 
caIlmg control functions from. 16 
compared to complied code, 65 
JPI built-in funcbon, 39 

Jxfonn. modification, 5 

K 
Key 

input, 154-155, 295 
logical, 41, 154-155 
name, 193 
roubng,42--43,l94--195 
simulaled, 35-36 
soft. See soft key 
translation, 41, 42 

Key change function, 17-18 
arguments, 18 
invocation., 18 
return codes, 18 

Keyboard, 41--43 
mput, 167 
portability, 61 

Keyboard translation 
miuaIization., 192 
internationalIZation, 51 

KEYCHG_FUNC, 9 
See ai$() key change function 

Keyset 
close, 102 
labels, 201, 202 
memory-resldent, 196 
open, 196-197 
query, 199-200 
scope, 198 

Key tops. 62 

L 
Language. See programming language or in· 

temabonahzabon 

LDB,29-30 
access, 30 
behavior, 119 
clear, 207 
creation, 29 
data propagatIOn, 29-30, 90, 213 
iniuaIizatlon., 29, 208 
imbalization files, 164 
jm library, 3 
library routmes, 81 
reset, 212 

Library 
close, 203 
open. 204--205 

Library functions. See library roubnes 

Page 322 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

Library routines, 75---S6, 87 
array atlnbute access, 79--80 
array data access, 78-79 
behavior, 84--85 
block mode, 86 
cursor control, 81---S2 
field atlnbute access, 79---S0 
field data access, 78-79 
global data, 84--85 
group access, 80-81 
1I11t1ahzation. 76 
JAM Executive control, 85 
keysets,85 
LDB access, 81 
mass storage, 83 
message msplay, 82 
resel, 76 
screen control, 7£-.77 
scrolhng, 83 
siufnng,83 
xsm_close_ wmdow, 4 
xsm_dtofield, mtematlOnahzation, 60 
xsm.Jlush, 45 
xsm-letkey, 42 
XSln.-mitcrt, 3 
xsm_mpul, 4, 42 
xsm..install, 10 
xsm....JClose, 27 
xsm...Jform, 27 
xsnUwindow,27 
xsm_keyopt1on,43 
xsm_ldb_init, 29 
xsm..opuon, 30 
X5m_query_msg, mtemmonabzatlon, 60 
xsm_cform, 4 
xsm_rescreen, 65 
xsnuesetcrt, 5 
soft keys, 85 
temunaJ. mput/outpul, 77-78 
validation, 84 
viewpon control, 7£-.77 

License, 5 

Load. 184 

Local Data Block. See LDB 

lstdd, intemabona1izauon, 59 

lstform, internationalization, 59 

M 
Math, 106 

Memory 
hbrary routmes - mass storage, 83 
messages, 64 
resident configuration, 64 
resident file lisl, 143 
resident keyset, 196 
resident screens, 63-64, 288, 296 

Menu, submenu, 287 

Menu mode, Jl1unnutogl, 36-37 

Message, 46-47 
disk based, 64 
dISplay, 115-117, 132-134, 135,217, 

218,224,246,247,248,267-268 
269 ' 

file irutiallZation, 221-223 
flush, 215 
mtemationa1izat1Ol1, 58 
library routines, 82 
relrleval, 219, 220 
status line priority, 46 

MODEx,45-46 

N 
NL, library roUt1nes, 227 

o 
Oc:c:urrence 

allocated, 230 
delete, 126 
dISplay aurlbutes, 88-89 
inserl, 171 
number, 232 
scroll to, 92 

JAM Release 5 1 March 91 Page 323 



JAM PU1 Programmer's GUide 

Operanng System command, JM_system, 
37-38 

p 
PLAY_FUNC,9 

See also playback function 

Playback functIon, 23 
arguments, 23 
filter, 190 
mvocabon, 23 
return codes, 23-24 

PTogranutUnglanguage, 1 

PTotecbon,238--239 

Pubhc, 185 

R 
Radlo button See group 

Record function, 23 
arguments, 23 
f1lter, 190 
invocation, 23 
return codes, 23-24 

RECORD_FUNC,9 
See also record function 

Regular expressIOn, 57 

Reset funcbon, 22 
arguments, 22 
mvocabon, 22 
return codes, 22-23 

s 
Screen 

See also form; wmdow 
close, 32, 180 
data propagation, 90 

display, 26-27 
mtematlonahzatlon, 58 
bbrary routmes, 76-77 
memory-resIdent, 63--64, 178, 288, 296 
memory-resIdent hst, 63 
restore, 251-252 
search,63 
store, 249-250, 306-307, 308 
top, 33 

Screen functIOn, 15-16 
arguments, 15 
default, 15 
invocatIon, 15 
return codes, 16 
screen display, 26 

Screen Manager 
behaVIor, 234 
mitializallon, 3 
sm hbrary, 2, 3, 5 

SCREEN_FUNC, 8 
See also screen functlon 

SCROLL_FUNC See scroUmg, alternabve 

Scrolling, 260 
library routmes, 83 

Scrolling array 
maximum number of occmrences, 216, 

263 
occurrence, 92 

Shifting 
field, 235 
hbraryrounnes,83 

SIbling wmdow, 272-273 

Soft key 
characlerlstic, 275-276,279-280 
library routines, 85 
mark,277-278,283 

Source code 
jmain.c, 2 
Jxmam.c, 5 
mam routmes, 76 

Stacked window, 272-273 

Page 324 JAM Release 5 1 March 91 



JAM PU1 Programmer's GUide 

STAT_FUNC,9 
See also status lme funcuon 

Status line 
access, 4 
flush,21S 
hbrary rouunes, 82 
message, 115-117, 132, 135,217,218, 

246,247,248,267,269 
message pnonty, 46 
terminal,46-47 

Status line function, 23-24 
arguments, 24 
mvocation, 24 
return codes, 24 

T 
TAB, hbrary routmes, 291 

Terminal 
beU,96 
graphics character display, 45-46 
hbrary routines, 77-78 
output, 45-47, 65, 124-125, 140 
portabihty,4S, 61-62 
refresh, 253 
resize, 255 
status line. 46-47 

Top screen, 33 

u 
UINIT _FUNC, 9 

See also IJUtiahzation function 

Unload, 186 

URESETyuNC, 9 
See also reset funcuon 

v 
Vahdation 

bits, 97-98 
check digit, 110 
field, 148 
field function invocab.on, 11 
group. 159 
group function Ulvocation, 19 
invalidate field, 228 
library routines, 84 
screen, 261-262 

Video mapping 
character sets, 45--46 
file,4S 
initiahzation, 298 
intemabonaIizatlOn, 51 
optimization, 64-65 

Video processmg function, 24-26 
arguments, 24-26, 25 
invocabon, 24 
retum codes, 26 

Viewport, 297, 304 
hbrary rouunes, 76-77 

VPROC_FUNC,9 
SIlf also video processmg function 

w 
Window 

See also screen 
close, 4, 114 
count, 299 
dISplay, 188-189,301-303 
message, 224 
selection, 300, 309-310 

Window stack. library routmes, 76 

JAM Release 5 1 March 91 Page 325 



Addendum 

for Updates to 
JAM Release 5.03 

for PL/1 

Part Number R332-OOA 

August 3, 1992 



Addendum for Updates to JAM 5.03 

Note of Explanation 
. This addendwn describes new features in release 5.03 of JAM. This addendum is for the 
PL/l Programmer's Guide. There are separate addenda for Volumes 1 and 2 of the JAM 
5.03 documentation set. 

Several insertion pages (or A-pages) are included for new library routines and utilities in 
JAM 5.03. These pages should be inserted into your JAM Programmer's Guide and Uti
lities Guide at the appropriate location. For example, page A-195 should be inserted be
fore page 195. 

Note that the page numbers for the Utilities Guide refer to the August I, 1991 printing of 
the JAM manual. Page numbers in the Programmer's Guide refer to the March I, 1991 
printing of the PL/l Programmer's Guide. 

PU1 Programmer's Guide 
Page 92: New Behavior and Return Codes for xsm _ascroll 

The library routine xsm_ascroll takes as arguments a field number and an occur
rence. It scrolls an array such that the requested occurrence is in the specified field. If the 
requested occurrence cannot be placed in the specified field because it is one of the first 
or last occurrences in a non-circular array, then xsm_ascroll scrolls the occurrence 
onto the screen and returm: the occurrence number of the occurrence that is actually in the 
specified field. 

Page. 168: Inquiring Help Level via xsm _inquire 

The global variable I INriELP now contains the level of help that the user is in, instead 
of just a true/false value. ·:ibere may be up to five levels of help. Use sm inquire to 
query the value of this variable. A return of zero indicates that the user is not in help, a 
return of 1 through 5 indicates which help level the user is in. 

Page 194: xsm_keyoption 

Certain keys can not be translated via the KEY XLATE argument to 3m keyoption. 
These are: INS, REFR, SFTS, LP, and ABORT." They may, however, be disabled via the 
KEY_ROUTING argwnen!, or intercepted via a keychange function 

Page 246: Percent Escapes in xsm _query _ msg 

Percent escapes are now Silpported for controlling the attributes of query messages. The 
sequences are the same as those for xsm emsg, and detailed on page 214. Note that %Mu 
and %Md are not supported. Query messages from JPL can also now use percent escapes. 

JAM Release 5.03 Addendum 3 August 92 Page 1 



Addendum for Updates to JAM 5.03 

Page 292: MDT bits and Scrolling Arrays 

When lines are inserted or deleted from scrolling arrays via INSL or DELL, the MDT bits 
for all occurrences after the insertion or deletion are no longer set In a database applica
tion, this prevents the need for unnecessary processing LO write potentially large amounts 
data that have not changed. For large arrays, it can save a significant amount of proces
sing time. 

Page 2 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Utilities Guide 

bin2pl1 
convert binary JAM files PL 1 declare data 

SYNOPSIS 

hin2pll [-fv] PL1-ff/~ blnary-file ••. 

OPTIONS 
-f Overwrite an existing output file. 

-v Generate list of files processed. 

DESCRIPTION 

This program converts binary rues created with other JAM utilities into PLl source. 
PL 1-fIIe is usually a new file name. (To overwrite an existing file, you must use the -f 
option.) 

When the utility creates the PLl source file, it generates a data file for each of the 
binary input files. The name of the data file is derived from the binary rue name, with 
the path and extension removed, and given the extension. incl. pll. 

The application program should include the data file in the program that uses it The _ d 
variants of certain library routines (d_window, d_form, d_at_cur, d_keyset, 
d_msg_line) can then he used. 

bin2pll output files may be compiled, linked with your application, and added to the 
memory-resident form li5t (See the JAM Programmer's Guide for more information 
on memory-resident lists.; The following files may be made memory-resident: 

• key translation fIles (key2bin) 

• setup variabie fIles (var2bin) 

• video configuration fIles (vid2bin) 

• message file:; (msg2bin) 

• JPL files (jp12bin) 

• screen rues ~jxform) 

There is no utility to convert ascII-file back to its original binary form after using 
bin2pll. JAM provides other utilities that permit two-way conversions between 
binary and ASCII formats. For screens, these utilities are bin2hex and f2asc. 

JA7~ Release 5.03 Addendum 3 August 92 PageA-15 



Addendum - Replacement Page for Utilities Guide 

ERRORS 

Insufficient memory available. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: Try to increase the amount of available memory. 

File "is" already exists; use '-f' to overwrite. 
Cause: You have specified an output file that already exists. 
Corrective action: Use the -f flag to overwrite the file, or use another name. 

"is": Permission denied. 
Cause: An input file was not readable, or an output file was not writeable. 
Corrective action: Check the pennissions of the file in question. 

Page A-16 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Programmer's Guide 

copyarray 
copy the contents of one array to another 

SYNOPSIS 
declare destination fld fixed binary(31); 
declare source_fld fixed binary(31); 
declare status fixed binary(31); 
status = xsm_copyarray(destination_fld, source_fId); 

DESCRIPTION 
This routine copies the contents of the array containing source fid into the array 
containing destination_fld, source_fId and destination_fld are field 
numbers. They may be the field number of any of element in the respective array. 

The developer is responsible for insuring that the arrays are compatible. Data in source 
array occurrences that are too long for the destination array are truncated without warn
ing. Data in source array occurrences that are shorter than the destination array's field 
length are blank filled (wi:lt respect for justification). 

If the source array has more occurrences than the destination array, the data in the extra 
occurrences are discarded. If the source array has fewer occurrences than the destina
tion array, trailing occurrences in the destination array are cleared of data (but not de
allocated). 

copyarray sets the MDT bit and clears the VALIDED bit for each destination array 
occurrence, indicating that the occurrence has been modified and requires validation. 

The variant, xsm_n_copyarray, searches the LDB for either array if the named field 
is not found on the screen. However, if the destination LDB item has a scope of 1, 
meaning that it is a constant, then it is not altered and the function returns -1. 

RETURNS 

-1 if either field is not found or if the destination array in the LD B has a scope of 1. 
o otherwise. 

VARIANTS 
status = xsm_n_copyarray(destination_name, source_name); 

RELATED FUNCTIONS 
status = xsm_cIear_array(fieId_number); 
length = xsm_getfield(buffer, field_number); 
status = xsm-putfleld(field_number, data); 

JAM Release 5.03 Addendum 3 August 92 PageA-115 



Addendum - Replacement Page for Programmer's Guide 

next_sync 
find next synchronized array 

SYNOPSIS 
declare field number fixed binary(31); 
declare next_array fixed binary(31); 
next_array = xsm_next_sync(field_number); 

DESCRIPTION 

Given a field number, this function fmds the next array synchronized with the given 
field, and returns the field number of the corresponding element in that array. The next 
synchronized array is defi:led as the one to the right. If field_number is in the righ
most synchronized array, the function returns the corresponding element in the leftmost 
synchronized array (ie- it wraps around the screen). 

RETURNS 

The field number of the cr.rresponding element in the next synchronized array if there 
is one. 

Otherwise, the field number the function was passed. 

JA.d Release 5.03 Addendum 3 August 92 PageA-227 



soption 
s·et a string option 

SYNOPSIS 
declare option 
declare newval 
declare oldval 

Addendum - Replacement Page for Programmer's Guide 

fixed binary(31); 
char(256) varying; 
char (256) varying; 

oldval ~ xsm_soption(option, newval); 

DESCRIPTION 

Use xsm_soption to !lIter during run-time the default string options defined in 
smsetup. incl. pll, The following table lists the valid mnemonics for option: 

Mnemonic Description 

SO EDITOR Editor to use in JPL windows. -
SO FEXTENSION Screen me extension. -
SO LPRINT Operating system print command. -
so PATH Search path for screens and JPL procedures. -

These variables are fully documented in the JAM Configuration Guide, under "System 
Environment and Setup Files." 

RETURNS 

The old value for the specified option. 
o if the option is invalid Of a malloc error occurred. 

RELATED FUNCTIONS 
oldval = xsm_optiun(option, newval); 

JAIA Release 5.03 Addendum 3 August 92 PageA-287 



Addendum - Replacement Page for Programmer's Guide 

wrotate 
rotate the display of sibling windows 

SYNOPSIS 
declare step 
declare status 

fixed binary(31); 
fixed binary(31); 

status - xsm_wrotate(step); 

DESCRIPTION 

If two or more sibling windows are on the top of the display, this function may be used 
to rotate the sequence of the sibling windows, step is a positive or negative integer 
equalling the number of screen rotations. If step is positive, the routine takes the top
most sibling window and makes it the last sibling window for each instance of step, 
If step is negative, the routine takes the last sibling window and makes it flrst If 
step is zero, no rotations are performed. See the flgures below. 

Figure 1: Screens a, b.and c are all siblings.Screen main is not a sibling. 

Figure 2: Executing SM _wrota te (1) rotates the top sibling to the bottom 
of the sibling stack. It rotates screen c behind the other two sibling windows, 
leaving screen b on top. Screen main is not affected. 

J)l1\1 Release S.03 Addendum 3 August 92 PageA-30S 



Addendum - Replacement Page for Programmer's Guide 

Figure 3: Executing sm wrotate (-1) rotates the last sibling window to 
the top, putting screen con top. The display is the same as Figure 1. 

Figure 4: Executing sm wrotate -(2) rotates the first two sibling windows 
off the the top. First it rotates screen c to the back, then screen b, leaving 
screen a on top. 

RETURNS 

One less than the nwnber of sibling windows on top of the window stack. 
o if there are no sibling windows 

RELATED FUNCTIONS 

Page A---306 JAM Release 5.03 Addendum 3 August 92 



JAM 

COBOL 
Programmer's 

Guide 
for Stratus 

© 1991 JYACC, Inc. 



This is the COBOL Programmer's manilal for JAM Release 5. It is as accurate as possi
ble at this time; however, both this manilal and JAM itself are subject to revision. 

Stratus and vas are registered trademarks of Stratus Computer Inc. 

JAM is a trademark of JYACC, Inc. 

Other product names mentioned in this manilal may be trademarks, and they are used for 
identification purposes only. 

Please send suggestions and comments regarding this docwnent to: 

Technical Publications Manager 
JYACC,Inc. 
116 John Street 
New York, NY 10038 

(212) 267-7722 

© 1991 JYACC, Inc. 
All rights reserved. 
Printed in USA. 



A Note to language Interface Users 

A Note To Language Interface Users 
JYAee makes every effort possible to design language interfaces that duplicate the origi

. nal.e Programmers Library. However, due to differences among various programming 
languages, an exact one to one correspondence is not always possible. In some cases, rou
tines contained in the e version have been replaced with other routines designed to take 
advantage of a particular programming language's features. 

Please note that your interface contains intentionally undocumented routines. Some of 
these routines are no longer part of JAM, having been replaced by more efficient rou
tines, and are included only for backward compatibility with applications created with 
earlier versions of JAM. The rest are internal routines and are not intended to be directly 
accessed by developers. 

';A Note To Non-UNIX Users 
Throughout the manual, a forward slash (f) has been used to indicate a subdirectory. For 
example, 

lusr/local/file 

means that file is a fIle in the directory local which is in turn asub-directoryofusr, 
which is not the root directory. 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

TABLE OF CONTENTS 

Chapter 1. 
Introduction ..................................... 1 

1.1. Application Executable , ................................. ,.. 2 
1.1.1. Applications Using the JAM Executive . , . . . . . . . . . . . . . . 2 
1.1.2. Applications Using a Custom Executive ,.............. 3 

1.2. Authoring Executable ................. ,.................... 5 

Chapter 2. 
Hook Functions .................................. 7 

2.1. Preparation and Installation . . . . . . . . . . . .. . .. . . . . .. . . . .. .. .. . . . 7 
2.1.1. Types of Hook Functions ............ , .. . . . .. . . .. . . . 8 
2.1.2. InstallingFunctions................ ............... 10 

2.2. Writing Hook Functions .................................... 10 
2.2.1. Hook Function Return Codes . . . . . . . . . . .. . . . . . . . .. . . . 11 
2.2.2. Field Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Field Function Invocation. . .. . . . .. . . . .. . . . . . . . . . . . . 11 
Field Function Arguments .......................... 12 
Field Function Return Codes ........................ 13 
Example Field Function ... . . .. . . . . . . . .. . . . . . . . . . . . . 14 

2.2.3. Screen Functions ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Screen Function Invocation ......................... 16 

, Screen Function Arguments ............... , . . . . . . . . . 16 
Screen Function Return Codes . . . . . . . . . . . . . . . . . . . . . . . 17 

2.2.4. Control Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Control Function Invocation ........................ 17 
Control Function Argwnents ........................ 18 
Control FUnction Return Codes ...................... 18 

2.2.5. Key Change Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Key Change Function Invocation. . . . . . . . . .. . . . . . . . . . . 18 
Key Change Function Arguments .................... 18 
Key Change Function Return Codes .................. 18 

2.2.6. Group Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Group Function Invocation ......................... 19 
Group Function Argwnents ........ ~ . . . . . . . . . . . . . . . . 20 
Group Function Return Codes ....................... 20 

JAM Release 5 1 March 91 Pagei 



Stratus COBOL Programmer's Guide 

2.3. 

2.2.7. Asynchronous Functions. . . . ..... . . . . . . . . . . . . . . . . . . . . 20 
Asynchronous Function Invocation. . . . . . . . . . . . . . . . . . . . 20 
Asynchronous Function Argwnents ................... 21 
Asynchronous Function Retum Codes ................. 21 

2.2.8. Insert Toggle Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Insert Toggle Function Invocation .................... 21 
Insert Toggle Function Arguments .................... 21 
Insert Toggle Function Return Codes .................. 21 

2.2.9. Check Digit Functions. .. .. . .. .. . . .. .. . .. .. . .. .. . .. . 22 
Check Digit Function Invocation ..................... 22 
Check Digit Function Arguments ..................... 22 
Check Digit Function Return Codes ................... 22 

2.2.10. Initialization and Reset Functions . . . . . . . . . . . . . . . . . . . . . 22 
Initialization and Reset Function Invocation ............ 23 
Initialization and Reset Function Arguments ............ 23 
Initialization and Reset Function Return Codes .......... 23 

2.2.11. Recording and Playing Back Keystrokes ............... 23 
Record/Playback Function Invocation ................. 24 
Record!Playback Function Arguments ................. 24 
Record/Playback Function Return Codes ............... 24 

2.2.12. Status Line Functions .............................. 24 
Status Line Function Invocation ..................... . 
Status Line Function Argwnents ..................... . 
Status Line Function Return·Codes ..................•.. 

2.2.13. Video Processing Functions ........................ . 
Video Processing Function Invocation ................ . 
Video Processing Function Arguments ................ . 
Video Processing Function Retum Codes .............. . 
Other Hook Functions ............................. . 

Coding Strategy, Rules and Pitfalls ........................... . 
2.3.1. Displaying Screens ............................... . 
2.3.2. Recursion ....................................... . 

24 
25 

.... "~ 

25 
25 
25 
27 
27 
27 
27 
28 

Chapter 3. 
Local Data Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

3.1. LDB Creation.. .......... .. .......... . . ..... .. .... . . ... .. . 29 
3.2. How JAM uses the LDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
3.3. LDB Access .............................................. 30 

Page ii JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 4. 
Built-in Control Functions ......................... 31 

jm_exit end processing and leave the current screen .................. 32 
. jm.-&otop 
jm.-&ofonn 
jm_keys 
jm_mnutogl 
jm_system 

return to application's top-levelfonn ....................... 33 
prompt for and display an arbitrary fonn . . . . . . . . . . . . . . . . . . . . . 34 
simulate keyboard input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
switch between menu and data entry mode on a dual-purpose screen 36 
prompt for and execute an operating system command. . . . . . . . . . 37 

. jm_ winsize 
jpl 

Chapter S. 

allow en<Hlser to interactively move and resize a window. . . . . . . 38 
invoke a JPL procedure .................................. 39 

-" Keyboard Input .................................. 41 
5.1. Logical Keys .........•...............•................... 41 
5.2. Key Translation ....................................... , . , . 42 
5.3, Key Routing ............ , .............. , . . . . . . . . . . . . . . . . . . 42 

Chapter 6. 
Terminal Output Processing • . . . . . . . . . . • . . . . . . . . . . . . 4S 

6.1. Graphics Characters and Alternate Character Sets ................ 45 
6.2. The Status Line .... , .......................... ,........... 46 

Chapter 7. 
Writing International (8 bit) Applications ..•......... _. 49 

7.1. . Introduction ............................ , ................ ,.. . . 49 
7.1.1. General Overview ................................ 49 

7.2. Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
7.2.1. Background. , ................................ , . . 50 
72.2. 8 Bit Character Data . .. .. .. . .. .. .. . . .. .. .. .. . . .. .. . 50 
7.2.3. Date And Time Fields ............................. 51 
72.4. Currency Fields .......................... :....... 55 
7.2.5. Decimal Symbols ............ . . . . . . . . . . . . . . ... . . . . . 57 
7.2.6. Character Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
7.2.7. StatusAndErrorMessages......................... 58 
7.2.8. Screens In The Utilities ................. ,.......... 58 
72.9. Screens In Application Programs. . . . . . . . . . . . . . . . . . . . . 59 
7.2.10. Menu Processing ................................. 59 
7.2.11. lstfonn, lstdd, andjammap .............. ............ 59 

JAM Release 5 1 March 91 Page iii 



Stratus COBOL Programmer's Guide 

7.2.12. Range Checks .................................... 60 
7.2.13. Calculations Using @SUM and @DATE ....... . . . . . . . . 60 
7.2.14. xsm_dblval and xsm_dtofield .. . . . . . . . . . . . . . . . . . . . . . . 60 
7.2.15. xsm_isJes and xsm_query_msg ..................... 61 
7.2.16. Batch Utilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

Chapter 8. 
Writing Portable Applications. . . . . . • . • • . . . . . . . • • . . • . 63 

8.1. Tenninal Dependencies ..................................... 63 

Chapter 9. 
Writing Efficient Applications. . . • . . . . . . . . . . . . . . . . . . • 65 

9.1. Memory-residentScreens .....•........................... ,. 65 
9.2. Memory-resident Configuration Files .......................... 65 
9.3. Message File Options................. .. . ... . . . . . . .. .. . ..... 66 
9.4. Avoiding Unnecessary Screen Output .......................... 66 
9.5. JPL vs. Compiled Languages....... .... .. . ... . .... . .. .. . ..... 67 

Chapter 10. 
Block Mode 69 

10.1. Using Block Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
10.1.1. General Overview ............................... , . 69 
10.1.2. Authoring ....................................... 70 
,10.1.3 ... Selecting.BlockMode .... -.-................. ' ....... ,,-..... ---7.0.. 
10.1.4. Differences Between Block Mode And Interactive Mode .. 71 

Windows........................................ 71 
Menus.......................................... 71 
Character Validation ............................... 72 
Field Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
Screen Validation ................................. 73 
Right Justified Fields. .. .. .. .. . . . .. . . . .. . . . . . . . .. . . . 73 
Field Entry Function, Automatic Help, Status Text. etc. ... 73 
Currency Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
Shifting Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
Scrolling Fields ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
Insert Mode ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
Non-Display Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Pageiv JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

System Calls ...................... , . . . . . . . . . . . . . . 75 
Zoom .....................•..............•..•.. 75 
Help and Item Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
Groups .......................... , ............... 75 

10.2. Writing A Block Mode Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
10.2.1. Installation·...................................... 75 
10.2.2. Application Program Support... . .... . . .... .... . ..... 76 

Chapter 11. 
Library Function Overview .••.........••••.•.•.•.. 

11.1. InitiaIizationIReset .......................•................. 
11.2. Screen and Viewport Control ............................... . 
11.3. Display TerminalI/O ...................................... . 
11.4. Field/Array Data Access ................................... . 
11.5. Field/Array Attribute Access ................................ . 
11.6. Group Access ............................................ . 
11.7. Local Data Block Access ................................... . 
11.8. Cursor Control ............................................ . 
11.9. Message Display ......................................... . 
11.10. Scrolling and Shifting ...................................... . 
11.11. Mass Storage and Retrieval ................................. . 
11.12. Validation ........... " .................................... . 
11.13. Global Data and Changing JAM's Behavior .................... . 
11.14. Soft Keys and Keysets ..................................... . 
11.15. JAM Executive Control .......................... ; ......... . 
11.16. Block Mode Control ...................................... . 
11.17. Miscellaneous 

Chapter 12. 
Function Reference 

achg 

allget 
amCformat 
ascroll 
async 
backtab 
base_fldno 
bel 

change the display attribute of an occurrence within a scrolling 
array ................................................ . 
load screen from the LOB ............................... . 
write data to a field, applying currency editing ............... . 
scroll to a given occurrence .............................. . 
install an asynchronous function .......................... . 
backtab to the start of the last unprotected field .............. . 
get the field number of the first element of an array ........... . 
beep! ................................................ . 

77 
78 
78 
79 
80 
81 
82 
83 
83 
84 
85 
85 
86 
86 
87 
87 
88 
88 

89 

90 
92 
93 
94 
95 
96 
97 
98 

JAM Release 5 1 March 91 Page v 



Stratus COBOL Programmer's Guide 

bitop 
bkrect 
blkinit 
b1kreset 
c_keyset 
c_off 
c_on 
c_vis 
calc 
cancel 
ch&-attr 
ckdigit 
cl_all_mdts 

manipulate validation and data editing bits. . . . . . . . . . . . . . . . . . . . 99 
set background color of rectangle .. . . . . . . . . . . . . . . . . . . . . . . . .. 102 
initialize (and turn on) block mode terminal. . . . . . . . . . . . . . . . . .. 103 
reset (and tum off) block mode terminal ..................... 104 
close a keyset .......................................... 105 
turn the cursor off ................... , . . . . . . . . . . . . . . . . . .. 106 
turn the cursor on ....................................... 107 
turn cursor position display on or off ........................ 108 
execute a math edit style expression . . . . . . . . . . . . . . . . . . . . . . . .. 109 
reset the display and exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110 
change the display attribute oCa field . . . . . . . . . . . . . . . . . . . . . . .. 111 
validate check digit ............ , . . . . . . . . . . . . . . . . . . . . . . . .. 113 
clear all MDT bits ......... , .... , . . . . . . . . . . . . . . . . . . . . . . . .. 114 

cl_unprot clear all unprotected fields ................................ 115 
clear_array clear all data in an array .................................. 116 
close_windowclose current window .................................... 117 
d_msg.Jine display a message on the status line ......................... 118 
dblval get the value of a field as a real number ... . . . . . . . . . . . . . . . . . .. 121 
dd_able turn LDB write-through on or off . . . . . . . . . . . . . . . . . . . . . . . . . .. 122 
deselect deselect a checklist occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 123 
dicname set data dictionary name .................................. 124 
disp_off get displacement of cursor from start of field . . . . . . . . . . . . . . . . .. 125 
dlength get the length of a field's contents .......................... 126 
do_region rewrite part or all of a screen line .... ' .. : ................... _ 127. 
doccur delete occurrences ................... ' ........ '. , .. ' .. '. . . . .. ,129 
dtofield write a real number to a field ............................ '._. 130 

err_reset 
fi...,path 
fmquire ' 
fldno 
flush 
form 
formlist 
ftog 
ftype 

Page vi 

variants that take a field name and element number . . . . . . . . . . . .. 131 
get special edit string .................................... 132 
display an error message and reset the message line without turning 
on the cursor ........................................... 135 
display an error message and reset the status line . . . . . . . . . . . . . .. 138 
return the full path name of a file ........................... 139 
obtain information about a field ............................ 140 
get the field number of an array element or occurrence .......... 142 
flush delayed writes to the display ....•..................... 143 
display a screen as a form .. , . , . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144 
update list of memory-resident files . . . . . . . . . . . . . . . . . . . . . . . .. 146 
convert field references to group references. . . . . . . . . . . . . . . . . .. 147 
get the data type and precision of a field ...................... 148 

JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

fval force field validation ................................... . 
getcumo get current field number ................................. . 
getfield copy the contents of a field .............................. . 
getjctri get control string associated with a key ..................... . 
getkey get logical value of the key hit ............................ . 
gofield move the cursor into a field .............................. . 
gp_inquire obtain information about a group .......................... . 
gtof convert a group name and index into a field number and occurrence 
gval force group validation .................................. . 
gwrap get the contents of a wordwrap array ....................... . 
hlp_by _name display help window ................................... . 
home home the cursor ....................................... . 
i_ variants that take a field name and occurrence number ....... , .. 
ininames record names of initial data fLIes for local data block .......... . 
initcrt initialize the display and JAM data structures ................ . 
input open the keyboard for data entry and menu selection .......... . 
inquire obtain value of a global integer variable .................... . 
intval get the integer value of a field ............................ . 
ioccur insert blank occurrences into an array ...................... . 
is_no . test field for no ........................................ . 
is-yes 
isabort . 
iset 

," isselected 

issv 
itofield 
jclose 
jform 
jplcall 
jplload 
jplpublic 
jplunload 
jtop 
jwindow 
key filter 
keyhit 
keyinit 
keylabel 

test field for yes ....................................... . 
test and set the abort control flag .......................... . 
change value of integer global variable ............. ; ....... . 
determine whether a radio button or checklist occurrence has been 
selected ............. : ...... ' .......................... . 
determine if a screen is in the saved list. .................... . 
write an integer value to a field ..•......................... 
close current window or form under JAM Executive control .... . 
display a screen as a form under JAM control ................ . 
execute a JPL jpl procedure .............................. . 
execute the JPL load command ........................... . 
execute the JPL public command .......................... . 
execute the JPL unload command .......................... . 
start the JAM Executive ................................. . 
display a window at a given position under JAM control ....... . 
control keystroke record/playback flltering .................. . 
test whether a key has been typed ahead •..••.•••.•..••••.•.. 
initialize key translation table ............................ . 
get the printable name of a logical key ..................... . 

150 
152 
153 
155 
156 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
169 
170 
172 
173 
175 
176 
177 
178 

180 
181 
182 
183 
184 
186 
187 
188 
189 
190 
191 
193 
194 
195 
196 

JAM Release 5 1 March 91 Page vii 



Stratus COBOL Programmer's Guide 

keyoption 
keyset 
kscscope 
ksinq 
ksoff 
kson 
Cclose 
I_open 
last 
Idear 
Idb_init 
leave 
length 
Ingval 
!reset 
Istore 
ltofield 
m_flush 
max_occur 

.mnutogl 

msg 
mss.....get 

, msgfind 
msgread 
mwindow 
n_ 
name 
nl 
novalbit 
null 
num_occurs 
0_ 

occur_no 
off...,gofield 
option 
oshift 
pinquire 
protect 

Page viii 

set cursor control key options .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 197 
open a keyset . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 199 

. query current keyset scope ................................ 20 I 
inquire about keyset information ........................... 202 
tum off soft key labels ................................... 204 
tum on soft key labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 205 
close a library .......................................... 206 
open a library .......................................... 207 
position the cursor in the last field .......................... 209 
erase LOB entries of one scope.... . . .... . . . .. . .. .. . ..... ... 210 
initialize (or reinitialize) the local data block. . . . . . . . . . . . . . . . .. 211 
prepare to leave a JAM application temporarily ............ _ ...... _212 
get the maximum length of a field ........................... 213 
get the long integer value of a field. . . . .. . . . . . . . .. . . . .. . . . . .. 214 
reinitialize LOB entries of one scope. . .. . . . . . . . .. . . . .. . . . ... 215 
copy everything from screen to LOB. ... . ... . . . ... . . .... . ... 216 
place a long integer in a field .............................. 217 
flush the message line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 218 
get the maximum number of occurrences. . . . . . . . . . . . . . . . . . . .. 219 
switch between menu mode and data entry mode on a dual-purpose 
screen ................................................ 220 
display a message at a given column on the status line .. ;....... 221 
fmd a message given its number. . . . . . . . . . . . . . . . . . . . . . . . . . .. 222 
fmd a message given its nwnber . . . . . . . . . . . . . . . . . . . . . . . . . . .. 223 
read message file into memory ..................... ; .... _ .. ~ -224 
display a status message in a window. . . . . . . . . . . . . . . . . . . . . . .. 227 
variants that take a field name only ......................... 228 
obtain field name given field number . . . . . . . . . . . . . . . . . . . . . . .. 229 
position cursor to the first unprotected field beyond the cmrent line 230 
forcibly invalidate a field ................................. 231 
test if field is null ....................................... 232 
fmd the highest numbered occurrence containing data . . . . . . . . . .. 233 
variants that take a field number and occurrence number. . . . . . . .. 234 
get the current occmrence number .......................... 235 
move the cursor into a field, offset from the left ............... 236 
set a Screen Manager option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237 
shift a field by a given amount ............................. 238 
obtain value of a global strings . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 239 
protect an array ......................................... 241 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

pset 
putfield 
putjctrl 
pwrap 
query_msg 
qui_msg 

quiecerr 

rd_part 
rdstruct 
rescreen 
resetcrt 
resize 
return 
rmformlist 
rrecord 
rscroll 
s_val 

Modify value of global strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 
put a string into a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 245 
associate a control string with a key ........................ _ 247. 
put text to a word wrap field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 248 
display a question, and return a yes or no answer .............. 249 
display a message preceded by a constant tag, and reset the 
message line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 250 
display error message preceded by a constant tag, and reset the 
status line ..............•.............................. 251 
read part of a record to the current screen .................... 252 
read data from a record to the screen . . . . . . . . . . . . . . . . . . . . . . . . 254 
refresh the data displayed on the screen. . . . . . . . . . . . . . . . . . . . . . 255 
reset the terminal to operating system default state . . . . . . . . . . . .. 256 
notify JAM of a change in the display size ................... 257 
prepare for return to JAM application. . . . . . . . . . . . . . . . . . . . . . . 258 
empty the memory-resident form list ....................... 259 
read data from a record defined in the data dictionary. . . . . . . . . .. 260 
scroll an array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 262 
validate the current screen ................................ 263 

sc_max alter the maximum number of occurrences allowed in a scrollable . 
array ................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 265 

sdtime get formatted system da~ and time ......................... 266 
select select a checklist or radio button occurrence ...... . . . . . . . . . . .. . 269 
setbkstat set background text for status line ..................•....... 270 
setstatus turn alternating background status message on or off ........... 272 
sh_off determine the cursor location relative to the start of a shifting field 273 
shrink_to_fit remove trailing empty array elements and shrink screen. . . . . . . .. 274 
sibling define the current window as being or not being a sibling window. 275 
size_oCarray get the number of elements ............................... 277 
skinq obaain soft key information by position ., . . . . . . . . . . . . . . . . . . . . 278 
skmark mark or unmark a soft key label by position ........... ;...... 280 
skset set characteristics of a soft key by position ................... 282 

: .. skvinq. obaain soft key information by value ......................... 284 
skvrnark mark a soft key by value ................................. 286 
skvset set characteristics of a soft key by value ..................... 287 
strip_amcptr strip amount editing characters from a string. . . . . . . . . . . . . . . . .. 289 
submenu_close close the current submenu .............................. 290 
svscreen register a list of screens on the save list . . . . . . . . . . . . . . . . . . . . . . 291 
Cscroll test whether an array can scroll ............................ 292 

JAM Release 5 1 March 91 Pageix 



Stratus COBOL Programmer's Guide 

t_shift test whether field can shift ................................ 293 
tab move the cursor to the next unprotected field . . . . . . . . . . . . . . . . .. 294 
tst_all_mdts fmd first modified occurrence. . . . .. . . . . . . . . . . . . . . . . . . . . . . .. 295 
uinstall install an application function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 296 
ungetkey push back a translated key on the input ........ ,............. 298 
unsvscreen remove screens from the save list ., ..................... , . .. 299 
viewport modify viewport size and offset ............................ 300 
vinit initialize video translation tables ..•........................ 301 
wcount obtain number of currently open windows .................... 302 
wdeselect restore the formerly active window ......................... 303 
window display a window at a given position ........................ 304 
winsize allow end-user to interactively move and resize a window ....... 307 
wrecord write data from the screen and LOB to a record defined in the 

data dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 308 
wrt-part· write part of the screen to a record .......................... 309 
wrtstruct write data from the screen to a record . . .. . . . .. . . .. . . . . . . . . ... 311 
wselect activate a window ......................... . . . . . . . . . . . . .. 312 

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 

Chapter 13 • 
. Library Function Index ............................. 315. 

Appendix A. 
Notes for C Programmers ............ ' .............. . 

A.I. Introduction ............................................. . 
A.2. Syntax ...............•.........•......................... 

A.2.I. Numeric Arguments .............................. . 
A.2.2. Character String Arguments ........................ . 
A.2.3. Return Values From Library Routines ................ . 

A.3. Unsupported Standard Library Functions ....................... . 
A.4. Special Interface Library Functions ........................... . 
A.5. Functional Differences in Supported Library Functions ........... . 
A.6. Return Values from COBOL Functions ........................ . 
A.7. Header Files 

Appendix B. 
Error Message Numbers ........................... 

Page x JAM Release 5 1 March 91 

A-I 
A-I 
A-I 
A-I 
A-2 
A-2 
A-2 
A-3 
A-3 
A-4 
A-5 

B-1 



Stratus COBOL Programmer's Guide 

Chapter 1. 

Introduction 
This document is intended for JAM Programmers. We discuss the development and cre
ation of executable JAM programs incorporating the Screen Manager, developer-written 
hook functions, and the JAM Executive. We will briefly touch on how custom executives 
may be written. Finally, there is a comprehensive reference of JAM library functions. 

Discussions on the creation of JAM screens, data dictionaries, and keysets are found in 
the Author's Guide. JPL is fully documented in the JPL Programmer's Guide. 

This document assumes that the reader has previously read the JAM Development Over
view and the Author's Guide. The Development Overview is particularly important as the 

. major architectural components of JAM are explained there in detail. 

. JAM is written in C, and the C programming interface and libraries' are distributed with 
every license. This COBOL . language interface document is an adaptation of the JAM C 
Programmer's Guide. 

You will need to program in COBOL (or some other supported third-generation lan
guage) to accomplish the following tasks: 

• To customize JAM to your environment or application by modifying 
the main program provided in source form with the produCL 

• To write hook functions that do application-specific and back-end pro
. cessing during the execution of the application. 

• To take full control of the application by writing an application-specific 
executive l , 

• To create executable JAM Programs. 

As discussed in detail in the Development Overview, JAM Applications consist of 
screens, a data dictionary, hook functions, and an executable program. The creation of 
1. It is strongly recommended that the JAM Executive be used in all but the most IDlUSual of circwnstances. 
A canparison of the JAM Executive with your own executive is presented in the Development Overview. 

JAM Release 5 1 March 91 Page 1 



Stratus COBOL Programmer's Guide 

screens and data dictionaries is discussed in the Author's Guide. JPL programming is dis
cussed in the JPL Programmer's Guide. In this chapter, we discuss how to create a JAM 

. program. Compilation and linking are specific to platforms and operating systems and are 
discussed in the Installation Guide. 

Two different versions of an application can·be created with JAM. The Application Ex
ecutable is the program delivered to the en<H1ser to control the run time application. The 
JAM Authoring Executable is used to create application components and test the applica
tion during developmenL Only the JAM Authoring Executable will grant user access to 
the Screen Editor, the Data Dictionary Editor, and the Keyset Editor. The JAM Authoring 
Executable can only be used for the testing of applications that use the JAM Executive. 

The JAM product is distributed with a plain version of the JAM Authoring Executable; 
one without any application-specific hook functions or records linked in. It is called 
jxform. Its use is detailed in the Author's Guide. New versions of the Authoring Ex
ecutable with application-specific hook functions linked in may be created, but JAM li
censes specifically forbid their distribution as runtime applications. 

1.1. 

APPLICATION EXECUTABLE 
Application Executable programs fall into two categories: those that use the JAM Execu
tive to manage the flow of control from screen to screen, and those that use an applica-. 
tion-specific executive. We discuss both of these approaches in the sections that follow.;· 

1.1.1. 

Applications Using the JAM Executive 
In applications that use the JAM Executive, most of the control flow is encapsulated in 
the screens. The majority of the COBOL programming task is to write hook functions 
(section 2. page 7) that are called by the Screen Manager or by the JAM Executive when 
certain events occur. 

Applications that use the JAM Executive will need to be linked with the COBOL inter
face library xif, the Screen Manager library srn. the JAM Executive library jrn. and, in 
general, the standard math library on your system. 

NOTE: Refer to the Stratus Software Release Bulletin for specifics of the VOS library 
setup. 

JYACC provides the main routine source code for applications that use the JAM Execu
tive in a file called jrnain. cobol. This routine performs various necessary initializa-

Page 2 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

tions before calling the function that starts up the JAM Executive. You may want to 
modify this code to change JAM's default behavior. 

1.1.2. 

Applications Using a Custom Executive 
In rare cases, a developer may choose to write a custom executive, one that is specific to 
a particular application. In custom executives, no library functions specific to the JAM 
Executive should be used. The JAM Executive functions may only be used in applica
tions using the JAM Executive - they are listed in section 11.15. on page 87 .. 

Applications that do not use the JAM Executive should be linked with the COBOL inter
face library xi f, the Screen Manager library sm, and, in general, the standard math li
brary. If the LDB is needed, the JAM Executive library jm should also be linked in, but 
it is important the application not call any JAM Executive routines. 

The "sample" application provided with JAM is a simple example of an application using 
a custom executive.2 This application brings up a screen on which the end-user can enter 
some account data, and then save the data and call it up again. There is a help screen, tied 
to one of the function keys, which is implemented as a memory-resident screen, and a 
hook written function that verifies the area code. The discussion below outlines the basic 
steps that a custom executive should perform, using sample. cobol as an example. 

To follow this discussion, you should either print this file out, or call it up in an editor. 
Refer to the Stratus Software Release Bulletin for the location of sample. cobol and 
the hook function areacode. cobol. 

DeclaratIons 

After the Environment Division, a record is copied into the File Section of the Data Divi
sion. The record was created from the "sample I " screen via the f2struct utility. Next, 
a memory-resident help screen is copied into the Working Storage Section. This file was 
created via the bin2cob utility from a binary JAM screen file. Various variable and pa
rameter declarations follow, including the Header files mentioned below. 

Header Flies 

JAM user defmes are copied in as necessary, depending on the library routines utilized in 
the program. The documentation for each library routine indicates which, if any, header 
fIles are required. 

2. Note that JPL is available to applicatioos that do not use the JAM ExcaJtive. Note also that hook fimc
tions may be installed and used in applications that do not use the JAM Executive. These applications. howev
er. will not be able to usc control strings. 

JAM Release 5 1 March 91 Page 3 



Stratus COBOL Programmer's Guide 

Screen Manager Initialization 

.. The Screen Manager and the tenninal are initialized in the Procedure Division with a call 
to xsrn ini tcrt. Since an empty string is passed as the argument, the search path for 
screens is expected to be found in the environment 

Install Hook Functions 

Most Screen Manager hook functions are installed via the -retain_all argument to 
the bind command. This is the case for the hook function areacode, which is called 
as a field validation function. For certain types of hook functions, explicit installation is 
necessary and should occur here-after initialization, but before displaying the first 
screen. The various types of hook functions and their installation are described in detail in 
Chapter 2. 

Display the Main Form 

After initialization is complete, the screen 5 ample 1 . f rm is opened as a form with a call 
to xsrn _ r _ form. If an error occurs, the program will tenninate. 

Activate Screen 

sarnplel. frm is activated within a loop. The loop tenninates if the user strikes the 
EXIT key, which causes the routine xsrn input to return with the return code EXIT 
defined in srnkeys . incl. cobol. Theactual data entry, cursor movement, help pro
cessing, character edit masking, and validation are handled within xsrn input, so the 
programmer need not be concerned with them.· Whenever the user strikes 1RANSMIT, 
EXIT, or some other function key, xsrn_ input returns control to the calling program. In . 
this case, the PF2, PF3 and EXIT keys cause specific actions. All other function keys 
cause a beep and the while loop to continue, calling xsrn _input again. 

Open a Window 

The PF3 key brings up the memory--resident screen that was installed earlier, and then 
waits for the user to press a key. 

Close a Window 

During the run of any application, there is always a fonn displayed. When a new fonn is 
displayed, all existing screens are implicitly closed. Windows, however, need to be ex-

. plicitlY closed if the application is to retreat to an underlying screen. After the PF3 win
dow is displayed, when the user strikes a key the program calls xsrn close window 
to close this window. - -

Handle Errors 

The executive should have a facility to handle errors. The PF2 key triggers a subroutine 
which opens a window allowing the user to save or read data. While the specifics of this 

Page 4 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

data manipulation are beyond the scope of this introductory discussion, the second to last 
line of the source listing illustrates the error handling routine xsm_err_reset, which 
displays an error message on the status line. The routine takes a single string argument, 
and places that string on the status line. The user is forced to acknowledge the error by 
striking the space bar3 , 

Reset the Terminal 

Before the application tenninates, it calls xsm _ re3etcrt to reset tenninal characteris
tics to a state expected by the operating system. 

1.2. 

AUTHORING EXECUTABLE 
The Authoring Executable must use the JAM Executive, and may have developer-writ
ten hook functions linked in. The main routine for the Authoring Executable is provided 
in source fonn in a file called jxmain. cobol. You may want to modify that me to 
change the default behavior of the authoring tool jxform. It is strongly suggested that 
JAM developers read and understand this code, as it is instructive and may help with an 
understanding of the product 

The compiled Authoring Executable maybe called with the optional command-line 
switch -e. This will cause the authoring tool to start up directly within the Screen Editor 
(as opposed to starting up in application mode). 

Authoring executables must be linked with the COBOL interface library xif, the JAM 
Authoring Library jx, the JAM Executive library jm, the Screen Manager library 3m, 
and, in general, the standard math library. Since these executables are linked with the 
JAM Authoring Library jx, they may not be re-sold or distributed on machines for 
which there is no software license from JYACC. This restriction applies only to Author
ing Executables, which are intended for application development only. 

NOTE: Refer to the Stratus Software Release Bulletin for specifics of the vas library 
sebJP· 

3. The developer may change the way messages are acknowledged with the library routine XSM _ OP T ION. 

JAM Release S 1 March 91 PageS 



Stratus COBOL Programmer's Guide 

Chapter 2. 

Hook Functions 
The primary coding task facing JAM programmers is writing hook functions. These 
functions, which are called by the JAM Executive and by the Screen Manager when cer
tain well-defined events occur, are written in COBOLS. 

In this chapter, we discuss how hook functions are written and installed. They must also 
be compiled and linked into the JAM Application (or Authoring) Executable: see the In
stallation Guide for details of that We also discuss what JAM events have hooks accessi
ble to developers and what arguments are passed to hook functions from any given hook. 
Finally, we discuss in detail the various types of hook functions, showing examples of 
some of them, and explaining how they are installed and used. 

2.1. 

PREPARATION AND INSTALLATION 
Hook functions, once properly installed, are called at certain well- defmed JAM events. 
These events are outlined below in section 2.1.1. and discussed in detail later in the chap
ter. 

There are many events that have hooks accessible to developers. JAM passes different 
arguments to the various hook functions, and interprets the return codes differently for 

,each one. It is important that hook functions process the arguments that are passed cor
rectly, and that they return meaningful codes based on the events to which they are at
tached. 

Hook functions are installed individually, and are called at runtime by JAM when a cer
tain event type occurs. Most hook functions are called by the Screen Manager. However, 
S. Hook fund.iOlU may also be writlen in C and other third-generatioo programming languages for which 
JYACC supporu a language interface. In particular, Fortran, Cobol and PUI are available for JAM on some 
platfonnl. 

JAM Release 5 1 March 91 Page 7 



Stratus COBOL Programmer's Guide 

the hook functions invoked with control strings are called by the JAM Executive, and 
will only be accessible to applications using a custom executive through JPL. 

2.1.1. 

Types of Hook Functions 
There are twenty-two installable hook function types, six of which are installed when the 
application is bound and sixteen of which are installed as individual functions. They are 
briefly outlined below, and discussed in detail later in the document: 

.FIELD-FUNC 
These functions are installed using the -retain all argument of the 
bi nd command. 1be functions on this list may be designated in the Screen 
Editor to be called by the Screen Manager as field entry, exit or validation 
functions for specific fields. The JPL at ch verb may also be used to access 
these functions. 

·GROUP-FUNC 
These functions are installed using the -retain_all argument of the 
bind command. These functions may be designated in the Screen Editor to 
be called by the Screen Manager as group entry, exit or validation functions 
for specific groups (Radio Buttons and Checklists). 

·SCREEN-FUNC 
These functions are installed using the -retain...,:all argument of the
bind command. These functions may be designated in the Screen Editor l0-
be called by the Screen Manager as screen entry or exit functions on particu
lar screens. 

·CONTROL-FUNC 
These functions are installed using the -retain all argument of the 
bind command These functions may be entered and invoked from control 
strings. They are often associated with function keys and menus in the Screen 
Editor or with thexsmyut jctrllibrarycalI. TheJPL call verb can in
voke control functions. 

-nFLT-FIELD-FUNC 
This is an individual function. It is installed using the library routine 
xsm n uinstall. OnceinstaIled, it is called on entry, exit and validation 
for all fields. . 

-DFLT-GROUP-FUNC 

PageS 

Similar to the DFLT-FIELD-FUNC, this individual function is called on 
entry, exit. and validation for alI groups. 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

·DFLT-SCREEN-FUNC 
Individual function called on entry and exit for all screens. 

·KEYCHG-FUNC 
Individual function called whenever JAM reads a key from the keyboard. 
This allows for the application to intercept and process (and possibly trans
late) keystrokes at the logical key level. 

.INSCRSR-FUNC 
Individual function called by JAM whenever the keyboard entry mode 
toggles between insert and overstrike mode. This allows an application to up
date the display, if desired, to provide an indication of the new mode. Often 
used if there is no ability to change cursor styles between insert and over
strike modes. 

·CKDIGIT-FUNC 
Individual function called by JAM for check digit validation of numeric 
fields. Only necessary if the default check-digit algorithm provided with 
JAM is not sufficient 

·UINIT-FUNC 
Individual function called just before the Screen Manager and the physical 
display are initialized at the start of the application. 

·URESET-FUNC 
Individual function caIIedjust after the Screen Manager and the physical dis

.... play are closed and reset at the end of the application, even if the application 
aborts ungracefully. 

·RECORD-FUNC 
Individual function used to record keystrokes so they can be played back for 
tutorials or for regression testing. 

·PLAY-FUNC 
Individual function used to playback recorded keys . 

• AVAIL-FUNC 
Individual function used in advanced record/playback algorithms. 

·STAT-FUNC 
Individual function used to intercept JAM status line processing and alter or 
replace it 

~PROC-FUNC 
Individual function used to intercept JAM video processing and to alter or 
replace it 

JAM Release 5 1 March 91 Page 9 



'.' 

Stratus COBOL programmer's Guide 

-BLKDRVR-FUNC 
This is an individual function that acts as a block mode tenninal driver. This 
is discussed in section 10.1.3. 

-ASYNC-FUNC 
Individual function called asynchronously when JAM is waiting for key
board input This is installed via the library routine x s~ as yn c. Often used 
to poll external systems for mail delivery or the availability of data over a 
communications line. 

2.1.2. 

Installing Functions 
As mentioned above, certain hook functions must be installed explicitly with the library 
routines xsm n uinstall or xsm async, others are installed using the -re
tain_all argument of the bind command. 

xsm n uinstall is called with three arguments. The flTSt argument identifies the 
type of function being installed, and may be one of the following values: 

UINIT-FUNC CKDIGIT-FUNC STAT-FUNC 
URESET-FUNC BLKDRVR-FUNC DFLT-FIELD-FUNC 
VPROC-FUNC PLAY-FUNC DFLT-SCREEN-FUNC 
KEYCHG-FUNC RECORD-FUNC DFLT-GROUP-FUNC 
INSCRSR-FUNC AVAIL-FUNC 

. The second argument is the name of the function; The third argument identifies the lan=
guage. This argument should be 1 for all programming languages except C. . 

xsm async is used exclusively for installing asynchronous functions. It takes as argu
mentS the address of the function and a timeout period. 

The other function types, which are installed via the -retain_all argument to the 
bind command, are the following: 

FIELD-FUNC 
SCREEN-FUNC 
CONTROL-FUNC 
GROUP-FUNC 

2.2. 

WRITING HOOK FUNCTIONS 
Arguments passed to hook functions and return values received from hook functions vary 
from hook to hook. In this section, we discuss the various JAM hooks in detail. 

Page 10 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

2.2.1. 

Hook Function Return Codes 
To set a return value, declare a return value argument as PIC 9 (5) cornp-5 in your 
COBOL routine, and move the appropriate value to it Then use the following syntax 
when exiting the routine: 

exit program with return-value. 

2.2.2. 

Field Functions 
. The Screen Manager will call field functions, if specified, on field entry, field exit, and 
field validation. Calls to field entry and field exit functions are guaranteed to be paired for 
any given field 

A single default field function may also be installed. It will be invoked on entry, exit, and 
validation for every field. The default field function must be installed explicitly as 
DFLT-FIELD-FUNC via xsm n uinstall. 

JPL procedures may be directly specified as field functions in the Screen Editor by pre
ceding their name with the string "jpl ", for example jpl fieldfunc . 

.. Field Function Invocation 
Field functions are called for field entry whenever the cursor enters a field, including 
when the field containing the cursor is activated by virtue of an overlying window being 
closed Field functions are called for field exit whenever the cursor leaves a field, includ
ing when the field is exited because a window is popped up over the existing screen. Field 
functions are called for validation whenever the field is validated. This occurs at the fol
lowing times: 

• As part of field validation, when you exit the field or scroll to the next 
occurrence by filling it or by hitting TAB or RETURN key. The BACK
TAB and arrow keys do not nonnally cause validation. Field functions 
are called for validation only after the field's contents pass all other vali
dations for the field. 

• As part of screen validation when the XMIT key is struck. 

• When the application code calls library routines for field validation. 

Field functions may also be invoked from JPL with the atch verb. 

JAM Release 5 1 March 91 Page 11 



(., .. -.. 

Stratus COBOL Programmers Guide 

For fields that are members of menus, radio buttons, or checklists, the validation function 
is not called as part of validation. The validation function for such fields is called instead 
when that field is selected. For cheCklist fields, the field validation function is also called 
when the field is deselected. 

Field functions specified for field entry via the Screen Editor are invoked after any in
stalled default field function. Field functions specified for field exit or validation via the 
Screen Editor are called before any installed default field function. 

Field Function Arguments 
All field functions receive four arguments: 

1. The field number as an integer. 

2. A buffer containing a copy of the field's contents. 

3. The occurrence number of the data as an integer. 

4. An integer containing the VALIDED and MDT bits associated with the 
item or field, and additional flags indicating the circumstances under 
which the function was called. 

The information in the fourth parameter includes the VALIDED and MDT bits and sever
al flags indicating why the function was called. The following values are defmed in the 
illesmflags.incl.cobol: 

IIvALIDED-BIT 

-MDT-BIT 

-K-ENTRY 

-K-EXIT 

If this is set, the field has passed all its validations and has not been modified 
since. This value is set to 32. 

If this is set, the field data has been changed either from the keyboard or from 
the application code since the current screen was opened7• JAM never clears 
this bit. The application code may clear it directly with the xsm _ bi top li
brary routine. This value is set to 64. 

If set, the field function was called on field entry. This value is set to 128. 

If set, the field function was called on field exit8• This value is set to 16. 

7. Note thai when the screen is being opened, when the screen entry functioo modifies data in a field the 
MDT bil is not seL However, when the screen is exposed by vinue of an overlaid window being closed, modifi
cation of field data in the screen entry functioo will cause the MDT bUIO be seL 

8. Note that if neither K-ENTRY nor K-EXIT are set, the field is being validated. 

Page 12 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

-K-EXPOSE 

-K-KEYS 

-K-NORMAL 

If set, the field function was called because a window overlying the screen 
on which the field resides was opened or closed9, This value is set to 256, 

The following values indicate which keysuoke or event caused the field to 
be entered, exited, or validated. The remainder in the fourth parameter to the 
field fuoction after the above flags have been checked for and subtracted out, 
should be tested for equality against one of the six values below: 

If set, a "nonnal" key caused the cursor to enter or exit the field in question. 
For field entry, "nonnal" keys are NL, TAB, HOME, and EMOH. For field 
exit, only TAB and NL are considered "normal". 

-K-BACKTAB 

IIK-SVAL 

11K-USER 

If set, the BACKTAB key caused the cursor to enter or exit the field in ques
tion. 

If set, an arrow key caused the cursor to enter or exit the field in question. 

If set, the field is being validated as part of screen validation. 

. , If set, the field is being validated directly from the application with the 
xsm _ fval library routine. 

-K-OTHER 
If set, some key other than backtab, arrow or those mentioned as "normal" 
caused the cursor to enter or exit the field in question. 

Field functions are called for validation regardless of whether the field was previously 
validated. They may test the VALIDED and MDT bits to avoid redundant processing. 

Field Function Return Codes 
" Field functions called on entry or exit should return O. Field functions called for valida

tion should return 0 if the field contents pass the validation criteria. Any non-zero return 
code should indicate that the field does not pass validation. If the returned value is 1, the 
cursor will not be repositioned to the offending field. Any other non-zero return value 
will cause the cursor to be repositioned to the field that failed the validation. This is useful 

9. This means that if both K-ENTRY and K-EXPOSE are set, the field u being exposed. IT K-EXIT and 
K - EXPOSE are set, the field is being hidden. 

JAM Release 5 1 March 91 Page 13 



Stratus COBOL Programmer's Guide 

because when the entire Screen is undergoing validation, the field that fails validation 
may not be the field where the cursor is. 10 

Example Field Function 
The following code illustrates how to interpret the fourth argument passed to a field func
tion, and how to set the function's return value. 

working-storage section. 

copy Wsmflags.incl.coboIW
• 

01 expose-call 
01 exit-call 
01 entry-call 
01 mdt-is-set 
01 val-is-set 
01 why-called 
01 fld-amount 
01 auth-Ievel 
01 data-buffer 
01 ret-value 

linkage section. 

01 fld-no 
01 fld-contents 
01 occur-no 
01 mise-flags 

pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
display-2 pic x(2S6). 
pic 5(9)9 comp-S value O. 

pic 5(9)9 comp-S. 
display-2 pic x(2S6) . 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 

procedure division using fld-no, ~ld-contents, occur-no, mise-flags .. 
field-func. 

* the following code shows how to break up mise-flags into its 
* components. the components are not actually tested here. 

move zero to expose-call. 

if mise-flags >= K-EXP05E 
move 1 to expose-call 
subtract K-EXP05E from mise-flags. 

move zero to entry-call. 

if mise-flags >= K-ENTRY 
move 1 to entry-call 
subtract K-ENTRY from mise-flags. 

10. In many cases, il is beuer for the field validatioo functioo itself to reposition the cursor before displaying 
an error message, otherwise the error message mighl be misleading. 

Page 14 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

move zero to mdt-is-set. 

if mise-flags >= MDT-BIT 
move 1 to mdt-is-set 
subtract MDT-BIT from mise-flags. 

move zero to val-is-set. 

if mise-flags >= VALIDED-BIT 
move 1 to val-is-set 
subtract VALIDED-BIT from mise-flags. 

move zero to exit-call. 

if mise-flags >= K-EXIT 
move 1 to exit-call 
subtract K-EXIT from mise-flags. 

move mise-flags to why-called. 

* validation routine showing use of return value. 
* csm_intval gives computational value. 

call "csm_intval" using fld-no giving fld-amount. 

if fld-amount < 10000 
go to done. 

* if amount requires authorization, check contents of field 
* named Wauth_Ievel". 

move Wauth level" to data-buffer. 
call wcsm_~_intval" using data-buffer giving auth-level. 

* if authorization level is too low, display error message 
* and set ret-value to indicate error. 

if auth-Ievel < 3 
move -1 to ret-value 
move "authorization required" to data-buffer 
call wcsm_quiet_err" using data-buffer. 

done. 
exit program with ret-value. 

2.2.3. 

Screen Functions 
The Screen Manager will call screen functions, if specified, on entry and exit of screens. 
Calls to screen entry and screen exit functions are guaranteed to be paired for each screen. 

JAM Release 5 1 March 91 Page 15 



Stratus COBOL Programmer's Guide 

A single default screen function may be installed. It will be invoked on entry and exit for 
every screen. The default screen function is installed as DFLT-SCREEN-FUNC via 
xsm n uinstall.Screen functions specified as entry or exit functions for a screen 
via the Screen Editor are installed via the -retain all argument to the bind com
mand. JPL procedures may also be directly specified as screen functions in the Screen 
Editor by preceding their name with the string "jpl ", for example jplscreen
func. 

Because of the way LOB processing and form stack handling is done, it is neither recom
mended nor supported to call any form or window display library routines from screen 
entry or exit functions. If it is necessary to display windows at screen entry, the library 
routine xsm _ ungetkey can be invoked, passing as the argument a function key with a 
control string that brings up a window, 

Screen Function Invocation 
Screen functions are called for screen entry whenever a screen is opened Screen func
tions are called for screen exit whenever a screen is closed Optionally, screen functions 
may also be called for entry when a screen is exposed by virtue of a window overlaying 
it being closed or deselected, and called for exit when a window is popped up or selected 
over the screen in question. This is not the default behavior because it would introduce 
incompatibilities with earlier releases of JAM, 

If you are not concerned with compatibility with earlier releases, it is strongly suggested ,. 
. that you make the following library function call near the beginning of your application,(o;. 

enabling the calling of screen functions when screens are exposed or hidden: j •. 

call "xsm_option" using EXPHIDE_OPTION, ON_EXPHIDE 

Screen functions specified for screen entry via the Screen Editor are invoked after any 
installed default screen function. Screen functions specified f~r screen exit via the Screen 
Editor are called before any installed default screen function, 

. Screen Function Arguments 
All screen functions receive two arguments: 

1. The screen name. 

2. An integer containing contextual information about the circumstances 
under which the function was called. 

The contextual information in the second parameter includes the following values: 

-K-ENTRY 

If this is set, the function was called on screen entry. 

Page 16 JAM Release 5 1 March 91 . 



Stratus COBOL Programmer's Guide 

-K-EXIT 

-K-EXPOSE 

-K-NORMAL 

-K-OTHER 

If this is set, the function was called on screen exiL 

If this is set, the function was called because the screen was selected or dese
lected, or because a window was popped over the screen or a window that 
used to be overlaid on the screen was closed11, 

If set, a "nonnal" call to xs~close_windowcausedthescreen to close, 

If set, the screen is being closed because another fonn is being displayed or 
because xsrn_resetcrt is called, 

Screen Function Return Codes 
All screen functions should return O. 

2.2.4. 

Control Functions 
Control functions are called by the JAM Executive in the processing of control strings 
and by JPL routines that call COBOL functions. The JAM Executive will call control 

,·functions, if-specified and· installed, when control strings that start with a caret (") 'are 
.. ,-executed. JPL procedures may also execute control functions by using the call verb. 

There is no default control function. Control functions are installed via the -re
tain all argument to the bind command. JPL procedures may be directly specified 
as control functions by preceding the name of the procedure in a control string with the 
string "jpl ". 

A number of control functions of general use are built in to JAM. These built-ins can be 
used by any JAM application. They are listed in Chapter 4. 

Control Function Invocation .. 
- Control functions are called by the JAM Executive when a control string starting with a 

caret is processed. Such control strings are often attached, via the Screen Editor, to func
tion keys or to menu selections in control fields. In addition, the JPL verb call can be 
used to invoke control functions. 12 

11. If both K-ENTRY and K-EXPOSE are set, Ihe screen is being unCovered and activated by virtue of an 
overlaid window being closed. If both K - EXIT and K - EXPOSE are set, the screen is being covered and deacti
vated by virtue of a window being popped up over iL 

JAM Release 5 1 March 91 Page 17 



Stratus COBOL Programmer's Guide 

Control Function Arguments 
Control functions receive a single argument. namely a buffer containing a copy of the 
control string that invoked the function, without the leading caret. It is only the flrst word 
on the control string that identifles the function, the rest of the string may contain arbi
trary data that can be parsed and used as arguments. 

Control Function Return Codes 
Control functions may return any integer, The return value from a control function may 
be used for conditional control branching in target lists (see the Authoring Guide), If there 
is no target list. and the control string returns a function key which has an associated con
trol string in it's own right, then that control string is executed. 

2.2.5. 

Key Change Functions 
The key change function is called by the Screen Manager as keys are read from the key
board from within the library routine xsrn _getkey, which is called in the input process
ing for all keys by JAM. Only one individual keychange function may be installed at a 
time. 

Keys placed on the queue with the library routine xsrn ungetkey or with the built-in 
control function" jrn-keys- are not processed by the installed key change function. ~,;; 

The key change function is installed as KEYCHG-FUNC via xs~n_uinstall. ." 

Key Change Function Invocation 
The key change function is called exactly once for every key read in from the keyboard or 
supplied by the playback hook function described in section 2.2.11 .. 

Key Change Function Arguments 
The key change function is passed a single integer argument, namely the JAM logical key .. ·· 
that was read from the keyboard or received from the playback hook function. 

Key Change Function Return Codes 
The key change function returns the key to be substituted for the one passed as an argu
ment Any key returned to xsrn _get key wiu be returned by xsrn _get key to its caller. 

12. The JPL call verb does not execute control strings. 1l100b for functions to call. 

Page 18 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

However, if the key change function retums 0, xsm _get key will get the next key from 
the keyboard13. 

2.2.6. 

Group Functions 
The Screen Manager will call group functions, if specified, on entry, exit, and validation 
of radio buttons and checklists. Calls to group entry and group exit functions are guaran
teed to be paired for each group. 

A single default group function may be installed. It will be invoked on entry, exit, and 
validation for every group. The default group function is installed as 
DFLT-GROUP-FUNC viaxsm n uinstall.Group functions specified as entry, exit, 
or validation functions for a gi~n group in the Screen Editor are installed via the - re
tain all argument to the bind command. JPL procedures may also be directly speci
fied as &roup functions in the Screen Editor by preceding their name with the string" j pI 
", for example jpl groupfunc. 

Please note that field validation functions for fields that are members of groups or menus 
are called at selection and, in the case of checklists, deselection as discussed above in sec
tion 2.2.2. on page 11. 

Group Function Invocation 
.. Group functions are called for group entry whenever the cursor enters a group, including 
. the times when the group containing the cursor is activated by virtue of an overlying win
dow being closed. Group functions are called for group exit whenever the cursor leaves a 
group, including the times when the group is left because a window is popped up over the 
existing screen. Group functions are called for validation whenever the group is vali
dated. This occurs at any of the following times: 

• As part of group validation, when you exit the group by hitting TAB or 
making a selection from an autotab group. The BACKTAB and arrow 
keys do not normally cause validation. 

• As part of screen validation when the XMIT key is struck. 

• When the application code calls library routines for group validation. 

Group functions specified for group entry via the Screen Editor are invoked after any in
stalled default group function. Group functions specified for group exit or validation via 
the Screen Editor are called before any installed default group function. 

13. See the library routine XSM_KEYOPTION for a different method of changing the functioo of a logical 
key. 

JAM Release 5 1 March 91 Page 19 



Stratus COBOL Programmer's Guide 

Group Function Arguments 
All group functions receive two arguments: . 

1. The group name. 

2. An integer containing contextual infonnation about the validation state 
of the group and the circumstances under which the function was 
called. 

The infonnation contained in the third argument to group functions is identical· to that 
passed in the fourth argwnent to field functions. See section 2.2.2. on page 12 for an ex
planation. 

Group functions are caIled for validation regardless of whether the group was previously 
validated. They may test the VALIDED and MDT bits to avoid redundant processing. 

Group Function Return Codes 
Group functions called on entry or exit should return O. Group functions called for valida
tion should return 0 if the group selections pass the validation criteria. Any non-zero re
turn code should indicate that the group does not pass validation. If the returned value is 
I, the cursor will not be repositioned to the offending group. Any other non-zero return 
value will cause the cursor to be repositioned to the group that failed the validation. 

2.2.7. 

Asynchronous Functions 
The installed asynchronous function is called periodically by the Screen Manager while 
the keyboard input routine waits for user input It can be used to poll or otherwise manipu
late communications resources, or to update the display on the screen. 

The asynchronous function is installed individually as ASYNC-FUNC via the library rou
tine xsm_async. 

Asynchronous Function Invocation 
The asynchronous function is called from the very lowest level of JAM keyboard input. 
When the asynchronous function is installed, the device driver clock on the tenninal input 
device is set to time out on its character read operation, and if a character is not read in that 
time interval the asynchronous function is invoked before another character read opera
tion is attempted. The time out interval is specified when the function is installed. The 
time out is measured in tenths of seconds. The maximum interval is 255 (25.5 seconds). 

Page 20 . JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Asynchronous Function Arguments 
The asynchronous function is passed no arguments. 

Asynchronous Function Return Codes 
The asynchronous function should generally return O. If it returns -I, it will not be called 
again until at least one additional character has been read from the keyboard The asynch
ronous function may return a key, which will be returned to xsm _get key and on to the 
application. If that key is a JAM logical key, no further translation will be done. If the 
asynchronous function returns a data chamcter, JAM will interpret it as a physical key
board stroke. 

2.2,8, 

Insert Toggle Functions 
The Screen Manager will call the Insert Toggle Function when switching between input 
and overstrike mode for data entry. Generally this hook function will be used to update 
some aspect of the display informing the user of the current mode. 

The insert toggle function is installed individually as INSCRSR-FUNC via 
xsm n uinstall. JAM automatically installs an insert toggle function that changes 

- c - the c"UrSOr style when the mode is changed. If an application installs its own insert toggle 
- - -' ,function, the JAM function will be de-insta1led, and the new insert toggle function may 

want to call the function directly. 

~nsert Toggle Function Invocation 
The function will be invoked by JAM whenever the data entry mode shifts from insert to 
overstrike mode or from overstrike to insert mode. Most often, this occurs when the end
user strikes the INSERT key. 

-.Insert Toggle Function Arguments 
One integer argument is passed to the insert toggle function. It specifies the mode. If its 
value is I, JAM is entering insert mode. If it is 0, JAM is entering overstrike mode. 

Insert Toggle Function Return Codes 
The insert toggle function should return O. 

JAM Release 5 1 March 91 Page 21 



Stratus COBOL Programmer's Guide 

2.2.9. 

Check Digit Functions 
The Screen Manager will call the check digit function for any field that is marked for 
check digit in the Screen Editor. It may be used to implement any desired check-digit al
gorithm. If there is no check digit function installed in the application, JAM will use the 
default library function xsm _ c kdi g it. A new check digit function is installed as 
CKDIGIT-FUNC via the library routine xsm _n_uinstall. 

Check Digit Function Invocation 
The check digit function is called by JAM during validation of fields marked for check 
digit 

Check Digit Function Arguments 
The check digit function is passed the following arguments: 

1. The integer number of the field undergoing validation. 

2. The field contents. 

3. The integer occurrence number for the data undergoing validation. 

4. The integer modulus as specified in the Screen Editor. 

5. The integer minimum number of digits as specified in the Screen Edi- . 
tor. 

Check Digit Function Return Codes 
The check digit function should return 0 if the field passes the check digit validation. If a 
non-zero value is returned, the cursor is positioned to the offending field and the field is 
not marked as validated. It is assumed that the check digit function display its own error 
messages. 

2.2.10. 

Initialization and Reset Functions 
The initialization and reset functions are called by the Screen Manager on display setup 
and display reset respectively. The initialization function can be used to set the terminal 
type and the reset function can be used to handle any cleanup that the application needs to 
do whether it is terminated gracefully or not. 

Page 22 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Initialization and reset functions are installed individually as UINIT-FUNC and URE
SET-FUNC respectively via calls to xsm _ n _ uinstall. 

Initialization and Reset Function Invocation 
The initialization function is called from the library routine xsm_ini tcrt. When it is 
called, JAM has not yet allocated its required memory structures, and the physical dis
play characteristics are still untouched by JAM. In general, it is suggested that hook func
tions be installed after initialization with xsm _ ini tcrt, but clearly this is an excep
tion. The initialization function must be installed before xsm_ini tcrt is called. This 
function is installed as UINIT-FUNC via the library routine xsm_n_uinstall. 

The reset function is called from the library routine xsm_resetcrt after JAM has re
leased its memory and reset the physical display characteristics. Since the JAM abort 
routine xsm cancel calls xsm resetcrt before the application terminates, the re
set function is generally called atapplication exit whether the exit is graceful or notl4. 
This function is installed as URESET-FUNC via the library routine xsm_n_uins
tall. 

Initialization and Reset Function Arguments 
The initialization function is passed a single argument, namely a 30 byte character buffer 
into which it may place the null-terminated string mnemonic identifying the tenninal 
type in use. This is primarily of use on operating systems without an environment. This 

.: function can be used to obtain the terminal type in some system-specific way. 

The reset function is passed no arguments. 

Initialization and Reset Function Return Codes 
Both the initialization and reset hook functions should return O. 

2.2.11. 

Recording and Playing Back Keystrokes 
.. The Screen Manager provides hooks for recording and playing back keystrokes. This fa

cility could be used to implement simple macro capabilities, or to perform regression test
ing on a JAM application. The developer should ensure that the record and playback 
functions are not in use simultaneously. 

14. Interrupt handlers may need to be set by the developer to insure that XSM CANCEL is called at all the 
necessary hardware and software interrupt signalB. It is suggested thal this setup be dale in the function in
stalled as an initialization function. 

JAM Release 5 1 March 91 Page 23 



Stratus COBOL Programmer's Guide 

Record and playback functions are installed individually as RECORD-FUNC and 
PLAY-FUNC respectively via xsm_n_uinstall. 

Record/Playback Function Invocation 
The record function is called from xsm_getkey when it has a translated key value in 
hand that it is about to return to the application, The playback function is called from 
xsm get key, when installed, in place of a read from the keyboardlS• For accurate re
gresSion testing, the playback function may need to pause and flush the output to simulate 
a realistic rate of typing, and may need to call the asynchronous function, if there is one. 

Record/Playback Function Arguments 
The record function is passed a single integer, which is the JAM logical key to record. 
Generally that key is recorded in some fashion for a possible playback at a later date. The 
playback function receives no arguments. 

Record/Playback Function Return Codes 
The record function should return O. The playback function should return the logical key 
that was recorded at an earlier time. 

2.2.12. 

Status Line Functions 
The status line function is called by the Screen Manager whenever the status line is about 
to be flushed, or physically written to the terminal device. It is intended for use on termi
nals that require unusual status line processing, beyond the scope of the generic code, but 
other uses are possible. 

The status line function is installed individually as STAT-FUNC via xsm_n_uins
tall. 

Status Line Function Invocation 
The status line function is called when the status line is about to be physically written to 
the terminal display. Because of delayed write, this mayor may not be at the time when 
the functions that specify message line text are actually called. 

15. Since charaClen are recorded after processing by the key change function but played back before key 
change lranslation, some key change functions may interi'ere with the accurate playback of recorded key
strokes. See Ihc description of XSM_ GETKEY in the Programmer's Reference Manual for more infonnation. 

Page 24 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Status Line Function Arguments 
.. The status line function receives no arguments, It can access copies of the text and attrilr 

utes about to be flushed to the status line using the following library routine calls: 
call "xsmyinquire" USING SP-STATLINE GIVING STAT-TEXT. 
call "xsmyinquire" USING SP-STATATTR GIVING STAT-ATTR. 

Status Line Function Return Codes 
If the status line function returns 0, JAM continues its usual processing and actually 
writes out the status line. If the function returns any other value, JAM assumes that the 
physical write of the status line was handled in the hook function, 

2.2.13. 

Video Processing Functions 
The Screen Manager calls the developer-installed video processing function to allow for 
special handling of various video sequences by the application. This is a specialized hook 
required only when the JAM video file is unable to provide support for a particular type 
of tenninal. 

The video processing function is installed individually as VPROC-FUNC via 
xsm n uinstall. 

Video Processing Function Invocation 
The video processing function is called by JAM's output routine just before a video out
put operation is about to begin. 

Video Processing Function Arguments 
The video processing function receives two arguments. The flfSt is an integer video pro
cessing code· defined in the header file smvideo. incl. cobol and outlined in the 
table below. The second is an array of integers with parameters for the video processing 
code. The number of parameters passed depends on the operation as shown in the table 
below, For video processing codes that require no arguments, a NULL is passed. 

Code Operation Description #of 
params 

V-ARGR remove area attribute 

V-ASGR set area graphics rendition 11 

JAM Release 5 1 March 91 Page 25 



Stratus COBOL Programmer's Guide 

Code Operation Description #0/ 
params 

V-BELL visible alann sequence 

V-CMSG close message line 

V-COF turn cursor off 

V-CON turn cursor on 

V-CUB cursor back (left) I 

V-CUD cursor down 1 

V-CUF cursor forward (right) 1 

v-cuP set cursor position (absolute) 2 

v-cuu cursor up 1 

V-ED erase entire display 

V-EL erase to end of line 

V-EW erase window to background 5 

V-INIT initialization shing 

V-INSON set insert cursor style 

V-INSOFF set overstrike cursor style 

V-KSET write to soft key label 2 

V-MODE4 single character graphics mode (also V-MODES, 6) 

V-MODEO set graphics mode (also V-MODEl, 2, 3) 

V-OMSG open message line 

V-RESET reset shing 

V-RCP restore cursor position 

V-REPT repeat character sequence 2 

Page 26 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Code Operation Description #of 
params 

v-scp save cursor position 

V-SGR set latch graphics rendition 11 

Video Processing Function Return Codes 
When the video processing function returns 0, JAM will continue with nonnal process
ing. If it returns any other value, JAM will assume that the operation has been handled in 
the hook function. This allows the developer to implement only necessary operations. 

Other Hook Functions 
The Screen Manager provides an additional hook to handle block mode tenninals. This 
function is best viewed as a driver. Block mode is described in Chapter 10. 

2.3. 

CODING STRATEGY, RULES AND 
PITFALLS 

2.3.1. 

Displaying Screens 
There are a number of library functions provided for the display of screens as fonns or 
windows. In general, the following rules and guidelines should be followed in choosing 
between them and deciding when they can be used: 

• The display of screens as fonns or windows from within screen func
tions at screen entry or screen exit is neither recommended nor sup
ported. 

• The routines xsm jform, xsm jwindow, and xsm jclose are 
provided specifically for the disptay and destruction of screens in appli
cations that use the JAM Executive. Applications not using the JAM 
Executive should not use these routines. They are recommended over 

JAM Release 5 1 March 91 Page 27 



Stratus COBOL Programmer's Guide 

the other screen dispiay routines in applications that do use the JAM 
Executive, 

• The form display routine x sm _j form manipulates the form stack ap
propriately, The use of any other form display routines in applications 
that use the JAM Executive will exhibit unexpected behavior, as the 
form stack will not be synchronized with the application flow. 

2.3.2. 

Recursion 
The developer should be careful, when using hook functions, to avoid the recursion that 
will come from nested hook function calls. Such recursion will not be easy to detect in the 
source code itself: some understanding of the product mechanism is required. 

For example, care should be taken when writing record, playback, or key change func
tions that read from the keyboard, or status line functions that themselves cause the status 
line to be flushed. A default screen entry function that in and of itself opens new screens 
could be a problem. 

Page 28 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 3. 

Local Data Block 
The Local Data Block, or LDB, is a region of memory for the storage of JAM field data 
that is generally shared between screens. It is discussed in the JAM Development Over
view and in the Author's Guide, 

3.1. 

LOB CREATION 
The LDB is created with the library routine call xsm _ldb _ ini t.This routine searches 
for a data dictionary flIe created from the authoring tool with the Data Dictionary Editor . 

.. For more information about the data dictiQnary and the Data Dictionary Editor, seethe 
Author's Guide. 

If the data dictionary file is found, it is read and a single LDB entry is created in memory 
for every data dictionary entry that has a nOn-zero scope. Note that only the name of the 
LDB entry is placed in memory, storage for the field data that is stored with the entry is 
not allocated until the entry is used. 

After it is created, the LDB is initialized from ASCII text flIes. These files, described in 
the Author's Guide, contain pairs ofLDB names and values. The LDB entries named are 

.. flIled with the values that follow them in the files. 

3.2. 

HOW JAM USES THE LOB 
JAM uses the LDB for the storage and propagation of field data from screen to screen in 
the application. Every time a screen is opened, or exposed by the closing of a window that 

JAM Release 5 1 March 91 Page 29 

.r ....... .'.-



Stratus COBOL Programmer's Guide 

covers it, every field on the sCreen named identically to an LDB entry is filled with the 
value of the LDB entry. This occurs after the screen entry function is called, 

Correspondingly, every time a screen is closed, or hidden when a window pops up over it, 
every LDB entry that is named identically to a field on the screen is fllied with the value 
of the screen field. This occurs before the screen exit function is called. 

When a screen is populated from the LDB at screen entry time, there is a subtle difference 
between a new screen being opened and a screen being exposed when a covering window 
is closed, When a screen is newly opened, only empty fields with corresponding LDB 
entries will be populated from the LDB. When a screen is exposed, all fields that have 
corresponding LDB entries will be populated. 

3.3. 

LOB ACCESS 
Data in the LDB can be accessed with the library routines xsm_n_getfield, 
x sm_ny ut field, xsm_i_getfield, xsm_iyutfield, and related functions 
that access data by field name. These routines access the data on the current screen if the 
field that is named exists on the current screen. If the field does not exist on the current 
screen, these routines access the LDB, 

During screen entry and exit processing only, the search order is reversed, During the. 
screen entry and exit functions, these access routines first search the LDB and then search-. 
the screen. This is because the LDB.is merged to the screen after the screen entry func-.: 
tion, and the screen is stored to the LDB before·the screen exit function. If the search or-~ 
der were not reversed the data accessed would be invalid!7. 

17. TIlls could, in a very small number of cases, introduce some incompatibilities wilh applications lhat were 
written with earlier releases of JAM. If such compatibility problems arise, use the library functioo XSM _ OP-

TIoN setting lhe option ENTEXT-OPTION to FORM-FIRST. 

Page 30 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 4. 

Built-in Control Functions 
This section describes control functions supplied with JAM. Note that the synopsis is for 
a JAM control string, not a programming language source statemenL The return value of 
a control function can be used in a target list; see the Author's Guide for information on 
control strings and target lists. 

You may use these functions in control strings and in JPL call statements. 

JAM Release 5 1 March 91 Page 31 



Stratus COBOL Programmer's Guide 

jm_exit 
end processing and leave the current screen 

SYNOPSIS 

DESCRIPTION 

Clears the current form or window and returns to the previous one, If the current form is 
the application's top-level form, JAM will prompt and exit to the operating system, 

The effect is like the default action of the run-time system's EXIT key. 

EXAMPLE 

The following control string invokes a function named proce s s. If it returns 0, another 
function is invoked to reinitialize the screen; but if it returns -I, the screen is exited. See 
jm _gotop for another example. 

A(-l=Ajm_exit; O=Areinit)process 

The example below shows how a form or a window can be replaced by another form or a 
window: 

Page 32 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jm_gotop 
return to application's top-level form 

SYNOPSIS 

DESCRIPTION 

Returns to the application's top-level screen, ordinarily the fIrSt screen to appear when 
the application was run. All forms on the fonn stack and windows on the window stack 
are discarded. 

The run-time system's SPFI key performs the same action, unless you change it using 
SMINICTRL. 

EXAMPLE 

The following menu makes use of both jrn_exit and jrn_90top. 

+-------------------------------------------------+ 
Query·customer database __ 
Update customer database_ 
Free-form query ___ _ 
Return to previous menu __ 
Return to main menu __ _ 

custquery.jam __ 
custupdate. jam_ 
lsql_.,..,--__ _ 
"jm_exit __ _ 
"jm_gotop __ _ 

+-------------------------------------------------+ 

JAM Release 5 1 March 91 Page 33 



Stratus COBOL Programmer's Guide 

jm_goform 
prompt for and display an arbitrary form 

SYNOPSIS 

DESCRIPTION 

This function pops up a window in which you may enter the name of a form; it will then 
close all open windows and attempt to display the fonn, as if that fonn's name had ap

. peared in a control string. It is useful for providing a shortcut around a menu system for 
experienced users. 

The result is the same as the default action of the run-time system's SPF3 key. 

EXAMPLE 

The following line, if placed in your setup file, will make the PFIOkey act like SPF3 nor
mally does: 

Page 34 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jm_keys 
simulate keyboard input 

SYNOPSIS 

Ajm_keys keyname-or-string {keyname-or-string ... } 

DESCRIPTION 

Queues characters and function keys that appear after the function name for input to the 
run-time system, using xsm _ ungetkey. The nm-time system then behaves as though 
you had typed the keys. 

Function keys should be written using the logical key mnemonics listed in 
smkeys.incl.cobol. Data characters should be enclosed between apostrophes I / , back
quotes ' ',or double quotes"". This function passes its arguments to xsm unget key 
in reverse order, so you supply them in the natural order. -

jm_keys will process a maximum of 20 keys. This limit includes function keys plus 
characters contained in strings. 

EXAMPLE 

Enter the name of your favorite bar, followed by a tab and the name of its owner: 

Ajm_keys 'Steinway Brauhall' TAB MJames O'Shaughnessy* 

Return to the preceding menu and choose the second option: 

Ajm_keys EXIT HOME TAB XMIT 

JAM Release 5 1 March 91 Page 35 



Stratus COBOL Programmer's Guide 

jm_mnutogl 
switch between menu and data entry mode on a dual
purpose screen 

SYNOPSIS 

Ajm_mnutogl (screen-mode) 

DESCRIPTION 

JAM supports the use of a single screen for both menu selection and data entry; one popu
lar example is a data entry screen with a "menu bar". The screen must, however, be either 
one or the other at any given moment This function switches the run-time system's treat
ment of the screen to the other mode. This function performs the same function as the 
MTGL logical key. 

An optional argument may be specified which will force the screen into a particular 
mode, regardless of its current state. To specify menu mode, use the argument 'M' (or 
'm'). To specify open-keyboard (data entry) mode, use the argument '0' (or '0'). 

Page 36 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jm_system 
prompt for and execute an operating system command 

SYNOPSIS 

"jm_system 

DESCRIPTION 

This function pops up a small window, in which you may enter an operating system com
mand, When you press TRANSMIT, it closes the window and executes the command. 
While the command is executing, your tenninal is returned to the operating system's de
fault I/O mode, 

The run-time system's SPFl key invokes this function by default 

EXAMPLE 

The following line, when placed in your setup file, will cause the PFI 0 key to act as SPFl 
nonnally does: 

SMINICTRL= PFIO = "jm_system 

JAM Release 5 1 March 91 Page 37 



Stratus COBOL Programmer's Guide 

. . . 
.jm_wlnslze 
allow end-user to interactively move and resize a win
dow 

SYNOPSIS 

DESCRIPTION 

Calling jrn winsize has the same effect as if the end-user had just hit the VWPT 
(viewport) iOgical key. The viewport status line appears and the user can move, resize and 
change the offset of the screen as well as move to any sibling windows. When the end-us
er hits XMIT (transmit) the previous status line is restored. 

In order for the end-user to able to move from one window to another, the windows must 
be siblings. Windows may be specified as siblings by specifying & & in a JAM control 
string. See the sections on "Viewports and Positioning" and "Control Strings" in the Au
thor's Guide for further information. This function parallels the library routine 
xsrn winsize. 

Page 38 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jpl 
invoke a JPL procedure 

SYNOPSIS 

Ajpl procedure argument ... 1 

DESCRIPTION 

This function invokes a procedure written in the JYACC Procedural Language. procedure 
should be the name of a JPL procedure or module; anything following that will be passed 
to the procedure as arguments. See the JPL Programmer's Guide for the rules used by the 
JPL interpreter to detennine which JPL procedure is executed. The value returned by 
your procedure will be returned by jpl for use in a target list 

This function is similar to the JPL jpl command. Colon expansion is done on the argu
ments. 

EXAMPLE 

The control string below invokes a JPL function to concatenate two strings and store the 
result in target. 

Ajpl concat target "king" "kong" 

JAM Release 5 1 March 91 Page 39 





Stratus COBOL Programmer's Guide 

Chapter 5. 

Keyboard Input 

Keystrokes are processed in three steps. First, the sequence of characters generclted by 
one key is identified. Next the sequence is translated to an internal value, or logical char
acter. Finally, the internal value is either acted upon or returned to the application ("key 
routing"). All three steps are table-driven. Hooks are provided at several points for appli
cation processing; they are described in the chapter ''Writing and Installing Hook Func
tions". 

5.1. 

LOGICAL KEYS 
JAM processes characters internally as logical values, which frequently (but not always) 
correspond to the physical ASCII codes used by tenninal keyboards and displays. Specif
ic physical keys or sequences of physical keys are mapped to logical values by the key 

, translation table, and logical characters are mapped to video output by the MODE and 
GRAPH commands in the video fIle. For most keys, such as the nonnal displayable char
acters, no explicit mapping is necessary. Certain ranges of logical characters are inter
preted specially by JAM; they are 

• Ox01OO to OxOlff: operations such as tab, scrolling, cursor mo-
tion 

• Ox6101 to Ox7801: function keysPFI-PF24 

• Ox4101 to OxS 8 0 1 : shifted function keys SPFI - SPF24 

• Ox6102 to Ox 7802: application keys APPI - APP24 

JAM Release 5 1 March 91 Page 41 



Stratus COBOL programmer's Guide 

5.2. 

KEY TRANSLATION 
The first two steps together are controlled by the key translation table, which is loaded 
during initialization. The name of the table is found in the environment (see the configu
ration guide for details). The table itself is derived from an ASCII me which can be modi
fied by any editor; a screeIH>riented utility, modkey, is also supplied for creating and 
modifying key translation tables (see the Utilities Guide). 

JAM assumes that the first character of any multi-character key sequence to be translated 
to a single logical key is a control character in the ASCII chart (OxOO to Oxlf, Ox7f, Ox80 
to Ox9f, or Oxff). All characters not in this range are assumed to be displayable characters 
and are not translated. 

Upon receipt of a control character, the keyboard input function xsm _get key searches 
the translation table. If no match is found on the first character, the key is accepted with
out translation. If a full match is found on the first character, an exact match has been 
found, and xsm get key returns the value indicated in the table. The search continues 
through subsequent characters until either 

1. an exact match on n characters is found and the n+ 1 'th character in the 
table is zero, or n is 6. In this case the value in the table is returned. 

2. an exact match is found on n-l characters but not on n. In this case 
xsm _get key attempts to flush the sequence of characters returned 
by the key. 

This last step is of some importance: if the operator presses a function key that is not in the .. 
table, the Screen Manager must know "where the key ends". The algorithm used is as fol
lows. The table is searched for aU entries that match the fU'St n-l characters and are of the 
same type in the n'th character, where the typeS are digit, control character, letter, and 
punctuation. The smallest of the total lengths of these entries is assumed to be the length 
of the sequence produced by the key. (If no entry matches by type at the n'th character, the 
shortest sequence that matches on n-l characters is used.) This method allows 
xsm_getkey to distinguish, for example, between the sequences ESC 0 x, ESC [ 
A, and ESC [ 1 0 -. 

5.3. 

KEY ROUTING 
The main routine for keyboard processing is xsm_input. This routine calls 
xsm _get key to obtain the translated value of the key. It then decides what to do based 
on the following rules. 

Page 42 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

If the value is greater than Oxlff, xsrn _input returns to the caller with this value as the 
retumcode. 

If the value is between OxOI and Oxlff, the key is frrst translated via the key translation 
table. This table is changed with the library routine xsrn _ keyoption. Then processing 
is determined by a routing table. Use xsrn _ key opt i on to get and set the routing infor
mation for a particular key. The routing value consists of two bits, examined independent
ly, so four different actions are possible: 

I. If neither bit is set. the key is ignored. 

2. If the EXECUTE bit is set and the value is in the range OxO 1 to Oxff, it 
is written to the screen (as interpreted by the GRAPH entry in the video 
me, if one exists). If the value is in the range OxlOO to Ox Iff, the appro
priate action (tab, field erase, etc.) is taken. 

3. If the RETURN bit is set, xsrn input returns the logical value to the 
caller; otherwise, xsrn _get key is called for another value. 

4. If both bits are set, the key is executed and then returned. 

The default settings are ignore for ASCII and extended ASCII control characters (OxOI
Ox If, Ox7f, Ox80 - Ox9f, Oxff), and EXECUTE only for all others. The default setting for 
displayable characters is EXECUTE. All other ASCII and exteneded ASCII characters 
are ignored. The application function keys (PFI-24, SPFI-24, APPI-24, and ABORn 
are not handled through the routing table. Their routing is always RETURN, and cannot 
be altered. AU other function keys (EXIT, SPGU etc ... ) are initially set to EXECUTE. 

Applications can chailge key actions on the fly by using xsrn _ keyoption. For exam
ple, to disable the backtab key the application program would execute 

call "xsm_keyoption" using BACK, KEY-ROUTING, KEY-IGNORE 

To make the field erase key return to the application program, use 
call "xsm_keyoption" using FERA, KEY-ROUTING, RETURN 

Key values can be found in the me srnkeys. incl. cobol. 

JAM Release 5 1 March 91 Page 43 





Stratus COBOL Programmer's Guide 

Chapter 6. 

Terminal Output Processing 
JAM uses a sophisticated delayed-write output scheme, to minimize unnecessary and re
dundant output to the display. No output at all is done until the display must be updated, 
either because keyboard input is being solicited or the library function xsm flush has 
been called. Instead, the run-time system does screen updates in memory, and keeps track 
of the display positions thus "dirtied". Flushing begins when the keyboard is opened; but 
if you type a character while flushing is incomplete, the run-time system will process it 
before sending any more output to the display. This makes it possible to type ahead on 

. slow lines. You may force the display to be updated by calling xsm_flush. 

JAM takes pains to avoid code specific to particular displays or terminals. To achieve this 
it dermes a set of logical screen operations (such as ''position the cursor"), and stores the 

. character sequences for performing these operations on each type of display in a file spe
. cific to the display. Logical display operations and the coding of sequences are detailed in 
the Video Manual; the following sections descn'be additional ways in which applications 
may use the information encoded in the video file. 

6.1. 

GRAPHICS CHARACTERS AND 
:z,J·ALTERNATE CHARACTER SETS 

Many tenninals support the display of graphics or special characters through alternate 
character sets. Control sequences switch the terminal among the various sets, and charac
ters in the standard ASCII range are displayed differently in different sets. JAM supports 
alternate character sets via the MODEx and GRAPH commands in the video file. 

The seven MODEx sequences (where x is 0 to 6) switch the terminal into a particular char
acter seL MODE 0 must be the normal character seL The GRAPH command maps logical 

JAM Release 5 1 March 91 Page 45 



Stratus COBOL Programmer's Guide 

characters 10 the mode and physical character necessary to display them. It consists of a 
number of entries whose fonn is 

logical value = mode physical-character 

When JAM needs 10 output logical value it will fIrst transmit the sequence that 
switches to mode, then ttansmit physical-character. It keeps track of the current 
mode, to avoid redundant mode switches when a string of characters in one mode (such as 
a graphics border) is being written. MODE4 through MODE6 switch the mode for a single 
character only. 

6.2. 

THE STATUS LINE 
JAM reserves one line on the display for error and other status messages. Many tenninals 
have a special status line (not addressable with nonnal cursor positioning); if such is not 
the case, JAM will use the bottom line of the display for messages. There are several sorts 
of messages that use the status line; they appear below in priority order. 

1. Transient messages issued by xsm _err_reset or a related function 

2. Ready/wait status 

3. Messages installed with xs~d_msg_line or xs~msg 

4. Field status text 

5. Background status text 

There are several routines that display a message on the status line, wait for acknowledge
ment from the operator, and then reset the status line to its previous state: 
xsm query msg, xsm err reset, xsm emsg, xsm quiet err, and 
xsm -qui msg. xsm query zMg waits for a yes/no response; which it rewms to the 
calling pro&ram; the others wait for you 10 acknowledge the message. These messages 
have highest precedence. 

xsm_setstatus provides an alternating pair of background messages, which have 
next highest precedence. Whenever the keyboard is open for input the status line displays 
Ready; it displays wai t when your program is processing and the keyboard is not open. 
The strings may be altered by changing the SM-READY and SM-WAI T entries in the mes
sage fIle. 

Uyou call xsm_d_msg_line, the display attribute and message text you pass remain 
on the status line until erased by another call or overridden by a message of higher prece
dence. 

Page 46 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

When the status line has no higher priority text, the Screen Manager checks the current 
field for text to be displayed on the status line. If the cursor is not in a field, or if it is in a 
field with no status text, JAM looks for background status text, the lowest priority. Back
ground status text can be set by calling xsm_setbkstat, passing it the message text 
and display attribute. 

In addition to messages, the rightmost part of the status line can display the cursor's cur
rent screen position, as, for example, C 2, 18. This display is controlled by calls to 
xsm_c_vis. 

During debugging,calls toxsm_err_reset or xsm_ quiet_err can be used to pro
vide status information to the programmer without disturbing the main screen display. 
Keep in mind that these calls will work properly only after screen handling has been ini
tializedby aca11 toxsm_initcrt. xsm_err_reset andxsm_quiet_err can be 
called with a message text that is defmed locally, as in: 

move wZip code invalid for this stateW to message. 

call wxsm_err_resetW using message. 

However, the JAM library functions use a set of messages defmed in an internal message 
table. This table is accessed by the function xsm_msg_get, using a set of defines in the 
header me smerror. incl. cobol. The return value from xsm mag get can be 
used as input for one of the status line functions. 18 - -

The message table is initialized from the message me identified by the environment vari
able SMMSGS. Application messages can also be placed in the message me. See the sec
tion on message files in the Configuration Guide. 

18. See Appendix B. for specific message numbers and their meanings. 

JAM Release 5 1 March 91 Page 47 





Stratus COBOL programmer's Guide 

Chapter 7. 
Writing International (8 bit) 
Applications 

7.1. 

INTRODUCTION 
This chapter describes how to use the 8 bit internationalization capabilities that have been 
incorporated into JAM Release 5. 

:~--F:rom the point of view of someone who has used JAM without these features, a few dif
ferences will be apparent immediately. Other, more subtle, differences will emerge as the 
package is used in building language-independent applications. Finally, many of the 
changes were made so that the development utilities could be localized for use in other 
countries. These willlargly go unnoticed by people using the package in English. 

7.1.1. 

General Overview. 
. . The purpose of the 8 bit NLS is to allow the JAM product and aPplications created with 

with it to be "localized" for use in non-English-speaking countries. This means that the 
product can be made to look like it originated in the country in which it is being used. All 
prompts and messages can appear in the appropriate language and customs for formatting 
dates, currency fields and the like can be observed. Notwithstanding this, many of the fea
tures that are only visible to programmers will continue to be in English since many pr0-
grammers are used to working in English. 

JAM Release 5 1 March 91 Page 49 



Stratus COBOL programmer's Guide 

The capabilities described are limited to languages in which characters can be represented 
in 8 bits of infonnation and those that use a left-to-right entry order. This eliminates the 
Complexities associated with many far- and middle--eastern languages. 

7.2. 

LOCALIZATION 
JAM and JAM applications can be localized by taking the following steps: 

• Use the Screen Editor to translate all screens in the application. 

• Modify and recompile the message me. 

• Translate the documentation. 

7.2.1. 

Background 
The JAM product was originally developed with some internationalization issues in 
mind. It has always used 8 bit character data, without appropriating a bit for internal use. 
So one of the major demands of the international market was already satisfied. 

Date and time formats have always been completely specified by the screen creator. The 
wide variety of formats available in Release 4 could satisfy most requirements. In Release 
5, additional capabilities were added to make it easier to convert screens from one lan-

. guage to another. Currency formats were the least international of the features in the Re
lease 4 product Release 5 makes these completely language independent 

Each of the sections below discusses some aspect of internationalization. 

7.2.2. 

8 Bit Character Data 
;.:. •. As pointed out in the introduction~ JAM supportS 8 bit character data. Video flIes specific: 

to the tenninal can give special instructions, if necessary, as to how to display internation
al characters. This is needed if the tenninal requires shifting to a different character set to 
display non-ASCII characters. Most terminals used in the international market will not 
need to shift character sets. 

The video file can also be used to translate between two different standards for interna
tional characters. Thus the screens could be created with one standard and displayed using 
a different one. 

Page SO JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

The use of 8 bit characters for international symbols does not necessarily preclude the use 
of graphics for borders, etc. Any unused entries in character set (e.g. OxO I - Ox If, or Ox80 
- Ox9f) can be mapped to line graphics symbols. 

JAM rarely, if ever, interprets characters present in screens or entered from the keyboard. 
Internally it merely manipulates numbers. Any meaning as an alphabetic character, 
graphics symbol, or whatever, is generally irrelevant to JAM. The cursor control keys 
(arrows, tab, etc.), function keys, and soft keys are all assigned logical values that are out
side the range OxOO to Oxff, and thus cannot conflict with international characters. 

Keyboards that support international character sets will usually produce a single (8 bit) 
byte (perhaps with the high bit set) for each character. However there are some terminals 
that generate a sequence to represent an international character. H so, modkey (or a text 
editor) would be used to map the byte sequences into a logical value, just as the video file 
would be used to map the logical value to the sequence required by the display terminal. 

If you have questions about how to display non-English characters or to receive them 
from the keyboard, consult the chapters on keyboard and video processing. 

7.2.3. 

Date And Time Fields 
Date and Time fields have been completely revamped in Release 5. They have been com-

.d; bined to enable one field to have both date and time information. This, and the fact that 
more flexibility was added to date and time formatting, required changes to the date and 
time mnemonics. For example, in Release 4, the mnemonic mm was used for a 2-digit 
month in Date fields as well as the specifier for minutes in Tlffie fields. Clearly, this can
not serve both purposes when the fields are combined. 

-- . In Release 5, the mnemonics for specifying date and time formats are stored in the mes
. sage file so they may be changed. In addition, they are stored in a ''tokenized'' form inter
nally which provides two major benefits. First, the need to parse the formats at runtime is 

:~ .. ,:eliminated, thus speeding up processing and reducing memory requirements~ Second, 
''t-~.,screen designers in different countries editing the same screen will all see date and time 

specifications in formats they are used to. For example, if an English screen designer 
created a date field with the format mon / da y / ye a r, it might show up on a French sys
tem as mois/jour/annee. 

The problem of interchanging the month and day is dealt with later. 

The table below shows the default message fIle entries for date and time mnemonics: 

JAM Release 5 1 March 91 Page 51 



Stratus COBOL Programmer's Guide 

Msg # Mnemonic DaJerrime Tokenized Description 
Mnemonic FOrmal 

FM YR4 YR4 %4y 4 digit year 

FM YR2 YR2 %2y 2 digit year -
FM MON MON %m month number 

FM MON2 MON2 %Om month number, zero flII -
FM DATE DATE %d date (day of month) 

FM DATE DATE2 %Od date, zero fill -
FM HOUR HR %h hour -
FM HOUR HR2 %Oh hour, zero fill -
FM MIN MIN %M minute -
FM MIN2 MIN2 %OM minute, zero fill -
FM SEC SEC %s seconds 

FM SEC2 SEC2 %Os seconds, zero fill 

FM YRDA YDAY %+d day of the year 

FM AMPM AMPM %p am/pm -
FM DAYA DAYA %3d abbreviated day name -
FM DAYL DAYL %*d long day name 

FM MONA MONA %3m abbrev. month name 

FM MONL MONL %*m long month name 

Thus, a date field specified as rran/ dd/yyyy in Release 4 would be MON2 /DATE2 /YR4 
in Release 5. The f4to5 conversion program will convert the fonnat to %m/%d/%4y 
internally so it will automaticaIiy show up correctly when the screen is edited. The mne
monics were chosen to correspond to ANSI standards. You can change them to suit your 
own needs by simply changing the message file and running msg2hin. To change the 
mnemonic for a 4 digit year from YR4 to YYYY, for example, change the message file line 

Page 52 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

FM YR4 = YR4 

to 

FM YR4 = yyyy 

and run msg2bin. 

If all development is done in one language, the fact that different mnemonics for date and 
time formats can be used for different languages is unimportant. What is important, how
ever, is to be able to modify an application to operate in a different language. The goal is 
that only the text of the screens and the message me should need to be changed. 

Consider a screen with a date field of the form DAYA MONA DATE, YR4. If executed 
on a system with an English message file it might appear as 

Mon Apr 4, 1989 

whereas on a French system it would be 

Lun Avr 4, 1989 

This happens without changing the date formal All that has changed are the names and 
abbreviations of the months and days which are also stored in the message me so it is a 
simple matter to convert them. 

Now consider a date field which in English should show up in mm/dd/yyyy form but 
should appear in French as dd -mm-yyyy. In this case, the date format itself would have 
to be modified For this reason, 10 additional formats are supplied for the designer's use. 
For instance, in the message me the designer can specify a new date mnemonic called 

;-REGULAR DATE. In the English message me this can be equated tomm/dd/yyyy and 
in the French message me to dd-mm-yyyy. Thus, if the date format is specified as 
REGULAR DATE, only the message me, not the screen, needs to be changed to convert 
the date field to French. 

For this capability, both the mnemonics and what they represent are specified in the mes
sage me. The actual formats are stored in the message me in tokenized form so that there 
is no need for a parser. 

:: The following table shows the default message me entries for these extra date mnemon
ics: 

JAM Release 5 1 March 91 Page 53 



Stratus COBOL Programmer's Guide 

A TT -Msg Num- ATT-Da- ATT-To- A TT -Correspond- A TT -Default 
ber Mnemonic- telTime kenized ing Msgfile Entry 

Mnemonic Form 

A TT -FM_OMN_D ATT-DE- ATT- ATT-SM_ODEF _ ATT-%m/% 
EF_DT FAULT %Of DTIME d/%2y 

%h:%OM 

ATT-FM_1MN_D ATT-DE- ATT- ATT-SM_1 DEF_ ATT-%m/% 
EF_DT FAULT %1f DTIME d/%2y 

DATE 

A TT -FM_2MN_D ATT-DE- ATT- ATT-SM_2DEF _ ATT-%h:%O 
EF_DT FAULT %21 DTIME M 

TIME 

ATT-FM_3MN_D ATT-DE- ATT- ATT-SM_3DEF _ ATT-%m/% 
EF_DT FAULT3 %31 DTIME dI%2y 

%h:%OM 

A TT -FM_ 4MN_D ATT-DE- ATT- ATT-SM_4DEF_ ATT-%m/% 
EF_DT FAULT4 %4f DTIME d/%2y 

%h:%OM 

A TT -FM_5MN_D ATT-DE- ATT- ATT-SM_5DEF _ ATT-%m/% 
EF_DT FAULT5 %5f DTIME dI%2y 

%h:%OM 

ATT -FM_6MN_D ATT-DE- ATT- A TT -SM_6DEF _ ATT-%m/% 
EF_DT FAULT6 %6f DTIME dI%2y 

%h:%OM 

ATT-FM_7MN_D ATT-DE- ATT- ATT-SM_7DEF _ ATT-%m/% 
EF_DT FAULT7 %71 DTIME dI%2y 

%h:%OM 

ATT -FM_BMN-'.. . .D ATT-DE-", ATT- A TT -SM_8DEF _ ATT-%m/% 
EF_DT FAULTB %Bf DTIME dI%2y 

%h:%OM 

A TT -FM_9MN_D ATT-DE- ATT- ATT-SM_9DEF _ ATT-%m/% 
EF_DT FAULT9 %9f DTIME dI%2y 

%h:%OM 

Page 54 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Thus, if the screen designer specifies a date field with the fonnat DEFAULT .DATE, it 
would show up in mm/dd/yy fonn. If the line 

SM_IDEF_DTlME = %m/%d/%2y 

in the message me were changed to 

SM_IDEF_DTlME = %d-%m-%2y 

the date would show up in dd-mm-yy fonn. To change the mnemonic for this date for
mat to REGULAR DATE, the message FM_1MN_DEF_DT should be modified. 

7.2.4. 

Currency Fields 
Like Date and Time fields, Currency fields have been modified in Release S. Since it is 
not uncommon in Europe to be dealing with several currencies simultaneously, release 5 
does not force anyone system on the screen creator. Thus, the formatting capabilities 
were enhanced to support any convention the screen creator lnight desire. As with date 
and time formats, a "default" fonnat is supplied that causes the actual format to be taken 
from the message file. For Currency fields however, this option is supplied only for the 
parts of the fonnat that may vary from one currency to another. 

The new release allows the following items to be specified for Currency fields: 

-I:.. 

• the decimal symbol (usually dot or comma) 

• 
• 
• 
• 
• 
• 
•• 
• 
• 
• 
• 

minimum number of decimal places 

maximum number of decimal places 

thousands separator (usually dot or comma; b = blank) 

the currency symbol to be used (up to 5 characters) 

the placement of that symbol (left, right or at decimal pt) 

default currency from the message file (to replace the above entries) 

rounding (round-up, round-down, round--adjust) 

fill character 

justification 

clear if zero 

apply if empty 

There is a slight problem in specifying currency symbols when using the Screen Editor. 
Since the currency symbol is entered into a regular field, it is not possible to enter trailing 

JAM Release 5 1 March 91 Page 55 



i-:".j •.•.. 

Stratus COBOL Programmer's Guide 

spaces (they are always stripped off), Thus, to specify a leading currency symbol sepa
rated from the data by a space (FF 123.456,78) you must use the message file. For 

'''''-''thisreason;' the dot (.) may be used to signify a space when entered into the currency 
field. A dot in the message file for this purpose will appear as a dot 

The default currency formats are strings of the fonn rmxtpccccc where: 

., = decimal symbol (usually comma or dot) 

= minimum number of decimal places 

= maximum number of decimal places 

= thousands separator (usually comma or dot; b = blank) 

= placement of currency symbol (1, r or m) 

= up to 5 characters for the currency symbol 

Thus, if the screen designer specifies a currency field with the fonnat CURRENCY, it 
would show up in $999, 999.99 form. If the line 

SM_ODEF_CURR = W.22,1$W 

in the message file were changed to 

SM_ODEF_CURR = W,22.1FFW 

the field would show up as FF 999. 99, 99. To change the mnemonic for this currency 
field, the message FM_OMN_CURRDEF should be modified. The following table shows 
the default message file entries for the currency mnemonics: 

Msg Number Mnemonic Currency Corresponding M sgfi/e Default 
Mnemonic Entry 

FM OMN CURRDEF CURRENCY SM ODEF CURR .22,1$ - - - -
FM 1MN CURRDEF NUMERIC SM lDEF CURR .09, - - - -
FM 2MN CURRDEF PLAIN SM 2DEF CURR .09 - - - -
FM 3MN CURRDEF DEFAULT3 SM 3DEF CURR , .09 - - -
FM 4MN CURRDEF DEFAULT4 SM 4DEF CURR .09 - -
FM SMN CURRDEF DEFAULTS SM 5DEF CURR .09 - - -
FM 6MN CURRDEF DEFAULT6 SM 6DEF CURR .09 - - -
FM 7MN CURRDEF DEFAULT7 SM 7DEF CURR .09 - -

Page 56 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Msg Number Mnemonic Currency Corresponding Msgfile Default 
Mnemonic. EnITy 

FM 8MN CURRDEF DEFAULT8 SM 8DEF CURR .09 - - -
FM 9MN CURRDEF DEFAULT 9 SM 9DEF CURR .09 -

7,2.5. 

Decimal Symbols 
JAM 5 will accomodate 3 decimal symbols which are used in different circumstances: 

• System Decimal Symbol 

• Local Decimal Symbol 

• Field Decimal Symbol 

The System Decimal Symbol is the one that library routines like atof and sprintf 
use. The Local Decimal Symbol is the one that is used when local customs are followed 
(dot in English; comma in French). The Field Decimal Symbol is the one specified for a 
given field if that field is not observing local conventions. 

The System and Local Decimal Symbols are obtained from the operating system if the 
. operating system supports such things (see the installation notes for JAM for your operat-

"dng system). The Local Decimal Symbol may be specified in the message fLle (message 
SM DECIMAL), in which case it overrides the operating system decimal symbol. Dot is 
the system decimal if no symbol is specified in the message file and if the operating sys
tem does not supply one. 

The sections below describe the circumstances under which each of the different symbols 
is used. 

7.2.6. 

Character Filters 
The one time that JAM requires some knowledge of the meaning of the data is while en
forcing the character fLlters on a field. The fLlters currently supported are digits only, nu
meric, alphabetic, alphanumeric, and yes/no and regular expression. 

To validate the data JAM uses the standard C macros: isdigit, isalpha, etc, JAM 
5 assumes that the operating system supplies these macros in a form suitable for interna-

JAM Release 5 1 March 91 Page 57 



Stratus COBOL Programmer's Guide 

tionaI use, In absence of such operating system support, care should be taken when using 
these capabilities. 

Special code is used to process numeric fields since C does not provide an "isnumeric" 
macro. If the field has a currency edit. JAM uses the Field Decimal Symbol to validate 
the numeric entry. If the field has no cwrency edit or the currency edit has no decimal 
symbol specified, JAM uses the Local Decimal Symbol. 

Yes/no fields have always been internationalized in that the yes and no characters (y and 
n in English) are specified in the message file. Although some vendors will supply infor
mation about these characters, the proposed ANSI standard does not address the issue. 
Therefore, for reasons of portability, JAM will continue to use the message me for this 
data. 

Upper and lower case fields will also behave properly provided that t ouppe rand related 
functions are language dependent The present code assumes that the return from toup
pe r is appropriate for an upper case field. Therefore a lower case letter can appear in 
such a field if there is no upper case equivalent for that letter. (The German "double s" has 
no upper case equivalent) 

In processing regular expressions, JAM 5 uses the ASCII coUating sequence for ranges 
of characters. Therefore, the expression 

[a-z) * 

will match only the English lower case letters. The European character a, for example, 
would not be matched by this expression. 

7.2.7. 

Status And Error:Messages 
All messages produced by JAM 5 are stored in the message me so they may be easily 
localized. Each message is a complete phrase or sentence. Message components are never 
pieced together because doing so would make it difficult to translate to a language that 
has a sentence structure different from English. 

7.2.8. 

Screens In The Utilities 
These screens were memory resident in Release 4. For international customers they must 
be modifiable. 

A linkable jxform is be provided, and the library containing the source for the screens 
is made available. A developer may translate the screens and reIink the utilities. Similari-

Page 58 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

ly modkey is developer-linkable, and the source for its screens is provided. In this way 
the screens remain memory resident and no compromise of speed need be made. 

Unfortunately this solution is not ideal if several users on the same machine wish to use 
different languages. To support this, the screens may be kept on disk. The current mecha
nism of SMPATH allows run-time selection of the set of screens to be used. 

7.2.9. 

Screens In Application Programs 
The same approach as discussed in the above section can be used for screens in applica
tion programs. Thus different language screens can be kept in separate directories and the 
user can specify which is to be used at run-time. 

7.2.10. 

Menu Processing 
xsm_input returns the frrst character of the selected entry. This, of course, is not lan
guage independent JAM utilities have been modified to use the current field nwnber 
rather than the return value. Because it cannot be asswned that all entries will have unique 
frrst letters, the string option is specified. 

Application programs intended for an international market should not rely on the initial 
character of the menu selection. The field nwnber containing the cursor is a better way of 
determining which selection the operator has made. However the field nwnbers may· 
change if the screen is redesigned. Note that this is not a problem when the JAM Execu
tive is used, since the JAM Executive uses relative field nwnbers to determine the control 
string to execute when a menu field is selected. 

A new additional edit was instituted in JAM 4 that specifies the return code from a re
t urn ent ry (or menu) field. The screen creator specifies the return code (an integer) 

·when designing the screen. If this edit exists, xsm input uses that value as the return 
"' . code to the calling program. If this edit does not eXist, the usual return code is used. 

7.2.11. 

lstform, lstdd, and jarrunap 
These utilities list data about the screen in English. Since they are often used for docu
mentation it is important that the text be translatable to other languages. Thus the textual 
material, headings, etc., have been moved to the message me. 

JAM Release 5 1 March 91 Page 59 



0;. ••. , 

Stratus COBOL Programmer's Guide 

7.2.12. 

Range Checks 
Range checks for numeric data are presently correctly handled since they use atef (as
suming that the "strip" routine works properly). 

Alphabet data presents special problems. One of the major issues for internationalization 
is the collating sequence of a language. For dictionary or telephone book processing the 
problem is particularly troublesome. For example, upper and lower case letters compare 
equal. Also, in a telephone book, St. and Saint compare equal, hyphens are ignored, 
etc. In some languages even less demanding applications pose severe problems. For ex
ample,ligatures compare equally to pairs of letters. The placement of vowels with diacrit
ical marks varies widely even among countries using the same language. 

The proposed ANSI standard specifies a routine, strcell, that can be used to expand 
the word into a format suitable for comparison by st rcmp. These routines assume that 
the data supplied is a word in the local language. They will given unexpected results on 
non-language data. 

JAM is not designed to process languages in a way that requires such niceties. It does sort 
names of fields and other objects, but that is done only to speed look-up. As long as the 
sort routine and the search routine use the same algorithm, things will work. 

. In JAM, range checks are often given on non-language data. For example a menu selec
tion might have a range of a to d. In certain languages an umlaut would fall into that range 
if a language specific comparison was made. This effect would complicate screen design. 
Different screens would be needed for different countries, even if they used the same lan
guage. 

For these reasons no changes have been made to the Release 4 method of range checking. 
strcmp and memcmp continue to be used. These compare the internal values of the 
characters, without regard to their meanings in the local language. 

7.2.13. 

Calculations Using @SUM and @DATE 
These keywords have been retained even though they are language specific. Computa
tions with dates assume the Gregorian calendar. No provison is made for other calendars. 

7.2.14. 

xsm dblval and xsm dtofield 
These routines use atef and sprintf therefore correctly interpret the System Decimal 
Symbol (radix character). 

Page 60 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

7.2.15. 

xSffi_is_yes and XSffi_query_ffisg 

These routines use the characters in the message me for y and n and thus are already in
ternationalized. They use toupper to recognize the upper case variations. 

7.2.16. 

Batch Utilities 
All the utilities messages, including usage messages have been moved to the message me. 

The mnemonics for logical keys (XMIT, EXIT, etc.) are not translated to other languages, 
nor the mnemonics used in the video me, so the internal processing of the utilities need 
not be modified. 

JAM Release 5 1 March 91 Page 61 





Stratus COBOL Programmer's Guide 

Chapter 8. 

Writing Portable Applications 
The following section describes features of hardware and opexating system software that 
can cause JAM to behave in a non-unifonn fashion. An application designer wishing to 
create programs that run across a variety of systems will need to be aware of these factors. 

8.1. 

TERMINAL DEPENDENCIES 
JAM can run on display tenninals of any size. On tenninals without a separately addres-

. -sable starus line,JAM will steal the bottom line of the display (often the 24th) for a status 
line, and status messages will overlay whatever is on that line. A good lowest common 
denominator for screen sizes is 23 lines by 80 columns, including the border (21 if two
line soft key labels will be used). 

Different tenninals support different sets of attributes. JAM makes sensible compromis
es based on the attributes available; but programs that rely extensively on attribute manip
ulation to highlight data may be confusing to users of tenninals with an insufficient num-

- -ber of attributes. Colors will not show up on monochrome tenninals, e.g. Use of graphics 
character sets is particularly tenninaI dependent. 

- .. '. Attribute handling can also affect the spacing of fields and text In particular, anyone de-
,~signing screens -to run on tenninals with onscreen attributes must- remember to leave 

space between fields, highlighted text, and reverse video borders for the attributes. Some 
tenninals with area attributes also limit the number of attribute changes pennitted per line 
(or per screen). 

The key translation table mechanism supports the assignment of any key or key sequence 
to a particular logical character. However, the number and labelling of function keys on 
particular keyboards can constrain the application designer who makes heavy use of func-

JAM Release 5 1 March 91 Page 63 



Stratus COBOL programmer's Guide 

tion keys for program control. The standard VT100, for instance, has only four function 
keys. For simple choices among alternatives, menus are probably better than switching on 
function keys. 

Using function key labels, or key tops, instead of hard-coded key names is also important 
to making an application run smoothly on a variety of terminals. Field status text and oth
er status line messages can have keytops inserted automatically, using the %K escape. No 
such translation is done for strings written to fields; in such cases, you may want to place 
the strings in a message file, since the setup file can specify terminal-{jependent message 
flIes. 

Page 64 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 9. 

Writing Efficient Applications 

9,1. 

MEMORY-RESIDENT SCREENS 
Memory-resident screens are much quicker to display than disk-resident screens, since 
no disk access is necessary to obtain the screen data. However, the screens must frrst be 
converted to source language modules with bi n2 cob or a related utility (see the Utilities 
Guide), then compiled and linked with the application program. 

xsrn_d_form and related library functions can be used to display memory-resident 
, screens; each takes as one' of its parameters the address of the global array containing the 
screen data, which will generally have the same name as the file the original screen was 
originally stored in. 

Using memory-resident screens (and configuration files, see the next section) is, of 
course, a space-time tradeoff: increased memory usage for better speed. , 

9.2. 

~~:MEMORY-RESIDENT CONFIGURATION 
FILES 
Any or all of the three configuration files required by JAM can be made memory resi
dent. First a COBOL source file must be created from the binary version of the file, using 
the bin2 cob utility; see the Utilities Guide. The source files created are not readily deci
pherable. Then the COBOL source is included in a cobol program via the COpy state-

JAM Release 5 1 March 91 Page 65 



~ •. ' 

Stratus COBOL Programmer's Guide 

ment A call is then made to either xsm msgread, xsm vini t, or xsm keyini t, 
depending on the type of configuration rue being installed. -

If a file is made memory-resident, the corresponding environment variable or SMVARS 
entry can be dispensed with. 

9.3. 

MESSAGE FILE OPTIONS 
If you need to conserve memory and have a large number of messages in message mes, 
you can make use of the MSG_DSK option to xsm_msgread. This option avoids load
ing the message files into memory; instead, they are left open, and the messages are 
fetched from disk when needed. Bear in mind that this uses up additional file descriptors, 
and that buffering the open file consumes a certain amount of system memory; you will 
gain little unless your message files are quite large. 

9.4. 

AVOIDING UNNECESSARY SCREEN 
OUTPUT 
Several of the entries in the JAM video file are not logically necessary, but are there sole
ly to decrease the number of characters transmitted to paint a given screen. This can have· 
a great impact on the response time of applications, especially on time-shared systems 
with low data rates; but it is noticeable even at 9600 baud. To take an example: JAM can 
do all its cursor positioning using the CUP (absolute cursor position) command. Howev
er, it will use the relative cursor position commands (CUU, CUD, CUP, CUB) if they are 
defined; they always require fewer characters to do the same job. Similarly, if the terminal 
is capable of saving and restoring the cursor position itself (SCP, RCP), JAM ... will· use· 
those sequences instead of the more verbose CUP. 

The global variable I_NODISP may also be used to decrease screen output. While this 
variable is set to 0 (via xsm_iset), calls into the JAM library will cause the internal 
screen image to be updated, but nothing will be written to the actual display; the display 
can be brought up to date by resetting I_NODISP to 1 and calling xsm_rescreen. 
With the implementation of delayed write this sort of trick is rarely necessary. 

Page 66 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

9,5. 

JPL VS. COMPILED LANGUAGES 
JPL code execution goes through an extra layer of intrepretation that compiled code, such 
as COBOL, does not. In most cases, the total run time is too small to matter, but if a JPL 
function is long or loops many times and a delay is noted, it may pay to rewrite it in 
COBOL. 

JAM Release 5 1 March 91 Page 67 





Stratus COBOL Programmer's Guide 

Chapter 10. 

Block Mode 
The purpose of this document is to describe the block mode capabilities of JAM from the 

-----perspecti¥e-of-someone-using-the-s¥stem-and-from-the-perspective-of-a-developer-that
needs to write a block mode driver, 

10.1. 

USING BLOCK MODE 

10,1.1. 

General Overview 
The purpose of the block mode interface is to allow JAM to be used with terminals, like 
the HP2392A and mM 3270's, that operate in block. mode. Such terminals, which are 
hereinafter referred to as block mode terminals, operate differently than their interactive' 
or character mode counterparts in that they do not interact with the computer on every 

. keystroke. Instead, a fonnatted screen is sent to the terminal and processed by the termi
nallocally. When a function key is pressed, data are transmitted to the computer and are 

",-.available to the program which sent the formatted screen .. 

''',,;. Block mode terminals typically have capabilities for defining protected and Unprotected . 
fields and sometimes allow a minimal set of character validations such as restricting a 
field to only allow digits. They do not provide JAM-like capabilities such as shifting, 
scrolling and provisions for post-field validation. It should therefore seem obvious that 
an application will behave slightly differently on a block mode terminal than on an inter
active one. The goal of the block mode interface, however, is to minimize these differ
ences and, to the greatest extent possible, allow applications to be created that can operate 

JAM Release 5 1 March 91 Page 69 



Stratus COBOL Programmer's Guide 

in either mode without the need for the programmer to consider the differences. This is in 
keeping with the JAM philosophy of creating terminal-independent applications. 

10.1.2. 

Authoring 
Certain JAM utilities, like modkey, the Screen Editor, and the Data Dictionary Editor 
only work in interactive mode. Thus, they can only be used with interactive terminals or 
those that can be switched programmatically between block and interactive mode. 

jxform is the JAM authoring utility. It allows the user to navigate through the screens 
in an application and to invoke the Screen and Data Dictionary Editors when appropriate. 
When used with block mode-only terminals, jxform does not permit entry into the 
aforementioned utilities. When used with hybrid terminals (i.e. those that can switch be
tween block and interactive mode programmatically), jxform forces interactive mode 
before entering the utilities. 

10.1.3. 

Selecting Block Mode 
JAM operates with three types of terminals: interactive-only, block mode-only, and hy
brid. Block mode can be used with either of the latter two. 

By default, JAM operates in interactive mode regardless of the terminal type. To operate 
in block mode requires a block terminal driver to be linked with the system. (Block term i- . 
naI drivers are described in detail later.) This alone, however, will not initiate block 
mode; two additional things must be done. 

First there must be a call to xsm_bIkini t. This isgeneraIly done in the "main" routine 
of the application, jrnain. cobol. If this call is absent, the application will be run in 
interactive mode. Also the additional code to support block mode will not be linked with 
the program. Thus programs not desiring block mode support are not penalized. 

Second the correct block mode driver must be selected. This can be done in one of two 
ways . 

. If the application program author knows the correct driver he/she can install it by calling. 
xsm_uinstall. This should be done before calling xsm_bIkinit. Typically the 
program will install a "hard-coded" driver, but it could instead key off of SM1ERM, or 
some other environment variable, to fmd the correct one. In this case the application will 
run in block mode, independent of Ihe end user's preference. 

The second method for selecting the driver leaves Ihe job to the end user. If xsm bl ki
ni t is called without previously installing a driver, the entry BLKDRIVER in the video 

Page 70 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

me is examined. If it is absent, xsm bl kini t fails and the application remains in inter
active mode. If it is present the name given there is used to fmd the correct driver. This is 
done by a table lookup in a source routine (bIkdrvr. c) that mUst be linked with the 
application. Naturally all possible choices of the driver must also be linked with the pr0-

gram. In this case the end user can override the application programers desire to use block 
mode. 

The design allows for three scenarios: the programmer can prohibit block mode (no call 
to xsm_blkinit), the programmer can force block mode (xsm_install followed 
by xsm_blkinit), or the programmer can permit block mode but allow the end user 
final say (xsm_blkinit only). 

Note that the application never calls sm_blkdrvr. The source code to that routine is 
given to customers to enable them to extend the capabilities of the second method. 

10.1.4. 

Differences Between Block Mode And 
Interactive Mode 
Although every attempt has been made to preserve the look and feel of applications oper
ating in block mode, the following differences between block mode and interactive mode 
should be noted. 

Windows 
Windows work much as they do in interactive mode. The only noticable difference is that 
the cursor is not be restricted to the active window as this. is not possible in block mode. 
In keeping with the concepts of interactive mode, however, only the fields on the active 
window are unprotected. 

Menus 
. ; .. ;An, interactive mode, menus utilize a ''bounce bar" to track the cUl'SQr. The bounce bar. 
~;,moves when cursor-positioning keys are pressed and when ascii data are typed. Since 

block mode terminals do not return these keys, another approach must be taken. We sup
ply two options: 

In option I, menu fields in block mode are unprotected, making it easy for an operator to 
tab to them. To make a selection, the operator positions to the appropriate field and pres
ses XMIT. Thus, selection is similar to interactive mode except there is no bounce bar and 
there is no provision for selecting by typing the fIrSt N characters of the menu choice. 

JAM Release 5 1 March 91 Page 71 



.; .~ . .:.:. .. --.. '. 

Stratus COBOL Programmer's Guide 

If the operator inadvertently types over a menu field there are no adverse consequences as 
JAM will "remember" the contents and restore it at an app~priate time. 

This approach works well since the same screens can be used for block and interactive 
mode operation. However, for those who do not wish to allow the operator to type over 
menu choice fields, option 2 may be chosen. With option 2, JAM creates an unprotected 
field to the left of each menu choice so the menu fields themselves can remain protected. 
The operator can tab to these new fields to make a selection, or type the first character of 
a menu field and press XMIT. The new fields to the left of the menu choices are created 
as long as there is room on the screen even if it means they would be placed in a border or 
a separate window. H there is no room on the screen because the menu field starts in posi
tion 1 or 2, the system reverts to option 1. ' 

The above works well for traditional menus, but two-level (pull- down) menus pose a 
different problem in that the ONLY way to move horiwntally in interactive mode is via 
the arrows (since TAB moves between the entries of the sub-menu). Thus, in block mode 
the following happens. When a pull-down menu is active, JAM unprotects all main menu 
fields except the one with which the pull-down is associated. Thus, the operator can ei
ther make a selection from the pull-down or tab to another main menu choice and press 
XMIT causing its sub--menu to be activated. 

The two options for processing menus described above work equally well for pull-down 
menus. 

Character Validation 
The block mode interface takes advantage of the terminal's capabilities for character vali
dation. However, for situations in which the specified validations go beyond what the ter
minal can handle, JAM will validate the character data during Screen Validation. The re
sult will be something like this: 

The operator enters alphabetic data in a digits-only field. When the XMIT key is pressed, 
all fields are validated in the normal fashion, left-to-right, top-to-bottom. Thus, the cur
sor will be positioned to the errant field and a message displayed. 

Since programs do not rely on data being correct unless and until Screen Validation com-
o pletes without error, this should pose no problem. The only consideration is that invalid 

character data can get into the screen buffer and LDB if the operator enters incorrect char -' 
acters and then presses something like EXIT (this cannot happen in interactive mode be
cause the invalid characters would not be allowed in the first place. 

The only reason for mentioning this has to do with how punctuation characters in digits
only fields are handled. Let's say that a digits-only field got fllled with slash ("f') charac
ters and this, in turn, got transferred to the screen buffer and hence to the LDB. On a sub
sequent attempt to enter data into the field, an attempt to merge the slashes with the 

Page 72 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

entered data would be made. But since the field has ALL slash characters, there would be 
no room for the digits. 

Thus, to eliminate the possibility of ''punctuation character creep", when reading data 
from a digits--only field, JAM first strips out all punctuation characters from the field and 
then merges in the punctuation characters from the screen buffer. 

Field Validation 
Clearly, fields are not validated when TAB and RETURN are pressed as in interactive 
mode. Thus, like character validations, field validations will be deferred until Screen Val
idation. This should not be a problem since, even in interactive mode, the operator can 
usuall Y bypass field validation by using the arrow keys to move from field to field. There
fore, programs should not rely on the data until Screen Validation passes without error in 
either mode. 

One type of field validation is worth noting. Consider a field with an attached function 
which does a database lookup and displays infonnation in another field. In interactive 
mode, this would usually be executed when the field is completed. so the user would see 
the resulL Since this is not really a validation, deferring it until Screen Validation would 
not help because the data would never be seen by the operator. Therefore, if this type of 
feature is contemplated in a block mode environment, the database lookup should be at
tached to a function key rather than as an attached function. 

Screen Validation 
... ·-Screen validation works the same in interactive and block mode. The cursor will be posi

tioned to the first field in error and a message will be displayed to the operator. 

Right Justified Fields 
Unless the block mode terminal supports this feature directly, the cursor will always be 
positioned to the left side of right justified fields when the cursor enters them, 

~",:.·Field Entry Function,"Automatic Help, Status Text, 
etc. 
These are disabled in block mode since JAM does not know when fields are entered. 

Currency Fields 
Currency edits are usually applied to fields as they are exited. In block mode, since this is 
not possible, currency formatting is done during screen validation. Care should be taken 

JAM Release 5 1 March 91 Page 73 



Stratus COBOL Programmer's Guide 

with right justified currency fonnats since subsequent entry may be difficult for the rea
sons cited above in the section on right justified fields. 

Shifting Fields 
Normally fields shift when the left or right arrows are pressed with the cursor at the start 
or end of a shifting field or, in the case of unprotected fields, when the operator types off 
the edge of the field. Since arrows and data entry keys are not returned in block mode, this 
is not possible. To utilize shifting fields in block mode, use the logical keys: Shift Left and 
Shift Right These shift the field by the shifting increment and work equally well in block 
and interactive mode. 

An alternative is to use the Zoom feature if all shifting fields are limited to the width of 
the screen. 

Scrolling Fields 
This is similar to the situation with shifting fields. In block mode, one can define function 
keys as PAGE UP and PAGE DOWN, or use the Zoom feature. 

Messages 
Error messages are nonnally acknowledged by pressing the space bar, although the spe
cific key used can vary depending on the setting of error message options. Also, options 

. govern whether the key should be used as the next keystroke or discarded after the mes
sage is acknowledged. In block mode, ANY key that gets transmitted from the terminal 
will suffice to acknowledge messages, regardless of what key is dermed for that purpose. 
Using or discarding the acknowledgement key apply equally to block mode and interac
tive mode. 

With query messages, JAM nonnally expects aY or N response. In block mode, JAM 
will create a field on the status line into which the Y or N response can be entered. This 
entry must be followed by the XMIT key for it to be accepted. On terminals that have a 
separate stauts line it is not possible to create such a field. In these cases, XMIT will be 
treated as a positive response; EXIT will be treated as a negative response .. 

Insert Mode 
Insert mode will operate in whatever way the block mode terminal supports. However, 
since JAM never knows if insert mode is set or not in block mode, it will, for terminals in 
which this is a problem, reset insert mode before transmitting data to the terminal. This is 
so the new data will not be INSERTED into the terminal buffer, causing all other data to 
move around. 

Page 74 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Non-Display Fields 
If the block mode terminal supports this feature, it will be used. 

System Calls 
These operate as in interactive mode. However, before passing control to the OS, JAM 
sets the terminal to the mode (block or interactive) expected by the OS, and resets it upon 
return from the system call. The JAM routines xsm_leave and xsm_return do the 
same. 

Zoom 
With the exception of the limitations expressed in the sections on shifting and scrolling, 
Zoom works as in interactive mode. 

Help and Item Selection 
With the exception of the limitations expressed in the sections on shifting, scrolling. field 
entry and menu processing. these functions work as in interactive mode. 

Groups 
.,. Radio buttons and check lists behave similar to menus as described above .. 

10.2. 

WRITING A BLOCK MODE DRIVER 

10.2.1. 

Installation 
There are two parts to the installation process. These were discussed in greater detail 
above. 

First a block terminal driver must be installed. This driver performs the low level commu
nication between JAM and the terminal. The COBOL interface does not currently sup
port writing your own block mode drivers. 

JAM Release 5 1 March 91 Page 75 



Stratus COBOL Programmer's Guide 

Next the application program must initiate block mode by making the appropriate subrou
tine call. The application program can also switch to interactive mode by means of a call. 

""~The assumption'is that the default is interactive mode; thus a call to set block mode is 
needed even if that is the nonnal mode of the operating system. The application program 
can also set some operating parameters by means of a subroutine call. 

10.2.2. 

Application Program Support 
JAM programs assume that the terminal is in interactive mode. Explicit calls are needed 
to switch from interactive to block and vice versa. To turn on block mode. the program 
should call xsm_blkinit. To tum off block mode (and turn on interactive mode) the 
program calls xsm _ blkreset, The Screen Editor The key mapping utility (modkey) 
also requires interactive mode. The authoring utility (jxform) can be made to work in 
block mode. switching to interactive mode when the Screen Editor is invoked. This can 
be done by inserting the appropriate calls in jxmain. cobol (provided) and relinking 
jxform. 

The routine xsm_option can be used to set some user-preference items. 

Page 76 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 11. 

Library Function Overview 
In this chapter, we summarize the JAM library functions and list them in categories, All 
JAM library function names begin with the prefIX xsm _. However, in the Function Ref
erence Chapter and in this chapter, the functions are listed without prefIX for clarity. 

In addition to stripping off the prefIX in the listings that follow, groups of closely related 
variant functions are listed under a single root name. The functions x sm _ r _ form, 
xsm_d_form, and xsm_l_form, for example, are all grouped under the heading 
. form. In a few cases, Junctions may be listed under a name that is not a portion of the the 
function name but is suggestive of the utility of the function. For example, the function 
xsm rat cur, which displays a window at the cursor position, is listed under the root 
name wind-;;w, along with xsm_r_window (which displays a window ata fIXed loca-

"'" tion) and a number of other window display routines. The calling syntax of each function 
is found in the SYNOPSIS section of the function listing in the Function Reference Chap
ter. 

Most JAM library routines fall into one of the following categories: 

• InitializationIReset 

• Screen and Viewport Control 

• Keyboard and Display I/O 

• Field/Array Data Access 

• Field/Array Characteristic Access 

• Group Access 

• Local Data Block Access 

• Cursor Control 

• Message Display 

JAM Release 5 1 March 91 Pagan 



Stratus COBOL Programmer's Guide 

• Scrolling and Shifting 

• Mass Storage and Retrieval . 

• Validation 
• Global Data and Changing JAM's Behavior 

• Soft Keys and Keysets 

• JAM Executive Control 

• Block Mode Control 

• Miscel1aneous 
The following sections summarize the functions that fall into these categories. Some list
ings are found in more than one category. 

11.1. 

INITIALIZATION/RESET 
The following library functions are called in order to initialize or reset certain aspects of 
the JAM runtime environment Those that are necessary for the proper operation of JAM 
are called from within the supplied main routine source modules jrnain. cobol and 
jxmain. cobol. 

cancel 
dicname 
ininames 
initcrt 
keyinit 
ldb init 
leave 
msgread 
reset crt 
return 
vinit 

11.2. 

reset the display and exit 
set data dictionary name 
record names of initial data files for local data block 
initialize the display and JAM data structures 
initialize key translation table 
initialize (or reinitialize) the local data block 
prepare to leave a JAM application temporarily· 
read message file into memory 

. reset the terminal to operating system default state 

. prepare for return to JAM application· 
initialize video translation tables . 

SCREEN AND VIEWPORT CONTROL 
The following routines are used to control viewports, the display of screens, and the form 
and window stacks. 

Page 78 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

close window 

form 

hlp_by_name 

issv 

jclose 

jform 

jwindow 

mwindow 

shrink to fit 

sibling 

submenu close 

svscreen 

unsvscreen 

viewport 

wcount 

wdeselect 

window 

winsize 

wselect 

11.3. 

close current window 
display a screen as a form 

display help window 

determine if a screen in the saved list 

close current window or form under JAM Executive control 

display a screen as a. form undez JAM control 

display a window at a given position undez JAM control 
display a SlabJS message in a window 

remove trailing empty array elements and shrink screen 

define the current window as being or not being a sibling win
dow 

close the current submenu 

register a list of screens on the save list 
remove screens from the save list 

modify viewport size and offset 

obtain number of currently open windows 
restore the formerly active window 

display a window at a given position 

allow encHJser to interactively move and resize a window 

activate a window 

DISPLAY TERMINAL 1/0 
The following routines provide the interface to JAM terminalI/O. 

bel 

bkrect 

do_region· 

flush 

getkey 

input 

keyfilter 

keyhit 

beep! 

set background color of rectangle 

rewrite part or all of a screen line . 

flush delayed writes to the display 

get logical value of the key hit 

open the keyboard for data entry and menu selection 

control keystroke record/playback fUtering 

test whether a key has been typed ahead 

JAM Release 5 1 March 91 Page 79 



Stratus COBOL Programmer's Guide 

keylabel 
keyoption_ 
m flush 
rescreen 
resize 
ungetkey 

11.4. 

get the printable name of a logical key 
set cursor control key options 
flush the message line 
refresh the data displayed on the screen 
dynamically change the size of the display 
push back a translated key on the input 

FIELD/ARRAY DATA ACCESS 
The following routines access the data in fields and arrays. Most routines in this section 
have a number of variants that perform the same task but reference the field to be accessed 
differently. In these cases. the calling syntax of the major variant is listed under the SYN
OPSIS section of the listing in the Function Reference Chapter. All other variants are 
listed under the VARIANTS section. 

Most field access routines have five variants. although some have fewer. The five possi
ble variants are shown in the table below: 

Variants of Functions That Access Fields 

Prefix Example Description 

xsm call "'xsm intval'" - using Access a field via field number. 
fieldnum. 

xsm n call "'xsm n intval" using Access a field (or an entire 
fieldname. array) via field name. Access 

the LOB if there is no field on 
the screen. 

xsm i - - call "xsm_i_intval" using Access an occurrence via field, . 
fieldname, occurrence. name and occurrence number. 

Access the LOB if there is no 
field on the screen. 

xsm 0 call "xsm_o_intval'" using Access an occurrence via field - -
fieldnum, occurrence. number and occurrence number. 

xsm e call "xsm_e_intval" using Access an element via field 
fieldname, element. name and element number. 

Page 80 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

amt format 

calc 

cl_unprot 

clear_array 

dblval 

dlength 

doccur 

dtofield 

fptr 

get field 

gwrap 

intval 

ioccur 

is no 

isyes 

itofield 

lngval' 

ltofield 

null 

put field 

pwrap 

strip_amtytr 

11.5 .. 

write data to a field, applying currency editing 

execute a math edit style expression 

clear all unprotected fields 

clear all data in an array 

get the value of a field as a real number 

get the length of a field's contents 

delete occurrences 

write a real number to a field 

get the content of a field 

copy the contents of a field 

get the contents of a wordwrap array 

get the integer value of a field 

insert blank occurrences into an array 

test field for no 

test field for yes 

write an integer value to a field 

get the long integer value of a field 

place a long integer in a field 

test if field is null 

put a string into a field 

put text to a wordwrap field 

strip amount editing characters from a string 

FIELD/ARRAY ATTRIBUTE. ACCESS . 
• "l;.-\.oThe following routines access informatiOn about fields and arrays. Like the routines in the 
",~ previous section on field and array data access, each of these routines generally have five' 

distinct variants. ·See the discussion in the introduction to the previous section for more 
information on variants of JAM library functions that access fields. 

base fldno 

bitop 

chg_attr 

get the field number of the first element of an array 

manipulate validation and data editing bits 

change the display attribute of a field 

JAM Release 5 1 March 91 Page 81 



~ .. '. 

Stratus COBOL Programmer's Guide 

cl_all_mdts clear all MDT bits 

dlength get the length of a field's contents 

edi t yt r get special edit string 

finquire obtain information about a field 

f ldno get the field number of an array element or occurrence 

ftog convert field references to group references 

ft ype get the data type and precision of a field 

gtof convert a group name and index into a field number and occur-
rence 

length get the maximum length of a field 

max occur get the maximum number of occurrences 

name obtain field name given field number 

num occurs fmd the highest numbered occurrence containing data 

protect protect an array 

s c _max alter the maximum number of items allowed in a scrollable 
array 

si ze _of_array get the number of elements 

tst_all_mdts fmd first modified occurrence in the screen 

11.6. 

GROUP ACCESS 
The following routines access groups, that is, radio buttons and check lists. Groups are 
made up of fields that have attributes and data in them, but groups in and of themselves 
are implemented as phantom fields which take up no screen real estate. The value of a 
group indicates the set of selected consituent fields, although it is not recommended that 
that value ever be accessed or modified directly with any of the field access routines dis
cussed in the preceding sections. 

The routines that follow are those that are recommended for accessing groups: . 

deselect 

ftog 

gp_inquire 

gtof 

Page 82 

deselect a checklist occurrence 

convert field references to group references 

obtain information about a group 

convert a group name and index into a field number and occur
rence 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

cl all mdts - -
dlength 

editytr 

finquire 

fldno 

ftog 

ftype 

gtof 

clear all MDT bits 

get the length of a field's contents 

get special edit string 

obtain infonnation about a field 

get the field number of an array element or occurrence 

convert field references to group references 

get the data type and precision of a field 

convert a group name and index into a field number and occur-
rence 

length get the maximum length of a field 

max occur get the maximum number of occurrences 

name obtain field name given field number 

num occurs find the highest numbered occurrence containing data 

protect protect an array 

sc max alter the maximwn nwnber of items allowed in a scrollable 
array 

si ze _of_array get the number of elements 

tst all mdts fmd first modified occurrence in the screen - -

11.6. 

GROUP ACCESS 
The following routines access groups, that is, radio buttons and check lists. Groups are 
made up of fields that have attributes and data in them, but groups in and of themselves 
are implemented as phantom fields which take up no screen real estate. The value of a 
group indicates the set of selected consituent fields, although it is not recommended that 
that value ever be accessed or modified directly with any of the field access routines dis
cussed in the preceding sections. 

The routines that follow are those that are recommended for accessing groups: . 

deselect 

ftog 

gp_inquire 

gtof 

Page 82 

deselect a checklist occurrence 

convert field references to group references 

obtain infonnation about a group 

convert a group name and index into a field number and occur
rence 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

isselected detennine whether a radio button or checklist occurrence has 
been selected 

select select a checklist or radio button occurrence 

11.7. 

LOCAL DATA BLOCK ACCESS 
The following routines access the Local Data Block. or LDB. Note that any of the field 
data access routines that reference fields by name or name and occurrence number (eg 
x sm _nand xsm _ i_variants) will access the LOB if the named field does not exist on 
the active screen. 

allget 

dicname 

dd able 

ininames 

lclear 

ldb init 

lreset 

lstore 

11.8. 

load screen from the LOB 

set data dictionary name 

turn LOB write-through on or off 

record names of initial data files for local data block 

erase LDB entries of one scope 

initialize (or reinitialize) the local data block 

reinitialize LOB entries of one scope 

copy everything from screen to LOB 

CURSOR CONTROL 
The following routines control the positioning and display of the cursor on the active 
screen. ' 

ascroll 

"back tab 

c off· 

c on 

c vis 
disp_off 

getcurno 

go field 

scroll to a given occurrence 

backtab to the start of the last unprotected field 

turn the cursor off . 

turn the cursor on 
turn cursor position display on or off 

get displacement of cursor from start of field 

get current field number 

move the cursor into a field 

JAM Release 5 1 March 91 Page 83 



Stratus COBOL Programmer's Guide 

horne 

last 

nl 

occur no 

off_go field 

rscroll 

sh off 

tab 

11.9. 

home the cursor 

position the cursor in the last field 

position cursor to the first unprotected field beyond the current 
line 

get the current occurrence number 

move the cursor into a field, offset from the left 

scroll an array 

detennine the cursor location relative to the start of a shifting 
field 

move the cursor to the next unprotected field 

MESSAGE DISPLAY 
The following routines are intended for the access and display of runtime application 
messages. 

err reset 

rn flush 

rnsg 

rnsg_get 

rnsgfind 

rnsgread 

rnwindow 

quiet err 

setbkstat 

setstatus 

Page 84 

display a message on the status line 

display an error message and reset the message line, without 
turning on the cursor 

display an error message and reset the status line 

flush the message line 

display a message at a given column on the status line 

fmd a message given its number 

fmd a message given its number 

read message file into memory 

display a status message in a window 

display a question,and return a yes or no answer 

display a message preceded by a constant tag, and reset the mes
sage line 

display error message preceded by a constant tag, and reset the 
status line 

set background text for status line 

turn alternating background status message on or off 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

11.10: 

SCROLLING AND SHIFTING 
The following routines provide access to shifting and scrolling fields and arrays. 

achg change the display attribute of an occurrence within a scrolling 
array 

ascroll 

doccur 

ioccur 

max occur 

num occurs 

oshift 

rscroll 

sc max 

sh off 

t scroll 

t shift 

tst all mdts 

11.11. 

scroll to a given occurrence 

delete occurrences 

insert blank occurrences into an array 

get the maximum number of occurrences 

fmd the highest numbered occurrence containing data 

shift a field by a given amount 

scroll an array 

alter the maximum number of items allowed in a scrollable 
array 

detennine the cursor location relative to the start of a shifting 
field 

test whether an array can scroll 

test whether field can shift 

fmd first modified occurrence 

MASS STORAGE AND RETRIEVAL 
, The following routines move data to or from sets of fields in the screen or LDB. 

rdJ'art 

. rdstruct 

restore data 

rrecord 

wrecord 

wrtJ'art 

wrtstruct 

read part of a data structure to the current screen 

read data from a structure to the screen '.' 

restore previously saved data to the screen 

read data from a structure to a data dictionary record 

write data from a data dictionary record to a structure 

write part of the screen to a structure 

write data from the screen to a structure 

JAM Release 5 1 March 91 Page 85 



Stratus COBOL Programmer's Guide 

11.12. 

"VALIDATION" 
The following routines provide an application interface to the field and group validation 
processes. 

bitop 

ckdigit 

fval 

gval 

novalbit 

s val 

11.13. 

manipulate validation and data editing bits 

validate check digit 

force field validation 

force group validation 

forcibly invalidate a field 

validate the current screen 

GLOBAL DATA AND CHANGING JAM'S 
BEHAVIOR 
The following routines grant access to global data and provide a way to manipulate cer
tain aspects of JAM and Screen Manager behavior. 

async 

dd able 

finquire 

gp_inquire 

inquire 

isabort 

iset· 

"keyfilter 

keyoption 

Ii func 

msgread 

option 

pinquire 

pset 

Page 86 

install an asynchronous function 

tum LDB wrikHhrough on or off 

obtain infotmation about a field 

obtain infonnation about a group 

obtain value of a global integer variable 

test and set the abort control flag 

change value of integer global variable 

control keystroke record/playback ftitering 

set cW'SOr control key options 

install an application hook function 

read message file into memory 

set a Screen Manager option 

obtain value of a global strings 

Modify value of global strings 

JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

resize 

uinstall 

11.14. 

dynamically change the size of the display 

install an application function . 

SOFT KEYS AND KEYSETS 
The following routines provide an application interface to JAM's soft key support. 

c_keyset 

key set 

kscscope 

ksinq 

ksoff 

kson 

skinq 

skrnark 

skset 

skvinq 

skvmark 

skvset 

11.15. 

close a keyset 

open a keyset 

query current keyset scope 

inquire about key set information 

turn off key labels 

turn on key labels 

obtain soft key information by position . 

mark or unmark a softkey label by position 

set characteristics of a soft key by position 

obtain soft key information by value 

mark a soft key by value 

set characteristics of a soft key by value 

JAM EXECUTIVE CONTROL 
, ,The following routines. available only to applications using the JAM Executive. provide 

JAM Executive services. 

" getjctrl . 

jclose 

jform 

jtop 

jwindow 

putjctrl 

get control string associated with a key 

close current window or form under JAM Executive control 

display a screen as a form under JAM control 

start the JAM Executive 

display a window at a given position under JAM control 

associate a control string with a key 

JAM Release 5 1 March 91 Page 87 



Stratus COBOL Programmer's Guide 

11.16. 

BLOCK MODE CONTROL 
The following routines are used in applications requiring block mode support. 

blkdrvr install block mode driver 

blkinit 

blkreset 

11.17. 

initialize (and turn on) block mode tenninal 

reset (and turn off) block mode terminal 

MISCELLANEOUS 
fiyath 

jplcall 

jplload 

jplpublic 

jplunload 

1 close 

l_open 

sdtime 

udtime 

Page 88 

return the full path name of a file 

execute a JPL procedure 

execute the JPL load command 

execute the JPL public command 

execute the JPL unload command 

close a library 

open a library 

get formatted system date and time 

fonnat user-supplied date and time 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Chapter 12. 

Function Reference 

All JAM function names begin with the prefix xsm . In the Function Reference Chapter 
functions are listed without the prefix and, in a few Cases, under a name that is not a por
tion of the function name - but that is suggestive of the utility of the function. For exam
ple, the function xsm_r_at_cur, which displays a window at a specified position, is 
found under the listing name window, along with the function xsm r window. In 
these cases, the calling syntax of each function is listed under the SYNOPSIS section of 
the listing. 

For each entry, you will fmd several sections: 

• A synopsis similar to a COBOL function declaration, giving the types of 
the arguments and return value. 

• A description of the function's arguments, prerequisites, results, and 
side--effects. 

• The function's return values, if any, and their meanings. 

• A list of variants. 

•. A list of functions that perform related tasks. 

• An example illustrating the function's use. 

,'.,.< Header mes that need to be copied are indicated in the synopsis section. 

To view functions by category, refer to the Library Function Overview (chapter 11.) To 
view a complete list of functions alphabetically by the actual function name (including 
the xsm _ prefix), see the Library Function Index (chapter 13.). 

JAM Release 5 1 March 91 Page 89 



Stratus COBOL Programmer's Guide 

achg 
change the display attribute of an occurrence within a 
scrolling array 

SYNOPSIS 
copy "smattrib, inc!. cobol". 

77 field-number 
77 occurrence 
77 display-attribute 
77 status 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

call "xsrn_o_achg" using field-number, occurrence, 
display-attribute giving status. 

DESCRIPTION 
NOTE: This function has only two variants, x srn_o_ac hg andxsrn_i_achg. There is 
NOxsrn_achg. 

This function changes the display attribute of an occurrence within a scrollable array. If 
the occurrence is onscreen, the attribute with which the occurrence is currently displayed 
is changed as well. When the occurrence is scrolled to another position within the array 
the new attribute moves with the occurrence. Use xsrn_chg_attr if you want all of the 
occurrences within the array to scroll through an attribute so that their appearance is de
termined by their onscreen positions. 

Possible values for the argument display-attribute are defined in the header file 
srnattrib. incl. cobol, as shown in the table below: 

Foreground Attributes Background Attributes 

ATT-BLANK ATT-BHILIGHT 

ATT-REVERSE 

ATT-UNDERLN 

ATT-BLiNK 

A TT -HILIGHT 

ATT-STANDOUT 

Page 90 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Foreground Attributes Background Attributes 

ATI-DIM 

A TI -ACS (alternate character set) 

Foreground Colors Background Colors 

ATI-BLACK ATI-BBLACK 

ATI-BLUE ATI-BBLUE 

ATI-GREEN ATI-BGREEN 

ATI-CYAN ATI-BCYAN 

ATI-RED ATI-BRED 

ATI-MAGENTA A IT -BMAGENTA 

ATI-YELLOW A IT -BYELLOW 

ATI-WHITE AIT-BWHITE 

Foreground colors may be used alone or with one or more highlights, a background color, 
and a background highlight. If you do not specify a highlight or a background color, the 
attribute defaults 10 white against a black background, Omitting the foreground value will 
cause the attribute to default to black. 

.,. If display-attribute is zero, the occurrence's display attribute is removed. leav
ing it with the field display attribute, Then, if that occurrence is onscreen, it is displayed 
with the attribute attached to its field. 

This function will not work on an array that is not scrollable. Use xsm chg attr 10 
change the display attribute of an individual field. - -

RETURNS 

-1 if the field isn't found or isn't scrollable, or if occurrence is invalid. 0 otherwise. 

VARIANTS 

call "xsm_i_achg" using field-name, occurrence, 
display-attribute giving status. 

RELATED FUNCTIONS 

call "xsm_chg_attr" using field-number, display-attribute 
giving status. 

JAM Release 5 1 March 91 Page 91 



Stratus COBOL Programmer's Guide 

allget 
load screen from the LOB 

SYNOPSIS 
77 respect-flag pic S(9)9 comp-S. 
call "xsm_allget" using respect-flag. 

DESCRIPTION 

This function copies data from the local data block to fields on the current screen with 
matching names. 

If respect -flag is nonzero, this function does not write to fields that already contain 
data, or that have their MDT bits set. If the flag is zero, all fields are initialized. When this 
function is called by the JAM run-time system, or by your screen entry function, it does 
not set MDT bits for the fields it initializes. 

This function is called automatically by the JAM screen-display logic, unless LDB pro
cessing has been turned off using xsm _ dd _able. Application code should not nonnally 
need to call it. 

RELATED FUNCTIONS 

call "xsm_dd_able" using flag. 
call "xsm_lstore" giving status. 

Page 92 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

amt format 
write data to a field, applying currency editing 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 buffer display-2 pic x(256) • 
77 status pic S(9)9 comp-5. 
call "xsm amt format" using field-number, buffer giving status. 

DESCRIPTION 

If the specified field has a currency edit, it is applied to the data in buffer. If the result-
_____ ing.string is. too.long.for.the.field,.an.error.message-is.displayed..Otherwise,.xsm"::pu t=

field is called to write the edited string to the specified field. 

If the field has no currency edit, xsmyutfield is called with the unedited string. 

RETURNS 

-1 if the field is not found or the occurrence is out of range; 
-2 if the edited string will not fit in the field; 
o otherwise. 

VARIANTS 

call "xsm_e_amt_format" using field-name, element, buffer 
giving status. 

call "xs~i_amt_format" using field-name, occurrence, buffer 
giving status. 

call "xsm_n_amt_format" using field-name, buffer giving status. 
call "xsm_o_amt_format" using field-number, occurrence, buffer 

giving status. 

RELATED FUNCTIONS 

,.,;".~:;.,;·call. "xsm..:...dtofield" using field-number, ... value, ,format. giving 
status. 

call "xsm_strip_amtytr" using field-number, inbuf, giving 
outbuf. 

JAM Release 5 1 March 91 Page 93 



Stratus COBOL Programmer's Guide 

ascroIL .. 
scroll to a given occurrence 

SYNOPSIS 
77 field-number pic S (9) 9 comp-5. 
77 occurrence pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm ascroll" using field-number, occurrence giving 

status. 

DESCRIPfION 

This function scrolls the designated field so that the indicated occurrence appears 
there. Synchronized arrays will scroll along with the target array. 

The field need not be the first element of a scrolling array. You can use this function, for 
instance, to place the nineteenth occurrence in the third on screen element of a fiv~le
ment scrolling array. 

The validity of certain combinations of parameters depends on the exact nature of the 
field. For instance, if field number 7 is the third element of a scrolling array and occur
rence is 1 a call to xsm ascroll will fail on a non-circular scrolling array but 
succeed if scrolling is circuiar. 

RETURNS 

-1 if field or occurrence specification is invalid, 
o otherwise. 

VARIANTS 

call "xsm n ascroll" using field-name, occurrence giving 
status. 

RELATED FUNCTIONS 

call "xsm_rscroll" using field-number, req-scroll giving lines. 
call "xsm_t_scroll" using field-number giving status. 

Page 94 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

async 
install an asynchronous function 

SYNOPSIS 
77 func entry. 
77 timeout pic S(9)9 comp-5. 
call "xsm_async" using func, timeout. 

DESCRIPTION 

This routine installs a a function that will be called regularly during keyboard processing 
(ie. -xsm input). The frrstparameter is the address of the function. Use the operating 
system subroutine s$find_entry to find the entry point The second parameter is the 
timeout, in tenths of a second. between subsequent function calls. 

The asynchronous function is called only when the keyboard is being read, and only if a 
keystroke does not arrive within the specified timeout. The authoring utility, jxform, 
uses an asynchronous function to update its cursor position display. An asynchronous 
function might also be used to implement a real-time clock display. 

RELATED FUNCTIONS 
call "xsm_uinstall" using usage, func, func-name giving 

status. 

JAM Release 5 1 March 91 Page 95 



Stratus COBOL Programmer's Guide 

backtab 
backtab to the start of the last unprotected field 

SYNOPSIS 
call "xsm backtab". 

DESCRIPTION 

When the cursor is in a field unprotected from tabbing into, but not in the first enterable 
position, it is moved to the first enterable position of that field. However, if the cursor is 
in a field with a previous-field edit and one of the fields specified by the edit is unpro
tected from tabbing, the cursor is moved to the first enterable position of that field. Other
wise, the cursor is moved to the first enterable position of the tab-unprotected field with 
the next lowest field number. If the cursor is in the first position of the first unprotected 
field on the screen, or before the first unprotected field on the screen, it wraps backward 
into the last unprotected field. When there are no unprotected fields, the cursor doesn't 
move. 

If the destination field is shiftable, it is reset according to its justification. The first enter
able position depends on the justification of the field and, in fields with embedded punc
tuation, on the presence of punctuation. 

This function doesn't immediately trigger field entry, exit, or validation processing. Such. 
-processing occurs based on the cursor position when control returns to xsm _input. 

This function is called when the JAM logical key BACK is ~truck. 

RELATED FUNCTIONS 
call "xsm_home" giving field-number. 
call "xsm last". 
call "xsm nl". 
call "xsm tab". 

Page 96 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

base fldno 
get the field number of the first element of an array 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 base-number pic 5(9)9 comp-5. 
call "xsm_base_fldno" using field-number giving base-number. 

DESCRIPTION 

A base field number is the field nwnber of the flCSt element of an array, Use 
x sm _ ba s e _ fldno to obtain the base field nwnber of an array. 

RETURNS 

The field number of the base element of the array containing the specified field, or 
o if the field nwnber is out of range. 

JAM Release 5 1 March 91 Page 97 



Stratus COBOL Programmer's Guide 

bel 
beep! 

SYNOPSIS 
call "xsrn bel". 

DESCRIPTION 

Causes the terminal to beep, ordinarily by transmitting the ASCII BEL code to it. If there 
is a BELL entry in the video file, xsrn _bel will transmit that instead, usually causing the 
terminal to flash instead of beeping. 

Even if there is no BELL entry, use this function instead of sending a BEL, because certain 
displays use BEL as a graphics character. 

Including a % B at the beginning of a message displayed on the status line will cause this 
function to be called. 

Page 98 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

bitop 
manipulate validation and data editing bits 

SYNOPSIS 

copy "smbitops.incl.cobol". 

77 field-number pic 5(9)9 comp-S. 
77 action pic 5(9)9 comp-S. 
77 bit pic 5(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm_bitop" using field-number, action, bit giving status. 

DESCRIPTION 

You can use this function to inspect and modify validation and data editing bits of screen 
fields, without reference to internal data structures. The first parameter identifies the field 
to be operated upon. 

action can include a test and at most one manipulation from the following table of 
values, which are defmed in smbi tops. incl. cobol: . 

Value Meaning 

BIT-CLR Turn bit off 

BIT-SET Turn bit on 

BIT-TOGL Flip state of bit 

BIT-TST Report state of bit 

.;.:;:,The third' parameter is a bit identifier, drawn from·the-following.table: 

Character edits 

N-ALL N-DIGIT N-YES-NO N-ALPHA N-NUMERIC 

N-ALPHNUM N-FCMASK 

JAM Release 5 1 March 91 Page 99 



Stratus COBOL Programmer's Guide 

Field edits Field edits 

N-RTJUST N-REQD N-VALIDED N-MDT N-CLRINP 

N-MENU N-UPPER N-LOWER N-RETENTRY N-FILLED 

N-NOTAB N-WRAP N-ADDLEDS N-EPROTECT N-TPROTECT 

N-CPROTECT N-VPROTECT N-ALLPROTECT N-SELECTED 

The character edits are not, strictly speaking, bits; you cannot toggle them, but the other 
functions work as you would expect. N-ALLPROTECT is a special value meaning all 
four protect bits at once. 

N-VALIDED and N-MDT are the only bit operations that can apply to individual off
screen and onscreen occurrences. The protection operations can apply to an array as a 
whole, including offscreen occurrences (see xsm _ aprotect). All other bit operations 
are attached to fIXed onscreen positions, 

The variants xsm e bi top and xsm n bi top can take a group name as an argu
ment. The function will then affect the groUP bits. 

This function has two additional variants, xsm a bi top and xsm t bi top, which 
perfonn the requested bit operation on all elementsof an array. Their synopsis appear be
low. If you include BIT-TST, these variants return 1 only ifbi t is set for every element 
of the array. The variants xsm _ i _ bi t op and xsm _0_ bi t op are restricted to N - VAL
IDED and N-MDT. 

RETURNS 
1 if there was no error, the action included 

-1 if the field or occurrence cannot be found 
-2 if the action or bit identifiers are invalid; a test operation, and bi t was set 
-3 if xsm _ i _ bi top or xsm _0_ bi top was called with bi t set to something 

other than N-VALIDED or N-MDT 
o otherwise. 

VARIANTS 
call "xsm_a_bitop" using array-name, action, bit giving status. 
call "xsm_e_bitop" using array-name, element, action, bit 

giving status. 
call "xsm_i_bitop" using array-name, occurrence, action, bit 

giving status. 
call "xsm_n_bitop" using name, action, bit giving status. 

Page 1 00 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

call "xsm_o_bitop" using field-number, occurrence, action, bit 
giving status. 

call "xsm_t_bitop" using array-number, action, bit giving 
status. 

JAM Release 5 1 March 91 Page 101 



Stratus COBOL Programmer's Guide 

bkrect 
set background color of rectangle 

SYNOPSIS 

copy"smattrib.incl.cobol". 

77 start-line pic 5(9)9 comp-5. 
77 start-column pic 5(9)9 comp-5. 
77 num-of-lines pic 5(9)9 comp-5. 
77 number-of-columns pic 5(9) 9 comp-5. 
77 background-colors pic 5(9) 9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_bkrect" using start-line, start-column, num-of-lines, 

number-of-columns, background-colors giving status. 

DESCRIPTION 

This function changes the background color of a rectangular area of the current screen. 
Any fields or elements that begin within the rectangular area will have their background 
attributes changed to the specified attribute. This means that if there are any fields or ele
ments that are not entirely contained within the rectangular area, a ragged edge will result.. 
Display text that falls with in the rectangular area will have its background attribute set. 

The arguments start-line and start-column can have any value from 1 through· 
the nwnber of lines (or columns) on the screen. 

The background color must be one of the values defined in smat trib. incl. cobol 
(ATI-BBLACK, ATI-BBLUE, etc.). You can highlight the.background color by sum
ming the background color attribute with ATI-BHILIGHT ... 

RETURNS 

-1 if the starting line or column was invalid. 
1 if the starting line and column were valid, but the rectangle had to be truncated to fit. 
o if no error. 

Page 102 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

blkinit 
initialize (and turn on) block mode terminal 

SYNOPSIS 
77 return-value pic S(9)9 comp-S. 
call "xsm blkinit" giving return-value. 

DESCRIPTION 

This routine must be called by the application program to initiate block mode tenninal 
action. A block mode tenninal driver must have been previously installed. 

This routine checks that a block mode terminal driver is installed. If a driver is found, it 
is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored. If the terminal cannot be put into block mode it 
will still work (possibly better) in interactive mode. 

If the driver signifies that all is OK, the global variable sm_blkcontrol is set to point 
to the local block terminal control handler. All Screen Manager calls for block mode sup
port are made through this control routine. 

On the first call to the present routine the driver is called with BLK_INIT to perform any 
required initialization. 

On subsequent calls BLK_BLOCK is called instead of BLK .. JNIT. 

RETURNS 

return value from driver if one exists. 
-1 otherwise. 

RELATED FUNCTIONS 

call n xsm blkreset n giving return-value. 

JAM Release 5 1 March 91 Page 103 



Stratus COBOL Programmer's Guide 

blkreset 
reset (and turn off) block mode terminal 

SYNOPSIS 
77 return-value pic S(9)9 comp-S. 
call "xsm blkreset" giving return-value. 

DESCRIPTION 

This routine must be called by the application program to reset block mode tenninal ac
tion. A block mode terminal driver must have been previously installed. 

This routine checks that a block mode tenninal driver is installed. If a driver is found, it 
is called. The driver should return 0 if all is successful. 

Generally the return code can be ignored as the terminal is often already in interactive 
mode. The exCeption is on those systems that are nonnally block mode. Many JAM pro
grams rely on the fact that the tenninal can be put into interactive mode. 

Note that the driver is called with BLK_CHAR, not with BLK_RESET. The only time the 
driver is called for a full reset is when JAM is about to go to the operating system - either 
exiting or perfonning a "shell escape". 

RETURNS 

return value from driver if one exists. 
-1 otherwise. 

RELATED FUNCTIONS 

call "xsm blkinit" giving return-value. 

Page 104 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

c_keyset 
close a keyset 

SYNOPSIS 

copy "smsoftk.incl.cobol". 

77 scope pic 5(9)9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_c_keyset" using scope giving status. 

DESCRIPTION 

This function closes the keyset of the given scope. It frees all memory associated with the 
key set and marks that scope as free. If the keyset was currently displayed, the keyset la
bels are changed to reflect the new keyseL 

See the keyset chapter of the Author's Guide for a detailed explanation of keyset scopes. 

Scope Value from Description 
smsoftk.incl.cobol 

KS-APPLIC Application scope, 

KS-FORM Form or window scope. 

KS-SYS1EM jxform system key sets. 

Use xsm_d_keyset and xsm_r_keyset to open keysets. 

RETURNS 

o if there is no error 
-2 if there is no key set currently at that scope 
-3 if the scope is out of range 

RELATED FUNCTIONS 
call "xsm_r_keyset" using name, scope giving status. 
call "xsm_d_keyset" using ADDRESS, scope giving status. 

JAM Release 5 1 March 91 Page 105 



Stratus COBOL Programmer's Guide 

c off 
turn the cursor off 

SYNOPSIS 

DESCRIPTION 

This function notifies JAM that the nonna! cursor setting is off. The nonna! setting is in 
effect except: 

• When a block cursor is in use, as during menu processing, the cursor is 
off. 

• While Screen Manager functions are writing to the display the cursor is 
off. 

• Within certain error message display functions the cursor is on. 

If the display cannot tum its cursor on and off (V -CON and V -COF entries are not defined 
in the video file), this function will have no effect 

Use xsrn c· on to turn the cursor on. 

RELATED FUNCTIONS 

Page 106 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

c on 
turn the cursor on 

SYNOPSIS 
call "xsm con". 

DESCRIPTION 

This function notifies JAM that the nonnal cursor setting is on. The nonnal setting is in 
effect except: 

• When a block cursor is in use, as during menu processing, the cursor is 
off. 

• While Screen Manager functions are writing to the display the cursor is 
off. 

• Within certain error message display functions the cursor is on. 

If the display cannot turn its cursor on and off (v -CON and v -COF entries are not defined 
in the video file), this function will have no effect 

Use xsrn c off to turn the cursor off. 

RELATED FUNCTIONS 

call "xsm c off". 

JAM Release 5 1 March 91 Page 107 



Stratus COBOL Programmer's Guide 

. 
C VIS 
turn cursor position display on or off 

SYNOPSIS 
77 display pic 5(9)9 comp-5. 
call "xsm_c_vis" using display. 

DESCRIPTION 

Assigning a non-zero value to display displays subsequent status line messages with 
the cursor's position display. This includes background status messages. Messages that 
would overlap the cursor position display are truncated. 

Setting display to zero will cause subsequent status line messages to be displayed 
without the cursor's position display. 

This function will have no effect if the CURPOS entry in the video fIle is not defined. In 
that case the cursor position display will never appear. 

JAM uses an asynchronous function and a status line function to perfonn the cursor posi
tion display. If the application has previously installed either of those, this function will 
override it. 

Page 108 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

calc 
execute a math edit style expression 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 occurrence pic 5(9)9 comp-5. 
77 expression display-2 pic x(256) . 
77 status pic 5(9)9 comp-5. 
call "xsm_calc" using field-number, occurrence, expression 

giving status. 

DESCRIYfION 

Use xsrn calc to execute a math edit style expression. With this function you can per
form mathematical operations that use the contents of one or more fields and then insert 
the result into a field. 

The third parameter expression is a math edit style expression. See the JAM Au
thor's Guide for a complete description on how to create the expression. 

The first two parameters, field-number and occurrence identify the field and oc
currence with which the calculation is associated. Nonnally you will not need to use them 
and should set them both to O. 

If you want to use relative references to fields in your expression, use the arguments 
field-number and occurrence to specify the field to which they should be rela
tive. 

If in the event of a math error you want the cursor to move a specific field, specify that 
field with field-number. In addition, if the desired field is an occurrence within an 
array, specifying the occurrence will cause the referenced array to scroll to 
field-number. 

RETURNS 

-1 is returned if a math error occurred. 
o is returned otherwise. 

JAM Release 5 1 March 91 Page 109 



Stratus COBOL Programmer's Guide 

cancel 
reset the display and exit 

SYNOPSIS 
77 arg pic 5(9)9 comp-5. 
call "xsm_cancel" using argo 

DESCRIPTION 

This function is installed by xsm _ ini tcrt to be executed if a keyboard interrupt oc
curs. It calls xsm_resetcrt to restore the display to the operating system's default 
state, and exits to the operating system. 

If your operating system supports it. you can also install this function to handle conditions 
that nonnally cause a program to abort. If a program aborts without calling xsm re
setcrt, you may fmd your tenninal in an odd state; xsm _cancel can prevent that. 

The argument a rg is a dummy argument. It should have the value zero. 

Page 110 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

chg_attr 
change the display attribute of a field 

SYNOPSIS 

copy"smattrib.incl.cobol". 

77 field-number pic 8(9)9 comp-5. 
77 display-attribute pic 8 (9) 9 comp-5. 
77 status pic 8(9)9 comp-5. 
call "xsm_chg_attr" using field-number, display-attribute 

giving status. 

DESCRIPTION 

Use this function to change the display attribute of an individual field or an element with
in an array. To change an occurrence attribute so that the attribute moves with the occur
rence use x srn_o_achg. 

If the field is part of a scrolling array, then each occurrence may also have a display attrib
ute that overrides the field display attribute when the occurrence arrives onto the screen. 

Possible values for display-attribute are defined in srnat
trib. incl. cobol, as shown in the table below: 

Foreground Attributes Background Attributes 

ATT-BLANK ATT-BHILIGHT 

ATT-REVERSE 

ATT-UNOERLN 

ATT-BLINK 

A TT -HILIGHT 

ATT-5TANOOUT 

ATT-OIM 

ATT -ACS (alternate character set) 

JAM Release 5 1 March 91 Page 111 



Stratus COBOL Programmer's Guide 

Foreground Colors Background Colors 

ATT-BLACK ATT-BBLACK 

ATT-BLUE ATT-BBLUE 

ATT-GREEN ATT-BGREEN 

ATT-CYAN ATT-BCYAN 

ATT-RED ATT-BRED 

ATT-MAGENTA A TT -BMAGENTA 

ATT-YELLOW ATT-BYELLOW 

ATT-WHITE ATT-BWHITE 

Foreground colors may be used alone or added together with one or more highlights, a 
background color, and a background highlight If you do not specify a highlight or a back
ground color, the attribute defaults to white against a black background. Omitting the 
foreground value will cause the attribute to default to black. 

NOTE: The variant xsm _0_ ch9_ at t r does not take the usual arguments. The second 
argument is an element rather than an occurrence. 

RETURNS 

-1 if the field is not found 
o otherwise. 

VARIANTS 

call "xsm_e_chg_attr" using field-name, element, 
display-attribute giving status. 

call "xsm_n_chg_attr" using field-name, display-attribute 
giving status. 

call "xsm_o_chg_attr" using field-number, element, 
.display-attribute giving status. 

RELATED FUNCTIONS 

call "xs~o_achg" using field-number, occurrence, 
display-attribute giving status. 

Page 112 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

ckdigit 
. validate check digit 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 field-data display-2 pic x(256). 
77 occurrence pic S(9)9 comp-5. 
77 modulus pic S(9)9 comp-5. 
77 minimum-digits pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm ckdigit" using field-number, field-data, occurrence, 

modulus, minimum-digits giving status. 

DESCRIPTION 

This function is called by field validation. It verifies that field-data contains the re
quired minimum number of digits terminated by the proper check digit If not, it posts an 
error message before returning. It can also be used to check any character string or field. 
If field-data is null, the string to check is obtained from the field-number and 
occurrence and an error message is displayed if the string is bad. If field-number 
is zero, no message will be posted, but the function's return code will indicate whether the 
string passed its check. 

A fuller description of sm _ ckdig i t is included with the source code, which is distrib
uted with JAM. 

Note that this function can be replaced by a user-installed check digit function which 
field validation will call instead. See the chapter on installing functions. 

RETURNS 

o If the field contents are available and valid . 
. -1 If the field contents do not contain the minimum number of digits or the proper 

check digit 
:. "'-2 If the length of field-data is zero and the field or occurrence cannot be found 

JAM Release 5 1 March 91 Page 113 



Stratus COBOL Programmer's Guide 

cl all mdts 
clear all MDT bits 

SYNOPSIS 
call "xsm cl all mdts". 

DESCRIPTION 
Clears the MDT (modified data tag) of every occurrence, both onscreen and off. 

JAM sets the MDT bit of an occurrence to indicate that it has been modified, either by 
keyboard entry or by a call toa function like xsmyutfield, since the screen was fIrst 
displayed (i.e., after the screen entry function returns). 

RELATED FUNCTIONS 
call "xsm_tst all_mdts" using occurrence giving field-number. 

Page 114 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

cl_unprot 
clear all unprotected fields 

SYNOPSIS 

DESCRIPTION 

Erases on screen and offscreen data from all fields that are not protected from clearing 
(CPROTECf). Date and time fields that take system values are re-initialized. Fields with 
the null edit are reset to their null indicator values. 

This function is normally bound to the CLEAR AIL key. 

RELATED FUNCTIONS 

call "xsffi_aprotect" using field-number, mask giving status. 

JAM Release 5 1 March 91 Page 115 



Stratus COBOL Programmer's Guide 

clear_array 
clear all data in an array 

SYNOPSIS 

77 field-number pic 5(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm_clear_array" using field-number giving status. 

call "xsm_lclear_array" using field-number giving status. 

DESCRIPTION 

Both functions clear all data from the array containing the field specified by field-num
ber. The value returned by xsm _ num _occurs is changed to zero. The array is cleared 
even if it is protected from clearing (CPROTECI). 

x sm _ c 1 ear _a r ray also clears arrays synchronized with the specified array. except for 
synchronized arrays that are protected from clearing. 

xsm_lclear_array only clears the specified array. 

RETURNS 

-1 if the field does not exist; 
o otherwise. 

VARIANTS 

call "xsm_n_clear_array" using field-name giving status. 
call "xsm_n_lclear_array" using field-name giving status. 

RELATED FUNCTIONS 

call "xsm_aprotect" using field-number, mask giving status. 
call "xsmyrotect" using field-number giving status. 

Page 116 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

close window 
close current window 

SYNOPSIS 
77 pic S(9)9 comp-5. 
call "xsm close window" giving status. 

DESCRIPTION 

xsm close window is used to close a window opened by xsm r window (or vari-
ant).-;sm_r_~t_cur (orvariant).orxsm_mwindow. - - -

The currently open window is erased. and the screen is restored to the state before the 
window was opened. All data from the window being closed is lost unless LDB process
ing is active. in which case named fields are copied to the LDB using xsm lstore. 
Since windows are stacked. the effect of closing a window is to return to the previous 
window. The cursor reappears at the position it had before the window was opened. 

When using the JAM Executive. use xsm j close to close a form. xsm jclose will 
call xsm jform to pop the form stack and open the new top form on the stack. In the 

- case ofa Window. xsm_jclose will call xsm_close_window to close the window. 

RETURNS 

-1 is returned if there is no window open. (i.e. if the currently displayed screen is a form 
or if no screen is displayed). 

o is returned otherwise. 

RELATED FUNCTIONS 

call "xsm_r_window" using screen-name, start-line, -start-column 
giving status. 

-- -- call "xsm wselect" using window-number giving return-value. 

JAM Release 5 1 March 91 Page 117 



Stratus COBOL Programmer's Guide 

d_msg_line 
display a message on the status line 

SYNOPSIS 

copy"smattrib.incl.cobol". 

77 message display-2 pic x(256). 
77 display-attribute pic 5(9)9 comp-S. 
call "xsm_d_msg_line" using message, display-attribute. 

DESCRIYfION 

The message in message is displayed on the status line, with an initial display attribute 
of display-attribute. If the cursor position display has been turned on (see 
xsm_c_ vis), the end of the status line will contain the cursor's current row and column. 
Messages displayed with xs~ d _msg_line override both background and field status 
text 

Messages posted with xsm _ d _ msg_line are displayed until the status line is cleared 
by xsm d msg line. They will persist from screen to screen until cleared. Clearing is 
accomplished bypassing xsm.:.... d _ msg_l ine an empty string for me s s age and a 0 for 
display-attribute. Once cleared. any currently overidden message will resume . 

. The function xsm d msg line will itself be overridden by xsm err reset and 
related functions, Or bY the ready/wait message enabled by xsm setstatus. 

Possible values for display-attribute are defined in smat-
trib. incl. cobol, as shown in the table below: 

Page 118 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Allribute Value Hex Code Allribute Value Hex Code 

Foreground Highlights Background Highlights 

ATT-BLANK 0008 A TT -BHILIGHT 8000 

ATT-REVERSE 0010 

ATT-UNDERLN 0020 

ATT-BLINK 0040 

ATT-HILIGHT 0080 

ATT -STANDOUT 0800 

ATT-DIM 1000 

A TT -ACS (alternate character set) 2000 

Foreground Colors Background Colors 

ATT-BLACK 0000 ATT-BBLACK 0000 

ATT-BLUE 0001 ATT-BBLUE 0100 

ATT-GREEN 0002 ATT-BGREEN 0200 

ATT-CYAN 0003 ATT-BCYAN 0300 

ATT-RED 0004 ATT-BRED 0400 

ATT-MAGENTA 0005 A TT -BMAGENTA 0500 

ATT-YELLOW 0006 A TT -BYELLOW 0600 

ATT-WHITE 0007 ATT-BWHITE 0700 

Foreground colors may be used alone or added together with one or more highlights, a 
background color, and a background highlight. If you do not specify a highlight or a back, 
ground color, the attribute defaults to white against a black background. Omitting the 
foreground value will cause the attribute to default to black. 

Several percent escapes provide control over the content and presentation of status mes
sages. The character following the percent sign must be in upper-case. Note that, if a mes
sage containing percent escapes is displayed before xsm _ ini tc rt is called, the percent 
escapes will show up in the message. 

If a string of the form %Annnn appears anywhere in the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be applied to the remainder of the message. The 

JAM Release 5 1 March 91 Page 119 



Stratus COBOL Programmer's Guide 

table gives the numeric values of the logical display attributes you will need to construct 
embedded attributes, If you want a digit to appear immediately after the attribute change, 
pad the attribute to 4 digits with leading zeros. If the following character is not a legal hex 
digit, then leading zeros are unnecessary. 

If a string of the form %Kkaynama appears anywhere in the message, kaynama is inter
preted as a logical key value, and the whole expression is replaced with the key label string 
defined for that key in the key translation me. If there is no label, the %K is stripped out 
and the value remains. Key values are defined in smkeys. incl. cobol; it is of course 
the name, not the number, that you want here. The value must be in upper-<:ase. 

If the message begins with a %B,JAM will beep the terminal (using xsm_bel) before is
suing the message. 

RELATED FUNCTIONS 

call "xsm_err_reset" using message. 
call "xsm_msg" using column, disp-length, text. 
call "xsm_mwindow" using text, line, column giving status. 

Page 120 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

dblval 
get the value of a field as a real number 

SYNOPSIS 
77 value pic S9(9) comp-2. 
77 field-number pic S(9)9 comp-5. 
call Hxsm_dblval" using field-number giving value. 

DESCRIPTION 

This function returns the contents of field-number as a real nwnber. It calls 
xsm_strip_amtytr to remove superfluous amount editing characters before con
verting the data. 

RETURNS 

The real value of the field is returned. 
If the field is not found, the function returns O. 

VARIANTS 

.call ."xsm e dblval" using 
call "xsm i dblval" using 
call "xsm n dblval" using 
call "xsm 0 dblval" using 

value. 

RELATED FUNCTIONS 

field-name, element g~v~ng value. 
field-name, occurrence giving value. 
field-name giving value. 
field-number, occurrence giving 

call "xsm_dtofield" using field-number, value, format giving 
status. 

call. "xsm_strip_amtytr" using field-number, inbuf, giving 
outbuf. 

JAM Release 5 1 March 91 Page 121 



Stratus COBOL Programmer's Guide 

dd able. 
turn LOB write-through on or off 

SYNOPSIS 
77 flag pic S(9)9 comp-5. 
call "xsm dd able" using flag. 

DESCRIPTION 

~uring normal JAM processing, named fields in the screen and local data block are kept 
in sync, When a screen is displayed (and after the screen entry function completes), val
ues are copied in from the LDB; when control passes from the screen (before the screen 
entry function is executed), values are copied back to the LOB. Normally, when applica
tion code reads or writes a value to or from a named field/LOB entry JAM treats the name 
as a field name unless no such field exists, in which case JAM treats the name as an LOB 
entry name, ~uring screen entry and exit processing, this logic is reversed in order to pre
serve the illusion that screen and LOB entries that share the same name also share the 
same data. 

xsm _ dd _able turns this feature off if flag is "0" and on if it is "1", .The feature is on 
by default When it is off, the LOB is never accessed, 

Page 122 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

deselect 
. deselect a checklist occurrence 

SYNOPSIS 
77 group-name 
77 group-occurrence 
77 status 

display-2 pic x(256). 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

call "xsm deselect" using group-name, group-occurrence giving 
status. 

DESCRIPTION 

This function allows you to deselect a specific occurrence within a checklist The group 
name and occurrence number is used to reference the desired selection. See the Author's 
Guide for a more detailed discussion of groups. 

Use xsm select to select a group occurrence and xsm isselected to check 
whether or not a particular group occurrence is currently selected. 

NOTE: You can not deselect a radio button occurrence. Using xsm select on a radio 
button occurrence will automatically deselect the current selection.-

RETURNS 

-1 arguments do not reference a checklist occurrence. 
o occurrence not previously selected. 
1 occurrence previously selected. 

RELATED FUNCTIONS 

call "xslTI.-isselected" using group-name, group-occurrence giving 
status. 

ca11 "xsm select" using group-name, group-occurrence giving 
status. 

JAM Release 5 1 March 91 Page 123 



Stratus COBOL Programmer's Guide 

dicname 
set data dictionary name 

SYNOPSIS 
77 dic-name display-2 pic x(256). 
77 status pic 5(9) 9 comp-5. 
call "xsm dicname" using dic-name giving status. 

DESCRIPTION 

This function names the application's data dictionary, which is daJa.dic by default It 
must be called before JAM initialization, in particular before xsm _1 db _ ini t is called 
to initialize the local data block from the data dictionary. The argument die-name is a 
character suing giving the file name; JAM will search for it in all the directories in the 
SMP ATH variable. 

You can achieve the same effect by defining the SMDICNAME variable in your setup file 
equal to the data dictionary name. See the section on setup files in the Configuration 
Guide. 

Use the function xsm yinqui re to find the name of the data dictionary in use. 

RETURNS 

-1 if it fails to allocate memory to store the name, 
o otherwise. 

RELATED FUNCTIONS 
call "xsmyinquire" using which giving buffer. 

Page 124 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

disp_off 
get displacement of cursor from start of field 

SYNOPSIS 
77 offset pic 5(9)9 comp-5. 
call "xsm_disp_off" giving offset. 

DESCRIPTION 

Returns the difference between the fll"St colwnn of the current field and the current cursor 
location. This function ignores offscreen data; use xsm sh off to obtain the total cur-
sor offset of a shiftable field. - -

RETURNS 

The difference between cursor position and start of field, or 
-1 if the cursor is not in a field. 

RELATED FUNCTIONS 

call "xsm_getcurno" giving field-number. 
call "xsm_sh_off" giving offset. 

JAM Release 5 1 March 91 Page 125 



Stratus COBOL Programmer's Guide 

dlength 
get the length of a field's contents 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 data-length pic S(9)9 comp-5. 
call "xsm_dlength" using field-number giving data-length. 

DESCRIPTION 
Returns the length of data stored in field-number. The length does not include lead
ing blanks in right justified fields, or trailing blanks in left-justified fields (which are also 
ignored by xsm _get field). It does include data that have been shifted offscreen, 

RETURNS 
Length of field contents, or 
':"1 if the field is not found. 

VARIANTS 
call "xsm_e_dlength" using field-name, element giving 

data-length. 
call "xsm_i_dlength" using field-name, occurrence giving 

data-length. 
call "xsm_n_dlength"using field-name giving data-length. 
call "xsrn_o_dlength" using field-number, occurrence giving 

data-length. 

RELATED FUNCTIONS 
call "xsrn_Iength" using field-number giving field-length, 

Page 126 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

do_region 
rewrite part or all of a screen line 

SYNOPSIS 

copy"smattrib.incl.cobol". 

77 line pic S(9)9 comp-5. 
77 column pic S(9)9 comp-5. 
77 length pic S(9)9 comp-5. 
77 display-attribute pic S (9) 9 comp-5. 
77 text display-2 pic x(256). 
call "xsm_do_region" using line, column, length, 

display-attribute, text. 

DESCRIPTION 

The screen region defined by line, column, and length is rewritten. Line and 
column are counted/rom zero, with (0, 0) the upper left-hand comer of the screen .. 

If text is zero, the screen region is redrawn with whatever display-attribute 
. has been assigned. If text is shorter than length, it is padded out with blanks. In either 
case, the display attribute of the whole area is changed to display-attribute. 

Possible values for display-attribute are defmed in smat-
trib. incl. cobol, as shown in the table below: 

Foreground Attributes Background Attributes 

ATT-BLANK A TT -BHILIGHT 

ATT-REVERSE 

ATT -UNDERLN 

ATT-BLINK 

ATT-HILIGHT 

ATT -STANDOUT 

ATT-DIM 

ATT -ACS (alternate character set) 

JAM Release 5 1 March 91 Page 127 



Stratus COBOL Programmer's Guide 

Foreground Colors Background Colors 

ATT-BLACK ATT-BBLACK 

ATT-BLUE ATT-BBLUE 

ATT-GREEN ATT-BGREEN 

ATT-CYAN ATT-BCYAN 

ATT-RED ATT-BRED 

ATT-MAGENTA ATT -BMAGENTA 

ATT-YELLOW A TT -BYELLOW 

ATT-WHITE ATT-BWHITE 

Foreground colors may be used alone or added together with one or more highlights, a 
background color, and a background highlight If you do not specity a highlight or a back
ground color, the attribute defaults to white against a black background. Omitting the 
foreground value will cause the attribute to default to black. 

Page 128 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

doccur 
delete occurrences 

SYNOPSIS 
77 field-number pic 5(9)9 comp~5. 
77 occurrence pic 5(9)9 comp-5. 
77 count pic 5(9)9 comp-5. 
77 return-value pic 5(9)9 comp-5. 
'call "xsm_o_doccur" using field-number, occurrence, count 

giving return-value. 

DESCRIPTION 

NOTE: This function only exists in the 0 and i variations. There is NO XSffi doc-
cur since this function only applies to arrays. - -

This function deletes the data in count occurrences beginning with the specified oc
currence. If the array is scroUable, then it deaUocates count occurrences. The data in 
occurrences following the last deleted occurrence are moved up in the array so that there 
are no gaps. Fewer than count occurrences will be deleted if the number of remaining 
allocated occurrences, starting with the referenced occurrence, is less than count. 

If count is negative, occurrences are inserted instead, subject to limitations explained at 
xSffi_ioccur. The function xSffi_ioccur is normally used to add blank occurrences. 

If occurrence is zero, the occurrence used is that of field-number. If occur
rence is nonzero, however, it is taken relative to the first field of the array in which 
field-number occurs. 

Any clearing-unprotected synchronized arrays will have the same operations performed 
on them as the referenced array. 

This function is normally bound to the DELETE LINE key. 

RETURNS 

-1 if the field or occurrence number was out of range; 
-3 if insufficient memory was available; 
otherwise, the number of occurrences actually deleted (zero or more). 

VARIANTS 

call "xsm_i_doccur" using field-name, occurrence, count giving 
return-value. 

JAM Release 5 1 March 91 Page 129 



Stratus COBOL Programmer's Guide 

dtofield 
write a real number to a field 

SYNOPSIS 
77 field-number 
77 value 
77 format 
77 status 
call "xsm dtofield" 

status. 

DESCRIYfION 

pic 5(9)9 comp-5. 
pic 59(9) comp-2. 
display-2 pic x(256). 
pic 5(9)9 comp-5. 

using field-number, value, format giving 

The real number value is converted to human-readable fonn, according to format, 
and moved into field-number via a call to xsm amt format, If the format 
string is empty, the number of decimal places will be iaken from a data type edit, if one 
exists; failing that, from a currency edit, if one exists; or failing that, will default to 2. 

The number of decimal places may be forced to be an arbitrary number n, via rounding, 
by using the fonnat string % • n fn. The format string % t . n f" may be used to truncate in
stead of to round. 

RETURNS 

-1 is returned if the field is not found. 
-2 is returned if the output would be too wide for the destination field. 
o is returned otherwise. 

VARIANTS 

call "xsm e dtofield" using field-name, element, value, format 
giving status. 

call "xsm_i_dtofield" using field~name, occurrence, ·value, 
format giving status. 

call "xsm_n_dtofield" using field-name, value, format giving 
status. 

call "xsm 0 dtofield" using field-number, occurrence, value, 
format giving status. 

RELATED FUNCTIONS 

call "xsm_amt_format" using field-number, buffer giving status. 
call "xsm_dblval" using field-number giving value. 

Page 130 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

e 
variants that take a field name and element number 

SYNOPSIS 
77 field-name display-2 pic x(256). 
77 element pic S(9)9 comp-5. 
call "xsm e ... " using field-name, element, 

DESCRIPTION 

The e variant functions access one element of an array by field name and element num
ber. For a description of any particular function, look under the related function without 
e_ in its name. For example, xsm_e_amt_format is described under 
xsm amt format. 

Despite the fact that they take a field name as argument, these functions do not search the 
LDB for names not found in the screen because an element number is ambiguous when 
referring to the LDB. 

JAM Release 5 1 March 91 Page 131 



Stratus COBOL Programmer's Guide 

edit_ptr 
get special edit string 

SYNOPSIS 
copy "smedits.incl.cobol". 

77 buffer 
77 field-number 
77 edit-type 

display-2 pic x(256). 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 

call "xsm_editytr" 
buffer. 

using field-number, edit-type giving 

DESCRIPTION 
This function searches the special edits area of a field or group for an edit of type 
edit-type. The edit-type should be one of the following values, which are de
fmed in smedits. incl. cobol: 

NOTE: 
-EDIT-CMD 

Each of the values listed in the table below should have the suffIx 

added to it So, for example, the value NAMED becomes 
NAMED-EDIT-CMD. 

Edit type (add: Contents of edit string 
-EDIT-CMD) 

NAMED Field name 

CPROG Name of field validation function 

FE-CPROG Name of field entry function 

FX-CPROG Name of field exit function 

HELPSCR Name of help screen 

HARDHLP Name of automatic help screen 

HARDITM Name of automatic item selection screen 

ITEMSCR Name of item selection screen 

SUBMENU Name of pull-down menu screen 

Page 132 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Edit type (add: Contents of edit string 
-EDIT-CMD) 

TAB LOOK Name of screen for table-lookup validation 

NEXTFLD Next field (contains both primary and alternate fields) 

PREVFLD Previous field (contains both primary and alternate fields) 

TEXT Status line prompt 

MEM01 ... Nine arbitrary user-supplied text strings 

MEMO 9 

JPLTEXT Attached JPL code 

CALC Math expression executed at field exit 

CKDIGIT Rag and parameters for check digit 

FTYPE Data type for inclusion in structure 

RETCODE Return value for menu or return entry field 

CMASK Regular expression for field validation 

CCMASK Regular expression for character validation 

CKBOX Offset and attribute of checkbox in a group 

ALTSC-CPROG Name of alternate scrolling function 

KEYSET Name of keyset associated with screen. 

SDATETlME Date/time field with user format, initialized with system values. 

UDATETlME Date/time field with user format, initialized by the user. 

CURRED Currency field format, see smedi ts. incl. cobol for de-
tails. 

NULLFIELD Null field representation. 

RANGEL Low bound on range; up to 9 permitted 

JAM Release 5 1 March 91 Page 133 



Stratus COBOL Programmer's Guide 

Edit type (add: Contents of edit string 
-EDIT-CMD) 

RANGEH High bound on range; up to 9 permitted 

EDT-BITS Nonnally for internal use (see smedi ts . incl. cobol for 
more information.) 

The string returned by xsm _ edi t yt r contains: 

• The total length of the string (including the two overhead bytes and any 
terminators) in its fIrst byte. 

• The edit--type code in its second byte. 

• The body of the edit in the subsequent bytes. Refer to the source listing 
for the fIle smedi ts. incl. cobol for specifIc information on how 
to interpret each individual edit 

If the fIeld has no edit of type edi t -t ype, the returned buffer will contain a zero. If a 
fIeld has multiple edits of one type, such as RANGEH or RANGEL, then each additional 
edit is added onto the end of the string following the same pattern as the fIrst one. For 
example, the fIrst byte would contain the length of the string up to the end of the body of 
the edit of RANGEH. Adding one to this number would give you the byte that contains 
the length of the string containing information on RANGEL and so forth .... 

This function is especially useful for retrieving user-defmed information contained in 
MEMO edits. 

In the case of groups, the edits PREVFLD-EDIT-CMD, NEXTFLD-EDIT-CMD, 
CPROG-EDIT-CMD, FE-CPROG-EDIT-CMD, and FE-CPROG-EDIT-CMD may be 
used to obtain group information. 

RETURNS 

The flJ'St (length) byte of the special edit of the fIeld. 
o if the fIeld or edit is not found. 

VARIANTS 

call "xsm_n_editytr" using field-name, edit-type giving 
buffer. 

Page 134 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

emsg 
display an error message and reset the message line 
without turning on the cursor 

SYNOPSIS 
copy"smattrib.incl.cobol". 

77 message display-2 pic x(256) • 
call "xsm_emsg" using message. 

DESCRIPTION 
This function displays message on the status line, if it fits, or in a window if it is too 
long. If the cursor position display has been turned on (see xsm_c_ vis), the end of the 
status line will contain the cursor's current row and column. If the message text would 
overlap that area of the status line, it will be displayed in a window instead. The message 
remains visible until the operator presses a key. The function's exact behavior in dismiss
ing the message is subject to the error message options; see xsm_option. 

xsm_emsg is identical to xsm _err_ reset, except that it does not attempt to turn the 
cursor on before displaying the message. It is similar to xsm _qui _ msg, which inserts a 
constant string (normally "ERROR:") before the message. 

Several percent escapes provide control over the content and presentation of status mes
sages. The character following the percent sign must be in upper-case. Note that, if a mes
sage containing percent escapes is displayed before xsm _ ini t c rt is called, the percent 
escapes will show up in the message. 

If a string of the form %Annnn appears anywhere in the message, the hexadecimal number 
nnnn is interpreted as a display attribute to be applied to the remainder of the message. The 
table gives the numeric values of the logical display attributes you will need to construct 
embedded attributes. If you want a digit to appear immediJjtely after the attribute change, 
pad the attribute to 4 digits with leading zeros. If the following character is not a legal hex 
digit, then leading zeros are unnecessary. 

If a string of the form %Kkeyname appears anywhere in the message, keyname is inter
preted as a logical key value, and the whole expression is replaced with the key label string 
defined for that key in the key translation me. If there is no label, the %K is stripped out 
and the value remains. Key values are defined in smkeys. incl. cobol; it is of course 
the name, not the number, that you want here. The value must be in upper-case. 

If the message begins with a %8, JAM will beep the tenninal (using xsm bel) before is-
suing the message. -

JAM Release 5 1 March 91 Page 135 



Stratus COBOL Programmer's Guide 

If %N appears anywhere in the message, the latter will be presented in a pop-up window 
rather than on the status iine, and all occurrences of %N will be replaced by new lines. 

If the message begins with %W, it will be presented in a pop-up window instead of on the 
status line. The window will appear near the bottom center of the screen, unless it would 
obscure the current field by so doing; in that case, it will appear near the top. 

If the message begins with %Mu or %Md, JAM will ignore the default error message ac
knowledgement flag and process (for %Mu) or discard (for %Md) the next character typed. 

Possible hex values for display attribute are defined in smattrib. incl. cobol, as 
shown in the table below: 

Attribute Value . Hex Code Attribute Value Hex Code 

Foreground Highlights Background Highlights 

AIT-BLANK 0008 A IT -BHILIGHT 8000 

AIT-REVERSE 0010 

AIT-UNDERLN 0020 

AIT-BLINK 0040 

A IT -HILIGHT 0080 

A IT-STANDOUT 0800 

AIT-DIM 1000 

A IT -ACS (alternate character set) 2000 

Page 136 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Attribute Value Hex Code Attribute Value Hex Code 

Foreground Colors Background Colors 

ATT-BLACK 0000 ATT-BBLAC K 0000 

ATT-BLUE 0001 ATT-BBLUE 0100 

ATT~REEN 0002 ATT-BGREEN 0200 

ATT-CYAN 0003 ATT-BCYAN 0300 

ATT-RED 0004 ATT-BRED 0400 

ATT-MAGENTA 0005 A TT -BMAGENTA 0500 

ATT-YELLOW 0006 A TT -BYELLOW 0600 

ATT-WHITE 0007 ATT-BWHITE 0700 

Foreground colors may be used alone or added together with one or more highlights, a 
background color, and a background highlight If you do not specify a highlight or a back
ground color, the attribute defaults to white against a black background. Omitting the 
foreground value will cause the attribute to default to black. 

RELATED FUNCTIONS 

call "xsm_err_reset" using message. 
call "xsm_qui_msg" using message. 
call "xsm_quiet_err" using message. 

JAM Release 5 1 March 91 Page 137 



Stratus COBOL Programmer's Guide 

err reset. 
display an error message and reset the status line 

SYNOPSIS 

copy "smattrib.incl.cobol". 

77 message display-2 pic x(256). 
call "xsm err reset" using message. 

DESCRIPTION 

The message is displayed on the status line until acknowledged it by pressing a key. If 
message is too long to fit on the status line, it is displayed in a window instead. If the 
cursor position display has been turned on (see xsm _c_ vis), the end of the status line 
will contain the cursor's current row and column. If the message text would overlap that 
area of the status line, it will be displayed in a window instead. The exact behavior of 
error message acknowledgement is governed by xsm_option. The initial message at
tribute is set by xsm _option, and defaults to blinking. 

This function turns the cursor on before displaying the message, and forces off the global 
flag·sm-do-not-display. It is similar to xsm emsg, which does not turn on the . 

. cursor, and to xsm _ quiet ~e rr, which inserts a constant string (normally "ERROR:') 
before the message. 

Several percent escapes provide control over the content and presentation of status mes
sages. See xsm _ emsg for details. 

RELATED FUNCTIONS 

call "xsm_emsg" using message. 
call "xsm_qui_msg" using message. 
call "xsm_quiet_err" using message. 

Page 138 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

fi_path 
return the full path name of a file 

SYNOPSIS 
77 buffer display-2 pic x(256) . 
77 file-name display-2 pic x(256) . 
call "xsm_fiyath" using file-name giving buffer. 

DESCRIPTION 

Use this function to find the full path name of a ftle. The ftle may be a screen or any other 
type of file. The file's full path name is returned in buffer. 

The ftle name is first sought in the current directory. If that fails, the path given to 
xsm_initcrt is checked. Finally the path defined by SMPATH is searched. 

RETURNS 

o if the file cannot be found in any path. 
Else, The path is returned in buffer. 

JAM Release 5 1 March 91 Page 139 



Stratus COBOL Programmer's Guide 

finquire 
obtain information about a field 

SYNOPSIS 

copy"smglobs.incl.cobol". 

77 field-number pic S(9)9 comp-5. 
77 which pic S(9)9 comp-5. 
77 value pic S(9)9 comp-5. 
call "xsm_finquire" using field-number, which giving value. 

DESCRIPTION 

Use this function to obtain various infonnation about a field. The variable which is a 
value that specifies the particular piece of infonnation desired. 

Values for which are defined in the file smglobs. incl. cobol. The following val
ues are available: 

Value Meaning 

FD-LINE Line that field is on. 

FD-COLM Column of field's first position. 

FD-ATTR Field attributes (see smat trib. incl. cobol). 

FD-LENG Onscreen field length. 

FD-ASIZE Onscreen array size (1 if scalar). 

FD-ELT On screen element number. 

FD-SHLENG Shiftable length. 

FD-SHINCR Shift incremenL 

FD-SHOFS Current shift offset (number of positions field has been 
shifted; 0 if shifted to left edge). 

FD-SCINCR Scrolling increment (for Next/Prev page keys). 

FD-SCFLAG Scrolling array circular? (T/F). 

Page 140 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Value Meaning 

FD-SCATTR Scrolling occurrence display attributes set with -
xsm i achg; zero if onscreen element attributes is to be 
used-:-FOr xsm _ i _ f inqui re variant only. 

FD-FELT First onscreen occurrence of scrolling array (1 if scrolled to 
top). 

RETURNS 

The value of which if found. 
o otherwise. 

VARIANTS 

call "xsm_e_finquire" using field-name, element, which giving 
value. 

call "xsm_i_finquire" using field-name, occurrence, which 
giving value. 

call "xsm_n_finquire" using field-name, which giving value. 
call "xsm_o_finquire" using field-number, occurrence, which 

giving value. 

RELATED FUNCTIONS 

call .. "xsm_gp_inquire" using group-name,- which giving value. 
call "xsm_inquire" using which giving value. 
call "xsm_iset" using which, newval giving value. 
call "xsmyinquire" using which giving buffer. 
call "xsmyset" using which, newval giving buffer. 

JAM Release 5 1 March 91 Page 141 



Stratus COBOL Programmer's Guide 

fldno 
get the field number of an array element or occurrence 

SYNOPSIS 
77 field-name display-2 pic x(256). 
77 field-number pic 8(9)9 comp-5. 
call "xsm_n_fldno" using field-name giving field-number. 

DESCRIPTION 

NOTE: This function only exists in the e_, i_, n_, and 0_ variations. There is NO 
xs~fldno since this function detennines the field number given other infonnation. 

The e variantretums the field number of an array element specified by field-name 
and element. If element is zero, thenxsm_e_fldno returns the field number of the 
named field, or the base element of the named array. 

The i_and 0_ variants return the number of the field containing the specified occurrence 
if the occurrence is onscreen, or 0 if the occurrence is offscreen. 

The n _ variant returns the field number of a field specified by name, or the base field 
number of an array specified by name. 

RETURNS 

o if the name is not found, if the element number exceeds 1 and the named field 
is not an array, or if the occurrence is offscreen. 

Otherwise, returns an integer between 1 and the maximum number of. fields on the 
current screen that represents the field number. 

VARIANTS 

call "xsm_e_fldno" using field-name, element giving 
field-number. 

call "xsm_i_fldno" using field-name, occurrence giving 
field-number. 

call "xsm_o_fldno" using field-number, occurrence giving 
field-number. 

Page 142 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

flush 
flush delayed writes to the display 

SYNOPSIS 
call "xsm_flush". 

DESCRIPTION 

This function perfonns delayed writes and flushes all buffered output to the display. It is 
called automatically via xsm _input whenever the keyboard is opened and there are no 
keystrokes available, i.e. typed ahead. 

Calling this routine indiscriminately can significantly slow execution. As it is called 
whenever the keyboard is opened, the display is always guaranteed to be in sync before 
data entry occurs; however, if you want timed output or other non-interactive display, use 
of this routine will be necessary. 

RELATED FUNCTIONS 
call "xsm flush". 
call "xsm rescreen". 

JAM Release 5 1 March 91 Page 143 



Stratus COBOL Programmer's Guide 

form 
display a screen as a form 

SYNOPSIS 
77 screen-name display-2 pic x(256). 
77 status pic S(9)9 comp-5. 
call "xsm_r_form" using screen-name giving status. 

copy "myscreen.incl.cobol". 

77 status pic S(9)9 comp-5. 
call "xsm_d_form" using SCREEN-ADDRESS giving status. 

77 lib-desc 
77 screen-name 
77 status 

pic S(9)9 comp-5. 
display-2 pic x(256). 
pic S(9)9 comp-5. 

call "xsm_l_form" using lib-desc, screen-name giving status. 

DESCRIYfION 

This set of functions is primarily intended to be used by developers who are writing their 
own executive. These functions do not update the fonn stack, so it is generally not a good 
idea to use them with the JAM Executive; To open a fonn while under the control of the 
JAM Executive, use a JAM control string or xsm_jform. 

These functions display the ilamed screen as a base form, Bringing up a screen as a fonn 
with xsm d form, xsm 1 form, xsm r form causes the. previously displayed 
fonn and windows to be diSCarded, and theil memory freed. The new screen is displayed 
with its upper left-hand earner at the extreme upper left of the display (position (0,0» .. 

If an error occurs a return of -I-or -2 means that the previously displayed fonn is stili 
displayed and may be used. Other negative return codes indicate that the display is unde
fined. The caller should display another fonn before using Screen Manager functions. 

When you use xsm_r_form the named screen is sought first in the memory-resident 
screen list, and if found there is displayed using xsm _ d _ form. It is next sought in all the 
open screen libraries, and if found is displayed using xsm _1_ form. Next it is sought on 
disk in the current directory; then under the path supplied to xsm ini tcrt; then in all 
the paths in the setup variable SMPATH. If any path exceeds 80 characters, it is skipped. 
If the entire search fails, this function displays an error message and returns. 

Page 144 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

You may save processing time by using xsm _ d _ form to display screens that are memo
ry-resident Use bin2cob to convert screens from disk files, which you can modify us
ing jxfcirm, to program data structures you can compile into your application. A 
memory-resident screen is never altered at run-time, and may therefore be made share
able on systems that provide for sharing read-only data. xsm_r_form can also display 
memory-resident screens, if they are properly installed using xsm f 0 rml i st. Memo
ry-resident screens are particularly useful in applications that have a limited number of 
screens, or in environments that have a slow disk (e.g. MS-DOS). SCREEN-ADDRESS 

is the address of the screen in memory. 

You may also save processing time by using x sm _1_ form to display screens that are in 
a library. A library is a single fIle containing many screens (and/or JPL modules and key
sets). You can assemble one from individual screen fIles using the utility f ormlib. Li
braries provide a convenient way of distributing a large number of screens with an appli
cation, and can improve efficiency by cutting down on the number of paths searched. 

The library descriptor, lib-desc, is an integer returned by xsm _I_open, which you 
must call before trying to read any screens from a library. Note that xsm r form also 
searches any open libraries. - -

To display a window use xsm_r_at_cur, xsm_r_window, or one of their variants. 

·RETURNS 

o if no error occurred 
-1 if the screen file's format is incorrect; previous form still displayed and available 
-2 if the screen cannot be found or the maximum allowable number of files is 

already open; previous form still displayed and available 
-4 if, after the screen has been cleared, the screen cannot be successfully 

displayed because of a read error; 
-5 if, after the screen was cleared, the system ran out of memory; 

RELATED FUNCTIONS 

, call "xsm_r_window" using screen-name, . start-line, start-column 
giving status. 

call "xsm_r_at_cur" using screen-name giving status. 

JAM Release 5 1 March 91 Page 145 



Stratus COBOL Programmer's Guide 

formlist 
update list of memory-resident files 

SYNOPSIS 

copy "myform.incl.cobol". 

77 name display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm formlist" using name, address giving status. 

DESCRIPfION 

This function adds a JPL module, keyset, or screen to the memory resident fonn list. Each 
member of the list is a structure giving the name of the JPL module, screen, or keyset, as 
a character string, and its address in memory. This function is commonly called from 
main. It can be called any number of times from an application program to augment to 
the memory resident list 

To make a JPL module, keyset, or screen memory resident, you can use the bin2cob 
utility to create a COBOL record initialized with the binary content of the object You 
must then copy the record into the application executable. 

RETURNS 

-1 if insufficient memory is available for the new list; 
o otherwise. 

RELATED FUNCTIONS 
call "xsm rmformlist. 

Page 146 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

ftog 
convert field references to group references 

SYNOPSIS 
77 field-number 
77 group-occurrence 
77 buffer 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
display-2 pic x(256) 

call "xsm_ftog" using field-number, group-occurrence giving 
buffer. 

DESCRIPTION 

This function converts field references to group references. Use xsrn_i_gtof to con
vert them back. 

This function returns the name of the group containing the referenced field and inserts its 
group occurrence number into the address of occurrence. 

RETURNS 

The group name if found and indirectly through group-occurrence the 
group occurrence number.· 

o otherwise and group-occurrence is unchanged. 

VARIANTS 
call "xsm e ftog" using field-name, element, group-occurrence 

giving buffer. 
call "xsm_i_ftog" using field-name, occurrence, 

group-occurrence giving buffer. 
call "xsm_n_ftog" using field-name, group-occurrence giving 

buffer. 
call "xsm_o_ftog" using field-number, occurrence, 

group-occurrence giving buffer. 

RELATED FUNCTIONS 
call "xsm_i_gtof" using group-name, group-occurrence, 

occurrence giving field-number. 

JAM Release 5 1 March 91 Page 147 



Stratus COBOL Programmer's Guide 

ftype 
get the data type and precision of a field 

SYNOPSIS 
capy "smedits.incl.cabal". 

77 field-number 
77 precisian-ptr 
77 type 
call "xsm_ftype" 

DESCRIPTION 

pic S(9)9 camp-5. 
pic S(9)9 camp-5. 
pic S(9)9 camp-5. 

using field-number, precisian-ptr giving type. 

This function analyzes the edits of a field or LOB entry, and returns data type infonnation. 
First the "type" (FTYPE) edit is checked, then the "currency" edit, the "date/time" edit, 
and finally the "character" edit 

Note that this differs from the functionality of xsm_rdstruct, xsm_wrtstuct, 
xsm _ rrecord, and xs~ wrecord. These functions only test the type and character 
edits. They use the currency edit only to determine the precision of a numeric field that 
has no type edit 

This fWlction rell.U1ls an integer containing the data type code, plus any applicable flags. 
The data type codes and flags are detailed in the tables below. 

Data Type Code Meaning 

FT-CHAR . Type edit is char string; or character edit is unfiltered, lellers 
only, alphanumeric, or regular expression 

FT-INT Type edit is in! 

FT-UNSIGNED Type edit is unsigned inr, or character edit is digit 

FT-SHORT Type edit is short in! 

FT-LONG Type edit is long int 

FT-FLOAT Type edit isfloat 

FT-DOUBLE Type edit is double; or character edit is numeric 

FT-ZONED Type edit is wned dec. 

Page 148 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Data Type Code Meaning 

FT-PACKED Type edit is packed dec. 

DT-YESNO Character edit is yes/no 

DT-CURRENCY Currency edit 

DT-DATETIME Date/time edit 

Flag Meaning 

DF-NULL Null edit 

DF-REQUIRED Data required edit (not applicable to LOB) 

DF-WRAP Word wrap edit 

OF-OMIT Type edit is omit. 

To detennine the data type code, check this integer for each flag in the fashion of the ex
ample field function shown on page 14, starting with DF-OMIT and working up the list. 
The value remaining will be the data type code. 

Note that FT-OMIT is not listed as one of the data types. A field that has the type edit 
omit will return the data type determined by any of the other edits, as well as a flag indi
eating that ithas the omit type edit. 

The function will put the precision of float, double and currency values in the preci
son-ptr argument. 

RETURNS 

- major data type code plus any-applicable-flags (see tables above). -
o if field is not found 

VARIANTS 
call "xsffi_n_ftype" using field-number, precision-ptr giving 

type. 

JAM Release 5 1 March 91 Page 149 



Stratus COBOL Programmer's Guide 

tval 
force field validation 

SYNOPSIS 
77 field-number pic S(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm fval" using field-number giving status. 

DESCRIPTION 

This function performs all validations on the indicated field or occurrence, and returns the 
result. If the field is protected against validation, the checks are not performed and the 
function returns 0; see xsrn _ aprotect. Validations are done in the order listed below. 
Some will be skipped if the field is empty, or if its VALIDED bit is already set (implying 
that it has already passed validation). 

Validation Skip if valid Skip if empty 

required y n 

must fill y Y 

regular expression y y 

range y y 

check-digit y y 

date or time y y 

table lookup y y 

currency format y n· 

math expresssion n n 

field validation n n 

JPL function n n 

• The currency format edit contains a skip--if--empty flag; see the Author's Guide. 

If you need to force a skip--if--empty validation, make the field required. A field with em
bedded punctuation must contain at least one non-blank non-punctuation character in or-

Page 150 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

der to be considered non-empty; otherwise any non blank character makes the field non
empty. 

Math expressions, JPL functions and field validation functions are never skipped, since 
they can alter fields other than the one being validated. 

Field validation is performed automatically within xsm _input when the cursor exits a 
field via the TAB or NL logical keys. All fields on a screen are validated when XMIT is 
pressed (see xsm_s_val). Application programs need call this function only to force 
validation of other fields. 

RETURNS 

-2 if the field or occurrence specification is invalid; 
-1 if the field fails any validation; 
o otherwise. 

VARIANTS 

call "xsm e fval" using array-name, element g~v~ng status. 
call "xsm i fval" using field-name, occurrence giving status. 
call "xsm n fval" using field-name giving status. 
call "xsm 0 fval" using field-number, occurrence giving status. 

RELATED FUNCTIONS 

call-"xsm_n_gval" using group-name giving status. 
call "xsm_s_val" giving status. 

JAM Release 5 1 March 91 Page 151 



Stratus COBOL Programmer's Guide 

getcurno 
get current field number 

SYNOPSIS 
77 field-number pic S (9) 9 comp-5, 
call "xsm_getcurno" giving field-number. 

DESCRIPTION 

This function returns the number of the field in which the cursor is currently positioned. 
The field number ranges from 1 to the total number of fields in the screen. 

RETURNS 

Number of the current field, or 
o if the cursor is not within a field. 

RELATED FUNCTIONS 

call "xsm occur no" giving occurrence. 

Page 152 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

getfield 
copy the contents of a field 

SYNOPSIS 
77 buffer 
77 field-number 
77 length 

display-2 pic x(256) . 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 

call "xsm_getfield" using buffer, field-number giving length. 

DESCRIYfION 
This function copies the data found in field-number to buffer. Leading blanks in 
right-justified fields and trailing blanks in left-justified fields are not copied. The varia
nts that reference a field by name will auempt to get data from the corresponding LOB 
entry if there is no such field on the screen (except that the order is reversed during screen 
entry/exit processing). 

Responsibility for providing a buffer large enough for the field's contents rests with the 
calling program. This should be at least one greater than the maximum length of the field, 
taking shifting into account. 

In variants that take name as an argument, either the name of a field or a group may be 
used. In thecaseofgroups,xsm_isselected is preferred to xsm_getfield for de
termining whether or nota group occurrence is selected. Ifxsm n get field is called 
on a radio button, the value in buffer will-be the occurrence number of the selected 
item. If xsm_i_getfield is called on a checklist, the value in the first occurrence of 
the array will be the number of the first selected item in the group, the value in the second 
occurrence will be the number of the next selected item in the group and so on. If a check
list has, for example, three items selected. the fourth array occurrence will be empty. 

Note that the order of arguments to this function is different from that to the related func
tion xsmyutfield. 

RETURNS 
The total length of the field's contents, or 
-1 if the field cannot be found. 

VARIANTS 
call "xsm_e_getfield" using buffer,_ name, element giving 

length. 
call "xsm_i_getfield" using buffer, name, occurrence giving 

length. 

JAM Release 5 1 March 91 Page 153 



Stratus COBOL Programmer's Guide 

call "xsm_n_getfield" using buffer, name giving length. 
call "xsm_o_getfield" using buffer, field-number, occurrence 

giving length. 

RELATED FUNCTIONS 

call "xsm_isselected" using group-name, group-occurrence giving 
status. 

call "xsmyutfield" using field-number, data giving status. 

Page 154 JAM Release 5 1 March 91 



Stmtus COBOL Progmmmer's Guide 

getjctrl 
get control string associated with a key 

SYNOPSIS 

copy "smkeys.incl.cobol". 

77 key pic S(9)9 comp-5. 
77 default pic S(9)9 comp-5. 
77 buffer display-2 pic x(256) 
call "xsm_getjctrl" using key, default giving buffer. 

DESCRIPTION 

Each JAM screen contains a table of control strings associated with function keys. JAM 
also maintains a default table of keys and control strings, which take effect when the cur
rent screen has no control string for a function key you press. This table enables you to 
define system-wide actions for keys. It is initialized from SMINICTRL setup variables. 
See the section on setup in the Configuration Guide for further information. 

This function searches one of the tables for key, a logical key value found in 
smlteys. incL cobol, and returns a the associated control string. If defaul t is 
zero, the table for the current screen is searched; otherwise, the system-wide table is 
searched. 

RETURNS 

The control string 
o if none is found. 

RELATED FUNCTIONS· 
call "xsm""'putjctrl" using key, control-string, default giving 

status. 

JAM Release 5 1 March 91 Page 155 



Stratus COBOL Programmer's Guide 

getkey 
get logical value of the key hit 

SYNOPSIS 

copy "smJeeys. incl. cobol". 

77 key pic S(9)9 comp-5. 
call "xsm_getkey" giving key. 

DESCRIPTION 

This function gets and interprets keyboard input and returns the logical value to the call
ing program. Nonnal characters are returned unchanged. Logical keys are interpreted ac
cording to a key translationfUe for the particular tenninal you are using. See the Key
board Input section in this guide, the Key Translation section in the Configuration Guide, 
and the modkey section in the Utilities Guide. xsm _get key is nonnally not needed for 
application programming, since it is called by xsm_input. 

Logical keys include lRANSMIT, EXIT, HELP, LOCAL PRINT, arrows, data modifica
tion keys like INSERT and DELETE CHAR, user function keys PFI through PF24, 
shifted function keys SPFI through SPF24, and others. Defmed values for all are in 
smkeys . incl. cobol. A few logical keys, such as LOCAL PRINT and RESCREEN, 
are processed locally in xsm_getkey and not returned to the caller. 

There is another function called xsm _ unget key, which pushes logical key values back 
on the input stream for retrieval by xsm_getkey. Since all JAM input routines call 
xsm get key, you can use it to generate any input sequence automatically. When you 
use it: calls to xsm_getkey will not cause the display to be flushed, as they do when 
keys are read from the keyboard. 

There are a number of user-installed functions that may be called by xsm getkey. For 
further infonnation see the section on installing functions in the Programmer's Guide. 

Finally, there is a mechanism for detecting an externally established abort condition, es
sentiallya flag, which causes JAM input functions to return to their callers immediately. 
The present function checks for that condition on each iteration, and returns the ABORT 
key if it is true. See xsm _ isabort .. 

Application programmers should be aware that JAM control strings are not executed 
within this function, but at a higher level within the JAM run-time system (i.e., functions 
that call xsm_getkey. If you call this function, do not expect function key control 
strings to work. 

Page 156 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

The multiplicity of cans to user functions in xsm _get key makes it a little difficult to 
see how they interact, which take precedence, and so forth. In an effort to clarify the pro-. 
cess, we present an outline of xsm _get key . The process of key translation is deliberate
ly omitted, for the sake of clarity; that algorithm is presented separately, in the keyboard 
translation section of the Programmer's Guide. 

***Step 1 

• 
• 
• 

*** Step 2 

• 

• 
*** Step 3 

• 
• 
• 

If an abort condition exists, return the ABORT key. 

If there is a key pushed back by ungetkey, return that 

If playback is active and a key is available, take it directly to Step 2; 
otherwise read and translate input from the keyboard. When the key
board is read, then the asynchronous function (if one is installed) is 
called during periods of keyboard inactivity. 

Pass the key to the keychange function. If that function says to discard 
the key, go back to Step 1; otherwise if an abort condition exists, return 
the ABORT key. 

If recording is active, pass the key to the recording function. 

If the routing table says the key is to be processed locally, do so. 

If the routing table says to return the key, return it; otherwise, go back to 
Step 1. 

If the key is a soft key, return its logical value. 

RETURNS 

The standard ASCII value of a displayable key; a value greater than 255 (FF hex) 
for a key sequence in the key translation file. 

RELATED FUNCTIONS 

call "xsm_keyfilter" using flag gl.vl.ng old-flag. ' 
call "xsm_ungetkey" using key giving return-value. 

JAM Release 5 1 March 91 Page 157 



Stratus COBOL Programmer's Guide 

gofield 
move the cursor into a field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-S, 
77 status pic 5(9)9 comp-S. 
call "xsm_gofield" using field-number giving status. 

DESCRIPTION 

Positions the cursor to the fIrst enterable position of field-number. If the fIeld is 
shiftable, it is reset. 

In a right-justified field, the cursor is placed in the righunost position and in a left-justi
fied field, in the lefunost. In either case, if the field has embedded punctuation, the cursor 
goes to the nearest position not occupied by a punctuation character, Use xsm off go
field to place the cursor in position other than that of the fIrst character of a field. 

When called to position the cursor in a scrollable array, xsm 0 gofield and 
xsm _i_go fie 1 d return an errarif the occurrence nwnber passed exceects by more than 
1 the number of allocated occurrences in the specifIed array, If the desired occurrence is 

. offscreen, it is scrolled on-screen. 

This function doesn't immediately trigger field entry, exit, or validation processing, Such 
processing occurs based on the cursor position when control returns to xsm _ input.-. c', 

RETURNS 

-1 if the field is not found. 
o otherwise, 

VARIANTS 

call "xsm_e_gofield" using field-name,', element' giving status. 
call "xsm_i_gofield" using field-name, occurrence giving 

status. 
call "xsm_n_gofield" using field-name giving status. 
call "xsm_o_gofield" using field-number, occurrence giving 

status. 

RELATED FUNCTIONS 

call "xsm_off_gofield" using field-number, offset giving 
status. 

Page 158 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

. . 
gp_lnqulre 
obtain information about a group 

SYNOPSIS 

copy "smglobs.incl.cobol". 

77 group-name display-2 pic x(256). 
77 which pic S(9)9 comp-5. 
77 value pic S(9)9 comp-5. 
call "xsm_gp_inquire" using group-name, which giving value. 

DESCRIPTION 

Use this function to obtain various infonnation about group. The variable which is a 
value that specifies the particular piece of infonnation desired. 

Values for which are defined in the file smglobs . incl. cobol. They are: 

Value Meaning 

GP-NOCCS Number of occurrences in the group (sum of number of occurrences of 
all fields/arrays in group) 

GP-FLAGS Flags 

RETURNS 

The value of which. if found. or 
-1 otherwise. 

JAM Release 5 1 March 91 Page 159 



Stratus COBOL Programmer's Guide 

gtof 
convert a group name and index into a field number and 
occurrence 

SYNOPSIS 
77 group-name display-2 pic x(256). 
77 group-occurrence pic S(9)9 comp-5. 
77 occurrence pic S(9)9 comp-5. 
77 field-number pic S(9)9 comp-5. 
call "xsm_i_gtof" using group-name, group-occurrence, 

occurrence giving field-number. 

DESCRWfION 

NOTE: This function only exists in the i variation. There is no xsm gtof since 
groups cannot be referenced by number. - -

Use this function to convert a group name and group-DCcurrence into a field number and 
occurrence. The variable group-name is the name of the group and group-occur
rence is the specific field within the group. 

- The function returns the field number of the referenced field and inserts the occurrence 
number into the memory location addressed by occurrence. 

Using this function allows you to use other JAM--library routines-to manipulate'group 
fields by converting group references into field references. For instance, if you wanted to 
access text from a specific field within a group you would need to use xsm_i_gtof to 
get the field and occurrence number before you could use the function xsm_o_get
field to retrieve the texL 

RETURNS 

The field number if found. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_ftog" using field-number, group-occurrence giving 
buffer. 

Page 160 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

gval 
force group validation 

SYNOPSIS 
77 group-name display-2 pic x(256) . 
77 status pic 8(9)9 comp-5. 
call "xsm_n_gval" using group-name giving status. 

DESCRIPTION 
NOTE: This function only exists in the xsm n gva1 variation. There is no xsm gva1 
since groups cannot be referenced by numbU. - -

Use this function to force the execution of a group's validation function. Use 
xsm _ s _v a1 to validate all fields and groups on the screen, 

RETURNS 
-1 if the group fails any validation. 
-2 if the group name is invalid, 
o otherwise, 

RELATED FUNCTIONS 
call "xsm_fval" using field-number giving status. 
call "xsm s val" giving status. 

JAM Release 5 1 March 91 Page 161 



Stratus COBOL Programmer's Guide 

gwrap 
get the contents of a wordwrap array 

SYNOPSIS 
77 buffer display-2 pic x(2S6). 
77 field-number pic 5(9)9 comp-S. 
77 buffer-length pic 5(9)9 comp-S. 
77 length pic 5(9)9 comp-S. 
call "xsm_gwrap" using buffer, field-number, buffer-length 

giving length. 

DESCRIPfION 

This function copies the contents of the array specified by field-number, one occur
rence ata time, into buffer, up to the size specified by buffer-length. A space is 
inserted before every non-empty occurrence, except the fIrSt. 

The variant xsm _0 _gw rap copies the contents of the array, beginning with the specified 
occurrence. 

RETURNS 

The length of transferrable data. If this is greater than buffer-length, then the data 
was truncated. 

-1 if the field number is invalid or buffer-length·is ~ O. 

VARIANTS 

call "xsm_o_gwrap" using buffer, field-number, occurrence; 
buffer-length giving status. 

RELATED FUNCTIONS 

call "xsm-pwrap" using field-number, text giving status. 

Page 162 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

hlp_by_name 
display help window 

SYNOPSIS 
77 help-screen display-2 pic x(256). 
77 status pic S(9)9 comp-5. 
call "xsm_hlp_by_name" using help-screen giving status. 

DESCRlYfION 

The named screen is displayed and processed as a nonnal help screen, including input 
processing for the current field (if any). 

Refer to the Author's Guide for instructions on how to create various kinds of help 
screens and for details of the behaviour of help screens. 

RETURNS 

-1 if screen is not found or other error; 
1 if data copied from help screen to underlying field; 
a otherwise, 

JAM Release 5 1 March 91 Page 163 



Stratus COBOL Programmer's Guide 

home 
home the cursor 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
call "xsm home" giving field-number. 

DESCRIPfION 

This function moves the cursor to the first enterable position of the first tab-unprotected 
field on the screen. If the screen has no talHmprotected fields, the cursor is moved to the 
first line and column of the topmost screen. However, if you are using the JAM Execu
tive, the cursor may not be visible if there are no tab-unprotected fields. 

The cursor will be put into a tab-protected freld if it occupies the first line and column of 
the screen and there are no tab-unprotected fields. 

This function doesn't immediately trigger field entry, exit, or validation processing. Pro
cessing is based on the cursor position when control returns to xsm _input. 

When the JAM logical key HOME is hit, xsm _horne is called. 

RETURNS 

The number of the field in which the cursor is left. or 
o if the form has no unprotected fields and" the home position is not in a protected field.' 

RELATED FUNCTIONS 

call "xsm backtab". 
call "xsm_gofield" using field-number giving status. 
call "xsm last". 
call "xsm nl". 
call "xsm tab". 

Page 164 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

variants that take a field name and occurrence number 

SYNOPSIS 
77 field-name display-2 pic x(256) . 
77 occurrence pic 8(9)9 comp-5. 
call wxsm_i_ •.. " using field-name, occurrence, 

DESCRIPTION 

The i variants each refer to data by field name and occurrence nwnber. An occurrence 
is a slOt within an array in which data may be stored. Occurrences may be either on or 
off-screen. Since JAM treats an individual field as an array with one field, even a single 
non-scrolling field is considered to have one occurrence. The JAM library contains rou
tines that allow you to manipulate individual occurrences during run-time. 

If occurrence is zero, the reference is always to the current contents of the named 
field, or of the base field of the named array. 

For the description of a particular function, look under the related function without i in 
its name. For example, xSIIl.-i _ amt _ forma t is described under xsm _ amt _ f 0 rm~ t • 

. If the named field is not part of the screen currently being displayed, these functions will 
attempt to retrieve or change its value in the local data block. 

JAM Release 5 1 March 91 Page 165 



Stratus COBOL programmer's Guide 

• • Inlnames 
. record names of initial data files for local data block 

SYNOPSIS 
77 name-list display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call N xsm ininames" using name-list giving status. 

DESCRIPTION 

Use this routine to set up a list of initialization flIes for local data block entries. The file 
names in the single string name-list should be separated by commas, semicolons or 
blanks. There may be up to ten fIle names. You may achieve the same effect by defIning 
the SMININAMES variable in your setup flIe to the list of names. See setup flIes in the 
ConfIguration Guide and the Data Dictionary chapter of the Author's Guide for details. 

The flIes contain pairs of names and values, which are used to initialize local data block 
entries by xsm ldb init. This function is called during JAM initialization, so 
xsm_ininames shOUld be called before then. White space in the initialization fIles is 
ignored, but we suggest a format like the following: 

Nemperorw NJulius CaesarM 

Nlieutenant M MMark AntonyN 
Massassin[l)M WBrutus W 

Massassin[2)W MCassius· 

Entries of all scopes may be freely mixed within all flIes.·We recommend, however. that I 

entries be grouped in files by scope if you.are-planning to,use-xs~l..reset. Use . 
xsm_lreset to clear all entries of a given scope· before reinitializing them from a 
single file. 

RETURNS 

-5 if insufficient memory is available to store the names; 
o otherwise. 

RELATED FUNCTIONS 

call "xsm ldb init". 
call "xsm_Ireset" using file-name, scope giving status. 

Page 166 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

initcrt 
initialize the display and JAM data structures 

SYNOPSIS 
77 path display-2 pic x(256) . 
call "xsm_initcrt" using path. 

77 path display-2 pic x(256). 
call "xsm_jinitcrt" using path. 

77 path display-2 pic x(256). 
call "xsm_jxinitcrt" using path. 

DESCRIPfION 
The function xsm _ ini tcrt is intended for use only with a user-written executive. It is 
called automatically by the JAM Executive. 

xsm ini tcrt must be called at the beginning of screen handling, that is, before any 
screens are displayed or the keyboard opened for input to a JAM screen. Functions that 
set options, such as xsm.:... opt ion, and those that install functions or configuration files 
such as xsm_uinstall or xsm_vinit, are the only kind thatmay be called before 
xsm initcrt. 

The argument path is a directory to be searched for screen files byxsm r window 
and variants. First the me is sought in the current directory; if it is not there, it is sought 
in the path supplied to this function. If it is not there either, the paths specified in the envi
ronment variable SMP ATH (if any) are tried. The pa th argwnent must be supplied. If all 
forms are in the current directory, or if (as JYACC suggests) all the relevant paths are spe
cified in SMPATH, an empty string may be passed. After setting up the search path, 
xsm_initcrt performs several initializations: 

1. It calls a user-defined initialization routine. 

2. It determines the terminal type, if possible by examining the environ
ment (TERM or SMTERM), otherwise by asking the user. 

3. It executes the setup files defmed by the environment variables 
SMVARS and SMSETUP, and reads in the binary configuration files 
(message, key, and video) specific to the terminal. 

4. It allocates memory for a number of data structures shared among 
JAM library functions. 

JAM Release 5 1 March 91 Page 167 

'0--_- ::~._. 

': l. 



Stratus COBOL programmer's Guide 

5. If supported by the operating system, keyboard interrupts are trapped 
to a routine that clears the display and exits. 

6. It initializes the operating system display and keyboard channels, and 
clears the display. 

The functions xsm _j ini tcrt and xsm-.:jxini tcrt are called by jmain ~ cobo:l: 
and jxmain. cobol respectively for applications that use the JAM Executive. They, in 
turn, call xsm_initcrt. 

RELATED FUNCTIONS 

call "xsm resetcrt". 
call "xsm_jresetcrtN• 
call Nxsm_jxresetcrt". 

Page 168 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

input 
open the keyboard for data entry and menu selection 

SYNOPSIS 
copy"smumisc.incl.cobol". 

77 initial-mode pic 5(9)9 comp-5. 
77 key pic 5(9)9 comp-5. 
call "xsm_input" using initial-mode giving key. 

DESCRIPfION 
This routine is only used if you are writing your own executive. Use xsm _ inpu t to open 
the keyboard for either data entry or menu selection. 

You specify which mode you wish to be in with the argument ini Hal-mode. Possible 
choices are defined in smumisc . incl. cobol. They are: . 

-IN-AUTO JAM checks whether you specified the screen to begin menu mode or data 
entry mode (See Author's Guide). 

-IN-DATA Start in data entry mode. 

-IN-MENU Start in menu mode. 

In most cases you will want to use IN-AUTO mode. Use IN-DATA or IN-MENU if you 
wish to override the setting that you specified via the Screen Editor. 

This routine calls xsm _get key to get and inierpret keyboard entry. While in data entry 
mode ASCII data is entered into fields on the screen, subject to any restrictions or edits 
that were defined for the fields. The routine returns to the calling program w·hen it en
counters a logical key, when a "return entry" field is filled or tabbed from, or a key with 
the return bit set in the routing table. 

If the logical value returned by xsm_getkey is TRANSMIT, EXIT, HELP, or a cursor 
. position key, the processing is determined by a routing table. The routing options are set 
with xsm _ keyoption. See xsm _ keyoption for more information. 

This function replaces version 4.0 xsm_choice, xsm_menuyroc, and 
xsm _ openkeybd. These functions only exist in your version 5.0 library for backward 
compatibility. We strongly suggest that you do not use them in the future. 

RETURNS 
The key hit by the end-user that terminated the call to xsm input, or the flCSt character 
of the selected menu item. -

JAM Release 5 1 March 91 Page 169 



.. 

Stratus COBOL Programmer's Guide 

• • Inquire 
obtain value of a global integer variable 

';::::f~j3:j8a~j3~:ij;ij5F"r;_57: 

SYNOPSIS 

copy "smglobs.incl.cobolw • 

77 which pic 5(9)9 comp-S. 
77 value pic 5(9)9 comp-S. 
call "xsm_inquire" using which giving value. 

DESCRIYfION 

This function is used to obtain the current integer value of a global variable. The desired 
variable is specified by which. If the value of which is a true/false (the flag is on or oft) 
value then xsm_inquire returns 1 for true and 0 for false. If you wish to modify a 
global integer value use xsm_iset. The pennissible values for which are defined in 
smglobs. incl. cobol. The following values are available: 

Value Meaning 

I-NODISP In non-display mode? (TIF). Initially FALSE,setting TRUE .... :, .•. 

causes no further changes to the actual display, although JAM's :.'. 

internal screen image is kept up to date. This was release 4's 
sm-do-not-display flag. 

I-INSMODE In insert mode? (TIF). 

I-INXFORM In JAM screen editor? (TIF) Field validation routines are 
generally still called when in editor; they can check this flag to 
disable certain features . 

I-MXLINES Number of lines available for use by JAM on the hardware 
display. 

I-MXCOLMS Number of columns available for use by JAM on the hardware 
display. 

I-NLINES Maximum number of lines available on the current screen, not 
including the status line. 

I-NCOLMS Maximum number of columns available on the current screen, not 
including the status line. 

I-INHELP Help screen is currently displayed? (TIF) 

Page 170 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Value Meaning 

I-BSNESS Screen manager is in control of display? (TtF). (Replaces reI. 4 
inbusiness function) . 

I-BLKFLGS . Block mode is turned on? (TtF) 

SC-VFLlNE First screen line of viewport (O-based), 

SC-VFCOLM First screen column of viewport (O--based). 

SC-VNLINE Number of lines in viewport 

SC-VNCOLM Number of columns in viewport 

SC-VOLINE Line offset of viewport 

SC-VOCOLM Column offset of viewport 

SC-NLlNE Number of lines in screen, 

SC-NCOLM Number of columns in screen. 

SC-CLINE Current line number in screen, 

SC-CCOLM Current column number in screen. 

SC-NFLDS Number of fields on screen. 

SC-NGRPS Number of groups on screen, 

SC-BKATTR Background attributes of screen. 

SC-BDCHAR Border character of screen, 

SC-BDATTR Border attributes of screen. 

RETURNS 

H the argument corresponds to an integer global variable, the current value of that vari ... 
able is returned. 

1 true, flag is set to on. 
o false, flag is set to off. 

-1 otherwise. 

RELATED FUNCTIONS 

call "xsm_finquire" using field-number, which giving value. 
call "xsm_gp_inquire" using group-name, which giving value. 
call "xsm_isetN using which, newval giving value. 
call "xsm-pinquireN using which giving buffer. 
call "xsm-pset" using which, newval giving buffer. 

JAM Release 5 1 March 91 Page 171 



Stratus COBOL Programmer's Guide 

intval 
get the integer value of a field 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 value pic S(9)9 comp-5. 
call "xsm intval" using field-number giving value. 

DESCRIPTION 
This function returns the integer value of the data contained in the field specified by 
f i el d -n umbe r. Any punctuation characters in the field, except a leading pI us or minus 
sign. are ignored. 

RETURNS 

The integer value of the specified field. 
o if the field is not found. 

VARIANTS 
call "xsm e intval" using· 
call "xsm i intval" using 
call "xsm n intval" using 
call "xsm 0 intval" .using 

value. 

RELATED FUNCTIONS 

field-name, element giving value. 
. field-name, . occurrence giving value. 
field-name giving value. 
field-number,_ .occurrence giving. 

call "xsm itofield" using field-number, value giving status. 

Page 172 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

• loccur 
insert blank occurrences into an array 

SYNOPSIS 
77 field-number pic S(9)9 comp-S. 
77 occurrence pic S(9)9 comp-S. 
77 count pic S(9)9 comp-S. 
77 lines-inserted pic S(9)9 comp-S. 
call "xsm_o_ioccur" using field-number, occurrence, count 

giving lines-inserted. 

DESCRIPTION 

NOTE: This function only exists in the i_ and 0_ variations. There is no xsm_ioc
cur, since this function applies only to arrays. 

Inserts count blank occurrences before the specified occurrence, moving that occur
rence and all following occurrences down. If inserting that many would move an occur
rence past the end of its array, fewer will be inserted. If the array is scrollable, then this 
function may allocate up to count new occurrences. This function never increases the 
maximum number of occurrences an array _can contain; xsm sc max does that. If 
count is negative, occurrences will be deleted instead, subject to limitations described 
in the page for xsm_ doccur. In addition, this function never inserts more blank occur
rences than the number of blank occurrences following the last non-blank occurrence 
(that is, it won't push data otT the end of an array). 

If occurrence is zero, the occurrence used is that of field-number. If occur
rence is nonzero, however, it is taken relative to the first field of the array in which 
field-number occurs. 

Any c1earing-unprotected synchronized arrays will have the same operations performed 
-on them as the referenced array. Synchronized arrays that are protected from clearing will 
remain constant Therefore, a protected array may be used to number a list of data stored 
in a non-protected synchronized array as it grows and shrinks. 

This function is normally bound to the INSERT LINE key. 

RETURNS 

-1 if the field or occurrence number is out of range. 
-3 if insufficient memory is available. 

otherwise, the number of occurrences actually inserted (zero or more). 

JAM Release 5 1 March 91 Page 173 



Stratus COBOL Programmer's Guide 

VARIANTS 
call "xsm_i_ioccur" using field-name, occurrence, count giving 

lines-inserted. 

Page 174 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

. 
IS no 
test field for no 

SYNOPSIS 
77 field-number pic 5(9)9 comp-S. 
77 status pic 5(9)9 comp-S. 
call "xsm_is_no" using field-number giving status. 

DESCRIPfION 

The first character of the field contents specified by field-number is compared with 
the first letter of the SM-NO entry in the message file, ignoring case, If they match this 
function will return a 1 for true. If they do not match for any reason, the function returns 
a a for failure. There is no way to teU if the failure is due to a Y in the field or because of 
some other problem. If you wish to check for a Y response use xs~is Jes. 

This function is ordinarily used with one-letter fields possessing the yes/no character 
ediL In this case, the only characters allowed in the field are y, n, or space (which means 
n). Unlike other functions, xsm_is_no does not ignore leading blanks. 

RETURNS 

1 if the field's first character matches the first character of the SM-NO entry.in the 
message flIe. 

a otherwise. 

VARIANTS 

call "xsm_e_is_no" using field-name, element giving status. 
call "xsm_i_is_no" using field-name, occurrence giving status. 
call "xsm_n_is_no" .using.field-name giving status. 
call "xsm_o_is_no" using field-number, occurrence giving 

status. 

RELATED FUNCTIONS 

call "xsm_is""yes" using field-number giving status. 

JAM Release 5 1 March 91 Page 175 



Stratus COBOL Programmer's Guide 

• Is-yes 
test field for yes 

SYNOPSIS 
77 field-number pic S(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm_is-yes" using field-number giving status. 

DESCRIYfION 
The first character of the field contents specified by field-number is compared with 
the first letter of the SM-YES entry in the message me, ignoring case. If they match this 
function will return a 1 for true. If they do not match for any reason, the function returns 
a a for failure. There is no way to tell if the failure is due to an N in .the field or because of 
some other problem. If you wish to check for an N response use xs~ is_no. 

This function is ordinarily used with one-letter fields possessing the yes/no character 
edit In this case, the only characters allowed in the field are y, n, or space (which means 
n). Unlike other functions, xsm_isJes does not ignore leading blanks. 

RETURNS 
1 if the field's first character matches the first character of the SM-YES entry· in the 

message file. 
a otherwise. 

VARIANTS 
call "xsm_e_is-yes" using field-name, element giving status. 
call "xsm_i_is-yes" using field-name, . occurrence-:giving 'status. 
call "xsm_n_is-yes" using field-name giving status. 
call "xsm_o_is-yes" using .field-number, occurrence giving 

status. 

RELATED FUNCTIONS 
call "xsm is no" using field-number giving status. 

Page 176 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

isabort 
test and set the abort control flag 

SYNOPSIS 

copy "smumisc.incl.cobol". 

77 flag pic S(9)9 comp-5. 
77 old-flag pic S(9)9 comp-5. 
call "xsm isabort" using flag giving OLD-FLAG. 

DESCRIPTION 

Use xsrn is abo rt to set the abort flag to the value of fl ag, and return the old value. 
flag must be one of the following as defined in srnumisc. incl. cobol: 

Flag Meaning 

ABT-ON set abort flag 

ABT-OFF clear abort flag 

ABT-DISABLE tum abort reporting off 

ABT-NOCHANGE do not alter the flag 

Abort reporting is intended to provide a quick way out of processing in the JAM library, 
which may involve nested calls to xsrn input. The triggering event is the detection of 
an abort condition by xsrn_getkey, either an ABORT keystroke or a call to this func
tion with ABT-ON (such as from an asynchronous function). 

This function enables application code to verify the existence of an abort condition by 
testing the flag, as well as to establiSh one. 

RETURNS 

The previous value of the abort flag. 

JAM Release 5 1 March 91 Page 1n 



Stratus COBOL Programmer's Guide 

iset 
change value of integer global variable 

SYNOPSIS 

copy "smglobs.incl.cobol". 

77 which pic S(9)9 comp-S. 
77 newval pic S(9)9 comp-S. 
77 value pic S(9)9 comp-S. 
call Nxsm_iset" using which, newval giving value. 

DESCRIPTION 

JAM has a number of global parameters and settings. This function is used to modify the 
current value of integer globals. The variable to change is specified by which. The new 
value is specified by newval. If you wish to get the value of a global integer use 

The pennissible values for the argument which are defined in the header file 
smglobs . incl. cobol. The following values are available: 

--
Value Quanlity Meaning 

,,-

I-NODISP 0 Disable updating of display. 

1 Enable updating of display. 

I-INSMODE 0 Enter overtype mode. 
.. ~ ~ 

1 Enter insert mode. 
-.. -

RETURNS 

If which is one of the permissible values, the former value of the appropriate variable 
is returned. 

1 True, the flag was set to on. 
o False, the flag was set to off. 
-1 otherwise. 

RELATED FUNCTIONS 
call "xsm_finquire" using field-number, which giving value. 

Page 178 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

call "xsm_gp_inquire" using group-name, which giving value. 
call "xsm inquire" using which giving value. 
call "xsm:J>inquire" using which giving buffer. 
call "xsmyset" using which, newval giving buffer. 

JAM Release 5 1 March 91 Page 179 



Stratus COBOL Programmer's Guide 

isselected 
determine whether a radio button or checklist occur
rence has been selected 

SYNOPSIS 
77 group-name 
77 group-occurrence 
77 status 

display-2 pic x(2S6). 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 

call "xsm_isselected" using group-name, group-occurrence giving 
status. 

DESCRIPTION 

This function lets you check to see whether or not a specific occurrence within a check list 
or radio button has been selected. The selection is referenced by the group name and oc
currence number, If the occurrence is selected, xsm isselected returns a 1. A 0 is 
returned if the occurrence is not selected. See the Author's Guide for a more detailed dis
cussion of groups. 

Radio button and checklist occurrences are selected by using xsm_select. Using 
xsm _select on a radio button occurrence causes the current-selection to be deselected. 
Checklist occurrences are deselected with xsm deselect. 

RETURNS 

-1 arguments do not reference a checklist or radio button occurrence. 
o not selected. 
1 selected. 

RELATED FUNCTIONS 

-call -"xsm_deselect" -using group-name, ':group-occurrence. -giving .:~:" 

status. 
call "xsm_getfield" using buffer, field-number giving length. 
call "xsm_intval" using field-number giving value. 
call "xsm_select" using group-name, group-occurrence giving 

status. 

Page 180 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

• 
ISSV 
determine if a screen is in the saved list 

SYNOPSIS 
77 screen-name display-2 pic x(2S6). 
77 status pic S(9)9 comp-S. 
call "xsm_issvH using screen-name giving status. 

DESCRIPTION 

JAM maintains a list of screens that are saved in memory. This function searches the save 
list for a single screen and returns 1 is the screen is found (See xsm_svscreen). 

This function is generally called by applications at screen entry to avoid re-acquiring data 
(via a database query) for previously saved screens. To accomplish this, fIrst use 
xsm svscreen to add the screen to the save list upon screen exit Next, use 
xsm - issv to check the save list upon screen entry. If the screen is on the save list, you 
know that it has been previously displayed. 

RETURNS 

1 if the screen is in the saved list. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm svscreen" using screen-list, count giving status. 

JAM Release 5 1 March 91 Page 181 



Stratus COBOL Programmer's Guide 

itofield 
write an integer value to a field 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 value pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call Wxsm_itofield" using field-number, value giving status .. 

DESCRIPTION 

The integer passed toxs~itofield is converted to characters and placed in the spe
cified field. A number longer than the field will be truncated. on the left or right, accord
ing to the field's justification, without warning. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 
call "xsm e itofield" using field-name, element, value giving 

status. 
call "xsm i itofield" using field-name, occurrence, value 

giving status. 
call "xsm n itofield" using field-name; . value giving status. 
call "xsm 0 itofield" using field-number, occurrence, value 

giving status. 

RELATED FUNCTIONS 
call "xsm intval" using field-number giving value. 

Page 182 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jclose 
close current window or form under JAM Executive con
trol 

SYNOPSIS 
77 status pic 5(9)9 comp-S. 
call "xsm_jclose" giving status. 

DESCRIPTION 

The active screen is closed, and the display is restored to the state before the screen was 
opened. xsrn_jclose should only be used when the JAM Executive is in use. 

In the case of closing a fonn, xsrn jclose pops the fonn stack and calls xsrn jforrn 
to display the screen on the top oftlte form stack. -

In the case of closing a window,xsrn jclose callsxsrn close window. Since win
dows are stacked, the effect of closing a window is to return to the previous window. The 
cursor reappears at the same position it had before the window was opened. 

RETURNS 

-1 if there is no window open, i.e. if the currently displayed screen is a form 
(or if there is no screen displayed). 

o otherwise. 

RELATED FUNCTIONS 
call "xsm_close_window" giving status. 
call "xsm_jform" using screen-name giving status. 
call "xsm_jwindow" using screen-name giving status. 

JAM Release 5 1 March 91 Page 183 



Stratus COBOL Programmer's Guide 

jform 
display a screen as a form under JAM control 

SYNOPSIS 
77 screen-name display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm_jform" using screen-name giving status. 

DESCRIPTION 

This function must be used with the JAM Executive. If you are not using the JAM Ex
ecutive, use xsm_r_form or one of its variants. If you wish to display a window under 
JAM control, use xsm_jwindow. 

This function displays the named screen as a fonn. You may close the fonn with 
xsm j close, or leave the task to the JAM Executive (e.g., when the user presses the 
EXIT key). Bringing up a screen as a form causes the previously displayed fonn and win
dows to be discarded, and their memory freed. The new fonn is placed on top of the 
JAM's fonn stack. 

The difference between xsm_jform and xsm~r_form, other than the function argu-, 
ments, is that only xsm~jform manipulates the fonn stack. Since-xsm_jform calls," 
xsm r form, refer to xsm r form for information on other details, such as how the 
screen to be displayed is found.-

The character string screen-name uses the same fonnat as 'that of a JAM:control·~ 
string that displays a form. In addition to the screen's name, you may optionally specify 
the position of the form on the physical display, the size of the viewport, and which por
tion of the fonn will be positioned in the viewport's top-left comer. -See the Authoring 
Reference in the Author's Guide for details ofviewport positioning. The following are aiL 
legal strings: 

move "form" to screen-name. 
call "xsm_jform" using screen-name giving status. 

Display fonn's first row and column at the top-left corner of the physical display. 

move "(20, 10) form" to screen-name. 
call "xsm_jform" using screen-name giving status. 

Display fonn's flISt row and column at the 20th row and 10th column of the physical dis
play. 

move "(20,10,15,8)form" to screen-name. 
call "xsm_jform" using screen-name giving status. 

Page 184 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Display the fIrst row and column of the form at the 20th row and 10th column of the phys
ical display in viewport that is 15 rows by 8 columns. 

A form may be larger than the viewport. If the viewport does not fIt on the screen where 
indicated, JAM will attempt to place it entirely on the display at a different location. If 
you specify a viewport that is larger than the physical display, the viewport will be the 
size of the physical display. If you wish to change the viewport size after the window is 
displayed, use xsm _v iewpo rt. 

RETURNS 

o if no error occurred. 
-1 if the screen me's format is incorrect 
-2 if the screen cannot be found. 
-4 if, after the display has been cleared, the screen cannot be successfuUy displayed 

because oh read error. 
-5 if, after the display was cleared, the system ran out of memory. 

RELATED FUNCTIONS 
call "xsm_r_form" using screen-name giving status. 
call "xsm_jwindow" using screen-name giving status. 

JAM Release 5 1 March 91 Page 185 



Stratus COBOL Programmer's Guide 

jplcall 
execute a J PL jpl procedure 

SYNOPSIS 
77 jplcall-text display-2 pic x(256). 
77 return-value pic 5(9)9 cornp-5. 
call "xsrn_jplcall" using jplcall-text giving return-value. 

DESCRIPfION 

This function executes a JPL procedure precisely as if the following JPL statement were 
executed from within a JPL procedure: 

jpl jplcall-text 

For example, if the value of jplcall-text were: 

verifysal :name 50000 

then 

and 

jpl verifysal :name 50000 

would be equivalent. See the JPL"Programmer's Guide for further information on the JPL, 
jpl command 

RETURNS 

-1 if the procedure could not be loaded. 
Otherwise, the value returned by the JPL procedure. 

Page 186 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jplload 
execute the JPL load command 

SYNOPSIS 
77 module-name-list display-2 pic x(256) . 
77 status pic S(9)9 comp-5. 
call "xsm_jplload" using module-name-list giving status. 

DESCRIPfION 

This function is the COBOL interface to the JPL load command. Use this command to 
load one or more modules into memory. 

The character string module-name-list may be one or more module names. Sepa
rate module names with a space. 

Calling xsm _jplload has precisely the same effect as using the JPL load command. 
See the JPL Programmer's Guide for further information on the JPL load command. 

Use xsm _jplunload to remove a module from memory. 

RETURNS 

-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_jplpublic" using module-name-list giving status. 
call "xsm_jplunload" using module-name giving status. 

JAM Release 5 1 March 91 Page 187 



Stratus COBOL Programmer's Guide 

jplpublic 
execute the JPL public command 

SYNOPSIS 
77 madule-name-list display-2 pic x(256). 
77 status pic 5(9)9 camp-5. 
call "xsm_jplpublic w using madule-name-list giving status. 

DESCRIPTION 

This function is the COBOL interface to the JPL public command. Use this command 
to load one or more modules into memory. 

The chamcter siring module-name may be one or more module names. Separate mod
ule names with a space. 

Calling xsm_jplpublic has precisely the same effect as using the JPL public com
mand. See the JPL Programmer's Guide for further information on the JPL public 
command. 

Use xsm _jpl unload to remove a module from memory. 

RETURNS 

-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_jpllaad" using module-name-list giving status.
call "xsm_jplunlaad" using module-name giving status. 

Page 188 JAM Release 5 1 March 91 



.. ~ .. 

Stratus COBOL Programmer's Guide 

jplunload 
execute the JPL unload command 

SYNOPSIS 
77 module-name display-2 pic x(256) . 
77 status pic S(9)9 comp-5. 
call "xsm_jplunload" using module-name giving status. 

DESCRIPTION 

This function is the COBOL interface to the JPL unload command. Use this command 
to remove one or more modules from memory. Modules are read into memory by using 
either xsm _jplpublic or xsm _jplload or via the corresponding JPL commands. 

Calling xsm jplunload has precisely the same effect as using theJPL unload com
mand. See the JPL Programmer's Guide for further information on the JPL unload 
command. 

The character string module-name may be one or more module names. Separate mod
ule names with a space. 

RETURNS 

-1 if there is an error. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_jplload" using module-name-list giving status. 
call "xsm_jplpublic" using module-name-list giving status. 

JAM Release 5 1 March 91 Page 189 



Stratus COBOL Programmer's Guide 

jtop 
start the JAM Executive 

SYNOPSIS 
77 screen-name display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm_jtop" using screen-name giving status. 

DESCRIPTION 

All applications using the JAM Executive must include a call to xs~jtop. This func
tion starts the JAM Executive. The argument screen-name is the name of the fIrst 
screen that your application displays. It will be displayed as a form. Once xsm_jtop is 
called the JAM Executive is in control until the user exits the application. 

The JAM Executive makes calls to various JAM functions that handle all of the tasks 
needed to control the flow of an application such as opening the keyboard for input, open
ing and closing forms and windows, and processing all control strings. 

If you do not use xsm_jtop you will have to write your own procedures to control the 
flow of your application. See the JAM Development Overview for a more detailed.dis
cussion of the JAM Executive. 

RETURNS 

o Always. 

Page 190 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

jwindow 
display a window at a given position under JAM control 

SYNOPSIS 
77 screen-name display-2 pic x(256) . 
77 status pic 5(9)9 comp-5. 
call "xsrn_jwindow" using screen-name giving status. 

DESCRIPTION 

This function must be used with the JAM Executive. If you are not using the JAM Ex
ecutive, use xsm r window or one of its variants, If you wish to display a form under 
JAM control, usexsm_jform. 

This function displays the named screen as a window, by calling xsm _ r _window. You 
may close the window with aca11 to xsm_jclose, or leave the task to the JAM Execu
tive (e.g., when the user presses the EXIT key). 

There is currently no difference between xsm _j window and xsm _ r _window except 
for their arguments (although xs~jwindow is not supported unless the JAM Execu
tive is in use). See the description of xsm_r_window for the details of the behavior of 
xsm_jwindow. 

The character string screen -name uses a format similar to that of a JAM control string 
that displays a window. Use a single ampersand to specify a stacked window and a double 
ampersand to specify a sibling window. If the ampersand is omitted, then the screen will 
be opened as a stacked window. In addition to the screen's name, you may optionally 
specify the position of the window on the physical display, the size of the viewport, as 
well as which portion of the window will be positioned in the viewport's top-left comer. 
The positioning and sizing syntax is identical to that of x sm j form. See x sm j form 
for examples of acceptable strings. - -

RETURNS 

o if no error occurred during display of the screen 
-1 if the screen file's format is incorrect 
-2 if the form cannot be found 
-3 if the system ran out of memory but the previous screen was restored 

RELATED FUNCTIONS 

call "xsrn_jclose" giving status. 
call "xsrn_jforrn" using screen-name giving status. 

JAM Release 5 1 March 91 Page 191 



Stratus COBOL Programmer's Guide 

call "xsm_r_window" using screen-name, start-line, start-column 
giving status. 

Page 192 JAM Release 5 1 March 91 



.. Stratus COBOL Programmer's Guide 

keyfilter 
control keystroke record/playback filtering 

SYNOPSIS 
77 flag pic 8(9)9 comp-5. 
77 old-flag pic 8(9)9 comp-5. 
call "xsm_keyfilter" using flag giving old-flag. 

DESCRIPTION 
This function turns the keystroke record/playback mechanism of xsm get key on 
(flag = 1) or off (flag = 0). If no key recording or playback functioohas been in
stalled, turning the mechanism on has no effect. 

It returns a flag indicating whethez recording was previously on or off. 

RETURNS 

The previous value of the filter flag. 

RELATED FUNCTIONS 
call "xsm_getkey" giving key. 

JAM Release 5 1 March 91 Page 193 



Stratus COBOL Programmer's Guide 

keyhit 
test whether a key has been typed ahead 

SYNOPSIS 
77 interval pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm_keyhit" using interval giving status. 

DESCRIPTION 

This function checks whether a key has already been hit; if so, it returns 1 immediately. If 
nolo it waits for the indicated interval and checks again. The key (if any is struck) is not 
read in, and is available to the usual keyboard input routines. 

interval is in tenths of seconds; the exact length of the wait depends on the granularity 
of the system clock, and is hardware- and operating-system dependent. JAM uses this 
function to decide when to call the user-supplied asynchronous function. 

If the operating system does not support reads with timeout, this function ignores the in
terval and only returns 1 if a key has been typed ahead. 

RETURNS 

o if no key is available, 
non-O otherwise. 

RELATED FUNCTIONS 

call "xsm_getkey" giving key. 

Page 194 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

keyinit 
initialize key translation table 

SYNOPSIS 

copy "keyfile.incl.cobol". 

77 status pic 5(9)9 comp-S. 
call "xsm_keyinit" using KEY-ADDRESS giving status. 

DESCRIYfION 

This routine is called by xsm_initcrt as part of the initialization process, but it can 
also be called by an application program (either before or after x sm i ni t c rt) to install 
a memory--resident key translation file. -

KEY-ADDRESS is the address of a key translation table contained in key
file. incl. cobol, created using the key2bin and bin2cob utilities. 

RETURNS 

o if the key me is successfully installed . 
. Program exit if the key me is invalid. 

VARIANTS 

call "xsm_n_keyinit" using key-file giving status. 

JAM Release 5 1 March 91 Page 195 



Stratus COBOL Programmer's Guide 

keylabel 
get the printable name of a logical key 

SYNOPSIS 

copy "smkeys.incl.cobol". 

77 buffer display-2 pic x(256). 
77 key pic S(9)9 comp-5. 
call "xsm_keylabel" using key giving buffer. 

DESCRIPTION 

Returns the label dermed for key in the key translation file; the label is usually what is 
printed on the key on the physical keyboard. If there is no such label, returns the name of 
the logical key from the following table. Here is a list of key values: 

NOTE: In the COBOL interface, each of the values listed in the table below should have 
the SuffIX -KEY added to iL So, for example, the value EXIT becomes EXIT-KEY. 

Logical Key Values 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS LP FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR EMOH 

INSL DELL ZOOM SFTS MTGL VWPT MOUS 

PFl-PF24 SPFl-SPF24 APPI-APP24 SFT1-SFT24 

If the key code is invalid (not one dermed in smkeys . incl. cobol), this function re
turns an empty string. 

RETURNS 

A string naming the key, or an empty string if it has no name. 

Page 196 JAM Release 5 1 March 91 

_. 

-



Stratus COBOL Programmer's Guide 

keyoption 
set cursor control key options 

SYNOPSIS 

copy "smkeys.incl.cobol". 

77 key 
77 mode 
77 newval 
77 oldval 
call wxsm_keyoption" 

DESCRIPTION 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
using key, mode, newval giving oldval. 

Usexsm_keyoption toalterat~e the behaviorofxsm_input whenaparticu
lar key is pressed. The default values for key options are built in to JAM. This function 
only works with cursor control keys. Cursor control keys include all JAM logical keys, 
except for PF, SPF, and APP keys. See "Key File" in the Configuration Guide. 

There are three different possible values for mode: KEY-ROUT lNG, KEY -GROUP, and 
, KEY':"XLATE. The values that they use are defmed in srnkeys. incl.·cobol. All of 

these modes draw on the following values for key. 

NOTE: In the COBOL interface, each of the values listed in the .table below should have 
the suffix -KEY added to it. So, for example, the value EXIT becomes EXIT-KEY. 

Logical Key Values 

EXIT XMIT HELP FHLP BKSP TAB NL BACK 

HOME DELE INS LP FERA CLR SPGU SPGD 

LSHF RSHF LARR RARR DARR UARR REFR EMOH 

INSL DELL ZOOM SFTS MTGL VWPT MOUS 

-KEY-ROUTING 

Allows access to the EXECUTE and RETURN bits of the routing table. This mode is 
generally used to disable a key or to control explictIy what action is taken when a key is 
hit. The following values may be assigned to newval: 

JAM Release 5 1 March 91 Page 197 



Stratus COBOL Programmer's Guide 

1. KEY-IGNORE Disables key. JAM does nothing when key is struck. 

2. EXECUTE The action normally associated with key is executed. May 
be summed with RETURN. 

3. RETURN No action is perfonned, but the function returns to the caller 
in your code. Used to gain direct control of key's action. May be-· 
summed with EXECUTE. 

-KEY-GROUP 

Allows access to the group action bits. Use this function to control the action of the cursor 
when it is within a group. The following values may be assigned to newval: 

1. VF-GROUP Obey group semantics. Hitting key will cause the cursor 
to move to the next field within the group in the indicated direction. If 
this value is summed with VF-CHANGE the cursor will exit the group 
in the indicated direction. 

2. VF-CHANGE 1bis value has no effect, unless it is summed with 
VF-GROUP. In this case the cursor will exit the group in the indicated 
direction. 

3. 0 Assigning zero to newval will cause key to treat a field within a 
group as if it were not part of a group. 

4 •. VF-OFFSCREEN Offscreen data will scroll onscreen from the direc-· 
tion indicated. 

5. VF-NOPROT key will move.cursor into a.fieldprotected from tab-: 
bing. 

-KEY-X LATE 

Allows access to the cursortable. Use this routine to assign key the action prefonned by 
newva 1. newva 1 may be any of the logical keys listed in the table above .. This.can often 
·replace a user-supplied key change function. 

RETURNS 

-1 if some parameter is out of range. 
the old value otherwise. 

Page 198 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

keyset 
open a keyset 

SYNOPSIS 
copy "smsoftk.incl.cobol". 

77 name display-2 pic x(2S6) . 
77 scope pic S(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm_r_keyset" using name, scope giving status. 

copy"mykeyset.incl.cobol". 

77 scope pic 8(9)9 comp-S. 
77 status pic 8(9)9 comp-S. 
call "xsm_d_keyset" using ADDRESS, scope giving status. 

DESCRIPTION 
Usexsm d keysetandxsm r keyset todisplayakeyseL The parameter name is 
the name -of the keyseL sc-;pe must be one of the values listed in 
smsoftk. incl. cobol. Application programs will normally use scope 
KS-APPLIC. Values for scope are defmed in smsoft-k. incl. cobol. For a more 
detailed explanation of scope see the Key Set chapter of the Author's Guide. 

If there is currently a keyset of the specified scope the name of that keyset is compared 
with the name passed. If they are the same the present routine returnsimmediately .. This 
means that if you want to·"refresh" a keyset with a new copy from disk, you must first
close the keyset with a call to xsm_c_keyset. 

If the call is not successful then the current keyset remains displayed and an error message 
is posted to the end-user, except where noted otherwise. 

The most commonly: used variant is xsm_r_keyset.You do not need to know where 
the keyset resides because xsm_r_keyset searches for you. It looks first in the 
memory resident form list, next in any open libraries, then on disk in the directory speci
fied by the argument to xsm_initcrt, and fmally in the directories specified by 
SMPATH. Keyset flIes may be mixed freely with screen files in the screen list and in li
braries. 

You may save processing time by using xs~ d _ key set to display a memory-resident 
keyseL ADDRESS is the address of the keyset contained in the file mykey
set. incl. cobol. Use the utility bin2cob to create program data structures, from 
disk-based keysets, that you can compile into your application. 

JAM Release 5 1 March 91 Page 199 

: ,..:~.~ .... 



Stratus COBOL Programmer's Guide 

To close akeyset use xsm_c_keyset, 

RETURNS 
o If no error occurred during display of the keyseL 
-1 If the fonnal incorrect (not a keyset). 
-2 if the keyset cannot be found No message is posted to the end-user. 

--3 If the terminal doesn't support soft keys (or scope out of range). 
-4 If there is a read error. 
-5 If there is a malloc failure. 

Page 200 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

kscscope 
query current keyset scope 

SYNOPSIS 

copy "smsoftk.incl.cobol". 

77 scope pic S(9)9 comp-S. 
call "xsm_kscscope" giving scope. 

DESCRIPTION 

This routine returns the scope of the current keyset or -1 if no keyset is currently active. 

This function can be used to determine whether or not the application keyset (as opposed 
to the system keyset) is clDTently displayed. 

Values for scope are defined in smsoftk. incl. cobol. 

RETURNS 

Current scope, or 
-1 if not found. 

RELATED FUNCTIONS 

call "xsm_ksinq" using scope, number-keys, number-rows, 
current-row, maximumrlen, keyset-name giving status. 

call "xsm_skvinq" using scope, value, occurrence, attribute, 
labell, label2 giving status. 

JAM Release 5 1 March 91 Page 201 



Stratus COBOL Programmer's Guide 

ksinq 
inquire about keyset information 

SYNOPSIS 

copy "smsoftk.incl.cobol W• 

77 scope 
77 number-keys 
77 number-rows 
77 current-row 
77 maximum-len 
77 key set-name 
77 status 

pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
display-2 pic x(2S6). 
pic 5(9)9 comp-S. 

call "xsm_ksinqw using scope, number-keys, number-rows, 
current-row, maximum-len, keyset-name giving status. 

DESCRIPTION 

Use this routine to obtain the name, number of rows, number of items within a row, and 
current row of a keyset currently in memory. You supply the keyset's scope and five 
addresses to hold theinformation returned by xsm_skinq. scope must be one of the·" 
values defined in smsoftk. incl. cobol. 

'The function places the number of rows in the keyset in number-row, the number of· 
soft keys per row in number-keys, and the current row number in.current-row,." 
The name of the keyset is placed in the pre-ailocated buffer·keyset -name. The size of 
keyset -name is specified by maximum-len. If the name of the keyset in longer then 
keyset -name, then xsm _ ksinq fills the buffer to the end without adding a null char-
.acter, otherwise a null character is added to the end of the string .. The nulI.pointer may.be .. 

. used for any or all of the parameters about which you do not desire infonnation... "" 

RETURNS 

o if infonnation is returned. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 

RELATED FUNCTIONS 

call "xsm_kscscope" giving scope. 
call "xsm_skinqW using scope, row, softkey, value, 

display-attribute, labell, label2 giving status. 

Page 202 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

call "xsm_skvinq" using scope, value, occurrence, attribute, 
labell, label2 giving status. 

JAM Release 5 1 March 91 Page 203 



Stratus COBOL Programmer's Guide 

ksoff 
tu rn off soft key labels 

SYNOPSIS 
call "xsm ksoff". 

DESCRIPI'ION 

When a keyset is opened with any of the library· routines, the labels are automatically.dis~. 
played. If you do not wish to display the labels at any point within your application •. use 
xsItl_ksoff to turn the display off. 

If you wish to turn them the label display back on. use XSItl _ kson. 

RELATED FUNCTIONS 

call "xsm kson". 

Page 204 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

kson 
tu rn on soft key labels 

SYNOPSIS 
call "xsm kson". 

DESCRIPTION 

Nonnally, keyset labels are displayed when a keyset is called up. The only way the dis
play can be turned off is with the library routine, xsm_ksoff. Use this routine to tum 
the label display back on. 

RELATED FUNCTIONS 

call "xsm ksoff". 

JAM Release 5 1 March 91 Page 205 



Stratus COBOL Programmer's Guide 

close 
close a library 

SYNOPSIS 
771ib-desc pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm 1 close" using lib-desc giving status. 

DESCRIPTION 

Closes the library indicated by lib-desc and frees all associated memory. The library 
descriptor is a numbex returned by a previous call to xsrn _i_open. 

RETURNS 

-1 is returned if the library file could not be closed. 
-2 is returned if the library was not open. 
o is returned if the library was closed successfully. 

RELATED FUNCTIONS 

call "xsm_l_at_cur~.,using lib-desc, screen-name giving status .. ",;: 
call "xsm_l_form" using lib-desc, ·.screen-name giving status .. .. 
call "xsm_l_open" using lib-name giving lib-dese. . 
call ·"xsm_l_window." using lib-dese, " :screen-name r ·.start-line, ,,~.;~ 

start-column giving status. 

Page 206 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

I_open 
open a library 

SYNOPSIS 
77 lib-name display-2 pic x(256). 
771ib-desc pic 5(9)9 comp-5. 
call "xsm_l_open" using lib-name giving lib-desc. 

DESCRIPTION 

You must use xsm 1 open to open a library before you use a JPL module; a keyset. or 
a screen that is stofed in the library. Use the utility f 0 rml ib to create a library. (See the 
JAM Utilites Guide). 

This routine allocates space in which to store information about the library, leaves the li
brary me open, and retwns a descriptor identifying the library. The descriptor may subse
quently be used by xsm 1 window and related functions, to display screens stored in 
the library. The librarY can also be referenced implicitly by xsm r window, 
xsm_r_keyset, and xs~jplcall, as well as related functions, whlch search all 
open libraries. 

The library me is sought in all the directories identified bySMPATH and the parameter to 
xsm _ ini t c rt. If you define the SMFLI BS variable in your setup file as a list oflibrary 
names xsm 1 open will automatically be called for those libraries. The.xsm r rou-
tines will then Search in the specified libraries. - -

Several libraries may be kept open at once. This may cause problems on systems with 
severe limits on memory or simultaneously open files. 

RETURNS 

-1 if the library cannot be opened or read. 
-2 if too many libraries are already open. 
-3 if the named file is not a library. 
-4 if insufficient memory is available. 
Otherwise, a non-negative integer that identifies the library file. 

RELATED FUNCTIONS 
call "xsm_jplcall" using jplcall-text giving return-value. 
call "xsm_jplload" using module-name-list giving status. 
call "'xsm_jplpublic" using module-name-list giving status. 
call "'xsm_l_at_cur" using lib-desc, screen-name giving status. 

JAM Release 5 1 March 91 Page 207 

.".:.:: ....... :,..: 

, •. ~""' .. 



Stratus COBOL Programmer's Guide 

call "xsm_l_close" using lib-desc giving status. 
call "xsm_l_form" using lib-desc, screen-name giving status. 
call "xsm_l_window" using lib-desc, screen-name, start-line, 

start-column giving status. 
call "xsm_r_at_curN using screen-name giving status. 
call ~xsm_r_form"- using screen-name giving status. 
call "xsm_r_keyset" using name, scope giving status. 
call "xsm_r_window" using screen-name, start-line, start-column 

giving status. 

Page 208 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

last 
position the cursor in the last field 

SYNOPSIS 
call "xsm_last". 

DESCRIPTION 

Use this function to place the cursor at the fIrst enterable position of the last tab-unpro
tected fIeld of the current screen. If the last fIeld unprotected from tabbing is right justi
fIed, the cursor is placed in the rightmost position of the fIeld. By the same token, if the 
last unprotected fIeld is left justifIed, the cursor is placed in the leftmost position of the 
field 

Unlikexsm_ home, xsm_last will not reposition the cursor if the screen has no unpro
tected fIelds. 

This function doesn't immediately trigger fIeld entry, exit, or validation processing. Such 
processing occurs based on the cursor position when control returns to xsm _ inpu t, 

, This function is called when the JAM logical key EMOH is struck. 

RELATED FUNCTIONS 

call "xsm backtab". 
call "xsm home" giving field-number. 
call "xsm nl". 
call "xsm tab". 

JAM Release 5 1 March 91 Page 209 



Stratus COBOL Programmer's Guide 

Iclear 
erase LDB entries of one scope 

SYNOPSIS 
77 scope pic 5(9)9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_Iclear" using scope giving status. 

DESCRIPTION 
-- This function erases the values stored in the local data block for all names having a scope 

of the argument scope. Legal values for scope are between 1 and 9. Constant variables 
having scope 1 can be erased. 

Refer to the LDB chapter of the Programmer's Guide for a discussion of the scope of 
LDB entries. 

RETURNS 
-1 if scope is invalid. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm lreset" .using file-name, scope giving status .. 

Page 210 JAM Release 5 1 March 91 

."~ - ... ~ " 



Stratus COBOL Programmer's Guide 

Idb init 
initialize (or reinitialize) the local data block 

SYNOPSIS 
call "'xsm ldb_init". 

DESCRIPTION 

This function creates an empty index of named data items by reading the data dictionary, 
then loads values into them from initialization mes. Data Dictionary entries with a scope 
of 0 are not loaded intotheLDB. There is noLDB prior to the flrstexecution of this func
tion. 

Selected parts of the LDB, namely those assigned a certain scope, can be reinitialized us
ing xsm_lclear or xsm_lreset. 

This function is called explicitly in jmain. cobol and jxmain. cobol. Other func
tions that affect its behavior, such as xsm_dicname and xsm_ininames, should be 
called fust. 

RELATED FUNCTIONS 

call "xsm_diename" using die-name giving status. 
call "xsm_ininames" using name-list giving status. 
call "xsm_Ireset" using file-name, seope giving status. 

JAM Release 5 1 March 91 Page 211 



Stratus COBOL Programmer's Guide 

leave 
prepare to leave a JAM application temporarily 

SYNOPSIS 
call "xsm_leave". 

DESCRIPTION 

At times it may be necessary to leave a JAM application temporarily, For example you 
may need to escape to the command interpreter or to execute some graphics functions. In 
such a case, the tenninal and its operating system channel need to be restored to their nor
mal states. 

This function should be called before leaving. It clears the physical screen (but not the 
internal screen image); resets the operating system channel; and resets the terminal (using 
the RESET sequence found in the video file). 

RELATED FUNCTIONS 

call "xsm return". 

Page 212 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

length 
-get the maximum length of a field 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 field-length pic S(9)9 comp-5. 
call Nxsm_length" using field-number giving field-length. 

DESCRIPTION 

This function returns the maximum length of the field specified by field-number. If 
the field is shiftable, its maximum shifting length is returned. This length is as defmed in 
the JAM Screen Editor, and has no relation to the current contents of the field Use 
xsm _ dlength to get the length of the contents. 

RETURNS 

Length of the field. 
o if the field is not found. 

VARIANTS 

cali Nxsm_n_length" using field-name giving field-length.-

RELATED FUNCTIONS 

call Nxsm_dlength" using field-number giving data-length. 

JAM Release 5 1 March 91 Page 213 



Stratus COBOL Programmer's Guide 

Ingval 
get the long integer value of a field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 value pic 59(9) comp-5. 
call "xsm_lngval W using field-number giving value. 

DESCRIPTION 
This function returns the contents of field-number, converted to a long integer, All 
non--digit characters are ignored, except for a leading plus or minus sign. 

RETURNS 

The long value of the field. 
o if the field is not found. 

VARIANTS 
call "xsm_e_lngval" using field-name, element giving value. 
call. "xsm_i_lngval" .. using field-name, occurrence giving value •. c./. 

call "xslILn_lnqval" using field-name giving value. 
call "xsm ... :p_lngval"· using field-,number, .occurrence ·giving 

value. 

RELATED FUNCTIONS 
call "xsm_intval" using field-number giving value. 
call "xsm Itofield" using fie Id....,numbe r, value giving .status .. 

Page 214 JAM Release 5 1 March 91 



· Stratus COBOL Programmer's Guide 

Ireset 
reinitialize LOB entries of one scope 

SYNOPSIS 
77 file-name display-2 pic x(256). 
77 scope pic 5(9)9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm lreset" using file-name, scope giving status. 

DESCRIYfION 

This function sets local data block entries to values read from file-name. The scope 
must be between 1 and 9. References in the file to LDB entries not belonging to scope 
are ignored. All variables belonging to scope are cleared before reinitializing. This 
means that xsm lreset erases variables that are not in the file. 

The file may be in the current directory, or in any of the directories listed in the SMP ATH 

environment variable. It contains pairs of names with values, each enclosed in quotes. 
While all whites space outside the quotes is ignored, we recommend for readability that 
the file have one name-value pair per line. If an entry has multiple occurrences, it may be 
subscripted in the fIle. Here are a few sample pairs: . 

"husband" 
"wife[l]" 
"'wife[2]" 

"Ronald Reagan'" 
"Jane Wyman'" 
"Nancy Davis" 

If you plan to use this function, we recommend that you group your variables in separate 
fIles by scope. You can use xsm_ininames to list a number of fIles for initialization. 

RETURNS 

-1 if file not found or scope out of range. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm lclear" using scope giving status. 

JAM Release 5 1 March 91 Page 215 



Stratus COBOL Programmer's Guide 

Istore 
copy everything from screen to LOB 

SYNOPSIS 
77 status pic 5(9)9 comp-5. 
call "xsm lstore" giving status. 

DESCRIPfION 

This function copies data from the screen to local data block entries with matching names. 

The JAM Executive automatically calls xsm_lstore when bringing up a new screen 
or before closing a window. This fWlction need not be called by application code except 
under special circwnstances. 

RETURNS 

-3 if sufficient memory is not available. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_allget" using respect-flag.-

Page 216 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Itofield 
place a long integer in a field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 value pic 59(9) comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_Itofield" using field-number, value giving status. 

DESCRIPTION 

The long integer passed to this routine is converted to human-readable fonn and placed 
in field-number. If the number is longer than the field, it is truncated without warn
ing, on the right or left depending on the field's justification. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 

call "xsm e ltofield" 
status. 

call "xsm i ltofield" 
giving status. 

call "xsm n ltofield" 
call "xsm 0 ltofield" 

giving status. 

using 

using 

using 
using 

RELATED FUNCTIONS 

field-name, element, value giving· 

field-name, occurrence, value 

field-name, value giving status. 
field-number, occurrence, value 

call "xsm_itofield" using field-number, value giving status. 
call "xsm_Ingval" using field-number giving value. 

JAM Release 5 1 March 91 Page 217 



Stmtus COBOL Progmmmer's Guide 

m flush 
flush the message line 

SYNOPSIS 
call "xsm m flush". 

DESCRIPTION 

This function forces updates to the message line to be written to the display, This is useful 
if you want to display the status of an operation with xsm d rnsg line, without flush-
iog the entire display as xsrn_flush does. - - -

RELATED FUNCTIONS 

call "xsm flush". 

Page 218 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

max occur 
get the maximum number of occurrences 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 maximum pic 5(9)9 comp-5. 
call "xsm_max_occur" using field-number giving maximum. 

DESCRIPTION 

This function returns the maximum number of occurrences that the array can hold as de
fmed in the JAM Screen Editor or by xsm _ sc _max. If you wish to fmd out the highest 
occurrence number of an array that actually contains data, use xsm _ num _occurs. 

RETURNS 

o if the field designation is invalid. 
1 for a non--scrollable single field. 
The number of elements in a non--scrollable array. 
The maximum number of occurrences in a scrollable array. 

VARIANTS 

. call "xsm_n_max_occur" using field-name giving-maximum. 

RELATED FUNCTIONS 

call "xsm num occurs" using field-number giving number. 

JAM Release 5 1 March 91 Page 219 



Stratus COBOL Programmer's Guide 

mnutogl 
switch between menu mode and data entry mode on a 
dual-purpose screen 

SYNOPSIS 
copy "smumisc.incl.cobol". 
77 screen-mode pic S(9)9 comp-S. 
77 old-mode pic S(9)9 comp-S. 
call "xsm_mnutogl" using screen-mode giving old-mode. 

DESCRIPfION 

JAM supports the use of a single screen as both a menu and a data entry screen, but the 
screen must be in one or the othec"mode" at any given moment. This function can be used 
to change the mode of the screen and to test which mode the screen is in currently. The 
mode argument may have one of four values as defined in smurnisc. incl. cobol: 

Value Meaning 

IN-AUTO No action (generally used just to test the return value). 

IN-DATA Change the screen to data entry mode. 

IN-MENU Change the screen to menu mode. 

IN-TOGL Toggle the screen from one mode to the other (akin to the MTGL . 
logical key). 

This function is similar to the built-in control function jm _ rnnutogl. 

RETURNS 

The mode that the screen was in before the function was called (IN-DATA or IN-MENU.) 
-1 if the mode specification is invalid. 

Page 220 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

msg 
display a message at a given column on the status line 

SYNOPSIS 

copy "smattrib.incl.cobol". 

77 column 
77 disp-Iength 
77 text 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
display-2 pic x(256) • 

call "xsm_msg" using column, disp-Iength, text. 

DESCRIPTION 
The message is merged with the current contents of the status line, and displayed begin
ning at column. disp-length gives the nwnberofcharacters to display. 

On terminals with onscreen attributes, the column position may need to be adjusted to 
allow for attributes embedded in the status line. Refer to xSIn_d_Insg_line for an ex
planation of how to embed attributes and function key names in a status line message. 

"This function is called by the function that updates the cursor position display (see 
XSIn_c_vis). 

RELATED FUNCTIONS 
call "xsm_d_msg_Iine" using message, display-attribute. 

JAM Release 5 1 March 91 Page 221 



Stratus COBOL Programmer's Guide 

msg_get 
find a message given its number 

SYNOPSIS 

copy "smerror.incl.cobol". 

77 buffer display-2 pic x(256). 
77 number pic 5(9)9 comp-5. 
call "xsm_msg_get" using number giving buffer. 

DESCRIPTION 

The messages used by JAM library routines are stored in binary message files, which are 
created from text files using the JAM utility, msg2bin. Use xsm_msgread to load 
message files for use by this function. 

This function takes the n umbe r of the message desired and returns the message, or a less 
informative string if the message number cannot be matched. 

Messages are divided into classes based on their numbers, with up to 4096 messages per 
class. The message class is the message number divided by 4096, and.the message offset... 

. within the class is the.remainder. Predefmed JAM message numbers and classes are .. 
shown in Appendix B .. 

RETURNS 
The desired message, if found 
otherwise, the message class and number, as a string 

RELATED FUNCTIONS 
call "xsm_msgfind" using number giving buffer. 
call "xsm_msgread" using code, class, mode, arg giving status. 

Page 222 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

msgfind 
find a message given its number 

SYNOPSIS 

copy "smerror.incl.cobol". 

77 buffer display-2 pic x(256) . 
77 number pic 5(9)9 comp-5. 
call "xsm_msgfind" using number giving buffer. 

DESCRIPTION 

This function takes the n umbe r of a Screen Manager message, and returns the message 
string. It is identical to xsrn _ rnsg_get, except that it returns zero if the message number 
is not found. 

Screen Manager message numbers and classes are shown in Appendix B .. 

RETURNS 

The message 
o if the message-number is out of range 

RELATED FUNCTIONS 

call "xsm_msg_get" using number giving buffer. 
call "xsm_msgread" using code, class, mode, arg giving status. 

JAM Release 5 1 March 91 Page 223 



Stratus COBOL Programmer's Guide 

msgread 
read message file into memory 

SYNOPSIS 
copy"I115gfile.incl.cobol". 

copy"smerror.incl.cobol". 

77 code display-2 pic x(256). 
77 class pic 5(9)9 comp-5. 
77 mode pic 5(9)9 comp-5. 
77 arg display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm_msgread" using code, class, mode, arg giving status. 

DESCRIYI'ION 
Reads a single set of messages from a binary message file into memory, after which they 
can be accessed using xsm _ msg_get and xsm _ msgf indo The code argument selects 
a single message class from a file that may contain several classes: 

Code Class Message Type 
.-r----. 

SM SM-MSGS Screen Manager 

FM FM-MSGS Screen Editor 

JM JM-MSGS JAM run-time 

JX JX-MSGS Data Dictionary & Control Strings 

UT UT-MSG Utilities 

(blank) Undesignated user 

class identifies a class of messages. Classes 0-7 are reserved for user messages, and 
several classes are reserved to JAM; see smerror. incl. cobol. As messages with 
the prefIX code are read from the file, they are assigned numbers sequentially beginning 
at 4096 times class. 

mode is a value composed from the following list The first five indicate where to get the 
message me; at least one of these must be supplied. The latter four modify the basic ac
tion. 

Page 224 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Value Action 

MSG-DELETE Delete the message class and recover its memory. 

MSG-DEFAULT Use the default me defmed by the setup variable SMMSGS. 

MSG-FILENAME Use the me named by argo 

MSG-ENVIRON Use the file named in an environment variable named by 
argo 

MSG-MEMORY Use a memory-resident file whose address is given by argo 

MSG-NOREPLACE Modifier: do not overwrite previously installed messages. 

MSG-DSK Modifier: leave file open, do not read into memory 

MSG-INIT Modifier: do not use screen manager error reporting. 

MSG-QUIET Modifier: do not report errors. 

You can sum MSG-NOREPLACE with any mode except MSG-DELETE, to prevent 
overwriting messages read previously. Error messages will be displayed on the status 
line, if the screen has been initialized by xsm_ini tcrt; otherwise, they will go to the 
standard error output. You can sum MSG-INIT with the mode to force error messages to 
standard error. Combining the mode with MSG-QUIET suppresses error reporting alto
gether. 

If you sum MSG-DSK with the mode, the messages are not read into memory. Instead the. 
file is left open, and xsm msg get and xsm msgfind fetch them from disk when 
requested. If your messageflle iSlarge, this can save substantial memory; but you should 
remember to account for operating system file buffers in your calculations. 

arg contains the environment variable name for MSG-ENVIRON; the file name for 
MSG-FILENAME; or the address of· the memory-resident file contained in 
msgfile. incl. cobol Jor MSG-MEMORY. It may be passed as zero for other. 
modes. 

RETURNS 

o if the operation completed successfully. 
1 if the message class was already in memory and the mode included 

MSG-NOREPLACE. 
2 if the mode was MSG-DELETE and the message me was not in memory. 
-1 if the mode was MSG-ENVIRON and the environment variable was undefmed. 
-2 if the mode was MSG-ENVIRON or MSG-Fll..ENAME and the message file could 

JAM Release 5 1 March 91 Page 225 

.p '- • ..;,. 



Stratus COBOL Programmer's Guide 

not be read from disk; other negative values if the message file was bad or insufficient 
memory was available. 

RELATED FUNCTIONS 
call "xsm_msg_get" using number giving buffer. 
call "xsm_msgfind" using number giving buffer. 

Page 226 JAM Release 5 1 March 91 



.. Stratus COBOL Programmer's Guide 

mwindow 
display a status message in a window 

SYNOPSIS 

copy"smattrib.incl.cobol". 

77 text display-2 pic x(256) . 
77 line pic S(9)9 comp-5. 
77 col~mn pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm mwindow" using text, line, column giving status. 

DESCRIPTION 

This function displays text in a pop-up window, whose upper left-hand corner appears 
atline and column. The line and column are counted from o. Ifline is 1, the top of 
the window will be on the second line of the display. The window itself is constructed on 
the fly by the run-time system. No data entry is possible in it, nor is data entry possible in 
underlying screens as long as it is displayed. 

Due to the delayed write feature in JAM, you should call xsm flush to cause the 
screen to be updated and the message to be displayed, unless you call xsm_input di
rectly after the call to xsm_mwindow. xsm_close_window may be used to close a 
window called with xsm mwindow. 

All the percent escapes for status messages, except % M and % W, are effective. Refer to 
xsm err reset for a list and full description. If either line or col umn is negative, 
the window will be displayed according to the rules given for xsm _ r _at _ cu r. 

RETURNS 

-1 if there was a malloc failure. 
1 if the text had to be truncated to fit in a window. 
o otherwise. 

RELATED FUNCTIONS 

call "xsm_d_msg_line" using message, display-attribute. 

JAM Release 5 1 March 91 Page 227 



Stratus COBOL Programmer's Guide 

n 
variants that take a field name only 
SYNOPSIS 

77 field-name display-2 pic x(256). 
call "xsm n ... " using field-name, .... 

DESCRIPTION 

The n _ functions access a field by means of the field/group name. For a complete de
scription of individual fuoctions, look under the related function without n in its name. 
For example, xsrn n amt format is described under xsrn arnt fo~at. If the 
named field/group is not on the screen, these functions will attempt to access a similarly 
named entry in the local data block. 

Page 228 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

name 
obtain field name given field number 

SYNOPSIS 
77 buffer display-2 pic x(256) . 
77 field-number pic 5(9)9 comp-5. 
call "xsm name" using field-number giving buffer. 

DESCRIPTION 

Given a field number, xsm _name returns a buffer that contains the field name referenced 
by field-number. 

RETURNS 

The name of the field referenced, if found. 
o otherwise. 

JAM Release 5 1 March 91 Page 229 



Stratus COBOL programmer's Guide 

nl 
position cursor to the first unprotected field beyond the 
current line 

SYNOPSIS 

DESCRIPTION 

This function moves the CW"SOl' to ·the next occurrence of an array, scrolling if necessary. 
Unlike the doWlHlJTOw, it will allocate an empty scrolling occurrence if there are no 
more below but the maximum has not yet been exceeded. 

If the current field is not scrolling, the cursor is positioned to the first unprotected field, 
if any, following the current line of the form. If there are no unprotected fields beyond the 
current field, the cursor is positioned to the first unprotected field of the screen. 

If the screen has no unprotected fields at all, the cursor is positioned to the fIrst column of 
the line following the current line. If the cursor is on the last line of the form, it goes to the 
top left-hand comer of the screen. 

Thisfunction doesn'rimmediately trigger fIeld entry, exit, or validation processing; Such: 
processing occurs based on the cursor position when control retumsto·xsm _input;::,. 

This function is ordinarily bound to the RETURN key ... 

RELATED FUNCTIONS 

call "xsm backtab". 
call "xsm_home" giving field-number. 
call "xsm last". 
call "xsm tab". 

Page 230 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

novalbit 
.forcibly invalidate a field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-S. 
77 status pic 5(9)9 comp-S. 
call "xsm novalbit" using field-number giving status. 

DESCRIPTION 

Resets the VALIDED bit of the specified field, so that the field will again be subject to 
validation when it is next exited, or when the screen is validated as a whole. 

JAM sets a field's VALIDED bit automatically when the freld passes all its validations. 
The bit is initially clear, and is cleared whenever the field is altered by keyboard input or 
by a library function such as xsmyutfield. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 

call "xsm e novalbit" using field-name, 'element giving status. 
call "xsm i novalbit" using field-name, occurrence 'giving 

status. 
call "xsm n novalbit" using field-name giving status. 
call "xsm 0 novalbit" using field-number, occurrence giving 

status. 

RELATED FUNCTIONS 

call "xsm_fval" using field-number giving status. 
call "xsm s val" giving status. 

JAM Release 5 1 March 91 Page 231 



Stratus COBOL Programmer's Guide 

null 
test if field is null 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm null" using field-number giving status. 

DESCRIPTION 
Use xsm null to test a field to see whether it has both the null edit and contains the null 
characterstring that has been assigned to that field. See null edits in the Author's Guide, 

RETURNS 
1 If the field has the null edit and contains the appropriate null character string, 

-1 if the field does not exist. 
o otherwise. 

VARIANTS 
call "xsm e null" using field-name, element giving status·. ." 
call "xsm i null." using field-name, occurrence giving status." 

. call "xsm n null" using field-name giving status, 
call "xsm 0 null" using field-number, occurrence .giving .status ... 

Page 232 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

num occurs 
find the highest numbered occurrence containing data 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 number pic 5(9)9 comp-5. 
call "xsm_nurn_occurs" using field-number giving number. 

DESCRIYI'ION 

This function returns the highest occurrence nwnber of the array specified by 
field-number that actually contains data. The field number may be that of any field 
with the array. 

Most of the time the highest numbered occurrence containing data will be the same as the 
number of occurrences actually containing data. However, it is possible to have blank oc
currences preceding occurrences containing data. 

This count is different from the maximum capacity of an array, which you can retrieve 
with xsm max occur. - -
RETURNS 

The highest numbered occurrence containing data. 
o if there is no data in the field. 
-1 if the field is not found. 

VARIANTS 
call "xsm_n_nurn occurs" using field-name giving number. 

JAM Release 5 1 March 91 Page 233 



Stratus COBOL Programmer's Guide 

o 
variants that take afield number and occurrence number 

SYNOPSIS 
77 field-number 
77 occurrence 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

call "xsm 0 ••• " using field-number, occurrence, 

DESCRIPTION 

The 0_ functions refer to data by field number and occurrence number. An occurrence is 
a slot within an array of fields in which data may be stored~ Occurrences may be either on 
or off-screen. Since JAM treats an individual field as an array with one field, even a 
single non-scrolling field is considered to have one occurrence. The JAM library con
tains routines that allow you to manipulate individual occurrences during run-time. 

If the occurrence is zero, the reference is always to the current contents of the specified 
field. 

For the description of a particular function, look under the related function without 0 in 
its name. For example, xsm _0_ amt _ forma t is described under xsm _ amt _ forma t. 

"Page 234 JAM-Release"S 1 "March-91 



Stratus COBOL Programmer's Guide 

occur no 
get the current occurrence number 

SYNOPSIS 
77 occurrence pic S(9)9 comp-S. 
call "xsm_occur_no" giving occurrence. 

DESCRIPTION 

This function returns the occurrence nwnber of the field beneath the cursor. If the field is 
an element of a non-scrollable array, the occurrence nwnber is the same as the field's ele
ment number. Likewise, the occurrence nwnber of a single non-scrolling field is 1. 

RETURNS 

o if the cursor is not in a field. 
Otherwise, the occurrence number. 

RELATED FUNCTIONS 
call ·"xsm_getcurno'; giving field-number. 

JAM Release 5 1 March 91 Page 235 



Stratus COBOL Programmer's Guide 

off_90field 
move the cursor into a field, offset from the left 

SYNOPSIS 
77 field-number pic 5(9)9 eomp-5. 
77 offset pic 5(9)9 eomp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_off_gofieldw using field-number, offset giving 

status. 

DESCRIPTION 

This function moves the cursor into field-number, at position offset within the 
field's contents, regardless of the field's justification. The field's contents will be shifted 
if necessary to bring the appropriate piece onscreen. 

If offset is larger than the field length (or the maximum length if the field is shiftable), 
the cursor will be placed in the rightmost position. 

RETURNS 

-1 if the field is not found. 
o otherwise. 

VARIANTS 

call "xsm_e_off_gofield" using field-name, element,' offset 
giving status. 

call "xsm_i_off_gofield" using field-name, occurrence, offset 
giving status. 

call "xsm_n_off~gofield" using field-name, offset giving 
status. 

call "xsm_o_off_gofield",using field-number, occurrence, 
giving status. 

RELATED FUNCTIONS 

call "xsm_disp_off" giving offset. 
call "xsm_gofield" using field-number giving status. 
call "xsm sh off" giving offset. 

Page 236 JAM Release 5 1 March 91 

offset, 



Stratus COBOL Progmmmer's Guide 

option 
set a Screen Manager option 

SYNOPSIS 

copy "smmisc.incl.cobol". 
copy "smmisc2.incl.cobol". 
copy "smmisc3.incl.cobol". 

77 option 
77 newval 
77 oldval 
call "xsm_option" 

DESCRIPTION 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

using option, newval giving oldval. 

Use xsm_option to alter during run-time the default Screen Manager options defined 
in the files smmisc. incl. cobol, smmisc2. incl. cobol and 
smmisc3. incl. cobol. Possible options include, error window attributes, delayed 
write options, cursor display and zoom options. It is only necessary to include those head
er files for the settings you wish to change. See the "Setup File" section in the Configura-

. -tion Guide for a list of options and possible values. Use xsm_keyoption to alter the 
behavior of cursor control keys. 

If you wish to simply inquire as to an option's current value, use the value .NOCHANGE 
(defined in smsetup. incl. cobol) for newval. 

This function replaces the following version 4.0 functions: xsm_ch_ernsgatt, 
xsm_ch_form_atts, xsrn_ch_qrnsgatt, xsm_ch_UInsgatt, xsm_dw_op
tions, xsm_er_options, xsrn_fcase, xsm_fextension, xsm_ind_set, 
xsm_mp_options, xsm_rnp_string, xsm_ok~options, xsrn_stextatt, 
and xsm_zm_options. They are included in your version 5.0 library only for back
ward compatibility. We strongly recommend that you do not use them in the future. 

RETURNS 

The old value for the specified option. 
-1 if the option is out of range. 

RELATED FUNCTIONS 

call "xsm_keyoption" using key, mode, newval giving oldval. 

JAM Release 5 1 March 91 Page 237 



Stratus COBOL programmer's Guide 

oshift 
shift a field by a given amount 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 offset pic S(9)9 comp-5. 
77 return-value pic S(9)9 comp-5. 
call "xsm oshift" using field-number, offset giving 

return-value. 

DESCRIPTION 

This function shifts the contents of field-number by offset positions. If offset 
is negative, the contents are shifted right (data past the left-hand edge of the field become 
visible); otherwise, the contents are shifted left. Shifting indicators, if displayed, are ad
justed accordingly. 

The field may be shifted by fewer than offset positions if the maximum shifting width 
is reached with less shifting. 

RETURNS 

The number of positions actually shifted. 
o if the field is not found or is not-shifting. 

VARIANTS 
-cal-I -"xsm_n_oshift" using field-name, offset -giving 

return-value. 

Page 238 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

. . 
plnqulre 
obtain value of a global strings 

SYNOPSIS 
copy "smglobs.incl.cobol". 

77 buffer display-2 pic x(256) • 
77 which pic S(9)9 comp-5. 
call "xsm-pinquire" using which giving buffer. 

DESCRIPTION 
This function is used to obtain the current value of a global pointer variable. The values 
for which are defmed in smglobs. incl. cobol. If you wish to modify a global 
string use xsmyset. 

Pointer values for which are defmed in smglobs . incl. cobol. They are: 

Value Meaning 

P-YES The Y character for YES/NO field. This is returned as a three 
character string. The flJ"St character is thdowercase yes value, the 
second character is the uppercase yes value, and the third character 
is the null terminator. 

P-NO The N character for YES/NO field. This is returned as a three 
character string. The flJ"St character is the lowercase no value, the 
second character is the uppercase no value, and the third character is 
the null terminator. 

P-DEClMAL This is returned as a three character string. The first character is the 
user's decimal point marker, the second character is the operating 
system's decimal point marker, and the third character is the null 
terminator. 

P-FLDPTRS Pointer to an array of field structures. The implementation of these 
structures is very release dependent 

P-TERM Returns the name JAM uses as the terminal identifier or the null 
string if not found. 

P-SPMASK Pointer to an memory--resident full size form containing all blanks. 

JAM Release 5 1 March 91 . Page 239 



Stratus COBOL programmer's Guide 

Value Meaning 

P-USER Pointer to developer-specified region of memory. This pointer is not 
set by JAM; it is set and maintained, if desired, by the application. 

SP-NAME Name of the active screen. 

SP-STATLI Text of current status line. 
NE 

SP-STATAT Attributes of current status line (pointer to array of unsigned short 
TR integers). 

P-DICNAME Name of data dictionary file. 

v- Any of the "v-" values defined in smvideo. incl. cobol may 
be passed to obtain various video related infonnation. 

In general, the objects pointed to by the pointers returned by xsm yinqui re have lim
ited duration and should be used or copied quickly (except for P-USER, which is main
tained by the application). The P- pointers point to the actual objects within JAM. The 
SP- pointers point to copies of the objects. Since the characteristics of these objects are 
implementation dependent, they may change in future releases of JAM. In no case (ex
cept P-USER) should the objects be modified directly through the pointers returned by 
xsm yinqui reo Use xsm yset.to modify selected objects). . . _ .• __ .. 

RETURNS 

IT the argument corresponds to a global pointer variable; the:.valueof thatvariable:is_:..:=-_:. 
returned. 

o otherwise. 

RELATED FUNCTIONS 

call 
call 
call 
call 

Page 240 

"xsm_finquire" using field-number, which giving value. 
"xsm_gp_inquire" _ using group-name, .. which giving value" ... __ _ 
"xsm_iset" using which, newval giving value. 
"xsmyset" using which, newval giving buffer. 

JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

protect 
protect an array 

SYNOPSIS 
copy"smvalids.incl.cobol". 

77 field-number 
77 mask 
77 status 

pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 
pic 5(9)9 comp-S. 

call "xsm_aprotect" using field-number, mask giving status. 
call "xsm_aunprotect" using field-number, mask giving status. 
call "xsmyrotect" using field-number giving status. 
call "xsm_unprotect" using field-number giving status. 
call "xsm_lprotect" using field-number, mask giving status. 
call "xsm_lunprotect" using field-number, mask giving status. 

DESCRIPTION 
--There are four types of protection associated with fields and arrays, any combination of 

which may be assigned: data entry, tabbing into, clearing, and validation. xsm yro
tect and xsm _ unprotect always set and clear all four types of protection, The re
-maining protection functions set and clear any combination of protection, as specified_by 
mask. The values formask are defmedin smvalids. incl. cobol and are listed be
low. Combinations may be specified by adding values together. 

Value for mask Meaning 

EPROlECT -FEDIT protect from data entry 

TPROlECT -FEDIT protect from tabbing into and from entering via any 
other key 

CPROlECT -FEDIT protect from clearing 

VPROlECT -FEDIT protect from validation 

ALLPROlECT-FEDIT protect from all of the above 

Protection is associated an individual field (i.e. an element), and with an array as a whole. 
- Therefore, all offscreen -array- occurrences always share the same level of protection, 

JAM Release 5 1 March 91 Page 241 



Stratus COBOL Programmer's Guide 

while the onscreen occurrences have the levels of protection (possibly all different) ass0-

ciated with their host fields (Le. elements). Since protection is associated with individual 
fields, and not with individual occurrences, deleting an occurrence with xsm doccur 
will not scroll up the protection with the occurrences. -

xsm-protect,xsm_unprotect,xsm_lprotect,andxs~lunprotect ~t 

and clear protection for individual fields. xsm aprotect and xsm a unprotect ~t 
and clear protection for all of the fields of aD array, and for the array as a whole (the 
field-number may specify any field in the array). For example, unprotectingan array 
with xsm aunprotect will undo protection done by xsm Iprotect. A subsequent 
call to xs; _lprotect will re-protect the specified field of the array, but can never af
fect the offscreen occurrences of the array . 

. Caution: It is generally safer to.protect and unprotect arrays with xsm .. apro.t.e.c.t..and. 
xsm aunprotect, rather than with the field--oriented protection functions. 

RETURNS 

-1 if the field does not exist; 
o otherwise. 

VARIANTS 
call "xsm_nyrotect" using field-name giving status. 
call "xsm_eyrotect" using field-name, element giving status. 
call "xsm_n_unprotect" using field-name giving status • 

. call "xsm_e_unprotect" using field-name, element giving status; .. 
call "xsm_n_Iprotect" using field-name, mask giving status. 
call "xsm_e_Iprotect" .. using ·field-name,. element, mask . giving .. , 

status. 
call "xsm_n_Iunprotect" using field-name, mask giving status. 
call "xsm_e_Iunprotect" using field-name, .element:,· mask. giving 

status. 
call "xsm_n_aprotect" using field-name, .mask giving status. 
call "xsID_n_aunprotect" using field-name, mask giving status. 

Page 242 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

pset 
. Modify value of global strings 

-

SYNOPSIS 
copy"smglobs.incl.cobol". 

77 buffer display-2 pic x(256). 
77 which pic 8(9)9 comp-5. 
77 newval display-2 pic x(256). 
call "xsm""'pset" using which, newval giving buffer. 

DESCRIPTION 
This function is used to modify the contents of a global string. The string you wish to 
change is specified by which. The value that you wish to change the variable to is speci
fied by newval. If you wish only to get the value of a global string use xsmyin
quire. 

The following values for which, dermed in smglobs. incl. cobol, are available: 

Value Meaning 

P-YES The Y character for YES/NO field. This is specified by a three 
character string. The first character is the lowercase yes value, the 
second character is the uppercase yes value, and the third character 
is the null terminator. 

P-NO The N character for YES/NO field. This is specified by a three 
character string. The first character is the lowercase no value, the 
second character is the uppercase no value, and the third character is 
the null terminator. 

P...,.DEClMAL This is specified by a three character string. The first character is the 
user's decimal point marker, the second character is the operating 
system's decimal point marker, and the third character is the null 
terminator. 

RETURNS 
If which is one of the above, the old contents of the corresponding array are returned. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm iset" using which, newval giving value. 

JAM Release 5 1 March 91 Page 243 



Stratus COBOL Programmer's Guide 

call "xsmyinquire" using which giving buffer. 

Page 244 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

putfield 
put a string into a field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 data display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsmyutfield" using field-number, data giving status. 

DESCRIPTION 
The string data is moved inlO the field specified by field-number. Strings that are 
100 long will be truncated without warning, while strings shorter than the destination field 
are blank filled (10 the left if the field is right justified. otherwise 10 the right). If da t a is 
a null string, then the field is cleared. This causes date and time fields that take system 
values 10 be refreshed. 

This function sets the field's MDT bit 10 indicate that it has been modified, and clears its 
VALIDED bit to indicate that the field must be revalidated upon exit. xsm_nyut
field and xsm_iyutfield will slOre data in the LDB if the named field is not 
present in the screen. However, if the LDB item has a scope of 1 (constant), its contents 
-will be unaltered and the function will return -1. 

In variants that take name as an argument, name can be either the name of a field or a 
group. In the case of a group, the functions xsm select and xsm deselect should 
be used 10 change the group's value. - -

Notice that the order of arguments to this function is different from that of arguments 10 
the related function xsm _get field. -

RETURNS 
-1 if the field is not found; 0 otherwise. 

VARIANTS 
call "xsm_eyutfield" using name, element, data giving status. 
call "xsm_iyutfield" using name, occurrence, data giving 

status. 
call "xsm_nyutfield" using name, data giving status. 
call "xsm_oyutfield" using field-number, occurrence, data 

giving status. 

RELATED FUNCTIONS 
call "xsm deselect" using group-name, group-occurrence giving 

status. 

JAM Release 5 1 March 91 Page 245 



Stratus COBOL Programmer's Guide 

call "xsm_getfield" using buffer, field-number g~v~ng length. 
call "xsm_select" using group-name, group-occurrence giving 

status. 

Page 246 .JAM·ReleaseS 1 March 91 



Stratus COBOL Programmer's Guide 

putjctrl 
associate a control string with a key 

SYNOPSIS 

copy "smkeys.incl.cobol". 

77 key 
77 control-string 
77 default 
77 status 
call "xsm.....putjctrl" 

status. 

DESCRIPTION 

pic S(9)9 comp-5. 
display-2 pic x(256) • 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 

using key, control-string, default giving 

Each JAM screen contains a table of control strings associated with function keys. JAM 
also maintains a default table of keys and control strings, which take effect when the cur
rent screen has no control string for a function key you press. This table enables you to 
define system-wide actions for keys. It is initialized from SMINICTRL setup variables. 
See the section on setup in the-Configuration Guide for further infonnation. 

-This function associates control-string with key-in one of the tables, replacing the -
control string previously-associated with key (if there was one). If default is zero, the 
control string will be installed in the current sCreen.- and will disappear when you exit the 
screen; otherwise, it will go into the system-wide default table. If cant rol-st ring is 
empty, the existing control string, if any, will be deleted. If both screen and default control 
strings exist for a given key, deleting the control string for the screen will put the default 
control string into effect 

If you install a default control string for a key that is defmed in the current screen, the 
-definition in the screen will be used. Note also that JAM will not search the fonn or win- -
dow stack for function key defmitions; only the current screen and the default table are 
consulted. Values for key are in smkeys. incl. cobol. The syntax for control 
strings is defined in the Author's Guide. 

RETURNS 

-5 if insufficient memory is available; 0 otherwise. 

JAM Release 5 1 March 91 Page 247 

' .. )~-. 1 

. ~ ... I:~;: 



Stratus COBOL Programmer's Guide 

pwrap 
put text to a wordwrap field 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 text display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm-Fwrap" using field-number, text giving status. 

DESCRIPTION 

This function copies text to a wordwrap field specified by field-number, Wraps 
occur at the end of words. The last character of every line is a space, If a word is longer 
than one less than the length of the field, the word is broken one character short of the end 
of the field, a space is appended, and the remainder of the word wraps to the next line. 

The variant xsm_o ywrap copies the text into an array beginning at the specified oc
currence. 

Warning: If you attempt to copy data that is 100 large for the wordwrap field to hold, 
xsmywrap will truncate the excess text 

RETURNS 
-1 if the field number is invalid. 
-2 if the text was truncated because it was 100 long for the field 
o otherwise. 

VARIANTS 
call "xsm_oywrap" using field-number, -occurrence, text giving-' 

status. 

RELATED FUNCTIONS 
call "xsm_gwrap" using buffer, field-number, buffer-length 

giving length. 

Page 248 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

query_msg 
display a question, and return a yes or no answer 

SYNOPSIS 
77 message display-2 pic x(256) . 
77 reply pic 5(9)9 comp-5. 
call "xsm_query_msg" using message giving reply. 

DESCRIPTION 

The me s sage is displayed on the status line, until you type a yes or a no key. A yes key 
is the first letter of the SM - YE S entry in the message fIle (or the XMIT key), and a no key 
is the first letter of the SM-NO entry (or the EXIT key); case is ignored. At that point, this 
function returns the lower case lelter as defined in the message fIle to its caller. 

All keys other than yes and no keys are ignored. 

RETURNS 

Lower--case ASCII 'y' or 'n', according to the response. 

RELATED FUNCTIONS 
call "xsm_d_msg_line" using message, display-attribute. 
call "xsm_is_no" using field-number giving status. 
call "xsm_isJes" using field-number giving status. 

JAM Release 5 1 March 91 Page 249 



Stratus COBOL Programmer's Guide 

• qUI_msg 
display a message preceded by a constant tag, and re
set the message line 

SYNOPSIS 

copy Wsmattrib.incl.cobol". 

77 message display-2 pic x(256). 
call wxsm_qui_msg" using message. 

DESCRIPTION 

This function prepends a tag (normally "ERROR:j tomessage, and displays the whole 
on the status line (or in a window if it is too long). The tag may be altered by changing the 
SM-ERROR entry in the message file. The message remains visible until the operator 
presses a key. Refer to the description of setup in the Configuration Guide for an exact 
description of error message acknowledgement If the message is longer than the status 
line, it will be displayed in a window instead. If the cursor position display has been 
turned on (see xsm_ c _vi s), the end of the status line will contain the cursor's current 
row and column. If the message text would overlap that area of the status line, it will be;, 
displayed in a window instead 

, This function is identical to xsm quiet err, except that it does not tum thecursor.on.' 
It is similar to xsm _ emsg, whiCh does nOt prepend a tag. 

Several percent escapes provide control over the content and presentation of status mes
sages. See xsm _ emsg for details . 

. RELATED FUNCTIONS 

call "xsm_emsg" using message. 
call "xsm_err_reset" using message. 
call "xsm_option" using option, newval giving oldval. 
call "xsm_quiet_err" using message. 

Page 250 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

quiet_err 
display error message preceded by a constant tag, and 
reset the status line 

SYNOPSIS 

copy "smattrib. incl. cobol" • 

77 message display-2 pic x(256) . 
call "xsm_quiet_err" using message. 

DESCRIPfION 

This function prepends a tag (nonnally "ERRORj to message, turns the cursor on, and 
displays the whole message on the status line (or in a window if it is too long). This func
tion is identical to xsm _qui _ msg, except that it turns the cursor on. It is similar to 
xsm err reset, which does not prepend a tag. Refer to xsm emsg for an explana
tion of how to change display attributes and insert function key names within a message. 

RELATED FUNCTIONS 
call "xsm_emsg" using message. 
call "xsm_err_reset" using message. 
call "xsm_option" using option, newval giving oldval. 
call "xsm_qui_msg" using message. 

JAM Release 5 1 March 91 Page 251 



Stratus COBOL Programmer's Guide 

rdJ)art 
read part of a record to the current screen 

SYNOPSIS 
copy "screen.jam.incl.cobol". 

77 first-field pic 5(9)9 comp-5. 
77 last-field pic 5(9)9 comp-5. 
call "xs~rd-part" using SCREEN, first-field, last-field.· 

DESCRIPTION 
This function copies data from a record to all fields between first-field and 
last-field within the current screen, converting individual items as appropriate. An 
array and its scrolling occurrences will be copied only if the [zrst element falls between 
first-field and last-field. This routine is commonly used with 
xsm _ wrt yart, which writes part of the screen to a record. If you wish to read infor
mation into the entire screen, use xsm_rdstruct. To read infonnation from a record 
defined in the data dictionary, use xsm_rrecord. Use xsmyutfield to write a 
string to an individual field. 

The record SCREEN, contained in the file screen .• jam .. incl .• cobolcan_be_created~ 
from the screen file screen. jam via the f2struct utility as follows: 

f2struct -gCOBOL screen. jam 

Each item in the record is a field of the type specifed in-the Screen-Editor:-If you specify 
the type omi t, data will not be written into the field. See "Data Type" in the Author's 
Guide and f2struct in the Utilities Guide for further infonnation. 

Once created, the declaration may be treated exactly like any other record declaration. 
You can ignore the items that represent fields which do not fall within the bounds ·of the-· 
specifed fields. However, the record definition must contain all of the fields on the screen._'~' 

The arguments that represent the range of fields to be copied, first-field and . 
last-field are passed as field numbers. 

The record may be initialized with xsm_wrtyart or with data from elsewhere. Re
cord items within the specified range which will not be initialized prior to calling 
xsm_rdyart must be cleared or you risk crashing your application when garbage is 
read into the screen. 

Remember, you must update the record declaration whenever you alter the screen from 
which it was generated. 

Page 252 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

RELATED FUNCTIONS 
call "xsmyutfield" using field-number, data giving status. 
call "xsm_rd_struct" using screen, byte-count. 
call "xsm_rrecord" using RECORD, record-name, byte-count. 
call "xsm_wrtyart" using SCREEN, first-field, last-field. 

JAM Release 5 1 March 91 Page 253 



Stratus COBOL Programmer's Guide 

rdstruct 
read data from a record to the screen 

SYNOPSIS 
copy "screen,jam,incl.cobol~. 

77 byte-count pic 5(9)9 comp-5. 
call ~xsm_rd_structN using SCREEN, byte-count. 

DESCRIPTION 
This function copies data from a record to the current screen, converting individual items 
as appropriate. It is commonly used with xsm_wrtstruct, which writes data from 
fields on the current screen to a record. IT you wish to read information into a group of 
consecutively numbered fields, use xsm _ rd ya rt. To read information from a record 
defined in the data dictionary, use xsm_rrecord. Use xsmyutfield to write a 
string to an individual field. 

The record SCREEN,contained in the file screen. jam. incl. cobol can be created 
'from the screen file screen. jam via the f2struct utility as follows:·. 

f2struct -gCOBOL screen. jam 

Each item in the record is a field of the type specifed in the Screen Editor. If you-specify, 
the type omit, data will not be written into the. field. See "Data Type" in the Author's 
Guide and f2struct in the Utilities Guide for further information. 

The argument byte-count is an integer variable. xsm_rdstruct will store in 
byte-count the nwnber of bytes copied from the record. 

The record may be initialized with xsm_wrtstruct or with data from elsewhere ... 
items within the record that will not be initialized prior to calling xsm_rdstruct must .• 
be cleared or you risk crashing your application when garbage·is read into the screen. 

Remember, you must update the record declaration whenever you alter the screen from 
which it was generated. 

RELATED FUNCTIONS 
call "xsmyutfield" using field-number, data g~v~ng status. 
call "xsm_rdyart" using SCREEN, first-field, last-field. 
call "xsm_rrecord" using RECORD, record-name, byte-count. 
call "xsm_wrtstruct" using SCREEN, byte-count. 

Page 254 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

rescreen 
refresh the data displayed on the screen 

SYNOPSIS 
call "xsm rescreen". 

DESCRIPTION 
This function repaints the entire display from JAM's internal screen and attribute buffers. 
Anything written to the screen by means other than JAM library functions will be erased., 
This function is normally bound to the RESCREEN key and executed automatically 
within xsm_getkey. 

You may need to use this function after doing screen I/O with the flag 
xsm_do_not_display turned on, or after escaping from an JAM application to 
another program (see xsm _leave). If all you want is to force writes to the display, use 
xsm flush. 

RELATED FUNCTIONS 
call·"xsm_flush". 
call "xsm return". 

JAM Release 5 1 March 91 Page 255 



Stratus COBOL Programmer's Guide 

resetcrt 
reset the terminal to operating system default state 

SYNOPSIS 
call "xsm resetcrt". 
call "xsm_jresetcrt". 
call "xsm_jxresetcrt". 

DESCRIPTION 

The function xsm_resetcrt is generally used only when you are writing your own 
Executive. It resets terminal characteristics to the operating system's normal .state. Be 
sure to call xsm _ resetcrt be called when leaving the Screen Manager environment 
(before program exit). 

All the memory associated with the display and open screens is freed. However, the buff
ers holding the message fIle, key translation fIle, etc. are not released. A subsequent call 
toxsm_initcrt will find them in place. Then xsm_resetcrt clears the screen and 
turns on the cursor, transmits the RESET sequence defined in the video file, and resets the 
operating system channel. 

The JAM Executive calls 'xsm_resetcrt via' xsm_jresetcrt (or .via;;:o 
x sm _j xre set crt in the case ofan authoring executable) automatically as part of. its, 

. exit processing. It should not be called by application programsexceptin case of abnor~'::' 
mal termination. 

RELATED FUNCTIONS 

call "xsm cancel". 
call "xsm leave". 

Page 256 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

• resize 
notify JAM of a change in the display size 

SYNOPSIS 
77 rows pic 5(9)9 comp-S. 
77 columns pic 5(9)9 comp-S. 
77 status pic 5(9)9 comp-S. 
call "xsm_resize" using rows, columns giving status. 

DESCRIPfION 
This function enables you to change the size of the display used by JAM from the default 
defined by the LINES and COLMS entries in the video file. It makes it possible to use a 
single video file in a windowing environment. Applications can be run in different sized 
windows with each application setting its display size at run time. It can also be used for 
switching between normal and compressed modes (e.g. 80 and 132 columns on 
VT100-<:ompatible terminals). 

·If the specified rectangle-is.larger than the physical display, the results will be unpredict
able. You may specify at most 255 rows or columns . 

. . This function clears the physical and logical. screens; any displayed forms or· windows, 
together with data entered on them, are lost. 

RETURNS 
-1 if a parameter was less than 0 or greater than 255. 
o if successful. 
Program exit on memory allocation failure. 

JAM Release 5 1 March 91 Page 257 



Stratus COBOL Programmer's Guide 

return 
prepare for return to JAM application 

SYNOPSIS 
call "xsm return". 

DESCRIPTION 

This routine should be called upon returning to a JAM application after a temporary exit 

It sets up the operating system channel and initializes the display using the SETUP string 
from the video file. It does not restore the screen to the state it was in before xsm leave 
was called. Use XS~ rescreen to accomplish that, if desired. 

RELATED FUNCTIONS 
call "xsm leave". 
call "xsm resetcrt". 

Page 258 JAM Release 5 1 March 91 



... Stratus COBOL Programmer's Guide 

rmformlist 
empty the memory-resident form list 

SYNOPSIS 
call "xsm rmformlist. 

DESCRIPfION 

This function erases the memory-residenl fonn list established by x SIn _ f 0 rml i S t, and 
releases the memory used to hold iL It does not release any of the memory-resident JPL 
modules, key sets, or screens themselves. Calling this function will prevent 
xSIn_r_window, xSIn_r_keyset, xSIn_jplcall, and related functions from rmd
ing memory-resident objects. 

RELATED FUNCTIONS 
call "xsm formlist" using name, address giving status. 

JAM Release 5 1 March 91 Page 259 



Stratus COBOL Programmer's Guide 

rrecord 
read data from a record defined in the data dictionary 

SYNOPSIS 

copy "record.incl.cobol". 

77 record-name 
77 byte-count 

display-2 pic x(256). 
pic 5(9)9 comp-5. 

call "xsm_rrecord" using RECORD, record-name, byte-count. 

DESCRIPTION 

This function reads data from a record into fields on the current screen. If a field is not on 
the current screen then the data is written to the LOB. This routine is commonly used with 
xsm wrecord, which writes data from the screen and LOB to a record defmed in the 
data dictionary. If you wish to read data into all of the fields within the current screen, use 
xsm rdstruct. To copy data to a group of consecutively numbered fields, use 
xsm:=rdyart. Use xsmyutfield to write a string to an individual field. 

The record named RECORD, contained in the file record. incl. cobol can be 
'created from the data dictionary file data. dic via the dd2st'ruct utility as follows::: 

dd2struet -gCOBOL data.die 

Each record item is a field of the type ,specified in the-Data Dictionary 'Editor. Data will·-, 
be written. into the field onscreen even if the omi t type is specified. See "Data Type" in 
the Author's Guide and dd2struct in the Utilities Guide for further information. 

Once created. the record declarations may be treated exactly like any other record decla
rations. The argument record-name is the name of the data·dictionary entry from 
which the record was created. 

The argument byte-count is an integer. Upon return from xsm _ rrecord; the. valuer~ 
contained in the integer will be the number of bytes or characters read from the record. 
The value will be 0 if an error occurred. 

The record may be initialized with xsm_wrecord or with data from elsewhere. Items 
within the record that will not be initialized prior to calling xsm rrecord must be 
cleared or you risk crashing your application when garbage is read into the screen or the 
LOB. 

Remember, you must update the record declaration whenever you alter the data dictio
nary from which it was generated. 

Page 260 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

RELATED FUNCTIONS 
call "xsm-putfield" using field-number, data giving status. 
call "xsm_rd-part" using SCREEN, first-field, last-field. 
call "xsm_rd_struct" using screen, byte-count. 
call "xsm wrecord" using RECORD, record-name, byte-count. 

JAM Release 5 1 March 91 Page 261 



. Stratus COBOL Programmer's Guide 

rscroll 
scroll an array 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 req-scroll pic 5(9)9 comp-5. 
77 lines pic 5(9)9 comp-5. 
call "xsm_rscroll" using. field-number, req-scroll giving lines. 

DESCRIPTION 

This function scroUs an array along with any synchronized arrays by req-scroll oc
currences. If req-scroll is positive, the array scrolls down (towards the bottom of the 
data); otherwise, it scrolls up. 

The function returns the actual amount scrolled. This could be the amount requested, or 
a smaller value if the requested amount would bring the array past its beginning or end If 
o is returned it means that the array was at its beginning or end, or an error occurred. Neg
ative numbers indicate scrolling up occurred. 

RETURNS 
. The actual amount scrolled. Positive numbers indicate downward scrolling. while .: ..• -';' 

negative numbers mean upward scrolling. 
o if no scrolling or error. 

VARIANTS 
call "xsm_n_rscroll" using field-name, req-scroll giving lines. 

RELATED FUNCTIONS 
call "xsm~ascroll" .using .field-number, .occurrence giving 

status. 
call "xsm t scroll" using field-number giving status. 

Page 262 JAM Release 5 1 March 91 



' .. ,'-"'-. 

Stratus COBOL Programmer's Guide 

s val 
validate the current screen 

SYNOPSIS 
77 status pic S(9)9 comp-S. 
call "xsm_s_val" giving status. 

DESCRIPTION 
This function validates each field and occurrence. whether on or offscreen, that is not pro
tected from validation (vpROTECf). It is called automatically from xsm...:... input when 
the lRANSMIT key is hit while in data entry mode. xsm _ sval also validates groups. 

When the first element of a scrolling array is encountered. earlier offscreen occurrences 
are validated fIrSt When the last element of a scrolling array is encountered, later off
screen occurrences are validated immediately after that element 

If synchronized arrays exist. the following occurs. When an offscreen occurrence is vali
dated, the corresponding occurrences from synchronized arrays are validated as well. 
Synchronized array are validated in order according to their base field number. The off
screen occurrences preceding the synchronized arrays are validated before the first ons-

. ""creen occurrence of the fIrSt (lowest base field number) of the synchronized arrays. Simi-· - .. ' 
Iarty. the offscreen occurrences/ollowing the arrays are validated immediately after the 
last onscreen occurrence of the last (highest base field number) array. 

Validation Skip if valid Sldp if empty 

required y n 

must fill y Y 

regular expression y y 

range y y 

check-digit y y 

date or time y y 

table lookup y y 

currency fonnat y n* 

math expresssion n n 

JAM Release 5 1 March 91 Page 263 



Stratus COBOL Programmer's Guide 

Validation Skip if valid Skip if empty 

field validation n n 

JPL function n n 

• The currency fonnat edit contains a skip-if-empty flag; see the Author's Guide. 

If you need to force a skip-if-empty validation, make the field required. A field with em
bedded punctuation must contain at least one non-blank non-punctuation character in or" 
der to be considered non-empty; otherwise any non blank character makes the field non
empty. 

If an occurrence fails validation, the cursor is positioned to it and an error message dis
played. If the occurrence was offscreen, its the array is frrst scrolled to bring it onscreen .. 
This routine returns at the frrst error; any fields past will not be validated. 

RETURNS 

-1 if any field fails validation. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm_fval" using field-number giving status. 

Page 264 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

sc max 
alter the maximum number of occurrences allowed in a 
scrollable array 

SYNOPSIS 
77 field-number pic 5(9)9 comp-5. 
77 new-max pic 5(9)9 comp-5. 
77 actual-max pic 5(9)9 comp-5. 
call "xsm_sc_max" using field-number, new-max giving 

actual-max. 

DESCRIPTION 

This function changes the maximum number of occwrences allowed in field-num
ber, and in all synchronized arrays. The original maximum is set when the screen is 
created. If the desired new maximum is less than the highest numbered occurrence that 
contains data, the new maximum will be set to the number of that occurrence (i.e., the 
valueretumed by xSffi_num_occurs). The maximum can decrease only to a value be
tween the highest numbered occurrence containing data and the previous maximum. It 
can never be less than the number of elements in the array. 

RETURNS 

The actual new maximum (see above). 
o if the desired maximum is invalid, or if the array is not scrollable. 

VARIANTS 

call "xs~n_sc_max" using field-name, new-max giving 
actual-max. 

RELATED FUNCTIONS' 

" call "xsm_max_occur" using field-number giving maximum. 
call "xsm num occurs" using field-number giving number. 

JAM Release 5 1 March 91 Page 265 



Stratus COBOL Programmer's Guide 

sdtime 
get formatted system date and time 

SYNOPSIS 
77 buffer display-2 pic x(256). 
77 format display-2 pic x(256). 
call "xsm_sdtime" using format giving buffer. 

DESCRIPTION 

This function gets the current date and/or time from the operating system and returns it in 
the form specified by format. 

forma t is a string beginning with y or n followed by any combination of date/time to
kens and literal text y indicates a 12-hour clock; n (or any other character) indicates a 
24-hour clock. This character must be given, even if the format does not include time 
tokens. The tokens are described in the table below. These tokens are case-sensitive. 

Unit Description Token 

Year 4 digit (e,g., 1990) %4y 

2 digit (e.g., 90) %2y 

Month 1 or 2 digit (1- 12) %m 

2 digit (01 - 12) % Om 

full name (e.g.,lanuary) %*m 

3 character name (e.g.,lan) %3m 

Day 1 or 2 digit (1 - 31) %d 

2 digit (01 - 31) %Od 

Day of the Week full name (e,g. Sunday) %*d 

3 character name (e.g., Sun) %3d 

Day of the Year digit (1 - 365) %+d 

Page 266 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Unit Description Token 

Hour lor 2 digit (1- 12 or 1 - 24) %h 

2 digit (01 -12 or 01 -24) %Oh 

Minute 1 or 2 digit (1 - 59) %M 

2 digit (01 - 59) %OM 

Second 1 or 2 digit (1 - 59) %8 

2 digit (01 - 59) %08 

AM or PM for use with a 12-hour clock %p 

Literal Percent use % as a literal character %% 

Ten Default Fonnats SM-ODEF-DTlME %Of 

(from the message file) SM-IDEF-DTlME %If 

... ... 
SM-9DEF-DTlME %09f 

At runtime, JAM strips off the first character of forma t. If the,character is y, it uses a 
12-hour clock; else it uses the default 24-hour clock. Next it examines the rest of f 0 r

rna t, replacing any tokens with the appropriate values. All other characters are used liter
ally. Therefore, be sure to put a y or an n (or perhaps a blank) at the beginning of for
mat. If you do not, JAM strips off the frrst token's percent sign and it treats the rest of the 
token as literal text 

You may also retrieve a date/time format from a field using X8m _ edi t yt r. 

, The text for day and month names, AM and PM, as well as the tokens for the ten default' 
" fonnats, are all stored in the message file. These entries may be modified. See the Config-

uration Guide for details. 

Note: This function replaces Release 4 's X8m _ 8da te and X8m _8 time function. 

RETURNS 

The current dateltime in the specified fonn,at 
Empty if format is invalid. 

JAM Release 5 1 March 91 Page 267 



Stratus COBOL Programmer's Guide 

RELATED FUNCTIONS 
call "xsm_calc" using field-number, occurrence, expression 

giving status. 

Page 268 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

select 
select a checklist or radio button occurrence 

SYNOPSIS 
77 group-name 
77 group-occurrence 
77 status 

display-2 pic x(256). 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 

call "xsm_select" using group-name, group-occurrence giving 
status. 

DESCRIPTION 

This function allows you to select a specific occurrence within a checklist or radio button. 
The group name and occurrence number are used to reference the desired selection. 

Use xsm _deselect to deselect a checklist occurrence. 

Selecting a radio button occurrence automatically causes the currently selected radio but
ton to be deselected, because exactly one occurrence in a radio button group must be se
lected at all times. See,the Author's Guide for a more detailed discussion of groups. 

Use xs~isselected to check whether or not a particular radio button or checklist 
occurrence is currently selected. 

RETURNS 

-1 arguments do not reference a checklist or radio button occurrence. 
o occurrence not previously selected. 
1 occurrence previously selected. 

RELATED FUNCTIONS 

cal'l "xsm_deselect" using group-name,' group-occurrence giving 
status. 

-.. ~, .. call "xsm isselected" using group-name,. group-occurrence giving 
status. 

JAM Release 5 1 March 91 Page 269 



Stratus COBOL Programmer's Guide 

setbkstat 
set background text for status line 

SYNOPSIS 
copy "smattrib. incl. cobol" . 

77 message display-2 pic x(256). 
77 display-attribute pic S (9) 9 comp-5. 
call "xsm_setbkstat N using message, display-attribute. 

DESCRIYfION 
The message is saved, to be shown on the status line whenever there is no higher prior
ity message to be displayed. The highest priority messages are those passed to 
xsm d msg line,xsm err reset,xsm quiet err,orxsm query msg; 
the nexthighest are those aiiached to a field by means of the status textoption (see the 
JAM Author's Guide). Background status text has lowest priority. 

Possible values for the display-attribute argument are defmed in the header file 
smattrib. incl. cobol, as shown in the table below: 

Foreground Attributes Background Attributes 

ATT-BLANK ATT-BHILIGHT 

ATT-REVERSE 

ATT-UNDERLN 

ATT-BLiNK 

ATT-HILIGHT 

ATT-5TANDOUT 

ATT-DIM 

ATT -ACS (alternate character set) 

Foreground Colors Background Colors 

ATT-BLACK ATT-BBLACK 

ATT-BLUE ATT-BBLUE 

ATT--GREEN ATT-BGREEN 

Page 270 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Foreground Colors Background Colors 

ATT-CYAN ATT-BCYAN 

ATT-RED ATT-BRED 

A TT -MAGENTA ATT -BMAGENTA 

ATT-YELLOW A TT -BYELLOW 

ATT-WHITE ATT-BWHITE 

,Foreground colors may be used alone or added together with one or more highlights, a 
background color, and a background highlight If you do not specify a highlight or a back
groWld color, the attribute defaults to white against a black background. Omitting the 
foregroWld value will cause the attribute to default to black. 

xsm_setstatus sets the background status to an alternating ready/wait flag; you 
should turn that feature off before ca1ling this routine. 

Refer to x sm_d_ms9_1 ine for an explanation of how to embed attribute changes and 
function key names into your message. 

RELATED FUNCTIONS 

call "xsm_d_msg_Iine" using message, display-attribute. 
call "xsm_setstatus" using mode. 

JAM Release 5 1 March 91 Page 271 



Stratus COBOL Programmer's Guide 

setstatus 
turn alternating background status message on or off 

SYNOPSIS 
77 mode pic 5(9)9 comp-S. 
call "xsm_setstatus" using mode. 

DESCRIPTION 

If mode is non-zero, alternating status flags are turned on. After this call, one message 
(nonnally Ready) is displayed on the status line while JAM is waiting for input, and 
another (nonnally wai t) when it is not. If mode is zero, the messages are turned off, 

The status flags will be replaced temporarily by messages passed to xsm_err_reset 
or a related routine. They will overwrite messages posted with xsm_d_msg_line or 
xsm setbkstat. 

The alternating messages are stored in the message file as SM-READY and SM-WAIT, 
and can be changed there. Attribute changes and function key names can be embedded in 
the messages; refer to x sm_d_msg_line for instructions. 

RELATED FUNCTIONS 

call "xsm_setbkstat" using message, display-attribute." 

Page 272 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

sh off 
determine the cursor location relative to the start of a 
shifting field 

SYNOPSIS 
77 offset pic S(9)9 comp-5. 
call "xsm_sh_off" giving offset. 

DESCRIPfION 
Returns the difference between the start of data in a shiftable field and the current cursor 
location. If the current field is not shiftable, it returns the difference between the lefunost 
column of the field and the current cursor location, like xsm _ di s p _of f. 

RETURNS 

The difference between the current cursor position and the start of shiftable data in 
the current field. 

-1 if the cursor is not ina field., .. 

RELATED FUNCTIONS 
call "xsm_disp_off" giving offset. 

JAM Release 5 1 March 91 Page 273 



Stratus COBOL Programmer's Guide 

shrink to fit 
remove trailing empty array elements and shrink screen 

SYNOPSIS 

DESCRIPTION 
Use this routine to dynamically downsize the current screen when you don't know how 
many elements of an array are going to be populated with data at run time. This routine 
removes all trailing elements in all arrays on screen and then shrinks the screen to a size 
just large enough to accommodate the displayed data. If no data is placed in the array, the 
entire array will be removed. Only the currently displayed copy of the screen in memory 
is altered. 

This routine only downsizes the array and screen. It will not enlarge an array or screen 
that is too small to hold the information, so be sure to create, within the Screen Editor, an 
array and screen that can hold the largest amount of data that you plan on inserting. 

Page 274 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

sibling 
define the current window as being or not being a sibling 
window 

SYNOPSIS 
77 should-it-be pic 5(9)9 comp-5. 
call "xsm_sibling" using should-it-be. 

DESCRIYfION 

Users may switch between the active window and all siblings of that window while they 
are in viewport mode. Sibling windows must be next to each other on the window stack. 
When a window is defined as a sibling, then it and the window immediately beneath it on 
the window stack are considered to be siblings of one another. The user enters viewport 
mode when either the VWPT (viewport) logical key is pressed or when the application 
program makes a call to xsm_winsize. 

Use this function to defme whether or not the current window is defined as sibling. To 
change the current sibling status ofa window assign should-i t-be to: 

o 
1 

No, it is not a sibling window. 
Yes, it is a sibling window. 

-To understand how sibling windows work, imagine you have a stack of three windows: 
window-top, window-middle, and window-bottom. To make window-top 
and window-middle siblings of each other, defme window-top as a sibling win
dow. They are now considered siblings of each other. You can then add a third sibling to 
the pair, by defining window-middle as a sibling window. This results in win
dow-middle and- window-bot tom becoming siblings of one another and conse-

-quently, window-top and window-bot tom are also siblings of each other. There is 
.• no limit to the number of siblings window you may chain together in this fashion, as long 

as the windows are adjacent to each other on the stack. 

--,.If you wish to bring a different window to the top.of-the-stack, use xs~ wselect. To 
get the number of windows currently in the window stack use xsm _wcount. 

The base form can be a sibling of the windows adjacent to it 

RELATED FUNCTIONS 
call "xsm_wcount" giving return-value. 
call "xsm_winsize" giving status. 

JAM Release 5 1 March 91 Page 275 



Stratus COBOL Programmer's Guide 

call "xsm wselect" using window-number giving return-value. 

Page 276 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

size_of_array 
get the number of elements 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 size pic S(9)9 comp-5. 
call "xsm_size_of_array" using field-number giving size. 

DESCRIPfION 

This function returns the number of elements in the array containing field-number. 
Elements are the onscreen portion of an array. An array always has at least one element 

RETURNS 

o if the field designation is invalid. 
1 if the field is not an array. 
The number of elements in the array otherwise. 

VARIANTS 

RELATED FUNCTIONS 

call "xsm_max_occur" using field-number giving maximum. 

JAM Release 5 1 March 91 Page 277 



Stratus COBOL Programmer's Guide 

skinq 
obtain soft key information by position 

SYNOPSIS 
copy "smsoftk.incl.cobol". 

copy "smattrib.incl.cobol". 

copy "smkeys.incl.cobol". 

77 scope pic 5(9)9 comp-5. 
77 row pic 5(9)9 comp-5. 
77 softkey pic 5(9)9 comp-5. 
77 value pic 5(9)9 comp-5. 
77 display-attribute pic 5 (9) 9 comp-5. 
77 labell display-2 pic x(256). 
77 label2 display-2 pic x(256). 
77 status pic 5(9)9 comp-5. 
call "xsm_skinq" using scope, row, softkey, value, 

display-attribute, labell, label2 giving status. 

DESCRIPTION 
Use this routine to obtain the value, attributes, and label of a soft key contained in a keyset. 
currently in memory, given a soft key's position within a keyset. 

The soft key is referenced by the keyset it belongs to," its row within the keyset, and its 
position within that row. Use scope to reference a particular keyset Values for scope 
are defined in smsoftk. incl. cobol. For a more detailed explanation of scope see 
the Keyset chapter of the Programmer's Guide. 

The logical value of the specified soft key is placed in val ue. This will be a number that 
corresponds to a value defined in smkeys . incl. cobol. A value of 0 means the key 
is inactive. 

The attributes (color, blinking etc ... ) of the label will be placed indisplay-attrib
ute. The attribute should be one of the values listed in smattrib. incl. cobol. 

The first and second row labels are placed in label! and label2 respectively. You 
should pre-allocate at least nine elements for label! and I abel2 buffers (eight for the 
label characters and one for the null character). 

If you do not desire infonnation about one or more of these parameters you may assign 
the parameters the null pointer. 

Page 278 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

If you want general infonnation about a keyset, see xsm _ ksinq. If you want the scope 
of the current keyset, use xsm _ kscscope. 

WARNING: This routine can not be used when the keyset contains a greater number of 
keys per row than the tenninal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you will not be able to 
reliably reference a particular soft key by its row and position. Instead, use 
xsm_skvinq. 

RETURNS 

o if infonnation has been returned. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 

call "xsm_kscscope" giving scope. 
call "xsm_ksinq" using scope, number-keys, number-rows, 

current-row, maximum-len, keyset-name giving status. 
call "xsm_skvinq" using scope, value, occurrence, attribute, 

labell, labe12 giving status. 

JAM Release 5 1 March 91 Page 279 



Stratus COBOL Programmer's Guide 

skmark 
mark or unmark a soft key label by position 

SYNOPSIS 
copy "smsoftk.incl.cobol". 

77 
77 
77 
77 
77 

scope 
row 
softkey 
mark 
status 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

call "xsm skmark" using scope, row, softkey, mark giving 
status. 

DESCRIPTION 
Use this routine to mark or unmark a soft key label in an open keyset. The mark is made 
in the last position of the first label. 

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its 
position within that row, Use scope to reference a particular keyset Possible values for 
scope are defined in smsoftk .incl. cobol. The argument row is the row number 

·in which the desired softkey resides. Rows are counted from top to bottom, beginning 
'. with 1. The argument softkey is the position number within row of the desired soft 
key. Positions are numbered left to right, beginning with 1 . 

. The argument rna r k may be any single ASCII character. An asterisk (*) is the most com
monly used mark. To unmark the key use the space character (' ') for mark. 

The marking or unmarking of a soft key is often done to indicate a selection on a function 
key that toggles between two options. 

WARNING: This routine can not be used when the keyset contains a greater number of 
keys per row than the terminal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you will not be able to 
reliably reference· a particular soft· key by its row and· position". Instead, use 
xsm skvmark. 

RETURNS 
o if the marking was successful. 
-1 if there is no keyset of the specified scope. 
-2 if the scope is out of range. 
-3 if the row/soft key is out of range. 

Page 280 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

RELATED FUNCTIONS 
call "xsm_skvmark" using scope, value,' occurrence, mark" giving 

status. 

JAM Release 5 1 March 91 Page 281 



Stratus COBOL Programmer's Guide 

skset 
set characteristics of a soft key by position 

SYNOPSIS 
copy Wsmsoftk.incl.cobolN. 

copy wsmkeys.incl.cobol". 

copy "smattrib.incl.cobol". 

copy "smkeys.incl.cobol". 

77 scope pic S(9)9 comp-5. 
77 row pic S(9)9 comp-5. 
77 softkey pic S(9)9 comp-5. 
77 value pic S(9)9 comp-5. 
77 attribute pic S(9)9 comp-5. 
77 labell display-2 pic x(256). 
77 label2 display-2 pic x(256). 
77 status pic S(9)9 comp-5. 
call "xsm skset" using scope, row, softkey, value, attribute, 

labell, label2 giving status. 

DESCRIPfION 

This routine can be used to modify a soft key's scope, value, attribute, or label of any cur
rently open keysets. You may modify one or more of these specifications with each call of 
xsm skset. 

The soft key is referenced by the keyset it belongs to, its row within the keyset, and its 
position within that row. Use scope to reference a particular keyset Possible values for 
scope are defined in smsoftk. incl. cobol. The argument row is the row nwnber 
in which the desiredsoftkey resides. Rows are counted from top to bottom, beginning 
with 1. The argument softkey is the position number within row of the desired soft 
key. Positions are numbered left to right, beginning with 1. 

The val ue refers to the logical key name to be assigned to the soft key. Available values 
are dermed in smkeys . incl. cobol. If you do not want to change the logical name, 
assign -1 to value. 

The attribute (color, blinking, etc.) is specified by using values listed in smat
trib. incl. cobol. If you do not want to change attribute,assign it O. (Note: If 

Page 282 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

you set both the background and foreground to black, xsm_skset will set the fore
ground to white, provided that the tenninal supports background color.) 

The variables labell and label2 are the frrst and second lines of the labels respec
tively. If you do not wish to change one of the labels, assign it the null pointer. 

WARNING: This routine can not be used when the keyset contains a greater number of 
keys per row than the tenninal does. When this occurs JAM automatically breaks the 
rows to position them correctly on the monitor. This means that you will not be able to 
reliably reference a particular soft key by its row and position. Instead, use 
xsm skvset. 

RETURNS 
o if no error has occurred. 
-1 if there is no active lreyset for the given scope. 
-2 for an invalid scope. 
-3 if the row/soft key is out of range. 

RELATED FUNCTIONS 
call "xsm_skvset" using scope, value, occurrence, newval, 

attribute, labell, labe12 giving status. 

JAM Release 5 1 March 91 Page 283 



Stratus COBOL Programmer's Guide 

skvinq 
obtain soft key information by value 

SYNOPSIS 
copy "smsoftk.incl.cobol". 

copy "smattrib. incl.cobol". 

copy "smkeys.incl.cobol". 

77 scope 
77 value 
77 occurrence 
77 attribute 
77 Labell 
77 label2 
77 status 

pic S(9)9 comp-5. 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 
pic S(9)9 comp-5. 
display-2 pic x(256). 
display-2 pic x(256). 
pic S(9)9 comp-5. 

call "xsm_skvinq" using scope, value, occurrence, attribute, 
labell, label2 giving status. 

DESCRIPTION 
- Use this routine to obtain the label text and attributes of a soft key contained in a keyset· 

currently in memory, given the soft key's value. It can be used when the tenninal has a 
different number of keys than the keyset was designed for. 

The soft key is referenced by the keyset it belongs to, its value, and its occurrence within 
the keysel Use scope to reference a particular keysel Possible values for scope are 
defined in smsoftk. incl. cobol. The value of the soft key is one of the value de
rmed in smkeys . incl. cobol. The argument occurrence specifies which occur
rence of a key with the specified value is desired (in case of duplicates). 

-The attributes (color, blinking etc ... ) of the label will be placed in at tribute. The 
. attributes correspond to a value, Of some combination of summed values listed in sma t-· 
trib. incl. cobol. 

The first and second row labels are placed in Labell and label2 respectively. You 
should pre-allocate at least nine elements for 1 abe 11 and 1 abe 12 buffers (eight for the 
label characters and one for the null character). 

If you do not desire infonnation about one or more of these parameters you may assign 
the parameters the null pointer; 

Page 284 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

For general information about a keyset, see xsm _ ksinq. If you want the scope of the 
current keyset, use xsm _ kscscope. 

RETURNS 

o if information has been returned. 
-1 if there is no active key set for the given scope. 
-2 for an invalid scope. 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 
call "xsm_skinq" using scope, row, softkey, value, 

display-attribute, labell, label2 giving status. 

JAM Release 5 1 March 91 Page 285 



Stratus COBOL Programmer's Guide 

skvmark 
mark a soft key by value 

SYNOPSIS 
copy "smsoftk.incl.cobol". 

copy"smkeys.incl.cobol". 

77 scope pic S (9) 9 comp-5. 
77 value pic S (9) 9 comp-5. 
77 occurrence pic S(9)9 comp-5. 
77 mark pic S(9)9 comp-5. 
77 status pic 8(9)9 comp-5. 
call "xsm_skvmark" using scope, value, occurrence, mark giving 

status, 

DESCRIPfION 
Use this routine to mark or unmark a soft key label in an open keyset. The mark is made 
in the last position of the fll'St label. 

The soft key is referenced by the keyset it belongs to, its value and its occurrence within 
the key set. Use scope to reference a particular keyset Possible values for scope are 
defined in smsoftk. incl. cobol. .The val ue of the soft key is one of the value de
fmed in srokeys. incl. cobol. The argument occurrence is the nth time that 
value appears in me keyset If you wish to mark all occurrences of val ue assign 0 to 
occurrence. 

The argument mark may be any single ASCn character. An asterisks (*) is the most 
commonly used mark. To unmark the key use the space character(' ') for mark. 

The marking or unmarking of a soft key is often done to indicate a selection on a function 
key that toggles between two options. 

RETURNS 
o if the mark was successful. 
-1 if there is no active keyset for the given scope. 
-2 for an invalid scope. 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 
call "xsm skmark" using scope, row, softkey, mark giving 

status. 

Page2SS JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

skvset 
. -set characteristics of a soft key by value 

SYNOPSIS 

copy "smsoftk.incl.cobol". 

copy Nsmattrib.incl.cobol". 

copy "smkeys.incl.cobol". 

77 scope pic 8 (9) 9 comp-5. 
77 value pic 8 (9) 9 comp-5. 
77 occurrence pic 8 (9) 9 comp-5. 
77 newval pic 8(9)9 comp-5. 
77 attribute pic 8(9)9 comp-5. 
77 labell display-2 pic x(256). 
77 label2 display-2 pic x(256). 
77 status pic 8(9)9 comp-5. 
call "xsm_skvset"-using scope, value, occurrence, newval, 

attribute, labell, label2 giving status. 

DESCRIPTION 

.,. This routine can be used to modify the scope, value, attribute, or label of a soft key within 
a currently open key set. You may modify one or more of these specifications with each 
call of xsm skset. 

The soft key is referenced by the keyset it belongs to, its value and its occurrence within 
the keyset. Use scope to reference a particular keyseL Possible values for scope are 
defined in smsoftk. incl. cobol. The value of the soft key is one of the value de
fmed in smkeys. incl. cobol. The argument occurrence is the nth time that 
value appears in thekeyset. If you wish to change all occurrences of val ue assign 0 to 
occurrence. 

,.The value of newvalue refers to the logical key name to be assigned to the soft key. 
Available values are defined in smkeys. incl. cobol. If you do want to change the 
logical name, assign -1 to val ue. 

The attribute (color, blinking, etc.) is specified by using values listed in smat
trib. incl. cobol. If you do not want to change attribute, assign it O. (Note: If 
you set both the background and foreground to black, xsm skset wiII set the fore
ground to white, provided that the tenninal supports background color.) 

JAM Release 5 1 March 91 Page 287 



Stratus COBOL Programmer's Guide 

The variables labell and labei2 are the first and second lines of the labels respec· 
tively. If you do not wish to change one of the labels, assign it the null pointer. 

RETURNS 

o if no error occurred 
-1 if there is no active keyset for the given scope 
-2 for an invalid scope 
-3 if there is no soft key with the given value/occurrence. 

RELATED FUNCTIONS 
call "xsm_skset" using scope, row, softkey,. value, attribute, 

labell, label2giving status. 

Page 288 . .. JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

strip_amt_ptr 
strip amount editing characters from a string 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 inbuf display-2 pic x(256) . 
77 outbuf display-2 pic x(256) . 
call "xsm_strip_amt-ptr" using field-number, inbuf giving 

outbuf. 

DESCRIPTION 
Strips all non-digit characters from the string. except for an optional leading minus sign 
and decimal point. If inbuf is not empty. field-number is ignored and the passed 
string is processed in place. 

If inbuf is empty. the contents of field-number are used. 

RETURNS 

The stripped text, 
o if inbuf is empty and the field number is invalid. 

RELATED FUNCTIONS 
call "xsm_amt_format" using field-number, buffer giving status. 
call "xsm dblval" using field-number giving value. 

JAM Release 5 1 March 91 Page 289 



Stratus COBOL Programmer's Guide 

submenu close 
close the current submenu 

SYNOPSIS 
77 status pic S(9)9 comp-5, 
call "xsm_submenu close" giving status. 

DESCRIPTION 
Submenus are ordinarily closed before xsm _input returns. It may, however, be told to 
leave them open by using the OK-LEAVEOPEN option, either in the setup me or via 
xsm opt i on. See the ConfiguraJion Guide for details. Regardless of how this option is 
set, SUbmenus are automatically closed whenever the underlying window is closed with 
xsm close window. - -
This function, then, is needed only when alI of the following conditions are true. 

1. OK-LEAVEOPEN is in use. 

2. The submenu is no longer needed. 

3. Access is needed to the underlying window. 

RETURNS 
-1 if there is no submenu currently open. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm_close_window" giving status. 

Page 290 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

svscreen 
register a list of screens on the save list 

SYNOPSIS 
77 screen-list display-2 pic x(256). 
77 count pic S(9)9 comp-5. 
77 status pic 5(9)9 comp-5. 
call "xsm_svscreen" using screen-list, count giving status. 

DESCRIPTION 

JAM maintains a list of screens that are saved in memory. The number of screens to be 
added is given by count. You may add screens to the list anywhere within your code, 
however the screen is not actually placed in memory until it is closed for the flJ"St time. 
This means that the time saving factor only comes into play in subsequent openings of the 
screen. Any data entered into a screen will not be saved until the screen is closed. 

Screens are removed from the list with xsm unsvscreen. You can check to see if a 
screen is on the save list with xsm_i;-sv. Checking the list prior to calling 
xsm svscreen, however, is not crucial as any attempt to add a screen that is already on 
the list will have no effect. 

This routine saves processing time at the expense of memory. It is best suited for use with 
screens that both require large amounts of data to be read in from elsewhere (databases, . 
other files, etc.) and do not allow the user to enter data. For instrulce, if you have a help 
screen that needs to be populated by a data base and is going to be called up more then 
once, you can re-display the screen much more quickly by saving the screen in memory. 

RETURNS 

o is returned if no error occurred. 
1 is returned if registration failed (out of memory). 

RELATED FUNCTIONS 

call "xsm_issv" using screen-name giving status. 
call "xsm_unsvscreen" using screen-list, count. 

JAM Release 5 1 March 91 Page 291 



Stratus COBOL Programmer's Guide 

t scroll 
test whether an array can scroll 

SYNOPSIS 
77 field-number pic 8(9)9 comp-5. 
77 status pic 8(9)9 comp-5. 
call Wxsm_t_scroll" using field-number giving status. 

DESCRIPTION 
This function returns 1 if the array in question is scrollable, and 0 if nol The argument 
field-number may be any field within the array, 

RETURNS 
1 if the array is scrolling, 
o if it is not scrolling or if no such field-number. 

RELATED FUNCTIONS 
call "xsm_t_shift" using field-number giving status. 

Page 292 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

t shift 
test whether field can shift 

SYNOPSIS 
77 field-number pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm_t_shift" using field-number giving status. 

DESCRIPfION 

This function rebJrnS I if the field in question is shiftable. and 0 if not or if there is no such 
field. 

RETURNS 

1 if field is shifting. 
o ifnot shifting or field-number is invalid. 

RELATED FUNCTIONS 

call "xsm_t_scroll" using field-number giving status. 

JAM Release 5 1 March 91 Page 293 



Stratus COBOL Programmer's Guide 

tab 
move the cursor to the next unprotected field 

SYNOPSIS 
call "xsm tab". 

DESCRIPfION 

If the cursor is in a field with a next-field edit and one of the fields specified by the edit 
is Unprotected from tabbing, the cursor is moved to the first enterable position of that 
field. Otherwise, the cursor is advanced to the first enterable position of the next tab un
protected field on the screen. 

This function doesn't immediately trigger field entry, exit, or validation processing, Such 
processing occurs based on the cursor position when control returns to xsm _input, 

RELATED FUNCTIONS 

call "xsm backtab". 
call "xsm_home" giving field-number. 
call "xsm last". 
call "xsm nl". 

Page 294 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

tst all mdts 
. find first modified occurrence 

SYNOPSIS 
77 occurrence 
77 field-number 

pic 5(9)9 comp-5. 
pic 5(9)9 comp-5. 

call "xsm_tst_all_mdta" using occurrence giving field-number. 

DESCRIPTION 

This function tests the MDT bits of all occurrences of all fields on the current screen, and 
returns the base field and occurrence nwnbers of the first occurrence with its MDT set, if 
there is one. The MDT bit indicates that an occurrence has been modified, either from the 
keyboard or by the application program, since the screen was displayed (or since its MDT 
was IastcIeared by xsm_bitop). 

This function returns zero if no occurrences have been modified. If one has been modi
fied, itretums the base field number, and stores the occurrence number in occurrence. 

RETURNS 

o if no MDT bit is set anywhere on the screen 
The nwnber of the flfSt field on the current screen for which some occurrence has its 

MDT bit set In this case, the nwnber of the flfSt occurrence with MDT set is returned, 
in occurrence. 

RELATED FUNCTIONS 

call "xsm_bitop" using field-number, action, bit giving status. 
call "xsm_cl_all_mdts". 

JAM Release 5 1 March 91 Page 295 



Stratus COBOL Programmer's Guide 

uinstall 
install an application function 

SYNOPSIS 
copy "sminstfn.incl.cobol". 

77 usage pic S(9)9 camp-5. 
77 func-name display-2 pic x(256). 
77 func entry. 
77 language pic 5(9)9 camp-5. 
77 status pic 5(9)9 camp-5. 
call "xsm_uinstall" using usage, func-name, func, language 

giving status. 

DESCRIPTION 
This function installs an application routine that will be called from JAM library func
tions. Installation enables JAM to pass control to your code in the proper function con
text 

The possible values for usage are defined in the table below (and in the fIle: 
smfuncs. incl. cobol). See section 2.1.1. for more detailed descriptions of the vari
ous function types. 

If an application is bound with the -retain_all option, then JAM can find the entrypoint 
func from the name. Most functions will install themselves automatically the first time 
they are called. Functions may also be explicitly installed.func-name is the name of 
the function. Use the operating system subroutine sSfind_entry to fmd the entry 
point, or use the variant xsm_n_uinstall, which will find it for you. language 
should be set to 1 when programming in COBOL. 

Value/or usage Function type Section - Page 

UINIT-FUNC Initialization 2.2.10. - p.22 

URESET-FUNC Reset 2.2.10. - p.22 

VPROC-FUNC Video processing 2.2.13. - p.2S 

CKDIGIT-FUNC Check digit computation 2.2.9. - p.22 

KEYCHG-FUNC Keychange 2.2.5. - p. 18 

Page 296 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Value for usage Function type 

INSCRSR-FUNC Insert/overwrite toggle 

PLAY-FUNC Playback recorded keys 

RECORD-FUNC Record keys for playback 

AVAIL-FUNC Check for recorded keys 

BLKDRVR-FUNC Block Driver function 

STAT-FUNC Status line function 

DFLT-FIELD-FUNC Default Field function 

DFLT-SCREEN-FUNC Default Screen function 

DFLT-SCROLL-FUNC Default Scroll driver 

DFLT-GROUP-FUNC Default Group function 

RETURNS 

1 if function was successfully installed. 
-1 if malloc failure occurred. 

VARIANTS 

Section - Page 

2.2.2. - p.11 

2.2.11. - p.23 

2.2.11. - p.23 

2.2.11. - p.23 

2.2.12. - p.24 

2.2.2. - p.ll 

2.2.3. - p. 15 

2.2.6. - p. 19 

call "xsm_n_uinstall" using usage, func-name, language giving 
status. 

RELATED FUNCTIONS 

call "xsm_async" using func, timeout. 

JAM Release 5 1 March 91 Page 297 



Stratus COBOL Programmer's Guide 

ungetkey 
push back a translated key on the input 

SYNOPSIS 
copy "smkeys.incl.cobol". 

77 key pic 5(9)9 comp-5. 
77 return-value pic 5(9) 9 comp-5. 
call "xsm_ungetkey" using key giving return-value. 

DESCRIPTION 
This function saves the translated key given by key so that it will be retrieved by the next 
call to xsm get key. Multiple calls are pennitted. The key values are pushed onto a 
stack (LIFO). 

When xsm ge t key reads a key from the keyboard, it flushes the display first, so that the 
operator sees a fully updated display before typing anything. Such is not the case for keys 
pushed back by xsm_ungetkey; since the input is coming from the program, it is re
sponsible for updating the display itself. 

RETURNS 
The value of its argument. or 
-1 if memory for the stack is unavailable . 

. RELATED FUNCTIONS 
call "xsm_getkey" giving key. 

Page 298 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

unsvscreen 
"remove screens from the save list 

SYNOPSIS 
77 screen-list display-2 pic x(256). 
77 count pic S(9)9 comp-5. 
call "xsm unsvscreen" using screen-list, count. 

DESCRIPTION 

JAM maintains a list of screens that are saved in memory. This fWlction is used to remove 
screens from the save list. The argument count specifies the number of screens to be 
removed from the save list See xsm_svscreen. 

This function can be used at any point within your code. It is not necessary for the screen 
to be open at the time of the call. Any memory allocated to hold the screen is freed at the 
time of the call unless the screen is open. The memory associated with an open screen is 
de-allocated when that screen is closed. If a screen is not on the save list, a call to 
xsm unsvscreen has no effect 

RELATED FUNCTIONS 

call "xsm_issv" using screen-name giving status. 
call "xsm svscreen" using screen-list, count giving status. 

JAM Refease 5 1 March 91 Page 299 



Stratus COBOL Programmer's Guide 

viewport 
modify viewport size and offset 

SYNOPSIS 
77 position-row pic 5(9)9 comp-5. 
77 position-col pic 5(9)9 comp-5. 
77 size-row pic 5(9)9 comp-5. 
77 size-col pic 5(9)9 comp-5. 
77 offset-row pic 5(9)9 comp-5. 
77 offset-col pic 5(9)9 comp-5. 
call "xsm_viewport" using position-row, position-col, size-row, 

size-col, offset-row, offset-col. 

DESCRIYfION 

This function dynamically sizes the current screen's viewport. A viewport has a maxi
mum size of the screen or physical display - whichever is smaller. Use size-row and 
size-col umn to specify the number of rows and columns, respectively. 

You can position the viewport anywhere on the physical display. To do this, think of your 
physical display as a grid made up of rows and columns that are one character apart. The 
top left comer of your screen monitor is at position row 0, column 0 . Now use the argu
ments position-row and position-col to specify the coordinates of the view-
port's position. 

Likewise, you can also specify which row and column of the screen will initially appear 
at top left comer of the viewport -Again starting at row 0, column 0, count from the top 
left of the screen to get the coordinates for offset-row and offset-col. 

This function performs range checks on all parameters and suitably modifies them if nec
essary. In particular, be aware that a non-positive value of size-row and si ze-col 
will set the viewport to the maximum size in that dimension. 

Page 300 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

vinit 
initialize video translation tables 

SYNOPSIS 

copy "vidfile.incl.cobol". 

77 status pic S(9)9 comp-5. 
call "xsm_vinit" using VIDEO-ADDRESS giving status. 

DESCRIPTION 

This routine is called by xsm _ ini tcrt as part of the initialization process. It can also 
be called directly by an application program. VIDEO-ADDRESS is the address of a key 
translation table contained in vidfile. incl. cobol, created using the key2bin 
and bin2cob utilities. 

RETURNS 

o if initialization is successful. 
program exit if video file is invalid or if VIDEO-ADDRESS is zero and SMVIDEO is 

undefmed, 

Note: The variant xsm n vini t has no return value. 

VARIANTS 

call "xsm_n_vinit" using video-file. 

JAM Release 5 1 March 91 Page 301 



Stratus COBOL Programmer's Guide 

.wcount 
obtain number of currently open windows 

SYNOPSIS 
77 return-value pic 5(9)9 comp-S 
call "xsm_wcount" giving return-value. 

DESCRIPTION 

This fWlction returns the nwnber of windows currently open. The number is equivalent to 
the nwnber of windows in the window stack. 

To select the screen beneath the current window, subtract 1 from the value returned by 
xs~wcount. and then use the result as the argument to xsm_wselect. 

This routine is useful when you are bringing another window to the top of the window 
stack (making the window active) with xsm_wselect. 

RETURNS 
The nwnberofwindows. 
o if the base form is the only open screen. 
-1 if there is no current screen. 

RELATED FUNCTIONS 
call "xsm wselect" using window-number giving return-value. 

Page 302 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

wdeselect 
restore the formerly active window 

SYNOPSIS 
77 status pic 8(9)9 comp-5. 
call "xsm wdeselect" giving status. 

DESCRIPfION 

This function restores a window to its original position in the window stack, after it has 
been moved to the top by a call to xsm _101 sel ect, Infonnation necessary to perform this 
task is saved during each call to xsm _ wselect, but is not stacked, Therefore a call to 
this routine must follow a call to xsm _ wselect if it is to properly restore the window 
to its original position, Note that xsm _ wdeselect does not have to be called if the win
dow ordering on the stack is acceptable. 

RETURNS 

-1 if there is no window to restore. 
o otherwise, 

RELATED FUNCTIONS 
call "xsm_sibling" using should-it-be. 
call "xsm_wcount" giving return-value. 
call "xsm_wselect" using window-number giving return-value. 

JAM Release 5 1 March 91 Page 303 



Stratus COBOL Programmer's Guide 

window 
display a window at a given position 

SYNOPSIS 
77 screen-name display-2 pic x(256). 
77 start-line pic S(9)9 comp-5. 
77 start-column pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm_r_window" using screen-name, start-line, start-column 

giving status. 

77 screen-name display-2 pic x(256). 
77 status pic S(9)9 comp-5. 
call "xsm_r_at_cur" using screen-name giving status. 

copy"myscreen.incl.cobol". 

77 start-line pic S(9)9 comp-5. 
77 start-column pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm_d_window" using SCREEN-ADDRESS, start-line, 

start-column giving status. 

copy "myscreen.incl.cobol". 

77 status pic S(9)9 comp-5. 
call "xsm d at cur" using SCREEN-ADDRESS giving status. 

77 lib-desc pic S(9)9 comp-5. 
77 screen-name display-2 pic x(256). 
77 start-line pic S(9)9 comp-5. 
77 start-column pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm 1 window" using lib-desc, screen-name, start-line, 

start-column giving status. 

77lib-desc pic S(9)9 comp-5. 
77 screen-name display-2 pic x(256). 

Page 304 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

77 status pic S(9)9 comp-5. 
call "xsm_l_at_cur" using lib-desc, screen-name giving status. 

DESCRIPTION 
This set of functions is primarily intended to be used by developers who are writing their 
own executive. To open a window while under the control of the JAM Executive, use a 
JAM control string or xsm_jwindow. 

Use xsm d window, xsm 1 window, or xsm r window to display 
screen -~~ with its upper left-hand comer at the specified line and column. The line 
and column are countedfrom zero. If start-line is I, the window is displayed start
ing at the second line of the screen. 

Usexsm d at cur,xsm 1 at cur,andxsm r at curtodisplayawindowat 
the curreiii CUrsor position, Offset byone line to avoid hiding that line's current display, 

Whatever part of the display the new window does not occupy will remain visible. How
. ever, only the topmost (active) window and its fields are accessible to keyboard entry and 
library routines. JAM will not allow the cursor outside the topmost window. If you wish 
to shuffle windows use xsm wse1ect. 

If the window will not fit on the display at the location you request, JAM will adjust its 
starting position. If the window would hang below the screen and you have placed its up
per left-hand comer in the top half of the display, the window is simply moved up. If your 
starting position is in the bottom half of the screen, the lower left hand comer of the win
dow is placed there. Similar adjustments are made in the horizontal direction. 

When you use xsm _ r _window the named screen is sought first in the memory-resident 
screen list, and iffound there is displayed using xsm_d_window. It is next sought in all 
the open libraries, and if found is displayed using xsm _I_window. Next it is sought on 
disk in the current directory; then under the path supplied to xsm ini tcrt; then in all 
the paths in the setup variable SMPATH. If any path exceeds 80 characters, it is skipped. 
If the entire search fails, this function displays an error message and returns. 

You may save processing time by using xSIIl:.-d_window and xsm_d_at_cur to dis
play screens that are memory-resident Use bin2c to convert screens from disk files, 
which you can modify using jxform, to program data structures you can compile into 

. your application. A memory-resident screen is never altered at run-time, and may there-
< fore be made shareable on systems that provide for sharing read-only data. 
xsm_r_window and xsm_r_at_cur can also display memory-resident screens, if 
they are properly installed using xsm _ f 0 rml i st. Memory-resident screens are partic
ularly useful in applications that have a limited number of screens, or in environments 
that have a slow disk (e.g. MS-DOS). SCREEN-ADDRESS is the address of the screen in 
memory. 

You may also save processing time by using xsm 1 window and xsm 1 at cur to 
display screens that are in a library. A library isa single file containing many-screens 

JAM Release 5 1 March 91 Page 305 



Stratus COBOL Programmer's Guide 

(and/or JPL modules and keysets). You can assemble one from individual screen mes us
ing the utility formlib. Libraries provide a convenient way of distributing a large num-

-... her of screens with an application, and can'improve efficiency by cutting down on the 
number of paths searched. 

The library descriptor, lib-desc, is an integer returned by xsm_l_open, which you 
must call before trying to read any screens from a library. Note thatxsm r window and 
xsm_r_at_cur also search any open libraries. - -

If you want to display a form use xsm_r_form or one of its variants. Use 
xsm_close_window to close the window. 

RETURNS 
o if no error occurred during display of the screen; 
-1 if the screen file's format is incorrect; 
-2 if the screen cannot be found; 
-3 if the system ran out of memory but the previous screen was restored; 
-5 is returned if, after the screen was cleared, the system ran out of memory. 
-6 is returned if the library is corrupted. 

RELATED FUNCTIONS 
call "xsm close window" giving status. 
call "xsl'n:-r_form" using screen-name giving status. 
call "xsm_jwindow" using screen-name giving status. 

Page 306 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

. . 
wlnslze 
allow end-user to interactively move and resize a win
dow 

SYNOPSIS 
77 status pic 5(9)9 comp-S. 
call "xsm winsize" giving status. 

DESCRIPTION 

Calling xsm _wins i ze has the same effect as if the end-user had just hit the VWPT 
(viewport) logical key. The viewport status line appears and the user can move, resize and 
change the offset of the screen as well as move to any sibling windows. When the end-us
er hits XMIT (transmit) the previous status line is restored. If you wish to resize the view
port yourself, use xsm _viewport. 

In order for the end-user to able to move from one window to another, the windows must 
be siblings. Windows are defined as siblings of one another either with xsm sibling 
or by calling up a window as a sibling with a JAM control string. See the Sections on 
"Viewports and Positioning" and "Control Strings" in the Author's Guide for further in
fonnation. 

RETURNS 

-1 if callfails. 
o otherwise. 

RELATED FUNCTIONS 
call "xsm_sibling" using should-it-be. 
call "xsm_viewport"using position-row, position-col, size-row, 

size-col, offset-row, offset-col. 

JAM Release 5 1 March 91 Page 307 



Stratus COBOL Programmer's Guide 

wrecord 
write data from the screen and LOB to a record defined 
in the data dictionary 

SYNOPSIS 

copy"record.incl.cobol". 

77 record-name display-2 pic x(256). 
77 byte-count pic 5(9)9 comp-5. 
call "xsm_wrecord" using RECORD, record-name, byte-count. 

DESCRIPTION 

This function writes data from fields within the current screen to a record that was defmed 
in the data dictionary. If a field is not on the current screen, then the data is read from the 
LDB. This routine is commonly used with xsm rrecord, which reads data from a re
cord that was defined in the data dictionary. If YOu wish to write data only from the cur
rent screen, use xsm wrtstruct. To write data from a group of consecutively num
bered fields. usexsm-=,wrtyart. Use xsm_getfield to write information from an 
individual field to a string. 

The record RECORD, contained in the file record. incl. cobol can be created from 
the data dictionary file data. die via the dd2struet utility as follows: 

dd2struet -gCOBOL data.die 

Each record item is a field of the type specified in the Data Dictionary Editor. See "Data 
Type" in the Author's Guide and dd2struct in the Utilities Guide for further informa
tion. 

Once created, the record declarations may be treated exactly like any other record decla
rations. The argument record-name is the name of the data dictionary entry from 
which the record was created. 

The argument byte-count is an integer. Upon return from xsm_wrecord, the value 
contained in the integer will be the number of bytes or characters written to the record. It 
will be 0 if an error occurred. 

RELATED FUNCTIONS 

call "xsm-putfield" using field-number, data giving status. 
call "xsm rrecord" using RECORD, record-name, byte-count. 

Page 308 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

wrt_part 
write part of the screen to a record 

SYNOPSIS 

copy"screen.jam.incl.cobol". 

77 first-field pic S(9)9 comp-S. 
77 last-field pic S(9)9 comp-S. 
call "xsm_wrt-part" using SCREEN, first-field, last-field. 

DESCRWfION 

This function writes the contents of all fields between first-field and 
last-field to a record. An array and its scroUing occurrences wiu be copied only if 
thefirstelement falls between first-field and last-field. Group selections are 
not copied. This routine is commonly used with xsm _ rd ""part, which reads part of a 
record into the current screen. If you wish to write the contents of all of the fields within 
the screen use xsm wrtstruct. To write information to a record defmed in the data 
dictionary, use xsm=, wrecord. Use xsm _getfield to write information from an in
dividual field to a string. 

The record SCREEN,contained in the file screen. jam. incl. cobol can be created 
from the screen file screen. jam via the f2struct utility as follows: 

f2struct -gCOBOL screen. jam 

Each item in the record is a field of the type specified in the Screen Editor. See "Data 
Type" in the Author's Guide and f2struct in the Utilities Guide for further informa
tion . 

. Once created, the declaration may be treated exactly like any other record declaration. 
You can ignore the items that represent fields that do not fall within the bounds of the 
specified fields. However, the record defmition must contain all of the fields on screen . 

. ~ The arguments that represent. the range of fields to be copied, fi r s t - fi e 1 d and 
last -field are passed as field numbers. 

Remember, you must update the record declaration whenever you alter the screen from 
which it was generated. 

RELATED FUNCTIONS 
call "xsm-putfield" using field-number, data giving status. 

JAM Release 5 1 March 91 Page 309 



Stratus COBOL Programmer's Guide 

call "xsm_rdyart" using SCREEN, first-field, last-field 
call "xsm wrtstruct" using SCREEN, byte-count. 

Page 310 JAM Release 5 ·1 March 91 



Stratus COBOL Programmer's Guide 

wrtstruct 
write data from the screen to a record 

SYNOPSIS 

copy"screen.jam.incl.cobol". 

77 byte-count pic S(9)9 comp-S. 
call "xsm wrtstruct" using SCREEN, byte-count. 

DESCRIPTION 

This function writes the contents of all of the fields within the current screen to a record. 
It will not copy group selections. This routine is commonly used with xsm _rds truct 
which reads data from a record to all of the fields within the current screen. If you wish to 
write the contents of a group of consecutively numbered fields into a record use 
xsm_wrtyart. To write information to a record defined in the data dictionary, use 
xsm_wrecord. Use xsm_getfield to write the contents of an individual field into 
a string. 

The record SCREEN,contained in the file screen. jam. incl. cobol can be created 
from the screen file screen. jam via the f2struct utility as follows: 

f2struct -gCOBOL screen. jam 

Each item in the record is a field of the type specified in the Screen Editor. See "Data 
Type" in the Author's Guide and f2 st ruct in the Utilities Guide for further informa
tion. 

Once created. the declaration may be treated exactly like any other record declaration. If 
you specify the type omi t, data will not be written into the field. 

The argument byte-count is the address of an integer variable, xsm wrtstruct 
will store there the number of bytes copied to the record. -

Remember, you must update the record declaration whenever you alter the screen from 
which it was generated. 

RELATED FUNCTIONS 

call "xsm""putfield" using field-number, data giving status. 
call "xsm_rd_struct" using screen, byte-count. 
call "xsm_wrt""part" using SCREEN, first-field, last-field. 

JAM Release 5 1 March 91 Page 311 



Stratus COBOL Programmer's Guide 

wselect 
activate a window 

SYNOPSIS 

77 window-number pic S(9)9 comp-5. 
77 return-value pic S(9)9 comp-5. 
call "xsm wselect" using window-number giving return-value. 

DESCRIPTION 

Although JAM allows you to display multiple windows at one time, only one window 
may be active. Windows may overlap each other, or may be tiled (no overlap). The win
dow at the top of the window stack is the active window, and the only window accessible 
to library routines and keyboard entry. Use xsm _ wselect to bring a window to the ac
tive position on top of the window stack. If any of the referenced window is hidden by an 
overlying window, it will be brought to the forefront of the display. In either case, the cur
sor is placed within the window. JAM will restore the cursor to its position when the 
screen was most recently de--activated. 

The window to be activated is referenced by its number in the window stack. Windows 
are numbered sequentially, starting from the bottom of the stack. The fonn underlying all 
the windows (the base fonn) is window 0, the frrst window displayed is 1 and so forth. 
Since a screen's number depends on its position on the window stack, calling xsm wse-
lect wiu alter a window's number as well as it position on the stack. -

Alternatively, windows may be referenced by their screen name with the variant 
xsm_n_ wselect. If you use this routine, you do not have to worry about keeping track 
of the non-active window's position on the stack. However, xsm _ n _ w se 1 ect will not 
fmd windows displayed with xsm _ d _window or related functions, because they do not 
record the screen name. 

Here are two different ways of using window selection. One way to use this is to select a 
hidden screen, update it (using xsm....putfield) and deselect it (using xsm_wdese
lect). The portion of the hidden screen that is visible will be updated with the new data. 
Because of delayed write the update wiu be done when the next keyboard input is sought. 
The other method is to select a hidden screen and open the keyboard; in this case, the se
lected screen becomes visible, and may hide part or all of the screen that was previously 
active. In this way you can implement multi-page forms, or switch among several win
dows that tile the screen (do not overlap). 

Page 312 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

RETURNS 

The number of the window that was made active (either the number passed. or the 
maximum if that was out of range). 

-1 if the window was not found or the window was not open. 

VARIANTS 

call "xsm_n_wselect" using window-name giving return-value. 

RELATED FUNCTIONS 

call "xs~sibling" using should-it-be. 
call "xsm_wcount" giving return-value. 
call "xsm wdeselect" giving status. 

JAM Release 5 1 March 91 Page 313 





Stratus COBOL Programmer's Guide 

Chapter 13. 

Library Function Index 
This chapter lists all JAM library functions, sorted by name. Function names appear on 
the left, and the section of the Function Reference Chapter in which the function is de
scribed appears on the right. 
"xsm_lclear_array" using field-number giving status .•.....•• clear_array 
"xsm_lprotect" using field-number, mask giving status .....•••... protect 
"xsm_lunprotect" using field-number, mask giving status •........ protect 
"xsm_a_bitop" using array-name, action, bit giving status .••..••.• bitop 
"xsm_allget" using respect-flag •....•...••.........•.••••.•.....• allqet 
"xsm_amt_format" using field-number, buffer giving status .•.. amt_format 
"xsm_aprotect" using field-number, mask giving status. protect 
"xsm_ascroll" using field-number, occurrence giving status ...... ascroll 
"xsm_async" using func, timeout. • •..•...••..••.........•..•••••...• aync 
"xsm_aunprotect" using field-number, mask giving status •••..••.. protect 
"xsm backtab"'. . ..•....•..........•.....•..•.•.••......•..••.••.. baclttab 
"'xsm_base_fldno" using field-number giving base-number .•••... base_fldno 
"xsm bel"'. . ..•........•.....•............•..•....••..••••••......••. bel 
"xsm_bitop" using field-number, action, bit giving status ••.....•• bitop 
"xsm bkrect" using start-line~ start-column, num-of-lines, 

- number-of-columns, background-colors giving status .... bkreat 
nxsm_blkinit" giving return-value .....•..........••.•••...•.•... bllt1nit 
"xsm blkreset'" giving return-value .......•...•...•...•..•.••... blltreset 
_"'xsm_c_keyset'" using scope giving status .••.••••.......•••.••.. c_lteyset 
"'xsm_c_off". . •••......••••••••••••.....••••••••••...•.••••..•.••.• o_off 
"xsm_c_on"'. . .•...•.....•...•...••••......••...•••••.••.•••.••.•..•. C_OD 

"'xsm_c_vis'" using display ..•.•..•.•...............•..•..•.•••.•... o_vis 
"xsm_calc'" using field-number, occurrence, expression giving status. calo 
Rxsm_cancel'" using arg. . •..•......•..••.•........••........••••.. cancel 
"'xsm chg attr'" using field-number, display-attribute 

- - giving status •.•............•..•••.....•••••..•...• chq_attr 

JAM Release 5 1 March 91 Page 315 



Stratus COBOL Programmer's Guide 

"xsm ckdigit" using field-number, field-data, occurrence, modulus, 
- minimum-digits giving status •.•.•••..•...•.•......... ckdigit 

"xsm_cl_all_mdts"' .......••.•.......•.....•.....•.......•.... cl_all_mdta 
"'xsm_cl_unprot" ...•••••.••...••....•••...•...••............... cl_unprot 
"'xsm_clear_array" using field-number giving status .......... clear_array 
"'xsm_close_window'" giving status .....•......•..•........... olose_window 
"'xsm_d_at_cur" using SCREEN-ADDRESS giving status ................ window 
"xsm_d_form" using SCREEN-ADDRESS giving status ..•......•.........• form 
"'xsm_d_keyset'" using ADDRESS, scope giving status ................ keyset 
"'xsm_d_msg_line'" using message, display-attribute .......•.•.. d_msg_line 
"'xsm d window'" using SCREEN-ADDRESS, start-line, start-column 

- - giving status ........................................ window 
"'xsm_dblval'" using field-number giving value •.................... dblval 
"'xsm_dd_able'" using flag ••••••....••.•••.•.•••.................. dd_able 
"'xsm_deselect'" using group-name, group-occurrence giving status. deselect 
"xsm_dicname'" using dic-name giving status •....••............... dicnama 
"'xsm_disp_off'" giving offset .••.....••..••.••.......•.......... disp_off 
"xsm_dlength'" using field-number giving data-length •......•...•. dlenqtb 
"'xsm do region'" using line, column, length, display-attribute, 

- - text .•....••....•.....•.•.....•..••................ do_region 
"'xsm_dtofield" using field-number, value, format giving status. dtofield 
"'xsm_e_ .•. '" using field-name, element, .••..•.....................•.. e 
"'xsm_e_lprotect'" using field-name, element, mask giving status .. protect 
"'xsm_e_lunprotect" using field-name, element, mask giving status. protect 
"'xsm e amt format'" using field-name, element, buffer 

- - giving status .•...•..••.••.....•.•...••.......... amt_format 
"'xsm_e_bitop" using array-name, element, action, bit giving status. bitop 
"xsm e chg attr" using field-name, element, display-attribute. 

- - - giving status. ...•.•......••••.•................... cb9'_attr 
"xsm_e_dblval" using field-name, element giving value ............ dblval 
"xsm_e_dlength" using field-name, element giving data-length ... , dlenqtb 
"'xsm e dtofield'" using field-name, element, value, format 

- - gi ving status. .•••.•.......•.•.•.............•...•. dtofield 
"'xsm_e_finquire" using field-name, element, which giving value. finquire 
"'xsm_e_fldno" using field-name, element giving field-number ..•...• fldno 
"xsm e ftog" using field-name, element, group-occurrence 

- - giving buffer .••••....••••••.•..••.•..........••..•..••• ftoq 
"'xsm_e_fval'" using array-name, element giving status .............•• fval 
"'xsm_e_getfield'" using buffer, name, element giving length .•... 9'etfield 
"xsm_e_gofield" using field-name, element giving status ...••.... gofield 
"xsm_e_intval" using field-name, element giving value .........•.. intval 
"xsm_e_is_no'" using field-name, element giving status ............. is_no 
"'xsm_e_is_yes'" using field-name, element giving status .....•..•.. i8-1es 
"'xsm_e_itofield'" using field-name, element, value giving status. itofield 
"xsm_e_lngval'" using field-name, element giving value ............ lnqval 

Page 316 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

"xsm_e_ltofield" using field-name, element, value giving status. ltofleld 

"xsm_e_novalbit" using field-name, element giving status. novalblt 

"xsm_e_null" using field-name, element giving status ••.....••...••. null 
"xsm e off gofield" using field-name, element, offset 

- - - giving status ...•.•.••...••...•...•••...•••..... off_qofleld 

"xsm_e-protect" using field-name, element giving status •........ protect 
"xsm_e_putfield" using name, element, data giving status ••..••• putfleld 

"xsm_e_unprotect" using field-name, element giving status ..••..• protect 
"xsm_edit_ptr" using field-number, edit-type giving buffer .•••. edlt-ptr 

"xsm_emsg" using message ...................•.•••••.••.......•...... emaq 

"xsm_err_reset" using message •...•.•.••....•.••...••..•..••... err reset 

"xsm_fi_path" using file-name giving buffer •...••.....•..•..•••. fl-path 

"xsm_finquire" using field-number, which giving value .••••...•. flnqulre 

"xsm flush". • .•••.•.•.......•••..•••••.•...•••....••..•••••.•..••• flush 

"xsm_formlist" using name, address giving status ..•.....•...•.. formllat 

"xsm_ftog" using field-number, group-occurrence giving buffer ..•••. ftoq 

"xsm_ftype" using field-number, precision-ptr giving type .•..•...• ftype 

"xsm_fval" using field-number giving status ...•..•.•.....••..•.•••. fval 

"xsm_getcurno" giving field-number .•......••....•.•...•..••.•.. qetcurno 
"xsm_getfield" using buffer, field-number giving length. qetfield 

"xsm_getjctrl" using key, default giving buffer ..•......•..•.•. qetjotrl 

"xsm_getkey" giving key •...................•..••....•...•.•..•... qetkey 

"xsm_gofield" using field-number giving status .........•........ qofleld 

"xsm_gp_inquire" using group-name, which giving value •......• 9P_inquire 

"xsm_gwrap" using buffer, field-number, buffer-length giving length.qwrap 
"xsm_hlp_by_name" using help-screen giving status ...•...••.• hlp_by_nama 

"xsm_home" giving field-number ..•.......•.....•.....•....•••....•.. home 

"xsm i .•. " using field-name, occurrence, •..••...•..••...•...•...... 1 
"xsm i achg" using field-name, occurrence, display-attribute 

- - giving status ..•.•..................................••. achq 

"xsm i amt format" using field-name, occurrence, buffer 
- - - giving status .•.........•...•..........•...•..•.• amt format 

"xsm i bitop" using array-name, occurrence, action, bit 
- - giving status ........•..•.•...•........•..•...••..•... bltop 

"xsm_i_dblval" using field-name, occurrence giving value .•••....• dblval 
"xsm_i_dlength" using field-name, occurrence giving data-length. dlenqth 

"xsm i doccur" using field-name, occurrence, ·count 
- - giving return-value ..•..••....•..••.••...••..•••..•.• doocur 

"xsm i dtofield" using field-name, occurrence, value, format 
- - giving status .•.........•....•..••...•.....•...•••. dtofleld 

"xsm i finquire" using field-name, occurrence, which 
- - gi ving value. . .••.......•....•...••..•...•......•.. finquire 

"xsm_i_fldno" using field-name, occurrence giving field-number .... fldno 

"xsm i ftog" using field-name, occurrence, group-occurrence 
- - giving buffer ......•......•..........•...••....•....... ftoq 

"xsm i fval" using field-name, occurrence giving status. fval 

JAM Release 5 1 March 91 Page 317 



Stratus COBOL Programmer's Guide 

"xsm_i_getfieldW using buffer, name, occurrence giving length .. get field 

"xsm_i_gofieldw using field-name, occurrence giving status .. , ... gofield 
Wxsm i gtofW using group-name, group-occurrence, occurrence 

- - giving field-number .......•..•.•.•..................... qtof 

"xsm_i_intval" using field-name, occurrence giving value ......... intval 

"xsm i ioccur" using field-name, occurrence, count 
- - giving lines-inserted ......•.•......•................ ioocur 

wxsm_i_is_now using field-name, occurrence giving status .......... i8_no 

"xsm_i_is_yes" using field-name, occurrence giving status ........ iB-yes 

wxsm i itofieldw using field-name, occurrence, value 
- - giving status .•...........•..•..••....•........•..• itofield 

"xsm_i_Ingval" using field-name, occurrence giving value ......... lnqval 

"xsm i ltofield" using field-name, occurrence, value 
- - giving status .•.•...•...•....•..................... ltofield 

wxsm_i_novalbit" using field-name, occurrence giving status .... novalbit 

"xsm_i_null" using field-name, occurrence giving status ...........• null 

"xsm i off gofieldw using field-name, occurrence, offset 
- - - giving status •.•......•...••....••••............ off_gofield 

wxsm_i_putfield" using name, occurrence, data giving status .... putfield 

"xsm_ininames" using name-list giving status ••...•............. 1ninames 

"xsm_initcrt" using path .••...•......•...•.••••.•.........•..... initort 

"xsm_input" using initial-mode giving key .•.•••................... input 

"xsm_inquire" using which giving value .....••...•.........•..... inquire 

"xsm_intval" using field-number giving value •.............••..... intval 

"xsm_is_no" using field-number giving status .•..•.........•....... is_no 

"xsm_is_yes" using field-number giving status •..•..........•..... iB-yes 

"xsm_isabort" using flag giving OLD-FLAG .•....•.......•......... isabort 

"xsm_iset" using which, newval giving value .•••.......••........... iset 
"xsm isselected" using group-name, group-occurrence 

- giving status .••...•.....•••••...••...•..••••.... isseleoted 

"xsm_issv" using screen-name giving status •.•••.................•.. iBSV 

"xsm_itofield" using field-number, value giving status .•....... itofield 
Wxsm_jclose" giving status ........•.•••...••••..................• jalose 

Wxsm_jform" using screen-name giving status ••..•.................• jform 

"xsm_jinitcrt" using path .•..••...••••..•••••..•....••.......... initart 

"xsm_jplcall" using jplcall-text giving return-value ...........• jploall 

"xsm_jplload" using module-name-list giving status •............. jplload 

"xsm_jplpublic" using module-name-list giving status •......••. jplpublio 

"xsm_jplunload" using module-name giving status .•......•...... jplunload 

"xsm_jresetcrt" ••.•.••••......•••..•..••••..••.••.....•........ reBetart 

"xsm_jtop" using screen-name giving status •.••..•.........•.......• jtop 

"xsm_jwindow" using screen-name giving status .•.•...•.........•. jwindow 

"xsm_jxinitcrt" using path ........••••.•.••••...•..•......•..... initart 

"xsm_jxresetcrt" .•....••..•..••...•.....••..••........•........ reBetart 

wxsm_keyfilter" using flag giving old-flag •.....•......••..... keyfilter 

Page 318 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

"xsm keyhit W using interval giving status .......•..•...•..•...•.• keyhit 
"xsm_keyinit W using KEY-ADDRESS giving status ••.•.........••..•. keyinit 
Nxsm_keylabelW using key giving buffer ...•..................•.. keylabel 
Nxsm_keyoptionW using key, mode, newval giving oldval .••....•• keyoption 
"xsm_kscscope" giving scope ....•...••...•.•••.•...••......••.•• kscscope 
Nxsm ksinqw using scope, number-keys, number-rows, current-row, 

- maximum-len, keyset-name giving status ..••...••••••.••. ksinq 
"'xsm_ksoffw. . ...•.........•........•.•..•........•....••.••.•..•.• ksoff 
"xsm kson W. • ..•.•..••...•••••..•.•....•.•••..••...•••••.•••...•••.. kson 
"'xsm_l_at_curw using lib-desc, screen-name giving status .•••..••• window 
wxsm_l_close w using lib-desc giving status •.•••••..••••....••... l_close 
"xsm I formw using lib-desc, screen-name giving status ••....•..••.. form 
Nxsm_l_openN using lib-name giving lib-desc ••••.•••...•••.•.••... l_open 
Nxsm I windoww using lib-desc, screen-name, start-line, start-column 

- - giving status .•••..•.•..•••.•••.••..•.••....••.••.... window 
wxsm lastw .••......••...••.•••..••••••••.•.••..••....•.••...••..••• last 
"xsm_IclearN using scope giving status .•.•......•.•.•••...•.••.•• lclear 
"'xsm_Idb_initw. . ......•...•.....•.•••..•••..•.•••...••••.••••.. ldb_init 
Nxsm leave". . •.....•..••.•.•..••••.•..•••••..••...••••.••••••..••. leave 
"xsm_Iength'" using field-number giving field-length ..•••.•..•.... length 
Nxsm_lngvalW using field-number giving value. 
Nxsm lreset'" using file-name, scope giving status. 
"'xsm lstore'" giving status. . •.•••...•..•....•......•••••.••...••. lstore 
"'xsm_Itofield'" using field-number, value giving status .•...•... ltofield 
wxsm_m_flushw. . .•..••...•.•....•.••....•.•...............•..•..... flush 
"xsm_max_occur" using field-number giving maximum ••...•.•....• max occur 
"xsm_mnutogIW using screen-mode giving old-mode .....•....••..••• mnutoql 
wxsm_msg'" using column, disp-Iength, text ......•.•...••...•.••.•.... msq 

wxsm_msg_getW using number giving buffer •........•.•.•••....••.• m&q_qet 
"xsm_msgfindW using number giving buffer .•..•.•••........••.•••• maqfind 
"xsm_msgreadN using code, class, mode, arg giving status. maqread 
wxsm mwindow'" using text, line, column giving status .•••...•.••. mwindow 
"'xsm_n_ ..... using field-name, ....................................... n_ 
wxsm_n_Iclear_arrayW using' field-name giving status •...... ;. clear_array 
"'xsm_n_lprotect" using field-name, mask giving status •...•..••.. protect 
"xsm_n_lunprotect" using field-name, mask giving status ..•.•.... protect 

'-""xsm_n_amt:...f0rmat" !using field-name, buffer giving status .•.. amt_format 
"xsm_n_aprotect" using field-name, mask giving status. 
"'xsm_n_ascroll'" using field-name, occurrence giving status. 

protect 
aBcroll 

"xsm_n_aunprotect W using field-name, mask giving status .••...... protect 
wxsm_n_bitop" using name, action, bit giving status ....••...••...• bitop 
wxsm n chg attrW using field-name, display-attribute 

- - - giving status ..•...•.....••..........••..•••..••..• chq_attr 
"xsm_n_clear_array" using field-name giving status ..••.••..•...•• clear_ 

JAM Release 5 1 March 91 Page 319 



Stratus COBOL Programmer's Guide 

"xsm_n_dblval~ using field-name giving value .•.•..•......•....... dblval 
"xsm_n_dlength" using field-name giving data-length •.....•...... dlength 
"xsm n dtofield" using field-name, value, format giving status, dtofield 
"xsm_n_edit_ptr" using field-name, edit-type giving buffer •.... edlt-ptr 
"xsm_n_finquire" using field-name, which giving value ....•..... flnqulre 
"xsm_n_fldno" using field-name giving field-number ................ fldno 
"xsm_n_ftog" using field-name, group-occurrence giving buffer .•.... ftoq 
"xsm_n_ftype" using field-number, precision-ptr giving type ....... ftype 
"xsm_n_fval" using field-name giving status ..••.•........•......••• fval 
"xsm_n_getfield" using buffer, name giving length ........•..... qetfield 
"xsm_n_gofield" using field-name giving status •....•..•..•...... qofield 
"xsm_n_gval" using group-name giving status •......•.............•.. gyal 
"xsm_n_intval" using field-name giving value ..•.......•....••.... intval 
"xsm_n_is_no" using field-name giving status .••........•...•...... is_no 
"xsm_n_is_yes" using field-name giving status .•........•........• ia-yes 
"xsm_n_itofield" using field-name, value giving status •.....•.• itofield 
"xsm_n_keyinit" using key-file giving status .•.........•......•. keyinit 
"xsm_n_Iength" using field-name giving field-length •.....•....... length 
·xsm_n_Ingval" using field-name giving value ••..•........•....... Ingyal 
"xsm_n_Itofield" using field-name, value giving status ........• Itofleld 
"xsm_n_max_occur" using field-name giving maximum ............. max_occur 
"xsm_n_novalbit" using field-name giving status •............... novalbit 
"xsm_n_null" using field-name giving status •...•..•..............•• null 
"xsm_n_num_occurs· using field-name giving number .•..•......• num_occurs 
"xsm_n_off_gofield" using field-name, offset giving status .. off_qofield 
"xsm_n_oshift" using field-name, offset giving return-value ...... oshift 
"xsm_n_protect" using field-name giving status .......•........•. protect 
"xsm_n-putfield" using name, data giving status ................ putfield 
"xsm_n_rscroll" using field-name, req-scroll giving lines ....... rscroll 
"xsm_n_sc_max" using field-name, new-max giving actual-max ....... sa_max 
"xsm_n_size_of_array" using field-name giving size .•...... size_of_array 
"xsm_n_unprotect" using field-name giving status ................ protect 
"xsm_n_vinit" using video-file .....•••.•....•.....••.............. vinit 
·xsm_n_wselect" using window-name giving return-value ....•...... wselect 
"xsm_name" using field-number giving buffer .•...................... name 
"xsm_nl" .........•....••..•••.•...••..•••••..••......•............•.• nl 
"xsm_novalbit" using field-number giving status ..•...•..•...... novalbit 
"xsm_null" using field-number giving status ....•.....•........•..•• null 
"xsm_num_occurs" using field-number giving number ............ num_occurs 
"xsm_o_ ... " using field-number, occurrence, .•....................•.. 0_ 

·xsm ° achg" using field-number, occurrence, display-attribute 
- - giving status .....•.•....••.........••.....•..........• achq 

"xsm 0 amt format" using field-number, occurrence, buffer 
- - - giving status ...•••..•••.•.•....••••...••..•..... &mt_format 

Page 320 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

"xsm 0 bitop" using field-number, occurrence, action, bit 
- - giving status ....•.........•....•................•.... b1top 

"xsm 0 chg attr" using field-number" element, display-attribute 
- - - giving status ...................................... cb9'_attr 

"xsm_o_dblval" using field-number, occurrence giving value ....... dblval 
"xsm_o_dlength g using field-number, occurrence giving data-length.dlength 
"xsm 0 doccurw using field-number, occurrence, count 

- - giving return-value. . ..•...•...•.....•............... doccur 
"xsm 0 dtofield" using field-number, occurrence, value, format 

- - gi ving status. . .....••.....•.•••.....•...••••.•.... dtof1eld 
"xsm 0 finquire" using field-number, occurrence, which 

- - gi ving value. • •••..•...•........•....•..•...••....• f1nqu1re 
"xsm_o_fldnow using field-number, occurrence giving field-number. fldno 
"xsm 0 ftog" using field-number, occurrence, group-occurrence 

giving buffer .......•..••.......•.••.....•.•.•.....•..• fto9' 
"xsm_o_fval" using field-number, occurrence giving status. fval 
"xsm 0 getfield" using buffer, field-number, occurrence 

- - gi ving length. . ..•......•.......•..•..••.•...•...•. qatf1eld 
"xsm_o_gofield" using field-number, occurrence giving status. ' •. 9'of1eld 
"xsm 0 gwrap" using buffer, field-number, occurrence, buffer-length 

- - giving status .....•.•...............•....•...........• qwrap 
"xsm_o_intval" using field-number, occurrence giving value. 1ntval 
"xsm 0 ioccur" using field-number, occurrence, count 

- - giving lines-inserted .............•.•..•.•...••...... 10ccur 
"xsm_o_is_no" using field-number, occurrence giving status • ....... 1s_no 
"xsm_o_is_yes" using field-number, occurrence giving status ...... 1s-Y8s 
"xsm 0 itofield" using field-number, occurrence, value 

- - gi ving status. • •......••..•.•.......•....•.......•. 1tof1eld 
"xsm.:..o_lngval" using field-number, occurrence giving value. '" .' •. lnqval 
"xsm 0 ltofield" using field-number, occurrence, value 

- - giving status ...................................... ltof1eld 
"xsm_o_novalbit" using field-number, occurrence giving status. novalb1t 
"xsm_o_null" using field-number, occurrence giving status .....•...• null 
"xsm 0 off gofield" using field-number, occurrence, offset 

- - - giving status ................................... off_9'0field 
"xsm 0 put field" using field-number, occurrence, data 

- - gi ving status. • ..........•......•..•..•.....•...... putf1eld 
"xsm_o_pwrap" using field-number, occurrence, text giving status .• pwrap 
"xsm_occur_no" giving occurrence ...........•....•..••.••....••.. occurno 

·· ... xsm_off_gofield .. using field-number, offset giving status .• off_9'0f1eld 
"xsm_option" using option, newval giving oldval •....••...•..•••.. option 
"xsm_oshift" using field-number, offset giving return-value • •...• osh1ft 
"xsm_pinquire" using which giving buffer .............•.....••.. pinqu1re 
"xsm_protect" using field-number giving status ....•..•........•. protect 
"xsm_pset" using which, newval giving buffer .•.••••.•.••...•••..••• pset 
"xsm_putfield" using field-number, data giving status ....•....• putf1eld 
"xsm_putjctrl" using key, control-string, default giving status. putjctrl 

JAM Release 5 1 March 91 Page 321 



Stratus COBOL Programmer's Guide 

"xsm_pwrapW using field-number, text giving status ................ pwrap 

"xsm_query_msg" using message giving reply ...........•........ query_mag 

"xsm_qui_msg" using message .•...•........•...................... qui_mag 

"xsm_quiet_err" using message ..•.............................. quiet_err 

"xsm_r_at_cur" using screen-name giving status ................... window 

"xsm_r_formw using screen-name giving status ....................... form 

·xsm_r_keyset" using name, scope giving status •.................. keyset 

"xsm r window" using screen-name, start-line, start-column 
- - giving status .•........•...•.....•................... window 

"xsm_rd_part" using SCREEN, first-field, last-field ............. rd-part 

"xsm rd struct" using SCREEN, byte-count ••...•..•............. rd_struct 

"xsm rescreen W. .•..••.....•.•.....•.•...••...•................. rescreen 

"xsm resetcrt W •.......•.••.....•......•......•............•.... resetcrt 

"xsm_resizew using rows, columns giving status •...........•...... resize 

wxsm return". ..•••.........•.•.....•.....•.•.•............•...... return 

wxsm rmformlist .••..•...•••..••.......••..•••...........•.•.. rmformlist 
wxsm_rrecordw using RECORD, record-name, byte-count ............. rrecord 

wxsm_rscroll" using field-number, req-scroll giving lines ••..... rscroll 

wxsm_s_val w giving status ....•.........••.•..•..•................. s val 

"xsm sc max" using field-number, new-max giving actual-max ....... sc max 

·xsm_sdtimew using format giving buffer .............•............ sdt1me 

"xsm_select" using group-name, group-occurrence giving status .... select 

"xsm_setbkstat" using message, display-attribute ..........•... setbkstat 

"xsm_setstatus" using mode •...•......•.....••................. setstatus 

"xsm_sh_off" giving offset •..............•.•..................... sh_off 

"xsm_shrink_to_fit" ...•..•••....•..•..••.....•..•.•.•..... sbrink_to_fit 

"xsm_sibling" using should-it-be .......••..•....•............... siblinq 

"xsm_size_of_array" using field-number giving size ........ size_ot_array 

"xsm skinq" using scope, row, softkey, value, display-attribute, 
- labell, label2 giving status ....•.•..•........•........ skinq 

"xsm_skmark" using scope, row, soft key, mark giving status ...•... skmark 

"xsm skset" using scope, row, softkey, value, attribute, 
- labell, label2 giving status •....•...•...•....•........ skset 

"xsm skvinq" using scope, value, occurrence, attribute, 
- labell, label2 giving status .......•....•............. skvinq 

·xsm_skvmark" using scope, value, occurrence, mark giving status. skmark 

"xsm skvset" using scope, value, occurrence, newval, attribute, 
- labell, label2 giving status ...••..................... skvset 

"xsm_strip_amt_ptr" using field-number, inbuf giving outbuf.strip_amt-ptr 

"xsm_submenu_close" giving status •...•.•...••.......•...•. submenu_olose 

wXSffi_svscreen" using screen-list, count giving status •... svscreen 

"xsm_t_bitopW using array-number, action, bit giving status ..••.. bitop 

"xsm_t_scroll" using field-number giving status ...•.•.•.....••. t_scroll 

"xsm_t_shift" using field-number giving status •.....•..•......... tshift 

"xsm tab". ...•.••.........•...•.......•••...........•............... tab 

Page 322 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

"xsm_tst_all_mdts" using occurrence giving field-number . ... tat all mdta 
"xsm_uinstall" using usage, func, func-name giving status. uinatall 
"xsm_ungetkey" using key giving return-value • .....••...•...•... unqetkey 
"xsm_unprotect" using field-number giving status • ••••.•...••.•.• protect 
" xsm_unsvscreen" using screen-list, count. unavacreen 
"xsm viewport" using position-row, position-col, size-row, 

- size-col, offset-row, offset-col. . .•....•.•.•..•.... viewport 
"xsm_vinit" using VIDEO-ADDRESS giving status . •.....••...••..•...• vinit 
"xsm_wcount" giving return-value . ••..•..•.••.....•....••.••...... Ycount 
"xsm_wdeselect" giving status . ••••••.•.••...•••••.•••.•...•••. Ydaaelect 
"xsm_winsize" giving status . ......••..•.....••.....••...•.•.••.. Yinsize 
"xsm_wrecord" using RECORD, record-name, byte-count . ••••..•••••. yrecord 
"xsm_wrt_part" using SCREEN, first-field, last-field • .•..••.... Yrt-part 
"xsm_wrtstruct" using SCREEN, byte-count • ••.•...•••.••••..•.•• yrtatruct 
"xsm wselect" using window-number giving return-value . ....•.•..• yaelect 

JAM Release 5 1 March 91 Page 323 





Stratus COBOL Programmer's Guide 

INDEX 
A 

Abort, 177 

Application 
abort, 110. 177 
code, 2 

See also hook function 
customization. 1 
data, 50-51.170-171.178-179. 

239-240. 243-244 
library routines. 86-87 

development, 5.27-28 
See also hook function 

efficiency. 65~7 
flow. 2 
initialization. 3.42.78. 167-168 
localization. 5~ 1 
memory, See memory 
messages.~7 

portability. 63-64 
reset, 256 
suspend, 212 

Application executable. 2-5 

Array 
base field, 97 
clear. 116 
element, xsm_e variants. 80 •. 131 
library routines - attribute access. 81-82 

.. library routines - data access, 80-81 
occurrence 

xmn_ivariants,80,165 
xmn_o variants. 80. 234 

scrolling, 292 
size.2TI 
word wrap, 162.248 

ASCII, non-ASCII display, 50 

ASYNC_FUNC,10 
See also asynchronous function 

Asynchronous function. 20-21 
arguments, 21 
installation, 95 
invocation, 20 
return codes, 21 

atch, 11 

Authoring 
executable. 5 
jxlibrary. 5 
tooL Sa jxform 

Authoring executable, 5 

B 
BACK. library routine. 96 

BLKDRVR_FUNC, 10 
Sa also block mode 

Block mode, 69-76 
initialization, 103 
library routines, 88 
reset, 104 

Built-in control functions. 31-39 
jrn3xit, 32-33 
jrn...goform, 34-35 
jrn....,gotop. 33-34 
jrn_keys, 35-36 
jrn_mnutogI, 36-37 
jrn_systern, 37-38 
jrn_ winsize, 38 
jpI, 39 

c 
call, 17 

Character data, 8-bit, 50-51 

Check digit function, 22 
arguments, 22 
invocation, 22 
return codes, 22-23 

JAM Release 5 1 March 91 Page 325 



Stratus COBOL Programmer's Guide 

Checklist 
See also group 
deselect, 123 

CKDIGIT_FUNC,9 
See also check digit function 

CLR, library routines, 115 

Configuration. memory-resident, 6~6 

Control function. 17-18 
arguments, 18 
invocation. 17 
return codes, 18 

Control string 
access, 155 
set, 247 

CONTROL_FUNC, 8 
See also control function 

Cursor 
displacement, 125 
home, 164 
library routines, 83-M 
location. 152, 273 
move, 158, 236 
off,l06 
on, 107 
position display, 108 

D 
Data dictionary, file, name, 124 

Data entry, 169 

Data entry mode, jm_mnutogl, 36-37 

Delayed write, 45 

DFLT_FIELD_FUNC, 8,11,12 
See also field function, default 

DFLT_GROUP_FUNC,8,19 
See also group function. default 

DFLT_SCREEN_FUNC,9,16 

See also screen function. default 

Display area, color, 102 

Display attributes 
change, 90-91 
field, 111-112 
portability. 63 
rectangle, 102 

E 
EMOH, library routines. 209 

Error handling, 4 

Executable. See application or authoring ex
ecutable 

Executive 
See also JAM Executive 
custom. 3-5 

F 
Field 

characier edit, 57-58 
internationalization, 57-58 

charac~stic.99-101, 132-134. 
140-141 

clear, 115 
cwrrency,55-57,93,289 

internationalization, 55-57 
data, 153-154,245-246 
date/time format, 51-55 

internationalization. 51-55 
display attributes, 111-112 
floating point value, 121, 130 
group conversion, 147 
integer value, 172, 182 
length, 126,213 
library routines - attribute access, 81-82 
library routines - data access. 80-81 
long integer value. 214. 217 
math, 109 
MDT bit, 295 

Page 326 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Field (continued) 
name, 229 

xsm_e variants, 80,131 
xsm_ivariants, 80, 165 
xsm_nvariants,8~228 

null,232 
number,142 
shifting, 293 . 

Field function, 11-15 
arguments. 12-13 
default. 11, 12 
invocation. 11-12 
return codes, 13-14 

FIELD_FUNC,8 
See also field function 

File, rmd, 139 

Fonn 
See also screen 
display, 4, 34, 144-145, 184-185 

Fonn stack. library routines, 78-79 

Function. See hook function; library routines 

G 
GRAPH,45-46 

Graphics characters, 45-46 

Group 
characteristic, 159 
field conversion, 160 
hbrary routines, 82-83 
selection, 180, 269 

Group function, 19-20 
arguments, 20 
default. 19 
invocation. 19 
return codes, 20 

GROUP _FUNC, 8 
See also group function 

H 
Help, display, 163 

HOME, library routines, 164 

Hook function, 2, 7-28 
See also individual hook function types by 

name 
arguments, 7 
development. 10--27 
individual, 7 
installation, 4, 7-10, 296 
recursion, 28 
return codes, 7 
types (ovennew),8-10 

I 
Initialization function, 22-23 

arguments, 23 
invocation, 23 
return codes, 23-24 

Input/output. 156-157 
flush, 143 
library routines, 79-80 
user, 169 

INSCRSR_FUNC, 9 
See also insert toggle function 

Insert toggle function, 21 
arguments, 21 
invocation, 21 
return codes, 21 

Internationalization. 49~1 
8 bit characters, 50--51 
character filters, 57-58 
currency fields, 55-57,56 
date and time nmemonics, 52, 54 
date/tirne fields, 51-55 
decimal symbols, 57 
documentation utilities, 59 
library routines, 60, 61 
menu processing, 59 
messages, 58, 61 
product screens, 58-59 
range checks, 60 
screens, 59 

JAM Release 5 1 March 91 Page 327 



Stratus COBOL Programmer's Guide 

Interrupt handler, 23, 110 

J 
JAM 

behavior, 237 
customization, 1 
Executive, 2-3 

See also JAM Executive 
initialization, 4 
library routines - global behavior, 

86-87 
library routines - global data, 86-87 
product components, 2 

JAM Executive 
authoring executable,S 
Conn display, 184-185 
initialization, 3 
jm library, 2, 3, 5 
library routines, 87 
screen close, 183 
screen display, 28 
start, 190 
window display, 191-192 

jammap, internationalization, 59 

JPI., 186 
calling control functions from, 17 
compared to compiled code, 67 
jpl built-in function, 39 

jxCorm, modification, 5 

K 
Key 

input, 156-157,298 
logical, 41, 156-157 
name, 196 
routing,42--43,197-198 
simulated, 35-36 
soft. See soft key 
translation, 41, 42 

Key change function, 18-19 
arguments, 18 
invocation, 18 
return codes, 18-19 

Keyboard, 41--43 
input, 169 
portability, 63 

Keyboard translation 
initialization, 195 
internationalization, 51 

KEYCHG_FUNC, 9 
See also key change function 

Keyset 
close, 105 
labels, 204, 205 
memory-resident, 199 
open, 199-200 
query, 202-203 
scope, 201 

Key tops, 64 

L 
Language. See programming language or in· 

ternationalization 

LDB,29-30 
access,30 
behavior, 122 
clear, 210 
creation, 29 
data propagation, 29-30, 92, 216 
initialization, 29, 211 
initialization files, 166 
jm library, 3 
library routines, 83 
reset, 215 

Library 
close, 206 
open, 207-208 

Library functions. See library routines 

Page 328 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Library routines, 77-88, 89 
array attribute access, 81-82 
array data access, 80-81 
behavior, 86-87 
block mode, 88 
cursor control, 83--&4 
field attribute access, 81-82 
field data access, 80-81 
global data, 86-87 
group access, 82-83 
initialization, 78 
JAM Executive control, 87 
keysets,87 
LDB access, 83 
mass storage, 85 
message display, 84 
reset, 78 
screen control. 78-79 
scrolling, 85 
shifting,85 
xsm3lose_window,4 
xsm_dtofield. internationalization, 60 
xsm_flush, 45 
xsm-8etkey, 42 
xsm_initcrt, 4 
xsm_input, 4, 42 
xsm_install, 10 
xsnUclose, 27 
xsm.jform, 27 
xsm.jwindow, 27 
xsm_keyoption, 43 
xsm_Idb_init, 29 
xsm_option, 30 
xsm_query_msg, internationalization, 61 
xsm_r_form, 4 
xsm_rescreen, 66 
xsm_resetcrt. 5 
soft keys, 87 
terminal input/output, 79-80 
validation, 86 
viewport control. 78-79 

License, 2, 5 

Load, 187 

Local Data Block. See LOB 

lstdd, iiJ.teniationiili:i8tion, 59 

lstform, internationalization, 59 

M 
Math, 109 

Memory 
library routines - mass storage, 85 
messages, 66 
resident configuration, 65~6 
resident file list, 146 
resident keyset, 199 
resident screens, 65, 291, 299 

Menu, submenu, 290 

Menu mode, jrn_mnutogl. 36-37 

Message, 46-47 
disk based, 66 
display, 118-120, 135-137, 138, 220, 

221,227,249,250,251,270--271 
272 ' 

file initialization, 224-226 
Hush, 218 
internationalization, 58 
library routines, 84 
retrieval, 222, 223 
status line priority, 46 

MODEx, 45-46 

N 
NL, library routines, 230 

o 
Occurrence 

allocated, 233 
delete, 129 
display attributes, 90--91 
insert, 173-174 
number,235 
scroll to, 94 

JAM Release 5 1 March 91 Page 329 



Stratus COBOL programnieh; Guide 

Operating System command, jrn_system. 
37-38 

p 
PLAY _FUNC, 9 

See also playback function 

Playback function, 23-24 
arguments, 24 
filter, 193 
invocation, 24 
return codes, 24 

ProgranuTUng language, 1 

Protection, 241-242 

Public, 188 

R 
Radio button. See group 

Record function, 23-24 
arguments, 24 
filter, 193 
invocation, 24 
return codes, 24 

RECORD_FUNC,9 
See also record function 

Regular expression, 58 

Reset function, 22-23 
arguments, 23 
invocation, 23 
return codes, 23-24 

s 
Screen 

See also form; window 
close, 32, 183 
data propagation, 92 

display, 27-28 
internationalization, 59 
library routines, 78-79 
memory-resident, 65, 181,291,299 
restore, 254 
store, 252-253, 309-310, 311 
top, 33 

Screen function, 15-17 
arguments, 16 
default, 16 
invocation, 16 
return codes, 17 
screen display, 27 

Screen Manager 
behavior, 237 
initialization, 4 
sm library, 2, 3, 5 

SCREEN_FUNC, 8 
See also screen function 

SCROLL_FUNC. See scrolling, alternative 

Scrolling, 262 
library routines, 85 

Scrolling array 
maximum number of occurrences, 219, 

265 
occurrence, 94 

Shifting 
field. 238 
library routines, 85 

Sibling window, 275-276 

Soft key 
characteristic, 278--279,282-283 
library routines, 87 
mark, 280--281, 286 

Source code 
jrnain.c, 2 
jxmain.c,5 
main routines, 78 

Stacked window, 275-276 

STAT _FUNC, 9 
See also status line function 

Page 330 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Status line 
access, 4 
flush, 218 
library routines, 84 
message, 118-120, 135, 138,220,221, 

249,250,251,270,272 
message priority, 46 
tenninal,46-47 

Status line function, 24-25 
arguments, 25 
invocation, 24 
return codes, 25 

T 
TAB, library routines, 294 

Terminal 
bell,98 
graphics character display, 45-46 
library routines, 79-80 
output. 45-47,66, 127-128, 143 
portability, 45, 63-64 
refresh, 255 
resize, 257 
status line, 46-47 

Top screen, 33 

u 
mNIT_FUNC, 9 

See also initialization function 

Unload, 189 

URESET _FUNC, 9 
See also reset function 

v 
Validation 

bits, 99-101 
check digit. 113 
field, 150 
field function invocation, 11 
group, 161 
group function invocation, 19 
invalidate field, 231 
library routines, 86 
screen, 263-264 

Video mapping 
character sets, 45-46 
file,45 
initialization, 301 
internationalization, 51 
optimization, 66 

Video processing function, 25-27 
arguments, 25, 25-27 
invocation, 25 
return codes, 27 

Viewport. 300, 307 
library routines, 78-79 

VPROC_FUNC,9 
See also video processing function 

w 
Wmdow 

See also screen 
close, 4, 117 
count. 302 
display, 191-192, 304-306 
message, 227 
selection, 303, 312-313 

Wmdow stack, library routines, 78 

JAM Release 5 1 March 91 Page 331 





Stratus COBOL Programmer's Guide 

Appendix A. 

Notes for C Programmers 
Thefollowing notes highlight the differences between this COBOL language guide and 
the standard JAM library, written in C. It is intended as a guide for programmers who are 
already familiar with the C version of JAM. 

A.1. 

INTRODUCTION 
The COBOL interface library is written in C. It consists primarily of interface functions 
which can be called directly from COBOL programs. The interface functions flfSt set up 
the appropriate arguments for the corresponding functions in the standard JAM library. 
They then call the standard library function, and fInally set up suitable return values for 
COBOL. Each interface function is named for the standard library function that it calls, 
with the sm prefIx changed to xsm • Thus, xsm get field is the interface function 
to the standifd library routine sm get field. -

A.2. 

SYNTAX 

A.2.1. 

Numeric Arguments 
All COBOL argwnents are passed by reference. That is, the COBOL interface functions 
expect char *'s and int *'s (rather than int's), and pass the integer values to their 
respective standard library functions. 

JAM Release 5 1 March 91 PageA-1 



Stratus COBOL Programmer's Guide 

A.2.2. 

Character String Arguments 
For standard library functions that are passed character strings, the interface function 
makes a null-terminated copy of the data in a static buffer, which it then uses to call the 
standard library function. 

A.2.3. 

Return Values From Library Routines 
Under the Stratus COBOL compiler, an integer or string value can be returned directly to 
a COBOL function from the C function it calls by including a giving phrase in the 
call statement 

A.3. 

UNSUPPORTED STANDARD LIBRARY 
FUNCTIONS 
The following functions are not supported in the Stratus COBOL interface. 

do uinstalls See install. 

fi_open This function is not supported in the COBOL interface. 

f 0 rml i s t The memory-resident screen list is not supported in the COBOL in terface. 

fptr Supported, but not documented. Since the COBOL calling function must 
supply its own buffer, this function is essentially equivalent toget field. 
Use get field instead. 

install The COBOL interface has three methods for installing functions, depend
ing on their type (see section 2.1.1. for further information): 

• Asynchronous functions are installed with the special interface function 
xs~ async. See the Function Reference listing for details. 

• Field, screen, group, and control functions are installed via the -re
tain_all argument to the bind command. 

• All other types of functions (including the default field, screen, and 
group functions) are installed with the special interface function 

PageA-2 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

xsm n uinstall. These are installed by type and function name. 
rather th-an through a pointer to a structlU'e. See the Function Reference 
listing for details. 

ksIabeI This function is not supported in the COBOL interface. 

1 ngv a 1 This function is unnecessary in the COBOL interface. since longs and ints 
are defined to have the same length. Use intval instead. 

Ito field Use i tofield instead. See explanation for Ingval above. 

rs data Unsupported in COBOL. 

save data Unsupported in COBOL. 

sV data Unsupported in COBOL 

s v free Unsupported in the COBOL interface. 

A.4. 

SPECIAL INTERFACE LIBRARY 
FUNCTIONS 
async Installs an asynchronous function. See page 95 for details. 

u ins tall Install hook functions that are not attached to screens. See page 296 for de
tails. 

A.S. 

FUNCTIONAL DIFFERENCES IN 
SUPPORTED "LIBRARY FUNCTIONS 
d at cur See d form. 

"d form The program data structW"e created by bin2cob must be included in the 
call to the interface function with the statement: 

copy "myscreen.incl.cobolW
• 

d_keyset See d form. 

msg_get Message mnemonics are not supported. Messages are divided into classes 
based on their numbers. with up to 4096 messages per class. The message 

JAM Release 5 1 March 91 PageA-3 



Stratus COBOL Programmer's Guida 

class is the message numberdi vided by 4096, and the message offset within 
the class is the remainder. Predefined JAM message numbers and classes 
are shown in Appendix B .. 

rdyart See rdstruct. 

rdstruct The interface function receives a structure pointer. It is the programmer's 
responsibility to provide the proper structure. COBOL structures can be 
generated with the utility f2struct as follows: 

rrecord 

vinit 

d window 

wrtyart 

wrecord 

wrtstruct 

A.6. 

f2struct -gCOBOL screenname 

The structure can be inserted into a COBOL program via the copy state
ment No language argument is passed to the interface function. The lan
guage is understood to be COBOL. 

Like the interface function for rds t ruct, this interface function receives 
a buffer pointer. A structure can be generated for this function with the util
ity dd2 s t ruct, by specifying the COBOL language option., and then in
serted into a COBOL program via the copy command No language argu
ment is passed to the interface function The language is understood to be 
COBOL. 

See keyini t. 

Seed form. 

See rdstruct, 

See rrecord. 

See rdstruct. 

RETURN VALUES FROM COBOL 
FUNCTIONS 
JAM expects every user-installed function to return an integer, even if the return value is 
ignored. In the Strams version of the COBOL language interface, COBOL procedures 
move the desired return value to a variable, say for example, ret -val ue. The function 
is then exited with the following statement: 

exit program with ret-value. 

PageA-4 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

A.7. 

HEADER FILES 
The COBOL interface header flIes contain actual data rathar than mnemonics. Note that 
all underscore characters that nonnally appear in C language header flIes appear as dashes 
in COBOL versions. Some header files may be different than their C counterparts. The 
following header flIes are available: 

File Contents 

smattrib.incl.cobol Display attribute values. 

smbitops.incl.cobol Values for use with the library routine xsm_bitop. 

smedits.incl.cobol Values for field edits. 

smerror.inc l.cobol Values for use with the message functions. 

smflags.incl.cobol Context bit values for entry. exit and validation hook func-
tions. 

smfuncs.incl.cobol Values and flags for function installation. 

smglobaI.incl.cobol Values for obtaining global data (unused in release 5). 

smglobs.incl.cobol Values for variable inquiry functions. 

smkeys.incl.cobol Values for JAM key codes. Needed to handle returns from 
key board processing routines. 

smmisc.incl.cobol Miscellaneous values. 

smmisc2.incl.cobol Miscellaneous values. 

smmisc3.incl.cobol Miscellaneous values. 

smsoftk.incl.cobol Values for use with keyset routines. . -

smumisc.incl.cobol Miscellaneous values. 

smvideo.incl.cobol Values for video flIe entries. 

JAM Release 5 1 March 91 Page A-5 





Stratus COBOL Programmer's Guide 

Appendix B. 

Error Message Numbers 
The-following tables illustrate the JAM message numbers and classes for use with the 
message functions xsm_msgfind and xsm_msg_get. The first column shows the 
message mnemonic, which is not used in the COBOL interface, but which is included for 
convenience. The second contains the message number, showing how it is computed, by 
multiplying the message class by 4096 and then adding the message offset. The third col
umn contains the text of the message. 

Refer to the Configuration Guide for information on creating and editing message files, 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

Initialization Messages 

SM-ENTERTERM 8*4096 + 0 Please enter terminal type or 
<RETURN> to exit. 

SM-MALLOC 8*4096 + 1 Insufficient memory available 

SM-CANCEL 8*4096 + 2 Terminated. 

SM-BADTERM 8*4096 + 6 Unknown terminal type 

Math Messages 

SM-FNUM 8*4096 + 8 Bad field # or subscript. 

SM-DZERO 8*4096 + 9 Divide by zero. 

SM-EXPONENT 8*4096 + 10 Exponentiation invalid. 

JAM Release 5 1 March 91 Page B-1 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Nwnber Message TeXl 

SM-INVDATE 8*4096 + 11 Invalid date, 

SM-MATHERR 8*4096 + 12 Math or JPL error 

SM-FORMAT 8*4096 + 116 Invalid fonnal 

SM-DESTINATION 8*4096 + 117 Invalid destination. 

SM-INCOMPLETE 8*4096 + 118 Expression incomplete. 

SM-ORAND 8*4096 + 119 Operand expected. 

SM-ORATOR 8*4096 + 120 Operator expected. 

SM-EXTRAPARENS 8*4096 + 121 Right parenthesis unexpected 

SM-MISSPARENS 8*4096 + 122 Right parenthesis expected. 

SM-DEEP 8*4096 + 123 Fonnula too complicated. 

SM-FUNCTION 8*4096 + 124 Invalid function. 

SM-ARGUMENT 8*4096 + 125 Invalid argument. 

SM-MISMATCH 8*4096 + 126 Type mismatch. 

SM-NOTMATH 8*4096 + 127 Not a math expression. 

SM-QUOTE 8*4096 + 128 Missing quote character. 

SM-SYNTAX 8*4096 + 129 Syntax error. 

Read Window Messages 

SM-FRMDATA 8*4096 + 13 Bad data in screen. 
-

SM-NOFORM 8*4096 + 14 Cannot find screen. 

SM-FRMERR 8*4096 + 15 Error while reading screen. 

SM-BIGFORM 8*4096 + 16 Screen has fields that extend beyond 
display size. 

Page B-2 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

err_reset Messages 

SM-ERROR 8*4096 + 19 ERROR: 

SM-SPl 8*4096 + 20 Please hit the space bar 

SM-SP2 8*4096 + 21 after reading this message 

Field Validation Messages 

SM-RENTRY 8*4096 + 22 Entry is required. 

SM-MUSTFILL 8*4096 + 23 Must fill fteld. 

SM-AFOVRFLW 8*4096 + 24 Amount field overflow. 

Group Validation Messages 

SM-ONLYONE 8*4096 + 76 Select exactly one item. 

ckdigi t Messages 

SM-TOO-FEW-DIGITS 8*4096 + 25 Too few digits. 

SM-CKDIGIT 8*4096 + 26 Check digit error. 

Help Messages 

SM-HITANY 8*4096 + 27 Hit any key to continue. 

SM-NOHELP 8*4096 + 29 No help text available. 

SM-MAXHELP 8*4096 + 30 Five help levels maximum. 

SM-FRMHELP 8*4096 + 73 No screen-level help text available 
-.;-" 

Range Messages 

SM-OUTRANGE 8*4096 + 31 Out of range. 

Datellime Messages 

SM-SYSDATE 8*4096 + 39 Use clear for system dateltime. 

JAM Release 5 1 March 91 Page B-3 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-DATFRM 8*4096 + 40 Invalid date/time fonnaL 

SM-DATCLR 8*4096 + 41 Invalid date/time; clear gets system 
date. 

SM-DATINV 8*4096 + 42 Invalid date/time; enter a valid date! 
time. 

SM-KSDATA 8*4096 + 43 Bad data in keyset. 

SM-KSERR 8*4096 + 44 Error while reading keyseL 

SM-KSNONE 8*4096 + 45 Cannot fmd keyset. 

SM-KSMORE 8*4096 + 46 MORE logo for key label 

Day or Week Abbreviations (1-7 = Sun-Sat) 

SM-DAYAl 8*4096 + 47 

SM-DAYA2 8*4096 + 48 

SM-DAYA3 8*4096 + 49 

SM-DAYA4 8*4096 + 50 

SM-DAYA5 8*4096 + 51 

SM-DAYA6 8*4096 + 52 

SM-DAYA7 8*4096 + 53 

Day or Week SpeUed Out (1-7 = Sun-Sat) 

SM-DAYLl 8*4096 + 54 

SM-DAYL2 8*4096 + 55 

SM-DAYL3 8*4096 + 56 

SM-DAYL4 8*4096 + 57 

SM-DAYL5 8*4096 + 58 

Page B-4 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-DAYL6 8·4096 + 59 

SM-DAYL7 8·4096 + 60 

Scroll Messages 

SM-MOREDATA 8·4096 + 66 No more data. 

SM-SCRLMEM 8·4096 + 67 Insufficient memory for scrolling. 

input Messages 

SM-READY 8·4096 + 68 Ready 

SM-WAIT 8·4096 + 69 Wait 

SM-YES 8·4096 + 70 Y 

SM-NO 8·4096 + 71 n 

SM-SEARCH 8·4096 + 74 Searching for: '%s' 

Local Print Message 

SM-NOTEMP 8·4096 + 72 Cannot open temporary fIle. 

Window Resizing (Must Be In Order) 

SM-WMSMOVE 8·4096 + 77 MOVE resize offset 

SM-WMSSIZE 8·4096 + 78 move RESIZE offset 

SM-WMSOFF 8·4096 + 79 move resize OFFSET 

SM-LPRINT 8·4096 + 80 Local print file %s created. 

SM-NOFILE 8·4096 + 82 Could not open fIle 

Regular Expression Validation (Character Mask) 

SM-RXl 8·4096 + 86 Invalid character. 

SM-RX2 8·4096 + 87 Incomplete entry. 

JAM Release 5 1 March 91 Page B-5 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-RX3 8*4096 + 88 No more input allowed. 

SM-TABLOOK 8*4096 + 90 Invalid entry. 

JPL Messages 

SM-ILLELSE 8*4096 + 98 Illegal Else 

SM-NUMBER 8*4096 + 99 Illegal Nwnber 

SM-EOT 8*4096 + 100 unexpected End Of File 

SM-BREAK 8*4096 + 101 BREAK. not within loop 

SM-NOARGS 8*4096 + 102 Verb needs arguments 

SM-BIGVAR 8*4096 + 103 Variable size larger than 255 

SM-EXCESS 8*4096 + 104 Extra data at end of line 

SM-EOL 8*4096 + 105 Source line too long 

SM-FILEIO 8*4096 + 106 System File I/O error 

SM-FOR 8*4096 + 107 USAGE: FOR varname = Value 
WIDLE ( expression) 
STEP [+-]value 

SM-LlNE-2-LONG 8*4096 + 108 Line too long after expansion 

SM-RCURLY 8*4096 + 109 Ended block not begun 

SM-NONAME 8*4096 + 110 Expected variable name 

SM-NOTARGET 8*4096 + 111 Tar.getdoesnotex~t 

SM-IJPL-ERR 8*4096 + 112 %s at line %d in %s: '%s' First %s 
gets error message, such as SM-
LINE-2-LONG, %d is line number, 
next %s gets SM-JSRCFILE or SM-
JPLATCH, last %s gets a quote from 
the offending line, 

Page B-6 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-2JPL-ERR 8·4096 + 113 %s in %s FIrSt %s gets SM-
JSRCFILE or SM-JPLATCH, second 
gets SM-MALLOC or other not easi-
ly traceable error, 

SM-JPLATCH 8·4096 + 115 attached JPL procedure 

NOTE: Message Numbers 116 - 129 Used For Math (see above) 

SM-NEXT 8·4096 + 130 next not in a loop 

SM-VERB-UNKNOWN 8·4096 + 131 unknown verb 

SM-JPLFORM 8·4096 + 132 screen JPL procedure 

SM-NOT-LOADED 8·4096 + 133 file not loaded 

Command Line 

SM-GA-FLG 8·4096 + 134 Illegal flag 

SM-GA-CHAR 8·4096 + 135 Flag must be followed by a char 

SM-GA-ARG 8·4096 + 136 Flag has no argument 

SM-GA-DIG 8*4096 + 137 Flag must be followed by digits 

Function Installation 

SM-NOFUNC 8·4096 + 138 Function not found 

SM-BADPROTO 8·4096 + 139 Bad prototype, 

SM-JPLPUBLIC 8·4096 + 140 public JPL procedure 
. 

Missiog Screen Library 

SM-NO-LIB 8·4096 + 141 Library not found 

Derault NuD Edit 

SM-NULLEDIT 8·4096 + 142 NULL 

JAM Release 5 1 March 91 Page B-7 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic . Message Nwnber Message TeXl 

SM-RP-NULL 8*4096 + 143 In 

JAMlDBi 

SM-DBI-NOT-INST 8*4096 + 144 1 DBi not installed 

"Msgs 145 - 170 Free For Use 

Month of Year Abbreviations (1-12) 

SM-MONAl 8*4096 + 171 

SM-MONA2 8*4096 + 172 

SM-MONA3 8*4096 + 173 

SM-MONA4 8*4096 + 174 

SM-MONAS 8*4096 + 175 

SM-MONA6 8*4096 + 176 

SM-MONA7 8*4096 + 177 

SM-MONAB 8*4096 + 178 

SM-MONA9 8*4096 + 179 

SM-MONAlO 8*4096 + 180 

SM-MONAll S*4096 + lSI 

SM-MONAl2 8*4096 + IS2 

Month or Year SpeUed Out (1-12) 

SM-MONLl 8*4096 + 183 

SM-MONL2 8*4096 + 184 

SM-MONL3 8*4096 + 185 

SM-MONL4 8*4096 + 186 

Page B-8 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Nwnber . Message Text 

SM-MONLS 8*4096 + 187 

SM-MONL6 8*4096 + 188 

SM-MONL7 8*4096 + 189 

SM-MONL8 8*4096 + 190 

SM-MONL9 8*4096 + 191 

SM-MONLIO 8*4096 + 192 

SM-MONLll 8*4096 + 193 

SM-MONL12 8*4096 + 194 

AM and PM representations 

SM-AM 8*4096 + 195 

SM-PM 8*4096 + 196 

Datetrime Formats 

SM-ODEF-DTlME 8*4096 + 197 %m/%d/%2y %h:%OM %p 

SM-IDEF-DTlME 8*4096 + 198 %m/%d/%2y 

SM-2DEF-DTlME 8*4096 + 199 %h:%OM%p 

SM-3DEF-DTlME 8*4096 + 200 %m/9"od/%2y %h:%OM %p 

SM-4DEF-DTlME 8*4096 + 201 %m/%d/%2y %h:%OM %p 

;SM-SDEF-DTlME 8*4096 + 202 %m/%d/%2y %h:%OM %p 

SM-6DEF-DTlME 8*4096 + 203 %m/%d/%2y %h:%OM %p 

SM-7DEF-DTlME 8*4096 + 204 %m/%d/%2y %h:%OM %p 

SM-8DEF-DTlME 8*4096 + 205 %m/%d/%2y %h: %OM %p 

SM-9DEF-DTlME 8*4096 + 206 %m/%d/%2y %h:%OM %p 

JAM Release 5 1 March 91 PageB-9 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-CALC-DATE 8·4096 + 207 %m/%d/%4y 

Block Mode Messages 

SM-BAD-DIGIT 8·4096 + 208 Bad character in digits only field. 

SM-BAD-YN 8·4096 + 209 Bad character in yes/no field. 

SM-BAD-ALPHA 8·4096 + 210 Bad character in letters only field 

SM-BAD-NUM 8·4096 + 211 Bad character in nwneric field. 

SM-BAD-ALPHNUM 8*4096 + 212 Bad character in alphanumeric 
field 

Currency Formats 

SM-DECIMAL 8·4096 + 213 

SM-ODEF-CURR 8*4096 + 214 ".22,1$ 

SM-IDEF-CURR 8·4096 + 215 ".09, 

SM-2DEF-CURR 8·4096 + 216 ".09 

SM-3DEF-CURR 8*4096 + 217 ".09 

SM-4DEF-CURR 8*4096 + 218 ".09 

SM-5DEF-CURR 8*4096 + 219 ".09 

SM-6DEF-CURR 8*4096 + 220 ".09 

SM-7DEF-CURR 8*4096 + 221 ".09 

SM-8DEF-CURR 8*4096 + 222 ".09 

SM-9DEF-CURR 8*4096 + 223 ".09 

Derault Status Lines 

SM-1STATS 8*4096 + 224 default status line 

Page 8-10 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Manager Library Messages: SM-MSGS = 8 

Mnemonic Message Number Message Text 

SM-12STATS 8"'4096 + 225 ZOOM window status line 

SM-VERNO 8"'4096 + 226 5.01 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text 

FM-2STATS 9"'4096 + 3 Screen Editor MOVE status line 

FM-3STATS 9"'4096 + 4 Screen Editor COPY status line 

FM-4STATS 9"'4096 + 5 linedraw status line, pen down 

FM-SSTATS 9"'4096 + 6 linedraw status line, pen up 

FM-6STATS 9"'4096 + 7 select mode status line 

FM-7STATS 9"'4096 + 8 group information status line 

FM-8STATS 9"'4096 + 9 group select mode status line 

FM-9STATS 9"'4096 + 75 group info status line for DO 

FM-1OSTATS 9"'4096 + 76 para1Iel array select status line 

FM-llSTATS 9"'4096 + 119 JPL window stams line 

SigtH)ff Message 

FM-BYE 9"'4096 + 10 

Cbaracters For Vertical & Horizontal 

FM-VERT 9"'4096 + 11 

FM-HORIZ 9*4096 + 12 

General Error Messages For Screen Editor 

FM-BADENTRY 9*4096 + 13 Bad entry. 

JAM Release 5 1 March 91 Page B-11 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text 

FM-MXSCRN 9*4096 + 14 Maximum number of %s (,'lines" or 
"columns") on the screen is %d. 

FM-MNBRDR 9*4096 + 15 Minimum number of %s to hold 
screen data and a border is %d. 

FM-MNFORM 9*4096 + 16 Minimum number of %s to hold 
screen data is %d. 

FM-NOMENU 9*4096 + 17 

FM-MINV 9*4096 + 18 Below minimum value of %d. 

FM-THARRAY 9*4096 + 19 This array cannot fit on maximum 
size screen. 

**Msgs 20--25 Free For Use 

Display Attributes 

FM-UTTO 9*4096 + 26 ''NON-DISP " 

FM-UTTl 9*4096 + 27 "REVERSE" 

FM-UTT2 9*4096 + 28 "BLINKING" 

FM-UTT3 9*4096 + 29 ''UNDLN" 

FM-UTT4 9*4096 + 30 "Hll..IGHT " 

FM-UTTS 9*4096 + 31 "DIM" 

FM-UTT6 9*4096 + 32 "STANDOUT" 
........... 1',-_. 

FM-UTT7 9*4096 + 33 "ALTERNATE " 

Colors 

FM-CLRO 9*4096 + 34 "BLACK" 

FM-CLRl 9*4096 + 35 "BLUE .. 

Page 8-12 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text . 

FM-CLR2 9*4096 + 36 "GREEN" 

FM-CLR3 9*4096 + 37 "CYAN" 

FM-CLR4 9*4096 + 38 "RED" 

FM-CLRS 9*4096 + 39 "MAGENTA" 

FM-CLR6 9*4096 + 40 "YELWW" 

FM-CLR7 9*4096 + 41 "WHITE " 

**Msgs 42 - 45 Available For Use 

Opening and Saving Screens 

FM-TEMPLT 9*4096 + 46 Press <XMIT> to accept the tem-
plate, <EXIT> to cancel. 

FM-NOOPEN 9*4096 + 47 Cannot create screen %8. 

FM-FSAVED 9*4096 + 48 Screen '%8' saved. 

FM-WRFORM 9*4096 + 49 Error writing screen '%8'. 

Exiting 

FM-QSAVE 9*4096 + 50 "Do you want to save the current 
screen? (enter y or n) " 

FM-QCONT 9*4096 + 51 Do you want to continue processing? 
(enter y or n) 

FM-QEXIT 9*4096 +. 52 Do you really want to exit? (enter y 
orn) 

Arrays 

FM-ARSET 9*4096 + 54 Cannot set array from this field. 

FM-ARHROOM 9*4096 + 55 No room for horizontal array. 

JAM Release 5 1 March 91 Page 8-13 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text 

FM-ARVROOM 9*4096 + 56 No room for vertical array. 

FM-AROVERLAP 9*4096 + 58 Overlaps existing field. 

Filters For Summary Window 

FM-FLTO 9*4096 + 59 unfllt 

FM-FLTl 9*4096 + 60 digit 

FM-FLT2 9*4096 + 61 yeslno 

FM-FLT3 9*4096 + 62 letters 

FM-FLT4 9*4096 + 63 numeric 
, 

FM-FLTS 9*4096 + 64 alphanum 

FM-FLT6 9*4096 + 65 reg exp 

**Msg 66 Reserved For FM-FLT7 If Ever Defined 

Miscellaneous Messages 

FM-RDO-BUTTON 9*4096 + 67 "RADIO-BUITON" 

FM-CHK-BOX 9*4096 + 68 "CHECK-BOX" 

FM-PARALLEL 9*4096 + 71 "PARALLEL " 

FM-UCSET 9*4096 + 72 Set upper or lower case 

FM-MINMAX 9*4096 + 73 Minimum greater than maximum 

FM-ONEYES 9*4096 + 74 Enter 'yes' for one option only 
.. ~ .. --. 

FM-PARNS 9*4096 + 77 Not a scrolling array 

FM-PARDS 9*4096 + 78 Different size arrays 

FM-PARDC 9*4096 + 79 Different CIRCULARity 

FM-BK-POSTFIX 9*4096 + 80 "-BKGND" 

Page 8-14 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Nwnber . Message Text 

FM-PREV 9*4096 + 81 "PREY-FLD" 

FM-SHRNG 9*4096 + 82 The shifting increment must be at 
least I, but no more than 

FM-FLDLEN 9*4096 + 83 Length must be non-zero and no 
greater than %d 

FM-WR-RJUST 9*4096 + 84 A word wrap field may not be right-
justified. 

FM-WRFILL 9*4096 + 85 A word wrap field may not be must-
fill. 

FM-WRNOTAB 9*4096 + 86 A word wrap field must allow auto-
tab. 

**Msgs 87-92 Free For Use 

FM-GRNONE 9*4096 + 93 Graphics not available on this termi-
nal. 

**Msgs 94-100 Free For Use 

FM-FLEN-EXSHF 9*4096 + 101 Field too long for maximum shifting 
length, 

FM-GNOFLDS 9*4096 + 102 

FM-OVERLAP 9*4096 + 103 Overlaps field or border, 

FM-NAMEINUSE 9*4096 + 104 Name already assigned to another 
field or group. 

FM-FLDNO 9*4096 + 105 Invalid field name. 

FM-CLCMIN 9·4096 + 110 Minimum digits should not exceed 
length of field, which is %d. 

FM-LINES 9*4096 + 116 lines 

FM-COLS 9*4096 + 117 columns 

JAM Release 5 1 March 91 Page 8-15 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS - 9 

Mnemonic Message Number Message Text 

FM-INBORDER 9*4096 + 118 Bad entry - field in prospective bor-
der. 

FM-DUPDRAW 9*4096 + 120 Duplicate draw character. 

Validation Bits For Summary Window 

FM-RTJUST 9*4096 + 121 "RT-JUST" 

FM-REQD 9*4096 + 122 "REQUIRED" 

FM-CLRINP 9*4096 + 123 "CLR-INPUT " 

FM-MENU 9*4096 + 124 "MENU" 

FM-RETURN 9*4096 + 125 "RETURN" 

FM-UPPER 9*4096 + 126 "UPPER " 

FM-LOWER 9*4096 + 127 "LOWER " 

FM-FILLED 9*4096 + 128 "MUST-FILL" 

FM-NO-AUTO 9*4096 + 129 ''NO_AUTOTAB " 

FM-WRAP 9*4096 + 130 "WORDWRAP " 

FM-APROT 9*4096 + 131 ''PROJECTED'' 

FM-EPROT 9*4096 + 132 "E-PROT" 

FM-TPROT 9*4096 + 133 "T-PROT" 

FM-CPROT 9*4096 + 134 "C-PROT" 

FM-VPROT 9*4096 + 135 "V-PROT" 

FM-IFORMAT 9*4096 + 136 Invalid format 

FM-INVRC 9*4096 + 137 Invalid menu return code. 

FM-WRMSK 9*4096 + 138 A word wrap field may not have a 
field-level regular expression. 

Page 8-16 JAM Release 5 1 March 91 



Stratus COBOL programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text 

Regular Expressions 

FM-RXl 9*4096 + 139 Regular expression 100 long. 

FM-RX2 9*4096 + 140 Unbalanced '[' bracket 

FM-RX3 9*4096 + 141 Too many '(' brackets. 

FM-RX4 9*4096 + 142 Too many ')' brackets. 

FM-RXS 9*4096 + 143 Expecting number between 0-9 or 
'\)'. 

FM-RX6 9*4096 + 144 Range may not exceed 255. 

FM-RX7 9*4096 + 145 Too many commas in specifying 
range. 

FM-RX8 9*4096 + 146 Closing' ) , brace expected. 

FM-RX9 9*4096 + 147 First number exceeds second in spec-
ifying range. 

FM-RXIO 9*4096 + 148 digit out of range. 

FM-RXll 9*4096 + 149 Previous '(' bracket not yet closed. 

FM-RX12 9*4096 + 150 Unexpected end of regular expres-
sion. 

FM-RX13 9*4096 + 151 Range can follow only an expression. 

Data For FfYPE Window 

FM-FTOMIT 9*4096 + 159 omit from struct 
. 

FM-FTSTR 9*4096 + 160 <Sxhar string 

FM-FTl 9*4096 + 161 int 

FM-FTDIGIT 9*4096 + 162 unsigned int 

JAM Release 5 1 March 91 Page 8-17 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number - Message TeXl 

FM-FT3 9*4096 + 163 short int 

FM-FT4 9*4096 + 164 long int 

FM-FTS 9*4096 + 165 <R>float 

FM-FTNUM 9*4096 + 166 <R>double 

FM-FT7 9*4096 + 167 zoned decimal 

FM-FT8 9*4096 + 168 packed decimal 

FM-FT9 9*4096 + 169 noC default 

FM-FTIO 9*4096 + 170 noC default 

FM-FTll 9*4096 + 171 noC default 

FM-FT12 9*4096 + 172 noC default 

FM-FT13 9*4096 + 173 noC default 

Edits For Summary Window 

FM-RANGES 9*4096 + 174 ''RANGES'' 

FM-NEXT 9*4096 + 175 "NEXT-FLD" 

FM-CURRENCY 9*4096 + 176 "CURRENCY" 

FM-TEXT 9*4096 + 177 ''TEXT" 

FM-VALPROG 9*4096 + 178 "VAL-FUNC" 

FM-HELP 9*4096 + 179 "HELP" 

FM-CALC 9*4096 + 180 "MATH" 

FM-SDATETlME 9*4096 + 181 "SYST -DATF/TIME " 

FM-FXPROG 9*4096 + 182 "FLO-EXIT -FUNC " 

FM-CDIGIT 9*4096 + 183 "CK-DIGIT" 

Page 8-18 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic . Message Number Message Text 

FM-TYPE 9*4096 + 184 "TYPE" 

FM-UDATETlME 9*4096 + 185 "uSR-DATE/TIME " 

FM-KSBADVAL 9*4096 + 186 "Bad value for soft key," 

FM-ITEM 9*4096 + 187 "ITEM-SELECf " 

FM-AHELP 9*4096 + 188 "AUIO-HELP " 

FM-AITEM 9*4096 + 189 "AUIO-ITEM-SEL " 

FM-MEMOS 9*4096 + 190 "MEMOS" 

FM-FEPROG 9*4096 + 191 "FLD-ENlRY -RJNC " 

FM-RETCODE 9*4096 + 192 "RET-CODE" 

FM-JPLEDIT 9*4096 + 193 "JPL" 

FM-SUBMENU 9*4096 + 194 "SUBMENU" 

FM-REGEXP 9*4096 + 195 "REG-EXP" 

FM-TBL-LOOKUP 9*4096 + 196 "'mL-LooKUP " 

FM-LONGDT 9*4096 + 197 Date/time fonnat string too long 

Currency Defaults 

FM-NOCURRDFLT 9*4096 + 198 WARNING: Currency default mes-
sages not found. 

FM-OMN-CURRDEF 9*4096 + 199 CURRENCY DEFAULT 

FM-1MN-CURRDEF 9*4096 + 200 NUMERIC DEFAULT 

FM-2MN-CURRDEF 9*4096 + 201 PLAIN DEFAULT 

FM-3MN-CURRDEF 9*4096 + 202 DEFAULT3 

FM-4MN-CURRDEF 9*4096 + 203 DEFAULT4 

JAM Release 5 1 March 91 Page 8-19 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number -, Message Text 

FM-5MN-CURRDEF 9*4096 + 204 DEFAULT5 

FM-6MN-CURRDEF 9*4096 + 205 DEFAULT6 

FM-7MN-CURRDEF 9*4096 + 206 DEFAUL17 

FM-8MN-CURRDEF 9*4096 + 207 DEFAULT8 

FM-9MN-CURRDEF 9*4096 + 208 DEFAULT9 

FM-INV-CURRDFLT 9*4096 + 209 Invalid currency default. 

NULL for Summary Window 

FM-NULLEDIT 9*4096 + 210 "NULL" - for summary window 

Keyset Editor 

FM-KSSTATLN 9*4096 + 211 main status line 

FM-KSNEWSIZE 9*4096 + 212 status line for new size, 

FM-KSQSAVE 9*4096 + 213 Do you want to save the current key-
set? (enter y or n) 

FM-KSNOOPEN 9*4096 + 214 Cannot create keyset %s. 

FM-KSSAVED 9*4096 + 215 keyset '%s' saved. 

FM-KSWRITE 9*4096 + 216 Error writing keyset '%s'. 

FM-KSTOOBIG 9*4096 + 217 Keyset has too many rows. 

Datel1ime Strings For Local Dialect. 

FM-YR4 9*4096 + 218 

FM-YR2 9*4096 + 219 

FM-MON 9*4096 + 220 

FM-MON2 9*4096 + 221 

Page 8-20 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS - 9 

Mnemonic Message Nwnber Message Text 

FM-DATE 9*4096 + 222 

FM-DATE2 9*4096 + 223 

FM-HOUR 9*4096 + 224 

FM-HOUR2 9*4096 + 225 

FM-MIN 9*4096 + 226 

FM-MIN2 9*4096 + 227 

FM-SEC 9*4096 + 228 

FM-SEC2 9*4096 + 229 

FM-YRDAY 9*4096 + 230 

FM-AMPM 9*4096 + 231 

FM-DAYA 9*4096 + 232 

FM-DAYL 9*4096 + 233 

FM-MONA 9*4096 + 234 
-

FM-MONL 9*4096 + 235 

Mnemonics To Speciry Default Dates In the Screen Editor 

FM-OMN-DEF-DT 9*4096 + 236 DEFAULT 

FM-1MN-DEF-DT 9*4096 + 237 DEFAULTl 

FM-2MN-DEF-DT 9*4096 + 238 DEFAULTI 

FM-3MN-DEF-DT 9*4096 + 239 DEFAULT3 

FM-4MN-DEF-DT 9*4096 + 240 DEFAULT4 

FM-5MN-DEF-DT 9*4096 + 241 DEFAULTS 

FM-6MN-DEF-DT 9*4096 + 242 DEFAULT6 

JAM Release 5 1 March 91 Page B-21 



Stratus COBOL Programmer's Guide 

Screen Editor Messages: FM-MSGS = 9 

Mnemonic Message Number Message Text 

FM-7MN-DEF-DT 9*4096 + 243 DEFAULT7 

FM-8MN-DEF-DT 9*4096 + 244 DEFAULTS 

FM-9MN-DEF-DT 9*4096 + 245 DEFAULT9 

Clipboard Messages 

FM-BIGCLIP 9*4096 + 246 Clipboard too big to fit in screen 

FM-EMPTYCLIP 9*4096 + 247 Clipboard '%c' is empty 

JAM Messages: JM-MSGS = 10 

Mnemonic Message Number Message Text 

JM-BYE 10*4096 + 0 \nThank you! Have a nice day.\n 

JM-QTERMINATE 10*4096 + 1 "Would you like to tenninate this ses-
sion(y/n)? " 

JM-BIGPARAM 10*4096 + 2 Parameter list is to big 

JM-OVFORM 10*4096 + 3 Fonn stack overflow 

JM-LONGNAME 10*4096 + 4 Screen name '%s' is too long 

JM-HITSPACE 10*4096 + 5 Hit space bar to continue 

JM-NDXREBUILD 10*4096 + 6 Rebuilding index .. 

JM-NDXINIT 10*4096 + 7 Initializing index .. 

JM-INVENTRY 10*4096 + 10 Invalid entry 

LDB Messages 

JM-NODD 10*4096 + 11 No Data Dictionary me. 

JM-NONDX 10*4096 + 12 Index not initialized. 

Page 8-22 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

JAM Messages: JM-MSGS = 10 

Mnemonic Message Number . Message Text 

JM-INVFILE 10*4096 + 14 Error: initialization fIle %s is invalid 

JM-BIGNAME 10*4096 + 15 Warning: name %s too long 

JM-NOITEM 10*4096 + 16 Item %s does not exist in Data Dic-
tionary 

JM-BIGELE 10*4096 + 17 Warning: element number %d ex-
ceeds occurrences for %s\n 

JM-BIGINIT 10*4096 + 18 Warning: init string for %s too long; 
bUncated 

JM-BADDATA 10*4096 + 19 Warning: bad data, no %s initializa-
tion 

JM-WAIT 10*4096 + 20 Please wait, 

JM-NOINI 10*4096 + 21 Warning: Initiallization fIle %s not 
found. 

JM-HITACK 10*4096 + 22 Hit ACKnowledge key to continue 

JM-NOMEMDD 10*4096 + 23 Not enough memory for Data Dictio-
nary. 

JM-DDINV 10*4096 + 24 Invalid Data Dictionary. 

JM-BIGINIT2 10*4096 + 25 Warning: init string for %s occ# %d 
too long; bUncated 

JM-HITFUNC 10*4096 + 26 Hit any function key to continue. 

JAM Release 5 1 March 91 PageB-23 



Stratus COBOL Programmer's Guide 

JXFORM MESSAGES: JX-MSGS = 11* 

Mnemonic Message Number Message Tal 

JX-NOCINIT 11*4096 + 0 Warning: no constants initialization 
rue 

JX-EMPCINIT 11*4096 + 1 Warning: constants initialization rue 
empty 

JX-EMPGINIT 11*4096 + 3 Warning: globals initialization file 
empty 

JX-PROGNAME 11*4096 + 5 DCFORM Rei X.X ... 

JX-USAGE 11*4096 + 6 Usage: jxfonn [-e) [screen ... :f\n 

JX-EDIT-OPT 11*4096 + 7 Start jxfonn in edit mode 

JX-DESCR 11*4096 + 8 Displays and modifies JAM screens. 

JX-SHOWFLD 11*4096 + 4 show field names 

JX-SHOWGRP 11*4096 + 84 show group names 

JX-JCSEXISTS 11*4096 + 10 '''%s'' field already exists.' 

JX-MISDD 11*4096 + 11 Data Dictionary not found. 

JX-DDREAD 11*4096 + 12 Reading Data Dictionary File 

JX-NOTFIELD 11*4096 + 13 Cursor is not in a field. 

JX-NONAME 11*4096 + 14 Field has no name. 

JX-ENTEXIST 11*4096 + 15 Entry already exists. 

JX-DDDATA 11*4096 + 16 Bad data in data dictionary file. 

JX-DDLIMIT 11*4096 + 17 Cannot update; new element count 
exceeds %d limit 

JX-DDEREAD 11*4096 + 18 Error reading data dictionary file 

JX-DDCREATE 11*4096 + 19 Cannot create data dictionary. 

Page B-24 JAM Release 5 1 March 91 



Stratus COBOL Programmer's Guide 

JXFORM MESSAGES: JX-MSGS = 11* 

Mnemonic . Message Number Message Text 

JX-DDUPDATE 11*4096 + 20 Cannot update data dictionary. 

JX-DDWRITE 11*4096 + 21 Failure in writing data dictionary 

JX-ADDENTRY 11*4096 + 22 Added entry "%s" 

JX-NOUPDATE 11*4096 + 30 Can't update me. LATEST is '%s'; 
'%s' is backup 

JX-ARESURE 11*4096 + 31 "Are you sure (Yin)?" 

JX-NOREBUILD 11*4096 + 33 Cannot rebuild index. 

JX-DDSAVED 11*4096 + 34 Data Dictionary saved. 

JX-NORECORD 11*4096 + 39 obsolete mnemonic) 

JX-NODELETE 11*4096 + 39 No entry deleted or already unde-
leted. 

JX-NOROOM 11*4096 + 40 No room in data dictionary. 

JX-WRONGTERM 11*4096 + 41 Cannot perfonn requested function 
on this tenninaI 

JX-TMPOPEN 11*4096 + 42 Can'1 open %s; try writing %s. 

JX-OPENFATAL 11*4096 + 43 Can't open %s; please exit DD editor. 

JX-WRITING 11*4096 + 44 Writing Data Dictionary File .. 

JX-LGOPEN 11*4096 + 45 Can't write %s; delete some items 
and try again. 

JX-READ 11*4096 + 46 Cannot read %s. 

JX-BADDATA 11*4096 + 47 Bad data in %s. 

**Msgs 48 Free For Use 

**Msgs 60 - 63 Free For Use 

JAM Release 5 1 March 91 Page 8-25 



Stratus COBOL Programmer's Guide 

JXFORM MESSAGES: JX-MSGS = 11* 

Mnemonic Message Number Message Text 

JX-ITMEXIST 11*4096 + 64 obsolete mnemonic) 

JX-RECEXIST 11*4096 + 64 Record already exists. 

JX-NOFIELDS 11*4096 + 65 Data dictionary has no fields 

JX-NOGROUPS 11*4096 + 66 Data dictionary has no groups 

JX-ITMNOTFOUND 11*4096 + 67 Item not found 

JX-NOSEARCH 11*4096 + 68 Don't know what to search. 

Status Lines 

JX-OSTLINE 11*4096 + 70 JAM DRAW mode status line 

JX-1STLINE 11*4096 + 71 JAM 1EST mode status line 

JX-4STLlNE 11*4096 + 72 basic JXFORM status line 

JX-SSTLINE 11*4096 + 73 DD editor status line 

JX-6STLINE 11*4096 + 74 DO find match status line 

JX-7STLINE 11*4096 + 75 DD editor update status line 

JX-8STLINE 11*4096 + 76 DO template status line 

JX-9STLlNE 11*4096 + 77 DO/field match status line 

JX-1OSTLINE 11*4096 + 78 base line without keyset ed 

**MOVE/COPY Use Screen Editor Status Lines 

* jxform messages other than those listed under Screen Editor & JAM. 

Page 8-26 JAM Release 5 1 March 91 



Addendum 

for Updates to 
JAM Release 5.03 

for Stratus COBOL 

Part Number R333-OOA 

August 3, 1992 



Addendum for Updates to JAM 5.03 

Note of Explanation 
This addendwn describes new features in release 5.03 of JAM. This addendum is for the 
Stratus COBOL Programmer's Guide. There are separate addenda for Volumes 1 and 2 of 
the JAM 5.03 docwnentation seL 

Several insertion pages (or A-pages) are included for new library routines and utilities in 
JAM 5.03. These pages should be inserted into your JAM Programmer's Guide and Uti
lities Guide at the appropriate location. For example, page A-195 should be inserted be
fore page 195. 

Note that the page numbers for the Utilities Guide refer to the August 1, 1991 printing of 
the JAM manual. Page numbers in the Programmer's Guide refer to the March 1, 1991 
printing of the SlrabJS COBOL Programmer's Guide. 

Stratus COBOL Programmer's Guide' 
Page 94: New Behavior and Return Codes for xsm_ascroll 

The library routine xsm_ascroll takes as arguments a field number and an occur
rence. It scroUs an array such that the requested occurrence is in the specified field. If the 
requested occurrence cannot be placed in the specified field because it is one of the f1l'St 
or last occurrences in a non-circular array, then xsm ascroll scrolls the occurrence 
onto the screen and returns the occurrence number of the occurrence that is actually in the 
specified field. 

Page 170: Inquiring Help Level via xsm_inquire 

The global variable I _ INHELP now contains the level of help that the user is in, instead 
of just a true/false value. 'lbere may be up to five levels of help. Use sm _inquire to 
query the value of this variable. A return of zero indicates that the user is not in help, a 
return of 1 through 5 indicates which help level the user is in. 

Page 197: xsm_keyoption 

Certain keys can not be translated via the KEY XLATE argument to sm keyoption. 
These are: INS, REFR, SFTS, LP, and ABORT. They may, however, be disabled via the 
KEY_ROUTING argwnent, or intercepted via a keychange function 

Page224:xsm_msgread 

The header file msgf ilE: . incl. cobol is a user-created me that is necessary only if 
you are using a memory-:esident message me. 

JAM Release 5.03 Addendum 3 August 92 Page 1 



Addendum for Updates to JAM 5.03 

Page 249: Percent Escapes in xsm _query _ msg 

Percent escapes are now supported for controUing the attributes of query messages. The 
sequences are the same as those for xsrn _ ernsg, and detailed on page 214. Note that %Mu 
and %Md are not supported. Query messages from JPL can also now use percent escapes. 

Page 295: MDT bits and Scrolling Arrays 

When lines are inserted or deleted from scrolling arrays via INSL or DELL, the MDT bits 
for all occurrences after the insertion or deletion are no longer set In a database applica
tion, this prevents the need for unnecessary processing to write potentially large amounts 
data that have not changed. For large arrays, it can save a significant amount of proces
sing time. 

Page 2 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Utilities Guide 

bin2cob 
convert binary JAM files to COBOL copy files 

SYNOPSIS 
bin2cob [-fvl COBOL-tile blllllry-ille • •• 

OPTIONS 
- f Overwrite an existing output file. 

-v Generate list of files processed. 

DESCRIPTION 
This program converts binary files created with other JAM utilities into COBOL 
source. COBOL-file is usually a new file name. (To overwrite an existing file, you must 
use the -f option.) 

When the utility creates the COBOL source flle, it generates a copy file for each of the 
binary input files. The name of the copy file is derived from the binary file name, with 
the path and extension removed, and given the extension. incl. cobol. Each copy 
file contains one 01 level with the name of the binary file followed by -form. Under 
that there are multiple 05 levels, all named filler, that are given initial values repre
senting the data in the binary file. 

The application program should include the copy file in the program that uses iL The 
d variants of certain library routines (d window, d form, d at cur, 

cCkeyset, d_msg_line) can then be used. - - - -

bin2cob copy files may be compiled, linked with your application, and added to the 
memory-resident fonn liSL (See the JAM Programmer's Guide for more infonnation 
on memory-resident lists.) The following files may be made memory-resident: 

• key translation flles (key2bin) 

• setup variable flles (var2bin) 

• video configuration flles (vid2bin) 

• message fil~ (msg2bin) 

• JPL files (jpl2bin) 

• screen files (jxform) 

There is no utility to convert asciI-fils back to its original binary fonn after using 
bin2cob. JAM provides other utilities that permit two-way conversions between 
binary and ASCII fonnats. For screens, these utilities are bin2hex and f2asc. 

JAM Release 5.03 Addendum 3 August 92 PageA-15 



Addendum - Replacement Page for Utilities Guide 

ERRORS 

Insufficient memory available. 
Cause: The utility could not allocate enough memory for its needs. 
Corrective action: Try to increase the amount of available memory. 

File "%s" already exists; use '-f' to overwrite. 
Cause: You have specified an output file that already exists. 
Corrective action: Use the -f flag to overwrite the file, or use another name. 

"%s": Permission denied. 
Cause: An input file was not readable, or an output file was not writeable. 
Corrective action: Check the permissions of the file in question. 

PageA-16 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Programmer's Guide 

copyarray 
copy the content3 of one array to another 
~i8iiSliiimii88S!ssSBiSli8aii!!~~'iiS8!!llllllliB8ISII!lSBiiIliillii888S8BSBBISISI811118ci!1888!!8!8SSS!S8SaSSBBllmsSSESEISSSBSBESSiSSSiiBSiiSiii8S8SSiSi 

SYNOPSIS 
77 destination-fld pic S(9)9 comp-S. 
77 source-fld pic S(9)9 comp-S. 
77 status pic S(9)9 comp-S. 
call "xsm_copyarray" using destination-fld, source-fld giving 

status. 

DESCRIPTION 
This routine copies the contents of the array containing source-fld into the array 
containing destination-fld. source-fld and destination-fld are field 
numbers. They may be the field number of any of element in the respective array. 

The developer is responsible for insuring that the arrays are compatible. Data in source 
array occurrences that are 100 long for the destination array are truncated without warn
ing. Oata in source array 'lCcurrences that are shorter than the destination array's field 
length are blank filled (wiili respect for justification). 

If the source array has mere occurrences than the destination array, the data in the extra 
occurrences are discarded. If the source array has fewer occurrences than the destina
tion array, trailing occurrences in the destination array are cleared of data (but not de
allocated). 

copyarray sets the MI:T bit and clears the VALIDEO bit for each destination array 
occurrence, indicating tha·~ the occurrence has been modified and requires validation. 

The variant, xsm n copyarray, searches the LOB for either array if the named field 
is not found on die-screen. However, if the destination LOB item has a scope of I, 
meaning that it is a conslP.nl, then it is not altered and the function returns -1. . 

RETURNS 
-1 if either field is not focnd or if the destination array in the LOB has a scope of 1. 
o otherwise. 

VARIANTS 
call "xsm_n_copyarray" using destination-name, source-name 

giving status. 

RELATED FUNCTIONS 
call "xsm_clear_acray" using field-number giving status. 

JAI'A Release 5.03 Addendum 3 August 92 PageA-117 



Addendum - Replacement Page for Programmer's Guide 

call "xsm_getfield" using buffer, field-number giving length. 
call "xsmyutfield" using field-number, data giving status. 

PageA-118 JAM Release 5.03 Addendum 3 August 92 



Addendum - Replacement Page for Programmer's Guide 

next_sync 
find next synchronized array 

PC! 

SYNOPSIS 
77 field_number pic S(9)9 comp-5. 
77 next-array pic S(9)9 comp-5. 
call "xsm_next_sync" using field-number giving next-array. 

DESCRIPTION 
Given a field number, this function fmds the next array synchronized with the given 
field, and returns the field number of the corresponding element in that array. The next 
synchronized array is defined as the one to the right. If field-number is in the righ
most synchronized array, the function returns the corresponding element in the leftmost 
synchronized array (ie- it wraps around the screen). 

RETURNS 

The field number of the corresponding element in the n~xt synchroniz~ array if there 
is one. 

Otherwise, the field number the function was passed. 

JA~ Release 5.03 Addendum 3 August 92 PageA-231 



Addendum - Replacement Page for Programmer's Guide 

soption 
set a string option 

SYNOPSIS 
copy "smmisc.incl.cobol". 
copy "smmisc2.incl.cobol". 
copy "smmisc3.incl.cobol". 

77 option 
77 newval 
77 oldval 
call "xsm_soption" 

DESCRIPTION 

pic S(9)9 comp-5. 
display-2 pic x(256). 
display-2 pic x(256). 

using option, newval GIVING OLDVAL. 

Use xs~soption to alter during run-time the default siring options defined in 
smsetup. incl. cobol. The following table lists the valid values for option: 

Value Description 

SO EDITOR Editor to use in JPL windows. 

SO FEXTENSION Screen fIle extension. 

SO_LPRINT Operating system print command. 

so PATH Search path for screens and JPL procedures. 

These variables are fully uocumented in the JAM Configuration Guide, under "System 
Environment and Setup Files." 

RETURNS 

The old value for the specified option. 
o if the option is invalid or a malloc error occurred. 

RELATED FUNCTIONS 
call "xsm_option" using option, newval GIVING OLDVAL. 

JA:.t Release 5.03 Addendum 3 August 92 PageA-289 



Addendum - Replacement Page for Programmer's Guide 

wrotate 
rotate the display of sibling windows 
l!!!!SSSiiSiiiiiiiiiiiiiiiiii8!SSSSSSiilS8SltiiSiimmiS!l!immmmSSilCSiiiii8SSSSliSlm8SiliS888Si888S!8i8Si8iiii!!ji8DmSliliWilil!mSmSiSsm88i8ii88S8ii8888Biil~ 

SYNOPSIS 
77 step pic S(9)9 comp-5. 
77 status pic S(9)9 comp-5. 
call "xsm_wrotate" using step giving status. 

DESCRIPTION 

If two or more sibling windows are on the top of the display, this function may be used 
to rotate the sequence of the sibling windows. step is a positive or negative integer 
equalling the number of screen rotations. If step is positive, the routine takes the IOp
most sibling window and makes it the last sibling window for each instance of step. 
If step is negative, the routine takes the last sibling window and makes it f1l'SL If 
step is zero, no rotations are performed. See the figures below. 

Figure 1: Screens a, b.and c are all siblings.Screen main is not a sibling. 

Figure 2: Executing sm_wrotate (1) rotates the top sibling to the bottom 
of the sibling stack. It rotates screen c behind the other two sibling windows, 
leaving screen b on top. Screen main is not affected. 

JAM Release 5.03 Addendum 3 August 92 PageA-309 



Addendum - Replacement Page for Programmer's Guide 

Figure 3: Executing sm_wrotate (-1) rotates the last sibling window to 
the top, putting screen c on top. The display is the same as Figure 1. 

Figure 4: Executing sm_wrotate (2) rotates the first two sibling windows 
off the the top. First it rotates screen c to the back; then screen b, leaving 
screen a on top. 

RETURNS 

One less than the number of sibling windows on top of the window stack. 
o if there are no sibling windows 

RELATED FUNCTIONS 

call "xsm_sibling" using should-it-be. 

PageA-310 JAM Release 5.03 Addendum 3 August 92 


	VOLUME I
	Master List of Contents
	JAM Development Overview
	TABLE OF CONTENTS
	1 Introduction
	2 What is  JAM?
	3 JAM Application Development
	4 JAM Control Flow
	5  JAM Philosophy
	INDEX

	New Features in JAM  Release 5
	1 Categories of New Features
	2 Summary of New Features

	Author's Guide
	TABLE OF CONTENTS
	1 Introduction
	2 Keyboard Entry
	3 The Authoring Environment
	4 The Screen Editor
	5  The Data Dictionary Editor
	6 The Keyset Editor
	7 Authoring Reference
	INDEX

	Configuration Guide
	TABLE OF CONTENTS
	1 Introduction
	2 Key Translation File
	3 Message File
	4 System Environment and Setup Files
	5 Video File
	INDEX

	Utilities Guide
	TABLE OF CONTENTS
	1 Introduction
	2 Utility Reference Manual
	INDEX

	Glossary
	Upgrade Guide
	Master Index
	Addendum

	VOLUME II
	JPL Guide
	TABLE OF CONTENTS
	1 Introduction
	2 Quick Start
	3 JPL Modules and Procedures
	4 JPL Variables
	5 The Colon Preprocessor
	6 Data Types, Operators, and Expressions
	7 Statements and JPL Commands
	8 Using Library Functions and Application Code
	9 Performance Considerations
	INDEX

	Programmer's Guide
	TABLE OF CONTENTS
	1Introduction
	2 Hook Functions
	3 Local Data Block
	4 Built-in Control Functions
	5 Keyboard Input
	6 Terminal Output Processing 
	7 Writing International (8 bit) Applications
	8 Writing Portable Applications
	9 Writing Efficient Applications
	10 Alternative Scrolling
	11 Block Mode
	12 Library Function Overview
	13 Function Reference
	14 Library Function Index
	INDEX

	Addendum

	JAM Release 5.04 Upgrade Guide
	TABLE OF CONTENTS
	1 Menu Bars
	2 Menu Bar Reference
	3 Menu Bar Utilities
	4 Display Emphasis
	5 Remote Scrolling
	INDEX

	JAM/DBi Release  4 
	Contents
	1 Introduction
	2 Accessing JAM/DBi
	3 Initialization
	4 Fetching and Inserting Data
	5 JAM/DBi Environment
	6 JAM/DBi Utilities

	New Features in JAM/DBi for ORACLE Release 4.8
	Contents
	I. Multiple Cursors
	II. Error Processing
	III. Text Datatype and Word-Wrapped Arrays
	IV. Customizing Query Result Destinations
	V. Miscellaneous
	Appendix B: Database - Specific Commands for ORACLE

	New Features in JAM/DBi for SYBASE / SQL Server Release 4.8
	Contents
	I. Multiple Cursors
	II. Error Processing
	III. Text Datatype and Word-Wrapped Arrays
	IV. Customizing Query Result Destinations
	Appendix B: Database-Specific Commands for SYBASE / SQL Server

	JAM/DBi Release 5
	TABLE OF CONTENTS
	JAM/DBi Overview
	1.Introduction
	2.What is JAM/DBi?
	3.JAM/DBi ApplicationDevelopment
	JAM/DBi Control Flow
	5.JAM/DBi Philosophy

	Developer's Guide
	6.Introduction to Development
	7.Access and Execution
	8.Data Flow from JAM
	9.Data Flow from a Database
	10.Hook Functions
	11.Transactions

	JAM/DBi Reference Guide
	12.JAM/DBi Reference Overview
	13.DBMS Global Variables
	14.DBMS Commands
	15.JAM/DBi Library Reference
	16.JAM/DBi Utility Reference

	Appendixes
	A.Keywords
	B.Error and Status Codes
	C.Fields in a JAM/DBi Application

	Index

	JAM/DBi Release 5 for  ORACLE
	JAM/DBi Release 5 for  SYBASE
	JAM/Report Writer Release 5.1
	TABLE OF CONTENTS
	1Introduction
	2 ReportWriter Philosophy
	3 Quick Start and SampleApplication
	4 The Report Format Screen
	5 Using the Script Statements
	6 Report Components
	7 Processing Flow
	8 ReportWriter Input and Output
	9 Running ReportWriter
	10 Development Hints
	11 Script Statement Reference
	12 Library Function Reference
	13 Utilities Reference
	Appendix A Glossary of Reserved Words
	Appendix B  Implementation Notes
	Appendix C Troubleshooting Guide
	Appendix D Examples
	INDEX

	JAM/Presentation Interface for OSF/Motif, OPEN LOOK and MS Windows
	TABLE OF CONTENTS
	1 Introduction
	2 JAM Objects into GUI Widgets
	3 Arranging Screens in JAM/Pi
	4 JAM Behavior in a GUIEnvironment
	5Entering Screen and FieldExtensions
	6 Extension Reference
	7 Setting Application Defaults
	8Menu Bars
	9 Using the Mouse
	10 GUI Specific Features
	11 Conversion Issues
	12 Library and Utility Reference
	Appendix A Terminology
	INDEX

	 JAM PL/1 Programmer's Guide for Stratus
	Addendum for Updates to JAM Release 5.03 for PL/1
	JAM COBOL Programmer's Guide for Stratus
	Addendum for Updates to JAM Release 5.03 for Stratus COBOL

